Effects of nutrient optimization on intra-annual wood formation in Norway spruce.
Kalliokoski, Tuomo; Mäkinen, Harri; Jyske, Tuula; Nöjd, Pekka; Linder, Sune
2013-11-01
In the Nordic countries, growth of Norway spruce (Picea abies (L.) Karst.) is generally limited by low availability of nutrients, especially nitrogen. Optimizing forest management requires better insight on how growth responds to the environmental conditions and their manipulation. The aim of this study was to analyse the effects of nutrient optimization on timing and the rate of tracheid formation of Norway spruce and to follow the differentiation of newly formed tracheids. The study was performed during two growing seasons in a long-term nutrient optimization experiment in northern Sweden, where all essential macro- and micronutrients were supplied in irrigation water every second day from mid-June to mid-August. The control plots were without additional nutrients and water. Tracheid formation in the stem was monitored throughout the growing season by weekly sampling of microcores at breast height. The onset of xylogenesis occurred in early June, but in early summer there were no significant between-treatment differences in the onset and relative rate of tracheid formation. In both treatments, the onset of secondary cell wall formation occurred in mid-June. The maximum rate of tracheid formation occurred close to the summer solstice and 50% of the tracheids had been accumulated in early July. Optimized nutrition resulted in the formation of ∼50% more tracheids and delayed the cessation of tracheid formation, which extended the tracheid formation period by 20-50%, compared with control trees. The increased growth was mainly an effect of enhanced tracheid formation rate during the mid- and later-part of the growing season. In the second year, the increased growth rate also resulted in 11% wider tracheids. We conclude that the onset and rate of tracheid formation and differentiation during summer is primarily controlled by photoperiod, temperature and availability of nutrients, rather than supply of carbohydrates.
Utsumi, Yasuhiro; Sano, Yuzou; Funada, Ryo; Ohtani, Jun; Fujikawa, Seizo
2003-01-01
An analysis was made of progressive changes in patterns of cavitation in the sapwood of three species of conifer (Larix kaempferi, Abies sachalinensis, and Picea jezoensis) that were growing in a sub-frigid zone. In all three conifers, all tracheids of the newly forming outermost annual ring were filled with water or cytoplasm during the period from May to August. However, many tracheids in the transition zone from earlywood to latewood lost water in September, presumably through drought-induced cavitation. Cavitated tracheids tended to be continuously distributed in a tangential direction. Subsequently, some earlywood tracheids of the outermost annual ring lost water during the period from January to March. This was associated with freeze-thaw cycles. In the second and third annual rings from the cambium of all three conifers, the lumina of most tracheids in the transition zone from earlywood to latewood contained no water. In contrast, some latewood tracheids near the annual ring boundary and many earlywood tracheids retained water in their lumina. The third annual ring had more cavitated tracheids than the second annual ring. Our observations indicated that cavitation progressed gradually in the tracheids of the conifers and that they were never refilled once cavitation had occurred. The region involved in water transport in conifers did not include the entire sapwood and differed among annual rings. PMID:12692342
Analysis of tracheid development in suppressed-growth Ponderosa Pine using the FPL ring profiler
C. Tim Scott; David W. Vahey
2012-01-01
The Ring Profiler was developed to examine the cross-sectional morphology of wood tracheids in a 12.5-mm core sample. The instrument integrates a specially designed staging apparatus with an optical imaging system to obtain high-contrast, high-resolution images containing about 200-500 tracheids. These images are further enhanced and analyzed to extract tracheid cross-...
Tracheid dimensions in rootwood of southern pine
Floyd G. Manwiller
1972-01-01
In samples from 20 trees aged 12 to 89 years, rootwood tracheids were one-third longer and one-third larger in diameter and had walls 18 percent thinner and lumens almost two-thirds larger than stemwood tracheids measured at stump height. Tracheids from horizontal roots were longer and had thicker walls than those from roots of other orientations; length, cell diameter...
Tracheid diameter is the key trait determining the extent of freezing-induced embolism in conifers.
Pittermann, Jarmila; Sperry, John
2003-09-01
We tested the hypotheses that freezing-induced embolism is related to conduit diameter, and that conifers and angiosperms with conduits of equivalent diameter will exhibit similar losses of hydraulic conductivity in response to freezing. We surveyed the freeze-thaw response of conifers with a broad range of tracheid diameters by subjecting wood segments (root, stem and trunk wood) to a freeze-thaw cycle at -0.5 MPa in a centrifuge. Embolism increased as mean tracheid diameter exceeded 30 microm. Tracheids with a critical diameter greater than 43 microm were calculated to embolize in response to freezing and thawing at a xylem pressure of -0.5 MPa. To confirm that freezing-induced embolism is a function of conduit air content, we air-saturated stems of Abies lasiocarpa (Hook.) Nutt. (mean conduit diameter 13.7 +/- 0.7 microm) by pressurizing them 1 to 60 times above atmospheric pressure, prior to freezing and thawing. The air saturation method simulated the effect of increased tracheid size because the degree of super-saturation is proportional to a tracheid volume holding an equivalent amount of dissolved air at ambient pressure. Embolism increased when the dissolved air content was equivalent to a mean tracheid diameter of 30 microm at ambient air pressure. Our centrifuge and air-saturation data show that conifers are as vulnerable to freeze-thaw embolism as angiosperms with equal conduit diameter. We suggest that the hydraulic conductivity of conifer wood is maximized by increasing tracheid diameters in locations where freezing is rare. Conversely, the narrowing of tracheid diameters protects against freezing-induced embolism in cold climates.
Zhang, Miao; Smith, Bronwen G.; McArdle, Brian H.; Chavan, Ramesh R.; James, Bryony J.
2018-01-01
Variable-pressure scanning electron microscopy was used to investigate the dimensional changes in longitudinal, tangential and radial directions, on wetting and drying, of tracheids of opposite wood (OW) and three grades of compression woods (CWs), including severe CW (SCW) and two grades of mild compression wood (MCW) (MCW1 and MCW2) in corewood of radiata pine (Pinus radiata) saplings. The CW was formed on the underside and OW on the upper side of slightly tilted stems. In the longitudinal direction, the shrinkage of SCW tracheids was ~300% greater than that of OW tracheids, with the shrinkage of the MCW1 and MCW2 tracheids being intermediate. Longitudinal swelling was also investigated and hysteresis was demonstrated for the tracheids of all corewood types, with the extent of hysteresis increasing with CW severity. A statistical association was found between longitudinal shrinkage and the content of lignin and galactosyl residues in the cell-wall matrix. The galactosyl residues are present mostly as (1→4)-β-galactans, which are known to have a high capacity for binding water and swell on hydration. The small proportions of (1→3)-β-glucans in the CWs have similar properties. These polysaccharides may play a functional role in the longitudinal shrinking and swelling of CW tracheids. Tangential shrinkage of tracheids was greater than radial shrinkage but both were greatest for OW and least for SCW, with the MCW1 and MCW2 being intermediate. PMID:29495536
Begum, Shahanara; Nakaba, Satoshi; Yamagishi, Yusuke; Yamane, Kenichi; Islam, Md. Azharul; Oribe, Yuichiro; Ko, Jae-Heung; Jin, Hyun-O; Funada, Ryo
2012-01-01
Background and Aims Latewood formation in conifers occurs during the later part of the growing season, when the cell division activity of the cambium declines. Changes in temperature might be important for wood formation in trees. Therefore, the effects of a rapid decrease in temperature on cellular morphology of tracheids were investigated in localized heating-induced cambial reactivation in Cryptomeria japonica trees and in Abies firma seedlings. Methods Electric heating tape and heating ribbon were wrapped on the stems of C. japonica trees and A. firma seedlings. Heating was discontinued when 11 or 12 and eight or nine radial files of differentiating and differentiated tracheids had been produced in C. japonica and A. firma stems, respectively. Tracheid diameter, cell wall thickness, percentage of cell wall area and percentage of lumen area were determined by image analysis of transverse sections and scanning electron microscopy. Key Results Localized heating induced earlier cambial reactivation and xylem differentiation in stems of C. japonica and A. firma as compared with non-heated stems. One week after cessation of heating, there were no obvious changes in the dimensions of the differentiating tracheids in the samples from adult C. japonica. In contrast, tracheids with a smaller diameter were observed in A. firma seedlings after 1 week of cessation of heating. Two or three weeks after cessation of heating, tracheids with reduced diameters and thickened cell walls were found. The results showed that the rapid decrease in temperature produced slender tracheids with obvious thickening of cell walls that resembled latewood cells. Conclusions The results suggest that a localized decrease in temperature of stems induces changes in the diameter and cell wall thickness of differentiating tracheids, indicating that cambium and its derivatives can respond directly to changes in temperature. PMID:22843340
Effects of elevation and seed source on tracheid length in young ponderosa pine
R. M. Echols
1973-01-01
Tracheid lengths in 30-year-old ponderosa pine progeny test plantations in the central Sierra Nevada of California were analyzed for effects of (a) elevation of seed parents and (b) elevation and location of test sites. The influence of elevation of seed parents on progeny tracheid length was not significant. Plantation location was significant, but interaction between...
Torus-margo pits help conifers compete with angiosperms.
Pittermann, Jarmila; Sperry, John S; Hacke, Uwe G; Wheeler, James K; Sikkema, Elzard H
2005-12-23
The unicellular conifer tracheid should have greater flow resistance per length (resistivity) than the multicellular angiosperm vessel, because its high-resistance end-walls are closer together. However, tracheids and vessels had comparable resistivities for the same diameter, despite tracheids being over 10 times shorter. End-wall pits of tracheids averaged 59 times lower flow resistance on an area basis than vessel pits, owing to the unique torus-margo structure of the conifer pit membrane. The evolution of this membrane was as hydraulically important as that of vessels. Without their specialized pits, conifers would have 38 times the flow resistance, making conifer-dominated ecosystems improbable in an angiosperm world.
Woodruff, D R; Meinzer, F C; Lachenbruch, B
2008-01-01
Hydraulic vulnerability of Douglas-fir (Pseudotsuga menziesii) branchlets decreases with height, allowing shoots at greater height to maintain hydraulic conductance (K shoot) at more negative leaf water potentials (Psi l). To determine the basis for this trend shoot hydraulic and tracheid anatomical properties of foliage from the tops of Douglas-fir trees were analysed along a height gradient from 5 to 55 m. Values of Psi l at which K shoot was substantially reduced, declined with height by 0.012 Mpa m(-1). Maximum K shoot was reduced by 0.082 mmol m(-2) MPa(-1) s(-1) for every 1 m increase in height. Total tracheid lumen area per needle cross-section, hydraulic mean diameter of leaf tracheid lumens, total number of tracheids per needle cross-section and leaf tracheid length decreased with height by 18.4 microm(2) m(-1), 0.029 microm m(-1), 0.42 m(-1) and 5.3 microm m(-1), respectively. Tracheid thickness-to-span ratio (tw/b)2 increased with height by 1.04 x 10(-3) m(-1) and pit number per tracheid decreased with height by 0.07 m(-1). Leaf anatomical adjustments that enhanced the ability to cope with vertical gradients of increasing xylem tension were attained at the expense of reduced water transport capacity and efficiency, possibly contributing to height-related decline in growth of Douglas fir.
Zhang, Yong-Jiang; Rockwell, Fulton E.; Wheeler, James K.; Holbrook, N. Michele
2014-01-01
Declines in leaf hydraulic conductance (Kleaf) with increasing water stress have been attributed to cavitation of the leaf xylem. However, in the leaves of conifers, the reversible collapse of transfusion tracheids may provide an alternative explanation. Using Taxus baccata, a conifer species without resin, we developed a modified rehydration technique that allows the separation of declines in Kleaf into two components: one reversible and one irreversible upon relaxation of water potential to −1 MPa. We surveyed leaves at a range of water potentials for evidence of cavitation using cryo-scanning electron microscopy and quantified dehydration-induced structural changes in transfusion tracheids by cryo-fluorescence microscopy. Irreversible declines in Kleaf did not occur until leaf water potentials were more negative than −3 MPa. Declines in Kleaf between −2 and −3 MPa were reversible and accompanied by the collapse of transfusion tracheids, as evidenced by cryo-fluorescence microscopy. Based on cryo-scanning electron microscopy, cavitation of either transfusion or xylem tracheids did not contribute to declines in Kleaf in the reversible range. Moreover, the deformation of transfusion tracheids was quickly reversible, thus acting as a circuit breaker regulating the flux of water through the leaf vasculature. As transfusion tissue is present in all gymnosperms, the reversible collapse of transfusion tracheids may be a general mechanism in this group for the protection of leaf xylem from excessive loads generated in the living leaf tissue. PMID:24948828
Brian K. Via; Todd F. Shupe; Michael Stine; Chi-Leung So; Leslie H. Groom
2005-01-01
The predidion of tracheid Length using near infrared (NIR) wavelengths can provide either useful or misleading calibrations depending on the context. This can happen since tracheid length is not directly related to the absorbance at any wavelength but is instead the result of a seondary correlation with some unknown chemical constituent. In this work, the effect of...
Li, Xinguo; Yang, Xiaohui; Wu, Harry X
2013-11-08
Formation of compression (CW) and opposite wood (OW) in branches and bent trunks is an adaptive feature of conifer trees in response to various displacement forces, such as gravity, wind, snow and artificial bending. Several previous studies have characterized tracheids, wood and gene transcription in artificially or naturally bent conifer trunks. These studies have provided molecular basis of reaction wood formation in response to bending forces and gravity stimulus. However, little is known about reaction wood formation and gene transcription in conifer branches under gravity stress. In this study SilviScan® technology was used to characterize tracheid and wood traits in radiate pine (Pinus radiata D. Don) branches and genes differentially transcribed in CW and OW were investigated using cDNA microarrays. CW drastically differed from OW in tracheids and wood traits with increased growth, thicker tracheid walls, larger microfibril angle (MFA), higher density and lower stiffness. However, CW and OW tracheids had similar diameters in either radial or tangential direction. Thus, gravity stress largely influenced wood growth, secondary wall deposition, cellulose microfibril orientation and wood properties, but had little impact on primary wall expansion. Microarray gene transcription revealed about 29% of the xylem transcriptomes were significantly altered in CW and OW sampled in both spring and autumn, providing molecular evidence for the drastic variation in tracheid and wood traits. Genes involved in cell division, cellulose biosynthesis, lignin deposition, and microtubules were mostly up-regulated in CW, conferring its greater growth, thicker tracheid walls, higher density, larger MFA and lower stiffness. However, genes with roles in cell expansion and primary wall formation were differentially transcribed in CW and OW, respectively, implicating their similar diameters of tracheid walls and different tracheid lengths. Interestingly, many genes related to hormone and calcium signalling as well as various environmental stresses were exclusively up-regulated in CW, providing important clues for earlier molecular signatures of reaction wood formation under gravity stimulus. The first comprehensive investigation of tracheid characteristics, wood properties and gene transcription in branches of a conifer species revealed more accurate and new insights into reaction wood formation in response to gravity stress. The identified differentially transcribed genes with diverse functions conferred or implicated drastic CW and OW variation observed in radiata pine branches. These genes are excellent candidates for further researches on the molecular mechanisms of reaction wood formation with a view to plant gravitropism.
Fonti, Patrick; von Arx, Georg; Carrer, Marco
2017-01-01
Background and Aims During the growing season, the cambium of conifer trees produces successive rows of xylem cells, the tracheids, that sequentially pass through the phases of enlargement and secondary wall thickening before dying and becoming functional. Climate variability can strongly influence the kinetics of morphogenetic processes, eventually affecting tracheid shape and size. This study investigates xylem anatomical structure in the stem of Picea abies to retrospectively infer how, in the long term, climate affects the processes of cell enlargement and wall thickening. Methods Tracheid anatomical traits related to the phases of enlargement (diameter) and wall thickening (wall thickness) were innovatively inspected at the intra-ring level on 87-year-long tree-ring series in Picea abies trees along a 900 m elevation gradient in the Italian Alps. Anatomical traits in ten successive tree-ring sectors were related to daily temperature and precipitation data using running correlations. Key Results Close to the altitudinal tree limit, low early-summer temperature negatively affected cell enlargement. At lower elevation, water availability in early summer was positively related to cell diameter. The timing of these relationships shifted forward by about 20 (high elevation) to 40 (low elevation) d from the first to the last tracheids in the ring. Cell wall thickening was affected by climate in a different period in the season. In particular, wall thickness of late-formed tracheids was strongly positively related to August–September temperature at high elevation. Conclusions Morphogenesis of tracheids sequentially formed in the growing season is influenced by climate conditions in successive periods. The distinct climate impacts on cell enlargement and wall thickening indicate that different morphogenetic mechanisms are responsible for different tracheid traits. Our approach of long-term and high-resolution analysis of xylem anatomy can support and extend short-term xylogenesis observations, and increase our understanding of climate control of tree growth and functioning under different environmental conditions. PMID:28130220
Jyske, Tuula; Fujiwara, Takeshi; Kuroda, Katsushi; Iki, Taiichi; Zhang, Chunhua; Jyske, Tuomas K; Abe, Hisashi
2014-08-01
To investigate the biological mechanism by which trees control the changes in microfibril (MF) orientation among secondary cell wall layers of conifer tracheids, we studied seasonal variation in the orientation of newly deposited MFs during tracheid cell wall development in Japanese cedar (Cryptomeria japonica D. Don) trees growing in Central Japan (36°36'N, 140°39'E). Sample blocks were repeatedly collected from four 16-year-old clones of different origins during the growing season of 2010 to investigate the hypotheses that changes in cellulose MF orientation between wall layers exhibited seasonal and clonal differences. The progressive change in the orientation of newly deposited MFs on the primary and secondary cell wall layers of tracheids was detected by field-emission-scanning electron microscopy. Tracheid production and differentiation was studied by light microscopy. We observed a decreasing trend in the orientation of deposited MFs from earlywood to latewood in the S2 and S1 layers, where MFs appeared in a Z-helix. In contrast, no seasonal pattern in the orientation of the MFs in the S-helix was observed. Minor clonal variation was observed in the phenology of tracheid production and differentiation. We concluded that a seasonal decreasing trend in the orientation of the MFs in the Z-helix in S1 and S2 was present, whereas the MFs in other layers exhibited minor random variations. Thus, the orientation of the MFs in S2 was affected by seasonal factors, whereas the MFs in other layers were more intrinsically controlled. The within-ring variations in the MF orientation and thus the resulting average MF angle might also be related to genotypic differences in the tracheid production and differentiation rate. However, our results do not exclude other intrinsic and environmental regulations in the change in MF orientation, which remains a topic for future studies. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Arbellay, Estelle; Stoffel, Markus; Sutherland, Elaine K.; Smith, Kevin T.; Falk, Donald A.
2014-01-01
Background and Aims Fire scars have been widely used as proxies for the reconstruction of fire history; however, little is known about the impact of fire injury on wood anatomy. This study investigates changes in tracheid and ray traits in fire scars of Douglas fir (Pseudotsuga menziesii), western larch (Larix occidentalis) and ponderosa pine (Pinus ponderosa), and discusses their ecophysiological implications for tree recovery from fire. Methods Transverse and tangential microsections were prepared for light microscopy and image analysis. Measurements of tracheids and rays were made in the three spatial dimensions: axially (at different section heights), radially (in different rings) and tangentially (with increasing distance from the wound margin). Key Results Changes were strongest in the first year after fire injury, with a decrease in tracheid size (by 25–30 %) and an increase in tracheid density (by 21–53 %) for the three species. In addition, an increase in ray size (by 5–27 %) and an increase in ray density (by 19–36 %) were found in P. menziesii and L. occidentalis. Changes were comparable along the fire-injured stem and were often most marked close to the fire scar. Conclusions The differentiation after fire injury of narrower and more numerous tracheids expresses a trade-off between hydraulic safety and hydraulic efficiency, while that of larger and more numerous rays serves compartmentalization and wound closure, mechanical strength and defence responses. Pinus ponderosa does not generally produce more ray tissue after fire injury and thus appears to be more adapted to fire. PMID:24941999
Xylem Development of Loblolly Pine During Irrigation and Simulated Drought
David M. Moehring; Charles X. Grano; John R. Bassett
1975-01-01
Induced drought decreased the total number of tracheid cells produced in a season and the radial width of late wood tracheids. Transition from earlywood to late woodo ccurred in early June and was little affected by irrigation.
Arbellay, Estelle; Stoffel, Markus; Sutherland, Elaine K; Smith, Kevin T; Falk, Donald A
2014-08-01
Fire scars have been widely used as proxies for the reconstruction of fire history; however, little is known about the impact of fire injury on wood anatomy. This study investigates changes in tracheid and ray traits in fire scars of Douglas fir (Pseudotsuga menziesii), western larch (Larix occidentalis) and ponderosa pine (Pinus ponderosa), and discusses their ecophysiological implications for tree recovery from fire. Transverse and tangential microsections were prepared for light microscopy and image analysis. Measurements of tracheids and rays were made in the three spatial dimensions: axially (at different section heights), radially (in different rings) and tangentially (with increasing distance from the wound margin). Changes were strongest in the first year after fire injury, with a decrease in tracheid size (by 25-30 %) and an increase in tracheid density (by 21-53 %) for the three species. In addition, an increase in ray size (by 5-27 %) and an increase in ray density (by 19-36 %) were found in P. menziesii and L. occidentalis. Changes were comparable along the fire-injured stem and were often most marked close to the fire scar. The differentiation after fire injury of narrower and more numerous tracheids expresses a trade-off between hydraulic safety and hydraulic efficiency, while that of larger and more numerous rays serves compartmentalization and wound closure, mechanical strength and defence responses. Pinus ponderosa does not generally produce more ray tissue after fire injury and thus appears to be more adapted to fire. © The Author 2014. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Donaldson, Lloyd A.; Knox, J. Paul
2012-01-01
The distribution of noncellulosic polysaccharides in cell walls of tracheids and xylem parenchyma cells in normal and compression wood of Pinus radiata, was examined to determine the relationships with lignification and cellulose microfibril orientation. Using fluorescence microscopy combined with immunocytochemistry, monoclonal antibodies were used to detect xyloglucan (LM15), β(1,4)-galactan (LM5), heteroxylan (LM10 and LM11), and galactoglucomannan (LM21 and LM22). Lignin and crystalline cellulose were localized on the same sections used for immunocytochemistry by autofluorescence and polarized light microscopy, respectively. Changes in the distribution of noncellulosic polysaccharides between normal and compression wood were associated with changes in lignin distribution. Increased lignification of compression wood secondary walls was associated with novel deposition of β(1,4)-galactan and with reduced amounts of xylan and mannan in the outer S2 (S2L) region of tracheids. Xylan and mannan were detected in all lignified xylem cell types (tracheids, ray tracheids, and thick-walled ray parenchyma) but were not detected in unlignified cell types (thin-walled ray parenchyma and resin canal parenchyma). Mannan was absent from the highly lignified compound middle lamella, but xylan occurred throughout the cell walls of tracheids. Using colocalization measurements, we confirmed that polysaccharides containing galactose, mannose, and xylose have consistent correlations with lignification. Low or unsubstituted xylans were localized in cell wall layers characterized by transverse cellulose microfibril orientation in both normal and compression wood tracheids. Our results support the theory that the assembly of wood cell walls, including lignification and microfibril orientation, may be mediated by changes in the amount and distribution of noncellulosic polysaccharides. PMID:22147521
Elevated temperature and CO(2) concentration effects on xylem anatomy of Scots pine.
Kilpeläinen, Antti; Gerendiain, Ane Zubizarreta; Luostarinen, Katri; Peltola, Heli; Kellomäki, Seppo
2007-09-01
We studied the effects of elevated temperature and carbon dioxide concentration ([CO(2)]) alone and together on wood anatomy of 20-year-old Scots pine (Pinus sylvestris L.) trees. The study was conducted in 16 closed chambers, providing a factorial combination of two temperature regimes and two CO(2) concentrations (ambient and elevated), with four trees in each treatment. The climate scenario included a doubling of [CO(2)] and a corresponding increase of 2-6 degrees C in temperature at the site depending on the season. Anatomical characteristics analyzed were annual earlywood, latewood and ring widths, intra-ring wood densities (earlywood, latewood and mean wood density), tracheid width, length, wall thickness, lumen diameter, wall thickness:lumen diameter ratio and mass per unit length (coarseness), and numbers of rays, resin canals and tracheids per xylem cross-sectional area. Elevated [CO(2)] increased ring width in four of six treatment years; earlywood width increased in the first two years and latewood width in the third year. Tracheid walls in both the earlywood and latewood tended to become thicker over the 6-year treatment period when temperature or [CO(2)] was elevated alone, whereas in the combined treatment they tended to become thinner relative to the tracheids of trees grown under ambient conditions. Latewood tracheid lumen diameters were larger in all the treatments relative to ambient conditions over the 6-year period, whereas lumen diameters in earlywood increased only in response to elevated [CO(2)] and were 3-6% smaller in the treatments with elevated temperature than in ambient conditions. Tracheid width, length and coarseness were greater in trees grown in elevated than in ambient temperature. The number of resin canals per mm(2) decreased in the elevated [CO(2)] treatment and increased in the elevated temperature treatments relative to ambient conditions. The treatments decreased the number of rays and tracheids per mm(2) of cross-sectional area, the greatest decrease occurring in the elevated [CO(2)] treatment. It seemed that xylem anatomy was affected more by elevated temperature than by elevated [CO(2)] and that the effects of temperature were confined to the earlywood.
Castagneri, Daniele; Fonti, Patrick; von Arx, Georg; Carrer, Marco
2017-04-01
During the growing season, the cambium of conifer trees produces successive rows of xylem cells, the tracheids, that sequentially pass through the phases of enlargement and secondary wall thickening before dying and becoming functional. Climate variability can strongly influence the kinetics of morphogenetic processes, eventually affecting tracheid shape and size. This study investigates xylem anatomical structure in the stem of Picea abies to retrospectively infer how, in the long term, climate affects the processes of cell enlargement and wall thickening. Tracheid anatomical traits related to the phases of enlargement (diameter) and wall thickening (wall thickness) were innovatively inspected at the intra-ring level on 87-year-long tree-ring series in Picea abies trees along a 900 m elevation gradient in the Italian Alps. Anatomical traits in ten successive tree-ring sectors were related to daily temperature and precipitation data using running correlations. Close to the altitudinal tree limit, low early-summer temperature negatively affected cell enlargement. At lower elevation, water availability in early summer was positively related to cell diameter. The timing of these relationships shifted forward by about 20 (high elevation) to 40 (low elevation) d from the first to the last tracheids in the ring. Cell wall thickening was affected by climate in a different period in the season. In particular, wall thickness of late-formed tracheids was strongly positively related to August-September temperature at high elevation. Morphogenesis of tracheids sequentially formed in the growing season is influenced by climate conditions in successive periods. The distinct climate impacts on cell enlargement and wall thickening indicate that different morphogenetic mechanisms are responsible for different tracheid traits. Our approach of long-term and high-resolution analysis of xylem anatomy can support and extend short-term xylogenesis observations, and increase our understanding of climate control of tree growth and functioning under different environmental conditions. © The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com
Complete tylosis formation in a latest Permian conifer stem
Feng, Zhuo; Wang, Jun; Rößler, Ronny; Kerp, Hans; Wei, Hai-Bo
2013-01-01
Background and Aims Our knowledge of tylosis formation is mainly based on observations of extant plants; however, its developmental and functional significance are less well understood in fossil plants. This study, for the first time, describes a complete tylosis formation in a fossil woody conifer and discusses its ecophysiological implications. Methods The permineralized stem of Shenoxylon mirabile was collected from the upper Permian (Changhsingian) Sunjiagou Formation of Shitanjing coalfield, northern China. Samples from different portions of the stem were prepared by using the standard thin-sectioning technique and studied in transmitted light. Key Results The outgrowth of ray parenchyma cells protruded into adjacent tracheids through pits initially forming small pyriform or balloon-shaped structures, which became globular or slightly elongated when they reached their maximum size. The tracheid luminae were gradually occluded by densely spaced tyloses. The host tracheids are arranged in distinct concentric zones representing different growth phases of tylosis formation within a single growth ring. Conclusions The extensive development of tyloses from the innermost heartwood (metaxylem) tracheids to the outermost sapwood tracheids suggests that the plant was highly vulnerable and reacted strongly to environmental stress. Based on the evidence available, the tyloses were probably not produced in response to wound reaction or pathogenic infection, since evidence of wood traumatic events or fungal invasion are not recognizable. Rather, they may represent an ecophysiological response to the constant environmental stimuli. PMID:23532049
Mechanical pulping with a sequential velocity refiner- a new concept
C.W. McMillin
1978-01-01
In previous research with refiner mechanical pulps, a theoretical stress analysis indicated that longitudinal tracheids of Pinus taeda L. fail while under torsional stress and unwind into ribbonlike elements that provide the coherence necessary for strength development. When macerated tracheids of loblolly pine were individually stressed in torsion...
Jagels, Richard; Visscher, George E
2006-02-01
The dual function provided by longitudinal tracheids in conifers has led to a generally held trade-off concept that increasing wall thickness and/or volume of latewood tracheids improves mechanical support, while increasing cell diameter and/or volume of earlywood tracheids enhances conductive potential. Yet, some conifers have either uniform cell structure across the growth ring or, at most, a small amount of latewood. How do these trees accomplish the needs for increasing support and conduction with height growth? We examined Metasequoia glyptostroboides, a species that we previously demonstrated improves its mechanical properties with increasing age without a change in specific gravity or secondary wall microfibril angle. In this paper, we showed that lignin and extractive contents are not contributing factors, and through composite structure analysis, we eliminated a role for tracheid length. Using micromorphometric analysis, we demonstrated that as cell diameter increases, total primary wall decreases, secondary wall increases, and strength and conductive capacity increase with no change in specific gravity. Meta-analysis using other species of Cupressaceae, Podocarpaceae, and Araucariaceae provided strong corroborative evidence for this design strategy.
Begum, Shahanara; Kudo, Kayo; Matsuoka, Yugo; Nakaba, Satoshi; Yamagishi, Yusuke; Nabeshima, Eri; Rahman, Md Hasnat; Nugroho, Widyanto Dwi; Oribe, Yuichiro; Jin, Hyun-O; Funada, Ryo
2016-01-01
Background and Aims In temperate regions, trees undergo annual cycles of cambial growth, with periods of cambial activity and dormancy. Environmental factors might regulate the cambial growth, as well as the development of cambial derivatives. We investigated the effects of low temperature by localized cooling on cambial activity and latewood formation in two conifers, Chamaecyparis obtusa and Cryptomeria japonica. Methods A plastic rubber tube that contained cooled water was wrapped around a 30-cm-wide portion of the main stem of Chamaecyparis obtusa and Cryptomeria japonica trees during seasons of active cambium. Small blocks were collected from both cooled and non-cooled control portions of the stems for sequential observations of cambial activity and for anatomical measurements of cell morphology by light microscopy and image analysis. Key Results The effect of localized cooling was first observed on differentiating tracheids. Tracheids narrow in diameter and with significantly decreased cambial activity were evident 5 weeks after the start of cooling in these stems. Eight weeks after the start of cooling, tracheids with clearly diminished diameters and thickened cell walls were observed in these stems. Thus, localized low temperature induced narrow diameters and obvious thickening of secondary cell walls of tracheids, which were identified as latewood tracheids. Two months after the cessation of cooling, a false annual ring was observed and cambium became active again and produced new tracheids. In Cryptomeria japonica, cambial activity ceased earlier in locally cooled portions of stems than in non-cooled stems, indicating that the cambium had entered dormancy sooner in the cooled stems. Conclusions Artificial cooling of stems induced latewood formation and cessation of cambial activity, indicating that cambium and its derivatives can respond directly to changes in temperature. A decrease in the temperature of the stem is a critical factor in the control of cambial activity and xylem differentiation in trees. PMID:26703452
Begum, Shahanara; Kudo, Kayo; Matsuoka, Yugo; Nakaba, Satoshi; Yamagishi, Yusuke; Nabeshima, Eri; Rahman, Md Hasnat; Nugroho, Widyanto Dwi; Oribe, Yuichiro; Jin, Hyun-O; Funada, Ryo
2016-03-01
In temperate regions, trees undergo annual cycles of cambial growth, with periods of cambial activity and dormancy. Environmental factors might regulate the cambial growth, as well as the development of cambial derivatives. We investigated the effects of low temperature by localized cooling on cambial activity and latewood formation in two conifers, Chamaecyparis obtusa and Cryptomeria japonica. A plastic rubber tube that contained cooled water was wrapped around a 30-cm-wide portion of the main stem of Chamaecyparis obtusa and Cryptomeria japonica trees during seasons of active cambium. Small blocks were collected from both cooled and non-cooled control portions of the stems for sequential observations of cambial activity and for anatomical measurements of cell morphology by light microscopy and image analysis. The effect of localized cooling was first observed on differentiating tracheids. Tracheids narrow in diameter and with significantly decreased cambial activity were evident 5 weeks after the start of cooling in these stems. Eight weeks after the start of cooling, tracheids with clearly diminished diameters and thickened cell walls were observed in these stems. Thus, localized low temperature induced narrow diameters and obvious thickening of secondary cell walls of tracheids, which were identified as latewood tracheids. Two months after the cessation of cooling, a false annual ring was observed and cambium became active again and produced new tracheids. In Cryptomeria japonica, cambial activity ceased earlier in locally cooled portions of stems than in non-cooled stems, indicating that the cambium had entered dormancy sooner in the cooled stems. Artificial cooling of stems induced latewood formation and cessation of cambial activity, indicating that cambium and its derivatives can respond directly to changes in temperature. A decrease in the temperature of the stem is a critical factor in the control of cambial activity and xylem differentiation in trees. © The Author 2015. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
C.W. McMillin
1974-01-01
In previous research on the process for making groundwood in a double-disk refiner, a theoretical stress analysis indicated that tracheids of Pinus taeda L. may fail while under torsional stress and unwind into ribbonlike elements. Such elements provide the coherence necessary for strength development in these pulps. Depending upon their physical...
Guying to prevent wind sway influences loblolly pine growth and wood properties
James D. Burton; Diana M. Smith
1972-01-01
Restraining young loblolly pine (Pinus taeda L.) trees from normal swaying in the wind markedly reduced radial growth in the immobilized portion of the bole and accelerated it in the upper, free-swaying portion. Guying also reduced specific gravity, number of earlywood and latewood tracheids, latewood tracheid diameter, and amount of compression wood...
Evaluation of forest thinning materials for TMP production
John H. Klungness; Roland Gleisner; Doreen Mann; Karen L. Scallon; J.Y. Zhu; Eric G. Horn; Louis L. Edwards
2005-01-01
We used SilviScan analysis and tracheid measurement to evaluate the effect of suppressed growth on the fundamental properties of wood fiber. Suppressed growth reduced cell tracheid length, but the high content of mature wood may translate into longer fibers overall. In pilot-scale refining experiments, blending 25% chips from small-diameter trees (SMD) with 75% mill...
Estelle Arbellay; Markus Stoffel; Elaine K. Sutherland; Kevin T. Smith; Donald A. Falk
2014-01-01
Fire scars have been widely used as proxies for the reconstruction of fire history; however, little is known about the impact of fire injury on wood anatomy. This study investigates changes in tracheid and ray traits in fire scars of Douglas fir (Pseudotsuga menziesii), western larch (Larix occidentalis) and ponderosa pine (
Mohamad Nabavi; Joseph Dahlen; Laurence Schimleck; Thomas L. Eberhardt; Cristian Montes
2018-01-01
This study developed regional calibration models for the prediction of loblolly pine (Pinus taeda) tracheid properties using near-infrared (NIR) spectroscopy. A total of 1842 pith-to-bark radial strips, aged 19â31 years, were acquired from 268 trees from 109 stands across the southeastern USA. Diffuse reflectance NIR spectra were collected at 10-mm...
Seed source variation in tracheid length and specific gravity of five-year-old jack pine seedlings
James P. King
1968-01-01
Jack pine (Pinus banksiana Lamb.) is widely used in Lake States reforestation because of its ability to make rapid early growth on relatively infertile sites. It is a major pulpwood producing species. Since the quality and yield of pulp are so strongly influenced by tracheid length and specific gravity, information on genetic variation in these...
J. Y. Zhu; C. Tim Scott; Karen L. Scallon; Gary C. Myers
2007-01-01
This study demonstrated that average ring width (or average annual radial growth rate) is a reliable parameter to quantify the effects of tree plantation density (growth suppression) on wood density and tracheid anatomical properties. The average ring width successfully correlated wood density and tracheid anatomical properties of red pines (Pinus resinosa Ait.) from a...
Maranho, L T; Dziedzic, M; Muñiz, G I B; Kuniyoshi, Y S; Galvão, F
2009-05-01
Podocarpus lambertii Klotzsch ex Endl. (Podocarpaceae) is native and a member of the Pinophyta (Gymnosperm) of southern Brazil, locally known as 'pinheiro-bravo'. The present work aims to investigate the effects of petroleum on the tracheids dimensions. Wood samples from twenty individuals were studied along the stem, ten being exposed to pollution and ten used as a control set. The wood samples were collected from incisions at three levels: at the ground level, and one and two metres above the ground level. From these samples, sub-samples were selected at the border of the growth layers in the vascular cambium-medulla direction. The methodology followed that traditionally recommended for plant anatomy studies, with analyses done by light microscopy (OLYMPUS - BX41) assisted by the software Image Pro-plus for measurements. Comparison of the individuals exposed to petroleum with the control set, showed that the length, diameter and cell wall width of the tracheids of the former were smaller, a trend which was statistically significant according to the Student's t-test. These traits were observed mainly on the tracheids of the last growth layer, corresponding to the year in which the individuals were exposed to petroleum.
Laurence R. Schimleck; P. David Jones; Gary F. Peter; F. Daniels; Alexander Clarklll
2004-01-01
The use of calibrated near infrared (NIR) spectroscopy for predicting tracheid length of Pinus taeda L. (loblolly pine) wood samples is described. Ten-mm sections of 14 P. taeda radial strips were selected and NIR spectra obtained from the radial longitudinal face of each section. The fibers in these sections were characterized in terms of arithmetic and length-...
Hydraulic architecture and tracheid allometry in mature Pinus palustris and Pinus elliottii trees.
Gonzalez-Benecke, C A; Martin, T A; Peter, G F
2010-03-01
Pinus palustris Mill. (longleaf pine, LL) and Pinus elliottii Engelm. var. elliottii (slash pine, SL) frequently co-occur in lower coastal plain flatwoods of the USA, with LL typically inhabiting slightly higher and better-drained microsites than SL. The hydraulic architecture and tracheid dimensions of roots, trunk and branches of mature LL and SL trees were compared to understand their role in species microsite occupation. Root xylem had higher sapwood-specific hydraulic conductivity (k(s)) and was less resistant to cavitation compared with branches and trunk sapwood. Root k(s) of LL was significantly higher than SL, whereas branch and trunk k(s) did not differ between species. No differences in vulnerability to cavitation were observed in any of the organs between species. Across all organs, there was a significant but weak trade-off between water conduction efficiency and safety. Tracheid hydraulic diameter (D(h)) was strongly correlated with k(s) across all organs, explaining >73% of the variation in k(s). In contrast, tracheid length (L(t)) explained only 2.4% of the variability. Nevertheless, for trunk xylem, k(s) was 39.5% higher at 20 m compared with 1.8 m; this increase in k(s) was uncorrelated with D(h) and cell-wall thickness but was strongly correlated with the difference in L(t). Tracheid allometry markedly changed between sapwood of roots, trunks and branches, possibly reflecting different mechanical constraints. Even though vulnerability to cavitation was not different for sapwood of roots, branches or the trunks of LL and SL, higher sapwood to leaf area ratio and higher maximum sapwood-specific hydraulic conductivity in roots of LL are functional traits that may provide LL with a competitive advantage on drier soil microsites.
J. Y. Zhu; C. T. Scott; K. L. Scallon; G. C. Myers
2006-01-01
This study demonstrated that average ring width (or average annual radial growth rate) is a reliable parameter to quantify the effects of tree plantation ndensity (growth suppression) on wood density and tracheid anatomical properties. The average ring width successfully correlated wood density and tracheid anatomical properties of red pines (Pinus resinosa Ait.) from...
Matsunaga, Kelly K S; Cullen, Nevin P; Tomescu, Alexandru M F
2017-10-01
The Selaginella rhizophore is a unique and enigmatic organ whose homology with roots, shoots, or neither of the two remains unresolved. Nevertheless, rhizophore-like organs have been documented in several fossil lycophytes. Here we test the homology of these organs through comparisons with the architecture of rhizophore vascularization in Selaginella. We document rhizophore vascularization in nine Selaginella species using cleared whole-mounts and histological sectioning combined with three-dimensional reconstruction. Three patterns of rhizophore vascularization are present in Selaginella and each is comparable to those observed in rhizophore-like organs of fossil lycophytes. More compellingly, we found that all Selaginella species sampled exhibit tracheids that arc backward from the stem and side branch into the rhizophore base. This tracheid curvature is consistent with acropetal auxin transport previously documented in the rhizophore and is indicative of the redirection of basipetal auxin from the shoot into the rhizophore during development. The tracheid curvature observed in Selaginella rhizophores provides an anatomical fingerprint for the patterns of auxin flow that underpin rhizophore development. Similar tracheid geometry may be present and should be searched for in fossils to address rhizophore homology and the conservation of auxin-related developmental mechanisms from early stages of lycophyte evolution. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.
How to quantify conduits in wood?
Scholz, Alexander; Klepsch, Matthias; Karimi, Zohreh; Jansen, Steven
2013-01-01
Vessels and tracheids represent the most important xylem cells with respect to long distance water transport in plants. Wood anatomical studies frequently provide several quantitative details of these cells, such as vessel diameter, vessel density, vessel element length, and tracheid length, while important information on the three dimensional structure of the hydraulic network is not considered. This paper aims to provide an overview of various techniques, although there is no standard protocol to quantify conduits due to high anatomical variation and a wide range of techniques available. Despite recent progress in image analysis programs and automated methods for measuring cell dimensions, density, and spatial distribution, various characters remain time-consuming and tedious. Quantification of vessels and tracheids is not only important to better understand functional adaptations of tracheary elements to environment parameters, but will also be essential for linking wood anatomy with other fields such as wood development, xylem physiology, palaeobotany, and dendrochronology.
Nakaba, Satoshi; Hirai, Asami; Kudo, Kayo; Yamagishi, Yusuke; Yamane, Kenichi; Kuroda, Katsushi; Nugroho, Widyanto Dwi; Kitin, Peter; Funada, Ryo
2016-01-01
Background and Aims When the orientation of the stems of conifers departs from the vertical as a result of environmental influences, conifers form compression wood that results in restoration of verticality. It is well known that intercellular spaces are formed between tracheids in compression wood, but the function of these spaces remains to be clarified. In the present study, we evaluated the impact of these spaces in artificially induced compression wood in Chamaecyparis obtusa seedlings. Methods We monitored the presence or absence of liquid in the intercellular spaces of differentiating xylem by cryo-scanning electron microscopy. In addition, we analysed the relationship between intercellular spaces and the hydraulic properties of the compression wood. Key Results Initially, we detected small intercellular spaces with liquid in regions in which the profiles of tracheids were not rounded in transverse surfaces, indicating that the intercellular spaces had originally contained no gases. In the regions where tracheids had formed secondary walls, we found that some intercellular spaces had lost their liquid. Cavitation of intercellular spaces would affect hydraulic conductivity as a consequence of the induction of cavitation in neighbouring tracheids. Conclusions Our observations suggest that cavitation of intercellular spaces is the critical event that affects not only the functions of intercellular spaces but also the hydraulic properties of compression wood. PMID:26818592
New research perspectives from a novel approach to quantify tracheid wall thickness.
Prendin, Angela Luisa; Petit, Giai; Carrer, Marco; Fonti, Patrick; Björklund, Jesper; von Arx, Georg
2017-07-01
The analysis of xylem cell anatomical features in dated tree rings provides insights into xylem functional responses and past growth conditions at intra-annual resolution. So far, special focus has been given to the lumen of the water-conducting cells, whereas the equally relevant cell wall thickness (CWT) has been less investigated due to methodological limitations. Here we present a novel approach to measure tracheid CWT in high-resolution images of wood cross-sections that is implemented within the specialized image-analysis tool 'ROXAS'. Compared with the traditional manual line measurements along a selection of few radial files, this novel image-analysis tool can: (i) measure CWT of all tracheids in a tree-ring cross-section, thus increasing the number of individual tracheid measurements by a factor of ~10-20; (ii) measure the tangential and radial walls separately; and (iii) laterally integrate the measurements in a customizable way from only the thinnest central part of the cell walls up to the thickest part of the tracheids at the corners. Cell wall thickness measurements performed with our novel approach and the traditional manual approach showed comparable accuracy for several image resolutions, with an optimal accuracy-efficiency balance at 100× magnification. The configurable settings intended to underscore different cell wall properties indeed changed the absolute levels and intra- and inter-annual patterns of CWT. This versatility, together with the high data production capacity, allows to tailor the measurements of CWT to the specific goal of each study, which opens new research perspectives, e.g., for investigating structure-function relationships, tree stress responses and carbon allocation patterns, and for reconstructing climate based on intra- and inter-annual variability of anatomical wood density. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
First record of Podocarpoid fossil wood in South China
Li, Long; Jin, Jian-Hua; Quan, Cheng; Oskolski, Alexei A.
2016-01-01
A new species of fossil conifer wood, Podocarpoxylon donghuaiense sp. nov., is described from the late Eocene of Nadu Formation in Baise Basin of the Guangxi Province, South China. This fossil wood is characterized by distinct growth rings, circular to oval tracheids in cross section, 1–2-seriate opposite pits on radial tracheid walls, uniseriate (rarely biseriate) rays, smooth end walls of ray parenchyma cells, and the absence of resin ducts, suggesting its affinity to Podocarpaceae. The new species is distinctive from other Cenozoic woods ascribed to this family by the combination of distinctive growth rings, the absence of axial parenchyma, the occurrence of bordered pits on tangential tracheid walls, and the occurrence of 3–4 cuppressoid or taxodioid pits on cross-fields. This represents the first record of podocarpoid fossil wood in South China and provides fossil evidence for the early dispersal and diversification of Podocarpaceae in eastern Asia as well as for mild temperate seasonal climate in this region during the late Eocene. PMID:27571780
Du, Sheng; Sugano, Mami; Tsushima, Miho; Nakamura, Teruko; Yamamoto, Fukuju
2004-04-01
Eight-year-old Metasequoia glyptostroboides seedlings were tilted at a 45 degrees angle to induce compression-wood formation on the lower side of the stems. After 2 weeks of treatment, half of the seedlings were sampled and the remaining half were tilted to the opposite orientation to exchange the upper and lower sides and were kept for 2 more weeks until sampled. Cambium-emitted ethylene was analyzed by gas chromatography with flame-ionization detection. Endogenous indole-3-acetic acid (IAA) was measured by gas chromatography-mass spectrometry. Tracheid production and compression-wood formation were determined by light microscopy. Anatomical studies showed that tracheid production was promoted and compression-wood tracheids always developed on the gravitationally lower side of tilted stems in both the original tilting and the subsequent reverse-tilting periods. These were accompanied by an increase in IAA content in and an accelerated ethylene-evolution rate from the cambial region of the same side.
Nakaba, Satoshi; Hirai, Asami; Kudo, Kayo; Yamagishi, Yusuke; Yamane, Kenichi; Kuroda, Katsushi; Nugroho, Widyanto Dwi; Kitin, Peter; Funada, Ryo
2016-03-01
When the orientation of the stems of conifers departs from the vertical as a result of environmental influences, conifers form compression wood that results in restoration of verticality. It is well known that intercellular spaces are formed between tracheids in compression wood, but the function of these spaces remains to be clarified. In the present study, we evaluated the impact of these spaces in artificially induced compression wood in Chamaecyparis obtusa seedlings. We monitored the presence or absence of liquid in the intercellular spaces of differentiating xylem by cryo-scanning electron microscopy. In addition, we analysed the relationship between intercellular spaces and the hydraulic properties of the compression wood. Initially, we detected small intercellular spaces with liquid in regions in which the profiles of tracheids were not rounded in transverse surfaces, indicating that the intercellular spaces had originally contained no gases. In the regions where tracheids had formed secondary walls, we found that some intercellular spaces had lost their liquid. Cavitation of intercellular spaces would affect hydraulic conductivity as a consequence of the induction of cavitation in neighbouring tracheids. Our observations suggest that cavitation of intercellular spaces is the critical event that affects not only the functions of intercellular spaces but also the hydraulic properties of compression wood. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
The Tunguska event in 1908: evidence from tree-ring anatomy.
Vaganov, Evgenii A; Hughes, Malcolm K; Silkin, Pavel P; Nesvetailo, Valery D
2004-01-01
We analyzed tree rings in wood samples collected from some of the few surviving trees found close to the epicenter (within 4-5 km) of the Tunguska event that occurred on the last day of June 1908. Tree-ring growth shows a depression starting in the year after the event and continuing during a 4-5-year period. The most remarkable traces of the event were found in the rings' anatomical structure: (1) formation of "light" rings and a reduction of maximum density in 1908; (2) non-thickened tracheids (the cells that make up most of the wood volume) in the transition and latewood zones (the middle and last-formed parts of the ring, respectively); and (3) deformed tracheids, which are located on the 1908 annual ring outer boundary. In the majority of samples, normal earlywood and latewood tracheids were formed in all annual rings after 1908. The observed anomalies in wood anatomy suggest two main impacts of the Tunguska event on surviving trees--(1) defoliation and (2) direct mechanical stress on active xylem tissue. The mechanical stress needed to fell trees is less than the stress needed to cause the deformation of differentiating tracheids observed in trees close to the epicenter. In order to resolve this apparent contradiction, work is suggested on possible topographic modification of the overpressure experienced by these trees, as is an experimental test of the effects of such stresses on precisely analogous growing trees.
Embolism Formation during Freezing in the Wood of Picea abies1
Mayr, Stefan; Cochard, Hervé; Améglio, Thierry; Kikuta, Silvia B.
2007-01-01
Freeze-thaw events can cause embolism in plant xylem. According to classical theory, gas bubbles are formed during freezing and expand during thawing. Conifers have proved to be very resistant to freeze-thaw induced embolism, because bubbles in tracheids are small and redissolve during thawing. In contrast, increasing embolism rates upon consecutive freeze-thaw events were observed that cannot be explained by the classical mechanism. In this study, embolism formation during freeze-thaw events was analyzed via ultrasonic and Cryo-scanning electron microscope techniques. Twigs of Picea abies L. Karst. were subjected to up to 120 freeze-thaw cycles during which ultrasonic acoustic emissions, xylem temperature, and diameter variations were registered. In addition, the extent and cross-sectional pattern of embolism were analyzed with staining experiments and Cryo-scanning electron microscope observations. Embolism increased with the number of freeze-thaw events in twigs previously dehydrated to a water potential of −2.8 MPa. In these twigs, acoustic emissions were registered, while saturated twigs showed low, and totally dehydrated twigs showed no, acoustic activity. Acoustic emissions were detected only during the freezing process. This means that embolism was formed during freezing, which is in contradiction to the classical theory of freeze-thaw induced embolism. The clustered pattern of embolized tracheids in cross sections indicates that air spread from a dysfunctional tracheid to adjacent functional ones. We hypothesize that the low water potential of the growing ice front led to a decrease of the potential in nearby tracheids. This may result in freezing-induced air seeding. PMID:17041033
Do ray cells provide a pathway for radial water movement in the stems of conifer trees?
Barnard, David M; Lachenbruch, Barbara; McCulloh, Katherine A; Kitin, Peter; Meinzer, Frederick C
2013-02-01
The pathway of radial water movement in tree stems presents an unknown with respect to whole-tree hydraulics. Radial profiles have shown substantial axial sap flow in deeper layers of sapwood (that may lack direct connection to transpiring leaves), which suggests the existence of a radial pathway for water movement. Rays in tree stems include ray tracheids and/or ray parenchyma cells and may offer such a pathway for radial water transport. This study investigated relationships between radial hydraulic conductivity (k(s-rad)) and ray anatomical and stem morphological characteristics in the stems of three conifer species whose distributions span a natural aridity gradient across the Cascade Mountain range in Oregon, United States. The k(s-rad) was measured with a high-pressure flow meter. Ray tracheid and ray parenchyma characteristics and water transport properties were visualized using autofluorescence or confocal microscopy. The k(s-rad) did not vary predictably with sapwood depth among species and populations. Dye tracer did not infiltrate ray tracheids, and infiltration into ray parenchyma was limited. Regression analyses revealed inconsistent relationships between k(s-rad) and selected anatomical or growth characteristics when ecotypes were analyzed individually and weak relationships between k(s-rad) and these characteristics when data were pooled by tree species. The lack of significant relationships between k(s-rad) and the ray and stem morphologies we studied, combined with the absence of dye tracer in ray tracheid and limited movement of dye into ray parenchyma suggests that rays may not facilitate radial water transport in the three conifer species studied.
Water transport dynamics in trees and stands
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pallardy, S.G.; Cermak, J.; Ewers, F.W.
1995-07-01
Water transport dynamics in trees and stands of conifers have certain features that are characteristic of this group and are at least rare among angiosperms. Among these features is the xylem transport system that is dependent on tracheids for long-distance water transport. Tracheid-containing xylem is relatively inefficient, a property that can reduce submaximum allowable rates of gas exchange, but tracheids also offer substantial capacity for water storage and high resistance to freezing-induced dysfunction. Thus, they are quite compatible with the typical evergreen habit and long transpiration season of conifers. At the stand level, canopy transpiration in conifers is primarily controlledmore » by stomatal conductance. In contrast, in dense canopies of angio-sperms, particularly those of tropical forests with limited air mixing, stand transpiration is limited by radiation input rather than by stomatal control. Because of their evergreen habit a greater proportion of evapotranspiration in conifer forests is associated with evaporation of water intercepted by the tree crowns. Other features of transport dynamics are characteristic of most conifers, but are not unique to this group. Among these features are typically shallow root systems that often must supply water in winter to replace transpiration needs of evergreen species, common occurrence of mycorrhizae that enhance mineral and water uptake, and drought tolerance adaptations that include elements of both dehydration avoidance (e.g., stomatal closure under water stress, shifts in allocation of dry matter to below-ground sinks) and dehydration tolerance (e.g., capacity for acclimation of photosynthetic apparatus to drought, osmotic adjustment). Transpiration rates from conifer foliage often are lower than those of deciduous angiosperms, probably because of the lower maximum capacity of tracheid-bearing xylem to transport water.« less
ROSNER, SABINE; KLEIN, ANDREA; MÜLLER, ULRICH; KARLSSON, BO
2011-01-01
Summary Stem segments of eight five-year-old Norway spruce (Picea abies (L.) Karst.) clones differing in growth characteristics were tested for maximum specific hydraulic conductivity (ks100), vulnerability to cavitation and behavior under mechanical stress. The vulnerability of the clones to cavitation was assessed by measuring the applied air pressure required to cause 12 and 50% loss of conductivity (Ψ12, Ψ50) and the percent loss of conductivity at 4 MPa applied air pressure (PLC4MPa). The bending strength and stiffness and the axial compression strength and stiffness of the same stem segments were measured to characterize wood mechanical properties. Growth ring width, wood density, latewood percentage, lumen diameter, cell wall thickness, tracheid length and pit dimensions of earlywood cells, spiral grain and microfibril angles were examined to identify structure–function relationships. High ks100 was strongly and positively related to spiral grain angle, which corresponded positively to tracheid length and pit dimensions. Spiral grain may reduce flow resistance of the bordered pits of the first earlywood tracheids, which are characterized by rounded tips and an equal distribution of pits along the entire length. Wood density was unrelated to hydraulic vulnerability parameters. Traits associated with higher hydraulic vulnerability were long tracheids, high latewood percentage and thick earlywood cell walls. The positive relationship between earlywood cell wall thickness and vulnerability to cavitation suggest that air seeding through the margo of bordered pits may occur in earlywood. There was a positive phenotypic and genotypic relationship between ks100 and PLC4MPa, and both parameters were positively related to tree growth rate. Variability in mechanical properties depended mostly on wood density, but also on the amount of compression wood. Accordingly, hydraulic conductivity and mechanical strength or stiffness showed no tradeoff. PMID:17472942
Cai, Jing; Li, Shan; Zhang, Haixin; Zhang, Shuoxin; Tyree, Melvin T
2014-01-01
Vulnerability curves (VCs) generally can be fitted to the Weibull equation; however, a growing number of VCs appear to be recalcitrant, that is, deviate from a Weibull but seem to fit dual Weibull curves. We hypothesize that dual Weibull curves in Hippophae rhamnoides L. are due to different vessel diameter classes, inter-vessel hydraulic connections or vessels versus fibre tracheids. We used dye staining techniques, hydraulic measurements and quantitative anatomy measurements to test these hypotheses. The fibres contribute 1.3% of the total stem conductivity, which eliminates the hypothesis that fibre tracheids account for the second Weibull curve. Nevertheless, the staining pattern of vessels and fibre tracheids suggested that fibres might function as a hydraulic bridge between adjacent vessels. We also argue that fibre bridges are safer than vessel-to-vessel pits and put forward the concept as a new paradigm. Hence, we tentatively propose that the first Weibull curve may be accounted by vessels connected to each other directly by pit fields, while the second Weibull curve is associated with vessels that are connected almost exclusively by fibre bridges. Further research is needed to test the concept of fibre bridge safety in species that have recalcitrant or normal Weibull curves. © 2013 John Wiley & Sons Ltd.
Structure-function constraints of tracheid-based xylem: a comparison of conifers and ferns.
Pittermann, Jarmila; Limm, Emily; Rico, Christopher; Christman, Mairgareth A
2011-10-01
The ferns comprise one of the most ancient tracheophytic plant lineages, and occupy habitats ranging from tundra to deserts and the equatorial tropics. Like their nearest relatives the conifers, modern ferns possess tracheid-based xylem but the structure-function relationships of fern xylem are poorly understood. Here, we sampled the fronds (megaphylls) of 16 species across the fern phylogeny, and examined the relationships among hydraulic transport, drought-induced cavitation resistance, the xylem anatomy of the stipe, and the gas-exchange response of the pinnae. For comparison, the results are presented alongside a similar suite of conifer data. Fern xylem is as resistant to cavitation as conifer xylem, but exhibits none of the hydraulic or structural trade-offs associated with resistance to cavitation. On a conduit diameter basis, fern xylem can exhibit greater hydraulic efficiency than conifer and angiosperm xylem. In ferns, wide and long tracheids compensate in part for the lack of secondary xylem and allow ferns to exhibit transport rates on a par with those of conifers. We suspect that it is the arrangement of the primary xylem, in addition to the intrinsic traits of the conduits themselves, that may help explain the broad range of cavitation resistance in ferns. © 2011 The Authors. New Phytologist © 2011 New Phytologist Trust.
Björklund, Jesper; Seftigen, Kristina; Schweingruber, Fritz; Fonti, Patrick; von Arx, Georg; Bryukhanova, Marina V; Cuny, Henri E; Carrer, Marco; Castagneri, Daniele; Frank, David C
2017-11-01
Interannual variability of wood density - an important plant functional trait and environmental proxy - in conifers is poorly understood. We therefore explored the anatomical basis of density. We hypothesized that earlywood density is determined by tracheid size and latewood density by wall dimensions, reflecting their different functional tasks. To determine general patterns of variability, density parameters from 27 species and 349 sites across the Northern Hemisphere were correlated to tree-ring width parameters and local climate. We performed the same analyses with density and width derived from anatomical data comprising two species and eight sites. The contributions of tracheid size and wall dimensions to density were disentangled with sensitivity analyses. Notably, correlations between density and width shifted from negative to positive moving from earlywood to latewood. Temperature responses of density varied intraseasonally in strength and sign. The sensitivity analyses revealed tracheid size as the main determinant of earlywood density, while wall dimensions become more influential for latewood density. Our novel approach of integrating detailed anatomical data with large-scale tree-ring data allowed us to contribute to an improved understanding of interannual variations of conifer growth and to illustrate how conifers balance investments in the competing xylem functions of hydraulics and mechanical support. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.
Dufour, Boris; Morin, Hubert
2010-07-01
Research on cambium phenology in trees and its limiting factors in natural conditions is still at an early stage of development, restricting our capacity to precisely evaluate the effect of growing season length and climate fluctuations on tracheid production. The first objective of this paper was to describe cambial tracheid production phenology of black spruce (Picea mariana (Mills.) BSP). Repeated tree ring sampling was performed from 2002 to 2006 on four sites (48 degrees 13.78' N, 71 degrees 15.18' W; 48 degrees 51.92' N, 70 degrees 20.57' W; 49 degrees 43.92' N, 71 degrees 56.88' W; and 50 degrees 41.78' N, 72 degrees 11.03' W) representative of closed black spruce forest in Quebec, Canada. The timing of cambial initiation and cambial cessation in black spruce differs from year to year, the first occurring on 4 June on average, whereas the second occurs on 15 August. During a single year, these events do not vary significantly in space within the study area. The duration of cambial tracheid production does not vary significantly in either time or space. The second objective of this study was to identify the climatic factors that explain variations in initiation and cessation. Air temperature and humidity, soil temperature and water content, rain precipitations, snow cover as well as photosynthetically active radiation were monitored at each studied site. These were then used to create sets of candidate regressors to explain timing of phenological events. Timing of cambial initiation is primarily dependent on mean temperature between mid-March and initiation itself. Vapor pressure during this period is also important but in a negative way. A significant effect of the previous year's August soil and air temperature conditions suggests a link with spring bud activity resumption, an interpretation that is supported by an analysis significantly linking measured timing of bud break to cambial initiation. Cessation of cambial tracheid production is influenced by factors linked to photosynthesis during the period from mid-July to cessation. Those related to water status, namely saturation vapor pressure, soil water content and vapor pressure are particularly influential, but light intensity and soil temperature also have an effect. Also, because mid-July corresponds to the timing of bud set and because the previous late summer's soil temperature has a significant effect, a clear link is established with apical cessation.
Choat, Brendan; Brodersen, Craig R; McElrone, Andrew J
2015-02-01
The formation of emboli in xylem conduits can dramatically reduce hydraulic capacity and represents one of the principal mechanisms of drought-induced mortality in woody plants. However, our understanding of embolism formation and repair is constrained by a lack of tools to directly and nondestructively measure these processes at high spatial resolution. Using synchrotron-based microcomputed tomography (microCT), we examined embolism in the xylem of coast redwood (Sequoia sempervirens) saplings that were subjected to cycles of drought and rewatering. Embolism formation was observed occurring by three different mechanisms: as tracheids embolizing in wide tangential bands; as isolated tracheids in seemingly random events; and as functional groups connected to photosynthetic organs. Upon rewatering, stem water potential recovered to predrought stress levels within 24 h; however, no evidence of embolism repair was observed even after a further 2 wk under well-watered conditions. The results indicate that intertracheid air seeding is the primary mechanism by which embolism spreads in the xylem of S. sempervirens, but also show that a small number of tracheids initially become gas-filled via another mechanism. The inability of S. sempervirens saplings to reverse drought-induced embolism is likely to have important ecological impacts on this species. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.
Winter drought impairs xylem phenology, anatomy and growth in Mediterranean Scots pine forests.
Camarero, J J; Guada, G; Sánchez-Salguero, R; Cervantes, E
2016-12-01
Continental Mediterranean forests face drought but also cold spells and both climate extremes can impair the resilience capacity of these forests. Climate warming could amplify the negative effects of cold spells by inducing premature dehardening. Here we capitalize on a winter drought-induced dieback triggered by a cold spell which occurred in December 2001 affecting Scots pine forests in eastern Spain. We assessed post-dieback recovery by quantifying and comparing radial growth and xylem anatomy of non-declining (ND, crown cover >50%) and declining (D, crown cover ≤50%) trees in two sites (VP, Villarroya de los Pinares; TO, Torrijas). We also characterized xylogenesis in both sites and aboveground productivity in site VP. Dieback caused legacy effects since needle loss, a 60% reduction in litter fall and radial-growth decline characterized D-trees 3 years after dieback symptoms started appearing in spring 2002. D-trees formed collapsed tracheids in the 2002-ring, particularly in the most affected VP site where xylogenesis differences between ND and D trees were most noticeable. The lower growth rates of D-trees were caused by a shorter duration of their major xylogenesis phases. In site VP the radial-enlargement and wall-thickening of tracheids were significantly reduced in D-trees as compared to ND-trees because these xylogenesis phases tended to start earlier and end later in ND-trees. Gompertz models fitted to tracheid production predicted that maximum growth rates occurred 11-12 days earlier in ND than in D-trees. The formation of radially-enlarging tracheids was enhanced by longer days in both study sites and also by wetter conditions in the driest TO site, but xylogenesis sensitivity to climate was reduced in D-trees. Winter-drought dieback impairs xylem anatomy and phenology, aboveground productivity, xylogenesis and growth in Mediterranean Scots pine populations. Affected stands show a costly post-dieback recovery challenging their resilience ability. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Balanzategui, Daniel; Heußner, Karl-Uwe; Wazny, Tomasz; Helle, Gerd; Heinrich, Ingo
2017-04-01
Tree-ring based temperature reconstructions from the temperate lowlands worldwide are largely missing due to diffuse climate signals so far found in tree-ring widths. This motivated us to concentrate our efforts on the wood anatomies of two common European tree species, the European oak (Quercus robur) and Scots pine (Pinus sylvestris). We combined core samples of living trees with archaeological wood from northern Germany and Poland. We measured approx. 46,000 earlywood oak vessels of 34 trees covering the period AD 1500 to 2016 and approx. 7.5 million pine tracheid cells of 41 trees covering the period AD 1300 to 2010. First climate growth analyses indicate that both oak earlywood vessel and pine tracheid parameters contain climate signals which are different and more significant than those found in tree-ring widths. Preliminary results will be presented and discussed at EGU for the first time.
Palaeo-adaptive properties of the xylem of Metasequoia: mechanical/hydraulic compromises.
Jagels, Richard; Visscher, George E; Lucas, John; Goodell, Barry
2003-07-01
The xylem of Metasequoia glyptostroboides Hu et Cheng is characterized by very low density (average specific gravity = 0.27) and tracheids with relatively large dimensions (length and diameter). The microfibril angle in the S2 layer of tracheid walls is large, even in outer rings, suggesting a cambial response to compressive rather than tensile stresses. In some cases, this compressive stress is converted to irreversible strain (plastic deformation), as evidenced by cell wall corrugations. The heartwood is moderately decay resistant, helping to prevent Brazier buckling. These xylem properties are referenced to the measured bending properties of modulus of rupture and modulus of elasticity, and compared with other low-to-moderate density conifers. The design strategy for Metasequoia is to produce a mechanically weak but hydraulically efficient xylem that permits rapid height growth and crown development to capture and dominate a wet site environment. The adaptability of these features to a high-latitude Eocene palaeoenvironment is discussed.
Castagneri, Daniele; Battipaglia, Giovanna; von Arx, Georg; Pacheco, Arturo; Carrer, Marco
2018-04-24
Understanding how climate affects xylem formation is critical for predicting the impact of future conditions on tree growth and functioning in the Mediterranean region, which is expected to face warmer and drier conditions. However, mechanisms of growth response to climate at different temporal scales are still largely unknown, being complicated by separation between spring and autumn xylogenesis (bimodal temporal pattern) in most species such as Mediterranean pines. We investigated wood anatomical characteristics and carbon stable isotope composition in Mediterranean Pinus pinea L. along tree-ring series at intra-ring resolution to assess xylem formation processes and responses to intra-annual climate variability. Xylem anatomy was strongly related to environmental conditions occurring a few months before and during the growing season, but was not affected by summer drought. In particular, the lumen diameter of the first earlywood tracheids was related to winter precipitation, whereas the size of tracheids produced later was influenced by mid-spring precipitation. Diameter of latewood tracheids was associated with precipitation in mid-autumn. In contrast, tree-ring carbon isotope composition was mostly related to climate of the previous seasons. Earlywood was likely formed using both recently and formerly assimilated carbon, while latewood relied mostly on carbon accumulated many months prior to its formation. Our integrated approach provided new evidence on the short-term and carry-over effects of climate on the bimodal temporal xylem formation in P. pinea. Investigations on different variables and time scales are necessary to disentangle the complex climate influence on tree growth processes under Mediterranean conditions.
Barotto, Antonio José; Fernandez, María Elena; Gyenge, Javier; Meyra, Ariel; Martinez-Meier, Alejandro; Monteoliva, Silvia
2016-12-01
The relationship between hydraulic specific conductivity (k s ) and vulnerability to cavitation (VC) with size and number of vessels has been studied in many angiosperms. However, few of the studies link other cell types (vasicentric tracheids (VT), fibre-tracheids, parenchyma) with these hydraulic functions. Eucalyptus is one of the most important genera in forestry worldwide. It exhibits a complex wood anatomy, with solitary vessels surrounded by VT and parenchyma, which could serve as a good model to investigate the functional role of the different cell types in xylem functioning. Wood anatomy (several traits of vessels, VT, fibres and parenchyma) in conjunction with maximum k s and VC was studied in adult trees of commercial species with medium-to-high wood density (Eucalyptus globulus Labill., Eucalyptus viminalis Labill. and Eucalyptus camaldulensis Dehnh.). Traits of cells accompanying vessels presented correlations with functional variables suggesting that they contribute to both increasing connectivity between adjacent vessels-and, therefore, to xylem conduction efficiency-and decreasing the probability of embolism propagation into the tissue, i.e., xylem safety. All three species presented moderate-to-high resistance to cavitation (mean P 50 values = -2.4 to -4.2 MPa) with no general trade-off between efficiency and safety at the interspecific level. The results in these species do not support some well-established hypotheses of the functional meaning of wood anatomy. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Anatomical structure of Camellia oleifera shell.
Hu, Jinbo; Shi, Yang; Liu, Yuan; Chang, Shanshan
2018-06-04
The main product of Camellia oleifera is edible oil made from the seeds, but huge quantities of agro-waste are produced in the form of shells. The primary components of C. oleifera fruit shell are cellulose, hemicellulose, and lignin, which probably make it a good eco-friendly non-wood material. Understanding the structure of the shell is however a prerequisite to making full use of it. The anatomical structure of C. oleifera fruit shells was investigated from macroscopic to ultrastructural scale by stereoscopic, optical, and scanning electron microscopy. The main cell morphology in the different parts of the shell was observed and measured using the tissue segregation method. The density of the cross section of the shell was also obtained using an X-ray CT scanner to check the change in texture. The C. oleifera fruit pericarp was made up of exocarp, mesocarp, and endocarp. The main types of exocarp cells were stone cells, spiral vessels, and parenchyma cells. The mesocarp accounted for most of the shell and consisted of parenchyma, tracheids, and some stone cells. The endocarp was basically made up of cells with a thickened cell wall that were modified tracheid or parenchyma cells with secondary wall thickening. The most important ultrastructure in these cells was the pits in the cell wall of stone and vessel cells that give the shell a conducting, mechanical, and protective role. The density of the shell gradually decreased from exocarp to endocarp. Tracheid cells are one of the main cell types in the shell, but their low slenderness (length to width) ratio makes them unsuitable for the manufacture of paper. Further research should be conducted on composite shell-plastic panels (or other reinforced materials) to make better use of this agro-waste.
Tyree, M T; Dixon, M A; Tyree, E L; Johnson, R
1984-08-01
Measurements are reported of ultrasonic acoustic emissions (AEs) measured from sapwood samples of Thuja occidentalis L. and Tsuga canadensis (L.) Carr. during air dehydration. The measurements were undertaken to test the following three hypotheses: (a) Each cavitation event produces one ultrasonic AE. (b) Large tracheids are more likely to cavitate than small tracheids. (c) When stem water potentials are >-0.4 MPa, a significant fraction of the water content of sapwood is held by ;capillary forces.' The last two hypotheses were recently discussed at length by M. H. Zimmermann. Experimental evidence consistent with all three hypotheses was obtained. The evidence for each hypothesis respectively is: (a) the cumulative number of AEs nearly equals the number of tracheids in small samples; (b) more water is lost per AE event at the beginning of the dehydration process than at the end, and (c) sapwood samples dehydrated from an initial water potential of 0 MPa lost significantly more water before AEs started than lost by samples dehydrated from an initial water potential of about -0.4 MPa. The extra water held by fully hydrated sapwood samples may have been capillary water as defined by Zimmerman.We also report an improved method for the measurement of the ;intensity' of ultrasonic AEs. Intensity is defined here as the area under the positive spikes of the AE signal (plotted as voltage versus time). This method was applied to produce a frequency histogram of the number of AEs versus intensity. A large fraction of the total number of AEs were of low intensity even in small samples (4 mm diameter by 10 mm length). This suggests that the effective ;listening distance' for most AEs was less than 5 to 10 mm.
Ultrasonic Acoustic Emissions from the Sapwood of Cedar and Hemlock 1
Tyree, Melvin T.; Dixon, Michael A.; Tyree, E. Loeta; Johnson, Robert
1984-01-01
Measurements are reported of ultrasonic acoustic emissions (AEs) measured from sapwood samples of Thuja occidentalis L. and Tsuga canadensis (L.) Carr. during air dehydration. The measurements were undertaken to test the following three hypotheses: (a) Each cavitation event produces one ultrasonic AE. (b) Large tracheids are more likely to cavitate than small tracheids. (c) When stem water potentials are >−0.4 MPa, a significant fraction of the water content of sapwood is held by `capillary forces.' The last two hypotheses were recently discussed at length by M. H. Zimmermann. Experimental evidence consistent with all three hypotheses was obtained. The evidence for each hypothesis respectively is: (a) the cumulative number of AEs nearly equals the number of tracheids in small samples; (b) more water is lost per AE event at the beginning of the dehydration process than at the end, and (c) sapwood samples dehydrated from an initial water potential of 0 MPa lost significantly more water before AEs started than lost by samples dehydrated from an initial water potential of about −0.4 MPa. The extra water held by fully hydrated sapwood samples may have been capillary water as defined by Zimmerman. We also report an improved method for the measurement of the `intensity' of ultrasonic AEs. Intensity is defined here as the area under the positive spikes of the AE signal (plotted as voltage versus time). This method was applied to produce a frequency histogram of the number of AEs versus intensity. A large fraction of the total number of AEs were of low intensity even in small samples (4 mm diameter by 10 mm length). This suggests that the effective `listening distance' for most AEs was less than 5 to 10 mm. PMID:16663774
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zeng, Yining; Zhao, Shuai; Wei, Hui
2015-04-27
In lignocellulosic biomass, lignin is the second most abundant biopolymer. In plant cell walls, lignin is associated with polysaccharides to form lignin-carbohydrate complexes (LCC). LCC have been considered to be a major factor that negatively affects the process of deconstructing biomass to simple sugars by cellulosic enzymes. Here, we report a micro-spectroscopic approach that combines fluorescence lifetime imaging microscopy and Stimulated Raman Scattering microscopy to probe in situ lignin concentration and conformation at each cell wall layer. This technique does not require extensive sample preparation or any external labels. Using poplar as a feedstock, for example, we observe variation ofmore » LCC in untreated tracheid poplar cell walls. The redistribution of LCC at tracheid poplar cell wall layers is also investigated when the chemical linkages between lignin and hemicellulose are cleaved during pretreatment. Our study would provide new insights into further improvement of the biomass pretreatment process.« less
Fluid self-diffusion in Scots pine sapwood tracheid cells.
Johannessen, Espen H; Hansen, Eddy W; Rosenholm, Jarl B
2006-02-09
The self-diffusion coefficients of water and toluene in Scots pine sapwood was measured using low field pulsed field gradient nuclear magnetic resonance (PFG-NMR). Wood chips of 8 mm diameter were saturated with the respective liquids, and liquid self-diffusion was then traced in one dimension orthogonal to the tracheid cell walls in the wood's radial direction. The experimental echo attenuation curves were exponential, and characteristic self-diffusion coefficients were produced for diffusion times spanning from very short times to times on the order of magnitude of seconds. Observed self-diffusion coefficients were decaying asymptotically as a function of diffusion time, an effect which was ascribed to the cell walls' restriction on confined liquid diffusion. The observed self-diffusion behavior in Scots pine sapwood was compared to self-diffusion coefficients obtained from simulations of diffusion in a square. Principles of molecular displacements in confined geometries were used for elucidating the wood's cellular structure from the observed diffusion coefficients. The results were compared with a mathematical model for diffusion between parallel planes.
Palaeo‐adaptive Properties of the Xylem of Metasequoia: Mechanical/Hydraulic Compromises
JAGELS, RICHARD; VISSCHER, GEORGE E.; LUCAS, JOHN; GOODELL, BARRY
2003-01-01
The xylem of Metasequoia glyptostroboides Hu et Cheng is characterized by very low density (average specific gravity = 0·27) and tracheids with relatively large dimensions (length and diameter). The microfibril angle in the S2 layer of tracheid walls is large, even in outer rings, suggesting a cambial response to compressive rather than tensile stresses. In some cases, this compressive stress is converted to irreversible strain (plastic deformation), as evidenced by cell wall corrugations. The heartwood is moderately decay resistant, helping to prevent Brazier buckling. These xylem properties are referenced to the measured bending properties of modulus of rupture and modulus of elasticity, and compared with other low‐to‐moderate density conifers. The design strategy for Metasequoia is to produce a mechanically weak but hydraulically efficient xylem that permits rapid height growth and crown development to capture and dominate a wet site environment. The adaptability of these features to a high‐latitude Eocene palaeoenvironment is discussed. PMID:12763758
Method for computing a roughness factor for veneer surfaces
Chung-Yun Hse
1972-01-01
Equations for determining the roughness factor (ratio of true surface to apparent area) of rotary-cut veneer were derived from an assumed tracheid model. With data measured on southern pine veneers, the equations indicated that the roughness factor of latewood was near unity, whereas that of earlywood was about 2.
The cellular distribution of lignans in Tsuga heterophylla wood
R.l. Krahmer; Richard W. Hemingway; W.E. Hillis
1970-01-01
Western hemlock heartwood contains patches of tracheids with large amounts of cellular inclusions. Microscopic and chemical examination of the wood showed several types of deposits containing the lignans matairesinol, hydroxymatairesinol and conidendrin. The deposits, which were often relatively pure individual lignans, frequently assumed different physical forms and...
Vegetative anatomy and relationships of Setchellanthus caeruleus (Setchellanthaceae)
Sherwin Carlquist; Regis B. Miller
1999-05-01
On account of its distinctive features, Setchellanthus cannot be included within any of the families of glucosinolate-producing plants. Features unknown in any of these families include abundant vasicentric tracheids, abaxial axial parenchyma, and only short uniseriate rays (composed of upright cells) in wood: and the presence of wide-helix tracheary elements in leaves...
Kraft pulp from budworm-infested jack pine
J. Y. Zhu; Gary C. Myers
2006-01-01
This study evaluated the quality of kraft pulp from bud-worm-infested jack pine. The logs were classified as merchantable live, suspect, or merchantable dead. Raw materials were evaluated through visual inspection, analysis of the chemical composition, SilviScan measurement of the density, and measurement of the tracheid length. Unbleached pulps were then refined using...
H.J. Renninger; B.L. Gartner; F.C. Meinzer
2006-01-01
We assessed differences in growth-ring width, specific conductivity (Ks), tracheid dimensions, moisture content, and wood density in suppressed Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) and western hemlock (Tsuga heterophylla (Raf.) Sarg.) trees and trees released from suppression. Growth-ring width was 370 percent...
Fiberboards from loblolly pine refiner groundwood: aspects of fiber morphology
Charles W. McMillin
1969-01-01
In tests with Pinus taeda L., most properties of wet formed hardboard were improved by using fiber refined from wood having short, slender tracheids with thin walls. A theoretical analysis suggested that the fibers fail in bending while under stress induced by the pressing operation. Sush bending failures improve conditions from hydrogen bonding,...
Tracheid development and wood quality in larch seedlings under controlled environment
J.J. Balatinecz; J.L. Farrar
1968-01-01
Several environmental factors necessary for tree growth undergo rhythmic and sometimes abrupt changes during the course of a year, and even during a day. Since wood cells are susceptible to outside influences during their differentiation, certain fluctuations of environmental conditions invariably leave a permanent imprint on xylem anatomy, and hence significantly...
Fluorescence microscopy for measuring fibril angles in pine tracheids
Ralph O. Marts
1955-01-01
Observation and measurement of fibril angles in increment cores or similar small samples from living pine trees was facilitated by the use of fluorescence microscopy. Although some autofluorescence was present, brighter images could be obtained by staining the specimens with a 0.1% aqueous solution of a fluorochrome (Calcozine flavine TG extra concentrated, Calcozine...
Telewski, F W; Jaffe, M J
1986-01-01
Twenty-three open pollinated families (half-sibs) and four controlled pollinated families (full-sibs) of Pinus taeda L. (loblolly pine) were grown in a greenhouse and analyzed for changes induced by mechanical perturbation (MP). These changes included inhibition of stem and needle elongation, bracing of branch nodes, and increased radial growth in the direction of the MP. Inhibition of stem elongation was the least variable feature measured. Leaf extension and stem diameter were highly variable between half-sibs. MP induced increased drag in greenhouse grown P. taeda in wind-tunnel tests. In P. taeda, MP induced decreased flexibility and increased elasticity and plasticity of the stem. The increased radial growth of the stems overrode the increase in elasticity, resulting in an overall decrease in flexibility. MP trees had a higher rupture point than non-MP controls. Increased radial growth is a result of more rapid cell divisions of the vascular cambium, resulting in increased numbers of tracheids. The decreased leader growth is partly due to a decreased tracheid length in response to MP.
NASA Technical Reports Server (NTRS)
Telewski, F. W.; Jaffe, M. J.
1986-01-01
Twenty-three open pollinated families (half-sibs) and four controlled pollinated families (full-sibs) of Pinus taeda L. (loblolly pine) were grown in a greenhouse and analyzed for changes induced by mechanical perturbation (MP). These changes included inhibition of stem and needle elongation, bracing of branch nodes, and increased radial growth in the direction of the MP. Inhibition of stem elongation was the least variable feature measured. Leaf extension and stem diameter were highly variable between half-sibs. MP induced increased drag in greenhouse grown P. taeda in wind-tunnel tests. In P. taeda, MP induced decreased flexibility and increased elasticity and plasticity of the stem. The increased radial growth of the stems overrode the increase in elasticity, resulting in an overall decrease in flexibility. MP trees had a higher rupture point than non-MP controls. Increased radial growth is a result of more rapid cell divisions of the vascular cambium, resulting in increased numbers of tracheids. The decreased leader growth is partly due to a decreased tracheid length in response to MP.
Missing and dark rings associated with drought in Pinus halepensis
Klemen Novak; Martin De Luis; Jozica Gricar; Peter Prislan; Maks Merela; Kevin T. Smith; Katarina Cufar
2016-01-01
The responses of the vascular cambium and tracheid differentiation to extreme drought in Aleppo pine (Pinus halepensis Mill.) were investigated. The research focused on the drought year of 2005, in the primary study area at Maigmo (MAI) in southeastern Spain, with comparisons in Jarafuel (JAL) and Guardamar (GUA). The climate in this region is...
Charles W. McMillin
1968-01-01
Earlywood and latewood tracheid length and transverse cellular dimensions of wood removed from stems of loblolly pine (Pinus taeda L.) and factorially aegregated by specific gravity, rings from the pith, and growth rate were determined from sample chips. The independent relationships of each factor with fiber morphology are described.
A raman microprobe investigation of the molecular architecture of loblolly pine tracheids
James S. Bond; Rajai H. Atalla
1999-01-01
Our understanding of the molecular architecture of intact, native plant cell walls is very limited. Traditional methods of investigation disturb the tissue to varying degrees and conclusions based on these methods may be intimately related to the technique used. A promising new technique to study native-state organization is polarized Raman spectroscopy. In this...
Sarah Wilkinson; Jerome Ogee; Jean-Christophe Domec; Mark Rayment; Lisa Wingate
2015-01-01
Process-based models that link seasonally varying environmental signals to morphological features within tree rings are essential tools to predict tree growth response and commercially important wood quality traits under future climate scenarios. This study evaluated model portrayal of radial growth and wood anatomy observations within a mature maritime pine (Pinus...
Charles W. McMillin
1969-01-01
In Pinus taeda L., burst, breaking length, and sheet density were improved by using fiber refined from wood having long, narrow-diameter tracheids with thick walls. Only narrow-diameter teacheids with thick walls were required to improve tear factor. A theoretical stress analysis revealed that thick-walled cells of small outside diameter fail by...
Laurence Mott; Les Groom; Stephen Shaler
2002-01-01
This paper reports variations in mechanical properties of individual southern pine fibers and compares engineering properties of earlywood and latewood tracheids with respect to tree height and juvenility. Results indicate that latewood fibers exhibit greater strength and stiffness than earlywood fibers irrespective of tree height or juvenility. Average earlywood...
Leslie H. Groom; Stephen Shaler; Laurence Mott
2002-01-01
This paper repons variations in mechanical properties of individual southern pine fibers and compares engineering properties of earlywood and latewood tracheids with respect to tree height and juvenility. Results indicate that latewood fibers exhibit greater strength and stiffness than earlywood fibers irrespective of tree height or juvenility. Average earlywood...
Tulik, Mirela; Rusin, Aleksandra
2005-03-01
The secondary cell wall structure of tracheids of Scots pine (Pinus sylvestris L.), especially the angle of microfibrils in the S(2) layer, was examined in wood deposited prior to and after the Chernobyl accident in 1986. Microscopic analysis was carried out on wood samples collected in October 1997 from breast height of three pine trees 16, 30 and 42 years old. The polluted site was located in a distance of 5 km south from the Chernobyl nuclear power plant where radioactive contamination in 1997 was 3.7 x 10(5) kBq m(-2). Anatomical analysis showed that the structure of the secondary cell wall in tracheids formed after the Chernobyl accident was changed. Changes occurred both in S(2) and S(3) layers. The angle of microfibrils in S(2) layer in wood deposited after the Chernobyl accident was different in comparison to this measured in wood formed prior to the disaster. The intensity of the changes, i.e. alteration of the microfibrils angle in S(2) layer and unusual pattern of the S(3) layer, depended on the age of the tree and was most intensive in a young tree.
Wide-band tracheids are present in almost all species of Cactaceae.
Mauseth, James D
2004-02-01
Wide-band tracheids (WBTs) have been found in seedlings of most species of cacti that have fibrous wood in their adult bodies. Consequently, this cell type is now known to be present in almost all cacti. Earlier studies of adult plants revealed WBTs to be present only in cacti with globose or short, broad bodies, whereas all species with large columnar or long slender bodies had fibrous wood without WBTs. However, even these species produce WBTs during the first several months after germination. In species with fibrous wood in their adult bodies (species with large or slender bodies), seedlings undergo a phase transition in wood morphogenesis after a few months and stop producing the juvenile (WBT) wood and begin producing adult (fibrous) wood. If adult plants have an intermediate size, the phase transition is delayed and the plant produces WBT wood for several years. Species with globose bodies repress the phase transition completely and never switch to producing adult (fibrous) wood. Because WBTs are so widespread, they probably originated only once in Cactaceae, not multiple times as suggested earlier, or there may have been just a single origin in the Cactaceae/Portulacaceae clade.
Hydraulic acclimation to shading in boreal conifers of varying shade tolerance.
Schoonmaker, Amanda L; Hacke, Uwe G; Landhäusser, Simon M; Lieffers, Victor J; Tyree, Melvin T
2010-03-01
The purpose of this study was to determine how shading affects the hydraulic and wood-anatomical characteristics of four boreal conifers (Pinus banksiana, Pinus contorta, Picea glauca and Picea mariana) that differ in shade tolerance. Plants were grown in an open field and under a deciduous-dominated overstory for 6 years. Sapwood- and leaf-area specific conductivity, vulnerability curves, and anatomical measurements (light and scanning electron microscopy) were made on leading shoots from six to nine trees of each treatment combination. There was no difference in sapwood-area specific conductivity between open-grown and understory conifers, although two of four species had larger tracheid diameters in the open. Shaded conifers appeared to compensate for small diameter tracheids by changes in pit membrane structure. Scanning electron microscopy revealed that understory conifers had thinner margo strands, greater maximum pore size in the margo, and more torus extensions. All of these trends may contribute to inadequate sealing of the torus. This is supported by the fact that all species showed increased vulnerability to cavitation when grown in the understory. Although evaporative demand in an understory environment is low, a rapid change into fully exposed conditions could be detrimental for shaded conifers.
Wood density and anatomical properties in suppressed-growth trees : comparison of two methods
David W. Vahey; J. Y. Zhu; C. Tim Scott
2007-01-01
Interest in the commercial value of small-diameter timber has led to testing core samples with SilviScan to characterize density and transverse fiber dimensions. Data showed that latewood density and tracheid diameter in suppressed-growth material can vary spatially on a scale comparable to the 50-_m resolution of the instrument used in our testing. An optical imaging...
Charles W. McMillin
1972-01-01
Fibril angles were greater for earlywood (avg. 33.4o) than for latewood tracheids (avg. 26.9o). For earlywood, fibril angle did not differ between growth rates when the specific gravity was low (avg. 33.3o). When the specific gravity was high, wood of fast growth had a higher fibril angle (avg. 35.1...
Leslie H. Groom; Stephen Shaler; Laurence Mott
2002-01-01
This is the third and final paper in a three-part series investigating the effect of location within a tree on the mechanical properties of individual wood tracheids. This paper focuses on the definition of juvenile, transition, and mature zones as classified by fiber stiffness, strength, microfibril angle, and cross-sectional area. The average modulus of elasticity...
Les Groom; Stephen Shaler; Laurence Mott
2002-01-01
This is the third and final paper in a three-part series investigating the effect of location within a tree on the mechanical properties of individual wood tracheids. This paper focuses on the definition of juvenile, transition, and mature zones as classified by fiber stiffness, strength, microfibril angle, and cross-sectional area. The average modulus of elasticity...
Do ray cells provide a pathway for radial water movement in the stems of conifer trees?
David M. Barnard; Barbara Lachenbruch; Katherine A. McCulloh; Peter Kitin; Frederick C. Meinzer
2013-01-01
The pathway of radial water movement in tree stems presents an unknown with respect to whole-tree hydraulics. Radial profiles have shown substantial axial sap flow in deeper layers of sapwood (that may lack direct connection to transpiring leaves), which suggests the existence of a radial pathway for water movement. Rays in tree stems include ray tracheids and/or ray...
J.Y. Zhu; David W. Vahey; C. Tim Scott
2008-01-01
This study used ring width correlations to examine the effects of tree-growth suppression on within-tree local wood density and tracheid anatomical properties. A wood core sample was taken from a 70-yr-old Douglas-fir that grew under various degrees of suppression in a natural forest setting. SilviScan and an imaging technique were used to obtain wood density and...
NASA Technical Reports Server (NTRS)
Telewski, F. W.; Jaffe, M. J.
1986-01-01
Field- and greenhouse-grown Abies fraseri (Pursh) Poir. (Fraser fir) were analyzed for wind- or mechanically-induced flexure changes. These changes included inhibition of stem and needle elongation, reinforcement of branch bases around the stem, and increased radial growth in the direction of the mechanical perturbation (MP). Mature trees exposed to high wind conditions were severely flag-formed. These modified tree crowns had a lower drag than crowns of non-flag formed trees in wind-tunnel tests. In both field-grown and greenhouse-grown A. fraseri, MP induced a decrease in flexibility and increased elasticity of the stems. The increased radial growth of the stems overrode the increase in elasticity, resulting in the overall decrease in flexibility. The increase in radial growth caused by wind or mechanical flexure was due to greater cell divisions of the vascular cambium, resulting in increased numbers of tracheids. The decrease in stem elongation in these trees was due, at least in part, to a decrease in tracheid length. The potential biological and mechanical significance of these induced growth changes in trees are addressed. The data support the thigmomorphogenetic theory, which states that plants respond to wind and other mechanical perturbations in a way that is favorable to the plant for continued survival in windy environments.
Using SRμCT to define water transport capacity in Picea abies
NASA Astrophysics Data System (ADS)
Lautner, Silke; Lenz, Claudia; Hammel, Jörg; Moosmann, Julian; Kühn, Michael; Caselle, Michele; Vogelgesang, Matthias; Kopmann, Andreas; Beckmann, Felix
2017-10-01
Water transport from roots to shoots is a vital necessity in trees in order to sustain their photosynthetic activity and, hence, their physiological activity. The vascular tissue in charge is the woody body of root, stem and branches. In gymnosperm trees, like spruce trees (Picea abies (L.) Karst.), vascular tissue consists of tracheids: elongated, protoplast- free cells with a rigid cell wall that allow for axial water transport via their lumina. In order to analyze the over-all water transport capacity within one growth ring, time-consuming light microscopy analysis of the woody sample still is the conventional approach for calculating tracheid lumen area. In our investigations at the Imaging Beamline (IBL) operated by the Helmholtz-Zentrum Geesthacht (HZG) at PETRA III storage ring of the Deutsches Elektronen-Synchrotron DESY, Hamburg, we applied SRμCT on small wood samples of spruce trees in order to visualize and analyze size and formation of xylem elements and their respective lumina. The selected high-resolution phase-contrast technique makes full use of the novel 20 MPixel CMOS area detector developed within the cooperation of HZG and the Karlsruhe data by light microscopy analysis and, hence, prove, that μCT is a most appropriate method to gain valid information on xylem cell structure and tree water transport capacity.
Drought alters timing, quantity, and quality of wood formation in Scots pine.
Eilmann, Britta; Zweifel, Roman; Buchmann, Nina; Graf Pannatier, Elisabeth; Rigling, Andreas
2011-05-01
Drought has been frequently discussed as a trigger for forest decline. Today, large-scale Scots pine decline is observed in many dry inner-Alpine valleys, with drought discussed as the main causative factor. This study aimed to analyse the impact of drought on wood formation and wood structure. To study tree growth under contrasting water supply, an irrigation experiment was installed in a mature Scots pine (Pinus sylvestris L.) forest at a xeric site in a dry inner-Alpine valley. Inter- and intra-annual radial increments as well as intra-annual variations in wood structure of pine trees were studied. It was found that non-irrigated trees had a noticeably shorter period of wood formation and showed a significantly lower increment. The water conduction cells were significantly enlarged and had significantly thinner cell walls compared with irrigated trees. It is concluded that pine trees under drought stress build a more effective water-conducting system (larger tracheids) at the cost of a probably higher vulnerability to cavitation (larger tracheids with thinner cell walls) but without losing their capability to recover. The significant shortening of the growth period in control trees indicated that the period where wood formation actually takes place can be much shorter under drought than the 'potential' period, meaning the phenological growth period.
GRUBER, Andreas; ZIMMERMANN, Jolanda; WIESER, Gerhard; OBERHUBER, Walter
2011-01-01
Within the alpine treeline ecotone tree growth is increasingly restricted by extreme climate conditions. Although intra-annual stem growth recorded by dendrometers can be linked to climate, stem diameter increments in slow-growing subalpine trees are masked by changes in tree water status. We tested the hypothesis that intra-annual radial stem growth in Pinus cembra is influenced by different climate variables along the treeline ecotone in the Austrian Alps. Dendrometer traces were compared with dynamics of xylem cell development to date onset of cambial activity and radial stem growth in spring. Daily fluctuations in stem radius reflected changes in tree water status throughout the treeline ecotone. Extracted daily radial increments were significantly correlated with air temperature at the timberline and treeline only, where budburst, cambial activity and enlargement of first tracheids also occurred quite similarly. A close relationship was detected between radial increment and number of enlarging tracheids throughout the treeline ecotone. We conclude that (i) the relationship between climate and radial stem growth within the treeline ecotone is dependent on a close coupling to atmospheric climate conditions and (ii) initiation of cambial activity and radial growth in spring can be distinguished from stem re-hydration by histological analysis. PMID:21423861
Gruber, Andreas; Zimmermann, Jolanda; Wieser, Gerhard; Oberhuber, Walter
2009-08-01
Within the alpine treeline ecotone tree growth is increasingly restricted by extreme climate conditions. Although intra-annual stem growth recorded by dendrometers can be linked to climate, stem diameter increments in slow-growing subalpine trees are masked by changes in tree water status.We tested the hypothesis that intra-annual radial stem growth in Pinus cembra is influenced by different climate variables along the treeline ecotone in the Austrian Alps. Dendrometer traces were compared with dynamics of xylem cell development to date onset of cambial activity and radial stem growth in spring.Daily fluctuations in stem radius reflected changes in tree water status throughout the treeline ecotone. Extracted daily radial increments were significantly correlated with air temperature at the timberline and treeline only, where budburst, cambial activity and enlargement of first tracheids also occurred quite similarly. A close relationship was detected between radial increment and number of enlarging tracheids throughout the treeline ecotone.We conclude that (i) the relationship between climate and radial stem growth within the treeline ecotone is dependent on a close coupling to atmospheric climate conditions and (ii) initiation of cambial activity and radial growth in spring can be distinguished from stem re-hydration by histological analysis.
Telewski, F W; Jaffe, M J
1986-01-01
Field- and greenhouse-grown Abies fraseri (Pursh) Poir. (Fraser fir) were analyzed for wind- or mechanically-induced flexure changes. These changes included inhibition of stem and needle elongation, reinforcement of branch bases around the stem, and increased radial growth in the direction of the mechanical perturbation (MP). Mature trees exposed to high wind conditions were severely flag-formed. These modified tree crowns had a lower drag than crowns of non-flag formed trees in wind-tunnel tests. In both field-grown and greenhouse-grown A. fraseri, MP induced a decrease in flexibility and increased elasticity of the stems. The increased radial growth of the stems overrode the increase in elasticity, resulting in the overall decrease in flexibility. The increase in radial growth caused by wind or mechanical flexure was due to greater cell divisions of the vascular cambium, resulting in increased numbers of tracheids. The decrease in stem elongation in these trees was due, at least in part, to a decrease in tracheid length. The potential biological and mechanical significance of these induced growth changes in trees are addressed. The data support the thigmomorphogenetic theory, which states that plants respond to wind and other mechanical perturbations in a way that is favorable to the plant for continued survival in windy environments.
Novaes, Fernanda da S; Callado, Cátia H; Pereira-Moura, Maria Verônica L; Lima, Helena R P
2010-12-01
This paper aimed to characterize the anatomical structure of the wood of specimens of Mollinedia glabra (Spreng.) Perkins growing in two contiguous formations of restinga vegetation at Praia Virgem, in the municipality of Rio das Ostras, RJ. Both the Open Palmae (OPS) and the Sandy Strip Closed Shrub (SSCS) formations are found in coastal regions that receive between 1,100 and 1,300 mm of rainfall per year. Sapwood samples were collected in both formations. Typical anatomical features for this species include: solitary vessels, radial multiples or clusters elements, that are circular to angular in outline, 5-15 barred scalariform perforation plates, wood parenchyma scanty, septate fiber-tracheids, and wide multiseriate rays with prismatic crystals. Statistical analyses indicated a significant increase in the frequency of vessel elements and an increase in fiber-tracheid diameters in OPS individuals. These characteristics are considered structural adaptations to increased water needs caused by a greater exposure to sunlight. Continuous pruning may be responsible for the tyloses observed in OPS plants. The greater lengths and higher frequencies of the rays in SSCS trees may be due to the greater diameters of their branches. Our results suggest that M. glabra develops structural adaptations to the restinga micro-environmental variations during its development.
Secchi, Francesca; Pagliarani, Chiara; Zwieniecki, Maciej A
2017-06-01
Xylem parenchyma cells [vessel associated cells (VACs)] constitute a significant fraction of the xylem in woody plants. These cells are often closely connected with xylem vessels or tracheids via simple pores (remnants of plasmodesmata fields). The close contact and biological activity of VACs during times of severe water stress and recovery from stress suggest that they are involved in the maintenance of xylem transport capacity and responsible for the restoration of vessel/tracheid functionality following embolism events. As recovery from embolism requires the transport of water across xylem parenchyma cell membranes, an understanding of stem-specific aquaporin expression patterns, localization and activity is a crucial part of any biological model dealing with embolism recovery processes in woody plants. In this review, we provide a short overview of xylem parenchyma cell biology with a special focus on aquaporins. In particular we address their distributions and activity during the development of drought stress, during the formation of embolism and the subsequent recovery from stress that may result in refilling. Complemented by the current biological model of parenchyma cell function during recovery from stress, this overview highlights recent breakthroughs on the unique ability of long-lived perennial plants to undergo cycles of embolism-recovery related to drought/rewetting or freeze/thaw events. © 2016 John Wiley & Sons Ltd.
Synergy of multi-scale toughening and protective mechanisms at hierarchical branch-stem interfaces
NASA Astrophysics Data System (ADS)
Müller, Ulrich; Gindl-Altmutter, Wolfgang; Konnerth, Johannes; Maier, Günther A.; Keckes, Jozef
2015-09-01
Biological materials possess a variety of artful interfaces whose size and properties are adapted to their hierarchical levels and functional requirements. Bone, nacre, and wood exhibit an impressive fracture resistance based mainly on small crystallite size, interface organic adhesives and hierarchical microstructure. Currently, little is known about mechanical concepts in macroscopic biological interfaces like the branch-stem junction with estimated 1014 instances on earth and sizes up to few meters. Here we demonstrate that the crack growth in the upper region of the branch-stem interface of conifer trees proceeds along a narrow predefined region of transversally loaded tracheids, denoted as sacrificial tissue, which fail upon critical bending moments on the branch. The specific arrangement of the tracheids allows disconnecting the overloaded branch from the stem in a controlled way by maintaining the stem integrity. The interface microstructure based on the sharply adjusted cell orientation and cell helical angle secures a zig-zag crack propagation path, mechanical interlock closing after the bending moment is removed, crack gap bridging and self-repairing by resin deposition. The multi-scale synergetic concepts allows for a controllable crack growth between stiff stem and flexible branch, as well as mechanical tree integrity, intact physiological functions and recovery after the cracking.
Safranine fluorescent staining of wood cell walls.
Bond, J; Donaldson, L; Hill, S; Hitchcock, K
2008-06-01
Safranine is an azo dye commonly used for plant microscopy, especially as a stain for lignified tissues such as xylem. Safranine fluorescently labels the wood cell wall, producing green/yellow fluorescence in the secondary cell wall and red/orange fluorescence in the middle lamella (ML) region. We examined the fluorescence behavior of safranine under blue light excitation using a variety of wood- and fiber-based samples of known composition to interpret the observed color differentiation of different cell wall types. We also examined the basis for the differences in fluorescence emission using spectral confocal microscopy to examine lignin-rich and cellulose-rich cell walls including reaction wood and decayed wood compared to normal wood. Our results indicate that lignin-rich cell walls, such as the ML of tracheids, the secondary wall of compression wood tracheids, and wood decayed by brown rot, tend to fluoresce red or orange, while cellulose-rich cell walls such as resin canals, wood decayed by white rot, cotton fibers and the G-layer of tension wood fibers, tend to fluoresce green/yellow. This variation in fluorescence emission seems to be due to factors including an emission shift toward red wavelengths combined with dye quenching at shorter wavelengths in regions with high lignin content. Safranine fluorescence provides a useful way to differentiate lignin-rich and cellulose-rich cell walls without counterstaining as required for bright field microscopy.
NorWood: a gene expression resource for evo-devo studies of conifer wood development.
Jokipii-Lukkari, Soile; Sundell, David; Nilsson, Ove; Hvidsten, Torgeir R; Street, Nathaniel R; Tuominen, Hannele
2017-10-01
The secondary xylem of conifers is composed mainly of tracheids that differ anatomically and chemically from angiosperm xylem cells. There is currently no high-spatial-resolution data available profiling gene expression during wood formation for any coniferous species, which limits insight into tracheid development. RNA-sequencing data from replicated, high-spatial-resolution section series throughout the cambial and woody tissues of Picea abies were used to generate the NorWood.conGenIE.org web resource, which facilitates exploration of the associated gene expression profiles and co-expression networks. Integration within PlantGenIE.org enabled a comparative regulomics analysis, revealing divergent co-expression networks between P. abies and the two angiosperm species Arabidopsis thaliana and Populus tremula for the secondary cell wall (SCW) master regulator NAC Class IIB transcription factors. The SCW cellulose synthase genes (CesAs) were located in the neighbourhoods of the NAC factors in A. thaliana and P. tremula, but not in P. abies. The NorWood co-expression network enabled identification of potential SCW CesA regulators in P. abies. The NorWood web resource represents a powerful community tool for generating evo-devo insights into the divergence of wood formation between angiosperms and gymnosperms and for advancing understanding of the regulation of wood development in P. abies. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.
Bouche, Pauline S; Delzon, Sylvain; Choat, Brendan; Badel, Eric; Brodribb, Timothy J; Burlett, Regis; Cochard, Hervé; Charra-Vaskou, Katline; Lavigne, Bruno; Li, Shan; Mayr, Stefan; Morris, Hugh; Torres-Ruiz, José M; Zufferey, Vivian; Jansen, Steven
2016-04-01
Plants can be highly segmented organisms with an independently redundant design of organs. In the context of plant hydraulics, leaves may be less embolism resistant than stems, allowing hydraulic failure to be restricted to distal organs that can be readily replaced. We quantified drought-induced embolism in needles and stems of Pinus pinaster using high-resolution computed tomography (HRCT). HRCT observations of needles were compared with the rehydration kinetics method to estimate the contribution of extra-xylary pathways to declining hydraulic conductance. High-resolution computed tomography images indicated that the pressure inducing 50% of embolized tracheids was similar between needle and stem xylem (P50 needle xylem = -3.62 MPa, P50 stem xylem = -3.88 MPa). Tracheids in both organs showed no difference in torus overlap of bordered pits. However, estimations of the pressure inducing 50% loss of hydraulic conductance at the whole needle level by the rehydration kinetics method were significantly higher (P50 needle = -1.71 MPa) than P50 needle xylem derived from HRCT. The vulnerability segmentation hypothesis appears to be valid only when considering hydraulic failure at the entire needle level, including extra-xylary pathways. Our findings suggest that native embolism in needles is limited and highlight the importance of imaging techniques for vulnerability curves. © 2015 John Wiley & Sons Ltd.
Sheree Cato; Lisa McMillan; Lloyd Donaldson; Thomas Richardson; Craig Echt; Richard Gardner
2006-01-01
Wood formation was investigated at five heights along the bole for two unrelated trees of Pinus radiataBoth trees showed clear gradients in wood properties from the base to the crown. Cambial cells at the base of the tree were dividing 3.3-fold slower than those at the crown, while the average thickness of cell walls in wood was highest at the base....
Induced compression wood formation in Douglas fir (Pseudotsuga menziesii) in microgravity
NASA Technical Reports Server (NTRS)
Kwon, M.; Bedgar, D. L.; Piastuch, W.; Davin, L. B.; Lewis, N. G.
2001-01-01
In the microgravity environment of the Space Shuttle Columbia (Life and Microgravity Mission STS-78), were grown 1-year-old Douglas fir and loblolly pine plants in a NASA plant growth facility. Several plants were harnessed (at 45 degrees ) to establish if compression wood biosynthesis, involving altered cellulose and lignin deposition and cell wall structure would occur under those conditions of induced mechanical stress. Selected plants were harnessed at day 2 in orbit, with stem sections of specific plants harvested and fixed for subsequent microscopic analyses on days 8, 10 and 15. At the end of the total space mission period (17 days), the remaining healthy harnessed plants and their vertical (upright) controls were harvested and fixed on earth. All harnessed (at 45 degrees ) plant specimens, whether grown at 1 g or in microgravity, formed compression wood. Moreover, not only the cambial cells but also the developing tracheid cells underwent significant morphological changes. This indicated that the developing tracheids from the primary cell wall expansion stage to the fully lignified maturation stage are involved in the perception and transduction of the stimuli stipulating the need for alteration of cell wall architecture. It is thus apparent that, even in a microgravity environment, woody plants can make appropriate corrections to compensate for stress gradients introduced by mechanical bending, thereby enabling compression wood to be formed. The evolutionary implications of these findings are discussed in terms of "variability" in cell wall biosynthesis.
NASA Astrophysics Data System (ADS)
Gentine, P.; Guerin, M. F.; von Arx, G.; Martin-Benito, D.; Griffin, K. L.; McDowell, N.; Pockman, W.; Andreu-Hayles, L.
2017-12-01
Recent droughts in the Southwest US have resulted in extensive mortality in the pinion pine population (Pinus Edulis). An important factor for resiliency is the ability of a plant to maintain a functional continuum between soil and leaves, allowing water's motion to be sustained or resumed. During droughts, loss of functional tracheids happens through embolism, which can be partially mitigated by increasing the hydraulic safety of the xylem. However, higher hydraulic safety is usually achieved by building narrower tracheids with thicker walls, resulting in a reduction of the hydraulic efficiency of the xylem (conductivity per unit area). Reduced efficiency constrains water transport, limits photosynthesis and might delay recovery after the drought. Supporting existing research on safety-efficiency tradeoff, we test the hypothesis that under dry conditions, isohydric pinions grow xylem that favor efficiency over safety. Using a seven-year experiment with three watering treatments (drought, control, irrigated) in New Mexico, we investigate the effect of drought on the xylem anatomy of pinions' branches. We also compare the treatment effect with interannual variations in xylem structure. We measure anatomical variables - conductivities, cell wall thicknesses, hydraulic diameter, cell reinforcement and density - and preliminarily conclude that treatment has little effect on hydraulic efficiency while hydraulic safety is significantly reduced under dry conditions. Taking advantage of an extremely dry year occurrence during the experiment, we find a sharp increase in vulnerability for xylem tissues built the same year.
Pellizzari, Elena; Camarero, J Julio; Gazol, Antonio; Sangüesa-Barreda, Gabriel; Carrer, Marco
2016-06-01
Hydraulic impairment due to xylem embolism and carbon starvation are the two proposed mechanisms explaining drought-induced forest dieback and tree death. Here, we evaluate the relative role played by these two mechanisms in the long-term by quantifying wood-anatomical traits (tracheid size and area of parenchyma rays) and estimating the intrinsic water-use efficiency (iWUE) from carbon isotopic discrimination. We selected silver fir and Scots pine stands in NE Spain with ongoing dieback processes and compared trees showing contrasting vigour (declining vs nondeclining trees). In both species earlywood tracheids in declining trees showed smaller lumen area with thicker cell wall, inducing a lower theoretical hydraulic conductivity. Parenchyma ray area was similar between the two vigour classes. Wet spring and summer conditions promoted the formation of larger lumen areas, particularly in the case of nondeclining trees. Declining silver firs presented a lower iWUE than conspecific nondeclining trees, but the reverse pattern was observed in Scots pine. The described patterns in wood anatomical traits and iWUE are coherent with a long-lasting deterioration of the hydraulic system in declining trees prior to their dieback. Retrospective quantifications of lumen area permit to forecast dieback in declining trees 2-5 decades before growth decline started. Wood anatomical traits provide a robust tool to reconstruct the long-term capacity of trees to withstand drought-induced dieback. © 2016 John Wiley & Sons Ltd.
Sano, Yuzou; Morris, Hugh; Shimada, Hiroshi; Ronse De Craene, Louis P.; Jansen, Steven
2011-01-01
Background and Aims Imperforate tracheary elements (ITEs) in wood of vessel-bearing angiosperms may or may not transport water. Despite the significance of hydraulic transport for defining ITE types, the combination of cell structure with water transport visualization in planta has received little attention. This study provides a quantitative analysis of structural features associated with the conductive vs. non-conductive nature of ITEs. Methods Visualization of water transport was studied in 15 angiosperm species by dye injection and cryo-scanning electron microscopy. Structural features of ITEs were examined using light and electron microscopy. Key Results ITEs connected to each other by pit pairs with complete pit membranes contributed to water transport, while cells showing pit membranes with perforations up to 2 µm were hydraulically not functional. A close relationship was found between pit diameter and pit density, with both characters significantly higher in conductive than in non-conductive cells. In species with both conductive and non-conductive ITEs, a larger diameter was characteristic of the conductive cells. Water transport showed no apparent relationship with the length of ITEs and vessel grouping. Conclusions The structure and density of pits between ITEs represent the main anatomical characters determining water transport. The pit membrane structure of ITEs provides a reliable, but practically challenging, criterion to determine their conductive status. It is suggested that the term tracheids should strictly be used for conductive ITEs, while fibre-tracheids and libriform fibres are non-conductive. PMID:21385773
Uptake of water via branches helps timberline conifers refill embolized xylem in late winter.
Mayr, Stefan; Schmid, Peter; Laur, Joan; Rosner, Sabine; Charra-Vaskou, Katline; Dämon, Birgit; Hacke, Uwe G
2014-04-01
Xylem embolism is a limiting factor for woody species worldwide. Conifers at the alpine timberline are exposed to drought and freeze-thaw stress during winter, which induce potentially lethal embolism. Previous studies indicated that timberline trees survive by xylem refilling. In this study on Picea abies, refilling was monitored during winter and spring seasons and analyzed in the laboratory and in situ experiments, based on hydraulic, anatomical, and histochemical methods. Refilling started in late winter, when the soil was frozen and soil water not available for the trees. Xylem embolism caused up to 86.2% ± 3.1% loss of conductivity and was correlated with the ratio of closed pits. Refilling of xylem as well as recovery in shoot conductance started in February and corresponded with starch accumulation in secondary phloem and in the mesophyll of needles, where we also observed increasing aquaporin densities in the phloem and endodermis. This indicates that active, cellular processes play a role for refilling even under winter conditions. As demonstrated by our experiments, water for refilling was thereby taken up via the branches, likely by foliar water uptake. Our results suggest that refilling is based on water shifts to embolized tracheids via intact xylem, phloem, and parenchyma, whereby aquaporins reduce resistances along the symplastic pathway and aspirated pits facilitate isolation of refilling tracheids. Refilling must be taken into account as a key process in plant hydraulics and in estimating future effects of climate change on forests and alpine tree ecosystems.
Maximum height in a conifer is associated with conflicting requirements for xylem design.
Domec, Jean-Christophe; Lachenbruch, Barbara; Meinzer, Frederick C; Woodruff, David R; Warren, Jeffrey M; McCulloh, Katherine A
2008-08-19
Despite renewed interest in the nature of limitations on maximum tree height, the mechanisms governing ultimate and species-specific height limits are not yet understood, but they likely involve water transport dynamics. Tall trees experience increased risk of xylem embolism from air-seeding because tension in their water column increases with height because of path-length resistance and gravity. We used morphological measurements to estimate the hydraulic properties of the bordered pits between tracheids in Douglas-fir trees along a height gradient of 85 m. With increasing height, the xylem structural modifications that satisfied hydraulic requirements for avoidance of runaway embolism imposed increasing constraints on water transport efficiency. In the branches and trunks, the pit aperture diameter of tracheids decreases steadily with height, whereas torus diameter remains relatively constant. The resulting increase in the ratio of torus to pit aperture diameter allows the pits to withstand higher tensions before air-seeding but at the cost of reduced pit aperture conductance. Extrapolations of vertical trends for trunks and branches show that water transport across pits will approach zero at a heights of 109 m and 138 m, respectively, which is consistent with historic height records of 100-127 m for this species. Likewise, the twig water potential corresponding to the threshold for runaway embolism would be attained at a height of approximately 107 m. Our results suggest that the maximum height of Douglas-fir trees may be limited in part by the conflicting requirements for water transport and water column safety.
Brodersen, Craig; Jansen, Steven; Choat, Brendan; Rico, Christopher; Pittermann, Jarmila
2014-01-01
Plant water transport occurs through interconnected xylem conduits that are separated by partially digested regions in the cell wall known as pit membranes. These structures have a dual function. Their porous construction facilitates water movement between conduits while limiting the spread of air that may enter the conduits and render them dysfunctional during a drought. Pit membranes have been well studied in woody plants, but very little is known about their function in more ancient lineages such as seedless vascular plants. Here, we examine the relationships between conduit air seeding, pit hydraulic resistance, and pit anatomy in 10 species of ferns (pteridophytes) and two lycophytes. Air seeding pressures ranged from 0.8 ± 0.15 MPa (mean ± sd) in the hydric fern Athyrium filix-femina to 4.9 ± 0.94 MPa in Psilotum nudum, an epiphytic species. Notably, a positive correlation was found between conduit pit area and vulnerability to air seeding, suggesting that the rare-pit hypothesis explains air seeding in early-diverging lineages much as it does in many angiosperms. Pit area resistance was variable but averaged 54.6 MPa s m−1 across all surveyed pteridophytes. End walls contributed 52% to the overall transport resistance, similar to the 56% in angiosperm vessels and 64% in conifer tracheids. Taken together, our data imply that, irrespective of phylogenetic placement, selection acted on transport efficiency in seedless vascular plants and woody plants in equal measure by compensating for shorter conduits in tracheid-bearing plants with more permeable pit membranes. PMID:24777347
Speck, Olga; Schlechtendahl, Mark; Borm, Florian; Kampowski, Tim; Speck, Thomas
2018-01-01
During evolution, plants evolved various reactions to wounding. Fast wound sealing and subsequent healing represent a selective advantage of particular importance for plants growing in arid habitats. An effective self-sealing function by internal deformation has been found in the succulent leaves of Delosperma cooperi. After a transversal incision, the entire leaf bends until the wound is closed. Our results indicate that the underlying sealing principle is a combination of hydraulic shrinking and swelling as the main driving forces and growth-induced mechanical pre-stresses in the tissues. Hydraulic effects were measured in terms of the relative bending angle over 55 minutes under various humidity conditions. The higher the relative air humidity, the lower the bending angle. Negative bending angles were found when a droplet of liquid water was applied to the wound. The statistical analysis revealed highly significant differences of the single main effects such as "humidity conditions in the wound region" and "time after wounding" and their interaction effect. The centripetal arrangement of five tissue layers with various thicknesses and significantly different mechanical properties might play an additional role with regard to mechanically driven effects. Injury disturbs the mechanical equilibrium, with pre-stresses leading to internal deformation until a new equilibrium is reached. In the context of self-sealing by internal deformation, the highly flexible wide-band tracheids, which form a net of vascular bundles, are regarded as paedomorphic tracheids, which are specialised to prevent cell collapse under drought stress and allow for building growth-induced mechanical pre-stresses.
Begum, Shahanara; Shibagaki, Masaki; Furusawa, Osamu; Nakaba, Satoshi; Yamagishi, Yusuke; Yoshimoto, Joto; Jin, Hyun-O; Sano, Yuzou; Funada, Ryo
2012-01-01
The cold stability of microtubules during seasons of active and dormant cambium was analyzed in the conifers Abies firma, Abies sachalinensis and Larix leptolepis by immunofluorescence microscopy. Samples were fixed at room temperature and at a low temperature of 2-3°C to examine the effects of low temperature on the stability of microtubules. Microtubules were visible in cambium, xylem cells and phloem cells after fixation at room temperature during seasons of active and dormant cambium. By contrast, fixation at low temperature depolymerized microtubules in cambial cells, differentiating tracheids, differentiating xylem ray parenchyma and phloem ray parenchyma cells during the active season. However, similar fixation did not depolymerize microtubules during cambial dormancy in winter. Our results indicate that the stability of microtubules in cambial cells and cambial derivatives at low temperature differs between seasons of active and dormant cambium. Moreover, the change in the stability of microtubules that we observed at low temperature might be closely related to seasonal changes in the cold tolerance of conifers. In addition, low-temperature fixation depolymerized microtubules in cambial cells and differentiating cells that had thin primary cell walls, while such low-temperature fixation did not depolymerize microtubules in differentiating secondary xylem ray parenchyma cells and tracheids that had thick secondary cell walls. The stability of microtubules at low temperature appears to depend on the structure of the cell wall, namely, primary or secondary. Therefore, we propose that the secondary cell wall might be responsible for the cold stability of microtubules in differentiating secondary xylem cells of conifers.
Mayr, Stefan; Schmid, Peter; Laur, Joan; Rosner, Sabine; Charra-Vaskou, Katline; Dämon, Birgit; Hacke, Uwe G.
2014-01-01
Xylem embolism is a limiting factor for woody species worldwide. Conifers at the alpine timberline are exposed to drought and freeze-thaw stress during winter, which induce potentially lethal embolism. Previous studies indicated that timberline trees survive by xylem refilling. In this study on Picea abies, refilling was monitored during winter and spring seasons and analyzed in the laboratory and in situ experiments, based on hydraulic, anatomical, and histochemical methods. Refilling started in late winter, when the soil was frozen and soil water not available for the trees. Xylem embolism caused up to 86.2% ± 3.1% loss of conductivity and was correlated with the ratio of closed pits. Refilling of xylem as well as recovery in shoot conductance started in February and corresponded with starch accumulation in secondary phloem and in the mesophyll of needles, where we also observed increasing aquaporin densities in the phloem and endodermis. This indicates that active, cellular processes play a role for refilling even under winter conditions. As demonstrated by our experiments, water for refilling was thereby taken up via the branches, likely by foliar water uptake. Our results suggest that refilling is based on water shifts to embolized tracheids via intact xylem, phloem, and parenchyma, whereby aquaporins reduce resistances along the symplastic pathway and aspirated pits facilitate isolation of refilling tracheids. Refilling must be taken into account as a key process in plant hydraulics and in estimating future effects of climate change on forests and alpine tree ecosystems. PMID:24521876
Carvalho, Ana; Nabais, Cristina; Vieira, Joana; Rossi, Sergio; Campelo, Filipe
2015-01-01
The formation of wood results from cambial activity and its anatomical properties reflect the variability of environmental conditions during the growing season. Recently, it was found that wood density variations in conifers growing under cold-limited environment result from the adjustment of cell wall thickness (CWT) to temperature. Additionally, it is known that intra-annual density fluctuations (IADFs) are formed in response to precipitation after the summer drought. Although IADFs are frequent in Mediterranean conifers no study has yet been conducted to determine if these structures result from the adjustment of lumen diameter (LD) or CWT to soil water availability. Our main objective is to investigate the intra-ring variation of wood anatomical features (LD and CWT) in Pinus pinaster Ait. growing under a water-limited environment. We compared the tracheidograms of LD and CWT for the years 2010–2013 in P. pinaster growing in the west coast of Portugal. Our results suggest a close association between LD and soil moisture content along the growing season, reinforcing the role of water availability in determining tracheid size. Compared with CWT, LD showed a higher intra- and inter-annual variability suggesting its strong adjustment value to variations in water availability. The formation of a latewood IADF appears to be predisposed by higher rates of cell production in spring and triggered by early autumn precipitation. Our findings reinforce the crucial role of water availability on cambial activity and wood formation in Mediterranean conifers, and emphasize the high plasticity of wood anatomical features under Mediterranean climate. PMID:26305893
Carvalho, Ana; Nabais, Cristina; Vieira, Joana; Rossi, Sergio; Campelo, Filipe
2015-01-01
The formation of wood results from cambial activity and its anatomical properties reflect the variability of environmental conditions during the growing season. Recently, it was found that wood density variations in conifers growing under cold-limited environment result from the adjustment of cell wall thickness (CWT) to temperature. Additionally, it is known that intra-annual density fluctuations (IADFs) are formed in response to precipitation after the summer drought. Although IADFs are frequent in Mediterranean conifers no study has yet been conducted to determine if these structures result from the adjustment of lumen diameter (LD) or CWT to soil water availability. Our main objective is to investigate the intra-ring variation of wood anatomical features (LD and CWT) in Pinus pinaster Ait. growing under a water-limited environment. We compared the tracheidograms of LD and CWT for the years 2010-2013 in P. pinaster growing in the west coast of Portugal. Our results suggest a close association between LD and soil moisture content along the growing season, reinforcing the role of water availability in determining tracheid size. Compared with CWT, LD showed a higher intra- and inter-annual variability suggesting its strong adjustment value to variations in water availability. The formation of a latewood IADF appears to be predisposed by higher rates of cell production in spring and triggered by early autumn precipitation. Our findings reinforce the crucial role of water availability on cambial activity and wood formation in Mediterranean conifers, and emphasize the high plasticity of wood anatomical features under Mediterranean climate.
NASA Astrophysics Data System (ADS)
Wilson, J. P.; Fischer, W. W.
2010-12-01
Fossil plants provide useful proxies of Earth’s climate because plants are closely connected, through physiology and morphology, to the environments in which they lived. Recent advances in quantitative hydraulic models of plant water transport provide new insight into the history of climate by allowing fossils to speak directly to environmental conditions based on preserved internal anatomy. We report results of a quantitative hydraulic model applied to one of the earliest terrestrial plants preserved in three dimensions, the ~396 million-year-old vascular plant Asteroxylon mackei. This model combines equations describing the rate of fluid flow through plant tissues with detailed observations of plant anatomy; this allows quantitative estimates of two critical aspects of plant function. First and foremost, results from these models quantify the supply of water to evaporative surfaces; second, results describe the ability of plant vascular systems to resist tensile damage from extreme environmental events, such as drought or frost. This approach permits quantitative comparisons of functional aspects of Asteroxylon with other extinct and extant plants, informs the quality of plant-based environmental proxies, and provides concrete data that can be input into climate models. Results indicate that despite their small size, water transport cells in Asteroxylon could supply a large volume of water to the plant's leaves--even greater than cells from some later-evolved seed plants. The smallest Asteroxylon tracheids have conductivities exceeding 0.015 m^2 / MPa * s, whereas Paleozoic conifer tracheids do not reach this threshold until they are three times wider. However, this increase in conductivity came at the cost of little to no adaptations for transport safety, placing the plant’s vegetative organs in jeopardy during drought events. Analysis of the thickness-to-span ratio of Asteroxylon’s tracheids suggests that environmental conditions of reduced relative humidity (<20%) combined with elevated temperatures (>25°C) could cause sufficient cavitation to reduce hydraulic conductivity by 50%. This suggests that the Early Devonian environments that supported the earliest vascular plants were not subject to prolonged midseason droughts, or, alternatively, that the growing season was short. This places minimum constraints on water availability (e.g., groundwater hydration, relative humidity) in locations where Asteroxylon fossils are found; these environments must have had high relative humidities, comparable to tropical riparian environments. Given these constraints, biome-scale paleovegetation models that place early vascular plants distal to water sources can be revised to account for reduced drought tolerance. Paleoclimate proxies that treat early terrestrial plants as functionally interchangeable can incorporate physiological differences in a quantitatively meaningful way. Application of hydraulic models to fossil plants provides an additional perspective on the 475 million-year history of terrestrial photosynthetic environments and has potential to corroborate other plant-based paleoclimate proxies.
2016-01-01
The complex inner mechanisms that create typical conifer tree-ring structure (i.e. the transition from large, thin-walled earlywood cells to narrow, thick-walled latewood cells) were recently unraveled. However, what physiological or environmental factors drive xylogenesis key processes remain unclear. Here, we aim to quantify the influence of seasonal variations in climatic factors on the spectacular changes in the kinetics of wood cell differentiation and in the resulting tree-ring structure. Wood formation was monitored in three sites over 3 years for three coniferous species (Norway spruce [Picea abies], Scots pine [Pinus sylvestris], and silver fir [Abies alba]). Cell differentiation rates and durations were calculated and related to tracheid final dimensions and corresponding climatic conditions. On the one hand, we found that the kinetics of cell enlargement and the final size of the tracheids were not explained by the seasonal changes in climatic factors. On the other hand, decreasing temperatures strongly constrained cell wall deposition rates during latewood formation. However, the influence of temperature was permanently written into tree-ring structure only for the very last latewood cells, when the collapse of the rate of wall deposition was no longer counterbalanced by the increase of its duration. Our results show that the formation of the typical conifer tree-ring structure, in normal climatic conditions, is only marginally driven by climate, suggesting strong developmental control of xylogenesis. The late breakage of the compensatory mechanism at work in the wall deposition process appears as a clue to understand the capacity of the maximum latewood density to record past temperature conditions. PMID:27208048
Guada, Guillermo; Camarero, J. Julio; Sánchez-Salguero, Raúl; Cerrillo, Rafael M. Navarro
2016-01-01
Mediterranean pine forests display high resilience after extreme climatic events such as severe droughts. However, recent dry spells causing growth decline and triggering forest dieback challenge the capacity of some forests to recover following major disturbances. To describe how resilient the responses of forests to drought can be, we quantified growth dynamics in plantations of two pine species (Scots pine, black pine) located in south-eastern Spain and showing drought-triggered dieback. Radial growth was characterized at inter- (tree-ring width) and intra-annual (xylogenesis) scales in three defoliation levels. It was assumed that the higher defoliation the more negative the impact of drought on tree growth. Tree-ring width chronologies were built and xylogenesis was characterized 3 years after the last severe drought occurred. Annual growth data and the number of tracheids produced in different stages of xylem formation were related to climate data at several time scales. Drought negatively impacted growth of the most defoliated trees in both pine species. In Scots pine, xylem formation started earlier in the non-defoliated than in the most defoliated trees. Defoliated trees presented the shortest duration of the radial-enlargement phase in both species. On average the most defoliated trees formed 60% of the number of mature tracheids formed by the non-defoliated trees in both species. Since radial enlargement is the xylogenesis phase most tightly related to final growth, this explains why the most defoliated trees grew the least due to their altered xylogenesis phases. Our findings indicate a very limited resilience capacity of drought-defoliated Scots and black pines. Moreover, droughts produce legacy effects on xylogenesis of highly defoliated trees which could not recover previous growth rates and are thus more prone to die. PMID:27066053
Function and Dynamics of Auxin and Carbohydrates during Earlywood/Latewood Transition in Scots Pine1
Uggla, Claes; Magel, Elisabeth; Moritz, Thomas; Sundberg, Björn
2001-01-01
In temperate regions the annual pattern of wood development is characterized by the formation of radially narrow and thick walled latewood cells. This takes place at the later part of the growing season when cambial cell division declines. To gain new insight into the regulation of this process, micro-analytical techniques were used to visualize the distribution of indole-3-acetic acid (IAA), soluble carbohydrates, and activities of sucrose (Suc)-metabolizing enzymes across the cambial region tissues in Scots pine (Pinus sylvestris). The total amount of IAA in the cambial region did not change with latewood initiation. But its radial distribution pattern was altered, resulting in an increased concentration in the cambial meristem and its recent derivatives. Thus, initiation of latewood formation and cessation of cambial cell division is not a consequence of decreased IAA concentrations in dividing and expanding cells. Rather, IAA most likely has a role in defining the altered developmental pattern associated with latewood formation. Carbohydrates and enzyme activities showed distinctive radial distribution patterns. Suc peaked in the phloem and decreased sharply to low levels across the cambial zone, whereas fructose and glucose reached their highest levels in the maturing tracheids. Suc synthase was the dominating Suc cleaving enzyme with a peak in the secondary wall-forming tracheids and in the phloem. Soluble acid invertase peaked in dividing and expanding cells. Suc-phosphate synthase had its highest activities in the phloem. Activities of cell wall bound invertase were low. The absence of major seasonal variations indicates that carbohydrate availability is not a trigger for latewood initiation. However, steep concentration gradients of the sugars suggest a role for sugar signaling in vascular development. PMID:11299382
Function and dynamics of auxin and carbohydrates during earlywood/latewood transition in scots pine.
Uggla, C; Magel, E; Moritz, T; Sundberg, B
2001-04-01
In temperate regions the annual pattern of wood development is characterized by the formation of radially narrow and thick walled latewood cells. This takes place at the later part of the growing season when cambial cell division declines. To gain new insight into the regulation of this process, micro-analytical techniques were used to visualize the distribution of indole-3-acetic acid (IAA), soluble carbohydrates, and activities of sucrose (Suc)-metabolizing enzymes across the cambial region tissues in Scots pine (Pinus sylvestris). The total amount of IAA in the cambial region did not change with latewood initiation. But its radial distribution pattern was altered, resulting in an increased concentration in the cambial meristem and its recent derivatives. Thus, initiation of latewood formation and cessation of cambial cell division is not a consequence of decreased IAA concentrations in dividing and expanding cells. Rather, IAA most likely has a role in defining the altered developmental pattern associated with latewood formation. Carbohydrates and enzyme activities showed distinctive radial distribution patterns. Suc peaked in the phloem and decreased sharply to low levels across the cambial zone, whereas fructose and glucose reached their highest levels in the maturing tracheids. Suc synthase was the dominating Suc cleaving enzyme with a peak in the secondary wall-forming tracheids and in the phloem. Soluble acid invertase peaked in dividing and expanding cells. Suc-phosphate synthase had its highest activities in the phloem. Activities of cell wall bound invertase were low. The absence of major seasonal variations indicates that carbohydrate availability is not a trigger for latewood initiation. However, steep concentration gradients of the sugars suggest a role for sugar signaling in vascular development.
Pattern of xylem phenology in conifers of cold ecosystems at the Northern Hemisphere.
Rossi, Sergio; Anfodillo, Tommaso; Čufar, Katarina; Cuny, Henri E; Deslauriers, Annie; Fonti, Patrick; Frank, David; Gričar, Jožica; Gruber, Andreas; Huang, Jian-Guo; Jyske, Tuula; Kašpar, Jakub; King, Gregory; Krause, Cornelia; Liang, Eryuan; Mäkinen, Harri; Morin, Hubert; Nöjd, Pekka; Oberhuber, Walter; Prislan, Peter; Rathgeber, Cyrille B K; Saracino, Antonio; Swidrak, Irene; Treml, Václav
2016-11-01
The interaction between xylem phenology and climate assesses forest growth and productivity and carbon storage across biomes under changing environmental conditions. We tested the hypothesis that patterns of wood formation are maintained unaltered despite the temperature changes across cold ecosystems. Wood microcores were collected weekly or biweekly throughout the growing season for periods varying between 1 and 13 years during 1998-2014 and cut in transverse sections for assessing the onset and ending of the phases of xylem differentiation. The data set represented 1321 trees belonging to 10 conifer species from 39 sites in the Northern Hemisphere and covering an interval of mean annual temperature exceeding 14 K. The phenological events and mean annual temperature of the sites were related linearly, with spring and autumnal events being separated by constant intervals across the range of temperature analysed. At increasing temperature, first enlarging, wall-thickening and mature tracheids appeared earlier, and last enlarging and wall-thickening tracheids occurred later. Overall, the period of wood formation lengthened linearly with the mean annual temperature, from 83.7 days at -2 °C to 178.1 days at 12 °C, at a rate of 6.5 days °C -1 . April-May temperatures produced the best models predicting the dates of wood formation. Our findings demonstrated the uniformity of the process of wood formation and the importance of the environmental conditions occurring at the time of growth resumption. Under warming scenarios, the period of wood formation might lengthen synchronously in the cold biomes of the Northern Hemisphere. © 2016 John Wiley & Sons Ltd.
Cuny, Henri E; Rathgeber, Cyrille B K
2016-05-01
The complex inner mechanisms that create typical conifer tree-ring structure (i.e. the transition from large, thin-walled earlywood cells to narrow, thick-walled latewood cells) were recently unraveled. However, what physiological or environmental factors drive xylogenesis key processes remain unclear. Here, we aim to quantify the influence of seasonal variations in climatic factors on the spectacular changes in the kinetics of wood cell differentiation and in the resulting tree-ring structure. Wood formation was monitored in three sites over 3 years for three coniferous species (Norway spruce [Picea abies], Scots pine [Pinus sylvestris], and silver fir [Abies alba]). Cell differentiation rates and durations were calculated and related to tracheid final dimensions and corresponding climatic conditions. On the one hand, we found that the kinetics of cell enlargement and the final size of the tracheids were not explained by the seasonal changes in climatic factors. On the other hand, decreasing temperatures strongly constrained cell wall deposition rates during latewood formation. However, the influence of temperature was permanently written into tree-ring structure only for the very last latewood cells, when the collapse of the rate of wall deposition was no longer counterbalanced by the increase of its duration. Our results show that the formation of the typical conifer tree-ring structure, in normal climatic conditions, is only marginally driven by climate, suggesting strong developmental control of xylogenesis. The late breakage of the compensatory mechanism at work in the wall deposition process appears as a clue to understand the capacity of the maximum latewood density to record past temperature conditions. © 2016 American Society of Plant Biologists. All Rights Reserved.
Mechanisms of piñon pine mortality after severe drought: a retrospective study of mature trees.
Gaylord, Monica L; Kolb, Thomas E; McDowell, Nate G
2015-08-01
Conifers have incurred high mortality during recent global-change-type drought(s) in the western USA. Mechanisms of drought-related tree mortality need to be resolved to support predictions of the impacts of future increases in aridity on vegetation. Hydraulic failure, carbon starvation and lethal biotic agents are three potentially interrelated mechanisms of tree mortality during drought. Our study compared a suite of measurements related to these mechanisms between 49 mature piñon pine (Pinus edulis Engelm.) trees that survived severe drought in 2002 (live trees) and 49 trees that died during the drought (dead trees) over three sites in Arizona and New Mexico. Results were consistent over all sites indicating common mortality mechanisms over a wide region rather than site-specific mechanisms. We found evidence for an interactive role of hydraulic failure, carbon starvation and biotic agents in tree death. For the decade prior to the mortality event, dead trees had twofold greater sapwood cavitation based on frequency of aspirated tracheid pits observed with scanning electron microscopy (SEM), smaller inter-tracheid pit diameter measured by SEM, greater diffusional constraints to photosynthesis based on higher wood δ(13)C, smaller xylem resin ducts, lower radial growth and more bark beetle (Coleoptera: Curculionidae) attacks than live trees. Results suggest that sapwood cavitation, low carbon assimilation and low resin defense predispose piñon pine trees to bark beetle attacks and mortality during severe drought. Our novel approach is an important step forward to yield new insights into how trees die via retrospective analysis. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Wilkinson, Sarah; Ogée, Jérôme; Domec, Jean-Christophe; Rayment, Mark; Wingate, Lisa
2015-03-01
Process-based models that link seasonally varying environmental signals to morphological features within tree rings are essential tools to predict tree growth response and commercially important wood quality traits under future climate scenarios. This study evaluated model portrayal of radial growth and wood anatomy observations within a mature maritime pine (Pinus pinaster (L.) Aït.) stand exposed to seasonal droughts. Intra-annual variations in tracheid anatomy and wood density were identified through image analysis and X-ray densitometry on stem cores covering the growth period 1999-2010. A cambial growth model was integrated with modelled plant water status and sugar availability from the soil-plant-atmosphere transfer model MuSICA to generate estimates of cell number, cell volume, cell mass and wood density on a weekly time step. The model successfully predicted inter-annual variations in cell number, ring width and maximum wood density. The model was also able to predict the occurrence of special anatomical features such as intra-annual density fluctuations (IADFs) in growth rings. Since cell wall thickness remained surprisingly constant within and between growth rings, variations in wood density were primarily the result of variations in lumen diameter, both in the model and anatomical data. In the model, changes in plant water status were identified as the main driver of the IADFs through a direct effect on cell volume. The anatomy data also revealed that a trade-off existed between hydraulic safety and hydraulic efficiency. Although a simplified description of cambial physiology is presented, this integrated modelling approach shows potential value for identifying universal patterns of tree-ring growth and anatomical features over a broad climatic gradient. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Kiyoto, Shingo; Yoshinaga, Arata; Tanaka, Naoyuki; Wada, Munehisa; Kamitakahara, Hiroshi; Takabe, Keiji
2013-03-01
Mouse monoclonal antibodies were generated against dehydrodiconiferyl alcohol- or pinoresinol-p-aminohippuric acid (pAHA)-bovine serum albumin (BSA) conjugate as probes that specifically react with 8-5' or 8-8' linked structure of lignin in plant cell walls. Hybridoma clones were selected that produced antibodies that positively reacted with dehydrodiconiferyl alcohol- or pinoresinol-pAHA-BSA and negatively reacted with pAHA-BSA and guaiacylglycerol-beta-guaiacyl ether-pAHA-BSA conjugates containing 8-O-4' linkage. Eight clones were established for each antigen and one of each clone that positively reacted with wood sections was selected. The specificity of these antibodies was examined by competitive ELISA tests using various lignin dimers with different linkages. The anti-dehydrodiconiferyl alcohol antibody reacted specifically with dehydrodiconiferyl alcohol and did not react with other model compounds containing 8-O-4', 8-8', or 5-5' linkages. The anti-pinoresinol antibody reacted specifically with pinoresinol and syringaresinol and did not react with the other model compounds containing 8-O-4', 8-5', or 5-5' linkages. The antibodies also did not react with dehydrodiconiferyl alcohol acetate or pinoresinol acetate, indicating that the presence of free phenolic or aliphatic hydroxyl group was an important factor in their reactivity. In sections of Japanese cypress (Chamaecyparis obtusa), labeling by the anti-dehydrodiconiferyl alcohol antibody was found in the secondary walls of phloem fibers and in the compound middle lamellae, and secondary walls of tracheids. Weak labeling by the anti-pinoresinol antibody was found in secondary walls of phloem fibers and secondary walls and compound middle lamellae of developed tracheids. These labelings show the localization of 8-5' and 8-8' linked structure of lignin in the cell walls.
A new Late Devonian genus with seed plant affinities.
Wang, Deming; Liu, Le
2015-02-26
Many ovules of Late Devonian (Famennian) seed plants have been well studied. However, because few taxa occur with anatomically preserved stems and/or petioles, the vascular system of these earliest spermatophytes is little understood and available data come mostly from Euramerica. There remains great controversy over the anatomical differentiation of Late Devonian and Carboniferous seed plant groups of Buteoxylonales, Calamopityales and Lyginopteridales. Protostele evolution of these early spermatophytes needs more research. A new taxon Yiduxylon trilobum gen. et sp. nov. with seed plant affinities has been discovered in the Upper Devonian (Famennian) Tizikou Formation of Hubei Province, China. It is represented by stems, helically arranged and bifurcate fronds with two orders of pinnae and planate pinnules. Both secondary pinnae and pinnules are borne alternately. Stems contain a small protostele with three primary xylem ribs possessing a single peripheral protoxylem strand. Thick secondary xylem displays multiseriate bordered pitting on the tangential and radial walls of the tracheids, and has biseriate to multiseriate and high rays. A narrow cortex consists of inner cortex without sclerotic nests and sparganum-type outer cortex with peripheral bands of vertically aligned sclerenchyma cells. Two leaf traces successively arise tangentially from each primary xylem rib and they divide once to produce four circular-oval traces in the stem cortex. Four vascular bundles occur in two C-shaped groups at each petiole base with ground tissue and peripheral bands of sclerenchyma cells. Yiduxylon justifies the assignment to a new genus mainly because of the protostele with protoxylem strands only near the periphery of primary xylem ribs, leaf trace origination and petiolar vascular supply structure. It shares many definitive characters with Calamopityales and Lyginopteridales, further underscoring the anatomical similarities among early seed plants. The primary vascular system, pycnoxylic-manoxylic secondary xylem with bordered pits on both tangential and radial walls of a tracheid and leaf trace divergence of Yiduxylon suggest transitional features between the early spermatophytes and ancestral aneurophyte progymnosperms.
Pfaller, Kristian; Wagner, Johanna
2016-01-01
Extracellular ice nucleation usually occurs at mild subzero temperatures in most plants. For persistent supercooling of certain plant parts ice barriers are necessary to prevent the entry of ice from already frozen tissues. The reproductive shoot of Calluna vulgaris is able to supercool down to below -22°C throughout all developmental stages (shoot elongation, flowering, fruiting) despite an established xylem conductivity. After localization of the persistent ice barrier between the reproductive and vegetative shoot at the base of the pedicel by infrared differential thermal analysis, the currently unknown structural features of the ice barrier tissue were anatomically analyzed on cross and longitudinal sections. The ice barrier tissue was recognized as a 250 μm long constriction zone at the base of the pedicel that lacked pith tissue and intercellular spaces. Most cell walls in this region were thickened and contained hydrophobic substances (lignin, suberin, and cutin). A few cell walls had what appeared to be thicker cellulose inclusions. In the ice barrier tissue, the area of the xylem was as much as 5.7 times smaller than in vegetative shoots and consisted of tracheids only. The mean number of conducting units in the xylem per cross section was reduced to 3.5% of that in vegetative shoots. Diameter of conducting units and tracheid length were 70% and 60% (respectively) of that in vegetative shoots. From vegetative shoots water transport into the ice barrier must pass pit membranes that are likely impermeable to ice. Pit apertures were about 1.9 μm x 0.7 μm, which was significantly smaller than in the vegetative shoot. The peculiar anatomical features of the xylem at the base of the pedicel suggest that the diameter of pores in pit membranes could be the critical constriction for ice propagation into the persistently supercooled reproductive shoots of C. vulgaris. PMID:27632365
Kuprian, Edith; Tuong, Tan D; Pfaller, Kristian; Wagner, Johanna; Livingston, David P; Neuner, Gilbert
2016-01-01
Extracellular ice nucleation usually occurs at mild subzero temperatures in most plants. For persistent supercooling of certain plant parts ice barriers are necessary to prevent the entry of ice from already frozen tissues. The reproductive shoot of Calluna vulgaris is able to supercool down to below -22°C throughout all developmental stages (shoot elongation, flowering, fruiting) despite an established xylem conductivity. After localization of the persistent ice barrier between the reproductive and vegetative shoot at the base of the pedicel by infrared differential thermal analysis, the currently unknown structural features of the ice barrier tissue were anatomically analyzed on cross and longitudinal sections. The ice barrier tissue was recognized as a 250 μm long constriction zone at the base of the pedicel that lacked pith tissue and intercellular spaces. Most cell walls in this region were thickened and contained hydrophobic substances (lignin, suberin, and cutin). A few cell walls had what appeared to be thicker cellulose inclusions. In the ice barrier tissue, the area of the xylem was as much as 5.7 times smaller than in vegetative shoots and consisted of tracheids only. The mean number of conducting units in the xylem per cross section was reduced to 3.5% of that in vegetative shoots. Diameter of conducting units and tracheid length were 70% and 60% (respectively) of that in vegetative shoots. From vegetative shoots water transport into the ice barrier must pass pit membranes that are likely impermeable to ice. Pit apertures were about 1.9 μm x 0.7 μm, which was significantly smaller than in the vegetative shoot. The peculiar anatomical features of the xylem at the base of the pedicel suggest that the diameter of pores in pit membranes could be the critical constriction for ice propagation into the persistently supercooled reproductive shoots of C. vulgaris.
Atwell, B J; Henery, M L; Whitehead, D
2003-01-01
Clonal trees of Pinus radiata D. Don were grown in open-top chambers at a field site in New Zealand for 3 years at ambient (37 Pa) or elevated (65 Pa) carbon dioxide (CO2) partial pressure. Nitrogen (N) was supplied to half of the trees in each CO2 treatment, at 15 g N m-2 in the first year and 60 g N m-2 in the subsequent 2 years (high-N treatment). Trees in the low-N treatment were not supplied with N but received the same amount of other nutrients as trees in the high-N treatment. In the first year, stem basal area increased more in trees growing at elevated CO2 partial pressure and high-N supply than in control trees, suggesting a positive interaction between these resources. However, the relative rate of growth became the same across trees in all treatments after 450 days, resulting in trees growing at elevated CO2 partial pressure and high-N supply having larger basal areas than trees in the other treatments. Sapwood N content per unit dry mass was consistently about 0.09% in all treatments, indicating that N status was not suppressed by elevated CO2 partial pressure. Thus, during the first year of growth, an elevated CO2 partial pressure enhanced carbon (C) and N storage in woody stems, but there was no further stimulus to C and N deposition after the first year. The chemical composition of sapwood was unaffected by elevated CO2 partial pressure, indicating that no additional C was sequestered through lignification. However, independent of the treatments, early wood was 13% richer in lignin than late wood. Elevated CO2 partial pressure decreased the proportion of sapwood occupied by the lumina of tracheids by up to 12%, indicating increased sapwood density in response to CO2 enrichment. This effect was probably a result of thicker tracheid walls rather than narrower lumina.
Cirelli, Damián; Jagels, Richard; Tyree, Melvin T
2008-08-01
Two theories have been proposed to explain how high positive pressures are developed in sugar maple stems when temperatures fluctuate around freezing. The Milburn-O'Malley theory proposes that pressure development is purely physical and does not require living cells or sucrose. The osmotic theory invokes the involvement of living cells and sucrose to generate an osmotic pressure difference between fibers and vessels, which are assumed to be separated by an osmotic barrier. We analyzed wood of Acer saccharum Marsh., Juglans cinerea L. and Betula papyrifera Marsh. (all generate positive pressures) examining three critical components of the osmotic model: pits in cell walls, selectivity of the osmotic barrier and stability of air bubbles under positive xylem pressure. We examined the distribution and type of pits directly by light and scanning electron microscopy (SEM), and indirectly by perfusion of branch segments with fluorescent dyes with molecular masses similar to sucrose. The latter approach allowed us to use osmotic surrogates for sucrose that could be tracked by epifluorescence. Infusion experiments were used to assess the compartmentalization of sucrose and to determine the behavior of gas bubbles as predicted by Fick's and Henry's laws. The SEM images of sugar maple revealed a lack of pitting between fibers and vessels but connections between fiber-tracheids and vessels were present. Fluorescein-perfusion experiments demonstrated that large molecules do not diffuse into libriform fibers but are confined within the domain of vessels, parenchyma and fiber-tracheids. Results of the infusion experiments were in agreement with those of the fluorescein perfusions and further indicated the necessity of a compartmentalized osmolyte to drive stem pressure, as well as the inability of air bubbles to maintain such pressure because of instability. These results support the osmotic model and demonstrate that the secondary cell wall is an effective osmotic barrier for molecules larger than 300 g mol(-1).
Linking xylem water storage with anatomical parameters in five temperate tree species.
Jupa, Radek; Plavcová, Lenka; Gloser, Vít; Jansen, Steven
2016-06-01
The release of water from storage compartments to the transpiration stream is an important functional mechanism that provides the buffering of sudden fluctuations in water potential. The ability of tissues to release water per change in water potential, referred to as hydraulic capacitance, is assumed to be associated with the anatomy of storage tissues. However, information about how specific anatomical parameters determine capacitance is limited. In this study, we measured sapwood capacitance (C) in terminal branches and roots of five temperate tree species (Fagus sylvatica L., Picea abies L., Quercus robur L., Robinia pseudoacacia L., Tilia cordata Mill.). Capacitance was calculated separately for water released mainly from capillary (CI; open vessels, tracheids, fibres, intercellular spaces and cracks) and elastic storage compartments (CII; living parenchyma cells), corresponding to two distinct phases of the moisture release curve. We found that C was generally higher in roots than branches, with CI being 3-11 times higher than CII Sapwood density and the ratio of dead to living xylem cells were most closely correlated with C In addition, the magnitude of CI was strongly correlated with fibre/tracheid lumen area, whereas CII was highly dependent on the thickness of axial parenchyma cell walls. Our results indicate that water released from capillary compartments predominates over water released from elastic storage in both branches and roots, suggesting the limited importance of parenchyma cells for water storage in juvenile xylem of temperate tree species. Contrary to intact organs, water released from open conduits in our small wood samples significantly increased CI at relatively high water potentials. Linking anatomical parameters with the hydraulic capacitance of a tissue contributes to a better understanding of water release mechanisms and their implications for plant hydraulics. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
[Effects of elevated ozone on Pinus armandii growth: a simulation study with open-top chamber].
Liu, Chang-Fu; Liu, Chen; He, Xing-Yuan; Ruan, Ya-Nan; Xu, Sheng; Chen, Zhen-Ju; Peng, Jun-Jie; Li, Teng
2013-10-01
By using open-top chamber (OTC) and the techniques of dendrochronology, this paper studied the growth of Pinus armandii under elevated ozone, and explored the evolution dynamics and adaptation mechanisms of typical forest ecosystems to ozone enrichment. Elevated ozone inhibited the stem growth of P. armandii significantly, with the annual growth of the stem length and diameter reduced by 35.0% and 12.9%, respectively. The annual growth of tree-ring width and the annual ring cells number decreased by 11.5% and 54.1%, respectively, but no significant change was observed in the diameter of tracheid. At regional scale, the fluctuation of ozone concentration showed significant correlation with the variation of local vegetation growth (NDVI).
A Jurassic wood providing insights into the earliest step in Ginkgo wood evolution.
Jiang, Zikun; Wang, Yongdong; Philippe, Marc; Zhang, Wu; Tian, Ning; Zheng, Shaolin
2016-12-16
The fossil record of Ginkgo leaf and reproductive organs has been well dated to the Mid-Jurassic (170 Myr). However, the fossil wood record that can safely be assigned to Ginkgoales has not yet been reported from strata predating the late Early Cretaceous (ca. 100 Myr). Here, we report a new fossil wood from the Mid-Late Jurassic transition deposit (153-165 Myr) of northeastern China. The new fossil wood specimen displays several Ginkgo features, including inflated axial parenchyma and intrusive tracheid tips. Because it is only slightly younger than the oldest recorded Ginkgo reproductive organs (the Yima Formation, 170 Myr), this fossil wood very probably represents the oldest bona fide fossil Ginkgo wood and the missing ancestral form of Ginkgo wood evolution.
A Jurassic wood providing insights into the earliest step in Ginkgo wood evolution
NASA Astrophysics Data System (ADS)
Jiang, Zikun; Wang, Yongdong; Philippe, Marc; Zhang, Wu; Tian, Ning; Zheng, Shaolin
2016-12-01
The fossil record of Ginkgo leaf and reproductive organs has been well dated to the Mid-Jurassic (170 Myr). However, the fossil wood record that can safely be assigned to Ginkgoales has not yet been reported from strata predating the late Early Cretaceous (ca. 100 Myr). Here, we report a new fossil wood from the Mid-Late Jurassic transition deposit (153-165 Myr) of northeastern China. The new fossil wood specimen displays several Ginkgo features, including inflated axial parenchyma and intrusive tracheid tips. Because it is only slightly younger than the oldest recorded Ginkgo reproductive organs (the Yima Formation, 170 Myr), this fossil wood very probably represents the oldest bona fide fossil Ginkgo wood and the missing ancestral form of Ginkgo wood evolution.
Impact of drought on the temporal dynamics of wood formation in Pinus sylvestris
GRUBER, ANDREAS; STROBL, STEFAN; VEIT, BARBARA; OBERHUBER, WALTER
2011-01-01
Summary We determined the temporal dynamics of cambial activity and xylem cell differentiation of Scots pine (Pinus sylvestris L.) within a dry inner Alpine valley (750 m asl, Tyrol, Austria), where radial growth is strongly limited by drought in spring. Repeated micro-sampling of the developing tree ring of mature trees was carried out during 2 contrasting years at two study plots that differ in soil water availability (xeric and dry-mesic site). In 2007, when air temperature at the beginning of the growing season in April exceeded the long-term mean by 6.4 °C, cambial cell division started in early April at both study plots. A delayed onset of cambial activity of c. 2 wk was found in 2008, when average climate conditions prevailed in spring, indicating that resumption of cambial cell division after winter dormancy is temperature-controlled. Cambial cell division consistently ended about the end of June/early July in both study years. Radial enlargement of tracheids started almost 3 wk earlier in 2007 compared with 2008 at both study plots. At the xeric site, the maximum rate of tracheid production in 2007 and 2008 was reached in early and mid-May, respectively, and c. 2 wk later, at the dry-mesic site. Since in both study years, more favorable growing conditions (i.e., an increase in soil water content) were recorded during summer, we suggest a strong sink competition for carbohydrates to mycorrhizal root and shoot growth. Wood formation stopped c. 4 wk earlier at the xeric compared with the dry-mesic site in both years, indicating a strong influence of drought stress on cell differentiation. This is supported by radial widths of earlywood cells, which were found to be significantly narrower at the xeric than at the dry-mesic site (P < 0.05). Repeated cellular analyses during the two growing seasons revealed that, although spatial variability in the dynamics and duration of cell differentiation processes in Pinus sylvestris exposed to drought is strongly influenced by water availability, the onset of cambial activity and cell differentiation is controlled by temperature. PMID:20197285
Impact of drought on the temporal dynamics of wood formation in Pinus sylvestris.
Gruber, Andreas; Strobl, Stefan; Veit, Barbara; Oberhuber, Walter
2010-04-01
We determined the temporal dynamics of cambial activity and xylem cell differentiation of Scots pine (Pinus sylvestris L.) within a dry inner Alpine valley (750 m a.s.l., Tyrol, Austria), where radial growth is strongly limited by drought in spring. Repeated micro-sampling of the developing tree ring of mature trees was carried out during two contrasting years at two study plots that differ in soil water availability (xeric and dry-mesic sites). In 2007, when air temperature at the beginning of the growing season in April exceeded the long-term mean by 6.4 degrees C, cambial cell division started in early April at both study plots. A delayed onset of cambial activity of c. 2 weeks was found in 2008, when average climate conditions prevailed in spring, indicating that resumption of cambial cell division after winter dormancy is temperature controlled. Cambial cell division consistently ended about the end of June/early July in both study years. Radial enlargement of tracheids started almost 3 weeks earlier in 2007 compared with 2008 at both study plots. At the xeric site, the maximum rate of tracheid production in 2007 and 2008 was reached in early and mid-May, respectively, and c. 2 weeks later at the dry-mesic site. Since in both study years more favorable growing conditions (i.e., an increase in soil water content) were recorded during summer, we suggest a strong sink competition for carbohydrates to mycorrhizal root and shoot growth. Wood formation stopped c. 4 weeks earlier at the xeric compared with the dry-mesic site in both years, indicating a strong influence of drought stress on cell differentiation. This is supported by radial widths of earlywood cells, which were found to be significantly narrower at the xeric than at the dry-mesic site (P < 0.05). Repeated cellular analyses during the two growing seasons revealed that, although spatial variability in the dynamics and duration of cell differentiation processes in P. sylvestris exposed to drought is strongly influenced by water availability, the onset of cambial activity and cell differentiation is controlled by temperature.
Distribution of coniferin in freeze-fixed stem of Ginkgo biloba L. by cryo-TOF-SIMS/SEM
NASA Astrophysics Data System (ADS)
Aoki, Dan; Hanaya, Yuto; Akita, Takuya; Matsushita, Yasuyuki; Yoshida, Masato; Kuroda, Katsushi; Yagami, Sachie; Takama, Ruka; Fukushima, Kazuhiko
2016-08-01
To clarify the role of coniferin in planta, semi-quantitative cellular distribution of coniferin in quick-frozen Ginkgo biloba L. (ginkgo) was visualized by cryo time-of-flight secondary ion mass spectrometry and scanning electron microscopy (cryo-TOF-SIMS/SEM) analysis. The amount and rough distribution of coniferin were confirmed through quantitative chromatography measurement using serial tangential sections of the freeze-fixed ginkgo stem. The lignification stage of the sample was estimated using microscopic observations. Coniferin distribution visualized at the transverse and radial surfaces of freeze-fixed ginkgo stem suggested that coniferin is stored in the vacuoles, and showed good agreement with the assimilation timing of coniferin to lignin in differentiating xylem. Consequently, it is suggested that coniferin is stored in the tracheid cells of differentiating xylem and is a lignin precursor.
Tulik, M
2001-08-01
Studies were carried out on wood samples collected in October 1997 from breast height of Scots pine trees (Pinus sylvestris) from site located 5 km south from the Chernobyl nuclear power plant. The radioactive contamination at the site was 3.7x10(5) kBq m(-2). These samples of secondary wood were used as an archive of information about the dynamics of a meristematic tissue cambium affected by ionising radiation from the Chernobyl reactor accident. The results show that frequency of the cambial cells events like anticlinal divisions, intrusive growth and cells elimination, was after the Chernobyl accident, about three times higher in comparison to preceding years. The most interesting finding was that after irradiation the length of tracheids increased. This increase is interpreted as an effect of intracambial competition among cells in the initial layer.
Tyree, Melvin T.; Dixon, Michael A.; Thompson, Robert G.
1984-01-01
An improved method of counting acoustic emission (AE) events from water-stressed stems of cedar (Thuja occidentalis L.) is presented. Amplified AEs are analyzed on a real time basis by a microcomputer. The instrumentation counts AE events in a fashion nearly analogous to scintillation counting of radioactive materials. The technique was applied to measuring ultrasonic AEs from the stems of cedar inside a pressure bomb. The shoots were originally fully hydrated. When the shoots are dehydrated in the bomb by application of an overpressure very few AEs were detected. When the bomb pressure is reduced after dehydration of the shoot, AE events could be detected. We conclude that ultrasonic AEs are caused by cavitation events (= structural breakdown of water columns in the tracheids of cedar) and not by the breaking of cellulose fibers in the wood. PMID:16663501
Moisture changes in the plant cell wall force cellulose crystallites to deform.
Zabler, S; Paris, O; Burgert, I; Fratzl, P
2010-08-01
Nano-crystallite deformation of cellulose microfibrils in the secondary cell wall layer of spruce wood tracheids was observed during de- and rehydration experiments below the fibre saturation point. A quantitative analysis of the (004), (200) and the (110)/(11 0) doublet X-ray diffraction peaks revealed longitudinal contraction, lateral expansion and changes in the monoclinic angle of the cellulose unit cell during drying of wood fibres. Experiments on unfixed samples as well as the simultaneous application of mechanical tensile and dehydration stress to samples hold at constant length showed two deformation mechanisms of different nature and magnitude. The first mechanism depends on the relative wood moisture content and the second one on the macroscopic tensile stress. These findings imply a new perspective on the role of water adsorption perceiving a hydration-induced structural change of cellulose crystal structure as a major driving force for deformation. Copyright 2010 Elsevier Inc. All rights reserved.
Okada, Kiyoshi; Isobe, Toshihiro; Katsumata, Ken-ichi; Kameshima, Yoshikazu; Nakajima, Akira; MacKenzie, Kenneth J D
2011-01-01
Porous ceramics with unidirectionally oriented pores have been prepared by various methods such as anodic oxidation, templating using wood, unidirectional solidification, extrusion, etc. The templating method directly replicates the porous microstructure of wood to prepare porous ceramics, whereas the extrusion method mimics the microstructures of tracheids and xylems in trees. These two methods are therefore the main focus of this review as they provide good examples of the preparation of functional porous ceramics with properties replicating nature. The well-oriented cylindrical through-hole pores prepared by the extrusion method using fibers as the pore formers provide excellent permeability together with high mechanical strength. Examples of applications of these porous ceramics are given, including their excellent capillary lift of over 1 m height which could be used to counteract urban heat island phenomena, and other interesting properties arising from anisotropic unidirectional porous structures. PMID:27877451
Carbon sequestration and fertility after centennial time scale incorporation of charcoal into soil
NASA Astrophysics Data System (ADS)
Criscuoli, Irene; Alberti, Giorgio; Baronti, Silvia; Favilli, Filippo; Martinez, Cristina; Calzolari, Costanza; Pusceddu, Emanuela; Rumpel, Cornelia; Viola, Roberto; Miglietta, Franco
2014-05-01
The addition of pyrogenic carbon (C) in the soil is considered a sustainable strategy to achieve direct C sequestration and potential reduction of non-CO2 greenhouse gas emissions. In this paper, we investigated the long term effects of charcoal addition on C sequestration and soil chemico-physical properties by studying a series of abandoned charcoal hearths in the Eastern Alps established in the XIX century. This natural setting can be seen as an analogue of a deliberate experiment with replications. Carbon sequestration was assessed indirectly by comparing the amount of C present in the hearths with the estimated amount of charcoal that was left on the soil after the carbonization. Approximately 80% of the C originally added to the soil via charcoal can still be found today, thus supporting the view that charcoal incorporation is an effective way to sequester atmospheric CO2. We also observed an improvement in the physical properties (hydrophobicity and bulk density) of charcoal hearth soils and an accumulation of nutrients compared to the adjacent soil without charcoal. Then, we focused on the morphological and physical characterization of several fragments, using scanning electron microscopy (SEM), X-ray diffraction (XRD) and X-ray fluorescence (XRF). Such study enabled the identification of peculiar morphological features of tracheids, which were tentatively associated to a differential oxidation of the structures that were created during carbonization from lignine and cellulose. In order to assess the effect of soil-aging we compared the old-biochar with a modern one obtained from the same feedstock and with similar carbonization process. XRD and XRF analysis were performed on both old and modern biochar, in order to study the multiphase crystalline structure and chemical elements found. We observed mineralization and a fossilization of old biochar samples respect to the modern ones, with accumulation of several mineral oxides and a substantial presence of quartz. A graphene structure was also found, indicating weak bonds in the carbon structures, explained by inter-molecular Van der Waals forces. Furthermore, we have detected a graphite oxide structure responsible of the bending effect in the tracheid, revealed in SEM images. We consider that those results may contribute to the ongoing debate on the best, most suitable geo-engineering strategies that can potentially enable effective and sustainable carbon sequestration in agricultural soils using biochar.
Kanbayashi, Toru; Miyafuji, Hisashi
2016-07-18
The morphological and topochemical changes in wood tissues in compression wood of Japanese cedar (Cryptomeria japonica) upon treated with two types of ionic liquids, 1-ethyl-3-methylimidazolium chloride ([C2mim][Cl]) and 1-ethylpyridinium bromide ([EtPy][Br]) were investigated. Compression wood tracheids were swollen by both ionic liquids but their swelling behaviors were different in the types of ionic liquids used. Under the polarized light, we confirmed that crystalline cellulose in compression wood is amorphized by [C2mim][Cl] treatment whereas it changes slightly by [EtPy][Br] treatment. Raman microscopic analyses revealed that [C2mim][Cl] can preferentially liquefy polysaccharides in compression wood whereas [EtPy][Br] liquefy lignin. In addition, the interaction of compression wood with ionic liquids is different for the morphological regions. These results will assist in the use of ionic liquid treatment of woody biomass to produce valuable chemicals, bio-fuels, bio-based composites and other products.
Kanbayashi, Toru; Miyafuji, Hisashi
2016-01-01
The morphological and topochemical changes in wood tissues in compression wood of Japanese cedar (Cryptomeria japonica) upon treated with two types of ionic liquids, 1-ethyl-3-methylimidazolium chloride ([C2mim][Cl]) and 1-ethylpyridinium bromide ([EtPy][Br]) were investigated. Compression wood tracheids were swollen by both ionic liquids but their swelling behaviors were different in the types of ionic liquids used. Under the polarized light, we confirmed that crystalline cellulose in compression wood is amorphized by [C2mim][Cl] treatment whereas it changes slightly by [EtPy][Br] treatment. Raman microscopic analyses revealed that [C2mim][Cl] can preferentially liquefy polysaccharides in compression wood whereas [EtPy][Br] liquefy lignin. In addition, the interaction of compression wood with ionic liquids is different for the morphological regions. These results will assist in the use of ionic liquid treatment of woody biomass to produce valuable chemicals, bio-fuels, bio-based composites and other products. PMID:27426470
Effect of long-term forest fertilization on Scots pine xylem quality and wood borer performance.
Heijari, Juha; Nerg, Anne-Marja; Kainulainen, Pirjo; Noldt, Uwe; Levula, Teuvo; Raitio, Hannu; Holopainen, Jarmo K
2008-01-01
We tested whether changes in long-term nutrient availability would affect the xylem quality and characteristics of Scots pine trees as a food source for the larvae of the xylophagous wood borer Hylotrupes bajulus L. (Cerambycidae). We looked for an effect of host plant growth and xylem structural traits on H. bajulus larval performance, and looked for delayed effects of long-term forest fertilization on xylem chemical quality. In general, larval performance was dependent on larval developmental stage. However, the growth of larvae also varied with host plant quality (increases in the concentration of nitrogen and carbon-based secondary compounds of xylem were correlated with a decrease in the larval growth rate). The greater annual growth of trees reduced tracheid length and correlated positively with second-instar H. bajulus growth rate. This is consistent with the hypothesis that intrinsic growth patterns of host plants influence the development of the xylophagous wood borer H. bajulus.
Wolkerstorfer, Silviya V; Rosner, Sabine; Hietz, Peter
2012-10-01
The vulnerability of the xylem to cavitation is an important trait in plant drought resistance and has been quantified by several methods. We present a modified method for the simultaneous measurement of cavitations, recorded as ultrasound acoustic emissions (UAEs), and the water potential, measured with a thermocouple psychrometer, in small samples of conifer wood. Analyzing the amplitude of the individual signals showed that a first phase, during which the mean amplitude increased, was followed by a second phase with distinctly lower signal amplitudes. We provide a method to separate the two groups of signals and show that for many samples plausible vulnerability curves require rejecting late low-energy UAEs. These very likely do not result from cavitations. This method was used to analyze the differences between juvenile wood, and early and late mature wood in Picea abies (L.) Karst. Juvenile earlywood was more resistant to cavitation than mature earlywood or latewood, which we relate to the tracheid anatomy of the samples. Copyright © Physiologia Plantarum 2012.
Assessment of xylem phenology: a first attempt to verify its accuracy and precision.
Lupi, C; Rossi, S; Vieira, J; Morin, H; Deslauriers, A
2014-01-01
This manuscript aims to evaluate the precision and accuracy of current methodology for estimating xylem phenology and tracheid production in trees. Through a simple approach, sampling at two positions on the stem of co-dominant black spruce trees in two sites of the boreal forest of Quebec, we were able to quantify variability among sites, between trees and within a tree for different variables. We demonstrated that current methodology is accurate for the estimation of the onset of xylogenesis, while the accuracy for the evaluation of the ending of xylogenesis may be improved by sampling at multiple positions on the stem. The pattern of variability in different phenological variables and cell production allowed us to advance a novel hypothesis on the shift in the importance of various drivers of xylogenesis, from factors mainly varying at the level of site (e.g., climate) at the beginning of the growing season to factors varying at the level of individual trees (e.g., possibly genetic variability) at the end of the growing season.
Cytochemical localization of cellulases in decayed and nondecayed wood
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murmanis, L.; Highley, T.L.; Palmer, J.G.
1987-01-01
Sawdust from undecayed western hemlock wood and from wood previously decayed by the brown-rot fungus Poria placenta or by the white-rot fungus Ganoderma applanatum was incubated with commercial cellulase from Trichoderma viride. Samples were treated cytochemically to locate cellulase activity and examined by TEM. Results showed that cellulase degraded undecayed wood extensively, with the attack starting on the outer border of a cell wall and progressing inside. Wood decayed by P. placenta, with or without cellulase incubation, and treated by the cytochemical test showed uniform distribution of electron dense particles throughout the cell walls. In wood decayed by G. applanatum,more » cellulase degradation was similar to that in undecayed wood. From measurements of particle diameter it is suggested that electron dense particles are cellulase. It is concluded that brown-rot and white-rot fungi have different effects on the microstructure of wood. The brown-rot fungus appears to open the wood microstructure so that cellulase can diffuse throughout the degraded tracheid wall.« less
Genetic and environmental modification of the mechanical properties of wood
NASA Astrophysics Data System (ADS)
Sederoff, R.; Allona, I.; Whetten, R.
1996-02-01
Wood is one of the nation's leading raw materials and is used for a wide variety of products, either directly as wood, or as derived materials in pulp and paper. Wood is a biological material and evolved to provide mechanical support and water transport to the early plants that conquered the land. Wood is a tissue that results from the differentiation and programmed cell death of cells that derive from a tissue known as the vascular cambium. The vascular cambium is a thin cylinder of undifferentiated tissue in plant stems and roots that gives rise to several different cell types. Cells that differentiate on the internal side of the cambium form xylem, a tissue composed in major part, of long thin cells that die leaving a network of interconnected cell walls that serve to transport water and to provide mechanical support for the woody plant. The shape and chemical composition of the cells in xylem are well suited for these functions. The structure of cells in xylem determines the mechanical properties of the wood because of the strength derived from the reinforced matrix of the wall. The hydrophobic phenolic surface of the inside of the cell walls is essential to maintain surface tension upon which water transport is based and to resist decay caused by microorganisms. The properties of wood derived from the function of xylem also determine its structural and chemical properties as wood and paper products. Therefore, the physical and chemical properties of wood and paper products also depend on the morphology and composition of the cells from which they are derived. Wood (xylem cell walls) is an anisotropic material, a composite of lignocellulose. It is a matrix of cellulose microfibrils, complexed with hemicelluloses, (carbohydrate polymers which contain sugars other than glucose, both pentoses and hexoses), embedded together in a phenolic matrix of lignin. The high tensile strength of wood in the longitudinal direction, is due to the structure of cellulose and the orientation of the cellulose microfibrils. Lignin provides the embedding matrix that imparts compressive strength and flexibility. The water conducting cells in xylem, the tracheids, are long thin cells, which become the fibers of paper when the lignin is removed from wood during the papermaking process. The length of the tracheids and the thickness of the walls have important effects on the properties of paper that is produced. The past two decades have marked a revolutionary period in biological sciences due to the development of gene splicing techniques. These methods have led to the directed engineering of organisms to develop new industrial products. The technology has been used to produce a wide variety of new pharmaceuticals and transgenic plants and animals. This technology is now also being applied to forest trees.
Noninvasive Measurement of Vulnerability to Drought-Induced Embolism by X-Ray Microtomography1
Choat, Brendan; Cochard, Herve; Jansen, Steven
2016-01-01
Hydraulic failure induced by xylem embolism is one of the primary mechanisms of plant dieback during drought. However, many of the methods used to evaluate the vulnerability of different species to drought-induced embolism are indirect and invasive, increasing the possibility that measurement artifacts may occur. Here, we utilize x-ray computed microtomography (microCT) to directly visualize embolism formation in the xylem of living, intact plants with contrasting wood anatomy (Quercus robur, Populus tremula × Populus alba, and Pinus pinaster). These observations were compared with widely used centrifuge techniques that require destructive sampling. MicroCT imaging provided detailed spatial information regarding the dimensions and functional status of xylem conduits during dehydration. Vulnerability curves based on microCT observations of intact plants closely matched curves based on the centrifuge technique for species with short vessels (P. tremula × P. alba) or tracheids (P. pinaster). For ring porous Q. robur, the centrifuge technique significantly overestimated vulnerability to embolism, indicating that caution should be used when applying this technique to species with long vessels. These findings confirm that microCT can be used to assess the vulnerability to embolism on intact plants by direct visualization. PMID:26527655
Tondi, G; Thevenon, M F; Mies, B; Standfest, G; Petutschnigg, A; Wieland, S
The impregnation process of Scots pine and beech samples with tannin solutions was investigated. The two materials involved in the process (impregnation solution and wood samples) are studied in depth. Viscosity of mimosa tannin solutions and the anatomical aspect of beech and Scots pine were analysed and correlated. The viscosity of tannin solutions presents a non-newtonian behaviour when its pH level increases, and in the case of addition of hexamine as a hardener, the crosslinking of the flavonoids turns out to be of great importance. During the impregnation of Scots pine ( Pinus sylvestris L.) and beech ( Fagus sylvatica L.), the liquid and solid uptakes were monitored while taking into consideration the different conditions of the impregnation process. This method allowed to identify the best conditions needed in order to get a successful preservative uptake for each wooden substrate. The penetration mechanism within the wood of both species was revealed with the aid of a microscopic analysis. Scots pine is impregnated through the tracheids in the longitudinal direction and through parenchyma rays in the radial direction, whereas in beech, the penetration occurs almost completely through longitudinal vessels.
Perforated Pit Membranes in Imperforate Tracheary Elements of Some Angiosperms
SANO, YUZOU; JANSEN, STEVEN
2006-01-01
• Background and Aims The structure of pit membranes in angiosperms has not been fully examined and our understanding about the structure is incomplete. Therefore, this study aims to illustrate the micromorphology of pit membranes in fibres and tracheids of woody species from various families. • Methods Specimens from ten species from ten genera and eight families were prepared using two techniques and examined by field-emission scanning electron microscopy. • Key Results Interfibre pit membranes with an average diameter of <4 µm were frequently perforated or appeared to be very porous. In contrast, pit membranes in imperforate tracheary elements with distinctly bordered pits and an average diameter of ≥4 µm were homogeneous and densely packed with microfibrils. These differences were observed consistently not only among species but also within a single species in which different types of imperforate tracheary elements were present. • Conclusions This study demonstrates that the structure of interfibre pit membranes differs among cell types and the differences are closely associated with the specialization of the fibre cells. It is suggested that perforated pit membranes between specialized fibres contribute to the dehydration of the fibre cells at or soon after maturation. PMID:16520339
Rabaey, David; Lens, Frederic; Huysmans, Suzy; Smets, Erik; Jansen, Steven
2008-11-01
Recent micromorphological observations of angiosperm pit membranes have extended the number and range of taxa with pseudo-tori in tracheary elements. This study investigates at ultrastructural level (TEM) the development of pseudo-tori in the unrelated Malus yunnanensis, Ligustrum vulgare, Pittosporum tenuifolium, and Vaccinium myrtillus in order to determine whether these plasmodesmata associated thickenings have a similar developmental pattern across flowering plants. At early ontogenetic stages, the formation of a primary thickening was observed, resulting from swelling of the pit membrane in fibre-tracheids and vessel elements. Since plasmodesmata appear to be frequently, but not always, associated with these primary pit membrane thickenings, it remains unclear which ultrastructural characteristics control the formation of pseudo-tori. At a very late stage during xylem differentiation, a secondary thickening is deposited on the primary pit membrane thickening. Plasmodesmata are always associated with pseudo-tori at these final developmental stages. After autolysis, the secondary thickening becomes electron-dense and persistent, while the primary thickening turns transparent and partially or entirely dissolves. The developmental patterns observed in the species studied are similar and agree with former ontogenetic studies in Rosaceae, suggesting that pseudo-tori might be homologous features across angiosperms.
Yamashita, Taiji; Miyamoto, Kenji; Yonenobu, Hitoshi
2018-06-20
A new pretreatment method using room-temperature ionic liquid (IL) was proposed for observing wood specimens in scanning electron microscopy (SEM). A variety of concentrations were examined for ethanol solution of the IL, [Emim][MePO3Me], to determine an optimal pretreatment procedure. It was concluded that 10% ethanol solution of the IL was the most adequate to acquire good SEM images. Using the procedure optimized, SEM images were taken for typical anatomical types of modern soft and hardwood species and archeological wood. SEM images taken were sufficiently good in observing wood cells. The pretreatment method was also effective to archeological wood dated ca. 1600 years ago. It was thus concluded that the method developed in this study is more useful than those conventionally used. Additionally, pretreatment at the high temperature was performed to confirm morphological changes in softwood. Deformation of latewood cells (tracheids) was occurred by treating with undiluted IL at the high temperature of 50°C, probably due to higher accessibility of the IL into intercellular space. Nonetheless, it was confirmed that this happens under far more extreme conditions than our proposed method.
Leaf hydraulic capacity in ferns, conifers and angiosperms: impacts on photosynthetic maxima.
Brodribb, Tim J; Holbrook, N Michele; Zwieniecki, Maciej A; Palma, Beatriz
2005-03-01
* The hydraulic plumbing of vascular plant leaves varies considerably between major plant groups both in the spatial organization of veins, as well as their anatomical structure. * Five conifers, three ferns and 12 angiosperm trees were selected from tropical and temperate forests to investigate whether the profound differences in foliar morphology of these groups lead to correspondingly profound differences in leaf hydraulic efficiency. * We found that angiosperm leaves spanned a range of leaf hydraulic conductance from 3.9 to 36 mmol m2 s-1 MPa-1, whereas ferns (5.9-11.4 mmol m-2 s-1 MPa-1) and conifers (1.6-9.0 mmol m-2 s-1 MPa-1) were uniformly less conductive to liquid water. Leaf hydraulic conductance (Kleaf) correlated strongly with stomatal conductance indicating an internal leaf-level regulation of liquid and vapour conductances. Photosynthetic capacity also increased with Kleaf, however, it became saturated at values of Kleaf over 20 mmol m-2 s-1 MPa-1. * The data suggest that vessels in the leaves of the angiosperms studied provide them with the flexibility to produce highly conductive leaves with correspondingly high photosynthetic capacities relative to tracheid-bearing species.
Differences in xylogenesis between dominant and suppressed trees.
Liu, Shushan; Li, Xiaoxia; Rossi, Sergio; Wang, Lily; Li, Wei; Liang, Eryuan; Leavitt, Steven W
2018-05-01
Most dendroecological studies focus on dominant trees, but little is known about the growing season of trees belonging to different size classes and their sensitivity to biotic factors. The objective of this study was to compare the dynamics of xylem formation between dominant and suppressed trees of Abies fabri of similar age growing in the Gongga Mountains, southeastern Tibetan Plateau, and to identify the association between xylem growth and climate. The timing and duration of xylogenesis in histological sections were investigated weekly during the 2013-2015 growing seasons. Our investigation found that timing and duration of xylogenesis varied with canopy position and its associated tree size. Xylogenesis started 6-14 days earlier, and ended 5-11 days later in dominant trees than in suppressed trees, resulting in a significantly longer growing season. Dominant trees also exhibited higher temperature sensitivity of tracheid production rate than suppressed trees. The observed differences in xylogenesis among trees suggested that competition affects tree growth by reducing the growing period in suppressed trees. Representative climate-growth relationships should involve trees of all size classes when evaluating the effects of the environment on forest dynamics. © 2018 Botanical Society of America.
Refined pipe theory for mechanistic modeling of wood development.
Deckmyn, Gaby; Evans, Sam P; Randle, Tim J
2006-06-01
We present a mechanistic model of wood tissue development in response to changes in competition, management and climate. The model is based on a refinement of the pipe theory, where the constant ratio between sapwood and leaf area (pipe theory) is replaced by a ratio between pipe conductivity and leaf area. Simulated pipe conductivity changes with age, stand density and climate in response to changes in allocation or pipe radius, or both. The central equation of the model, which calculates the ratio of carbon (C) allocated to leaves and pipes, can be parameterized to describe the contrasting stem conductivity behavior of different tree species: from constant stem conductivity (functional homeostasis hypothesis) to height-related reduction in stem conductivity with age (hydraulic limitation hypothesis). The model simulates the daily growth of pipes (vessels or tracheids), fibers and parenchyma as well as vessel size and simulates the wood density profile and the earlywood to latewood ratio from these data. Initial runs indicate the model yields realistic seasonal changes in pipe radius (decreasing pipe radius from spring to autumn) and wood density, as well as realistic differences associated with the competitive status of trees (denser wood in suppressed trees).
Noninvasive Measurement of Vulnerability to Drought-Induced Embolism by X-Ray Microtomography.
Choat, Brendan; Badel, Eric; Burlett, Regis; Delzon, Sylvain; Cochard, Herve; Jansen, Steven
2016-01-01
Hydraulic failure induced by xylem embolism is one of the primary mechanisms of plant dieback during drought. However, many of the methods used to evaluate the vulnerability of different species to drought-induced embolism are indirect and invasive, increasing the possibility that measurement artifacts may occur. Here, we utilize x-ray computed microtomography (microCT) to directly visualize embolism formation in the xylem of living, intact plants with contrasting wood anatomy (Quercus robur, Populus tremula × Populus alba, and Pinus pinaster). These observations were compared with widely used centrifuge techniques that require destructive sampling. MicroCT imaging provided detailed spatial information regarding the dimensions and functional status of xylem conduits during dehydration. Vulnerability curves based on microCT observations of intact plants closely matched curves based on the centrifuge technique for species with short vessels (P. tremula × P. alba) or tracheids (P. pinaster). For ring porous Q. robur, the centrifuge technique significantly overestimated vulnerability to embolism, indicating that caution should be used when applying this technique to species with long vessels. These findings confirm that microCT can be used to assess the vulnerability to embolism on intact plants by direct visualization. © 2016 American Society of Plant Biologists. All Rights Reserved.
Pereira, Luciano; Bittencourt, Paulo R L; Oliveira, Rafael S; Junior, Mauro B M; Barros, Fernanda V; Ribeiro, Rafael V; Mazzafera, Paulo
2016-07-01
Wood contains a large amount of air, even in functional xylem. Air embolisms in the xylem affect water transport and can determine plant growth and survival. Embolisms are usually estimated with laborious hydraulic methods, which can be prone to several artefacts. Here, we describe a new method for estimating embolisms that is based on air flow measurements of entire branches. To calculate the amount of air flowing out of the branch, a vacuum was applied to the cut bases of branches under different water potentials. We first investigated the source of air by determining whether it came from inside or outside the branch. Second, we compared embolism curves according to air flow or hydraulic measurements in 15 vessel- and tracheid-bearing species to test the hypothesis that the air flow is related to embolism. Air flow came almost exclusively from air inside the branch during the 2.5-min measurements and was strongly related to embolism. We propose a new embolism measurement method that is simple, effective, rapid and inexpensive, and that allows several measurements on the same branch, thus opening up new possibilities for studying plant hydraulics. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.
Compensatory mechanisms mitigate the effect of warming and drought on wood formation.
Balducci, Lorena; Cuny, Henri E; Rathgeber, Cyrille B K; Deslauriers, Annie; Giovannelli, Alessio; Rossi, Sergio
2016-06-01
Because of global warming, high-latitude ecosystems are expected to experience increases in temperature and drought events. Wood formation will have to adjust to these new climatic constraints to maintain tree mechanical stability and long-distance water transport. The aim of this study is to understand the dynamic processes involved in wood formation under warming and drought. Xylogenesis, gas exchange, water relations and wood anatomy of black spruce [Picea mariana (Mill.) B.S.P.] saplings were monitored during a greenhouse experiment where temperature was increased during daytime or night-time (+6 °C) combined with a drought period. The kinetics of tracheid development expressed as rate and duration of the xylogenesis sub-processes were quantified using generalized additive models. Drought and warming had a strong influence on cell production, but little effect on wood anatomy. The increase in cell production rate under warmer temperatures, and especially during the night-time warming at the end of the growing season, resulted in wider tree-rings. However, the strong compensation between rates and durations of cell differentiation processes mitigates warming and drought effects on tree-ring structure. Our results allowed quantification of how wood formation kinetics is regulated when water and heat stress increase, allowing trees to adapt to future environmental conditions. © 2015 John Wiley & Sons Ltd.
Tree water relations can trigger monoterpene emissions from Scots pine stems during spring recovery
NASA Astrophysics Data System (ADS)
Vanhatalo, A.; Chan, T.; Aalto, J.; Korhonen, J. F.; Kolari, P.; Hölttä, T.; Nikinmaa, E.; Bäck, J.
2015-09-01
Tree canopies are known to emit large amounts of VOCs (volatile organic compounds) such as monoterpenes into the surrounding air. High VOC emission rates from boreal forests have been observed during the transition from winter to summer activity. The most important sources of these are considered to be the green foliage, understory vegetation and soil organisms, but emissions from the living stand woody compartments have so far not been quantified. We analyzed whether the non-foliar components could partially explain the springtime high emission rates. We measured the monoterpene emissions from Scots pine (Pinus sylvestris L.) stem and shoots during the dehardening phase of trees in field conditions in two consecutive springs. We observed a large, transient monoterpene burst from the stem, while the shoot monoterpene emissions remained low. The burst lasted about 12 h. Simultaneously, an unusual nighttime sap flow and a non-systematic diurnal pattern of tree diameter were detected. Hence, we suggest that the monoterpene burst was a consequence of the recovery of the stem from wintertime, and likely related to the refilling of embolized tracheids and/or phenological changes in the living cells of the stem. This indicates that the dominant processes and environmental drivers triggering the monoterpene emissions are different between the stem and the foliage.
Xylem phenology and wood production: resolving the chicken-or-egg dilemma.
Lupi, Carlo; Morin, Hubert; Deslauriers, Annie; Rossi, Sergio
2010-10-01
Delays in the start of the growing season reduce the period available for growth and the amount of xylem production. However, a higher number of developing tracheids could prolong cell differentiation and, consequently, lengthen the growing season. The relationship between the amount and duration of cell production in the xylem remains an unresolved issue. The aim of this study was to resolve the chicken-or-egg causality dilemma about duration of growth and cell production through simple- and double-cause models. This was achieved by (1) analysing the intra-annual growth dynamics of the xylem in Picea mariana (Mill.) BSP during 2006-2009 in two contrasting sites of the boreal forest of Quebec, Canada, and (2) extracting the dates of onset and ending of xylem formation and the number of radial cells along the tree ring. A higher number of cells was linked to an earlier onset (r=0.74) and later ending (r=0.61) of cell differentiation. The absence of a relationship between the residuals of the onset and ending of xylogenesis (r(p)=-0.06) indicated that cell production influenced the correlation between the two phenophases of the xylem. These results demonstrated that a higher number of cells produced delay the ending of xylem maturation, so extending the duration of wood formation. © 2010 Blackwell Publishing Ltd.
Choat, Brendan; Cobb, Alexander R; Jansen, Steven
2008-01-01
Bordered pits are cavities in the lignified cell walls of xylem conduits (vessels and tracheids) that are essential components in the water-transport system of higher plants. The pit membrane, which lies in the center of each pit, allows water to pass between xylem conduits but limits the spread of embolism and vascular pathogens in the xylem. Averaged across a wide range of species, pits account for > 50% of total xylem hydraulic resistance, indicating that they are an important factor in the overall hydraulic efficiency of plants. The structure of pits varies dramatically across species, with large differences evident in the porosity and thickness of pit membranes. Because greater porosity reduces hydraulic resistance but increases vulnerability to embolism, differences in pit structure are expected to correlate with trade-offs between efficiency and safety of water transport. However, trade-offs in hydraulic function are influenced both by pit-level differences in structure (e.g. average porosity of pit membranes) and by tissue-level changes in conduit allometry (average length, diameter) and the total surface area of pit membranes that connects vessels. In this review we address the impact of variation in pit structure on water transport in plants from the level of individual pits to the whole plant.
2011-01-01
The aim of this study was to investigate bending stiffness and compression strength perpendicular to the grain of Norway spruce (Picea abies (L.) Karst.) trunkwood with different anatomical and hydraulic properties. Hydraulically less safe mature sapwood had bigger hydraulic lumen diameters and higher specific hydraulic conductivities than hydraulically safer juvenile wood. Bending stiffness (MOE) was higher, whereas radial compression strength lower in mature than in juvenile wood. A density-based tradeoff between MOE and hydraulic efficiency was apparent in mature wood only. Across cambial age, bending stiffness did not compromise hydraulic efficiency due to variation in latewood percent and because of the structural demands of the tree top (e.g. high flexibility). Radial compression strength compromised, however, hydraulic efficiency because it was extremely dependent on the characteristics of the “weakest” wood part, the highly conductive earlywood. An increase in conduit wall reinforcement of earlywood tracheids would be too costly for the tree. Increasing radial compression strength by modification of microfibril angles or ray cell number could result in a decrease of MOE, which would negatively affect the trunk’s capability to support the crown. We propose that radial compression strength could be an easily assessable and highly predictive parameter for the resistance against implosion or vulnerability to cavitation across conifer species, which should be topic of further studies. PMID:22058609
Quantification of (1→4)-β-d-Galactans in Compression Wood Using an Immuno-Dot Assay
Chavan, Ramesh R.; Fahey, Leona M.; Harris, Philip J.
2015-01-01
Compression wood is a type of reaction wood formed on the underside of softwood stems when they are tilted from the vertical and on the underside of branches. Its quantification is still a matter of some scientific debate. We developed a new technique that has the potential to do this based on the higher proportions of (1→4)-β-d-galactans that occur in tracheid cell walls of compression wood. Wood was milled, partially delignified, and the non-cellulosic polysaccharides, including the (1→4)-β-d-galactans, extracted with 6 M sodium hydroxide. After neutralizing, the solution was serially diluted, and the (1→4)-β-d-galactans determined by an immuno-dot assay using the monoclonal antibody LM5, which specifically recognizes this polysaccharide. Spots were quantified using a dilution series of a commercially available (1→4)-β-d-galactan from lupin seeds. Using this method, compression and opposite woods from radiata pine (Pinus radiata) were easily distinguished based on the amounts of (1→4)-β-d-galactans extracted. The non-cellulosic polysaccharides in the milled wood samples were also hydrolysed using 2 M trifluoroacetic acid followed by the separation and quantification of the released neutral monosaccharides by high performance anion exchange chromatography. This confirmed that the compression woods contained higher proportions of galactose-containing polysaccharides than the opposite woods. PMID:27135316
Pivovaroff, Alexandria L; Burlett, Régis; Lavigne, Bruno; Cochard, Hervé; Santiago, Louis S; Delzon, Sylvain
2016-01-01
Plant resistance to xylem cavitation is a major drought adaptation trait and is essential to characterizing vulnerability to climate change. Cavitation resistance can be determined with vulnerability curves. In the past decade, new techniques have increased the ease and speed at which vulnerability curves are produced. However, these new techniques are also subject to new artefacts, especially as related to long-vesselled species. We tested the reliability of the 'flow rotor' centrifuge technique, the so-called Cavitron, and investigated one potential mechanism behind the open vessel artefact in centrifuge-based vulnerability curves: the microbubble effect. The microbubble effect hypothesizes that microbubbles introduced to open vessels, either through sample flushing or injection of solution, travel by buoyancy or mass flow towards the axis of rotation where they artefactually nucleate cavitation. To test the microbubble effect, we constructed vulnerability curves using three different rotor sizes for five species with varying maximum vessel length, as well as water extraction curves that are constructed without injection of solution into the rotor. We found that the Cavitron technique is robust to measure resistance to cavitation in tracheid-bearing and short-vesselled species, but not for long-vesselled ones. Moreover, our results support the microbubble effect hypothesis as the major cause for the open vessel artefact in long-vesselled species. Published by Oxford University Press on behalf of the Annals of Botany Company.
A broad survey of hydraulic and mechanical safety in the xylem of conifers
Bouche, Pauline S.; Larter, Maximilien; Domec, Jean-Christophe; Burlett, Régis; Gasson, Peter; Jansen, Steven; Delzon, Sylvain
2014-01-01
Drought-induced forest dieback has been widely reported over the last decades, and the evidence for a direct causal link between survival and hydraulic failure (xylem cavitation) is now well known. Because vulnerability to cavitation is intimately linked to the anatomy of the xylem, the main objective of this study was to better understand the xylem anatomical properties associated with cavitation resistance. An extensive data set of cavitation resistance traits and xylem anatomical properties was developed for 115 conifer species, with special attention given to the micro-morphology of bordered pits. The ratio of torus to pit aperture diameter, so-called torus overlap, increased with increasing cavitation resistance, while the flexibility of the margo does not seem to play a role, suggesting that air-seeding is located at the seal between the aspirated torus and pit aperture. Moreover, punctured tori were reported in various Pinaceae species. Species resistant to cavitation had thicker tracheid walls, while their lumen diameter (conduit size) was only slightly reduced, minimizing the impact on hydraulic conductance. The results also demonstrated (i) the existence of an indirect trade-off between hydraulic safety and mechanical strength; and (ii) a consistency between species distribution and xylem anatomy: species with a wide torus overlap and high valve effects are found in arid environments such as the Mediterranean region. PMID:24916072
Dao, Madjelia C. E.; Rossi, Sergio; Walsh, Denis; Morin, Hubert; Houle, Daniel
2015-01-01
The predicted climate warming and increased atmospheric inorganic nitrogen deposition are expected to have dramatic impacts on plant growth. However, the extent of these effects and their interactions remains unclear for boreal forest trees. The aim of this experiment was to investigate the effects of increased soil temperature and nitrogen (N) depositions on stem intra-annual growth of two mature stands of black spruce [Picea mariana (Mill.) BSP] in Québec, QC, Canada. During 2008–2013, the soil around mature trees was warmed up by 4°C with heating cables during the growing season and precipitations containing three times the current inorganic N concentration were added by frequent canopy applications. Xylem phenology and cell production were monitored weekly from April to October. The 6-year-long experiment performed in two sites at different altitude showed no substantial effect of warming and N-depositions on xylem phenological phases of cell enlargement, wall thickening and lignification. Cell production, in terms of number of tracheids along the radius, also did not differ significantly and followed the same patterns in control and treated trees. These findings allowed the hypothesis of a medium-term effect of soil warming and N depositions on the growth of mature black spruce to be rejected. PMID:26617610
Physiological processes during winter dormancy and their ecological significance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Havranek, W.M.; Tranquillini, W.
1995-07-01
Lengthy and severe winters require that trees in the forests of boreal and mountain zones undergo winter dormancy. Physiologically, a high resistance to subfreezing temperatures and concomitant dehydration are necessary. To accomplish this dormancy, both physiological and structural changes are needed at the cellular level that require induction by endogenous and photoperiodic control early in autumn. Endogenous rhythmicity promotes cold hardening in early autumn and the persistence of hardiness throughout the winter. Numerous physiological functions are maintained at a reduced level, or become completely inhibited during true winter dormancy. Winter hardiness also includes the capability to minimize water loss effectivelymore » when water uptake is severely impeded or impossible. Anatomical features such as tracheids act to minimize xylem embolism during frequent freeze-thaw cycles, and {open_quotes}crown{close_quotes} tissues enable buds to stay in a dehydrated and, thus, more resistant state during winter. Both these structural features are adaptations that contribute to the dominance of conifers in cold climates. Interestingly, deciduous tree species rather than evergreen conifers dominate in the most severe winter climates, although it is not clear whether limitations during winter, during the summer growth period, or during both are most limiting to conifer tree ecology. Additional work that evaluates the importance of winter and summer growth restriction, and their interaction, is needed before a comprehensive understanding of conifer tree ecophysiology will be possible.« less
Ślesak, Ireneusz; Szechyńska-Hebda, Magdalena; Fedak, Halina; Sidoruk, Natalia; Dąbrowska-Bronk, Joanna; Witoń, Damian; Rusaczonek, Anna; Antczak, Andrzej; Drożdżek, Michał; Karpińska, Barbara; Karpiński, Stanisław
2015-07-01
The phytoalexin deficient 4 (PAD4) gene in Arabidopsis thaliana (AtPAD4) is involved in the regulation of plant--pathogen interactions. The role of PAD4 in woody plants is not known; therefore, we characterized its function in hybrid aspen and its role in reactive oxygen species (ROS)-dependent signalling and wood development. Three independent transgenic lines with different suppression levels of poplar PAD expression were generated. All these lines displayed deregulated ROS metabolism, which was manifested by an increased H2O2 level in the leaves and shoots, and higher activities of manganese superoxide dismutase (MnSOD) and catalase (CAT) in the leaves in comparison to the wild-type plants. However, no changes in non-photochemical quenching (NPQ) between the transgenic lines and wild type were observed in the leaves. Moreover, changes in the ROS metabolism in the pad4 transgenic lines positively correlated with wood formation. A higher rate of cell division, decreased tracheid average size and numbers, and increased cell wall thickness were observed. The results presented here suggest that the Populus tremula × tremuloides PAD gene might be involved in the regulation of cellular ROS homeostasis and in the cell division--cell death balance that is associated with wood development. © 2014 John Wiley & Sons Ltd.
Oldham, Alana R; Sillett, Stephen C; Tomescu, Alexandru M F; Koch, George W
2010-07-01
Leaves at the tops of most trees are smaller, thicker, and in many other ways different from leaves on the lowermost branches. This height-related variation in leaf structure has been explained as acclimation to differing light environments and, alternatively, as a consequence of hydrostatic, gravitational constraints on turgor pressure that reduce leaf expansion. • To separate hydrostatic effects from those of light availability, we used anatomical analysis of height-paired samples from the inner and outer tree crowns of tall redwoods (Sequoia sempervirens). • Height above the ground correlates much more strongly with leaf anatomy than does light availability. Leaf length, width, and mesophyll porosity all decrease linearly with height and help explain increases in leaf-mass-to-area ratio and decreases in both photosynthetic capacity and internal gas-phase conductance with increasing height. Two functional traits-leaf thickness and transfusion tissue-also increase with height and may improve water-stress tolerance. Transfusion tissue area increases enough that whole-leaf vascular volume does not change significantly with height in most trees. Transfusion tracheids become deformed with height, suggesting they may collapse under water stress and act as a hydraulic buffer that improves leaf water status and reduces the likelihood of xylem dysfunction. • That such variation in leaf structure may be caused more by gravity than by light calls into question use of the terms "sun" and "shade" to describe leaves at the tops and bottoms of tall tree crowns.
Voltas, Jordi; Camarero, Jesús Julio; Carulla, David; Aguilera, Mònica; Ortiz, Araceli; Ferrio, Juan Pedro
2013-08-01
Winter-drought induced forest diebacks in the low-latitude margins of species' distribution ranges can provide new insights into the mechanisms (carbon starvation, hydraulic failure) underlying contrasting tree reactions. We analysed a winter-drought induced dieback at the Scots pine's southern edge through a dual-isotope approach (Δ(13) C and δ(18) O in tree-ring cellulose). We hypothesized that a differential long-term performance, mediated by the interaction between CO(2) and climate, determined the fates of individuals during dieback. Declining trees showed a stronger coupling between climate, growth and intrinsic water-use efficiency (WUEi) than non-declining individuals that was noticeable for 25 years prior to dieback. The rising stomatal control of water losses with time in declining trees, indicated by negative Δ(13) C-δ(18) O relationships, was likely associated with their native aptitude to grow more and take up more water (suggested by larger tracheid lumen widths) than non-declining trees and, therefore, to exhibit a greater cavitation risk. Freeze-thaw episodes occurring in winter 2001 unveiled such physiological differences by triggering dieback in those trees more vulnerable to hydraulic failure. Thus, WUEi tightly modulated growth responses to long-term warming in declining trees, indicating that co-occurring individuals were differentially predisposed to winter-drought mortality. These different performances were unconnected to the depletion of stored carbohydrates. © 2013 John Wiley & Sons Ltd.
Root development and structure in seedlings of Ginkgo biloba.
Bonacorsi, Nikole K; Seago, James L
2016-02-01
The popular, highly recognizable, well-known gymnosperm, Ginkgo biloba, was studied to document selected developmental features, which are little known in its primary root system from root tips to cotyledonary node following seed germination. Using seedlings grown in soil, vermiculite, or a mixture, we examined sections at various distances from the root cap to capture a developmental sequence of anatomical structures by using standard brightfield, epifluorescence, and confocal microscopic techniques. The vascular cylinder is usually a diarch stele, although modified diarchy and triarchy are found. Between exarch protoxylem poles, metaxylem usually develops into a complete disc, except near the transition region, which has irregularly arranged tracheary cells. The disc of primary xylem undergoes secondary growth on its metaxylem flanks with many tracheids added radially within a few weeks. Production of fibers in secondary phloem also accompanies secondary growth. In the cortex, endodermis produces Casparian bands early in development and continues into the upper transition region. Phi cells with phi-thickenings (bands of lignified walls) of a layer of inner cortex are often evident before endodermis, and then adjoining, additional layers of cortex develop phi cells; phi cells do not occur in the upper transition region or stem. An exodermis is produced early in root development and is continuous into the transition region and cotyledonary node. Seedling root axes of Ginkgo biloba are more complex than the literature suggests, and our findings contribute to our knowledge of root structure of this ancient gymnosperm. © 2016 Botanical Society of America.
The hydraulic architecture of Juniperus communis L. ssp. communis: shrubs and trees compared.
Beikircher, Barbara; Mayr, Stefan
2008-11-01
Juniperus communis ssp. communis can grow like a shrub or it can develop a tree-like habit. In this study, the hydraulic architecture of these contrasting growth forms was compared. We analysed the hydraulic efficiency (leaf-specific conductivity, k(l); specific conductivity, k(s); Huber value, HV) and the vulnerability to cavitation (the water potential corresponding to a 50% loss of conductivity, Psi(50)), as well as anatomical parameters [mean tracheid diameter, d; mean hydraulic diameter, d(h); cell wall reinforcement (t/b)(h)(2)] of shrub shoots, tree stems and tree branches. Shrub shoots were similar to tree branches (especially to lower branches) in growth form and conductivity (k(l) = 1.93 +/- 0.11 m(2) s(-1) MPa(-1) 10(-7), k(s) = 5.71 +/- 0.19 m(2) s(-1) MPa(-1) 10(-4)), but were similar to tree stems in their vulnerability to cavitation (Psi(50) = -5.81 +/- 0.08 MPa). Tree stems showed extraordinarily high k(l) and k(s) values, and HV increased from the base up. Stem xylem was more vulnerable to cavitation than branch xylem, where Psi(50) increased from lower (Psi(50) = -6.44 +/- 0.19 MPa) to upper branches (Psi(50) = -5.98 +/- 0.13 MPa). Conduit diameters were correlated with k(l) and k(s). Data indicate that differences in hydraulic architecture correspond to changes in growth form. In some aspects, the xylem hydraulics of tree-like Juniperus communis differs from that of other coniferous tree species.
A broad survey of hydraulic and mechanical safety in the xylem of conifers.
Bouche, Pauline S; Larter, Maximilien; Domec, Jean-Christophe; Burlett, Régis; Gasson, Peter; Jansen, Steven; Delzon, Sylvain
2014-08-01
Drought-induced forest dieback has been widely reported over the last decades, and the evidence for a direct causal link between survival and hydraulic failure (xylem cavitation) is now well known. Because vulnerability to cavitation is intimately linked to the anatomy of the xylem, the main objective of this study was to better understand the xylem anatomical properties associated with cavitation resistance. An extensive data set of cavitation resistance traits and xylem anatomical properties was developed for 115 conifer species, with special attention given to the micro-morphology of bordered pits. The ratio of torus to pit aperture diameter, so-called torus overlap, increased with increasing cavitation resistance, while the flexibility of the margo does not seem to play a role, suggesting that air-seeding is located at the seal between the aspirated torus and pit aperture. Moreover, punctured tori were reported in various Pinaceae species. Species resistant to cavitation had thicker tracheid walls, while their lumen diameter (conduit size) was only slightly reduced, minimizing the impact on hydraulic conductance. The results also demonstrated (i) the existence of an indirect trade-off between hydraulic safety and mechanical strength; and (ii) a consistency between species distribution and xylem anatomy: species with a wide torus overlap and high valve effects are found in arid environments such as the Mediterranean region. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.
Castagneri, Daniele; Petit, Giai; Carrer, Marco
2015-12-01
Climate change can induce substantial modifications in xylem structure and water transport capacity of trees exposed to environmental constraints. To elucidate mechanisms of xylem plasticity in response to climate, we retrospectively analysed different cell anatomical parameters over tree-ring series in Norway spruce (Picea abies L. Karst.). We sampled 24 trees along an altitudinal gradient (1200, 1600 and 2100 m above sea level, a.s.l.) and processed 2335 ± 1809 cells per ring. Time series for median cell lumen area (MCA), cell number (CN), tree-ring width (RW) and tree-ring-specific hydraulic conductivity (Kr) were crossed with daily temperature and precipitation records (1926-2011) to identify climate influence on xylem anatomical traits. Higher Kr at the low elevation site was due to higher MCA and CN. These variables were related to different aspects of intra-seasonal climatic variability under different environmental conditions, with MCA being more sensitive to summer precipitation. Winter precipitation (snow) benefited most parameters in all the sites. Descending the gradient, sensitivity of xylem features to summer climate shifted mostly from temperature to precipitation. In the context of climate change, our results indicate that higher summer temperatures at high elevations will benefit cell production and xylem hydraulic efficiency, whereas reduced water availability at lower elevations could negatively affect tracheids enlargement and thus stem capacity to transport water. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Umebayashi, Toshihiro; Morita, Toshimitsu; Utsumi, Yasuhiro; Kusumoto, Dai; Yasuda, Yuko; Haishi, Tomoyuki; Fukuda, Kenji
2016-10-01
Although previous studies have suggested that branch dieback and whole-plant death due to drought stress occur at 50-88% loss of stem hydraulic conductivity (P 50 and P 88 , respectively), the dynamics of catastrophic failure in the water-conducting pathways in whole plants subjected to drought remain poorly understood. We examined the dynamics of drought stress tolerance in 3-year-old Japanese black pine (Pinus thunbergii Parl.). We nondestructively monitored (i) the spatial distribution of drought-induced embolisms in the stem at greater than P 50 and (ii) recovery from embolisms following rehydration. Stem water distributions were visualized by cryo-scanning electron microscopy. The percentages of both embolized area and loss of hydraulic conductivity showed similar patterns of increase, although the water loss in xylem increased markedly at -5.0 MPa or less. One seedling that had reached 72% loss of the water-conducting area survived and the xylem water potential recovered to -0.3 MPa. We concluded that Japanese black pines may need to maintain water-filled tracheids within earlywood of the current-year xylem under natural conditions to avoid disconnection of water movement between the stem and the tops of branches. It is necessary to determine the spatial distribution of embolisms around the point of the lethal threshold to gain an improved understanding of plant survival under conditions of drought. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Domec, Jean-Christophe; Smith, Duncan D; McCulloh, Kate A
2017-06-01
Here, we summarize studies on the effects of elevated [CO 2 ] (CO 2 e ) on the structure and function of plant hydraulic architecture and explore the implications of those changes using a model. Changes in conduit diameter and hydraulic conductance due to CO 2 e vary among species. Ring-porous species tend towards an increase in conduit size and consequently conductivity. The effect in diffuse-porous species is much more limited. In conifers, the results are mixed, some species show minor changes in xylem structure, while other studies found increases in tracheid density and diameter. Non-woody plants generally exhibited the reverse pattern with narrower conduits and lower hydraulic conductivity under CO 2 e . Further, changes in drought-resistance traits suggest that non-woody plants were the most affected by CO 2 e , which may permit them to better resist drought-induced embolism under future conditions. Due to their complexity, acclimation in hydraulic traits in response to CO 2 e is difficult to interpret when relying solely on measurements. When we examined how the observed tissues-specific trends might alter plant function, our modelling results suggest that these hydraulic changes would lead to reduced conductance and more frequent drought stress in trees that develop under CO 2 e with a more pronounced effect in isohydric than in anisohydric species. © 2016 John Wiley & Sons Ltd.
Suppression of 4-Coumarate-CoA Ligase in the Coniferous Gymnosperm Pinus radiata1[W
Wagner, Armin; Donaldson, Lloyd; Kim, Hoon; Phillips, Lorelle; Flint, Heather; Steward, Diane; Torr, Kirk; Koch, Gerald; Schmitt, Uwe; Ralph, John
2009-01-01
Severe suppression of 4-coumarate-coenzyme A ligase (4CL) in the coniferous gymnosperm Pinus radiata substantially affected plant phenotype and resulted in dwarfed plants with a “bonsai tree-like” appearance. Microscopic analyses of stem sections from 2-year-old plants revealed substantial morphological changes in both wood and bark tissues. This included the formation of weakly lignified tracheids that displayed signs of collapse and the development of circumferential bands of axial parenchyma. Acetyl bromide-soluble lignin assays and proton nuclear magnetic resonance studies revealed lignin reductions of 36% to 50% in the most severely affected transgenic plants. Two-dimensional nuclear magnetic resonance and pyrolysis-gas chromatography-mass spectrometry studies indicated that lignin reductions were mainly due to depletion of guaiacyl but not p-hydroxyphenyl lignin. 4CL silencing also caused modifications in the lignin interunit linkage distribution, including elevated β-aryl ether (β-O-4 unit) and spirodienone (β-1) levels, accompanied by lower phenylcoumaran (β-5), resinol (β-β), and dibenzodioxocin (5-5/β-O-4) levels. A sharp depletion in the level of saturated (dihydroconiferyl alcohol) end groups was also observed. Severe suppression of 4CL also affected carbohydrate metabolism. Most obvious was an up to approximately 2-fold increase in galactose content in wood from transgenic plants due to increased compression wood formation. The molecular, anatomical, and analytical data verified that the isolated 4CL clone is associated with lignin biosynthesis and illustrated that 4CL silencing leads to complex, often surprising, physiological and morphological changes in P. radiata. PMID:18971431
Gruber, Andreas; Baumgartner, Daniel; Zimmermann, Jolanda; Oberhuber, Walter
2009-06-01
We determined the temporal dynamic of cambial activity and xylem development of stone pine (Pinus cembra L.) throughout the treeline ecotone. Repeated micro-sampling of the developing tree ring was carried out during the growing seasons 2006 and 2007 at the timberline (1950 m a.s.l.), treeline (2110 m a.s.l.) and within the krummholz belt (2180 m a.s.l.) and the influence of climate variables on intra-annual wood formation was determined.At the beginning of both growing seasons, highest numbers of cambial and enlarging cells were observed at the treeline. Soil temperatures at time of initiation of cambial activity were c. 1.5 °C higher at treeline (open canopy) compared to timberline (closed canopy), suggesting that a threshold root-zone temperature is involved in triggering onset of above ground stem growth.The rate of xylem cell production determined in two weekly intervals during June through August 2006-2007 was significantly correlated with air temperature (temperature sums expressed as degree-days and mean daily maximum temperature) at the timberline only. Lack of significant relationships between tracheid production and temperature variables at the treeline and within the krummholz belt support past dendroclimatological studies that more extreme environmental conditions (e.g., wind exposure, frost desiccation, late frost) increasingly control tree growth above timberline.Results of this study revealed that spatial and temporal (i.e. year-to-year) variability in timing and dynamic of wood formation of Pinus cembra is strongly influenced by local site factors within the treeline ecotone and the dynamics of seasonal temperature variation, respectively.
Yang, Li-Wei; Shi, Ji-Sen
2012-04-01
To reveal the potential genetic mechanisms of indole-3-acetic acid (IAA) that regulate Chinese fir wood formation, cloned the differentially expressed genes via suppress subtractive hybridization (SSH) using the truncated stems treated by 0 and 3 mg IAA/g lanolin as the driver and tester, respectively. A total of 332 unigenes that were involved in cell organization and biosynthesis, developmental processes control, electron transport, stress response, and signal transduction. To further test the results from SSH, we selected those unigenes, whose putative encoding proteins showed significantly homologous with HIRA, PGY1, SMP1, TCT, TRN2, and ARF4, and analyzed their expressed specificity in the wood formative tissues and their response to the secondary developmental changes of vascular cambium stimulated by 0, 1, and 3 mg.IAA/g.lanolin treatment. The results showed that ClHIRA, ClPGY1, and ClARF4, which were specifically expressed in the adaxial zone of stem, were positively response to the activities of cell division and tracheid differentiation stimulated by exogenous IAA treatment. However, ClSMP1, ClTCTP1, and ClTRN2, which were mainly expressed in the abaxial zones of stems, showed negative correlation with the treated levels of exogenous IAA and activities of vascular cambium secondary development at the transcriptional level. This result showed that the differential response of developmental regulatory genes located in different vascular tissues to the level changes of edogenous IAA in stems is likely to be an important molecular mechanism of auxin regulating wood formation.
NASA Astrophysics Data System (ADS)
Szymczak, Sonja; Hetzer, Timo; Bräuning, Achim; Joachimski, Michael M.; Leuschner, Hanns-Hubert; Kuhlemann, Joachim
2014-10-01
We present a new multi-parameter dataset from Corsican black pine growing on the island of Corsica in the Western Mediterranean basin covering the period AD 1410-2008. Wood parameters measured include tree-ring width, latewood width, earlywood width, cell lumen area, cell width, cell wall thickness, modelled wood density, as well as stable carbon and oxygen isotopes. We evaluated the relationships between different parameters and determined the value of the dataset for climate reconstructions. Correlation analyses revealed that carbon isotope ratios are influenced by cell parameters determining cell size, whereas oxygen isotope ratios are influenced by cell parameters determining the amount of transportable water in the xylem. A summer (June to August) precipitation reconstruction dating back to AD 1185 was established based on tree-ring width. No long-term trends or pronounced periods with extreme high/low precipitation are recorded in our reconstruction, indicating relatively stable moisture conditions over the entire time period. By comparing the precipitation reconstruction with a summer temperature reconstruction derived from the carbon isotope chronologies, we identified summers with extreme climate conditions, i.e. warm-dry, warm-wet, cold-dry and cold-wet. Extreme climate conditions during summer months were found to influence cell parameter characteristics. Cold-wet summers promote the production of broad latewood composed of wide and thin-walled tracheids, while warm-wet summers promote the production of latewood with small thick-walled cells. The presented dataset emphasizes the potential of multi-parameter wood analysis from one tree species over long time scales.
Seedlings of temperate rainforest conifer and angiosperm trees differ in leaf area display.
Lusk, Christopher H; Pérez-Millaqueo, Manuel M; Saldaña, Alfredo; Burns, Bruce R; Laughlin, Daniel C; Falster, Daniel S
2012-07-01
The contemporary relegation of conifers mainly to cold or infertile sites has been ascribed to low competitive ability, as a result of the hydraulic inefficiency of tracheids and their seedlings' initial dependence on small foliage areas. Here it is hypothesized that, in temperate rainforests, the larger leaves of angiosperms also reduce self-shading and thus enable display of larger effective foliage areas than the numerous small leaves of conifers. This hypothesis was tested using 3-D modelling of plant architecture and structural equation modelling to compare self-shading and light interception potential of seedlings of six conifers and 12 angiosperm trees from temperate rainforests. The ratio of displayed leaf area to plant mass (LAR(d)) was used to indicate plant light interception potential: LAR(d) is the product of specific leaf area, leaf mass fraction, self-shading and leaf angle. Angiosperm seedlings self-shaded less than conifers, mainly because of differences in leaf number (more than leaf size), and on average their LAR(d) was about twice that of conifers. Although specific leaf area was the most pervasive influence on LAR(d), differences in self-shading also significantly influenced LAR(d) of large seedlings. The ability to deploy foliage in relatively few, large leaves is advantageous in minimizing self-shading and enhancing seedling light interception potential per unit of plant biomass. This study adds significantly to evidence that vegetative traits may be at least as important as reproductive innovations in explaining the success of angiosperms in productive environments where vegetation is structured by light competition.
Seedlings of temperate rainforest conifer and angiosperm trees differ in leaf area display
Lusk, Christopher H.; Pérez-Millaqueo, Manuel M.; Saldaña, Alfredo; Burns, Bruce R.; Laughlin, Daniel C.; Falster, Daniel S.
2012-01-01
Background and Aims The contemporary relegation of conifers mainly to cold or infertile sites has been ascribed to low competitive ability, as a result of the hydraulic inefficiency of tracheids and their seedlings' initial dependence on small foliage areas. Here it is hypothesized that, in temperate rainforests, the larger leaves of angiosperms also reduce self-shading and thus enable display of larger effective foliage areas than the numerous small leaves of conifers. Methods This hypothesis was tested using 3-D modelling of plant architecture and structural equation modelling to compare self-shading and light interception potential of seedlings of six conifers and 12 angiosperm trees from temperate rainforests. The ratio of displayed leaf area to plant mass (LARd) was used to indicate plant light interception potential: LARd is the product of specific leaf area, leaf mass fraction, self-shading and leaf angle. Results Angiosperm seedlings self-shaded less than conifers, mainly because of differences in leaf number (more than leaf size), and on average their LARd was about twice that of conifers. Although specific leaf area was the most pervasive influence on LARd, differences in self-shading also significantly influenced LARd of large seedlings. Conclusions The ability to deploy foliage in relatively few, large leaves is advantageous in minimizing self-shading and enhancing seedling light interception potential per unit of plant biomass. This study adds significantly to evidence that vegetative traits may be at least as important as reproductive innovations in explaining the success of angiosperms in productive environments where vegetation is structured by light competition. PMID:22585929
Muller, Onno; Cohu, Christopher M; Stewart, Jared J; Protheroe, Johanna A; Demmig-Adams, Barbara; Adams, William W
2014-09-01
Foliar vascular anatomy and photosynthesis were evaluated for a number of summer annual species that either load sugars into the phloem via a symplastic route (Cucumis sativus L. cv. Straight Eight; Cucurbita pepo L. cv. Italian Zucchini Romanesco; Citrullus lanatus L. cv. Faerie Hybrid; Cucurbita pepo L. cv. Autumn Gold) or an apoplastic route (Nicotiana tabacum L.; Solanum lycopersicum L. cv. Brandywine; Gossypium hirsutum L.; Helianthus annuus L. cv. Soraya), as well as winter annual apoplastic loaders (Spinacia oleracea L. cv. Giant Nobel; Arabidopsis thaliana (L.) Heynhold Col-0, Swedish and Italian ecotypes). For all summer annuals, minor vein cross-sectional xylem area and tracheid number as well as the ratio of phloem loading cells to phloem sieve elements, each when normalized for foliar vein density (VD), was correlated with photosynthesis. These links presumably reflect (1) the xylem's role in providing water to meet foliar transpirational demand supporting photosynthesis and (2) the importance of the driving force of phloem loading as well as the cross-sectional area for phloem sap flux to match foliar photosynthate production. While photosynthesis correlated with the product of VD and cross-sectional phloem cell area among symplastic loaders, photosynthesis correlated with the product of VD and phloem cell number per vein among summer annual apoplastic loaders. Phloem cell size has thus apparently been a target of selection among symplastic loaders (where loading depends on enzyme concentration within loading cells) versus phloem cell number among apoplastic loaders (where loading depends on membrane transporter numbers). © 2014 Scandinavian Plant Physiology Society.
Grönlund, Leila; Hölttä, Teemu; Mäkelä, Annikki
2016-08-01
Shoot size and other shoot properties more or less follow the availability of light, but there is also evidence that the topological position in a tree crown has an influence on shoot development. Whether the hydraulic properties of new shoots are more regulated by the light or the position affects the shoot acclimation to changing light conditions and thereby to changing evaporative demand. We investigated the leaf-area-specific conductivity (and its components sapwood-specific conductivity and Huber value) of the current-year shoots of Scots pine (Pinus sylvestris L.) in relation to light environment and topological position in three different tree classes. The light environment was quantified in terms of simulated transpiration and the topological position was quantified by parent branch age. Sample shoot measurements included length, basal and tip diameter, hydraulic conductivity of the shoot, tracheid area and density, and specific leaf area. In our results, the leaf-area-specific conductivity of new shoots declined with parent branch age and increased with simulated transpiration rate of the shoot. The relation to transpiration demand seemed more decisive, since it gave higher R(2) values than branch age and explained the differences between the tree classes. The trend of leaf-area-specific conductivity with simulated transpiration was closely related to Huber value, whereas the trend of leaf-area-specific conductivity with parent branch age was related to a similar trend in sapwood-specific conductivity. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Tyree, Melvin T; Nardini, Andrea; Salleo, Sebastiano; Sack, Lawren; El Omari, Bouchra
2005-02-01
This paper examines the dependence of whole leaf hydraulic conductance to liquid water (K(L)) on irradiance when measured with a high pressure flowmeter (HPFM). During HPFM measurements, water is perfused into leaves faster than it evaporates hence water infiltrates leaf air spaces and must pass through stomates in the liquid state. Since stomates open and close under high versus low irradiance, respectively, the possibility exists that K(L) might change with irradiance if stomates close tightly enough to restrict water movement. However, the dependence of K(L) on irradiance could be due to a direct effect of irradiance on the hydraulic properties of other tissues in the leaf. In the present study, K(L) increased with irradiance for 6 of the 11 species tested. Whole leaf conductance to water vapour, g(L), was used as a proxy for stomatal aperture and the time-course of changes in K(L) and g(L) was studied during the transition from low to high irradiance and from high to low irradiance. Experiments showed that in some species K(L) changes were not paralleled by g(L) changes. Measurements were also done after perfusion of leaves with ABA which inhibited the g(L) response to irradiance. These leaves showed the same K(L) response to irradiance as control leaves. These experimental results and theoretical calculations suggest that the irradiance dependence of K(L) is more consistent with an effect on extravascular (and/or vascular) tissues rather than stomatal aperture. Irradiance-mediated stimulation of aquaporins or hydrogel effects in leaf tracheids may be involved.
Cambial activity related to tree size in a mature silver-fir plantation.
Rathgeber, Cyrille B K; Rossi, Sergio; Bontemps, Jean-Daniel
2011-09-01
Our knowledge about the influences of environmental factors on tree growth is principally based on the study of dominant trees. However, tree social status may influence intra-annual dynamics of growth, leading to differential responses to environmental conditions. The aim was to determine whether within-stand differences in stem diameters of trees belonging to different crown classes resulted from variations in the length of the growing period or in the rate of cell production. Cambial activity was monitored weekly in 2006 for three crown classes in a 40-year-old silver-fir (Abies alba) plantation near Nancy (France). Timings, duration and rate of tracheid production were assessed from anatomical observations of the developing xylem. Cambial activity started earlier, stopped later and lasted longer in dominant trees than in intermediate and suppressed ones. The onset of cambial activity was estimated to have taken 3 weeks to spread to 90 % of the trees in the stand, while the cessation needed 6 weeks. Cambial activity was more intense in dominant trees than in intermediate and suppressed ones. It was estimated that about 75 % of tree-ring width variability was attributable to the rate of cell production and only 25 % to its duration. Moreover, growth duration was correlated to tree height, while growth rate was better correlated to crown area. These results show that, in a closed conifer forest, stem diameter variations resulted principally from differences in the rate of xylem cell production rather than in its duration. Tree size interacts with environmental factors to control the timings, duration and rate of cambial activity through functional processes involving source-sink relationships principally, but also hormonal controls.
Hydraulic efficiency and safety of vascular and non-vascular components in Pinus pinaster leaves.
Charra-Vaskou, Katline; Badel, Eric; Burlett, Régis; Cochard, Hervé; Delzon, Sylvain; Mayr, Stefan
2012-09-01
Leaves, the distal section of the soil-plant-atmosphere continuum, exhibit the lowest water potentials in a plant. In contrast to angiosperm leaves, knowledge of the hydraulic architecture of conifer needles is scant. We investigated the hydraulic efficiency and safety of Pinus pinaster needles, comparing different techniques. The xylem hydraulic conductivity (k(s)) and embolism vulnerability (P(50)) of both needle and stem were measured using the cavitron technique. The conductance and vulnerability of whole needles were measured via rehydration kinetics, and Cryo-SEM and 3D X-ray microtomographic observations were used as reference tools to validate physical measurements. The needle xylem of P. pinaster had lower hydraulic efficiency (k(s) = 2.0 × 10(-4) m(2) MPa(-1) s(-1)) and safety (P(50) = - 1.5 MPa) than stem xylem (k(s) = 7.7 × 10(-4) m(2) MPa(-1) s(-1); P(50) = - 3.6 to - 3.2 MPa). P(50) of whole needles (both extra-vascular and vascular pathways) was - 0.5 MPa, suggesting that non-vascular tissues were more vulnerable than the xylem. During dehydration to - 3.5 MPa, collapse and embolism in xylem tracheids, and gap formation in surrounding tissues were observed. However, a discrepancy in hydraulic and acoustic results appeared compared with visualizations, arguing for greater caution with these techniques when applied to needles. Our results indicate that the most distal parts of the water transport pathway are limiting for hydraulics of P. pinaster. Needle tissues exhibit a low hydraulic efficiency and low hydraulic safety, but may also act to buffer short-term water deficits, thus preventing xylem embolism.
Burgess, Stephen S O; Pittermann, Jarmila; Dawson, Todd E
2006-02-01
The hydraulic limitation hypothesis of Ryan & Yoder (1997, Bioscience 47, 235-242) suggests that water supply to leaves becomes increasingly difficult with increasing tree height. Within the bounds of this hypothesis, we conjectured that the vertical hydrostatic gradient which gravity generates on the water column in tall trees would cause a progressive increase in xylem 'safety' (increased resistance to embolism and implosion) and a concomitant decrease in xylem 'efficiency' (decreased hydraulic conductivity). We based this idea on the historically recognized concept of a safety-efficiency trade-off in xylem function, and tested it by measuring xylem conductivity and vulnerability to embolism of Sequoia sempervirens branches collected at a range of heights. Measurements of resistance of branch xylem to embolism did indeed show an increase in 'safety' with height. However, the expected decrease in xylem 'efficiency' was not observed. Instead, sapwood-specific hydraulic conductivities (Ks) of branches increased slightly, while leaf-specific hydraulic conductivities increased dramatically, with height. The latter could be largely explained by strong vertical gradients in specific leaf area. The increase in Ks with height corresponded to a decrease in xylem wall fraction (a measure of wall thickness), an increase in percentage of earlywood and slight increases in conduit diameter. These changes are probably adaptive responses to the increased transport requirements of leaves growing in the upper canopy where evaporative demand is greater. The lack of a safety-efficiency tradeoff may be explained by opposing height trends in the pit aperture and conduit diameter of tracheids and the major and semi-independent roles these play in determining xylem safety and efficiency, respectively.
Gruber, Andreas; Baumgartner, Daniel; Zimmermann, Jolanda; Oberhuber, Walter
2011-01-01
We determined the temporal dynamic of cambial activity and xylem development of stone pine (Pinus cembra L.) throughout the treeline ecotone. Repeated micro-sampling of the developing tree ring was carried out during the growing seasons 2006 and 2007 at the timberline (1950 m a.s.l.), treeline (2110 m a.s.l.) and within the krummholz belt (2180 m a.s.l.) and the influence of climate variables on intra-annual wood formation was determined. At the beginning of both growing seasons, highest numbers of cambial and enlarging cells were observed at the treeline. Soil temperatures at time of initiation of cambial activity were c. 1.5 °C higher at treeline (open canopy) compared to timberline (closed canopy), suggesting that a threshold root-zone temperature is involved in triggering onset of above ground stem growth. The rate of xylem cell production determined in two weekly intervals during June through August 2006-2007 was significantly correlated with air temperature (temperature sums expressed as degree-days and mean daily maximum temperature) at the timberline only. Lack of significant relationships between tracheid production and temperature variables at the treeline and within the krummholz belt support past dendroclimatological studies that more extreme environmental conditions (e.g., wind exposure, frost desiccation, late frost) increasingly control tree growth above timberline. Results of this study revealed that spatial and temporal (i.e. year-to-year) variability in timing and dynamic of wood formation of Pinus cembra is strongly influenced by local site factors within the treeline ecotone and the dynamics of seasonal temperature variation, respectively. PMID:21509148
Anfodillo, Tommaso; Deslauriers, Annie; Menardi, Roberto; Tedoldi, Laura; Petit, Giai; Rossi, Sergio
2012-01-01
The diameter of vascular conduits increases towards the stem base. It has been suggested that this profile is an efficient anatomical feature for reducing the hydraulic resistance when trees grow taller. However, the mechanism that controls the cell diameter along the plant is not fully understood. The timing of cell differentiation along the stem was investigated. Cambial activity and cell differentiation were investigated in a Picea abies tree (11.5 m in height) collecting microsamples at nine different heights (from 1 to 9 m) along the stem with a 4 d time interval. Wood sections (8–12 μm thick) were stained and observed under a light microscope with polarized light to differentiate the developing xylem cells. Cell wall lignification was detected using cresyl violet acetate. The first enlarging cells appeared almost simultaneously along the tree axis indicating that cambium activation is not height-dependent. A significant increase in the duration of the cell expansion phase was observed towards the tree base: at 9 m from the ground, xylem cells expanded for 7 d, at 6 m for 14 d, and at 3 m for 19 d. The duration of the expansion phase is positively correlated with the lumen area of the tracheids (r2=0.68, P < 0.01) at the same height. By contrast, thickness of the cell wall of the earlywood did not show any trend with height. The lumen area of the conduits down the stem appeared linearly dependent on time during which differentiating cells remained in the expansion phase. However, the inductive signal of such long-distance patterned differentiation remains to be identified. PMID:22016427
Anfodillo, Tommaso; Deslauriers, Annie; Menardi, Roberto; Tedoldi, Laura; Petit, Giai; Rossi, Sergio
2012-01-01
The diameter of vascular conduits increases towards the stem base. It has been suggested that this profile is an efficient anatomical feature for reducing the hydraulic resistance when trees grow taller. However, the mechanism that controls the cell diameter along the plant is not fully understood. The timing of cell differentiation along the stem was investigated. Cambial activity and cell differentiation were investigated in a Picea abies tree (11.5 m in height) collecting microsamples at nine different heights (from 1 to 9 m) along the stem with a 4 d time interval. Wood sections (8-12 μm thick) were stained and observed under a light microscope with polarized light to differentiate the developing xylem cells. Cell wall lignification was detected using cresyl violet acetate. The first enlarging cells appeared almost simultaneously along the tree axis indicating that cambium activation is not height-dependent. A significant increase in the duration of the cell expansion phase was observed towards the tree base: at 9 m from the ground, xylem cells expanded for 7 d, at 6 m for 14 d, and at 3 m for 19 d. The duration of the expansion phase is positively correlated with the lumen area of the tracheids (r(2)=0.68, P < 0.01) at the same height. By contrast, thickness of the cell wall of the earlywood did not show any trend with height. The lumen area of the conduits down the stem appeared linearly dependent on time during which differentiating cells remained in the expansion phase. However, the inductive signal of such long-distance patterned differentiation remains to be identified.
Xylem and phloem phenology in co-occurring conifers exposed to drought.
Swidrak, Irene; Gruber, Andreas; Oberhuber, Walter
2014-01-01
Variability in xylem and phloem phenology among years and species is caused by contrasting temperatures prevailing at the start of the growing season and species-specific sensitivity to drought. The focus of this study was to determine temporal dynamics of xylem and phloem formation in co-occurring deciduous and evergreen coniferous species in a dry inner Alpine environment (750 m a.s.l., Tyrol, Austria). By repeated micro-sampling of the stem, timing of key phenological dates of xylem and phloem formation was compared among mature Pinus sylvestris , Larix decidua and Picea abies during two consecutive years. Xylem formation in P. sylvestris started in mid and late April 2011 and 2012, respectively, and in both years about 2 week later in P. abies and L. decidua . Phloem formation preceded xylem formation on average by 3 week in P. sylvestris , and c . 5 week in P. abies and L. decidua . Based on modeled cell number increase, tracheid production peaked between early through late May 2011 and late May through mid-June 2012. Phloem formation culminated between late April and mid-May in 2011 and in late May 2012. Production of xylem and phloem cells continued for about 4 and 5-6 months, respectively. High variability in xylem increment among years and species is related to exogenous control by climatic factors and species-specific sensitivity to drought, respectively. On the other hand, production of phloem cells was quite homogenous and showed asymptotic decrease with respect to xylem cells indicating endogenous control. Results indicate that onset and culmination of xylem and phloem formation are controlled by early spring temperature, whereby strikingly advanced production of phloem compared to xylem cells suggests lower temperature requirement for initiation of the former.
Branch architecture in Ginkgo biloba: wood anatomy and long shoot-short shoot interactions.
Little, Stefan A; Jacobs, Brooke; McKechnie, Steven J; Cooper, Ranessa L; Christianson, Michael L; Jernstedt, Judith A
2013-10-01
Ginkgo, centrally placed in seed plant phylogeny, is considered important in many phylogenetic and evolutionary studies. Shoot dimorphism of Ginkgo has been long noted, but no work has yet been done to evaluate the relationships between overall branch architecture and wood ring characters, shoot growth, and environmental conditions. • Branches, sampled from similar canopy heights, were mapped with the age of each long shoot segment determined by counting annual leaf-scar series on its short shoots. Transverse sections were made for each long shoot segment and an adjacent short shoot; wood ring thickness, number of rings, and number of tracheids/ring were determined. Using branch maps, we identified wood rings for each long shoot segment to year and developmental context of each year (distal short shoot growth only vs. at least one distal long shoot). Climate data were also analyzed in conjunction with developmental context. • Significantly thicker wood rings occur in years with distal long shoot development. The likelihood that a branch produced long shoots in a given year was lower with higher maximum annual temperature. Annual maximum temperature was negatively correlated with ring thickness in microsporangiate trees only. Annual minimum temperatures were correlated differently with ring thickness of megasporangiate and microsporangiate trees, depending on the developmental context. There were no significant effects associated with precipitation. • Overall, developmental context alone predicts wood ring thickness about as well as models that include temperature. This suggests that although climatic factors may be strongly correlated with wood ring data among many gymnosperm taxa, at least for Ginkgo, correlations with climate data are primarily due to changes in proportions of shoot developmental types (LS vs. SS) across branches.
Evidence of threshold temperatures for xylogenesis in conifers at high altitudes.
Rossi, Sergio; Deslauriers, Annie; Anfodillo, Tommaso; Carraro, Vinicio
2007-05-01
Temperature is the most important factor affecting growth at high altitudes. As trees use much of the allocated carbon gained from photosynthesis to produce branches and stems, information on the timing and dynamics of secondary wood growth is crucial to assessing temperature thresholds for xylogenesis. We have carried out histological analyses to determine cambial activity and xylem cell differentiation in conifers growing at the treeline on the eastern Alps in two sites during 2002-2004 with the aim of linking the growth process with temperature and, consequently, of defining thresholds for xylogenesis. Cambial activity occurred from May to July-August and cell differentiation from May-June to September-October. The earliest start of radial enlargement was observed in stone pine in mid-May, while Norway spruce was the last species to begin tracheid differentiation. The duration of wood formation varied from 90 to 137 days, depending on year and site, with no difference between species. Longer durations were observed in trees on the south-facing site because of the earlier onset and later ending of cell production and differentiation. The threshold temperatures at which xylogenesis had a 0.5 probability of being active were calculated by logistic regressions. Xylogenesis was active when the mean daily air temperature was 5.6-8.5 degrees C and mean stem temperature was 7.2-9 degrees C. The similar thresholds among all trees suggested the existence of thermal limits in wood formation that correspond with temperatures of 6-8 degrees C that are supposed to limit growth at the treeline. Different soil temperature thresholds between sites indicated that soil temperature may not be the main factor limiting xylogenesis. This study represents the first attempt to define a threshold through comparative assessment of xylem growth and tissue temperatures in stem meristems at high altitudes.
Boxler-Baldoma, Carmen; Lütz, Cornelius; Heumann, Hans-Günther; Siefermann-Harms, Dorothea
2006-02-01
The correlation between structural changes of the vascular bundles and needle yellowing was examined for needles of damaged spruce (Picea abies (L.) Karst.) growing at a Mg-deficient and ozone polluted mountain site in the Central Black Forest (840m a.s.l.). In the previous year's sun-exposed needles, the following sequence of events was observed: (1) rapid needle yellowing, (2) hypertrophy and anomalous divisions of cambium cells, (3) phloem collapse, and, (4) production of atypical xylem tracheids. Under defined shade (reduction of the photosynthetically active photon flux density of the ambient light by 85-90%), the needles remained green, while the phloem collapsed completely within the first 6 weeks of shading; subsequently, a reversal of the collapse was observed. Under both light conditions, the content of Mg not bound to chlorophyll (Mg(free)) was in the range of 0.1 mg g(-1) needle dry matter, and hardly changed throughout the investigation period. After Mg fertilization, the Mg(free) level of the previous year's needles increased to 0.2 mg g(-1) dry matter, the light-exposed needles remained green, and the vascular bundles developed no anomalies. The data show that the rapid needle yellowing of ozone-exposed Mg-deficient needles did not depend on the collapse of the phloem. Mg deficiency played a key role in the development of anomalous vascular bundles under light, and also appears to explain the transient changes in sieve cell structure under shade. The role of Mg deficiency, rather than ozone pollution, in the damage of the sieve cells was confirmed in a long-term ozone exposure experiment with young clonal spruce growing under defined conditions.
Three keys to the radiation of angiosperms into freezing environments.
Zanne, Amy E; Tank, David C; Cornwell, William K; Eastman, Jonathan M; Smith, Stephen A; FitzJohn, Richard G; McGlinn, Daniel J; O'Meara, Brian C; Moles, Angela T; Reich, Peter B; Royer, Dana L; Soltis, Douglas E; Stevens, Peter F; Westoby, Mark; Wright, Ian J; Aarssen, Lonnie; Bertin, Robert I; Calaminus, Andre; Govaerts, Rafaël; Hemmings, Frank; Leishman, Michelle R; Oleksyn, Jacek; Soltis, Pamela S; Swenson, Nathan G; Warman, Laura; Beaulieu, Jeremy M
2014-02-06
Early flowering plants are thought to have been woody species restricted to warm habitats. This lineage has since radiated into almost every climate, with manifold growth forms. As angiosperms spread and climate changed, they evolved mechanisms to cope with episodic freezing. To explore the evolution of traits underpinning the ability to persist in freezing conditions, we assembled a large species-level database of growth habit (woody or herbaceous; 49,064 species), as well as leaf phenology (evergreen or deciduous), diameter of hydraulic conduits (that is, xylem vessels and tracheids) and climate occupancies (exposure to freezing). To model the evolution of species' traits and climate occupancies, we combined these data with an unparalleled dated molecular phylogeny (32,223 species) for land plants. Here we show that woody clades successfully moved into freezing-prone environments by either possessing transport networks of small safe conduits and/or shutting down hydraulic function by dropping leaves during freezing. Herbaceous species largely avoided freezing periods by senescing cheaply constructed aboveground tissue. Growth habit has long been considered labile, but we find that growth habit was less labile than climate occupancy. Additionally, freezing environments were largely filled by lineages that had already become herbs or, when remaining woody, already had small conduits (that is, the trait evolved before the climate occupancy). By contrast, most deciduous woody lineages had an evolutionary shift to seasonally shedding their leaves only after exposure to freezing (that is, the climate occupancy evolved before the trait). For angiosperms to inhabit novel cold environments they had to gain new structural and functional trait solutions; our results suggest that many of these solutions were probably acquired before their foray into the cold.
Beikircher, Barbara; Mayr, Stefan
2009-06-01
An adequate general drought tolerance and the ability to acclimate to changing hydraulic conditions are important features for long-lived woody plants. In this study, we compared hydraulic safety (water potential at 50% loss of conductivity, Psi(50)), hydraulic efficiency (specific conductivity, k(s)), xylem anatomy (mean tracheid diameter, d(mean), mean hydraulic diameter, d(h), conduit wall thickness, t, conduit wall reinforcement, (t/b)(h)(2)) and stomatal conductance, g(s), of forest plants as well as irrigated and drought-treated garden plants of Ligustrum vulgare L. and Viburnum lantana L. Forest plants of L. vulgare and V. lantana were significantly less resistant to drought-induced cavitation (Psi(50) at -2.82 +/- 0.13 MPa and -2.79 +/- 0.17 MPa) than drought-treated garden plants (- 4.58 +/- 0.26 MPa and -3.57 +/- 0.15 MPa). When previously irrigated garden plants were subjected to drought, a significant decrease in d(mean) and d(h) and an increase in t and (t/b)(h)(2) were observed in L. vulgare. In contrast, in V. lantana conduit diameters increased significantly but no change in t and (t/b)(h)(2) was found. Stomatal closure occurred at similar water potentials (Psi(sc)) in forest plants and drought-treated garden plants, leading to higher safety margins (Psi(sc) - Psi(50)) of the latter (L. vulgare 1.63 MPa and V. lantana 0.43 MPa). These plants also showed higher g(s) at moderate Psi, more abrupt stomatal closure and lower cuticular conductivity. Data indicate that the development of drought-tolerant xylem as well as stomatal regulation play an important role in drought acclimation, whereby structural and physiological responses to drought are species-specific and depend on the plant's hydraulic strategy.
Transcriptomic analysis of wound xylem formation in Pinus canariensis.
Chano, V; Collada, C; Soto, A
2017-12-04
Woody plants, especially trees, usually must face several injuries caused by different agents during their lives. Healing of injuries in stem and branches, affecting the vascular cambium and xylem can take several years. In conifers, healing takes place mainly from the remaining vascular cambium in the margin of the wound. The woundwood formed in conifers during healing usually presents malformed and disordered tracheids as well as abundant traumatic resin ducts. These characteristics affect its functionality as water conductor and its technological properties. In this work we analyze for the first time the transcriptomic basis of the formation of traumatic wood in conifers, and reveal some differences with normal early- and late-wood. Microarray analysis of the differentiating traumatic wood, confirmed by quantitative RT-PCR, has revealed alterations in the transcription profile of up to 1408 genes during the first period of healing. We have grouped these genes in twelve clusters, according to their transcription profiles, and have distinguished accordingly two main phases during this first healing. Wounding induces a complete rearrangement of the transcriptional program in the cambial zone close to the injuries. At the first instance, radial growth is stopped, and a complete set of defensive genes, mostly related to biotic stress, are induced. Later on, cambial activity is restored in the lateral borders of the wound, even at a high rate. During this second stage certain genes related to early-wood formation, including genes involved in cell wall formation and transcription factors, are significantly overexpressed, while certain late-wood related genes are repressed. Additionally, significant alterations in the transcription profile of abundant non annotated genes are reported.
Canché-Escamilla, Gonzalo; Soto-Hernández, Marcos
2015-01-01
In Cactaceae, wood anatomy is related to stem morphology in terms of the conferred support. In species of cacti with dimorphic wood, a unique process occurs in which the cambium stops producing wide-band tracheids (WBTs) and produces fibers; this is associated with the aging of individuals and increases in size. Stem support and lignification have only been studied in fibrous tree-like species, and studies in species with WBTs or dimorphic wood are lacking. In this study, we approach this process with a chemical focus, emphasizing the role of wood lignification. We hypothesized that the degree of wood lignification in Cactaceae increases with height of the species and that its chemical composition varies with wood anatomy. To test this, we studied the chemical composition (cellulose, hemicellulose, and lignin content) in 13 species (2 WBTs wood, 3 dimorphic, and 8 fibrous) with contrasting growth forms. We also analyzed lignification in dimorphic and fibrous species to determine the chemical features of WBTs and fibers and their relationship with stem support. The lignin contents were characterized by Fourier transform infrared spectroscopy and high performance liquid chromatography. We found that 11 species have a higher percentage (>35%) of lignin in their wood than other angiosperms or gymnosperms. The lignin chemical composition in fibrous species is similar to that of other dicots, but it is markedly heterogeneous in non-fibrous species where WBTs are abundant. The lignification in WBTs is associated with the resistance to high water pressure within cells rather than the contribution to mechanical support. Dimorphic wood species are usually richer in syringyl lignin, and tree-like species with lignified rays have more guaiacyl lignin. The results suggest that wood anatomy and lignin distribution play an important role in the chemical composition of wood, and further research is needed at the cellular level. PMID:25880223
Reyes-Rivera, Jorge; Canché-Escamilla, Gonzalo; Soto-Hernández, Marcos; Terrazas, Teresa
2015-01-01
In Cactaceae, wood anatomy is related to stem morphology in terms of the conferred support. In species of cacti with dimorphic wood, a unique process occurs in which the cambium stops producing wide-band tracheids (WBTs) and produces fibers; this is associated with the aging of individuals and increases in size. Stem support and lignification have only been studied in fibrous tree-like species, and studies in species with WBTs or dimorphic wood are lacking. In this study, we approach this process with a chemical focus, emphasizing the role of wood lignification. We hypothesized that the degree of wood lignification in Cactaceae increases with height of the species and that its chemical composition varies with wood anatomy. To test this, we studied the chemical composition (cellulose, hemicellulose, and lignin content) in 13 species (2 WBTs wood, 3 dimorphic, and 8 fibrous) with contrasting growth forms. We also analyzed lignification in dimorphic and fibrous species to determine the chemical features of WBTs and fibers and their relationship with stem support. The lignin contents were characterized by Fourier transform infrared spectroscopy and high performance liquid chromatography. We found that 11 species have a higher percentage (>35%) of lignin in their wood than other angiosperms or gymnosperms. The lignin chemical composition in fibrous species is similar to that of other dicots, but it is markedly heterogeneous in non-fibrous species where WBTs are abundant. The lignification in WBTs is associated with the resistance to high water pressure within cells rather than the contribution to mechanical support. Dimorphic wood species are usually richer in syringyl lignin, and tree-like species with lignified rays have more guaiacyl lignin. The results suggest that wood anatomy and lignin distribution play an important role in the chemical composition of wood, and further research is needed at the cellular level.
Petrik, Deborah L.; Cass, Cynthia L.; Padmakshan, Dharshana; ...
2016-02-04
Utility vectors with promoters that confer desired spatial and temporal expression patterns are useful tools for studying gene and cellular function and for industrial applications. To target the expression of DNA sequences of interest to cells forming plant secondary cell walls, which generate most of the vegetative biomass, upstream regulatory sequences of the Brachypodium distachyon lignin biosynthetic gene BdPMT and the cellulose synthase genes BdCESA7 and BdCESA8 were isolated and cloned into binary vectors designed for Agrobacterium-mediated transformation of monocots. Expression patterns were assessed using the β-glucuronidase gene GUSPlus and X-glucuronide staining. All three promoters showed strong expression levels inmore » stem tissue at the base of internodes where cell wall deposition is most active, in both vascular bundle xylem vessels and tracheids, and in interfascicular tissues, with expression less pronounced in developmentally older tissues. In leaves, BdCESA7 and BdCESA8 promoter-driven expression was strongest in leaf veins, leaf margins, and trichomes; relatively weaker and patchy expression was observed in the epidermis. BdPMT promoter-driven expression was similar to the BdCESA promoters expression patterns, including strong expression in trichomes. The intensity and extent of GUS staining varied considerably between transgenic lines, suggesting that positional effects influenced promoter activity. Introducing the BdPMT and BdCESA8 Open Reading Frames into BdPMT and BdCESA8 utility promoter binary vectors, respectively, and transforming those constructs into Brachypodium pmt and cesa8 loss-of-function mutants resulted in rescue of the corresponding mutant phenotypes. This work therefore validates the functionality of these utility promoter binary vectors for use in Brachypodium and likely other grass species. Lastly, the identification, in Bdcesa8-1 T-DNA mutant stems, of an 80% reduction in crystalline cellulose levels confirms that the BdCESA8 gene is a secondary-cell-wall-forming cellulose synthase.« less
Five vicarious genera from Gondwana: the Velloziaceae as shown by molecules and morphology
Mello-Silva, Renato; Santos, Déborah Yara A. C.; Salatino, Maria Luiza F.; Motta, Lucimar B.; Cattai, Marina B.; Sasaki, Denise; Lovo, Juliana; Pita, Patrícia B.; Rocini, Cintia; Rodrigues, Cristiane D. N.; Zarrei, Mehdi; Chase, Mark W.
2011-01-01
Background and Aims The amount of data collected previously for Velloziaceae neither clarified relationships within the family nor helped determine an appropriate classification, which has led to huge discordance among treatment by different authors. To achieve an acceptable phylogenetic result and understand the evolution and roles of characters in supporting groups, a total evidence analysis was developed which included approx. 20 % of the species and all recognized genera and sections of Velloziaceae, plus outgroups representatives of related families within Pandanales. Methods Analyses were undertaken with 48 species of Velloziaceae, representing all ten genera, with DNA sequences from the atpB-rbcL spacer, trnL-trnF spacer, trnL intron, trnH-psbA spacer, ITS ribosomal DNA spacers and morphology. Key Results Four groups consistently emerge from the analyses. Persistent leaves, two phloem strands, stem cortex divided in three regions and violet tepals support Acanthochlamys as sister to Velloziaceae s.s., which are supported mainly by leaves with marginal bundles, transfusion tracheids and inflorescence without axis. Within Velloziaceae s.s., an African Xerophyta + Talbotia clade is uniquely supported by basal loculicidal capsules; an American clade, Barbacenia s.l. + Barbaceniopsis + Nanuza + Vellozia, is supported by only homoplastic characters. Barbacenia s.l. (= Aylthonia + Barbacenia + Burlemarxia + Pleurostima) is supported by a double sheath in leaf vascular bundles and a corona; Barbaceniopsis + Nanuza + Vellozia is not supported by an unambiguous character, but Barbaceniopsis is supported by five characters, including diclinous flowers, Nanuza + Vellozia is supported mainly by horizontal stigma lobes and stem inner cortex cells with secondary walls, and Vellozia alone is supported mainly by pollen in tetrads. Conclusions The results imply recognition of five genera (Acanthochlamys (Xerophyta (Barbacenia (Barbaceniopsis, Vellozia)))), solving the long-standing controversies among recent classifications of the family. They also suggest a Gondwanan origin for Velloziaceae, with a vicariant pattern of distribution. PMID:21693665
Saric-Krsmanovic, Marija M; Bozic, Dragana M; Radivojevic, Ljiljana M; Umiljendic, Jelena S Gajic; Vrbnicanin, Sava P
2017-11-02
The effects of field dodder on physiological and anatomical processes in untreated sugar beet plants and the effects of propyzamide on field dodder were examined under controlled conditions. The experiment included the following variants: N-noninfested sugar beet plants (control); I - infested sugar beet plants (untreated), and infested plants treated with propyzamide (1500 g a.i. ha -1 (T 1 ) and 2000 g a.i. ha -1 (T 2 )). The following parameters were checked: physiological-pigment contents (chlorophyll a, chlorophyll b, total carotenoids); anatomical -leaf parameters: thickness of epidermis, parenchyma and spongy tissue, mesophyll and underside leaf epidermis, and diameter of bundle sheath cells; petiole parameters: diameter of tracheid, petiole hydraulic conductance, xylem surface, phloem cell diameter and phloem area in sugar beet plants. A conventional paraffin wax method was used to prepare the samples for microscopy. Pigment contents were measured spectrophotometrically after methanol extraction. All parameters were measured: prior to herbicide application (0 assessment), then 7, 14, 21, 28 and 35 days after application (DAA). Field dodder was found to affect the pigment contents in untreated sugar beet plants, causing significant reductions. Conversely, reduction in the treated plants decreased 27% to 4% for chlorophyll a, from 21% to 5% for chlorophyll b, and from 28% to 5% for carotenoids (T 1 ). Also, in treatment T 2, reduction decreased in infested and treated plants from 19% to 2% for chlorophyll a, from 21% to 2% for chlorophyll b, from 23% to 3% for carotenoids and stimulation of 1% and 2% was observed 28 and 35 DAA, respectively. Plants infested (untreated) by field dodder had lower values of most anatomical parameters, compared to noninfested plants. The measured anatomical parameters of sugar beet leaves and petiole had significantly higher values in noninfested plants and plants treated with propyzamide than in untreated plants. Also, the results showed that propyzamide is an adequate herbicide for control of field dodder at the stage of early infestation.
Appelhans, M. S.; Smets, E.; Razafimandimbison, S. G.; Haevermans, T.; van Marle, E. J.; Couloux, A.; Rabarison, H.; Randrianarivelojosia, M.; Keßler, P. J. A.
2011-01-01
Background and Aims The Spathelia–Ptaeroxylon clade is a group of morphologically diverse plants that have been classified together as a result of molecular phylogenetic studies. The clade is currently included in Rutaceae and recognized at a subfamilial level (Spathelioideae) despite the fact that most of its genera have traditionally been associated with other families and that there are no obvious morphological synapomorphies for the clade. The aim of the present study is to construct phylogenetic trees for the Spathelia–Ptaeroxylon clade and to investigate anatomical characters in order to decide whether it should be kept in Rutaceae or recognized at the familial level. Anatomical characters were plotted on a cladogram to help explain character evolution within the group. Moreover, phylogenetic relationships and generic limits within the clade are also addressed. Methods A species-level phylogenetic analysis of the Spathelia–Ptaeroxylon clade based on five plastid DNA regions (rbcL, atpB, trnL–trnF, rps16 and psbA–trnH) was conducted using Bayesian, maximum parsimony and maximum likelihood methods. Leaf and seed anatomical characters of all genera were (re)investigated by light and scanning electron microscopy. Key Results With the exception of Spathelia, all genera of the Spathelila–Ptaeroxylon clade are monophyletic. The typical leaf and seed anatomical characters of Rutaceae were found. Further, the presence of oil cells in the leaves provides a possible synapomorphy for the clade. Conclusions The Spathelia–Ptaeroxylon clade is well placed in Rutaceae and it is reasonable to unite the genera into one subfamily (Spathelioideae). We propose a new tribal classification of Spathelioideae. A narrow circumscription of Spathelia is established to make the genus monophyletic, and Sohnreyia is resurrected to accommodate the South American species of Spathelia. The most recent common ancestor of Spathelioideae probably had leaves with secretory cavities and oil cells, haplostemonous flowers with appendaged staminal filaments, and a tracheidal tegmen. PMID:21610209
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petrik, Deborah L.; Cass, Cynthia L.; Padmakshan, Dharshana
Utility vectors with promoters that confer desired spatial and temporal expression patterns are useful tools for studying gene and cellular function and for industrial applications. To target the expression of DNA sequences of interest to cells forming plant secondary cell walls, which generate most of the vegetative biomass, upstream regulatory sequences of the Brachypodium distachyon lignin biosynthetic gene BdPMT and the cellulose synthase genes BdCESA7 and BdCESA8 were isolated and cloned into binary vectors designed for Agrobacterium-mediated transformation of monocots. Expression patterns were assessed using the β-glucuronidase gene GUSPlus and X-glucuronide staining. All three promoters showed strong expression levels inmore » stem tissue at the base of internodes where cell wall deposition is most active, in both vascular bundle xylem vessels and tracheids, and in interfascicular tissues, with expression less pronounced in developmentally older tissues. In leaves, BdCESA7 and BdCESA8 promoter-driven expression was strongest in leaf veins, leaf margins, and trichomes; relatively weaker and patchy expression was observed in the epidermis. BdPMT promoter-driven expression was similar to the BdCESA promoters expression patterns, including strong expression in trichomes. The intensity and extent of GUS staining varied considerably between transgenic lines, suggesting that positional effects influenced promoter activity. Introducing the BdPMT and BdCESA8 Open Reading Frames into BdPMT and BdCESA8 utility promoter binary vectors, respectively, and transforming those constructs into Brachypodium pmt and cesa8 loss-of-function mutants resulted in rescue of the corresponding mutant phenotypes. This work therefore validates the functionality of these utility promoter binary vectors for use in Brachypodium and likely other grass species. Lastly, the identification, in Bdcesa8-1 T-DNA mutant stems, of an 80% reduction in crystalline cellulose levels confirms that the BdCESA8 gene is a secondary-cell-wall-forming cellulose synthase.« less
Appelhans, M S; Smets, E; Razafimandimbison, S G; Haevermans, T; van Marle, E J; Couloux, A; Rabarison, H; Randrianarivelojosia, M; Kessler, P J A
2011-06-01
The Spathelia-Ptaeroxylon clade is a group of morphologically diverse plants that have been classified together as a result of molecular phylogenetic studies. The clade is currently included in Rutaceae and recognized at a subfamilial level (Spathelioideae) despite the fact that most of its genera have traditionally been associated with other families and that there are no obvious morphological synapomorphies for the clade. The aim of the present study is to construct phylogenetic trees for the Spathelia-Ptaeroxylon clade and to investigate anatomical characters in order to decide whether it should be kept in Rutaceae or recognized at the familial level. Anatomical characters were plotted on a cladogram to help explain character evolution within the group. Moreover, phylogenetic relationships and generic limits within the clade are also addressed. A species-level phylogenetic analysis of the Spathelia-Ptaeroxylon clade based on five plastid DNA regions (rbcL, atpB, trnL-trnF, rps16 and psbA-trnH) was conducted using Bayesian, maximum parsimony and maximum likelihood methods. Leaf and seed anatomical characters of all genera were (re)investigated by light and scanning electron microscopy. With the exception of Spathelia, all genera of the Spathelila-Ptaeroxylon clade are monophyletic. The typical leaf and seed anatomical characters of Rutaceae were found. Further, the presence of oil cells in the leaves provides a possible synapomorphy for the clade. The Spathelia-Ptaeroxylon clade is well placed in Rutaceae and it is reasonable to unite the genera into one subfamily (Spathelioideae). We propose a new tribal classification of Spathelioideae. A narrow circumscription of Spathelia is established to make the genus monophyletic, and Sohnreyia is resurrected to accommodate the South American species of Spathelia. The most recent common ancestor of Spathelioideae probably had leaves with secretory cavities and oil cells, haplostemonous flowers with appendaged staminal filaments, and a tracheidal tegmen.
Rainer-Lethaus, Gina; Oberhuber, Walter
2018-01-01
Carbon (C) availability plays an essential role in tree growth and wood formation. We evaluated the hypothesis that a decrease in C availability (i) triggers mobilization of C reserves in the coarse roots of Picea abies to maintain growth and (ii) causes modification of wood structure notably under drought. The 6-year-old saplings were subjected to two levels of soil moisture (watered versus drought conditions) and root C status was manipulated by physically blocking phloem transport in the stem at three girdling dates (GDs). Stem girdling was done before the onset of bud break [day of the year (doy) 77], during vigorous aboveground shoot and radial stem growth (GD doy 138), and after cessation of shoot growth (GD doy 190). The effect of blockage of C transport on root growth, root phenology, and wood anatomical traits [cell lumen diameter (CLD) and cell wall thickness (CWT)] in earlywood (EW) and latewood (LW) was determined. To evaluate changes in belowground C status caused by girdling, non-structural carbohydrates (soluble sugars and starch) in coarse roots were determined at the time of girdling and after the growing season. Although fine root mass significantly decreased in response to blockage of phloem C transport, the phenology of root elongation growth was not affected. Surprisingly, radial root growth and CLD of EW tracheids in coarse roots were strikingly increased in drought-stressed trees, when girdling occurred before bud break or during aboveground stem growth. In watered trees, the growth response to girdling was less distinct, but the CWT of EW significantly increased. Starch reserves in the roots of girdled trees significantly decreased in both soil moisture treatments and at all GDs. We conclude that (i) radial growth and wood development in coarse roots of P. abies saplings are not only dependent on current photosynthates, and (ii) blockage of phloem transport induces physiological changes that outweigh drought effects imposed on root cambial activity and cell differentiation. PMID:29636766
Sap Flux Scaled Transpiration in Ring-porous Tree Species: Assumptions, Pitfalls and Calibration
NASA Astrophysics Data System (ADS)
Bush, S. E.; Hultine, K. R.; Ehleringer, J. R.
2008-12-01
Thermal dissipation probes for measuring sap flow (Granier-type) at the whole tree and stand level are routinely used in forest ecology and site water balance studies. While the original empirical relationship used to calculate sap flow was reported as independent of wood anatomy (ring-porous, diffuse-porous, tracheid), it has been suggested that potentially large errors in sap flow calculations may occur when using the original calibration for ring-porous species, due to large radial trends in sap velocity and/or shallow sapwood depth. Despite these concerns, sap flux measurements have rarely been calibrated in ring-porous taxa. We used a simple technique to calibrate thermal dissipation sap flux measurements on ring-porous trees in the lab. Calibration measurements were conducted on five ring-porous species in the Salt Lake City, USA metropolitan area including Quercus gambelii (Gambel oak), Gleditsia triacanthos (Honey locust), Elaeagnus angustifolia (Russian olive), Sophora japonica (Japanese pagoda), and Celtis occidentalis (Common hackberry). Six stems per species of approximately 1 m in length were instrumented with heat dissipation probes to measure sap flux concurrently with gravimetric measurements of water flow through each stem. Safranin dye was pulled through the stems following flow rate measurements to determine sapwood area. As expected, nearly all the conducting sapwood area was limited to regions within the current year growth rings. Consequently, we found that the original Granier equation underestimated sap flux density for all species considered. Our results indicate that the use of thermal dissipation probes for measuring sap flow in ring-porous species should be independently calibrated, particularly when species- specific calibration data are not available. Ring-porous taxa are widely distributed and represent an important component of the regional water budgets of many temperate regions. Our results are important for evaluating plant water use of ring-porous tree species with thermal dissipation probes at multiple spatial scales.
Petrucco, Laura; Nardini, Andrea; von Arx, Georg; Saurer, Matthias; Cherubini, Paolo
2017-04-01
The 2003 and 2012 summer seasons were among the warmest and driest of the last 200 years over southeastern Europe, and in particular in the Karst region (northeastern Italy). Starting from winter-spring 2013, several black pines (Pinus nigra J.F. Arnold) suffered crown die-back. Declining trees occurred nearby individuals with no signs of die-back, raising hypotheses about the occurrence of individual-specific hydraulic strategies underlying different responses to extreme drought. We investigated possible processes driving black pine decline by dendrochronological and wood anatomical measurements, coupled with analysis of tree-ring carbon (δ13C) and oxygen (δ18O) isotopic composition in healthy trees (H) and trees suffering die-back (D). Die-back trees showed higher growth rates than H trees at the beginning of the last century, but suffered important growth reduction following the dry summers in 2003 and 2012. After the 2012 drought, D trees produced tracheids with larger diameter and greater vulnerability to implosion than H ones. Healthy trees had significantly higher wood δ13C than D trees, reflecting higher water-use efficiency for the surviving trees, i.e., less water transpired per unit carbon gain, which could be related to lower stomatal conductance and a more conservative use of water. Relatively high δ18O for D trees indicates that they were strongly dependent on shallow water sources, or that they sustained higher transpiration rates than H trees. Our results suggest that H trees adopted a more conservative water-use strategy under drought stress compared with D trees. We speculate that this diversity might have a genotypic basis, but other possible explanations, like different rooting depth, cannot be ruled out. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Schuldt, Bernhard; Leuschner, Christoph; Brock, Nicolai; Horna, Viviana
2013-02-01
It is generally assumed that the largest vessels are occurring in the roots and that vessel diameters and the related hydraulic conductance in the xylem are decreasing acropetally from roots to leaves. With this study in five tree species of a perhumid tropical rainforest in Sulawesi (Indonesia), we searched for patterns in hydraulic architecture and axial conductivity along the flow path from small-diameter roots through strong roots and the trunk to distal sun-canopy twigs. Wood density differed by not more than 10% across the different flow path positions in a species, and branch and stem wood density were closely related in three of the five species. Other than wood density, the wood anatomical and xylem hydraulic traits varied in dependence on the position along the flow path, but were unrelated to wood density within a tree. In contrast to reports from conifers and certain dicotyledonous species, we found a hump-shaped variation in vessel diameter and sapwood area--specific conductivity along the flow path in all five species with a maximum in the trunk and strong roots and minima in both small roots and twigs; the vessel size depended on the diameter of the organ. This pattern might be an adaptation to the perhumid climate with a low risk of hydraulic failure. Despite a similar mean vessel diameter in small roots and twigs, the two distal organs, hydraulically weighted mean vessel diameters were on average 30% larger in small roots, resulting in ∼ 85% higher empirical and theoretical specific conductivities. Relative vessel lumen area in percent of sapwood area decreased linearly by 70% from roots to twigs, reflecting the increase in sclerenchymatic tissue and tracheids in acropetal direction in the xylem. Vessel size was more closely related to the organ diameter than to the distance along the root-to-shoot flow path. We conclude that (i) the five co-occurring tree species show convergent patterns in their hydraulic architecture despite different growth strategies, and (ii) the paradigm assuming continuous acropetal vessel tapering and decrease in specific conductance from fine roots towards distal twigs needs reconsideration.
[The changes in contents and composition of phenolic acids during cell xylem growth in scots pine].
Antonova, G F; Zheliznichenko, T V; Stasova, V V
2011-01-01
The contents and composition of alcohol soluble phenolic acids were studied during cell xylem growth in the course of wood annual increment formation in the stems of Scots pine. The cells of cambium zone, of two stages of expansion growth and the outset of secondary thickening zone (before lignification) were successively gathered from the stem segments of 25-old pine trees in the period of earlywood xylem formation with constant anatomical and histochemical control. The contents of free and bound forms of phenolic acids, isolated by 80% ethanol from tissues, as well as of their ethers and esters were calculated both per dry weight and per cell. The content and relation of the fractions and the composition of phenolic acid have been found to change significantly from cambium zone to the outset of tracheid secondary thickening. The character of the variations depends on a calculation method. According to the calculation per cell the amount of free and bound phenolic acids and in their composition of esters and especially ethers increased at the first step of expansion growth zone, decreased at the second one and rose again in the outset of secondary wall deposition. In dependence on the stage of cell development the pool of bound phenolic acids exceeded of free acid pool in 2-5 times. Sinapic and ferulic acids dominated in the composition of free hydroxycinnamic acids. The content and composition of hydroxycinnamic acids in ethers and esters depended on cell development phase. In cambium p-coumaric and sinapic acids were principal aglycons in ethers, at other stages these were sinapic and caffeic acids. The esters in cambium zone included essentially p-coumaric acid and at the other stages - sinapic and ferulic acids. At the first phase of growth benzoic acid was connected principally by ester bonds. The pool of these esters decreased from the first phase of growth to the outset of cell wall thickening and in proportion to this the level of free benzoic acid rose.
Frost drought in conifers at the alpine timberline: xylem dysfunction and adaptations.
Mayr, Stefan; Hacke, Uwe; Schmid, Peter; Schwienbacher, Franziska; Gruber, Andreas
2006-12-01
Drought stress can cause xylem embolism in trees when the water potential (psi) in the xylem falls below specific vulnerability thresholds. At the alpine timberline, frost drought is known to cause excessive winter embolism unless xylem vulnerability or transpiration is sufficiently reduced to avoid critical psi. We compared annual courses of psi and embolism in Picea abies, Pinus cembra, Pinus mugo, Larix decidua, and Juniperus communis growing at the timberline vs. low altitude. In addition, vulnerability properties and related anatomical parameters as well as wood density (D(t)) and wall reinforcement (wall thickness related to conduit diameter) were studied. This allowed an estimate of stress intensities as well as a detection of adaptations that reduce embolism formation. At the alpine timberline, psi was lowest during winter with corresponding embolism rates of up to 100% in three of the conifers studied. Only Pinus cembra and Larix decidua avoided winter embolism due to moderate psi. Minor embolism was observed at low altitude where the water potentials of all species remained within a narrow range throughout the year. Within species, differences in psi50 (psi at 50% loss of conductivity) at high vs. low altitude were less than 1 MPa. In Picea abies and Pinus cembra, psi50 was more negative at the timberline while, in the other conifer species, psi50 was more negative at low altitude. Juniperus communis exhibited the lowest (-6.4 +/- 0.04 MPa; mean +/- SE) and Pinus mugo the highest psi50 (-3.34 +/- 0.03 MPa). In some cases, D(t) and tracheid wall reinforcement were higher than in previously established relationships of these parameters with psi50, possibly because of mechanical demands associated with the specific growing conditions. Conifers growing at the alpine timberline were exposed to higher drought stress intensities than individuals at low altitude. Frost drought during winter caused high embolism rates which were probably amplified by freeze-thaw stress. Although frost drought had a large effect on plant water transport, adaptations in hydraulic safety and related anatomical parameters were observed in only a few of the conifer species studied.
Hafner, Benjamin D; Tomasella, Martina; Häberle, Karl-Heinz; Goebel, Marc; Matyssek, Rainer; Grams, Thorsten E E
2017-07-01
Hydraulic redistribution (HR) of soil water through plant roots is a crucial phenomenon improving the water balance of plants and ecosystems. It is mostly described under severe drought, and not yet studied under moderate drought. We tested the potential of HR under moderate drought, hypothesizing that (H1) tree species redistribute soil water in their roots even under moderate drought and that (H2) neighboring plants are supported with water provided by redistributing plants. Trees were planted in split-root systems with one individual (i.e., split-root plant, SRP) having its roots divided between two pots with one additional tree each. Species were 2- to 4-year-old English oak (Quercus robur L.), European beech (Fagus sylvatica L.) and Norway spruce (Picea abies (L.) Karst). A gradient in soil water potential (ψsoil) was established between the two pots (-0.55 ± 0.02 MPa and -0.29 ± 0.03 MPa), and HR was observed by labeling with deuterium-enriched water. Irrespective of species identity, 93% of the SRPs redistributed deuterium enriched water from the moist to the drier side, supporting H1. Eighty-eight percent of the plants in the drier pots were deuterium enriched in their roots, with 61 ± 6% of the root water originating from SRP roots. Differences in HR among species were related to their root anatomy with diffuse-porous xylem structure in both beech and-opposing the stem structure-oak roots. In spruce, we found exclusively tracheids. We conclude that water can be redistributed within roots of different tree species along a moderate ψsoil gradient, accentuating HR as an important water source for drought-stressed plants, with potential implications for ecohydrological and plant physiological sciences. It remains to be shown to what extent HR occurs under field conditions in Central Europe. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Rosner, Sabine; Světlík, Jan; Andreassen, Kjell; Børja, Isabella; Dalsgaard, Lise; Evans, Robert; Luss, Saskia; Tveito, Ole E; Solberg, Svein
2016-01-01
Top dieback in 40-60 years old forest stands of Norway spruce [Picea abies (L.) Karst.] in southern Norway is supposed to be associated with climatic extremes. Our intention was to learn more about the processes related to top dieback and in particular about the plasticity of possible predisposing factors. We aimed at (i) developing proxies for P 50 based on anatomical data assessed by SilviScan technology and (ii) testing these proxies for their plasticity regarding climate, in order to (iii) analyze annual variations of hydraulic proxies of healthy looking trees and trees with top dieback upon their impact on tree survival. At two sites we selected 10 tree pairs, i.e., one healthy looking tree and one tree with visual signs of dieback such as dry tops, needle shortening and needle yellowing (n = 40 trees). Vulnerability to cavitation (P 50) of the main trunk was assessed in a selected sample set (n = 19) and we thereafter applied SilviScan technology to measure cell dimensions (lumen (b) and cell wall thickness (t)) in these specimen and in all 40 trees in tree rings formed between 1990 and 2010. In a first analysis step, we searched for anatomical proxies for P 50. The set of potential proxies included hydraulic lumen diameters and wall reinforcement parameters based on mean, radial, and tangential tracheid diameters. The conduit wall reinforcement based on tangential hydraulic lumen diameters ((t/b ht)(2)) was the best estimate for P 50. It was thus possible to relate climatic extremes to the potential vulnerability of single annual rings. Trees with top dieback had significantly lower (t/b ht)(2) and wider tangential (hydraulic) lumen diameters some years before a period of water deficit (2005-2006). Radial (hydraulic) lumen diameters showed however no significant differences between both tree groups. (t/b ht)(2) was influenced by annual climate variability; strongest correlations were found with precipitation in September of the previous growing season: high precipitation in previous September resulted in more vulnerable annual rings in the next season. The results are discussed with respect to an "opportunistic behavior" and genetic predisposition to drought sensitivity.
Morris, Hugh; Brodersen, Craig; Schwarze, Francis W. M. R.; Jansen, Steven
2016-01-01
This review examines the roles that ray and axial parenchyma (RAP) plays against fungal pathogens in the secondary xylem of wood within the context of the CODIT model (Compartmentalization of Decay in Trees), a defense concept first conceived in the early 1970s by Alex Shigo. This model, simplistic in its design, shows how a large woody perennial is highly compartmented. Anatomical divisions in place at the time of infection or damage, (physical defense) alongside the ‘active’ response by the RAP during and after wounding work together in forming boundaries that function to restrict air or decay spread. The living parenchyma cells play a critical role in all of the four walls (differing anatomical constructs) that the model comprises. To understand how living cells in each of the walls of CODIT cooperate, we must have a clear vision of their complex interconnectivity from a three-dimensional perspective, along with knowledge of the huge variation in ray parenchyma (RP) and axial parenchyma (AP) abundance and patterns. Crucial patterns for defense encompass the symplastic continuum between both RP and AP and the dead tissues, with the latter including the vessel elements, libriform fibers, and imperforate tracheary elements (i.e., vasicentric and vascular tracheids). Also, the heartwood, a chemically altered antimicrobial non-living substance that forms the core of many trees, provides an integral part of the defense system. In the heartwood, dead RAP can play an important role in defense, depending on the genetic constitution of the species. Considering the array of functions that RAP are associated with, from capacitance, through to storage, and long-distance water transport, deciding how their role in defense fits into this suite of functions is a challenge for plant scientists, and likely depends on a range of factors. Here, we explore the important role of RAP in defense against fungal pathogens and the trade-offs involved from a viewpoint for structure-function relations, while also examining how fungi can breach the defense system using an array of enzymes in conjunction with the physically intrusive hyphae. PMID:27881986
Fernández-de-Uña, Laura; Rossi, Sergio; Aranda, Ismael; Fonti, Patrick; González-González, Borja D.; Cañellas, Isabel; Gea-Izquierdo, Guillermo
2017-01-01
Climatic scenarios for the Mediterranean region forecast increasing frequency and intensity of drought events. Consequently, a reduction in Pinus sylvestris L. distribution range is projected within the region, with this species being outcompeted at lower elevations by more drought-tolerant taxa such as Quercus pyrenaica Willd. The functional response of these species to the projected shifts in water availability will partially determine their performance and, thus, their competitive success under these changing climatic conditions. We studied how the cambial and leaf phenology and xylem anatomy of these two species responded to a 3-year rainfall exclusion experiment set at their elevational boundary in Central Spain. Additionally, P. sylvestris leaf gas exchange, water potential and carbon isotope content response to the treatment were measured. Likewise, we assessed inter-annual variability in the studied functional traits under control and rainfall exclusion conditions. Prolonged exposure to drier conditions did not affect the onset of xylogenesis in either of the studied species, whereas xylem formation ceased 1–3 weeks earlier in P. sylvestris. The rainfall exclusion had, however, no effect on leaf phenology on either species, which suggests that cambial phenology is more sensitive to drought than leaf phenology. P. sylvestris formed fewer, but larger tracheids under dry conditions and reduced the proportion of latewood in the tree ring. On the other hand, Q. pyrenaica did not suffer earlywood hydraulic diameter changes under rainfall exclusion, but experienced a cumulative reduction in latewood width, which could ultimately challenge its hydraulic performance. The phenological and anatomical response of the studied species to drought is consistent with a shift in resource allocation under drought stress from xylem to other sinks. Additionally, the tighter stomatal control and higher intrinsic water use efficiency observed in drought-stressed P. sylvestris may eventually limit carbon uptake in this species. Our results suggest that both species are potentially vulnerable to the forecasted increase in drought stress, although P. sylvestris might experience a higher risk of drought-induced decline at its low elevational limit. PMID:28744292
Kerr, Kelly L; Meinzer, Frederick C; McCulloh, Katherine A; Woodruff, David R; Marias, Danielle E
2015-05-01
First-year tree seedlings represent a particularly vulnerable life stage and successful seedling establishment is crucial for forest regeneration. We investigated the extent to which Pinus ponderosa P. & C. Lawson populations from different climate zones exhibit differential expression of functional traits that may facilitate their establishment. Seeds from two populations from sites with contrasting precipitation and temperature regimes east (PIPO dry) and west (PIPO mesic) of the Oregon Cascade mountains were sown in a common garden experiment and grown under two water availability treatments (control and drought). Aboveground biomass accumulation, vegetative phenology, xylem anatomy, plant hydraulic architecture, foliar stable carbon isotope ratios (δ(13)C), gas exchange and leaf water relations characteristics were measured. No treatment or population-related differences in leaf water potential were detected. At the end of the first growing season, aboveground biomass was 74 and 44% greater in PIPO mesic in the control and drought treatments, respectively. By early October, 73% of PIPO dry seedlings had formed dormant buds compared with only 15% of PIPO mesic seedlings. Stem theoretical specific conductivity, calculated from tracheid dimensions and packing density, declined from June through September and was nearly twice as high in PIPO mesic during most of the growing season, consistent with measured values of specific conductivity. Intrinsic water-use efficiency based on δ(13)C values was higher in PIPO dry seedlings for both treatments across all sampling dates. There was a negative relationship between values of δ(13)C and leaf-specific hydraulic conductivity across populations and treatments, consistent with greater stomatal constraints on gas exchange with declining seedling hydraulic capacity. Integrated growing season assimilation and stomatal conductance estimated from foliar δ(13)C values and photosynthetic CO2-response curves were 6 and 28% lower, respectively, in PIPO dry seedlings. Leaf water potential at the turgor loss point was 0.33 MPa more negative in PIPO dry, independent of treatment. Overall, PIPO dry seedlings exhibited more conservative behavior, suggesting reduced growth is traded off for increased resistance to drought and extreme temperatures. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Elevational trends in hydraulic efficiency and safety of Pinus cembra roots.
Losso, Adriano; Nardini, Andrea; Nolf, Markus; Mayr, Stefan
2016-04-01
In alpine regions, elevational gradients in environmental parameters are reflected by structural and functional changes in plant traits. Elevational changes in plant water relations have also been demonstrated, but comparable information on root hydraulics is generally lacking. We analyzed the hydraulic efficiency (specific hydraulic conductivity k s, entire root system conductance K R) and vulnerability to drought-induced embolism (water potential at 50 % loss of conductivity Ψ 50) of the roots of Pinus cembra trees growing along an elevational transect of 600 m. Hydraulic parameters of the roots were compared with those of the stem and related to anatomical traits {mean conduit diameter (d), wall reinforcement [(t/b)(2)]}. We hypothesized that temperature-related restrictions in root function would cause a progressive limitation of hydraulic efficiency and safety with increasing elevation. We found that both root k s and K R decreased from low (1600 m a.s.l.: k s 5.6 ± 0.7 kg m(-1) s(-1) MPa(-1), K R 0.049 ± 0.005 kg m(-2) s (-1) MPa(-1)) to high elevation (2100 m a.s.l.: k s 4.2 ± 0.6 kg m(-1) s(-1) MPa(-1), K R 0.035 ± 0.006 kg m(-2) s(-1) MPa(-1)), with small trees showing higher K R than large trees. k s was higher in roots than in stems (0.5 ± 0.05 kg m(-1)s(-1)MPa(-1)). Ψ 50 values were similar across elevations and overall less negative in roots (Ψ 50 -3.6 ± 0.1 MPa) than in stems (Ψ 50 -3.9 ± 0.1 MPa). In roots, large-diameter tracheids were lacking at high elevation and (t/b)(2) increased, while d did not change. The elevational decrease in root hydraulic efficiency reflects a limitation in timberline tree hydraulics. In contrast, hydraulic safety was similar across elevations, indicating that avoidance of hydraulic failure is important for timberline trees. As hydraulic patterns can only partly be explained by the anatomical parameters studied, limitations and/or adaptations at the pit level are likely.
Fernández-de-Uña, Laura; Rossi, Sergio; Aranda, Ismael; Fonti, Patrick; González-González, Borja D; Cañellas, Isabel; Gea-Izquierdo, Guillermo
2017-01-01
Climatic scenarios for the Mediterranean region forecast increasing frequency and intensity of drought events. Consequently, a reduction in Pinus sylvestris L. distribution range is projected within the region, with this species being outcompeted at lower elevations by more drought-tolerant taxa such as Quercus pyrenaica Willd. The functional response of these species to the projected shifts in water availability will partially determine their performance and, thus, their competitive success under these changing climatic conditions. We studied how the cambial and leaf phenology and xylem anatomy of these two species responded to a 3-year rainfall exclusion experiment set at their elevational boundary in Central Spain. Additionally, P. sylvestris leaf gas exchange, water potential and carbon isotope content response to the treatment were measured. Likewise, we assessed inter-annual variability in the studied functional traits under control and rainfall exclusion conditions. Prolonged exposure to drier conditions did not affect the onset of xylogenesis in either of the studied species, whereas xylem formation ceased 1-3 weeks earlier in P. sylvestris . The rainfall exclusion had, however, no effect on leaf phenology on either species, which suggests that cambial phenology is more sensitive to drought than leaf phenology. P. sylvestris formed fewer, but larger tracheids under dry conditions and reduced the proportion of latewood in the tree ring. On the other hand, Q. pyrenaica did not suffer earlywood hydraulic diameter changes under rainfall exclusion, but experienced a cumulative reduction in latewood width, which could ultimately challenge its hydraulic performance. The phenological and anatomical response of the studied species to drought is consistent with a shift in resource allocation under drought stress from xylem to other sinks. Additionally, the tighter stomatal control and higher intrinsic water use efficiency observed in drought-stressed P. sylvestris may eventually limit carbon uptake in this species. Our results suggest that both species are potentially vulnerable to the forecasted increase in drought stress, although P. sylvestris might experience a higher risk of drought-induced decline at its low elevational limit.
Vaganov, Eugene A.; Skomarkova, Marina V.; Knohl, Alexander; Brand, Willi A.; Roscher, Christiane
2009-01-01
Tree-ring width, wood density, anatomical structure and 13C/12C ratios expressed as δ13C-values of whole wood of Picea abies were investigated for trees growing in closed canopy forest stands. Samples were collected from the alpine Renon site in North Italy, the lowland Hainich site in Central Germany and the boreal Flakaliden site in North Sweden. In addition, Pinus cembra was studied at the alpine site and Pinus sylvestris at the boreal site. The density profiles of tree rings were measured using the DENDRO-2003 densitometer, δ13C was measured using high-resolution laser-ablation-combustion-gas chromatography-infra-red mass spectrometry and anatomical characteristics of tree rings (tracheid diameter, cell-wall thickness, cell-wall area and cell-lumen area) were measured using an image analyzer. Based on long-term statistics, climatic variables, such as temperature, precipitation, solar radiation and vapor pressure deficit, explained <20% of the variation in tree-ring width and wood density over consecutive years, while 29–58% of the variation in tree-ring width were explained by autocorrelation between tree rings. An intensive study of tree rings between 1999 and 2003 revealed that tree ring width and δ13C-values of whole wood were significantly correlated with length of the growing season, net radiation and vapor pressure deficit. The δ13C-values were not correlated with precipitation or temperature. A highly significant correlation was also found between δ13C of the early wood of one year and the late wood of the previous year, indicating a carry-over effect of the growing conditions of the previous season on current wood production. This latter effect may explain the high autocorrelation of long-term tree-ring statistics. The pattern, however, was complex, showing stepwise decreases as well as stepwise increases in the δ13C between late wood and early wood. The results are interpreted in the context of the biochemistry of wood formation and its linkage to storage products. It is clear that the relations between δ13C and tree-ring width and climate are multi-factorial in seasonal climates. PMID:19653008
Ryan, Michael G
2013-11-01
Nutrient supply often limits growth in forest ecosystems and may limit the response of growth to an increase in other resources, or to more favorable environmental factors such as temperature and soil water. To explore the consequences and mechanisms of optimum nutrient supply for forest growth, the Flakaliden research site was established in 1986 on a young Norway spruce site with nutrient-poor soil. This special section on research at Flakaliden presents five papers that explore different facets of nutrition, atmospheric CO2 concentration, [CO2], and increased temperature treatments, using the original experiment as a base. Research at Flakaliden shows the dominant role of nutrition in controlling the response of growth to the increased photosynthesis promoted by elevated [CO2] and temperature. Experiments with whole-tree chambers showed that all treatments (air temperature warming, elevated [CO2] and optimum nutrition) increased shoot photosynthesis by 30-50%, but growth only increased with [CO2] when combined with the optimum nutrition treatment. Elevated [CO2] and temperature increased shoot photosynthesis by increasing the slope between light-saturated photosynthesis and foliar nitrogen by 122%, the initial slope of the light response curve by 52% and apparent quantum yield by 10%. Optimum nutrition also decreased photosynthetic capacity by 17%, but increased it by 62% in elevated [CO2], as estimated from wood δ(13)C. Elevated air temperature advanced spring recovery of photosynthesis by 37%, but spring frost events remained the controlling factor for photosynthetic recovery, and elevated [CO2] did not affect this. Increased nutrient availability increased wood growth primarily through a 50% increase in tracheid formation, mostly during the peak growth season. Other notable contributions of research at Flakaliden include exploring the role of optimal nutrition in large-scale field trials with foliar analysis, using an ecosystem approach for multifactor experiments, development of whole-tree chambers allowing inexpensive environmental manipulations, long-term deployment of shoot chambers for continuous measurements of gas exchange and exploring the ecosystem response to soil and aboveground tree warming. The enduring legacy of Flakaliden will be the rich data set of long-term, multifactor experiments that has been and will continue to be used in many modeling and cross-site comparison studies.
Rosner, Sabine; Světlík, Jan; Andreassen, Kjell; Børja, Isabella; Dalsgaard, Lise; Evans, Robert; Luss, Saskia; Tveito, Ole E.; Solberg, Svein
2016-01-01
Top dieback in 40–60 years old forest stands of Norway spruce [Picea abies (L.) Karst.] in southern Norway is supposed to be associated with climatic extremes. Our intention was to learn more about the processes related to top dieback and in particular about the plasticity of possible predisposing factors. We aimed at (i) developing proxies for P50 based on anatomical data assessed by SilviScan technology and (ii) testing these proxies for their plasticity regarding climate, in order to (iii) analyze annual variations of hydraulic proxies of healthy looking trees and trees with top dieback upon their impact on tree survival. At two sites we selected 10 tree pairs, i.e., one healthy looking tree and one tree with visual signs of dieback such as dry tops, needle shortening and needle yellowing (n = 40 trees). Vulnerability to cavitation (P50) of the main trunk was assessed in a selected sample set (n = 19) and we thereafter applied SilviScan technology to measure cell dimensions (lumen (b) and cell wall thickness (t)) in these specimen and in all 40 trees in tree rings formed between 1990 and 2010. In a first analysis step, we searched for anatomical proxies for P50. The set of potential proxies included hydraulic lumen diameters and wall reinforcement parameters based on mean, radial, and tangential tracheid diameters. The conduit wall reinforcement based on tangential hydraulic lumen diameters ((t/bht)2) was the best estimate for P50. It was thus possible to relate climatic extremes to the potential vulnerability of single annual rings. Trees with top dieback had significantly lower (t/bht)2 and wider tangential (hydraulic) lumen diameters some years before a period of water deficit (2005–2006). Radial (hydraulic) lumen diameters showed however no significant differences between both tree groups. (t/bht)2 was influenced by annual climate variability; strongest correlations were found with precipitation in September of the previous growing season: high precipitation in previous September resulted in more vulnerable annual rings in the next season. The results are discussed with respect to an “opportunistic behavior” and genetic predisposition to drought sensitivity. PMID:27375672
Effects of environmental conditions on onset of xylem growth in Pinus sylvestris under drought.
Swidrak, Irene; Gruber, Andreas; Kofler, Werner; Oberhuber, Walter
2011-05-01
We determined the influence of environmental factors (air and soil temperature, precipitation, photoperiod) on onset of xylem growth in Scots pine (Pinus sylvestris L.) within a dry inner Alpine valley (750 m a.s.l., Tyrol, Austria) by repeatedly sampling micro-cores throughout 2007-10 at two sites (xeric and dry-mesic) at the start of the growing season. Temperature sums were calculated in degree-days (DD) ≥5 °C from 1 January and 20 March, i.e., spring equinox, to account for photoperiodic control of release from winter dormancy. Threshold temperatures at which xylogenesis had a 0.5 probability of being active were calculated by logistic regression. Onset of xylem growth, which was not significantly different between the xeric and dry-mesic sites, ranged from mid-April in 2007 to early May in 2008. Among most study years, statistically significant differences (P<0.05) in onset of xylem growth were detected. Mean air temperature sums calculated from 1 January until onset of xylem growth were 230 ± 44 DD (mean ± standard deviation) at the xeric site and 205 ± 36 DD at the dry-mesic site. Temperature sums calculated from spring equinox until onset of xylem growth showed somewhat less variability during the 4-year study period, amounting to 144 ± 10 and 137 ± 12 DD at the xeric and dry-mesic sites, respectively. At both sites, xylem growth was active when daily minimum, mean and maximum air temperatures were 5.3, 10.1 and 16.2 °C, respectively. Soil temperature thresholds and DD until onset of xylem growth differed significantly between sites, indicating minor importance of root-zone temperature for onset of xylem growth. Although spring precipitation is known to limit radial growth in P. sylvestris exposed to a dry inner Alpine climate, the results of this study revealed that (i) a daily minimum air temperature threshold for onset of xylem growth in the range 5-6 °C exists and (ii) air temperature sum rather than precipitation or soil temperature triggers start of xylem growth. Based on these findings, we suggest that drought stress forces P. sylvestris to draw upon water reserves in the stem for enlargement of first tracheids after cambial resumption in spring. © The Author 2011. Published by Oxford University Press. All rights reserved.
Effects of environmental conditions on onset of xylem growth in Pinus sylvestris under drought
Swidrak, Irene; Gruber, Andreas; Kofler, Werner; Oberhuber, Walter
2012-01-01
Summary We determined influence of environmental factors (air and soil temperature, precipitation, photoperiod) on onset of xylem growth in Scots pine (Pinus sylvestris L.) within a dry inner Alpine valley (750 m a.s.l., Tyrol, Austria) by repeatedly sampling micro-cores throughout 2007-2010 at two sites (xeric and dry-mesic) at the start of the growing season. Temperature sums were calculated in degree-days (DD) ≥ 5 °C from 1 January and 20 March, i.e. spring equinox, to account for photoperiodic control of release from winter dormancy. Threshold temperatures at which xylogenesis had a 0.5 probability of being active were calculated by logistic regression. Onset of xylem growth, which was not significantly different between the xeric and dry-mesic site, ranged from mid-April in 2007 to early May in 2008. Among most study years statistically significant differences (P < 0.05) in onset of xylem growth were detected. Mean air temperature sums calculated from 1 January until onset of xylem growth were 230 ± 44 DD (mean ± standard deviation) at the xeric and 205 ± 36 DD at the dry-mesic site. Temperature sums calculated from spring equinox until onset of xylem growth showed quite less variability during the four year study period amounting to 144 ± 10 and 137 ± 12 DD at the xeric and dry-mesic site, respectively. At both sites xylem growth was active when daily minimum, mean and maximum air temperatures were 5.3, 10.1 and 16.2 °C, respectively. Soil temperature thresholds and DD until onset of xylem growth differed significantly between sites indicating minor importance of root-zone temperature for onset of xylem growth. Although spring precipitation is known to limit radial growth in P. sylvestris exposed to dry inner Alpine climate, results of this study revealed that (i) a daily minimum air temperature threshold for onset of xylem growth in the range of 5-6 °C exists and (ii) air temperature sum rather than precipitation or soil temperature triggers start of xylem growth. Based on these findings we suggest that drought stress forces P. sylvestris to draw upon water reserves in the stem for enlargement of first tracheids after cambial resumption in spring. PMID:21593011
Pacheco, Arturo; Camarero, J Julio; Carrer, Marco
2016-04-01
Forecasted warmer and drier conditions will probably lead to reduced growth rates and decreased carbon fixation in long-term woody pools in drought-prone areas. We therefore need a better understanding of how climate stressors such as drought constrain wood formation and drive changes in wood anatomy. Drying trends could lead to reduced growth if they are more intense in spring, when radial growth rates of conifers in continental Mediterranean climates peak. Since tree species from the aforementioned areas have to endure dry summers and also cold winters, we chose two coexisting species: Aleppo pine (Pinus halepensisMill., Pinaceae) and Spanish juniper (Juniperus thuriferaL., Cupressaceae) (10 randomly selected trees per species), to analyze how growth (tree-ring width) and wood-anatomical traits (lumen transversal area, cell-wall thickness, presence of intra-annual density fluctuations-IADFs-in the latewood) responded to climatic variables (minimum and maximum temperatures, precipitation, soil moisture deficit) calculated for different time intervals. Tree-ring width and mean lumen area showed similar year-to-year variability, which indicates that they encoded similar climatic signals. Wet and cool late-winter to early-spring conditions increased lumen area expansion, particularly in pine. In juniper, cell-wall thickness increased when early summer conditions became drier and the frequency of latewood IADFs increased in parallel with late-summer to early-autumn wet conditions. Thus, latewood IADFs of the juniper capture increased water availability during the late growing season, which is reflected in larger tracheid lumens. Soil water availability was one of the main drivers of wood formation and radial growth for the two species. These analyses allow long-term (several decades) growth and wood-anatomical responses to climate to be inferred at intra-annual scales, which agree with the growing patterns already described by xylogenesis approaches for the same species. A plastic bimodal growth behavior, driven by dry summer conditions, is coherent with the presented wood-anatomical data. The different wood-anatomical responses to drought stress are observed as IADFs with contrasting characteristics and responses to climate. These different responses suggest distinct capacities to access soil water between the two conifer species. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Climate reconstructions from tree-ring widths for the last 850 years in Northern Poland
NASA Astrophysics Data System (ADS)
Heinrich, Ingo; Knorr, Antje; Heußner, Karl-Uwe; Wazny, Tomasz; Slowinski, Michal; Helle, Gerhard; Simard, Sonia; Scharnweber, Tobias; Buras, Allan; Beck, Wolfgang; Wilmking, Martin; Brauer, Achim
2015-04-01
Tree-ring based temperature reconstructions form the scientific backbone of the current debate over global change, and they are the major part of the palaeo data base used for the IPCC report. However, long temperature reconstructions derived from temperate lowland trees growing well within their distributional limits in central Europe are not part of the IPCC report, which is an essential gap in the international data base. It appears that dendroclimatological analysis at temperate lowland sites was so far difficult to perform mainly for three reasons: diffuse climate-growth relationships, the lack of long chronologies due to absence of sufficient numbers of long-living trees and the potential loss of low-frequency signals due to the short length of the sample segments. We present two robust multi-centennial reconstructions of winter temperatures and summer precipitation based on pine and oak tree-ring widths chronologies from northern Poland, where so far no long tree-ring based reconstructions were available. We compared the new records with global, hemispherical and regional reconstructions, and found good agreement with some of them. In comparison, the winter temperature of our reconstruction, however, did not indicate any modern warming nor did the summer precipitation reconstruction suggest any modern 20th century changes. In a second step, we measured cell structures and developed chronologies of parameters such as cell wall thickness and cell lumen area. We used our new method (Liang et al. 2013a,b) applying confocal laser scanning microscopy to increment core surfaces for efficient histometric analyses. We focused on samples covering the last century because meteorological data necessary for calibration studies were available for direct comparisons. It was demonstrated that the correlations with climate were strong and different from those found for tree-ring widths (e.g., N-Poland oak-vessel-lumen-area-chronology with previous September-to-December mean temperature r = 0,61 and N-Poland pine-tracheid-lumen-area-chronology with mean Feb-to-June temperature r = -0,66). By using only raw values, low-frequency signals could be sustained in the chronologies. Liang, W.; Heinrich, I.; Helle, G.; Dorado Liñán, I.; Heinken, T. (2013a): Applying CLSM to increment core surfaces for histometric analyses: A novel advance in quantitative wood anatomy. Dendrochronologia 31, 140-145. Liang, W.; Heinrich, I.; Simard, S.; Helle, G.; Dorado Liñán, I.; Heinken, T. (2013b): Climate signals derived from cell anatomy of Scots pine in NE Germany. Tree Physiology 33, 833-844.
An investigation of hydraulic limitation and compensation in large, old Douglas-fir trees.
McDowell, Nate G; Phillips, Nathan; Lunch, Claire; Bond, Barbara J; Ryan, Michael G
2002-08-01
The hydraulic limitation hypothesis (Ryan and Yoder 1997) proposes that leaf-specific hydraulic conductance (kl) and stomatal conductance (gs) decline as trees grow taller, resulting in decreased carbon assimilation. We tested the hydraulic limitation hypothesis by comparison of canopy-dominant Douglas-fir (Pseudotsuga menziesii var. menziesii (Mirb.) Franco) trees in stands that were approximately 15 m (20 years old), 32 m (40 years old) and 60 m (> 450 years old) tall in Wind River, Washington, USA. Carbon isotope discrimination (Delta) declined with tree height (18.6, 17.6 and 15.9 per thousand for stands 15, 32 and 60 m tall, respectively) indicating that gs may have declined proportionally with tree height in the spring months, when carbon used in the construction of new foliage is assimilated. Hydraulic conductance decreased by 44% as tree height increased from 15 to > 32 m, and showed a further decline of 6% with increasing height. The general nonlinear pattern of kl versus height was predicted by a model based on Darcy's Law. Stemwood growth efficiency also declined nonlinearly with height (60, 35 and 28 g C m-2 leaf area for the 15-, 32- and 60-m stands, respectively). Unlike kl and growth efficiency, gs and photosynthesis (A) during summer drought did not decrease with height. The lack of decline in cuvette-based A indicates that reduced A, at least during summer months, is not responsible for the decline in growth efficiency. The difference between the trend in gs and A and that in kl and D may indicate temporal changes (spring versus summer) in the response of gas exchange to height-related changes in kl or it may be a result of measurement inadequacies. The formal hydraulic limitation hypothesis was not supported by our mid-summer gs and A data. Future tests of the hydraulic limitation hypothesis in this forest should be conducted in the spring months, when carbon uptake is greatest. We used a model based on Darcy's Law to quantify the extent to which compensating mechanisms buffer hydraulic limitations to gas exchange. Sensitivity analyses indicated that without the observed increases in the soil-to-leaf water potential differential (DeltaPsi) and decreases in the leaf area/sapwood area ratio, kl would have been reduced by more than 70% in the 60-m trees compared with the 15-m trees, instead of the observed decrease of 44%. However, compensation may have a cost; for example, the greater DeltaPsi of the largest trees was associated with smaller tracheid diameters and increased sapwood cavitation, which may have a negative feedback on kl and gs.
Evidence for xylem adaptations to drought in ancient Cordaites of the Carboniferous
NASA Astrophysics Data System (ADS)
Medeiros, J. S.; Hewins, C.; Serbet, R.; Taylor, T. N.; Taylor, E. L.; Ward, J. K.
2013-12-01
Ancient land plants faced the same challenges to growth and survival as modern land plants, including the need to resist xylem embolisms imposed by drought in order to main water supply to leaves. Cordaites, considered to be ancestors of the conifers, were some of the first trees on Earth and are often described as the most drought resistant plants in the North American landscape from the Late Missisipian (~320 MYA) to the early Permian (~250 MYA). Cordaites were common in both mires and dry uplands, however, suggesting considerable variation in drought tolerance, but neither the extent of this variation nor the particular xylem features associated with dryland habitats have been previously examined. We measured xylem anatomical traits including tracheid diameter (D) and wall thickness (t), for Cordaites roots and stems from three sites in Central North America: What Cheer IA, Sahara IL and Lewis Creek KY. From these data we calculated mechanical strength (t/b), which was used to estimate vulnerability to drought embolism (P50) based on comparisons with modern plants. In addition, we used the model of Wilson et al. (2008) to calculate the specific conductivity (Ksp), a measure of xylem water transport capacity. D and Ksp of Cordaites stems were similar to that typical of modern conifers but t/b tended to be lower. However, Cordaites exhibited significant variation in D, t, Ksp and t/b across sites. Stem P50 estimated from comparisons with modern plants ranged from approximately -4 at Lewis Creek to as low as -7 MPa at Sahara. We also found differences between stems and roots for Cordaites. Compared to stems, roots had larger D and higher Ksp, but lower t and t/b, resulting in a P50 ranging from approximately -2 to -4 MPa. In the roots of Sahara Cordaites, lower t/b in roots was a result of both significantly larger conduits and significantly thinner conduit walls compared to stems. Thus, hydraulic segmentation in Cordaites could have facilitated their survival in drier upland habitats, as root embolisms early on during drought could have hydraulically isolated the plant from drying soil. Our data suggest that Cordaites were similar in water transport properties but with low to moderate drought tolerance compared to modern conifers. Observation that Cordaites water transport properties varied across sites supports the idea that they were an ecological diverse plant group. Furthermore, Cordaites from Sahara exhibited a suite of traits typical of modern drought adapted plants, including: low D and Ksp combined with greater t, higher t/b and greater differentiation in t/b between roots and stems. Thus, we provide evidence from fossilized plants that associations between xylem features and habitat, as well as some modern drought adaptations, may be nearly as old as trees themselves.
Wood-Derived Materials for Green Electronics, Biological Devices, and Energy Applications.
Zhu, Hongli; Luo, Wei; Ciesielski, Peter N; Fang, Zhiqiang; Zhu, J Y; Henriksson, Gunnar; Himmel, Michael E; Hu, Liangbing
2016-08-24
With the arising of global climate change and resource shortage, in recent years, increased attention has been paid to environmentally friendly materials. Trees are sustainable and renewable materials, which give us shelter and oxygen and remove carbon dioxide from the atmosphere. Trees are a primary resource that human society depends upon every day, for example, homes, heating, furniture, and aircraft. Wood from trees gives us paper, cardboard, and medical supplies, thus impacting our homes, school, work, and play. All of the above-mentioned applications have been well developed over the past thousands of years. However, trees and wood have much more to offer us as advanced materials, impacting emerging high-tech fields, such as bioengineering, flexible electronics, and clean energy. Wood naturally has a hierarchical structure, composed of well-oriented microfibers and tracheids for water, ion, and oxygen transportation during metabolism. At higher magnification, the walls of fiber cells have an interesting morphology-a distinctly mesoporous structure. Moreover, the walls of fiber cells are composed of thousands of fibers (or macrofibrils) oriented in a similar angle. Nanofibrils and nanocrystals can be further liberated from macrofibrils by mechanical, chemical, and enzymatic methods. The obtained nanocellulose has unique optical, mechanical, and barrier properties and is an excellent candidate for chemical modification and reconfiguration. Wood is naturally a composite material, comprised of cellulose, hemicellulose, and lignin. Wood is sustainable, earth abundant, strong, biodegradable, biocompatible, and chemically accessible for modification; more importantly, multiscale natural fibers from wood have unique optical properties applicable to different kinds of optoelectronics and photonic devices. Today, the materials derived from wood are ready to be explored for applications in new technology areas, such as electronics, biomedical devices, and energy. The goal of this study is to review the fundamental structures and chemistries of wood and wood-derived materials, which are essential for a wide range of existing and new enabling technologies. The scope of the review covers multiscale materials and assemblies of cellulose, hemicellulose, and lignin as well as other biomaterials derived from wood, in regard to their major emerging applications. Structure-properties-application relationships will be investigated in detail. Understanding the fundamental properties of these structures is crucial for designing and manufacturing products for emerging applications. Today, a more holistic understanding of the interplay between the structure, chemistry, and performance of wood and wood-derived materials is advancing historical applications of these materials. This new level of understanding also enables a myriad of new and exciting applications, which motivate this review. There are excellent reviews already on the classical topic of woody materials, and some recent reviews also cover new understanding of these materials as well as potential applications. This review will focus on the uniqueness of woody materials for three critical applications: green electronics, biological devices, and energy storage and bioenergy.
Wood-Derived Materials for Green Electronics, Biological Devices, and Energy Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Hongli; Luo, Wei; Ciesielski, Peter N.
With the arising of global climate change and resource shortage, in recent years, increased attention has been paid to environmentally friendly materials. Trees are sustainable and renewable materials, which give us shelter and oxygen and remove carbon dioxide from the atmosphere. Trees are a primary resource that human society depends upon every day, for example, homes, heating, furniture, and aircraft. Wood from trees gives us paper, cardboard, and medical supplies, thus impacting our homes, school, work, and play. All of the above-mentioned applications have been well developed over the past thousands of years. However, trees and wood have much moremore » to offer us as advanced materials, impacting emerging high-tech fields, such as bioengineering, flexible electronics, and clean energy. Wood naturally has a hierarchical structure, composed of well-oriented microfibers and tracheids for water, ion, and oxygen transportation during metabolism. At higher magnification, the walls of fiber cells have an interesting morphology--a distinctly mesoporous structure. Moreover, the walls of fiber cells are composed of thousands of fibers (or macrofibrils) oriented in a similar angle. Nanofibrils and nanocrystals can be further liberated from macrofibrils by mechanical, chemical, and enzymatic methods. The obtained nanocellulose has unique optical, mechanical, and barrier properties and is an excellent candidate for chemical modification and reconfiguration. Wood is naturally a composite material, comprised of cellulose, hemicellulose, and lignin. Wood is sustainable, earth abundant, strong, biodegradable, biocompatible, and chemically accessible for modification; more importantly, multiscale natural fibers from wood have unique optical properties applicable to different kinds of optoelectronics and photonic devices. Today, the materials derived from wood are ready to be explored for applications in new technology areas, such as electronics, biomedical devices, and energy. The goal of this study is to review the fundamental structures and chemistries of wood and wood-derived materials, which are essential for a wide range of existing and new enabling technologies. The scope of the review covers multiscale materials and assemblies of cellulose, hemicellulose, and lignin as well as other biomaterials derived from wood, in regard to their major emerging applications. Structure-properties-application relationships will be investigated in detail. Understanding the fundamental properties of these structures is crucial for designing and manufacturing products for emerging applications. Today, a more holistic understanding of the interplay between the structure, chemistry, and performance of wood and wood-derived materials is advancing historical applications of these materials. This new level of understanding also enables a myriad of new and exciting applications, which motivate this review. There are excellent reviews already on the classical topic of woody materials, and some recent reviews also cover new understanding of these materials as well as potential applications. This review will focus on the uniqueness of woody materials for three critical applications: green electronics, biological devices, and energy storage and bioenergy.« less