Sample records for track etch dosimeters

  1. Light scattering apparatus and method for determining radiation exposure to plastic detectors

    DOEpatents

    Hermes, Robert E.

    2002-01-01

    An improved system and method of analyzing cumulative radiation exposure registered as pits on track etch foils of radiation dosimeters. The light scattering apparatus and method of the present invention increases the speed of analysis while it also provides the ability to analyze exposure levels beyond that which may be properly measured with conventional techniques. Dosimeters often contain small plastic sheets that register accumulated damage when exposed to a radiation source. When the plastic sheet from the dosimeter is chemically etched, a track etch foil is produced wherein pits or holes are created in the plastic. The number of these pits, or holes, per unit of area (pit density) correspond to the amount of cumulative radiation exposure which is being optically measured by the apparatus. To measure the cumulative radiation exposure of a track etch foil a high intensity collimated beam is passed through foil such that the pits and holes within the track etch foil cause a portion of the impinging light beam to become scattered upon exit. The scattered light is focused with a lens, while the primary collimated light beam (unscattered light) is blocked. The scattered light is focused by the lens onto an optical detector capable of registering the optical power of the scattered light which corresponds to the cumulative radiation to which the track etch foil has been exposed.

  2. Dose equivalent neutron dosimeter

    DOEpatents

    Griffith, Richard V.; Hankins, Dale E.; Tomasino, Luigi; Gomaa, Mohamed A. M.

    1983-01-01

    A neutron dosimeter is disclosed which provides a single measurements indicating the amount of potential biological damage resulting from the neutron exposure of the wearer, for a wide range of neutron energies. The dosimeter includes a detecting sheet of track etch detecting material such as a carbonate plastic, for detecting higher energy neutrons, and a radiator layer containing conversion material such as .sup.6 Li and .sup.10 B lying adjacent to the detecting sheet for converting moderate energy neutrons to alpha particles that produce tracks in the adjacent detecting sheet. The density of conversion material in the radiator layer is of an amount which is chosen so that the density of tracks produced in the detecting sheet is proportional to the biological damage done by neutrons, regardless of whether the tracks are produced as the result of moderate energy neutrons striking the radiator layer or as the result of higher energy neutrons striking the sheet of track etch material.

  3. Dose-equivalent neutron dosimeter

    DOEpatents

    Griffith, R.V.; Hankins, D.E.; Tomasino, L.; Gomaa, M.A.M.

    1981-01-07

    A neutron dosimeter is disclosed which provides a single measurement indicating the amount of potential biological damage resulting from the neutron exposure of the wearer, for a wide range of neutron energies. The dosimeter includes a detecting sheet of track etch detecting material such as a carbonate plastic, for detecting higher energy neutrons, and a radiator layer contaning conversion material such as /sup 6/Li and /sup 10/B lying adjacent to the detecting sheet for converting moderate energy neutrons to alpha particles that produce tracks in the adjacent detecting sheet.

  4. Personnel neutron dosimetry using electrochemically etched CR-39 foils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hankins, D.E.; Homann, S.; Westermark, J.

    1986-09-17

    A personnel neutron dosimetry system has been developed based on the electrochemical etching of CR-39 plastic at elevated temperatures. The doses obtained using this dosimeter system are more accurate than those obtained using other dosimetry systems, especially when varied neutron spectra are encountered. This Cr-39 dosimetry system does not have the severe energy dependence that exists with albedo neutron dosimeters or the fading and reading problems encountered with NTA film. The dosimetry system employs an electrochemical etch procedure that be used to process large numbers of Cr-39 dosimeters. The etch procedure is suitable for operations where the number of personnelmore » requires that many CR-39 dosimeters be processed. Experience shows that one full-time technician can etch and evaluate 2000 foils per month. The energy response to neutrons is fairly flat from about 80 keV to 3.5 MeV, but drops by about a factor of three in the 13 to 16 MeV range. The sensitivity of the dosimetry system is about 7 tracks/cm/sup 2//mrem, with a background equivalent to about 8 mrem for new CR-39 foils. The limit of sensitivity is approximately 10 mrem. The dosimeter has a significant variation in directional dependence, dropping to about 20% at 90/sup 0/. This dosimeter has been used for personnel neutron dosimetry at the Lawrence Livermore National Laboratory for more tha 18 months. 6 refs., 23 figs., 2 tabs.« less

  5. Image analysis used to count and measure etched tracks from ionizing radiation

    NASA Technical Reports Server (NTRS)

    Blanford, George E.; Schulz, Cindy K.

    1995-01-01

    We have developed techniques to use digitized scanning electron micrographs and computer image analysis programs to measure track densities in lunar soil grains and plastic dosimeters. Tracks in lunar samples are formed by highly ionizing solar energetic particles and cosmic rays during near surface exposure on the Moon. The track densities are related to the exposure conditions (depth and time). Distributions of the number of grains as a function of their track densities can reveal the modality of soil maturation. We worked on two samples identified for a consortium study of lunar weathering effects, 61221 and 67701. They were prepared by the lunar curator's staff as polished grain mounts that were etched in boiling 1 N NaOH for 6 h to reveal tracks. We determined that backscattered electron images taken at 10 percent contrast and approximately 50 percent brightness produced suitable high contrast images for analysis. We used the NIH Image program to cut out areas that were unsuitable for measurement such as edges, cracks, etc. We ascertained a gray-scale threshold of 25 to separate tracks from background. We used the computer to count everything that was two pixels or greater in size and to measure the area to obtain track densities. We found an excellent correlation with manual measurements for track densities below 1 x 10(exp 8) cm(exp -2). For track densities between 1 x 10(exp 8) cm(exp -2) to 1 x 10(exp 9) cm(exp -2) we found that a regression formula using the percentage area covered by tracks gave good agreement with manual measurements. We determined the track density distributions for 61221 and 67701. Sample 61221 is an immature sample, but not pristine. Sample 67701 is a submature sample that is very close to being fully mature. Because only 10 percent of the grains have track densities less than 10(exp 9) cm(exp -2), it is difficulty to determine whether the sample matured in situ or is a mixture of a mature and a submature soil. Although our analysis of plastic dosimeters is at an early stage of development, results are encouraging. The dosimeter was etched in 6.25 N NaOH at 70 deg C for 16 h. We took 200x secondary electron images of the sample and used the NIH Image software to count and measure major and minor diameters of the etched tracks. We calculated the relative track etch rate from a formula that relates it to the major and minor diameters. We made a histogram of the number of tracks versus their relative etch rate. The relative track etching rate is proportional to the linear energy transfer of the particle. With appropriate calibration experiments, the histogram could be used to calculate the radiation dose.

  6. Image analysis used to count and measure etched tracks from ionizing radiation

    NASA Astrophysics Data System (ADS)

    Blanford, George E.; Schulz, Cindy K.

    1995-07-01

    We have developed techniques to use digitized scanning electron micrographs and computer image analysis programs to measure track densities in lunar soil grains and plastic dosimeters. Tracks in lunar samples are formed by highly ionizing solar energetic particles and cosmic rays during near surface exposure on the Moon. The track densities are related to the exposure conditions (depth and time). Distributions of the number of grains as a function of their track densities can reveal the modality of soil maturation. We worked on two samples identified for a consortium study of lunar weathering effects, 61221 and 67701. They were prepared by the lunar curator's staff as polished grain mounts that were etched in boiling 1 N NaOH for 6 h to reveal tracks. We determined that backscattered electron images taken at 10 percent contrast and approximately 50 percent brightness produced suitable high contrast images for analysis. We used the NIH Image program to cut out areas that were unsuitable for measurement such as edges, cracks, etc. We ascertained a gray-scale threshold of 25 to separate tracks from background. We used the computer to count everything that was two pixels or greater in size and to measure the area to obtain track densities. We found an excellent correlation with manual measurements for track densities below 1 x 10(exp 8) cm(exp -2). For track densities between 1 x 10(exp 8) cm(exp -2) to 1 x 10(exp 9) cm(exp -2) we found that a regression formula using the percentage area covered by tracks gave good agreement with manual measurements. We determined the track density distributions for 61221 and 67701. Sample 61221 is an immature sample, but not pristine. Sample 67701 is a submature sample that is very close to being fully mature. Because only 10 percent of the grains have track densities less than 10(exp 9) cm(exp -2), it is difficulty to determine whether the sample matured in situ or is a mixture of a mature and a submature soil. Although our analysis of plastic dosimeters is at an early stage of development, results are encouraging. The dosimeter was etched in 6.25 N NaOH at 70 deg C for 16 h.

  7. Development of a high efficiency personal/environmental radon dosimeter using polycarbonate detectors.

    PubMed

    Taheri, M; Jafarizadeh, M; Baradaran, S; Zainali, Gh

    2006-12-01

    Passive radon dosimeters, based on alpha particle etched track detectors, are widely used for the assessment of radon exposure. These methods are often applied in radon dosimetry for long periods of time. In this research work, we have developed a highly efficient method of personal/environmental radon dosimetry that is based upon the detection of alpha particles from radon daughters, (218)Po and (214)Po, using a polycarbonate detector (PC). The radon daughters are collected on the filter surface by passing a fixed flow of air through it and the PC detector, placed at a specified distance from the filter, is simultaneously exposed to alpha particles. After exposure, the latent tracks on the detector are made to appear by means of an electrochemical etching process; these are proportional to the radon dose. The air flow rate and the detector-filter distance are the major factors that can affect the performance of the dosimeter. The results obtained in our experimental investigations have shown that a distance of 1.5 cm between the detector and the filter, an absorber layer of Al with a thickness of 12 microm and an air flow rate of 4 l min(-1) offer the best design parameters for a high efficiency radon dosimeter. Then, the designed dosimeter was calibrated against different values of radon exposures and the obtained sensitivity was found to be 2.1 (tracks cm(-2)) (kBq h m(-3))(-1). The most important advantages of this method are that it is reliable, fast and convenient when used for radon dose assessment. In this paper, the optimized parameters of the dosimeter structure and its calibration procedure are presented and discussed.

  8. Optimization of etching and reading procedures for the Autoscan 60 track etch system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McKeever, R.; Devine, R.; Coennen, C.

    1997-02-11

    The Los Alamos National Laboratory is charged with measuring the occupational exposure to radiological workers and contractors throughout the Laboratory, which includes many different sites with multiple and varied radiation fields. Of concern here are the high energy neutrons such as those generated during accelerator operations at Los Alamos Neutron Science Center (LANSCE). In 1993, the Los Alamos National Laboratory purchased an Autoscan 60 automated reader for use with chemically etched CR39 detectors. The dosimeter design employed at LANL uses a plastic, hemispherical case, encompassing a polystyrene pyramidal detector holder. The pyramidal holder supports three detectors at a 35{degree} angle.more » Averaging the results of the three detectors minimizes the angular dependence normally associated with a planar dosimeter. The Autoscan 60 is an automated reading system for use with CR39 chemical etch detectors. The detectors are immersed in an etch solution to enhance the visibility of the damage sites caused by recoil proton impact with the hydrogen atoms in the detector. The authors decided to increase the etch time from six hours to 15 hours, while retaining the 70 C temperature. The reason for the change in the etch is to enhance the sensitivity and precision of the CR39 detector as indicated by this study.« less

  9. Controlling alpha tracks registration in Makrofol DE 1-1 detector

    NASA Astrophysics Data System (ADS)

    Hassan, N. M.; Hanafy, M. S.; Naguib, A.; El-Saftawy, A. A.

    2017-09-01

    Makrofol DE 1-1 is a recent type of solid state nuclear track detectors could be used to measure radon concentration in the environment throughout the detection of α-particles emitted from radon decay. Thus, studying the physical parameters that control the formation of alpha tracks is vital for environmental radiation protection. Makrofol DE 1-1 polycarbonate detector was irradiated by α-particles of energies varied from 2 to 5 MeV emitted from the 241Am source of α-particle energy of 5.5 MeV. Then, the detector was etched in an optimum etching solution of mixed ethyl alcohol in KOH aqueous solution of (85% (Vol.) of 6 M KOH + 15% (Vol.) C2H5OH) at 50 °C for 3 h. Afterward, the bulk etch rate, etching sensitivity, and the registration efficiency of the detector, which control the tracks registration, were measured. The bulk etch rate of Makrofol detector was found to be 3.71 ± 0.71 μm h-1. The etching sensitivity and the detector registration efficiency were decreased exponentially with α-particles' energies following Bragg curve. A precise registration of α-particle was presented in this study. Therefore, Makrofol DE 1-1 can be applied as a radiation dosimeter as well as radon and thoron monitors.

  10. Simplified fast neutron dosimeter

    DOEpatents

    Sohrabi, Mehdi

    1979-01-01

    Direct fast-neutron-induced recoil and alpha particle tracks in polycarbonate films may be enlarged for direct visual observation and automated counting procedures employing electrochemical etching techniques. Electrochemical etching is, for example, carried out in a 28% KOH solution at room temperature by applying a 2000 V peak-to-peak voltage at 1 kHz frequency. Such recoil particle amplification can be used for the detection of wide neutron dose ranges from 1 mrad. to 1000 rads. or higher, if desired.

  11. Response of CR-39 to 0.9-2.5 MeV protons for KOH and NaOH etching solutions

    NASA Astrophysics Data System (ADS)

    Bahrami, F.; Mianji, F.; Faghihi, R.; Taheri, M.; Ansarinejad, A.

    2016-03-01

    In some circumstances passive detecting methods are the only or preferable measuring approaches. For instance, defining particles' energy profile inside the objects being irradiated with heavy ions and measuring fluence of neutrons or heavy particles in space missions are the cases covered by these methods. In this paper the ability of polyallyl diglycol carbonate (PADC) track detector (commercially known as CR-39) for passive spectrometry of proton particles is studied. Furthermore, the effect of KOH and NaOH as commonly used chemical etching solutions on the response of the detector is investigated. The experiments were carried out with protons in the energy range of 0.94-2.5 MeV generated by a Van de Graaff accelerator. Then, the exposed track dosimeters were etched in the two aforementioned etchants through similar procedure with the same normality of 6.25 N and the same temperature of 85 °C. Formation of the tracks was precisely investigated and the track diameters were recorded following every etching step for each solution using a multistage etching process. The results showed that the proposed method can be efficiently used for the spectrometry of protons over a wider dynamic range and with a reasonable accuracy. Moreover, NaOH and KOH outperformed each other over different regions of the proton energy range. The detection efficiency of both etchants was approximately 100%.

  12. A neutron track etch detector for electron linear accelerators in radiotherapy

    PubMed Central

    Vukovic, Branko; Faj, Dario; Poje, Marina; Varga, Maja; Radolic, Vanja; Miklavcic, Igor; Ivkovic, Ana; Planinic, Josip

    2010-01-01

    Background Electron linear accelerators in medical radiotherapy have replaced cobalt and caesium sources of radiation. However, medical accelerators with photon energies over 10 MeV generate undesired fast neutron contamination in a therapeutic X-ray photon beam. Photons with energies above 10 MeV can interact with the atomic nucleus of a high-Z material, of which the target and the head of an accelerator consist, and lead to the neutron ejection. Results and conclusions. Our neutron dosimeter, composed of the LR-115 track etch detector and boron foil BN-1 converter, was calibrated on thermal neutrons generated in the nuclear reactor of the Josef Stefan Institute (Slovenia), and applied to dosimetry of undesirable neutrons in photon radiotherapy by the linear accelerator 15 MV Siemens Mevatron. Having considered a high dependence of a cross-section between neutron and boron on neutron energy, and broad neutron spectrum in a photon beam, as well as outside the entrance door to maze of the Mevatron, we developed a method for determining the effective neutron detector response. A neutron dose rate in the photon beam was measured to be 1.96 Sv/h. Outside the Mevatron room the neutron dose rate was 0.62 μSv/h. PACS: 87.52. Ga; 87.53.St; 29.40.Wk. PMID:22933893

  13. Thermodynamics of nuclear track chemical etching

    NASA Astrophysics Data System (ADS)

    Rana, Mukhtar Ahmed

    2018-05-01

    This is a brief paper with new and useful scientific information on nuclear track chemical etching. Nuclear track etching is described here by using basic concepts of thermodynamics. Enthalpy, entropy and free energy parameters are considered for the nuclear track etching. The free energy of etching is determined using etching experiments of fission fragment tracks in CR-39. Relationship between the free energy and the etching temperature is explored and is found to be approximately linear. The above relationship is discussed. A simple enthalpy-entropy model of chemical etching is presented. Experimental and computational results presented here are of fundamental interest in nuclear track detection methodology.

  14. The development of an energy-independent personnel neutron dosimeter using CR-39

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doremus, S.W.

    The addition of specialized (n,{alpha}) radiators to a standard polyethylene/CR-39 (PE/CR-39) neutron dosimetry system was evaluated for improved response to low energy neutrons. Specialized radiators consisting of poly(vinyl alcohol) complexed with boron (natural and enriched boron-10) and poly(acrylic acid) complexed with lithium (enriched lithium-6) were evaluated. The complexion of boron with poly(vinyl alcohol) was accomplished by incorporation or surface coating. The complexion of lithium with poly(acrylic acid) was exclusively performed by incorporation. The dosimeter was designed such that the specialized radiator was in contact with the CR-39 detector (i.e., the specialized radiator was sandwiched between the CR-39 detector and polyethylenemore » radiator). The neutron response of this dosimetry system was investigated using {sup 252}Cf (moderated and bare) spontaneous fission neutrons. Detectors were chemically etched and then read with a Nikon OPTIPHOT microscope. The mean response (tracks {center dot} field{sup {minus}1}) of detectors treated with specialized (n,{alpha}) radiators were evaluated against PE/CR-39 controls. The results of this investigation demonstrate that PE/CR-39 dosimeters equipped with specialized (n,{alpha}) radiators have a noticeable response to low energy neutrons that in many instances is significantly greater than that of the controls. The addition of specialized radiators to this dosimetry system did not effect (diminish) its response to fast neutrons.« less

  15. SHI induced nano track polymer filters and characterization

    NASA Astrophysics Data System (ADS)

    Vijay, Y. K.

    2009-07-01

    Swift heavy ion irradiation produces damage in polymers in the form of latent tracks. Latent tracks can be enlarged by etching it in a suitable etchant and thus nuclear track etch membrane can be formed for gas permeation / purification in particular for hydrogen where the molecular size is very small. By applying suitable and controlled etching conditions well defined tracks can be formed for specific applications of the membranes. After etching gas permeation method is used for characterizing the tracks. In the present work polycarbonate (PC) of various thickness were irradiated with energetic ion beam at Inter University Accelerator Centre (IUAC), New Delhi. Nuclear tracks were modified by etching the PC in 6N NaOH at 60 (±1) °C from both sides for different times to produce track etch membranes. At critical etch time the etched pits from both the sides meet a rapid increase in gas permeation was observed. Permeability of hydrogen and carbon dioxide has been measured in samples etched for different times. The latent tracks produced by SHI irradiation in the track etch membranes show enhancement of free volume of the polymer. Nano filters are separation devices for the mixture of gases, different ions in the solution and isotopes and isobars separations. The polymer thin films with controlled porosity finding it self as best choice. However, the permeability and selectivity of these polymer based membrane filters are very important at the nano scale separation. The Swift Heavy Ion (SHI) induced nuclear track etched polymeric films with controlled etching have been attempted and characterized as nano scale filters.

  16. Controlled ion track etching

    NASA Astrophysics Data System (ADS)

    George, J.; Irkens, M.; Neumann, S.; Scherer, U. W.; Srivastava, A.; Sinha, D.; Fink, D.

    2006-03-01

    It is a common practice since long to follow the ion track-etching process in thin foils via conductometry, i.e . by measurement of the electrical current which passes through the etched track, once the track breakthrough condition has been achieved. The major disadvantage of this approach, namely the absence of any major detectable signal before breakthrough, can be avoided by examining the track-etching process capacitively. This method allows one to define precisely not only the breakthrough point before it is reached, but also the length of any non-transient track. Combining both capacitive and conductive etching allows one to control the etching process perfectly. Examples and possible applications are given.

  17. Ion track etching revisited: II. Electronic properties of aged tracks in polymers

    NASA Astrophysics Data System (ADS)

    Fink, D.; Muñoz Hernández, G.; Cruz, S. A.; Garcia-Arellano, H.; Vacik, J.; Hnatowicz, V.; Kiv, A.; Alfonta, L.

    2018-02-01

    We compile here electronic ion track etching effects, such as capacitive-type currents, current spike emission, phase shift, rectification and background currents that eventually emerge upon application of sinusoidal alternating voltages across thin, aged swift heavy ion-irradiated polymer foils during etching. Both capacitive-type currents and current spike emission occur as long as obstacles still prevent a smooth continuous charge carrier passage across the foils. In the case of sufficiently high applied electric fields, these obstacles are overcome by spike emission. These effects vanish upon etchant breakthrough. Subsequent transmitted currents are usually of Ohmic type, but shortly after breakthrough (during the track' core etching) often still exhibit deviations such as strong positive phase shifts. They stem from very slow charge carrier mobility across the etched ion tracks due to retarding trapping/detrapping processes. Upon etching the track's penumbra, one occasionally observes a split-up into two transmitted current components, one with positive and another one with negative phase shifts. Usually, these phase shifts vanish when bulk etching starts. Current rectification upon track etching is a very frequent phenomenon. Rectification uses to inverse when core etching ends and penumbra etching begins. When the latter ends, rectification largely vanishes. Occasionally, some residual rectification remains which we attribute to the aged polymeric bulk itself. Last not least, we still consider background currents which often emerge transiently during track etching. We could assign them clearly to differences in the electrochemical potential of the liquids on both sides of the etched polymer foils. Transient relaxation effects during the track etching cause their eventually chaotic behaviour.

  18. Relative performance of different types of passive dosimeters employing solid state nuclear track detectors.

    PubMed

    Jamil, K; Al-Ahmady, K K; Fazal-ur-Rehman; Ali, S; Qureshi, A A; Khan, H A

    1997-10-01

    Radon and its progeny, known to be carcinogenic, are a matter of great concern in underground mines and energy conserved air-tight houses. Different shapes of dosimeters using solid state nuclear track detectors (SSNTDs) have been devised to measure radon concentrations in mines and dwellings. Sometimes intercomparison of results is required by various laboratories working with solid state nuclear track detector-based passive dosimeters. The present work includes the determination of various parameters for a set of dosimeters consisting of (1) box-type, (2) pen-type, (3) tube-type, (4) Karlsruhe Diffusion Chamber, and (5) bare-type dosimeters. In this research two types of plastics, allyl-diglycol-carbonate (C12H18O7) and cellulose nitrate (C6H8O8N2) known as CR-39 and CN-85, respectively, have been employed. The detection efficiency for alpha particles from radon and its progeny for CR-39 and CN-85 have been compared. All experiments have been carried out in a custom-designed exposure chamber connected to a radon source. The calibration factors, in terms of Bq m(-3) per unit track density (1.0 cm(-2)) with respect to box-type dosimeter, have been determined for intercomparison and standardization of measured radon concentrations by a set of passive radon dosimeters used in various laboratories of the world.

  19. Cosmic radiation dose in aircraft--a neutron track etch detector.

    PubMed

    Vuković, B; Radolić, V; Miklavcić, I; Poje, M; Varga, M; Planinić, J

    2007-01-01

    Cosmic radiation bombards us at high altitude by ionizing particles. The radiation environment is a complex mixture of charged particles of solar and galactic origin, as well as of secondary particles produced in interaction of the galactic cosmic particles with the nuclei of atmosphere of the Earth. The radiation field at aircraft altitude consists of different types of particles, mainly photons, electrons, positrons and neutrons, with a large energy range. The non-neutron component of cosmic radiation dose aboard ATR 42 and A 320 aircrafts (flight level of 8 and 11 km, respectively) was measured with TLD-100 (LiF:Mg,Ti) detectors and the Mini 6100 semiconductor dosimeter. The estimated occupational effective dose for the aircraft crew (A 320) working 500 h per year was 1.64 mSv. Other experiments, or dose rate measurements with the neutron dosimeter, consisting of LR-115 track detector and boron foil BN-1 or 10B converter, were performed on five intercontinental flights. Comparison of the dose rates of the non-neutron component (low LET) and the neutron one (high LET) of the radiation field at the aircraft flight level showed that the neutron component carried about 50% of the total dose. The dose rate measurements on the flights from the Middle Europe to the South and Middle America, then to Korea and Japan, showed that the flights over or near the equator region carried less dose rate; this was in accordance with the known geomagnetic latitude effect.

  20. TrackEtching - A Java based code for etched track profile calculations in SSNTDs

    NASA Astrophysics Data System (ADS)

    Muraleedhara Varier, K.; Sankar, V.; Gangadathan, M. P.

    2017-09-01

    A java code incorporating a user friendly GUI has been developed to calculate the parameters of chemically etched track profiles of ion-irradiated solid state nuclear track detectors. Huygen's construction of wavefronts based on secondary wavelets has been used to numerically calculate the etched track profile as a function of the etching time. Provision for normal incidence and oblique incidence on the detector surface has been incorporated. Results in typical cases are presented and compared with experimental data. Different expressions for the variation of track etch rate as a function of the ion energy have been utilized. The best set of values of the parameters in the expressions can be obtained by comparing with available experimental data. Critical angle for track development can also be calculated using the present code.

  1. Sacramento Regional Response Guide to Radiation Emergencies

    DTIC Science & Technology

    2006-09-01

    emergency operations. Additionally, the utilization of thermo luminescence dosimeters ( TLD ) may be beneficial to track long term exposure for...a radiation area. Stakeholder agency emergency response equipment have been issued electronic dosimeters The purpose of the radiation dosimeter is...Incident.............................................................................84 2. Detection/ Dosimeter Equipment

  2. CR-39 track etching and blow-up method

    DOEpatents

    Hankins, Dale E.

    1987-01-01

    This invention is a method of etching tracks in CR-39 foil to obtain uniformly sized tracks. The invention comprises a step of electrochemically etching the foil at a low frequency and a "blow-up" step of electrochemically etching the foil at a high frequency.

  3. Ion track etching revisited: I. Correlations between track parameters in aged polymers

    NASA Astrophysics Data System (ADS)

    Fink, D.; Muñoz H., G.; García A., H.; Vacik, J.; Hnatowicz, V.; Kiv, A.; Alfonta, L.

    2018-04-01

    Some yet poorly understood problems of etching of pristine and swift heavy ion track-irradiated aged polymers were treated, by applying conductometry across the irradiated foils during etching. The onset times of etchant penetration across pristine foils, and the onset times of the different etched track regimes in irradiated foils were determined for polymers of various proveniences, fluences and ages, as well as their corresponding etching speeds. From the results, correlations of the parameters with each other were deduced. The normalization of these parameters enables one to compare irradiated polymer foils of different origin and treatment with one another. In a number of cases, also polymeric gel formation and swelling occur which influence the track etching behaviour. The polymer degradation during aging influences the track etching parameters, which differ from each other on both sides of the foils. With increasing sample age, these differences increase.

  4. Effects of etching time on alpha tracks in solid state nuclear track detectors.

    PubMed

    Gillmore, Gavin; Wertheim, David; Crust, Simon

    2017-01-01

    Solid State Nuclear Track Detectors (SSNTDs) are used extensively for monitoring alpha particle radiation, neutron flux and cosmic ray radiation. Radon gas inhalation is regarded as being a significant contributory factor to lung cancer deaths in the UK each year. Gas concentrations are often monitored using CR39 based SSNTDs as the natural decay of radon results in alpha particles which form tracks in these detectors. Such tracks are normally etched for about 4h to enable microscopic analysis. This study examined the effect of etching time on the appearance of alpha tracks in SSNTDs by collecting 2D and 3D image datasets using laser confocal microscope imaging techniques. Etching times of 2 to 4h were compared and marked differences were noted in resultant track area. The median equivalent diameters of tracks were 20.2, 30.2 and 38.9μm for etching at 2, 3 and 4h respectively. Our results indicate that modern microscope imaging can detect and image the smaller size tracks seen for example at 3h etching time. Shorter etching times may give rise to fewer coalescing tracks although there is a balance to consider as smaller track sizes may be more difficult to image. Thus etching for periods of less than 4h clearly merits further investigation as this approach has the potential to improve accuracy in assessing the number of tracks. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Ionization chamber dosimeter

    DOEpatents

    Renner, Tim R.; Nyman, Mark A.; Stradtner, Ronald

    1991-01-01

    A method for fabricating an ion chamber dosimeter collecting array of the type utilizing plural discrete elements formed on a uniform collecting surface which includes forming a thin insulating layer over an aperture in a frame having surfaces, forming a predetermined pattern of through holes in the layer, plating both surfaces of the layer and simultaneously tilting and rotating the frame for uniform plate-through of the holes between surfaces. Aligned masking and patterned etching of the surfaces provides interconnects between the through holes and copper leads provided to external circuitry.

  6. Vapor etching of nuclear tracks in dielectric materials

    DOEpatents

    Musket, Ronald G.; Porter, John D.; Yoshiyama, James M.; Contolini, Robert J.

    2000-01-01

    A process involving vapor etching of nuclear tracks in dielectric materials for creating high aspect ratio (i.e., length much greater than diameter), isolated cylindrical holes in dielectric materials that have been exposed to high-energy atomic particles. The process includes cleaning the surface of the tracked material and exposing the cleaned surface to a vapor of a suitable etchant. Independent control of the temperatures of the vapor and the tracked materials provide the means to vary separately the etch rates for the latent track region and the non-tracked material. As a rule, the tracked regions etch at a greater rate than the non-tracked regions. In addition, the vapor-etched holes can be enlarged and smoothed by subsequent dipping in a liquid etchant. The 20-1000 nm diameter holes resulting from the vapor etching process can be useful as molds for electroplating nanometer-sized filaments, etching gate cavities for deposition of nano-cones, developing high-aspect ratio holes in trackable resists, and as filters for a variety of molecular-sized particles in virtually any liquid or gas by selecting the dielectric material that is compatible with the liquid or gas of interest.

  7. Etching fission tracks in zircons

    USGS Publications Warehouse

    Naeser, C.W.

    1969-01-01

    A new technique has been developed whereby fission tracks can be etched in zircon with a solution of sodium hydroxide at 220??C. Etching time varied between 15 minutes and 5 hours. Colored zircon required less etching time than the colorless varieties.

  8. Incident angle dependence of proton response of CR-39 (TS-16) track detector

    NASA Technical Reports Server (NTRS)

    Oda, K.; Csige, I.; Yamauchi, T.; Miyake, H.; Benton, E. V.

    1993-01-01

    The proton response of the TS-16 type of CR-39 plastic nuclear track detector has been studied with accelerated and fast neutron induced protons in vacuum and in air. The diameters of etched tracks were measured as a function of etching time and the etch rate ratio and the etch induction layer were determined from the growth curve of the diameter using a variable etch rate ratio model. In the case of the accelerated protons in vacuum an anomalous incident angle dependence of the response is observed.

  9. Xe- and U-tracks in apatite and muscovite near the etching threshold

    NASA Astrophysics Data System (ADS)

    Wauschkuhn, Bastian; Jonckheere, Raymond; Ratschbacher, Lothar

    2015-01-01

    Ion irradiation of a wedge-shaped Durango apatite backed by a mica detector allows investigating ion track ranges and etching properties at different points along the tracks. Transmission profiles obtained by irradiation with 2 × 106 cm-2 11.1 MeV/amu 132Xe and 2 × 106 cm-2 11.1 MeV/amu 238U parallel to the apatite c-axis correspond to ranges calculated with SRIM (Xe: 76.3 μm; U: 81.1 μm). However, the measured profiles show much greater etchable track-length variations than the calculated longitudinal straggles. The probable cause is that the length deficit exhibits significant variation from track to track. The measured length deficit in muscovite is in agreement with most existing data. In contrast, the length deficit in apatite appears to be close to zero, which is in conflict with all earlier estimates. This probably results from the etching properties of the apatite basal face, which permit surface-assisted sub-threshold etching of track sections in the nuclear stopping regime. These sections are not accessible from the opposite direction, i.e. by etching towards the endpoint of the tracks or in the direction of the ion beam. This conclusion is supported by the fact that linear dislocations are revealed in apatite basal faces and by the observation of imperfect etch pits that are separated from the etched ion track channel by a section that appears unetched under the microscope.

  10. Reduced Noise UV Enhancement of Etch Rates for Nuclear Tracks in CR-39

    NASA Astrophysics Data System (ADS)

    Sheets, Rebecca; Clarkson, David; Ume, Rubab; Regan, Sean; Sangster, Craig; Padalino, Stephen; McLean, James

    2016-10-01

    The use of CR-39 plastic as a Solid State Nuclear Track Detector is an effective technique for obtaining data in high-energy particle experiments including inertial confinement fusion. To reveal particle tracks after irradiation, CR-39 is chemically etched in NaOH at 80°C for 6 hours, producing micron-scale signal pits at the nuclear track sites. Using CR-39 irradiated with 5.4 MeV alpha particles and 1.0 MeV protons, we show that exposing the CR-39 to high intensity UV light before etching, with wavelengths between 240 nm and 350 nm, speeds the etch process. Elevated temperatures during UV exposure amplifies this effect, with etch rates up to 50% greater than unprocessed conditions. CR-39 pieces exposed to UV light and heat can also exhibit heightened levels of etch-induced noise (surface features not caused by nuclear particles). By illuminating the CR-39 from the side opposite to the tracks, a similar level of etch enhancement was obtained with little to no noise. The effective wavelength range is reduced, due to strong attenuation of shorter wavelengths. Funded in part by a LLE contract through the DOE.

  11. On the influence of etch pits in the overall dissolution rate of apatite basal sections

    NASA Astrophysics Data System (ADS)

    Alencar, Igor; Guedes, Sandro; Palissari, Rosane; Hadler, Julio C.

    2015-09-01

    Determination of efficiencies for particle detection plays a central role for proper estimation of reaction rates. If chemical etching is employed in the revelation of latent particle tracks in solid-state detectors, dissolution rates and etchable lengths are important factors governing the revelation and observation. In this work, the mask method, where a reference part of the sample is protected during dissolution, was employed to measure step heights in basal sections of apatite etched with a nitric acid, HNO, solution at a concentration of 1.1 M and a temperature of 20 °C. We show a drastic increase in the etching velocity as the number of etch pits in the surface augments, in accordance with the dissolution stepwave model, where the outcrop of each etch pit generates a continuous sequence of stepwaves. The number of etch pits was varied by irradiation with neutrons and perpendicularly incident heavy ions. The size dependence of the etch-pit opening with etching duration for ion (200-300 MeV 152Sm and 238U) tracks was also investigated. There is no distinction for the etch pits between the different ions, and the dissolution seems to be governed by the opening velocity when a high number of etch pits are present in the surface. Measurements of the etchable lengths of these ion tracks show an increase in these lengths when samples are not pre-annealed before irradiation. We discuss the implications of these findings for fission-track modelling.

  12. Accelerating CR-39 Track Detector Processing by Utilizing UV

    NASA Astrophysics Data System (ADS)

    Sparling, Jonathan; Padalino, Stephen; McLean, James; Sangster, Craig; Regan, Sean

    2017-10-01

    The use of CR-39 plastic as a Solid State Nuclear Track Detector is an effective technique for obtaining data in high energy particle experiments including inertial confinement fusion. To reveal particle tracks after irradiation, CR-39 is chemically etched in NaOH at 80°C, producing micron-scale signal pits at the nuclear track sites. It has been shown that illuminating CR-39 with UV light prior to etching increases bulk and track etch rates, especially when combined with elevated temperature. Spectroscopic analysis for amorphous solids has helped identify which UV wavelengths are most effective at enhancing etch rates. Absorption peaks found in the near infrared range provide for efficient sample heating, and may allow targeting cooperative IR-UV chemistry. Avoiding UV induced noise can be achieved through variations in absorption depths with wavelength. Vacuum drying and water absorption tests allow measurement of the resulting variation of bulk etch rate with depth. Funded in part by the NSF and an Department of Energy Grant through the Lab of Laser Energetics.

  13. Model of wet chemical etching of swift heavy ions tracks

    NASA Astrophysics Data System (ADS)

    Gorbunov, S. A.; Malakhov, A. I.; Rymzhanov, R. A.; Volkov, A. E.

    2017-10-01

    A model of wet chemical etching of tracks of swift heavy ions (SHI) decelerated in solids in the electronic stopping regime is presented. This model takes into account both possible etching modes: etching controlled by diffusion of etchant molecules to the etching front, and etching controlled by the rate of a reaction of an etchant with a material. Olivine ((Mg0.88Fe0.12)2SiO4) crystals were chosen as a system for modeling. Two mechanisms of chemical activation of olivine around the SHI trajectory are considered. The first mechanism is activation stimulated by structural transformations in a nanometric track core, while the second one results from neutralization of metallic atoms by generated electrons spreading over micrometric distances. Monte-Carlo simulations (TREKIS code) form the basis for the description of excitations of the electronic subsystem and the lattice of olivine in an SHI track at times up to 100 fs after the projectile passage. Molecular dynamics supplies the initial conditions for modeling of lattice relaxation for longer times. These simulations enable us to estimate the effects of the chemical activation of olivine governed by both mechanisms. The developed model was applied to describe chemical activation and the etching kinetics of tracks of Au 2.1 GeV ions in olivine. The estimated lengthwise etching rate (38 µm · h-1) is in reasonable agreement with that detected in the experiments (24 µm · h-1).

  14. Measurements of LET distribution and dose equivalent onboard the Space Shuttle IML-2 (STS-65) and S/MM#4 (STS-79).

    PubMed

    Hayashi, T; Doke, T; Kikuchi, J; Sakaguchi, T; Takeuchi, R; Takashima, T; Kobayashi, M; Terasawa, K; Takahashi, K; Watanabe, A; Kyan, A; Hasebe, N; Kashiwagi, T; Ogura, K; Nagaoka, S; Kato, M; Nakano, T; Takahashi, S; Yamanaka, H; Yamaguchi, K; Badhwar, G D

    1997-12-01

    Space radiation dosimetry measurements have been made onboard the Space Shuttle STS-65 in the Second International Microgravity Laboratory (IML-2: 28.5 degrees x 300 km: 14.68 days) and the STS-79 in the 4th Shuttle MIR mission (S/MM#4: 51.6 degrees x 300-400km: 10.2 days). In these measurements, three kinds of detectors were used; one is a newly developed active detector telescope called "Real-time Radiation Monitoring Device (RRMD-I for IML-2 and RRMD-II with improved triggering system for S/MM#4)" utilizing silicon semi-conductor detectors and the other detectors are conventional passive detectors of thermoluminescence dosimeters (TLDs) and CR-39 plastic track detectors. The main contribution to dose equivalent for particles with LET > 5.0 keV/micrometer (IML-2) and LET > 3.5 keV/micrometer (S/MM#4) is seen to be due to galactic cosmic rays (GCRs) and the contribution of the South Atlantic Anomaly (SAA) is less than 5% (IML-2: 28.5 degrees x 300 km) and 15% (S/MM#4: 51.6 degrees x 400 km) in the above RRMD LET detection conditions. For the whole LET range (> 0.2 kev/micrometer) obtained by TLDs and CR-39 in these two typical orbits (a small inclination x low altitude and a large inclination x high altitude), absorbed dose rates range from 94 to 114 microGy/day, dose equivalent rates from 186 to 207 microSv/day and average quality factors from 1.82 to 2.00 depending on the locations and directions of detectors inside the Spacelab at the highly protected IML-2 orbit (28.5 degrees x 300 km), and also, absorbed dose rates range from 290 to 367 microGy/day, dose equivalent rates from 582 to 651 microSv/day and average quality factors from 1.78 to 2.01 depending on the dosimeter packages around the RRMD-II "Detector Unit" at the S/MM#4 orbit (5l.6 degrees x 400km). In general, it is seen that absorbed doses depend on the orbit altitude (SAA trapped particles contribution dominant) and dose equivalents on the orbit inclination (GCR contribution dominant). The LET distributions obtained by two different types of active and passive detectors, RRMDs and CR-39, are in good agreement for LET of 15 - 200 kev/micrometer and difference of these distributions in the regions of LET < 15 kev/micrometer and LET > 200 kev/micrometer can be explained by considering characteristics of CR-39 etched track formation especially for the low LET tracks and chemical etching conditions.

  15. Measurements of LET distribution and dose equivalent onboard the Space Shuttle IML-2 (STS-65) and S/MM#4 (STS-79)

    NASA Technical Reports Server (NTRS)

    Hayashi, T.; Doke, T.; Kikuchi, J.; Sakaguchi, T.; Takeuchi, R.; Takashima, T.; Kobayashi, M.; Terasawa, K.; Takahashi, K.; Watanabe, A.; hide

    1997-01-01

    Space radiation dosimetry measurements have been made onboard the Space Shuttle STS-65 in the Second International Microgravity Laboratory (IML-2: 28.5 degrees x 300 km: 14.68 days) and the STS-79 in the 4th Shuttle MIR mission (S/MM#4: 51.6 degrees x 300-400km: 10.2 days). In these measurements, three kinds of detectors were used; one is a newly developed active detector telescope called "Real-time Radiation Monitoring Device (RRMD-I for IML-2 and RRMD-II with improved triggering system for S/MM#4)" utilizing silicon semi-conductor detectors and the other detectors are conventional passive detectors of thermoluminescence dosimeters (TLDs) and CR-39 plastic track detectors. The main contribution to dose equivalent for particles with LET > 5.0 keV/micrometer (IML-2) and LET > 3.5 keV/micrometer (S/MM#4) is seen to be due to galactic cosmic rays (GCRs) and the contribution of the South Atlantic Anomaly (SAA) is less than 5% (IML-2: 28.5 degrees x 300 km) and 15% (S/MM#4: 51.6 degrees x 400 km) in the above RRMD LET detection conditions. For the whole LET range (> 0.2 kev/micrometer) obtained by TLDs and CR-39 in these two typical orbits (a small inclination x low altitude and a large inclination x high altitude), absorbed dose rates range from 94 to 114 microGy/day, dose equivalent rates from 186 to 207 microSv/day and average quality factors from 1.82 to 2.00 depending on the locations and directions of detectors inside the Spacelab at the highly protected IML-2 orbit (28.5 degrees x 300 km), and also, absorbed dose rates range from 290 to 367 microGy/day, dose equivalent rates from 582 to 651 microSv/day and average quality factors from 1.78 to 2.01 depending on the dosimeter packages around the RRMD-II "Detector Unit" at the S/MM#4 orbit (5l.6 degrees x 400km). In general, it is seen that absorbed doses depend on the orbit altitude (SAA trapped particles contribution dominant) and dose equivalents on the orbit inclination (GCR contribution dominant). The LET distributions obtained by two different types of active and passive detectors, RRMDs and CR-39, are in good agreement for LET of 15 - 200 kev/micrometer and difference of these distributions in the regions of LET < 15 kev/micrometer and LET > 200 kev/micrometer can be explained by considering characteristics of CR-39 etched track formation especially for the low LET tracks and chemical etching conditions.

  16. Two new methods to increase the contrast of track-etch neutron radiographs

    NASA Technical Reports Server (NTRS)

    Morley, J.

    1973-01-01

    In one method, fluorescent dye is deposited into tracks of radiograph and viewed under ultraviolet light. In second method, track-etch radiograph is placed between crossed polaroid filters, exposed to diffused light and resulting image is projected onto photographic film.

  17. Determination of nuclear tracks parameters on sequentially etched PADC detectors

    NASA Astrophysics Data System (ADS)

    Horwacik, Tomasz; Bilski, Pawel; Koerner, Christine; Facius, Rainer; Berger, Thomas; Nowak, Tomasz; Reitz, Guenther; Olko, Pawel

    Polyallyl Diglycol Carbonate (PADC) detectors find many applications in radiation protection. One of them is the cosmic radiation dosimetry, where PADC detectors measure the linear energy transfer (LET) spectra of charged particles (from protons to heavy ions), supplementing TLD detectors in the role of passive dosemeter. Calibration exposures to ions of known LET are required to establish a relation between parameters of track observed on the detector and LET of particle creating this track. PADC TASTRAK nuclear track detectors were exposed to 12 C and 56 Fe ions of LET in H2 O between 10 and 544 keV/µm. The exposures took place at the Heavy Ion Medical Accelerator (HIMAC) in Chiba, Japan in the frame of the HIMAC research project "Space Radiation Dosimetry-Ground Based Verification of the MATROSHKA Facility" (20P-240). Detectors were etched in water solution of NaOH with three different temperatures and for various etching times to observe the appearance of etched tracks, the evolution of their parameters and the stability of the etching process. The applied etching times (and the solution's concentrations and temperatures) were: 48, 72, 96, 120 hours (6.25 N NaOH, 50 O C), 20, 40, 60, 80 hours (6.25 N NaOH, 60 O C) and 8, 12, 16, 20 hours (7N NaOH, 70 O C). The analysis of the detectors involved planimetric (2D) measurements of tracks' entrance ellipses and mechanical measurements of bulk layer thickness. Further track parameters, like angle of incidence, track length and etch rate ratio were then calculated. For certain tracks, results of planimetric measurements and calculations were also compared with results of optical track profile (3D) measurements, where not only the track's entrance ellipse but also the location of the track's tip could be directly measured. All these measurements have been performed with the 2D/3D measurement system at DLR. The collected data allow to create sets of V(LET in H2 O) calibration curves suitable for short, intermediate and long etching time and will be use during analysis of detectors exposed on the International Space Station during DOSIS and MATROSHKA experiments. The help and support of Yukio Uchihori and Hisashi Kitamura during the irradiations at HIMAC is highly appreciated. This work was supported by the Polish Ministry of Science and Higher Education, grants: No N N505 261535 and No. DWM/N118/ESA/2008.

  18. Particle track identification: application of a new technique to apollo helmets.

    PubMed

    Fleischer, R L; Hart, H R; Giard, W R

    1970-12-11

    The Apollo helmets are being used to record the dose of heavy particles to which astronauts are exposed on space missions. An improved method for examining and identifying the etched tracks of heavy charged particles consists of replicating tracks and measuring the etching rate as a function of position along the track. Tracks have been observed in Apollo helmets that correspond to ionized atoms heavier than iron.

  19. Chemical etching for automatic processing of integrated circuits

    NASA Technical Reports Server (NTRS)

    Kennedy, B. W.

    1981-01-01

    Chemical etching for automatic processing of integrated circuits is discussed. The wafer carrier and loading from a receiving air track into automatic furnaces and unloading onto a sending air track are included.

  20. 76 FR 36386 - Petition for Rulemaking Submitted by Annette User on Behalf of GE Osmonics, Inc.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-22

    ... quantities of polymer (polycarbonate or polyester) track etch (PCTE) membranes that have been irradiated with... State. (f) Polymer track etch membrane containing mixed fission products in individual quantities, each...

  1. On particle track detectors

    NASA Technical Reports Server (NTRS)

    Benton, E. V.; Gruhn, T. A.; Andrus, C. H.

    1973-01-01

    Aqueous sodium hydroxide is widely used to develop charged particle tracks in polycarbonate film, particularly Lexan. The chemical nature of the etching process for this system has been determined. A method employing ultra-violet absorbance was developed for monitoring the concentration of the etch products in solution. Using this method it was possible to study the formation of the etching solution saturated in etch products. It was found that the system super-saturates to a significant extent before precipitation occurs. It was also learned that the system approaches its equilibrium state rather slowly. It is felt that both these phenomena may be due to the presence of surfactant in the solution. In light of these findings, suggestions are given regarding the preparation and maintenance of the saturated etch solution. Two additional research projects, involving automated techniques for particle track analysis and particle identification using AgCl crystals, are briefly summarized.

  2. Computer program TRACK_TEST for calculating parameters and plotting profiles for etch pits in nuclear track materials

    NASA Astrophysics Data System (ADS)

    Nikezic, D.; Yu, K. N.

    2006-01-01

    A computer program called TRACK_TEST for calculating parameters (lengths of the major and minor axes) and plotting profiles in nuclear track materials resulted from light-ion irradiation and subsequent chemical etching is described. The programming steps are outlined, including calculations of alpha-particle ranges, determination of the distance along the particle trajectory penetrated by the chemical etchant, calculations of track coordinates, determination of the lengths of the major and minor axes and determination of the contour of the track opening. Descriptions of the program are given, including the built-in V functions for the two commonly employed nuclear track materials commercially known as LR 115 (cellulose nitrate) and CR-39 (poly allyl diglycol carbonate) irradiated by alpha particles. Program summaryTitle of the program:TRACK_TEST Catalogue identifier:ADWT Program obtainable from:CPC Program Library, Queen's University of Belfast, N. Ireland Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADWT Computer:Pentium PC Operating systems:Windows 95+ Programming language:Fortran 90 Memory required to execute with typical data:256 MB No. of lines in distributed program, including test data, etc.: 2739 No. of bytes in distributed program, including test data, etc.:204 526 Distribution format:tar.gz External subprograms used:The entire code must be linked with the MSFLIB library Nature of problem: Fast heavy charged particles (like alpha particles and other light ions etc.) create latent tracks in some dielectric materials. After chemical etching in aqueous NaOH or KOH solutions, these tracks become visible under an optical microscope. The growth of a track is based on the simultaneous actions of the etchant on undamaged regions (with the bulk etch rate V) and along the particle track (with the track etch rate V). Growth of the track is described satisfactorily by these two parameters ( V and V). Several models have been presented in the past describing the track development, one of which is the model of Nikezic and Yu (2003) [D. Nikezic, K.N. Yu, Three-dimensional analytical determination of the track parameters. Over-etched tracks, Radiat. Meas. 37 (2003) 39-45] used in the present program. The present computer program has been written to calculate coordinates of points on the track wall and to determine other relevant track parameters. Solution method:Coordinates of points on the track wall assuming normal incidence were calculated by using the method as described by Fromm et al. (1988) [M. Fromm, A. Chambaudet, F. Membrey, Data bank for alpha particle tracks in CR39 with energies ranging from 0.5 to 5 MeV recording for various incident angles, Nucl. Tracks Radiat. Meas. 15 (1988) 115-118]. The track is then rotated through the incident angle in order to obtain the coordinates of the oblique track [D. Nikezic, K.N. Yu, Three-dimensional analytical determination of the track parameters. Over-etched tracks, Radiat. Meas. 37 (2003) 39-45; D. Nikezic, Three dimensional analytical determination of the track parameters, Radiat. Meas. 32 (2000) 277-282]. In this way, the track profile in two dimensions (2D) was obtained. In the next step, points in the track wall profile are rotated around the particle trajectory. In this way, circles that outline the track in three dimensions (3D) are obtained. The intersection between the post-etching surface of the detector and the 3D track is the track opening (or the track contour). Coordinates of the track 2D and 3D profiles and the track opening are saved in separate output data files. Restrictions: The program cannot calculate track parameters for the incident angle of exactly 90°. The alpha-particle energy should be smaller than 10 MeV. Furthermore, the program cannot perform calculations for tracks in some extreme cases, such as for very low incident energies or very small incident angles. Additional comments: This is a freeware, but publications arising from using this program should cite the present paper and the paper describing the track growth model [D. Nikezic, K.N. Yu, Three-dimensional analytical determination of the track parameters. Over-etched tracks, Radiat. Meas. 37 (2003) 39-45]. Moreover, the references for the V functions used should also be cited. For the CR-39 detector: Function (1): S.A. Durrani, R.K. Bull, Solid State Nuclear Track Detection. Principles, Methods and Applications, Pergamon Press, 1987. Function (2): C. Brun, M. Fromm, M. Jouffroy, P. Meyer, J.E. Groetz, F. Abel, A. Chambaudet, B. Dorschel, D. Hermsdorf, R. Bretschneider, K. Kadner, H. Kuhne, Intercomparative study of the detection characteristics of the CR-39 SSNTD for light ions: Present status of the Besancon-Dresden approaches, Radiat. Meas. 31 (1999) 89-98. Function (3): K.N. Yu, F.M.F. Ng, D. Nikezic, Measuring depths of sub-micron tracks in a CR-39 detector from replicas using atomic force microscopy, Radiat. Meas. 40 (2005) 380-383. For the LR 115 detector: Function (1): S.A. Durrani, P.F. Green, The effect of etching conditions on the response of LR 115, Nucl. Tracks 8 (1984) 21-24. Function (2): C.W.Y. Yip, D. Nikezic, J.P.Y Ho, K.N. Yu, Chemical etching characteristics for cellulose nitrate, Mat. Chem. Phys. 95 (2005) 307-312. Running time: Order of several minutes, dependent on input parameters and the resolution requested by the user.

  3. Method for correcting for isotope burn-in effects in fission neutron dosimeters

    DOEpatents

    Gold, Raymond; McElroy, William N.

    1988-01-01

    A method is described for correcting for effect of isotope burn-in in fission neutron dosimeters. Two quantities are measured in order to quantify the "burn-in" contribution, namely P.sub.Z',A', the amount of (Z', A') isotope that is burned-in, and F.sub.Z', A', the fissions per unit volume produced in the (Z', A') isotope. To measure P.sub.Z', A', two solid state track recorder fission deposits are prepared from the very same material that comprises the fission neutron dosimeter, and the mass and mass density are measured. One of these deposits is exposed along with the fission neutron dosimeter, whereas the second deposit is subsequently used for observation of background. P.sub.Z', A' is then determined by conducting a second irradiation, wherein both the irradiated and unirradiated fission deposits are used in solid state track recorder dosimeters for observation of the absolute number of fissions per unit volume. The difference between the latter determines P.sub.Z', A' since the thermal neutron cross section is known. F.sub.Z', A' is obtained by using a fission neutron dosimeter for this specific isotope, which is exposed along with the original threshold fission neutron dosimeter to experience the same neutron flux-time history at the same location. In order to determine the fissions per unit volume produced in the isotope (Z', A') as it ingrows during the irradiation, B.sub.Z', A', from these observations, the neutron field must generally be either time independent or a separable function of time t and neutron energy E.

  4. Passive, Low Cost Neutron Detectors for Neutron Diagnostics at the National Ignition Facility

    DTIC Science & Technology

    2013-03-01

    Facility PTFE Polytetrafluoroethylene TLD Thermoluminescent Dosimeter α Conversion Coefficient (Conversion...because they required a large investment in automated track counting equipment. Thermoluminescent dosimeters ( TLDs ) remained as a viable option. They...necessary to predict radiation damage to measurement electronics . Due to programmatic and facility limitations, traditional neutron measurement

  5. A parameterization of nuclear track profiles in CR-39 detector

    NASA Astrophysics Data System (ADS)

    Azooz, A. A.; Al-Nia'emi, S. H.; Al-Jubbori, M. A.

    2012-11-01

    In this work, the empirical parameterization describing the alpha particles’ track depth in CR-39 detectors is extended to describe longitudinal track profiles against etching time for protons and alpha particles. MATLAB based software is developed for this purpose. The software calculates and plots the depth, diameter, range, residual range, saturation time, and etch rate versus etching time. The software predictions are compared with other experimental data and with results of calculations using the original software, TRACK_TEST, developed for alpha track calculations. The software related to this work is freely downloadable and performs calculations for protons in addition to alpha particles. Program summary Program title: CR39 Catalog identifier: AENA_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AENA_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: Copyright (c) 2011, Aasim Azooz Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met • Redistributions of source code must retain the above copyright, this list of conditions and the following disclaimer. • Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution This software is provided by the copyright holders and contributors “as is” and any express or implied warranties, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose are disclaimed. In no event shall the copyright owner or contributors be liable for any direct, indirect, incidental, special, exemplary, or consequential damages (including, but not limited to, procurement of substitute goods or services; loss of use, data, or profits; or business interruption) however caused and on any theory of liability, whether in contract, strict liability, or tort (including negligence or otherwise) arising in any way out of the use of this software, even if advised of the possibility of such damage. No. of lines in distributed program, including test data, etc.: 15598 No. of bytes in distributed program, including test data, etc.: 3933244 Distribution format: tar.gz Programming language: MATLAB. Computer: Any Desktop or Laptop. Operating system: Windows 1998 or above (with MATLAB R13 or above installed). RAM: 512 Megabytes or higher Classification: 17.5. Nature of problem: A new semispherical parameterization of charged particle tracks in CR-39 SSNTD is carried out in a previous paper. This parameterization is developed here into a MATLAB based software to calculate the track length and track profile for any proton or alpha particle energy or etching time. This software is intended to compete with the TRACK_TEST [1] and TRACK_VISION [2] software currently in use by all people working in the field of SSNTD. Solution method: Based on fitting of experimental results of protons and alpha particles track lengths for various energies and etching times to a new semispherical formula with four free fitting parameters, the best set of energy independent parameters were found. These parameters are introduced into the software and the software is programmed to solve the set of equations to calculate the track depth, track etching rate as a function of both time and residual range for particles of normal and oblique incidence, the track longitudinal profile at both normal and oblique incidence, and the three dimensional track profile at normal incidence. Running time: 1-8 s on Pentium (4) 2 GHz CPU, 3 GB of RAM depending on the etching time value References: [1] ADWT_v1_0 Track_Test Computer program TRACK_TEST for calculating parameters and plotting profiles for etch pits in nuclear track materials. D. Nikezic, K.N. Yu Comput. Phys. Commun. 174(2006)160 [2] AEAF_v1_0 TRACK_VISION Computer program TRACK_VISION for simulating optical appearance of etched tracks in CR-39 nuclear track detectors. D. Nikezic, K.N. Yu Comput. Phys. Commun. 178(2008)591

  6. CHARGE SPECTRUM OF HEAVY AND SUPERHEAVY COMPONENTS OF GALACTIC COSMIC RAYS: RESULTS OF THE OLIMPIYA EXPERIMENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alexeev, Victor; Kalinina, Galina; Pavlova, Tatyana, E-mail: aval37@mail.ru, E-mail: gakalin@mail.ru, E-mail: pavlova4tat@mail.ru

    2016-10-01

    The aim of the OLIMPIYA experiment is to search for and identify traces of heavy and superheavy nuclei of galactic cosmic rays (GCR) in olivine crystals from stony–iron meteorites serving as nuclear track detectors. The method is based on layer-by-layer grinding and etching of particle tracks in these crystals. Unlike the techniques of other authors, this annealing-free method uses two parameters: the etching rate along the track ( V {sub etch}) and the total track length ( L ), to identify charge Z of a projectile. A series of irradiations with different swift heavy ions at the accelerator facilities ofmore » GSI (Darmstadt) and IMP (Lanzhou) were performed in order to determine and calibrate the dependence of projectile charge on V {sub etch} and L . To date, one of the most essential results of the experiment is the obtained charge spectrum of GCR nuclei within the range of Z > 40, based on about 11.6 thousand processed tracks. As the result of data processing, 384 nuclei with charges Z ≥ 75 have been identified, including 10 nuclei identified as actinides (90 < Z < 103). Three tracks were identified to be produced by nuclei with charges 113 < Z < 129. Such nuclei may be part of the Island of Stability of transfermium elements.« less

  7. Determination by Small-angle X-ray Scattering of Pore Size Distribution in Nanoporous Track-etched Polycarbonate Membranes

    NASA Astrophysics Data System (ADS)

    Jonas, A. M.; Legras, R.; Ferain, E.

    1998-03-01

    Nanoporous track-etched membranes with narrow pore size distributions and average pore size diameters tunable from 100 to 1000 Åare produced by the chemical etching of latent tracks in polymer films after irradiation by a beam of accelerated heavy ions. Nanoporous membranes are used for highly demanding filtration purposes, or as templates to obtain metallic or polymeric nanowires (L. Piraux et al., Nucl. Instr. Meth. Phys. Res. 1997, B131, 357). Such applications call for developments in nanopore size characterization techniques. In this respect, we report on the characterization by small-angle X-ray scattering (SAXS) of nanopore size distribution (nPSD) in polycarbonate track-etched membranes. The obtention of nPSD requires inverting an ill-conditioned inhomogeneous equation. We present different numerical routes to overcome the amplification of experimental errors in the resulting solutions, including a regularization technique allowing to obtain the nPSD without a priori knowledge of its shape. The effect of deviations from cylindrical pore shape on the resulting distributions are analyzed. Finally, SAXS results are compared to results obtained by electron microscopy and conductometry.

  8. The Influence of Pores in Track Etched Membranes and Prepared on their Base Polymer/Metal Composites on their Fracture Strength

    NASA Astrophysics Data System (ADS)

    Gumirova, V. N.; Bedin, S. A.; Abdurashidova, G. S.; Razumovskaya, I. V.

    The strength of track etched membranes and prepared on their base polymer/metal composites is analysed in point of view of the pores form evolution during the extension and the interaction of elastic mechanical fields on closely positioned pores. The stress-strain curves for track membranes and composites PET/Cu are demonstrated for pore density 1.2×107сm-2 and diameters from 0.06 μm to 2.9 μm

  9. Investigation of thermoluminescence properties of mobile phone screen displays as dosimeters for accidental dosimetry

    NASA Astrophysics Data System (ADS)

    Mrozik, Anna; Marczewska, B.; Bilski, P.; Kłosowski, M.

    2014-11-01

    The rapid assessment of the radiation dose after unexpected exposure is a task of accidental dosimetry. In case of a radiological accident glasses originating from mobile phone screens, placed usually near the human body, could be used as emergency thermoluminescent (TL) personal dosimeters. The time between irradiation and TL readout is crucial and therefore preparation of the mobile phone screens and their readout conditions should be optimized. The influence of the samples etching, bleaching and selection of the optical filters based on measurement of the emission spectrum of irradiated glass samples during heating for different types of mobile phones were the subjects of our investigation. Obtained results showed that glasses extracted from different brands of mobile phones have different dosimetric properties but all of them give a luminescent signal which can be used to calculate the dose.

  10. Image processing analysis of nuclear track parameters for CR-39 detector irradiated by thermal neutron

    NASA Astrophysics Data System (ADS)

    Al-Jobouri, Hussain A.; Rajab, Mustafa Y.

    2016-03-01

    CR-39 detector which covered with boric acid (H3Bo3) pellet was irradiated by thermal neutrons from (241Am - 9Be) source with activity 12Ci and neutron flux 105 n. cm-2. s-1. The irradiation times -TD for detector were 4h, 8h, 16h and 24h. Chemical etching solution for detector was sodium hydroxide NaOH, 6.25N with 45 min etching time and 60 C˚ temperature. Images of CR-39 detector after chemical etching were taken from digital camera which connected from optical microscope. MATLAB software version 7.0 was used to image processing. The outputs of image processing of MATLAB software were analyzed and found the following relationships: (a) The irradiation time -TD has behavior linear relationships with following nuclear track parameters: i) total track number - NT ii) maximum track number - MRD (relative to track diameter - DT) at response region range 2.5 µm to 4 µm iii) maximum track number - MD (without depending on track diameter - DT). (b) The irradiation time -TD has behavior logarithmic relationship with maximum track number - MA (without depending on track area - AT). The image processing technique principally track diameter - DT can be take into account to classification of α-particle emitters, In addition to the contribution of these technique in preparation of nano- filters and nano-membrane in nanotechnology fields.

  11. Solid-State Nanopore.

    PubMed

    Yuan, Zhishan; Wang, Chengyong; Yi, Xin; Ni, Zhonghua; Chen, Yunfei; Li, Tie

    2018-02-20

    Solid-state nanopore has captured the attention of many researchers due to its characteristic of nanoscale. Now, different fabrication methods have been reported, which can be summarized into two broad categories: "top-down" etching technology and "bottom-up" shrinkage technology. Ion track etching method, mask etching method chemical solution etching method, and high-energy particle etching and shrinkage method are exhibited in this report. Besides, we also discussed applications of solid-state nanopore fabrication technology in DNA sequencing, protein detection, and energy conversion.

  12. Solid-State Nanopore

    NASA Astrophysics Data System (ADS)

    Yuan, Zhishan; Wang, Chengyong; Yi, Xin; Ni, Zhonghua; Chen, Yunfei; Li, Tie

    2018-02-01

    Solid-state nanopore has captured the attention of many researchers due to its characteristic of nanoscale. Now, different fabrication methods have been reported, which can be summarized into two broad categories: "top-down" etching technology and "bottom-up" shrinkage technology. Ion track etching method, mask etching method chemical solution etching method, and high-energy particle etching and shrinkage method are exhibited in this report. Besides, we also discussed applications of solid-state nanopore fabrication technology in DNA sequencing, protein detection, and energy conversion.

  13. Dependence of yield of nuclear track-biosensors on track radius and analyte concentration

    NASA Astrophysics Data System (ADS)

    García-Arellano, H.; Muñoz H., G.; Fink, D.; Vacik, J.; Hnatowicz, V.; Alfonta, L.; Kiv, A.

    2018-04-01

    In swift heavy ion track-based polymeric biosensor foils with incorporated enzymes one exploits the correlation between the analyte concentration and the sensor current, via the enrichment of charged enzymatic reaction products in the track's confinement. Here we study the influence of the etched track radius on the biosensor's efficiency. These sensors are analyte-specific only if both the track radii and the analyte concentration exceed certain threshold values of ∼15 nm and ∼10-6 M (for glucose sensing), respectively. Below these limits the sensor signal stems un-specifically from any charge carrier. In its proper working regime, the inner track walls are smoothly covered by enzymes and the efficiency is practically radius independent. Theory shows that the measured current should be slightly sub-proportional to the analyte concentration; the measurements roughly reconfirm this. Narrower tracks (∼5-15 nm radius) with reduced enzyme coverage lead to decreasing efficiency. Tiny signals visible when the tracks are etched to effective radii between 0 and ∼5 nm are tentatively ascribed to enzymes bonded to surface-near nano-cracks in the polymer foil, resulting from its degradation due to aging, rather than to the tracks. Precondition for this study was the accurate determination of the etched track radii, which is possible only by a nanofluidic approach. This holds to some extent even for enzyme-covered tracks, though in this case most of the wall charges are compensated by enzyme bonding.

  14. Track analysis of laser-illuminated etched track detectors using an opto-digital imaging system

    NASA Astrophysics Data System (ADS)

    Eghan, Moses J.; Buah-Bassuah, Paul K.; Oppon, Osborne C.

    2007-11-01

    An opto-digital imaging system for counting and analysing tracks on a LR-115 detector is described. One batch of LR-115 track detectors was irradiated with Am-241 for a determined period and distance for linearity test and another batch was exposed to radon gas. The laser-illuminated etched track detector area was imaged, digitized and analysed by the system. The tracks that were counted on the opto-digital system with the aid of media cybernetics software as well as spark gap counter showed comparable track density results ranging between 1500 and 2750 tracks cm-2 and 65 tracks cm-2 in the two different batch detector samples with 0.5% and 1% track counts, respectively. Track sizes of the incident alpha particles from the radon gas on the LR-115 detector demonstrating different track energies are statistically and graphically represented. The opto-digital imaging system counts and measures other track parameters at an average process time of 3-5 s.

  15. [Study on focusing chromatographic simultaneous determinations of 226Ra and its daughter nuclides by means of solid state alpha-tracks detection and beta-autoradiography (author's transl)].

    PubMed

    Furushima, K; Shinagawa, M

    1980-09-01

    In order to detect to radioactive band on the paper strip developed by focusing chromatography, plate-making-film was used for the autoradiography and beta-spots were photographed. Thereafter the film was etched with sodium hydroxide solution to find the alpha-tracks. Paper strip used for the sample was prepared by the precipitation focusing chromatography of 226Ra and its daughter nuclides using HCl-KF solution as a developer. The film used was not high in its beta-sensitivity, but because of its high resolution good photographic results were obtained according to the intensity of beta-activity when the proper conditions of photographic development were fulfilled. The simple alpha-spectrometry was made possible by counting the numbers of tracks according to the etching depth of the film. The film was hard and thick enough for etching with 6M sodium hydroxide solution at 50 degrees C for more than 50 hrs to measure the depth of tracks.

  16. Instrument performance of a radon measuring system with the alpha-track detection technique.

    PubMed

    Tokonami, S; Zhuo, W; Ryuo, H; Yonehara, H; Yamada, Y; Shimo, M

    2003-01-01

    An instrument performance test has been carried out for a radon measuring system made in Hungary. The system measures radon using the alpha-track detection technique. It consists of three parts: the passive detector, the etching unit and the evaluation unit. A CR-39 detector is used as the radiation detector. Alpha-track reading and data analysis are carried out after chemical etching. The following subjects were examined in the present study: (1) radon sensitivity, (2) performance of etching and evaluation processes and (3) thoron sensitivity. The radon sensitivity of 6.9 x 10(-4) mm(-2) (Bq m(-3) d)(-1) was acceptable for practical application. The thoron sensitivity was estimated to be as low as 3.3 x 10(-5) mm(-2) (Bq m(-3) d)(-1) from the experimental study.

  17. Track-Etched Magnetic Micropores for Immunomagnetic Isolation of Pathogens

    PubMed Central

    Muluneh, Melaku; Shang, Wu

    2014-01-01

    A microfluidic chip is developed to selectively isolate magnetically tagged cells from heterogeneous suspensions, the track-etched magnetic micropore (TEMPO) filter. The TEMPO consists of an ion track-etched polycarbonate membrane coated with soft magnetic film (Ni20Fe80). In the presence of an applied field, provided by a small external magnet, the filter becomes magnetized and strong magnetic traps are created along the edges of the micropores. In contrast to conventional microfluidics, fluid flows vertically through the porous membrane allowing large flow rates while keeping the capture rate high and the chip compact. By utilizing track-etching instead of conventional semiconductor fabrication, TEMPOs can be fabricated with microscale pores over large areas A > 1 cm2 at little cost (< 5 ¢ cm−2). To demonstrate the utility of this platform, a TEMPO with 5 μm pore size is used to selectively and rapidly isolate immunomagnetically targeted Escherichia coli from heterogeneous suspensions, demonstrating enrichment of ζ > 500 at a flow rate of Φ = 5 mL h−1. Furthermore, the large density of micropores (ρ = 106 cm−2) allows the TEMPO to sort E. coli from unprocessed environmental and clinical samples, as the blockage of a few pores does not significantly change the behavior of the device. PMID:24535921

  18. Effect of [gamma]-irradiation on latent tracks of polyethylene terephthalate (PET) film

    NASA Astrophysics Data System (ADS)

    Hiroki, A.; Asano, M.; Yamaki, T.; Yoshida, M.

    2005-04-01

    The pre-treatment effect of γ-irradiation on latent tracks of polyethylene terephthalate (PET) films bombarded with swift heavy ions was investigated by electric conductometry and scanning electron microscope (SEM) observation. The Xe-ion bombarded PET films were etched for 6 h in 0.2 M NaOH aqueous solution at 70 °C to prepare track-etched membranes. As γ-irradiation doses increased in the range of 0-160 kGy, the surface pore diameter obtained by SEM observation decreased while that obtained by conductometry became large. This inconsistent result between the two methods was due to an increase in the crosslinked region in the latent tracks caused by γ-irradiation.

  19. Provenance studies by fission-track dating of zircon-etching and counting procedures

    USGS Publications Warehouse

    Naeser, N.D.; Zeitler, P.K.; Naeser, C.W.; Cerveny, P.F.

    1987-01-01

    In sedimentary rocks that have not been heated to high enough temperatures to anneal fission tracks in zircon (greater than ≈ 160°C), fission-track ages of individual detrital zircon grains provide valuable information about the source rocks eroded to form the sediments. The success of such studies depends, however, on the degree to which the ages determined from the detrital suite accurately portray the range of grain ages that are present in the suite. This in turn depends to a large extent on using counting and, in particular, etching procedures that permit proper sampling of grains with a wide range of age and uranium concentrations. Results are reported here of an experimental study of a ‘detrital’ zircon suite manufactured from several zircon populations of known age. This study suggests that multiple etches are required when a complete spectrum of ages in a zircon suite is desired.

  20. Provenance studies by fission-track dating of zircon-etching and counting procedures

    USGS Publications Warehouse

    Naeser, Nancy D.; Zeitler, Peter K.; Naeser, Charles W.; Cerveny, Philip F.

    1987-01-01

    In sedimentary rocks that have not been heated to high enough temperatures to anneal fission tracks in zircon (greater than approximately equals 160 degree C), fission-track ages of individual detrital zircon grains provide valuable information about the source rocks eroded to form the sediments. The success of such studies depends, however, on the degree to which the ages determined from the detrital suite accurately portray the range of grain ages that are present in the suite. This in turn depends to a large extent on using counting and, in particular, etching procedures that permit proper sampling of grains with a wide range of age and uranium concentrations. Results are reported here of an experimental study of a 'detrital' zircon suite manufactured from several zircon populations of known age. This study suggests that multiple etches are required when a complete spectrum of ages in a zircon suite is desired.

  1. Investigation of Nitride Morphology After Self-Aligned Contact Etch

    NASA Technical Reports Server (NTRS)

    Hwang, Helen H.; Keil, J.; Helmer, B. A.; Chien, T.; Gopaladasu, P.; Kim, J.; Shon, J.; Biegel, Bryan (Technical Monitor)

    2001-01-01

    Self-Aligned Contact (SAC) etch has emerged as a key enabling technology for the fabrication of very large-scale memory devices. However, this is also a very challenging technology to implement from an etch viewpoint. The issues that arise range from poor oxide etch selectivity to nitride to problems with post etch nitride surface morphology. Unfortunately, the mechanisms that drive nitride loss and surface behavior remain poorly understood. Using a simple langmuir site balance model, SAC nitride etch simulations have been performed and compared to actual etched results. This approach permits the study of various etch mechanisms that may play a role in determining nitride loss and surface morphology. Particle trajectories and fluxes are computed using Monte-Carlo techniques and initial data obtained from double Langmuir probe measurements. Etched surface advancement is implemented using a shock tracking algorithm. Sticking coefficients and etch yields are adjusted to obtain the best agreement between actual etched results and simulated profiles.

  2. Image processing analysis of nuclear track parameters for CR-39 detector irradiated by thermal neutron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Al-Jobouri, Hussain A., E-mail: hahmed54@gmail.com; Rajab, Mustafa Y., E-mail: mostafaheete@gmail.com

    CR-39 detector which covered with boric acid (H{sub 3}Bo{sub 3}) pellet was irradiated by thermal neutrons from ({sup 241}Am - {sup 9}Be) source with activity 12Ci and neutron flux 10{sup 5} n. cm{sup −2}. s{sup −1}. The irradiation times -T{sub D} for detector were 4h, 8h, 16h and 24h. Chemical etching solution for detector was sodium hydroxide NaOH, 6.25N with 45 min etching time and 60 C° temperature. Images of CR-39 detector after chemical etching were taken from digital camera which connected from optical microscope. MATLAB software version 7.0 was used to image processing. The outputs of image processing of MATLABmore » software were analyzed and found the following relationships: (a) The irradiation time -T{sub D} has behavior linear relationships with following nuclear track parameters: i) total track number - N{sub T} ii) maximum track number - MRD (relative to track diameter - D{sub T}) at response region range 2.5 µm to 4 µm iii) maximum track number - M{sub D} (without depending on track diameter - D{sub T}). (b) The irradiation time -T{sub D} has behavior logarithmic relationship with maximum track number - M{sub A} (without depending on track area - A{sub T}). The image processing technique principally track diameter - D{sub T} can be take into account to classification of α-particle emitters, In addition to the contribution of these technique in preparation of nano- filters and nano-membrane in nanotechnology fields.« less

  3. Attachment and spreadout study of 3T3 cells onto PP track etched films

    NASA Astrophysics Data System (ADS)

    Smolko, Eduardo; Mazzei, Ruben; Tadey, Daniel; Lombardo, Daniel

    2001-12-01

    Polymer surface modifications are obtained by the application of radiation treatments and other physico-chemical methods: fission fragment (ff) irradiation and etching. The biocompatibility of the surface is then observed by cell seeding and cell adhesion experiments. Approaches to improvement of the cell adhesion are obtained by different methods: for example, in PS, cell adhesion is improved after ion implantation; in PMMA, after bombarding the polymer, the surface is reconditioned with surfactants and proteins and in PVDF, cell adhesion is assayed on nuclear tracks membranes. In this work, we obtained important cell adhesion improvements in PP films by irradiation with swift heavy ions and subsequent etching of the nuclear tracks. We use BOPP (isotactic -25 μm thickness). Irrradiations were performed with a Cf-252 californium ff source. The source has a heavy ff and a light one, with 160-200 MeV energy divided among them corresponding to ff energies between 1 and 2 MeV/amu. A chemical etching procedure consisting of a solution of sulphuric acid and chromium three oxide at 85 °C was used. The 3T3 NIH fibroblast cell line was used for the cell adhesion experiment. Here we report for the first time, the results of a series of experiments by varying the ff fluence and the etching time showing that attachment and spreadout of cells are very much improved in this cell line according to the number of pores and the pore size.

  4. Diffusion kinetics of the glucose/glucose oxidase system in swift heavy ion track-based biosensors

    NASA Astrophysics Data System (ADS)

    Fink, Dietmar; Vacik, Jiri; Hnatowicz, V.; Muñoz Hernandez, G.; Garcia Arrelano, H.; Alfonta, Lital; Kiv, Arik

    2017-05-01

    For understanding of the diffusion kinetics and their optimization in swift heavy ion track-based biosensors, recently a diffusion simulation was performed. This simulation aimed at yielding the degree of enrichment of the enzymatic reaction products in the highly confined space of the etched ion tracks. A bunch of curves was obtained for the description of such sensors that depend only on the ratio of the diffusion coefficient of the products to that of the analyte within the tracks. As hitherto none of these two diffusion coefficients is accurately known, the present work was undertaken. The results of this paper allow one to quantify the previous simulation and hence yield realistic predictions of glucose-based biosensors. At this occasion, also the influence of the etched track radius on the diffusion coefficients was measured and compared with earlier prediction.

  5. Mass spectrometry analysis of etch products from CR-39 plastic irradiated by heavy ions

    NASA Astrophysics Data System (ADS)

    Kodaira, S.; Nanjo, D.; Kawashima, H.; Yasuda, N.; Konishi, T.; Kurano, M.; Kitamura, H.; Uchihori, Y.; Naka, S.; Ota, S.; Ideguchi, Y.; Hasebe, N.; Mori, Y.; Yamauchi, T.

    2012-09-01

    As a feasibility study, gas chromatography-mass spectrometry (GC-MS) and matrix-assisted laser desorption ionization-mass spectrometry (MALDI-MS) have been applied to analyze etch products of CR-39 plastic (one of the most frequently used solid states nuclear track detector) for the understanding of track formation and etching mechanisms by heavy ion irradiation. The etch products of irradiated CR-39 dissolved in sodium hydroxide solution (NaOH) contain radiation-induced fragments. For the GC-MS analysis, we found peaks of diethylene glycol (DEG) and a small but a definitive peak of ethylene glycol (EG) in the etch products from CR-39 irradiated by 60 MeV N ion beams. The etch products of unirradiated CR-39 showed a clear peak of DEG, but no other significant peaks were found. DEG is known to be released from the CR-39 molecule as a fragment by alkaline hydrolysis reaction of the polymer. We postulate that EG was formed as a result of the breaking of the ether bond (C-O-C) of the DEG part of the CR-39 polymer by the irradiation. The mass distribution of polyallylalcohol was obtained from the etch products from irradiated and unirradiated CR-39 samples by MALDI-MS analysis. Polyallylalcohol, with the repeating mass interval of m/z = 58 Da (dalton) between m/z = 800 and 3500, was expected to be produced from CR-39 by alkaline hydrolysis. We used IAA as a matrix to assist the ionization of organic analyte in MALDI-MS analysis and found that peaks from IAA covered mass spectrum in the lower m/z region making difficult to identify CR-39 fragment peaks which were also be seen in the same region. The mass spectrometry analysis using GC-MS and MALDI-MS will be powerful tools to investigate the radiation-induced polymeric fragments and helping to understand the track formation mechanism in CR-39 by heavy ions.

  6. Conformal SiO2 coating of sub-100 nm diameter channels of polycarbonate etched ion-track channels by atomic layer deposition

    PubMed Central

    Sobel, Nicolas; Lukas, Manuela; Spende, Anne; Stühn, Bernd; Trautmann, Christina

    2015-01-01

    Summary Polycarbonate etched ion-track membranes with about 30 µm long and 50 nm wide cylindrical channels were conformally coated with SiO2 by atomic layer deposition (ALD). The process was performed at 50 °C to avoid thermal damage to the polymer membrane. Analysis of the coated membranes by small angle X-ray scattering (SAXS) reveals a homogeneous, conformal layer of SiO2 in the channels at a deposition rate of 1.7–1.8 Å per ALD cycle. Characterization by infrared and X-ray photoelectron spectroscopy (XPS) confirms the stoichiometric composition of the SiO2 films. Detailed XPS analysis reveals that the mechanism of SiO2 formation is based on subsurface crystal growth. By dissolving the polymer, the silica nanotubes are released from the ion-track membrane. The thickness of the tube wall is well controlled by the ALD process. Because the track-etched channels exhibited diameters in the range of nanometres and lengths in the range of micrometres, cylindrical tubes with an aspect ratio as large as 3000 have been produced. PMID:25821688

  7. Plasma surface modification of polypropylene track-etched membrane to improve its performance properties

    NASA Astrophysics Data System (ADS)

    Kravets, L. I.; Elinson, V. M.; Ibragimov, R. G.; Mitu, B.; Dinescu, G.

    2018-02-01

    The surface and electrochemical properties of polypropylene track-etched membrane treated by plasma of nitrogen, air and oxygen are studied. The effect of the plasma-forming gas composition on the surface morphology is considered. It has been found that the micro-relief of the membrane surface formed under the gas-discharge etching, changes. Moreover, the effect of the non-polymerizing gas plasma leads to formation of oxygen-containing functional groups, mostly carbonyl and carboxyl. It is shown that due to the formation of polar groups on the surface and its higher roughness, the wettability of the plasma-modified membranes improves. In addition, the presence of polar groups on the membrane surface layer modifies its electrochemical properties so that conductivity of plasma-treated membranes increase.

  8. Effect of Metal Ion Etching on the Tribological, Mechanical and Microstructural Properties of TiN-COATED d2 Tool Steel Using Cae Pvd Technique

    NASA Astrophysics Data System (ADS)

    Ali, Mubarak; Hamzah, Esah Binti; Hj. Mohd Toff, Mohd Radzi

    A study has been made on TiN coatings deposited on D2 tool steel substrates by using commercially available cathodic arc evaporation, physical vapor deposition technique. The goal of this work is to determine the usefulness of TiN coatings in order to improve the micro-Vickers hardness, coefficient of friction and surface roughness of TiN coating deposited on tool steel, which is vastly use in tool industry for various applications. A pin-on-disc test was carried out to study the coefficient of friction versus sliding distance of TiN coating at various ion etching rates. The tribo-test showed that the minimum value recorded for friction coefficient was 0.386 and 0.472 with standard deviation of 0.056 and 0.036 for the coatings deposited at zero and 16 min ion etching. The differences in friction coefficient and surface roughness was mainly associated with the macrodroplets, which was produced during etching stage. The coating deposited for 16 min metal ion etching showed the maximum hardness, i.e., about five times higher than uncoated one and 1.24 times to the coating deposited at zero ion etching. After friction test, the wear track was observed by using field emission scanning electron microscope. The coating deposited for zero ion etching showed small amounts of macrodroplets as compared to the coating deposited for 16 min ion etching. The elemental composition on the wear scar were investigated by means of energy dispersive X-ray, indicate no further TiN coating on wear track. A considerable improvement in TiN coatings was recorded as a function of various ion etching rates.

  9. Registration of alpha particles in Makrofol-E nuclear track detectors

    NASA Astrophysics Data System (ADS)

    Rammah, Y. S.; Abdalla, Ayman M.; Ashraf, O.; Ashry, A. H.

    2016-06-01

    Fast detection of alpha particles in the range from 1 to 5 MeV in Makrofol-E polycarbonate nuclear track detectors (PCTDs) using a new chemical etchant was investigated. 252Cf and 241Am-thin open sources were used for irradiating Makrofol-E detectors with fission fragments and alpha particles in air at normal pressure and temperature (NPT). A chain of experimental work has been carried out using new etchants to register alpha particle in short time in Makrofol-E polycarbonate detectors. The etching efficiency were exhibited a clear dependence on the amount of methanol in the etching solution and etching time. The optimized chemical condition obtained at this stage of development for 200 μm Makrofol-E detectors are (8 ml of 10 N NaOH + 2 ml CH3OH) etching solutions at 60 °C for 3 h. In this study; it is possible to observe energy detection windows for Makrofol-E detectors according to applied etching duration. Makrofol-E introduced the characteristic Bragg peak, which indicates the advantages of this detector as alpha spectrometer. Consequently, the suggested new etchant can be developed for heavy ions detection and monitoring radon levels and its daughters.

  10. Introduction of a deformable x-ray CT polymer gel dosimetry system

    NASA Astrophysics Data System (ADS)

    Maynard, E.; Heath, E.; Hilts, M.; Jirasek, A.

    2018-04-01

    This study introduces the first 3D deformable dosimetry system based on x-ray computed tomography (CT) polymer gel dosimetry and establishes the setup reproducibility, deformation characteristics and dose response of the system. A N-isopropylacrylamide (NIPAM)-based gel formulation optimized for x-ray CT gel dosimetry was used, with a latex balloon serving as the deformable container and low-density polyethylene and polyvinyl alcohol providing additional oxygen barrier. Deformable gels were irradiated with a 6 MV calibration pattern to determine dosimetric response and a dosimetrically uniform plan to determine the spatial uniformity of the response. Wax beads were added to each gel as fiducial markers to track the deformation and setup of the gel dosimeters. From positions of the beads on CT images the setup reproducibility and the limits and reproducibility of gel deformation were determined. Comparison of gel measurements with Monte Carlo dose calculations found excellent dosimetric accuracy, comparable to that of an established non-deformable dosimetry system, with a mean dose discrepancy of 1.5% in the low-dose gradient region and a gamma pass rate of 97.9% using a 3%/3 mm criterion. The deformable dosimeter also showed good overall spatial dose uniformity throughout the dosimeter with some discrepancies within 20 mm of the edge of the container. Tracking of the beads within the dosimeter found that sub-millimetre setup accuracy is achievable with this system. The dosimeter was able to deform and relax when externally compressed by up to 30 mm without sustaining any permanent damage. Internal deformations in 3D produced average marker movements of up to 12 mm along the direction of compression. These deformations were also shown to be reproducible over 100 consecutive deformations. This work has established several important characteristics of a new deformable dosimetry system which shows promise for future clinical applications, including the validation of deformable dose accumulation algorithms.

  11. Measurement of LET distribution and dose equivalent on board the space shuttle STS-65

    NASA Technical Reports Server (NTRS)

    Hayashi, T.; Doke, T.; Kikuchi, J.; Takeuchi, R.; Hasebe, N.; Ogura, K.; Nagaoka, S.; Kato, M.; Badhwar, G. D.

    1996-01-01

    Space radiation dosimetry measurements have been made on board the Space Shuttle STS-65 in the Second International Microgravity Laboratory (IML-2). In these measurements, three kinds of detectors were used; one is a newly developed active detector telescope called "Real-time Radiation Monitoring Device (RRMD)" utilizing silicon semi-conductor detectors and others are conventional detectors of thermoluminescence dosimeters (TLDs) and CR-39 plastic track detectors. Using the RRMD detector, the first attempt of real-time monitoring of space radiation has been achieved successfully for a continuous period of 251.3 h, giving the temporal variations of LET distribution, particle count rates, and rates of absorbed dose and dose equivalent. The RRMD results indicate that a clear enhancement of the number of trapped particles is seen at the South Atlantic Anomaly (SAA) without clear enhancement of dose equivalent, while some daily periodic enhancements of dose equivalent due to high LET particles are seen at the lower geomagnetic cutoff regions for galactic cosmic ray particles (GCRs). Therefore, the main contribution to dose equivalent is seen to be due to GCRs in this low altitude mission (300 km). Also, the dose equivalent rates obtained by TLDs and CR-39 ranged from 146.9 to 165.2 microSv/day and the average quality factors from 1.45 to 1.57 depending on the locations and directions of detectors inside the Space-lab at this highly protected orbit for space radiation with a small inclination (28.5 degrees) and a low altitude (300 km). The LET distributions obtained by two different detectors, RRMD and CR-39, are in good agreement in the region of 15-200 keV/mm and difference of these distributions in the regions of LET < 15 keV/mm and LET > 200 keV/mm can be explained by considering characteristics of CR-39 etched track formation especially for the low LET tracks.

  12. Measurement of LET distribution and dose equivalent on board the space shuttle STS-65.

    PubMed

    Hayashi, T; Doke, T; Kikuchi, J; Takeuchi, R; Hasebe, N; Ogura, K; Nagaoka, S; Kato, M; Badhwar, G D

    1996-11-01

    Space radiation dosimetry measurements have been made on board the Space Shuttle STS-65 in the Second International Microgravity Laboratory (IML-2). In these measurements, three kinds of detectors were used; one is a newly developed active detector telescope called "Real-time Radiation Monitoring Device (RRMD)" utilizing silicon semi-conductor detectors and others are conventional detectors of thermoluminescence dosimeters (TLDs) and CR-39 plastic track detectors. Using the RRMD detector, the first attempt of real-time monitoring of space radiation has been achieved successfully for a continuous period of 251.3 h, giving the temporal variations of LET distribution, particle count rates, and rates of absorbed dose and dose equivalent. The RRMD results indicate that a clear enhancement of the number of trapped particles is seen at the South Atlantic Anomaly (SAA) without clear enhancement of dose equivalent, while some daily periodic enhancements of dose equivalent due to high LET particles are seen at the lower geomagnetic cutoff regions for galactic cosmic ray particles (GCRs). Therefore, the main contribution to dose equivalent is seen to be due to GCRs in this low altitude mission (300 km). Also, the dose equivalent rates obtained by TLDs and CR-39 ranged from 146.9 to 165.2 microSv/day and the average quality factors from 1.45 to 1.57 depending on the locations and directions of detectors inside the Space-lab at this highly protected orbit for space radiation with a small inclination (28.5 degrees) and a low altitude (300 km). The LET distributions obtained by two different detectors, RRMD and CR-39, are in good agreement in the region of 15-200 keV/mm and difference of these distributions in the regions of LET < 15 keV/mm and LET > 200 keV/mm can be explained by considering characteristics of CR-39 etched track formation especially for the low LET tracks.

  13. Field emitter arrays and displays produced by ion tracking lithography

    NASA Astrophysics Data System (ADS)

    Felter, T. E.; Musket, R. G.; Bernhardt, A. F.

    2005-12-01

    When ions of sufficient electronic energy loss traverse a dielectric film or foil, they alter the chemical bonding along their nominally straight path within the material. A suitable etchant can quickly dissolve these so-called latent tracks leaving holes of small diameter (∼10 nm) but long length - several microns. Continuing the etching process gradually increases the diameter reproducibly and uniformly. The trackable medium can be applied as a uniform film onto large substrates. The small, monodisperse holes produced by this track etching can be used in conjunction with additional thin film processing to create functional structures attached to the substrate. For example, Lawrence Livermore National Laboratory and Candescent Technologies Corporation (CTC) co-developed a process to make arrays of gated field emitters (∼100 nm diameter electron guns) for CTC's Thin CRTTM displays, which have been fabricated to diagonal dimensions >13 in. Additional technological applications of ion tracking lithography will be briefly covered.

  14. Tracking of Polycarbonate Films using Low-energy Ions Final Report CRADA No. TC-774-94

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Musket, R. G.

    2018-01-24

    Ion tracking is performed almost exclusively using ions with energies near or above the maximum in electronic stopping. For the present study, we have examined the results of etching ion tracks created by ions bombarding polycarbonate films with energies corresponding to stopping well below the maximum and just above the anticipated threshold for creating etchable latent tracks. Low-energy neon and argon ions with 18-60 keV /amu and fluences of about 10 8/cm 2 were used to examine the limits for producing etchable tracks in polycarbonate films. By concentrating on the early stages of etching (i.e., -20 nm < SEM holemore » diameter < -100 nm), we can directly relate the energy deposition calculated for the incident ion to the creation of etchable tracks. The experimental results will be discussed with regard to the energy losses of the ions in the polycarbonate films and to the formation of continuous latent tracks through the entire thickness the films. These results have significant implications with respect to the threshold for formation of etchable tracks and to the use of low-energy ions for lithographic applications.« less

  15. EUV process improvement with novel litho track hardware

    NASA Astrophysics Data System (ADS)

    Stokes, Harold; Harumoto, Masahiko; Tanaka, Yuji; Kaneyama, Koji; Pieczulewski, Charles; Asai, Masaya

    2017-03-01

    Currently, there are many developments in the field of EUV lithography that are helping to move it towards increased HVM feasibility. Targeted improvements in hardware design for advanced lithography are of interest to our group specifically for metrics such as CD uniformity, LWR, and defect density. Of course, our work is focused on EUV process steps that are specifically affected by litho track performance, and consequently, can be improved by litho track design improvement and optimization. In this study we are building on our experience to provide continual improvement for LWR, CDU, and Defects as applied to a standard EUV process by employing novel hardware solutions on our SOKUDO DUO coat develop track system. Although it is preferable to achieve such improvements post-etch process we feel, as many do, that improvements after patterning are a precursor to improvements after etching. We hereby present our work utilizing the SOKUDO DUO coat develop track system with an ASML NXE:3300 in the IMEC (Leuven, Belgium) cleanroom environment to improve aggressive dense L/S patterns.

  16. Results of nDOSE and HiDOSE Experiments for Dosimetric Evaluation During STS-134 Mission

    NASA Astrophysics Data System (ADS)

    Pugliese, M.; Loffredo, F.; Quarto, M.; Roca, V.; Mattone, C.; Borla, O.; Zanini, A.

    2014-07-01

    HiDOSE (Heavy ion DOSimetry Experiment) and nDOSE (neutron DOSimetry Experiment) experiments conducted as a part of BIOKIS (Biokon in Space) payload were designed to measure the dose equivalent due to charged particles and to neutron field, on the entire energy range, during STS-134 mission. Given the complexity of the radiation field in space environment, dose measurements should be considered an asset of any space mission, and for this reason HiDOSE and nDOSE experiments represent an important contribution to the radiation environment assessment during this mission, a short duration flight. The results of these experiments, obtained using Thermo Luminescence Dosimeters (TLDs) to evaluate the charged particles dosimetry and neutron bubbles dosimeters and stack bismuth track dosimeters for neutron dosimetry, indicate that the dose equivalent rate due to space radiation exposure during the STS-134 mission is in accordance with the results obtained from long duration flights.

  17. Radiation Measured with Different Dosimeters for ISS-Expedition 18-19/ULF2 on Board International Space Station during Solar Minimum

    NASA Technical Reports Server (NTRS)

    Zhou, Dazhuang; Gaza, R.; Roed, Y.; Semones, E.; Lee, K.; Steenburgh, R.; Johnson, S.; Flanders, J.; Zapp, N.

    2010-01-01

    Radiation field of particles in low Earth orbit (LEO) is mainly composed of galactic cosmic rays (GCR), solar energetic particles and particles in SAA (South Atlantic Anomaly). GCR are modulated by solar activity, at the period of solar minimum activity, GCR intensity is at maximum and the main contributor for space radiation is GCR. At present for space radiation measurements conducted by JSC (Johnson Space Center) SRAG (Space Radiation Analysis Group), the preferred active dosimeter sensitive to all LET (Linear Energy Transfer) is the tissue equivalent proportional counter (TEPC); the preferred passive dosimeters are thermoluminescence dosimeters (TLDs) and optically stimulated luminescence dosimeters (OSLDs) sensitive to low LET as well as CR-39 plastic nuclear track detectors (PNTDs) sensitive to high LET. For the method using passive dosimeters, radiation quantities for all LET can be obtained by combining radiation results measured with TLDs/OSLDs and CR-39 PNTDs. TEPC, TLDs/OSLDs and CR-39 detectors were used to measure the radiation field for the ISS (International Space Station) - Expedition 18-19/ULF2 space mission which was conducted from 15 November 2008 to 31 July 2009 - near the period of the recent solar minimum activity. LET spectra (differential and integral fluence, absorbed dose and dose equivalent) and radiation quantities were measured for positions TEPC, TESS (Temporary Sleeping Station, inside the polyethylene lined sleep station), SM-P 327 and 442 (Service Module - Panel 327 and 442). This paper presents radiation LET spectra measured with TEPC and CR-39 PNTDs and radiation dose measured with TLDs/OSLDs as well as the radiation quantities combined from results measured with passive dosimeters.

  18. Summary of LET spectra and dose measurements on ten STS missions

    NASA Technical Reports Server (NTRS)

    1995-01-01

    A comparison of linear energy transfer (LET) spectra measurements made with plastic nuclear track detectors (PNTD's) from area passive dosimeters (APD's), was made for ten different STS missions under similar shielding. The results show that integral flux, dose rate and equivalent dose rate values follow a general increase with respect to increasing orbital inclination and altitude but that there are large variations from a simple relationship. This is to be expected since it has been shown that Shuttle attitude variations, combined with the anisotropic particle flux at the South Atlantic Anomaly (SAA), can result in differences of a factor of 2 in dose rate inside the Shuttle (Badhwar et al., 1995). Solar cycle and shielding differences also result in variations in radiation dose between STS missions. Spaceflight dosimeters from the STS missions are also being used in the development of a method for increasing LET spectra measurement accuracy by extending LET measurements to particle tracks of ranges 10-80 microns. Refinements in processing and measurement techniques for the flight PNTD's have yielded increased detection efficiencies for the short tracks when LET spectra determined by using the standard and refined methods were intercompared.

  19. Dosimeter design, construction, and implantation. [for recording HZE cosmic particle tracks

    NASA Technical Reports Server (NTRS)

    Winter, D. L.; Suri, K.; Durso, J. A.; Cota, F. L.; Ashley, W. W.; Binnard, R. M.; Haymaker, W.; Benton, E. V.; Cruty, M. R.; Zeman, W.

    1975-01-01

    To detect the passage of cosmic ray particles through the heads of the pocket mice during the Apollo XVII flight, a 'monitor' (dosimeter) composed of plastics was prepared and implanted under the scalp. The monitor was mounted on a platform, the undersurface of which fitted the contour of the skull. Numerous tests were run to assure that the presence of the monitor assembly beneath the scalp would be compatible with the well-being of the mice and that the capacity of the monitor to detect the traversal of cosmic ray particles would be preserved over the several weeks during which it would remain under the scalp.

  20. Nanosilicon dot arrays with a bit pitch and a track pitch of 25 nm formed by electron-beam drawing and reactive ion etching for 1 Tbit/in.{sup 2} storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hosaka, Sumio; Sano, Hirotaka; Shirai, Masumi

    2006-11-27

    The formation of very fine Si dots with a bit pitch and a track pitch of less than 25 nm using electron-beam (EB) lithography on ZEP520 and calixarene EB resists and CF{sub 4} reactive ion etching has been demonstrated. The experimental results indicate that the calixarene resist is very suitable for forming an ultrahigh-packed bit array pattern of Si dots. This result promises to open the way toward 1 Tbit/in.{sup 2} storage using patterned media with a dot size of <15 nm.

  1. Coupled chemical reactions in dynamic nanometric confinement: VII. Biosensors based on swift heavy ion tracks with membranes

    NASA Astrophysics Data System (ADS)

    Fink, D.; Muñoz H., G.; Garcia-Arrelano, H.; Alfonta, L.; Vacik, J.; Kiv, A.; Hnatowicz, V.

    2017-02-01

    In previous papers it was shown that the coupling of the two chemical reactions: {NaOH etchant - PET polymer} and {NaOH etchant - AgNO3 solution} within the dynamic confinement of etched swift heavy ion tracks eventually leads to the formation of tiny Ag2O membranes within these nanopores, thus separating the latter ones into two adjacent segments. It is shown here that the deposition of enzymes in these two segments transforms these structures into biosensors. In our earlier developed sensors with transparent etched ion tracks, we frequently used glucose oxidase as enzyme and glucose as analyte. In these cases, the enzymatic reaction within the tracks leads to a change in the pH value of the confined solution and hence also in the track conductivity, so these structures can be used for biosensing. When applying, for easy comparison, the same enzyme/analyte combination to the segmented sensor arrangement presented here, we find a striking improvement in detection sensitivity which points at a different biosensing mechanism due to intrinsic polarisation effects across the newly inserted membranes.

  2. TH-C-19A-05: Evaluation of a New Reusable 3D Dosimeter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Juang, T; Adamovics, J; Oldham, M

    Purpose: PRESAGE is a radiochromic plastic which has demonstrated strong potential for high resolution single-use 3D dosimetry. This study evaluates a new PRESAGE formulation (Presage-RU) in which the radiochromic response is reversible (the dosimeter optically clears after irradiation), enabling the potential for reusability. Methods: Presage-RU dose response and optical-clearing rates were evaluated in both small volume dosimeters (1×1×4.5cm) and a larger cylindrical dosimeter (8cm diameter, 4.5cm length). All dosimeters were allowed to fully optically clear in dark, room temperature conditions between irradiations. Dose response was determined by irradiating small volume samples from 0–8.0Gy and measuring change in optical density. Themore » cylindrical dosimeter was irradiated with a simple 4-field box plan (parallel opposed pairs of 4cm×4cm AP-PA beams and 2cm×4cm lateral beams) to 20Gy. High resolution 3D dosimetry was achieved utilizing optical-CT readout. Readings were tracked up to 14 days to characterize optical clearing. Results: Initial irradiation yielded a response of 0.0119△OD/(Gy*cm) while two subsequent reirradiations yielded a lower but consistent response of 0.0087△OD/(Gy*cm). Strong linearity of dose response was observed for all irradiations. In the large cylindrical dosimeter, the integral dose within the high dose region exhibited an exponential decay in signal over time (halflife= 23.9 hours), with the dosimeter effectively cleared (0.04% of the initial signal) after 10 days. Subsequent irradiation resulted in 19.5% lower initial signal but demonstrated that the exponential clearing rate remained consistent. Results of additional subsequent irradiations will also be presented. Conclusion: This work introduces a new re-usable radiochromic dosimeter (Presage-RU) compatible with high resolution (sub-millimeter) 3D dosimetry. Sensitivity of the initial radiation was observed to be slightly higher than subsequent irradiations, but the clearing time remained constant, indicating the dosimeter can be re-used after 10 days. Presage-RU has potential to dramatically improve cost-effectiveness and thereby lower the barrier for implementing comprehensive, high resolution 3D dosimetry. John Adamovics is the president of Heuris Inc., which commercializes PRESAGE.« less

  3. A study of commercially-available polyethylene terephthalate (PET) and polycarbonate as nuclear track detector materials

    NASA Astrophysics Data System (ADS)

    Espinosa, G.; Golzarri, J. I.; Vazquez-Lopez, C.; Trejo, R.; Lopez, K.; Rickards, J.

    2014-07-01

    In the study of the sensitivity of materials to be used as nuclear track detectors, it was found that commercial polyethylene terephthalate (PET) from Ciel® water bottles, commercial roof cover polycarbonate, and recycled packaging strips (recycled PET), can be used as nuclear track detectors. These three commercial materials present nuclear tracks when bombarded by 2.27 MeV nitrogen ions produced in a Pelletron particle accelerator, and by fission fragments from a 252Cf source (79.4 and 103.8 MeV), after a chemical etching with a 6.25M KOH solution, or with a 6.25M KOH solution with 20% methanol, both solutions at 60±1°C. As an example, the nitrogen ions deposit approximately 1 keV/nm in the form of ionization and excitation at the surface of PET, as calculated using the SRIM code. The fission fragments deposit up to 9 keV/nm at the surface, in both cases generating sufficient free radicals to initiate the track formation process. However, 5 MeV alpha particles, typical of radon (222Rn) emissions, deposit only 0.12 keV/nm, do not present tracks after the chemical etching process. This valuable information could be very useful for further studies of new materials in nuclear track methodology.

  4. Composition dependent thermal annealing behaviour of ion tracks in apatite

    NASA Astrophysics Data System (ADS)

    Nadzri, A.; Schauries, D.; Mota-Santiago, P.; Muradoglu, S.; Trautmann, C.; Gleadow, A. J. W.; Hawley, A.; Kluth, P.

    2016-07-01

    Natural apatite samples with different F/Cl content from a variety of geological locations (Durango, Mexico; Mud Tank, Australia; and Snarum, Norway) were irradiated with swift heavy ions to simulate fission tracks. The annealing kinetics of the resulting ion tracks was investigated using synchrotron-based small-angle X-ray scattering (SAXS) combined with ex situ annealing. The activation energies for track recrystallization were extracted and consistent with previous studies using track-etching, tracks in the chlorine-rich Snarum apatite are more resistant to annealing than in the other compositions.

  5. Dosimetric results on EURECA

    NASA Technical Reports Server (NTRS)

    Reitz, G.

    1995-01-01

    Detector packages were exposed on the European Retrievable Carrier (EURECA) as part of the Biostack experiment inside the Exobiology and Radiation Assembly (ERA) and at several locations around EURECA. The packages consist of different plastic nuclear track detectors, nuclear emulsions and thermoluminescence dosimeters (TLD's). Evaluation of these detectors yields data on absorbed dose and particle and LET spectra. Preliminary results of absorbed dose measurements in the EURECA dosimeter packages are reported and compared to results of the LDEF experiments. The highest dose rate measured on EURECA is 63.3 plus or minus 0.4 mGy d(exp -1) behind a shielding thickness of 0.09 g cm(exp -2) in front of the detector package.

  6. Some cosmic radiation dose measurements aboard flights connecting Zagreb Airport.

    PubMed

    Vuković, B; Radolić, V; Lisjak, I; Vekić, B; Poje, M; Planinić, J

    2008-02-01

    When primary particles from space, mainly protons, enter the atmosphere, they produce interactions with air nuclei, and cosmic-ray showers are induced. The radiation field at aircraft altitude is complex, with different types of particles, mainly photons, electrons, positrons and neutrons, with a large energy range. The non-neutron component of cosmic radiation dose aboard A320 and ATR40 aircraft was measured with TLD-100 (LiF:Mg,Ti) detectors and the Mini 6100 semiconductor dosimeter; the neutron dose was measured with the neutron dosimeter consisted of LR-115 track detector and boron foil BN-1 or 10B converter. The estimated occupational effective dose for the aircraft crew (A320) working 500 h per year was 1.64 mSv. Another experiment was performed at the flights Zagreb-Paris-Buenos Aires and reversely, when one measured non-neutron cosmic radiation dose; for 26.7 h of flight, the MINI 6100 dosimeter gave an average dose rate of 2.3 microSv/h and the TLD dosimeter registered the dose equivalent of 75 microSv or the average dose rate of 2.7 microSv/h; the neutron dosimeter gave the dose rate of 2.4 microSv/h. In the same month, February 2005, a traveling to Japan (24-h-flight: Zagreb-Frankfurt-Tokyo and reversely) and the TLD-100 measurement showed the average dose rate of 2.4microSv/h; the neutron dosimeter gave the dose rate of 2.5 microSv/h. Comparing dose rates of the non-neutron component (low LET) and the neutron one (high LET) of the radiation field at the aircraft flight level, we could conclude that the neutron component carried about 50% of the total dose, that was near other known data.

  7. 3D imaging of neutron tracks using confocal microscopy

    NASA Astrophysics Data System (ADS)

    Gillmore, Gavin; Wertheim, David; Flowers, Alan

    2016-04-01

    Neutron detection and neutron flux assessment are important aspects in monitoring nuclear energy production. Neutron flux measurements can also provide information on potential biological damage from exposure. In addition to the applications for neutron measurement in nuclear energy, neutron detection has been proposed as a method of enhancing neutrino detectors and cosmic ray flux has also been assessed using ground-level neutron detectors. Solid State Nuclear Track Detectors (or SSNTDs) have been used extensively to examine cosmic rays, long-lived radioactive elements, radon concentrations in buildings and the age of geological samples. Passive SSNTDs consisting of a CR-39 plastic are commonly used to measure radon because they respond to incident charged particles such as alpha particles from radon gas in air. They have a large dynamic range and a linear flux response. We have previously applied confocal microscopy to obtain 3D images of alpha particle tracks in SSNTDs from radon track monitoring (1). As a charged particle traverses through the polymer it creates an ionisation trail along its path. The trail or track is normally enhanced by chemical etching to better expose radiation damage, as the damaged area is more sensitive to the etchant than the bulk material. Particle tracks in CR-39 are usually assessed using 2D optical microscopy. In this study 6 detectors were examined using an Olympus OLS4100 LEXT 3D laser scanning confocal microscope (Olympus Corporation, Japan). The detectors had been etched for 2 hours 50 minutes at 85 °C in 6.25M NaOH. Post etch the plastics had been treated with a 10 minute immersion in a 2% acetic acid stop bath, followed by rinsing in deionised water. The detectors examined had been irradiated with a 2mSv neutron dose from an Am(Be) neutron source (producing roughly 20 tracks per mm2). We were able to successfully acquire 3D images of neutron tracks in the detectors studied. The range of track diameter observed was between 4 and 10 microns. Thus this study suggests that, using confocal microscopy, 3D imaging of neutron tracks in SSNTDs is feasible. (1) Wertheim D, Gillmore G, Brown L, Petford N. A new method of imaging particle tracks in solid state nuclear track detectors. J Microsc. 2010; 237: 1-6.

  8. EUV process establishment through litho and etch for N7 node

    NASA Astrophysics Data System (ADS)

    Kuwahara, Yuhei; Kawakami, Shinichiro; Kubota, Minoru; Matsunaga, Koichi; Nafus, Kathleen; Foubert, Philippe; Mao, Ming

    2016-03-01

    Extreme ultraviolet lithography (EUVL) technology is steadily reaching high volume manufacturing for 16nm half pitch node and beyond. However, some challenges, for example scanner availability and resist performance (resolution, CD uniformity (CDU), LWR, etch behavior and so on) are remaining. Advance EUV patterning on the ASML NXE:3300/ CLEAN TRACK LITHIUS Pro Z- EUV litho cluster is launched at imec, allowing for finer pitch patterns for L/S and CH. Tokyo Electron Ltd. and imec are continuously collabo rating to develop manufacturing quality POR processes for NXE:3300. TEL's technologies to enhance CDU, defectivity and LWR/LER can improve patterning performance. The patterning is characterized and optimized in both litho and etch for a more complete understanding of the final patterning performance. This paper reports on post-litho CDU improvement by litho process optimization and also post-etch LWR reduction by litho and etch process optimization.

  9. Effects of refractive index mismatch in optical CT imaging of polymer gel dosimeters.

    PubMed

    Manjappa, Rakesh; Makki S, Sharath; Kumar, Rajesh; Kanhirodan, Rajan

    2015-02-01

    Proposing an image reconstruction technique, algebraic reconstruction technique-refraction correction (ART-rc). The proposed method takes care of refractive index mismatches present in gel dosimeter scanner at the boundary, and also corrects for the interior ray refraction. Polymer gel dosimeters with high dose regions have higher refractive index and optical density compared to the background medium, these changes in refractive index at high dose results in interior ray bending. The inclusion of the effects of refraction is an important step in reconstruction of optical density in gel dosimeters. The proposed ray tracing algorithm models the interior multiple refraction at the inhomogeneities. Jacob's ray tracing algorithm has been modified to calculate the pathlengths of the ray that traverses through the higher dose regions. The algorithm computes the length of the ray in each pixel along its path and is used as the weight matrix. Algebraic reconstruction technique and pixel based reconstruction algorithms are used for solving the reconstruction problem. The proposed method is tested with numerical phantoms for various noise levels. The experimental dosimetric results are also presented. The results show that the proposed scheme ART-rc is able to reconstruct optical density inside the dosimeter better than the results obtained using filtered backprojection and conventional algebraic reconstruction approaches. The quantitative improvement using ART-rc is evaluated using gamma-index. The refraction errors due to regions of different refractive indices are discussed. The effects of modeling of interior refraction in the dose region are presented. The errors propagated due to multiple refraction effects have been modeled and the improvements in reconstruction using proposed model is presented. The refractive index of the dosimeter has a mismatch with the surrounding medium (for dry air or water scanning). The algorithm reconstructs the dose profiles by estimating refractive indices of multiple inhomogeneities having different refractive indices and optical densities embedded in the dosimeter. This is achieved by tracking the path of the ray that traverses through the dosimeter. Extensive simulation studies have been carried out and results are found to be matching that of experimental results.

  10. Effects of refractive index mismatch in optical CT imaging of polymer gel dosimeters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manjappa, Rakesh; Makki S, Sharath; Kanhirodan, Rajan, E-mail: rajan@physics.iisc.ernet.in

    2015-02-15

    Purpose: Proposing an image reconstruction technique, algebraic reconstruction technique-refraction correction (ART-rc). The proposed method takes care of refractive index mismatches present in gel dosimeter scanner at the boundary, and also corrects for the interior ray refraction. Polymer gel dosimeters with high dose regions have higher refractive index and optical density compared to the background medium, these changes in refractive index at high dose results in interior ray bending. Methods: The inclusion of the effects of refraction is an important step in reconstruction of optical density in gel dosimeters. The proposed ray tracing algorithm models the interior multiple refraction at themore » inhomogeneities. Jacob’s ray tracing algorithm has been modified to calculate the pathlengths of the ray that traverses through the higher dose regions. The algorithm computes the length of the ray in each pixel along its path and is used as the weight matrix. Algebraic reconstruction technique and pixel based reconstruction algorithms are used for solving the reconstruction problem. The proposed method is tested with numerical phantoms for various noise levels. The experimental dosimetric results are also presented. Results: The results show that the proposed scheme ART-rc is able to reconstruct optical density inside the dosimeter better than the results obtained using filtered backprojection and conventional algebraic reconstruction approaches. The quantitative improvement using ART-rc is evaluated using gamma-index. The refraction errors due to regions of different refractive indices are discussed. The effects of modeling of interior refraction in the dose region are presented. Conclusions: The errors propagated due to multiple refraction effects have been modeled and the improvements in reconstruction using proposed model is presented. The refractive index of the dosimeter has a mismatch with the surrounding medium (for dry air or water scanning). The algorithm reconstructs the dose profiles by estimating refractive indices of multiple inhomogeneities having different refractive indices and optical densities embedded in the dosimeter. This is achieved by tracking the path of the ray that traverses through the dosimeter. Extensive simulation studies have been carried out and results are found to be matching that of experimental results.« less

  11. Empirical assessment of the detection efficiency of CR-39 at high proton fluence and a compact, proton detector for high-fluence applications

    DOE PAGES

    Rosenberg, M. J.; Séguin, F. H.; Waugh, C. J.; ...

    2014-04-14

    CR-39 solid-state nuclear track detectors are widely used in physics and in many inertial confinement fusion (ICF) experiments, and under ideal conditions these detectors have 100% detection efficiency for ~0.5–8 MeV protons. When the fluence of incident particles becomes too high, the overlap of particle tracks leads to under-counting at typical processing conditions (5h etch in 6N NaOH at 80°C). Short etch times required to avoid overlap can cause under-counting as well, as tracks are not fully developed. Experiments have determined the minimum etch times for 100% detection of 1.7–4.3-MeV protons and established that for 2.4-MeV protons, relevant for detectionmore » of DD protons, the maximum fluence that can be detected using normal processing techniques is ≲3 ×10 6 cm -2. A CR-39-based proton detector has been developed to mitigate issues related to high particle fluences on ICF facilities. Using a pinhole and scattering foil several mm in front of the CR-39, proton fluences at the CR-39 are reduced by more than a factor of ~50, increasing the operating yield upper limit by a comparable amount.« less

  12. SU-E-T-353: Effects of Time and Temperature On a Potential Reusable 3D Dosimeter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Juang, T; Miles, D; Crockett, E

    Purpose: Preliminary studies of a novel, optically-clearing PRESAGE 3D dosimeter formulation (Presage-RU) demonstrated potential reusability. This study investigates the effects of time and temperature on the accuracy and reusability of Presage-RU, and reports on progress toward developing a reusable 3D dosimeter. Methods: Presage-RU was cast as small volume samples (1×1×4.5cm). The effect of dose response sensitivity with reirradiation and time was evaluated by irradiating samples from 0–10Gy, measuring change in optical density (ΔOD), clearing at room temperature (RT) (5–7 days to fully clear), and then repeating for a total of 5 irradiations. Effects of heating on clearing rate were investigatedmore » by irradiating samples to 8Gy, then tracking measurements with samples held at RT, 35°C, and 45°C. Two cylindrical dosimeters (11cm diameter, 9.5cm length) were evaluated for dosimetric accuracy when stored at RT and −3°C prior to irradiation. Plans delivered were 2 overlapping AP fields (RT) and VMAT (-3°C). Results: Heating the dosimeters reduced the clearing half-life from 16.3h at RT to 5.8h (35°C) and 5.1h (45°C), but also increased background ΔOD by 1.7x (35°C) and 2.3x (45°C). Reductions in dose response were more closely linked to age than reirradiation, and storage at RT showed pronounced desensitization from dosimeter edges. These results suggest desensitization from oxygen diffusion. It should be noted that atmospheric diffusion into the dosimeter is not seen in standard, single-use PRESAGE, and is likely caused by differences in the Presage-RU polyurethane matrix. The dosimeter kept in cold storage, however, showed no evidence of desensitization and exhibited accuracy on par with standard PRESAGE with a 3%/3mm 3D gamma passing rate of 98.1%. Conclusions: Presage-RU is sensitive to storage temperatures and time, both of which affect oxygen diffusion and subsequent desensitization. Development shows promising progress with further formulation optimization as the next step toward achieving a successful reusable 3D dosimeter. This work was supported by NIH R01CA100835. John Adamovics is the president of Heuris Inc., which commercializes PRESAGE.« less

  13. Guide to monitoring smoke exposure of wildland firefighters.

    Treesearch

    Tim E. Reinhardt; Roger D. Ottmar; Michael J. Hallett

    1999-01-01

    Fire managers and safety officers concerned with smoke exposure among fire crews can use electronic carbon monoxide (CO) monitors to track and prevent overexposure to smoke. Commonly referred to as dosimeters, these lightweight instruments measure the concentration of CO in the air the firefighter's breathe. This guide outlines the protocol developed for sampling...

  14. Formation of nanometer-size wires using infiltration into latent nuclear tracks

    DOEpatents

    Musket, Ronald G.; Felter, Thomas E.

    2002-01-01

    Nanometer-size wires having a cross-sectional dimension of less than 8 nm with controllable lengths and diameters are produced by infiltrating latent nuclear or ion tracks formed in trackable materials with atomic species. The trackable materials and atomic species are essentially insoluble in each other, thus the wires are formed by thermally driven, self-assembly of the atomic species during annealing, or re-crystallization, of the damage in the latent tracks. Unlike conventional ion track lithography, the inventive method does not require etching of the latent tracks.

  15. Computer image analysis of etched tracks from ionizing radiation

    NASA Technical Reports Server (NTRS)

    Blanford, George E.

    1994-01-01

    I proposed to continue a cooperative research project with Dr. David S. McKay concerning image analysis of tracks. Last summer we showed that we could measure track densities using the Oxford Instruments eXL computer and software that is attached to an ISI scanning electron microscope (SEM) located in building 31 at JSC. To reduce the dependence on JSC equipment, we proposed to transfer the SEM images to UHCL for analysis. Last summer we developed techniques to use digitized scanning electron micrographs and computer image analysis programs to measure track densities in lunar soil grains. Tracks were formed by highly ionizing solar energetic particles and cosmic rays during near surface exposure on the Moon. The track densities are related to the exposure conditions (depth and time). Distributions of the number of grains as a function of their track densities can reveal the modality of soil maturation. As part of a consortium effort to better understand the maturation of lunar soil and its relation to its infrared reflectance properties, we worked on lunar samples 67701,205 and 61221,134. These samples were etched for a shorter time (6 hours) than last summer's sample and this difference has presented problems for establishing the correct analysis conditions. We used computer counting and measurement of area to obtain preliminary track densities and a track density distribution that we could interpret for sample 67701,205. This sample is a submature soil consisting of approximately 85 percent mature soil mixed with approximately 15 percent immature, but not pristine, soil.

  16. High throughput on-chip analysis of high-energy charged particle tracks using lensfree imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Wei; Shabbir, Faizan; Gong, Chao

    2015-04-13

    We demonstrate a high-throughput charged particle analysis platform, which is based on lensfree on-chip microscopy for rapid ion track analysis using allyl diglycol carbonate, i.e., CR-39 plastic polymer as the sensing medium. By adopting a wide-area opto-electronic image sensor together with a source-shifting based pixel super-resolution technique, a large CR-39 sample volume (i.e., 4 cm × 4 cm × 0.1 cm) can be imaged in less than 1 min using a compact lensfree on-chip microscope, which detects partially coherent in-line holograms of the ion tracks recorded within the CR-39 detector. After the image capture, using highly parallelized reconstruction and ion track analysis algorithms running on graphics processingmore » units, we reconstruct and analyze the entire volume of a CR-39 detector within ∼1.5 min. This significant reduction in the entire imaging and ion track analysis time not only increases our throughput but also allows us to perform time-resolved analysis of the etching process to monitor and optimize the growth of ion tracks during etching. This computational lensfree imaging platform can provide a much higher throughput and more cost-effective alternative to traditional lens-based scanning optical microscopes for ion track analysis using CR-39 and other passive high energy particle detectors.« less

  17. Diode laser sensor to monitor HCL in a plasma etch reactor

    NASA Astrophysics Data System (ADS)

    Kim, Suhong; Klimecky, Pete; Chou, Shang-I.; Jeffries, Jay B.; Terry, Fred L., Jr.; Hanson, Ronald K.

    2002-09-01

    Absorption measurements of HCl during plasma etching of poly-silicon are made using the P(4) transition in the first vibrational overtone band near 1.79 μm. Single path absorption provides a real-time HCl monitor during etching of six-inch wafers in a commercial Lam Research 9400SE reactor at the University of Michigan. Wavelength modulation at 10.7 MHz is used to distinguish the absorption signal from the strong plasma emission. The laser center frequency is ramp-tuned at 500 Hz providing an HCl measurement every 2ms. Direct absorption measurements without the plasma are used to calibrate the wavelength modulation signal. The minimum detectable absorbance was 5x(10)-6 with 50 ms averaging, leading to an HCl detection limit of ~(10)12cm-3. For a given ratio of the feedstock HBr/Cl2, the measured HCl concentration tracks the average etch rate. These measurements demonstrate the feasibility of a real-time diode laser-based etch rate sensor.

  18. On charged particle tracks in cellulose nitrate and Lexan

    NASA Technical Reports Server (NTRS)

    Benton, E. V.; Henke, R. P.

    1972-01-01

    Investigations were performed aimed at developing plastic nuclear track detectors into quantitative tools for recording and measuring multicharged, heavy particles. Accurate track etch rate measurements as a function of LET were performed for cellulose nitrate and Lexan plastic detectors. This was done using a variety of incident charged particle types and energies. The effect of aging of latent tracks in Lexan in different gaseous atmospheres was investigated. Range distributions of high energy N-14 particle bevatron beams in nuclear emulsion were measured. Investigation of charge resolution and Bragg peak measurements were carried out using plastic nuclear track detectors.

  19. A combined analysis technique for the search for fast magnetic monopoles with the MACRO detector

    NASA Astrophysics Data System (ADS)

    MACRO Collaboration; Ambrosio, M.; Antolini, R.; Auriemma, G.; Bakari, D.; Baldini, A.; Barbarino, G. C.; Barish, B. C.; Battistoni, G.; Becherini, Y.; Bellotti, R.; Bemporad, C.; Bernardini, P.; Bilokon, H.; Bloise, C.; Bower, C.; Brigida, M.; Bussino, S.; Cafagna, F.; Calicchio, M.; Campana, D.; Carboni, M.; Caruso, R.; Cecchini, S.; Cei, F.; Chiarella, V.; Choudhary, B. C.; Coutu, S.; De Cataldo, G.; Dekhissi, H.; De Marzo, C.; De Mitri, I.; Derkaoui, J.; De Vincenzi, M.; DiCredico, A.; Erriquez, O.; Favuzzi, C.; Forti, C.; Fusco, P.; Giacomelli, G.; Giannini, G.; Giglietto, N.; Giorgini, M.; Grassi, M.; Grillo, A.; Guarino, F.; Gustavino, C.; Habig, A.; Heinz, R.; Iarocci, E.; Katsavounidis, E.; Katsavounidis, I.; Kearns, E.; Kim, H.; Kyriazopoulou, S.; Lamanna, E.; Lane, C.; Levin, D. S.; Lipari, P.; Longley, N. P.; Longo, M. J.; Loparco, F.; Maaroufi, F.; Mancarella, G.; Mandrioli, G.; Manzoor, S.; Margiotta, A.; Marini, A.; Martello, D.; Marzari-Chiesa, A.; Mazziotta, M. N.; Michael, D. G.; Monacelli, P.; Montaruli, T.; Monteno, M.; Mufson, S.; Musser, J.; Nicolò, D.; Nolty, R.; Orth, C.; Osteria, G.; Palamara, O.; Patera, V.; Patrizii, L.; Pazzi, R.; Peck, C. W.; Perrone, L.; Petrera, S.; Popa, V.; Reynoldson, J.; Ronga, F.; Rrhioua, A.; Satriano, C.; Scapparone, E.; Scholberg, K.; Sciubba, A.; Serra, P.; Sioli, M.; Sirri, G.; Sitta, M.; Spinelli, P.; Spinetti, M.; Spurio, M.; Steinberg, R.; Stone, J. L.; Sulak, L. R.; Surdo, A.; Tarlè, G.; Togo, V.; Vakili, M.; Walter, C. W.; Webb, R.

    2002-08-01

    We describe a search method for fast moving (β=v/c>5×10-3) magnetic monopoles using simultaneously the scintillator, streamer tube and track-etch subdetectors of the MACRO apparatus. The first two subdetectors are used primarily for the identification of candidates while the track-etch one is used as the final tool for their rejection or confirmation. Using this technique, a first sample of more than two years of data has been analyzed without any evidence of a magnetic monopole. We set a 90% CL upper limit to the local monopole flux of 1.5×10-15 cm-2s-1sr-1 in the velocity range 5×10-3<=β<=0.99 and for nucleon decay catalysis cross-section smaller than /~1 mb

  20. Four passive sampling elements (quatrefoil)--II. Film badges for monitoring radon and its progeny.

    PubMed

    Tommasino, L; Tokonami, S

    2011-05-01

    The four passive samplers (quatrefoil) already described in a parallel paper, make it possible to obtain thin radiation sources, useful for alpha and beta counting by any passive and real-time detector. In the present paper, the applications of this quatrefoil for measuring radon gas by etch-track detectors will be described. In the case of radon measurements, different solids have been identified, with radon-sorption partition coefficients related to air from 1 to 2000. Uniquely compact radon badges can be obtained by using a layer of these solids facing an alpha track-etch detector. These radon badges make it possible to overcome most of the shortcomings of existing passive monitors. Moreover, these badges show promise for studying the radon solubility of polymer films.

  1. High resolution track etch autoradiography

    DOEpatents

    Solares, G.; Zamenhof, R.G.

    1994-12-27

    A detector assembly is disclosed for use in obtaining alpha-track autoradiographs, the detector assembly including a substantially boron-free substrate; a detector layer deposited on the substantially boron-free substrate, the detector layer being capable of recording alpha particle tracks and exhibiting evidence of the alpha tracks in response to being exposed to an etchant, the detector layer being less than about 2 microns thick; and a protective layer deposited on the detector layer, the protective layer being resistant to the etchant and having a thickness of about 0.5 to 1 microns. 13 figures.

  2. High resolution track etch autoradiography

    DOEpatents

    Solares, Guido; Zamenhof, Robert G.

    1994-01-01

    A detector assembly for use in obtaining alpha-track autoradiographs, the detector assembly including a substantially boron-free substrate; a detector layer deposited on the substantially boron-free substrate, the detector layer being capable of recording alpha particle tracks and exhibiting evidence of the alpha tracks in response to being exposed to an etchant, the detector layer being less than about 2 microns thick; and a protective layer deposited on the detector layer, the protective layer being resistant to the etchant and having a thickness of about 0.5 to 1 microns.

  3. Solar Flare Track Exposure Ages in Regolith Particles: A Calibration for Transmission Electron Microscope Measurements

    NASA Technical Reports Server (NTRS)

    Berger, Eve L.; Keller, Lindsay P.

    2015-01-01

    Mineral grains in lunar and asteroidal regolith samples provide a unique record of their interaction with the space environment. Space weathering effects result from multiple processes including: exposure to the solar wind, which results in ion damage and implantation effects that are preserved in the rims of grains (typically the outermost 100 nm); cosmic ray and solar flare activity, which result in track formation; and impact processes that result in the accumulation of vapor-deposited elements, impact melts and adhering grains on particle surfaces. Determining the rate at which these effects accumulate in the grains during their space exposure is critical to studies of the surface evolution of airless bodies. Solar flare energetic particles (mainly Fe-group nuclei) have a penetration depth of a few millimeters and leave a trail of ionization damage in insulating materials that is readily observable by transmission electron microscope (TEM) imaging. The density of solar flare particle tracks is used to infer the length of time an object was at or near the regolith surface (i.e., its exposure age). Track measurements by TEM methods are routine, yet track production rate calibrations have only been determined using chemical etching techniques [e.g., 1, and references therein]. We used focused ion beam-scanning electron microscope (FIB-SEM) sample preparation techniques combined with TEM imaging to determine the track density/exposure age relations for lunar rock 64455. The 64455 sample was used earlier by [2] to determine a track production rate by chemical etching of tracks in anorthite. Here, we show that combined FIB/TEM techniques provide a more accurate determination of a track production rate and also allow us to extend the calibration to solar flare tracks in olivine.

  4. Use of a hard mask for formation of gate and dielectric via nanofilament field emission devices

    DOEpatents

    Morse, Jeffrey D.; Contolini, Robert J.

    2001-01-01

    A process for fabricating a nanofilament field emission device in which a via in a dielectric layer is self-aligned to gate metal via structure located on top of the dielectric layer. By the use of a hard mask layer located on top of the gate metal layer, inert to the etch chemistry for the gate metal layer, and in which a via is formed by the pattern from etched nuclear tracks in a trackable material, a via is formed by the hard mask will eliminate any erosion of the gate metal layer during the dielectric via etch. Also, the hard mask layer will protect the gate metal layer while the gate structure is etched back from the edge of the dielectric via, if such is desired. This method provides more tolerance for the electroplating of a nanofilament in the dielectric via and sharpening of the nanofilament.

  5. Nuclear tracks in lunar samples

    NASA Technical Reports Server (NTRS)

    Price, P. B.

    1971-01-01

    An attempt is made to relate the appearance of an etched tract to the atomic number and velocity of the ion that left it using 10 MeV/nucleon Kr beams and 6 MeV/nucleon Zn beams. It was found that the etching rate along a tract in minerals and glass is a monototonic function of ionization rate thus, making particle identification possible. Results show the following were present in lunar samples: superheavy elements, cosmic rays with z greater than 26, and solar flare particles in Surveyor glass.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, J.; Lee, H.; De Lurgio, P.

    Automated monitoring and tracking of materials with radio frequency identification (RFID) technology can significantly improve both the operating efficiency of radiological facilities and the application of the ALARA (as low as reasonably achievable) principle in them. One such system, called ARG-US, has been developed by Argonne National Laboratory for the U.S. Department of Energy (DOE) Packaging and Certification Program to use in managing sensitive nuclear and radioactive materials. Several ARG-US systems are in various stages of deployment and advanced testing across DOE sites. ARG-US utilizes sensors in the tags to continuously monitor the state of health of the packaging andmore » promptly disseminates alarms to authorized users. In conjunction with global positioning system (GPS) tracking provided by TRANSCOM, the system can also monitor and track packages during transport. A compact dosimeter has been incorporated in the ARG-US tags via an onboard universal asynchronous receiver/transmitter interface. The detector has a wide measurement range for gamma radiation - from 0.1 mSv/h to 8 Sv/h. The detector is able to generate alarms for both high and low radiation and for a high cumulative dose. In a large installation, strategically located dosimeter-enabled tags can yield an accurate, real-time, 2D or 3D dose field map that can be used to enhance facility safety, security, and safeguards. This implementation can also lead to a reduced need for manned surveillance and reduced exposure of personnel to radiation, consistent with the ALARA principle at workplaces. (authors)« less

  7. Impact of x-ray dose on track formation and data analysis for CR-39-based proton diagnostics

    NASA Astrophysics Data System (ADS)

    Rinderknecht, H. G.; Rojas-Herrera, J.; Zylstra, A. B.; Frenje, J. A.; Gatu Johnson, M.; Sio, H.; Sinenian, N.; Rosenberg, M. J.; Li, C. K.; Séguin, F. H.; Petrasso, R. D.; Filkins, T.; Steidle, Jeffrey A.; Steidle, Jessica A.; Traynor, N.; Freeman, C.

    2015-12-01

    The nuclear track detector CR-39 is used extensively for charged particle diagnosis, in particular proton spectroscopy, at inertial confinement fusion facilities. These detectors can absorb x-ray doses from the experiments in the order of 1-100 Gy, the effects of which are not accounted for in the previous detector calibrations. X-ray dose absorbed in the CR-39 has previously been shown to affect the track size of alpha particles in the detector, primarily due to a measured reduction in the material bulk etch rate [Rojas-Herrera et al., Rev. Sci. Instrum. 86, 033501 (2015)]. Similar to the previous findings for alpha particles, protons with energies in the range 0.5-9.1 MeV are shown to produce tracks that are systematically smaller as a function of the absorbed x-ray dose in the CR-39. The reduction of track size due to x-ray dose is found to diminish with time between exposure and etching if the CR-39 is stored at ambient temperature, and complete recovery is observed after two weeks. The impact of this effect on the analysis of data from existing CR-39-based proton diagnostics on OMEGA and the National Ignition Facility is evaluated and best practices are proposed for cases in which the effect of x rays is significant.

  8. Impact of x-ray dose on track formation and data analysis for CR-39-based proton diagnostics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rinderknecht, H. G.; Rojas-Herrera, J.; Zylstra, A. B.

    The nuclear track detector CR-39 is used extensively for charged particle diagnosis, in particular proton spectroscopy, at inertial confinement fusion facilities. These detectors can absorb x-ray doses from the experiments in the order of 1–100 Gy, the effects of which are not accounted for in the previous detector calibrations. X-ray dose absorbed in the CR-39 has previously been shown to affect the track size of alpha particles in the detector, primarily due to a measured reduction in the material bulk etch rate [Rojas-Herrera et al., Rev. Sci. Instrum. 86, 033501 (2015)]. Similar to the previous findings for alpha particles, protonsmore » with energies in the range 0.5–9.1 MeV are shown to produce tracks that are systematically smaller as a function of the absorbed x-ray dose in the CR-39. The reduction of track size due to x-ray dose is found to diminish with time between exposure and etching if the CR-39 is stored at ambient temperature, and complete recovery is observed after two weeks. Furthermore, the impact of this effect on the analysis of data from existing CR-39-based proton diagnostics on OMEGA and the National Ignition Facility is evaluated and best practices are proposed for cases in which the effect of x rays is significant.« less

  9. Impact of x-ray dose on track formation and data analysis for CR-39-based proton diagnostics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rinderknecht, H. G., E-mail: rinderknecht1@llnl.gov; Rojas-Herrera, J.; Zylstra, A. B.

    The nuclear track detector CR-39 is used extensively for charged particle diagnosis, in particular proton spectroscopy, at inertial confinement fusion facilities. These detectors can absorb x-ray doses from the experiments in the order of 1–100 Gy, the effects of which are not accounted for in the previous detector calibrations. X-ray dose absorbed in the CR-39 has previously been shown to affect the track size of alpha particles in the detector, primarily due to a measured reduction in the material bulk etch rate [Rojas-Herrera et al., Rev. Sci. Instrum. 86, 033501 (2015)]. Similar to the previous findings for alpha particles, protonsmore » with energies in the range 0.5–9.1 MeV are shown to produce tracks that are systematically smaller as a function of the absorbed x-ray dose in the CR-39. The reduction of track size due to x-ray dose is found to diminish with time between exposure and etching if the CR-39 is stored at ambient temperature, and complete recovery is observed after two weeks. The impact of this effect on the analysis of data from existing CR-39-based proton diagnostics on OMEGA and the National Ignition Facility is evaluated and best practices are proposed for cases in which the effect of x rays is significant.« less

  10. Impact of x-ray dose on track formation and data analysis for CR-39-based proton diagnostics

    DOE PAGES

    Rinderknecht, H. G.; Rojas-Herrera, J.; Zylstra, A. B.; ...

    2015-12-23

    The nuclear track detector CR-39 is used extensively for charged particle diagnosis, in particular proton spectroscopy, at inertial confinement fusion facilities. These detectors can absorb x-ray doses from the experiments in the order of 1–100 Gy, the effects of which are not accounted for in the previous detector calibrations. X-ray dose absorbed in the CR-39 has previously been shown to affect the track size of alpha particles in the detector, primarily due to a measured reduction in the material bulk etch rate [Rojas-Herrera et al., Rev. Sci. Instrum. 86, 033501 (2015)]. Similar to the previous findings for alpha particles, protonsmore » with energies in the range 0.5–9.1 MeV are shown to produce tracks that are systematically smaller as a function of the absorbed x-ray dose in the CR-39. The reduction of track size due to x-ray dose is found to diminish with time between exposure and etching if the CR-39 is stored at ambient temperature, and complete recovery is observed after two weeks. Furthermore, the impact of this effect on the analysis of data from existing CR-39-based proton diagnostics on OMEGA and the National Ignition Facility is evaluated and best practices are proposed for cases in which the effect of x rays is significant.« less

  11. Atomic layer deposition modified track-etched conical nanochannels for protein sensing.

    PubMed

    Wang, Ceming; Fu, Qibin; Wang, Xinwei; Kong, Delin; Sheng, Qian; Wang, Yugang; Chen, Qiang; Xue, Jianming

    2015-08-18

    Nanopore-based devices have recently become popular tools to detect biomolecules at the single-molecule level. Unlike the long-chain nucleic acids, protein molecules are still quite challenging to detect, since the protein molecules are much smaller in size and usually travel too fast through the nanopore with poor signal-to-noise ratio of the induced transport signals. In this work, we demonstrate a new type of nanopore device based on atomic layer deposition (ALD) Al2O3 modified track-etched conical nanochannels for protein sensing. These devices show very promising properties of high protein (bovine serum albumin) capture rate with well time-resolved transport signals and excellent signal-to-noise ratio for the transport events. Also, a special mechanism involving transient process of ion redistribution inside the nanochannel is proposed to explain the unusual biphasic waveshapes of the current change induced by the protein transport.

  12. The response of a thermoluminescent dosimeter to low energy protons in the range 30-100 keV.

    PubMed

    Chu, T C; Lin, S Y; Hsu, C C; Li, J P

    2001-11-01

    This study demonstrates the thermoluminescence (TL) response of CaF2:Tm (commercial name TLD-300) to 30-100 keV protons which were generated by means of a Cockcroft-Walton accelerator. The phenomenon in which the total thermoluminescent output from CaF2:Tm (TLD-300) decreases with proton energy from 30 to 100 keV (with increase of LET) can be interpreted by the track structure theory (TST). The analysis of the glow peaks: P2 (131 degrees C), P3 (153.5 degrees C) and P6 (259 degrees C), of TLD-300 show the oscillatory decreasing phenomenon as a function of incident proton energy, which can be interpreted with the TST and the oscillatory emission of electrons in a thermoluminescent dosimeter (TLD) that is caused by resonant or quasi-resonant charge transfer in ion-atom interactions in this TLD-300.

  13. Verification of shielding effect by the water-filled materials for space radiation in the International Space Station using passive dosimeters

    NASA Astrophysics Data System (ADS)

    Kodaira, S.; Tolochek, R. V.; Ambrozova, I.; Kawashima, H.; Yasuda, N.; Kurano, M.; Kitamura, H.; Uchihori, Y.; Kobayashi, I.; Hakamada, H.; Suzuki, A.; Kartsev, I. S.; Yarmanova, E. N.; Nikolaev, I. V.; Shurshakov, V. A.

    2014-01-01

    The dose reduction effects for space radiation by installation of water shielding material ("protective curtain") of a stack board consisting of the hygienic wipes and towels have been experimentally evaluated in the International Space Station by using passive dosimeters. The averaged water thickness of the protective curtain was 6.3 g/cm2. The passive dosimeters consisted of a combination of thermoluminescent detectors (TLDs) and plastic nuclear track detectors (PNTDs). Totally 12 passive dosimeter packages were installed in the Russian Service Module during late 2010. Half of the packages were located at the protective curtain surface and the other half were at the crew cabin wall behind or aside the protective curtain. The mean absorbed dose and dose equivalent rates are measured to be 327 μGy/day and 821 μSv/day for the unprotected packages and 224 μGy/day and 575 μSv/day for the protected packages, respectively. The observed dose reduction rate with protective curtain was found to be 37 ± 7% in dose equivalent, which was consistent with the calculation in the spherical water phantom by PHITS. The contributions due to low and high LET particles were found to be comparable in observed dose reduction rate. The protective curtain would be effective shielding material for not only trapped particles (several 10 MeV) but also for low energy galactic cosmic rays (several 100 MeV/n). The properly utilized protective curtain will effectively reduce the radiation dose for crew living in space station and prolong long-term mission in the future.

  14. Space Radiation Dosimetry to Evaluate the Effect of Polyethylene Shielding in the Russian Segment of the International Space Station

    NASA Astrophysics Data System (ADS)

    Nagamatsu, Aiko; Casolino, Marco; Larsson, Oscar; Ito, Tsuyoshi; Yasuda, Nakahiro; Kitajo, Keiichi; Shimada, Ken; Takeda, Kazuo; Tsuda, Shuichi; Sato, Tatsuhiko

    As a part of the Alteino Long Term Cosmic Ray measurements on board the International Space Station (ALTCRISS) project, the shielding effect of polyethylene (PE) were evaluated in the Russian segment of the ISS, using active and passive dosimeter systems covered with or without PE shielding. For the passive dosimeter system, PADLES (Passive Dosimeter for Life-Science and Experiments in Space) was used in the project, which consists of a Thermo-Luminescent Dosimeters (TLD) and CR-39 Plastic Nuclear Track Detectors (PNTDs) attached to a radiator. Not only CR-39 PNTD itself but also a tissue equivalent material, NAN-JAERI, were employed as the radiator in order to investigate whether CR-39 PNTD can be used as a surrogate of tissue equivalent material in space dosimetry or not. The agreements between the doses measured by PADLES with CR-39 PNTD and NAN-JAERI radiators were quite satisfactorily, indicating the tissue-equivalent dose can be measured by conventional PADLES even though CR-39 PNTD is not perfect tissue-equivalent material. It was found that the shielding effect of PE varies with location inside the spacecraft: it became less significant with an increase of the mean thickness of the wall. This tendency was also verified by Monte Carlo simulation using the PHITS code. Throughout the flight experiments, in a series of four phases in the ALTCRISS project from December 2005 to October 2007, we assessed the ability of PE to decrease radiation doses in Low Earth Orbit(LEO).

  15. Method for producing thin sheets of proton-sensitive CR-39 plastic track detectors

    NASA Technical Reports Server (NTRS)

    Kinoshita, K.

    1980-01-01

    Procedures for fabricating large sheets of CR-39 with uniform chemical reactivity and sensitivity and which retain a clear, smooth surface after prolonged etching were investigated. Very thin sheets for certain Spacelab applications were fabricated.

  16. Vanishing Act: Experiments on Fission Track Annealing in Monazite

    NASA Astrophysics Data System (ADS)

    Shipley, N. K.; Fayon, A. K.

    2006-12-01

    To determine the viability of monazite as a low temperature thermochronometer, we conducted fission track annealing experiments under isothermal conditions. These experiments evaluated the effects of uranium concentration and zoning on annealing rates. Fission track annealing rates in monazite were also compared to those in Durango apatite. Preliminary results indicate that monazite grains with higher initial track densities anneal at faster rates than those with low initial densities and that fission tracks in monazite anneal at a faster rate than those in apatite. Monazite sand grains were selected from a placer sand deposit, mounted in teflon, and polished. Grains were imaged with electron backscattering to characterize zoning patterns and variations in uranium concentration. Monazite grain mounts were etched in boiling 37% HCl for 50 minutes and fission track densities were determined using standard fission track counting techniques. Durango apatite was etched in 5N HNO3 at room temperature for 20 seconds. After the initial track densities were determined, mounts in one group were annealed at 150 ° C for 1to 6 h. The mounts in a second group were annealed at 200 ° C for 2 hour periods along with mounts of Durango apatite grains. All grains were re-polished prior to each anneal. Upon completion of the experiment, backscatter images were taken of grains from which fission track counts were obtained to verify continuance of concentric zoning. Results of these experiments indicate that annealing rates of fission tracks in monazite vary as a function of uranium concentration. Uranium concentration was constrained on the basis of zoning patterns obtained from electron backscatter images. Fission track densities in grains with initial track densities of approximately 2.4 × 106 tracks/cm2 were reduced at average rate of 16% every two hours. In contrast, track densities in grains with initial track densities of approximately 1.6 × 106 tracks/cm2 average 4.6% density reduction every two hours. In both cases, track density reduction in monazite was faster than the rate of 0.1 % every two hours obtained for apatite. This would indicate that fission track annealing occurs at a lower temperature in monazite than in apatite. Thus monazite would be useful as a low temperature chronometer for determining cooling histories in recently exhumed rocks.

  17. Integrated manufacturing flow for selective-etching SADP/SAQP

    NASA Astrophysics Data System (ADS)

    Ali, Rehab Kotb; Fatehy, Ahmed Hamed; Word, James

    2018-03-01

    Printing cut mask in SAMP (Self Aligned Multi Patterning) is very challenging at advanced nodes. One of the proposed solutions is to print the cut shapes selectively. Which means the design is decomposed into mandrel tracks, Mandrel cuts and non-Mandrel cuts. The mandrel and non-Mandrel cuts are mutually independent which results in relaxing spacing constrains and as a consequence more dense metal lines. In this paper, we proposed the manufacturing flow of selective etching process. The results are quantified in terms of measuring PVBand, EPE and the number of hard bridging and pinching across the layout.

  18. Automated scanning of plastic nuclear track detectors using the Minnesota star scanner

    NASA Technical Reports Server (NTRS)

    Fink, P. J.; Waddington, C. J.

    1986-01-01

    The problems found in an attempt to adapt an automated scanner of astronomical plates, the Minnesota Automated Dual Plate Scanner (APS), to locating and measuring the etch pits produced by ionizing particles in plastic nuclear track detectors (CR-39) are described. A visual study of these pits was made to determine the errors introduced in determining positions and shapes. Measurements made under a low power microscope were compared with those from the APS.

  19. Ion-rejection, electrokinetic and electrochemical properties of a nanoporous track-etched membrane and their interpretation by means of space charge model.

    PubMed

    Yaroshchuk, Andriy; Boiko, Yuriy; Makovetskiy, Alexandre

    2009-08-18

    Due to their straight cylindrical pores, nanoporous track-etched membranes are suitable materials for studies of the fundamentals of nanofluidics. In contrast to single nanochannels, the nano/micro interface, in this case, can be quantitatively considered within the scope of macroscopically 1D models. The pressure-induced changes in the concentration of dilute KCl solutions (salt rejection phenomenon) have been studied experimentally with a commercially available nanoporous track-etched membrane of poly (ethylene terephthalate) (pore diameter ca. 21 nm). Besides that, we have also studied the concomitant stationary transmembrane electrical phenomenon (filtration potential) and carried out time-resolved measurements of the electrical response to a rapid pressure switch-off (within 5-10 ms). The latter has enabled us to split the filtration potential into the streaming potential and membrane potential components. In this way, we could also confirm that the observed nonlinearity of filtration potential, as a function of the transmembrane volume flow, was primarily caused by the salt rejection. The results of experimental measurements have been interpreted by means of a space charge model with the surface charge density being a single fitting parameter (the pore size was estimated from the membrane hydraulic permeability). By using the surface charge density fitted to the salt rejection data, the results of electrical measurements could be reproduced theoretically with a typical accuracy of 10% or better. Taking into account the simplifications made in the modeling, this accuracy appears to be good and confirms the quantitative applicability of the basic concept of space charge model to the description of transport properties of dilute electrolyte solutions in nanochannels of ca. 20 nm.

  20. Interpreting short and medium exposure etched-track radon measurements to determine whether an action level could be exceeded.

    PubMed

    Denman, A R; Crockett, R G M; Groves-Kirkby, C J; Phillips, P S

    2016-10-01

    Radon gas is naturally occurring, and can concentrate in the built environment. It is radioactive and high concentration levels within buildings, including homes, have been shown to increase the risk of lung cancer in the occupants. As a result, several methods have been developed to measure radon. The long-term average radon level determines the risk to occupants, but there is always pressure to complete measurements more quickly, particularly when buying and selling the home. For many years, the three-month exposure using etched-track detectors has been the de facto standard, but a decade ago, Phillips et al. (2003), in a DEFRA funded project, evaluated the use of 1-week and 1-month measurements. They found that the measurement methods were accurate, but the challenge lay in the wide variation in radon levels - with diurnal, seasonal, and other patterns due to climatic factors and room use. In the report on this work, and in subsequent papers, the group proposed methodologies for 1-week, 1-month and 3-month measurements and their interpretation. Other work, however, has suggested that 2-week exposures were preferable to 1-week ones. In practice, the radon remediation industry uses a range of exposure times, and further guidance is required to help interpret these results. This paper reviews the data from this study and a subsequent 4-year study of 4 houses, re-analysing the results and extending them to other exposures, particularly for 2-week and 2-month exposures, and provides comprehensive guidance for the use of etched-track detectors, the value and use of Seasonal Correction Factors (SCFs), the uncertainties in short and medium term exposures and the interpretation of results. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Estimation of Soil Radon Concentration in Al-Qateef's Date Palm Farms, Saudi Arabia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Al-Ghamdi, S. S.; Al-Garawi, M. S.; Baig, M. R.

    2011-10-27

    This study involves the measurement of radon concentrations in agricultural soil from two date Palm farms in Al-Qateef province using CR-39 detector. In each farm the palm trees are arranged in rows separated by the irrigation reservoirs. The first farm is about 10000 m{sup 2} and has 350 palm trees and the second farm is about 7000 m{sup 2} and has 320 palm trees. The average distance between trees is about 5.5 m. The rows are separated by an irrigation reservoir where fertilizers are added. Sixty soil samples were collected from each farm and classified in paperboard boxes. These samplesmore » were taken from different depths and positions between the trees and from the irrigation reservoir.A newly designed tag type dosimeter is used in which the alpha tracks are registered on both sides of the CR-39 detector. The tag dosimeter was calibrated against a cup type dosimeter which was calibrated at the National Radiological Protection Board (NRPB) at the U.K.The detectors were left to count for five months and then chemically treated in the standard way. Finally an optical microscope is used to count alpha tracks and the data are treated statistically.The study is set to test for significant differences in radon concentrations at different positions and depths in the barren and fertilized soils in the two farms. Measured radon concentrations ranged between 42 and 344Bq/m{sup 3}. No significant difference between the mean concentration values in soil samples taken between the trees and that taken at the depth of 50 cm from the irrigation reservoir. Significant difference was however found between radon concentrations in samples collected directly from the surface of the irrigation reservoir where fertilizers are introduced and those taken from the other two positions. The used fertilizers are found to have higher contents of uranium which is limited to the surface soil of the irrigation reservoir.« less

  2. Estimation of Soil Radon Concentration in Al-Qateef's Date Palm Farms, Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Al-Ghamdi, S. S.; Al-Garawi, M. S.; Baig, M. R.; Al-Sameen, M.

    2011-10-01

    This study involves the measurement of radon concentrations in agricultural soil from two date Palm farms in Al-Qateef province using CR-39 detector. In each farm the palm trees are arranged in rows separated by the irrigation reservoirs. The first farm is about 10000 m2 and has 350 palm trees and the second farm is about 7000 m2 and has 320 palm trees. The average distance between trees is about 5.5 m. The rows are separated by an irrigation reservoir where fertilizers are added. Sixty soil samples were collected from each farm and classified in paperboard boxes. These samples were taken from different depths and positions between the trees and from the irrigation reservoir. A newly designed tag type dosimeter is used in which the alpha tracks are registered on both sides of the CR-39 detector. The tag dosimeter was calibrated against a cup type dosimeter which was calibrated at the National Radiological Protection Board (NRPB) at the U.K. The detectors were left to count for five months and then chemically treated in the standard way. Finally an optical microscope is used to count alpha tracks and the data are treated statistically. The study is set to test for significant differences in radon concentrations at different positions and depths in the barren and fertilized soils in the two farms. Measured radon concentrations ranged between 42 and 344Bq/m3. No significant difference between the mean concentration values in soil samples taken between the trees and that taken at the depth of 50 cm from the irrigation reservoir. Significant difference was however found between radon concentrations in samples collected directly from the surface of the irrigation reservoir where fertilizers are introduced and those taken from the other two positions. The used fertilizers are found to have higher contents of uranium which is limited to the surface soil of the irrigation reservoir.

  3. Investigations of lunar materials

    NASA Technical Reports Server (NTRS)

    Comstock, G. M.; Fvwaraye, A. O.; Fleischer, R. L.; Hart, H. R., Jr.

    1972-01-01

    The investigations were directed at determining the radiation history and surface chronology of lunar materials using the etched particle track technique. The major lunar materials studied are the igneous rocks and double core from Apollo 12, the breccia and soil samples from Apollo 14, and the core samples from Luna 16. In the course of this work two new and potentially important observations were made: (1) Cosmic ray-induced spallation-recoil tracks were identified. The density of such tracks, when compared with the density of tracks induced by a known flux of accelerator protons, yields the time of exposure of a sample within the top meter or two of moon's surface. (2) Natural, fine scale plastic deformation was found to have fragmented pre-existing charged particle tracks, allowing the dating of the mechanical event causing the deformation.

  4. Reactivity assay of surface carboxyl chain-ends of poly(ethylene terephthalate) (PET) film and track-etched microporous membranes using fluorine labelled- and/or 3H-labelled derivatization reagents: tandem analysis by X-ray photoelectron spectroscopy (XPS) and liquid scintillation counting (LSC)

    NASA Astrophysics Data System (ADS)

    Deldime, Michèle; Dewez, Jean-Luc; Schneider, Yves-Jacques; Marchand-Brynaert, Jacqueline

    1995-09-01

    Poly(ethylene terephthalate) (PET) films and track-etched microporous membranes of two different porosities were pretreated by hydrolysis and/or oxidation in order to enhance the amount of carboxyl chain-ends displayed on their surface. The reactivity of these carboxyl functions was determined by derivatization assays in which the reactions were carried out under conditions likely to be encountered in the coupling of water-soluble biochemical signals on the surface of biomaterials. Original reagents, fluorine-labelled and/or 3H-labelled aminoacid compounds, were used. The derivatized PET samples were examined by X-ray photoelectron spectroscopy (XPS) to characterize their apparent surfaces, and by liquid scintillation counting (LSC) to quantify the amount of tags fixed on their open surfaces. Using this dual assay technique, we analyzed the surface of microporous membranes which are currently used as substrates for cell culture systems.

  5. Cosmic ray particle dosimetry and trajectory tracing. [cosmic ray track analysis for Apollo 17 BIOCORE

    NASA Technical Reports Server (NTRS)

    Cruty, M. R.; Benton, E. V.; Turnbill, C. E.; Philpott, D. E.

    1975-01-01

    Five pocket mice (Perognathus longimembris) were flown on Apollo XVII, each with a solid-state (plastic) nuclear track detector implanted beneath its scalp. The subscalp detectors were sensitive to HZE cosmic ray particles with a LET greater than or approximately equal to 0.15 million electron volts per micrometer (MeV/micron). A critical aspect of the dosimetry of the experiment involved tracing individual particle trajectories through each mouse head from particle tracks registered in the individual subscalp detectors, thereby establishing a one-to-one correspondence between a trajectory location in the tissue and the presence or absence of a lesion. The other major aspect was the identification of each registered particle. An average of 16 particles with Z greater than or equal to 6 and 2.2 particles with Z greater than or equal to 20 were found per detector. The track density, 29 tracks/sq cm, when adjusted for detection volume, was in agreement with the photographic emulsion data from an area dosimeter located next to the flight package.

  6. High colloidal stability of gold nanorods coated with a peptide-ethylene glycol: Analysis by cyanide-mediated etching and nanoparticle tracking analysis.

    PubMed

    Free, Paul; Conger, Gao; Siji, Wu; Zhang, Jing Bo; Fernig, David G

    2016-10-01

    The stability of gold nanorods was assessed following coating with various charged or uncharged ligands, mostly peptides. Highly stable monodispersed gold nanorods were obtained by coating CTAB-stabilized gold nanorods with a pentapeptide with C-terminal ethylene glycol units (peptide-EG). UV-vis spectroscopy of these nanorods suspended in saline solutions indicated no signs of aggregation, and they were easily purified using size-exclusion chromatography. A more stringent measure of nanorod stability involved observing changes in the UV-vis absorbance of gold nanorods subjected to etching with cyanide. The λmax absorbance of peptide-EG coated nanorods red-shifted in etchant solution. The hypothesis that changes in the nanorod aspect ratio led to this red-shift was confirmed by TEM analysis, which showed pit formation along the transverse axis. The etching process was followed in solution using nanoparticle tracking analysis. The red-shift was shown to occur while the particles remained mono-dispersed, and so was not due to aggregation. Adding both etchant solution and peptide-EG to the nanorods was further shown to allow modulation of the Δλmax red-shift and increase the etchant resistance of peptide-EG nanorods. Thus, very stable gold nanorods can be produced using the peptide-EG coating approach and their optical properties modulated with etchant. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Characterization and properties of micro- and nanowires of controlled size, composition, and geometry fabricated by electrodeposition and ion-track technology

    PubMed Central

    2012-01-01

    Summary The combination of electrodeposition and polymeric templates created by heavy-ion irradiation followed by chemical track etching provides a large variety of poly- and single-crystalline nanowires of controlled size, geometry, composition, and surface morphology. Recent results obtained by our group on the fabrication, characterization and size-dependent properties of nanowires synthesized by this technique are reviewed, including investigations on electrical resistivity, surface plasmon resonances, and thermal instability. PMID:23365800

  8. Solid-state track recorder dosimetry device to measure absolute reaction rates and neutron fluence as a function of time

    DOEpatents

    Gold, Raymond; Roberts, James H.

    1989-01-01

    A solid state track recording type dosimeter is disclosed to measure the time dependence of the absolute fission rates of nuclides or neutron fluence over a period of time. In a primary species an inner recording drum is rotatably contained within an exterior housing drum that defines a series of collimating slit apertures overlying windows defined in the stationary drum through which radiation can enter. Film type solid state track recorders are positioned circumferentially about the surface of the internal recording drum to record such radiation or its secondary products during relative rotation of the two elements. In another species both the recording element and the aperture element assume the configuration of adjacent disks. Based on slit size of apertures and relative rotational velocity of the inner drum, radiation parameters within a test area may be measured as a function of time and spectra deduced therefrom.

  9. An automatic analyzer of solid state nuclear track detectors using an optic RAM as image sensor

    NASA Astrophysics Data System (ADS)

    Staderini, Enrico Maria; Castellano, Alfredo

    1986-02-01

    An optic RAM is a conventional digital random access read/write dynamic memory device featuring a quartz windowed package and memory cells regularly ordered on the chip. Such a device is used as an image sensor because each cell retains data stored in it for a time depending on the intensity of the light incident on the cell itself. The authors have developed a system which uses an optic RAM to acquire and digitize images from electrochemically etched CR39 solid state nuclear track detectors (SSNTD) in the track count rate up to 5000 cm -2. On the digital image so obtained, a microprocessor, with appropriate software, performs image analysis, filtering, tracks counting and evaluation.

  10. The dual role of silver during silicon etching in HF solution.

    PubMed

    Abouda-Lachiheb, Manel; Nafie, Nesma; Bouaicha, Mongi

    2012-08-13

    It was reported that during silicon etching, silver was subjected to have a controversial role. Some researchers debate that silver protects silicon, and, at the same time, other ones confirm that silver catalyzes silicon underneath. In this paper, we give experimental results arguing the dual role that silver has during the formation of silicon nanostructures. We give a proof that the role of silver depends on the experimental details and the intrinsic properties of silver during its deposition on the silicon wafer. Through our investigations, we tracked the silver particles that indicated which mechanism is involved. Characterizations of the prepared samples were made using a scanning electron microscope.

  11. Environmental Radiation Measurements on MIR Station

    NASA Astrophysics Data System (ADS)

    Benton, E. V.; Frank, A. L.; Benton, E. R.

    1997-04-01

    Environmental radiation levels on the Russian space station Mir are being monitored under differing shielding conditions by a series of six area passive dosimeters (APDs) placed at individual locations inside the Core and Kvant 2 modules, and by an External Dosimeter Array (EDA) to be-deployed on the exterior surface of the Kvant 2 module. Each APD and the EDA contains CR-39 plastic nuclear track detectors (PNTDs) for measurement of LET spectra and TLDs for absorbed dose measurements. Two of the missions, NASA-2/Mir-21 and NASA-3/Mir-22 have been completed and the six APDs from each mission returned to Earth from Mir. This report covers progress to date on the analysis of TLDs and PNTDs from these two missions. For NASA-2/Mir-21, average mission absorbed dose rates varied from 271 to 407 micro-Gy/d at the APDS. For NASA-3/Mir-22, average mission absorbed dose rates varied from 265 to 421 micro-Gy/d.

  12. Environmental Radiation Measurements on MIR Station. Program 1; Internal Experiment

    NASA Technical Reports Server (NTRS)

    Benton, E. V.; Frank, A. L.; Benton, E. R.

    1997-01-01

    Environmental radiation levels on the Russian space station Mir are being monitored under differing shielding conditions by a series of six area passive dosimeters (APDs) placed at individual locations inside the Core and Kvant 2 modules, and by an External Dosimeter Array (EDA) to be-deployed on the exterior surface of the Kvant 2 module. Each APD and the EDA contains CR-39 plastic nuclear track detectors (PNTDs) for measurement of LET spectra and TLDs for absorbed dose measurements. Two of the missions, NASA-2/Mir-21 and NASA-3/Mir-22 have been completed and the six APDs from each mission returned to Earth from Mir. This report covers progress to date on the analysis of TLDs and PNTDs from these two missions. For NASA-2/Mir-21, average mission absorbed dose rates varied from 271 to 407 micro-Gy/d at the APDS. For NASA-3/Mir-22, average mission absorbed dose rates varied from 265 to 421 micro-Gy/d.

  13. Investigation and Implementation of Commercially Available Optically Stimulated Luminescence Dosimeters for Use in Fixed Nuclear Accident Dosimeter Systems.

    PubMed

    Georgeson, David L; Christiansen, Byron H

    2018-06-01

    Idaho National Laboratory transitioned from an external dosimetry system reliant on thermoluminescent dosimeters to one that uses optically stimulated luminescence dosimeters in 2010. This change not only affected the dosimeters worn by personnel, but those found in the nuclear-accident dosimeters used across Idaho National Laboratory. The elimination of on-site use and processing of thermoluminescent dosimeters impacted Idaho National Laboratory's ability to process nuclear-accident dosimeters in a timely manner. This change in processes drove Idaho National Laboratory to develop an alternative method for fixed nuclear-accident dosimeter gamma-dose analyses. This new method was driven by the need to establish a simple, cost-effective, and rapid-turnaround alternative to the thermoluminescent-dosimeter-based fixed nuclear-accident dosimeter system. An adaptation of existing technologies proved to be the most efficient path to this end. The purpose of this article is to delineate the technical basis for replacing the thermoluminescent dosimeter contained within the Idaho National Laboratory fixed nuclear-accident dosimeter system with optically stimulated luminescence-based Landauer, Inc., nanoDot dosimeters.

  14. Track recording plastic compositions

    NASA Technical Reports Server (NTRS)

    Tarle, Gregory (Inventor)

    1983-01-01

    Improved nuclear track recording plastic compositions are provided which exhibit greatly decreased surface roughness when etched to produce visible tracks of energetic nuclear particles which have passed into and/or through said plastic. The improved compositions incorporate a small quantity of a phthalic acid ester into the major plastic component which is derived from the polymerization of monomeric di-ethylene glycol bis allyl carbonate. Di-substituted phthalic acid esters are preferred as the added component, with the further perference that the ester substituent has a chain length of 2 or more carbon atoms. The inclusion of the phthalic acid ester to an extent of from about 1-2% by weight of the plastic compositions is sufficient to drastically reduce the surface roughness ordinarily produced when the track recording plastic is contacted by etchants.

  15. Two new methods to increase the contrast of track-etch neutron radiographs

    NASA Technical Reports Server (NTRS)

    Morley, J.

    1971-01-01

    Methods for increasing the (optical density span) of radiographs were evaluated. In one method, fluorescent dye was deposited in the tracks of the radiograph. The radiograph was then examined under ultraviolet light. The second method was a crossed Polaroid filter technique. The radiograph was placed between the filters and then illuminated with a diffuse white-light source. An increase in the optical density span from .10 to .37 was obtained with the dye method. With the Polaroid method, the increase obtained was from .10 to 2.4.

  16. The dual role of silver during silicon etching in HF solution

    PubMed Central

    2012-01-01

    It was reported that during silicon etching, silver was subjected to have a controversial role. Some researchers debate that silver protects silicon, and, at the same time, other ones confirm that silver catalyzes silicon underneath. In this paper, we give experimental results arguing the dual role that silver has during the formation of silicon nanostructures. We give a proof that the role of silver depends on the experimental details and the intrinsic properties of silver during its deposition on the silicon wafer. Through our investigations, we tracked the silver particles that indicated which mechanism is involved. Characterizations of the prepared samples were made using a scanning electron microscope. PMID:22888998

  17. Radiation dosimeters

    DOEpatents

    Hoelsher, James W.; Hegland, Joel E.; Braunlich, Peter F.; Tetzlaff, Wolfgang

    1992-01-01

    Radiation dosimeters and dosimeter badges. The dosimeter badges include first and second parts which are connected to join using a securement to produce a sealed area in which at least one dosimeter is held and protected. The badge parts are separated to expose the dosimeters to a stimulating laser beam used to read dose exposure information therefrom. The badge is constructed to allow automated disassembly and reassembly in a uniquely fitting relationship. An electronic memory is included to provide calibration and identification information used during reading of the dosimeter. Dosimeter mounts which reduce thermal heating requirements are shown. Dosimeter constructions and production methods using thin substrates and phosphor binder-layers applied thereto are also taught.

  18. Polycarbonates: a long-term highly sensitive radon monitor

    NASA Astrophysics Data System (ADS)

    Pressyanov, D.; Buysse, J.; Poffijn, A.; Meesen, G.; Van Deynse, A.

    2000-06-01

    An approach for long-term (either retrospective or prospective) 222Rn measurements is proposed that is based on the combination of the high radon absorption ability of some polycarbonates with their alpha track-etch properties. The detection limit is projected to be <10 Bq m -3 for an exposure time of 20 yr.

  19. Radiation induced deposition of copper nanoparticles inside the nanochannels of poly(acrylic acid)-grafted poly(ethylene terephthalate) track-etched membranes

    NASA Astrophysics Data System (ADS)

    Korolkov, Ilya V.; Güven, Olgun; Mashentseva, Anastassiya A.; Atıcı, Ayse Bakar; Gorin, Yevgeniy G.; Zdorovets, Maxim V.; Taltenov, Abzal A.

    2017-01-01

    Poly(ethylene terephthalate) PET, track-etched membranes (TeMs) with 400 nm average pore size were UV-grafted with poly(acrylic acid) (PAA) after oxidation of inner surfaces by H2O2/UV system. Carboxylate groups of grafted PAA chains were easily complexed with Cu2+ ions in aqueous solutions. These ions were converted into metallic copper nanoparticles (NPs) by radiation-induced reduction of copper ions in aqueous-alcohol solution by gamma rays in the dose range of 46-250 kGy. Copper ions chelating with -COOH groups of PAA chains grafted on PET TeMs form polymer-metal ion complex that prevent the formation of agglomerates during reduction of copper ions to metallic nanoparticles. The detailed analysis by X-Ray diffraction technique (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX) confirmed the deposition of copper nanoparticles with the average size of 70 nm on the inner surface of nanochannels of PET TeMs. Samples were also investigated by FTIR, ESR spectroscopies to follow copper ion reduction.

  20. Electrodeposited Ni nanowires-track etched P.E.T. composites as selective solar absorbers

    NASA Astrophysics Data System (ADS)

    Lukhwa, R.; Sone, B.; Kotsedi, L.; Madjoe, R.; Maaza, M.

    2018-05-01

    This contribution reports on the structural, optical and morphological properties of nanostructured flexible solar-thermal selective absorber composites for low temperature applications. The candidate material in the system is consisting of electrodeposited nickel nano-cylinders embedded in track-etched polyethylene terephthalate (PET) host membrane of pore sizes ranging between 0.3-0.8µm supported by conductive nickel thin film of about 0.5µm. PET were irradiated with 11MeV/u high charged xenon (Xe) ions at normal incidence. The tubular and metallic structure of the nickel nano-cylinders within the insulator polymeric host forms a typical ceramic-metal nano-composite "Cermet". The produced material was characterized by the following techniques: X-ray diffraction (XRD) for structural characterization to determine preferred crystallographic structure, and grain size of the materials; Scanning electron microscopy (SEM) to determine surface morphology, particle size, and visual imaging of distribution of structures on the surface of the substrate; Atomic force microscopy (AFM) to characterize surface roughness, surface morphology, and film thickness, and UV-Vis-NIR spectrophotometer to measure the reflectance, then to determine solar absorption

  1. Longitudinally Controlled Modification of Cylindrical and Conical Track-Etched Poly(ethylene terephthalate) Pores Using an Electrochemically Assisted Click Reaction

    DOE PAGES

    Coceancigh, Herman; Tran-Ba, Khanh-Hoa; Siepser, Natasha; ...

    2017-09-27

    Here in this study, the longitudinally controlled modification of the inner surfaces of poly(ethylene terephthalate) (PET) track-etched pores was explored using an electrochemically assisted Cu(I)-catalyzed azide–alkyne cycloaddition (CuAAC) click reaction. Cylindrical or conical PET track-etched pores were first decorated with ethynyl groups via the amidation of surface -COOH groups, filled with a solution containing Cu(II) and azide-tagged fluorescent dye, and then sandwiched between comb-shaped and planar gold electrodes. Cu(I) was produced at the comb-shaped working electrode by the reduction of Cu(II); it diffused along the pores toward the other electrode and catalyzed CuAAC between an azide-tagged fluorescent dye and amore » pore-tethered ethynyl group. The modification efficiency of cylindrical pores (ca. 1 μm in diameter) was assessed from planar and cross-sectional fluorescence microscope images of modified membranes. Planar images showed that pore modification took place only above the teeth of the comb-shaped electrode with a higher reaction yield for longer Cu(II) reduction times. Cross-sectional images revealed micrometer-scale gradient modification along the pore axis, which reflected a Cu(I) concentration profile within the pores, as supported by finite-element computer simulations. The reported approach was applicable to the asymmetric modification of cylindrical pores with two different fluorescent dyes in the opposite directions and also for the selective visualization of the tip and base openings of conical pores (ca. 3.5 μm in base diameter and ca. 1 μm in tip diameter). Lastly, the method based on electrochemically assisted CuAAC provides a controlled means to fabricate asymmetrically modified nanoporous membranes and, in the future, will be applicable for chemical separations and the development of sequential catalytic reactors.« less

  2. Longitudinally Controlled Modification of Cylindrical and Conical Track-Etched Poly(ethylene terephthalate) Pores Using an Electrochemically Assisted Click Reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coceancigh, Herman; Tran-Ba, Khanh-Hoa; Siepser, Natasha

    Here in this study, the longitudinally controlled modification of the inner surfaces of poly(ethylene terephthalate) (PET) track-etched pores was explored using an electrochemically assisted Cu(I)-catalyzed azide–alkyne cycloaddition (CuAAC) click reaction. Cylindrical or conical PET track-etched pores were first decorated with ethynyl groups via the amidation of surface -COOH groups, filled with a solution containing Cu(II) and azide-tagged fluorescent dye, and then sandwiched between comb-shaped and planar gold electrodes. Cu(I) was produced at the comb-shaped working electrode by the reduction of Cu(II); it diffused along the pores toward the other electrode and catalyzed CuAAC between an azide-tagged fluorescent dye and amore » pore-tethered ethynyl group. The modification efficiency of cylindrical pores (ca. 1 μm in diameter) was assessed from planar and cross-sectional fluorescence microscope images of modified membranes. Planar images showed that pore modification took place only above the teeth of the comb-shaped electrode with a higher reaction yield for longer Cu(II) reduction times. Cross-sectional images revealed micrometer-scale gradient modification along the pore axis, which reflected a Cu(I) concentration profile within the pores, as supported by finite-element computer simulations. The reported approach was applicable to the asymmetric modification of cylindrical pores with two different fluorescent dyes in the opposite directions and also for the selective visualization of the tip and base openings of conical pores (ca. 3.5 μm in base diameter and ca. 1 μm in tip diameter). Lastly, the method based on electrochemically assisted CuAAC provides a controlled means to fabricate asymmetrically modified nanoporous membranes and, in the future, will be applicable for chemical separations and the development of sequential catalytic reactors.« less

  3. Composite material dosimeters

    DOEpatents

    Miller, Steven D.

    1996-01-01

    The present invention is a composite material containing a mix of dosimeter material powder and a polymer powder wherein the polymer is transparent to the photon emission of the dosimeter material powder. By mixing dosimeter material powder with polymer powder, less dosimeter material is needed compared to a monolithic dosimeter material chip. Interrogation is done with excitation by visible light.

  4. Dosimetry in dentistry.

    PubMed

    Asha, M L; Chatterjee, Ingita; Patil, Preeti; Naveen, S

    2015-01-01

    The purpose of this paper was to review various dosimeters used in dentistry and the cumulative results of various studies done with various dosimeters. Several relevant PubMed indexed articles from 1999 to 2013 were electronically searched by typing "dosimeters", "dosimeters in dentistry", "properties of dosimeters", "thermoluminescent and optically stimulated dosimeters", "recent advancements in dosimetry in dentistry." The searches were limited to articles in English to prepare a concise review on dental dosimetry. Titles and abstracts were screened, and articles that fulfilled the criteria of use of dosimeters in dental applications were selected for a full-text reading. Article was divided into four groups: (1) Biological effects of radiation, (2) properties of dosimeters, (3) types of dosimeters and (4) results of various studies using different dosimeters. The present review on dosimetry based on various studies done with dosimeters revealed that, with the advent of radiographic technique the effective dose delivered is low. Therefore, selection of radiological technique plays an important role in dental dose delivery.

  5. In vivo dose measurement using TLDs and MOSFET dosimeters for cardiac radiosurgery.

    PubMed

    Gardner, Edward A; Sumanaweera, Thilaka S; Blanck, Oliver; Iwamura, Alyson K; Steel, James P; Dieterich, Sonja; Maguire, Patrick

    2012-05-10

    In vivo measurements were made of the dose delivered to animal models in an effort to develop a method for treating cardiac arrhythmia using radiation. This treatment would replace RF energy (currently used to create cardiac scar) with ionizing radiation. In the current study, the pulmonary vein ostia of animal models were irradiated with 6 MV X-rays in order to produce a scar that would block aberrant signals characteristic of atrial fibrillation. The CyberKnife radiosurgery system was used to deliver planned treatments of 20-35 Gy in a single fraction to four animals. The Synchrony system was used to track respiratory motion of the heart, while the contractile motion of the heart was untracked. The dose was measured on the epicardial surface near the right pulmonary vein and on the esophagus using surgically implanted TLD dosimeters, or in the coronary sinus using a MOSFET dosimeter placed using a catheter. The doses measured on the epicardium with TLDs averaged 5% less than predicted for those locations, while doses measured in the coronary sinus with the MOSFET sensor nearest the target averaged 6% less than the predicted dose. The measurements on the esophagus averaged 25% less than predicted. These results provide an indication of the accuracy with which the treatment planning methods accounted for the motion of the target, with its respiratory and cardiac components. This is the first report on the accuracy of CyberKnife dose delivery to cardiac targets.

  6. Neutron dosimetric measurements in shuttle and MIR.

    PubMed

    Reitz, G

    2001-06-01

    Detector packages consisting of thermoluminescence detectors (TLD), nuclear emulsions and plastic track detectors were exposed at identical positions inside MIR space station and on shuttle flights inside Spacelab and Spacehab during different phases of the solar cycle. The objectives of the investigations are to provide data on charge and energy spectra of heavy ions, and the contribution of events with low-energy deposit (protons, electrons, gamma, etc.) to the dose, as well as the contribution of secondaries, such as nuclear disintegration stars and neutrons. For neutron dosimetry 6LiF (TLD600) and 7LiF (TLD700) chips were used both of which have almost the same response to gamma rays but different response to neutrons. Neutrons in space are produced mainly in evaporation and knock-on processes with energies mainly of 1-10 MeV and up to several 100 MeV, respectively. The energy spectrum undergoes continuous changes toward greater depth in the attenuating material until an equilibrium is reached. In equilibrium, the spectrum is a wide continuum extending down to thermal energies to which the 6LiF is sensitive. Based on the difference of absorbed doses in the 6LiF and 7LiF chips, thermal neutron fluxes from 1 to 2.3 cm-2 s-1 are calculated using the assumption that the maximum induced dose in TLD600 for 1 neutron cm-2 is 1.6 x 10(-10) Gy (Horowitz and Freeman, Nucl. Instr. and Meth. 157 (1978) 393). It is assumed that the flux of high-energy neutrons is at least of that quantity. Tissue doses were calculated taking as a mean ambient absorbed dose per neutron 6 x10(-12) Gy cm2 (for a10 MeV neutron). The neutron equivalent doses for the above-mentioned fluxes are 52 micro Gy d-1 and 120 micro Gy d-1. In recent experiments, a personal neutron dosimeter was integrated into the dosimeter packages. First results of this dosimeter which is based on nuclear track detectors with converter foils are reported. For future measurements, a scintillator counter with anticoincidence logic is under development. c2001 Elsevier Science Ltd. All rights reserved.

  7. SOLID-STATE DOSIMETERS BASED ON OPTICAL THEORY (in Hungarian)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patko, J.

    1962-01-01

    A comparison is made of applications of various dosimeters based on solid materials, and their comparative merits are described. Characteristics of the following types of dosimeters effective at various radiation intensities are discussed: condensation chambers for measurements over the range 10/sup -4/-10/ sup 2/ rad, film dosimeters 10/sup -1/-10/sup 5/ rad, thermoluminescent types 10/ sup -3/ - 10/sup 4/ rad, photoluminescent dosimeters 10/sup 1/-- 10/sup 4/ rad, crystal types 10/sup 1/- 10/sup 4/ rad, glass dosimeters 10/sup 3/- 10/sup 7/ rad, synthetic material types 10/sup 5/- 10/sup 9/ rad, and luminescent degradation dosimeters 10/sup 5/-10/sup 8/ rad. Special attention ismore » given to the thermoluminescent dosimeter, which utilizes Mn-activated Ca phosphate. This dosimeter utilizes a glass ampulla instead of a glass vacuum tube and polarography is used to determine the luminescence curve. Simple evaluation equipment is being developed to be used with this dosimeter. Such thermoluminescent dosimeters are generally small in size. Its high sensitivity makes it applicable to low intensity radiation aad after calibration it can again be utilized. Manganese-activated Ca phosphate dosimeters do not show any fading of response in the first hour after use. Use of solid dosimeters, for high- energy measurements« less

  8. [Measurement of the air kerma using dosimeters embedded in an acrylic phantom in interventional radiology.].

    PubMed

    Kawabe, Atsushi; Shibuya, Koichi; Takeda, Yoshihiro

    2006-01-01

    Interventional radiology procedure guidelines and a measurement manual (IVR guidelines) have been published for the maintenance of interventional equipment with an objective of avoiding serious radiation-induced skin injuries. In the IVR guidelines, the positioning of a dosimeter at the interventional reference point is determined, whereas placement of a phantom is not specified. Therefore, the phantom is placed at any convenient location between the dosimeter and image intensifier. The space around the dosimeter reduces detection of scattered radiation. In this study, dosimeters (consisting of a parallel plate ionization chamber, glass dosimeter and OSL dosimeter) were embedded in the phantom surface to detected scattered radiation accurately. As a result, when dosimeters were embedded in the phantom surface, the air kerma was increased compared with that when dosimeters were placed on the phantom. This suggested that embedded dosimeters were able to detect scattered radiation from the phantom.

  9. A Radiation Chemistry Code Based on the Green's Function of the Diffusion Equation

    NASA Technical Reports Server (NTRS)

    Plante, Ianik; Wu, Honglu

    2014-01-01

    Stochastic radiation track structure codes are of great interest for space radiation studies and hadron therapy in medicine. These codes are used for a many purposes, notably for microdosimetry and DNA damage studies. In the last two decades, they were also used with the Independent Reaction Times (IRT) method in the simulation of chemical reactions, to calculate the yield of various radiolytic species produced during the radiolysis of water and in chemical dosimeters. Recently, we have developed a Green's function based code to simulate reversible chemical reactions with an intermediate state, which yielded results in excellent agreement with those obtained by using the IRT method. This code was also used to simulate and the interaction of particles with membrane receptors. We are in the process of including this program for use with the Monte-Carlo track structure code Relativistic Ion Tracks (RITRACKS). This recent addition should greatly expand the capabilities of RITRACKS, notably to simulate DNA damage by both the direct and indirect effect.

  10. Development and evaluation of polycrystalline cadmium telluride dosimeters for accurate quality assurance in radiation therapy

    NASA Astrophysics Data System (ADS)

    Oh, K.; Han, M.; Kim, K.; Heo, Y.; Moon, C.; Park, S.; Nam, S.

    2016-02-01

    For quality assurance in radiation therapy, several types of dosimeters are used such as ionization chambers, radiographic films, thermo-luminescent dosimeter (TLD), and semiconductor dosimeters. Among them, semiconductor dosimeters are particularly useful for in vivo dosimeters or high dose gradient area such as the penumbra region because they are more sensitive and smaller in size compared to typical dosimeters. In this study, we developed and evaluated Cadmium Telluride (CdTe) dosimeters, one of the most promising semiconductor dosimeters due to their high quantum efficiency and charge collection efficiency. Such CdTe dosimeters include single crystal form and polycrystalline form depending upon the fabrication process. Both types of CdTe dosimeters are commercially available, but only the polycrystalline form is suitable for radiation dosimeters, since it is less affected by volumetric effect and energy dependence. To develop and evaluate polycrystalline CdTe dosimeters, polycrystalline CdTe films were prepared by thermal evaporation. After that, CdTeO3 layer, thin oxide layer, was deposited on top of the CdTe film by RF sputtering to improve charge carrier transport properties and to reduce leakage current. Also, the CdTeO3 layer which acts as a passivation layer help the dosimeter to reduce their sensitivity changes with repeated use due to radiation damage. Finally, the top and bottom electrodes, In/Ti and Pt, were used to have Schottky contact. Subsequently, the electrical properties under high energy photon beams from linear accelerator (LINAC), such as response coincidence, dose linearity, dose rate dependence, reproducibility, and percentage depth dose, were measured to evaluate polycrystalline CdTe dosimeters. In addition, we compared the experimental data of the dosimeter fabricated in this study with those of the silicon diode dosimeter and Thimble ionization chamber which widely used in routine dosimetry system and dose measurements for radiation therapy.

  11. Fundamentals of Polymer Gel Dosimeters

    NASA Astrophysics Data System (ADS)

    McAuley, Kim B.

    2006-12-01

    The recent literature on polymer gel dosimetry contains application papers and basic experimental studies involving polymethacrylic-acid-based and polyacrylamide-based gel dosimeters. The basic studies assess the relative merits of these two most commonly used dosimeters, and explore the effects of tetrakis hydroxymethyl phosphonium chloride (THPC) antioxidant on dosimeter performance. Polymer gel dosimeters that contain THPC or other oxygen scavengers are called normoxic dosimeters, because they can be prepared under normal atmospheric conditions, rather than in a glove box that excludes oxygen. In this review, an effort is made to explain some of the underlying chemical phenomena that affect dosimeter performance using THPC, and that lead to differences in behaviour between dosimeters made using the two types of monomer systems. Progress on the development of new more effective and less toxic dosimeters is also reported.

  12. Development and characterization of a three-dimensional radiochromic film stack dosimeter for megavoltage photon beam dosimetry.

    PubMed

    McCaw, Travis J; Micka, John A; DeWerd, Larry A

    2014-05-01

    Three-dimensional (3D) dosimeters are particularly useful for verifying the commissioning of treatment planning and delivery systems, especially with the ever-increasing implementation of complex and conformal radiotherapy techniques such as volumetric modulated arc therapy. However, currently available 3D dosimeters require extensive experience to prepare and analyze, and are subject to large measurement uncertainties. This work aims to provide a more readily implementable 3D dosimeter with the development and characterization of a radiochromic film stack dosimeter for megavoltage photon beam dosimetry. A film stack dosimeter was developed using Gafchromic(®) EBT2 films. The dosimeter consists of 22 films separated by 1 mm-thick spacers. A Virtual Water™ phantom was created that maintains the radial film alignment within a maximum uncertainty of 0.3 mm. The film stack dosimeter was characterized using simulations and measurements of 6 MV fields. The absorbed-dose energy dependence and orientation dependence of the film stack dosimeter were investigated using Monte Carlo simulations. The water equivalence of the dosimeter was determined by comparing percentage-depth-dose (PDD) profiles measured with the film stack dosimeter and simulated using Monte Carlo methods. Film stack dosimeter measurements were verified with thermoluminescent dosimeter (TLD) microcube measurements. The film stack dosimeter was also used to verify the delivery of an intensity-modulated radiation therapy (IMRT) procedure. The absorbed-dose energy response of EBT2 film differs less than 1.5% between the calibration and film stack dosimeter geometries for a 6 MV spectrum. Over a series of beam angles ranging from normal incidence to parallel incidence, the overall variation in the response of the film stack dosimeter is within a range of 2.5%. Relative to the response to a normally incident beam, the film stack dosimeter exhibits a 1% under-response when the beam axis is parallel to the film planes. Measured and simulated PDD profiles agree within a root-mean-square difference of 1.3%. In-field film stack dosimeter and TLD measurements agree within 5%, and measurements in the field penumbra agree within 0.5 mm. Film stack dosimeter and TLD measurements have expanded (k = 2) overall measurement uncertainties of 6.2% and 5.8%, respectively. Film stack dosimeter measurements of an IMRT dose distribution have 98% agreement with the treatment planning system dose calculation, using gamma criteria of 3% and 2 mm. The film stack dosimeter is capable of high-resolution, low-uncertainty 3D dose measurements, and can be readily incorporated into an existing film dosimetry program.

  13. Nuclear track-based biosensors with the enzyme laccase

    NASA Astrophysics Data System (ADS)

    García-Arellano, H.; Fink, D.; Muñoz Hernández, G.; Vacík, J.; Hnatowicz, V.; Alfonta, L.

    2014-08-01

    A new type of biosensors for detecting phenolic compounds is presented here. These sensors consist of thin polymer foils with laccase-clad etched nuclear tracks. The presence of suitable phenolic compounds in the sensors leads to the formation of enzymatic reaction products in the tracks, which differ in their electrical conductivities from their precursor materials. These differences correlate with the concentrations of the phenolic compounds. Corresponding calibration curves have been established for a number of compounds. The sensors thus produced are capable to cover between 5 and 9 orders of magnitude in concentration - in the best case down to some picomoles. The sensor's detection sensitivity strongly depends on the specific compound. It is highest for caffeic acid and acid blue 74, followed by ABTS and ferulic acid.

  14. Developing quartz wafer mold manufacturing process for patterned media

    NASA Astrophysics Data System (ADS)

    Chiba, Tsuyoshi; Fukuda, Masaharu; Ishikawa, Mikio; Itoh, Kimio; Kurihara, Masaaki; Hoga, Morihisa

    2009-04-01

    Recently, patterned media have gained attention as a possible candidate for use in the next generation of hard disk drives (HDD). Feature sizes on media are predicted to be 20-25 nm half pitch (hp) for discrete-track media in 2010. One method of fabricating such a fine pattern is by using a nanoimprint. The imprint mold for the patterned media is created from a 150-millimeter, rounded, quartz wafer. The purpose of the process introduced here was to construct a quartz wafer mold and to fabricate line and space (LS) patterns at 24 nmhp for DTM. Additionally, we attempted to achieve a dense hole (HOLE) pattern at 12.5 nmhp for BPM for use in 2012. The manufacturing process of molds for patterned media is almost the same as that for semiconductors, with the exception of the dry-etching process. A 150-millimeter quartz wafer was etched on a special tray made from carving a 6025 substrate, by using the photo-mask tool. We also optimized the quartz etching conditions. As a result, 24 nmhp LS and HOLE patterns were manufactured on the quartz wafer. In conclusion, the quartz wafer mold manufacturing process was established. It is suggested that the etching condition should be further optimized to achieve a higher resolution of HOLE patterns.

  15. Characterization of Makrofol ® DE 1-1 for alpha particle radiography

    NASA Astrophysics Data System (ADS)

    El Ghazaly, M.; Aydarous, Abdulkadir; Al-Thomali, Talal A.

    2017-09-01

    Makrofol ® DE 1-1 (bisphenol-A polycarbonate) was investigated for alpha particle radiography. The edge spread function (ESF) was measured by razor-blade's edge. Makrofol ® DE 1-1 detectors were irradiated with perpendicular incident alpha particles of energy 2.5, 4 and 5.4 MeV, thereafter they were etched in 75% 6N KOH+25% C2H5OH at a temperature of 50 °C for different durations. The etched Makrofol®DE 1-1 detectors were imaged with an optical microscope equipped with a CCD camera. The results revealed that the green channel of the original RGB image provides the highest contrast comparing with red and blue channel by a factor of 27.6% of the original RGB image. The image contrast of alpha particle-irradiated Makrofol®DE 1-1 detector was found to be inversely related to the etching time since the alpha particle tracks proceed from a conical phase to spherical phase. The spatial resolution of alpha particle-irradiated Makrofol®DE 1-1 detector, in terms of line spread function, was found to deteriorate as the etching time increases for all examined alpha particle energies. The results revealed the potential capability of Makrofol®DE 1-1 detector as an efficient detector for alpha particle radiography such as autoradiography.

  16. Monopole-track characteristics in plastic detectors

    NASA Technical Reports Server (NTRS)

    Ahlen, S. P.

    1976-01-01

    Total and restricted energy loss rates are calculated for magnetic monopoles of charge g = 137 e in Lexan polycarbonate. Range-energy curves are also presented. The restricted-energy-loss model is used to estimate the appearance of a monopole track in plastic detectors. The results are applied to the event observed by Price et al. and identified by them as a monopole. It is found that the observed etch rate is consistent with what one would expect for a slow magnetic monopole. These results should also be of use to other investigators for both the design and analysis of monopole experiments.

  17. Scoping estimates of the LDEF satellite induced radioactivity

    NASA Technical Reports Server (NTRS)

    Armstrong, Tony W.; Colborn, B. L.

    1990-01-01

    The Long Duration Exposure Facility (LDEF) satellite was recovered after almost six years in space. It was well-instrumented with ionizing radiation dosimeters, including thermoluminescent dosimeters, plastic nuclear track detectors, and a variety of metal foil samples for measuring nuclear activation products. The extensive LDEF radiation measurements provide the type of radiation environments and effects data needed to evaluate and help resolve uncertainties in present radiation models and calculational methods. A calculational program was established to aid in LDEF data interpretation and to utilize LDEF data for assessing the accuracy of current models. A summary of the calculational approach is presented. The purpose of the reported calculations is to obtain a general indication of: (1) the importance of different space radiation sources (trapped, galactic, and albedo protons, and albedo neutrons); (2) the importance of secondary particles; and (3) the spatial dependence of the radiation environments and effects expected within the spacecraft. The calculational method uses the High Energy Transport Code (HETC) to estimate the importance of different sources and secondary particles in terms of fluence, absorbed dose in tissue and silicon, and induced radioactivity as a function of depth in aluminum.

  18. Feasibility Study on Applying Radiophotoluminescent Glass Dosimeters for CyberKnife SRS Dose Verification

    PubMed Central

    Hsu, Shih-Ming; Hung, Chao-Hsiung; Liao, Yi-Jen; Fu, Hsiao-Mei; Tsai, Jo-Ting

    2017-01-01

    CyberKnife is one of multiple modalities for stereotactic radiosurgery (SRS). Due to the nature of CyberKnife and the characteristics of SRS, dose evaluation of the CyberKnife procedure is critical. A radiophotoluminescent glass dosimeter was used to verify the dose accuracy for the CyberKnife procedure and validate a viable dose verification system for CyberKnife treatment. A radiophotoluminescent glass dosimeter, thermoluminescent dosimeter, and Kodak EDR2 film were used to measure the lateral dose profile and percent depth dose of CyberKnife. A Monte Carlo simulation for dose verification was performed using BEAMnrc to verify the measured results. This study also used a radiophotoluminescent glass dosimeter coupled with an anthropomorphic phantom to evaluate the accuracy of the dose given by CyberKnife. Measurements from the radiophotoluminescent glass dosimeter were compared with the results of a thermoluminescent dosimeter and EDR2 film, and the differences found were less than 5%. The radiophotoluminescent glass dosimeter has some advantages in terms of dose measurements over CyberKnife, such as repeatability, stability, and small effective size. These advantages make radiophotoluminescent glass dosimeters a potential candidate dosimeter for the CyberKnife procedure. This study concludes that radiophotoluminescent glass dosimeters are a promising and reliable dosimeter for CyberKnife dose verification with clinically acceptable accuracy within 5%. PMID:28046056

  19. Response of personal noise dosimeters to continuous and impulse-like signals

    NASA Astrophysics Data System (ADS)

    Evans, D. J.; Flynn, D. R.; Nedzelnitsky, V.; Burnett, E. D.

    1991-06-01

    A study of the capabilities of noise dosimeters to measure personal exposure to time varying and impulse-like noises was carried out. Ten commercial noise dosimeters were obtained. A laboratory reference noise dosimeter was constructed to provide a demonstrably accurate basis with which to compare the commercial noise dosimeters. Each commercial dosimeter, when ordered from the manufacturer, was specified to have a threshold A-weighted sound level of 80 dB, a criterion sound level of 90 dB, and an exchange rate of 5 dB and/or 3 dB. The performance of the commercial dosimeters was compared with theory and with results obtained from the reference dosimeter. Except in a few isolated cases, the commercial dosimeters were in general agreement with the performance specification of the appropriate American National Standard and with the Occupational Safety and Health Administration (OSHA) regulations.

  20. Development of Eye Dosimeter Using Additive Manufacturing Techniques to Monitor Occupational Eye Lens Exposures to Interventional Radiologists

    NASA Astrophysics Data System (ADS)

    Choi, JungHwan

    In this project, an eye dosimeter was designed for monitoring occupational lens of the eye exposures targeted to interventional radiologists who are often indirectly exposed to scattered radiation from the patient while performing image-guided procedures. The dosimeter was designed with a computer-aided design software to facilitate additive manufacturing techniques to make the dosimeter. The dosimeter consisted of three separate components that are attached to the hinges and the bridge of the occupational worker's protective eyewear. The produced dosimeter was radiologically calibrated to measure the lens dose on an anthropomorphic phantom of the human head. To supplement the physical design, an algorithm was written that prompts the user to input the element responses of the dosimeter, then estimates the average angle, energy, and resulting lens dose of the exposure by comparing the input with the data acquired during the dosimeter calibration procedure. The performance of the calibrated dosimeter (and the algorithm) was evaluated according to guidelines of the American National Standards Institute, and the dosimeter demonstrated a performance that was in compliance with the standard's performance criteria which suggests that the design of the eye dosimeter is feasible.

  1. Development and characterization of a three-dimensional radiochromic film stack dosimeter for megavoltage photon beam dosimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCaw, Travis J., E-mail: mccaw@wisc.edu; Micka, John A.; DeWerd, Larry A.

    Purpose: Three-dimensional (3D) dosimeters are particularly useful for verifying the commissioning of treatment planning and delivery systems, especially with the ever-increasing implementation of complex and conformal radiotherapy techniques such as volumetric modulated arc therapy. However, currently available 3D dosimeters require extensive experience to prepare and analyze, and are subject to large measurement uncertainties. This work aims to provide a more readily implementable 3D dosimeter with the development and characterization of a radiochromic film stack dosimeter for megavoltage photon beam dosimetry. Methods: A film stack dosimeter was developed using Gafchromic{sup ®} EBT2 films. The dosimeter consists of 22 films separated bymore » 1 mm-thick spacers. A Virtual Water™ phantom was created that maintains the radial film alignment within a maximum uncertainty of 0.3 mm. The film stack dosimeter was characterized using simulations and measurements of 6 MV fields. The absorbed-dose energy dependence and orientation dependence of the film stack dosimeter were investigated using Monte Carlo simulations. The water equivalence of the dosimeter was determined by comparing percentage-depth-dose (PDD) profiles measured with the film stack dosimeter and simulated using Monte Carlo methods. Film stack dosimeter measurements were verified with thermoluminescent dosimeter (TLD) microcube measurements. The film stack dosimeter was also used to verify the delivery of an intensity-modulated radiation therapy (IMRT) procedure. Results: The absorbed-dose energy response of EBT2 film differs less than 1.5% between the calibration and film stack dosimeter geometries for a 6 MV spectrum. Over a series of beam angles ranging from normal incidence to parallel incidence, the overall variation in the response of the film stack dosimeter is within a range of 2.5%. Relative to the response to a normally incident beam, the film stack dosimeter exhibits a 1% under-response when the beam axis is parallel to the film planes. Measured and simulated PDD profiles agree within a root-mean-square difference of 1.3%. In-field film stack dosimeter and TLD measurements agree within 5%, and measurements in the field penumbra agree within 0.5 mm. Film stack dosimeter and TLD measurements have expanded (k = 2) overall measurement uncertainties of 6.2% and 5.8%, respectively. Film stack dosimeter measurements of an IMRT dose distribution have 98% agreement with the treatment planning system dose calculation, using gamma criteria of 3% and 2 mm. Conclusions: The film stack dosimeter is capable of high-resolution, low-uncertainty 3D dose measurements, and can be readily incorporated into an existing film dosimetry program.« less

  2. Electron microscopy and computed microtomography studies of in vivo implanted mini-TL dosimeters.

    PubMed

    Strand, S E; Strandh, M; Spanne, P

    1993-01-01

    The need for direct methods of measuring the absorbed dose in vivo increases for systemic radiation therapy, and in more sophisticated methodologies developed for radioimmunotherapy. One method suggested is the use of mini-thermoluminescent dosimeters (TLD). Recent reports indicate a marked loss of signal when the dosimeters are used in vivo. We investigated the exterior surface of the dosimeters with scanning electron microscopy and the interior dosimeter volume with computed microtomography. The results show that the dosimeters initially have crystals uniformly embedded in the teflon matrix, with some of them directly exposed to the environment. After incubation in gel, holes appear in the dosimeter matrix where the crystals should have been. The computed microtomographic images show that crystals remain in the interior of the matrix, producing the remaining signal. We conclude that these dosimeters should be very carefully handled, and for practical use of mini-TLDs in vivo the dosimeters should be calibrated in equivalent milieus. An alternative solution to the problem of decreased TL efficiency, would be to coat the dosimeters with a thin layer, of Teflon, or other suitable material.

  3. The response of CR-39 nuclear track detector to 1-9 MeV protons

    DOE PAGES

    Sinenian, N.; Rosenberg, M. J.; Manuel, M.; ...

    2011-10-28

    The response of CR-39 nuclear track detector (TasTrak®) to protons in the energy range of 0.92-9.28 MeV has been studied. Previous studies of the CR-39 response to protons have been extended by examining the piece-to-piece variability in addition to the effects of etch time and etchant temperature; it is shown that the shape of the CR-39 response curve to protons can vary from piece-to-piece. The effects due to the age of CR-39 have also been studied using 5.5 MeV alpha particles over a 5-year period. Track diameters were found to degrade with the age of the CR-39 itself rather thanmore » the age of the tracks, consistent with previous studies utilizing different CR-39 over shorter time periods.« less

  4. Deficiencies of active electronic radiation protection dosimeters in pulsed fields.

    PubMed

    Ankerhold, U; Hupe, O; Ambrosi, P

    2009-07-01

    Nowadays nearly all radiation fields used for X-ray diagnostics are pulsed. These fields are characterised by a high dose rate during the pulse and a short pulse duration in the range of a few milliseconds. The use of active electronic dosimeters has increased in the past few years, but these types of dosimeters might possibly not measure reliably in pulsed radiation fields. Not only personal dosimeters but also area dosimeters that are used mainly for dose rate measurements are concerned. These cannot be substituted by using passive dosimeter types. The characteristics of active electronic dosimeters determined in a continuous radiation field cannot be transferred to those in pulsed fields. Some provisional measurements with typical electronic dosimeters in pulsed radiation fields are presented to reveal this basic problem.

  5. Selective Functionalization of Arbitrary Nanowires

    DTIC Science & Technology

    2006-11-02

    3-mercaptopropyl)- trimethoxysilane (MPTMS). The wires were grown electrochemically in anodic aluminum oxide ( AAO ) templates. Selective deposition...In the past, templates composed of polycarbonate track-etched membranes or anodic aluminum oxide materials have been used for the construction of...modifier MPTMS was used to function- alize the AAO template because it can form covalent bonds with silanes and metal oxide surfaces21 and because of

  6. Chemical synthesis of oriented ferromagnetic LaSr-2 × 4 manganese oxide molecular sieve nanowires

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carretero-Genevrier, Adrián; Gazquez, Jaume; Magen, Cesar

    2012-04-25

    Here we report a chemical solution based method using nanoporous track-etched polymer templates for producing long and oriented LaSr-2 × 4 manganese oxide molecular sieve nanowires. Scanning transmission electron microscopy and electron energy loss spectroscopy analyses show that the nanowires are ferromagnetic at room temperature, single crystalline, epitaxially grown and self-aligned.

  7. Static and hydrodynamic studies of the conformation of adsorbed macromolecules at the solid/liquid interface

    NASA Astrophysics Data System (ADS)

    Yavorsky, D. P.

    1981-08-01

    The structure of an adsorbed macromolecular layer at the solid/liquid interface under both stationary and flow conditions is examined. The conformation of adsorbed bovine serum albumin (BSA) is deduced from the thickness of surface layers formed on the pore walls of track etched (mica) membranes. Changes in membrane permeability due to protein adsorption are related directly to a net reduction in pore size or an equivalent adsorbed layer thickness. Complementary permeability measurements using electrolyte conduction, tracer diffusion, and pressure driven flow have verified the unique structural qualities of the track etched membrane and collectively demonstrate an ability to determine bare pore size with an accuracy of + or - 2A. The average static thickness of an adsorbed BSA layer, as derived from electrolyte conduction and tracer diffusion, was 43 + or - 3A independent of pore size. In comparison with the known BSA solution dimensions, this measured thickness is consistent with a monolayer of structurally unperturbed protein molecules each oriented in a "side-on" position. Pronounced conformational changes in adsorbed BSA layers were observed under conditions of shear flow. Electrostatic interactions were also shown to significantly affect adsorbed protein conformation through changes in solution ionic strength and surface charge.

  8. Environmental scanning electron microscope imaging examples related to particle analysis.

    PubMed

    Wight, S A; Zeissler, C J

    1993-08-01

    This work provides examples of some of the imaging capabilities of environmental scanning electron microscopy applied to easily charged samples relevant to particle analysis. Environmental SEM (also referred to as high pressure or low vacuum SEM) can address uncoated samples that are known to be difficult to image. Most of these specimens are difficult to image by conventional SEM even when coated with a conductive layer. Another area where environmental SEM is particularly applicable is for specimens not compatible with high vacuum, such as volatile specimens. Samples from which images were obtained that otherwise may not have been possible by conventional methods included fly ash particles on an oiled plastic membrane impactor substrate, a one micrometer diameter fiber mounted on the end of a wire, uranium oxide particles embedded in oil-bearing cellulose nitrate, teflon and polycarbonate filter materials with collected air particulate matter, polystyrene latex spheres on cellulosic filter paper, polystyrene latex spheres "loosely" sitting on a glass slide, and subsurface tracks in an etched nuclear track-etch detector. Surface charging problems experienced in high vacuum SEMs are virtually eliminated in the low vacuum SEM, extending imaging capabilities to samples previously difficult to use or incompatible with conventional methods.

  9. Low level determination of (226)Ra in water using a micro-precipitate track method for large-scale environmental monitoring.

    PubMed

    Taheri, M; Sohrabi, M; Jaleh, B; Hosseini, T; Montazer Rahmati, M M

    2009-12-01

    In the present paper a method has been developed for the determination of (226)Ra in water by the detection, using a solid-state nuclear track detector (SSNTD), of alpha particles from (226)Ra in equilibrium with (222)Rn in micro-precipitates collected on a filter. The micro-precipitates were prepared from environmental water samples by collection of radium with lead as Pb/RaSO(4). Several factors affect the (226)Ra precipitation on the filter and its recovery, in particular the filter pore size. Therefore in this experiment Whatman #42 and Millipore filters with different pore sizes were used. Using a 0.45 microm Millipore filter, the recovery efficiency was increased up to 96%, and the alpha self-absorption and scattering decreased remarkably. For efficient detection of alphas from (226)Ra/(222)Rn in equilibrium, three types of SSNTD were used-polycarbonate (PC) electrochemically etched (ECE), CR-39 and LR-115 chemically etched (CE). By preparing a standard micro-precipitate on a filter with known (226)Ra/(222)Rn characteristics, the calibration response of each detector and its minimum detection limit (MDL) were determined.

  10. Assessing doses to interventional radiologists using a personal dosimeter worn over a protective apron.

    PubMed

    Stranden, E; Widmark, A; Sekse, T

    2008-05-01

    Interventional radiologists receive significant radiation doses, and it is important to have simple methods for routine monitoring of their exposure. To evaluate the usefulness of a dosimeter worn outside the protective apron for assessments of dose to interventional radiologists. Assessments of effective dose versus dose to dosimeters worn outside the protective apron were achieved by phantom measurements. Doses outside and under the apron were assessed by phantom measurements and measurements on eight radiologists wearing two routine dosimeters for a 2-month period during ordinary working conditions. Finger doses for the same radiologists were recorded using thermoluminescent dosimeters (TLD; DXT-RAD Extremity dosimeters). Typical values for the ratio between effective dose and dosimeter dose were found to be about 0.02 when the radiologist used a thyroid shield and about 0.03 without. The ratio between the dose to the dosimeter under and outside a protective apron was found to be less than 0.04. There was very good correlation between finger dose and dosimeter dose. A personal dosimeter worn outside a protective apron is a good screening device for dose to the eyes and fingers as well as for effective dose, even though the effective dose is grossly overestimated. Relatively high dose to the fingers and eyes remains undetected by a dosimeter worn under the apron.

  11. Nuclear Track Detector Characterization via Alpha-Spectrometry for Radioprotection Use

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morelli, D.; Imme, G.; Catalano, R.

    2011-12-13

    Solid Nuclear Track Detectors (SNTDs), CR-39 type, are usually adopted to monitor radon gas concentrations. In order to characterize the detectors according to track geometrical parameters, detectors were irradiated inside a vacuum chamber by alpha particles at twelve energy values, obtained by different Mylar foils in front of a {sup 241}Am source. The alpha energy values were verified using a Si detector. After the exposure to the alpha particles, the detectors were chemically etched to enlarge the tracks, which were then analyzed by means of a semiautomatic system composed of an optical microscope equipped with a CCD camera connected tomore » a personal computer to store images. A suitable routine analyzed the track parameters: major and minor axis length and mean grey level, allowing us to differentiate tracks according to the incident alpha energy and then to individuate the discrimination factors for radon alpha tracks. The combined use of geometrical and optical parameters allows one to overcome the ambiguity in the alpha energy determination due to the non-monotonicity of each parameter versus energy. After track parameter determination, a calibration procedure was performed by means of a radon chamber. The calibration was verified through an inter-comparing survey.« less

  12. In vivo dose measurement using TLDs and MOSFET dosimeters for cardiac radiosurgery

    PubMed Central

    Sumanaweera, Thilaka S.; Blanck, Oliver; Iwamura, Alyson K.; Steel, James P.; Dieterich, Sonja; Maguire, Patrick

    2012-01-01

    In vivo measurements were made of the dose delivered to animal models in an effort to develop a method for treating cardiac arrhythmia using radiation. This treatment would replace RF energy (currently used to create cardiac scar) with ionizing radiation. In the current study, the pulmonary vein ostia of animal models were irradiated with 6 MV X‐rays in order to produce a scar that would block aberrant signals characteristic of atrial fibrillation. The CyberKnife radiosurgery system was used to deliver planned treatments of 20–35 Gy in a single fraction to four animals. The Synchrony system was used to track respiratory motion of the heart, while the contractile motion of the heart was untracked. The dose was measured on the epicardial surface near the right pulmonary vein and on the esophagus using surgically implanted TLD dosimeters, or in the coronary sinus using a MOSFET dosimeter placed using a catheter. The doses measured on the epicardium with TLDs averaged 5% less than predicted for those locations, while doses measured in the coronary sinus with the MOSFET sensor nearest the target averaged 6% less than the predicted dose. The measurements on the esophagus averaged 25% less than predicted. These results provide an indication of the accuracy with which the treatment planning methods accounted for the motion of the target, with its respiratory and cardiac components. This is the first report on the accuracy of CyberKnife dose delivery to cardiac targets. PACS numbers: 87.53.Ly, 87.53.Bn PMID:22584173

  13. Characterization of a Fiber Optic Coupled Dosimeter for Clinical Electron Beam Dosimetry

    DTIC Science & Technology

    2010-04-29

    2010 2. REPORT TYPE 3. DATES COVERED 00-00-2010 to 00-00-2010 4. TITLE AND SUBTITLE Characterization of a Fiber Optic Coupled Dosimeter for...Fiber Optic Coupled Dosimeter for Clinical Electron Beam Dosimetry. Abstract approved: Camille J. Lodwick Fiber-optic-coupled dosimeters ...Rights Reserved CHARACTERIZATION OF A FIBER OPTIC COUPLED DOSIMETER FOR CLINICAL ELECTRON

  14. Feasibility Study of Glass Dosimeter for In Vivo Measurement: Dosimetric Characterization and Clinical Application in Proton Beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rah, Jeong-Eun; Oh, Do Hoon; Kim, Jong Won

    Purpose: To evaluate the suitability of the GD-301 glass dosimeter for in vivo dose verification in proton therapy. Methods and Materials: The glass dosimeter was analyzed for its dosimetrics characteristic in proton beam. Dosimeters were calibrated in a water phantom using a stairlike holder specially designed for this study. To determine the accuracy of the glass dosimeter in proton dose measurements, we compared the glass dosimeter and thermoluminescent dosimeter (TLD) dose measurements using a cylindrical phantom. We investigated the feasibility of the glass dosimeter for the measurement of dose distributions near the superficial region for proton therapy plans with amore » varying separation between the target volume and the surface of 6 patients. Results and Discussion: Uniformity was within 1.5%. The dose-response has good linearity. Dose-rate, fading, and energy dependence were found to be within 3%. The beam profile measured using the glass dosimeter was in good agreement with the profile obtained from the ionization chamber. Depth-dose distributions in nonmodulated and modulated proton beams obtained with the glass dosimeter were estimated to be within 3%, which was lower than those with the ionization chamber. In the phantom study, the difference of isocenter dose between the delivery dose calculated by the treatment planning system and that measured by the glass dosimeter was within 5%. With in vivo dosimetry, the calculated surface doses overestimated measurements by 4%-16% using glass dosimeter and TLD. Conclusion: It is recommended that bolus be added for these clinical cases. We also believe that the glass dosimeter has considerable potential for use with in vivo patient proton dosimetry.« less

  15. Feasibility study of glass dosimeter for in vivo measurement: dosimetric characterization and clinical application in proton beams.

    PubMed

    Rah, Jeong-Eun; Oh, Do Hoon; Kim, Jong Won; Kim, Dae-Hyun; Suh, Tae-Suk; Ji, Young Hoon; Shin, Dongho; Lee, Se Byeong; Kim, Dae Yong; Park, Sung Yong

    2012-10-01

    To evaluate the suitability of the GD-301 glass dosimeter for in vivo dose verification in proton therapy. The glass dosimeter was analyzed for its dosimetrics characteristic in proton beam. Dosimeters were calibrated in a water phantom using a stairlike holder specially designed for this study. To determine the accuracy of the glass dosimeter in proton dose measurements, we compared the glass dosimeter and thermoluminescent dosimeter (TLD) dose measurements using a cylindrical phantom. We investigated the feasibility of the glass dosimeter for the measurement of dose distributions near the superficial region for proton therapy plans with a varying separation between the target volume and the surface of 6 patients. Uniformity was within 1.5%. The dose-response has good linearity. Dose-rate, fading, and energy dependence were found to be within 3%. The beam profile measured using the glass dosimeter was in good agreement with the profile obtained from the ionization chamber. Depth-dose distributions in nonmodulated and modulated proton beams obtained with the glass dosimeter were estimated to be within 3%, which was lower than those with the ionization chamber. In the phantom study, the difference of isocenter dose between the delivery dose calculated by the treatment planning system and that measured by the glass dosimeter was within 5%. With in vivo dosimetry, the calculated surface doses overestimated measurements by 4%-16% using glass dosimeter and TLD. It is recommended that bolus be added for these clinical cases. We also believe that the glass dosimeter has considerable potential for use with in vivo patient proton dosimetry. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. Fission track astrology of three Apollo 14 gas-rich breccias

    NASA Technical Reports Server (NTRS)

    Graf, H.; Shirck, J.; Sun, S.; Walker, R.

    1973-01-01

    The three Apollo 14 breccias 14301, 14313, and 14318 all show fission xenon due to the decay of Pu-244. To investigate possible in situ production of the fission gas, an analysis was made of the U-distribution in these three breccias. The major amount of the U lies in glass clasts and in matrix material and no more than 25% occurs in distinct high-U minerals. The U-distribution of each breccia is discussed in detail. Whitlockite grains in breccias 14301 and 14318 found with the U-mapping were etched and analyzed for fission tracks. The excess track densities are much smaller than indicated by the Xe-excess. Because of a preirradiation history documented by very high track densities in feldspar grains, however, it is impossible to attribute the excess tracks to the decay of Pu-244. A modified track method has been developed for measuring average U-concentrations in samples containing a heterogeneous distribution of U in the form of small high-U minerals. The method is briefly discussed, and results for the rocks 14301, 14313, 14318, 68815, 15595, and the soil 64421 are given.

  17. Deconnable self-reading pocket dosimeter containment with self-contained light

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stevens, R.L.; Arnold, G.N.; McBride, R.G.

    1996-10-22

    A container for a self-reading pocket dosimeter includes a transparent tube for receiving the self-reading pocket dosimeter, a light source mounted at one end of the transparent tube, and an eyepiece mounted on an opposite end of the transparent tube for viewing a read-out of the self-reading pocket dosimeter. The container may further include an activation device for selectively supplying power to the light source. The container both protects the dosimeter from being contaminated and provides a light source for viewing the dosimeter. 4 figs.

  18. Deconnable self-reading pocket dosimeter containment with self-contained light

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stevens, R.L.; Arnold, G.N.; McBride, R.G.

    1995-12-31

    A container for a self-reading pocket dosimeter includes a transparent tube for receiving the self-reading pocket dosimeter, a light source mounted at one end of the transparent tube, and an eyepiece mounted on an opposite end of the transparent tube for viewing a read-out of the self-reading pocket dosimeter. The container may further include an activation device for selectively supplying power to the light source. The container both protects the dosimeter from being contaminated and provides a light source for viewing the dosimeter.

  19. Deconnable self-reading pocket dosimeter containment with self-contained light

    DOEpatents

    Stevens, Robyn L.; Arnold, Greg N.; McBride, Ryan G.

    1996-01-01

    A container for a self-reading pocket dosimeter includes a transparent tube for receiving the self-reading pocket dosimeter, a light source mounted at one end of the transparent tube, and an eyepiece mounted on an opposite end of the transparent tube for viewing a read-out of the self-reading pocket dosimeter. The container may further include an activation device for selectively supplying power to the light source. The container both protects the dosimeter from being contaminated and provides a light source for viewing the dosimeter.

  20. Dosimetric characteristics of PASSAG as a new polymer gel dosimeter with negligible toxicity

    NASA Astrophysics Data System (ADS)

    Farhood, Bagher; Abtahi, Seyed Mohammad Mahdi; Geraily, Ghazale; Ghorbani, Mehdi; Mahdavi, Seied Rabi; Zahmatkesh, Mohammad Hasan

    2018-06-01

    Despite many advantages of polymer gel dosimeters, their clinical use is only not realized now. Toxicity of polymer gel dosimeters can be considered as one of their main limitations for use in routine clinical applications. In the current study, a new polymer gel dosimeter is introduced with negligible toxicity. For this purpose, 2-Acrylamido-2-Methy-1-PropaneSulfonic acid (AMPS) sodium salt monomer was replaced instead of acrylamide monomer used in PAGAT gel dosimeter by using %6 T and %50 C to the gel formula and the new formulation is called PASSAG (Poly AMPS Sodium Salt and Gelatin) polymer gel dosimeter. The irradiation of gel dosimeters was carried out using a Co-60 therapy machine. MRI technique was used to quantify the dose responses of the PASSAG gel dosimeter. Then, the MRI responses (R2) of the gel dosimeter was analyzed at different dose values, post-irradiation times, and scanning temperatures. The results showed that the new gel formulation has a negligible toxicity and it is also eco-friendly. In addition, carcinogenicity and genetic toxicity tests are negative for the monomer used in PASSAG. The radiological properties of PASSAG gel dosimeter showed that this substance can be considered as a soft tissue/water equivalent material. Furthermore, dosimetric evaluation of the new polymer gel dosimeter revealed an excellent linear R2-dose response in the evaluated dose range (0-15 Gy). The R2-dose sensitivity and dose resolution of PASSAG gel dosimeter were 0.081 s-1Gy-1 (in 0-15 Gy dose range) and 1 Gy (in 0-10 Gy dose range), respectively. Moreover, it was shown that the R2-dose sensitivity and dose resolution of the new gel dosimeter improves over time after irradiation. It was also found that the R2 response of the PASSAG gel dosimeter has less dependency to the 18, 20, and 24 °C scanning temperature in comparison to that of room temperature (22 °C).

  1. TH-CD-201-11: Optimizing the Response and Cost of a DNA Double-Strand Break Dosimeter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Obeidat, M; Cline, K; Stathakis, S

    Purpose: A DNA double-strand break (DSB) dosimeter was developed to measure the biological effect of radiation. The goal here is to refine the fabrication method of this dosimeter to reproducibly create a low coefficient of variation (CoV) and reduce the cost for the dosimeter. Methods: Our dosimeter consists of 4 kilo-base pair DNA strands (labeled on one end with biotin and on the other with fluorescein) attached to streptavidin magnetic beads. The final step of the DNA dosimeter fabrication is to suspend these attached beads in phosphate-buffered saline (PBS). The amount of PBS used to suspend the attached beads andmore » the relative volume of the DNA strands to the beads both affect the CoV and dosimeter cost. We diluted the beads attached with DNA in different volumes of PBS (100, 200, and 400 µL) to create different concentrations of the DNA dosimeter. Then we irradiated these dosimeters (50 µL samples) in a water-equivalent plastic phantom at 25 and 50 Gy (three samples per dose) and calculated the CoV for each dosimeter concentration. Also, we used different masses of DNA strands (1, 2, 8, 16, 24, and 32 µg) to attach to the same volume of magnetic beads (100 µL) to explore how this affects the cost of the dosimeter. Results: The lowest CoV was produced for the highest concentration of dosimeter (100 µL of PBS), which created CoV of 2.0 and 1.0% for 25 and 50 Gy, respectively. We found that the lowest production cost for the dosimeter occurs by attaching 16 µg of DNA strands with 100 µL of beads. Conclusion: : We optimized the fabrication of the DNA dosimeter to produce low CoV and cost, but we still need to explore ways to further improve the dosimeter for use at lower doses. This work was supported in part by Yarmouk University (Irbid, Jordan) and CPRIT (RP140105)« less

  2. NOTE: Cell-phone interference with pocket dosimeters

    NASA Astrophysics Data System (ADS)

    Djajaputra, David; Nehru, Ramasamy; Bruch, Philip M.; Ayyangar, Komanduri M.; Raman, Natarajan V.; Enke, Charles A.

    2005-05-01

    Accurate reporting of personal dose is required by regulation for hospital personnel that work with radioactive material. Pocket dosimeters are commonly used for monitoring this personal dose. We show that operating a cell phone in the vicinity of a pocket dosimeter can introduce large and erroneous readings of the dosimeter. This note reports a systematic study of this electromagnetic interference. We found that simple practical measures are enough to mitigate this problem, such as increasing the distance between the cell phone and the dosimeter or shielding the dosimeter, while maintaining its sensitivity to ionizing radiation, by placing it inside a common anti-static bag.

  3. Nuclear emulsion measurements of the astronauts' radiation exposures on Skylab missions 2, 3, and 4

    NASA Technical Reports Server (NTRS)

    Schaefer, H. J.; Sullivan, J. J.

    1975-01-01

    On the Skylab missions, Ilford G.5 and K.2 emulsions were flown as part of passive dosimeter packs carried by the astronauts on their wrists. Due to the long mission times, latent image fading and track crowing imposed limitations on a quantitative track and grain count analysis. For Skylab 2, the complete proton energy spectrum was determined within reasonable error limits. A combined mission dose equivalent of 2,490 millirems from protons, tissue stars and neutrons was measured on Skylab 2. A stationary emulsion stack, kept in a film vault drawer on the same mission, displayed a highly structured directional distribution of the fluence of low-energy protons (enders) reflecting the local shield distribution. On the 59 and 84-day mission 3 and 4, G.5 emulsions had to be cut on the microtom to 5-7 microns for microscopic examination. Even so, the short track segments in such thin layers precluded a statistically reliable grain count analysis. However, the K.2 emulsions still allowed accurate proton ender counts without special provisions.

  4. A simple and rapid method for high-resolution visualization of single-ion tracks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Omichi, Masaaki; Center for Collaborative Research, Anan National College of Technology, Anan, Tokushima 774-0017; Choi, Wookjin

    2014-11-15

    Prompt determination of spatial points of single-ion tracks plays a key role in high-energy particle induced-cancer therapy and gene/plant mutations. In this study, a simple method for the high-resolution visualization of single-ion tracks without etching was developed through the use of polyacrylic acid (PAA)-N, N’-methylene bisacrylamide (MBAAm) blend films. One of the steps of the proposed method includes exposure of the irradiated films to water vapor for several minutes. Water vapor was found to promote the cross-linking reaction of PAA and MBAAm to form a bulky cross-linked structure; the ion-track scars were detectable at a nanometer scale by atomic forcemore » microscopy. This study demonstrated that each scar is easily distinguishable, and the amount of generated radicals of the ion tracks can be estimated by measuring the height of the scars, even in highly dense ion tracks. This method is suitable for the visualization of the penumbra region in a single-ion track with a high spatial resolution of 50 nm, which is sufficiently small to confirm that a single ion hits a cell nucleus with a size ranging between 5 and 20 μm.« less

  5. SU-E-T-139: Feasibility Study of Glass Dosimeter for in Vivo Measurement: Dosimetric Characterization and Clinical Application in Proton Beams.

    PubMed

    Lah, J; Kim, D; Park, S

    2012-06-01

    To evaluate the suitability of the GD-301 glass dosimeter for use in in vivo dose verification in proton therapy. The glass dosimeter was analyzed for its dosimetric characteristic in proton beam. Dosimeters were calibrated in a water phantom using a stair-like holder specially designed for this study. To determine the accuracy of the glass dosimeter in proton dose measurements, we compared the glass dosimeter and TLD dose measurements of plan delivery using a cylindrical phantom. We investigated the feasibility of the glass dosimeter for the measurement of dose distributions near the superficial region for proton therapy plans with a varying separation between the target volume and the surface of 6 patients. Uniformity was within 1.5%. The dose-response has a good linear. Dose-rate, fading, and energy dependence were found to be within 3%. The beam profile measured using the glass dosimeter was in good agreement with the profile obtained from the ionization chamber. Depth-dose distributions in non-modulated and modulated proton beams obtained with the glass dosimeter were estimated to be within 3%, which was lower than those with the ionization chamber. In the phantom study, the difference of isocenter dose between the delivery dose calculated by the Eclipse and that of the measured by the glass dosimeter was within 5%. In vivo dosimetry of patients, given the results of the glass dosimeter and TLD measurements, calculated doses on the surface of the patient are typically overestimated between 4% and 16%. As such, it is recommended that bolus be added for these clinical cases. We also believe that the glass dosimeter has considerable potential to be used for in vivo patient proton dosimetry. © 2012 American Association of Physicists in Medicine.

  6. Measuring pacemaker dose: a clinical perspective.

    PubMed

    Studenski, Matthew T; Xiao, Ying; Harrison, Amy S

    2012-01-01

    Recently in our clinic, we have seen an increased number of patients presenting with pacemakers and defibrillators. Precautions are taken to develop a treatment plan that minimizes the dose to the pacemaker because of the adverse effects of radiation on the electronics. Here we analyze different dosimeters to determine which is the most accurate in measuring pacemaker or defibrillator dose while at the same time not requiring a significant investment in time to maintain an efficient workflow in the clinic. The dosimeters analyzed here were ion chambers, diodes, metal-oxide-semiconductor field effect transistor (MOSFETs), and optically stimulated luminescence (OSL) dosimeters. A simple phantom was used to quantify the angular and energy dependence of each dosimeter. Next, 8 patients plans were delivered to a Rando phantom with all the dosimeters located where the pacemaker would be, and the measurements were compared with the predicted dose. A cone beam computed tomography (CBCT) image was obtained to determine the dosimeter response in the kilovoltage energy range. In terms of the angular and energy dependence of the dosimeters, the ion chamber and diode were the most stable. For the clinical cases, all the dosimeters match relatively well with the predicted dose, although the ideal dosimeter to use is case dependent. The dosimeters, especially the MOSFETS, tend to be less accurate for the plans, with many lateral beams. Because of their efficiency, we recommend using a MOSFET or a diode to measure the dose. If a discrepancy is observed between the measured and expected dose (especially when the pacemaker to field edge is <10 cm), we recommend analyzing the treatment plan to see whether there are many lateral beams. Follow-up with another dosimeter rather than repeating multiple times with the same type of dosimeter. All dosimeters should be placed after the CBCT has been acquired. Copyright © 2012 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.

  7. Measuring pacemaker dose: A clinical perspective

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Studenski, Matthew T., E-mail: matthew.studenski@jeffersonhospital.org; Xiao Ying; Harrison, Amy S.

    2012-07-01

    Recently in our clinic, we have seen an increased number of patients presenting with pacemakers and defibrillators. Precautions are taken to develop a treatment plan that minimizes the dose to the pacemaker because of the adverse effects of radiation on the electronics. Here we analyze different dosimeters to determine which is the most accurate in measuring pacemaker or defibrillator dose while at the same time not requiring a significant investment in time to maintain an efficient workflow in the clinic. The dosimeters analyzed here were ion chambers, diodes, metal-oxide-semiconductor field effect transistor (MOSFETs), and optically stimulated luminescence (OSL) dosimeters. Amore » simple phantom was used to quantify the angular and energy dependence of each dosimeter. Next, 8 patients plans were delivered to a Rando phantom with all the dosimeters located where the pacemaker would be, and the measurements were compared with the predicted dose. A cone beam computed tomography (CBCT) image was obtained to determine the dosimeter response in the kilovoltage energy range. In terms of the angular and energy dependence of the dosimeters, the ion chamber and diode were the most stable. For the clinical cases, all the dosimeters match relatively well with the predicted dose, although the ideal dosimeter to use is case dependent. The dosimeters, especially the MOSFETS, tend to be less accurate for the plans, with many lateral beams. Because of their efficiency, we recommend using a MOSFET or a diode to measure the dose. If a discrepancy is observed between the measured and expected dose (especially when the pacemaker to field edge is <10 cm), we recommend analyzing the treatment plan to see whether there are many lateral beams. Follow-up with another dosimeter rather than repeating multiple times with the same type of dosimeter. All dosimeters should be placed after the CBCT has been acquired.« less

  8. TH-AB-BRA-11: Using 3D Dosimeters for the Investigation of the Electron Return Effect (ERE) in MR-Guided Radiation Therapy: A Feasibility Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, G; Lee, H; Alqathami, M

    Purpose: To demonstrate the capability of 3D radiochromic PRESAGE and Fricke-type dosimeters to measure the influence of magnetic fields on dose distribution, including the electron return effect (ERE), for MR-guided radiation therapy applications. Methods: Short cylindrical 3D dosimeters with PRESAGE and Fricke-type formulations were created in-house prior to irradiations in a 1.5T/7MV MR-linac. Each dosimeter was prepared with a concentric cylindrical air cavity with diameters of 1.5 cm and 2.5 cm, and the diameters of the dosimeters were 7.2 cm and 8.8 cm for PRESAGE and Fricke-type respectively. The dosimeters were irradiated within the bore of the MR-linac with themore » flat face of the dosimeters perpendicular to the magnetic field. Dosimeters were irradiated to approximately 9 Gy and 29 Gy to the center of dosimeters with a 15×15 cm{sup 2} field. The PRESAGE dosimeter was scanned using an optical-CT 2 hours post-irradiation; the Fricke-type dosimeter was immediately imaged with the MR component of the MR-linac post-irradiation. Results: Axial slices of the dose distributions show a clear demonstration of the dose enhancement due to the ERE above the cavity and the region of reduced dose below the cavity. The regions of increased and reduced dose are rotated with respect to the radiation beam axis due to the average directional change of the electrons. Measurements from line profiles show the dose enhanced up to ∼0.5 cm around the cavity by up to a factor of 1.3 and 1.4 for PRESAGE and Fricke-type dosimeters respectively. Conclusion: PRESAGE and Fricke-type dosimeters are able to qualitatively measure the ERE with good agreement with previously published simulation and 2D dosimetry demonstrations of the ERE. Further investigation of these 3D dosimeters as promising candidates for quality assurance of MR-guided radiation therapy systems is encouraged to assess changes in response and measurement accuracy due to the magnetic field.« less

  9. Comprehensive Angular Response Study of LLNL Panasonic Dosimeter Configurations and Artificial Intelligence Algorithm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stone, D. K.

    In April of 2016, the Lawrence Livermore National Laboratory External Dosimetry Program underwent a Department of Energy Laboratory Accreditation Program (DOELAP) on-site assessment. The assessment reported a concern that the study performed in 2013 Angular Dependence Study Panasonic UD-802 and UD-810 Dosimeters LLNL Artificial Intelligence Algorithm was incomplete. Only the responses at ±60° and 0° were evaluated and independent data from dosimeters was not used to evaluate the algorithm. Additionally, other configurations of LLNL dosimeters were not considered in this study. This includes nuclear accident dosimeters (NAD) which are placed in the wells surrounding the TLD in the dosimeter holder.

  10. Measurement of Absorbed Dose from Radionuclide Solutions Mixed Intimately with the Fbx Dosimeter.

    NASA Astrophysics Data System (ADS)

    Benedetto, Anthony Richard

    Chemical dosimeters are used widely for accurate measurement of large radiation doses due to external beam irradiation from radioisotope sources and from particle accelerators. Their use for measurement of absorbed doses from radioactive solutions mixed in the dosimeter solution was reported as early as 1952, but the large activities needed to produce suitable absorbance values in the relatively insensitive dosimeters of that time discouraged further work. This manuscript reports the results of an investigation into the suitability of the ferrous sulfate-benzoic acid -xylenol orange (FBX) dosimeter for measurement of small absorbed doses caused by radionuclide solutions dissolved in the dosimeter solution. The FBX dosimeter exhibited a linear dose response as a function of activity for two common radiopharmaceuticals, technetium-99m sodium pertechnetate and iodine-131 sodium iodide. Conditions under which the FBX dosimeter may be used with radionuclide solutions were studied and were found to be amenable to routine use by laboratories possessing relatively unsophisticated instrumentation. It appears likely that any radionuclide could be studied using this dosimeter. Finally, potential applications and future research work are suggested, including measurement of absorbed dose from radiopharmaceuticals using realistic human-like phantoms to assess the risk from clinical nuclear medicine studies.

  11. A new analysis method using Bragg curve spectroscopy for a Multi-purpose Active-target Particle Telescope for radiation monitoring

    NASA Astrophysics Data System (ADS)

    Losekamm, M. J.; Milde, M.; Pöschl, T.; Greenwald, D.; Paul, S.

    2017-02-01

    Traditional radiation detectors can either measure the total radiation dose omnidirectionally (dosimeters), or determine the incoming particles characteristics within a narrow field of view (spectrometers). Instantaneous measurements of anisotropic fluxes thus require several detectors, resulting in bulky setups. The Multi-purpose Active-target Particle Telescope (MAPT), employing a new detection principle, is designed to measure particle fluxes omnidirectionally and be simultaneously a dosimeter and spectrometer. It consists of an active core of scintillating fibers whose light output is measured by silicon photomultipliers, and fits into a cube with an edge length of 10 cm. It identifies particles using extended Bragg curve spectroscopy, with sensitivity to charged particles with kinetic energies above 25 MeV. MAPT's unique layout results in a geometrical acceptance of approximately 800 cm2 sr and an angular resolution of less than 6°, which can be improved by track-fitting procedures. In a beam test of a simplified prototype, the energy resolution was found to be less than 1 MeV for protons with energies between 30 and 70 MeV. Possible applications of MAPT include the monitoring of radiation environments in spacecraft and beam monitoring in medical facilities.

  12. Water equivalence of NIPAM based polymer gel dosimeters with enhanced sensitivity for x-ray CT

    NASA Astrophysics Data System (ADS)

    Gorjiara, Tina; Hill, Robin; Bosi, Stephen; Kuncic, Zdenka; Baldock, Clive

    2013-10-01

    Two new formulations of N-isopropylacrylamide (NIPAM) based three dimensional (3D) gel dosimeters have recently been developed with improved sensitivity to x-ray CT readout, one without any co-solvent and the other one with isopropanol co-solvent. The water equivalence of the NIPAM gel dosimeters was investigated using different methods to calculate their radiological properties including: density, electron density, number of electrons per grams, effective atomic number, photon interaction probabilities, mass attenuation and energy absorption coefficients, electron collisional, radiative and total mass stopping powers and electron mass scattering power. Monte Carlo modelling was also used to compare the dose response of these gel dosimeters with water for kilovoltage and megavoltage x-ray beams and for megavoltage electron beams. We found that the density and electron density of the co-solvent free gel dosimeter are more water equivalent with less than a 2.6% difference compared to a 5.7% difference for the isopropanol gel dosimeter. Both the co-solvent free and isopropanol solvent gel dosimeters have lower effective atomic numbers than water, differing by 2.2% and 6.5%, respectively. As a result, their photoelectric absorption interaction probabilities are up to 6% and 19% different from water, respectively. Compton scattering and pair production interaction probabilities of NIPAM gel with isopropanol differ by up to 10% from water while for the co-solvent free gel, the differences are 3%. Mass attenuation and energy absorption coefficients of the co-solvent free gel dosimeter and the isopropanol gel dosimeter are up to 7% and 19% lower than water, respectively. Collisional and total mass stopping powers of both gel dosimeters differ by less than 2% from those of water. The dose response of the co-solvent free gel dosimeter is water equivalent (with <1% discrepancy) for dosimetry of x-rays with energies <100 keV while the discrepancy increases (up to 5%) for the isopropanol gel dosimeter over the same energy range. For x-ray beams over the energy range 180 keV-18 MV, both gel dosimeters have less than 2% discrepancy with water. For megavoltage electron beams, the dose differences with water reach 7% and 14% for the co-solvent free gel dosimeter and the isopropanol gel dosimeter, respectively. Our results demonstrate that for x-ray beam dosimetry with photon energies higher than 100 keV and megavoltage electron beams, correction factors are needed for both NIPAM gels to be used as water equivalent dosimeters.

  13. Nuclear tracks in CR-39 produced by carbon, oxygen, aluminium and titanium ions.

    PubMed

    Rickards, J; Romo, V; Golzarri, J I; Espinosa, G

    2002-01-01

    This work describes the response of CR-39 (allyl diglycol polycarbonate) to different ions (C, O, Al and Ti) produced by the Instituto de Fisica 3 MV 9SDH-2 Pelletron accelerator and backscattered from a thin Au film on a C support. The ion energies were chosen in series such that the ranges of the different ions in the detector were 2, 3, 4, 5, 6, 7 and 8 microm respectively for each series. Once exposed, the detectors were etched with a solution of 6.25 M KOH at 60 degrees C, and the reading was carried out using a digital image analysis system. An analysis of the measured track diameters of all the types of ions indicates that, for a given range, track kinetics are independent of type of ion, energy and stopping power.

  14. TASLIMAGE System #2 Technical Equivalence Evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Topper, J. D.; Stone, D. K.

    In early 2017, a second TASLIMAGE system (TASL 2) was procured from Track Analysis Systems, Ltd. The new device is intended to complement the first system (TASL 1) and to provide redundancy to the original system which was acquired in 2009. The new system functions primarily the same as the earlier system, though with different X-Y stage hardware and a USB link from the camera to the host computer, both of which contribute to a reduction in CR-39 foil imaging time. The camera and image analysis software are identical between the two systems. Neutron dose calculations are performed externally andmore » independent of the imaging system used to collect track data, relying only on the measured recoil proton track density per cm 2 for a set of known-dose CR-39 foils processed in each etch.« less

  15. Polymer gel dosimeters with reduced toxicity: a preliminary investigation of the NMR and optical dose response using different monomers

    NASA Astrophysics Data System (ADS)

    Senden, R. J.; DeJean, P.; McAuley, K. B.; Schreiner, L. J.

    2006-07-01

    In this work, three new polymer gel dosimeter recipes were investigated that may be more suitable for widespread applications than polyacrylamide gel dosimeters, since the extremely toxic acrylamide has been replaced with the less harmful monomers N-isopropylacrylamide (NIPAM), diacetone acrylamide and N-vinylformamide. The new gel dosimeters studied contained gelatin (5 wt%), monomer (3 wt%), N,N'-methylene-bis-acrylamide crosslinker (3 wt%) and tetrakis (hydroxymethyl) phosphonium chloride antioxidant (10 mM). The NMR response (R2) of the dosimeters was analysed for conditions of varying dose, dose rate, time post-irradiation, and temperature during irradiation and scanning. It was shown that the dose-response behaviour of the NIPAM/Bis gel dosimeter is comparable to that of normoxic polyacrylamide gel (PAGAT) in terms of high dose-sensitivity and low dependence on dose rate and irradiation temperature, within the ranges considered. The dose-response (R2) of NIPAM/Bis appears to be linear over a greater dose range than the PAGAT gel dosimeter. The effects of time post-irradiation (temporal instability) and temperature during NMR scanning on the R2 response were more significant for NIPAM/Bis dosimeters. Diacetone acrylamide and N-vinylformamide gel dosimeters possessed considerably lower dose-sensitivities. The optical dose-response, measured in terms of the attenuation coefficient for each polymer gel dosimeter, showed potential for the use of optical imaging techniques in future studies.

  16. Personal noise dosimeters: accuracy and reliability in varied settings.

    PubMed

    Cook-Cunningham, Sheri Lynn

    2014-01-01

    This study investigated the accuracy, reliability, and characteristics of three brands of personal noise dosimeters (N = 7 units) in both pink noise (PN) environments and natural environments (NEs) through the acquisition of decibel readings, Leq readings and noise doses. Acquisition periods included repeated PN conditions, choir room rehearsals and participant (N = 3) Leq and noise dosages procured during a day in the life of a music student. Among primary results: (a) All dosimeters exhibited very strong positive correlations for PN measurements across all instruments; (b) all dosimeters were within the recommended American National Standard Institute (ANSI) SI.25-1991 standard of ±2 dB (A) of a reference measurement; and (c) all dosimeters were within the recommended ANSI SI.25-1991 standard of ±2 dB (A) when compared with each other. Results were discussed in terms of using personal noise dosimeters within hearing conservation and research contexts and recommendations for future research. Personal noise dosimeters were studied within the contexts of PN environments and NEs (choral classroom and the day in the life of collegiate music students). This quantitative study was a non-experimental correlation design. Three brands of personal noise dosimeters (Cirrus doseBadge, Quest Edge Eg5 and Etymotic ER200D) were tested in two environments, a PN setting and a natural setting. There were two conditions within each environment. In the PN environment condition one, each dosimeter was tested individually in comparison with two reference measuring devices (Ivie and Easera) while PN was generated by a Whites Instrument PN Tube. In condition two, the PN procedures were replicated for longer periods while all dosimeters measured the sound levels simultaneously. In the NE condition one, all dosimeters were placed side by side on a music stand and recorded sound levels of choir rehearsals over a 7-h rehearsal period. In NE, condition two noise levels were measured during a day in the life of college music students. Three participants each wore two types of dosimeters for an 8-h period during a normal school day. Descriptive statistical analyzes including means, standard deviation and Pearson product-moment correlation. The primary finding is that the dosimeters in this study recorded results within ±2 dB of either a reference measurement or within dosimeters in all four conditions examined. All dosimeters studied measured steady noise source accurately and consistently, with strong positive correlations across all instruments. Measurements acquired during choral rehearsals indicated a maximum of 1.5 dB difference across dosimeters. The Etymotic research personal noise dosimeters (ER200D) could provide individuals and schools of music with a relatively inexpensive tool to monitor sound doses. Findings from this study suggest that the three brands of dosimeters tested will provide reliable Leq levels and hearing dosages in both PN and natural settings.

  17. Energy dependence measurement of small-type optically stimulated luminescence (OSL) dosimeter by means of characteristic X-rays induced with general diagnostic X-ray equipment.

    PubMed

    Takegami, Kazuki; Hayashi, Hiroaki; Okino, Hiroki; Kimoto, Natsumi; Maehata, Itsumi; Kanazawa, Yuki; Okazaki, Tohru; Hashizume, Takuya; Kobayashi, Ikuo

    2016-01-01

    For X-ray inspections by way of general X-ray equipment, it is important to measure an entrance-skin dose. Recently, a small optically stimulated luminescence (OSL) dosimeter was made commercially available by Landauer, Inc. The dosimeter does not interfere with the medical images; therefore, it is expected to be a convenient detector for measuring personal exposure doses. In an actual clinical situation, it is assumed that X-rays of different energies will be detected by a dosimeter. For evaluation of the exposure dose measured by a dosimeter, it is necessary to know the energy dependence of the dosimeter. Our aim in this study was to measure the energy dependence of the OSL dosimeter experimentally in the diagnostic X-ray region. Metal samples weighing several grams were irradiated and, in this way, characteristic X-rays having energies ranging from 8 to 85 keV were generated. Using these mono-energetic X-rays, the dosimeter was irradiated. Simultaneously, the fluence of the X-rays was determined with a CdTe detector. The energy-dependent efficiency of the dosimeter was derived from the measured value of the dosimeter and the fluence. Moreover, the energy-dependent efficiency was calculated by Monte-Carlo simulation. The efficiency obtained in the experiment was in good agreement with that of the simulation. In conclusion, our proposed method, in which characteristic X-rays are used, is valuable for measurement of the energy dependence of a small OSL dosimeter in the diagnostic X-ray region.

  18. SU-E-T-675: Remote Dosimetry with a Novel PRESAGE Formulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mein, S; Juang, T; Malcolm, J

    2015-06-15

    Purpose: 3D-gel dosimetry provides high-resolution treatment validation; however, scanners aren’t widely available. In remote dosimetry, dosimeters are shipped out from a central base institution to a remote site for irradiation, then shipped back for scanning and analysis, affording a convenient service for treatment validation to institutions lacking the necessary equipment and resources. Previous works demonstrated the high-resolution performance and temporal stability of PRESAGE. Here the newest formulation is investigated for remote dosimetry use. Methods: A new formulation of PRESAGE was created with the aim of improved color stability post irradiation. Dose sensitivity was determined by irradiating cuvettes on a Varianmore » Linac (6MV) from 0–15Gy and measuring change in optical density at 633nm. Sensitivity readings were tracked over time in a temperature control study to determine long-term stability. A large volume study was performed to evaluate the accuracy for remote dosimetry. A 1kg dosimeter was pre-scanned, irradiated on-site with an 8Gy 4field box treatment, post-scanned and shipped to Princess Margaret Hospital for remote reading on an identical scanner. Results: Dose sensitivities ranged from 0.0194–0.0295 ΔOD/(Gy*cm)—similar to previous formulations. Post-irradiated cuvettes stored at 10°C retained 100% initial sensitivity over 5 days and 98.6% over 10 weeks while cuvettes stored at room temperature fell to 95.8% after 5 days and 37.4% after 10 weeks. The immediate and 5-day scans of the 4field box dosimeter data was reconstructed, registered to the corresponding eclipse dose-distribution, and compared with analytical tools in CERR. Immediate and 5-day scans looked visually similar. Line profiles revealed close agreement aside from a slight elevation in dose at the edge in the 5-day readout. Conclusion: The remote dosimetry formulation exhibits excellent temporal stability in small volumes. While immediate and 5-day readout scans of large volume dosimeters show promising agreement, further development is required to reduce an apparent time dependent edge elevation.« less

  19. Electronic gating circuit and ultraviolet laser excitation permit improved dosimeter sensitivity

    NASA Technical Reports Server (NTRS)

    Eggenberger, D.; King, D.; Longnecker, A.; Schutt, D.

    1968-01-01

    Standard dosimeter reader, modified by adding an electronic gating circuit to trigger the intensity level photomultiplier, increases readout sensitivity of photoluminescent dosimeter systems. The gating circuit is controlled by a second photomultiplier which senses a short ultraviolet pulse from a laser used to excite the dosimeter.

  20. Total analysis systems with Thermochromic Etching Discs technology.

    PubMed

    Avella-Oliver, Miquel; Morais, Sergi; Carrascosa, Javier; Puchades, Rosa; Maquieira, Ángel

    2014-12-16

    A new analytical system based on Thermochromic Etching Discs (TED) technology is presented. TED comprises a number of attractive features such as track independency, selective irradiation, a high power laser, and the capability to create useful assay platforms. The analytical versatility of this tool opens up a wide range of possibilities to design new compact disc-based total analysis systems applicable in chemistry and life sciences. In this paper, TED analytical implementation is described and discussed, and their analytical potential is supported by several applications. Microarray immunoassay, immunofiltration assay, solution measurement, and cell culture approaches are herein addressed in order to demonstrate the practical capacity of this system. The analytical usefulness of TED technology is herein demonstrated, describing how to exploit this tool for developing truly integrated analytical systems that provide solutions within the point of care framework.

  1. Pocket radiation dosimeter: dosimeter charger assembly

    DOEpatents

    Manning, F.W.

    1982-03-17

    This invention is a novel pocket-type radiation dosimeter comprising an electrometric radiation dosimeter and a charging circuit therefor. The instrument is especially designed to be amenable to mass production, to have a long shelf life, and to be compact, lightweight, and usable by the layman. The dosimeter proper may be of conventional design. The charging circuit includes a shake-type electrostatic generator, a voltage doubler for integrating generator output voltages of one polarity, and a switch operated by an external permanent magnet.

  2. Pocket radiation dosimeter--dosimeter charger assembly

    DOEpatents

    Manning, Frank W.

    1984-01-01

    This invention is a novel pocket-type radiation dosimeter comprising an electrometric radiation dosimeter and a charging circuit therefor. The instrument is especially designed to be amenable to mass production, to have a long shelf life, and to be compact, lightweight, and usable by the layman. The dosimeter proper may be of conventional design. The charging circuit includes a shake-type electrostatic generator, a voltage doubler for integrating generator output voltages of one polarity, and a switch operated by an external permanent magnet.

  3. Measurements of indoor 222RN activity in dwellings and workplaces of Curitiba (Brazil)

    NASA Astrophysics Data System (ADS)

    Corrêa, Janine N.; Paschuk, Sergei A.; Del Claro, Flávia; Kappke, Jaqueline; Perna, Allan F. N.; Schelin, Hugo R.; Denyak, Valeriy

    2014-11-01

    The present work describes the results of systematic measurements of radon (222Rn) in residential environments and workplaces in the Metropolitan Region of Curitiba (Paraná State, Brazil) during the period 2004-2012. For radon in air activity measurements, polycarbonate Track Etch Detectors CR-39, mounted in diffusion chambers protected by borosilicate glass fiber filters, were used. After being exposed in air, the CR-39 detectors were submitted to a chemical etching in a 6.25 M NaOH solution at 70 °C for 14 h. The alpha particle tracks were identified and manually counted with an optical microscope, and with the results of previously performed calibrations, the indoor activity concentration of 222Rn was calculated. The calibration of CR-39 and the alpha particle tracks chemical development procedures were performed in collaboration the National Institute of Radiological Sciences (NIRS, Japan). The major part of indoor 222Rn concentration in residences was found to be below 100 Bq/m3. In the case of working places, all measurements of 222Rn concentrations were below 100 Bq/m3. These values are considered within the limits set by international regulatory agencies, such as the US EPA and ICRP, which adopt up to 148 and 300 Bq/m3 as upper values for the reference levels for radon gas activity in dwellings, respectively. The latest value of 300 Bq/m3 for radon activity in air is proposed by ICRP considering the upper value for the individual dose reference level for radon exposure of 10 mSv/yr.

  4. A LiF and BeO TLD based microdosimeter for space radiation risk assessment of astronauts

    NASA Astrophysics Data System (ADS)

    Mukherjee, B.

    2018-06-01

    The ratio of thermoluminescence glow curve area of BeO and LiF dosimeters was found to be proportional to average LET and quality factor (Q) of impinging mixed radiations. Using this phenomenon and widely available Thermoluminescence Dosimeter TLD-700 (7LiF: Mg,Ti) and BeO (Thermolux 995) chips a TLD-Microdosimeter (LiBe-14) emulating a much larger gas-filled Tissue Equivalent Proportional Counter (TEPC) was developed. The TEPC is an essential device of space radiation dosimetry widely used by international space agencies. The LiBe-14 is capable of assessing the LETTissue (5–300 keV/μm), quality factor Q (1–30) and associated dose equivalent H (0.1–1000 mSv) of any mixed radiation fields of interest, including space radiations predominant in Low Earth Orbit (LEO) environment. The TLD microdosimeter was calibrated using the secondary radiation fields produced by bombarding a 25 cm × 25 cm × 35 cm polystyrene phantom with 81, 119, 150, 177, 201 and 231 MeV protons from a Proton Therapy Medical Cyclotron. The TLD pair (BeO/LiF) was attached to the TEPC and placed lateral to the proton beam. The characteristics of space radiation inside the spacecraft are complex. Hence, personal dosimetry of astronauts in the space habitat is performed using "multi-element" dosimeters made of different types of TLD and CR-39 plastic nuclear track detector (PNTD). The TLD and PNTD are used to assess the sparsely (low LET) and densely (high LET) ionising radiation component respectively. This report elucidates the feasibility of LiBe-14 microdosimeter for the estimation of overall dose equivalent and "risk of exposure induced death" (REID) of astronauts working in LEO space stations.

  5. Neutron detection of the Triga Mark III reactor, using nuclear track methodology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Espinosa, G., E-mail: espinosa@fisica.unam.mx; Golzarri, J. I.; Raya-Arredondo, R.

    Nuclear Track Methodology (NTM), based on the neutron-proton interaction is one often employed alternative for neutron detection. In this paper we apply NTM to determine the Triga Mark III reactor operating power and neutron flux. The facility nuclear core, loaded with 85 Highly Enriched Uranium as fuel with control rods in a demineralized water pool, provide a neutron flux around 2 × 10{sup 12} n cm{sup −2} s{sup −1}, at the irradiation channel TO-2. The neutron field is measured at this channel, using Landauer{sup ®} PADC as neutron detection material, covered by 3 mm Plexiglas{sup ®} as converter. After exposure, plasticmore » detectors were chemically etched to make observable the formed latent tracks induced by proton recoils. The track density was determined by a custom made Digital Image Analysis System. The resulting average nuclear track density shows a direct proportionality response for reactor power in the range 0.1-7 kW. We indicate several advantages of the technique including the possibility to calibrate the neutron flux density measured at low reactor power.« less

  6. Surface dose measurement for helical tomotherapy.

    PubMed

    Snir, Jonatan A; Mosalaei, Homeira; Jordan, Kevin; Yartsev, Slav

    2011-06-01

    To compare the surface dose measurements made by different dosimeters for the helical tomotherapy (HT) plan in the case of the target close to the surface. Surface dose measurements in different points for the HT plan to deliver 2 Gy to the planning target volume (PTV) at 5 mm below the surface of the cylindrical phantom were performed by radiochromic films, single use metal oxide semiconductor field-effect transistor (MOSFET) dosimeters, silicon IVD QED diode, and optically stimulated luminescence (OSL) dosimeters. The measured doses by all dosimeters were within 12 +/- 8% difference of each other. Radiochromic films, EBT, and EBT2, provide high spatial resolution, although it is difficult to get accurate measurements of dose. Both the OSL and QED measured similar dose to that of the MOSFET detectors. The QED dosimeter is promising as a reusable on-line wireless dosimeter, while the OSL dosimeters are easier to use, require minimum setup time and are very precise.

  7. Spectral characterization of laser-accelerated protons with CR-39 nuclear track detector.

    PubMed

    Seimetz, M; Bellido, P; García, P; Mur, P; Iborra, A; Soriano, A; Hülber, T; García López, J; Jiménez-Ramos, M C; Lera, R; Ruiz-de la Cruz, A; Sánchez, I; Zaffino, R; Roso, L; Benlloch, J M

    2018-02-01

    CR-39 nuclear track material is frequently used for the detection of protons accelerated in laser-plasma interactions. The measurement of track densities allows for determination of particle angular distributions, and information on the kinetic energy can be obtained by the use of passive absorbers. We present a precise method of measuring spectral distributions of laser-accelerated protons in a single etching and analysis process. We make use of a one-to-one relation between proton energy and track size and present a precise calibration based on monoenergetic particle beams. While this relation is limited to proton energies below 1 MeV, we show that the range of spectral measurements can be significantly extended by simultaneous use of absorbers of suitable thicknesses. Examples from laser-plasma interactions are presented, and quantitative results on proton energies and particle numbers are compared to those obtained from a time-of-flight detector. The spectrum end points of continuous energy distributions have been determined with both detector types and coincide within 50-100 keV.

  8. Measurement of ion beam angular distribution at different helium gas pressures in a plasma focus device by large-area polycarbonate detectors

    NASA Astrophysics Data System (ADS)

    Sohrabi, M.; Habibi, M.; Ramezani, V.

    2017-02-01

    The paper presents an experimental study and analysis of full helium ion density angular distributions in a 4-kJ plasma focus device (PFD) at pressures of 10, 15, 25, and 30 mbar using large-area polycarbonate track detectors (PCTDs) (15-cm etchable diameter) processed by 50-Hz-HV electrochemical etching (ECE). Helium ion track distributions at different pressures, in particular, at the main axis of the PFD are presented. Maximum ion track density of 4.4 × 104 tracks/cm2 was obtained in the PCTD placed 6 cm from the anode. The ion distributions for all pressures applied are ring-shaped, which is possibly due to the hollow cylindrical copper anode used. The large-area PCTD processed by ECE proves, at the present state-of-theart, a superior method for direct observation and analysis of ion distributions at a glance with minimum efforts and time. Some observations of the ion density distributions at different pressures are reported and discussed.

  9. Dosimeter and method for using the same

    DOEpatents

    Warner, Benjamin P.; Johns, Deidre M.

    2003-06-24

    A very sensitive dosimeter that detects ionizing radiation is described. The dosimeter includes a breakable sealed container. A solution of a reducing agent is inside the container. The dosimeter has an air-tight dosimeter body with a transparent portion and an opaque portion. The transparent portion includes a transparent chamber that holds the breakable container with the reducing agent. The opaque portion includes an opaque chamber that holds an emulsion of silver salt (AgX) selected from silver chloride, silver bromide, silver iodide, and combinations of them. A passageway in the dosimeter provides fluid communication between the transparent chamber and the opaque chamber. The dosimeter may also include a chemical pH indicator in the breakable container that provides a detectable color change to the solution for a pH of about 3-10. The invention also includes a method of detecting ionizing radiation that involves producing the dosimeter, breaking the breakable container, allowing the solution to flow through the passageway and contact the emulsion, detecting any color change in the solution and using the color change to determine a radiation dosage.

  10. The responses of three kinds of passive dosimeters to secondary cosmic rays in the lower atmosphere.

    PubMed

    Yang, Zhen; Chen, Bo; Zhuo, Weihai; Fan, Dunhuang; Zhao, Chao; Zhang, Yu

    2015-12-01

    For accurate measurements of the secondary cosmic rays by using passive dosimeters, the relative responses of the thermoluminescence dosimeter (TLD), optically stimulated luminescence (OSL) dosimeter, and radiophotoluminescent glass dosimeter (RPLGD) were studied. The cosmic-ray shower generator was used to simulate the secondary cosmic rays at the sea level. Monte Carlo simulations were performed to calculate the air kerma and absorbed doses in each kind of dosimeter. The results showed that compared with their responses to gamma rays of (137)Cs, the relative responses of the TLD, OSL, and RPLGD were 0.786, 0.707, and 0.735 to the hard component of cosmic rays, respectively, and the values were 0.904, 0.838, and 0.857 to the soft component of cosmic rays, respectively. To verify the simulations results, an in situ measurement with the three kinds of dosimeters was performed at the same place. The results indicated that the secondary cosmic rays monitored with the three kinds of dosimeters were well consistent with each other provided their relative responses were taken into account.

  11. The responses of three kinds of passive dosimeters to secondary cosmic rays in the lower atmosphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Zhen; Chen, Bo, E-mail: bochenfys@fudan.edu.cn; Zhuo, Weihai

    For accurate measurements of the secondary cosmic rays by using passive dosimeters, the relative responses of the thermoluminescence dosimeter (TLD), optically stimulated luminescence (OSL) dosimeter, and radiophotoluminescent glass dosimeter (RPLGD) were studied. The cosmic-ray shower generator was used to simulate the secondary cosmic rays at the sea level. Monte Carlo simulations were performed to calculate the air kerma and absorbed doses in each kind of dosimeter. The results showed that compared with their responses to gamma rays of {sup 137}Cs, the relative responses of the TLD, OSL, and RPLGD were 0.786, 0.707, and 0.735 to the hard component of cosmicmore » rays, respectively, and the values were 0.904, 0.838, and 0.857 to the soft component of cosmic rays, respectively. To verify the simulations results, an in situ measurement with the three kinds of dosimeters was performed at the same place. The results indicated that the secondary cosmic rays monitored with the three kinds of dosimeters were well consistent with each other provided their relative responses were taken into account.« less

  12. The responses of three kinds of passive dosimeters to secondary cosmic rays in the lower atmosphere

    NASA Astrophysics Data System (ADS)

    Yang, Zhen; Chen, Bo; Zhuo, Weihai; Fan, Dunhuang; Zhao, Chao; Zhang, Yu

    2015-12-01

    For accurate measurements of the secondary cosmic rays by using passive dosimeters, the relative responses of the thermoluminescence dosimeter (TLD), optically stimulated luminescence (OSL) dosimeter, and radiophotoluminescent glass dosimeter (RPLGD) were studied. The cosmic-ray shower generator was used to simulate the secondary cosmic rays at the sea level. Monte Carlo simulations were performed to calculate the air kerma and absorbed doses in each kind of dosimeter. The results showed that compared with their responses to gamma rays of 137Cs, the relative responses of the TLD, OSL, and RPLGD were 0.786, 0.707, and 0.735 to the hard component of cosmic rays, respectively, and the values were 0.904, 0.838, and 0.857 to the soft component of cosmic rays, respectively. To verify the simulations results, an in situ measurement with the three kinds of dosimeters was performed at the same place. The results indicated that the secondary cosmic rays monitored with the three kinds of dosimeters were well consistent with each other provided their relative responses were taken into account.

  13. Atomically Traceable Nanostructure Fabrication

    PubMed Central

    Ballard, Josh B.; Dick, Don D.; McDonnell, Stephen J.; Bischof, Maia; Fu, Joseph; Owen, James H. G.; Owen, William R.; Alexander, Justin D.; Jaeger, David L.; Namboodiri, Pradeep; Fuchs, Ehud; Chabal, Yves J.; Wallace, Robert M.; Reidy, Richard; Silver, Richard M.; Randall, John N.; Von Ehr, James

    2015-01-01

    Reducing the scale of etched nanostructures below the 10 nm range eventually will require an atomic scale understanding of the entire fabrication process being used in order to maintain exquisite control over both feature size and feature density. Here, we demonstrate a method for tracking atomically resolved and controlled structures from initial template definition through final nanostructure metrology, opening up a pathway for top-down atomic control over nanofabrication. Hydrogen depassivation lithography is the first step of the nanoscale fabrication process followed by selective atomic layer deposition of up to 2.8 nm of titania to make a nanoscale etch mask. Contrast with the background is shown, indicating different mechanisms for growth on the desired patterns and on the H passivated background. The patterns are then transferred into the bulk using reactive ion etching to form 20 nm tall nanostructures with linewidths down to ~6 nm. To illustrate the limitations of this process, arrays of holes and lines are fabricated. The various nanofabrication process steps are performed at disparate locations, so process integration is discussed. Related issues are discussed including using fiducial marks for finding nanostructures on a macroscopic sample and protecting the chemically reactive patterned Si(100)-H surface against degradation due to atmospheric exposure. PMID:26274555

  14. Atomically Traceable Nanostructure Fabrication.

    PubMed

    Ballard, Josh B; Dick, Don D; McDonnell, Stephen J; Bischof, Maia; Fu, Joseph; Owen, James H G; Owen, William R; Alexander, Justin D; Jaeger, David L; Namboodiri, Pradeep; Fuchs, Ehud; Chabal, Yves J; Wallace, Robert M; Reidy, Richard; Silver, Richard M; Randall, John N; Von Ehr, James

    2015-07-17

    Reducing the scale of etched nanostructures below the 10 nm range eventually will require an atomic scale understanding of the entire fabrication process being used in order to maintain exquisite control over both feature size and feature density. Here, we demonstrate a method for tracking atomically resolved and controlled structures from initial template definition through final nanostructure metrology, opening up a pathway for top-down atomic control over nanofabrication. Hydrogen depassivation lithography is the first step of the nanoscale fabrication process followed by selective atomic layer deposition of up to 2.8 nm of titania to make a nanoscale etch mask. Contrast with the background is shown, indicating different mechanisms for growth on the desired patterns and on the H passivated background. The patterns are then transferred into the bulk using reactive ion etching to form 20 nm tall nanostructures with linewidths down to ~6 nm. To illustrate the limitations of this process, arrays of holes and lines are fabricated. The various nanofabrication process steps are performed at disparate locations, so process integration is discussed. Related issues are discussed including using fiducial marks for finding nanostructures on a macroscopic sample and protecting the chemically reactive patterned Si(100)-H surface against degradation due to atmospheric exposure.

  15. Entrance surface dose measurements using a small OSL dosimeter with a computed tomography scanner having 320 rows of detectors.

    PubMed

    Takegami, Kazuki; Hayashi, Hiroaki; Yamada, Kenji; Mihara, Yoshiki; Kimoto, Natsumi; Kanazawa, Yuki; Higashino, Kousaku; Yamashita, Kazuta; Hayashi, Fumio; Okazaki, Tohru; Hashizume, Takuya; Kobayashi, Ikuo

    2017-03-01

    Entrance surface dose (ESD) measurements are important in X-ray computed tomography (CT) for examination, but in clinical settings it is difficult to measure ESDs because of a lack of suitable dosimeters. We focus on the capability of a small optically stimulated luminescence (OSL) dosimeter. The aim of this study is to propose a practical method for using an OSL dosimeter to measure the ESD when performing a CT examination. The small OSL dosimeter has an outer width of 10 mm; it is assumed that a partial dose may be measured because the slice thickness and helical pitch can be set to various values. To verify our method, we used a CT scanner having 320 rows of detectors and checked the consistencies of the ESDs measured using OSL dosimeters by comparing them with those measured using Gafchromic™ films. The films were calibrated using an ionization chamber on the basis of half-value layer estimation. On the other hand, the OSL dosimeter was appropriately calibrated using a practical calibration curve previously proposed by our group. The ESDs measured using the OSL dosimeters were in good agreement with the reference ESDs from the Gafchromic™ films. Using these data, we also estimated the uncertainty of ESDs measured with small OSL dosimeters. We concluded that a small OSL dosimeter can be considered suitable for measuring the ESD with an uncertainty of 30 % during CT examinations in which pitch factors below 1.000 are applied.

  16. Etched tracks and serendipitous dosimetry.

    PubMed

    Fleischer, Robert L; Chang, Sekyung; Farrell, Jeremy; Herrmann, Rachel C; MacDonald, Jonathan; Zalesky, Marek; Doremus, Robert H

    2006-01-01

    Nuclear tracks in detectors that just happened to be there can be found in unexpected places. Eyeglasses, household glass, minerals, objects that were exposed to nuclear explosions, and space equipment on the moon are examples. Such materials allow us to measure doses of past radon exposures, cosmic-ray fluences, fission rates and neutrons. Incidental results include measuring mountain-building rates and deciding where finding oil is likely (or unlikely); in another case erosion rates of surface materials in space are found. New results that assess the effects of hydration layers on the leaching out from glass surfaces of imbedded alpha-recoil nuclei imply that long-term, retrospective radon measurements can be made more reliable by selecting only glass with compact hydration layers.

  17. Composite Resin Dosimeters: A New Concept and Design for a Fibrous Color Dosimeter.

    PubMed

    Kinashi, Kenji; Iwata, Takato; Tsuchida, Hayato; Sakai, Wataru; Tsutsumi, Naoto

    2018-04-11

    Polystyrene (PS)-based composite microfibers combined with a photochromic spiropyran dye, 1,3,3-trimethylindolino-6'-nitrobenzopyrylospiran (6-nitro BIPS), and a photostimulable phosphor, europium-doped barium fluorochloride (BaFCl:Eu 2+ ), were developed for the detection of X-ray exposure doses on the order of approximately 1 Gy. To produce the PS-based composite microfibers, we employed a forcespinning method that embeds a high concentration of phosphor in PS in a safe, inexpensive, and simple procedure. On the basis of the optimization of the forcespinning process, fibrous color dosimeters with a high radiation dose sensitivity of 1.2-4.4 Gy were fabricated. The color of the dosimeters was found to transition from white to blue in response to X-ray exposure. The optimized fibrous color dosimeter, made from a solution having a PS/6-nitro BIPS/BaFCl:Eu 2+ /C 2 Cl 4 ratio of 7.0/0.21/28.0/28.0 (wt %) and produced with a 290 mm distance between the needle and collectors, a 0.34 mm 23 G needle nozzle, and a spinneret rotational rate of 3000 rpm, exhibited sensitivity to a dose as low as 1.2 Gy. To realize practical applications, we manufactured the optimized fibrous color dosimeter into a clothlike color dosimeter. The clothlike color dosimeter was mounted on a stuffed bear, and its coloring behavior was demonstrated upon X-ray exposure. After exposure with X-ray, a blue colored and shaped in the form of the letter "[Formula: see text]" clearly appeared on the surface of the clothlike color dosimeter. The proposed fibrous color dosimeters having excellent workability will be an unprecedented dosimetry and contributed to all industries utilizing radiation dosimeters. This new fibrous "composite resin dosimeter" should be able to replace traditional, wearable, and individual radiation dose monitoring devices, such as film badges.

  18. SU-D-213-07: Initial Characterization of a Gel Patch Dosimeter for in Vivo Dosimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matrosic, C; Culberson, W; Rosen, B

    Purpose: In vivo dosimetry, despite being the most direct method for monitoring the dose delivered during radiation therapy and being recommended by several national and international organizations (AAPM, ICRU, NACP), is underutilized in the clinic due to issues associated with dose sensitivity, feasibility, and cost. Given the increasing complexity of radiation therapy modern treatments, there is a compelling need for a robust, affordable in vivo dosimetry option. In this work we present the initial characterization of a novel gel patch in vivo dosimeter. Methods: DEFGEL (6%T) was used to make 1-cm thick small cylindrical patch dosimeters. The optical density ofmore » each dosimeter was read before and after irradiation by an in-house laser densitometer. The dosimeters were irradiated using a Varian Clinac EX linac. Three separate batches of gel patches were used to create dose response curves and evaluate repeatability. The development time of the dosimeter was also evaluated. Results: The dose response of the dosimeter was found to be linear from a range of approximately 1-Gy to 20-Gy, which is a larger window of linearity compared to other in vivo dosimeters. At doses below 1-Gy, the cumulative uncertainties were on the order of the measured data. When compared, the three batches demonstrated repeatability from 1-Gy to approximately 13-Gy, with some variation at higher doses. For doses of >8-Gy, the dosimeter reached full optical density after 4-hours, whereas low doses developed within an hour. Conclusion: Initial results indicate that the gel patch dosimeter is a reliable and simple way to measure a large range of doses, including high doses such as those delivered during hypofractionated treatments (e.g. SBRT or MR-guided radiotherapy). The simple fabrication method for the dosimeter and the use of a laser densitometer would allow for the dosimeter to used and read in-house, cheaply and easily.« less

  19. Characteristics of optically stimulated luminescence dosimeters in the spread-out Bragg peak region of clinical proton beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kerns, James R.; Kry, Stephen F.; Sahoo, Narayan

    Purpose: Optically stimulated luminescent detectors (OSLDs) have a number of advantages in radiation dosimetry making them excellent dosimeters for quality assurance and patient dose verification. Although the dosimeters have been investigated in several modalities, relatively little work has been done in examining the dosimeters for use in clinical proton beams. This study examined a number of characteristics of the response of the dosimeters in the spread-out Bragg peak (SOBP) region of clinical proton beams. Methods: Optically stimulated luminescence (OSL) dosimeters from Landauer, Inc., specifically the nanoDot dosimeter, were investigated. These dosimeters were placed in a special phantom with a recessmore » to fit the dosimeters without an air gap. Beams with nominal energies of 160, 200, and 250 MeV were used in the passively-scattered proton beam at the MD Anderson Cancer Center Proton Therapy Center. Dosimetric properties including linearity, field size dependence, energy dependence, residual signal as a function of cumulative dose, and postirradiation fading were investigated by taking measurements at the center of SOBPs. Results: The dosimeters showed 1% supralinearity at 200 cGy and 5% supralinearity at 1000 cGy. No noticeable field size dependence of the detector was found for field sizes from 2 x 2 cm{sup 2} to 18 x 18 cm{sup 2}. Residual signal as a function of cumulative dose showed a small increase for measurements up to 1000 cGy. Readout signal depletion of the dosimeters after consecutive readings showed a slightly larger depletion in protons for doses up to 500 cGy but not by a clinically significant amount. Within the center of various SOBP widths and proton energies the variation in response was less than 2%. An average beam quality factor of 1.089 with experimental standard deviation of 0.007 was determined and applied to the data such that the results were within 1.2% of ion chamber data. Conclusions: The nanoDot OSL dosimeter characteristics were studied in the SOBP region of clinical proton beams. To achieve accurate dosimetric readings, corrections to the dosimeter response were applied. Corrections tended to be minimal or broadly consistent. The nanoDot OSLD was found to be an acceptable dosimeter for measurement in the SOBP region for a range of clinical proton beams.« less

  20. Characteristics of optically stimulated luminescence dosimeters in the spread-out Bragg peak region of clinical proton beams.

    PubMed

    Kerns, James R; Kry, Stephen F; Sahoo, Narayan

    2012-04-01

    Optically stimulated luminescent detectors (OSLDs) have a number of advantages in radiation dosimetry making them excellent dosimeters for quality assurance and patient dose verification. Although the dosimeters have been investigated in several modalities, relatively little work has been done in examining the dosimeters for use in clinical proton beams. This study examined a number of characteristics of the response of the dosimeters in the spread-out Bragg peak (SOBP) region of clinical proton beams. Optically stimulated luminescence (OSL) dosimeters from Landauer, Inc., specifically the nanoDot dosimeter, were investigated. These dosimeters were placed in a special phantom with a recess to fit the dosimeters without an air gap. Beams with nominal energies of 160, 200, and 250 MeV were used in the passively-scattered proton beam at the MD Anderson Cancer Center Proton Therapy Center. Dosimetric properties including linearity, field size dependence, energy dependence, residual signal as a function of cumulative dose, and postirradiation fading were investigated by taking measurements at the center of SOBPs. The dosimeters showed 1% supralinearity at 200 cGy and 5% supralinearity at 1000 cGy. No noticeable field size dependence of the detector was found for field sizes from 2 × 2 cm(2) to 18 × 18 cm(2). Residual signal as a function of cumulative dose showed a small increase for measurements up to 1000 cGy. Readout signal depletion of the dosimeters after consecutive readings showed a slightly larger depletion in protons for doses up to 500 cGy but not by a clinically significant amount. Within the center of various SOBP widths and proton energies the variation in response was less than 2%. An average beam quality factor of 1.089 with experimental standard deviation of 0.007 was determined and applied to the data such that the results were within 1.2% of ion chamber data. The nanoDot OSL dosimeter characteristics were studied in the SOBP region of clinical proton beams. To achieve accurate dosimetric readings, corrections to the dosimeter response were applied. Corrections tended to be minimal or broadly consistent. The nanoDot OSLD was found to be an acceptable dosimeter for measurement in the SOBP region for a range of clinical proton beams.

  1. Comparative study of nuclear magnetic resonance and UV-visible spectroscopy dose-response of polymer gel based on N-(Isobutoxymethyl) acrylamide

    NASA Astrophysics Data System (ADS)

    Lotfy, S.; Basfar, A. A.; Moftah, B.; Al-Moussa, A. A.

    2017-12-01

    A comparative study of nuclear magnetic resonance and UV-visible spectroscopy of dose-response for polymer gel dosimeters was performed. Dosimeters were prepared using N-(Isobutoxymethyl) acrylamide (NIBMA) as a new monomer via radiation induced polymerization for use in radiotherapy planning. The prepared dosimeters were irradiated with doses up to 30 Gy at a constant dose rate of 600 MU/min. Using a medical linear accelerator at irradiation energies of 6, 10 and 18 MV photon beam. The nuclear magnetic resonance (NMR), via spin-spin relaxation rate (R2) for water proton surrounding the polymer formulation and UV-Visible spectroscopy, via the optical absorbance measurements of irradiated dosimeters at selected wavelengths of 500 nm, was used to investigate the dose response of NIBMAGAT gel dosimeters. Scavenge of oxygen was done using tetrakis (hydroxymethyl) phosphonium chloride (THPC). The THPC optimum concentration in the dosimeters formulations were 5 and 10 mM for the NMR and optical absorbance measurements respectively. The quantitative investigation of the dosimeters components reveals the selective formulations based on 4% w/w gelatin, 1% w/w NIBMA, 3% w/w BisAAm, 5 or 10 mM THPC and 17% w/w glycerol which significantly increase the dosimeters dose response. The prepared dosimeters were found to be dose rate and photon beam irradiation energy independent. The stability study shows no change in the relaxation rate or in the optical absorbance of the gel dosimeters up to 8 days post-irradiation. The prepared polymer gel dosimeters at the energies of 6, 10 and 18 MV photon beam irradiation in the range of 1-30 Gy have the linearity of the dose response function in the case of R2 is better than in the case of absorbance measurements; correlation coefficient (r2) equals 0.995 and 0.991, respectively. Dose sensitivity, R2 of NIBMAGAT dosimeters (0.0775 s-1 Gy-1). The absorption band intensity increases linearly with a dose sensitivity of 0.016 cm-1 Gy-1. The detection limit of the present dosimeter analyzed by R2 and absorbance measurements is 1 Gy and 2 Gy respectively. The overall uncertainty measurements of dose approve that by using the absorbance measurements the gel is not useful as a dosimeter like as R2 measurements. It could be a new composition of dosimeters successfully utilized for MRI (Magnetic Resonance Imaging) for radiotherapy treatment planning.

  2. GAMMA AND X-RAY DOSIMETER AND DOSIMETRIC METHOD

    DOEpatents

    Taplin, G.V.; Douglas, C.H.; Sigoloff, S.C.

    1958-08-19

    An improvement in colorimetric gamma and x-ray dosimeter systems and a self-contained. hand carried dostmeter of the afore-mentioned type ts described. A novel point of the invention ltes in the addition of specific quantities of certain normalizing agents to the two phase chlorinated hydro-carbon-aqueous dyc colortmetric dosimeter to eliminate the after reaction and thereby extend the utility of such systein. The structure of the two phase colorimetric dosimeter tubes and the carrying case for the tubes of the portable dosimeter are unique features.

  3. Radiation monitoring container device (16-IML-1)

    NASA Technical Reports Server (NTRS)

    Nagaoka, S.

    1992-01-01

    In this experiment, layers of radiation detectors and biological specimens, bacterial spores (Bacillus subtillis), shrimp eggs (Altemia salina), and maize seeds (Zea mays) are sandwiched together in the Radiation Monitoring Container. The detectors, sheets of plastic materials, record the nuclear track of cosmic radiation. The dosimeter package contains conventional detectors made of materials such as lithium fluoride or magnesium-silica-terbium. The thermoluminescent materials (TLD) will, when moderately heated, emit luminescent photons linearly depending upon the dose of radiation received. The experiment, enclosed in a box-like container, is mounted on the aft end cone of the Spacelab, the area where the shielding is somewhat less than other locations.

  4. An NMR relaxometry and gravimetric study of gelatin-free aqueous polyacrylamide dosimeters

    NASA Astrophysics Data System (ADS)

    Babic, Steven; Schreiner, L. John

    2006-09-01

    In conformal radiation therapy, a high dose of radiation is given to a target volume to increase the probability of cure, and care is taken to minimize the dose to surrounding healthy tissue. The techniques used to achieve this are very complicated and the precise verification of the resulting three-dimensional (3D) dose distribution is required. Polyacrylamide gelatin (PAG) dosimeters with magnetic resonance imaging and optical computed tomography scanning provide the required 3D dosimetry with high spatial resolution. Many basic studies have characterized these chemical dosimeters that polymerize under irradiation. However, the investigation of the fundamental properties of the radiation-induced polymerization in PAG dosimeters is complicated by the presence of the background gelatin matrix. In this work, a gelatin-free model system for the study of the basic radiation-induced polymerization in PAG dosimeters has been developed. Experiments were performed on gelatin-free dosimeters, named aqueous polyacrylamide (APA) dosimeters, containing equal amounts of acrylamide and N,N'-methylene-bisacrylamide. The APA dosimeters were prepared with four different total monomer concentrations (2, 4, 6 and 8% by weight). Nuclear magnetic resonance (NMR) spin-spin and spin-lattice proton relaxation measurements at 20 MHz, and gravimetric analyses performed on all four dosimeters, show a continuous degree of polymerization over the dose range of 0-25 Gy. The developed NMR model explains the relationship observed between the relaxation data and the amount of crosslinked polymer formed at each dose. This model can be extended with gelatin relaxation data to provide a fundamental understanding of radiation-induced polymerization in the conventional PAG dosimeters.

  5. Technical Note: Improving proton stopping power ratio determination for a deformable silicone-based 3D dosimeter using dual energy CT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taasti, Vicki Trier, E-mail: victaa@rm.dk; Høye, Ellen Marie; Hansen, David Christoffer

    Purpose: The aim of this study was to investigate whether the stopping power ratio (SPR) of a deformable, silicone-based 3D dosimeter could be determined more accurately using dual energy (DE) CT compared to using conventional methods based on single energy (SE) CT. The use of SECT combined with the stoichiometric calibration method was therefore compared to DECT-based determination. Methods: The SPR of the dosimeter was estimated based on its Hounsfield units (HUs) in both a SECT image and a DECT image set. The stoichiometric calibration method was used for converting the HU in the SECT image to a SPR valuemore » for the dosimeter while two published SPR calibration methods for dual energy were applied on the DECT images. Finally, the SPR of the dosimeter was measured in a 60 MeV proton by quantifying the range difference with and without the dosimeter in the beam path. Results: The SPR determined from SECT and the stoichiometric method was 1.10, compared to 1.01 with both DECT calibration methods. The measured SPR for the dosimeter material was 0.97. Conclusions: The SPR of the dosimeter was overestimated by 13% using the stoichiometric method and by 3% when using DECT. If the stoichiometric method should be applied for the dosimeter, the HU of the dosimeter must be manually changed in the treatment planning system in order to give a correct SPR estimate. Using a wrong SPR value will cause differences between the calculated and the delivered treatment plans.« less

  6. An NMR relaxometry and gravimetric study of gelatin-free aqueous polyacrylamide dosimeters.

    PubMed

    Babic, Steven; Schreiner, L John

    2006-09-07

    In conformal radiation therapy, a high dose of radiation is given to a target volume to increase the probability of cure, and care is taken to minimize the dose to surrounding healthy tissue. The techniques used to achieve this are very complicated and the precise verification of the resulting three-dimensional (3D) dose distribution is required. Polyacrylamide gelatin (PAG) dosimeters with magnetic resonance imaging and optical computed tomography scanning provide the required 3D dosimetry with high spatial resolution. Many basic studies have characterized these chemical dosimeters that polymerize under irradiation. However, the investigation of the fundamental properties of the radiation-induced polymerization in PAG dosimeters is complicated by the presence of the background gelatin matrix. In this work, a gelatin-free model system for the study of the basic radiation-induced polymerization in PAG dosimeters has been developed. Experiments were performed on gelatin-free dosimeters, named aqueous polyacrylamide (APA) dosimeters, containing equal amounts of acrylamide and N,N'-methylene-bisacrylamide. The APA dosimeters were prepared with four different total monomer concentrations (2, 4, 6 and 8% by weight). Nuclear magnetic resonance (NMR) spin-spin and spin-lattice proton relaxation measurements at 20 MHz, and gravimetric analyses performed on all four dosimeters, show a continuous degree of polymerization over the dose range of 0-25 Gy. The developed NMR model explains the relationship observed between the relaxation data and the amount of crosslinked polymer formed at each dose. This model can be extended with gelatin relaxation data to provide a fundamental understanding of radiation-induced polymerization in the conventional PAG dosimeters.

  7. Coating and functionalization of high density ion track structures by atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Mättö, Laura; Szilágyi, Imre M.; Laitinen, Mikko; Ritala, Mikko; Leskelä, Markku; Sajavaara, Timo

    2016-10-01

    In this study flexible TiO2 coated porous Kapton membranes are presented having electron multiplication properties. 800 nm crossing pores were fabricated into 50 μm thick Kapton membranes using ion track technology and chemical etching. Consecutively, 50 nm TiO2 films were deposited into the pores of the Kapton membranes by atomic layer deposition using Ti(iOPr)4 and water as precursors at 250 °C. The TiO2 films and coated membranes were studied by scanning electron microscopy (SEM), X-ray diffraction (XRD) and X-ray reflectometry (XRR). Au metal electrode fabrication onto both sides of the coated foils was achieved by electron beam evaporation. The electron multipliers were obtained by joining two coated membranes separated by a conductive spacer. The results show that electron multiplication can be achieved using ALD-coated flexible ion track polymer foils.

  8. Energy spectrum of 50-250 MeV/nucleon iron nuclei inside the MIR space craft.

    PubMed

    Gunther, W; Leugner, D; Becker, E; Heinrich, W; Reitz, G

    2002-10-01

    Stacks of CR-39 plastic nuclear track detectors were mounted inside the MIR spacecraft during the EUROMIR95 space mission for a period of 6 months. This long exposure time resulted in a large number of tracks of HZE-particles in the detector foils. All trajectories of stopping iron nuclei could be reconstructed by optimizing the etching conditions so that an automatic track measurement using image analysis techniques was possible. We found 185 stopping iron nuclei and used the énergy-range relation to calculate their energies at the stack surface. The measured spectrum of iron nuclei inside the MIR station is compared to results of model predictions considering the effect of the solar modulation for the mission period, the geomagnetic shielding effect for the MIR orbit and the shielding by material of the spacecraft walls and its instrumentation. c2002 Elsevier Science Ltd. All rights reserved.

  9. Status of the evidence for a magnetic monopole

    NASA Technical Reports Server (NTRS)

    Price, P. B.

    1975-01-01

    The experimental evidence supporting the detection of a moving magnetic monopole, using a balloon-borne array of track detectors, was presented. Although the results cannot be proved to have been produced by a monopole, they do not seem to have been produced by any nucleus. The very high, roughly constant ionization rate inferred from track etch rate measurements in a stack of Lexan detectors implies passage of a minimum-ionizing particle more highly charged than any known nucleus, yet the Cerenkov film detectors indicated a velocity less than about 0.68 times the speed of light and the size of the track in the nuclear emulsion indicated a velocity approximately equal to 0.5 times the speed of light. At this velocity the ionization rate of a highly electrically charged particle would have changed dramatically with pathlength unless its mass to charge ratio were far greater than that of a nucleus.

  10. Adhesion layer for etching of tracks in nuclear trackable materials

    DOEpatents

    Morse, Jeffrey D.; Contolini, Robert J.

    2001-01-01

    A method for forming nuclear tracks having a width on the order of 100-200 nm in nuclear trackable materials, such as polycarbonate (LEXAN) without causing delamination of the LEXAN. The method utilizes an adhesion film having a inert oxide which allows the track to be sufficiently widened to >200 nm without delamination of the nuclear trackable materials. The adhesion film may be composed of a metal such as Cr, Ni, Au, Pt, or Ti, or composed of a dielectric having a stable surface, such as silicon dioxide (SiO.sub.2), silicon nitride (SiN.sub.x), and aluminum oxide (AlO). The adhesion film can either be deposited on top of the gate metal layer, or if the properties of the adhesion film are adequate, it can be used as the gate layer. Deposition of the adhesion film is achieved by standard techniques, such as sputtering or evaporation.

  11. Development of a wavelength-separated type scintillator with optical fiber (SOF) dosimeter to compensate for the Cerenkov radiation effect

    PubMed Central

    Ishikawa, Masayori; Nagase, Naomi; Matsuura, Taeko; Hiratsuka, Junichi; Suzuki, Ryusuke; Miyamoto, Naoki; Sutherland, Kenneth Lee; Fujita, Katsuhisa; Shirato, Hiroki

    2015-01-01

    Abstract The scintillator with optical fiber (SOF) dosimeter consists of a miniature scintillator mounted on the tip of an optical fiber. The scintillator of the current SOF dosimeter is a 1-mm diameter hemisphere. For a scintillation dosimeter coupled with an optical fiber, measurement accuracy is influenced by signals due to Cerenkov radiation in the optical fiber. We have implemented a spectral filtering technique for compensating for the Cerenkov radiation effect specifically for our plastic scintillator-based dosimeter, using a wavelength-separated counting method. A dichroic mirror was used for separating input light signals. Individual signal counting was performed for high- and low-wavelength light signals. To confirm the accuracy, measurements with various amounts of Cerenkov radiation were performed by changing the incident direction while keeping the Ir-192 source-to-dosimeter distance constant, resulting in a fluctuation of <5%. Optical fiber bending was also addressed; no bending effect was observed for our wavelength-separated SOF dosimeter. PMID:25618136

  12. In situ ion-beam-induced luminescence analysis for evaluating a micrometer-scale radio-photoluminescence glass dosimeter

    NASA Astrophysics Data System (ADS)

    Kawabata, Shunsuke; Kada, Wataru; Parajuli, Raj Kumar; Matsubara, Yoshinori; Sakai, Makoto; Miura, Kenta; Satoh, Takahiro; Koka, Masashi; Yamada, Naoto; Kamiya, Tomihiro; Hanaizumi, Osamu

    2016-06-01

    Micrometer-scale responses of radio-photoluminescence (RPL) glass dosimeters to focused ionized particle radiation were evaluated by combining ion-beam-induced luminescence (IBIL) and proton beam writing (PBW) using a 3 MeV focused proton microbeam. RPL phosphate glass dosimeters doped with ionic Ag or Cu activators at concentrations of 0.2 and 0.1% were fabricated, and their scintillation intensities were evaluated by IBIL spectroscopy under a PBW micropatterning condition. Compared with the Ag-doped dosimeter, the Cu-doped dosimeter was more tolerant of the radiation, while the peak intensity of its luminescence was lower, under the precise dose control of the proton microprobe. Proton-irradiated areas were successfully recorded using these dosimeters and their RPL centers were visualized under 375 nm ultraviolet light. The reproduction of the irradiated region by post-RPL imaging suggests that precise estimation of irradiation dose using microdosimeters can be accomplished by optimizing RPL glass dosimeters for various proton microprobe applications in organic material analysis and in micrometer-scale material modifications.

  13. Water equivalency evaluation of PRESAGE® dosimeters for dosimetry of Cs-137 and Ir-192 brachytherapy sources

    NASA Astrophysics Data System (ADS)

    Gorjiara, Tina; Hill, Robin; Kuncic, Zdenka; Baldock, Clive

    2010-11-01

    A major challenge in brachytherapy dosimetry is the measurement of steep dose gradients. This can be achieved with a high spatial resolution three dimensional (3D) dosimeter. PRESAGE® is a polyurethane based dosimeter which is suitable for 3D dosimetry. Since an ideal dosimeter is radiologically water equivalent, we have investigated the relative dose response of three different PRESAGE® formulations, two with a lower chloride and bromide content than original one, for Cs-137 and Ir-192 brachytherapy sources. Doses were calculated using the EGSnrc Monte Carlo package. Our results indicate that PRESAGE® dosimeters are suitable for relative dose measurement of Cs-137 and Ir-192 brachytherapy sources and the lower halogen content PRESAGE® dosimeters are more water equivalent than the original formulation.

  14. Laser readable thermoluminescent radiation dosimeters and methods for producing thereof

    DOEpatents

    Braunlich, Peter F.; Tetzlaff, Wolfgang

    1989-01-01

    Thin layer thermoluminescent radiation dosimeters for use in laser readable dosimetry systems, and methods of fabricating such thin layer dosimeters. The thin layer thermoluminescent radiation dosimeters include a thin substrate made from glass or other inorganic materials capable of withstanding high temperatures and high heating rates. A thin layer of a thermoluminescent phoshphor material is heat bonded to the substrate using an inorganic binder such as glass. The dosimeters can be mounted in frames and cases for ease in handling. Methods of the invention include mixing a suitable phosphor composition and binder, both being in particulate or granular form. The mixture is then deposited onto a substrate such as by using mask printing techniques. The dosimeters are thereafter heated to fuse and bond the binder and phosphor to the substrate.

  15. Design, Fabrication and Characterization of Indefinite Metamaterials of Nanowires

    DTIC Science & Technology

    2011-01-01

    polymer, nanochannel array glass, radiation track etched mica, block copolymers and anodic aluminium oxide ( AAO ) have been utilized as the mask or the...pores in anodized aluminum oxide . Chem. Mater. 10, 2470–2480. (doi:10.1021/cm980163a) Phil. Trans. R. Soc. A (2011) on August 3...The formation of alumina starts from the surface of the aluminium metal facing the electrolyte. During the anodization process [24,25], oxidation of

  16. Fast-neutron solid-state dosimeter

    DOEpatents

    Kecker, K.H.; Haywood, F.F.; Perdue, P.T.; Thorngate, J.H.

    1975-07-22

    This patent relates to an improved fast-neutron solid-state dosimeter that does not require separation of materials before it can be read out, that utilizes materials that do not melt or otherwise degrade at about 300$sup 0$C readout temperature, that provides a more efficient dosimeter, and that can be reused. The dosimeters are fabricated by intimately mixing a TL material, such as CaSO$sub 4$:Dy, with a powdered polyphenyl, such as p-sexiphenyl, and hot- pressing the mixture to form pellets, followed by out-gassing in a vacuum furnace at 150$sup 0$C prior to first use dosimeters. (auth)

  17. Photon Dosimetry by Luminescence Methods

    ERIC Educational Resources Information Center

    Raeside, D. E.

    1973-01-01

    Discusses the fundamentals of two personnel dosimeters: the lithium fluoride thermoluminescent dosimeter and the silver-activated phosphate glass radiophotoluminescent dosimeter, and indicates the usefulness of this presentation for both teachers and students. (CC)

  18. TU-E-TOUR-I-00: Exhibit Hall Guided Tours-Dosimters for QC in Diagnostic Imaging (Tuesday)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    Tour Leader: Xia Jiang, Ohio State University, Columbus, OH Tour Guides: Xia Jiang, Ohio State University, Columbus, OH Kevin Little, The University of Chicago, Chicago, IL Christina Sammet, Lurie Children’s Hospital of Chicago, Chicago, IL Participating Vendors: IBA PTW - New York Radcal Corporation RTI Electronics, Inc. Exhibit Hall Guided Tours is a new program launching this year at the Annual Meeting. The Guided Tours are designed to enhance the interaction between meeting attendees and exhibitors. This year’s Imaging Guided Tours are organized around the theme of dosimeters for quality control in diagnostic imaging. Tours will begin with an introductionmore » and background given by Dr. Xia Jiang, the Tour Leader. The introduction will cover the types and properties of different radiation dosimeters used for quality assurance in clinical radiology. Attendees will then break into smaller groups, each lead by an AAPM-member Tour Guide. The tour groups will visit the exhibit booths of vendors who provide appropriate dosimeters, and a vendor representative will give a presentation to the group about their particular product(s). The vendor representatives as well as the Tour Guides will be available to answer questions. Outline: Types and properties of radiation detectors and dosimeters Ionization chamber dosimeters Solid state dosimeters Dosimeter calibration: Primary and secondary standards dosimetry laboratories Instruments for measuring tube voltage and exposure time Vendor presentations will likely cover features and innovations of different dosimeter systems, as well as their practical use. Learning Objectives: Understand the types and properties of different instrumentations used for quality control in diagnostic imaging. Understand the process of dosimeter calibration. Gain familiarity with the latest commercial dosimeter systems from different vendors.« less

  19. WE-C-TOUR-I-00: Exhibit Hall Guided Tours-Dosimters for QC in Diagnostic Imaging (Wednesday)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    Tour Leader: Xia Jiang, Ohio State University, Columbus, OH Tour Guides: Xia Jiang, Ohio State University, Columbus, OH Kevin Little, The University of Chicago, Chicago, IL Adrien Sanchez, University of Chicago, Chicago, IL Participating Vendors: IBA PTW - New York Radcal Corporation RTI Electronics, Inc. Exhibit Hall Guided Tours is a new program launching this year at the Annual Meeting. The Guided Tours are designed to enhance the interaction between meeting attendees and exhibitors. This year’s Imaging Guided Tours are organized around the theme of dosimeters for quality control in diagnostic imaging. Tours will begin with an introduction and backgroundmore » given by Dr. Xia Jiang, the Tour Leader. The introduction will cover the types and properties of different radiation dosimeters used for quality assurance in clinical radiology. Attendees will then break into smaller groups, each lead by an AAPM-member Tour Guide. The tour groups will visit the exhibit booths of vendors who provide appropriate dosimeters, and a vendor representative will give a presentation to the group about their particular product(s). The vendor representatives as well as the Tour Guides will be available to answer questions. Outline: Types and properties of radiation detectors and dosimeters Ionization chamber dosimeters Solid state dosimeters Dosimeter calibration: Primary and secondary standards dosimetry laboratories Instruments for measuring tube voltage and exposure time Vendor presentations will likely cover features and innovations of different dosimeter systems, as well as their practical use. Learning Objectives: Understand the types and properties of different instrumentations used for quality control in diagnostic imaging. Understand the process of dosimeter calibration. Gain familiarity with the latest commercial dosimeter systems from different vendors.« less

  20. WE-C-TOUR-I-01: Dosimters for QC in Diagnostic Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, X.

    Tour Leader: Xia Jiang, Ohio State University, Columbus, OH Tour Guides: Xia Jiang, Ohio State University, Columbus, OH Kevin Little, The University of Chicago, Chicago, IL Adrien Sanchez, University of Chicago, Chicago, IL Participating Vendors: IBA PTW - New York Radcal Corporation RTI Electronics, Inc. Exhibit Hall Guided Tours is a new program launching this year at the Annual Meeting. The Guided Tours are designed to enhance the interaction between meeting attendees and exhibitors. This year’s Imaging Guided Tours are organized around the theme of dosimeters for quality control in diagnostic imaging. Tours will begin with an introduction and backgroundmore » given by Dr. Xia Jiang, the Tour Leader. The introduction will cover the types and properties of different radiation dosimeters used for quality assurance in clinical radiology. Attendees will then break into smaller groups, each lead by an AAPM-member Tour Guide. The tour groups will visit the exhibit booths of vendors who provide appropriate dosimeters, and a vendor representative will give a presentation to the group about their particular product(s). The vendor representatives as well as the Tour Guides will be available to answer questions. Outline: Types and properties of radiation detectors and dosimeters Ionization chamber dosimeters Solid state dosimeters Dosimeter calibration: Primary and secondary standards dosimetry laboratories Instruments for measuring tube voltage and exposure time Vendor presentations will likely cover features and innovations of different dosimeter systems, as well as their practical use. Learning Objectives: Understand the types and properties of different instrumentations used for quality control in diagnostic imaging. Understand the process of dosimeter calibration. Gain familiarity with the latest commercial dosimeter systems from different vendors.« less

  1. TH-CD-BRA-04: Effect of a Strong Magnetic Field On TLDs, OSLDs, and Gafchromic Films Using An Electromagnet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, J; Rubinstein, A; Ohrt, J

    Purpose: To study the effect of strong magnetic field on three types of dosimeters using an electromagnet inside a Linac vault. Materials and Methods: Three types of dosimeters, thermoluminescent Dosimeters (TLDs), optically stimulated luminescent Dosimeters (OSLDs), and EBT3 Film were used to measure radiation dose response inside an electromagnet that could produce a strong magnetic field (B>1.5 T). The dosimeters were placed inside a plastic phantom between the two poles of the magnet, at approximately 3 meters from the iso-center of an Elekta Versa HD Linac. The B field was calibrated with a Gauss meter (Model: GM-2, AlphaLab Inc). Themore » dosimeters received ∼2 Gy with and without the presence of the 1.5 T magnetic field. The EBT3 films were scanned 24 hours before and 24 hours after irradiation. The TLD dosimeters were read 1 week after irradiation. The OSLDs were read two weeks after irradiation. The ratios of signals of dosimeters irradiated with the B field to the signals without the B field were calculated. Two experiments have been conducted so far. Results: The ratios (averaged over two experiments) of dosimeter signals with vs without B field were 0.994 for films, 0.994 for OSLDs, and 1.002 for TLDs. The statistical uncertainty was ∼3%. Conclusions: The three types of dosimeters (film, TLD, OSLD) seem not affected by the presence of a magnetic field (B=1.5 T) with the uncertainty of ∼3%. They may be suitable for QA purposes in a strong B field up to 1.5 T. More measurements will be conducted for reproducibility testing. We acknowledge research support from Elekta AB.« less

  2. Laser readable thermoluminescent radiation dosimeters and methods for producing thereof

    DOEpatents

    Braunlich, P.F.; Tetzlaff, W.

    1989-04-25

    Thin layer thermoluminescent radiation dosimeters for use in laser readable dosimetry systems, and methods of fabricating such thin layer dosimeters are disclosed. The thin layer thermoluminescent radiation dosimeters include a thin substrate made from glass or other inorganic materials capable of withstanding high temperatures and high heating rates. A thin layer of a thermoluminescent phosphor material is heat bonded to the substrate using an inorganic binder such as glass. The dosimeters can be mounted in frames and cases for ease in handling. Methods of the invention include mixing a suitable phosphor composition and binder, both being in particulate or granular form. The mixture is then deposited onto a substrate such as by using mask printing techniques. The dosimeters are thereafter heated to fuse and bond the binder and phosphor to the substrate. 34 figs.

  3. Development of a Dosimeter System for Unsymmetrical Dimethylhydrazine, Monomethylhydrazine and Hydrazine

    DTIC Science & Technology

    1994-06-27

    the amount of dilution air . Conditioned house- compressed air was used as the diluent. The conditioning procedure consisted of passing the house air ...unsymmetrical dlmethylhydrazine (UDMI-) in air has been developed. The dosimeter consists of a replaceable dosimeter card and a reusable...Department of Defense and NASA require air monitoring for hydrazines in areas where they are handled and/or stored. A real-time dosimeter using vanillin

  4. Guide to U.S. Atmospheric Nuclear Weapon Effects Data

    DTIC Science & Technology

    1993-12-01

    biological warfare agents, and radiation dosimeters . XRD- 163 identifies the test location of each 4-6 biological sample. Reports containing the results...along with position of the animals at the time of the detonation. Vycor Glass Gamma Ray Dosimeters XRD-176 A rugged new dosimeter capable of measuring...gamma doses on animals exposed to high levels of radiation was employed during Able. Dosimeter readings, locations, and animal condition are reported

  5. Measurement of relative depth-dose distribution in radiochromic film dosimeters irradiated with 43-70 keV electron beam for industrial application

    NASA Astrophysics Data System (ADS)

    Matsui, Shinjiro; Hattori, Takeaki; Nonaka, Takashi; Watanabe, Yuki; Morita, Ippei; Kondo, Junichi; Ishikawa, Masayoshi; Mori, Yoshitaka

    2018-05-01

    The relative dose in a layer, which is thinner than the thickness of the dosimeter is evaluated using simulated depth-dose distributions, and the measured responses of dosimeters with acceleration voltages from 43 to 70 kV, via ultra-low-energy electron beam (ULEB) irradiation. By stacking thin film dosimeters, we confirmed that the simulated depth-dose distributions coincided with the measured depth-dose curve within the measurement uncertainty (k = 2). Using the measurement dose of the 47 μm dosimeter and the simulated depth-dose distribution, the dose of 11 μm dosimeters in the surface was evaluated within the measurement uncertainty (k = 2). We also verified the effectiveness of this method for a thinner layer by changing the acceleration voltage of the irradiation source. We evaluated the relative dose for an adjusted depth of energy deposition from 4.4 μm to 22.8 μm. As a result, this method was found to be effective for a thickness, which is less than the thickness of the dosimeter. When irradiation conditions are well known with accuracy, using the confirmed relative depth-dose distributions across any dosimeter thickness range, a dose evaluation, in several μm steps will possibly improve the design of industrial ULEB processes.

  6. [Accuracy Check of Monte Carlo Simulation in Particle Therapy Using Gel Dosimeters].

    PubMed

    Furuta, Takuya

    2017-01-01

    Gel dosimeters are a three-dimensional imaging tool for dose distribution induced by radiations. They can be used for accuracy check of Monte Carlo simulation in particle therapy. An application was reviewed in this article. An inhomogeneous biological sample placing a gel dosimeter behind it was irradiated by carbon beam. The recorded dose distribution in the gel dosimeter reflected the inhomogeneity of the biological sample. Monte Carlo simulation was conducted by reconstructing the biological sample from its CT image. The accuracy of the particle transport by Monte Carlo simulation was checked by comparing the dose distribution in the gel dosimeter between simulation and experiment.

  7. Design of Interrogation Protocols for Radiation Dose Measurements Using Optically-Stimulated Luminescent Dosimeters.

    PubMed

    Abraham, Sara A; Kearfott, Kimberlee J; Jawad, Ali H; Boria, Andrew J; Buth, Tobias J; Dawson, Alexander S; Eng, Sheldon C; Frank, Samuel J; Green, Crystal A; Jacobs, Mitchell L; Liu, Kevin; Miklos, Joseph A; Nguyen, Hien; Rafique, Muhammad; Rucinski, Blake D; Smith, Travis; Tan, Yanliang

    2017-03-01

    Optically-stimulated luminescent dosimeters are capable of being interrogated multiple times post-irradiation. Each interrogation removes a fraction of the signal stored within the optically-stimulated luminescent dosimeter. This signal loss must be corrected to avoid systematic errors in estimating the average signal of a series of optically-stimulated luminescent dosimeter interrogations and requires a minimum number of consecutive readings to determine an average signal that is within a desired accuracy of the true signal with a desired statistical confidence. This paper establishes a technical basis for determining the required number of readings for a particular application of these dosimeters when using certain OSL dosimetry systems.

  8. Track membranes with open pores used as diffractive filters for space-based x-ray and EUV solar observations.

    PubMed

    Dominique, Marie; Mitrofanov, A V; Hochedez, J-F; Apel, P Yu; Schühle, U; Pudonin, F A; Orelovich, O L; Zuev, S Yu; Bolsée, D; Hermans, C; BenMoussa, A

    2009-02-10

    We describe the fabrication and performance of diffractive filters designed for space-based x-ray and EUV solar observations. Unlike traditional thin film filters, diffractive filters can be made to have a high resistance against the destructive mechanical and acoustic loads of a satellite launch. The filters studied are made of plastic track-etched membranes that are metal-coated on one side only. They have all-through open cylindrical pores with diameters as small as 500 nm, limiting their transmittance to very short wavelengths. The spectral transmittance of various diffractive filters with different pore parameters was measured from the soft x-ray to the near IR range (namely, from 1-1100 nm).

  9. Research on anisotropy of fusion-produced protons and neutrons emission from high-current plasma-focus discharges.

    PubMed

    Malinowski, K; Skladnik-Sadowska, E; Sadowski, M J; Szydlowski, A; Czaus, K; Kwiatkowski, R; Zaloga, D; Paduch, M; Zielinska, E

    2015-01-01

    The paper concerns fast protons and neutrons from D-D fusion reactions in a Plasma-Focus-1000U facility. Measurements were performed with nuclear-track detectors arranged in "sandwiches" of an Al-foil and two PM-355 detectors separated by a polyethylene-plate. The Al-foil eliminated all primary deuterons, but was penetrable for fast fusion protons. The foil and first PM-355 detector were penetrable for fast neutrons, which were converted into recoil-protons in the polyethylene and recorded in the second PM-355 detector. The "sandwiches" were irradiated by discharges of comparable neutron-yields. Analyses of etched tracks and computer simulations of the fusion-products behavior in the detectors were performed.

  10. Research on anisotropy of fusion-produced protons and neutrons emission from high-current plasma-focus discharges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malinowski, K., E-mail: karol.malinowski@ncbj.gov.pl; Sadowski, M. J.; Szydlowski, A.

    2015-01-15

    The paper concerns fast protons and neutrons from D-D fusion reactions in a Plasma-Focus-1000U facility. Measurements were performed with nuclear-track detectors arranged in “sandwiches” of an Al-foil and two PM-355 detectors separated by a polyethylene-plate. The Al-foil eliminated all primary deuterons, but was penetrable for fast fusion protons. The foil and first PM-355 detector were penetrable for fast neutrons, which were converted into recoil-protons in the polyethylene and recorded in the second PM-355 detector. The “sandwiches” were irradiated by discharges of comparable neutron-yields. Analyses of etched tracks and computer simulations of the fusion-products behavior in the detectors were performed.

  11. Development of a wavelength-separated type scintillator with optical fiber (SOF) dosimeter to compensate for the Cerenkov radiation effect.

    PubMed

    Ishikawa, Masayori; Nagase, Naomi; Matsuura, Taeko; Hiratsuka, Junichi; Suzuki, Ryusuke; Miyamoto, Naoki; Sutherland, Kenneth Lee; Fujita, Katsuhisa; Shirato, Hiroki

    2015-03-01

    The scintillator with optical fiber (SOF) dosimeter consists of a miniature scintillator mounted on the tip of an optical fiber. The scintillator of the current SOF dosimeter is a 1-mm diameter hemisphere. For a scintillation dosimeter coupled with an optical fiber, measurement accuracy is influenced by signals due to Cerenkov radiation in the optical fiber. We have implemented a spectral filtering technique for compensating for the Cerenkov radiation effect specifically for our plastic scintillator-based dosimeter, using a wavelength-separated counting method. A dichroic mirror was used for separating input light signals. Individual signal counting was performed for high- and low-wavelength light signals. To confirm the accuracy, measurements with various amounts of Cerenkov radiation were performed by changing the incident direction while keeping the Ir-192 source-to-dosimeter distance constant, resulting in a fluctuation of <5%. Optical fiber bending was also addressed; no bending effect was observed for our wavelength-separated SOF dosimeter. © The Author 2015. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.

  12. Topical Review: Polymer gel dosimetry

    PubMed Central

    Baldock, C; De Deene, Y; Doran, S; Ibbott, G; Jirasek, A; Lepage, M; McAuley, K B; Oldham, M; Schreiner, L J

    2010-01-01

    Polymer gel dosimeters are fabricated from radiation sensitive chemicals which, upon irradiation, polymerize as a function of the absorbed radiation dose. These gel dosimeters, with the capacity to uniquely record the radiation dose distribution in three-dimensions (3D), have specific advantages when compared to one-dimensional dosimeters, such as ion chambers, and two-dimensional dosimeters, such as film. These advantages are particularly significant in dosimetry situations where steep dose gradients exist such as in intensity-modulated radiation therapy (IMRT) and stereotactic radiosurgery. Polymer gel dosimeters also have specific advantages for brachytherapy dosimetry. Potential dosimetry applications include those for low-energy x-rays, high-linear energy transfer (LET) and proton therapy, radionuclide and boron capture neutron therapy dosimetries. These 3D dosimeters are radiologically soft-tissue equivalent with properties that may be modified depending on the application. The 3D radiation dose distribution in polymer gel dosimeters may be imaged using magnetic resonance imaging (MRI), optical-computerized tomography (optical-CT), x-ray CT or ultrasound. The fundamental science underpinning polymer gel dosimetry is reviewed along with the various evaluation techniques. Clinical dosimetry applications of polymer gel dosimetry are also presented. PMID:20150687

  13. Clinical application of the OneDose™ Patient Dosimetry System for total body irradiation

    NASA Astrophysics Data System (ADS)

    Best, S.; Ralston, A.; Suchowerska, N.

    2005-12-01

    The OneDose™ Patient Dosimetry System (Sicel Technologies) is a new dosimeter based on metal oxide semiconductor field-effect transistor technology and designed for the in vivo measurement of patient dose during radiotherapy. In vivo dosimetry for total body irradiation (TBI) is challenging due to the extended treatment distance, low dose rates and beam spoilers. Phantom results confirm the suitability of the dosimeter for TBI in terms of inherent build-up, post-irradiation fading, accuracy, reproducibility, linearity and temperature dependence. Directional dependence is significant and should be taken into account. The OneDose™ dosimeters were also trialed in vivo for two TBI patients and the dose measured compared to conventional dosimeter measurements using an ionization chamber and thermoluminescent dosimeters (TLD), with agreement to within 2.2% and 3.9%, respectively. Phantom and patient results confirm that the OneDose™ patient dosimetry system is a practical and convenient alternative to TLDs for TBI in vivo dosimetry. For increased confidence in results with this dosimeter, we recommend that two dosimeters be used for each site of interest.

  14. Clinical application of the OneDose Patient Dosimetry System for total body irradiation.

    PubMed

    Best, S; Ralston, A; Suchowerska, N

    2005-12-21

    The OneDose Patient Dosimetry System (Sicel Technologies) is a new dosimeter based on metal oxide semiconductor field-effect transistor technology and designed for the in vivo measurement of patient dose during radiotherapy. In vivo dosimetry for total body irradiation (TBI) is challenging due to the extended treatment distance, low dose rates and beam spoilers. Phantom results confirm the suitability of the dosimeter for TBI in terms of inherent build-up, post-irradiation fading, accuracy, reproducibility, linearity and temperature dependence. Directional dependence is significant and should be taken into account. The OneDose dosimeters were also trialed in vivo for two TBI patients and the dose measured compared to conventional dosimeter measurements using an ionization chamber and thermoluminescent dosimeters (TLD), with agreement to within 2.2% and 3.9%, respectively. Phantom and patient results confirm that the OneDose patient dosimetry system is a practical and convenient alternative to TLDs for TBI in vivo dosimetry. For increased confidence in results with this dosimeter, we recommend that two dosimeters be used for each site of interest.

  15. Optically stimulated luminescence in vivo dosimetry for radiotherapy: physical characterization and clinical measurements in (60)Co beams.

    PubMed

    Mrčela, I; Bokulić, T; Izewska, J; Budanec, M; Fröbe, A; Kusić, Z

    2011-09-21

    A commercial optically stimulated luminescence (OSL) dosimetry system was investigated for in vivo dosimetry in radiation therapy. Dosimetric characteristics of InLight dot dosimeters and a microStar reader (Landauer Inc.) were tested in (60)Co beams. The reading uncertainty of a single dosimeter was 0.6%. The reproducibility of a set of dosimeters after a single irradiation was 1.6%, while in repeated irradiations of the same dosimeters it was found to be 3.5%. When OSL dosimeters were optically bleached between exposures, the reproducibility of repeated measurements improved to 1.0%. Dosimeters were calibrated for the entrance dose measurements and a full set of correction factors was determined. A pilot patient study that followed phantom validation testing included more than 100 measured fields with a mean relative difference of the measured entrance dose from the expected dose of 0.8% and the standard deviation of 2.5%. In conclusion, these results demonstrate that OSL dot dosimeters represent a valid alternative to already established in vivo dosimetry systems.

  16. The thermoluminescence study of epoxy based LiF:Mg,Cu,P dosimeters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rahangdale, S. R., E-mail: sachin.rahangdale1@gmail.com; Palikundwar, U. A.; Moharil, S. V.

    The LiF:Mg,Cu,P phosphor is the most investigated phosphor in radiation dosimetry. Results on thermoluminescence of the epoxy based LiF:Mg,Cu,P dosimeters irradiated with gamma radiations are presented and compared with results of LiF:Mg,Cu,P powder. The glow curve structure of both LiF powder and dosimeter are same and only difference is found in the glow curve peak temperature. The LiF dosimeters were made from the 5012A and 5012B epoxy. The dosimeters had a mass of about 18 mg, 5.0 mm diameter and 0.5 mm thickness. The sensitivity variation of the dosimeters for exposure to {sup 60}Co gamma rays at different angles of incidence of themore » radiation is found to be within 4%. Its minimum detectable dose is about 3020 µGy. The epoxy based dosimeters withstand different environment and it can be used with general TL reader without need of any special design due to its small size and plane surface.« less

  17. Optically stimulated luminescence in vivo dosimetry for radiotherapy: physical characterization and clinical measurements in 60Co beams

    NASA Astrophysics Data System (ADS)

    Mrčela, I.; Bokulić, T.; Izewska, J.; Budanec, M.; Fröbe, A.; Kusić, Z.

    2011-09-01

    A commercial optically stimulated luminescence (OSL) dosimetry system was investigated for in vivo dosimetry in radiation therapy. Dosimetric characteristics of InLight dot dosimeters and a microStar reader (Landauer Inc.) were tested in 60Co beams. The reading uncertainty of a single dosimeter was 0.6%. The reproducibility of a set of dosimeters after a single irradiation was 1.6%, while in repeated irradiations of the same dosimeters it was found to be 3.5%. When OSL dosimeters were optically bleached between exposures, the reproducibility of repeated measurements improved to 1.0%. Dosimeters were calibrated for the entrance dose measurements and a full set of correction factors was determined. A pilot patient study that followed phantom validation testing included more than 100 measured fields with a mean relative difference of the measured entrance dose from the expected dose of 0.8% and the standard deviation of 2.5%. In conclusion, these results demonstrate that OSL dot dosimeters represent a valid alternative to already established in vivo dosimetry systems.

  18. Pistol-shaped dosimeter charger

    DOEpatents

    Maples, R.A.

    A pistol-shaped charger assembly clamps a cylindrical radiation dosimeter against one edge thereof. A triggerlike lever on the handgrip of the assembly is manually pivoted to actuate a piezoelectric current generator held in the handgrip and thereby charge the dosimeter.

  19. Pistol-shaped dosimeter charger

    DOEpatents

    Maples, Robert A.

    1985-01-01

    A pistol-shaped charger assembly clamps a cylindrical radiation dosimeter against one edge thereof. A triggerlike lever on the handgrip of the assembly is manually pivoted to actuate a piezoelectric current generator held in the handgrip and thereby charge the dosimeter.

  20. Wristwatch dosimeter

    DOEpatents

    Wolf, Michael A.; Waechter, David A.; Umbarger, C. John

    1986-01-01

    The disclosure is directed to a wristwatch dosimeter utilizing a CdTe detector, a microprocessor and an audio and/or visual alarm. The dosimeter is entirely housable with a conventional digital watch case having an additional aperture enabling the detector to receive radiation.

  1. A new radiochromic dosimeter film

    NASA Astrophysics Data System (ADS)

    Sidney, L. N.; Lynch, D. C.; Willet, P. S.

    By employing acid-sensitive leuco dyes in a chlorine-containing polymer matrix, a new radiochromic dosimeter film has been developed for gamma, electron beam, and ultraviolet radiation. These dosimeter films undergo a color change from colorless to royal blue, red fuchsia, or black, depending on dye selection, and have been characterized using a visible spectrophotometer over an absorbed dose range of 1 to 100 kGy. The primary features of the film are improved color stability before and after irradiation, whether stored in the dark or under artificial lights, and improved moisture resistance. The effects of absorbed dose, dose rate, and storage conditions on dosimeter performance are discussed. The dosimeter material may be produced as a free film or coated onto a transparent substrate and optionally backed with adhesive. Potential applications for these materials include gamma sterilization indicator films for food and medical products, electron beam dosimeters, and in-line radiation monitors for electron beam and ultraviolet processing.

  2. Comparison of a new inorganic membrane filter (Anopore) with a track-etched polycarbonate membrane filter (Nuclepore) for direct counting of bacteria.

    PubMed Central

    Jones, S E; Ditner, S A; Freeman, C; Whitaker, C J; Lock, M A

    1989-01-01

    Bacterial counts obtained by using a new Anopore inorganic membrane filter were 21 to 33% higher than those obtained by using a Nuclepore polycarbonate membrane filter. In addition, the inorganic filter had higher flow rates, permitting lower vacuum pressures to be used, while the intrinsically flat, rigid surface resulted in easier focusing and sharp definition of bacteria across the whole field of view. Images PMID:2655539

  3. Optical properties of template synthesized nanowalled ZnS microtubules

    NASA Astrophysics Data System (ADS)

    Kumar, Rajesh; Chakarvarti, S. K.

    2007-12-01

    Electrodeposition is a versatile technique combining low processing cost with ambient conditions that can be used to prepare metallic, polymeric and semiconducting nano/micro structures. In the present work, track-etch membranes (TEMs) of makrofol (KG) have been used as templates for synthesis of ZnS nanowalled microtubules using electrodeposition technique. The morphology of the microtubules was characterized by scanning electron microscopy. Size effects on the band gap of tubules have also been studied by UV-visible spectrophotometer.

  4. Results of interlaboratory comparison of fission-track age standards: Fission-track workshop-1984

    USGS Publications Warehouse

    Miller, D.S.; Duddy, I.R.; Green, P.F.; Hurford, A.J.; Naeser, C.W.

    1985-01-01

    Five samples were made available as standards for the 1984 Fission Track Workshop held in the summer of 1984 (Rensselaer Polytechnic Institute, Troy, New York). Two zircons, two apatites and a sphene were distributed prior to the meeting to 40 different laboratories. To date, 24 different analysts have reported results. The isotopic ages of the standards ranged from 16.8 to 98.7 Myr. Only the statement that the age of each sample was less than 200 Myr was provided with the set of standards distributed. Consequently, each laboratory was required to use their laboratory's accepted treatment (irradiation level, etching conditions, counting conditions, etc.) for these samples. The results show that some workers have serious problems in achieving accurate age determinations. This emphasizes the need to calibrate experimental techniques and counting procedures against age standards before unknown ages are determined. Any fission-track age determination published or submitted for publication can only be considered reliable if it is supported by evidence of consistent determinations on age standards. Only this can provide the scientific community with the background to build up confidence concerning the validity of the fission-track method. ?? 1985.

  5. Feasibility of smartphone diaries and personal dosimeters to quantitatively study exposure to ultraviolet radiation in a small national sample.

    PubMed

    Køster, Brian; Søndergaard, Jens; Nielsen, Jesper B; Allen, Martin; Bjerregaard, Mette; Olsen, Anja; Bentzen, Joan

    2015-09-01

    In 2007, a national skin cancer prevention campaign was launched to reduce the UV exposure of the Danish population. To improve campaign evaluation a questionnaire validation using UV-dosimeters was initiated. To show the feasibility of dosimeters for national representative studies and of smartphones as a data collection tool. Participants were sent a dosimeter which they wore for 7 days, received a short diary questionnaire by text message each day and subsequently a longer questionnaire. Correlation between responses from questionnaire, smartphone diaries and dosimeters were examined. This study shows a 99.5% return rate (n = 205) of the dosimeters by ordinary mail and high response-rates for a smartphone questionnaire dairy. Correlation coefficients for outdoor-time reported through smartphones and dosimeters as average by week 0.62 (0.39-0.77), P < 0.001 (n = 40). Correlation coefficient for outdoor time estimated by questionnaire and dosimeters were 0.42 (0.11-0.64), P = 0.008. The subjective perception of the weather was the only covariate significantly influencing questionnaire estimates of actual outdoor exposure. We showed that dosimeter studies are feasible in national settings and that smartphones are a useful tool for monitoring and collecting UV behavior data. We found diary data reported on a daily basis through smartphones more strongly associated with actual outdoor time than questionnaire data. Our results demonstrate tools and possible considerations for executing a UV behavior questionnaire validation. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. Characterization of a commercially-available, optically-stimulated luminescent dosimetry system for use in computed tomography.

    PubMed

    Lavoie, Lindsey; Ghita, Monica; Brateman, Libby; Arreola, Manuel

    2011-09-01

    Optically-stimulated luminescent (OSL) nanoDot dosimeters, commercially available from Landauer, Inc. (Glenwood, IL), were assessed for use in computed tomography (CT) for erasure and reusability, linearity and reproducibility of response, and angular and energy response in different scattering conditions. Following overnight exposure to fluorescent room light, the residual signal on the dosimeters was 2%. The response of the dosimeters to identical exposures was consistent, and reported doses were within 4% of each other. The dosimeters responded linearly with dose up to 1 Gy. The dosimeter response to the CT beams decreased with increased tube voltage, showing up to a -16% difference when compared to a 0.6-cm(3) NIST-traceable calibrated ionization chamber for a 135 kVp CT beam. The largest range in percent difference in dosimeter response to scatter at central and peripheral positions inside CTDI phantoms was 14% at 80 kVp CT tube voltage, when compared to the ionization chamber. The dosimeters responded uniformly to x-ray tube angle over the ranges of increments of 0° to 75° and 105° to 180° when exposed in air, and from 0° to 360° when exposed inside a CTDI phantom. While energy and scatter correction factors should be applied to dosimeter readings for the purpose of determining absolute doses, these corrections are straightforward but depend on the accuracy of the ionization chamber used for cross-calibration. The linearity and angular responses, combined with the ability to reuse the dosimeters, make this OSL system an excellent choice for clinical CT dose measurements.

  7. Performance of KCl:Eu2+ storage phosphor dosimeters for low dose measurements

    PubMed Central

    Li, H. Harold; Hansel, Rachael; Knutson, Nels; Yang, Deshan

    2013-01-01

    Recent research has demonstrated that europium doped potassium chloride (KCl:Eu2+) storage phosphor material has the potential to become the physical foundation of a novel and reusable dosimetry system using either film-like devices or devices similar to thermoluminescent dosimeter (TLD) chips. The purposes of this work are to quantify the performance of KCl:Eu2+ prototype dosimeters for low dose measurements and to demonstrate how it can be incorporated into clinical application for in vivo peripheral dose measurements. Pellet-style KCl:Eu2+ dosimeters, 6 mm in diameter, and 1 mm thick, were fabricated in-house for this study. The dosimeters were read using a laboratory photostimulated luminescence detection system. KCl:Eu2+ prototype storage phosphor dosimeter was capable of measuring a dose-to-water as low as 0.01 cGy from a 6 MV photon beam with a signal-to-noise ratio greater than 6. A pre-readout thermal annealing procedure enabled the dosimeter to be read within an hour post irradiation. After receiving large accumulated doses (~10 kGy), the dosimeters retained linear response in the low dose region with only a 20 percent loss of sensitivity comparing to a fresh sample (zero Gy history). The energy-dependence encountered during low dose peripheral measurements could be accounted for via a single point outside-field calibration per each beam quality. With further development the KCl:Eu2+− based dosimeter could become a versatile and durable dosimetry tool with large dynamic range (sub-cGy to 100 Gy). PMID:23735856

  8. Wrist-watch dosimeter

    DOEpatents

    Wolf, M.A.; Waechter, D.A.; Umbarger, C.J.

    1982-04-16

    The disclosure is directed to a wristwatch dosimeter utilizing a CdTe detector, a microprocessor and an audio and/or visual alarm. The dosimeter is entirely housable within a conventional digital watch case having an additional aperture enabling the detector to receive radiation.

  9. Wristwatch dosimeter

    DOEpatents

    Wolf, M.A.; Waechter, D.A.; Umbarger, C.J.

    1986-08-26

    The disclosure is directed to a wristwatch dosimeter utilizing a CdTe detector, a microprocessor and an audio and/or visual alarm. The dosimeter is entirely housable with a conventional digital watch case having an additional aperture enabling the detector to receive radiation. 10 figs.

  10. Development of Functional Surfaces on High-Density Polyethylene (HDPE) via Gas-Assisted Etching (GAE) Using Focused Ion Beams.

    PubMed

    Sezen, Meltem; Bakan, Feray

    2015-12-01

    Irradiation damage, caused by the use of beams in electron and ion microscopes, leads to undesired physical/chemical material property changes or uncontrollable modification of structures. Particularly, soft matter such as polymers or biological materials is highly susceptible and very much prone to react on electron/ion beam irradiation. Nevertheless, it is possible to turn degradation-dependent physical/chemical changes from negative to positive use when materials are intentionally exposed to beams. Especially, controllable surface modification allows tuning of surface properties for targeted purposes and thus provides the use of ultimate materials and their systems at the micro/nanoscale for creating functional surfaces. In this work, XeF2 and I2 gases were used in the focused ion beam scanning electron microscope instrument in combination with gallium ion etching of high-density polyethylene surfaces with different beam currents and accordingly different gas exposure times resulting at the same ion dose to optimize and develop new polymer surface properties and to create functional polymer surfaces. Alterations in the surface morphologies and surface chemistry due to gas-assisted etching-based nanostructuring with various processing parameters were tracked using high-resolution SEM imaging, complementary energy-dispersive spectroscopic analyses, and atomic force microscopic investigations.

  11. SU-E-T-296: Dosimetric Analysis of Small Animal Image-Guided Irradiator Using High Resolution Optical CT Imaging of 3D Dosimeters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Na, Y; Qian, X; Wuu, C

    Purpose: To verify the dosimetric characteristics of a small animal image-guided irradiator using a high-resolution of optical CT imaging of 3D dosimeters. Methods: PRESAEGE 3D dosimeters were used to determine dosimetric characteristics of a small animal image-guided irradiator and compared with EBT2 films. Cylindrical PRESAGE dosimeters with 7cm height and 6cm diameter were placed along the central axis of the beam. The films were positioned between 6×6cm{sup 2} cubed plastic water phantoms perpendicular to the beam direction with multiple depths. PRESAGE dosimeters and EBT2 films were then irradiated with the irradiator beams at 220kVp and 13mA. Each of irradiated PRESAGEmore » dosimeters named PA1, PA2, PB1, and PB2, was independently scanned using a high-resolution single laser beam optical CT scanner. The transverse images were reconstructed with a 0.1mm high-resolution pixel. A commercial Epson Expression 10000XL flatbed scanner was used for readout of irradiated EBT2 films at a 0.4mm pixel resolution. PDD curves and beam profiles were measured for the irradiated PRESAGE dosimeters and EBT2 films. Results: The PDD agreements between the irradiated PRESAGE dosimeter PA1, PA2, PB1, PB2 and the EB2 films were 1.7, 2.3, 1.9, and 1.9% for the multiple depths at 1, 5, 10, 15, 20, 30, 40 and 50mm, respectively. The FWHM measurements for each PRESAEGE dosimeter and film agreed with 0.5, 1.1, 0.4, and 1.7%, respectively, at 30mm depth. Both PDD and FWHM measurements for the PRESAGE dosimeters and the films agreed overall within 2%. The 20%–80% penumbral widths of each PRESAGE dosimeter and the film at a given depth were respectively found to be 0.97, 0.91, 0.79, 0.88, and 0.37mm. Conclusion: Dosimetric characteristics of a small animal image-guided irradiator have been demonstrated with the measurements of PRESAGE dosimeter and EB2 film. With the high resolution and accuracy obtained from this 3D dosimetry system, precise targeting small animal irradiation can be achieved.« less

  12. The Development of a Beta-Gamma Personnel Dosimeter

    NASA Astrophysics Data System (ADS)

    Tsakeres, Frank Steven

    The assessment of absorbed dose in mixed beta and gamma radiation fields is an extremely complex task. For many years, the assessment of the absorbed dose to tissue from the weakly penetrating components of a radiation field (i.e., beta particles, electrons) has been largely ignored. Beta radiation fields are encountered routinely in a nuclear facility and may represent the major radiation component under certain accident or emergency conditions. Many attempts have been made to develop an accurate mixed field personnel dosimeter. However, all of these dosimeters have exhibited numerous response problems which have limited their usefulness for personnel dose assessment. Consequently, the determination of the absorbed dose at the epidermal depth (i.e., 7 mg/cm('2)) has been difficult to measure accurately. The objective of this research project was to design, build, and test a sensitive and accurate personnel dosimeter for mixed field applications. The selection of the various dosimeter elements were determined by evaluating several types of phosphors, filters, and backscatter materials. After evaluating the various response characteristics of the badge components, a prototype dosimeter, the CHEMM (CaF(,2):Dy Highly Efficient Multiple Element Multiple Filter) personnel dosimeter, was developed and tested at Georgia Tech, Emory University and the National Bureau of Standards. This dosimeter was comprised of four large CaF(,2):Dy (TLD-200) TLD's and a standard LiF (TLD-100) chip. The weakly penetrating and penetrating components of a radiation field were separated using a series of TLD/filter combinations and a new dose assessment algorithm. The large TLD-200 chips, along with a series of tissue-equivalent filters, were used to determine the absorbed dose due to the weakly penetrating radiation while a LiF/filter combination was used to measure the penetrating component. In addition, a new backscatter material was included in the badge design to better simulate a tissue-equivalent response. The CHEMM personnel dosimeter performance tests were conducted to simulate actual mixed radiation field environments. This dosimeter provided a high degree of sensitivity with accuracies well within the ANSI recommended performance standards for personnel dosimeters. In addition, it was concluded that the CHEMM dosimetry system provided a practical dosimeter alternative with a higher dose assessment accuracy and measurement sensitivity than the personnel dosimetry systems presently used in the nuclear power industry.

  13. SU-G-JeP2-04: Comparison Between Fricke-Type 3D Radiochromic Dosimeters for Real-Time Dose Distribution Measurements in MR-Guided Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, H; Alqathami, M; Wang, J

    Purpose: To assess MR signal contrast for different ferrous ion compounds used in Fricke-type gel dosimeters for real-time dose measurements for MR-guided radiation therapy applications. Methods: Fricke-type gel dosimeters were prepared in 4% w/w gelatin prior to irradiation in an integrated 1.5 T MRI and 7 MV linear accelerator system (MR-Linac). 4 different ferrous ion (Fe2?) compounds (referred to as A, B, C, and D) were investigated for this study. Dosimeter D consisted of ferrous ammonium sulfate (FAS), which is conventionally used for Fricke dosimeters. Approximately half of each cylindrical dosimeter (45 mm diameter, 80 mm length) was irradiated tomore » ∼17 Gy. MR imaging during irradiation was performed with the MR-Linac using a balanced-FFE sequence of TR/TE = 5/2.4 ms. An approximate uncertainty of 5% in our dose delivery was anticipated since the MR-Linac had not yet been fully commissioned. Results: The signal intensities (SI) increased between the un-irradiated and irradiated regions by approximately 8.6%, 4.4%, 3.2%, and 4.3% after delivery of ∼2.8 Gy for dosimeters A, B, C, and D, respectively. After delivery of ∼17 Gy, the SI had increased by 24.4%, 21.0%, 3.1%, and 22.2% compared to the un-irradiated regions. The increase in SI with respect to dose was linear for dosimeters A, B, and D with slopes of 0.0164, 0.0251, and 0.0236 Gy{sup −1} (R{sup 2} = 0.92, 0.97, and 0.96), respectively. Visually, dosimeter A had the greatest optical contrast from yellow to purple in the irradiated region. Conclusion: This study demonstrated the feasibility of using Fricke-type dosimeters for real-time dose measurements with the greatest optical and MR contrast for dosimeter A. We also demonstrated the need to investigate Fe{sup 2+} compounds beyond the conventionally utilized FAS compound in order to improve the MR signal contrast in 3D dosimeters used for MR-guided radiation therapy. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship Program under Grant No. LH- 102SPS.« less

  14. Investigations of interference between electromagnetic transponders and wireless MOSFET dosimeters: a phantom study.

    PubMed

    Su, Zhong; Zhang, Lisha; Ramakrishnan, V; Hagan, Michael; Anscher, Mitchell

    2011-05-01

    To evaluate both the Calypso Systems' (Calypso Medical Technologies, Inc., Seattle, WA) localization accuracy in the presence of wireless metal-oxide-semiconductor field-effect transistor (MOSFET) dosimeters of dose verification system (DVS, Sicel Technologies, Inc., Morrisville, NC) and the dosimeters' reading accuracy in the presence of wireless electromagnetic transponders inside a phantom. A custom-made, solid-water phantom was fabricated with space for transponders and dosimeters. Two inserts were machined with positioning grooves precisely matching the dimensions of the transponders and dosimeters and were arranged in orthogonal and parallel orientations, respectively. To test the transponder localization accuracy with/without presence of dosimeters (hypothesis 1), multivariate analyses were performed on transponder-derived localization data with and without dosimeters at each preset distance to detect statistically significant localization differences between the control and test sets. To test dosimeter dose-reading accuracy with/without presence of transponders (hypothesis 2), an approach of alternating the transponder presence in seven identical fraction dose (100 cGy) deliveries and measurements was implemented. Two-way analysis of variance was performed to examine statistically significant dose-reading differences between the two groups and the different fractions. A relative-dose analysis method was also used to evaluate transponder impact on dose-reading accuracy after dose-fading effect was removed by a second-order polynomial fit. Multivariate analysis indicated that hypothesis 1 was false; there was a statistically significant difference between the localization data from the control and test sets. However, the upper and lower bounds of the 95% confidence intervals of the localized positional differences between the control and test sets were less than 0.1 mm, which was significantly smaller than the minimum clinical localization resolution of 0.5 mm. For hypothesis 2, analysis of variance indicated that there was no statistically significant difference between the dosimeter readings with and without the presence of transponders. Both orthogonal and parallel configurations had difference of polynomial-fit dose to measured dose values within 1.75%. The phantom study indicated that the Calypso System's localization accuracy was not affected clinically due to the presence of DVS wireless MOSFET dosimeters and the dosimeter-measured doses were not affected by the presence of transponders. Thus, the same patients could be implanted with both transponders and dosimeters to benefit from improved accuracy of radiotherapy treatments offered by conjunctional use of the two systems.

  15. Experimental set up for the irradiation of biological samples and nuclear track detectors with UV C

    PubMed Central

    Portu, Agustina Mariana; Rossini, Andrés Eugenio; Gadan, Mario Alberto; Bernaola, Omar Alberto; Thorp, Silvia Inés; Curotto, Paula; Pozzi, Emiliano César Cayetano; Cabrini, Rómulo Luis; Martin, Gisela Saint

    2016-01-01

    Aim In this work we present a methodology to produce an “imprint” of cells cultivated on a polycarbonate detector by exposure of the detector to UV C radiation. Background The distribution and concentration of 10B atoms in tissue samples coming from BNCT (Boron Neutron Capture Therapy) protocols can be determined through the quantification and analysis of the tracks forming its autoradiography image on a nuclear track detector. The location of boron atoms in the cell structure could be known more accurately by the simultaneous observation of the nuclear tracks and the sample image on the detector. Materials and Methods A UV C irradiator was constructed. The irradiance was measured along the lamp direction and at different distances. Melanoma cells were cultured on polycarbonate foils, incubated with borophenylalanine, irradiated with thermal neutrons and exposed to UV C radiation. The samples were chemically attacked with a KOH solution. Results A uniform irradiation field was established to expose the detector foils to UV C light. Cells could be seeded on the polycarbonate surface. Both imprints from cells and nuclear tracks were obtained after chemical etching. Conclusions It is possible to yield cellular imprints in polycarbonate. The nuclear tracks were mostly present inside the cells, indicating a preferential boron uptake. PMID:26933396

  16. Triple tracks in CR-39 as the result of Pd-D Co-deposition: evidence of energetic neutrons.

    PubMed

    Mosier-Boss, Pamela A; Szpak, Stanislaw; Gordon, Frank E; Forsley, Lawrence P G

    2009-01-01

    Since the announcement by Fleischmann and Pons that the excess enthalpy generated in the negatively polarized Pd-D-D(2)O system was attributable to nuclear reactions occurring inside the Pd lattice, there have been reports of other manifestations of nuclear activities in this system. In particular, there have been reports of tritium and helium-4 production; emission of energetic particles, gamma or X-rays, and neutrons; as well as the transmutation of elements. In this communication, the results of Pd-D co-deposition experiments conducted with the cathode in close contact with CR-39, a solid-state nuclear etch detector, are reported. Among the solitary tracks due to individual energetic particles, triple tracks are observed. Microscopic examination of the bottom of the triple track pit shows that the three lobes of the track are splitting apart from a center point. The presence of three alpha-particle tracks outgoing from a single point is diagnostic of the (12)C(n,n')3alpha carbon breakup reaction and suggests that DT reactions that produce > or = 9.6 MeV neutrons are occurring inside the Pd lattice. To our knowledge, this is the first report of the production of energetic (> or = 9.6 MeV) neutrons in the Pd-D system.

  17. Temporal dosimeter and method

    DOEpatents

    Warner, Benjamin P.; Lopez, Thomas A.

    2003-09-30

    The invention includes a temporal dosimeter. One dosimeter embodiment includes a housing that is opaque to visible light but transparent to ionizing radiation. The dosimeter also includes a sensor for recording dosages of ionizing radiation, a drive mechanism, a power source, and rotatable shields that work together to produce a compound aperture to unveil different portions of the sensor at different times to ionizing radiation. Another dosimeter embodiment includes a housing, a sensor, a shield with an aperture portion, and a linear actuator drive mechanism coupled to the sensor for moving the sensor past the aperture portion. The sensor turns as it moves past the aperture, tracing a timeline record of exposure to ionizing radiation along a helical path on the sensor.

  18. Floating Gate CMOS Dosimeter With Frequency Output

    NASA Astrophysics Data System (ADS)

    Garcia-Moreno, E.; Isern, E.; Roca, M.; Picos, R.; Font, J.; Cesari, J.; Pineda, A.

    2012-04-01

    This paper presents a gamma radiation dosimeter based on a floating gate sensor. The sensor is coupled with a signal processing circuitry, which furnishes a square wave output signal, the frequency of which depends on the total dose. Like any other floating gate dosimeter, it exhibits zero bias operation and reprogramming capabilities. The dosimeter has been designed in a standard 0.6 m CMOS technology. The whole dosimeter occupies a silicon area of 450 m250 m. The initial sensitivity to a radiation dose is Hz/rad, and to temperature and supply voltage is kHz/°C and 0.067 kHz/mV, respectively. The lowest detectable dose is less than 1 rad.

  19. Unfolding neutron spectra from simulated response of thermoluminescence dosimeters inside a polyethylene sphere using GRNN neural network

    NASA Astrophysics Data System (ADS)

    Lotfalizadeh, F.; Faghihi, R.; Bahadorzadeh, B.; Sina, S.

    2017-07-01

    Neutron spectrometry using a single-sphere containing dosimeters has been developed recently, as an effective replacement for Bonner sphere spectrometry. The aim of this study is unfolding the neutron energy spectra using GRNN artificial neural network, from the response of thermoluminescence dosimeters, TLDs, located inside a polyethylene sphere. The spectrometer was simulated using MCNP5. TLD-600 and TLD-700 dosimeters were simulated at different positions in all directions. Then the GRNN was used for neutron spectra prediction, using the TLDs' readings. Comparison of spectra predicted by the network with the real spectra, show that the single-sphere dosimeter is an effective instrument in unfolding neutron spectra.

  20. Thorium-uranium fission radiography

    NASA Technical Reports Server (NTRS)

    Haines, E. L.; Weiss, J. R.; Burnett, D. S.; Woolum, D. S.

    1976-01-01

    Results are described for studies designed to develop routine methods for in-situ measurement of the abundance of Th and U on a microscale in heterogeneous samples, especially rocks, using the secondary high-energy neutron flux developed when the 650 MeV proton beam of an accelerator is stopped in a 42 x 42 cm diam Cu cylinder. Irradiations were performed at three different locations in a rabbit tube in the beam stop area, and thick metal foils of Bi, Th, and natural U as well as polished silicate glasses of known U and Th contents were used as targets and were placed in contact with mica which served as a fission track detector. In many cases both bare and Cd-covered detectors were exposed. The exposed mica samples were etched in 48% HF and the fission tracks counted by conventional transmitted light microscopy. Relative fission cross sections are examined, along with absolute Th track production rates, interaction tracks, and a comparison of measured and calculated fission rates. The practicality of fast neutron radiography revealed by experiments to data is discussed primarily for Th/U measurements, and mixtures of other fissionable nuclei are briefly considered.

  1. Measurement of ion beam angular distribution at different helium gas pressures in a plasma focus device by large-area polycarbonate detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sohrabi, M.; Habibi, M., E-mail: mortezahabibi@gmail.com; Ramezani, V.

    2017-02-15

    The paper presents an experimental study and analysis of full helium ion density angular distributions in a 4-kJ plasma focus device (PFD) at pressures of 10, 15, 25, and 30 mbar using large-area polycarbonate track detectors (PCTDs) (15-cm etchable diameter) processed by 50-Hz-HV electrochemical etching (ECE). Helium ion track distributions at different pressures, in particular, at the main axis of the PFD are presented. Maximum ion track density of ~4.4 × 10{sup 4} tracks/cm{sup 2} was obtained in the PCTD placed 6 cm from the anode. The ion distributions for all pressures applied are ring-shaped, which is possibly due tomore » the hollow cylindrical copper anode used. The large-area PCTD processed by ECE proves, at the present state-of-theart, a superior method for direct observation and analysis of ion distributions at a glance with minimum efforts and time. Some observations of the ion density distributions at different pressures are reported and discussed.« less

  2. MO-AB-BRA-04: Radiation Measurements with a DNA Double-Strand-Break Dosimeter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Obeidat, M; Cline, K; Stathakis, S

    Purpose: Many types of dosimeters are used to measure radiation, but none of them directly measures the biological effect of this dose. The purpose here is to create a dosimeter that can measure the probability of double-strand breaks (DSB) for DNA, which is directly related to the biological effect of radiation. Methods: The dosimeter has DNA strands, which are labeled on one end with biotin and on the other with fluorescein. The biotin attaches these strands to magnetic beads. We suspended the DNA dosimeter in phosphate-buffered saline (PBS) as it matches the internal environment of the body. We placed smallmore » volumes (50µL) of the DNA dosimeter into tubes and irradiated these samples in a water-equivalent plastic phantom with several doses (three samples per dose). After irradiating the samples, a magnet was placed against the tubes. The fluorescein attached to broken DNA strands was extracted (called the supernatant) and placed into a different tube. The fluorescein on the unbroken strands remained attached to the beads in the tube and was re-suspended with 50µL of PBS. A fluorescence reader was used to measure the fluorescence for both the re-suspended beads and supernatant. To prove that we are measuring DSB, we tested dosimeter response with two different lengths of attached DNA strands (1 and 4 kilo-base pair). Results: The probability of DSB at the dose levels of 5, 10, 25, and 50 Gy were 0.05, 0.08, 0.12, and 0.19, respectively, while the coefficients of variation were 0.14, 0.07, 0.02, and 0.01, respectively. The 4 kilo-base-pair dosimeter produced 5.3 times the response of the 1 kilo-base-pair dosimeter. Conclusion: The DNA dosimeter yields a measurable response to dose that scales with the DNA strand length. The goal now is to refine the dosimeter fabrication to reproducibly create a low coefficient of variation for the lower doses. This work was supported in part by Yarmouk University (Irbid, Jordan) and CPRIT (RP140105)« less

  3. SU-E-T-171: Characterization of the New Xoft Axxent Electronic Brachytherapy Source Using PRESAGE Dosimeters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steinmann, A; Followill, D; Ibbott, G

    Purpose: To characterize the Xoft Axxent electronic brachytherapy source using PRESAGE™ dosimeters to obtain independent confirmation of TG-43U1 dosimetry values from previous studies and ascertain its reproducibility in HDR brachytherapy. Methods: PRESAGE™ dosimeters are solid, polyurethane-based dosimeters doped with radiochromic leucodyes that produce a linear optical-density response when exposed to radiation. Eight 1-kg dosimeters were scanned prior to irradiation on an optical-CT scanner to eliminate background signal and any optical imperfections from each dosimeter. To quantify potential imaging artifacts due to oversaturated responses in the immediate range of the source, half of the eight dosimeters were cast with a smallermore » channel diameter of 5.4 mm, and the other half were cast with a larger channel diameter of 15mm. During irradiation, the catheters were placed in the center of each channel. Catheters fit the 5.4mm diameters channels whereas polyurethane plugs were inserted into the larger channels to create a sturdy, immobile catheter which allowed uniform dose distributions. Two dosimeters of each 5.4mm and 15mm were irradiated at either 1517.3 cGy or 2017.5 cGy. Post-irradiation scans were performed within 48 hours of irradiation. A 3D reconstruction based on subtraction of these two images and the relative dose measurements were made using in-house software. Results: Comparing measured radial dose rates with previous results revealed smaller percent errors when PRESAGE™ irradiations were at lower maximum dose. The dosimeters showed small deviations in radial dose function, g{sub p} (r), from previous studies. Among the dosimeters irradiated at 1517.3 cGy, the g{sub p}(r) compared to previous studies fluctuated from 0.0043 to 0.3922. This suggests small fluctuations can drastically change radial dose calculations. Conclusion: The subtraction of pre-irradiation and post-irradiation scans of PRESAGE™ dosimeters using an optical-CT scanner shows promising results in determining 3D dosimetry for Xoft Axxent devices; however, further research is recommended. NIH Grant#: 5-U24-CA081647-13; ROI Grant#: 5R01CA100835.« less

  4. SU-E-T-753: Three-Dimensional Dose Distributions of Incident Proton Particle in the Polymer Gel Dosimeter and the Radiochromic Gel Dosimeter: A Simulation Study with MCNP Code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, M; Kim, G; Ji, Y

    Purpose: The purpose of this study is to estimate the three-dimensional dose distributions in the polymer and the radiochromic gel dosimeter, and to identify the detectability of both gel dosimeters by comparing with the water phantom in case of irradiating the proton particles. Methods: The normoxic polymer gel and the LCV micelle radiochromic gel were used in this study. The densities of polymer and the radiochromic gel dosimeter were 1.024 and 1.005 g/cm{sup 3}, respectively. The dose distributions of protons in the polymer and radiochromic gel were simulated using Monte Carlo radiation transport code (MCNPX, Los Alamos National Laboratory). Themore » shape of phantom irradiated by proton particles was a hexahedron with the dimension of 12.4 × 12.4 × 15.0 cm{sup 3}. The energies of proton beam were 50, 80, and 140 MeV energies were directed to top of the surface of phantom. The cross-sectional view of proton dose distribution in both gel dosimeters was estimated with the water phantom and evaluated by the gamma evaluation method. In addition, the absorbed dose(Gy) was also calculated for evaluating the proton detectability. Results: The evaluation results show that dose distributions in both gel dosimeters at intermediated section and Bragg-peak region are similar with that of the water phantom. At entrance section, however, inconsistencies of dose distribution are represented, compared with water. The relative absorbed doses in radiochromic and polymer gel dosimeter were represented to be 0.47 % and 2.26 % difference, respectively. These results show that the radiochromic gel dosimeter was better matched than the water phantom in the absorbed dose evaluation. Conclusion: The polymer and the radiochromic gel dosimeter show similar characteristics in dose distributions for the proton beams at intermediate section and Bragg-peak region. Moreover the calculated absorbed dose in both gel dosimeters represents similar tendency by comparing with that in water phantom.« less

  5. Low-temperature oxidizing plasma surface modification and composite polymer thin-film fabrication techniques for tailoring the composition and behavior of polymer surfaces

    NASA Astrophysics Data System (ADS)

    Tompkins, Brendan D.

    This dissertation examines methods for modifying the composition and behavior of polymer material surfaces. This is accomplished using (1) low-temperature low-density oxidizing plasmas to etch and implant new functionality on polymers, and (2) plasma enhanced chemical vapor deposition (PECVD) techniques to fabricate composite polymer materials. Emphases are placed on the structure of modified polymer surfaces, the evolution of polymer surfaces after treatment, and the species responsible for modifying polymers during plasma processing. H2O vapor plasma modification of high-density polyethylene (HDPE), low-density polyethylene (LDPE), polypropylene (PP), polystyrene (PS), polycarbonate (PC), and 75A polyurethane (PU) was examined to further our understanding of polymer surface reorganization leading to hydrophobic recovery. Water contact angles (wCA) measurements showed that PP and PS were the most susceptible to hydrophobic recovery, while PC and HDPE were the most stable. X-ray photoelectron spectroscopy (XPS) revealed a significant quantity of polar functional groups on the surface of all treated polymer samples. Shifts in the C1s binding energies (BE) with sample age were measured on PP and PS, revealing that surface reorganization was responsible for hydrophobic recovery on these materials. Differential scanning calorimetry (DSC) was used to rule out the intrinsic thermal properties as the cause of reorganization and hydrophobic recovery on HDPE, LDPE, and PP. The different contributions that polymer cross-linking and chain scission mechanisms make to polymer aging effects are considered. The H2O plasma treatment technique was extended to the modification of 0.2 microm and 3.0 microm track-etched polycarbonate (PC-TE) and track-etched polyethylene terephthalate (PET-TE) membranes with the goal of permanently increasing the hydrophilicity of the membrane surfaces. Contact angle measurements on freshly treated and aged samples confirmed the wettability of the membrane surfaces was significantly improved by plasma treatment. XPS and SEM analyses revealed increased oxygen incorporation onto the surface of the membranes, without any damage to the surface or pore structure. Contact angle measurements on a membrane treated in a stacked assembly suggest the plasma effectively modified the entire pore cross section. Plasma treatment also increased water flux through the membranes, with results from plasma modified membranes matching those from commercially available hydrophilic membranes (treated with wetting agent). Mechanisms for the observed modification are discussed in terms of OH and O radicals implanting oxygen functionality into the polymers. Oxidizing plasma systems (O2, CO2, H2O vapor, and formic acid vapor) were used to modify track-etched polycarbonate membranes and explore the mechanisms and species responsible for etching polycarbonate during plasma processing. Etch rates were measured using scanning electron microscopy; modified polycarbonate surfaces were further characterized using x-ray photoelectron spectroscopy and water contact angles. Etch rates and surface characterization results were combined with optical emission spectroscopy data used to identify gas-phase species and their relative densities. Although the oxide functionalities implanted by each plasma system were similar, the H2O vapor and formic acid vapor plasmas yielded the lowest contact angles after treatment. The CO2, H2O vapor, and formic acid vapor plasma-modified surfaces were, however, found to be similarly stable one month after treatment. Overall, etch rate correlated directly to the relative gas-phase density of atomic oxygen and, to a lesser extent, hydroxyl radicals. PECVD of acetic acid vapor (CH3COOH) was used to deposit films on PC-TE and silicon wafer substrates. The CH3COOH films were characterized using XPS, wCA, and SEM. This modification technique resulted in continuous deposition and self-limiting deposition of a-CxO yHz films on Si wafers and PC-TE, respectively. The self-limiting deposition on PC-TE revealed that resulting films have minimal impact on 3D PC structures. This technique would allow for more precise fabrication of patterned or nano-textured PC. PECVD is used to synthesize hydrocarbon/fluorocarbon thin films with compositional gradients by continuously changing the ratio of gases in a C 3F8/H2 plasma. The films are characterized using variable angle spectroscopic ellipsometry (VASE), Fourier transform infrared spectroscopy (FTIR), XPS, wCA, and SEM. These methods revealed that shifting spectroscopic signals can be used to characterize organization in the deposited film. Using these methods, along with gas-phase diagnostics, film chemistry and the underlying deposition mechanisms are elucidated, leading to a model that accurately predicts film thickness.

  6. Measuring track densities in lunar grains by image analysis

    NASA Technical Reports Server (NTRS)

    Blanford, George E.

    1993-01-01

    We have developed techniques to use digitized scanning electron micrographs and computer image analysis programs to measure track densities in lunar soil grains. Tracks were formed by highly ionizing solar energetic particles and cosmic rays during near surface exposure on the Moon. The track densities are related to the exposure conditions (depth and time). Distributions of the number of grains as a function of their track densities can reveal the modality of soil maturation. We used a sample that had already been etched in 6 N NaOH at 118 C for 15 h to reveal tracks. We determined that back-scattered electron images taken at 50 percent contrast and approximately 49.8 percent brightness produced suitable high contrast images for analysis. We ascertained gray-scale thresholds of interest: 0-230 for tracks, 231 for masked regions, and 232-255 for background. We found no need to set an upper size limit for distinguishing tracks. We did use lower limits to exclude noise: 16 pixels at 15000x, 4 pixels at 10000x, 2 pixels at 6800x, and 0 pixels at 4600x. We used computer counting and measurement of area to obtain track densities. We found an excellent correlation with manual measurements for track densities below 1x10(exp 8) sq cm. For track densities between 1x10(exp 8) sq cm to 1x10(exp 9) sq cm, we found that a regression formula using the percentage area covered by tracks gave good agreement with manual measurements. Finally we used these new techniques to obtain a track density distribution that gave more detail and was more rapidly obtained than using manual techniques 15 years ago.

  7. Investigations into the feasibility of optical-CT 3D dosimetry with minimal use of refractively matched fluids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chisholm, Kelsey; Miles, Devin; Rankine, Leith

    Purpose: In optical-CT, the use of a refractively matched polyurethane solid-tank in place of a fluid bath has the potential to greatly increase practical convenience, reduce cost, and possibly improve the efficacy of flood corrections. This work investigates the feasibility of solid-tank optical-CT imaging for 3D dosimetry through computer simulation. Methods: A MATLAB ray-tracing simulation platform, ScanSim, was used to model a parallel-source telecentric optical-CT imaging system through a polyurethane solid-tank containing a central cylindrical hollow into which PRESAGE radiochromic dosimeters can be placed. A small amount of fluid fills the 1–5 mm gap between the dosimeter and the wallsmore » of the tank. The use of the solid-tank reduces the required amount of fluid by approximately 97%. To characterize the efficacy of solid-tank, optical-CT scanning simulations investigated sensitivity to refractive index (RI) mismatches between dosimeter, solid-tank, and fluid, for a variety of dosimeter (RI = 1.5–1.47) and fluid (RI = 1.55–1.0) combinations. Efficacy was evaluated through the usable radius (r{sub u}) metric, defined as the fraction of the radius of the dosimeter where measured dose is predicted to be within 2% of the ground truth entered into the simulation. Additional simulations examined the effect of increasing gap size (1–5 mm) between the dosimeter and solid-tank well. The effects of changing the lens tolerance (0.5°–5.0°) were also investigated. Results: As the RI mismatch between the dosimeter and solid-tank increased from 0 to 0.02, the usable radius decreased from 97.6% to 50.2%. The optimal fluid RI decreased nonlinearly from 1.5 to 1.34 as the mismatch increased and was up to 9% lower than the tank. Media mismatches between the dosimeter and solid-tank also exacerbate the effects of changing the gap size, with no easily quantifiable relationship with usable radius. Generally, the optimal fluid RI value increases as gap size increases and is closely matched to the dosimeter at large gap sizes (>3 mm). Increasing the telecentric lens tolerance increases the usable radius for all refractive media combinations and improves the maximum usable radius of mismatched media to that of perfectly matched media for tolerances >5.0°. The maximum usable radius can be improved up to a factor of 2 when lens tolerances are small (<1.0°). Conclusions: Dry solid-tank optical-CT imaging in a telecentric system is feasible if the dosimeter RI is a close match with the solid-tank (<0.01 difference), providing accurate dose measurements within ±2% of true dose to over 80% of the dosimeter volume. In order to achieve accurate measurements over 96% of the dosimeter volume (representing out to 2 mm from the dosimeter edge), the dosimeter-tank RI mismatch must be less than 0.005. Optimal results occur when the RI of the dosimeter and tank is the same, in which case the fluid will have the same RI. If mismatches between the tank and dosimeter RI occur, the RI of the matching fluid needs to be fine tuned to achieve the highest usable radius.« less

  8. Investigations into the feasibility of optical-CT 3D dosimetry with minimal use of refractively matched fluids.

    PubMed

    Chisholm, Kelsey; Miles, Devin; Rankine, Leith; Oldham, Mark

    2015-05-01

    In optical-CT, the use of a refractively matched polyurethane solid-tank in place of a fluid bath has the potential to greatly increase practical convenience, reduce cost, and possibly improve the efficacy of flood corrections. This work investigates the feasibility of solid-tank optical-CT imaging for 3D dosimetry through computer simulation. A matlab ray-tracing simulation platform, ScanSim, was used to model a parallel-source telecentric optical-CT imaging system through a polyurethane solid-tank containing a central cylindrical hollow into which PRESAGE radiochromic dosimeters can be placed. A small amount of fluid fills the 1-5 mm gap between the dosimeter and the walls of the tank. The use of the solid-tank reduces the required amount of fluid by approximately 97%. To characterize the efficacy of solid-tank, optical-CT scanning simulations investigated sensitivity to refractive index (RI) mismatches between dosimeter, solid-tank, and fluid, for a variety of dosimeter (RI = 1.5-1.47) and fluid (RI = 1.55-1.0) combinations. Efficacy was evaluated through the usable radius (ru) metric, defined as the fraction of the radius of the dosimeter where measured dose is predicted to be within 2% of the ground truth entered into the simulation. Additional simulations examined the effect of increasing gap size (1-5 mm) between the dosimeter and solid-tank well. The effects of changing the lens tolerance (0.5°-5.0°) were also investigated. As the RI mismatch between the dosimeter and solid-tank increased from 0 to 0.02, the usable radius decreased from 97.6% to 50.2%. The optimal fluid RI decreased nonlinearly from 1.5 to 1.34 as the mismatch increased and was up to 9% lower than the tank. Media mismatches between the dosimeter and solid-tank also exacerbate the effects of changing the gap size, with no easily quantifiable relationship with usable radius. Generally, the optimal fluid RI value increases as gap size increases and is closely matched to the dosimeter at large gap sizes (> 3 mm). Increasing the telecentric lens tolerance increases the usable radius for all refractive media combinations and improves the maximum usable radius of mismatched media to that of perfectly matched media for tolerances > 5.0°. The maximum usable radius can be improved up to a factor of 2 when lens tolerances are small (< 1.0°). Dry solid-tank optical-CT imaging in a telecentric system is feasible if the dosimeter RI is a close match with the solid-tank (< 0.01 difference), providing accurate dose measurements within ± 2% of true dose to over 80% of the dosimeter volume. In order to achieve accurate measurements over 96% of the dosimeter volume (representing out to 2 mm from the dosimeter edge), the dosimeter-tank RI mismatch must be less than 0.005. Optimal results occur when the RI of the dosimeter and tank is the same, in which case the fluid will have the same RI. If mismatches between the tank and dosimeter RI occur, the RI of the matching fluid needs to be fine tuned to achieve the highest usable radius.

  9. Dosimetry for Small Fields in Stereotactic Radiosurgery Using Gafchromic MD-V2-55 Film, TLD-100 and Alanine Dosimeters

    PubMed Central

    Massillon-JL, Guerda; Cueva-Prócel, Diego; Díaz-Aguirre, Porfirio; Rodríguez-Ponce, Miguel; Herrera-Martínez, Flor

    2013-01-01

    This work investigated the suitability of passive dosimeters for reference dosimetry in small fields with acceptable accuracy. Absorbed dose to water rate was determined in nine small radiation fields with diameters between 4 and 35 mm in a Leksell Gamma Knife (LGK) and a modified linear accelerator (linac) for stereotactic radiosurgery treatments. Measurements were made using Gafchromic film (MD-V2-55), alanine and thermoluminescent (TLD-100) dosimeters and compared with conventional dosimetry systems. Detectors were calibrated in terms of absorbed dose to water in 60Co gamma-ray and 6 MV x-ray reference (10×10 cm2) fields using an ionization chamber calibrated at a standards laboratory. Absorbed dose to water rate computed with MD-V2-55 was higher than that obtained with the others dosimeters, possibly due to a smaller volume averaging effect. Ratio between the dose-rates determined with each dosimeter and those obtained with the film was evaluated for both treatment modalities. For the LGK, the ratio decreased as the dosimeter size increased and remained constant for collimator diameters larger than 8 mm. The same behaviour was observed for the linac and the ratio increased with field size, independent of the dosimeter used. These behaviours could be explained as an averaging volume effect due to dose gradient and lack of electronic equilibrium. Evaluation of the output factors for the LGK collimators indicated that, even when agreement was observed between Monte Carlo simulation and measurements with different dosimeters, this does not warrant that the absorbed dose to water rate in the field was properly known and thus, investigation of the reference dosimetry should be an important issue. These results indicated that alanine dosimeter provides a high degree of accuracy but cannot be used in fields smaller than 20 mm diameter. Gafchromic film can be considered as a suitable methodology for reference dosimetry. TLD dosimeters are not appropriate in fields smaller than 10 mm diameters. PMID:23671677

  10. SU-E-T-749: Thorough Calibration of MOSFET Dosimeters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Plenkovich, D; Thomas, J

    Purpose: To improve the accuracy of the MOSFET calibration procedure by performing the measurement several times and calculating the average value of the calibration factor for various photon and electron energies. Methods: The output of three photon and six electron beams of Varian Trilogy linear accelerator SN 5878 was calibrated. Five reinforced standard sensitivity MOSFET dosimeters were placed in the calibration jig and connected to the Reader Module. As the backscatter material was used 7 cm of Virtual Water. The MOSFET dosimeters were covered with 1.5 cm thick bolus for the regular and SRS 6 MV beams, 3 cm bolusmore » for 15 MV beam, 1.5 cm bolus for 6 MeV electron beam, and 2 cm bolus for the electron energies of 9, 12, 15, 18, and 22 MeV. The dosimeters were exposed to 100 MU, and the calibration factor was determined using the mobileMOSFET software. To improve the accuracy of calibration, this procedure was repeated ten times and the calibration factors were averaged. Results: As the number of calibrations was increasing the variability of calibration factors of different dosimeters was decreasing. After ten calibrations, the calibration factors for all five dosimeters were within 1% of one another for all energies, except 6 MV SRS photons and 6 MeV electrons, for which the variability was 2%. Conclusions: The described process results in calibration factors which are almost independent of modality or energy. Once calibrated, the dosimeters may be used for in-vivo dosimetry or for daily verification of the beam output. Measurement of the radiation dose under bolus and scatter to the eye are examples of frequent use of calibrated MOSFET dosimeters. The calibration factor determined for full build-up is used under these circumstances. To the best of our knowledge, such thorough procedure for calibrating MOSFET dosimeters has not been reported previously. Best Medical Canada provided MOSFET dosimeters for this project.« less

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qian, X; Wuu, C; Admovics, J

    Purpose: A 3-D radiochromic plastic dosimeter has been used to cross-test the isocentricity of a high resolution image-guided small animal microirradiation platform. In this platform, the mouse stage rotating for cone beam CT imaging is perpendicular to the gantry rotation for sub-millimeter radiation delivery. A 3-D dosimeter can be used to verify both imaging and irradiation coordinates. Methods: A 3-D dosimeter and optical CT scanner were used in this study. In the platform, both mouse stage and gantry can rotate 360° with rotation axis perpendicular to each other. Isocentricity and coincidence of mouse stage and gantry rotations were evaluated usingmore » star patterns. A 3-D dosimeter was placed on mouse stage with center at platform isocenter approximately. For CBCT isocentricity, with gantry moved to 90°, the mouse stage rotated horizontally while the x-ray was delivered to the dosimeter at certain angles. For irradiation isocentricity, the gantry rotated 360° to deliver beams to the dosimeter at certain angles for star patterns. The uncertainties and agreement of both CBCT and irradiation isocenters can be determined from the star patterns. Both procedures were repeated 3 times using 3 dosimeters to determine short-term reproducibility. Finally, dosimeters were scanned using optical CT scanner to obtain the results. Results: The gantry isocentricity is 0.9 ± 0.1 mm and mouse stage rotation isocentricity is about 0.91 ± 0.11 mm. Agreement between the measured isocenters of irradiation and imaging coordinates was determined. The short-term reproducibility test yielded 0.5 ± 0.1 mm between the imaging isocenter and the irradiation isocenter, with a maximum displacement of 0.7 ± 0.1 mm. Conclusion: The 3-D dosimeter can be very useful in precise verification of targeting for a small animal irradiation research. In addition, a single 3-D dosimeter can provide information in both geometric and dosimetric uncertainty, which is crucial for translational studies.« less

  12. Passive radon/thoron personal dosimeter using an electrostatic collector and a diffused-junction detector

    NASA Astrophysics Data System (ADS)

    Bigu, J.; Raz, R.

    1985-01-01

    A solid-state alpha dosimeter has been designed and tested suitable for personal and environmental radon/thoron monitoring. The dosimeter basically consists of an electrostatic collector and an alpha-particle counting system with spectroscopy capabilities. The sensitive volume (˜20 cm3) of the electrostatic collector consists of a cylindrically shaped metal wire screen and a diffused-junction silicon alpha-detector covered with a thin aluminized Mylar sheet. A dc voltage (˜500 V) is applied between the wire screen and the Mylar sheet, with the latter held at negative potential relative to the former. Data can be retrieved during or after sampling by means of a microcomputer (Epson HX20) via a RS-232 communication interface unit. The dosimeter has been calibrated in a large (26 m3) radon/thoron test facility. A linear relationship was found between the dosimeter's alpha-count and both radon gas concentration and radon daughter working level. The dosimeter is mounted on top of an ordinary miner's cap lamp battery and is ideally suited for personal monitoring in underground uranium mines and other working areas. The dosimeter presented here is a considerably improved version of an earlier prototype.

  13. Applicability of Glass Dosimeters for In-vivo Dosimetry in Brachytherapy

    NASA Astrophysics Data System (ADS)

    Moon, Sun Young; Son, Jaeman; Yoon, Myonggeun; Jeang, EunHee; Lim, Young Kyung; Chung, Weon Kyu; Kim, Dong Wook

    2018-06-01

    During brachytherapy, confirming the dose delivered is very important in order to prevent radiation-associated side effects. Therefore, we aimed to confirm the accuracy of dose delivery near the source by inserting glass dosimeters within the applicator. We created an alternative pelvic phantom with the same shape and internal structures as the usual patient. In addition, we created a tandem for insertion of the glass dosimeters and measured the dose near the source by inserting the glass dosimeters into the tandem and evaluating the accuracy of the dwell position and time through the dose near the source. Errors between the values obtained from the five glass dosimeters and the values from the treatment planning system were -6.27, -2.1, -4.18, 6.31, and -0.39%, respectively. The mean error was 3.85%. This value was acceptable considering that the error of the glass dosimeter itself is approximately 3%. Even though a complement of the applicator and the error calibration is required in order to apply this technique clinically, we believe that radiation accidents and overdoses can be prevented through in-vivo dosimetry using a glass dosimeter for brachytherapy.

  14. Feasibility study of glass dosimeter postal dosimetry audit of high-energy radiotherapy photon beams.

    PubMed

    Mizuno, Hideyuki; Kanai, Tatsuaki; Kusano, Yohsuke; Ko, Susumu; Ono, Mari; Fukumura, Akifumi; Abe, Kyoko; Nishizawa, Kanae; Shimbo, Munefumi; Sakata, Suoh; Ishikura, Satoshi; Ikeda, Hiroshi

    2008-02-01

    The characteristics of a glass dosimeter were investigated for its potential use as a tool for postal dose audits. Reproducibility, energy dependence, field size and depth dependence were compared to those of a thermoluminescence dosimeter (TLD), which has been the major tool for postal dose audits worldwide. A glass dosimeter, GD-302M (Asahi Techno Glass Co.) and a TLD, TLD-100 chip (Harshaw Co.) were irradiated with gamma-rays from a (60)Co unit and X-rays from a medical linear accelerator (4, 6, 10 and 20 MV). The dosimetric characteristics of the glass dosimeter were almost equivalent to those of the TLD, in terms of utility for dosimetry under the reference condition, which is a 10 x 10 cm(2) field and 10 cm depth. Because of its reduced fading, compared to the TLD, and easy quality control with the ID number, the glass dosimeter proved to be a suitable tool for postal dose audits. Then, we conducted postal dose surveys of over 100 facilities and got good agreement, with a standard deviation of about 1.3%. Based on this study, postal dose audits throughout Japan will be carried out using a glass dosimeter.

  15. Dosimeter for monitoring vapors and aerosols of organic compounds

    DOEpatents

    Vo-Dinh, Tuan

    1987-01-01

    A dosimeter is provided for collecting and detecting vapors and aerosols of organic compounds. The dosimeter comprises a lightweight, passive device that can be conveniently worn by a person as a badge or placed at a stationary location. The dosimeter includes a sample collector comprising a porous web treated with a chemical for inducing molecular displacement and enhancing phosphorescence. Compounds are collected onto the web by molecular diffusion. The web also serves as the sample medium for detecting the compounds by a room temperature phosphorescence technique.

  16. Photoluminescence and Optically Stimulated Luminescence Studies of LiAlO2 and LiGaO2 Crystals

    DTIC Science & Technology

    2015-03-26

    tests from the past. In terms of personal dosimetry, OSL dosimeters could potentially replace ther- moluminescence dosimeters (TLDs) which are widely...used by individuals conducting research and maintaining nuclear weapons ( OSL dosimeters are a promising alterna- tive to TLDs because they do not...because they contain lithium, unlike Al2O3:C, the most commonly used OSL dosimeter [2]. The large neutron 1 cross section of lithium-6 makes enriched

  17. NASA Crew Personal Active Dosimeters (CPADs): Leveraging Novel Terrestrial Personal Radiation Monitoring Capabilities for Space Exploration

    NASA Technical Reports Server (NTRS)

    Leitgab, Martin; Semones, Edward; Lee, Kerry

    2016-01-01

    The NASA Space Radiation Analysis Group (SRAG) is developing novel Crew Personal Active Dosimeters (CAPDs) for upcoming crewed space exploration missions and beyond. To reduce the resource footprint of the project a COTS dosimeter base is used for the development of CPADs. This base was identified from evaluations of existing COTS personal dosimeters against the concept of operations of future crewed missions and tests against detection requirements for radiation characteristic of the space environment. CPADs exploit operations efficiencies from novel features for space flight personal dosimeters such as real-time dose feedback, and autonomous measuring and data transmission capabilities. Preliminary CPAD design, results of radiation testing and aspects of operational integration will be presented.

  18. Characterization of Thymol blue Radiochromic dosimeters for high dose applications

    NASA Astrophysics Data System (ADS)

    Aldweri, Feras M.; Abuzayed, Manar H.; Al-Ajaleen, Musab S.; Rabaeh, Khalid A.

    2018-03-01

    Thymol blue (TB) solutions and Thymol blue Polyvinyl Alcohol (TB-PVA) films have been introduced as Radiochromic dosimeter for high dose applications. The dosimeters were irradiated with gamma ray (60Co source) from 5 to 30 kGy for film, and from 0.150 kGy to 4 kGy for solution. The optical density of unirradiated and irradiated TB solution as well as TB-PVA film dosimeters were studied in terms of absorbance at 434 nm using UV/VIS spectrophotometer. The effects of scan temperature, light pre-gamma irradiation, dose rate, relative humidity and stability of the absorbance of solutions and films after irradiation were investigated. We found the dose sensitivity of TB solution and TB-PVA film dosimeters increases significantly with increases of the absorbed dose as well as with the increases of TB dye concentrations. The useful dose range of developed TB solutions and TB-PVA films dosimeters is in the range 0.125-1 kGy and of 5-20 kGy, respectively.

  19. Characterization of ferrous-methylthymol blue-polyvinyl alcohol gel dosimeters using nuclear magnetic resonance and optical techniques

    NASA Astrophysics Data System (ADS)

    Rabaeh, Khalid A.; Eyadeh, Molham M.; Hailat, Tariq F.; Aldweri, Feras M.; Alheet, Samer M.; Eid, Rania M.

    2018-07-01

    A new composition of Ferrous sulphate-Metheylthymol blue (MTB)-Polyvinyl alcohol (PVA) dosimeter is introduced in this work and evaluated using nuclear magnetic resonance (NMR) and absorbance spectrophotometry techniques. The Fricke-MTB-PVA dosimeters were irradiated using a medical linear accelerator in a cubic water phantom. The dose response of the dosimeters was investigated using NMR in terms of spin-spin relaxation rate (R2), and ultraviolet and visible regions (UV-Vis) spectrophotometry in terms of absorbance. The dosimeter presents a linear dose response for doses up to 20 Gy with UV-Vis and 40 Gy with NMR method. The sample with 0.1 mM MTB, 5% PVA by weight showed highest dose sensitivity for both techniques. The Fricke-MTB-PVA dosimeter developed in this work has a significant advance over the Fricke-MTB-gelatin system: the NMR sensitivity was remarkably improved; the auto-oxidation rate was seven times lower, and no significant dose rate or photon energy effects were observed.

  20. Evaluation of film and thermoluminescent dosimetry of high-energy electron beams in heterogeneous phantoms.

    PubMed

    el-Khatib, E; Antolak, J; Scrimger, J

    1992-01-01

    Film and thermoluminescent dosimetry (TLD) are investigated in heterogeneous phantoms irradiated by high-energy electron beams. Both film and TLD are practical dosimeters for multiple and moving beam radiotherapy. The accuracy and precision of these dosimeters for radiation dose measurements in homogeneous water-equivalent phantoms has been discussed in the literature. However, film and TLD are often used for dose measurements in heterogeneous phantoms. In those situations perturbations are produced which are related to the density and atomic number of the phantom material and the physical size and orientation of the dosimeter. In our experiments the relative dose measurements in homogeneous phantoms were the same regardless of dosimeter or dosimeter orientation. However, significant differences were observed between the dose measurements within the inhomogeneity. These differences were influenced by the type and orientation of the dosimeter in addition to the properties of the heterogeneity. These differences could be reproduced with Monte Carlo calculations and modeling of the experimental conditions.

  1. Water-equivalent fiber radiation dosimeter with two scintillating materials

    PubMed Central

    Qin, Zhuang; Hu, Yaosheng; Ma, Yu; Lin, Wei; Luo, Xianping; Zhao, Wenhui; Sun, Weimin; Zhang, Daxin; Chen, Ziyin; Wang, Boran; Lewis, Elfed

    2016-01-01

    An inorganic scintillating material plastic optical fiber (POF) dosimeter for measuring ionizing radiation during radiotherapy applications is reported. It is necessary that an ideal dosimeter exhibits many desirable qualities, including water equivalence, energy independence, reproducibility, dose linearity. There has been much recent research concerning inorganic dosimeters. However, little reference has been made to date of the depth-dose characteristics of dosimeter materials. In the case of inorganic scintillating materials, they are predominantly non water-equivalent, with their effective atomic weight (Zeff) being typically much greater than that of water. This has been a barrier in preventing inorganic scintillating material dosimeter from being used in actual clinical applications. In this paper, we propose a parallel-paired fiber light guide structure to solve this problem. Two different inorganic scintillating materials are embedded separately in the parallel-paired fiber. It is shown that the information of water depth and absorbed dose at the point of measurement can be extracted by utilizing their different depth-dose properties. PMID:28018715

  2. Characteristics of a normoxic polymethacrylic acid gel dosimeter for a 72-MeV proton beam

    NASA Astrophysics Data System (ADS)

    Bong, Jihye; Shin, Dongho; Kwon, Soo-Il

    2014-01-01

    The characteristics of a normoxic polymethacrylic acid gel dosimeter for a 72-MeV proton beam were evaluated. A polymer gel dosimeter was synthesized using gelatin, methacrylic acid, hydroquinone, tetrakis(hydroxymethyl) phosphonium chloride, and highly purified distilled water. The dosimeter was manufactured by placement in a polyethylene (PE) container. Irradiated dosimeters were analyzed to determine the transverse relaxation time (T2) using a 1.5-T MRI. A calibration curve was obtained as a function of the absorbed dose. A Bragg curve made by irradiating the gel with mono-energy was compared with the results for a parallel plate ionization chamber. The spread-out Bragg peak (SOBP) range and distal dose fall-off (DDF) were comparatively analyzed by comparing the irradiated gel with a spread-out Bragg peak against with the ion chamber. Lastly, the gel's usefulness as a dosimeter for therapeutic radiation quality assurance was evaluated by obtaining its practical field size, flatness, and symmetry, through comparison of the profiles of the gel and ion chamber.

  3. Capillarity creates single-crystal calcite nanowires from amorphous calcium carbonate.

    PubMed

    Kim, Yi-Yeoun; Hetherington, Nicola B J; Noel, Elizabeth H; Kröger, Roland; Charnock, John M; Christenson, Hugo K; Meldrum, Fiona C

    2011-12-23

    Single-crystal calcite nanowires are formed by crystallization of morphologically equivalent amorphous calcium carbonate (ACC) particles within the pores of track etch membranes. The polyaspartic acid stabilized ACC is drawn into the membrane pores by capillary action, and the single-crystal nature of the nanowires is attributed to the limited contact of the intramembrane ACC particle with the bulk solution. The reaction environment then supports transformation to a single-crystal product. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Determining the applicability of the Landauer nanoDot as a general public dosimeter in a research imaging facility.

    PubMed

    Charlton, Michael A; Thoreson, Kelly F; Cerecero, Jennifer A

    2012-11-01

    The Research Imaging Institute (RII) building at the University of Texas Health Science Center at San Antonio (UTHSCSA) houses two cyclotron particle accelerators, positron emission tomography (PET) machines, and a fluoroscopic unit. As part of the radiation protection program (RPP) and meeting the standard for achieving ALARA (as low as reasonably achievable), it is essential to minimize the ionizing radiation exposure to the general public through the use of controlled areas and area dose monitoring. Currently, thirty-four whole body Luxel+ dosimeters, manufactured by Landauer, are being used in various locations within the RII to monitor dose to the general public. The intent of this research was to determine if the nanoDot, a single point dosimeter, can be used as a general public dosimeter in a diagnostic facility. This was tested by first verifying characteristics of the nanoDot dosimeter including dose linearity, dose rate dependence, angular dependence, and energy dependence. Then, the response of the nanoDot dosimeter to the Luxel+ dosimeter when placed in a continuous, low dose environment was investigated. Finally, the nanoDot was checked for appropriate response in an acute, high dose environment. Based on the results, the current recommendation is that the nanoDot should not replace the Luxel+ dosimeter without further work to determine the energy spectra in the RII building and without considering the limitation of the microStar reader, portable on-site OSL reader, at doses below 0.1 mGy (10 mrad).

  5. Light scattering in optical CT scanning of Presage dosimeters

    NASA Astrophysics Data System (ADS)

    Xu, Y.; Adamovics, J.; Cheeseborough, J. C.; Chao, K. S.; Wuu, C. S.

    2010-11-01

    The intensity of the scattered light from the Presage dosimeters was measured using a Thorlabs PM100D optical power meter (Thorlabs Inc, Newton, NJ) with an optical sensor of 1 mm diameter sensitive area. Five Presage dosimeters were made as cylinders of 15.2 cm, 10 cm, 4 cm diameters and irradiated with 6 MV photons using a Varian Clinac 2100EX. Each dosimeter was put into the scanning tank of an OCTOPUS" optical CT scanner (MGS Research Inc, Madison, CT) filled with a refractive index matching liquid. A laser diode was positioned at one side of the water tank to generate a stationary laser beam of 0.8 mm width. On the other side of the tank, an in-house manufactured positioning system was used to move the optical sensor in the direction perpendicular to the outgoing laser beam from the dosimeters at an increment of 1 mm. The amount of scattered photons was found to be more than 1% of the primary light signal within 2 mm from the laser beam but decreases sharply with increasing off-axis distance. The intensity of the scattered light increases with increasing light attenuations and/or absorptions in the dosimeters. The scattered light at the same off-axis distance was weaker for dosimeters of larger diameters and for larger detector-to-dosimeter distances. Methods for minimizing the effect of the light scattering in different types of optical CT scanners are discussed.

  6. FACTORS AFFECTING THE USE OF CAF2:MN THERMOLUMINESCENT DOSIMETERS FOR LOW-LEVEL ENVIRONMENTAL RADIATION MONITORING

    EPA Science Inventory

    An investigation was made of factors affecting the use of commercially-produced CaF2:Mn thermoluminescent dosimeters for low level environmental radiation monitoring. Calibration factors and self-dosing rates were quantified for 150 thermoluminescent dosimeters. Laboratory studie...

  7. Czech results at criticality dosimetry intercomparison 2002.

    PubMed

    Frantisek, Spurný; Jaroslav, Trousil

    2004-01-01

    Two criticality dosimetry systems were tested by Czech participants during the intercomparison held in Valduc, France, June 2002. The first consisted of the thermoluminescent detectors (TLDs) (Al-P glasses) and Si-diodes as passive neutron dosemeters. Second, it was studied to what extent the individual dosemeters used in the Czech routine personal dosimetry service can give a reliable estimation of criticality accident exposure. It was found that the first system furnishes quite reliable estimation of accidental doses. For routine individual dosimetry system, no important problems were encountered in the case of photon dosemeters (TLDs, film badge). For etched track detectors in contact with the 232Th or 235U-Al alloy, the track density saturation for the spark counting method limits the upper dose at approximately 1 Gy for neutrons with the energy >1 MeV.

  8. Charge, energy and LET spectra of high LET primary and secondary particles in CR-39 plastic nuclear track detectors of the P0006 experiment

    NASA Technical Reports Server (NTRS)

    Csige, I.; Frigo, L. A.; Benton, E. V.; Oda, K.

    1995-01-01

    We have measured the charge, energy and linear energy transfer (LET) spectra of about 800 high LET (LET(sub infinity) H2O greater than 50 keV/micron) particles in CR-39 plastic nuclear track detectors in the P0006 experiment of LDEF. Primary particles with residual range at the reference surface greater than about 2 microns and secondary particles produced in the detector material with total range greater than about 4 microns were measured. We have used a multi-etch technique and an internal calibration to identify and measure the energy of the particles at the reference surface. The LET spectrum was obtained from the charge and energy distribution of the particles.

  9. Using electrical and optical tweezers to facilitate studies of molecular motors.

    PubMed

    Arsenault, Mark E; Sun, Yujie; Bau, Haim H; Goldman, Yale E

    2009-06-28

    Dielectrophoresis was used to stretch and suspend actin filaments across a trench etched between two electrodes patterned on a glass slide. Optical tweezers were used to bring a motor protein-coated bead into close proximity to a pre-selected, suspended actin filament, facilitating the attachment of the myosin-coated bead to the filament. The clearance beneath the filament allowed the bead to move freely along and around its filamentous track, unhindered by solid surfaces. Using defocused images, the three-dimensional position of the bead was tracked as a function of time to obtain its trajectory. Experiments were carried out with myosin V and myosin X. Both motor proteins followed left-handed helical paths with the myosin X motor exhibiting a shorter pitch than the myosin V. The combined use of electrostatic and optical tweezers facilitates the preparation of motility assays with suspended tracks. Variants of this technique will enable higher complexity experiments in vitro to better understand the behavior of motors in cells.

  10. Using electrical and optical tweezers to facilitate studies of molecular motors†

    PubMed Central

    Arsenault, Mark E.; Sun, Yujie; Bau, Haim H.; Goldman, Yale E.

    2013-01-01

    Dielectrophoresis was used to stretch and suspend actin filaments across a trench etched between two electrodes patterned on a glass slide. Optical tweezers were used to bring a motor protein-coated bead into close proximity to a pre-selected, suspended actin filament, facilitating the attachment of the myosin-coated bead to the filament. The clearance beneath the filament allowed the bead to move freely along and around its filamentous track, unhindered by solid surfaces. Using defocused images, the three-dimensional position of the bead was tracked as a function of time to obtain its trajectory. Experiments were carried out with myosin V and myosin X. Both motor proteins followed left-handed helical paths with the myosin X motor exhibiting a shorter pitch than the myosin V. The combined use of electrostatic and optical tweezers facilitates the preparation of motility assays with suspended tracks. Variants of this technique will enable higher complexity experiments in vitro to better understand the behavior of motors in cells. PMID:19506758

  11. Evaluation of a Colorimetric Personal Dosimeter for Nitrogen Oxide.

    ERIC Educational Resources Information Center

    Diamond, Philip

    A personal colorimetric dosimeter for nitrogen dioxide was developed. Tests were performed to determine the response of these strips to various concentrations of NO2. The dosimeter strips were satisfactory for approximate determinations of total exposure (concentration + time) of nitrogen dioxide. The total exposure was calculated in terms of time…

  12. 10 CFR 34.89 - Location of documents and records.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... problems identified in daily checks of equipment as required by § 34.73(a); (5) Records of alarm system and... as pocket dosimeter and/or electronic personal dosimeters readings as required by § 34.83; (7... calibrations of alarm ratemeters and operability checks of pocket dosimeters and/or electronic personal...

  13. 10 CFR 34.89 - Location of documents and records.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... problems identified in daily checks of equipment as required by § 34.73(a); (5) Records of alarm system and... as pocket dosimeter and/or electronic personal dosimeters readings as required by § 34.83; (7... calibrations of alarm ratemeters and operability checks of pocket dosimeters and/or electronic personal...

  14. Dosimeter for monitoring vapors and aerosols of organic compounds

    DOEpatents

    Vo-Dinh, T.

    1987-07-14

    A dosimeter is provided for collecting and detecting vapors and aerosols of organic compounds. The dosimeter comprises a lightweight, passive device that can be conveniently worn by a person as a badge or placed at a stationary location. The dosimeter includes a sample collector comprising a porous web treated with a chemical for inducing molecular displacement and enhancing phosphorescence. Compounds are collected onto the web by molecular diffusion. The web also serves as the sample medium for detecting the compounds by a room temperature phosphorescence technique. 7 figs.

  15. Measurement of a 200 MeV proton beam using a polyurethane dosimeter

    NASA Astrophysics Data System (ADS)

    Heard, Malcolm; Adamovics, John; Ibbott, Geoffrey

    2006-12-01

    PRESAGETM (Heuris Pharma LLC, Skillman, NJ) is a three-dimensional polyurethane dosimeter containing a leuco dye that generates a color change when irradiated. The dosimeter is solid and does not require a container to maintain its shape. The dosimeter is transparent before irradiation and the maximum absorbance of the leuco dye occurs at 633 nm which is compatible with the OCT-OPUSTM laser CT scanner (MGS Research, Inc., Madison, CT). The purpose of this study was to investigate the response of PRESAGETM to proton beam radiotherapy.

  16. [Fabrication of annealing equipment for optically stimulated luminescence (OSL) dosimeter].

    PubMed

    Nakagawa, Kohei; Hayashi, Hiroaki; Okino, Hiroki; Takegami, Kazuki; Okazaki, Tohru; Kobayashi, Ikuo

    2014-10-01

    The optically stimulated luminescence (OSL) dosimeter is a useful detector for measuring absorbed doses of X-rays. A small-type OSL dosimeter, "nanoDot", has recently been developed by Landauer, Inc., who also manufacture "microStar" reading equipment. However, additional annealing equipment is needed if the nanoDot OSL dosimeter is used repeatedly. The aim of this study was to fabricate suitable annealing equipment using commonly available products. Our device positions four fluorescent light tubes in a close configuration. The heat from the fluorescent light tubes is dissipated using fans. Experiments using diagnostic X-ray equipment were carried out to evaluate the capability of our annealing equipment. The results indicated that our equipment can fully anneal the nanoDot OSL dosimeter with annealing times of approximately 20 hours.

  17. Method and apparatus for reading free falling dosimeter punchcodes

    DOEpatents

    Langsted, James M.

    1992-12-22

    A punchcode reader is provided for reading data encoded in a punchcode hole array on a dosimeter. The dosimeter falls through a passage in the reader containing photosensor detectors disposed along the passage which provide output signals to a microprocessor. The signals are processed to determine the orientation of the dosimeter in the reader, the location and state of punchcode holes in a two row array thereby decoding the encoded data. Multiple rate of fall calculations are made, and if appropriate matching of the punchcode array is not obtained in three tries, an error signal is outputted to the operator. The punchcode reader also provides for storage of data from multiple dosimeters passed through the reader, and for the output of decoded data to an external display or a computer for further processing.

  18. Angular dependence of the MOSFET dosimeter and its impact on in vivo surface dose measurement in breast cancer treatment.

    PubMed

    Qin, S; Chen, T; Wang, L; Tu, Y; Yue, N; Zhou, J

    2014-08-01

    The focus of this study is the angular dependence of two types of Metal Oxide Semiconductor Field Effect Transistor (MOSFET) dosimeters (MOSFET20 and OneDose/OneDosePlus) when used for surface dose measurements. External beam radiationat different gantry angles were delivered to a cubic solid water phantom with a MOSFET placed on the top surface at CAX. The long axis of the MOSFET was oriented along the gantry axis of rotation, with the dosimeter (bubble side) facing the radiation source. MOSFET-measured surface doses were compared against calibrated radiochromic film readings. It was found that both types of MOSFET dosimeters exhibited larger than previously reported angular dependence when measuring surface dose in beams at large oblique angles. For the MOSFET20 dosimeter the measured surface dose deviation against film readings was as high as 17% when the incident angle was 72 degrees to the norm of the phantom surface. It is concluded that some MOSFET dosimeters may have a strong angular dependence when placed on the surface of water-equivalent material, even though they may have an isotropic angular response when surrounded by uniform medium. Extra on-surface calibration maybe necessary before using MOSFET dosimeters for skin dose measurement in tangential fields.

  19. Experimental evaluation of a MOSFET dosimeter for proton dose measurements.

    PubMed

    Kohno, Ryosuke; Nishio, Teiji; Miyagishi, Tomoko; Hirano, Eriko; Hotta, Kenji; Kawashima, Mitsuhiko; Ogino, Takashi

    2006-12-07

    The metal oxide semiconductor field-effect transistor (MOSFET) dosimeter has been widely studied for use as a dosimeter for patient dose verification. The major advantage of this detector is its size, which acts as a point dosimeter, and also its ease of use. The commercially available TN502RD MOSFET dosimeter manufactured by Thomson and Nielsen has never been used for proton dosimetry. Therefore we used the MOSFET dosimeter for the first time in proton dose measurements. In this study, the MOSFET dosimeter was irradiated with 190 MeV therapeutic proton beams. We experimentally evaluated dose reproducibility, linearity, fading effect, beam intensity dependence and angular dependence for the proton beam. Furthermore, the Bragg curve and spread-out Bragg peak were also measured and the linear-energy transfer (LET) dependence of the MOSFET response was investigated. Many characteristics of the MOSFET response for proton beams were the same as those for photon beams reported in previous papers. However, the angular MOSFET responses at 45, 90, 135, 225, 270 and 315 degrees for proton beams were over-responses of about 15%, and moreover the MOSFET response depended strongly on the LET of the proton beam. This study showed that the angular dependence and LET dependence of the MOSFET response must be considered very carefully for quantitative proton dose evaluations.

  20. Measurement of the concentration of radon gas in the Toirano's caves (Liguria).

    PubMed

    Bruzzone, Diego; Bussallino, Massimo; Castello, Gianrico; Maggiolo, Stefano; Rossi, Daniela

    2006-01-01

    The radioactive gas radon, intermediate term of the decay series of uranium and thorium, is the main contamination source of underground places and may be a risk for high concentration and long exposure time. European and Italian law requires radon concentration to be measured in workplaces and, if the "action level" of 500 Bq/m3 is reached, proper actions must be made in order to decrease the dose commitment. Considering natural showcaves or artificial cavities open to public, the exposition of the visitors is frequently small, due to the short residence time, but accompanying people, remaining underground for long time, may be subject to appreciable dose and the radon concentration should therefore be monitored. The high humidity in natural caves may impair the use of some measuring devices. Therefore, different detection methods were compared (ZnS scintillation counters, E-PERM electret ionisation chambers, cellulose nitrate alpha-track dosimeters) to select the best procedure for long-term investigation. The LR-115 (Kodak) alpha-track dosimeters were insensitive to humidity and permitted to monitor a great number of places at the same time. Measurements have been carried out in the speleological and archaeological site of the Toirano's Caves (Savona, Liguria, Italy) and several points were monitored for two years. Radon concentration strongly depends on the site and changes during the year, due to the difference between internal and external temperature. The maximum dose commitment during the visitors tour, considering the average yearly value of radon concentration, was found to be between 1.5 and 4 microSv. It was found that no risk exists for visitors, but the evaluation of the dose absorbed by the guides and their classification according to the radiation protection law requires a complete monitoring of the average yearly concentration of radon and of the total time spent by each worker into the cave.

  1. SU-F-BRF-13: Investigating the Feasibility of Accurate Dose Measurement in a Deforming Radiochromic Dosimeter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Juang, T; Adamovics, J; Oldham, M

    Purpose: Presage-Def, a deformable radiochromic 3D dosimeter, has been previously shown to have potential for validating deformable image registration algorithms. This work extends this effort to investigate the feasibility of using Presage-Def to validate dose-accumulation algorithms in deforming structures. Methods: Two cylindrical Presage-Def dosimeters (8cm diameter, 4.5cm length) were irradiated in a water-bath with a simple 4-field box treatment. Isocentric dose was 20Gy. One dosimeter served as control (no deformation) while the other was laterally compressed during irradiation by 21%. Both dosimeters were imaged before and after irradiation with a fast (∼10 minutes for 1mm isotropic resolution), broad beam, highmore » resolution optical-CT scanner. Measured dose distributions were compared to corresponding distributions calculated by a commissioned Eclipse planning system. Accuracy in the control was evaluated with 3D gamma (3%/3mm). The dose distribution calculated for the compressed dosimeter in the irradiation geometry cannot be directly compared via profiles or 3D gamma to the measured distribution, which deforms with release from compression. Thus, accuracy under deformation was determined by comparing integral dose within the high dose region of the deformed dosimeter distribution versus calculated dose. Dose profiles were used to study temporal stability of measured dose distributions. Results: Good dose agreement was demonstrated in the control with a 3D gamma passing rate of 96.6%. For the dosimeter irradiated under compression, the measured integral dose in the high dose region (518.0Gy*cm3) was within 6% of the Eclipse-calculated integral dose (549.4Gy*cm3). Elevated signal was noted on the dosimeter edge in the direction of compression. Change in dosimeter signal over 1.5 hours was ≤2.7%, and the relative dose distribution remained stable over this period of time. Conclusion: Presage-Def is promising as a 3D dosimeter capable of accurately measuring dose in a deforming structure, and warrants further study to quantify comprehensive accuracy at different levels of deformation. This work was supported by NIH R01CA100835. John Adamovics is the president of Heuris Inc., which commercializes PRESAGE.« less

  2. Tracking Cumulative Radiation Exposure in Orthopaedic Surgeons and Residents: What Dose Are We Getting?

    PubMed

    Gausden, Elizabeth B; Christ, Alexander B; Zeldin, Roseann; Lane, Joseph M; McCarthy, Moira M

    2017-08-02

    The purpose of this study was to determine the amount of cumulative radiation exposure received by orthopaedic surgeons and residents in various subspecialties. We obtained dosimeter measures over 12 months on 24 residents and 16 attending surgeons. Monthly radiation exposure was measured over a 12-month period for 24 orthopaedic residents and 16 orthopaedic attending surgeons. The participants wore a Landauer Luxel dosimeter on the breast pocket of their lead apron. The dosimeters were exchanged every rotation (5 to 7 weeks) for the resident participants and every month for the attending surgeon participants. Radiation exposure was compared by orthopaedic subspecialty, level of training, and type of fluoroscopy used (regular C-arm compared with mini C-arm). Orthopaedic residents participating in this study received monthly mean radiation exposures of 0.2 to 79 mrem/month, lower than the dose limits of 5,000 mrem/year recommended by the United States Nuclear Regulatory Commission (U.S. NRC). Senior residents rotating on trauma were exposed to the highest monthly radiation (79 mrem/month [range, 15 to 243 mrem/month]) compared with all other specialty rotations (p < 0.001). Similarly, attending orthopaedic surgeons who specialize in trauma or deformity surgery received the highest radiation exposure of their peers, and the mean exposure was 53 mrem/month (range, 0 to 355 mrem/month). Residents and attending surgeons performing trauma or deformity surgical procedures are exposed to significantly higher doses of radiation compared with all other subspecialties within orthopaedic surgery, but the doses are still within the recommended limits. The use of ionizing radiation in the operating room has become an indispensable part of orthopaedic surgery. Although all surgeons in our study received lower than the yearly recommended dose limit, it is important to be aware of how much radiation we are exposed to as surgeons and to take measures to further limit that exposure.

  3. Fission track dating of kimberlitic zircons

    NASA Astrophysics Data System (ADS)

    Haggerty, Stephen E.; Raber, Ellen; Naeser, Charles W.

    1983-04-01

    The only reliable method for dating kimberlites at present is the lengthy and specialized hydrothermal procedure that extracts 206Pb and 238U from low-uranium zircons. This paper describes a second successful method by fission track dating of large single-crystal zircons, 1.0-1.5 cm in dimension. The use of large crystals overcomes the limitations imposed in conventional fission track analysis which utilizes crushed fragments. Low track densities, optical track dispersion, and the random orientation of polished surfaces in the etch and irradiation cycle are effectively overcome. Fission track ages of zircons from five African kimberlites are reported, from the Kimberley Pool (90.3 ± 6.5 m.y.), Orapa (87.4 ± 5.7 and 92.4 ± 6.1 m.y.), Nzega (51.1 ± 3.8 m.y.), Koffiefontein (90.0 ± 8.2 m.y.), and Val do Queve (133.4 ± 11.5 m.y.). In addition we report the first radiometric ages (707.9 ± 59.6 and 705.5 ± 61.0 m.y.) of crustal zircons from kimberlites in northwest Liberia. The fission track ages agree well with earlier age estimates. Most of the zircons examined in this study are zoned with respect to uranium but linear correlations are established (by regression analysis) between zones of variable uranium content, and within zones of constant uranium content (by analysis of variance). Concordance between the fission track method and the U/Pb technique is established and we concluded that track fading from thermal annealing has not taken place. Kimberlitic zircons dated in this study, therefore, record the time of eruption.

  4. Fission track dating of kimberlitic zircons

    USGS Publications Warehouse

    Haggerty, S.E.; Raber, E.; Naeser, C.W.

    1983-01-01

    The only reliable method for dating kimberlites at present is the lengthy and specialized hydrothermal procedure that extracts 206Pb and 238U from low-uranium zircons. This paper describes a second successful method by fission track dating of large single-crystal zircons, 1.0-1.5 cm in dimension. The use of large crystals overcomes the limitations imposed in conventional fission track analysis which utilizes crushed fragments. Low track densities, optical track dispersion, and the random orientation of polished surfaces in the etch and irradiation cycle are effectively overcome. Fission track ages of zircons from five African kimberlites are reported, from the Kimberley Pool (90.3 ?? 6.5 m.y.), Orapa (87.4 ?? 5.7 and 92.4 ?? 6.1 m.y.), Nzega (51.1 ?? 3.8 m.y.), Koffiefontein (90.0 ?? 8.2 m.y.), and Val do Queve (133.4 ?? 11.5 m.y.). In addition we report the first radiometric ages (707.9 ?? 59.6 and 705.5 ?? 61.0 m.y.) of crustal zircons from kimberlites in northwest Liberia. The fission track ages agree well with earlier age estimates. Most of the zircons examined in this study are zoned with respect to uranium but linear correlations are established (by regression analysis) between zones of variable uranium content, and within zones of constant uranium content (by analysis of variance). Concordance between the fission track method and the U/Pb technique is established and we concluded that track fading from thermal annealing has not taken place. Kimberlitic zircons dated in this study, therefore, record the time of eruption. ?? 1983.

  5. SU-F-T-159: Monte Carlo Simulation Studies of Three-Dimensional Dose Distribution for Polymer Gel Dosimeter and Radiochromic Gel Dosimeter in a Proton Beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, M; Kim, G; Jung, H

    Purpose: The purpose of this simulation study is to evaluate the proton detectability of gel dosimeters, and estimate the three-dimensional dose distribution of protons in the radiochromic gel and polymer gel dosimeter compared with the dose distribution in water. Methods: The commercial composition ratios of normoxic polymer gel and LCV micelle radiochromic gel were included in this simulation study. The densities of polymer and radiochromic gel were 1.024 and 1.005 g/cm3, respectively. The 50, 80 and 140 MeV proton beam energies were selected. The dose distributions of protons in the polymer and radiochromic gel were simulated using Monte Carlo radiationmore » transport code (MCNPX 2.7.0, Los Alamos Laboratory). The water equivalent depth profiles and the dose distributions of two gel dosimeters were compared for the water. Results: In case of irradiating 50, 80 and 140 MeV proton beam to water phantom, the reference Bragg-peak depths are represented at 2.22, 5.18 and 13.98 cm, respectively. The difference in the water equivalent depth is represented to about 0.17 and 0.37 cm in the radiochromic gel and polymer gel dosimeter, respectively. The proton absorbed doses in the radiochromic gel dosimeter are calculated to 2.41, 3.92 and 6.90 Gy with increment of incident proton energies. In the polymer gel dosimeter, the absorbed doses are calculated to 2.37, 3.85 and 6.78 Gy with increment of incident proton energies. The relative absorbed dose in radiochromic gel (about 0.47 %) is similar to that of water than the relative absorbed dose of polymer gel (about 2.26 %). In evaluating the proton dose distribution, we found that the dose distribution of both gel dosimeters matched that of water in most cases. Conclusion: As the dosimetry device, the radiochromic gel dosimeter has the potential particle detectability and is feasible to use for quality assurance of proton beam therapy beam.« less

  6. Early development and characterization of a DNA-based radiation dosimeter

    NASA Astrophysics Data System (ADS)

    Avarmaa, Kirsten A.

    It is the priority of first responders to minimize damage to persons and infrastructure in the case of a nuclear emergency due to an accident or deliberate terrorist attack -- if this emergency includes a radioactive hazard, first responders require a simple-to-use, accurate and complete dosimeter for radiation protection purposes in order to minimize the health risk to these individuals and the general population at large. This work consists of the early evaluation of the design and performance of a biologically relevant dosimeter which uses DNA material that can respond to the radiation of any particle type. The construct consists of fluorescently tagged strands of DNA. The signalling components of this dosimeter are also investigated for their sensitivity to radiation damage and light exposure. The dual-labelled dosimeter that is evaluated in this work gave a measurable response to gamma radiation at dose levels of 10 Gy for the given detector design and experimental setup. Further testing outside of this work confirmed this finding and indicated a working range of 100 mGy to 10 Gy using a custom-built fluorimeter as part of a larger CRTI initiative. Characterization of the chromatic components of the dosimeter showed that photobleaching is not expected to have an effect on dosimeter performance, but that radiation can damage the non-DNA signalling components at higher dose levels, although this damage is minimal at lower doses over the expected operating ranges. This work therefore describes the early steps in the quantification of the behaviour of the DNA dosimeter as a potential biologically-based device to measure radiation dose.

  7. Reliability of an x-ray system for calibrating and testing personal radiation dosimeters

    NASA Astrophysics Data System (ADS)

    Guimarães, M. C.; Silva, C. R. E.; Rosado, P. H. G.; Cunha, P. G.; Da Silva, T. A.

    2018-03-01

    Metrology laboratories are expected to maintain standardized radiation beams and traceable standard dosimeters to provide reliable calibrations or testing of detectors. Results of the characterization of an x-ray system for performing calibration and testing of radiation dosimeters used for individual monitoring are shown in this work.

  8. Ceric and ferrous dosimeters show precision for 50-5000 rad range

    NASA Technical Reports Server (NTRS)

    Frigerio, N. A.; Henry, V. D.

    1968-01-01

    Ammonium thiocyanate, added to the usual ferrous sulfate dosimeter solution, yielded a very stable, precise and temperature-independent system eight times as sensitive as the classical Fricke system in the 50 to 5000 rad range. The ceric dosimeters, promising for use in mixed radiation fields, respond nearly independently of LET.

  9. Evaluation of discrepancies between thermoluminescent dosimeter and direct-reading dosimeter results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shaw, K.R.

    1993-07-01

    Currently at Oak Ridge National Laboratory (ORNL), the responses of thermoluminescent dosimeters (TLDs) and direct-reading dosimeters (DRDs) are not officially compared or the discrepancies investigated. However, both may soon be required due to the new US Department of Energy (DOE) Radiological Control Manual. In the past, unofficial comparisons of the two dosimeters have led to discrepancies of up to 200%. This work was conducted to determine the reasons behind such discrepancies. For tests conducted with the TLDs, the reported dose was most often lower than the delivered dose, while DRDs most often responded higher than the delivered dose. Trends weremore » identified in personnel DRD readings, and ft was concluded that more training and more control of the DRDs could improve their response. TLD responses have already begun to be improved; a new background subtraction method was implemented in April 1993, and a new dose algorithm is being considered. It was concluded that the DOE Radiological Control Manual requirements are reasonable for identifying discrepancies between dosimeter types, and more stringent administrative limits might even be considered.« less

  10. Three-dimensional radiation dosimetry based on optically-stimulated luminescence

    NASA Astrophysics Data System (ADS)

    Sadel, M.; Høye, E. M.; Skyt, P. S.; Muren, L. P.; Petersen, J. B. B.; Balling, P.

    2017-05-01

    A new approach to three-dimensional (3D) dosimetry based on optically-stimulated luminescence (OSL) is presented. By embedding OSL-active particles into a transparent silicone matrix (PDMS), the well-established dosimetric properties of an OSL material are exploited in a 3D-OSL dosimeter. By investigating prototype dosimeters in standard cuvettes in combination with small test samples for OSL readers, it is shown that a sufficient transparency of the 3D-OSL material can be combined with an OSL response giving an estimated >10.000 detected photons in 1 second per 1mm3 voxel of the dosimeter at a dose of 1 Gy. The dose distribution in the 3D-OSL dosimeters can be directly read out optically without the need for subsequent reconstruction by computational inversion algorithms. The dosimeters carry the advantages known from personal-dosimetry use of OSL: the dose distribution following irradiation can be stored with minimal fading for extended periods of time, and dosimeters are reusable as they can be reset, e.g. by an intense (bleaching) light field.

  11. Enhancement of Dose Response and Nuclear Magnetic Resonance Image of PAGAT Polymer Gel Dosimeter by Adding Silver Nanoparticles

    PubMed Central

    Sabbaghizadeh, Rahim; Shamsudin, Roslinda; Deyhimihaghighi, Najmeh; Sedghi, Arman

    2017-01-01

    In the present study, the normoxic polyacrylamide gelatin and tetrakis hydroxy methyl phosphoniun chloride (PAGAT) polymer gel dosimeters were synthesized with and without the presence of silver (Ag) nanoparticles. The amount of Ag nanoparticles varied from 1 to 3 ml with concentration 3.14 g/l, thus forming two types of PAGAT polymer gel dosimeters before irradiating them with 6 to 25 Gy produced by 1.25-MeV 60Co gamma rays. In this range, the predominant gamma ray interaction with matter is by Compton scattering effect, as the photoelectric absorption effect diminishes. MRI was employed when evaluating the polymerization of the dosimeters and the gray scale of the MRI film was determined via an optical densitometer. Subsequent analyses of optical densities revealed that the extent of polymerization increased with the increase in the absorbed dose, while the increase of penetration depth within the dosimeters has a reverse effect. Moreover, a significant increase in the optical density-dose response (11.82%) was noted for dosimeters containing 2 ml Ag nanoparticles. PMID:28060829

  12. A diffusion-free and linear-energy-transfer-independent nanocomposite Fricke gel dosimeter

    NASA Astrophysics Data System (ADS)

    Maeyama, T.; Fukunishi, N.; Ishikawa, K. L.; Furuta, T.; Fukasaku, K.; Takagi, S.; Noda, S.; Himeno, R.; Fukuda, S.

    2014-03-01

    We report a new magnetic-resonance-imaging (MRI) based nanocomposite Fricke gel (NC-FG) dosimeter system, which is free from two main drawbacks of conventional Fricke gel dosimeters, namely, the diffusion of the radiation products and the linear-energy-transfer (LET) dependence of the radiation sensitivity when used for ion beams. The NC-FG dosimeter was prepared by incorporating 1% (w/w) clay nanoparticles into deaerated Fricke gel. We have dosimetrically characterized the NC-FG by using MRI measurements after irradiation with a monoenergetic 290 MeV/nucleon carbon beam. No diffusion of the radiation products was observed during nine days after the irradiation. Moreover, its response faithfully reproduced the depth-dose distribution measured by an ionization chamber, which indicates the absence of the LET dependence. Also, the NC-FG dosimeter exhibited a good linearity up to 800 Gy.

  13. Method and apparatus for reading free falling dosimeter punchcodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Langsted, J.M.

    1992-12-22

    A punchcode reader is provided for reading data encoded in a punchcode hole array on a dosimeter. The dosimeter falls through a passage in the reader containing photosensor detectors disposed along the passage which provide output signals to a microprocessor. The signals are processed to determine the orientation of the dosimeter in the reader, the location and state of punchcode holes in a two row array thereby decoding the encoded data. Multiple rate of fall calculations are made, and if appropriate matching of the punchcode array is not obtained in three tries, an error signal is output to the operator.more » The punchcode reader also provides for storage of data from multiple dosimeters passed through the reader, and for the output of decoded data to an external display or a computer for further processing. 8 figs.« less

  14. Method and apparatus for reading free falling dosimeter punchcodes

    DOEpatents

    Langsted, J.M.

    1992-12-22

    A punchcode reader is provided for reading data encoded in a punchcode hole array on a dosimeter. The dosimeter falls through a passage in the reader containing photosensor detectors disposed along the passage which provide output signals to a microprocessor. The signals are processed to determine the orientation of the dosimeter in the reader, the location and state of punchcode holes in a two row array thereby decoding the encoded data. Multiple rate of fall calculations are made, and if appropriate matching of the punchcode array is not obtained in three tries, an error signal is output to the operator. The punchcode reader also provides for storage of data from multiple dosimeters passed through the reader, and for the output of decoded data to an external display or a computer for further processing. 8 figs.

  15. Effects of elevated temperatures during interruption of irradiation on Harwell Red 4034 PMMA and Kodak Biomax alanine film dosimetry systems

    NASA Astrophysics Data System (ADS)

    Sidereas, P.; Patil, D. S.; Garcia, R.; Tracy, R. P.; Holzman, J. M.

    2007-11-01

    In the industrial setting it is not uncommon for a process interruption to occur during irradiation. In this event, dosimeters may be exposed to prolonged periods of elevated temperature without exposure to ionizing radiation. Once the process is restarted, the same dosimeters are exposed to ionizing radiation in order to achieve target dose. The goal of this experiment was to simulate a process interruption within limits and quantify the effects of a combination of factors (heat, time, and fractionation) on dosimeter response. We present an in-depth experimental study on the response of dosimeters that have been irradiated, stored for a fixed period of time at several temperatures, and then re-irradiated. This study was performed using Harwell Red 4034 polymethylmethacrylate (PMMA) and Kodak BioMax alanine film dosimeters.

  16. Radiation dose enhancement of gold nanoparticle on different polymer gel dosimeters

    NASA Astrophysics Data System (ADS)

    Jabaseelan Samuel, E. James; Srinivasan, K.; Poopathi, V.

    2017-05-01

    In this work, we evaluated the dose enhancement produced by gold nanoparticle on ten different polymer gel dosimeters with a concentration of 7mgAu /g over a wide photon energy range of 15KeV to 20MeV and the results were compared with Soft tissue ICRU-44 produced. Our result showed that maximum DEF was observed at 40KeV, while it was almost negligible at higher energy range. Dose enhancement produced by AuNP on the gel dosimeter medium was varied compared to the reference ICRU-44 tissue, it was ± <1% for PAGAT, NIPAM, nPAG and ± <5% for PABIG, VIPAR, HEAG, BANG1, nMAG & ± <10% for MAGIC, ABAGIC gel dosimeters. Hence, we conclude that choosing the proper gel dosimeter is essential in dose enhancement study.

  17. Strategies towards advanced ion track-based biosensors

    NASA Astrophysics Data System (ADS)

    Alfonta, L.; Bukelman, O.; Chandra, A.; Fahrner, W. R.; Fink, D.; Fuks, D.; Golovanov, V.; Hnatowicz, V.; Hoppe, K.; Kiv, A.; Klinkovich, I.; Landau, M.; Morante, J. R.; Tkachenko, N. V.; Vacík, J.; Valden, M.

    Three approaches towards ion track-based biosensors appear to be feasible. The development of the first one began a decade ago [Siwy, Z.; Trofin, L.; Kohl, P.; Baker, L.A.; Martin, C.R.; Trautmann, C. J. Am. Chem. Soc. 2005, 127, 5000-5001; Siwy, Z.S.; Harrell, C.C.; Heins, E.; Martin, C.R.; Schiedt, B.; Trautmann, C.; Trofin, L.; Polman, A. Presented at the 6th International Conference on Swift Heavy Ions in Matter, Aschaffenburg, Germany, May 28-31, 2005] and makes use of the concept that the presence of certain biomolecules within liquids can block the passage through narrow pores if being captured there, thus switching off the pore's electrical conductivity. The second, having been successfully tested half a year ago [Fink, D.; Klinkovich, I.; Bukelman, O.; Marks, R.S.; Fahrner, W.; Kiv, A.; Fuks, D.; Alfonta, L. Biosens. Bioelectron. 2009, 24, 2702-2706], is based on the accumulation of enzymatic reaction products within the confined volume of narrow etched ion tracks which modifies the pore's electrical conductivity. The third and most elegant, at present under development, will exploit the charge transfer from enzymes to semiconductors embedded within etched tracks, enabling the enzymes undergoing specific reactions with the biomolecules to be detected. These strategies can be realized either within carrier-free nanoporous polymeric membranes embedded in the corresponding bioliquids, or within contacted nanoporous insulating layers on semiconducting substrates, the so-called TEMPOS structures [Fink, D.; Petrov, A.; Hoppe, H.; Fahrner, W.R.; Papaleo, R.M.; Berdinsky, A.; Chandra, A.; Biswas, A.; Chadderton, L.T. Nucl. Instrum. Methods B 2004, 218, 355-361]. The latter have the advantage of exhibiting a number of peculiar electronic properties, such as the ability for logic and/or combination of input signals, tunable polarity, negative differential resistances, tunability by external parameters such as light, magnetic fields, etc. and self-pulsations, which should enable one to design intelligent autonomous biosensors. It also appears possible to let the enzymatic reactions take place on the surface of carbon nanotubes embedded within such TEMPOS structures. The advantages and disadvantages of all these approaches will be compared with each other, in respect to detection selectivity, sensitivity and accuracy, as well as sensor reproducibility, reusability and stability.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rojas-Herrera, J., E-mail: jimmy06@mit.edu; Rinderknecht, H. G.; Zylstra, A. B.

    The CR-39 nuclear track detector is used in many nuclear diagnostics fielded at inertial confinement fusion (ICF) facilities. Large x-ray fluences generated by ICF experiments may impact the CR-39 response to incident charged particles. To determine the impact of x-ray exposure on the CR-39 response to alpha particles, a thick-target bremsstrahlung x-ray generator was used to expose CR-39 to various doses of 8 keV Cu-K{sub α} and K{sub β} x-rays. The CR-39 detectors were then exposed to 1–5.5 MeV alphas from an Am-241 source. The regions of the CR-39 exposed to x-rays showed a smaller track diameter than those notmore » exposed to x-rays: for example, a dose of 3.0 ± 0.1 Gy causes a decrease of (19 ± 2)% in the track diameter of a 5.5 MeV alpha particle, while a dose of 60.0 ± 1.3 Gy results in a decrease of (45 ± 5)% in the track diameter. The reduced track diameters were found to be predominantly caused by a comparable reduction in the bulk etch rate of the CR-39 with x-ray dose. A residual effect depending on alpha particle energy is characterized using an empirical formula.« less

  19. Waterjet and laser etching: the nonlinear inverse problem

    NASA Astrophysics Data System (ADS)

    Bilbao-Guillerna, A.; Axinte, D. A.; Billingham, J.; Cadot, G. B. J.

    2017-07-01

    In waterjet and laser milling, material is removed from a solid surface in a succession of layers to create a new shape, in a depth-controlled manner. The inverse problem consists of defining the control parameters, in particular, the two-dimensional beam path, to arrive at a prescribed freeform surface. Waterjet milling (WJM) and pulsed laser ablation (PLA) are studied in this paper, since a generic nonlinear material removal model is appropriate for both of these processes. The inverse problem is usually solved for this kind of process by simply controlling dwell time in proportion to the required depth of milling at a sequence of pixels on the surface. However, this approach is only valid when shallow surfaces are etched, since it does not take into account either the footprint of the beam or its overlapping on successive passes. A discrete adjoint algorithm is proposed in this paper to improve the solution. Nonlinear effects and non-straight passes are included in the optimization, while the calculation of the Jacobian matrix does not require large computation times. Several tests are performed to validate the proposed method and the results show that tracking error is reduced typically by a factor of two in comparison to the pixel-by-pixel approach and the classical raster path strategy with straight passes. The tracking error can be as low as 2-5% and 1-2% for WJM and PLA, respectively, depending on the complexity of the target surface.

  20. Monte-Carlo based assessment of MAGIC, MAGICAUG, PAGATUG and PAGATAUG polymer gel dosimeters for ovaries and uterus organ dosimetry in brachytherapy, nuclear medicine and Tele-therapy.

    PubMed

    Adinehvand, Karim; Rahatabad, Fereidoun Nowshiravan

    2018-06-01

    Calculation of 3D dose distribution during radiotherapy and nuclear medicine helps us for better treatment of sensitive organs such as ovaries and uterus. In this research, we investigate two groups of normoxic dosimeters based on meta-acrylic acid (MAGIC and MAGICAUG) and polyacrylamide (PAGATUG and PAGATAUG) for brachytherapy, nuclear medicine and Tele-therapy in their sensitive and critical role as organ dosimeters. These polymer gel dosimeters are compared with soft tissue while irradiated by different energy photons in therapeutic applications. This comparison has been simulated by Monte-Carlo based MCNPX code. ORNL phantom-Female has been used to model the critical organs of kidneys, ovaries and uterus. Right kidney is proposed to be the source of irradiation and another two organs are exposed to this irradiation. Effective atomic numbers of soft tissue, MAGIC, MAGICAUG, PAGATUG and PAGATAUG are 6.86, 7.07, 6.95, 7.28, and 7.07 respectively. Results show the polymer gel dosimeters are comparable to soft tissue for using in nuclear medicine and Tele-therapy. Differences between gel dosimeters and soft tissue are defined as the dose responses. This difference is less than 4.1%, 22.6% and 71.9% for Tele-therapy, nuclear medicine and brachytherapy respectively. The results approved that gel dosimeters are the best choice for ovaries and uterus in nuclear medicine and Tele-therapy respectively. Due to the slight difference between the effective atomic numbers of these polymer gel dosimeters and soft tissue, these polymer gels are not suitable for brachytherapy since the dependence of photon interaction to atomic number, for low energy brachytherapy, had been so effective. Also this dependence to atomic number, decrease for photoelectric and increase for Compton. Therefore polymer gel dosimeters are not a good alternative to soft tissue replacement in brachytherapy. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. WE-D-17A-02: Evaluation of a Two-Dimensional Optical Dosimeter On Measuring Lateral Profiles of Proton Pencil Beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsi, W; Lee, T; Schultz, T

    Purpose: To evaluate the accuracy of a two-dimensional optical dosimeter on measuring lateral profiles for spots and scanned fields of proton pencil beams. Methods: A digital camera with a color image senor was utilized to image proton-induced scintillations on Gadolinium-oxysulfide phosphor reflected by a stainless-steel mirror. Intensities of three colors were summed for each pixel with proper spatial-resolution calibration. To benchmark this dosimeter, the field size and penumbra for 100mm square fields of singleenergy pencil-scan protons were measured and compared between this optical dosimeter and an ionization-chamber profiler. Sigma widths of proton spots in air were measured and compared betweenmore » this dosimeter and a commercial optical dosimeter. Clinical proton beams with ranges between 80 mm and 300 mm at CDH proton center were used for this benchmark. Results: Pixel resolutions vary 1.5% between two perpendicular axes. For a pencil-scan field with 302 mm range, measured field sizes and penumbras between two detection systems agreed to 0.5 mm and 0.3 mm, respectively. Sigma widths agree to 0.3 mm between two optical dosimeters for a proton spot with 158 mm range; having widths of 5.76 mm and 5.92 mm for X and Y axes, respectively. Similar agreements were obtained for others beam ranges. This dosimeter was successfully utilizing on mapping the shapes and sizes of proton spots at the technical acceptance of McLaren proton therapy system. Snow-flake spots seen on images indicated the image sensor having pixels damaged by radiations. Minor variations in intensity between different colors were observed. Conclusions: The accuracy of our dosimeter was in good agreement with other established devices in measuring lateral profiles of pencil-scan fields and proton spots. A precise docking mechanism for camera was designed to keep aligned optical path while replacing damaged image senor. Causes for minor variations between emitted color lights will be investigated.« less

  2. Characterization of MOSFET dosimeters for low-dose measurements in maxillofacial anthropomorphic phantoms.

    PubMed

    Koivisto, Juha H; Wolff, Jan E; Kiljunen, Timo; Schulze, Dirk; Kortesniemi, Mika

    2015-07-08

    The aims of this study were to characterize reinforced metal-oxide-semiconductor field-effect transistor (MOSFET) dosimeters to assess the measurement uncertainty, single exposure low-dose limit with acceptable accuracy, and the number of exposures required to attain the corresponding limit of the thermoluminescent dosimeters (TLD). The second aim was to characterize MOSFET dosimeter sensitivities for two dental photon energy ranges, dose dependency, dose rate dependency, and accumulated dose dependency. A further aim was to compare the performance of MOSFETs with those of TLDs in an anthropomorphic phantom head using a dentomaxillofacial CBCT device. The uncertainty was assessed by exposing 20 MOSFETs and a Barracuda MPD reference dosimeter. The MOSFET dosimeter sensitivities were evaluated for two photon energy ranges (50-90 kVp) using a constant dose and polymethylmethacrylate backscatter material. MOSFET and TLD comparative point-dose measurements were performed on an anthropomorphic phantom that was exposed with a clinical CBCT protocol. The MOSFET single exposure low dose limit (25% uncertainty, k = 2) was 1.69 mGy. An averaging of eight MOSFET exposures was required to attain the corresponding TLD (0.3 mGy) low-dose limit. The sensitivity was 3.09 ± 0.13 mV/mGy independently of the photon energy used. The MOSFET dosimeters did not present dose or dose rate sensitivity but, however, presented a 1% decrease of sensitivity per 1000 mV for accumulated threshold voltages between 8300 mV and 17500 mV. The point doses in an anthropomorphic phantom ranged for MOSFETs between 0.24 mGy and 2.29 mGy and for TLDs between 0.25 and 2.09 mGy, respectively. The mean difference was -8%. The MOSFET dosimeters presented statistically insignificant energy dependency. By averaging multiple exposures, the MOSFET dosimeters can achieve a TLD-comparable low-dose limit and constitute a feasible method for diagnostic dosimetry using anthropomorphic phantoms. However, for single in vivo measurements (<1.7 mGy) the sensitivity is too low.

  3. European Community Respiratory Health Survey calibration project of dosimeter driving pressures.

    PubMed

    Ward, R J; Ward, C; Johns, D P; Skoric, B; Abramson, M; Walters, E H

    2002-02-01

    Two potential sources of systematic variation in output from Mefar dosimeters, the system used in the European Community Respiratory Health Survey (ECRHS) study have been evaluated: individual nebulizer characteristics and dosimeter driving pressure. Output variation from 366 new nebulizers produced in two batches for the second ECRHS were evaluated, using a solute tracer method, at a fixed driving pressure. The relationship between dosimeter driving pressure was then characterized and between-centre variation in dosimeter driving pressure was evaluated in an Internet-based survey. A systematic difference between nebulizers manufactured in the two batches was identified. Batch one had a mean+/-SD output of 7.0+/-0.8 mg x s(-1) and batch two, 6.3+/-0.7 mg x s(-1) (p<0.005). There was a wide range of driving pressures generated by Mefar dosimeters as set, ranging between 70-245 kPa, with most outside the quoted manufacturer's specification of 180+/-5%. Nebulizer output was confirmed as linearly related to dosimeter driving pressure (coefficient of determination (R2)=0.99, output=0.0377 x driving pressure-0.4151). The range in driving pressures observed was estimated as consistent with a variation of about one doubling in the provocative dose causing a 20% fall in forced expiratory volume in one second. Systematic variation has been identified that constitutes potentially significant confounders for between-centre comparisons of airway responsiveness in the European Community Respiratory Health Survey, with the dosimeter driving pressure representing the most serious issue. This work confirms the need for appropriate quality control of both nebulizer output and dosimeter driving pressure, in laboratories undertaking field measurements of airway responsiveness. In particular, appropriate data on driving pressures need to be collected and factored into between-centre comparisons. Comprehensive collection of such data to optimize quality control is practicable and has been instigated by the organizing committee for the European Community Respiratory Health Survey II.

  4. TH-CD-201-08: Flexible Dosimeter Bands for Whole-Body Dosimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, T; Fahimian, B; Pratx, G

    Purpose: The two commonly used radiotherapy techniques are total body irradiation (TBI) and the total skin irradiation (TSI). In order to ensure the accuracy of the prescription beams, the dose received throughout the entire body must be checked using dosimetry. However, the available number of data points is limited as the dosimeters are manually placed on the patient. We developed a flexible and wearable dosimeter that can collect 1D continuous dose information around the peripheral of the patients’ body, including areas obscured from the beam path. Methods: The flexible dosimeter bands are fabricated by embedding storage phosphor powders in amore » thin layer of non-toxic silicone based elastomer (PDMS). An additional elastomer layer is formed on top of the phosphor layer to provide additional mechanical support for the dosimeter. Once the curing process is complete, the dosimeter is cut into multiple bands and rolled into spools prior to use. Results: The dose responses are tested using a preclinical cabinet X-ray system, where the readout is performed with a storage phosphor reader. Results show that the dose calibration factor is ∼1400 (A.U./Gy) from the beam center. Also, 1-D dose distribution experiment was performed in water phantoms, where preliminary results demonstrate that the dose in water is indeed attenuated compared to in air. Conclusion: Dose response and high-resolution 1-D dosimetry is demonstrated using the flexible dosimeters. By providing a detailed spatial description of the beam dose profile, we expect that the dosimeter bands may aid in enhancing the current existing modality in dosimetry. Since the dosimeter is flexible (can retract back to its original length), they can be comfortably worn around the patient. Potentially, multiple 1-D dose information can be stitched together and extrapolated to provide a coarse 3-D image of the dose distribution. This work was supported by funding from the Cutaneous Lymphoma Foundation under the CLARIONS grant.« less

  5. A history of radiation detection instrumentation.

    PubMed

    Frame, Paul W

    2004-08-01

    A review is presented of the history of radiation detection instrumentation. Specific radiation detection systems that are discussed include the human senses, photography, calorimetry, color dosimetry, ion chambers, electrometers, electroscopes, proportional counters, Geiger Mueller counters, scalers and rate meters, barium platinocyanide, scintillation counters, semiconductor detectors, radiophotoluminescent dosimeters, thermoluminescent dosimeters, optically stimulated luminescent dosimeters, direct ion storage, electrets, cloud chambers, bubble chambers, and bubble dosimeters. Given the broad scope of this review, the coverage is limited to a few key events in the development of a given detection system and some relevant operating principles. The occasional anecdote is included for interest.

  6. A history of radiation detection instrumentation.

    PubMed

    Frame, Paul W

    2005-06-01

    A review is presented of the history of radiation detection instrumentation. Specific radiation detection systems that are discussed include the human senses, photography, calorimetry, color dosimetry, ion chambers, electrometers, electroscopes, proportional counters, Geiger Mueller counters, scalers and rate meters, barium platinocyanide, scintillation counters, semiconductor detectors, radiophotoluminescent dosimeters, thermoluminescent dosimeters, optically stimulated luminescent dosimeters, direct ion storage, electrets, cloud chambers, bubble chambers, and bubble dosimeters. Given the broad scope of this review, the coverage is limited to a few key events in the development of a given detection system and some relevant operating principles. The occasional anecdote is included for interest.

  7. Polymer gel dosimeter with AQUAJOINT® as hydrogel matrix

    NASA Astrophysics Data System (ADS)

    Maeyama, Takuya; Ishida, Yasuhiro; Kudo, Yoshihiro; Fukasaku, Kazuaki; Ishikawa, Kenichi L.; Fukunishi, Nobuhisa

    2018-05-01

    We report a polymer gel dosimeter based on a new gel matrix (AQUAJOINT®) that is a thermo-irreversible hydrogel formed by mixing two types of water-based liquids at room temperature. Normoxic N-vinylpyrrolidone-based polymer gels were prepared with AQUAJOINT® instead of gelatin. This AQUAJOINT®-based gel dosimeter exhibits a 2.5-fold increase in sensitivity over a gelatin-based gel dosimeter and a linear dose-response in the dose range of 0-8 Gy. This gel has heat resistance in a jar and controlled gel properties such as viscoelastic and mechanical characters, which may be useful for deformable polymer gel dosimetry.

  8. A comprehensive evaluation of the PRESAGE/optical-CT 3D dosimetry system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sakhalkar, H. S.; Adamovics, J.; Ibbott, G.

    2009-01-15

    This work presents extensive investigations to evaluate the robustness (intradosimeter consistency and temporal stability of response), reproducibility, precision, and accuracy of a relatively new 3D dosimetry system comprising a leuco-dye doped plastic 3D dosimeter (PRESAGE) and a commercial optical-CT scanner (OCTOPUS 5x scanner from MGS Research, Inc). Four identical PRESAGE 3D dosimeters were created such that they were compatible with the Radiologic Physics Center (RPC) head-and-neck (H and N) IMRT credentialing phantom. Each dosimeter was irradiated with a rotationally symmetric arrangement of nine identical small fields (1x3 cm{sup 2}) impinging on the flat circular face of the dosimeter. A repetitiousmore » sequence of three dose levels (4, 2.88, and 1.28 Gy) was delivered. The rotationally symmetric treatment resulted in a dose distribution with high spatial variation in axial planes but only gradual variation with depth along the long axis of the dosimeter. The significance of this treatment was that it facilitated accurate film dosimetry in the axial plane, for independent verification. Also, it enabled rigorous evaluation of robustness, reproducibility and accuracy of response, at the three dose levels. The OCTOPUS 5x commercial scanner was used for dose readout from the dosimeters at daily time intervals. The use of improved optics and acquisition technique yielded substantially improved noise characteristics (reduced to {approx}2%) than has been achieved previously. Intradosimeter uniformity of radiochromic response was evaluated by calculating a 3D gamma comparison between each dosimeter and axially rotated copies of the same dosimeter. This convenient technique exploits the rotational symmetry of the distribution. All points in the gamma comparison passed a 2% difference, 1 mm distance-to-agreement criteria indicating excellent intradosimeter uniformity even at low dose levels. Postirradiation, the dosimeters were all found to exhibit a slight increase in opaqueness with time. However, the relative dose distribution was found to be extremely stable up to 90 h postirradiation indicating excellent temporal stability. Excellent interdosimeter reproducibility was also observed between the four dosimeters. Gamma comparison maps between each dosimeter and the average distribution of all four dosimeters showed full agreement at the 2% difference, 2 mm distance-to-agreement level. Dose readout from the 3D dosimetry system was found to agree better with independent film measurement than with treatment planning system calculations in penumbral regions and was generally accurate to within 2% dose difference and 2 mm distance-to-agreement. In conclusion, these studies demonstrate excellent precision, accuracy, robustness, and reproducibility of the PRESAGE/optical-CT system for relative 3D dosimetry and support its potential integration with the RPC H and N credentialing phantom for IMRT verification.« less

  9. Small-Field Measurements of 3D Polymer Gel Dosimeters through Optical Computed Tomography.

    PubMed

    Shih, Tian-Yu; Wu, Jay; Shih, Cheng-Ting; Lee, Yao-Ting; Wu, Shin-Hua; Yao, Chun-Hsu; Hsieh, Bor-Tsung

    2016-01-01

    With advances in therapeutic instruments and techniques, three-dimensional dose delivery has been widely used in radiotherapy. The verification of dose distribution in a small field becomes critical because of the obvious dose gradient within the field. The study investigates the dose distributions of various field sizes by using NIPAM polymer gel dosimeter. The dosimeter consists of 5% gelatin, 5% monomers, 3% cross linkers, and 5 mM THPC. After irradiation, a 24 to 96 hour delay was applied, and the gel dosimeters were read by a cone beam optical computed tomography (optical CT) scanner. The dose distributions measured by the NIPAM gel dosimeter were compared to the outputs of the treatment planning system using gamma evaluation. For the criteria of 3%/3 mm, the pass rates for 5 × 5, 3 × 3, 2 × 2, 1 × 1, and 0.5 × 0.5 cm2 were as high as 91.7%, 90.7%, 88.2%, 74.8%, and 37.3%, respectively. For the criteria of 5%/5 mm, the gamma pass rates of the 5 × 5, 3 × 3, and 2 × 2 cm2 fields were over 99%. The NIPAM gel dosimeter provides high chemical stability. With cone-beam optical CT readouts, the NIPAM polymer gel dosimeter has potential for clinical dose verification of small-field irradiation.

  10. Fission foil detector calibrations with high energy protons

    NASA Technical Reports Server (NTRS)

    Benton, E. V.; Frank, A. L.

    1995-01-01

    Fission foil detectors (FFD's) are passive devices composed of heavy metal foils in contact with muscovite mica films. The heavy metal nuclei have significant cross sections for fission when irradiated with neutrons and protons. Each isotope is characterized by threshold energies for the fission reactions and particular energy-dependent cross sections. In the FFD's, fission fragments produced by the reactions are emitted from the foils and create latent particle tracks in the adjacent mica films. When the films are processed surface tracks are formed which can be optically counted. The track densities are indications of the fluences and spectra of neutrons and/or protons. In the past, detection efficiencies have been calculated using the low energy neutron calibrated dosimeters and published fission cross sections for neutrons and protons. The problem is that the addition of a large kinetic energy to the (n,nucleus) or (p,nucleus) reaction could increase the energies and ranges of emitted fission fragments and increase the detector sensitivity as compared with lower energy neutron calibrations. High energy calibrations are the only method of resolving the uncertainties in detector efficiencies. At high energies, either proton or neutron calibrations are sufficient since the cross section data show that the proton and neutron fission cross sections are approximately equal. High energy proton beams have been utilized (1.8 and 4.9 GeV, 80 and 140 MeV) for measuring the tracks of fission fragments emitted backward and forward.

  11. Response of LiF:Mg,Ti thermoluminescent dosimeters at photon energies relevant to the dosimetry of brachytherapy (<1 MeV).

    PubMed

    Tedgren, Asa Carlsson; Hedman, Angelica; Grindborg, Jan-Erik; Carlsson, Gudrun Alm

    2011-10-01

    High energy photon beams are used in calibrating dosimeters for use in brachytherapy since absorbed dose to water can be determined accurately and with traceability to primary standards in such beams, using calibrated ion chambers and standard dosimetry protocols. For use in brachytherapy, beam quality correction factors are needed, which include corrections for differences in mass energy absorption properties between water and detector as well as variations in detector response (intrinsic efficiency) with radiation quality, caused by variations in the density of ionization (linear energy transfer (LET) -distributions) along the secondary electron tracks. The aim of this work was to investigate experimentally the detector response of LiF:Mg,Ti thermoluminescent dosimeters (TLD) for photon energies below 1 MeV relative to (60)Co and to address discrepancies between the results found in recent publications of detector response. LiF:Mg,Ti dosimeters of formulation MTS-N Poland were irradiated to known values of air kerma free-in-air in x-ray beams at tube voltages 25-250 kV, in (137)Cs- and (60)Co-beams at the Swedish Secondary Standards Dosimetry Laboratory. Conversions from air kerma free-in-air into values of mean absorbed dose in the dosimeters in the actual irradiation geometries were made using EGSnrc Monte Carlo simulations. X-ray energy spectra were measured or calculated for the actual beams. Detector response relative to that for (60)Co was determined at each beam quality. An increase in relative response was seen for all beam qualities ranging from 8% at tube voltage 25 kV (effective energy 13 keV) to 3%-4% at 250 kV (122 keV effective energy) and (137)Cs with a minimum at 80 keV effective energy (tube voltage 180 kV). The variation with effective energy was similar to that reported by Davis et al. [Radiat. Prot. Dosim. 106, 33-43 (2003)] with our values being systematically lower by 2%-4%. Compared to the results by Nunn et al. [Med. Phys. 35, 1861-1869 (2008)], the relative detector response as a function of effective energy differed in both shape and magnitude. This could be explained by the higher maximum read-out temperature (350 °C) used by Nunn et al. [Med. Phys. 35, 1861-1869 (2008)], allowing light emitted from high-temperature peaks with a strong LET dependence to be registered. Use of TLD-100 by Davis et al. [Radiat. Prot. Dosim. 106, 33-43 (2003)] with a stronger super-linear dose response compared to MTS-N was identified as causing the lower relative detector response in this work. Both careful dosimetry and strict protocols for handling the TLDs are required to reach solid experimental data on relative detector response. This work confirms older findings that an over-response relative to (60)Co exists for photon energies below 200-300 keV. Comparison with the results from the literature indicates that using similar protocols for annealing and read-out, dosimeters of different makes (TLD-100, MTS-N) differ in relative detector response. Though universality of the results has not been proven and further investigation is needed, it is anticipated that with the use of strict protocols for annealing and read-out, it will be possible to determine correction factors that can be used to reduce uncertainties in dose measurements around brachytherapy sources at photon energies where primary standards for absorbed dose to water are not available.

  12. The high energy multicharged particle exposure of the microbial ecology evaluation device on board the Apollo 16 spacecraft

    NASA Technical Reports Server (NTRS)

    Benton, E. V.; Henke, R. P.

    1973-01-01

    The high energy multicharged cosmic-ray-particle exposure of the Microbial Ecology Evaluation Device package on board the Apollo 16 spacecraft was monitored using cellulose nitrate, Lexan polycarbonate, nuclear emulsion, and silver chloride crystal nuclear-track detectors. The results of the analysis of these detectors include the measured particle fluences, the linear energy transfer spectra, and the integral atomic number spectrum of stopping particle density. The linear energy transfer spectrum is used to compute the fractional cell loss in human kidney (T1) cells caused by heavy particles. Because the Microbial Ecology Evaluation Device was better shielded, the high-energy multicharged particle exposure was less than that measured on the crew passive dosimeters.

  13. Adaptive error detection for HDR/PDR brachytherapy: Guidance for decision making during real-time in vivo point dosimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kertzscher, Gustavo, E-mail: guke@dtu.dk; Andersen, Claus E., E-mail: clan@dtu.dk; Tanderup, Kari, E-mail: karitand@rm.dk

    Purpose: This study presents an adaptive error detection algorithm (AEDA) for real-timein vivo point dosimetry during high dose rate (HDR) or pulsed dose rate (PDR) brachytherapy (BT) where the error identification, in contrast to existing approaches, does not depend on an a priori reconstruction of the dosimeter position. Instead, the treatment is judged based on dose rate comparisons between measurements and calculations of the most viable dosimeter position provided by the AEDA in a data driven approach. As a result, the AEDA compensates for false error cases related to systematic effects of the dosimeter position reconstruction. Given its nearly exclusivemore » dependence on stable dosimeter positioning, the AEDA allows for a substantially simplified and time efficient real-time in vivo BT dosimetry implementation. Methods: In the event of a measured potential treatment error, the AEDA proposes the most viable dosimeter position out of alternatives to the original reconstruction by means of a data driven matching procedure between dose rate distributions. If measured dose rates do not differ significantly from the most viable alternative, the initial error indication may be attributed to a mispositioned or misreconstructed dosimeter (false error). However, if the error declaration persists, no viable dosimeter position can be found to explain the error, hence the discrepancy is more likely to originate from a misplaced or misreconstructed source applicator or from erroneously connected source guide tubes (true error). Results: The AEDA applied on twoin vivo dosimetry implementations for pulsed dose rate BT demonstrated that the AEDA correctly described effects responsible for initial error indications. The AEDA was able to correctly identify the major part of all permutations of simulated guide tube swap errors and simulated shifts of individual needles from the original reconstruction. Unidentified errors corresponded to scenarios where the dosimeter position was sufficiently symmetric with respect to error and no-error source position constellations. The AEDA was able to correctly identify all false errors represented by mispositioned dosimeters contrary to an error detection algorithm relying on the original reconstruction. Conclusions: The study demonstrates that the AEDA error identification during HDR/PDR BT relies on a stable dosimeter position rather than on an accurate dosimeter reconstruction, and the AEDA’s capacity to distinguish between true and false error scenarios. The study further shows that the AEDA can offer guidance in decision making in the event of potential errors detected with real-timein vivo point dosimetry.« less

  14. Sensitivity and variability of Presage dosimeter formulations in sheet form with application to SBRT and SRS QA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dumas, Michael, E-mail: mdumas1127@gmail.com; Rakowski, Joseph T.

    Purpose: To measure sensitivity and stability of the Presage dosimeter in sheet form for various chemical concentrations over a range of clinical photon energies and examine its use for stereotactic body radiation therapy (SBRT) and stereotactic radiosurgery (SRS) QA. Methods: Presage polymer dosimeters were formulated to investigate and optimize their sensitivity and stability. The dosimeter is composed of clear polyurethane base, leucomalachite green (LMG) reporting dye, and bromoform radical initiator in 0.9–1.0 mm thick sheets. The chemicals are mixed together for 2 min, cast in an aluminum mold, and left to cure at 60 psi for a minimum of twomore » days. Dosimeter response was characterized at energies Co-60, 6 MV, 10 MV flattening-filter free, 15 MV, 50 kVp (mean 19.2 keV), and Ir-192. The dosimeters were scanned by a Microtek Scanmaker i800 at 300 dpi, 2{sup 16} bit depth per color channel. Red component images were analyzed with ImageJ and RIT. SBRT QA was done with gamma analysis tolerances of 2% and 2 mm DTA. Results: The sensitivity of the Presage dosimeter increased with increasing concentration of bromoform. Addition of tin catalyst decreased curing time and had negligible effect on sensitivity. LMG concentration should be at least as high as the bromoform, with ideal concentration being 2% wt. Gamma Knife SRS QA measurements of relative output and profile widths were within 2% of manufacturer’s values validated at commissioning, except the 4 mm collimator relative output which was within 3%. The gamma pass rate of Presage with SBRT was 73.7%, compared to 93.1% for EBT2 Gafchromic film. Conclusions: The Presage dosimeter in sheet form was capable of detecting radiation over all tested photon energies and chemical concentrations. The best sensitivity and photostability of the dosimeter were achieved with 2.5% wt. LMG and 8.2% wt. bromoform. Scanner used should not emit any UV radiation as it will expose the dosimeter, as with the Epson 10000 XL scanner. Presage dosimeter in this form was sensitive enough for use in SRS and SBRT QA. The lower gamma pass rate for Presage compared to Gafchromic film can be attributed to the simple equipment used in the fabrication process, which limited the dosimeter’s sensitivity uniformity by agglomeration of air bubbles in the material, nonuniform concentration of chemicals throughout the material, and thickness variations. This demands improvements in mixing tools and molds.« less

  15. Investigations of interference between electromagnetic transponders and wireless MOSFET dosimeters: A phantom study

    PubMed Central

    Su, Zhong; Zhang, Lisha; Ramakrishnan, V.; Hagan, Michael; Anscher, Mitchell

    2011-01-01

    Purpose: To evaluate both the Calypso Systems’ (Calypso Medical Technologies, Inc., Seattle, WA) localization accuracy in the presence of wireless metal–oxide–semiconductor field-effect transistor (MOSFET) dosimeters of dose verification system (DVS, Sicel Technologies, Inc., Morrisville, NC) and the dosimeters’ reading accuracy in the presence of wireless electromagnetic transponders inside a phantom.Methods: A custom-made, solid-water phantom was fabricated with space for transponders and dosimeters. Two inserts were machined with positioning grooves precisely matching the dimensions of the transponders and dosimeters and were arranged in orthogonal and parallel orientations, respectively. To test the transponder localization accuracy with∕without presence of dosimeters (hypothesis 1), multivariate analyses were performed on transponder-derived localization data with and without dosimeters at each preset distance to detect statistically significant localization differences between the control and test sets. To test dosimeter dose-reading accuracy with∕without presence of transponders (hypothesis 2), an approach of alternating the transponder presence in seven identical fraction dose (100 cGy) deliveries and measurements was implemented. Two-way analysis of variance was performed to examine statistically significant dose-reading differences between the two groups and the different fractions. A relative-dose analysis method was also used to evaluate transponder impact on dose-reading accuracy after dose-fading effect was removed by a second-order polynomial fit.Results: Multivariate analysis indicated that hypothesis 1 was false; there was a statistically significant difference between the localization data from the control and test sets. However, the upper and lower bounds of the 95% confidence intervals of the localized positional differences between the control and test sets were less than 0.1 mm, which was significantly smaller than the minimum clinical localization resolution of 0.5 mm. For hypothesis 2, analysis of variance indicated that there was no statistically significant difference between the dosimeter readings with and without the presence of transponders. Both orthogonal and parallel configurations had difference of polynomial-fit dose to measured dose values within 1.75%.Conclusions: The phantom study indicated that the Calypso System’s localization accuracy was not affected clinically due to the presence of DVS wireless MOSFET dosimeters and the dosimeter-measured doses were not affected by the presence of transponders. Thus, the same patients could be implanted with both transponders and dosimeters to benefit from improved accuracy of radiotherapy treatments offered by conjunctional use of the two systems. PMID:21776780

  16. Indoor concentration of radon, thoron and their progeny around granite regions in the state of Karnataka, India.

    PubMed

    Sannappa, J; Ningappa, C

    2014-03-01

    An extensive studies on the indoor activity concentrations of thoron, radon and their progeny in the granite region in the state of Karnataka, India, has been carried out since, 2007 in the scope of a lung cancer epidemiological study using solid-state nuclear track detector-based double-chamber dosemeters (LR-115, type II plastic track detector). Seventy-four dwellings of different types were selected for the measurement. The dosemeters containing SSNTD detectors were fixed 2 m above the floor. After an exposure time of 3 months (90 d), films were etched to reveal tracks. From the track density, the concentrations of radon and thoron were evaluated. The value of the indoor concentration of thoron and radon in the study area varies from 16 to 170 Bq m(-3) and 18 to 300 Bq m(-3) with medians of 66 and 82.3 Bq m(-3), respectively, and that of their progeny varies from 1.8 to 24 mWL with a median of 3.6 mWL and 1.6 to 19.6 mWL, respectively. The concentrations of indoor thoron, radon and their progeny and their equivalent effective doses are discussed.

  17. CR-39 track detector calibration for H, He, and C ions from 0.1-0.5 MeV up to 5 MeV for laser-induced nuclear fusion product identification.

    PubMed

    Baccou, C; Yahia, V; Depierreux, S; Neuville, C; Goyon, C; Consoli, F; De Angelis, R; Ducret, J E; Boutoux, G; Rafelski, J; Labaune, C

    2015-08-01

    Laser-accelerated ion beams can be used in many applications and, especially, to initiate nuclear reactions out of thermal equilibrium. We have experimentally studied aneutronic fusion reactions induced by protons accelerated by the Target Normal Sheath Acceleration mechanism, colliding with a boron target. Such experiments require a rigorous method to identify the reaction products (alpha particles) collected in detectors among a few other ion species such as protons or carbon ions, for example. CR-39 track detectors are widely used because they are mostly sensitive to ions and their efficiency is near 100%. We present a complete calibration of CR-39 track detector for protons, alpha particles, and carbon ions. We give measurements of their track diameters for energy ranging from hundreds of keV to a few MeV and for etching times between 1 and 8 h. We used these results to identify alpha particles in our experiments on proton-boron fusion reactions initiated by laser-accelerated protons. We show that their number clearly increases when the boron fuel is preformed in a plasma state.

  18. CR-39 track detector calibration for H, He, and C ions from 0.1-0.5 MeV up to 5 MeV for laser-induced nuclear fusion product identification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baccou, C., E-mail: claire.baccou@polytechnique.edu; Yahia, V.; Labaune, C.

    Laser-accelerated ion beams can be used in many applications and, especially, to initiate nuclear reactions out of thermal equilibrium. We have experimentally studied aneutronic fusion reactions induced by protons accelerated by the Target Normal Sheath Acceleration mechanism, colliding with a boron target. Such experiments require a rigorous method to identify the reaction products (alpha particles) collected in detectors among a few other ion species such as protons or carbon ions, for example. CR-39 track detectors are widely used because they are mostly sensitive to ions and their efficiency is near 100%. We present a complete calibration of CR-39 track detectormore » for protons, alpha particles, and carbon ions. We give measurements of their track diameters for energy ranging from hundreds of keV to a few MeV and for etching times between 1 and 8 h. We used these results to identify alpha particles in our experiments on proton-boron fusion reactions initiated by laser-accelerated protons. We show that their number clearly increases when the boron fuel is preformed in a plasma state.« less

  19. Residual Optically Stimulated Luminescent (OSL) Signals For Al2O3: C and a Readout System With Reproducible Partial Signal Clearance.

    PubMed

    Abraham, Sara A; Kearfott, Kimberlee J

    2018-06-15

    Optically stimulated luminescent dosimeters are devices that, when stimulated with light, emit light in proportion to the integrated ionizing radiation dose. The stimulation of optically stimulated luminescent material results in the loss of a small fraction of signal stored within the dosimetric traps. Previous studies have investigated the signal loss due to readout stimulation and the optical annealing of optically stimulated luminescent dosimeters. This study builds on former research by examining the behavior of optically stimulated luminescent signals after annealing, exploring the functionality of a previously developed signal loss model, and comparing uncertainties for dosimeters reused with or without annealing. For a completely annealed dosimeter, the minimum signal level was 56 ± 8 counts, and readings followed a Gaussian distribution. For dosimeters above this signal level, the fractional signal loss due to the reading process has a linear relationship with the calculated signal. At low signal levels (below 20,000 counts) in this optically stimulated luminescent dosimeter system, calculated signal percent errors increase significantly but otherwise are on average 0.72 ± 0.27%, 0.40 ± 0.19%, 0.33 ± 0.12%, and 0.24 ± 0.07% for 30, 75, 150, and 300 readings, respectively. Theoretical calculations of uncertainties showed that annealing before reusing dosimeters allows for dose errors below 1% with as few as 30 readings. Reusing dosimeters multiple times increases the dose errors especially with low numbers of readouts, so theoretically around 300 readings would be necessary to achieve errors around 1% or below in most scenarios. Note that these dose errors do not include the error associated with the signal-to-dose conversion factor.

  20. SU-F-T-17: A Feasibility Study for the Transit Dosimetry with a Glass Dosimeter in Brachytherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moon, S; Yoon, M; Chung, W

    Purpose: Confirming the dose delivered to a patient is important to make sure the treatment quality and safety of the radiotherapy. Measuring a transit dose of the patient during the radiotherapy could be an interesting way to confirm the patient dose. In this study, we evaluated the feasibility of the transit dosimetry with a glass dosimeter in brachytherapy. Methods: We made a phantom that inserted the glass dosimeters and placed under patient lying on a couch for cervix cancer brachytherapy. The 18 glass dosimeters were placed in the phantom arranged 6 per row. A point putting 1cm vertically from themore » source was prescribed as 500.00 cGy. Solid phantoms of 0, 2, 4, 6, 8, 10 cm were placed between the source and the glass dosimeter. The transit dose was measured each thickness using the glass dosimeters and compared with a treatment planning system (TPS). Results: When the transit dose was smaller than 10 cGy, the average of the differences between measured values and calculated values by TPS was 0.50 cGy and the standard deviation was 0.69 cGy. If the transit dose was smaller than 100 cGy, the average of the error was 1.67 ± 4.01 cGy. The error to a point near the prescription point was −14.02 cGy per 500.00 cGy of the prescription dose. Conclusion: The distances from the sources to skin of the patient generally are within 10 cm for cervix cancer cases in brachytherapy. The results of this preliminary study showed the probability of the glass dosimeter as the transit dosimeter in brachytherapy.« less

  1. Estimation of identification limit for a small-type OSL dosimeter on the medical images by measurement of X-ray spectra.

    PubMed

    Takegami, Kazuki; Hayashi, Hiroaki; Okino, Hiroki; Kimoto, Natsumi; Maehata, Itsumi; Kanazawa, Yuki; Okazaki, Tohru; Hashizume, Takuya; Kobayashi, Ikuo

    2016-07-01

    Our aim in this study is to derive an identification limit on a dosimeter for not disturbing a medical image when patients wear a small-type optically stimulated luminescence (OSL) dosimeter on their bodies during X-ray diagnostic imaging. For evaluation of the detection limit based on an analysis of X-ray spectra, we propose a new quantitative identification method. We performed experiments for which we used diagnostic X-ray equipment, a soft-tissue-equivalent phantom (1-20 cm), and a CdTe X-ray spectrometer assuming one pixel of the X-ray imaging detector. Then, with the following two experimental settings, corresponding X-ray spectra were measured with 40-120 kVp and 0.5-1000 mAs at a source-to-detector distance of 100 cm: (1) X-rays penetrating a soft-tissue-equivalent phantom with the OSL dosimeter attached directly on the phantom, and (2) X-rays penetrating only the soft-tissue-equivalent phantom. Next, the energy fluence and errors in the fluence were calculated from the spectra. When the energy fluence with errors concerning these two experimental conditions was estimated to be indistinctive, we defined the condition as the OSL dosimeter not being identified on the X-ray image. Based on our analysis, we determined the identification limit of the dosimeter. We then compared our results with those for the general irradiation conditions used in clinics. We found that the OSL dosimeter could not be identified under the irradiation conditions of abdominal and chest radiography, namely, one can apply the OSL dosimeter to measurement of the exposure dose in the irradiation field of X-rays without disturbing medical images.

  2. Study of a non-diffusing radiochromic gel dosimeter for 3D radiation dose imaging

    NASA Astrophysics Data System (ADS)

    Marsden, Craig Michael

    2000-12-01

    This thesis investigates the potential of a new radiation gel dosimeter, based on nitro-blue tetrazolium (NBTZ) suspended in a gelatin mold. Unlike all Fricke based gel dosimeters this dosimeter does not suffer from diffusive loss of image stability. Images are obtained by an optical tomography method. Nitro blue tetrazolium is a common biological indicator that when irradiated in an aqueous medium undergoes reduction to a highly colored formazan, which has an absorbance maximum at 525nm. Tetrazolium is water soluble while the formazan product is insoluble. The formazan product sticks to the gelatin matrix and the dose image is maintained for three months. Methods to maximize the sensitivity of the system were evaluated. It was found that a chemical detergent, Triton X-100, in combination with sodium formate, increased the dosimeter sensitivity significantly. An initial G-value of formazan production for a dosimeter composed of 1mM NBTZ, gelatin, and water was on the order of 0.2. The addition of Triton and formate produced a G-value in excess of 5.0. The effects of NBTZ, triton, formate, and gel concentration were all investigated. All the gels provided linear dose vs. absorbance plots for doses from 0 to >100 Gy. It was determined that gel concentration had minimal if any effect on sensitivity. Sensitivity increased slightly with increasing NBTZ concentration. Triton and formate individually and together provided moderate to large increases in dosimeter sensitivity. The dosimeter described in this work can provide stable 3D radiation dose images for all modalities of radiation therapy equipment. Methods to increase sensitivity are developed and discussed.

  3. Antioxidant effect of green tea on polymer gel dosimeter

    NASA Astrophysics Data System (ADS)

    Samuel, E. J. J.; Sathiyaraj, P.; Deena, T.; Kumar, D. S.

    2015-01-01

    Extract from Green Tea (GTE) acts as an antioxidant in acrylamide based polymer gel dosimeter. In this work, PAGAT gel was used for investigation of antioxidant effect of GTE.PAGAT was called PAGTEG (Polyacrylamide green tea extract gel dosimeter) after adding GTE. Free radicals in water cause pre polymerization of polymer gel before irradiation. Polyphenols from GTE are highly effective to absorb the free radicals in water. THPC is used as an antioxidant in polymer gel dosimeter but here we were replaced it by GTE and investigated its effect by spectrophotometer. GTE added PAGAT samples response was lower compared to THPC added sample. To increase the sensitivity of the PAGTEG, sugar was added. This study confirmed that THPC was a good antioxidant for polymer gel dosimeter. However, GTE also can be used as an antioxidant in polymer gel if use less quantity (GTE) and add sugar as sensitivity enhancer.

  4. Validation of an Innovative Satellite-Based UV Dosimeter

    NASA Astrophysics Data System (ADS)

    Morelli, Marco; Masini, Andrea; Simeone, Emilio; Khazova, Marina

    2016-08-01

    We present an innovative satellite-based UV (ultraviolet) radiation dosimeter with a mobile app interface that has been validated by exploiting both ground-based measurements and an in-vivo assessment of the erythemal effects on some volunteers having a controlled exposure to solar radiation.Both validations showed that the satellite-based UV dosimeter has a good accuracy and reliability needed for health-related applications.The app with this satellite-based UV dosimeter also includes other related functionalities such as the provision of safe sun exposure time updated in real-time and end exposure visual/sound alert. This app will be launched on the global market by siHealth Ltd in May 2016 under the name of "HappySun" and available both for Android and for iOS devices (more info on http://www.happysun.co.uk).Extensive R&D activities are on-going for further improvement of the satellite-based UV dosimeter's accuracy.

  5. PRESAGE® as a solid 3-D radiation dosimeter: A review article

    NASA Astrophysics Data System (ADS)

    Khezerloo, Davood; Nedaie, Hassan Ali; Takavar, Abbas; Zirak, Alireza; Farhood, Bagher; Movahedinejhad, Hadi; Banaee, Nooshin; Ahmadalidokht, Isa; Knuap, Courtney

    2017-12-01

    Radiation oncology has been rapidly improved by the application of new equipment and techniques. With the advent of new complex and precise radiotherapy techniques such as intensity modulated radiotherapy, stereotactic radiosurgery, and volumetric modulated arc therapy, the demand for an accurate and feasible three-dimensional (3-D) dosimetry system has increased. The most important features of a 3-D dosimeter, apart from being precise, accurate and reproducible, include also its low cost, feasibility, and availability. In 2004 a new generation of solid plastic dosimeters which demonstrate a radiochromic response to ionizing radiation was introduced. PRESAGE® plastic dosimeter lacks the limitations of previous Ferric and polymer plastic 3-D dosimeters such as diffusion, sensitivity to oxygen, fabrication problems, scanning and read out challenges. In this decade, a large number of efforts have been carried out to enhance PRESAGE® structure and scanning methods. This article attempts to review and reflect on the results of these investigations.

  6. Citizen's dosimeter

    DOEpatents

    Klemic, Gladys [Naperville, IL; Bailey, Paul [Chicago, IL; Breheny, Cecilia [Yonkers, NY

    2008-09-02

    The present invention relates to a citizen's dosimeter. More specifically, the invention relates to a small, portable, personal dosimetry device designed to be used in the wake of a event involving a Radiological Dispersal Device (RDD), Improvised Nuclear Device (IND), or other event resulting in the contamination of large area with radioactive material or where on site personal dosimetry is required. The card sized dosimeter generally comprises: a lower card layer, the lower card body having an inner and outer side; a upper card layer, the layer card having an inner and outer side; an optically stimulated luminescent material (OSLM), wherein the OSLM is sandwiched between the inner side of the lower card layer and the inner side of the upper card layer during dosimeter radiation recording, a shutter means for exposing at least one side of the OSLM for dosimeter readout; and an energy compensation filter attached to the outer sides of the lower and upper card layers.

  7. Determination of the depth dose distribution of proton beam using PRESAGE TM dosimeter

    NASA Astrophysics Data System (ADS)

    Zhao, L.; Das, I. J.; Zhao, Q.; Thomas, A.; Adamovics, J.; Oldman, M.

    2010-11-01

    PRESAGETM dosimeter dosimeter has been proved useful for 3D dosimetry in conventional photon therapy and IMRT [1-5]. Our objective is to examine the use of PRESAGETM dosimeter for verification of depth dose distribution in proton beam therapy. Three PRESAGETM samples were irradiated with a 79 MeV un-modulated proton beam. Percent depth dose profile measured from the PRESAGETM dosimeter is compared with data obtained in a water phantom using a parallel plate Advanced Markus chamber. The Bragg-peak position determined from the PRESAGETM is within 2 mm compared to measurements in water. PRESAGETM shows a highly linear response to proton dose. However, PRESAGETM also reveals an underdosage around the Bragg peak position due to LET effects. Depth scaling factor and quenching correction factor need further investigation. Our initial result shows that PRESAGETM has promising dosimetric characteristics that could be suitable for proton beam dosimetry.

  8. A design solution to increasing the sensitivity of pMOS dosimeters: The stacked RADFET approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kelleher, A.; Lane, W.; Adams, L.

    1995-02-01

    pMOS Radiation Sensitive Field Effect Transistors (RADFET`S) have applications as integrating dosimeters in laboratories and medicine to measure the amount of radiation dose absorbed. The suitability of these dosimeters to a certain application depends on the sensitivity of the RADFET being used. To date, this sensitivity is limited to the sensitivity of the gate oxide to radiation. The aim of this paper is to introduce a new design approach which will allow greater sensitivities to be achieved than is currently possible. An additional attractive feature of this design approach is that the sensitivity of the dosimeter may be changed dependingmore » on the total dose which is to be measured; essentially a dosimeter with auto-scaling may be achieved. This study introduces this autoscaling concept along with presenting the optimum RADFET device requirements which are necessary for this new design approach.« less

  9. Optical computed tomography in PRESAGE® three-dimensional dosimetry: Challenges and prospective.

    PubMed

    Khezerloo, Davood; Nedaie, Hassan Ali; Farhood, Bagher; Zirak, Alireza; Takavar, Abbas; Banaee, Nooshin; Ahmadalidokht, Isa; Kron, Tomas

    2017-01-01

    With the advent of new complex but precise radiotherapy techniques, the demands for an accurate, feasible three-dimensional (3D) dosimetry system have been increased. A 3D dosimeter system generally should not only have accurate and precise results but should also feasible, inexpensive, and time consuming. Recently, one of the new candidates for 3D dosimetry is optical computed tomography (CT) with a radiochromic dosimeter such as PRESAGE®. Several generations of optical CT have been developed since the 90s. At the same time, a large attempt has been also done to introduce the robust dosimeters that compatible with optical CT scanners. In 2004, PRESAGE® dosimeter as a new radiochromic solid plastic dosimeters was introduced. In this decade, a large number of efforts have been carried out to enhance optical scanning methods. This article attempts to review and reflect on the results of these investigations.

  10. Dosimetry of Al2O3 optically stimulated luminescent dosimeter at high energy photons and electrons

    NASA Astrophysics Data System (ADS)

    Yusof, M. F. Mohd; Joohari, N. A.; Abdullah, R.; Shukor, N. S. Abd; Kadir, A. B. Abd; Isa, N. Mohd

    2018-01-01

    The linearity of Al2O3 OSL dosimeters (OSLD) were evaluated for dosimetry works in clinical photons and electrons. The measurements were made at a reference depth of Zref according to IAEA TRS 398:2000 codes of practice at 6 and 10 MV photons and 6 and 9 MeV electrons. The measured dose was compared to the thermoluminescence dosimeters (TLD) and ionization chamber commonly used for dosimetry works for higher energy photons and electrons. The results showed that the measured dose in OSL dosimeters were in good agreement with the reported by the ionization chamber in both high energy photons and electrons. A reproducibility test also reported excellent consistency of readings with the OSL at similar energy levels. The overall results confirmed the suitability of OSL dosimeters for dosimetry works involving high energy photons and electrons in radiotherapy.

  11. Polymer gel dosimeter based on itaconic acid.

    PubMed

    Mattea, Facundo; Chacón, David; Vedelago, José; Valente, Mauro; Strumia, Miriam C

    2015-11-01

    A new polymeric dosimeter based on itaconic acid and N, N'-methylenebisacrylamide was studied. The preparation method, compositions of monomer and crosslinking agent and the presence of oxygen in the dosimetric system were analyzed. The resulting materials were irradiated with an X-ray tube at 158cGy/min, 226cGymin and 298cGy/min with doses up to 1000Gy. The dosimeters presented a linear response in the dose range 75-1000Gy, sensitivities of 0.037 1/Gyat 298cGy/min and an increase in the sensitivity with lower dose rates. One of the most relevant outcomes in this study was obtaining different monomer to crosslinker inclusion in the formed gel for the dosimeters where oxygen was purged during the preparation method. This effect has not been reported in other typical dosimeters and could be attributed to the large differences in the reactivity among these species. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Compton effect thermally activated depolarization dosimeter

    DOEpatents

    Moran, Paul R.

    1978-01-01

    A dosimetry technique for high-energy gamma radiation or X-radiation employs the Compton effect in conjunction with radiation-induced thermally activated depolarization phenomena. A dielectric material is disposed between two electrodes which are electrically short circuited to produce a dosimeter which is then exposed to the gamma or X radiation. The gamma or X-radiation impinging on the dosimeter interacts with the dielectric material directly or with the metal composing the electrode to produce Compton electrons which are emitted preferentially in the direction in which the radiation was traveling. A portion of these electrons becomes trapped in the dielectric material, consequently inducing a stable electrical polarization in the dielectric material. Subsequent heating of the exposed dosimeter to the point of onset of ionic conductivity with the electrodes still shorted through an ammeter causes the dielectric material to depolarize, and the depolarization signal so emitted can be measured and is proportional to the dose of radiation received by the dosimeter.

  13. Combating WMD Journal. Issue 2

    DTIC Science & Technology

    2008-03-01

    can be conducted utilizing passive detectors such as thermoluminescent dosime- ters (TLDs) or optically stimulated luminescent ( OSL ) dosimeters ...reasonable estimate of the dose. The challenge in high-energy bremsstrahlung fields is that current (standard) dosimeters do not provide for CPE...above a few MeV. CPE can be obtained by placing tissue- equivalent material (such as a build- up cap) around the dosimeter . This Dosimetry Needs

  14. Study of EPR/ESR Dosimetry in Fingernails as a Method for Assessing Dose of Victims of Radiological Accidents/Incidents

    DTIC Science & Technology

    2008-06-17

    dosimeters . .............................................................................................. 117 Figure 4-2. Flow chart illustrating...alanine, various sugars, quartz in rocks and sulfates, as EPR dosimeters [15]. Alternatively, radiation-induced EPR signals have been detected using...the medical response to radiological accidents, as a method for estimating radiation dose without the use of physical dosimeters and using exposed

  15. Adaptation of a Pocket PC for Use as a Wearable Voice Dosimeter

    ERIC Educational Resources Information Center

    Popolo, Peter S.; Svec, Jan G.; Titze, Ingo R.

    2005-01-01

    This article deals with the adaptation of a commercially available Pocket PC for use as a voice dosimeter, a wearable device that measures the vocal dose of teachers or other individuals on the job, at home, and elsewhere during the course of an entire day. An engineering approach for designing a voice dosimeter is described, and design data are…

  16. Comparative analysis of radioecological monitoring dosimeters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sobolev, A.I.; Pol`skii, O.G.; Shanin, O.B.

    1995-03-01

    This paper describes comparative estimates of radiation doses measured by two types of thermoluminescence dosimeters and two types of background radiation radiometers. The dosimetry systems were tested by simultaneously recording background radiation and standard radiation sources at a radioactive waste storage facility. Statistical analysis of the measurement results is summarized. The maximum recorded exposure dose rate for the experiment was 19 microrads per hour. The DTK-2 dosimeter overestimated dose rates by 6 to 43% and the DTU-2 dosimeter underestimated dose rates by 7 to 21%. Both devices are recommended for radioecological monitoring in populated areas. 4 refs., 3 figs., 5more » tabs.« less

  17. Fiber-type dosimeter with improved illuminator

    DOEpatents

    Fox, Richard J.

    1987-01-01

    A single-piece, molded plastic, Cassigrainian-type condenser arrangement is incorporated in a tubular-shaped personal pocket dosimeter of the type which combines an ionization chamber with an optically-read fiber electrometer to provide improved illumination of the electrometer fiber. The condenser routes incoming light from one end of the dosimeter tubular housing around a central axis charging pin assembly and focuses the light at low angles to the axis so that it falls within the acceptance angle of the electrometer fiber objective lens viewed through an eyepiece lens disposed in the opposite end of the dosimeter. This results in improved fiber illumination and fiber image contrast.

  18. Dose estimation of eye lens for interventional procedures in diagnosis

    NASA Astrophysics Data System (ADS)

    Liu, Yu-Rong; Huang, Chia-Yu; Hsu, Ching-Han; Hsu, Fang-Yuh

    2017-11-01

    The International Commission on Radiological Protection (ICRP) recommended that the equivalent dose limit for the lens of the eye be decreased from 150 mSv/y (ICRP, 2007) to 20 mSv/y averaged over five years (ICRP, 2011). How to accurately measure the eye-lens dose has, therefore, been an issue of interest recently. Interventional radiologists are at a higher risk of radiation-induced eye injury, such as cataracts, than all other occupational radiation workers. The main objective of this study is to investigate the relationship between the doses to the eye lenses of interventional radiologists measured by different commercial eye-lens dosimeters. This study measured a reference eye-lens dose, which involved placing thermoluminescent dosimeter (TLD) chips at the surface of the eye of the Rando Phantom, and the TLD chips were covered by a 3-mm-thick tissue-equivalent bolus. Commercial eye-lens dosimeters, such as a headband dosimeter and standard personnel dose badges, were placed at the positions recommended by the manufacturers. The results show that the personnel dose badge is not an appropriate dosimeter for evaluating eye-lens dose. Dose deviations for different dosimeters are discussed and presented in this study.

  19. Optically stimulated Al2O3:C luminescence dosimeters for teletherapy: Hp(10) performance evaluation.

    PubMed

    Hashim, S; Musa, Y; Ghoshal, S K; Ahmad, N E; Hashim, I H; Yusop, M; Bradley, D A; Kadir, A B A

    2018-05-01

    The performance of optically stimulated luminescence dosimeters (OSLDs, Al 2 O 3 :C) was evaluated in terms of the operational quantity of H P (10) in Co-60 external beam teletherapy unit. The reproducibility, signal depletion, and dose linearity of each dosimeter was investigated. For ten repeated readouts, each dosimeter exposed to 50mSv was found to be reproducible below 1.9 ± 3% from the mean value, indicating good reader stability. Meanwhile, an average signal reduction of 0.5% per readout was found. The dose response revealed a good linearity within the dose range of 5-50mSv having nearly perfect regression line with R 2 equals 0.9992. The accuracy of the measured doses were evaluated in terms of operational quantity H P (10), wherein the trumpet curve method was used respecting the 1990 International Commission on Radiological Protection (ICRP) standard. The accuracy of the overall measurements from all dosimeters was discerned to be within the trumpet curve and devoid of outlier. It is established that the achieved OSL Al 2 O 3 :C dosimeters are greatly reliable for equivalent dose assessment. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Cerium nanoparticle effect on sensitivity of Fricke gel dosimeter: Initial investigation

    NASA Astrophysics Data System (ADS)

    Ebenezer Suman Babu, S.; Peace Balasingh, S. Timothy; Benedicta Pearlin, R.; Rabi Raja Singh, I.; Ravindran, B. Paul

    2017-05-01

    Fricke gel dosimeters (FXGs) have been the preferred dosimeters because of its ease in preparation and water and tissue equivalency. Visible changes happen three dimensionally in the dosimeter as the ferrous (Fe2+) ions change into ferric (Fe3+) ions upon irradiation and the measure of this change can be correlated to the dose absorbed. Nanoparticles are promising entities that can improve the sensitivity of the gel dosimeter. Cerium Oxide nanoparticle was investigated for possible enhancement of absorbed dose in the FXG. Various concentrations of the nanoparticle based gel dosimeters were prepared and irradiated for a clinical dose range of 0-3 Gy in a telegamma unit. The optimal concentration of 0.1 mM nanoparticle incorporated in the FXG enhances the radiation sensitivity of the unmodified FXG taken as reference without modifying the background absorbance prior to irradiation. The gel recipe consisted of 5% (wt) gelatin, 50 mM Sulphuric acid, 0.05 mM Xylenol Orange, 0.5 mM Ferrous Ammonium Sulphate and 0.1 mM Cerium (IV) Oxide nanoparticle (< 25 nm particle size) and triple distilled water. The FXGs with nanoparticle showed linear dose response in the dose range tested.

  1. FlexyDos3D: a deformable anthropomorphic 3D radiation dosimeter: radiation properties

    NASA Astrophysics Data System (ADS)

    De Deene, Y.; Skyt, P. S.; Hil, R.; Booth, J. T.

    2015-02-01

    Three dimensional radiation dosimetry has received growing interest with the implementation of highly conformal radiotherapy treatments. The radiotherapy community faces new challenges with the commissioning of image guided and image gated radiotherapy treatments (IGRT) and deformable image registration software. A new three dimensional anthropomorphically shaped flexible dosimeter, further called ‘FlexyDos3D’, has been constructed and a new fast optical scanning method has been implemented that enables scanning of irregular shaped dosimeters. The FlexyDos3D phantom can be actuated and deformed during the actual treatment. FlexyDos3D offers the additional advantage that it is easy to fabricate, is non-toxic and can be molded in an arbitrary shape with high geometrical precision. The dosimeter formulation has been optimized in terms of dose sensitivity. The influence of the casting material and oxygen concentration has also been investigated. The radiophysical properties of this new dosimeter are discussed including stability, spatial integrity, temperature dependence of the dosimeter during radiation, readout and storage, dose rate dependence and tissue equivalence. The first authors Y De Deene and P S Skyt made an equivalent contribution to the experimental work presented in this paper.

  2. TREAT neutron-radiography facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harrison, L.J.

    1981-01-01

    The TREAT reactor was built as a transient irradiation test reactor. By taking advantage of built-in system features, it was possible to add a neutron-radiography facility. This facility has been used over the years to radiograph a wide variety and large number of preirradiated fuel pins in many different configurations. Eight different specimen handling casks weighing up to 54.4 t (60 T) can be accommodated. Thermal, epithermal, and track-etch radiographs have been taken. Neutron-radiography service can be provided for specimens from other reactor facilities, and the capacity for storing preirradiated specimens also exists.

  3. TH-AB-202-05: BEST IN PHYSICS (JOINT IMAGING-THERAPY): First Online Ultrasound-Guided MLC Tracking for Real-Time Motion Compensation in Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ipsen, S; Bruder, R; Schweikard, A

    Purpose: While MLC tracking has been successfully used for motion compensation of moving targets, current real-time target localization methods rely on correlation models with x-ray imaging or implanted electromagnetic transponders rather than direct target visualization. In contrast, ultrasound imaging yields volumetric data in real-time (4D) without ionizing radiation. We report the first results of online 4D ultrasound-guided MLC tracking in a phantom. Methods: A real-time tracking framework was installed on a 4D ultrasound station (Vivid7 dimension, GE) and used to detect a 2mm spherical lead marker inside a water tank. The volumetric frame rate was 21.3Hz (47ms). The marker wasmore » rigidly attached to a motion stage programmed to reproduce nine tumor trajectories (five prostate, four lung). The 3D marker position from ultrasound was used for real-time MLC aperture adaption. The tracking system latency was measured and compensated by prediction for lung trajectories. To measure geometric accuracy, anterior and lateral conformal fields with 10cm circular aperture were delivered for each trajectory. The tracking error was measured as the difference between marker position and MLC aperture in continuous portal imaging. For dosimetric evaluation, 358° VMAT fields were delivered to a biplanar diode array dosimeter using the same trajectories. Dose measurements with and without MLC tracking were compared to a static reference dose using a 3%/3 mm γ-test. Results: The tracking system latency was 170ms. The mean root-mean-square tracking error was 1.01mm (0.75mm prostate, 1.33mm lung). Tracking reduced the mean γ-failure rate from 13.9% to 4.6% for prostate and from 21.8% to 0.6% for lung with high-modulation VMAT plans and from 5% (prostate) and 18% (lung) to 0% with low modulation. Conclusion: Real-time ultrasound tracking was successfully integrated with MLC tracking for the first time and showed similar accuracy and latency as other methods while holding the potential to measure target motion non-invasively. SI was supported by the Graduate School for Computing in Medicine and Life Science, German Excellence Initiative [grant DFG GSC 235/1].« less

  4. Surface roughness in XeF{sub 2} etching of a-Si/c-Si(100)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stevens, A.A.E.; Beijerinck, H.C.W.

    2005-01-01

    Single wavelength ellipsometry and atomic force microscopy (AFM) have been applied in a well-calibrated beam-etching experiment to characterize the dynamics of surface roughening induced by chemical etching of a {approx}12 nm amorphous silicon (a-Si) top layer and the underlying crystalline silicon (c-Si) bulk. In both the initial and final phase of etching, where either only a-Si or only c-Si is exposed to the XeF{sub 2} flux, we observe a similar evolution of the surface roughness as a function of the XeF{sub 2} dose proportional to D(XeF{sub 2}){sup {beta}} with {beta}{approx_equal}0.2. In the transition region from the pure amorphous to themore » pure crystalline silicon layer, we observe a strong anomalous increase of the surface roughness proportional to D(XeF{sub 2}){sup {beta}} with {beta}{approx_equal}1.5. Not only the growth rate of the roughness increases sharply in this phase, also the surface morphology temporarily changes to a structure that suggests a cusplike shape. Both features suggest that the remaining a-Si patches on the surface act effectively as a capping layer which causes the growth of deep trenches in the c-Si. The ellipsometry data on the roughness are corroborated by the AFM results, by equating the thickness of the rough layer to 6 {sigma}, with {sigma} the root-mean-square variation of the AFM's distribution function of height differences. In the AFM data, the anomalous behavior is reflected in a too small value of {sigma} which again suggests narrow and deep surface features that cannot be tracked by the AFM tip. The final phase morphology is characterized by an effective increase in surface area by a factor of two, as derived from a simple bilayer model of the reaction layer, using the experimental etch rate as input. We obtain a local reaction layer thickness of 1.5 monolayer consistent with the 1.7 ML value of Lo et al. [Lo et al., Phys. Rev. B 47, 648 (1993)] that is also independent of surface roughness.« less

  5. Surface-enhanced Raman scattering (SERS) dosimeter and probe

    DOEpatents

    Vo-Dinh, Tuan

    1995-01-01

    A dosimeter and probe for measuring exposure to chemical and biological compounds is disclosed. The dosimeter or probe includes a collector which may be analyzed by surface-enhanced Raman spectroscopy. The collector comprises a surface-enhanced Raman scattering-active material having a coating applied thereto to improve the adsorption properties of the collector. The collector may also be used in automated sequential devises, in probe array devices.

  6. Proceedings: TRIAGE of Irradiated Personnel, 25-27 September 1996

    DTIC Science & Technology

    1998-03-01

    thermoluminescent dosimeter project group (PG-29) has recommended grani- (TLD) systems accredited by the National Volun- setron as the deployable...individual phylactic antiemetic medications and regimens dosimeter system currently fielded is the high-range were evaluated prior to adoption of...granisetron. photoluminescent AN/PDR-75. This system con- sists of the ruggedized DT-236 wristband dosimeter Two drugs exceeded the criteria (shown below

  7. LET spectra measurements from the STS-35 CPDs

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Linear energy transfer (LET) spectra derived form automated track analysis system (ATAS) track parameter measurements for crew passive dosimeters (CPD's) flown with the astronauts on STS-35 are plotted. The spread between the seven individual spectra is typical of past manual measurements of sets of CPD's. This difference is probably due to the cumulative net shielding variations experienced by the CPD's as the astronauts carrying them went about their activities on the Space Shuttle. The STS-35 mission was launched on Dec. 2, 1990, at 28.5 degrees inclination and 352-km altitude. This is somewhat higher than the nominal 300-km flights and the orbit intersects more of the high intensity trapped proton region in the South Atlantic Anomaly (SAA). However, in comparison with APD spectra measured on earlier lower altitude missions (STS-26, -29, -30, -32), the flux spectra are all roughly comparable. This may be due to the fact that the STS-35 mission took place close to solar maximum (Feb. 1990), or perhaps to shielding differences. The corresponding dose and dose equivalent spectra for this mission are shown. The effect of statistical fluctuations at the higher LET values, where track densities are small, is very noticeable. This results in an increased spread within the dose rate and dose equivalent rate spectra, as compared to the flux spectra. The contribution to dose and dose equivalent per measured track is much greater in the high LET region and the differences, though numerically small, are heavily weighted in the integral spectra. The optimum measurement and characterization of the high LET tails of the spectra represent an important part of the research into plastic nuclear track detector (PNTD) response. The integral flux, dose rate, dose equivalent rate and mission dose equivalent for the seven astronauts are also given.

  8. Characterization of MOSFET dosimeters for low‐dose measurements in maxillofacial anthropomorphic phantoms

    PubMed Central

    Wolff, Jan E.; Kiljunen, Timo; Schulze, Dirk; Kortesniemi, Mika

    2015-01-01

    The aims of this study were to characterize reinforced metal‐oxide‐semiconductor field‐effect transistor (MOSFET) dosimeters to assess the measurement uncertainty, single exposure low‐dose limit with acceptable accuracy, and the number of exposures required to attain the corresponding limit of the thermoluminescent dosimeters (TLD). The second aim was to characterize MOSFET dosimeter sensitivities for two dental photon energy ranges, dose dependency, dose rate dependency, and accumulated dose dependency. A further aim was to compare the performance of MOSFETs with those of TLDs in an anthropomorphic phantom head using a dentomaxillofacial CBCT device. The uncertainty was assessed by exposing 20 MOSFETs and a Barracuda MPD reference dosimeter. The MOSFET dosimeter sensitivities were evaluated for two photon energy ranges (50–90 kVp) using a constant dose and polymethylmethacrylate backscatter material. MOSFET and TLD comparative point‐dose measurements were performed on an anthropomorphic phantom that was exposed with a clinical CBCT protocol. The MOSFET single exposure low dose limit (25% uncertainty, k=2) was 1.69 mGy. An averaging of eight MOSFET exposures was required to attain the corresponding TLD (0.3 mGy) low‐dose limit. The sensitivity was 3.09±0.13 mV/mGy independently of the photon energy used. The MOSFET dosimeters did not present dose or dose rate sensitivity but, however, presented a 1% decrease of sensitivity per 1000 mV for accumulated threshold voltages between 8300 mV and 17500 mV. The point doses in an anthropomorphic phantom ranged for MOSFETs between 0.24 mGy and 2.29 mGy and for TLDs between 0.25 and 2.09 mGy, respectively. The mean difference was −8%. The MOSFET dosimeters presented statistically insignificant energy dependency. By averaging multiple exposures, the MOSFET dosimeters can achieve a TLD‐comparable low‐dose limit and constitute a feasible method for diagnostic dosimetry using anthropomorphic phantoms. However, for single in vivo measurements (<1.7 mGy) the sensitivity is too low. PACS number: 87.50.wj PMID:26219008

  9. Environmental dosimeter of the thermoluminescent type

    DOEpatents

    Eichner, F.N.; Kocher, L.F.

    1974-01-29

    A dosimeter for accurately monitoring normally low-energy radiation including a thermoluminescent CaF phosphor enclosed within a tantalum capsule is described. The tantalum acts as a filter to weaken the measured dose due to photons having energies below about 0.2 MeV. Tantalum end caps are maintained on the capsule body by a polyolefin sheath formed from heat-contractable tubing. After exposing the dosimeter to environmental radiation, it is placed in a shielded chamber for about 24 h and subsequently annealed at about 80 deg C to release radiation energy accumulated in low-temperature traps. The dosimeter is then disassembled and the phosphors photometrically read at temperatures about 50 deg C to determine the absorbed radiation dose. (Official Gazette)

  10. Dose control in electron beam processing: Comparison of results from a graphite charge collector, routine dosimeters and the ISS alanine-based dosimeter

    NASA Astrophysics Data System (ADS)

    Fuochi, P. G.; Onori, S.; Casali, F.; Chirco, P.

    1993-10-01

    A 12 MeV linear accelerator is currently used for electron beam processing of power semiconductor devices for lifetime control and, on an experimental basis, for food irradiation, sludge treatment etc. In order to control the irradiation process a simple, quick and reliable method for a direct evaluation of dose and fluence in a broad electron beam has been developed. This paper presents the results obtained using a "charge collector" which measures the charge absorbed in a graphite target exposed in air. Calibration of the system with super-Fricke dosimeter and comparison of absorbed dose results obtained with plastic dosimeters and alanine pellets are discussed.

  11. Investigating the accuracy of microstereotactic-body-radiotherapy utilizing anatomically accurate 3D printed rodent-morphic dosimeters.

    PubMed

    Bache, Steven T; Juang, Titania; Belley, Matthew D; Koontz, Bridget F; Adamovics, John; Yoshizumi, Terry T; Kirsch, David G; Oldham, Mark

    2015-02-01

    Sophisticated small animal irradiators, incorporating cone-beam-CT image-guidance, have recently been developed which enable exploration of the efficacy of advanced radiation treatments in the preclinical setting. Microstereotactic-body-radiation-therapy (microSBRT) is one technique of interest, utilizing field sizes in the range of 1-15 mm. Verification of the accuracy of microSBRT treatment delivery is challenging due to the lack of available methods to comprehensively measure dose distributions in representative phantoms with sufficiently high spatial resolution and in 3 dimensions (3D). This work introduces a potential solution in the form of anatomically accurate rodent-morphic 3D dosimeters compatible with ultrahigh resolution (0.3 mm(3)) optical computed tomography (optical-CT) dose read-out. Rodent-morphic dosimeters were produced by 3D-printing molds of rodent anatomy directly from contours defined on x-ray CT data sets of rats and mice, and using these molds to create tissue-equivalent radiochromic 3D dosimeters from Presage. Anatomically accurate spines were incorporated into some dosimeters, by first 3D printing the spine mold, then forming a high-Z bone equivalent spine insert. This spine insert was then set inside the tissue equivalent body mold. The high-Z spinal insert enabled representative cone-beam CT IGRT targeting. On irradiation, a linear radiochromic change in optical-density occurs in the dosimeter, which is proportional to absorbed dose, and was read out using optical-CT in high-resolution (0.5 mm isotropic voxels). Optical-CT data were converted to absolute dose in two ways: (i) using a calibration curve derived from other Presage dosimeters from the same batch, and (ii) by independent measurement of calibrated dose at a point using a novel detector comprised of a yttrium oxide based nanocrystalline scintillator, with a submillimeter active length. A microSBRT spinal treatment was delivered consisting of a 180° continuous arc at 225 kVp with a 20 × 10 mm field size. Dose response was evaluated using both the Presage/optical-CT 3D dosimetry system described above, and independent verification in select planes using EBT2 radiochromic film placed inside rodent-morphic dosimeters that had been sectioned in half. Rodent-morphic 3D dosimeters were successfully produced from Presage radiochromic material by utilizing 3D printed molds of rat CT contours. The dosimeters were found to be compatible with optical-CT dose readout in high-resolution 3D (0.5 mm isotropic voxels) with minimal artifacts or noise. Cone-beam CT image guidance was possible with these dosimeters due to sufficient contrast between high-Z spinal inserts and tissue equivalent Presage material (CNR ∼10 on CBCT images). Dose at isocenter measured with optical-CT was found to agree with nanoscintillator measurement to within 2.8%. Maximum dose in line profiles taken through Presage and film dose slices agreed within 3%, with FWHM measurements through each profile found to agree within 2%. This work demonstrates the feasibility of using 3D printing technology to make anatomically accurate Presage rodent-morphic dosimeters incorporating spinal-mimicking inserts. High quality optical-CT 3D dosimetry is feasible on these dosimeters, despite the irregular surfaces and implanted inserts. The ability to measure dose distributions in anatomically accurate phantoms represents a powerful useful additional verification tool for preclinical microSBRT.

  12. Investigating the accuracy of microstereotactic-body-radiotherapy utilizing anatomically accurate 3D printed rodent-morphic dosimeters

    PubMed Central

    Bache, Steven T.; Juang, Titania; Belley, Matthew D.; Koontz, Bridget F.; Adamovics, John; Yoshizumi, Terry T.; Kirsch, David G.; Oldham, Mark

    2015-01-01

    Purpose: Sophisticated small animal irradiators, incorporating cone-beam-CT image-guidance, have recently been developed which enable exploration of the efficacy of advanced radiation treatments in the preclinical setting. Microstereotactic-body-radiation-therapy (microSBRT) is one technique of interest, utilizing field sizes in the range of 1–15 mm. Verification of the accuracy of microSBRT treatment delivery is challenging due to the lack of available methods to comprehensively measure dose distributions in representative phantoms with sufficiently high spatial resolution and in 3 dimensions (3D). This work introduces a potential solution in the form of anatomically accurate rodent-morphic 3D dosimeters compatible with ultrahigh resolution (0.3 mm3) optical computed tomography (optical-CT) dose read-out. Methods: Rodent-morphic dosimeters were produced by 3D-printing molds of rodent anatomy directly from contours defined on x-ray CT data sets of rats and mice, and using these molds to create tissue-equivalent radiochromic 3D dosimeters from Presage. Anatomically accurate spines were incorporated into some dosimeters, by first 3D printing the spine mold, then forming a high-Z bone equivalent spine insert. This spine insert was then set inside the tissue equivalent body mold. The high-Z spinal insert enabled representative cone-beam CT IGRT targeting. On irradiation, a linear radiochromic change in optical-density occurs in the dosimeter, which is proportional to absorbed dose, and was read out using optical-CT in high-resolution (0.5 mm isotropic voxels). Optical-CT data were converted to absolute dose in two ways: (i) using a calibration curve derived from other Presage dosimeters from the same batch, and (ii) by independent measurement of calibrated dose at a point using a novel detector comprised of a yttrium oxide based nanocrystalline scintillator, with a submillimeter active length. A microSBRT spinal treatment was delivered consisting of a 180° continuous arc at 225 kVp with a 20 × 10 mm field size. Dose response was evaluated using both the Presage/optical-CT 3D dosimetry system described above, and independent verification in select planes using EBT2 radiochromic film placed inside rodent-morphic dosimeters that had been sectioned in half. Results: Rodent-morphic 3D dosimeters were successfully produced from Presage radiochromic material by utilizing 3D printed molds of rat CT contours. The dosimeters were found to be compatible with optical-CT dose readout in high-resolution 3D (0.5 mm isotropic voxels) with minimal artifacts or noise. Cone-beam CT image guidance was possible with these dosimeters due to sufficient contrast between high-Z spinal inserts and tissue equivalent Presage material (CNR ∼10 on CBCT images). Dose at isocenter measured with optical-CT was found to agree with nanoscintillator measurement to within 2.8%. Maximum dose in line profiles taken through Presage and film dose slices agreed within 3%, with FWHM measurements through each profile found to agree within 2%. Conclusions: This work demonstrates the feasibility of using 3D printing technology to make anatomically accurate Presage rodent-morphic dosimeters incorporating spinal-mimicking inserts. High quality optical-CT 3D dosimetry is feasible on these dosimeters, despite the irregular surfaces and implanted inserts. The ability to measure dose distributions in anatomically accurate phantoms represents a powerful useful additional verification tool for preclinical microSBRT. PMID:25652497

  13. Investigating the accuracy of microstereotactic-body-radiotherapy utilizing anatomically accurate 3D printed rodent-morphic dosimeters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bache, Steven T.; Juang, Titania; Belley, Matthew D.

    Purpose: Sophisticated small animal irradiators, incorporating cone-beam-CT image-guidance, have recently been developed which enable exploration of the efficacy of advanced radiation treatments in the preclinical setting. Microstereotactic-body-radiation-therapy (microSBRT) is one technique of interest, utilizing field sizes in the range of 1–15 mm. Verification of the accuracy of microSBRT treatment delivery is challenging due to the lack of available methods to comprehensively measure dose distributions in representative phantoms with sufficiently high spatial resolution and in 3 dimensions (3D). This work introduces a potential solution in the form of anatomically accurate rodent-morphic 3D dosimeters compatible with ultrahigh resolution (0.3 mm{sup 3}) opticalmore » computed tomography (optical-CT) dose read-out. Methods: Rodent-morphic dosimeters were produced by 3D-printing molds of rodent anatomy directly from contours defined on x-ray CT data sets of rats and mice, and using these molds to create tissue-equivalent radiochromic 3D dosimeters from Presage. Anatomically accurate spines were incorporated into some dosimeters, by first 3D printing the spine mold, then forming a high-Z bone equivalent spine insert. This spine insert was then set inside the tissue equivalent body mold. The high-Z spinal insert enabled representative cone-beam CT IGRT targeting. On irradiation, a linear radiochromic change in optical-density occurs in the dosimeter, which is proportional to absorbed dose, and was read out using optical-CT in high-resolution (0.5 mm isotropic voxels). Optical-CT data were converted to absolute dose in two ways: (i) using a calibration curve derived from other Presage dosimeters from the same batch, and (ii) by independent measurement of calibrated dose at a point using a novel detector comprised of a yttrium oxide based nanocrystalline scintillator, with a submillimeter active length. A microSBRT spinal treatment was delivered consisting of a 180° continuous arc at 225 kVp with a 20 × 10 mm field size. Dose response was evaluated using both the Presage/optical-CT 3D dosimetry system described above, and independent verification in select planes using EBT2 radiochromic film placed inside rodent-morphic dosimeters that had been sectioned in half. Results: Rodent-morphic 3D dosimeters were successfully produced from Presage radiochromic material by utilizing 3D printed molds of rat CT contours. The dosimeters were found to be compatible with optical-CT dose readout in high-resolution 3D (0.5 mm isotropic voxels) with minimal artifacts or noise. Cone-beam CT image guidance was possible with these dosimeters due to sufficient contrast between high-Z spinal inserts and tissue equivalent Presage material (CNR ∼10 on CBCT images). Dose at isocenter measured with optical-CT was found to agree with nanoscintillator measurement to within 2.8%. Maximum dose in line profiles taken through Presage and film dose slices agreed within 3%, with FWHM measurements through each profile found to agree within 2%. Conclusions: This work demonstrates the feasibility of using 3D printing technology to make anatomically accurate Presage rodent-morphic dosimeters incorporating spinal-mimicking inserts. High quality optical-CT 3D dosimetry is feasible on these dosimeters, despite the irregular surfaces and implanted inserts. The ability to measure dose distributions in anatomically accurate phantoms represents a powerful useful additional verification tool for preclinical microSBRT.« less

  14. Feasibility of reading LiF thermoluminescent dosimeters by electron spin resonance

    NASA Astrophysics Data System (ADS)

    Breen, S. L.; Battista, J. J.

    1999-08-01

    Lithium fluoride is a commonly used solid state dosimeter. During irradiation, electrons and holes become trapped in crystal imperfections; thermoluminescence dosimetry measures their thermally induced recombination. Electron paramagnetic resonance (EPR) spectroscopy can be used to measure the resonant absorption of microwaves by the unpaired electrons trapped in LiF. In an effort to extend the use of LiF dosimeters to smaller sizes and to the harsh environments encountered in internal dosimetry, EPR was evaluated as an alternative technique to read the radiation dose delivered to TLD-100 dosimeters. TLD-100 rods were irradiated with a 60Co source to doses of 10 Gy to 100 Gy. A radiation-induced signal (with a g-value of 2.002) could be detected only at liquid nitrogen temperatures at doses above 20 Gy. The EPR spectrum of irradiated LiF contains three components, one of which correlates positively with dose. However, the low sensitivity of the technique, and difficulty in interpreting the EPR spectrum from polycrystalline dosimeters, preclude its use as a dosimetry technique.

  15. Observations on personnel dosimetry for radiotherapy personnel operating high-energy LINACs.

    PubMed

    Glasgow, G P; Eichling, J; Yoder, R C

    1986-06-01

    A series of measurements were conducted to determine the cause of a sudden increase in personnel radiation exposures. One objective of the measurements was to determine if the increases were related to changing from film dosimeters exchanged monthly to TLD-100 dosimeters exchanged quarterly. While small increases were observed in the dose equivalents of most employees, the dose equivalents of personnel operating medical electron linear accelerators with energies greater than 20 MV doubled coincidentally with the change in the personnel dosimeter program. The measurements indicated a small thermal neutron radiation component around the accelerators operated by these personnel. This component caused the doses measured with the TLD-100 dosimeters to be overstated. Therefore, the increase in these personnel dose equivalents was not due to changes in work habits or radiation environments. Either film or TLD-700 dosimeters would be suitable for personnel monitoring around high-energy linear accelerators. The final choice would depend on economics and personal preference.

  16. Feasibility of reading LiF thermoluminescent dosimeters by electron spin resonance.

    PubMed

    Breen, S L; Battista, J J

    1999-08-01

    Lithium fluoride is a commonly used solid state dosimeter. During irradiation, electrons and holes become trapped in crystal imperfections; thermoluminescence dosimetry measures their thermally induced recombination. Electron paramagnetic resonance (EPR) spectroscopy can be used to measure the resonant absorption of microwaves by the unpaired electrons trapped in LiF. In an effort to extend the use of LiF dosimeters to smaller sizes and to the harsh environments encountered in internal dosimetry, EPR was evaluated as an alternative technique to read the radiation dose delivered to TLD-100 dosimeters. TLD-100 rods were irradiated with a 60Co source to doses of 10 Gy to 100 Gy. A radiation-induced signal (with a g-value of 2.002) could be detected only at liquid nitrogen temperatures at doses above 20 Gy. The EPR spectrum of irradiated LiF contains three components, one of which correlates positively with dose. However, the low sensitivity of the technique, and difficulty in interpreting the EPR spectrum from polycrystalline dosimeters, preclude its use as a dosimetry technique.

  17. Improvements in opti-chromic dosimeters for radiation processing

    NASA Astrophysics Data System (ADS)

    Humpherys, K. C.; Kantz, A. D.

    "Opti-Chromic" dosimeters consisting of radiachromic dye in flourinated polymer tubing have been introduced as a dosimetry system in the range from 10 1 to 5 × 10 4 Gy. Batches of "Opti-Chromic" dosimeters have been produced to evaluate performance under large scale industrial conditions. A systematic study was undertaken to determine the effect of various dosimeter parameters on radiation sensitivity, shelf life, and response characteristics at the higher absorbed doses. These parameters were (A) Type of flourinated polymer tubing; (B) Organic solvent used to activate the radiachromic dye; (C) Concentration of radiachromic dye; (D) Additives to provide proper viscosity, color stability, and high-dose response. Prototype batches were produced and experimental dosimeters exposed to a range of absorbed doses and the response measured as a function of shelf life and dose. The results of the study are presented, and an improved formulation recommended for application to Food Processing. Other formulations may be of value in specific requirements of sensitivity or temperature.

  18. Portable battery-free charger for radiation dosimeters

    DOEpatents

    Manning, Frank W.

    1984-01-01

    This invention is a novel portable charger for dosimeters of the electrometer type. The charger does not require batteries or piezoelectric crystals and is of rugged construction. In a preferred embodiment, the charge includes a housing which carries means for mounting a dosimeter to be charged. The housing also includes contact means for impressing a charging voltage across the mounted dosimeter. Also, the housing carries a trigger for operating a charging system mounted in the housing. The charging system includes a magnetic loop including a permanent magnet for establishing a magnetic field through the loop. A segment of the loop is coupled to the trigger for movement thereby to positions opening and closing the loop. A coil inductively coupled with the loop generates coil-generated voltage pulses when the trigger is operated to open and close the loop. The charging system includes an electrical circuit for impressing voltage pulses from the coil across a capacitor for integrating the pulses and applying the resulting integrated voltage across the above-mentioned contact means for charging the dosimeter.

  19. Thin thermoluminescent dosimeter and method of making same

    DOEpatents

    Simons, Gale G.; DeBey, Timothy M.

    1987-01-01

    An improved thermoluminescent ionizing radiation dosimeter of solid, extremely thin construction for more accurate low energy beta dosimetry is provided, along with a method of fabricating the dosimeter. In preferred forms, the dosimeter is a composite including a backing support (which may be tissue equivalent) and a self-sustaining body of solid thermoluminescent material such as LiF having a thickness of less than about 0.25 millimeters and a volume of at least about 0.0125 mm.sup.3. In preferred fabrication procedures, an initially thick (e.g., 0.89 millimeters) TLD body is wet sanded using 600 grit or less sandpaper to a thickness of less than about 0.25 millimeters, followed by adhesively attaching the sanded body to an appropriate backing. The sanding procedure permits routine production of extremely thin (about 0.05 millimeters) TLD bodies, and moreover serves to significantly reduce non-radiation-induced thermoluminescence. The composite dosimeters are rugged in use and can be subjected to annealing temperatures for increased accuracy.

  20. Digital Mammography Breast Dosimetry Using Copper-Doped Lithium Fluoride (LiF:MCP) Thermoluminescent Dosimeters (TLDs)

    DTIC Science & Technology

    2003-06-18

    Mammography Breast Dosimetry Using Copper-Doped Lithium Fluoride (LiF:MCP) Thermoluminescent Dosimeters ( TLDs ) 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c...34Digital Mammography Breast Dosimetry Using Copper- Doped Lithium Fluoride (LiF:MCP) Thermoluminescent Dosimeters ( TLDs )" Author: LT John J. Tomon...Title of Thesis: " Digital Mammography Breast Dosimetry Using Copper-Doped Lithium Fluoride (LiF:MCP) Thermoluminescent

  1. Surface-enhanced Raman scattering (SERS) dosimeter and probe

    DOEpatents

    Vo-Dinh, T.

    1995-03-21

    A dosimeter and probe for measuring exposure to chemical and biological compounds is disclosed. The dosimeter or probe includes a collector which may be analyzed by surface-enhanced Raman spectroscopy. The collector comprises a surface-enhanced Raman scattering-active material having a coating applied thereto to improve the adsorption properties of the collector. The collector may also be used in automated sequential devices, in probe array devices. 10 figures.

  2. 1997 NRL Review

    DTIC Science & Technology

    1997-04-01

    are subsequently read out using a low- doped Glasses power, solid-state diode laser. Figure 4 shows a schematic of the OSL dosimeter . The 807-nm A.L...Huston, S, Rychnovsky, and B.L. Justus (near infrared) diode laser light stimulates blue OSL Optical Sciences Division emission from the dosimeter , and...The sensitivity of the hole pairs become trapped and may persist until prototype OSL dosimeter exceeds that of the stimulated to luminesce by the

  3. Length of stain dosimeter

    NASA Astrophysics Data System (ADS)

    Lueck, Dale E.

    1994-04-01

    Payload customers for the Space Shuttle have recently expressed concerns about the possibility of their payloads at an adjacent pad being contaminated by plume effluents from a shuttle at an active pad as they await launch on an inactive pad. As part of a study to satisfy such concerns a ring of inexpensive dosimeters was deployed around the active pad at the inter-pad distance. However, following a launch, dosimeters cannot be read for several hours after the exposure. As a consequence factors such as different substrates, solvent systems, and possible volatilization of HCl from the badges were studied. This observation led to the length of stain (LOS) dosimeters of this invention. Commercial passive LOS dosimeters are sensitive only to the extent of being capable of sensing 2 ppm to 20 ppm if the exposure is 8 hours. To map and quantitate the HCl generated by Shuttle launches, and in the atmosphere within a radius of 1.5 miles from the active pad, a sensitivity of 2 ppm HCl in the atmospheric gases on an exposure of 5 minutes is required. A passive length of stain dosimeter has been developed having a sensitivity rendering it capable of detecting a gas in a concentration as low as 2 ppm on an exposure of five minutes.

  4. Length of stain dosimeter

    NASA Technical Reports Server (NTRS)

    Lueck, Dale E. (Inventor)

    1994-01-01

    Payload customers for the Space Shuttle have recently expressed concerns about the possibility of their payloads at an adjacent pad being contaminated by plume effluents from a shuttle at an active pad as they await launch on an inactive pad. As part of a study to satisfy such concerns a ring of inexpensive dosimeters was deployed around the active pad at the inter-pad distance. However, following a launch, dosimeters cannot be read for several hours after the exposure. As a consequence factors such as different substrates, solvent systems, and possible volatilization of HCl from the badges were studied. This observation led to the length of stain (LOS) dosimeters of this invention. Commercial passive LOS dosimeters are sensitive only to the extent of being capable of sensing 2 ppm to 20 ppm if the exposure is 8 hours. To map and quantitate the HCl generated by Shuttle launches, and in the atmosphere within a radius of 1.5 miles from the active pad, a sensitivity of 2 ppm HCl in the atmospheric gases on an exposure of 5 minutes is required. A passive length of stain dosimeter has been developed having a sensitivity rendering it capable of detecting a gas in a concentration as low as 2 ppm on an exposure of five minutes.

  5. A critical assessment of two types of personal UV dosimeters.

    PubMed

    Seckmeyer, Gunther; Klingebiel, Marcus; Riechelmann, Stefan; Lohse, Insa; McKenzie, Richard L; Liley, J Ben; Allen, Martin W; Siani, Anna-Maria; Casale, Giuseppe R

    2012-01-01

    Doses of erythemally weighted irradiances derived from polysulphone (PS) and electronic ultraviolet (EUV) dosimeters have been compared with measurements obtained using a reference spectroradiometer. PS dosimeters showed mean absolute deviations of 26% with a maximum deviation of 44%, the calibrated EUV dosimeters showed mean absolute deviations of 15% (maximum 33%) around noon during several test days in the northern hemisphere autumn. In the case of EUV dosimeters, measurements with various cut-off filters showed that part of the deviation from the CIE erythema action spectrum was due to a small, but significant sensitivity to visible radiation that varies between devices and which may be avoided by careful preselection. Usually the method of calibrating UV sensors by direct comparison to a reference instrument leads to reliable results. However, in some circumstances the quality of measurements made with simple sensors may be over-estimated. In the extreme case, a simple pyranometer can be used as a UV instrument, providing acceptable results for cloudless skies, but very poor results under cloudy conditions. It is concluded that while UV dosimeters are useful for their design purpose, namely to estimate personal UV exposures, they should not be regarded as an inexpensive replacement for meteorological grade instruments. © 2011 Wiley Periodicals, Inc. Photochemistry and Photobiology © 2011 The American Society of Photobiology.

  6. Assessment of radiation exposure in dental cone-beam computerized tomography with the use of metal-oxide semiconductor field-effect transistor (MOSFET) dosimeters and Monte Carlo simulations.

    PubMed

    Koivisto, J; Kiljunen, T; Tapiovaara, M; Wolff, J; Kortesniemi, M

    2012-09-01

    The aims of this study were to assess the organ and effective dose (International Commission on Radiological Protection (ICRP) 103) resulting from dental cone-beam computerized tomography (CBCT) imaging using a novel metal-oxide semiconductor field-effect transistor (MOSFET) dosimeter device, and to assess the reliability of the MOSFET measurements by comparing the results with Monte Carlo PCXMC simulations. Organ dose measurements were performed using 20 MOSFET dosimeters that were embedded in the 8 most radiosensitive organs in the maxillofacial and neck area. The dose-area product (DAP) values attained from CBCT scans were used for PCXMC simulations. The acquired MOSFET doses were then compared with the Monte Carlo simulations. The effective dose measurements using MOSFET dosimeters yielded, using 0.5-cm steps, a value of 153 μSv and the PCXMC simulations resulted in a value of 136 μSv. The MOSFET dosimeters placed in a head phantom gave results similar to Monte Carlo simulations. Minor vertical changes in the positioning of the phantom had a substantial affect on the overall effective dose. Therefore, the MOSFET dosimeters constitute a feasible method for dose assessment of CBCT units in the maxillofacial region. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. Angular dependence of the nanoDot OSL dosimeter.

    PubMed

    Kerns, James R; Kry, Stephen F; Sahoo, Narayan; Followill, David S; Ibbott, Geoffrey S

    2011-07-01

    Optically stimulated luminescent detectors (OSLDs) are quickly gaining popularity as passive dosimeters, with applications in medicine for linac output calibration verification, brachytherapy source verification, treatment plan quality assurance, and clinical dose measurements. With such wide applications, these dosimeters must be characterized for numerous factors affecting their response. The most abundant commercial OSLD is the InLight/OSL system from Landauer, Inc. The purpose of this study was to examine the angular dependence of the nanoDot dosimeter, which is part of the InLight system. Relative dosimeter response data were taken at several angles in 6 and 18 MV photon beams, as well as a clinical proton beam. These measurements were done within a phantom at a depth beyond the build-up region. To verify the observed angular dependence, additional measurements were conducted as well as Monte Carlo simulations in MCNPX. When irradiated with the incident photon beams parallel to the plane of the dosimeter, the nanoDot response was 4% lower at 6 MV and 3% lower at 18 MV than the response when irradiated with the incident beam normal to the plane of the dosimeter. Monte Carlo simulations at 6 MV showed similar results to the experimental values. Examination of the results in Monte Carlo suggests the cause as partial volume irradiation. In a clinical proton beam, no angular dependence was found. A nontrivial angular response of this OSLD was observed in photon beams. This factor may need to be accounted for when evaluating doses from photon beams incident from a variety of directions.

  8. Angular dependence of the nanoDot OSL dosimeter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kerns, James R.; Kry, Stephen F.; Sahoo, Narayan

    Purpose: Optically stimulated luminescent detectors (OSLDs) are quickly gaining popularity as passive dosimeters, with applications in medicine for linac output calibration verification, brachytherapy source verification, treatment plan quality assurance, and clinical dose measurements. With such wide applications, these dosimeters must be characterized for numerous factors affecting their response. The most abundant commercial OSLD is the InLight/OSL system from Landauer, Inc. The purpose of this study was to examine the angular dependence of the nanoDot dosimeter, which is part of the InLight system. Methods: Relative dosimeter response data were taken at several angles in 6 and 18 MV photon beams, asmore » well as a clinical proton beam. These measurements were done within a phantom at a depth beyond the build-up region. To verify the observed angular dependence, additional measurements were conducted as well as Monte Carlo simulations in MCNPX. Results: When irradiated with the incident photon beams parallel to the plane of the dosimeter, the nanoDot response was 4% lower at 6 MV and 3% lower at 18 MV than the response when irradiated with the incident beam normal to the plane of the dosimeter. Monte Carlo simulations at 6 MV showed similar results to the experimental values. Examination of the results in Monte Carlo suggests the cause as partial volume irradiation. In a clinical proton beam, no angular dependence was found. Conclusions: A nontrivial angular response of this OSLD was observed in photon beams. This factor may need to be accounted for when evaluating doses from photon beams incident from a variety of directions.« less

  9. Angular dependence of the nanoDot OSL dosimeter

    PubMed Central

    Kerns, James R.; Kry, Stephen F.; Sahoo, Narayan; Followill, David S.; Ibbott, Geoffrey S.

    2011-01-01

    Purpose: Optically stimulated luminescent detectors (OSLDs) are quickly gaining popularity as passive dosimeters, with applications in medicine for linac output calibration verification, brachytherapy source verification, treatment plan quality assurance, and clinical dose measurements. With such wide applications, these dosimeters must be characterized for numerous factors affecting their response. The most abundant commercial OSLD is the InLight∕OSL system from Landauer, Inc. The purpose of this study was to examine the angular dependence of the nanoDot dosimeter, which is part of the InLight system.Methods: Relative dosimeter response data were taken at several angles in 6 and 18 MV photon beams, as well as a clinical proton beam. These measurements were done within a phantom at a depth beyond the build-up region. To verify the observed angular dependence, additional measurements were conducted as well as Monte Carlo simulations in MCNPX.Results: When irradiated with the incident photon beams parallel to the plane of the dosimeter, the nanoDot response was 4% lower at 6 MV and 3% lower at 18 MV than the response when irradiated with the incident beam normal to the plane of the dosimeter. Monte Carlo simulations at 6 MV showed similar results to the experimental values. Examination of the results in Monte Carlo suggests the cause as partial volume irradiation. In a clinical proton beam, no angular dependence was found.Conclusions: A nontrivial angular response of this OSLD was observed in photon beams. This factor may need to be accounted for when evaluating doses from photon beams incident from a variety of directions. PMID:21858992

  10. Direct and pulsed current annealing of p-MOSFET based dosimeter: the "MOSkin".

    PubMed

    Alshaikh, Sami; Carolan, Martin; Petasecca, Marco; Lerch, Michael; Metcalfe, Peter; Rosenfeld, Anatoly

    2014-06-01

    Contemporary radiation therapy (RT) is complicated and requires sophisticated real-time quality assurance (QA). While 3D real-time dosimetry is most preferable in RT, it is currently not fully realised. A small, easy to use and inexpensive point dosimeter with real-time and in vivo capabilities is an option for routine QA. Such a dosimeter is essential for skin, in vivo or interface dosimetry in phantoms for treatment plan verification. The metal-oxide-semiconductor-field-effect-transistor (MOSFET) detector is one of the best choices for these purposes, however, the MOSFETs sensitivity and its signal stability degrade after essential irradiation which limits its lifespan. The accumulation of positive charge on the gate oxide and the creation of interface traps near the silicon-silicon dioxide layer is the primary physical phenomena responsible for this degradation. The aim of this study is to investigate MOSFET dosimeter recovery using two proposed annealing techniques: direct current (DC) and pulsed current (PC), both based on hot charged carrier injection into the gate oxide of the p-MOSFET dosimeter. The investigated MOSFETs were reused multiple times using an irradiation-annealing cycle. The effect of the current-annealing parameters was investigated for the dosimetric characteristics of the recovered MOSFET dosimeters such as linearity, sensitivity and initial threshold voltage. Both annealing techniques demonstrated excellent results in terms of maintaining a stable response, linearity and sensitivity of the MOSFET dosimeter. However, PC annealing is more preferable than DC annealing as it offers better dose response linearity of the reused MOSFET and has a very short annealing time.

  11. Hand and body radiation exposure with the use of mini C-arm fluoroscopy.

    PubMed

    Tuohy, Christopher J; Weikert, Douglas R; Watson, Jeffry T; Lee, Donald H

    2011-04-01

    To determine whole body and hand radiation exposure to the hand surgeon wearing a lead apron during routine intraoperative use of the mini C-arm fluoroscope. Four surgeons (3 hand attending surgeons and 1 hand fellow) monitored their radiation exposure for a total of 200 consecutive cases (50 cases per surgeon) requiring mini C-arm fluoroscopy. Each surgeon measured radiation exposure with a badge dosimeter placed on the outside breast pocket of the lead apron (external whole body exposure), a second badge dosimeter under the lead apron (shielded whole body exposure), and a ring dosimeter (hand exposure). Completed records were noted in 198 cases, with an average fluoroscopy time of 133.52 seconds and average cumulative dose of 19,260 rem-cm(2) per case. The total measured radiation exposures for the (1) external whole body exposure dosimeters were 16 mrem (for shallow depth), 7 mrem (for eye depth), and less than 1 mrem (for deep depth); (2) shielded whole body badge dosimeters recorded less than 1 mrem; and (3) ring dosimeters totaled 170 mrem. The total radial exposure for 4 ring dosimeters that had registered a threshold of 30 mrem or more of radiation exposure was 170 mrem at the skin level, for an average of 42.5 mrem per dosimeter ring or 6.3 mrem per case. This study of whole body and hand radiation exposure from the mini C-arm includes the largest number of surgical cases in the published literature. The measured whole body and hand radiation exposure received by the hand surgeon from the mini C-arm represents a minimal risk of radiation, based on the current National Council on Radiation Protection and Management standards of annual dose limits (5,000 mrem per year for whole body and 50,000 mrem per year to the extremities). Copyright © 2011 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.

  12. SU-E-I-06: Measurement of Skin Dose from Dental Cone-Beam CT Scans.

    PubMed

    Akyalcin, S; English, J; Abramovitch, K; Rong, J

    2012-06-01

    To directly measure skin dose using point-dosimeters from dental cone-beam CT (CBCT) scans. To compare the results among three different dental CBCT scanners and compare the CBCT results with those from a conventional panoramic and cephalomic dental imaging system. A head anthropomorphic phantom was used with nanoDOT dosimeters attached to specified anatomic landmarks of selected radiosensitive tissues of interest. To ensure reliable measurement results, three dosimeters were used for each location. The phantom was scanned under various modes of operation and scan protocols for typical dental exams on three dental CBCT systems plus a conventional dental imaging system. The Landauer OSL nanoDOT dosimeters were calibrated under the same imaging condition as the head phantom scan protocols, and specifically for each of the imaging systems. Using nanoDOT dosimeters, skin doses at several positions on the surface of an adult head anthropomorphic phantom were measured for clinical dental imaging. The measured skin doses ranged from 0.04 to 4.62mGy depending on dosimeter positions and imaging systems. The highest dose location was at the parotid surface for all three CBCT scanners. The surface doses to the locations of the eyes were ∼4.0mGy, well below the 500mGy threshold for possibly causing cataract development. The results depend on x-ray tube output (kVp and mAs) and also are sensitive to SFOV. Comparing to the conventional dental imaging system operated in panoramic and cephalometric modes, doses from all three CBCT systems were at least an order of magnitude higher. No image artifact was caused by presence of nanoDOT dosimeters in the head phantom images. Direct measurements of skin dose using nanoDOT dosimeters provided accurate skin dose values without any image artifacts. The results of skin dose measurements serve as dose references in guiding future dose optimization efforts in dental CBCT imaging. © 2012 American Association of Physicists in Medicine.

  13. SU-G-BRB-08: Investigation On the Magnetic Field Effect On TLDs, OSLDs, and Gafchromic Films Using An MR-Linac

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wen, Z; Wang, J; O’Brien, D

    Purpose: To investigate whether a strong magnetic field (B=1.5 T) can affect dose responses of thermoluminescent dosimeters (TLDs), optically stimulated luminescence dosimeters (OSLDs) and Gafchromic films using an MR-Linac (Elekta) before and after the magnet was ramped down from 1.5 T to 0 T. Methods: Three types of dosimeters (TLDs, OSLDs, EBT3 films) were divided into two groups. Group 1 was first irradiated in a phantom of Solid Water slabs (Standard Imaging) inside a B=1.5 T field with a 7 MV beam from an MR-Linac system. The radiation output at the location of the dosimeters (isocenter at 10 cm depth)more » was measured using an ion chamber (NE2571, Phoenix Dosimetry). Three doses (150, 300, 600 MU, corresponding to 1.18, 2.36, and 4.74 Gy) were delivered to the dosimeters. A week later the MR magnet was ramped down to zero field and dosimeters in Group 2 were irradiated with the same MUs. Dosimeters of each type were read out during the same session (about 4 weeks post irradiation in the B field, and 3 weeks with no B field). The ratios of signals between Group 1 and Group 2 were calculated. Results: Radiation output measured with the chamber was within 1% before and after ramping down the MR magnet. For TLDs, the ratio of signals with B field to signals without B field averaged over three dose levels was 1.003±0.016; for OSLDs, the ratio was 0.994±0.022; for films, the ratios of two batches (different manufacturing dates) were 0.997 and 0.985. Conclusion: Dose responses of all three dosimeters seem not affected by the presence of a 1.5 T magnetic field within uncertainty of ∼2%. More measurements will be conducted to test reproducibility. We acknowledge research support from Elekta AB.« less

  14. SU-E-I-60: Validation of An Optically Stimulated Luminescent (OSL) Dosimeter for Use in Output Exposure Control Verification of Mammography Imaging Systems.

    PubMed

    Ranger, R; Butler, P; Yahnke, C; Valentino, D

    2012-06-01

    To develop and validate an Optically Stimulated Luminescent (OSL) dosimeter for exposure control verification of x-ray projection mammography imaging systems. The active detection element of the dosimeter is a strip of OSL material 3.0 mm wide, 0.13 mm thick and 30.0 mm long with an overlying aluminum step wedge with thicknesses of 0, 0.2, 0.4 and 0.6 mm Al, encapsulated in a light-tight plastic enclosure with outer dimensions of 10.0 mm wide, 5.4 mm thick, and 54.0 mm long. The dosimeter is used in conjunction with a breast phantom for the purpose of estimating the half-value layer (HVL), entrance surface exposure (ESE), and average glandular dose (AGD) in conventional projection mammography. ESE and HVL were computed based on analysis of exposure profiles obtained from exposed strip dosimeters. The AGD was estimated by multiplying the ESE by the appropriate exposure to dose conversion factor for the thickness and % glandular tissue fraction represented by the phantom and target-filter combination employed. The accuracy and reproducibility of the ESE, HVL and AGD estimates obtained using the dosimeter positioned on the surface of the ACR phantom at the chest wall edge, was evaluated using mammography systems utilizing different imaging receptor technology, i.e. screen-film (SF), computed radiography (CR) and direct radiography (DR) and compared against results obtained using a calibrated ion chamber fitted with a mammography probe. ESE, AGD and HVL results obtained using the OSL mammography QA dosimeter agreed with results obtained using an ion chamber to within 5-10%, depending on the target-filter combination used. Repeat readings were highly consistent with a coefficient of variation = 5%. The OSL mammography QA dosimeter has been shown to effectively estimate ESE, HVL and AGD, demonstrating its usefulness for secondary monitoring of output exposure of mammography imaging systems. © 2012 American Association of Physicists in Medicine.

  15. SU-E-T-368: Effect of a Strong Magnetic Field On Select Radiation Dosimeters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mathis, M; Wen, Z; Tailor, R

    Purpose: To determine the effect of a strong magnetic field on TLD-100, OSLD (Al{sub 2}O{sub 2}:C), and PRESAGE dosimetry devices. This study will help to determine which types of dosimeters can be used for quality assurance and in-vivo dosimetry measurements in a magnetic resonance imaginglinear accelerator (MRI-linac) system. Methods: The dosimeters were separated into two categories which were either exposed or not exposed to a strong magnetic field. In each category a set of dosimeters was irradiated with 0, 2, or 6 Gy. To expose the dosimeters to a magnetic field the samples in that category were place in amore » Bruker small animal magnetic resonance scanner at a field strength slightly greater than 2.5 T for at least 1 hour preirradiation and at least 1 hour post-irradiation. Irradiations were performed with a 6 MV x-ray beam from a Varian TrueBeam linac with 10×10 cm{sup 2} field at a 600 MU/min dose rate. The samples that received no radiation dose were used as control detectors. Results: The readouts of the dosimeters which were not exposed to a strong magnetic field were compared with the measurements of the dosimetry devices which were exposed to a magnetic field. No significant differences (less than 2% difference) in the performance of TLD, OSLD, or PRESAGE dosimeters due to exposure to a strong magnetic field were observed. Conclusion: Exposure to a strong magnetic field before and after irradiation does not appear to change the dosimetric properties of TLD, OSLD, or PRESAGE which indicates that these dosimeters have potential for use in quality assurance and in-vivo dosimetry in a MRI-linac. We plan to further test the effect of magnetic fields on these devices by irradiating them in the presence of a magnetic fields similar to those produced by a MRI-linac system. Elekta-MD Anderson Cancer Center Research Agreement.« less

  16. Impact of x-ray dose on the response of CR-39 to 1–5.5 MeV alphas

    DOE PAGES

    Rojas-Herrera, J.; Rinderknecht, H. G.; Zylstra, A. B.; ...

    2015-03-01

    The CR-39 nuclear track detector is used in many nuclear diagnostics fielded at inertial confinement fusion (ICF) facilities. Large x-ray uences generated by ICF experiments may impact the CR-39 response to incident charged particles. To determine the impact of x-ray exposure on the CR-39 response to alpha particles, a thick-target bremsstrahlung x-ray generator was used to expose CR-39 to various doses of 8 keV Cu-K α and K β x-rays. The CR-39 detectors were then exposed to 1-5.5 MeV alphas from an Am-241 source. The regions of the CR-39 exposed to x-rays showed a smaller track diameter than those notmore » exposed to x-rays: for example, a dose of 3.0 ± 0.1 Gy causes a decrease of (19 ± 2)% in the track diameter of a 5.5 MeV alpha particle, while a dose of 60.0 ± 1.3 Gy results in a decrease of (45 ± 5)% in the track diameter. The reduced track diameters were found to be predominantly caused by a comparable reduction in the bulk etch rate of the CR-39 with x-ray dose. A residual effect depending on alpha particle energy is characterized using an empirical formula.« less

  17. Template Synthesis of Nanostructured Polymeric Membranes by Inkjet Printing.

    PubMed

    Gao, Peng; Hunter, Aaron; Benavides, Sherwood; Summe, Mark J; Gao, Feng; Phillip, William A

    2016-02-10

    The fabrication of functional nanomaterials with complex structures has been serving great scientific and practical interests, but current fabrication and patterning methods are generally costly and laborious. Here, we introduce a versatile, reliable, and rapid method for fabricating nanostructured polymeric materials. The novel method is based on a combination of inkjet printing and template synthesis, and its utility and advantages in the fabrication of polymeric nanomaterials is demonstrated through three examples: the generation of polymeric nanotubes, nanowires, and thin films. Layer-by-layer-assembled nanotubes can be synthesized in a polycarbonate track-etched (PCTE) membrane by printing poly(allylamine hydrochloride) and poly(styrenesulfonate) sequentially. This sequential deposition of polyelectrolyte ink enables control over the surface charge within the nanotubes. By a simple change of the printing conditions, polymeric nanotubes or nanowires were prepared by printing poly(vinyl alcohol) in a PCTE template. In this case, the high-throughput nature of the method enables functional nanomaterials to be generated in under 3 min. Furthermore, we demonstrate that inkjet printing paired with template synthesis can be used to generate patterns comprised of chemically distinct nanomaterials. Thin polymeric films of layer-by-layer-assembled poly(allylamine hydrochloride) and poly(styrenesulfonate) are printed on a PCTE membrane. Track-etched membranes covered with the deposited thin films reject ions and can potentially be utilized as nanofiltration membranes. When the fabrication of these different classes of nanostructured materials is demonstrated, the advantages of pairing template synthesis with inkjet printing, which include fast and reliable deposition, judicious use of the deposited materials, and the ability to design chemically patterned surfaces, are highlighted.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bozkurt, A.; Kam, E.

    This study assesses the indoor radon concentrations for the city of Edirne situated in the European part of Turkey (Eastern Thrace). A total of 88 CR-39 nuclear track detectors were kept in basements of the selected apartment buildings and houses for passively determining the indoor radon levels of the dwellings for a period of three months. The detectors were then collected and a chemical process of etching was applied to the films. At this stage, the tracks left by alpha particles on the films exposed to radon gas were visible and were counted with a microscope (500xmagnification) to estimate themore » corresponding indoor radon concentrations. The average indoor radon concentration was found to be 49.2 Bq/m3 equivalent to an annual effective dose of 1.24 mSv. The measurement results obtained in this study show no significant departure from the other parts of the country.« less

  19. AFRRI (Armed Forces Radiobiology Research Institute) Reports, January-March 1985

    DTIC Science & Technology

    1985-01-01

    monkey and human gastric functions Address osl i ,194 Arorlett: July~ (1, 1118. (6). .). and thle drug dosage was close to that ustid inAi~oattno...ionization chambers this requires the use of the two- * dosimeter method. One of the chambers is constructed of A-150 tissue- equivalent (TE) plastic, and...out excessively high flow rates. A photon energy-compensated Geiger- * Muller (GM) dosimeter is often used as the second dosimeter . However

  20. Technology Assessment and Roadmap for the Emergency Radiation Dose Assessment Program (ERDAP)

    DTIC Science & Technology

    2005-06-01

    l2O3:C OSL dosimeters . Overall design is based on similar systems described earlier by Justus et al. (1999) and Huston et al. (2001). Similar apparatus...Radioisotope Contamination 4. Pre-Positioned Physical Dosimeters C. Assessment of Emerging Dosimetry Technologies 1. Biological Measurements 2. Physico...architectures for radiation dose assessment tools. • Focus initial studies on defining the role of pre-positioned dosimeters , optimizing the size and

  1. [Polymer Gel Dosimeter].

    PubMed

    Hayashi, Shin-Ichiro

    2017-01-01

    With rapid advances being made in radiotherapy treatment, three-dimensional (3D) dose measurement techniques of great precision are required more than ever before. It is expected that 3D polymer gel dosimeters will satisfy clinical needs for an effective detector that can measure the complex 3D dose distributions. Polymer gel dosimeters are devices that utilize the radiation-induced polymerization reactions of vinyl monomers in a gel to store information about radiation dose. The 3D absorbed dose distribution can be deduced from the resulting polymer distribution using several imaging modalities, such as MRI, X-ray and optical CTs. In this article, the fundamental characteristics of polymer gel dosimeter are reviewed and some challenging keys are also suggested for the widely spread in clinical use.

  2. Development of TiO2 containing hardmasks through plasma-enhanced atomic layer deposition

    NASA Astrophysics Data System (ADS)

    De Silva, Anuja; Seshadri, Indira; Chung, Kisup; Arceo, Abraham; Meli, Luciana; Mendoza, Brock; Sulehria, Yasir; Yao, Yiping; Sunder, Madhana; Truong, Hoa; Matham, Shravan; Bao, Ruqiang; Wu, Heng; Felix, Nelson M.; Kanakasabapathy, Sivananda

    2017-04-01

    With the increasing prevalence of complex device integration schemes, trilayer patterning with a solvent strippable hardmask can have a variety of applications. Spin-on metal hardmasks have been the key enabler for selective removal through wet strip when active areas need to be protected from dry etch damage. As spin-on metal hardmasks require a dedicated track to prevent metal contamination and are limited in their ability to scale down thickness without compromising on defectivity, there has been a need for a deposited hardmask solution. Modulation of film composition through deposition conditions enables a method to create TiO2 films with wet etch tunability. This paper presents a systematic study on development and characterization of plasma-enhanced atomic layer deposited (PEALD) TiO2-based hardmasks for patterning applications. We demonstrate lithographic process window, pattern profile, and defectivity evaluation for a trilayer scheme patterned with PEALD-based TiO2 hardmask and its performance under dry and wet strip conditions. Comparable structural and electrical performance is shown for a deposited versus a spin-on metal hardmask.

  3. Development of TiO2 containing hardmasks through PEALD deposition

    NASA Astrophysics Data System (ADS)

    De Silva, Anuja; Seshadri, Indira; Chung, Kisup; Arceo, Abraham; Meli, Luciana; Mendoza, Brock; Sulehria, Yasir; Yao, Yiping; Sunder, Madhana; Truong, Hao; Matham, Shravan; Bao, Ruqiang; Wu, Heng; Felix, Nelson M.; Kanakasabapathy, Sivananda

    2017-03-01

    With the increasing prevalence of complex device integration schemes, tri layer patterning with a solvent strippable hardmask can have a variety of applications. Spin-on metal hardmasks have been the key enabler for selective removal through wet strip when active areas need to be protected from dry etch damage. As spin-on metal hardmasks require a dedicated track to prevent metal contamination, and are limited in their ability to scale down thickness without comprising on defectivity, there has been a need for a deposited hardmask solution. Modulation of film composition through deposition conditions enables a method to create TiO2 films with wet etch tunability. This paper presents a systematic study on development and characterization of PEALD deposited TiO2-based hardmasks for patterning applications. We demonstrate lithographic process window, pattern profile, and defectivity evaluation for a tri layer scheme patterned with PEALD based TiO2 hardmask and its performance under dry and wet strip conditions. Comparable structural and electrical performance is shown for a deposited vs a spin-on metal hardmask.

  4. Characterization and implementation of OSL dosimeters for use in evaluating the efficacy of organ-based tube current modulation for CT scans of the face and orbits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marsh, R. M.; Silosky, M., E-mail: michael.silosky@ucdenver.edu

    Purpose: The purpose of this work was to characterize commercially available optically stimulated luminescent (OSL) dosimeters for general clinical applications and apply the results to the development of a method to evaluate the efficacy of a vendor-specific organ-based tube current modulation application for both phantom and clinical computed tomography (CT) scans of the face and orbits. Methods: This study consisted of three components: (1) thorough characterization of the dosimeters for CT scans in phantom, including evaluations of depletion, fading, angular dependence, and conversion from counts to absorbed dose; (2) evaluation of the efficacy of using plastic glasses to position themore » dosimeters over the eyes in both phantom and clinical studies; and (3) preliminary dosimetry measurements made using organ-based tube current modulation in computed tomography dose index (CTDI) and anthropomorphic phantom studies. Results: (1) Depletion effects were found to have a linear relationship with the output of the OSL dosimeters (R{sup 2} = 0.96). Fading was found to affect dosimeter readings during the first two hours following exposure but had no effect during the remaining 60-h period observed. No significant angular dependence was observed for the exposure conditions used in this study (with p-values ranging from 0.9 to 0.26 for all t-tests). Dosimeter counts varied linearly with absorbed dose when measured in the center and 12 o’clock positions of the CTDI phantoms. These linear models of counts versus absorbed dose had overlapping 95% confidence intervals for the intercepts but not for the slopes. (2) When dosimeters were positioned using safety glasses, there was no adverse effect on image quality, and there was no statistically significant difference between this placement and placement of the dosimeters directly on the eyes of the phantom (p = 0.24). (3) When using organ-based tube current modulation, the dose to the lens of the eye was reduced between 19% and 43%, depending on the scan protocol used and the positioning of the phantom. Furthermore, the amount of dose reduction was significantly affected by the vertical position of the phantom, with the largest reduction in dose seen when the phantom was centered in the gantry. Conclusions: (1) An appropriate correction factor, specific to CT scanning, was developed to account for depletion and fading characteristics of the dosimeters. Additionally, an equation to convert dosimeter counts to absorbed dose was established. (2) The use of plastic safety glasses was validated as an appropriate positioning device when measuring dose to the lens of the eye. (3) The use of organ-based tube current modulation can reduce dose to the lens of the eye during CT scanning. The amount of dose reduction, however, is largely influenced by the positioning of the anatomy in the gantry.« less

  5. Characterization and implementation of OSL dosimeters for use in evaluating the efficacy of organ-based tube current modulation for CT scans of the face and orbits.

    PubMed

    Marsh, R M; Silosky, M

    2015-04-01

    The purpose of this work was to characterize commercially available optically stimulated luminescent (OSL) dosimeters for general clinical applications and apply the results to the development of a method to evaluate the efficacy of a vendor-specific organ-based tube current modulation application for both phantom and clinical computed tomography (CT) scans of the face and orbits. This study consisted of three components: (1) thorough characterization of the dosimeters for CT scans in phantom, including evaluations of depletion, fading, angular dependence, and conversion from counts to absorbed dose; (2) evaluation of the efficacy of using plastic glasses to position the dosimeters over the eyes in both phantom and clinical studies; and (3) preliminary dosimetry measurements made using organ-based tube current modulation in computed tomography dose index (CTDI) and anthropomorphic phantom studies. (1) Depletion effects were found to have a linear relationship with the output of the OSL dosimeters (R(2) = 0.96). Fading was found to affect dosimeter readings during the first two hours following exposure but had no effect during the remaining 60-h period observed. No significant angular dependence was observed for the exposure conditions used in this study (with p-values ranging from 0.9 to 0.26 for all t-tests). Dosimeter counts varied linearly with absorbed dose when measured in the center and 12 o'clock positions of the CTDI phantoms. These linear models of counts versus absorbed dose had overlapping 95% confidence intervals for the intercepts but not for the slopes. (2) When dosimeters were positioned using safety glasses, there was no adverse effect on image quality, and there was no statistically significant difference between this placement and placement of the dosimeters directly on the eyes of the phantom (p = 0.24). (3) When using organ-based tube current modulation, the dose to the lens of the eye was reduced between 19% and 43%, depending on the scan protocol used and the positioning of the phantom. Furthermore, the amount of dose reduction was significantly affected by the vertical position of the phantom, with the largest reduction in dose seen when the phantom was centered in the gantry. (1) An appropriate correction factor, specific to CT scanning, was developed to account for depletion and fading characteristics of the dosimeters. Additionally, an equation to convert dosimeter counts to absorbed dose was established. (2) The use of plastic safety glasses was validated as an appropriate positioning device when measuring dose to the lens of the eye. (3) The use of organ-based tube current modulation can reduce dose to the lens of the eye during CT scanning. The amount of dose reduction, however, is largely influenced by the positioning of the anatomy in the gantry.

  6. Room Temperature Ammonia Gas Sensing Using Mixed Conductor based TEMPOS Structures.

    PubMed

    Saroch, Mamta; Srivastava, Sunita; Fink, Dietmar; Chandra, Amita

    2008-10-14

    The current/voltage characteristics of mixed (ion+electron) conductor-based 'TEMPOS' (Tunable Electronic Material with Pores in Oxide on Silicon) structures are reported. TEMPOS are novel electronic MOS-like structures having etched swift heavy ion tracks (i.e., nanopores) in the dielectric layer filled with some conducting material. The three contacts (two on top and one on the bottom), which resemble the classical bipolar or field effect transistor arrangements are, in principle, interchangeable when the overall electrical resistance along the tracks and on the surface are similar. Consequently, three configurations are obtained by interchanging the top contacts with the base contact in electronic circuits. The current/voltage characteristics show a diode like behaviour. Impedance measurements have been made for TEMPOS structures with tracks filled with ion conductors and also mixed conductors to study the ammonia sensing behaviour. The impedance has been found to be a function of frequency and magnitude of the applied signal and concentration of the ammonia solution. This is attributed to the large number of charge carriers (here protons) available for conduction on exposure to ammonia and also to the large surface to volume ratio of the polymer composites embedded in the ion tracks. The measurement of both, the real and imaginary parts of impedance allows one to enhance the detection sensitivity greatly.

  7. Room Temperature Ammonia Gas Sensing Using Mixed Conductor based TEMPOS Structures

    PubMed Central

    Saroch, Mamta; Srivastava, Sunita; Fink, Dietmar; Chandra, Amita

    2008-01-01

    The current/voltage characteristics of mixed (ion+electron) conductor-based ‘TEMPOS’ (Tunable Electronic Material with Pores in Oxide on Silicon) structures̵ are reported. TEMPOS are novel electronic MOS-like structures having etched swift heavy ion tracks (i.e., nanopores) in the dielectric layer filled with some conducting material. The three contacts (two on top and one on the bottom), which resemble the classical bipolar or field effect transistor arrangements are, in principle, interchangeable when the overall electrical resistance along the tracks and on the surface are similar. Consequently, three configurations are obtained by interchanging the top contacts with the base contact in electronic circuits. The current/voltage characteristics show a diode like behaviour. Impedance measurements have been made for TEMPOS structures with tracks filled with ion conductors and also mixed conductors to study the ammonia sensing behaviour. The impedance has been found to be a function of frequency and magnitude of the applied signal and concentration of the ammonia solution. This is attributed to the large number of charge carriers (here protons) available for conduction on exposure to ammonia and also to the large surface to volume ratio of the polymer composites embedded in the ion tracks. The measurement of both, the real and imaginary parts of impedance allows one to enhance the detection sensitivity greatly. PMID:27873874

  8. Solar UV exposure among outdoor workers in Denmark measured with personal UV-B dosimeters: technical and practical feasibility.

    PubMed

    Grandahl, Kasper; Mortensen, Ole Steen; Sherman, David Zim; Køster, Brian; Lund, Paul-Anker; Ibler, Kristina Sophie; Eriksen, Paul

    2017-10-10

    Exposure to solar ultraviolet radiation is a well-known cause of skin cancer. This is problematic for outdoor workers. In Denmark alone, occupational skin cancer poses a significant health and safety risk for around 400,000 outdoor workers. Objective measures of solar ultraviolet radiation exposure are needed to help resolve this problem. This can be done using personal ultraviolet radiation dosimeters. We consider technical and practical feasibility of measuring individual solar ultraviolet exposure at work and leisure in professions with different á priori temporal high-level outdoor worktime, using aluminium gallium nitride (AlGaN) photodiode detector based personal UV-B dosimeters. Essential technical specifications including the spectral and angular responsivity of the dosimeters are described and pre-campaign dosimeter calibration applicability is verified. The scale and conduct of dosimeter deployment and campaign in-field measurements including failures and shortcomings affecting overall data collection are presented. Nationwide measurements for more than three hundred and fifty workers from several different professions were collected in the summer of 2016. On average, each worker's exposure was measured for a 2-week period, which included both work and leisure. Data samples of exposure at work during a Midsummer day show differences across professions. A construction worker received high-level occupational UV exposure most of the working day, except during lunch hour, accumulating to 5.1 SED. A postal service worker was exposed intermittently around noon and in the afternoon, preceded by no exposure forenoon when packing mail, accumulating to 1.6 SED. A crane fitter was exposed only during lunch hour, accumulating to 0.7 SED. These findings are in line with our specialist knowledge as occupational physicians. Large-scale use of personal UV-B dosimeters for measurement of solar ultraviolet radiation exposure at work and leisure in Denmark is indeed feasible from a technical and practical viewpoint. Samples of exposure data shown support the presumption that the Danish campaign UV-B dosimeter measurement dataset can be used to sum and compare exposure between groups of professions with reliable results to be used in future analysis with clinical as well as epidemiological/questionnaire data. This was despite some dosimeter failures and shortcomings.

  9. Initial Characterization of a Gel Patch Dosimeter for In Vivo Dosimetry

    PubMed Central

    Matrosic, C; Culberson, W; Rosen, B; Madsen, E; Frank, G; Bednarz, B

    2016-01-01

    In vivo dosimetry is a greatly underutilized tool for patient safety in clinical external beam radiotherapy treatments, despite being recommended by several national and international organizations (AAPM, ICRU, IAEA, NACP). The reasons for this underutilization mostly relate to the feasibility and cost of in vivo dosimetry methods. Due to the increase in the number of beam angles and dose per fraction in modern treatments, there is a compelling need for a novel dosimeter that is robust and affordable while able to operate properly in these complex conditions. This work presents a gel patch dosimeter as a novel method of in vivo dosimetry. DEFGEL, a 6%T normoxic polyacrylamide gel, was injected into 1-cm thick acrylic molds to create 1-cm thick small cylindrical patch dosimeters. To evaluate the change in optical density due to radiation induced polymerization, dosimeters were scanned before and after irradiation using an in-house developed laser densitometer. The dose-responses of three separate batches of gel were evaluated and compared to check for linearity and repeatability. The response development time was evaluated to ensure that the patch dosimeter could be high throughput. Additionally, the potential of this system to be used as an in vivo dosimeter was tested with a clinically relevant end-to-end in vivo phantom test. All irradiations were performed with a Varian Clinac 21EX at the University of Wisconsin Medical Radiation Research Center (UWMRRC). The dose response of all three batches of gel was found to be linear within the range of 2–20 Gy. At doses below 0.5 Gy the statistical uncertainties were prohibitively large to make quantitative assessments of the results. The three batches demonstrated good repeatability in the range of 2 Gy to up to 10 Gy, with only slight variations in response at higher doses. For low doses the dosimeter fully developed within an hour while at higher doses they fully developed within four hours. During the in vivo phantom test the predicted patch absorbed dose was 4.23 Gy while the readout dose was evaluated to be 4.37 Gy, which corresponds to a 3.2% discrepancy. The dosimeter and densitometer pairing shows promise as an in vivo dosimetry system, especially for hypofractionated or MRI-guided radiotherapy treatments where higher doses are prescribed. PMID:27088207

  10. Initial characterization of a gel patch dosimeter for in vivo dosimetry

    NASA Astrophysics Data System (ADS)

    Matrosic, C.; Culberson, W.; Rosen, B.; Madsen, E.; Frank, G.; Bednarz, B.

    2016-05-01

    In vivo dosimetry is a greatly underutilized tool for patient safety in clinical external beam radiotherapy treatments, despite being recommended by several national and international organizations (AAPM, ICRU, IAEA, NACP). The reasons for this underutilization mostly relate to the feasibility and cost of in vivo dosimetry methods. Due to the increase in the number of beam angles and dose per fraction in modern treatments, there is a compelling need for a novel dosimeter that is robust and affordable while able to operate properly in these complex conditions. This work presents a gel patch dosimeter as a novel method of in vivo dosimetry. DEFGEL, a 6% T normoxic polyacrylamide gel, was injected into 1 cm thick acrylic molds to create 1 cm thick small cylindrical patch dosimeters. To evaluate the change in optical density due to radiation induced polymerization, dosimeters were scanned before and after irradiation using an in-house developed laser densitometer. The dose-responses of three separate batches of gel were evaluated and compared to check for linearity and repeatability. The response development time was evaluated to ensure that the patch dosimeter could be high throughput. Additionally, the potential of this system to be used as an in vivo dosimeter was tested with a clinically relevant end-to-end in vivo phantom test. All irradiations were performed with a Varian Clinac 21EX at the University of Wisconsin Medical Radiation Research Center (UWMRRC). The dose-response of all three batches of gel was found to be linear within the range of 2-20 Gy. At doses below 0.5 Gy the statistical uncertainties were prohibitively large to make quantitative assessments of the results. The three batches demonstrated good repeatability in the range of 2 Gy to up to 10 Gy, with only slight variations in response at higher doses. For low doses the dosimeter fully developed within an hour while at higher doses they fully developed within four hours. During the in vivo phantom test the predicted patch absorbed dose was 4.23 Gy while the readout dose was evaluated to be 4.37 Gy, which corresponds to a 3.2% discrepancy. The dosimeter and densitometer pairing shows promise as an in vivo dosimetry system, especially for hypofractionated or MRI-guided radiotherapy treatments where higher doses are prescribed.

  11. SU-E-T-274: Does Atmospheric Oxygen Affect the PRESAGE Dosimeter?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alqathami, M; Ibbott, G; Blencowe, A

    Purpose: To experimentally determine the influence of atmospheric oxygen on the efficiency of the PRESAGE dosimeter and its reporting system. Methods: Batches of the reporting system – a mixture of chloroform and leuchomalachite green dye – and PRESAGE were prepared in aerobic and anaerobic conditions. For anaerobic batches, samples were deoxygenated by bubbling nitrogen through the dosimeter precursors or reporting system for 10 min. The dosimeters and reporting systems were prepared in spectrophotometric cuvettes and glass vials, respectively, and were irradiated with 6 MV photons to various radiation doses using a clinical linear accelerator. Changes in optical density of themore » dosimeters and reporting system before and after irradiation were measured using a spectrophotometer. In addition, the concentrations of dissolved oxygen were measured using a dissolved oxygen meter. Results: The experiments revealed that oxygen has little influence on the characteristics of PRESAGE, with the radical initiator oxidizing the leucomalachite green even in the presence of oxygen. However, deoxygenation of the reporting system leads to an increase in sensitivity to radiation dose by ∼ 30% when compared to the non-deoxygenated system. A slight improvement in sensitivity (∼ 5%) was also achieved by deoxygenating the PRESAGE precursor prior to casting. Measurement of the dissolved oxygen revealed low levels (0.4 ppm) in the polyurethane precursor used to fabricate the dosimeters, as compared to water (8.6 ppm). In addition, deoxygenation had no effect on the retention of the post-response absorption value of the PRESAGE dosimeter. Conclusion: The results suggest that the presence of oxygen does not inhibit the radiochromic properties of the PRESAGE system. In addition, there were no observed changes in the dose linearity, absorption spectrum and post-response photofading characteristics of the PRESAGE under the conditions investigated.« less

  12. The development of remote wireless radiation dose monitoring system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Jin-woo; Chonbuk National University, Jeonjoo-Si; Jeong, Kyu-hwan

    Internet of things (IoT) technology has recently shown a large flow of IT trends in human life. In particular, our lives are now becoming integrated with a lot of items around the 'smart-phone' with IoT, including Bluetooth, Near Field Communication (NFC), Beacons, WiFi, and Global Positioning System (GPS). Our project focuses on the interconnection of radiation dosimetry and IoT technology. The radiation workers at a nuclear facility should hold personal dosimeters such as a Thermo-Luminescence Dosimeter (TLD), an Optically Stimulated Luminescence Dosimeter (OSL), pocket ionization chamber dosimeters, an Electronic Personal Dosimeter (EPD), or an alarm dosimeter on their body. Somemore » of them have functions that generate audible or visible alarms to radiation workers in a real working area. However, such devices used in radiation fields these days have no functions for communicating with other areas or the responsible personnel in real time. In particular, when conducting a particular task in a high dose area, or a number of repair works within a radiation field, radiation dose monitoring is important for the health of the workers and the work efficiency. Our project aims at the development of a remote wireless radiation dose monitoring system (RWRD) that can be used to monitor the radiation dose in a nuclear facility for radiation workers and a radiation protection program In this project, a radiation dosimeter is the detection device for personal radiation dose, a smart phone is the mobile wireless communication tool, and, Beacon is the wireless starter for the detection, communication, and position of the worker using BLE (Bluetooth Low Energy). In this report, we report the design of the RWRD and a demonstration case in a real radiation field. (authors)« less

  13. An Efficient, Affordable Optically Stimulated Luminescent (OSL) Annealer.

    PubMed

    Abraham, Sara A; Frank, Samuel J; Kearfott, Kimberlee J

    2017-07-01

    Optically stimulated luminescent (OSL) dosimeters are devices used for measuring doses of ionizing radiation. Signal is stored within an OSL material so that when stimulated with light, light of a specific wavelength is emitted in proportion to the integrated ionizing radiation dose. Each interrogation of the material results in the loss of a small fraction of signal, thus allowing multiple interrogations leading to more accurate measurements of dose. In order to reuse a dosimeter, the residual signals from prior doses must be taken into account and subtracted from current readings, adding uncertainty to any future measurements. To reduce these errors when they become large, it is desirable to completely clear the stored signal or anneal the dosimeter. Traditionally, heating the material has accomplished this. In a commercially available dosimeter badge system, the OSL material Al2O3:C is incorporated into a plastic slide that would melt at the necessary high temperatures, which can reach 900 °C, required for annealing. Fortunately, due to the material's high sensitivity to light, OSLs can be optically annealed instead. In order to do this, an affordable OSL dosimeter annealer was designed with inexpensive, exchangeable blue, green, and white high intensity light-emitting diodes (LEDs). Several dosimeters were repeatedly annealed for recorded intervals and then read out. A single dosimeter was partially annealed through repeated interrogations with the LED array from a commercial reader. The signal loss due to the exposure to each light was analyzed to determine the practicality and efficiency of each color. The rate and extent of signal loss was dependent not only on the spectrum of annealing light but on the initial signal levels as well. These findings suggest that blue LEDs are the most promising for effective and rapid clearing of the OSL material Al2O3:C.

  14. Fiber-optic dosimeters for radiation therapy

    NASA Astrophysics Data System (ADS)

    Li, Enbang; Archer, James

    2017-10-01

    According to the figures provided by the World Health Organization, cancer is a leading cause of death worldwide, accounting for 8.8 million deaths in 2015. Radiation therapy, which uses x-rays to destroy or injure cancer cells, has become one of the most important modalities to treat the primary cancer or advanced cancer. The newly developed microbeam radiation therapy (MRT), which uses highly collimated, quasi-parallel arrays of x-ray microbeams (typically 50 μm wide and separated by 400 μm) produced by synchrotron sources, represents a new paradigm in radiotherapy and has shown great promise in pre-clinical studies on different animal models. Measurements of the absorbed dose distribution of microbeams are vitally important for clinical acceptance of MRT and for developing quality assurance systems for MRT, hence are a challenging and important task for radiation dosimetry. On the other hand, during the traditional LINAC based radiotherapy and breast cancer brachytherapy, skin dose measurements and treatment planning also require a high spatial resolution, tissue equivalent, on-line dosimeter that is both economical and highly reliable. Such a dosimeter currently does not exist and remains a challenge in the development of radiation dosimetry. High resolution, water equivalent, optical and passive x-ray dosimeters have been developed and constructed by using plastic scintillators and optical fibers. The dosimeters have peak edge-on spatial resolutions ranging from 50 to 500 microns in one dimension, with a 10 micron resolution dosimeter under development. The developed fiber-optic dosimeters have been test with both LINAC and synchrotron x-ray beams. This work demonstrates that water-equivalent and high spatial resolution radiation detection can be achieved with scintillators and optical fiber systems. Among other advantages, the developed fiber-optic probes are also passive, energy independent, and radiation hard.

  15. Selection and use of TLDS for high precision NERVA shielding measurements

    NASA Technical Reports Server (NTRS)

    Woodsum, H. C.

    1972-01-01

    An experimental evaluation of thermoluminescent dosimeters was performed in order to select high precision dosimeters for a study whose purpose is to measure gamma streaming through the coolant passages of a simulated flight type internal NERVA reactor shield. Based on this study, the CaF2 chip TLDs are the most reproducible dosimeters with reproducibility generally within a few percent, but none of the TLDs tested met the reproducibility criterion of plus or minus 2%.

  16. Measurement of dose given by Co-60 in radiotherapy with TLD-500

    NASA Astrophysics Data System (ADS)

    Tanır, Güneş; Cengiz, Ferhat; Hicabi Bölükdemir, M.

    2012-04-01

    The uses of dosimeters based on optically stimulated luminescence technique have become widespread in clinical applications. In the present study, the dose values given by Cobalt-60 radiotherapy machine were measured with optically stimulated luminescence (OSL) technique using TLD-500 and compared with those of commonly used ionization chamber dosimeter system. The percentage depth dose (DD%) values and graphs were formed. OSL system with TLD-500 can be reliably used as medical and personal dosimeter.

  17. Dosimeter incorporating radiophotoluminescent detectors for thermal neutrons and γ-rays in n-γ fields

    NASA Astrophysics Data System (ADS)

    Salem, Y. O.; Nachab, A.; Roy, C.; Nourreddine, A.

    2016-10-01

    We have developed a dosimeter associating different neutron converters with two radiophotoluminescent detectors to measure thermal neutrons and γ-rays in a mixed n-γ field. Tests show that the H∗(10) and Hp(10) responses to thermal neutrons and γ-rays are linear with detection limits lower than 0.4 mSv. The angular dependence of the dosimeter response is satisfactory and the influence of a phantom on the results is examined.

  18. PNNL Results from 2010 CALIBAN Criticality Accident Dosimeter Intercomparison Exercise

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hill, Robin L.; Conrady, Matthew M.

    2011-10-28

    This document reports the results of the Hanford personnel nuclear accident dosimeter (PNAD) and fixed nuclear accident dosimeter (FNAD) during a criticality accident dosimeter intercomparison exercise at the CEA Valduc Center on September 20-23, 2010. Pacific Northwest National Laboratory (PNNL) participated in a criticality accident dosimeter intercomparison exercise at the Commissariat a Energie Atomique (CEA) Valduc Center near Dijon, France on September 20-23, 2010. The intercomparison exercise was funded by the U.S. Department of Energy, Nuclear Criticality Safety Program, with Lawrence Livermore National Laboratory as the lead Laboratory. PNNL was one of six invited DOE Laboratory participants. The other participatingmore » Laboratories were: Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory (LANL), Savannah River Site (SRS), the Y-12 National Security Complex at Oak Ridge, and Sandia National Laboratory (SNL). The goals of PNNL's participation in the intercomparison exercise were to test and validate the procedures and algorithm currently used for the Hanford personnel nuclear accident dosimeters (PNADs) on the metallic reactor, CALIBAN, to test exposures to PNADs from the side and from behind a phantom, and to test PNADs that were taken from a historical batch of Hanford PNADs that had varying degrees of degradation of the bare indium foil. Similar testing of the PNADs was done on the Valduc SILENE test reactor in 2009 (Hill and Conrady, 2010). The CALIBAN results are reported here.« less

  19. Modern dosimetric tools for 60Co irradiation at high containment laboratories

    PubMed Central

    Twardoski, Barri; Feldmann, Heinz; Bloom, Marshall E.; Ward, Joe

    2011-01-01

    Purpose To evaluate an innovative photo-fluorescent film as a routine dosimetric tool during 60Co irradiations at a high containment biological research laboratory, and to investigate whether manufacturer-provided chamber exposure rates can be used to accurately administer a prescribed dose to biological specimens. Materials and methods Photo-fluorescent, lithium fluoride film dosimeters and National Institutes of Standards and Technology (NIST) transfer dosimeters were co-located in a self-shielded 60Co irradiator and exposed to γ-radiation with doses ranging from 5–85 kGy. Film dose-response relationships were developed for varying temperatures simulating conditions present when irradiating infectious biological specimens. Dose measurement results from NIST transfer dosimeters were compared to doses predicted using manufacturer-provided irradiator chamber exposure rates. Results The film dosimeter exhibited a photo-fluorescent response signal that was consistent and nearly linear in relationship to γ-radiation exposure over a wide dose range. The dosimeter response also showed negligible effects from dose fractionization and humidity. Significant disparities existed between manufacturer-provided chamber exposure rates and actual doses administered. Conclusion This study demonstrates the merit of utilizing dosimetric tools to validate the process of exposing dangerous and exotic biological agents to γ-radiation at high containment laboratories. The film dosimeter used in this study can be utilized to eliminate potential for improperly administering γ-radiation doses. PMID:21961968

  20. High-precision dosimetry for radiotherapy using the optically stimulated luminescence technique and thin Al2O3:C dosimeters.

    PubMed

    Yukihara, E G; Yoshimura, E M; Lindstrom, T D; Ahmad, S; Taylor, K K; Mardirossian, G

    2005-12-07

    The potential of using the optically stimulated luminescence (OSL) technique with aluminium oxide (Al(2)O(3):C) dosimeters for a precise and accurate estimation of absorbed doses delivered by high-energy photon beams was investigated. This study demonstrates the high reproducibility of the OSL measurements and presents a preliminary determination of the depth-dose curve in water for a 6 MV photon beam from a linear accelerator. The uncertainty of a single OSL measurement, estimated from the variance of a large sample of dosimeters irradiated with the same dose, was 0.7%. In the depth-dose curve obtained using the OSL technique, the difference between the measured and expected doses was < or =0.7% for depths between 1.5 and 10 cm, and 1.1% for a depth of 15 cm. The readout procedure includes a normalization of the response of the dosimeter with respect to a reference dose in order to eliminate variations in the dosimeter mass, dosimeter sensitivity, and the reader's sensitivity. This may be relevant for quality assurance programmes, since it simplifies the requirements in terms of personnel training to achieve the precision and accuracy necessary for radiotherapy applications. We concluded that the OSL technique has the potential to be reliably incorporated in quality assurance programmes and dose verification.

  1. Dose rate dependence for different dosimeters and detectors: TLD, OSL, EBT films, and diamond detectors.

    PubMed

    Karsch, L; Beyreuther, E; Burris-Mog, T; Kraft, S; Richter, C; Zeil, K; Pawelke, J

    2012-05-01

    The use of laser accelerators in radiation therapy can perhaps increase the low number of proton and ion therapy facilities in some years due to the low investment costs and small size. The laser-based acceleration technology leads to a very high peak dose rate of about 10(11) Gy∕s. A first dosimetric task is the evaluation of dose rate dependence of clinical dosimeters and other detectors. The measurements were done at ELBE, a superconductive linear electron accelerator which generates electron pulses with 5 ps length at 20 MeV. The different dose rates are reached by adjusting the number of electrons in one beam pulse. Three clinical dosimeters (TLD, OSL, and EBT radiochromic films) were irradiated with four different dose rates and nearly the same dose. A faraday cup, an integrating current transformer, and an ionization chamber were used to control the particle flux on the dosimeters. Furthermore two diamond detectors were tested. The dosimeters are dose rate independent up to 4●10(9) Gy∕s within 2% (OSL and TLD) and up to 15●10(9) Gy∕s within 5% (EBT films). The diamond detectors show strong dose rate dependence. TLD, OSL dosimeters, and EBT films are suitable for pulsed beams with a very high pulse dose rate like laser accelerated particle beams.

  2. Dose rate dependence for different dosimeters and detectors: TLD, OSL, EBT films, and diamond detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karsch, L.; Beyreuther, E.; Burris-Mog, T.

    Purpose: The use of laser accelerators in radiation therapy can perhaps increase the low number of proton and ion therapy facilities in some years due to the low investment costs and small size. The laser-based acceleration technology leads to a very high peak dose rate of about 10{sup 11} Gy/s. A first dosimetric task is the evaluation of dose rate dependence of clinical dosimeters and other detectors. Methods: The measurements were done at ELBE, a superconductive linear electron accelerator which generates electron pulses with 5 ps length at 20 MeV. The different dose rates are reached by adjusting the numbermore » of electrons in one beam pulse. Three clinical dosimeters (TLD, OSL, and EBT radiochromic films) were irradiated with four different dose rates and nearly the same dose. A faraday cup, an integrating current transformer, and an ionization chamber were used to control the particle flux on the dosimeters. Furthermore two diamond detectors were tested. Results: The dosimeters are dose rate independent up to 410{sup 9} Gy/s within 2% (OSL and TLD) and up to 1510{sup 9} Gy/s within 5% (EBT films). The diamond detectors show strong dose rate dependence. Conclusions: TLD, OSL dosimeters, and EBT films are suitable for pulsed beams with a very high pulse dose rate like laser accelerated particle beams.« less

  3. Development of Solid Ceramic Dosimeters for the Time-Integrative Passive Sampling of Volatile Organic Compounds in Waters.

    PubMed

    Bonifacio, Riza Gabriela; Nam, Go-Un; Eom, In-Yong; Hong, Yong-Seok

    2017-11-07

    Time-integrative passive sampling of volatile organic compounds (VOCs) in water can now be accomplished using a solid ceramic dosimeter. A nonporous ceramic, which excludes the permeation of water, allowing only gas-phase diffusion of VOCs into the resin inside the dosimeter, effectively captured the VOCs. The mass accumulation of 11 VOCs linearly increased with time over a wide range of aqueous-phase concentrations (16.9 to 1100 μg L -1 ), and the linearity was dependent upon the Henry's constant (H). The average diffusivity of the VOCs in the solid ceramic was 1.46 × 10 -10 m 2 s -1 at 25 °C, which was 4 orders of magnitude lower than that in air (8.09 × 10 -6 m 2 s -1 ). This value was 60% greater than that in the water-permeable porous ceramic (0.92 × 10 -10 m 2 s -1 ), suggesting that its mass accumulation could be more effective than that of porous ceramic dosimeters. The mass accumulation of the VOCs in the solid ceramic dosimeter increased in the presence of salt (≥0.1 M) and with increasing temperature (4 to 40 °C) but varied only slightly with dissolved organic matter concentration. The solid ceramic dosimeter was suitable for the field testing and measurement of time-weighted average concentrations of VOC-contaminated waters.

  4. LOW-COST PERSONNEL DOSIMETER.

    DTIC Science & Technology

    specification was achieved by simplifying and improving the basic Bendix dosimeter design, using plastics for component parts, minimizing direct labor, and making the instrument suitable for automated processing and assembly. (Author)

  5. Performance improvement of pentacosa-diynoic acid label dosimeter for radiation processing technology

    NASA Astrophysics Data System (ADS)

    Abdel-Fattah, A. A.; Soliman, Y. S.

    2017-12-01

    A radiation sensitive material, 10,12-pentacosa-diynoic acid (PCDA), was incorporated into polyvinyl butyral (PVB) films to develop indicators/dosimeters for blood and food irradiation. The present study aims to improve the dosimetric performance of these previously prepared dosimeters and to extend their shelf life by the combination of a radical scavenger, propyl gallate (PG), and a UV absorber, tinuvin-p (TP). The X-ray diffraction (XRD) patterns of the dosimeters were analysed and their dosimetric characteristics were investigated by specular reflectance in the visible spectrum range of 400-700 nm. Upon irradiation, the films turn blue exhibiting two main bands around 670 and 620 nm. Their dose-response functions were fitted by a double exponential growth, 5 parameters, equation. Irradiation temperature influences the dosimeter response at 670 nm without causing thermochromic transition up to 50 °C in poly-PCDA. The useful dose range is 5-4000 Gy depending on the wavelengths of analysis and PCDA content in the films. The overall uncertainty of dose measurement is less than 6% at 2σ.

  6. SU-E-CAMPUS-T-02: Exploring Radiation Acoustics CT Dosimeter Design Aspects for Proton Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alsanea, F; Moskvin, V; Stantz, K

    2014-06-15

    Purpose: Investigate the design aspects and imaging dose capabilities of the Radiation Acoustics Computed Tomography (RA CT) dosimeter for Proton induced acoustics, with the objective to characterize a pulsed pencil proton beam. The focus includes scanner geometry, transducer array, and transducer bandwidth on image quality. Methods: The geometry of the dosimeter is a cylindrical water phantom (length 40cm, radius 15cm) with 71 ultrasound transducers placed along the length and end of the cylinder to achieve a weighted set of projections with spherical sampling. A 3D filtered backprojection algorithm was used to reconstruct the dosimetric images and compared to MC dosemore » distribution. First, 3D Monte Carlo (MC) Dose distributions for proton beam energies (range of 12cm, 16cm, 20cm, and 27cm) were used to simulate the acoustic pressure signal within this scanner for a pulsed proton beam of 1.8x107 protons, with a pulse width of 1 microsecond and a rise time of 0.1 microseconds. Dose comparison within the Bragg peak and distal edge were compared to MC analysis, where the integrated Gaussian was used to locate the 50% dose of the distal edge. To evaluate spatial fidelity, a set of point sources within the scanner field of view (15×15×15cm3) were simulated implementing a low-pass bandwidth response function (0 to 1MHz) equivalent to a multiple frequency transducer array, and the FWHM of the point-spread-function determined. Results: From the reconstructed images, RACT and MC range values are within 0.5mm, and the average variation of the dose within the Bragg peak are within 2%. The spatial resolution tracked with transducer bandwidth and projection angle sampling, and can be kept at 1.5mm. Conclusion: This design is ready for fabrication to start acquiring measurements. The 15 cm FOV is an optimum size for imaging dosimetry. Currently, simulations comparing transducer sensitivity, bandwidth, and proton beam parameters are being evaluated to assess signal-to-noise.« less

  7. Integration of miniature Fabry-Perot fiber optic sensor with FBG for the measurement of temperature and strain

    NASA Astrophysics Data System (ADS)

    Li, L.; Tong, X. L.; Zhou, C. M.; Wen, H. Q.; Lv, D. J.; Ling, K.; Wen, C. S.

    2011-03-01

    A sensor has been fabricated by the integration of a fiber Bragg gating sensor (FBGs) with a fiber Fabry-Perot (F-P) sensor fabricated by etching method. In the integrated sensor, the FBG was used to measure temperature, while the fiber Fabry-Perot interferometer sensor (FFPIs) was used for strain measurement. Wavelength decoding for FBG and peak tracking for FFPI was employed for demodulation, respectively. The result showed that the temperature and strain sensitivity for the integrated sensor is ~ 2.7 pm/ μɛand ~ 9.3 pm/°C, respectively.

  8. Electrochemical Growth of Single-Crystal Metal Nanowires via a Two-Dimensional Nucleation and Growth Mechanism.

    PubMed

    Tian, Mingliang; Wang, Jinguo; Kurtz, James; Mallouk, Thomas E; Chan, M H W

    2003-07-01

    Metallic nanowires (Au, Ag, Cu, Ni, Co, and Rh) with an average diameter of 40 nm and a length of 3-5 μm have been fabricated by electrodeposition in the pores of track-etched polycarbonate membranes. Structural characterizations by transmission electron microscopy (TEM) and electron diffraction showed that nanowires of Au, Ag, and Cu are single-crystalline with a preferred [111] orientation, whereas Ni, Co, and Rh wires are polycrystalline. Possible mechanisms responsible for nucleation and growth for single-crystal noble metals versus polycrystalline group VIII-B metals are discussed.

  9. Study of the Anatomy of the X-Ray and Neutron Production Scaling Laws in the Plasma Focus.

    DTIC Science & Technology

    1980-05-15

    plasma focus discharge in deuterium as an extension of our previous work on scaling laws of x-ray and neutron production. The structure of dense plasmoids which emit MeV ions has been recorded by ion imaging with pinhole camera and contact print techniques. The plasmoids are generated in the same region in which particle beams, neutron and x-ray emission reach a maximum of intensity. Sharply defined boundaries of the ion-beam source and of plasmoids have been obtained by ion track etching on plastic material

  10. Exposure to radon in the Gadime Cave, Kosovo.

    PubMed

    Bahtijari, M; Vaupotic, J; Gregoric, A; Stegnar, P; Kobal, I

    2008-02-01

    Air radon concentration was measured in summer and winter at 11 points along the tourist guided route in the Gadime Cave in Kosovo using alpha scintillation cells and etched track detectors. At two points in summer, values higher than 1700Bqm(-3) were observed; they otherwise were in the range 400-1000Bqm(-3). Values were lower in winter. The effective dose received by a person during a 90min visit is 3.7microSv in summer and 2.5microSv in winter. For a tourist guide the annual effective dose is less than 3.5mSv.

  11. Evaluation of a LiF:Mg,Ti thermoluminescent ring dosimeter according to the IEC 62387:2012 Standards

    NASA Astrophysics Data System (ADS)

    Oliveira, Edyelle L. B.; de Barros, Vinícius S. M.; Asfora, Viviane K.; Khoury, Helen J.

    2018-03-01

    This work shows results of type testing of a ring radiation dosimeter system under IEC 62387:2012. The personal dosimeter investigated in this work consists of a commercial one element plastic ring which contains an LiF:Mg,Ti thermoluminescent pellet. By applying requirements for statistical fluctuations and linearity, a minimum measurable dose in Hp(0.07) was established. Energy and angular dependence aided in determining energy correction factors and fading requirements were used to select the most appropriate preheat scheme. Type testing of passive radiation monitors was performed in the Radiation Metrology Laboratory (LMRI-DEN/UFPE) of the Federal University of Pernambuco and is a major step in Brazil for the independent evaluation of these dosimeters, currently not available in the country.

  12. Results from Preliminary Checks on AmBe Neutron Source Number 71

    DTIC Science & Technology

    2011-02-01

    radiation and additional lead shielding was used to shield against gamma radiation emissions. Electronic dosimeters , the MGP DMC2000GN and Thermo EPD...DMC2000GN (S/N: 007395) and EPD-N2 (S/N: 07106323) electronic dosimeters were employed as these both are able to measure and record gamma and neutron...the AN/VDR-2 gamma radiation meter and Meridian Model 5085 neutron meter to confirm this and electronic dosimeters would be worn by personnel to

  13. The Demonstration and Science Experiments (DSX): A Fundamental Science Research Mission Advancing Technologies that Enable MEO Spaceflight

    DTIC Science & Technology

    2006-01-01

    dosimeters aboard the TSX5 and DSP satellites in LEO and GEO, respectively. Figure 13. Space weather data from TSX5 and DSP The Space Weather...capabilities are described in detail in the following sub- sections. 3.2.1 Compact Environment Anomaly Sensor (CEASE) Composed of two dosimeters , two...for DSX is that CEASE will capture and downlink the full dose spectra from each dosimeter , whereas prior versions only captured six reduced data

  14. Personnel Radiation Exposure Associated With X-Rays Emanating from U.S. Coast Guard LORAN High Voltage Vacuum Tube Transmitter Units

    DTIC Science & Technology

    2011-07-01

    dosimeter program. Unfortunately, this limited personnel monitoring program did not address the case of an individual who may have performed...and forearms; feet and ankles 18 ¾ Skin of whole body 7 ½ The USCG does maintain a small radiation personnel dosimeter monitoring program for x...ray technicians at USCG medical clinics (USCG, 2006). This medical clinic dosimeter program reflects a civilian standard of practice, where the x-ray

  15. Overview of the AFRL’s Demonstration and Science Experiments (DSX) Program

    DTIC Science & Technology

    2006-09-01

    most of the space weather data to-date has been accumulated in the LEO and GEO regimes, as illustrated in Figure 11 with data from dosimeters aboard...Composed of two dosimeters , two particle telescopes and a Single Event Effect detector, CEASE has the capability to monitor a broad range of space...panel of the payload module. One change for DSX is that CEASE will capture and downlink the full dose spectra from each dosimeter , whereas prior

  16. Environmental Monitoring Instrumentation and Monitoring Techniques for Space Shuttle Launches.

    DTIC Science & Technology

    1983-07-01

    Monitoring Instrumentation 32 1. Chemiluminescence HCl 32 2. Passive Dosimeter 34 3. Piezoelectric Quartz Crystal Microbalance 34 iJ ,- r, T , .{ , , : , Z...Sensing for STS Launohes 44 IV. SUISIAiR AND CONCLUSIONS 45 V. IBCOIMXIONS 47 References 49 Appendix A - Dosimeter Tube Monitoring Results 52 B - TenaxR...Monitoring Results 6 3 Summary of GBOMET HCI Data for the Launches of STS-i through 8 STS-5 at KSC 4 Dosimeter Tube Inlet Configuration Comparison 14 5 pH

  17. Using 3D dosimetry to quantify the Electron Return Effect (ERE) for MR-image-guided radiation therapy (MR-IGRT) applications

    NASA Astrophysics Data System (ADS)

    Lee, Hannah J.; Choi, Gye Won; Alqathami, Mamdooh; Kadbi, Mo; Ibbott, Geoffrey

    2017-05-01

    Image-guided radiation therapy (IGRT) using computed tomography (CT), cone-beam CT, MV on-board imager (OBI), and kV OBI systems have allowed for more accurate patient positioning prior to each treatment fraction. While these imaging modalities provide excellent bony anatomy image quality, MRI surpasses them in soft tissue image contrast for better visualization and tracking of soft tissue tumors with no additional radiation dose to the patient. A pre-clinical integrated 1.5 T magnetic resonance imaging and 7 MV linear accelerator system (MR-linac) allows for real-time tracking of soft tissues and adaptive treatment planning prior to each treatment fraction. However, due to the presence of a strong magnetic field from the MR component, there is a three dimensional (3D) change in dose deposited by the secondary electrons. Especially at nonhomogeneous anatomical sites with tissues of very different densities, dose enhancements and reductions can occur due to the Lorentz force influencing the trajectories of secondary electrons. These dose changes at tissue interfaces are called the electron return effect or ERE. This study investigated the ERE using 3D dosimeters.

  18. Westinghouse Hanford Company health and safety performance report. Fourth quarter calendar year 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lansing, K.A.

    1995-03-01

    Detailed information pertaining to As Low As Reasonably Achievable/Contamination Control Improvement Project (ALARA/CCIP) activities are outlined. Improved commitment to the WHC ALARA/CCIP Program was experienced throughout FY 1994. During CY 1994, 17 of 19 sitewide ALARA performance goals were completed on or ahead of schedule. Estimated total exposure by facility for CY 1994 is listed in tables by organization code for each dosimeter frequency. Facilities/areas continue to utilize the capabilities of the RPR tracking system in conjunction with the present site management action-tracking system to manage deficiencies, trend performance, and develop improved preventive efforts. Detailed information pertaining to occupational injuries/illnessesmore » are provided. The Industrial Safety and Hygiene programs are described which have generated several key initiatives that are believed responsible for improved safety performance. A breakdown of CY 1994 occupational injuries/illnesses by type, affected body group, cause, job type, age/gender, and facility is provided. The contributing experience of each WHC division/department in attaining this significant improvement is described along with tables charting specific trends. The Radiological Control Program is on schedule to meet all RL Site Management System milestones and program commitments.« less

  19. Characterization of MOSFET dosimeter angular dependence in three rotational axes measured free-in-air and in soft-tissue equivalent material.

    PubMed

    Koivisto, Juha; Kiljunen, Timo; Wolff, Jan; Kortesniemi, Mika

    2013-09-01

    When performing dose measurements on an X-ray device with multiple angles of irradiation, it is necessary to take the angular dependence of metal-oxide-semiconductor field-effect transistor (MOSFET) dosimeters into account. The objective of this study was to investigate the angular sensitivity dependence of MOSFET dosimeters in three rotational axes measured free-in-air and in soft-tissue equivalent material using dental photon energy. Free-in-air dose measurements were performed with three MOSFET dosimeters attached to a carbon fibre holder. Soft tissue measurements were performed with three MOSFET dosimeters placed in a polymethylmethacrylate (PMMA) phantom. All measurements were made in the isocenter of a dental cone-beam computed tomography (CBCT) scanner using 5º angular increments in the three rotational axes: axial, normal-to-axial and tangent-to-axial. The measurements were referenced to a RADCAL 1015 dosimeter. The angular sensitivity free-in-air (1 SD) was 3.7 ± 0.5 mV/mGy for axial, 3.8 ± 0.6 mV/mGy for normal-to-axial and 3.6 ± 0.6 mV/mGy for tangent-to-axial rotation. The angular sensitivity in the PMMA phantom was 3.1 ± 0.1 mV/mGy for axial, 3.3 ± 0.2 mV/mGy for normal-to-axial and 3.4 ± 0.2 mV/mGy for tangent-to-axial rotation. The angular sensitivity variations are considerably smaller in PMMA due to the smoothing effect of the scattered radiation. The largest decreases from the isotropic response were observed free-in-air at 90° (distal tip) and 270° (wire base) in the normal-to-axial and tangent-to-axial rotations, respectively. MOSFET dosimeters provide us with a versatile dosimetric method for dental radiology. However, due to the observed variation in angular sensitivity, MOSFET dosimeters should always be calibrated in the actual clinical settings for the beam geometry and angular range of the CBCT exposure.

  20. Characterization of MOSFET dosimeter angular dependence in three rotational axes measured free-in-air and in soft-tissue equivalent material

    PubMed Central

    Koivisto, Juha; Kiljunen, Timo; Wolff, Jan; Kortesniemi, Mika

    2013-01-01

    When performing dose measurements on an X-ray device with multiple angles of irradiation, it is necessary to take the angular dependence of metal-oxide-semiconductor field-effect transistor (MOSFET) dosimeters into account. The objective of this study was to investigate the angular sensitivity dependence of MOSFET dosimeters in three rotational axes measured free-in-air and in soft-tissue equivalent material using dental photon energy. Free-in-air dose measurements were performed with three MOSFET dosimeters attached to a carbon fibre holder. Soft tissue measurements were performed with three MOSFET dosimeters placed in a polymethylmethacrylate (PMMA) phantom. All measurements were made in the isocenter of a dental cone-beam computed tomography (CBCT) scanner using 5º angular increments in the three rotational axes: axial, normal-to-axial and tangent-to-axial. The measurements were referenced to a RADCAL 1015 dosimeter. The angular sensitivity free-in-air (1 SD) was 3.7 ± 0.5 mV/mGy for axial, 3.8 ± 0.6 mV/mGy for normal-to-axial and 3.6 ± 0.6 mV/mGy for tangent-to-axial rotation. The angular sensitivity in the PMMA phantom was 3.1 ± 0.1 mV/mGy for axial, 3.3 ± 0.2 mV/mGy for normal-to-axial and 3.4 ± 0.2 mV/mGy for tangent-to-axial rotation. The angular sensitivity variations are considerably smaller in PMMA due to the smoothing effect of the scattered radiation. The largest decreases from the isotropic response were observed free-in-air at 90° (distal tip) and 270° (wire base) in the normal-to-axial and tangent-to-axial rotations, respectively. MOSFET dosimeters provide us with a versatile dosimetric method for dental radiology. However, due to the observed variation in angular sensitivity, MOSFET dosimeters should always be calibrated in the actual clinical settings for the beam geometry and angular range of the CBCT exposure. PMID:23520268

  1. ULTRASONIC NEUTRON DOSIMETER

    DOEpatents

    Truell, R.; de Klerk, J.; Levy, P.W.

    1960-02-23

    A neutron dosimeter is described which utilizes ultrasonic waves in the megacycle region for determination of the extent of neutron damage in a borosilicate glass through ultrasonic wave velocity and attenuation measurements before and after damage.

  2. Introducing etch kernels for efficient pattern sampling and etch bias prediction

    NASA Astrophysics Data System (ADS)

    Weisbuch, François; Lutich, Andrey; Schatz, Jirka

    2018-01-01

    Successful patterning requires good control of the photolithography and etch processes. While compact litho models, mainly based on rigorous physics, can predict very well the contours printed in photoresist, pure empirical etch models are less accurate and more unstable. Compact etch models are based on geometrical kernels to compute the litho-etch biases that measure the distance between litho and etch contours. The definition of the kernels, as well as the choice of calibration patterns, is critical to get a robust etch model. This work proposes to define a set of independent and anisotropic etch kernels-"internal, external, curvature, Gaussian, z_profile"-designed to represent the finest details of the resist geometry to characterize precisely the etch bias at any point along a resist contour. By evaluating the etch kernels on various structures, it is possible to map their etch signatures in a multidimensional space and analyze them to find an optimal sampling of structures. The etch kernels evaluated on these structures were combined with experimental etch bias derived from scanning electron microscope contours to train artificial neural networks to predict etch bias. The method applied to contact and line/space layers shows an improvement in etch model prediction accuracy over standard etch model. This work emphasizes the importance of the etch kernel definition to characterize and predict complex etch effects.

  3. System for use with solid state dosimeter

    DOEpatents

    Miller, Steven D.; McDonald, Joseph C.; Eichner, Fred N.; Tomeraasen, Paul L.

    1990-01-01

    The present invention constitutes a system for determining the amounts of ionizing radiation to which dosimeters using thermoluminescent materials have been exposed. In accordance with this system, the thermoluminescent materials which comprise the dosimeters are first cooled by contact with a cryogenic substance such as liquified nitrogen. The thermoluminescent materials are then optically stimulated by exposure to ultraviolet light. Thereafter, the amounts of visible light emitted by the thermoluminescent materials are detected and counted as the materials are allowed to warm up to room temperature. The amounts of luminescence exhibited by the materials are related to radiation exposure and provide a sensitive measure of radiation dosage. It has been discovered that the above procedure is most effective when heavily doped thermoluminescent materials are used and that the procedure allows many useful plastic materials to now be employed in dosimeter constructions.

  4. System for use with solid state dosimeter

    DOEpatents

    Miller, S.D.; McDonald, J.C.; Eichner, F.N.; Tomeraasen, P.L.

    1990-09-04

    The present invention constitutes a system for determining the amounts of ionizing radiation to which dosimeters using thermoluminescent materials have been exposed. In accordance with this system, the thermoluminescent materials which comprise the dosimeters are first cooled by contact with a cryogenic substance such as liquefied nitrogen. The thermoluminescent materials are then optically stimulated by exposure to ultraviolet light. Thereafter, the amounts of visible light emitted by the thermoluminescent materials are detected and counted as the materials are allowed to warm up to room temperature. The amounts of luminescence exhibited by the materials are related to radiation exposure and provide a sensitive measure of radiation dosage. It has been discovered that the above procedure is most effective when heavily doped thermoluminescent materials are used and that the procedure allows many useful plastic materials to now be employed in dosimeter constructions. 3 figs.

  5. Development and evaluation of multi-energy PbO dosimeter for quality assurance of image-guide radiation therapy devices

    NASA Astrophysics Data System (ADS)

    Kim, Kyo-Tae; Heo, Ye-Ji; Han, Moo-Jae; Oh, Kyung-Min; Lee, Young-Kyu; Kim, Shin-Wook; Park, Sung-Kwang

    2017-04-01

    In radiation therapy, accurate radiotherapy treatment plan (RTP) reproduction is necessary to optimize the clinical results. Thus, attempts have recently been made to ensure high RTP reproducibility using image-guide radiation therapy (IGRT) technology. However, the clinical use of digital X-ray equipment requires extended quality assurance (QA) for those devices, since the IGRT device quality determines the precision of intensity-modulated radiation therapy. The study described in this paper was focused on developing a multi-energy PbO dosimeter for IGRT device QA. The Schottky-type polycrystalline PbO dosimeter with a Au/PbO/ITO structure was evaluated by comparing its response coincidence, dose linearity, measurement reproducibility, linear attenuation coefficient, and percent depth dose with those of Si diode and standard ionization chamber dosimeters.

  6. The study of N-isopropylacrylamide gel dosimeter doped iodinated contrast agents

    NASA Astrophysics Data System (ADS)

    Chang, Y. J.; Hsieh, L. L.; Liu, M. H.; Liu, J. S.; Hsieh, B. T.

    2013-06-01

    Low toxicity of N-isopropylacrylamide (NIPAM) dosimeter was doped with clinical iodinated contrast medium agents(Iobitridol (Xenetix® 350) and organically bound iodine (Conray® 60) as radiation sensitizers; The suitable gel dosimeter preparation formula in this research was 5 w/w% gelatin, 5 w/w% N-isopropylacrylamide, 3 w/w% N,N-methylene-bis-acrylamide, and 5 mM Tetrakis phosphonium chloride. The spiral CT was irradiator, and 120 kVp was the operating tube voltage. The maximum radiation dose was 0.6 Gy, and optical CT was the gel measurement device used. The results showed SERs with the addition of radiosensitizers were 10.70 (Xenetix® 350) and 9.67 (Conray® 60), respectively. Thus, the polymerized gel dosimeter could be used in the efficacy evaluation of low-energy and low-radiation dose.

  7. Redox-Phen solution: A water equivalent dosimeter for UVA, UVB and X-rays radiation

    NASA Astrophysics Data System (ADS)

    Marini, A.; Ciribolla, C.; Lazzeri, L.; d'Errico, F.

    2018-06-01

    Polysulphone films are the only type of UV passive dosimeters that are widely adopted for research and personal monitoring. Even though many studies concentrated on the development and characterization of these films, they still present some shortcomings. The more important limitations of them are that they can measure only UVB radiations and that they change color at 330 nm, requiring special equipment to read them. To overcome these limitations we developed an aqueous dosimeter that is sensitive to UVA, UVB and X-rays named Redox-Phen solution. This dosimeter is inexpensive and water equivalent, being made of more than 99 wt% of water. It changes color in the visible region upon irradiation, thus it can be measured via simple optical method, and an evaluation of the exposition can be made also by naked eyes.

  8. Estimation of the influence of radical effect in the proton beams using a combined approach with physical data and gel data

    NASA Astrophysics Data System (ADS)

    Haneda, K.

    2016-04-01

    The purpose of this study was to estimate an impact on radical effect in the proton beams using a combined approach with physical data and gel data. The study used two dosimeters: ionization chambers and polymer gel dosimeters. Polymer gel dosimeters have specific advantages when compared to other dosimeters. They can measure chemical reaction and they are at the same time a phantom that can map in three dimensions continuously and easily. First, a depth-dose curve for a 210 MeV proton beam measured using an ionization chamber and a gel dosimeter. Second, the spatial distribution of the physical dose was calculated by Monte Carlo code system PHITS: To verify of the accuracy of Monte Carlo calculation, and the calculation results were compared with experimental data of the ionization chamber. Last, to evaluate of the rate of the radical effect against the physical dose. The simulation results were compared with the measured depth-dose distribution and showed good agreement. The spatial distribution of a gel dose with threshold LET value of proton beam was calculated by the same simulation code. Then, the relative distribution of the radical effect was calculated from the physical dose and gel dose. The relative distribution of the radical effect was calculated at each depth as the quotient of relative dose obtained using physical and gel dose. The agreement between the relative distributions of the gel dosimeter and Radical effect was good at the proton beams.

  9. Alternative chitosan-based EPR dosimeter applicable for a relatively wide range of gamma radiation doses

    NASA Astrophysics Data System (ADS)

    Piroonpan, Thananchai; Katemake, Pichayada; Panritdam, Eagkapong; Pasanphan, Wanvimol

    2017-12-01

    Chitosan biopolymer is proposed as an alternative EPR dosimeter. Its ability to be EPR dosimeter was studied in comparison with the conventional alanine, sugars (i.e., glucose and sucrose), formate derivatives (i.e., lithium (Li), magnesium (Mg), and calcium (Ca) formate). Ethylene vinyl acetate (EVA) and paraffin were used as binder for the preparation of composite EPR dosimeter. Dose responses of all materials were investigated in a wide dose range of radiation doses, i.e., low-level (0-1 kGy), medium-level (1-10 kGy) and high-level (10-100 kGy). The EPR dosimeter properties were studied under different parameters, i.e., microwave power, materials contents, absorbed doses, storage conditions and post-irradiation effects. Li-formate showed a simple EPR spectrum and exhibited superior radiation response for low-dose range; whereas chitosan and sucrose exhibited linear dose response in all studied dose ranges. The EPR signals of chitosan exhibited similar stability as glucose, Li-formate and alanine at ambient temperature after irradiation as long as a year. All EPR signals of the studied materials were affected post-irradiation temperature and humidity after gamma irradiation. The EPR signal of chitosan exhibited long-term stability and it was not sensitive to high storage temperatures and humidity values after irradiation. Chitosan has a good merit as the alternative bio-based material for a stable EPR dosimeter in a wide range of radiation-absorbed doses.

  10. a Thermally Desorbable Miniature Passive Dosimeter for Organic Vapors

    NASA Astrophysics Data System (ADS)

    Gonzalez, Jesus Antonio

    A thermally desorbable miniature passive dosimeter (MPD) for organic vapors has been developed in conformity with theoretical and practical aspects of passive dosimeter design. The device was optimized for low sample loadings resulting from short-term and/or low concentration level exposure. This was accomplished by the use of thermal desorption rather than solvent elution, which provided the GC method with significantly higher sensitivity. Laboratory evaluation of this device for factors critical to the performance of passive dosimeters using benzene as the test vapor included: desorption efficiency (97.2%), capacity (1400 ppm-min), sensitivity (7ng/sample or 0.06 ppmv for 15 minutes sampling) accuracy and precision, concentration level, environmental conditions (i.e., air face velocity, relative humidity) and sample stability during short (15 minutes) and long periods of time (15 days). This device has demonstrated that its overall accuracy meets NIOSH and OSHA requirements for a sampling and analytical method for the exposure concentration range of 0.1 to 50 ppm (v/v) and 15 minutes exposures. It was demonstrated that the MPD operates in accordance with theoretically predicted performance and should be adequate for short-term and/or low concentration exposure monitoring of organic vapors in the workplace. In addition a dynamic vapor exposure evaluation system for passive dosimeters have been validated using benzene as the test vapor. The system is capable of generating well defined short-square wave concentration profiles suitable for the evaluation of passive dosimeters for ceiling exposure monitoring.

  11. Dose verification to cochlea during gamma knife radiosurgery of acoustic schwannoma using MOSFET dosimeter.

    PubMed

    Sharma, Sunil D; Kumar, Rajesh; Akhilesh, Philomina; Pendse, Anil M; Deshpande, Sudesh; Misra, Basant K

    2012-01-01

    Dose verification to cochlea using metal oxide semiconductor field effect transistor (MOSFET) dosimeter using a specially designed multi slice head and neck phantom during the treatment of acoustic schwannoma by Gamma Knife radiosurgery unit. A multi slice polystyrene head phantom was designed and fabricated for measurement of dose to cochlea during the treatment of the acoustic schwannoma. The phantom has provision to position the MOSFET dosimeters at the desired location precisely. MOSFET dosimeters of 0.2 mm x 0.2 mm x 0.5 μm were used to measure the dose to the cochlea. CT scans of the phantom with MOSFETs in situ were taken along with Leksell frame. The treatment plans of five patients treated earlier for acoustic schwannoma were transferred to the phantom. Dose and coordinates of maximum dose point inside the cochlea were derived. The phantom along with the MOSFET dosimeters was irradiated to deliver the planned treatment and dose received by cochlea were measured. The treatment planning system (TPS) estimated and measured dose to the cochlea were in the range of 7.4 - 8.4 Gy and 7.1 - 8 Gy, respectively. The maximum variation between TPS calculated and measured dose to cochlea was 5%. The measured dose values were found in good agreement with the dose values calculated using the TPS. The MOSFET dosimeter can be a suitable choice for routine dose verification in the Gamma Knife radiosurgery.

  12. Fully 3D refraction correction dosimetry system.

    PubMed

    Manjappa, Rakesh; Makki, S Sharath; Kumar, Rajesh; Vasu, Ram Mohan; Kanhirodan, Rajan

    2016-02-21

    The irradiation of selective regions in a polymer gel dosimeter results in an increase in optical density and refractive index (RI) at those regions. An optical tomography-based dosimeter depends on rayline path through the dosimeter to estimate and reconstruct the dose distribution. The refraction of light passing through a dose region results in artefacts in the reconstructed images. These refraction errors are dependant on the scanning geometry and collection optics. We developed a fully 3D image reconstruction algorithm, algebraic reconstruction technique-refraction correction (ART-rc) that corrects for the refractive index mismatches present in a gel dosimeter scanner not only at the boundary, but also for any rayline refraction due to multiple dose regions inside the dosimeter. In this study, simulation and experimental studies have been carried out to reconstruct a 3D dose volume using 2D CCD measurements taken for various views. The study also focuses on the effectiveness of using different refractive-index matching media surrounding the gel dosimeter. Since the optical density is assumed to be low for a dosimeter, the filtered backprojection is routinely used for reconstruction. We carry out the reconstructions using conventional algebraic reconstruction (ART) and refractive index corrected ART (ART-rc) algorithms. The reconstructions based on FDK algorithm for cone-beam tomography has also been carried out for comparison. Line scanners and point detectors, are used to obtain reconstructions plane by plane. The rays passing through dose region with a RI mismatch does not reach the detector in the same plane depending on the angle of incidence and RI. In the fully 3D scanning setup using 2D array detectors, light rays that undergo refraction are still collected and hence can still be accounted for in the reconstruction algorithm. It is found that, for the central region of the dosimeter, the usable radius using ART-rc algorithm with water as RI matched medium is 71.8%, an increase of 6.4% compared to that achieved using conventional ART algorithm. Smaller diameter dosimeters are scanned with dry air scanning by using a wide-angle lens that collects refracted light. The images reconstructed using cone beam geometry is seen to deteriorate in some planes as those regions are not scanned. Refraction correction is important and needs to be taken in to consideration to achieve quantitatively accurate dose reconstructions. Refraction modeling is crucial in array based scanners as it is not possible to identify refracted rays in the sinogram space.

  13. Study on the biological effect of cosmic radiation and the development of radiation protection technology (L-11)

    NASA Technical Reports Server (NTRS)

    Nagaoka, Shunji

    1993-01-01

    NASDA is now participating in a series of flight experiments on Spacelab missions. The first experiment was carried out on the first International Microgravity Laboratory Mission (IML-1) January 1992, and the second experiment will be conducted on the Spacelab-J Mission, First Materials Processing Test (FMPT). The equipment or Radiation Monitoring Container Devices (RMCD) includes passive dosimeter systems and biological specimens. The experiments using this hardware are designed by NASDA to measure and investigate the radiation levels inside spacecraft like space shuttle and to look at the basic effects of the space environment from the aspect of radiation biology. The data gathered will be analyzed to understand the details of biological effects as well as the physical nature of space radiation registered in the sensitive Solid-State Track Detectors (SSTD).

  14. Thin film growth into the ion track structures in polyimide by atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Mättö, L.; Malm, J.; Arstila, K.; Sajavaara, T.

    2017-09-01

    High-aspect ratio porous structures with controllable pore diameters and without a stiff substrate can be fabricated using the ion track technique. Atomic layer deposition is an ideal technique for depositing thin films and functional surfaces on complicated 3D structures due to the high conformality of the films. In this work, we studied Al2O3 and TiO2 films grown by ALD on pristine polyimide (Kapton HN) membranes as well as polyimide membranes etched in sodium hypochlorite (NaOCl) and boric acid (BO3) solution by means of RBS, PIXE, SEM-EDX and helium ion microcopy (HIM). The focus was on the first ALD growth cycles. The areal density of Al2O3 film in the 400 cycle sample was determined to be 51 ± 3 × 1016 at./cm2, corresponding to the thickness of 55 ± 3 nm. Furthermore, the growth per cycle was 1.4 Å/cycle. The growth is highly linear from the first cycles. In the case of TiO2, the growth per cycle is clearly slower during the first 200 cycles but then it increases significantly. The growth rate based on RBS measurements is 0.24 Å/cycle from 3 to 200 cycles and then 0.6 Å/cycle between 200 and 400 cycles. The final areal density of TiO2 film after 400 cycles is 148 ± 3 × 1015 at./cm2 which corresponds to the thickness of 17.4 ± 0.4 nm. The modification of the polyimide surface by etching prior to the deposition did not have an effect on the Al2O3 and TiO2 growth.

  15. Monte Carlo Assessments of Absorbed Doses to the Hands of Radiopharmaceutical Workers Due to Photon Emitters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ilas, Dan; Eckerman, Keith F; Karagiannis, Harriet

    This paper describes the characterization of radiation doses to the hands of nuclear medicine technicians resulting from the handling of radiopharmaceuticals. Radiation monitoring using ring dosimeters indicates that finger dosimeters that are used to show compliance with applicable regulations may overestimate or underestimate radiation doses to the skin depending on the nature of the particular procedure and the radionuclide being handled. To better understand the parameters governing the absorbed dose distributions, a detailed model of the hands was created and used in Monte Carlo simulations of selected nuclear medicine procedures. Simulations of realistic configurations typical for workers handling radiopharmaceuticals weremore » performedfor a range of energies of the source photons. The lack of charged-particle equilibrium necessitated full photon-electron coupled transport calculations. The results show that the dose to different regions of the fingers can differ substantially from dosimeter readings when dosimeters are located at the base of the finger. We tried to identify consistent patterns that relate the actual dose to the dosimeter readings. These patterns depend on the specific work conditions and can be used to better assess the absorbed dose to different regions of the exposed skin.« less

  16. Dose Assessments to the Hands of Radiopharmaceutical Workers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ilas, Dan; Eckerman, Keith F; Sherbini, Sami

    This paper describes the characterization of radiation doses to the hands of nuclear medicine technicians resulting from the handling of radiopharmaceuticals. Radiation monitoring using ring dosimeters indicates that finger dosimeters may overestimate or underestimate the radiation doses to the skin that are used to show compliance with applicable regulations depending on the nature of the particular procedure and the radioisotope being handled. To better understand the parameters governing the absorbed dose distributions, a detailed model of the hands was created and used in Monte Carlo simulations of selected nuclear medicine procedures. Simulations on realistic configurations typical for workers handling radiopharmaceuticalsmore » were performed for a range of energies of the source photons. The lack of charged-particle equilibrium necessitated full photon-electron coupled transport calculations. The results show that the dose to different regions of the fingers can differ substantially from the dosimeters' readings when the dosimeters are located at the base of the finger. We tried to identify consistent patterns that relate the actual dose to the dosimeter readings. These patterns depend on the specific work conditions and can be used to better assess the absorbed dose to different regions of the exposed skin.« less

  17. Prevention of Transfusion-Associated Graft-versus-Host Disease by Irradiation: Technical Aspect of a New Ferrous Sulphate Dosimetric System

    PubMed Central

    Del Lama, Lucas Sacchini; de Góes, Evamberto Garcia; Petchevist, Paulo César Dias; Moretto, Edson Lara; Borges, José Carlos; Covas, Dimas Tadeu; de Almeida, Adelaide

    2013-01-01

    Irradiation of whole blood and blood components before transfusion is currently the only accepted method to prevent Transfusion-Associated Graft-Versus-Host-Disease (TA-GVHD). However, choosing the appropriate technique to determine the dosimetric parameters associated with blood irradiation remains an issue. We propose a dosimetric system based on the standard Fricke Xylenol Gel (FXG) dosimeter and an appropriate phantom. The modified dosimeter was previously calibrated using a 60Co teletherapy unit and its validation was accomplished with a 137Cs blood irradiator. An ionization chamber, standard FXG, radiochromic film and thermoluminescent dosimeters (TLDs) were used as reference dosimeters to determine the dose response and dose rate of the 60Co unit. The dose distributions in a blood irradiator were determined with the modified FXG, the radiochromic film, and measurements by TLD dosimeters. A linear response for absorbed doses up to 54 Gy was obtained with our system. Additionally, the dose rate uncertainties carried out with gel dosimetry were lower than 5% and differences lower than 4% were noted when the absorbed dose responses were compared with ionization chamber, film and TLDs. PMID:23762345

  18. Dose algorithm for EXTRAD 4100S extremity dosimeter for use at Sandia National Laboratories.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Potter, Charles Augustus

    An updated algorithm for the EXTRAD 4100S extremity dosimeter has been derived. This algorithm optimizes the binning of dosimeter element ratios and uses a quadratic function to determine the response factors for low response ratios. This results in lower systematic bias across all test categories and eliminates the need for the 'red strap' algorithm that was used for high energy beta/gamma emitting radionuclides. The Radiation Protection Dosimetry Program (RPDP) at Sandia National Laboratories uses the Thermo Fisher EXTRAD 4100S extremity dosimeter, shown in Fig 1.1 to determine shallow dose to the extremities of potentially exposed individuals. This dosimeter consists ofmore » two LiF TLD elements or 'chipstrates', one of TLD-700 ({sup 7}Li) and one of TLD-100 (natural Li) separated by a tin filter. Following readout and background subtraction, the ratio of the responses of the two elements is determined defining the penetrability of the incident radiation. While this penetrability approximates the incident energy of the radiation, X-rays and beta particles exist in energy distributions that make determination of dose conversion factors less straightforward in their determination.« less

  19. Investigation of vacuum pumping on the dose response of the MAGAS normoxic polymer gel dosimeter.

    PubMed

    Venning, A J; Mather, M L; Baldock, C

    2005-06-01

    The effect of vacuum pumping on the dose response of the MAGAS polymer gel dosimeter has been investigated. A delay of several days post-manufacture before irradiation was previously necessary due to the slow oxygen scavenging of ascorbic acid. The MAGAS polymer gel dosimeter was vacuum pumped before gelation to remove dissolved oxygen. The MAGAS polymer gel dosimeter was poured into glass screw-top vials, which were irradiated at various times, post-manufacture to a range of doses. Magnetic resonance imaging techniques were used to determine the R2-dose response and R2-dose sensitivity of the MAGAS polymer gel. The results were compared with a control batch of MAGAS polymer gel that was not vacuum pumped. It was shown that vacuum pumping on the MAGAS polymer gel solution immediately prior to sealing in glass screw-top vials initially increases the R2-dose response and R2-dose sensitivity of the dosimeter. An increase in the R2-dose response and R2-dose sensitivity was observed with increasing time between manufacture and irradiation. Over the range of post-manufacture irradiation times investigated, the greatest R2-dose response and R2-dose sensitivity occurred at 96 hours.

  20. Comparison of enamel bond fatigue durability between universal adhesives and two-step self-etch adhesives: Effect of phosphoric acid pre-etching.

    PubMed

    Suda, Shunichi; Tsujimoto, Akimasa; Barkmeier, Wayne W; Nojiri, Kie; Nagura, Yuko; Takamizawa, Toshiki; Latta, Mark A; Miyazaki, Masashi

    2018-03-30

    The effect of phosphoric acid pre-etching on enamel bond fatigue durability of universal adhesives and two-step self-etch adhesives was investigated. Four universal adhesives and three two-step self-etch adhesives were used. The initial shear bond strengths and shear fatigue strengths to enamel with and without phosphoric acid pre-etching using the adhesives were determined. SEM observations were also conducted. Phosphoric acid pre-etching of enamel was found to increase the bond fatigue durability of universal adhesives, but its effect on two-step self-etch adhesives was material-dependent. In addition, some universal adhesives with phosphoric acid pre-etching showed similar bond fatigue durability to the two-step self-etch adhesives, although the bond fatigue durability of universal adhesives in self-etch mode was lower than that of the two-step self-etch adhesives. Phosphoric acid pre-etching enhances enamel bond fatigue durability of universal adhesives, but the effect of phosphoric acid pre-etching on the bond fatigue durability of two-step self-etch adhesives was material-dependent.

  1. Real-time plasma control in a dual-frequency, confined plasma etcher

    NASA Astrophysics Data System (ADS)

    Milosavljević, V.; Ellingboe, A. R.; Gaman, C.; Ringwood, J. V.

    2008-04-01

    The physics issues of developing model-based control of plasma etching are presented. A novel methodology for incorporating real-time model-based control of plasma processing systems is developed. The methodology is developed for control of two dependent variables (ion flux and chemical densities) by two independent controls (27 MHz power and O2 flow). A phenomenological physics model of the nonlinear coupling between the independent controls and the dependent variables of the plasma is presented. By using a design of experiment, the functional dependencies of the response surface are determined. In conjunction with the physical model, the dependencies are used to deconvolve the sensor signals onto the control inputs, allowing compensation of the interaction between control paths. The compensated sensor signals and compensated set-points are then used as inputs to proportional-integral-derivative controllers to adjust radio frequency power and oxygen flow to yield the desired ion flux and chemical density. To illustrate the methodology, model-based real-time control is realized in a commercial semiconductor dielectric etch chamber. The two radio frequency symmetric diode operates with typical commercial fluorocarbon feed-gas mixtures (Ar/O2/C4F8). Key parameters for dielectric etching are known to include ion flux to the surface and surface flux of oxygen containing species. Control is demonstrated using diagnostics of electrode-surface ion current, and chemical densities of O, O2, and CO measured by optical emission spectrometry and/or mass spectrometry. Using our model-based real-time control, the set-point tracking accuracy to changes in chemical species density and ion flux is enhanced.

  2. Dry etching of metallization

    NASA Technical Reports Server (NTRS)

    Bollinger, D.

    1983-01-01

    The production dry etch processes are reviewed from the perspective of microelectronic fabrication applications. The major dry etch processes used in the fabrication of microelectronic devices can be divided into two categories - plasma processes in which samples are directly exposed to an electrical discharge, and ion beam processes in which samples are etched by a beam of ions extracted from a discharge. The plasma etch processes can be distinguished by the degree to which ion bombardment contributes to the etch process. This, in turn is related to capability for anisotropic etching. Reactive Ion Etching (RIE) and Ion Beam Etching are of most interest for etching of thin film metals. RIE is generally considered the best process for large volume, anisotropic aluminum etching.

  3. Response of LiF:Mg,Ti thermoluminescent dosimeters at photon energies relevant to the dosimetry of brachytherapy (<1 MeV)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tedgren, Aasa Carlsson; Hedman, Angelica; Grindborg, Jan-Erik

    2011-10-15

    Purpose: High energy photon beams are used in calibrating dosimeters for use in brachytherapy since absorbed dose to water can be determined accurately and with traceability to primary standards in such beams, using calibrated ion chambers and standard dosimetry protocols. For use in brachytherapy, beam quality correction factors are needed, which include corrections for differences in mass energy absorption properties between water and detector as well as variations in detector response (intrinsic efficiency) with radiation quality, caused by variations in the density of ionization (linear energy transfer (LET) -distributions) along the secondary electron tracks. The aim of this work wasmore » to investigate experimentally the detector response of LiF:Mg,Ti thermoluminescent dosimeters (TLD) for photon energies below 1 MeV relative to {sup 60}Co and to address discrepancies between the results found in recent publications of detector response. Methods: LiF:Mg,Ti dosimeters of formulation MTS-N Poland were irradiated to known values of air kerma free-in-air in x-ray beams at tube voltages 25-250 kV, in {sup 137}Cs- and {sup 60}Co-beams at the Swedish Secondary Standards Dosimetry Laboratory. Conversions from air kerma free-in-air into values of mean absorbed dose in the dosimeters in the actual irradiation geometries were made using EGSnrc Monte Carlo simulations. X-ray energy spectra were measured or calculated for the actual beams. Detector response relative to that for {sup 60}Co was determined at each beam quality. Results: An increase in relative response was seen for all beam qualities ranging from 8% at tube voltage 25 kV (effective energy 13 keV) to 3%-4% at 250 kV (122 keV effective energy) and {sup 137}Cs with a minimum at 80 keV effective energy (tube voltage 180 kV). The variation with effective energy was similar to that reported by Davis et al.[Radiat. Prot. Dosim. 106, 33-43 (2003)] with our values being systematically lower by 2%-4%. Compared to the results by Nunn et al.[Med. Phys. 35, 1861-1869 (2008)], the relative detector response as a function of effective energy differed in both shape and magnitude. This could be explained by the higher maximum read-out temperature (350 deg. C) used by Nunn et al.[Med. Phys. 35, 1861-1869 (2008)], allowing light emitted from high-temperature peaks with a strong LET dependence to be registered. Use of TLD-100 by Davis et al.[Radiat. Prot. Dosim. 106, 33-43 (2003)] with a stronger super-linear dose response compared to MTS-N was identified as causing the lower relative detector response in this work. Conclusions: Both careful dosimetry and strict protocols for handling the TLDs are required to reach solid experimental data on relative detector response. This work confirms older findings that an over-response relative to {sup 60}Co exists for photon energies below 200-300 keV. Comparison with the results from the literature indicates that using similar protocols for annealing and read-out, dosimeters of different makes (TLD-100, MTS-N) differ in relative detector response. Though universality of the results has not been proven and further investigation is needed, it is anticipated that with the use of strict protocols for annealing and read-out, it will be possible to determine correction factors that can be used to reduce uncertainties in dose measurements around brachytherapy sources at photon energies where primary standards for absorbed dose to water are not available.« less

  4. Chemical Dosimeter Tube With Coaxial Sensing Rod

    NASA Technical Reports Server (NTRS)

    Lueck, Dale E.

    1993-01-01

    Improved length-of-stain (LOS) chemical dosimeter indicates total dose of chemical vapor in air. Made with rods and tubes of various diameters to obtain various sensitivities and dynamic ranges. Sensitivity larger and dose range smaller when more room for diffusion in gap between tube and rod. Offers greater resistance to changing of color of exposed dye back to color of unexposed condition, greater sensitivity, and higher degree of repeatability. Developed to measure doses of gaseous HCI, dosimeter modified by use of other dyes to indicate doses of other chemical vapors.

  5. Descriptive Summaries of the Research Development Test & Evaluation. Army Appropriation Fiscal Year 1984. Supporting Data Fiscal Year 1984 Budget Estimate Submitted to Congress--February 1983. Volume II.

    DTIC Science & Technology

    1983-02-01

    of reprogranming action to support procurement of the reader, CP-69, associated with the Individual dosimeter , DT-238. The funding decrease of $23,700...meter has been adapted for Army use, and the Air For- i is participating in the tactical dosimeter program. An installation fallout monitor and alarm...system, the AN/GDQ3. was developed Jointly with the C.~nadian Department of Defense Production. and the DT-236 Individual dosimeter Is being developed

  6. Performance of optically stimulated luminescence Al₂O₃ dosimeter for low doses of diagnostic energy X-rays.

    PubMed

    Lim, Chang Seon; Lee, Sang Bock; Jin, Gye Hwan

    2011-10-01

    Personal dosimeters measure the radiation dose from exposure to hazardous sources outside the body. The present manuscript evaluates the performance of a commercially available optically stimulated luminescence (OSL) Al₂O₃ dosimeter using diagnostic energy X-rays. The OSL system satisfies the ANSI N13.11-2001 performance criteria for low dose diagnostic energy X-rays. Non-uniformity of sensitivity, dose linearity, X-ray energy response, and angular performance are all within the criteria of IEC-62387-1(2007). Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Cross sections for the production of fragments with Z greater than or equal to 8 by fragmentation of Z greater than or equal to 9 and less than or equal to 26 nuclei

    NASA Technical Reports Server (NTRS)

    Heinrich, W.; Drechsel, H.; Brechtmann, C.; Beer, J.

    1985-01-01

    Charge changing nuclear collisions in plastic nuclear track detectors were studied using a new experimental technique of automatic track measurement for etched tracks in plastic detectors. Partial cross sections for the production of fragments of charge Z approximately 8 were measured for projectile nuclei of charge 9 approximately Z approximately 26 in the detector material CR39 and in silver. for this purpose three independent experiments were performed using Bevalac beams. The first one was an exposure of a stack of CR39 plastic plates to 1.8 GeV/nucl. Ar-40 nuclei. The second one was an exposure of another CR39 stack of 1.7 GeV/nucl. Fe-56 projectiles. In the third experiment a mixed stack of CR39 plates and silver foils was irradiated with 1.7 GeV/nucl. Fe-56 nuclei. Thus the measurement of nuclear cross sections in a light target (CR39 = C12H18O7) and as well in a heavy target (silver) was possible.

  8. Heavy Nucleus Collector (HNC) project for the NASA Long Duration Exposure Facility (LDEF)

    NASA Technical Reports Server (NTRS)

    Tarle, Gregory

    1990-01-01

    The primary goal of the heavy nucleus collector (HNC) experiment was to obtain high resolution composition measurements for cosmic ray nuclei in the platinum-lead and actinide region of the periodic table. Secondary objectives include studies of selected groups of elements of lower charge. These goals were to be realized by orbiting a large area array of dielectric nuclear track detectors in space for several years. In this time sufficient actinide nuclei would be collected to determine the nucleosynthetic age of the cosmic radiation and the relative mix of r- and s-process elements in the cosmic ray source. The detector consists of approximately 50 trays assembled in pressurized canisters. Each tray would contain 8 half-stacks (4 stacks total) and an event thermometer which would record the temperature of each event at the time of exposure. Each stack would contain 7 layers of Rodyne-P, CR-39 and Cronar plastic track detectors interleaved with copper stripping foils. Upon return to Earth, detectors would be removed for analysis. Ultraheavy nuclei would have left tracks through the detector sheets that would be made visible after etching in a hot sodium hydroxide solution.

  9. SU-E-I-09: Application of LiF:Mg,Cu (TLD-100H) Dosimeters for in Diagnostic Radiology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sina, S; Zeinali, B; Karimipourfard, M

    Purpose: Accurate dosimetery is very essential in diagnostic radiology. The goal of this study is to verify the application of LiF:Mg,Cu,P (TLD100H) in obtaining the Entrance skin dose (ESD) of patients undergoing diagnostic radiology. The results of dosimetry performed by TLD-100H, were compared with those obtained by TLD100, which is a common dosimeter in diagnostic radiology. Methods: In this study the ESD values were measured using two types of Thermoluminescence dosimeters (TLD-100, and TLD-100H) for 16 patients undergoing diagnostic radiology (lumbar spine imaging). The ESD values were also obtained by putting the two types of TLDs at the surface ofmore » Rando phantom for different imaging techniques and different views (AP, and lateral). The TLD chips were annealed with a standard procedure, and the ECC values for each TLD was obtained by exposing the chips to equal amount of radiation. Each time three TLD chips were covered by thin dark plastic covers, and were put at the surface of the phantom or the patient. The average reading of the three chips was used for obtaining the dose. Results: The results show a close agreement between the dose measuered by the two dosimeters.According to the results of this study, the TLD-100H dosimeters have higher sensitivities (i.e.signal(nc)/dose) than TLD-100.The ESD values varied between 2.71 mGy and 26.29 mGy with the average of 11.89 mGy for TLD-100, and between 2.55 mGy and 27.41 mGy with the average of 12.32 mGy for measurements. Conclusion: The TLD-100H dosimeters are suggested as effective dosimeters for dosimetry in low dose fields because of their higher sensitivities.« less

  10. SU-D-213-06: Dosimetry of Modulated Electron Radiation Therapy Using Fricke Gel Dosimeter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gawad, M Abdel; Elgohary, M; Hassaan, M

    Purpose: Modulated electron radiation therapy (MERT) has been proposed as an effective modality for treatment of superficial targets. MERT utilizes multiple beams of different energies which are intensity modulated to deliver optimized dose distribution. Energy independent dosimeters are thus needed for quantitative evaluations of MERT dose distributions and measurements of absolute doses delivered to patients. Thus in the current work we study the feasibility of Fricke gel dosimeters in MERT dosimetry. Methods: Batches of radiation sensitive Fricke gel is fabricated and poured into polymethyl methacrylate cuvettes. The samples were irradiated in solid water phantom and a thick layer of bolusmore » was used as a buildup. A spectrophotometer system was used for measuring the color changes (the absorbance) before and after irradiation and then we calculate net absorbance. We constructed calibration curves to relate the measured absorbance in terms of absorbed dose for all available electron energies. Dosimetric measurements were performed for mixed electron beam delivery and we also performed measurement for segmented field delivery with the dosimeter placed at the junction of two adjacent electron beams of different energies. Dose measured by our gel dosimetry is compared to that calculation from our precise treatment planning system. We also initiated a Monte Carlo study to evaluate the water equivalence of our dosimeters. MCBEAM and MCSIM codes were used for treatment head simulation and phantom dose calculation. PDDs and profiles were calculated for electron beams incident on a phantom designed with 1cm slab of Fricke gel. Results: The calibration curves showed no observed energy dependence with all studied electron beam energies. Good agreement was obtained between dose calculated and that obtained by gel dosimetry. Monte Carlo results illustrated the tissue equivalency of our Gel dosimeters. Conclusion: Fricke Gel dosimeters represent a good option for the dosimetric quality assurance prior to MERT application.« less

  11. SU-E-T-643: Pure Alanine Dosimeter for Verification Dosimetry in IMRT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Al-Karmi, Anan M.; Zraiqat, Fadi

    Purpose: The objective of this study was evaluation of accuracy of pure alanine dosimeters measuring intensity-modulated radiation therapy (IMRT) dose distributions in a thorax phantom. Methods: Alanine dosimeters were prepared in the form of 110 mg pure L-α-alanine powder filled into clear tissue-equivalent polymethylmethacrylate (PMMA) plastic tubes with the dimensions 25 mm length, 3 mm inner diameter, and 1 mm wall thickness. A dose-response calibration curve was established for the alanine by placing the dosimeters at 1.5 cm depth in a 30×30×30 cm{sup 3} solid water phantom and then irradiating on a linac with 6 MV photon beam at 10×10more » cm{sup 2} field size to doses ranging from 1 to 5 Gy. Electron paramagnetic resonance (EPR) spectroscopy was used to determine the absorbed dose in alanine. An IMRT treatment plan was designed for a commercial heterogeneous CIRS thorax phantom and the dose values were calculated at three different points located in tissue, lung, and bone equivalent materials. A set of dose measurements was carried out to compare measured and calculated dose values by placing the alanine dosimeters at those selected locations inside the thorax phantom and delivering the IMRT to the phantom. Results: The alanine dose measurements and the IMRT plan dose calculations were found to be in agreement within ±2%. Specifically, the deviations were −0.5%, 1.3%, and −1.7% for tissue, lung, and bone; respectively. The slightly large deviations observed for lung and bone may be attributed to tissue inhomogeneity, steep dose gradients in these regions, and uncontrollable changes in spectrometer conditions. Conclusion: The results described herein confirmed that pure alanine dosimeter was suitable for in-phantom dosimetry of IMRT beams because of its high sensitivity and acceptable accuracy. This makes the dosimeter a promising option for quality control of the therapeutic beams, complementing the commonly used ionization chambers, TLDs, and films.« less

  12. SU-F-T-304: Complex Multi-PTV Treatment Evaluation Using a Remotely Processed 3D Gel Dosimeter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoisak, J; Dragojevic, I; Sutlief, S

    Purpose: A new 3D gel dosimeter (ClearView™, Modus Medical Systems) was investigated for use as a QA tool for stereotactic radiosurgery (SRS) plans exhibiting high dose gradients and spatially separated treatment targets. The unique feature of this gel dosimeter is the remote processing service provided by Modus Medical Systems. Methods: The gel dosimeters were filled in either 10 cm diameter or 15 cm diameter clear plastic jars. The jars were then shipped in ice-cooled containers to our department for irradiation. Clinical SRS plans for treatment of multiple metastases and plans with simulated concave structures were applied to a CT scanmore » of the gel dosimeter. The gel was irradiated in treatment position using modulated arcs and then returned in the cooled container for processing. The 3D gel dose was compared to the DICOM-RT dose from the treatment plan to assess dosimetric and geometric agreement. Results: There was no discernible difference between the planned and measured dose for dose gradients as high as 10%/mm, which was the highest gradient we evaluated. Geometric agreement for distant metastases separated by 6 cm was within 1.5 mm. Among three identically irradiated gels using a plan intended for nine metastases, the 3%/3mm gamma passing rate was 84.5% with a range of 14.7%, measured over the entire volume of the dosimeter. Regions of larger gamma values correlated with geometric offsets between the planned and measured data. Conclusion: The gel dosimeter exhibits the dosimetric and geometric characteristics necessary for 3D evaluation of treatment plan deliverability. The range of observed gamma passing rates suggests a high sensitivity to geometric registration. With proper management of geometric registration between planned and measured data, this service should enable a radiation oncology department to use 3D dosimetry in end-to-end testing or patient plan delivery QA without the expense of an in-house processing system.« less

  13. TU-F-BRE-08: Significant Variations in Measured Small Cone Output Factor for FFF Beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sudhyadhom, A; Ma, L; Kirby, N

    2014-06-15

    Purpose: To evaluate the measurement accuracy of several dosimeters for small cone output factors in two SRS/SBRT dedicated systems with Flattening Filter Free (FFF) beams: a Varian TrueBeam STx (TB) and an Accuray CyberKnife VSI (CK). Output factors (OFs) were measured for both machines and for CK, compared against a Monte Carlo model. Methods: Dose measurements were taken using three different FFF beams (TB 6XFFF, TB 10XFFF, and CK 6XFFF). Three commonly used types of dosimeters were examined in this work: a micro-ion chamber (Exradin A16), two shielded diodes (PTW TN60008 and PTW TN60017), and radiochromic film (Gafchromic EBT2). Measuredmore » OFs from these dosimeters were compared with each other and OFs measured with an Exradin W1 scintillator. Monte Carlo determined correction factors for the CK beam for the micro-ion chamber and diodes were applied to the respective OF measurements and compared against scintillator measured OFs corrected for volume averaging. Results: OFs measured for the smallest fields using the micro-ion chamber, diodes, scintillator, and film varied substantially (with up to a 16% difference between dosimeters). Micro-ion chamber and film OF measurements were up to 9% and 10%, respectively, lower than scintillator measurements for the smallest fields. OF measurements by diode were up to 6% greater than scintillator measurements for the smallest fields. With correction factors, the micro-ion chamber and diode measured OFs showed good agreement with scintillator measured OFs for the CK 6XFFF beam (within 3% and 1.5%, respectively). Conclusion: Uncorrected small field OFs vary significantly with dosimeter. The accuracy of scintillator measurements for small field OFs may be greater than the other dosimeters studied in this work (when uncorrected). Measurements involving EBT2 film may Result in lower accuracy for smaller fields (less than 10mm). Care should be taken in the choice of the dosimeter used for small field OF measurements.« less

  14. SU-F-T-477: Investigation of DEFGEL Dosimetry Using MRI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matrosic, C; McMillan, A; Bednarz, B

    Purpose: The DEFGEL dosimeter/phantom allows for the measurement of 3D dose distributions while maintaining tissue equivalence and deformability. Although DEFGEL is traditionally read out with optical CT, the use of MRI would permit the measurement of 3D dose distributions in optically interfering configurations, like while embedded in a phantom. To the knowledge of the authors, this work is the first investigation that uses MRI to measure dose distributions in DEFGEL dosimeters. Methods: The DEFGEL (6%T) formula was used to create 1 cm thick, 4.5 cm diameter cylindrical dosimeters. The dosimeters were irradiated using a Varian Clinac 21EX linac. The MRImore » based transverse relaxation rate (R2) of the gel was measured in a central slice of the dosimeter with a Spin-Echo (SE) pulse sequence on a 3T GE SIGNA PET/MR scanner. The R2 values were fit to a monoexponential dose response equation using in-house software (MATLAB). Results: The data was well fit using a monoexponential fit for R2 as a function of absorbed dose (R{sup 2} = 0.9997). The fitting parameters of the monoexponential fit resulted in a 0.1229 Gy{sub −1}s{sub −1} slope. The data also resulted in an average standard deviation of 1.8% for the R2 values within the evaluated ROI. Conclusion: The close fit for the dose response curve shows that a DEFGEL based dosimeter can be paired with a SE MRI acquisition. The Type A uncertainty of the MRI method shows adequate precision, while the slope of the fit curve is large enough that R2 differences between different gel doses are distinguishable. These results suggest that the gel could potentially be used in configurations where an optical readout is not viable, such as measurements with the gel dosimeter positioned inside larger or optically opaque phantoms. This work is partially funded by NIH grant R01CA190298.« less

  15. Self-etch and etch-and-rinse adhesive systems in clinical dentistry.

    PubMed

    Ozer, Fusun; Blatz, Markus B

    2013-01-01

    Current adhesive systems follow either an "etch-and-rinse" or "self-etch" approach, which differ in how they interact with natural tooth structures. Etch-and-rinse systems comprise phosphoric acid to pretreat the dental hard tissues before rinsing and subsequent application of an adhesive. Self-etch adhesives contain acidic monomers, which etch and prime the tooth simultaneously. Etch-and-rinse adhesives are offered as two- or three-step systems, depending on whether primer and bonding are separate or combined in a single bottle. Similarly, self-etch adhesives are available as one- or two-step systems. Both etch-and-rinse and self-etch systems form a hybrid layer as a result of resins impregnating the porous enamel or dentin. Despite current trends toward fewer and simpler clinical application steps, one-step dentin bonding systems exhibit bonding agent lower bond strengths and seem less predictable than multi-step etch-and-rinse and self-etch systems. The varying evidence available today suggests that the choice between etch-and-rinse and self-etch systems is often a matter of personal preference. In general, however, phosphoric acid creates a more pronounced and retentive etching pattern in enamel. Therefore, etch-and-rinse bonding systems are often preferred for indirect restorations and when large areas of enamel are still present. Conversely, self-etch adhesives provide superior and more predictable bond strength to dentin and are, consequently, recommended for direct composite resin restorations, especially when predominantly supported by dentin.

  16. Radiation dosimeter utilizing the thermoluminescence of lithium fluoride.

    PubMed

    CAMERON, J R; DANIELS, F; JOHNSON, N; KENNEY, G

    1961-08-04

    A dosimeter, with little wavelength dependence and large useful energy range for electromagnetic radiation, which is simple to use and read, has been developed. It appears to have applications in personnel monitoring as well as radiation research.

  17. Characterisation of TruView™: a new 3-D reusable radiochromic MethylThymolBlue based gel dosimeter for ionising radiations

    NASA Astrophysics Data System (ADS)

    Colnot, J.; Huet, C.; Clairand, I.

    2017-05-01

    TruView™ is a new water-equivalent reusable Fricke gel dosimeter based on MethylThymolBlue reactive dye. Details of the characterisation of the TruView™ MTB gel dosimeter by spectrophotometric measurements and of its reading with the Optical-CT Scanner Vista™ are described. In this study, the different parameters influencing TruView™ dose response have been studied and its performances have been compared to chamber and diodes measurements. This gel presents a linear response with dose up to 20 Gy, independent in the investigated range of photon beam energy and dose rate and also a good intra-batch uniformity. Ions diffusion into the matrix homogenizes the gel after a week, losing dosimetric information but allowing a new irradiation to be performed. However, auto-oxidation happens before and after irradiation, degrading the dosimeter response and stability. Storage and reading conditions affect the response as well.

  18. RADIATION DOSIMETER

    DOEpatents

    Balkwell, W.R. Jr.; Adams, G.D. Jr.

    1960-05-10

    An improvement was made in the determination of amounts of ionizing radiation, particularly low-energy beta particles of less than 1000 rad total dose by means of fluid-phase dosimeter employing a stabilized-- sensitized ferrous-ferric colorimetric system in a sulphuric acid medium. The improvement in the dosimeter consists of adding to the ferrous-ferric system in concentrations of 10/sub -2/ to 10/sup -4/M an organic compound having one or more carboxylic or equivalent groups, such compounds being capable of chelating or complexing the iron ions in the solution. Suitable sensitizing and stabilizing agents are benzoic, phthalic, salicylic, malonic, lactic, maleic, oxalic, citric, succinic, phenolic tartaric, acetic, and adipic acid, as well as other compounds which are added to the solution alone or in certain combinations. As in conventional fluid-phase dosimeters, the absorbed dosage is correlated with a corresponding change in optical density at particular wavelengths of the solution.

  19. Printable UV personal dosimeter: sensitivity as a function of DoD parameters and number of layers of a functional photonic ink

    NASA Astrophysics Data System (ADS)

    Sousa, Felipe L. N.; Mojica-Sánchez, Lizeth C.; Gavazza, Sávia; Florencio, Lourdinha; Vaz, Elaine C. R.; Santa-Cruz, Petrus A.

    2016-04-01

    This work presents ‘intelligent papers’ obtained by functional inks printed on cellulose-sheets by DoD inkjet technology and their performance as a photonic device for UV-radiation dosimetry. The dosimeter operation is based on the photodegradation of the active part of a photonic ink, btfa (4,4,4-trifluoro-1-phenyl-1,3-butanedione) ligands in Eu(III) complex, as a function of the UV dose (Jcm-2), and the one-way device is read by the luminescence quenching of (5D0 → 7F2) Eu3+ transition after UV exposure of the printed paper. The printed dosimeter presented an exponential behavior, measured here up to 10 Jcm-2 for UV-A, UV-B and UV-C, and it was shown that the number of jetted layers could fit the dosimeter sensitivity.

  20. Validation and in vivo assessment of an innovative satellite-based solar UV dosimeter for a mobile app dedicated to skin health.

    PubMed

    Morelli, M; Masini, A; Simeone, E; Khazova, M

    2016-08-31

    We present an innovative satellite-based solar UV (ultraviolet) radiation dosimeter with a mobile app interface that has been validated by exploiting both ground-based measurements and an in vivo assessment of the erythemal effects on some volunteers having controlled exposure to solar radiation. The app with this satellite-based UV dosimeter also includes other related functionalities such as the provision of safe sun exposure time updated in real-time and end exposure visual/sound alert. Both validations showed that the system has a good accuracy and reliability needed for health-related applications. This app will be launched on the market by siHealth Ltd in May 2016 under the name of "HappySun" and is available for both Android and iOS devices (more info on ). Extensive R&D activities are on-going for the further improvement of the satellite-based UV dosimeter's accuracy.

Top