ERIC Educational Resources Information Center
Chmielewski, Anna K.; Dumont, Hanna; Trautwein, Ulrich
2013-01-01
The aim of the present study was to examine how different types of tracking--between-school streaming, within-school streaming, and course-by-course tracking--shape students' mathematics self-concept. This was done in an internationally comparative framework using data from the Programme for International Student Assessment (PISA). After…
Influence of Laser Power on the Shape of Single Tracks in Scanner Based Laser Wire Cladding
NASA Astrophysics Data System (ADS)
Barroi, A.; Gonçalves, D. Albertazzi; Hermsdorf, J.; Kaierle, S.; Overmeyer, L.
The shape of the cladding tracks is extremely important for producing layers or structures by adding them sequently. This paper shows the influence of the laser power of a diode laser in the range of 500 to 1000 W on the shapes of single tracks in scanner based laser wire cladding. The scanner was used to oscillate the beam perpendiculary to the welding direction. Stainless steel (ER 318 Si) wire with a 0.6 mm diameter was used as deposition material. Height, width, penetration, molten area and weld seam angles of single tracks were obtained from cross-sections at three different positions of each track. The influence of these different positions on the results depends on the traverse speed. The paper discusses this influence in respect to the heat dissipation in the substrate material.
Effects of target shape and reflection on laser radar cross sections.
Steinvall, O
2000-08-20
Laser radar cross sections have been evaluated for a number of ideal targets such as cones, spheres, paraboloids, and cylinders by use of different reflection characteristics. The time-independent cross section is the ratio of the cross section of one of these forms to that of a plate with the same maximum radius. The time-dependent laser radar cross section involves the impulse response from the object shape multiplied by the beam's transverse profile and the surface bidirectional reflection distribution function. It can be clearly seen that knowledge of the combined effect of object shape and reflection characteristics is important for determining the shape and the magnitude of the laser radar return. The results of this study are of interest for many laser radar applications such as ranging, three-dimensional imaging-modeling, tracking, antisensor lasers, and target recognition.
Aging of Johari-Goldstein Relaxation in Structural Glasses
NASA Astrophysics Data System (ADS)
Yardimci, Hasan; Leheny, Robert L.
2006-03-01
Using frequency-dependent dielectric susceptibility measurements we characterize the aging in two supercooled liquids, sorbitol and xylitol, below their calorimetric glass transition temperatures, Tg. In addition to the alpha relaxation that tracks the structural dynamics, the susceptibilities of both liquids possess a secondary Johari-Goldstein relaxation at higher frequencies. Following a quench below Tg, the susceptibility slowly approaches equilibrium behavior. For both liquids, features of the Johari-Goldstein relaxation display a dependence on the time since the quench, or aging time, that is very similar to the age dependence of the alpha peak. However, one can not assign a single fictive temperature to both the alpha and Johari-Goldstein relaxations. For example, the peak frequency of the Johari-Goldstein relaxation remains constant during aging for sorbitol while it increases with age for xylitol, inconsistent with a decreasing fictive temperature. This behavior contrasts with that of the high frequency tail of the alpha peak whose shape and position track the aging of the main part of the peak.
Object tracking with stereo vision
NASA Technical Reports Server (NTRS)
Huber, Eric
1994-01-01
A real-time active stereo vision system incorporating gaze control and task directed vision is described. Emphasis is placed on object tracking and object size and shape determination. Techniques include motion-centroid tracking, depth tracking, and contour tracking.
Combined Feature Based and Shape Based Visual Tracker for Robot Navigation
NASA Technical Reports Server (NTRS)
Deans, J.; Kunz, C.; Sargent, R.; Park, E.; Pedersen, L.
2005-01-01
We have developed a combined feature based and shape based visual tracking system designed to enable a planetary rover to visually track and servo to specific points chosen by a user with centimeter precision. The feature based tracker uses invariant feature detection and matching across a stereo pair, as well as matching pairs before and after robot movement in order to compute an incremental 6-DOF motion at each tracker update. This tracking method is subject to drift over time, which can be compensated by the shape based method. The shape based tracking method consists of 3D model registration, which recovers 6-DOF motion given sufficient shape and proper initialization. By integrating complementary algorithms, the combined tracker leverages the efficiency and robustness of feature based methods with the precision and accuracy of model registration. In this paper, we present the algorithms and their integration into a combined visual tracking system.
TRIAC II. A MatLab code for track measurements from SSNT detectors
NASA Astrophysics Data System (ADS)
Patiris, D. L.; Blekas, K.; Ioannides, K. G.
2007-08-01
A computer program named TRIAC II written in MATLAB and running with a friendly GUI has been developed for recognition and parameters measurements of particles' tracks from images of Solid State Nuclear Track Detectors. The program, using image analysis tools, counts the number of tracks and depending on the current working mode classifies them according to their radii (Mode I—circular tracks) or their axis (Mode II—elliptical tracks), their mean intensity value (brightness) and their orientation. Images of the detectors' surfaces are input to the code, which generates text files as output, including the number of counted tracks with the associated track parameters. Hough transform techniques are used for the estimation of the number of tracks and their parameters, providing results even in cases of overlapping tracks. Finally, it is possible for the user to obtain informative histograms as well as output files for each image and/or group of images. Program summaryTitle of program:TRIAC II Catalogue identifier:ADZC_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADZC_v1_0 Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Computer: Pentium III, 600 MHz Installations: MATLAB 7.0 Operating system under which the program has been tested: Windows XP Programming language used:MATLAB Memory required to execute with typical data:256 MB No. of bits in a word:32 No. of processors used:one Has the code been vectorized or parallelized?:no No. of lines in distributed program, including test data, etc.:25 964 No. of bytes in distributed program including test data, etc.: 4 354 510 Distribution format:tar.gz Additional comments: This program requires the MatLab Statistical toolbox and the Image Processing Toolbox to be installed. Nature of physical problem: Following the passage of a charged particle (protons and heavier) through a Solid State Nuclear Track Detector (SSNTD), a damage region is created, usually named latent track. After the chemical etching of the detectors in aqueous NaOH or KOH solutions, latent tracks can be sufficiently enlarged (with diameters of 1 μm or more) to become visible under an optical microscope. Using the appropriate apparatus, one can record images of the SSNTD's surface. The shapes of the particle's tracks are strongly dependent on their charge, energy and the angle of incidence. Generally, they have elliptical shapes and in the special case of vertical incidence, they are circular. The manual counting of tracks is a tedious and time-consuming task. An automatic system is needed to speed up the process and to increase the accuracy of the results. Method of solution: TRIAC II is based on a segmentation method that groups image pixels according to their intensity value (brightness) in a number of grey level groups. After the segmentation of pixels, the program recognizes and separates the track from the background, subsequently performing image morphology, where oversized objects or objects smaller than a threshold value are removed. Finally, using the appropriate Hough transform technique, the program counts the tracks, even those which overlap and classifies them according to their shape parameters and brightness. Typical running time: The analysis of an image with a PC (Intel Pentium III processor running at 600 MHz) requires 2 to 10 minutes, depending on the number of observed tracks and the digital resolution of the image. Unusual features of the program: This program has been tested with images of CR-39 detectors exposed to alpha particles. Also, in low contrast images with few or small tracks, background pixels can be recognized as track pixels. To avoid this problem the brightness of the background pixels should be sufficiently higher than that of the track pixels.
Laser agile illumination for object tracking and classification - Feasibility study
NASA Technical Reports Server (NTRS)
Scholl, Marija S.; Vanzyl, Jakob J.; Meinel, Aden B.; Meinel, Marjorie P.; Scholl, James W.
1988-01-01
The 'agile illumination' concept for discrimination between ICBM warheads and decoys involves a two-aperture illumination with coherent light, diffraction of light by propagation, and a resulting interference pattern on the object surface. A scanning two-beam interference pattern illuminates one object at a time; depending on the shape, momentum, spinning, and tumbling characteristics of the interrogated object, different temporal signals will be obtained for different classes of objects.
Feedback tracking control for dynamic morphing of piezocomposite actuated flexible wings
NASA Astrophysics Data System (ADS)
Wang, Xiaoming; Zhou, Wenya; Wu, Zhigang
2018-03-01
Aerodynamic properties of flexible wings can be improved via shape morphing using piezocomposite materials. Dynamic shape control of flexible wings is investigated in this study by considering the interactions between structural dynamics, unsteady aerodynamics and piezo-actuations. A novel antisymmetric angle-ply bimorph configuration of piezocomposite actuators is presented to realize coupled bending-torsional shape control. The active aeroelastic model is derived using finite element method and Theodorsen unsteady aerodynamic loads. A time-varying linear quadratic Gaussian (LQG) tracking control system is designed to enhance aerodynamic lift with pre-defined trajectories. Proof-of-concept simulations of static and dynamic shape control are presented for a scaled high-aspect-ratio wing model. Vibrations of the wing and fluctuations in aerodynamic forces are caused by using the static voltages directly in dynamic shape control. The lift response has tracked the trajectories well with favorable dynamic morphing performance via feedback tracking control.
NASA Astrophysics Data System (ADS)
Lamberti, Fabrizio; Sanna, Andrea; Paravati, Gianluca; Belluccini, Luca
2014-02-01
Tracking pedestrian targets in forward-looking infrared video sequences is a crucial component of a growing number of applications. At the same time, it is particularly challenging, since image resolution and signal-to-noise ratio are generally very low, while the nonrigidity of the human body produces highly variable target shapes. Moreover, motion can be quite chaotic with frequent target-to-target and target-to-scene occlusions. Hence, the trend is to design ever more sophisticated techniques, able to ensure rather accurate tracking results at the cost of a generally higher complexity. However, many of such techniques might not be suitable for real-time tracking in limited-resource environments. This work presents a technique that extends an extremely computationally efficient tracking method based on target intensity variation and template matching originally designed for targets with a marked and stable hot spot by adapting it to deal with much more complex thermal signatures and by removing the native dependency on configuration choices. Experimental tests demonstrated that, by working on multiple hot spots, the designed technique is able to achieve the robustness of other common approaches by limiting drifts and preserving the low-computational footprint of the reference method.
NASA Astrophysics Data System (ADS)
Lundberg, Oskar E.; Nordborg, Anders; Lopez Arteaga, Ines
2016-03-01
A state-dependent contact model including nonlinear contact stiffness and nonlinear contact filtering is used to calculate contact forces and rail vibrations with a time-domain wheel-track interaction model. In the proposed method, the full three-dimensional contact geometry is reduced to a point contact in order to lower the computational cost and to reduce the amount of required input roughness-data. Green's functions including the linear dynamics of the wheel and the track are coupled with a point contact model, leading to a numerically efficient model for the wheel-track interaction. Nonlinear effects due to the shape and roughness of the wheel and the rail surfaces are included in the point contact model by pre-calculation of functions for the contact stiffness and contact filters. Numerical results are compared to field measurements of rail vibrations for passenger trains running at 200 kph on a ballast track. Moreover, the influence of vehicle pre-load and different degrees of roughness excitation on the resulting wheel-track interaction is studied by means of numerical predictions.
High-precision tracking of brownian boomerang colloidal particles confined in quasi two dimensions.
Chakrabarty, Ayan; Wang, Feng; Fan, Chun-Zhen; Sun, Kai; Wei, Qi-Huo
2013-11-26
In this article, we present a high-precision image-processing algorithm for tracking the translational and rotational Brownian motion of boomerang-shaped colloidal particles confined in quasi-two-dimensional geometry. By measuring mean square displacements of an immobilized particle, we demonstrate that the positional and angular precision of our imaging and image-processing system can achieve 13 nm and 0.004 rad, respectively. By analyzing computer-simulated images, we demonstrate that the positional and angular accuracies of our image-processing algorithm can achieve 32 nm and 0.006 rad. Because of zero correlations between the displacements in neighboring time intervals, trajectories of different videos of the same particle can be merged into a very long time trajectory, allowing for long-time averaging of different physical variables. We apply this image-processing algorithm to measure the diffusion coefficients of boomerang particles of three different apex angles and discuss the angle dependence of these diffusion coefficients.
Spatiotemporal distribution of location and object effects in reach-to-grasp kinematics
Rouse, Adam G.
2015-01-01
In reaching to grasp an object, the arm transports the hand to the intended location as the hand shapes to grasp the object. Prior studies that tracked arm endpoint and grip aperture have shown that reaching and grasping, while proceeding in parallel, are interdependent to some degree. Other studies of reaching and grasping that have examined the joint angles of all five digits as the hand shapes to grasp various objects have not tracked the joint angles of the arm as well. We, therefore, examined 22 joint angles from the shoulder to the five digits as monkeys reached, grasped, and manipulated in a task that dissociated location and object. We quantified the extent to which each angle varied depending on location, on object, and on their interaction, all as a function of time. Although joint angles varied depending on both location and object beginning early in the movement, an early phase of location effects in joint angles from the shoulder to the digits was followed by a later phase in which object effects predominated at all joint angles distal to the shoulder. Interaction effects were relatively small throughout the reach-to-grasp. Whereas reach trajectory was influenced substantially by the object, grasp shape was comparatively invariant to location. Our observations suggest that neural control of reach-to-grasp may occur largely in two sequential phases: the first determining the location to which the arm transports the hand, and the second shaping the entire upper extremity to grasp and manipulate the object. PMID:26445870
Real-time tracking of liver motion and deformation using a flexible needle
Lei, Peng; Moeslein, Fred; Wood, Bradford J.
2012-01-01
Purpose A real-time 3D image guidance system is needed to facilitate treatment of liver masses using radiofrequency ablation, for example. This study investigates the feasibility and accuracy of using an electromagnetically tracked flexible needle inserted into the liver to track liver motion and deformation. Methods This proof-of-principle study was conducted both ex vivo and in vivo with a CT scanner taking the place of an electromagnetic tracking system as the spatial tracker. Deformations of excised livers were artificially created by altering the shape of the stage on which the excised livers rested. Free breathing or controlled ventilation created deformations of live swine livers. The positions of the needle and test targets were determined through CT scans. The shape of the needle was reconstructed using data simulating multiple embedded electromagnetic sensors. Displacement of liver tissues in the vicinity of the needle was derived from the change in the reconstructed shape of the needle. Results The needle shape was successfully reconstructed with tracking information of two on-needle points. Within 30 mm of the needle, the registration error of implanted test targets was 2.4 ± 1.0 mm ex vivo and 2.8 ± 1.5 mm in vivo. Conclusion A practical approach was developed to measure the motion and deformation of the liver in real time within a region of interest. The approach relies on redesigning the often-used seeker needle to include embedded electromagnetic tracking sensors. With the nonrigid motion and deformation information of the tracked needle, a single- or multimodality 3D image of the intraprocedural liver, now clinically obtained with some delay, can be updated continuously to monitor intraprocedural changes in hepatic anatomy. This capability may be useful in radiofrequency ablation and other percutaneous ablative procedures. PMID:20700662
Ayvali, Elif; Desai, Jaydev P
2014-04-01
This work presents a temperature-feedback approach to control the radius of curvature of an arc-shaped shape memory alloy (SMA) wire. The nonlinear properties of the SMA such as phase transformation and its dependence on temperature and stress make SMA actuators difficult to control. Tracking a desired trajectory is more challenging than controlling just the position of the SMA actuator since the desired path is continuously changing. Consequently, tracking the desired strain directly or tracking the parameters such as temperature and electrical resistance that are related to strain with a model is a challenging task. Temperature-feedback is an attractive approach when direct measurement of strain is not practical. Pulse width modulation (PWM) is an effective method for SMA actuation and it can be used along with a compensator to control the temperature of the SMA. Using the constitutive model of the SMA, the desired temperature profile can be obtained for a given strain trajectory. A PWM-based nonlinear PID controller with a feed-forward heat transfer model is proposed to use temperature-feedback for tracking a desired temperature trajectory. The proposed controller is used during the heating phase of the SMA actuator. The controller proves to be effective in tracking step-wise and continuous trajectories.
Pseudorapidity configurations in collisions between gold nuclei and track-emulsion nuclei
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gulamov, K. G.; Zhokhova, S. I.; Lugovoi, V. V., E-mail: lugovoi@uzsci.net
2010-07-15
A method of parametrically invariant quantities is developed for studying pseudorapidity configurations in nucleus-nucleus collisions involving a large number of secondary particles. In simple models where the spectrum of pseudorapidities depends on three parameters, the shape of the spectrum may differ strongly from the shape of pseudorapidity configurations in individual events. Pseudorapidity configurations in collisions between gold nuclei of energy 10.6 GeV per nucleon and track-emulsion nuclei are contrasted against those in random stars calculated theoretically. An investigation of pseudorapidity configurations in individual events is an efficient method for verifying theoretical models.
LobeFinder: A Convex Hull-Based Method for Quantitative Boundary Analyses of Lobed Plant Cells1[OPEN
Wu, Tzu-Ching; Belteton, Samuel A.; Szymanski, Daniel B.; Umulis, David M.
2016-01-01
Dicot leaves are composed of a heterogeneous mosaic of jigsaw puzzle piece-shaped pavement cells that vary greatly in size and the complexity of their shape. Given the importance of the epidermis and this particular cell type for leaf expansion, there is a strong need to understand how pavement cells morph from a simple polyhedral shape into highly lobed and interdigitated cells. At present, it is still unclear how and when the patterns of lobing are initiated in pavement cells, and one major technological bottleneck to addressing the problem is the lack of a robust and objective methodology to identify and track lobing events during the transition from simple cell geometry to lobed cells. We developed a convex hull-based algorithm termed LobeFinder to identify lobes, quantify geometric properties, and create a useful graphical output of cell coordinates for further analysis. The algorithm was validated against manually curated images of pavement cells of widely varying sizes and shapes. The ability to objectively count and detect new lobe initiation events provides an improved quantitative framework to analyze mutant phenotypes, detect symmetry-breaking events in time-lapse image data, and quantify the time-dependent correlation between cell shape change and intracellular factors that may play a role in the morphogenesis process. PMID:27288363
Song, Shuang; Zhang, Changchun; Liu, Li; Meng, Max Q-H
2018-02-01
Flexible surgical robot can work in confined and complex environments, which makes it a good option for minimally invasive surgery. In order to utilize flexible manipulators in complicated and constrained surgical environments, it is of great significance to monitor the position and shape of the curvilinear manipulator in real time during the procedures. In this paper, we propose a magnetic tracking-based planar shape sensing and navigation system for flexible surgical robots in the transoral surgery. The system can provide the real-time tip position and shape information of the robot during the operation. We use wire-driven flexible robot to serve as the manipulator. It has three degrees of freedom. A permanent magnet is mounted at the distal end of the robot. Its magnetic field can be sensed with a magnetic sensor array. Therefore, position and orientation of the tip can be estimated utilizing a tracking method. A shape sensing algorithm is then carried out to estimate the real-time shape based on the tip pose. With the tip pose and shape display in the 3D reconstructed CT model, navigation can be achieved. Using the proposed system, we carried out planar navigation experiments on a skull phantom to touch three different target positions under the navigation of the skull display interface. During the experiments, the real-time shape has been well monitored and distance errors between the robot tip and the targets in the skull have been recorded. The mean navigation error is [Formula: see text] mm, while the maximum error is 3.2 mm. The proposed method provides the advantages that no sensors are needed to mount on the robot and no line-of-sight problem. Experimental results verified the feasibility of the proposed method.
Automatic feature-based grouping during multiple object tracking.
Erlikhman, Gennady; Keane, Brian P; Mettler, Everett; Horowitz, Todd S; Kellman, Philip J
2013-12-01
Contour interpolation automatically binds targets with distractors to impair multiple object tracking (Keane, Mettler, Tsoi, & Kellman, 2011). Is interpolation special in this regard or can other features produce the same effect? To address this question, we examined the influence of eight features on tracking: color, contrast polarity, orientation, size, shape, depth, interpolation, and a combination (shape, color, size). In each case, subjects tracked 4 of 8 objects that began as undifferentiated shapes, changed features as motion began (to enable grouping), and returned to their undifferentiated states before halting. We found that intertarget grouping improved performance for all feature types except orientation and interpolation (Experiment 1 and Experiment 2). Most importantly, target-distractor grouping impaired performance for color, size, shape, combination, and interpolation. The impairments were, at times, large (>15% decrement in accuracy) and occurred relative to a homogeneous condition in which all objects had the same features at each moment of a trial (Experiment 2), and relative to a "diversity" condition in which targets and distractors had different features at each moment (Experiment 3). We conclude that feature-based grouping occurs for a variety of features besides interpolation, even when irrelevant to task instructions and contrary to the task demands, suggesting that interpolation is not unique in promoting automatic grouping in tracking tasks. Our results also imply that various kinds of features are encoded automatically and in parallel during tracking.
Muon reconstruction with a geometrical model in JUNO
NASA Astrophysics Data System (ADS)
Genster, C.; Schever, M.; Ludhova, L.; Soiron, M.; Stahl, A.; Wiebusch, C.
2018-03-01
The Jiangmen Neutrino Underground Observatory (JUNO) is a 20 kton liquid scintillator detector currently under construction near Kaiping in China. The physics program focuses on the determination of the neutrino mass hierarchy with reactor anti-neutrinos. For this purpose, JUNO is located 650 m underground with a distance of 53 km to two nuclear power plants. As a result, it is exposed to a muon flux that requires a precise muon reconstruction to make a veto of cosmogenic backgrounds viable. Established muon tracking algorithms use time residuals to a track hypothesis. We developed an alternative muon tracking algorithm that utilizes the geometrical shape of the fastest light. It models the full shape of the first, direct light produced along the muon track. From the intersection with the spherical PMT array, the track parameters are extracted with a likelihood fit. The algorithm finds a selection of PMTs based on their first hit times and charges. Subsequently, it fits on timing information only. On a sample of through-going muons with a full simulation of readout electronics, we report a spatial resolution of 20 cm of distance from the detector's center and an angular resolution of 1.6o over the whole detector. Additionally, a dead time estimation is performed to measure the impact of the muon veto. Including the step of waveform reconstruction on top of the track reconstruction, a loss in exposure of only 4% can be achieved compared to the case of a perfect tracking algorithm. When including only the PMT time resolution, but no further electronics simulation and waveform reconstruction, the exposure loss is only 1%.
NASA Technical Reports Server (NTRS)
Towner, Robert L.; Band, Jonathan L.
2012-01-01
An analysis technique was developed to compare and track mode shapes for different Finite Element Models. The technique may be applied to a variety of structural dynamics analyses, including model reduction validation (comparing unreduced and reduced models), mode tracking for various parametric analyses (e.g., launch vehicle model dispersion analysis to identify sensitivities to modal gain for Guidance, Navigation, and Control), comparing models of different mesh fidelity (e.g., a coarse model for a preliminary analysis compared to a higher-fidelity model for a detailed analysis) and mode tracking for a structure with properties that change over time (e.g., a launch vehicle from liftoff through end-of-burn, with propellant being expended during the flight). Mode shapes for different models are compared and tracked using several numerical indicators, including traditional Cross-Orthogonality and Modal Assurance Criteria approaches, as well as numerical indicators obtained by comparing modal strain energy and kinetic energy distributions. This analysis technique has been used to reliably identify correlated mode shapes for complex Finite Element Models that would otherwise be difficult to compare using traditional techniques. This improved approach also utilizes an adaptive mode tracking algorithm that allows for automated tracking when working with complex models and/or comparing a large group of models.
Smith, Matthew B; Karatekin, Erdem; Gohlke, Andrea; Mizuno, Hiroaki; Watanabe, Naoki; Vavylonis, Dimitrios
2011-10-05
Analysis of particle trajectories in images obtained by fluorescence microscopy reveals biophysical properties such as diffusion coefficient or rates of association and dissociation. Particle tracking and lifetime measurement is often limited by noise, large mobilities, image inhomogeneities, and path crossings. We present Speckle TrackerJ, a tool that addresses some of these challenges using computer-assisted techniques for finding positions and tracking particles in different situations. A dynamic user interface assists in the creation, editing, and refining of particle tracks. The following are results from application of this program: 1), Tracking single molecule diffusion in simulated images. The shape of the diffusing marker on the image changes from speckle to cloud, depending on the relationship of the diffusion coefficient to the camera exposure time. We use these images to illustrate the range of diffusion coefficients that can be measured. 2), We used the program to measure the diffusion coefficient of capping proteins in the lamellipodium. We found values ∼0.5 μm(2)/s, suggesting capping protein association with protein complexes or the membrane. 3), We demonstrate efficient measuring of appearance and disappearance of EGFP-actin speckles within the lamellipodium of motile cells that indicate actin monomer incorporation into the actin filament network. 4), We marked appearance and disappearance events of fluorescently labeled vesicles to supported lipid bilayers and tracked single lipids from the fused vesicle on the bilayer. This is the first time, to our knowledge, that vesicle fusion has been detected with single molecule sensitivity and the program allowed us to perform a quantitative analysis. 5), By discriminating between undocking and fusion events, dwell times for vesicle fusion after vesicle docking to membranes can be measured. Copyright © 2011 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Differential surface models for tactile perception of shape and on-line tracking of features
NASA Technical Reports Server (NTRS)
Hemami, H.
1987-01-01
Tactile perception of shape involves an on-line controller and a shape perceptor. The purpose of the on-line controller is to maintain gliding or rolling contact with the surface, and collect information, or track specific features of the surface such as edges of a certain sharpness. The shape perceptor uses the information to perceive, estimate the parameters of, or recognize the shape. The differential surface model depends on the information collected and on the a priori information known about the robot and its physical parameters. These differential models are certain functionals that are projections of the dynamics of the robot onto the surface gradient or onto the tangent plane. A number of differential properties may be directly measured from present day tactile sensors. Others may have to be indirectly computed from measurements. Others may constitute design objectives for distributed tactile sensors of the future. A parameterization of the surface leads to linear and nonlinear sequential parameter estimation techniques for identification of the surface. Many interesting compromises between measurement and computation are possible.
NASA Astrophysics Data System (ADS)
Gaur, Ankit; Kumar, Ashok; Naimuddin, Md.
2018-01-01
The recently approved India-based Neutrino Observatory will use the world's largest magnet to study atmospheric muon neutrinos. The 50 kiloton Iron Calorimeter consists of iron alternating with single-gap resistive plate chambers. A uniform magnetic field of ∼1.5 T is produced in the iron using toroidal-shaped copper coils. Muon neutrinos interact with the iron target to produce charged muons, which are detected by the resistive plate chambers, and tracked using orthogonal pick up strips. Timing information for each layer is used to discriminate between upward and downward traveling muons. The design of the readout electronics for the detector depends critically on an accurate model of the charge induced by the muons, and the dependence on bias voltages. In this paper, we present timing and charge response measurements using prototype detectors under different operating conditions. We also report the effect of varying gas mixture, particularly SF6, on the timing response.
Advanced shape tracking to improve flexible endoscopic diagnostics
NASA Astrophysics Data System (ADS)
Cao, Caroline G. L.; Wong, Peter Y.; Lilge, Lothar; Gavalis, Robb M.; Xing, Hua; Zamarripa, Nate
2008-03-01
Colonoscopy is the gold standard for screening for inflammatory bowel disease and colorectal cancer. Flexible endoscopes are difficult to manipulate, especially in the distensible and tortuous colon, sometimes leading to disorientation during the procedure and missed diagnosis of lesions. Our goal is to design a navigational aid to guide colonoscopies, presenting a three dimensional representation of the endoscope in real-time. Therefore, a flexible sensor that can track the position and shape of the entire length of the endoscope is needed. We describe a novel shape-tracking technology utilizing a single modified optical fiber. By embedding fluorophores in the buffer of the fiber, we demonstrated a relationship between fluorescence intensity and fiber curvature. As much as a 40% increase in fluorescence intensity was achieved when the fiber's local bend radius decreased from 58 mm to 11 mm. This approach allows for the construction of a three-dimensional shape tracker that is small enough to be easily inserted into the biopsy channel of current endoscopes.
NASA Astrophysics Data System (ADS)
Homan, Jeroen; van der Klis, Michiel; Wijnands, Rudy; Belloni, Tomaso; Fender, Rob; Klein-Wolt, Marc; Casella, Piergiorgio; Méndez, Mariano; Gallo, Elena; Lewin, Walter H. G.; Gehrels, Neil
2007-02-01
We report on the first 10 weeks of RXTE observations of the X-ray transient XTE J1701-462 and conclude that it had all the characteristics of the neutron star Z sources, i.e., the brightest persistent neutron star low-mass X-ray binaries. These include the typical Z-shaped tracks traced out in X-ray color diagrams and the variability components detected in the power spectra, such as kHz QPOs and normal and horizontal branch oscillations. XTE J1701-462 is the first transient Z source and provides unique insights into mass accretion rate (m˙) and luminosity dependencies in neutron star X-ray binaries. As its overall luminosity decreased, we observed a switch between two types of Z source behavior, with the branches of the Z track changing their shape and/or orientation. We interpret this as an extreme case of the more moderate long-term changes seen in the persistent Z sources and suggest that they result from changes in m˙. We also suggest that the Cyg-like Z sources (Cyg X-2, GX 5-1, and GX 340+0) are substantially more luminous (>50%) than the Sco-like Z sources (Sco X-1, GX 17+2, and GX 349+2). Adopting a possible explanation for the behavior of kHz QPOs, which involves a prompt as well as a filtered response to changes in m˙, we further propose that changes in m˙ can explain both movement along the Z track and changes in the shape of the Z track. We discuss some consequences of this and consider the possibility that the branches of the Z will smoothly evolve into the branches observed in X-ray color diagrams of the less luminous atoll sources, although not in a way that was previously suggested.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ishii, H.; Fujino, H.; Bian, Z.
In this study, two types of marker-based tracking methods for Augmented Reality have been developed. One is a method which employs line-shaped markers and the other is a method which employs circular-shaped markers. These two methods recognize the markers by means of image processing and calculate the relative position and orientation between the markers and the camera in real time. The line-shaped markers are suitable to be pasted in the buildings such as NPPs where many pipes and tanks exist. The circular-shaped markers are suitable for the case that there are many obstacles and it is difficult to use line-shapedmore » markers because the obstacles hide the part of the line-shaped markers. Both methods can extend the maximum distance between the markers and the camera compared to the legacy marker-based tracking methods. (authors)« less
NASA Astrophysics Data System (ADS)
Engelhardt, Sandy; Kolb, Silvio; De Simone, Raffaele; Karck, Matthias; Meinzer, Hans-Peter; Wolf, Ivo
2016-03-01
Mitral valve annuloplasty describes a surgical procedure where an artificial prosthesis is sutured onto the anatomical structure of the mitral annulus to re-establish the valve's functionality. Choosing an appropriate commercially available ring size and shape is a difficult decision the surgeon has to make intraoperatively according to his experience. In our augmented-reality framework, digitalized ring models are superimposed onto endoscopic image streams without using any additional hardware. To place the ring model on the proper position within the endoscopic image plane, a pose estimation is performed that depends on the localization of sutures placed by the surgeon around the leaflet origins and punctured through the stiffer structure of the annulus. In this work, the tissue penetration points are tracked by the real-time capable Lucas Kanade optical flow algorithm. The accuracy and robustness of this tracking algorithm is investigated with respect to the question whether outliers influence the subsequent pose estimation. Our results suggest that optical flow is very stable for a variety of different endoscopic scenes and tracking errors do not affect the position of the superimposed virtual objects in the scene, making this approach a viable candidate for annuloplasty augmented reality-enhanced decision support.
Evaluating a robust contour tracker on echocardiographic sequences.
Jacob, G; Noble, J A; Mulet-Parada, M; Blake, A
1999-03-01
In this paper we present an evaluation of a robust visual image tracker on echocardiographic image sequences. We show how the tracking framework can be customized to define an appropriate shape space that describes heart shape deformations that can be learnt from a training data set. We also investigate energy-based temporal boundary enhancement methods to improve image feature measurement. Results are presented demonstrating real-time tracking on real normal heart motion data sequences and abnormal synthesized and real heart motion data sequences. We conclude by discussing some of our current research efforts.
Semantic shape similarity-based contour tracking evaluation
NASA Astrophysics Data System (ADS)
Zhang, Xiaoqin; Luo, Wenhan; Zhao, Li; Li, Wei; Hu, Weiming
2011-10-01
One major problem of contour-based tracking is how to evaluate the accuracy of tracking results due to nonrigid and deformative properties of contours. We propose a shape context-based evaluation measure that considers the semantic shape similarity between the tracked contour and ground-truth contour. In addition, a pyramid match kernel is introduced for shape histogram matching, which can effectively deal with the contours with different scales. Experimental results demonstrate, compared to two start-of-art evaluation measures, our measure effectively captures the local shape information and thus is more consistent with human vision.
Wear of sharp aggregates in a rotating drum
NASA Astrophysics Data System (ADS)
Deiros Quintanilla, Ivan; Combe, Gaël; Emeriault, Fabrice; Toni, Jean-Benoît; Voivret, Charles; Ferellec, Jean François
2017-06-01
Aggregates constituting ballast layer wear due to the continuous passage of trains and during the necessary maintenance operations of the track. In order to develop efficient solutions for ballasted tracks design and maintenance, a proper knowledge of the degradation laws of ballast grains is needed. In tribology, the amount of wear due to friction when two surfaces are in contact is classically predicted by Archard's equation. However, due to the continuous evolution of grain angularity and roughness, at the macro-scale wear coefficient cannot be assumed to remain constant, but will depend on the state of degradation of the grain surface. In order to adjust the model to this particular case, the Micro-Deval Attrition test is used. The rotating drum is stopped at intermediate stages and the amount of generated fine particles is measured. Thus the curve of mass loss along time is built. These results are then linked to Archard's model using the values of contact forces and relative displacements extracted from discrete element simulations. Finally, a morphology analysis is performed tracking shape and roughness parameters at different stages of degradation using X-ray tomography and a laser profilometer.
Liang, Zhongwei; Zhou, Liang; Liu, Xiaochu; Wang, Xiaogang
2014-01-01
It is obvious that tablet image tracking exerts a notable influence on the efficiency and reliability of high-speed drug mass production, and, simultaneously, it also emerges as a big difficult problem and targeted focus during production monitoring in recent years, due to the high similarity shape and random position distribution of those objectives to be searched for. For the purpose of tracking tablets accurately in random distribution, through using surface fitting approach and transitional vector determination, the calibrated surface of light intensity reflective energy can be established, describing the shape topology and topography details of objective tablet. On this basis, the mathematical properties of these established surfaces have been proposed, and thereafter artificial neural network (ANN) has been employed for classifying those moving targeted tablets by recognizing their different surface properties; therefore, the instantaneous coordinate positions of those drug tablets on one image frame can then be determined. By repeating identical pattern recognition on the next image frame, the real-time movements of objective tablet templates were successfully tracked in sequence. This paper provides reliable references and new research ideas for the real-time objective tracking in the case of drug production practices. PMID:25143781
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Hua, E-mail: huli@radonc.wustl.edu; Chen, Hsin
Purpose: For the first time, MRI-guided radiation therapy systems can acquire cine images to dynamically monitor in-treatment internal organ motion. However, the complex head and neck (H&N) structures and low-contrast/resolution of on-board cine MRI images make automatic motion tracking a very challenging task. In this study, the authors proposed an integrated model-driven method to automatically track the in-treatment motion of the H&N upper airway, a complex and highly deformable region wherein internal motion often occurs in an either voluntary or involuntary manner, from cine MRI images for the analysis of H&N motion patterns. Methods: Considering the complex H&N structures andmore » ensuring automatic and robust upper airway motion tracking, the authors firstly built a set of linked statistical shapes (including face, face-jaw, and face-jaw-palate) using principal component analysis from clinically approved contours delineated on a set of training data. The linked statistical shapes integrate explicit landmarks and implicit shape representation. Then, a hierarchical model-fitting algorithm was developed to align the linked shapes on the first image frame of a to-be-tracked cine sequence and to localize the upper airway region. Finally, a multifeature level set contour propagation scheme was performed to identify the upper airway shape change, frame-by-frame, on the entire image sequence. The multifeature fitting energy, including the information of intensity variations, edge saliency, curve geometry, and temporal shape continuity, was minimized to capture the details of moving airway boundaries. Sagittal cine MR image sequences acquired from three H&N cancer patients were utilized to demonstrate the performance of the proposed motion tracking method. Results: The tracking accuracy was validated by comparing the results to the average of two manual delineations in 50 randomly selected cine image frames from each patient. The resulting average dice similarity coefficient (93.28% ± 1.46%) and margin error (0.49 ± 0.12 mm) showed good agreement between the automatic and manual results. The comparison with three other deformable model-based segmentation methods illustrated the superior shape tracking performance of the proposed method. Large interpatient variations of swallowing frequency, swallowing duration, and upper airway cross-sectional area were observed from the testing cine image sequences. Conclusions: The proposed motion tracking method can provide accurate upper airway motion tracking results, and enable automatic and quantitative identification and analysis of in-treatment H&N upper airway motion. By integrating explicit and implicit linked-shape representations within a hierarchical model-fitting process, the proposed tracking method can process complex H&N structures and low-contrast/resolution cine MRI images. Future research will focus on the improvement of method reliability, patient motion pattern analysis for providing more information on patient-specific prediction of structure displacements, and motion effects on dosimetry for better H&N motion management in radiation therapy.« less
Li, Hua; Chen, Hsin-Chen; Dolly, Steven; Li, Harold; Fischer-Valuck, Benjamin; Victoria, James; Dempsey, James; Ruan, Su; Anastasio, Mark; Mazur, Thomas; Gach, Michael; Kashani, Rojano; Green, Olga; Rodriguez, Vivian; Gay, Hiram; Thorstad, Wade; Mutic, Sasa
2016-08-01
For the first time, MRI-guided radiation therapy systems can acquire cine images to dynamically monitor in-treatment internal organ motion. However, the complex head and neck (H&N) structures and low-contrast/resolution of on-board cine MRI images make automatic motion tracking a very challenging task. In this study, the authors proposed an integrated model-driven method to automatically track the in-treatment motion of the H&N upper airway, a complex and highly deformable region wherein internal motion often occurs in an either voluntary or involuntary manner, from cine MRI images for the analysis of H&N motion patterns. Considering the complex H&N structures and ensuring automatic and robust upper airway motion tracking, the authors firstly built a set of linked statistical shapes (including face, face-jaw, and face-jaw-palate) using principal component analysis from clinically approved contours delineated on a set of training data. The linked statistical shapes integrate explicit landmarks and implicit shape representation. Then, a hierarchical model-fitting algorithm was developed to align the linked shapes on the first image frame of a to-be-tracked cine sequence and to localize the upper airway region. Finally, a multifeature level set contour propagation scheme was performed to identify the upper airway shape change, frame-by-frame, on the entire image sequence. The multifeature fitting energy, including the information of intensity variations, edge saliency, curve geometry, and temporal shape continuity, was minimized to capture the details of moving airway boundaries. Sagittal cine MR image sequences acquired from three H&N cancer patients were utilized to demonstrate the performance of the proposed motion tracking method. The tracking accuracy was validated by comparing the results to the average of two manual delineations in 50 randomly selected cine image frames from each patient. The resulting average dice similarity coefficient (93.28% ± 1.46%) and margin error (0.49 ± 0.12 mm) showed good agreement between the automatic and manual results. The comparison with three other deformable model-based segmentation methods illustrated the superior shape tracking performance of the proposed method. Large interpatient variations of swallowing frequency, swallowing duration, and upper airway cross-sectional area were observed from the testing cine image sequences. The proposed motion tracking method can provide accurate upper airway motion tracking results, and enable automatic and quantitative identification and analysis of in-treatment H&N upper airway motion. By integrating explicit and implicit linked-shape representations within a hierarchical model-fitting process, the proposed tracking method can process complex H&N structures and low-contrast/resolution cine MRI images. Future research will focus on the improvement of method reliability, patient motion pattern analysis for providing more information on patient-specific prediction of structure displacements, and motion effects on dosimetry for better H&N motion management in radiation therapy.
NASA Astrophysics Data System (ADS)
Williams, R. T.; Grim, Joel Q.; Li, Qi; Ucer, K. B.; Bizarri, G. A.; Kerisit, S.; Gao, Fei; Bhattacharya, P.; Tupitsyn, E.; Rowe, E.; Buliga, V. M.; Burger, A.
2013-09-01
Models of nonproportional response in scintillators have highlighted the importance of parameters such as branching ratios, carrier thermalization times, diffusion, kinetic order of quenching, associated rate constants, and radius of the electron track. For example, the fraction ηeh of excitations that are free carriers versus excitons was shown by Payne and coworkers to have strong correlation with the shape of electron energy response curves from Compton-coincidence studies. Rate constants for nonlinear quenching are implicit in almost all models of nonproportionality, and some assumption about track radius must invariably be made if one is to relate linear energy deposition dE/dx to volume-based excitation density n (eh/cm3) in terms of which the rates are defined. Diffusion, affecting time-dependent track radius and thus density of excitations, has been implicated as an important factor in nonlinear light yield. Several groups have recently highlighted diffusion of hot electrons in addition to thermalized carriers and excitons in scintillators. However, experimental determination of many of these parameters in the insulating crystals used as scintillators has seemed difficult. Subpicosecond laser techniques including interband z scan light yield, fluence-dependent decay time, and transient optical absorption are now yielding experimental values for some of the missing rates and ratios needed for modeling scintillator response. First principles calculations and Monte Carlo simulations can fill in additional parameters still unavailable from experiment. As a result, quantitative modeling of scintillator electron energy response from independently determined material parameters is becoming possible on an increasingly firmer data base. This paper describes recent laser experiments, calculations, and numerical modeling of scintillator response.
Williams, R. T.; Grim, Joel Q.; Li, Qi; ...
2013-09-26
Models of nonproportional response in scintillators have highlighted the importance of parameters such as branching ratios, carrier thermalization times, diffusion, kinetic order of quenching, associated rate constants, and radius of the electron track. For example, the fraction ηeh of excitations that are free carriers versus excitons was shown by Payne and coworkers to have strong correlation with the shape of electron energy response curves from Compton-coincidence studies. Rate constants for nonlinear quenching are implicit in almost all models of nonproportionality, and some assumption about track radius must invariably be made if one is to relate linear energy deposition dE/dx tomore » volume-based excitation density n (eh/cm 3) in terms of which the rates are defined. Diffusion, affecting time-dependent track radius and thus density of excitations, has been implicated as an important factor in nonlinear light yield. Several groups have recently highlighted diffusion of hot electrons in addition to thermalized carriers and excitons in scintillators. However, experimental determination of many of these parameters in the insulating crystals used as scintillators has seemed difficult. Subpicosecond laser techniques including interband z scan light yield, fluence-dependent decay time, and transient optical absorption are now yielding experimental values for some of the missing rates and ratios needed for modeling scintillator response. First principles calculations and Monte Carlo simulations can fill in additional parameters still unavailable from experiment. As a result, quantitative modeling of scintillator electron energy response from independently determined material parameters is becoming possible on an increasingly firmer data base. This study describes recent laser experiments, calculations, and numerical modeling of scintillator response.« less
New 'Molecular Movie' Reveals Ultrafast Chemistry in Motion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Minitti, Michael
2015-06-22
Scientists for the first time tracked ultrafast structural changes, captured in quadrillionths-of-a-second steps, as ring-shaped gas molecules burst open and unraveled. Ring-shaped molecules are abundant in biochemistry and also form the basis for many drug compounds. The study points the way to a wide range of real-time X-ray studies of gas-based chemical reactions that are vital to biological processes.
New 'Molecular Movie' Reveals Ultrafast Chemistry in Motion
Minitti, Michael
2018-02-14
Scientists for the first time tracked ultrafast structural changes, captured in quadrillionths-of-a-second steps, as ring-shaped gas molecules burst open and unraveled. Ring-shaped molecules are abundant in biochemistry and also form the basis for many drug compounds. The study points the way to a wide range of real-time X-ray studies of gas-based chemical reactions that are vital to biological processes.
Analysis of Tropical Cyclone Tracks in the North Indian Ocean
NASA Astrophysics Data System (ADS)
Patwardhan, A.; Paliwal, M.; Mohapatra, M.
2011-12-01
Cyclones are regarded as one of the most dangerous meteorological phenomena of the tropical region. The probability of landfall of a tropical cyclone depends on its movement (trajectory). Analysis of trajectories of tropical cyclones could be useful for identifying potentially predictable characteristics. There is long history of analysis of tropical cyclones tracks. A common approach is using different clustering techniques to group the cyclone tracks on the basis of certain characteristics. Various clustering method have been used to study the tropical cyclones in different ocean basins like western North Pacific ocean (Elsner and Liu, 2003; Camargo et al., 2007), North Atlantic Ocean (Elsner, 2003; Gaffney et al. 2007; Nakamura et al., 2009). In this study, tropical cyclone tracks in the North Indian Ocean basin, for the period 1961-2010 have been analyzed and grouped into clusters based on their spatial characteristics. A tropical cyclone trajectory is approximated as an open curve and described by its first two moments. The resulting clusters have different centroid locations and also differently shaped variance ellipses. These track characteristics are then used in the standard clustering algorithms which allow the whole track shape, length, and location to be incorporated into the clustering methodology. The resulting clusters have different genesis locations and trajectory shapes. We have also examined characteristics such as life span, maximum sustained wind speed, landfall, seasonality, many of which are significantly different across the identified clusters. The clustering approach groups cyclones with higher maximum wind speed and longest life span in to one cluster. Another cluster includes short duration cyclonic events that are mostly deep depressions and significant for rainfall over Eastern and Central India. The clustering approach is likely to prove useful for analysis of events of significance with regard to impacts.
Conformal needle-based ultrasound ablation using EM-tracked conebeam CT image guidance
NASA Astrophysics Data System (ADS)
Burdette, E. Clif; Banovac, Filip; Diederich, Chris J.; Cheng, Patrick; Wilson, Emmanuel; Cleary, Kevin R.
2011-03-01
Numerous studies have demonstrated the efficacy of interstitial ablative approaches for the treatment of renal and hepatic tumors. Despite these promising results, current systems remain highly dependent on operator skill, and cannot treat many tumors because there is little control of the size and shape of the zone of necrosis, and no control over ablator trajectory within tissue once insertion has taken place. Additionally, tissue deformation and target motion make it extremely difficult to accurately place the ablator device into the target. Irregularly shaped target volumes typically require multiple insertions and several sequential thermal ablation procedures. This study demonstrated feasibility of spatially tracked image-guided conformal ultrasound (US) ablation for percutaneous directional ablation of diseased tissue. Tissue was prepared by suturing the liver within a pig belly and 1mm BBs placed to serve as needle targets. The image guided system used integrated electromagnetic tracking and cone-beam CT (CBCT) with conformable needlebased high-intensity US ablation in the interventional suite. Tomographic images from cone beam CT were transferred electronically to the image-guided tracking system (IGSTK). Paired-point registration was used to register the target specimen to CT images and enable navigation. Path planning is done by selecting the target BB on the GUI of the realtime tracking system and determining skin entry location until an optimal path is selected. Power was applied to create the desired ablation extent within 7-10 minutes at a thermal dose (>300eqm43). The system was successfully used to place the US ablator in planned target locations within ex-vivo kidney and liver through percutaneous access. Targeting accuracy was 3-4 mm. Sectioned specimens demonstrated uniform ablation within the planned target zone. Subsequent experiments were conducted for multiple ablator positions based upon treatment planning simulations. Ablation zones in liver were 73cc, 84cc, and 140cc for 3, 4, and 5 placements, respectively. These experiments demonstrate the feasibility of combining real-time spatially tracked image guidance with directional interstitial ultrasound ablation. Interstitial ultrasound ablation delivered on multiple needles permit the size and shape of the ablation zone to be "sculpted" by modifying the angle and intensity of the active US elements in the array. This paper summarizes the design and development of the first system incorporating thermal treatment planning and integration of a novel interstitial acoustic ablation device with integrated 3D electromagnetic tracking and guidance strategy.
Interactive segmentation of tongue contours in ultrasound video sequences using quality maps
NASA Astrophysics Data System (ADS)
Ghrenassia, Sarah; Ménard, Lucie; Laporte, Catherine
2014-03-01
Ultrasound (US) imaging is an effective and non invasive way of studying the tongue motions involved in normal and pathological speech, and the results of US studies are of interest for the development of new strategies in speech therapy. State-of-the-art tongue shape analysis techniques based on US images depend on semi-automated tongue segmentation and tracking techniques. Recent work has mostly focused on improving the accuracy of the tracking techniques themselves. However, occasional errors remain inevitable, regardless of the technique used, and the tongue tracking process must thus be supervised by a speech scientist who will correct these errors manually or semi-automatically. This paper proposes an interactive framework to facilitate this process. In this framework, the user is guided towards potentially problematic portions of the US image sequence by a segmentation quality map that is based on the normalized energy of an active contour model and automatically produced during tracking. When a problematic segmentation is identified, corrections to the segmented contour can be made on one image and propagated both forward and backward in the problematic subsequence, thereby improving the user experience. The interactive tools were tested in combination with two different tracking algorithms. Preliminary results illustrate the potential of the proposed framework, suggesting that the proposed framework generally improves user interaction time, with little change in segmentation repeatability.
Sand dune tracking from satellite laser altimetry
NASA Astrophysics Data System (ADS)
Dabboor, Mohammed
Substantial problems arise from sand movement in arid and semi-arid countries. Sand poses a threat to infrastructure, agricultural and urban areas. These issues are caused by the encroachment of sand on roads and railway tracks, farmland, towns and villages, and airports, to name a few. Sand movement highly depends on geomorphology including vegetation cover, shape and height of the terrain, and grain size of the sand. However, wind direction and speed are the most important factors that affect efficient sand movement. The direction of the movement depends on the main direction of the wind, but it has been shown that a minimum wind speed is required, e.g. wind gusts, to initiate sand transport. This fact prevents a simple calculation of sand transport from conventional wind data as wind records rarely contain sub-minute intervals masking out any wind gusts. An alternative of predicting sand transport is the direct observation of sand advance by in situ measurements or via satellite. Until recently, satellite imagery was the only means to compare dune shape and position for predicting dune migration over several years. In 2003, the NASA laser altimetry mission ICESat became operational and monitors elevations over all surface types including sand dunes with an accuracy of about 10-20 cm. In this study, ICESat observations from repeat tracks (tracks overlapping eachother within 50 m) are used to derive sand dune advance and direction. The method employs a correlation of the elevation profiles over several dunes and was sucessfully validated with synthetic data. The accuracy of this method is 5 meters of dune advance. One of the most active areas exhibiting sand and dune movement is the area of the Arabian Peninsula. Approximately one-third of the Arabian Peninsula is covered by sand dunes. Different wind regimes (Shamal, Kaus) cause sand dune movement in the selected study area in the eastern part of the Arabian Peninsula between 20-25 degrees North and 45-55 degrees East. Two different dune types can be distinguised which exhibit a 6 m and 26 m average dune advance over a 6 months time period. Wind speed/direction data and the observed dune advance agree well and indicate that dune tracking from space is a viable alternative to in situ or model data.
Textual and shape-based feature extraction and neuro-fuzzy classifier for nuclear track recognition
NASA Astrophysics Data System (ADS)
Khayat, Omid; Afarideh, Hossein
2013-04-01
Track counting algorithms as one of the fundamental principles of nuclear science have been emphasized in the recent years. Accurate measurement of nuclear tracks on solid-state nuclear track detectors is the aim of track counting systems. Commonly track counting systems comprise a hardware system for the task of imaging and software for analysing the track images. In this paper, a track recognition algorithm based on 12 defined textual and shape-based features and a neuro-fuzzy classifier is proposed. Features are defined so as to discern the tracks from the background and small objects. Then, according to the defined features, tracks are detected using a trained neuro-fuzzy system. Features and the classifier are finally validated via 100 Alpha track images and 40 training samples. It is shown that principle textual and shape-based features concomitantly yield a high rate of track detection compared with the single-feature based methods.
NASA Astrophysics Data System (ADS)
Bandyopadhyay, Saptarshi
Multi-agent systems are widely used for constructing a desired formation shape, exploring an area, surveillance, coverage, and other cooperative tasks. This dissertation introduces novel algorithms in the three main areas of shape formation, distributed estimation, and attitude control of large-scale multi-agent systems. In the first part of this dissertation, we address the problem of shape formation for thousands to millions of agents. Here, we present two novel algorithms for guiding a large-scale swarm of robotic systems into a desired formation shape in a distributed and scalable manner. These probabilistic swarm guidance algorithms adopt an Eulerian framework, where the physical space is partitioned into bins and the swarm's density distribution over each bin is controlled using tunable Markov chains. In the first algorithm - Probabilistic Swarm Guidance using Inhomogeneous Markov Chains (PSG-IMC) - each agent determines its bin transition probabilities using a time-inhomogeneous Markov chain that is constructed in real-time using feedback from the current swarm distribution. This PSG-IMC algorithm minimizes the expected cost of the transitions required to achieve and maintain the desired formation shape, even when agents are added to or removed from the swarm. The algorithm scales well with a large number of agents and complex formation shapes, and can also be adapted for area exploration applications. In the second algorithm - Probabilistic Swarm Guidance using Optimal Transport (PSG-OT) - each agent determines its bin transition probabilities by solving an optimal transport problem, which is recast as a linear program. In the presence of perfect feedback of the current swarm distribution, this algorithm minimizes the given cost function, guarantees faster convergence, reduces the number of transitions for achieving the desired formation, and is robust to disturbances or damages to the formation. We demonstrate the effectiveness of these two proposed swarm guidance algorithms using results from numerical simulations and closed-loop hardware experiments on multiple quadrotors. In the second part of this dissertation, we present two novel discrete-time algorithms for distributed estimation, which track a single target using a network of heterogeneous sensing agents. The Distributed Bayesian Filtering (DBF) algorithm, the sensing agents combine their normalized likelihood functions using the logarithmic opinion pool and the discrete-time dynamic average consensus algorithm. Each agent's estimated likelihood function converges to an error ball centered on the joint likelihood function of the centralized multi-sensor Bayesian filtering algorithm. Using a new proof technique, the convergence, stability, and robustness properties of the DBF algorithm are rigorously characterized. The explicit bounds on the time step of the robust DBF algorithm are shown to depend on the time-scale of the target dynamics. Furthermore, the DBF algorithm for linear-Gaussian models can be cast into a modified form of the Kalman information filter. In the Bayesian Consensus Filtering (BCF) algorithm, the agents combine their estimated posterior pdfs multiple times within each time step using the logarithmic opinion pool scheme. Thus, each agent's consensual pdf minimizes the sum of Kullback-Leibler divergences with the local posterior pdfs. The performance and robust properties of these algorithms are validated using numerical simulations. In the third part of this dissertation, we present an attitude control strategy and a new nonlinear tracking controller for a spacecraft carrying a large object, such as an asteroid or a boulder. If the captured object is larger or comparable in size to the spacecraft and has significant modeling uncertainties, conventional nonlinear control laws that use exact feed-forward cancellation are not suitable because they exhibit a large resultant disturbance torque. The proposed nonlinear tracking control law guarantees global exponential convergence of tracking errors with finite-gain Lp stability in the presence of modeling uncertainties and disturbances, and reduces the resultant disturbance torque. Further, this control law permits the use of any attitude representation and its integral control formulation eliminates any constant disturbance. Under small uncertainties, the best strategy for stabilizing the combined system is to track a fuel-optimal reference trajectory using this nonlinear control law, because it consumes the least amount of fuel. In the presence of large uncertainties, the most effective strategy is to track the derivative plus proportional-derivative based reference trajectory, because it reduces the resultant disturbance torque. The effectiveness of the proposed attitude control law is demonstrated by using results of numerical simulation based on an Asteroid Redirect Mission concept. The new algorithms proposed in this dissertation will facilitate the development of versatile autonomous multi-agent systems that are capable of performing a variety of complex tasks in a robust and scalable manner.
Shape Tracking of a Dexterous Continuum Manipulator Utilizing Two Large Deflection Shape Sensors
Farvardin, Amirhossein; Grupp, Robert; Murphy, Ryan J.; Taylor, Russell H.; Iordachita, Iulian
2016-01-01
Dexterous continuum manipulators (DCMs) can largely increase the reachable region and steerability for minimally and less invasive surgery. Many such procedures require the DCM to be capable of producing large deflections. The real-time control of the DCM shape requires sensors that accurately detect and report large deflections. We propose a novel, large deflection, shape sensor to track the shape of a 35 mm DCM designed for a less invasive treatment of osteolysis. Two shape sensors, each with three fiber Bragg grating sensing nodes is embedded within the DCM, and the sensors’ distal ends fixed to the DCM. The DCM centerline is computed using the centerlines of each sensor curve. An experimental platform was built and different groups of experiments were carried out, including free bending and three cases of bending with obstacles. For each experiment, the DCM drive cable was pulled with a precise linear slide stage, the DCM centerline was calculated, and a 2D camera image was captured for verification. The reconstructed shape created with the shape sensors is compared with the ground truth generated by executing a 2D–3D registration between the camera image and 3D DCM model. Results show that the distal tip tracking accuracy is 0.40 ± 0.30 mm for the free bending and 0.61 ± 0.15 mm, 0.93 ± 0.05 mm and 0.23 ± 0.10 mm for three cases of bending with obstacles. The data suggest FBG arrays can accurately characterize the shape of large-deflection DCMs. PMID:27761103
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ginsz, M.; Duchene, G.; Didierjean, F.
The state-of-the art gamma-ray spectrometers such as AGATA and GRETA are using position sensitive multi-segmented HPGe crystals. Pulse-shape analysis (PSA) allows to retrieve the localisation of the gamma interactions and to perform gamma-ray tracking within germanium. The precision of the localisation depends on the quality of the pulse-shape database used for comparison. The IPHC laboratory developed a new fast scanning table allowing to measure experimental pulse shapes in the whole volume of any crystal. The results of the scan of an AGATA 36-fold segmented tapered coaxial detector are shown here, 48580 experimental pulse shapes are extracted within 2 weeks ofmore » scanning. These data will contribute to AGATA PSA performances, but have also applications for gamma cameras or Compton-suppressed detectors. (authors)« less
Tracking and shape errors measurement of concentrating heliostats
NASA Astrophysics Data System (ADS)
Coquand, Mathieu; Caliot, Cyril; Hénault, François
2017-09-01
In solar tower power plants, factors such as tracking accuracy, facets misalignment and surface shape errors of concentrating heliostats are of prime importance on the efficiency of the system. At industrial scale, one critical issue is the time and effort required to adjust the different mirrors of the faceted heliostats, which could take several months using current techniques. Thus, methods enabling quick adjustment of a field with a huge number of heliostats are essential for the rise of solar tower technology. In this communication is described a new method for heliostat characterization that makes use of four cameras located near the solar receiver and simultaneously recording images of the sun reflected by the optical surfaces. From knowledge of a measured sun profile, data processing of the acquired images allows reconstructing the slope and shape errors of the heliostats, including tracking and canting errors. The mathematical basis of this shape reconstruction process is explained comprehensively. Numerical simulations demonstrate that the measurement accuracy of this "backward-gazing method" is compliant with the requirements of solar concentrating optics. Finally, we present our first experimental results obtained at the THEMIS experimental solar tower plant in Targasonne, France.
Basu, Amar S
2013-05-21
Emerging assays in droplet microfluidics require the measurement of parameters such as drop size, velocity, trajectory, shape deformation, fluorescence intensity, and others. While micro particle image velocimetry (μPIV) and related techniques are suitable for measuring flow using tracer particles, no tool exists for tracking droplets at the granularity of a single entity. This paper presents droplet morphometry and velocimetry (DMV), a digital video processing software for time-resolved droplet analysis. Droplets are identified through a series of image processing steps which operate on transparent, translucent, fluorescent, or opaque droplets. The steps include background image generation, background subtraction, edge detection, small object removal, morphological close and fill, and shape discrimination. A frame correlation step then links droplets spanning multiple frames via a nearest neighbor search with user-defined matching criteria. Each step can be individually tuned for maximum compatibility. For each droplet found, DMV provides a time-history of 20 different parameters, including trajectory, velocity, area, dimensions, shape deformation, orientation, nearest neighbour spacing, and pixel statistics. The data can be reported via scatter plots, histograms, and tables at the granularity of individual droplets or by statistics accrued over the population. We present several case studies from industry and academic labs, including the measurement of 1) size distributions and flow perturbations in a drop generator, 2) size distributions and mixing rates in drop splitting/merging devices, 3) efficiency of single cell encapsulation devices, 4) position tracking in electrowetting operations, 5) chemical concentrations in a serial drop dilutor, 6) drop sorting efficiency of a tensiophoresis device, 7) plug length and orientation of nonspherical plugs in a serpentine channel, and 8) high throughput tracking of >250 drops in a reinjection system. Performance metrics show that highest accuracy and precision is obtained when the video resolution is >300 pixels per drop. Analysis time increases proportionally with video resolution. The current version of the software provides throughputs of 2-30 fps, suggesting the potential for real time analysis.
The shape of ion tracks in natural apatite
NASA Astrophysics Data System (ADS)
Schauries, D.; Afra, B.; Bierschenk, T.; Lang, M.; Rodriguez, M. D.; Trautmann, C.; Li, W.; Ewing, R. C.; Kluth, P.
2014-05-01
Small angle X-ray scattering measurements were performed on natural apatite of different thickness irradiated with 2.2 GeV Au swift heavy ions. The evolution of the track radius along the full ion track length was estimated by considering the electronic energy loss and the velocity of the ions. The shape of the track is nearly cylindrical, slightly widening with a maximum diameter approximately 30 μm before the ions come to rest, followed by a rapid narrowing towards the end within a cigar-like contour. Measurements of average ion track radii in samples of different thicknesses, i.e. containing different sections of the tracks are in good agreement with the shape estimate.
The Dawn Gravity Investigation at Vesta and Ceres
NASA Technical Reports Server (NTRS)
Konopliv, A. S.; Asmar, S.W.; Bills, B. G.; Mastrodemos, N.; Park, R. S.; Raymond, C. A.; Smith, D. E.; Zuber, M. T.
2011-01-01
The objective of the Dawn gravity investigation is to use high precision X-band Doppler tracking and landmark tracking from optical images to measure the gravity fields of Vesta and Ceres to a half-wavelength surface resolution better than 90-km and 300-km, respectively. Depending on the Doppler tracking assumptions, the gravity field will be determined to somewhere between harmonic degrees 15 and 25 for Vesta and about degree 10 for Ceres. The gravity fields together with shape models determined from Dawn's framing camera constrain models of the interior from the core to the crust. The gravity field is determined jointly with the spin pole location. The second degree harmonics together with assumptions on obliquity or hydrostatic equilibrium may determine the moments of inertia.
NASA Astrophysics Data System (ADS)
Al-Jobouri, Hussain A.; Rajab, Mustafa Y.
2016-03-01
CR-39 detector which covered with boric acid (H3Bo3) pellet was irradiated by thermal neutrons from (241Am - 9Be) source with activity 12Ci and neutron flux 105 n. cm-2. s-1. The irradiation times -TD for detector were 4h, 8h, 16h and 24h. Chemical etching solution for detector was sodium hydroxide NaOH, 6.25N with 45 min etching time and 60 C˚ temperature. Images of CR-39 detector after chemical etching were taken from digital camera which connected from optical microscope. MATLAB software version 7.0 was used to image processing. The outputs of image processing of MATLAB software were analyzed and found the following relationships: (a) The irradiation time -TD has behavior linear relationships with following nuclear track parameters: i) total track number - NT ii) maximum track number - MRD (relative to track diameter - DT) at response region range 2.5 µm to 4 µm iii) maximum track number - MD (without depending on track diameter - DT). (b) The irradiation time -TD has behavior logarithmic relationship with maximum track number - MA (without depending on track area - AT). The image processing technique principally track diameter - DT can be take into account to classification of α-particle emitters, In addition to the contribution of these technique in preparation of nano- filters and nano-membrane in nanotechnology fields.
Active contour-based visual tracking by integrating colors, shapes, and motions.
Hu, Weiming; Zhou, Xue; Li, Wei; Luo, Wenhan; Zhang, Xiaoqin; Maybank, Stephen
2013-05-01
In this paper, we present a framework for active contour-based visual tracking using level sets. The main components of our framework include contour-based tracking initialization, color-based contour evolution, adaptive shape-based contour evolution for non-periodic motions, dynamic shape-based contour evolution for periodic motions, and the handling of abrupt motions. For the initialization of contour-based tracking, we develop an optical flow-based algorithm for automatically initializing contours at the first frame. For the color-based contour evolution, Markov random field theory is used to measure correlations between values of neighboring pixels for posterior probability estimation. For adaptive shape-based contour evolution, the global shape information and the local color information are combined to hierarchically evolve the contour, and a flexible shape updating model is constructed. For the dynamic shape-based contour evolution, a shape mode transition matrix is learnt to characterize the temporal correlations of object shapes. For the handling of abrupt motions, particle swarm optimization is adopted to capture the global motion which is applied to the contour in the current frame to produce an initial contour in the next frame.
The Pointing Self-calibration Algorithm for Aperture Synthesis Radio Telescopes
NASA Astrophysics Data System (ADS)
Bhatnagar, S.; Cornwell, T. J.
2017-11-01
This paper is concerned with algorithms for calibration of direction-dependent effects (DDE) in aperture synthesis radio telescopes (ASRT). After correction of direction-independent effects (DIE) using self-calibration, imaging performance can be limited by the imprecise knowledge of the forward gain of the elements in the array. In general, the forward gain pattern is directionally dependent and varies with time due to a number of reasons. Some factors, such as rotation of the primary beam with Parallactic Angle for Azimuth-Elevation mount antennas are known a priori. Some, such as antenna pointing errors and structural deformation/projection effects for aperture-array elements cannot be measured a priori. Thus, in addition to algorithms to correct for DD effects known a priori, algorithms to solve for DD gains are required for high dynamic range imaging. Here, we discuss a mathematical framework for antenna-based DDE calibration algorithms and show that this framework leads to computationally efficient optimal algorithms that scale well in a parallel computing environment. As an example of an antenna-based DD calibration algorithm, we demonstrate the Pointing SelfCal (PSC) algorithm to solve for the antenna pointing errors. Our analysis show that the sensitivity of modern ASRT is sufficient to solve for antenna pointing errors and other DD effects. We also discuss the use of the PSC algorithm in real-time calibration systems and extensions for antenna Shape SelfCal algorithm for real-time tracking and corrections for pointing offsets and changes in antenna shape.
The Pointing Self-calibration Algorithm for Aperture Synthesis Radio Telescopes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhatnagar, S.; Cornwell, T. J., E-mail: sbhatnag@nrao.edu
This paper is concerned with algorithms for calibration of direction-dependent effects (DDE) in aperture synthesis radio telescopes (ASRT). After correction of direction-independent effects (DIE) using self-calibration, imaging performance can be limited by the imprecise knowledge of the forward gain of the elements in the array. In general, the forward gain pattern is directionally dependent and varies with time due to a number of reasons. Some factors, such as rotation of the primary beam with Parallactic Angle for Azimuth–Elevation mount antennas are known a priori. Some, such as antenna pointing errors and structural deformation/projection effects for aperture-array elements cannot be measuredmore » a priori. Thus, in addition to algorithms to correct for DD effects known a priori, algorithms to solve for DD gains are required for high dynamic range imaging. Here, we discuss a mathematical framework for antenna-based DDE calibration algorithms and show that this framework leads to computationally efficient optimal algorithms that scale well in a parallel computing environment. As an example of an antenna-based DD calibration algorithm, we demonstrate the Pointing SelfCal (PSC) algorithm to solve for the antenna pointing errors. Our analysis show that the sensitivity of modern ASRT is sufficient to solve for antenna pointing errors and other DD effects. We also discuss the use of the PSC algorithm in real-time calibration systems and extensions for antenna Shape SelfCal algorithm for real-time tracking and corrections for pointing offsets and changes in antenna shape.« less
Features of single tracks in coaxial laser cladding of a NIbased self-fluxing alloy
NASA Astrophysics Data System (ADS)
Feldshtein, Eugene; Devojno, Oleg; Kardapolava, Marharyta; Lutsko, Nikolaj
2017-10-01
In the present paper, the influence of coaxial laser cladding conditions on the dimensions, microstructure, phases and microhardness of Ni-based self-fluxing alloy single tracks is studied. The height and width of single tracks depend on the speed and distance of the laser cladding: increasing the nozzle distance from the deposited surface 1.4 times reduces the width of the track 1.2 - 1.3 times and increases its height 1.2 times. The increase of the laser spot speed 3 times reduces the track width 1.2 - 1.4 times and the height in 1.5 - 1.6 times. At the same time, the increase of the laser spot speed 3 times reduces the track width 1.2 - 1.4 times and the height 1.5 - 1.6 times. Regularities in the formation of single tracks microstructure with different cladding conditions are defined, as well as regularity of distribution of elements over the track depth and in the transient zone. The patterns of microhardness distribution over the track depth for different cladding conditions are found.
Videogrammetry Using Projected Circular Targets: Proof-of-Concept Test
NASA Technical Reports Server (NTRS)
Pappa, Richard S.; Black, Jonathan T.
2003-01-01
Videogrammetry is the science of calculating 3D object coordinates as a function of time from image sequences. It expands the method of photogrammetry to multiple time steps enabling the object to be characterized dynamically. Photogrammetry achieves the greatest accuracy with high contrast, solid-colored, circular targets. The high contrast is most often effected using retro-reflective targets attached to the measurement article. Knowledge of the location of each target allows those points to be tracked in a sequence of images, thus yielding dynamic characterization of the overall object. For ultra-lightweight and inflatable gossamer structures (e.g. solar sails, inflatable antennae, sun shields, etc.) where it may be desirable to avoid physically attaching retro-targets, a high-density grid of projected circular targets - called dot projection - is a viable alternative. Over time the object changes shape or position independently of the dots. Dynamic behavior, such as deployment or vibration, can be characterized by tracking the overall 3D shape of the object instead of tracking specific object points. To develop this method, an oscillating rigid object was measured using both retroreflective targets and dot projection. This paper details these tests, compares the results, and discusses the overall accuracy of dot projection videogrammetry.
Videogrammetry Using Projected Circular Targets: Proof-of-Concept Test
NASA Technical Reports Server (NTRS)
Black, Jonathan T.; Pappa, Richard S.
2003-01-01
Videogrammetry is the science of calculating 3D object coordinates as a function of time from image sequences. It expands the method of photogrammetry to multiple time steps enabling the object to be characterized dynamically. Photogrammetry achieves the greatest accuracy with high contrast, solid-colored circular targets. The high contrast is most often effected using retro-reflective targets attached to the measurement article. Knowledge of the location of each target allows those points to be tracked in a sequence of images, thus yielding dynamic characterization of the overall object. For ultra-lightweight and inflatable gossamer structures (e.g. solar sails, inflatable antennae, sun shields, etc.) where it may be desirable to avoid physically attaching retro-targets, a high-density grid of projected circular targets - called dot projection - is a viable alternative. Over time the object changes shape or position independently of the dots. Dynamic behavior, such as deployment or vibration, can be characterized by tracking the overall 3D shape of the object instead of tracking specific object points. To develop this method, an oscillating rigid object was measured using both retro- reflective targets and dot projection. This paper details these tests, compares the results, and discusses the overall accuracy of dot projection videogrammetry.
Real Time 3D Facial Movement Tracking Using a Monocular Camera
Dong, Yanchao; Wang, Yanming; Yue, Jiguang; Hu, Zhencheng
2016-01-01
The paper proposes a robust framework for 3D facial movement tracking in real time using a monocular camera. It is designed to estimate the 3D face pose and local facial animation such as eyelid movement and mouth movement. The framework firstly utilizes the Discriminative Shape Regression method to locate the facial feature points on the 2D image and fuses the 2D data with a 3D face model using Extended Kalman Filter to yield 3D facial movement information. An alternating optimizing strategy is adopted to fit to different persons automatically. Experiments show that the proposed framework could track the 3D facial movement across various poses and illumination conditions. Given the real face scale the framework could track the eyelid with an error of 1 mm and mouth with an error of 2 mm. The tracking result is reliable for expression analysis or mental state inference. PMID:27463714
Real Time 3D Facial Movement Tracking Using a Monocular Camera.
Dong, Yanchao; Wang, Yanming; Yue, Jiguang; Hu, Zhencheng
2016-07-25
The paper proposes a robust framework for 3D facial movement tracking in real time using a monocular camera. It is designed to estimate the 3D face pose and local facial animation such as eyelid movement and mouth movement. The framework firstly utilizes the Discriminative Shape Regression method to locate the facial feature points on the 2D image and fuses the 2D data with a 3D face model using Extended Kalman Filter to yield 3D facial movement information. An alternating optimizing strategy is adopted to fit to different persons automatically. Experiments show that the proposed framework could track the 3D facial movement across various poses and illumination conditions. Given the real face scale the framework could track the eyelid with an error of 1 mm and mouth with an error of 2 mm. The tracking result is reliable for expression analysis or mental state inference.
Fast and Adaptive Auto-focusing Microscope
NASA Astrophysics Data System (ADS)
Obara, Takeshi; Igarashi, Yasunobu; Hashimoto, Koichi
Optical microscopes are widely used in biological and medical researches. By using the microscope, we can observe cellular movements including intracellular ions and molecules tagged with fluorescent dyes at a high magnification. However, a freely motile cell easily escapes from a 3D field of view of the typical microscope. Therefore, we propose a novel auto-focusing algorithm and develop a auto-focusing and tracking microscope. XYZ positions of a microscopic stage are feedback controlled to focus and track the cell automatically. A bright-field image is used to estimate a cellular position. XY centroids are used to estimate XY positions of the tracked cell. To estimate Z position, we use a diffraction pattern around the cell membrane. This estimation method is so-called Depth from Diffraction (DFDi). However, this method is not robust for individual differences between cells because the diffraction pattern depends on each cellular shape. Therefore, in this study, we propose a real-time correction of DFDi by using 2D Laplacian of an intracellular area as a goodness of the focus. To evaluate the performance of our developed algorithm and microscope, we auto-focus and track a freely moving paramecium. In this experimental result, the paramecium is auto-focused and kept inside the scope of the microscope during 45s. The evaluated focal error is within 5µm, while a length and a thickness of the paramecium are about 200µm and 50µm, respectively.
Intelligent system of coordination and control for manufacturing
NASA Astrophysics Data System (ADS)
Ciortea, E. M.
2016-08-01
This paper wants shaping an intelligent system monitoring and control, which leads to optimizing material and information flows of the company. The paper presents a model for tracking and control system using intelligent real. Production system proposed for simulation analysis provides the ability to track and control the process in real time. Using simulation models be understood: the influence of changes in system structure, commands influence on the general condition of the manufacturing process conditions influence the behavior of some system parameters. Practical character consists of tracking and real-time control of the technological process. It is based on modular systems analyzed using mathematical models, graphic-analytical sizing, configuration, optimization and simulation.
Robust tracking of dexterous continuum robots: Fusing FBG shape sensing and stereo vision.
Rumei Zhang; Hao Liu; Jianda Han
2017-07-01
Robust and efficient tracking of continuum robots is important for improving patient safety during space-confined minimally invasive surgery, however, it has been a particularly challenging task for researchers. In this paper, we present a novel tracking scheme by fusing fiber Bragg grating (FBG) shape sensing and stereo vision to estimate the position of continuum robots. Previous visual tracking easily suffers from the lack of robustness and leads to failure, while the FBG shape sensor can only reconstruct the local shape with integral cumulative error. The proposed fusion is anticipated to compensate for their shortcomings and improve the tracking accuracy. To verify its effectiveness, the robots' centerline is recognized by morphology operation and reconstructed by stereo matching algorithm. The shape obtained by FBG sensor is transformed into distal tip position with respect to the camera coordinate system through previously calibrated registration matrices. An experimental platform was set up and repeated tracking experiments were carried out. The accuracy estimated by averaging the absolute positioning errors between shape sensing and stereo vision is 0.67±0.65 mm, 0.41±0.25 mm, 0.72±0.43 mm for x, y and z, respectively. Results indicate that the proposed fusion is feasible and can be used for closed-loop control of continuum robots.
NASA Astrophysics Data System (ADS)
Xue, Yuan; Cheng, Teng; Xu, Xiaohai; Gao, Zeren; Li, Qianqian; Liu, Xiaojing; Wang, Xing; Song, Rui; Ju, Xiangyang; Zhang, Qingchuan
2017-01-01
This paper presents a system for positioning markers and tracking the pose of a rigid object with 6 degrees of freedom in real-time using 3D digital image correlation, with two examples for medical imaging applications. Traditional DIC method was improved to meet the requirements of the real-time by simplifying the computations of integral pixel search. Experiments were carried out and the results indicated that the new method improved the computational efficiency by about 4-10 times in comparison with the traditional DIC method. The system was aimed for orthognathic surgery navigation in order to track the maxilla segment after LeFort I osteotomy. Experiments showed noise for the static point was at the level of 10-3 mm and the measurement accuracy was 0.009 mm. The system was demonstrated on skin surface shape evaluation of a hand for finger stretching exercises, which indicated a great potential on tracking muscle and skin movements.
Adaptive Shape Kernel-Based Mean Shift Tracker in Robot Vision System
2016-01-01
This paper proposes an adaptive shape kernel-based mean shift tracker using a single static camera for the robot vision system. The question that we address in this paper is how to construct such a kernel shape that is adaptive to the object shape. We perform nonlinear manifold learning technique to obtain the low-dimensional shape space which is trained by training data with the same view as the tracking video. The proposed kernel searches the shape in the low-dimensional shape space obtained by nonlinear manifold learning technique and constructs the adaptive kernel shape in the high-dimensional shape space. It can improve mean shift tracker performance to track object position and object contour and avoid the background clutter. In the experimental part, we take the walking human as example to validate that our method is accurate and robust to track human position and describe human contour. PMID:27379165
NASA Astrophysics Data System (ADS)
Chakrabarty, Ayan; Wang, Feng; Sun, Kai; Wei, Qi-Huo
Prior studies have shown that low symmetry particles such as micro-boomerangs exhibit behaviour of Brownian motion rather different from that of high symmetry particles because convenient tracking points (TPs) are usually inconsistent with the center of hydrodynamic stress (CoH) where the translational and rotational motions are decoupled. In this paper we study the effects of the translation-rotation coupling on the displacement probability distribution functions (PDFs) of the boomerang colloid particles with symmetric arms. By tracking the motions of different points on the particle symmetry axis, we show that as the distance between the TP and the CoH is increased, the effects of translation-rotation coupling becomes pronounced, making the short-time 2D PDF for fixed initial orientation to change from elliptical to crescent shape and the angle averaged PDFs from ellipsoidal-particle-like PDF to a shape with a Gaussian top and long displacement tails. We also observed that at long times the PDFs revert to Gaussian. This crescent shape of 2D PDF provides a clear physical picture of the non-zero mean displacements observed in boomerangs particles.
Influence of substrate micropatterning on biofilm growth
NASA Astrophysics Data System (ADS)
Koehler, Stephan; Li, Yiwei; Liu, Bi-Feng Liu; Weitz, David
2015-11-01
We culture triple reporter Bacillus Subtilis biofilm on micropatterned agar substrates. We track the biofilm development in terms of size, thickness, shape, and phenotype expression. For a tiling composed of elevated rectangles, we observe the biofilm develops an oval shape or triangular shape depending on the rectangle's aspect ratio and orientation. The motile cells are primarily located in the valleys between the rectangles and the matrix producing cells are mostly located on the rectangles. Wrinkles form at the edges of the elevated surfaces, and upon merging form channels centered on the elevated surface. After a few days, the spore-forming cells appear at the periphery. Since biofilms in nature grow on irregular surfaces, our work may provide insight into the complex patterns observed.
Surgical tool detection and tracking in retinal microsurgery
NASA Astrophysics Data System (ADS)
Alsheakhali, Mohamed; Yigitsoy, Mehmet; Eslami, Abouzar; Navab, Nassir
2015-03-01
Visual tracking of surgical instruments is an essential part of eye surgery, and plays an important role for the surgeons as well as it is a key component of robotics assistance during the operation time. The difficulty of detecting and tracking medical instruments in-vivo images comes from its deformable shape, changes in brightness, and the presence of the instrument shadow. This paper introduces a new approach to detect the tip of surgical tool and its width regardless of its head shape and the presence of the shadows or vessels. The approach relies on integrating structural information about the strong edges from the RGB color model, and the tool location-based information from L*a*b color model. The probabilistic Hough transform was applied to get the strongest straight lines in the RGB-images, and based on information from the L* and a*, one of these candidates lines is selected as the edge of the tool shaft. Based on that line, the tool slope, the tool centerline and the tool tip could be detected. The tracking is performed by keeping track of the last detected tool tip and the tool slope, and filtering the Hough lines within a box around the last detected tool tip based on the slope differences. Experimental results demonstrate the high accuracy achieved in term of detecting the tool tip position, the tool joint point position, and the tool centerline. The approach also meets the real time requirements.
Shape-and-behavior encoded tracking of bee dances.
Veeraraghavan, Ashok; Chellappa, Rama; Srinivasan, Mandyam
2008-03-01
Behavior analysis of social insects has garnered impetus in recent years and has led to some advances in fields like control systems, flight navigation etc. Manual labeling of insect motions required for analyzing the behaviors of insects requires significant investment of time and effort. In this paper, we propose certain general principles that help in simultaneous automatic tracking and behavior analysis with applications in tracking bees and recognizing specific behaviors exhibited by them. The state space for tracking is defined using position, orientation and the current behavior of the insect being tracked. The position and orientation are parametrized using a shape model while the behavior is explicitly modeled using a three-tier hierarchical motion model. The first tier (dynamics) models the local motions exhibited and the models built in this tier act as a vocabulary for behavior modeling. The second tier is a Markov motion model built on top of the local motion vocabulary which serves as the behavior model. The third tier of the hierarchy models the switching between behaviors and this is also modeled as a Markov model. We address issues in learning the three-tier behavioral model, in discriminating between models, detecting and in modeling abnormal behaviors. Another important aspect of this work is that it leads to joint tracking and behavior analysis instead of the traditional track and then recognize approach. We apply these principles for tracking bees in a hive while they are executing the waggle dance and the round dance.
Ge, Yuanyuan; O’Brien, Ricky T.; Shieh, Chun-Chien; Booth, Jeremy T.; Keall, Paul J.
2014-01-01
Purpose: Intrafraction deformation limits targeting accuracy in radiotherapy. Studies show tumor deformation of over 10 mm for both single tumor deformation and system deformation (due to differential motion between primary tumors and involved lymph nodes). Such deformation cannot be adapted to with current radiotherapy methods. The objective of this study was to develop and experimentally investigate the ability of a dynamic multi-leaf collimator (DMLC) tracking system to account for tumor deformation. Methods: To compensate for tumor deformation, the DMLC tracking strategy is to warp the planned beam aperture directly to conform to the new tumor shape based on real time tumor deformation input. Two deformable phantoms that correspond to a single tumor and a tumor system were developed. The planar deformations derived from the phantom images in beam's eye view were used to guide the aperture warping. An in-house deformable image registration software was developed to automatically trigger the registration once new target image was acquired and send the computed deformation to the DMLC tracking software. Because the registration speed is not fast enough to implement the experiment in real-time manner, the phantom deformation only proceeded to the next position until registration of the current deformation position was completed. The deformation tracking accuracy was evaluated by a geometric target coverage metric defined as the sum of the area incorrectly outside and inside the ideal aperture. The individual contributions from the deformable registration algorithm and the finite leaf width to the tracking uncertainty were analyzed. Clinical proof-of-principle experiment of deformation tracking using previously acquired MR images of a lung cancer patient was implemented to represent the MRI-Linac environment. Intensity-modulated radiation therapy (IMRT) treatment delivered with enabled deformation tracking was simulated and demonstrated. Results: The first experimental investigation of adapting to tumor deformation has been performed using simple deformable phantoms. For the single tumor deformation, the Au+Ao was reduced over 56% when deformation was larger than 2 mm. Overall, the total improvement was 82%. For the tumor system deformation, the Au+Ao reductions were all above 75% and the total Au+Ao improvement was 86%. Similar coverage improvement was also found in simulating deformation tracking during IMRT delivery. The deformable image registration algorithm was identified as the dominant contributor to the tracking error rather than the finite leaf width. The discrepancy between the warped beam shape and the ideal beam shape due to the deformable registration was observed to be partially compensated during leaf fitting due to the finite leaf width. The clinical proof-of-principle experiment demonstrated the feasibility of intrafraction deformable tracking for clinical scenarios. Conclusions: For the first time, we developed and demonstrated an experimental system that is capable of adapting the MLC aperture to account for tumor deformation. This work provides a potentially widely available management method to effectively account for intrafractional tumor deformation. This proof-of-principle study is the first experimental step toward the development of an image-guided radiotherapy system to treat deforming tumors in real-time. PMID:24877798
Booth, Jeremy T; Caillet, Vincent; Hardcastle, Nicholas; O'Brien, Ricky; Szymura, Kathryn; Crasta, Charlene; Harris, Benjamin; Haddad, Carol; Eade, Thomas; Keall, Paul J
2016-10-01
Real time adaptive radiotherapy that enables smaller irradiated volumes may reduce pulmonary toxicity. We report on the first patient treatment of electromagnetic-guided real time adaptive radiotherapy delivered with MLC tracking for lung stereotactic ablative body radiotherapy. A clinical trial was developed to investigate the safety and feasibility of MLC tracking in lung. The first patient was an 80-year old man with a single left lower lobe lung metastasis to be treated with SABR to 48Gy in 4 fractions. In-house software was integrated with a standard linear accelerator to adapt the treatment beam shape and position based on electromagnetic transponders implanted in the lung. MLC tracking plans were compared against standard ITV-based treatment planning. MLC tracking plan delivery was reconstructed in the patient to confirm safe delivery. Real time adaptive radiotherapy delivered with MLC tracking compared to standard ITV-based planning reduced the PTV by 41% (18.7-11cm 3 ) and the mean lung dose by 30% (202-140cGy), V20 by 35% (2.6-1.5%) and V5 by 9% (8.9-8%). An emerging technology, MLC tracking, has been translated into the clinic and used to treat lung SABR patients for the first time. This milestone represents an important first step for clinical real-time adaptive radiotherapy that could reduce pulmonary toxicity in lung radiotherapy. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fahimian, B.
2015-06-15
Intrafraction target motion is a prominent complicating factor in the accurate targeting of radiation within the body. Methods compensating for target motion during treatment, such as gating and dynamic tumor tracking, depend on the delineation of target location as a function of time during delivery. A variety of techniques for target localization have been explored and are under active development; these include beam-level imaging of radio-opaque fiducials, fiducial-less tracking of anatomical landmarks, tracking of electromagnetic transponders, optical imaging of correlated surrogates, and volumetric imaging within treatment delivery. The Joint Imaging and Therapy Symposium will provide an overview of the techniquesmore » for real-time imaging and tracking, with special focus on emerging modes of implementation across different modalities. In particular, the symposium will explore developments in 1) Beam-level kilovoltage X-ray imaging techniques, 2) EPID-based megavoltage X-ray tracking, 3) Dynamic tracking using electromagnetic transponders, and 4) MRI-based soft-tissue tracking during radiation delivery. Learning Objectives: Understand the fundamentals of real-time imaging and tracking techniques Learn about emerging techniques in the field of real-time tracking Distinguish between the advantages and disadvantages of different tracking modalities Understand the role of real-time tracking techniques within the clinical delivery work-flow.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Low, D.
2015-06-15
Intrafraction target motion is a prominent complicating factor in the accurate targeting of radiation within the body. Methods compensating for target motion during treatment, such as gating and dynamic tumor tracking, depend on the delineation of target location as a function of time during delivery. A variety of techniques for target localization have been explored and are under active development; these include beam-level imaging of radio-opaque fiducials, fiducial-less tracking of anatomical landmarks, tracking of electromagnetic transponders, optical imaging of correlated surrogates, and volumetric imaging within treatment delivery. The Joint Imaging and Therapy Symposium will provide an overview of the techniquesmore » for real-time imaging and tracking, with special focus on emerging modes of implementation across different modalities. In particular, the symposium will explore developments in 1) Beam-level kilovoltage X-ray imaging techniques, 2) EPID-based megavoltage X-ray tracking, 3) Dynamic tracking using electromagnetic transponders, and 4) MRI-based soft-tissue tracking during radiation delivery. Learning Objectives: Understand the fundamentals of real-time imaging and tracking techniques Learn about emerging techniques in the field of real-time tracking Distinguish between the advantages and disadvantages of different tracking modalities Understand the role of real-time tracking techniques within the clinical delivery work-flow.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berbeco, R.
2015-06-15
Intrafraction target motion is a prominent complicating factor in the accurate targeting of radiation within the body. Methods compensating for target motion during treatment, such as gating and dynamic tumor tracking, depend on the delineation of target location as a function of time during delivery. A variety of techniques for target localization have been explored and are under active development; these include beam-level imaging of radio-opaque fiducials, fiducial-less tracking of anatomical landmarks, tracking of electromagnetic transponders, optical imaging of correlated surrogates, and volumetric imaging within treatment delivery. The Joint Imaging and Therapy Symposium will provide an overview of the techniquesmore » for real-time imaging and tracking, with special focus on emerging modes of implementation across different modalities. In particular, the symposium will explore developments in 1) Beam-level kilovoltage X-ray imaging techniques, 2) EPID-based megavoltage X-ray tracking, 3) Dynamic tracking using electromagnetic transponders, and 4) MRI-based soft-tissue tracking during radiation delivery. Learning Objectives: Understand the fundamentals of real-time imaging and tracking techniques Learn about emerging techniques in the field of real-time tracking Distinguish between the advantages and disadvantages of different tracking modalities Understand the role of real-time tracking techniques within the clinical delivery work-flow.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keall, P.
2015-06-15
Intrafraction target motion is a prominent complicating factor in the accurate targeting of radiation within the body. Methods compensating for target motion during treatment, such as gating and dynamic tumor tracking, depend on the delineation of target location as a function of time during delivery. A variety of techniques for target localization have been explored and are under active development; these include beam-level imaging of radio-opaque fiducials, fiducial-less tracking of anatomical landmarks, tracking of electromagnetic transponders, optical imaging of correlated surrogates, and volumetric imaging within treatment delivery. The Joint Imaging and Therapy Symposium will provide an overview of the techniquesmore » for real-time imaging and tracking, with special focus on emerging modes of implementation across different modalities. In particular, the symposium will explore developments in 1) Beam-level kilovoltage X-ray imaging techniques, 2) EPID-based megavoltage X-ray tracking, 3) Dynamic tracking using electromagnetic transponders, and 4) MRI-based soft-tissue tracking during radiation delivery. Learning Objectives: Understand the fundamentals of real-time imaging and tracking techniques Learn about emerging techniques in the field of real-time tracking Distinguish between the advantages and disadvantages of different tracking modalities Understand the role of real-time tracking techniques within the clinical delivery work-flow.« less
Tracking marine mammals and ships with small and large-aperture hydrophone arrays
NASA Astrophysics Data System (ADS)
Gassmann, Martin
Techniques for passive acoustic tracking in all three spatial dimensions of marine mammals and ships were developed for long-term acoustic datasets recorded continuously over months using custom-designed arrays of underwater microphones (hydrophones) with spacing ranging from meters to kilometers. From the three-dimensional tracks, the acoustical properties of toothed whales and ships, such as sound intensity and directionality, were estimated as they are needed for the passive acoustic abundance estimation of toothed whales and for a quantitative description of the contribution of ships to the underwater soundscape. In addition, the tracks of the toothed whales reveal their underwater movements and demonstrate the potential of the developed tracking techniques to investigate their natural behavior and responses to sound generated by human activity, such as from ships or military SONAR. To track the periodically emitted echolocation sounds of toothed whales in an acoustically refractive environment in the upper ocean, a propagation-model based technique was developed for a hydrophone array consisting of one vertical and two L-shaped subarrays deployed from the floating instrument platform R/P FLIP. The technique is illustrated by tracking a group of five shallow-diving killer whales showing coordinated behavior. The challenge of tracking the highly directional echolocation sounds of deep-diving (< 1 km) toothed whales, in particular Cuvier's beaked whales, was addressed by embedding volumetric small-aperture (≈ 1 m element spacing) arrays into a large-aperture (≈ 1 km element spacing) seafloor array to reduce the minimum number of required receivers from five to two. The capabilities of this technique are illustrated by tracking several groups of up to three individuals over time periods from 10 min to 33 min within an area of 20 km2 in the Southern California Bight. To track and measure the underwater radiated sound of ships, a frequency domain beamformer was implemented for a volumetric hydrophone array (< 2 m element spacing) that was coupled to an autonomous acoustic seafloor recorder. This allows for the tracking and measurement of underwater radiated sound from ships of opportunity with a single instrument deployment and without depending on track information from the automatic information system (AIS).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Al-Jobouri, Hussain A., E-mail: hahmed54@gmail.com; Rajab, Mustafa Y., E-mail: mostafaheete@gmail.com
CR-39 detector which covered with boric acid (H{sub 3}Bo{sub 3}) pellet was irradiated by thermal neutrons from ({sup 241}Am - {sup 9}Be) source with activity 12Ci and neutron flux 10{sup 5} n. cm{sup −2}. s{sup −1}. The irradiation times -T{sub D} for detector were 4h, 8h, 16h and 24h. Chemical etching solution for detector was sodium hydroxide NaOH, 6.25N with 45 min etching time and 60 C° temperature. Images of CR-39 detector after chemical etching were taken from digital camera which connected from optical microscope. MATLAB software version 7.0 was used to image processing. The outputs of image processing of MATLABmore » software were analyzed and found the following relationships: (a) The irradiation time -T{sub D} has behavior linear relationships with following nuclear track parameters: i) total track number - N{sub T} ii) maximum track number - MRD (relative to track diameter - D{sub T}) at response region range 2.5 µm to 4 µm iii) maximum track number - M{sub D} (without depending on track diameter - D{sub T}). (b) The irradiation time -T{sub D} has behavior logarithmic relationship with maximum track number - M{sub A} (without depending on track area - A{sub T}). The image processing technique principally track diameter - D{sub T} can be take into account to classification of α-particle emitters, In addition to the contribution of these technique in preparation of nano- filters and nano-membrane in nanotechnology fields.« less
Non-invasive primate head restraint using thermoplastic masks.
Drucker, Caroline B; Carlson, Monica L; Toda, Koji; DeWind, Nicholas K; Platt, Michael L
2015-09-30
The success of many neuroscientific studies depends upon adequate head fixation of awake, behaving animals. Typically, this is achieved by surgically affixing a head-restraint prosthesis to the skull. Here we report the use of thermoplastic masks to non-invasively restrain monkeys' heads. Mesh thermoplastic sheets become pliable when heated and can then be molded to an individual monkey's head. After cooling, the custom mask retains this shape indefinitely for day-to-day use. We successfully trained rhesus macaques (Macaca mulatta) to perform cognitive tasks while wearing thermoplastic masks. Using these masks, we achieved a level of head stability sufficient for high-resolution eye-tracking and intracranial electrophysiology. Compared with traditional head-posts, we find that thermoplastic masks perform at least as well during infrared eye-tracking and single-neuron recordings, allow for clearer magnetic resonance image acquisition, enable freer placement of a transcranial magnetic stimulation coil, and impose lower financial and time costs on the lab. We conclude that thermoplastic masks are a viable non-invasive form of primate head restraint that enable a wide range of neuroscientific experiments. Copyright © 2015 Elsevier B.V. All rights reserved.
Dynamical behavior of surface tension on rotating fluids in low and microgravity environments
NASA Technical Reports Server (NTRS)
Hung, R. J.; Tsao, Y. D.; Hong, B. B.; Leslie, F. W.
1989-01-01
Consideration is given to the time-dependent evolutions of the free surface profile (bubble shapes) of a cylindrical container, partially filled with a Newtonian fluid of constant density, rotating about its axis of symmetry in low and microgravity environments. The dynamics of the bubble shapes are calculated for four cases: linear time-dependent functions of spin-up and spin-down in low and microgravity, linear time-dependent functions of increasing and decreasing gravity at high and low rotating cylinder speeds, time-dependent step functions of spin-up and spin-down in low gravity, and sinusoidal function oscillation of the gravity environment in high and low rotating cylinder speeds. It is shown that the computer algorithms developed by Hung et al. (1988) may be used to simulate the profile of time-dependent bubble shapes under variations of centrifugal, capillary, and gravity forces.
Tracking and Quantifying Developmental Processes in C. elegans Using Open-source Tools.
Dutta, Priyanka; Lehmann, Christina; Odedra, Devang; Singh, Deepika; Pohl, Christian
2015-12-16
Quantitatively capturing developmental processes is crucial to derive mechanistic models and key to identify and describe mutant phenotypes. Here protocols are presented for preparing embryos and adult C. elegans animals for short- and long-term time-lapse microscopy and methods for tracking and quantification of developmental processes. The methods presented are all based on C. elegans strains available from the Caenorhabditis Genetics Center and on open-source software that can be easily implemented in any laboratory independently of the microscopy system used. A reconstruction of a 3D cell-shape model using the modelling software IMOD, manual tracking of fluorescently-labeled subcellular structures using the multi-purpose image analysis program Endrov, and an analysis of cortical contractile flow using PIVlab (Time-Resolved Digital Particle Image Velocimetry Tool for MATLAB) are shown. It is discussed how these methods can also be deployed to quantitatively capture other developmental processes in different models, e.g., cell tracking and lineage tracing, tracking of vesicle flow.
MO-FG-BRD-00: Real-Time Imaging and Tracking Techniques for Intrafractional Motion Management
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
2015-06-15
Intrafraction target motion is a prominent complicating factor in the accurate targeting of radiation within the body. Methods compensating for target motion during treatment, such as gating and dynamic tumor tracking, depend on the delineation of target location as a function of time during delivery. A variety of techniques for target localization have been explored and are under active development; these include beam-level imaging of radio-opaque fiducials, fiducial-less tracking of anatomical landmarks, tracking of electromagnetic transponders, optical imaging of correlated surrogates, and volumetric imaging within treatment delivery. The Joint Imaging and Therapy Symposium will provide an overview of the techniquesmore » for real-time imaging and tracking, with special focus on emerging modes of implementation across different modalities. In particular, the symposium will explore developments in 1) Beam-level kilovoltage X-ray imaging techniques, 2) EPID-based megavoltage X-ray tracking, 3) Dynamic tracking using electromagnetic transponders, and 4) MRI-based soft-tissue tracking during radiation delivery. Learning Objectives: Understand the fundamentals of real-time imaging and tracking techniques Learn about emerging techniques in the field of real-time tracking Distinguish between the advantages and disadvantages of different tracking modalities Understand the role of real-time tracking techniques within the clinical delivery work-flow.« less
The response of CR-39 nuclear track detector to 1-9 MeV protons
Sinenian, N.; Rosenberg, M. J.; Manuel, M.; ...
2011-10-28
The response of CR-39 nuclear track detector (TasTrak®) to protons in the energy range of 0.92-9.28 MeV has been studied. Previous studies of the CR-39 response to protons have been extended by examining the piece-to-piece variability in addition to the effects of etch time and etchant temperature; it is shown that the shape of the CR-39 response curve to protons can vary from piece-to-piece. The effects due to the age of CR-39 have also been studied using 5.5 MeV alpha particles over a 5-year period. Track diameters were found to degrade with the age of the CR-39 itself rather thanmore » the age of the tracks, consistent with previous studies utilizing different CR-39 over shorter time periods.« less
Time-dependent effects of heat advection and topography on cooling histories during erosion
NASA Astrophysics Data System (ADS)
Mancktelow, Neil S.; Grasemann, Bernhard
1997-03-01
Both erosion and surface topography cause a time-dependent variation in isotherm geometry that can result in significant errors in estimating natural exhumation rates from geochronologic data. Analytical solutions and two-dimensional numerical modelling are used to investigate the magnitude of these inaccuracies for conditions appropriate to many rapidly exhumed mountain chains of rugged relief. It is readily demonstrated that uplift of the topographic surface has a negligible effect on the cooling history of an exhumed rock sample and cannot be quantified by current geochronologic methods. The topography itself perturbs the isotherms to a depth that depends on both the vertical and horizontal scale of the surface relief. Estimations employing different isotopic systems in the same sample with higher closure temperatures (> 200°C) are not generally influenced by topography. However, direct conversion of cooling rates to exhumation rates assuming a simple constant linear geotherm markedly underestimates peak rates, due to variation of the geothermal gradient in time and space and to the time lag between exhumation and cooling. Estimations based on the altitude variation in apatite fission-track ages are less prone to such inaccuracies in geothermal gradient but are affected by near-surface time-dependent variation in isotherm depth due to advection and topography. In tectonically active mountain belts, high exhumation rates are coupled with rugged topography, and exhumation rates may be markedly overestimated, by factors of 2 or more. Even at lower exhumation rates on the order of 1 mm/a, the shape of the cooling curve is modified by advection and topography. A convex-concave shape to the cooling curve does not necessarily imply a change of exhumation rate; it may also be attained by a more complicated geothermal gradient induced by topographic relief. Very fast cooling below 100°C, often interpreted as reflecting faster exhumation, can be more simply explained by the lateral cooling effect of topographic relief, with samples exhumed in valleys displaying a different near-surface cooling history to those on ridge crests.
Jones, Megan; Taylor Lynch, Katherine; Kass, Andrea E; Burrows, Amanda; Williams, Joanne; Wilfley, Denise E; Taylor, C Barr
2014-02-27
Given the rising rates of obesity in children and adolescents, developing evidence-based weight loss or weight maintenance interventions that can be widely disseminated, well implemented, and are highly scalable is a public health necessity. Such interventions should ensure that adolescents establish healthy weight regulation practices while also reducing eating disorder risk. This study describes an online program, StayingFit, which has two tracks for universal and targeted delivery and was designed to enhance healthy living skills, encourage healthy weight regulation, and improve weight/shape concerns among high school adolescents. Ninth grade students in two high schools in the San Francisco Bay area and in St Louis were invited to participate. Students who were overweight (body mass index [BMI] >85th percentile) were offered the weight management track of StayingFit; students who were normal weight were offered the healthy habits track. The 12-session program included a monitored discussion group and interactive self-monitoring logs. Measures completed pre- and post-intervention included self-report height and weight, used to calculate BMI percentile for age and sex and standardized BMI (zBMI), Youth Risk Behavior Survey (YRBS) nutrition data, the Weight Concerns Scale, and the Center for Epidemiological Studies Depression Scale. A total of 336 students provided informed consent and were included in the analyses. The racial breakdown of the sample was as follows: 46.7% (157/336) multiracial/other, 31.0% (104/336) Caucasian, 16.7% (56/336) African American, and 5.7% (19/336) did not specify; 43.5% (146/336) of students identified as Hispanic/Latino. BMI percentile and zBMI significantly decreased among students in the weight management track. BMI percentile and zBMI did not significantly change among students in the healthy habits track, demonstrating that these students maintained their weight. Weight/shape concerns significantly decreased among participants in both tracks who had elevated weight/shape concerns at baseline. Fruit and vegetable consumption increased for both tracks. Physical activity increased among participants in the weight management track, while soda consumption and television time decreased. Results suggest that an Internet-based, universally delivered, targeted intervention may support healthy weight regulation, improve weight/shape concerns among participants with eating disorders risk, and increase physical activity in high school students. Tailored content and interactive features to encourage behavior change may lead to sustainable improvements in adolescent health.
Model-based approach to partial tracking for musical transcription
NASA Astrophysics Data System (ADS)
Sterian, Andrew; Wakefield, Gregory H.
1998-10-01
We present a new method for musical partial tracking in the context of musical transcription using a time-frequency Kalman filter structure. The filter is based upon a model for the evolution of a partial behavior across a wide range of pitch from four brass instruments. Statistics are computed independently for the partial attributes of frequency and log-power first differences. We present observed power spectral density shapes, total powers, and histograms, as well as least-squares approximations to these. We demonstrate that a Kalman filter tracker using this partial model is capable of tracking partials in music. We discuss how the filter structure naturally provides quality-of-fit information about the data for use in further processing and how this information can be used to perform partial track initiation and termination within a common framework. We propose that a model-based approach to partial tracking is preferable to existing approaches which generally use heuristic rules or birth/death notions over a small time neighborhood. The advantages include better performance in the presence of cluttered data and simplified tracking over missed observations.
Granular Flow Graph, Adaptive Rule Generation and Tracking.
Pal, Sankar Kumar; Chakraborty, Debarati Bhunia
2017-12-01
A new method of adaptive rule generation in granular computing framework is described based on rough rule base and granular flow graph, and applied for video tracking. In the process, several new concepts and operations are introduced, and methodologies formulated with superior performance. The flow graph enables in defining an intelligent technique for rule base adaptation where its characteristics in mapping the relevance of attributes and rules in decision-making system are exploited. Two new features, namely, expected flow graph and mutual dependency between flow graphs are defined to make the flow graph applicable in the tasks of both training and validation. All these techniques are performed in neighborhood granular level. A way of forming spatio-temporal 3-D granules of arbitrary shape and size is introduced. The rough flow graph-based adaptive granular rule-based system, thus produced for unsupervised video tracking, is capable of handling the uncertainties and incompleteness in frames, able to overcome the incompleteness in information that arises without initial manual interactions and in providing superior performance and gaining in computation time. The cases of partial overlapping and detecting the unpredictable changes are handled efficiently. It is shown that the neighborhood granulation provides a balanced tradeoff between speed and accuracy as compared to pixel level computation. The quantitative indices used for evaluating the performance of tracking do not require any information on ground truth as in the other methods. Superiority of the algorithm to nonadaptive and other recent ones is demonstrated extensively.
Brandes, Susanne; Mokhtari, Zeinab; Essig, Fabian; Hünniger, Kerstin; Kurzai, Oliver; Figge, Marc Thilo
2015-02-01
Time-lapse microscopy is an important technique to study the dynamics of various biological processes. The labor-intensive manual analysis of microscopy videos is increasingly replaced by automated segmentation and tracking methods. These methods are often limited to certain cell morphologies and/or cell stainings. In this paper, we present an automated segmentation and tracking framework that does not have these restrictions. In particular, our framework handles highly variable cell shapes and does not rely on any cell stainings. Our segmentation approach is based on a combination of spatial and temporal image variations to detect moving cells in microscopy videos. This method yields a sensitivity of 99% and a precision of 95% in object detection. The tracking of cells consists of different steps, starting from single-cell tracking based on a nearest-neighbor-approach, detection of cell-cell interactions and splitting of cell clusters, and finally combining tracklets using methods from graph theory. The segmentation and tracking framework was applied to synthetic as well as experimental datasets with varying cell densities implying different numbers of cell-cell interactions. We established a validation framework to measure the performance of our tracking technique. The cell tracking accuracy was found to be >99% for all datasets indicating a high accuracy for connecting the detected cells between different time points. Copyright © 2014 Elsevier B.V. All rights reserved.
TrackMate: An open and extensible platform for single-particle tracking.
Tinevez, Jean-Yves; Perry, Nick; Schindelin, Johannes; Hoopes, Genevieve M; Reynolds, Gregory D; Laplantine, Emmanuel; Bednarek, Sebastian Y; Shorte, Spencer L; Eliceiri, Kevin W
2017-02-15
We present TrackMate, an open source Fiji plugin for the automated, semi-automated, and manual tracking of single-particles. It offers a versatile and modular solution that works out of the box for end users, through a simple and intuitive user interface. It is also easily scriptable and adaptable, operating equally well on 1D over time, 2D over time, 3D over time, or other single and multi-channel image variants. TrackMate provides several visualization and analysis tools that aid in assessing the relevance of results. The utility of TrackMate is further enhanced through its ability to be readily customized to meet specific tracking problems. TrackMate is an extensible platform where developers can easily write their own detection, particle linking, visualization or analysis algorithms within the TrackMate environment. This evolving framework provides researchers with the opportunity to quickly develop and optimize new algorithms based on existing TrackMate modules without the need of having to write de novo user interfaces, including visualization, analysis and exporting tools. The current capabilities of TrackMate are presented in the context of three different biological problems. First, we perform Caenorhabditis-elegans lineage analysis to assess how light-induced damage during imaging impairs its early development. Our TrackMate-based lineage analysis indicates the lack of a cell-specific light-sensitive mechanism. Second, we investigate the recruitment of NEMO (NF-κB essential modulator) clusters in fibroblasts after stimulation by the cytokine IL-1 and show that photodamage can generate artifacts in the shape of TrackMate characterized movements that confuse motility analysis. Finally, we validate the use of TrackMate for quantitative lifetime analysis of clathrin-mediated endocytosis in plant cells. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.
Shape matters in protein mobility within membranes
Quemeneur, François; Sigurdsson, Jon K.; Renner, Marianne; Atzberger, Paul J.; Bassereau, Patricia; Lacoste, David
2014-01-01
The lateral mobility of proteins within cell membranes is usually thought to be dependent on their size and modulated by local heterogeneities of the membrane. Experiments using single-particle tracking on reconstituted membranes demonstrate that protein diffusion is significantly influenced by the interplay of membrane curvature, membrane tension, and protein shape. We find that the curvature-coupled voltage-gated potassium channel (KvAP) undergoes a significant increase in protein mobility under tension, whereas the mobility of the curvature-neutral water channel aquaporin 0 (AQP0) is insensitive to it. Such observations are well explained in terms of an effective friction coefficient of the protein induced by the local membrane deformation. PMID:24706877
Liu, Shu-Hung; Huang, Tse-Shih; Yen, Jia-Yush
2010-01-01
Shape memory alloys (SMAs) offer a high power-to-weight ratio, large recovery strain, and low driving voltages, and have thus attracted considerable research attention. The difficulty of controlling SMA actuators arises from their highly nonlinear hysteresis and temperature dependence. This paper describes a combination of self-sensing and model-based control, where the model includes both the major and minor hysteresis loops as well as the thermodynamics effects. The self-sensing algorithm uses only the power width modulation (PWM) signal and requires no heavy equipment. The method can achieve high-accuracy servo control and is especially suitable for miniaturized applications. PMID:22315530
Effects of window size and shape on accuracy of subpixel centroid estimation of target images
NASA Technical Reports Server (NTRS)
Welch, Sharon S.
1993-01-01
A new algorithm is presented for increasing the accuracy of subpixel centroid estimation of (nearly) point target images in cases where the signal-to-noise ratio is low and the signal amplitude and shape vary from frame to frame. In the algorithm, the centroid is calculated over a data window that is matched in width to the image distribution. Fourier analysis is used to explain the dependency of the centroid estimate on the size of the data window, and simulation and experimental results are presented which demonstrate the effects of window size for two different noise models. The effects of window shape were also investigated for uniform and Gaussian-shaped windows. The new algorithm was developed to improve the dynamic range of a close-range photogrammetric tracking system that provides feedback for control of a large gap magnetic suspension system (LGMSS).
Feedback control design for non-inductively sustained scenarios in NSTX-U using TRANSP
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boyer, M. D.; Andre, R. G.; Gates, D. A.
This paper examines a method for real-time control of non-inductively sustained scenarios in NSTX-U by using TRANSP, a time-dependent integrated modeling code for prediction and interpretive analysis of tokamak experimental data, as a simulator. The actuators considered for control in this work are the six neutral beam sources and the plasma boundary shape. To understand the response of the plasma current, stored energy, and central safety factor to these actuators and to enable systematic design of control algorithms, simulations were run in which the actuators were modulated and a linearized dynamic response model was generated. A multi-variable model-based control schememore » that accounts for the coupling and slow dynamics of the system while mitigating the effect of actuator limitations was designed and simulated. Simulations show that modest changes in the outer gap and heating power can improve the response time of the system, reject perturbations, and track target values of the controlled values.« less
Feedback control design for non-inductively sustained scenarios in NSTX-U using TRANSP
Boyer, M. D.; Andre, R. G.; Gates, D. A.; ...
2017-04-24
This paper examines a method for real-time control of non-inductively sustained scenarios in NSTX-U by using TRANSP, a time-dependent integrated modeling code for prediction and interpretive analysis of tokamak experimental data, as a simulator. The actuators considered for control in this work are the six neutral beam sources and the plasma boundary shape. To understand the response of the plasma current, stored energy, and central safety factor to these actuators and to enable systematic design of control algorithms, simulations were run in which the actuators were modulated and a linearized dynamic response model was generated. A multi-variable model-based control schememore » that accounts for the coupling and slow dynamics of the system while mitigating the effect of actuator limitations was designed and simulated. Simulations show that modest changes in the outer gap and heating power can improve the response time of the system, reject perturbations, and track target values of the controlled values.« less
Feedback control design for non-inductively sustained scenarios in NSTX-U using TRANSP
NASA Astrophysics Data System (ADS)
Boyer, M. D.; Andre, R. G.; Gates, D. A.; Gerhardt, S. P.; Menard, J. E.; Poli, F. M.
2017-06-01
This paper examines a method for real-time control of non-inductively sustained scenarios in NSTX-U by using TRANSP, a time-dependent integrated modeling code for prediction and interpretive analysis of tokamak experimental data, as a simulator. The actuators considered for control in this work are the six neutral beam sources and the plasma boundary shape. To understand the response of the plasma current, stored energy, and central safety factor to these actuators and to enable systematic design of control algorithms, simulations were run in which the actuators were modulated and a linearized dynamic response model was generated. A multi-variable model-based control scheme that accounts for the coupling and slow dynamics of the system while mitigating the effect of actuator limitations was designed and simulated. Simulations show that modest changes in the outer gap and heating power can improve the response time of the system, reject perturbations, and track target values of the controlled values.
Pedretti, G; Milo, V; Ambrogio, S; Carboni, R; Bianchi, S; Calderoni, A; Ramaswamy, N; Spinelli, A S; Ielmini, D
2017-07-13
Brain-inspired computation can revolutionize information technology by introducing machines capable of recognizing patterns (images, speech, video) and interacting with the external world in a cognitive, humanlike way. Achieving this goal requires first to gain a detailed understanding of the brain operation, and second to identify a scalable microelectronic technology capable of reproducing some of the inherent functions of the human brain, such as the high synaptic connectivity (~10 4 ) and the peculiar time-dependent synaptic plasticity. Here we demonstrate unsupervised learning and tracking in a spiking neural network with memristive synapses, where synaptic weights are updated via brain-inspired spike timing dependent plasticity (STDP). The synaptic conductance is updated by the local time-dependent superposition of pre- and post-synaptic spikes within a hybrid one-transistor/one-resistor (1T1R) memristive synapse. Only 2 synaptic states, namely the low resistance state (LRS) and the high resistance state (HRS), are sufficient to learn and recognize patterns. Unsupervised learning of a static pattern and tracking of a dynamic pattern of up to 4 × 4 pixels are demonstrated, paving the way for intelligent hardware technology with up-scaled memristive neural networks.
Object Tracking and Target Reacquisition Based on 3-D Range Data for Moving Vehicles
Lee, Jehoon; Lankton, Shawn; Tannenbaum, Allen
2013-01-01
In this paper, we propose an approach for tracking an object of interest based on 3-D range data. We employ particle filtering and active contours to simultaneously estimate the global motion of the object and its local deformations. The proposed algorithm takes advantage of range information to deal with the challenging (but common) situation in which the tracked object disappears from the image domain entirely and reappears later. To cope with this problem, a method based on principle component analysis (PCA) of shape information is proposed. In the proposed method, if the target disappears out of frame, shape similarity energy is used to detect target candidates that match a template shape learned online from previously observed frames. Thus, we require no a priori knowledge of the target’s shape. Experimental results show the practical applicability and robustness of the proposed algorithm in realistic tracking scenarios. PMID:21486717
Chakrabarty, Ayan; Wang, Feng; Sun, Kai; Wei, Qi-Huo
2016-05-11
Prior studies have shown that low symmetry particles such as micro-boomerangs exhibit behaviour of Brownian motion rather different from that of high symmetry particles because convenient tracking points (TPs) are usually inconsistent with their center of hydrodynamic stress (CoH) where the translational and rotational motions are decoupled. In this paper we study the effects of the translation-rotation coupling on the displacement probability distribution functions (PDFs) of the boomerang colloid particles with symmetric arm length. By tracking the motions of different points on the particle symmetry axis, we show that as the distance between the TP and the CoH is increased, the effects of translation-rotation coupling becomes pronounced, making the short-time 2D PDF for fixed initial orientation to change from elliptical, to bean and then to crescent shape, and the angle averaged PDFs change from ellipsoidal-particle-like PDF to a shape with a Gaussian top and long displacement tails. We also observed that at long times the PDFs revert to Gaussian. These 2D PDF shapes provide a clear physical picture of the non-zero mean displacements observed in boomerangs particles.
Development of Γ-ray tracking detectors
Lieder, R. M.; Gast, W.; Jäger, H. M.; ...
2001-12-01
The next generation of 4π arrays for high-precision γ-ray spectroscopy AGATA will consist of γ-ray tracking detectors. They represent high-fold segmented Ge detectors and a front-end electronics, based on digital signal processing techniques, which allows to extract energy, timing and spatial information on the interactions of a γ-ray in the Ge detector by pulse shape analysis of its signals. Utilizing the information on the positions of the interaction points and the energies released at each point the tracks of the γ-rays in a Ge shell can be reconstructed in three dimensions on the basis of the Compton-scattering formula.
Controlled Gelation of Particle Suspensions Using Controlled Solvent Removal in Picoliter Droplets
NASA Astrophysics Data System (ADS)
Vuong, Sharon; Walker, Lynn; Anna, Shelley
2013-11-01
Droplets in microfluidic devices have proven useful as uniform picoliter reactors for nanoparticle synthesis and as components in tunable emulsions. However, there can be significant transport between the component phases depending on solubility and other factors. In the present talk, we show that water droplets trapped within a microfluidic device for tens of hours slowly dehydrate, concentrating the contents encapsulated within. We use this slow dehydration along with control of the initial droplet composition to monitor gelation of aqueous suspensions of spherical silica particles (Ludox) and disk-shaped clay particles (Laponite). Droplets are generated in a microfluidic device containing small wells that trap the droplets. We monitor the concentration process through size and shape changes of these droplets as a function of time in tens of droplets and use the large number of individual reactors to generate statistics regarding the gelation process. We also examine changes in suspension viscosity through fluorescent particle tracking as a function of dehydration rate, initial suspension concentration and initial droplet volume, and added salt, and compare the results with the Krieger-Dougherty model in which viscosity increases dramatically with particle volume fraction.
NASA Astrophysics Data System (ADS)
Wang, Chang; Wu, Hong-lin; Song, Yun-fei; He, Xing; Yang, Yan-qiang; Tan, Duo-wang
2015-11-01
A modified CARS technique with an intense nonresonant femtosecond laser is presented to drive the structural deformation of liquid nitromethane molecules and track their structural relaxation process. The CARS spectra reveal that the internal rotation of the molecule can couple with the CN symmetric stretching vibration and the molecules undergo ultrafast structural deformation of the CH3 groups from 'opened umbrella' to 'closed umbrella' shape, and then experience a structural recovery process within 720 fs.
NASA Astrophysics Data System (ADS)
Ramírez, Patricio; Apel, Pavel Yu; Cervera, Javier; Mafé, Salvador
2008-08-01
We present a complete theoretical study of the relationship between the structure (tip shape and dimensions) and function (selectivity and rectification) of asymmetric nanopores on the basis of previous experimental studies. The theoretical model uses a continuum approach based on the Nernst-Planck equations. According to our results, the nanopore transport properties, such as current-voltage (I-V) characteristics, conductance, rectification ratio, and selectivity, are dictated mainly by the shape of the pore tip (we have distinguished bullet-like, conical, trumpet-like, and hybrid shapes) and the concentration of pore surface charges. As a consequence, the nanopore performance in practical applications will depend not only on the base and tip openings but also on the pore shape. In particular, we show that the pore opening dimensions estimated from the pore conductance can be very different, depending on the pore shape assumed. The results obtained can also be of practical relevance for the design of nanopores, nanopipettes, and nanoelectrodes, where the electrical interactions between the charges attached to the nanostructure and the mobile charges confined in the reduced volume of the inside solution dictate the device performance in practical applications. Because single tracks are the elementary building blocks for nanoporous membranes, the understanding and control of their individual properties should also be crucial in protein separation, water desalination, and bio-molecule detection using arrays of identical nanopores.
Ramírez, Patricio; Apel, Pavel Yu; Cervera, Javier; Mafé, Salvador
2008-08-06
We present a complete theoretical study of the relationship between the structure (tip shape and dimensions) and function (selectivity and rectification) of asymmetric nanopores on the basis of previous experimental studies. The theoretical model uses a continuum approach based on the Nernst-Planck equations. According to our results, the nanopore transport properties, such as current-voltage (I-V) characteristics, conductance, rectification ratio, and selectivity, are dictated mainly by the shape of the pore tip (we have distinguished bullet-like, conical, trumpet-like, and hybrid shapes) and the concentration of pore surface charges. As a consequence, the nanopore performance in practical applications will depend not only on the base and tip openings but also on the pore shape. In particular, we show that the pore opening dimensions estimated from the pore conductance can be very different, depending on the pore shape assumed. The results obtained can also be of practical relevance for the design of nanopores, nanopipettes, and nanoelectrodes, where the electrical interactions between the charges attached to the nanostructure and the mobile charges confined in the reduced volume of the inside solution dictate the device performance in practical applications. Because single tracks are the elementary building blocks for nanoporous membranes, the understanding and control of their individual properties should also be crucial in protein separation, water desalination, and bio-molecule detection using arrays of identical nanopores.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ge, Yuanyuan; O’Brien, Ricky T.; Shieh, Chun-Chien
Purpose: Intrafraction deformation limits targeting accuracy in radiotherapy. Studies show tumor deformation of over 10 mm for both single tumor deformation and system deformation (due to differential motion between primary tumors and involved lymph nodes). Such deformation cannot be adapted to with current radiotherapy methods. The objective of this study was to develop and experimentally investigate the ability of a dynamic multi-leaf collimator (DMLC) tracking system to account for tumor deformation. Methods: To compensate for tumor deformation, the DMLC tracking strategy is to warp the planned beam aperture directly to conform to the new tumor shape based on real timemore » tumor deformation input. Two deformable phantoms that correspond to a single tumor and a tumor system were developed. The planar deformations derived from the phantom images in beam's eye view were used to guide the aperture warping. An in-house deformable image registration software was developed to automatically trigger the registration once new target image was acquired and send the computed deformation to the DMLC tracking software. Because the registration speed is not fast enough to implement the experiment in real-time manner, the phantom deformation only proceeded to the next position until registration of the current deformation position was completed. The deformation tracking accuracy was evaluated by a geometric target coverage metric defined as the sum of the area incorrectly outside and inside the ideal aperture. The individual contributions from the deformable registration algorithm and the finite leaf width to the tracking uncertainty were analyzed. Clinical proof-of-principle experiment of deformation tracking using previously acquired MR images of a lung cancer patient was implemented to represent the MRI-Linac environment. Intensity-modulated radiation therapy (IMRT) treatment delivered with enabled deformation tracking was simulated and demonstrated. Results: The first experimental investigation of adapting to tumor deformation has been performed using simple deformable phantoms. For the single tumor deformation, the A{sub u}+A{sub o} was reduced over 56% when deformation was larger than 2 mm. Overall, the total improvement was 82%. For the tumor system deformation, the A{sub u}+A{sub o} reductions were all above 75% and the total A{sub u}+A{sub o} improvement was 86%. Similar coverage improvement was also found in simulating deformation tracking during IMRT delivery. The deformable image registration algorithm was identified as the dominant contributor to the tracking error rather than the finite leaf width. The discrepancy between the warped beam shape and the ideal beam shape due to the deformable registration was observed to be partially compensated during leaf fitting due to the finite leaf width. The clinical proof-of-principle experiment demonstrated the feasibility of intrafraction deformable tracking for clinical scenarios. Conclusions: For the first time, we developed and demonstrated an experimental system that is capable of adapting the MLC aperture to account for tumor deformation. This work provides a potentially widely available management method to effectively account for intrafractional tumor deformation. This proof-of-principle study is the first experimental step toward the development of an image-guided radiotherapy system to treat deforming tumors in real-time.« less
Brownian dynamics of confined rigid bodies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Delong, Steven; Balboa Usabiaga, Florencio; Donev, Aleksandar, E-mail: donev@courant.nyu.edu
2015-10-14
We introduce numerical methods for simulating the diffusive motion of rigid bodies of arbitrary shape immersed in a viscous fluid. We parameterize the orientation of the bodies using normalized quaternions, which are numerically robust, space efficient, and easy to accumulate. We construct a system of overdamped Langevin equations in the quaternion representation that accounts for hydrodynamic effects, preserves the unit-norm constraint on the quaternion, and is time reversible with respect to the Gibbs-Boltzmann distribution at equilibrium. We introduce two schemes for temporal integration of the overdamped Langevin equations of motion, one based on the Fixman midpoint method and the othermore » based on a random finite difference approach, both of which ensure that the correct stochastic drift term is captured in a computationally efficient way. We study several examples of rigid colloidal particles diffusing near a no-slip boundary and demonstrate the importance of the choice of tracking point on the measured translational mean square displacement (MSD). We examine the average short-time as well as the long-time quasi-two-dimensional diffusion coefficient of a rigid particle sedimented near a bottom wall due to gravity. For several particle shapes, we find a choice of tracking point that makes the MSD essentially linear with time, allowing us to estimate the long-time diffusion coefficient efficiently using a Monte Carlo method. However, in general, such a special choice of tracking point does not exist, and numerical techniques for simulating long trajectories, such as the ones we introduce here, are necessary to study diffusion on long time scales.« less
Misut, Paul
2014-01-01
A three-dimensional groundwater-flow model is coupled with the particle-tracking program MODPATH to delineate zones of contribution to wells pumping from the Magothy aquifer and supplying water to a chlorinated volatile organic compound removal plant at site GM–38, Naval Weapons Industrial Reserve Plant, Bethpage, New York. By use of driller’s logs, a transitional probability approach generated three alternative realizations of heterogeneity within the Magothy aquifer to assess uncertainty in model representation. Finer-grained sediments with low hydraulic conductivity were realized as laterally discontinuous, thickening towards the south, and comprising about 17 percent of the total aquifer volume. Particle-tracking evaluations of a steady state present conditions model with alternative heterogeneity realizations were used to develop zones of contribution of remedial pumping wells. Because of heterogeneity and high rates of advection within the coarse-grained sediments, transport by dispersion and (or) diffusion was assumed to be negligible. Resulting zones of contribution of existing remedial wells are complex shapes, influenced by heterogeneity of each realization and other nearby hydrologic stresses. The use of two particle tracking techniques helped identify zones of contribution to wells. Backtracking techniques and observations of points of intersection of backward-tracked particles at shells of the GM–38 Hot Spot, as defined by surfaces of equal total volatile organic compound concentration, identified the source of water within the GM–38 Hot Spot to simulated wells. Forward-tracking techniques identified the fate of water within the GM–38 Hot Spot, including well capture and discharge to model constant head and drain boundaries. The percentage of backward-tracked particles, started at GM–38 wells that were sourced from within the Hot Spot, varied from 72.0 to 98.2, depending on the Hot Spot delineation used (present steady state model and Magothy aquifer heterogeneity realization A). The percentage of forward-tracked particles that were captured by GM–38 wells varied from 81.1 to 94.6, depending on the Hot Spot delineation used, with the remainder primarily captured by Bethpage Water District Plant 4 production wells (present steady state model and Magothy aquifer heterogeneity realization A). Less than 1 percent of forward-tracked particles ultimately discharge at model constant head and drain boundaries. The differences between forward- and backward-tracked particle percentage ranges are due to some forward-tracked particles not being captured by GM–38 wells, and some backward-tracked particles not intersecting specific regions of the Hot Spot. During 2013, an aquifer test generated detailed time series of well pumping rates and corresponding water-level responses were recorded at numerous locations. These data were used to verify the present conditions steady state model and demonstrate the sensitivity of model results to transient-state changes.
Optimization of cell morphology measurement via single-molecule tracking PALM.
Frost, Nicholas A; Lu, Hsiangmin E; Blanpied, Thomas A
2012-01-01
In neurons, the shape of dendritic spines relates to synapse function, which is rapidly altered during experience-dependent neural plasticity. The small size of spines makes detailed measurement of their morphology in living cells best suited to super-resolution imaging techniques. The distribution of molecular positions mapped via live-cell Photoactivated Localization Microscopy (PALM) is a powerful approach, but molecular motion complicates this analysis and can degrade overall resolution of the morphological reconstruction. Nevertheless, the motion is of additional interest because tracking single molecules provides diffusion coefficients, bound fraction, and other key functional parameters. We used Monte Carlo simulations to examine features of single-molecule tracking of practical utility for the simultaneous determination of cell morphology. We find that the accuracy of determining both distance and angle of motion depend heavily on the precision with which molecules are localized. Strikingly, diffusion within a bounded region resulted in an inward bias of localizations away from the edges, inaccurately reflecting the region structure. This inward bias additionally resulted in a counterintuitive reduction of measured diffusion coefficient for fast-moving molecules; this effect was accentuated by the long camera exposures typically used in single-molecule tracking. Thus, accurate determination of cell morphology from rapidly moving molecules requires the use of short integration times within each image to minimize artifacts caused by motion during image acquisition. Sequential imaging of neuronal processes using excitation pulses of either 2 ms or 10 ms within imaging frames confirmed this: processes appeared erroneously thinner when imaged using the longer excitation pulse. Using this pulsed excitation approach, we show that PALM can be used to image spine and spine neck morphology in living neurons. These results clarify a number of issues involved in interpretation of single-molecule data in living cells and provide a method to minimize artifacts in single-molecule experiments.
Incident angle dependence of proton response of CR-39 (TS-16) track detector
NASA Technical Reports Server (NTRS)
Oda, K.; Csige, I.; Yamauchi, T.; Miyake, H.; Benton, E. V.
1993-01-01
The proton response of the TS-16 type of CR-39 plastic nuclear track detector has been studied with accelerated and fast neutron induced protons in vacuum and in air. The diameters of etched tracks were measured as a function of etching time and the etch rate ratio and the etch induction layer were determined from the growth curve of the diameter using a variable etch rate ratio model. In the case of the accelerated protons in vacuum an anomalous incident angle dependence of the response is observed.
Doppler tracking in time-dependent cosmological spacetimes
NASA Astrophysics Data System (ADS)
Giulini, Domenico; Carrera, Matteo
I will discuss the theoretical problems associated with Doppler tracking in time dependent background geometries, where ordinary Newtonian kinematics fails. A derivation of an exact general-relativistic formula for the two-way Doppler tracking of a spacecraft in homogeneous and isotropic Friedmann-Lemaitre-Robertson-Walker (FLRW) spacetimes is presented, as well as a controlled approximation in McVittie spacetimes representing an FLRW background with a single spherically-symmetric inhomogeneity (e.g. a single star or black hole). The leading-order corrections of the acceleration as compared to the Newtonian expression are calculated, which are due to retardation and cosmological expansion and which in the Solar System turn out to be significantly below the scale (nanometer per square-second) set by the Pioneer Anomaly. Last, but not least, I discuss kinematical ambiguities connected with notions of "simultaneity" and "spatial distance", which, in principle, also lead to tracking corrections.
Shape Effects in Nanoparticle-Based Imaging Agents
NASA Astrophysics Data System (ADS)
Culver, Kayla Shani Brook
At the nanoscale, material properties become highly size and shape dependent. These properties can be manipulated and exploited for a variety of biomedical applications, including sensing, drug delivery, diagnostics, and imaging. In particular, nanoparticles of different materials, sizes and shapes have been developed as high-performance contrast agents for optical, electron, and medical imaging. In this thesis, I focus on gold nanoparticles because they are widely used as contrast agents in multiple types of imaging modalities. Additionally, the surface of gold can be readily functionalized with ligands and the structure of the particles can be manipulated to modulate their performance as imaging agents. The properties of nanoparticles can generate contrast directly. For example, the light scattering properties of gold particles can be visualized in optical microscopy, the high electron density of gold produces contrast in electron microscopy, and the x-ray absorption properties of gold can be detected in medical x-ray and computed tomography imaging. Alternatively, the properties of the nanomaterial can be exploited to modulate the signal produced by other molecules that are bound to the particle surface. The light emission of molecular fluorophores can be quenched or dramatically increased by coupling to the optical field enhancements of gold nanoparticles, and the performance of gadolinium (Gd(III))-based magnetic resonance imaging (MRI) contrast agents can be increased by coupling to the rotational motion of nanoparticles. In this dissertation, I focus specifically on how the structure of star-shaped gold particles (nanostars) can be exploited as single-particle optical probes and to dramatically enhance the relaxivity of Gd(III) bound to the surface. Differential interference contrast (DIC) is a type of wide-field diffraction-limited optical microscopy that is commonly used by biologists to image cells without labels. Here, I demonstrate the DIC can be used to characterize complex nanoscale structural features and spectral properties of gold nanostars. Specifically, by evaluating the DIC contrast and image patterns of single nanostars, I distinguished between flat and 3D geometries, identified nanostars with 4-fold symmetry, and determined nanostar orientation. Additionally, in multi-wavelength DIC imaging, an inversion in the contrast could be used to indicate the localized surface plasmon resonance of nanostars with 1 and 2 branches. Next, I used DIC to track the rotational and translational dynamics of functionalized nanostars interacting with live cell membranes. The DNA aptamer ligand on the nanostars specifically targets the transmembrane receptor HER2. I tracked single nanoconstructs over long time scales (˜ 20 minutes per particle, > 80 minutes total) with high temporal resolution (4 fps) and found that analysis of the DIC contrast fluctuations could be used to identify multiple modes of rotational behavior on the cell membrane. I developed MATLAB programs to track the moving nanoconstructs in a dynamic background environment and set up a customized live-cell perfusion chamber that is compatible with the bulky high numerical aperture optics. The combination of the environmental control in the chamber and the low light levels required to visualize single nanostars make this technique optimal for long-term tracking of single nanoconstructs in viable cells. Although nanoparticle size is well-known to influence the relaxivity of Gd(III)-based MRI contrast agents that are attached to the surface, the role of nanoparticle shape was previously unknown. Recently, we discovered that the relaxivity of Gd(III)-conjugated DNA bound to nanostars was three-fold higher than that of analogous spherical nanoconstructs. The relaxivities reached enhancements that were beyond limits that could be explained theoretically by size effects alone. We found that the extremely large enhancements could be explained by elongated water residence times in the second coordination sphere. Here, we investigated in detail how the complex structure of the nanostars mediates these effects. By sorting the nanostars by shape, we found that relaxivity increases with increasing branch number. Thus, we hypothesize that the confinement of the Gd(III)-DNA in the regions of negative surface curvature between branches creates a dense hydrophilic environment that promotes relaxation of second-sphere water molecules. These results demonstrate that shape is a new parameter that can be tuned in the optimization of nanoparticle-based T1 MRI contrast agents. It is important to characterize the potential toxicity of nanomaterials that are intended for use in biomedical applications. Thus, I evaluated the in vivo biodistribution and acute toxicity in rats of gold nanostars functionalized with DNA. As expected for nanoparticles of this size (˜50 nm) and surface charge (negative), the primary clearance mechanism was through the liver and spleen. Importantly, even at the highest dose, no signs of acute toxicity were observed based on hematology, clinical chemistry, and histology, indicating that DNA-coated gold nanostars are highly biocompatible. Additionally, I exploited the high contrast of gold in electron microscopy to track the fate of the nanoconstructs within organs ex vivo. In the liver, the nanoconstructs were sequestered in lysosomes of Kupffer cells. The electron microscopy analysis also indicated that the branched structure of the nanostars was intact even after 2 weeks in the liver, which is important for shape-dependent applications.
The Comfortable Roller Coaster--on the Shape of Tracks with a Constant Normal Force
ERIC Educational Resources Information Center
Nordmark, Arne B.; Essen, Hanno
2010-01-01
A particle that moves along a smooth track in a vertical plane is influenced by two forces: gravity and normal force. The force experienced by roller coaster riders is the normal force, so a natural question to ask is, what shape of the track gives a normal force of constant magnitude? Here we solve this problem. It turns out that the solution is…
Arbelle, Assaf; Reyes, Jose; Chen, Jia-Yun; Lahav, Galit; Riklin Raviv, Tammy
2018-04-22
We present a novel computational framework for the analysis of high-throughput microscopy videos of living cells. The proposed framework is generally useful and can be applied to different datasets acquired in a variety of laboratory settings. This is accomplished by tying together two fundamental aspects of cell lineage construction, namely cell segmentation and tracking, via a Bayesian inference of dynamic models. In contrast to most existing approaches, which aim to be general, no assumption of cell shape is made. Spatial, temporal, and cross-sectional variation of the analysed data are accommodated by two key contributions. First, time series analysis is exploited to estimate the temporal cell shape uncertainty in addition to cell trajectory. Second, a fast marching (FM) algorithm is used to integrate the inferred cell properties with the observed image measurements in order to obtain image likelihood for cell segmentation, and association. The proposed approach has been tested on eight different time-lapse microscopy data sets, some of which are high-throughput, demonstrating promising results for the detection, segmentation and association of planar cells. Our results surpass the state of the art for the Fluo-C2DL-MSC data set of the Cell Tracking Challenge (Maška et al., 2014). Copyright © 2018 Elsevier B.V. All rights reserved.
Exploring super-Gaussianity toward robust information-theoretical time delay estimation.
Petsatodis, Theodoros; Talantzis, Fotios; Boukis, Christos; Tan, Zheng-Hua; Prasad, Ramjee
2013-03-01
Time delay estimation (TDE) is a fundamental component of speaker localization and tracking algorithms. Most of the existing systems are based on the generalized cross-correlation method assuming gaussianity of the source. It has been shown that the distribution of speech, captured with far-field microphones, is highly varying, depending on the noise and reverberation conditions. Thus the performance of TDE is expected to fluctuate depending on the underlying assumption for the speech distribution, being also subject to multi-path reflections and competitive background noise. This paper investigates the effect upon TDE when modeling the source signal with different speech-based distributions. An information theoretical TDE method indirectly encapsulating higher order statistics (HOS) formed the basis of this work. The underlying assumption of Gaussian distributed source has been replaced by that of generalized Gaussian distribution that allows evaluating the problem under a larger set of speech-shaped distributions, ranging from Gaussian to Laplacian and Gamma. Closed forms of the univariate and multivariate entropy expressions of the generalized Gaussian distribution are derived to evaluate the TDE. The results indicate that TDE based on the specific criterion is independent of the underlying assumption for the distribution of the source, for the same covariance matrix.
Brownian motion of arbitrarily shaped particles in two dimensions.
Chakrabarty, Ayan; Konya, Andrew; Wang, Feng; Selinger, Jonathan V; Sun, Kai; Wei, Qi-Huo
2014-11-25
We implement microfabricated boomerang particles with unequal arm lengths as a model for nonsymmetric particles and study their Brownian motion in a quasi-two-dimensional geometry by using high-precision single-particle motion tracking. We show that because of the coupling between translation and rotation, the mean squared displacements of a single asymmetric boomerang particle exhibit a nonlinear crossover from short-time faster to long-time slower diffusion, and the mean displacements for fixed initial orientation are nonzero and saturate out at long times. The measured anisotropic diffusion coefficients versus the tracking point position indicate that there exists one unique point, i.e., the center of hydrodynamic stress (CoH), at which all coupled diffusion coefficients vanish. This implies that in contrast to motion in three dimensions where the CoH exists only for high-symmetry particles, the CoH always exists for Brownian motion in two dimensions. We develop an analytical model based on Langevin theory to explain the experimental results and show that among the six anisotropic diffusion coefficients only five are independent because the translation-translation coupling originates from the translation-rotation coupling. Finally, we classify the behavior of two-dimensional Brownian motion of arbitrarily shaped particles into four groups based on the particle shape symmetry group and discussed potential applications of the CoH in simplifying understanding of the circular motions of microswimmers.
NASA Astrophysics Data System (ADS)
Svejkosky, Joseph
The spectral signatures of vehicles in hyperspectral imagery exhibit temporal variations due to the preponderance of surfaces with material properties that display non-Lambertian bi-directional reflectance distribution functions (BRDFs). These temporal variations are caused by changing illumination conditions, changing sun-target-sensor geometry, changing road surface properties, and changing vehicle orientations. To quantify these variations and determine their relative importance in a sub-pixel vehicle reacquisition and tracking scenario, a hyperspectral vehicle BRDF sampling experiment was conducted in which four vehicles were rotated at different orientations and imaged over a six-hour period. The hyperspectral imagery was calibrated using novel in-scene methods and converted to reflectance imagery. The resulting BRDF sampled time-series imagery showed a strong vehicle level BRDF dependence on vehicle shape in off-nadir imaging scenarios and a strong dependence on vehicle color in simulated nadir imaging scenarios. The imagery also exhibited spectral features characteristic of sampling the BRDF of non-Lambertian targets, which were subsequently verified with simulations. In addition, the imagery demonstrated that the illumination contribution from vehicle adjacent horizontal surfaces significantly altered the shape and magnitude of the vehicle reflectance spectrum. The results of the BRDF sampling experiment illustrate the need for a target vehicle BRDF model and detection scheme that incorporates non-Lambertian BRDFs. A new detection algorithm called Eigenvector Loading Regression (ELR) is proposed that learns a hyperspectral vehicle BRDF from a series of BRDF measurements using regression in a lower dimensional space and then applies the learned BRDF to make test spectrum predictions. In cases of non-Lambertian vehicle BRDF, this detection methodology performs favorably when compared to subspace detections algorithms and graph-based detection algorithms that do not account for the target BRDF. The algorithms are compared using a test environment in which observed spectral reflectance signatures from the BRDF sampling experiment are implanted into aerial hyperspectral imagery that contain large quantities of vehicles.
Multipath noise reduction spread spectrum signals
NASA Technical Reports Server (NTRS)
Meehan, Thomas K. (Inventor)
1994-01-01
The concepts of early-prompt delay tracking, multipath correction of early-prompt delay tracking from correlation shape, and carrier phase multipath correction are addressed. In early-prompt delay tracking, since multipath is always delayed with respect to the direct signals, the system derives phase and pseudorange observables from earlier correlation lags. In multipath correction of early-prompt delay tracking from correlation shape, the system looks for relative variations of amplitude across the code correlation function that do not match the predicted multipath-free code cross-correlation shape. The system then uses deviations from the multipath-free shape to infer the magnitude of multipath, and to generate corrections pseudorange observables. In carrier phase multipath correction, the system looks for variations of phase among plural early and prompt lags. The system uses the measured phase variations, along with the general principle that the multipath errors are larger for later lags, to infer the presence of multipath, and to generate corrections for carrier-phase observables.
Parent, Francois; Loranger, Sebastien; Mandal, Koushik Kanti; Iezzi, Victor Lambin; Lapointe, Jerome; Boisvert, Jean-Sébastien; Baiad, Mohamed Diaa; Kadoury, Samuel; Kashyap, Raman
2017-04-01
We demonstrate a novel approach to enhance the precision of surgical needle shape tracking based on distributed strain sensing using optical frequency domain reflectometry (OFDR). The precision enhancement is provided by using optical fibers with high scattering properties. Shape tracking of surgical tools using strain sensing properties of optical fibers has seen increased attention in recent years. Most of the investigations made in this field use fiber Bragg gratings (FBG), which can be used as discrete or quasi-distributed strain sensors. By using a truly distributed sensing approach (OFDR), preliminary results show that the attainable accuracy is comparable to accuracies reported in the literature using FBG sensors for tracking applications (~1mm). We propose a technique that enhanced our accuracy by 47% using UV exposed fibers, which have higher light scattering compared to un-exposed standard single mode fibers. Improving the experimental setup will enhance the accuracy provided by shape tracking using OFDR and will contribute significantly to clinical applications.
Suarasan, Sorina; Licarete, Emilia; Astilean, Simion; Craciun, Ana-Maria
2018-06-01
Nowadays, the non-linear optical effect of two-photon excited (TPE) fluorescence has recently grown in interest in recent years over other optical imaging method, due to improved 3D spatial resolution, deep penetrability and less photodamage of living organism owing to the excitation in near-infrared region (NIR). In parallel, gold nanoparticles (AuNPs) have gain considerable attention for NIR TPE bio-imaging applications due to their appealing ability to generate strong intrinsic photoluminescence (PL). Here, we demonstrate the capability of differently shaped gelatin-coated AuNPs to perform as reliable label-free contrast agents for the non-invasive NIR imaging of NIH:OVCAR-3 ovary cancer cells via TPE Fluorescence Lifetime Imaging Microscopy (FLIM). Examination of the spectroscopic profile of the intrinsic signals exhibited by AuNPs inside cells confirm the plasmonic nature of the emitted PL, while the evaluation of time-dependent profile of the TPE PL signal under continuous irradiation indicates the photo-stability of the signal revealing simultaneously a photo-blinking behavior. Finally, we assess the dependence of the TPE PL signal on laser excitation power and wavelength in view of contributing to a better understanding of plasmonic TPE PL in biological media towards the improvement of TPE FLIM imaging applications based on AuNPs. Copyright © 2018 Elsevier B.V. All rights reserved.
Fast Markerless Tracking for Augmented Reality in Planar Environment
NASA Astrophysics Data System (ADS)
Basori, Ahmad Hoirul; Afif, Fadhil Noer; Almazyad, Abdulaziz S.; AbuJabal, Hamza Ali S.; Rehman, Amjad; Alkawaz, Mohammed Hazim
2015-12-01
Markerless tracking for augmented reality should not only be accurate but also fast enough to provide a seamless synchronization between real and virtual beings. Current reported methods showed that a vision-based tracking is accurate but requires high computational power. This paper proposes a real-time hybrid-based method for tracking unknown environments in markerless augmented reality. The proposed method provides collaboration of vision-based approach with accelerometers and gyroscopes sensors as camera pose predictor. To align the augmentation relative to camera motion, the tracking method is done by substituting feature-based camera estimation with combination of inertial sensors with complementary filter to provide more dynamic response. The proposed method managed to track unknown environment with faster processing time compared to available feature-based approaches. Moreover, the proposed method can sustain its estimation in a situation where feature-based tracking loses its track. The collaboration of sensor tracking managed to perform the task for about 22.97 FPS, up to five times faster than feature-based tracking method used as comparison. Therefore, the proposed method can be used to track unknown environments without depending on amount of features on scene, while requiring lower computational cost.
NASA Astrophysics Data System (ADS)
Bertrand, G.; Comperat, M.; Lallemant, M.; Watelle, G.
1980-03-01
Copper sulfate pentahydrate dehydration into trihydrate was investigated using monocrystalline platelets with varying crystallographic orientations. The morphological and kinetic features of the trihydrate domains were examined. Different shapes were observed: polygons (parallelograms, hexagons) and ellipses; their conditions of occurrence are reported in the (P, T) diagram. At first (for about 2 min), the ratio of the long to the short axes of elliptical domains changes with time; these subsequently develop homothetically and the rate ratio is then only pressure dependent. Temperature influence is inferred from that of pressure. Polygonal shapes are time dependent and result in ellipses. So far, no model can be put forward. Yet, qualitatively, the polygonal shape of a domain may be explained by the prevalence of the crystal arrangement and the elliptical shape by that of the solid tensorial properties. The influence of those factors might be modulated versus pressure, temperature, interface extent, and, thus, time.
Non-invasive primate head restraint using thermoplastic masks
Drucker, Caroline B.; Carlson, Monica L.; Toda, Koji; DeWind, Nicholas K.; Platt, Michael L.
2015-01-01
Background The success of many neuroscientific studies depends upon adequate head fixation of awake, behaving animals. Typically, this is achieved by surgically affixing a head-restraint prosthesis to the skull. New Method Here we report the use of thermoplastic masks to non-invasively restrain monkeys’ heads. Mesh thermoplastic sheets become pliable when heated and can then be molded to an individual monkey’s head. After cooling, the custom mask retains this shape indefinitely for day-to-day use. Results We successfully trained rhesus macaques (Macaca mulatta) to perform cognitive tasks while wearing thermoplastic masks. Using these masks, we achieved a level of head stability sufficient for high-resolution eye-tracking and intracranial electrophysiology. Comparison with Existing Method Compared with traditional head-posts, we find that thermoplastic masks perform at least as well during infrared eye-tracking and single-neuron recordings, allow for clearer magnetic resonance image acquisition, enable freer placement of a transcranial magnetic stimulation coil, and impose lower financial and time costs on the lab. Conclusions We conclude that thermoplastic masks are a viable non-invasive form of primate head restraint that enable a wide range of neuroscientific experiments. PMID:26112334
Ecology of tern flight in relation to wind, topography and aerodynamic theory.
Hedenström, Anders; Åkesson, Susanne
2016-09-26
Flight is an economical mode of locomotion, because it is both fast and relatively cheap per unit of distance, enabling birds to migrate long distances and obtain food over large areas. The power required to fly follows a U-shaped function in relation to airspeed, from which context dependent 'optimal' flight speeds can be derived. Crosswinds will displace birds away from their intended track unless they make compensatory adjustments of heading and airspeed. We report on flight track measurements in five geometrically similar tern species ranging one magnitude in body mass, from both migration and the breeding season at the island of Öland in the Baltic Sea. When leaving the southern point of Öland, migrating Arctic and common terns made a 60° shift in track direction, probably guided by a distant landmark. Terns adjusted both airspeed and heading in relation to tail and side wind, where coastlines facilitated compensation. Airspeed also depended on ecological context (searching versus not searching for food), and it increased with flock size. Species-specific maximum range speed agreed with predicted speeds from a new aerodynamic theory. Our study shows that the selection of airspeed is a behavioural trait that depended on a complex blend of internal and external factors.This article is part of the themed issue 'Moving in a moving medium: new perspectives on flight'. © 2016 The Author(s).
Ecology of tern flight in relation to wind, topography and aerodynamic theory
2016-01-01
Flight is an economical mode of locomotion, because it is both fast and relatively cheap per unit of distance, enabling birds to migrate long distances and obtain food over large areas. The power required to fly follows a U-shaped function in relation to airspeed, from which context dependent ‘optimal’ flight speeds can be derived. Crosswinds will displace birds away from their intended track unless they make compensatory adjustments of heading and airspeed. We report on flight track measurements in five geometrically similar tern species ranging one magnitude in body mass, from both migration and the breeding season at the island of Öland in the Baltic Sea. When leaving the southern point of Öland, migrating Arctic and common terns made a 60° shift in track direction, probably guided by a distant landmark. Terns adjusted both airspeed and heading in relation to tail and side wind, where coastlines facilitated compensation. Airspeed also depended on ecological context (searching versus not searching for food), and it increased with flock size. Species-specific maximum range speed agreed with predicted speeds from a new aerodynamic theory. Our study shows that the selection of airspeed is a behavioural trait that depended on a complex blend of internal and external factors. This article is part of the themed issue ‘Moving in a moving medium: new perspectives on flight’. PMID:27528786
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zachary M. Prince; Jean C. Ragusa; Yaqi Wang
Because of the recent interest in reactor transient modeling and the restart of the Transient Reactor (TREAT) Facility, there has been a need for more efficient, robust methods in computation frameworks. This is the impetus of implementing the Improved Quasi-Static method (IQS) in the RATTLESNAKE/MOOSE framework. IQS has implemented with CFEM diffusion by factorizing flux into time-dependent amplitude and spacial- and weakly time-dependent shape. The shape evaluation is very similar to a flux diffusion solve and is computed at large (macro) time steps. While the amplitude evaluation is a PRKE solve where the parameters are dependent on the shape andmore » is computed at small (micro) time steps. IQS has been tested with a custom one-dimensional example and the TWIGL ramp benchmark. These examples prove it to be a viable and effective method for highly transient cases. More complex cases are intended to be applied to further test the method and its implementation.« less
Determination of extra trajectory parameters of projectile layout motion
NASA Astrophysics Data System (ADS)
Ishchenko, A.; Burkin, V.; Faraponov, V.; Korolkov, L.; Maslov, E.; Diachkovskiy, A.; Chupashev, A.; Zykova, A.
2017-11-01
The paper presents a brief description of the experimental track developed and implemented on the base of the RIAMM TSU for external trajectory investigations on determining the main aeroballistic parameters of various shapes projectiles, in the wide velocity range. There is comparison between the experimentally obtained dependence of the fin-stabilized projectile mock-up aerodynamic drag coefficient on the Mach number with the 1958 aerodynamic drag law and aerodynamic tests of the same mock-up
Object-adapted trapping and shape-tracking to probe a bacterial protein chain motor
NASA Astrophysics Data System (ADS)
Roth, Julian; Koch, Matthias; Rohrbach, Alexander
2015-03-01
The helical bacterium Spiroplasma is a motile plant and anthropod pathogen which swims by propagating pairs of kinks along its cell body. As a well suited model system for bacterial locomotion, understanding the cell's molecular motor is of vital interest also regarding the combat of bacterial diseases. The extensive deformations related to these kinks are caused by a contractile cytoskeletal protein ribbon representing a linear motor in contrast to common rotary motors as, e.g., flagella. We present new insights into the working of this motor through experiments with object-adapted optical traps and shape-tracking techniques. We use the given laser irradiation from the optical trap to hinder bacterial energy (ATP) production through the production of O2 radicals. The results are compared with experiments performed under the influence of an O2-Scavenger and ATP inhibitors, respectively. Our results show clear dependences of the kinking properties on the ATP concentration inside the bacterium. The experiments are supported by a theoretical model which we developed to describe the switching of the ribbon's protein subunits.
Thermocapillary motion of deformable drops
NASA Technical Reports Server (NTRS)
Haj-Hariri, Hossein; Shi, Qingping; Borhan, Ali
1994-01-01
The thermocapillary motion of initially spherical drops/bubbles driven by a constant temperature gradient in an unbounded liquid medium is simulated numerically. Effects of convection of momentum and energy, as well as shape deformations, are addressed. The method used is based on interface tracking on a base cartesian grid, and uses a smeared color or indicator function for the determination of the surface topology. Quad-tree adaptive refinement of the cartesian grid is implemented to enhance the fidelity of the surface tracking. It is shown that convection of energy results in a slowing of the drop, as the isotherms get wrapped around the front of the drop. Shape deformation resulting from inertial effects affect the migration velocity. The physical results obtained are in agreement with the existing literature. Furthermore, remarks are made on the sensitivity of the calculated solutions to the smearing of the fluid properties. Analysis and simulations show that the migration velocity depends very strongly on the smearing of the interfacial force whereas it is rather insensitive to the smearing of other properties, hence the adaptive grid.
Augmented Endoscopic Images Overlaying Shape Changes in Bone Cutting Procedures.
Nakao, Megumi; Endo, Shota; Nakao, Shinichi; Yoshida, Munehito; Matsuda, Tetsuya
2016-01-01
In microendoscopic discectomy for spinal disorders, bone cutting procedures are performed in tight spaces while observing a small portion of the target structures. Although optical tracking systems are able to measure the tip of the surgical tool during surgery, the poor shape information available during surgery makes accurate cutting difficult, even if preoperative computed tomography and magnetic resonance images are used for reference. Shape estimation and visualization of the target structures are essential for accurate cutting. However, time-varying shape changes during cutting procedures are still challenging issues for intraoperative navigation. This paper introduces a concept of endoscopic image augmentation that overlays shape changes to support bone cutting procedures. This framework handles the history of the location of the measured drill tip as a volume label and visualizes the remains to be cut overlaid on the endoscopic image in real time. A cutting experiment was performed with volunteers, and the feasibility of this concept was examined using a clinical navigation system. The efficacy of the cutting aid was evaluated with respect to the shape similarity, total moved distance of a cutting tool, and required cutting time. The results of the experiments showed that cutting performance was significantly improved by the proposed framework.
Real-time automatic fiducial marker tracking in low contrast cine-MV images
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Wei-Yang; Lin, Shu-Fang; Yang, Sheng-Chang
2013-01-15
Purpose: To develop a real-time automatic method for tracking implanted radiographic markers in low-contrast cine-MV patient images used in image-guided radiation therapy (IGRT). Methods: Intrafraction motion tracking using radiotherapy beam-line MV images have gained some attention recently in IGRT because no additional imaging dose is introduced. However, MV images have much lower contrast than kV images, therefore a robust and automatic algorithm for marker detection in MV images is a prerequisite. Previous marker detection methods are all based on template matching or its derivatives. Template matching needs to match object shape that changes significantly for different implantation and projection angle.more » While these methods require a large number of templates to cover various situations, they are often forced to use a smaller number of templates to reduce the computation load because their methods all require exhaustive search in the region of interest. The authors solve this problem by synergetic use of modern but well-tested computer vision and artificial intelligence techniques; specifically the authors detect implanted markers utilizing discriminant analysis for initialization and use mean-shift feature space analysis for sequential tracking. This novel approach avoids exhaustive search by exploiting the temporal correlation between consecutive frames and makes it possible to perform more sophisticated detection at the beginning to improve the accuracy, followed by ultrafast sequential tracking after the initialization. The method was evaluated and validated using 1149 cine-MV images from two prostate IGRT patients and compared with manual marker detection results from six researchers. The average of the manual detection results is considered as the ground truth for comparisons. Results: The average root-mean-square errors of our real-time automatic tracking method from the ground truth are 1.9 and 2.1 pixels for the two patients (0.26 mm/pixel). The standard deviations of the results from the 6 researchers are 2.3 and 2.6 pixels. The proposed framework takes about 128 ms to detect four markers in the first MV images and about 23 ms to track these markers in each of the subsequent images. Conclusions: The unified framework for tracking of multiple markers presented here can achieve marker detection accuracy similar to manual detection even in low-contrast cine-MV images. It can cope with shape deformations of fiducial markers at different gantry angles. The fast processing speed reduces the image processing portion of the system latency, therefore can improve the performance of real-time motion compensation.« less
A model for combined targeting and tracking tasks in computer applications.
Senanayake, Ransalu; Hoffmann, Errol R; Goonetilleke, Ravindra S
2013-11-01
Current models for targeted-tracking are discussed and shown to be inadequate as a means of understanding the combined task of tracking, as in the Drury's paradigm, and having a final target to be aimed at, as in the Fitts' paradigm. It is shown that the task has to be split into components that are, in general, performed sequentially and have a movement time component dependent on the difficulty of the individual component of the task. In some cases, the task time may be controlled by the Fitts' task difficulty, and in others, it may be dominated by the Drury's task difficulty. Based on an experiment carried out that captured movement time in combinations of visually controlled and ballistic movements, a model for movement time in targeted-tracking was developed.
Dynamics of molecular motors with finite processivity on heterogeneous tracks.
Kafri, Yariv; Lubensky, David K; Nelson, David R
2005-04-01
The dynamics of molecular motors which occasionally detach from a heterogeneous track like DNA or RNA is considered. Motivated by recent single-molecule experiments, we study a simple model for a motor moving along a disordered track using chemical energy while an external force opposes its motion. The motors also have finite processivity, i.e., they can leave the track with a position-dependent rate. We show that the response of the system to disorder in the hopping-off rate depends on the value of the external force. For most values of the external force, strong disorder causes the motors which survive for long times on the track to be localized at preferred positions. However, near the stall force, localization occurs for any amount of disorder. To obtain these results, we study the complex eigenvalue spectrum of the time evolution operator. Existence of localized states near the top of the band implies a stretched exponential contribution to the decay of the survival probability. A similar spectral analysis also provides a very efficient method for studying the dynamics of motors with infinite processivity.
Simulation of dynamic vehicle-track interaction on small radius curves
NASA Astrophysics Data System (ADS)
Torstensson, Peter T.; Nielsen, Jens C. O.
2011-11-01
A time-domain method for the simulation of general three-dimensional dynamic interaction between a vehicle and a curved railway track, accounting for a prescribed relative wheel-rail displacement excitation in a wide frequency range (up to several hundred Hz), is presented. The simulation model is able to capture the low-frequency vehicle dynamics simultaneously due to curving and the high-frequency track dynamics due to the excitation by, for example, the short-pitch corrugation on the low rail. The adopted multibody dynamics formulation considers inertia forces, such as centrifugal and Coriolis forces, as well as the structural flexibility of vehicle and track components. To represent a wheel/rail surface irregularity, isoparametric two-dimensional elements able to describe generally curved surface shapes are used. The computational effort is reduced by including only one bogie in the vehicle model. The influence of the low-frequency vehicle dynamics of the remaining parts of the vehicle is considered by pre-calculated look-up tables of forces and moments acting in the secondary suspension. For a track model taken as rigid, good agreement is observed between the results calculated with the presented model and a commercial software. The features of the model are demonstrated by a number of numerical examples. The influence of the structural flexibility of the wheelset and track on wheel-rail contact forces is investigated. For a discrete rail irregularity excitation, it is shown that the longitudinal creep force is significantly influenced by the wheelset eigenmodes. The introduction of a velocity-dependent friction law is found to induce an oscillation in the tangential contact force on the low rail with a frequency corresponding to the first anti-symmetric torsional mode of the wheelset. Further, under the application of driving moments on the two wheelsets and excitation by a discrete irregularity on the high rail, the frequency content of the tangential contact forces on the low rail is significantly influenced by the P2 resonance as well as by several wheelset eigenmodes.
The VLBI time delay function for synchronous orbits
NASA Technical Reports Server (NTRS)
Rosenbaum, B.
1972-01-01
The VLBI is a satellite tracking technique that to date was applied largely to the tracking of synchronous orbits. These orbits are favorable for VLBI in that the remote satellite range allows continuous viewing from widely separated stations. The primary observable, geometric time delay is the time difference for signal propagation between satellite and baseline terminals. Extraordinary accuracy in angular position data on the satellite can be obtained by observation from baselines of continental dimensions. In satellite tracking though the common objective is to derive orbital elements. A question arises as to how the baseline vector bears on the accuracy of determining the elements. Our approach to this question is to derive an analytic expression for the time delay function in terms of Kepler elements and station coordinates. The analysis, which is for simplicity based on elliptic motion, shows that the resolution for the inclination of the orbital plane depends on the magnitude of the baseline polar component and the resolution for in-plane elements depends on the magnitude of a projected equatorial baseline component.
New platform for evaluating ultrasound-guided interventional technologies
NASA Astrophysics Data System (ADS)
Kim, Younsu; Guo, Xiaoyu; Boctor, Emad M.
2016-04-01
Ultrasound-guided needle tracking systems are frequently used in surgical procedures. Various needle tracking technologies have been developed using ultrasound, electromagnetic sensors, and optical sensors. To evaluate these new needle tracking technologies, 3D volume information is often acquired to compute the actual distance from the needle tip to the target object. The image-guidance conditions for comparison are often inconsistent due to the ultrasound beam-thickness. Since 3D volumes are necessary, there is often some time delay between the surgical procedure and the evaluation. These evaluation methods will generally only measure the final needle location because they interrupt the surgical procedure. The main contribution of this work is a new platform for evaluating needle tracking systems in real-time, resolving the problems stated above. We developed new tools to evaluate the precise distance between the needle tip and the target object. A PZT element transmitting unit is designed as needle introducer shape so that it can be inserted in the needle. We have collected time of flight and amplitude information in real-time. We propose two systems to collect ultrasound signals. We demonstrate this platform on an ultrasound DAQ system and a cost-effective FPGA board. The results of a chicken breast experiment show the feasibility of tracking a time series of needle tip distances. We performed validation experiments with a plastisol phantom and have shown that the preliminary data fits a linear regression model with a RMSE of less than 0.6mm. Our platform can be applied to more general needle tracking methods using other forms of guidance.
Wilcoxon signed-rank-based technique for the pulse-shape analysis of HPGe detectors
NASA Astrophysics Data System (ADS)
Martín, S.; Quintana, B.; Barrientos, D.
2016-07-01
The characterization of the electric response of segmented-contact high-purity germanium detectors requires scanning systems capable of accurately associating each pulse with the position of the interaction that generated it. This process requires an algorithm sensitive to changes above the electronic noise in the pulse shapes produced at different positions, depending on the resolution of the Ge crystal. In this work, a pulse-shape comparison technique based on the Wilcoxon signed-rank test has been developed. It provides a method to distinguish pulses coming from different interaction points in the germanium crystal. Therefore, this technique is a necessary step for building a reliable pulse-shape database that can be used later for the determination of the position of interaction for γ-ray tracking spectrometry devices such as AGATA, GRETA or GERDA. The method was validated by comparison with a χ2 test using simulated and experimental pulses corresponding to a Broad Energy germanium detector (BEGe).
Validation of the Calypso Surface Beacon Transponder.
Belanger, Maxwell; Saleh, Ziad; Volpe, Tom; Margiasso, Rich; Li, Xiang; Chan, Maria; Zhu, Xiaofeng; Tang, Xiaoli
2016-07-08
Calypso L-shaped Surface Beacon transponder has recently become available for clinical applications. We herein conduct studies to validate the Surface Beacon transponder in terms of stability, reproducibility, orientation sensitivity, cycle rate dependence, and respiratory waveform tracking accuracy. The Surface Beacon was placed on a Quasar respiratory phantom and positioned at the isocenter with its two arms aligned with the lasers. Breathing waveforms were simulated, and the motion of the transponder was tracked. Stability and drift analysis: sinusoidal waveforms (200 cycles) were produced, and the amplitudes of phases 0% (inhale) and 50% (exhale) were recorded at each breathing cycle. The mean and standard deviation (SD) of the amplitudes were calculated. Linear least-squares fitting was performed to access the possible amplitude drift over the breathing cycles. Reproducibility: similar setting to stability and drift analysis, and the phantom generated 100 cycles of the sinusoidal waveform per run. The Calypso system's was re-setup for each run. Recorded amplitude and SD of 0% and 50% phase were compared between runs to assess contribution of Calypso electromagnetic array setup variation. Beacon orientation sensitivity: the Calypso tracks sinusoidal phantom motion with a defined angular offset of the beacon to assess its effect on SD and peak-to-peak amplitude. Rate dependence: sinusoidal motion was generated at cycle rates of 1 Hz, .33 Hz, and .2 Hz. Peak-to-peak displacement and SDs were assessed. Respiratory waveform tracking accuracy: the phantom reproduced recorded breathing cycles (by volunteers and patients) were tracked by the Calypso system. Deviation in tracking position from produced waveform was used to calculate SD throughout entire breathing cycle. Stability and drift analysis: Mean amplitude ± SD of phase 0% or 50% were 20.01 ± 0.04 mm and -19.65 ± 0.08 mm, respectively. No clinically significant drift was detected with drift measured as 5.1 × 10-5 mm/s at phase 0% and -6.0 × 10-5 mm/s at phase 50%. Reproducibility: The SD of the setup was 0.06 mm and 0.02 mm for phases 0% and 50%, respectively. The combined SDs, including both setup and intrarun error of all runs at phases 0% and 50%, were 0.07mm and 0.11 mm, respectively. Beacon orientation: SD ranged from 0.032mm to 0.039 mm at phase 0% and from 0.084 mm to 0.096 mm at phase 50%. The SD was found not to vary linearly with Beacon angle in the range of 0° and 15°. A positive systematic error was observed with amplitude 0.07 mm/degree at phase 0% and 0.05 mm/degree at phase 50%. Rate dependence: SD and displacement amplitudes did not vary significantly between 0.2 Hz and 0.33 Hz. At 1 Hz, both 0% and 50% amplitude measurements shifted up appreciably, by 0.72 mm and 0.78mm, respectively. As compared with the 0.33 Hz data, SD at phase 0% was 1.6 times higher and 5.4 times higher at phase 50%. Respiratory waveform tracking accuracy: SD of 0.233 mm with approximately normal distribution in over 134 min of tracking (201468 data points). The Surface Beacon transponder appears to be stable, accurate, and reproducible. Submillimeter resolution is achieved throughout breathing and sinusoidal waveforms. © 2016 The Authors
Validation of the Calypso Surface Beacon Transponder
Saleh, Ziad; Volpe, Tom; Margiasso, Rich; Li, Xiang; Chan, Maria; Zhu, Xiaofeng; Tang, Xiaoli
2016-01-01
Calypso L‐shaped Surface Beacon transponder has recently become available for clinical applications. We herein conduct studies to validate the Surface Beacon transponder in terms of stability, reproducibility, orientation sensitivity, cycle rate dependence, and respiratory waveform tracking accuracy. The Surface Beacon was placed on a Quasar respiratory phantom and positioned at the isocenter with its two arms aligned with the lasers. Breathing waveforms were simulated, and the motion of the transponder was tracked. Stability and drift analysis: sinusoidal waveforms (200 cycles) were produced, and the amplitudes of phases 0% (inhale) and 50% (exhale) were recorded at each breathing cycle. The mean and standard deviation (SD) of the amplitudes were calculated. Linear least‐squares fitting was performed to access the possible amplitude drift over the breathing cycles. Reproducibility: similar setting to stability and drift analysis, and the phantom generated 100 cycles of the sinusoidal waveform per run. The Calypso system's was re‐setup for each run. Recorded amplitude and SD of 0% and 50% phase were compared between runs to assess contribution of Calypso electromagnetic array setup variation. Beacon orientation sensitivity: the Calypso tracks sinusoidal phantom motion with a defined angular offset of the beacon to assess its effect on SD and peak‐to‐peak amplitude. Rate dependence: sinusoidal motion was generated at cycle rates of 1 Hz, .33 Hz, and .2 Hz. Peak‐to‐peak displacement and SDs were assessed. Respiratory waveform tracking accuracy: the phantom reproduced recorded breathing cycles (by volunteers and patients) were tracked by the Calypso system. Deviation in tracking position from produced waveform was used to calculate SD throughout entire breathing cycle. Stability and drift analysis: Mean amplitude ± SD of phase 0% or 50% were 20.01±0.04 mm and ‐19.65±0.08 mm, respectively. No clinically significant drift was detected with drift measured as 5.1×10‐5 mm/s at phase 0% and ‐6.0×10‐5 mm/s at phase 50%. Reproducibility: The SD of the setup was 0.06 mm and 0.02 mm for phases 0% and 50%, respectively. The combined SDs, including both setup and intrarun error of all runs at phases 0% and 50%, were 0.07 mm and 0.11 mm, respectively. Beacon orientation: SD ranged from 0.032 mm to 0.039 mm at phase 0% and from 0.084 mm to 0.096 mm at phase 50%. The SD was found not to vary linearly with Beacon angle in the range of 0° and 15°. A positive systematic error was observed with amplitude 0.07 mm/degree at phase 0% and 0.05 mm/degree at phase 50%. Rate dependence: SD and displacement amplitudes did not vary significantly between 0.2 Hz and 0.33 Hz. At 1 Hz, both 0% and 50% amplitude measurements shifted up appreciably, by 0.72 mm and 0.78 mm, respectively. As compared with the 0.33 Hz data, SD at phase 0% was 1.6 times higher and 5.4 times higher at phase 50%. Respiratory waveform tracking accuracy: SD of 0.233 mm with approximately normal distribution in over 134 min of tracking (201468 data points). The Surface Beacon transponder appears to be stable, accurate, and reproducible. Submillimeter resolution is achieved throughout breathing and sinusoidal waveforms. PACS number(s): 87.50.ct, 87.50.st, 87.50.ux, 87.50.wp, 87.50.yt PMID:27455489
An extended Kalman filter for mouse tracking.
Choi, Hongjun; Kim, Mingi; Lee, Onseok
2018-05-19
Animal tracking is an important tool for observing behavior, which is useful in various research areas. Animal specimens can be tracked using dynamic models and observation models that require several types of data. Tracking mouse has several barriers due to the physical characteristics of the mouse, their unpredictable movement, and cluttered environments. Therefore, we propose a reliable method that uses a detection stage and a tracking stage to successfully track mouse. The detection stage detects the surface area of the mouse skin, and the tracking stage implements an extended Kalman filter to estimate the state variables of a nonlinear model. The changes in the overall shape of the mouse are tracked using an oval-shaped tracking model to estimate the parameters for the ellipse. An experiment is conducted to demonstrate the performance of the proposed tracking algorithm using six video images showing various types of movement, and the ground truth values for synthetic images are compared to the values generated by the tracking algorithm. A conventional manual tracking method is also applied to compare across eight experimenters. Furthermore, the effectiveness of the proposed tracking method is also demonstrated by applying the tracking algorithm with actual images of mouse. Graphical abstract.
Cha, Jungwon; Farhangi, Mohammad Mehdi; Dunlap, Neal; Amini, Amir A
2018-01-01
We have developed a robust tool for performing volumetric and temporal analysis of nodules from respiratory gated four-dimensional (4D) CT. The method could prove useful in IMRT of lung cancer. We modified the conventional graph-cuts method by adding an adaptive shape prior as well as motion information within a signed distance function representation to permit more accurate and automated segmentation and tracking of lung nodules in 4D CT data. Active shape models (ASM) with signed distance function were used to capture the shape prior information, preventing unwanted surrounding tissues from becoming part of the segmented object. The optical flow method was used to estimate the local motion and to extend three-dimensional (3D) segmentation to 4D by warping a prior shape model through time. The algorithm has been applied to segmentation of well-circumscribed, vascularized, and juxtapleural lung nodules from respiratory gated CT data. In all cases, 4D segmentation and tracking for five phases of high-resolution CT data took approximately 10 min on a PC workstation with AMD Phenom II and 32 GB of memory. The method was trained based on 500 breath-held 3D CT data from the LIDC data base and was tested on 17 4D lung nodule CT datasets consisting of 85 volumetric frames. The validation tests resulted in an average Dice Similarity Coefficient (DSC) = 0.68 for all test data. An important by-product of the method is quantitative volume measurement from 4D CT from end-inspiration to end-expiration which will also have important diagnostic value. The algorithm performs robust segmentation of lung nodules from 4D CT data. Signed distance ASM provides the shape prior information which based on the iterative graph-cuts framework is adaptively refined to best fit the input data, preventing unwanted surrounding tissue from merging with the segmented object. © 2017 American Association of Physicists in Medicine.
NASA Astrophysics Data System (ADS)
Cai, Lei; Wang, Lin; Li, Bo; Zhang, Libao; Lv, Wen
2017-06-01
Vehicle tracking technology is currently one of the most active research topics in machine vision. It is an important part of intelligent transportation system. However, in theory and technology, it still faces many challenges including real-time and robustness. In video surveillance, the targets need to be detected in real-time and to be calculated accurate position for judging the motives. The contents of video sequence images and the target motion are complex, so the objects can't be expressed by a unified mathematical model. Object-tracking is defined as locating the interest moving target in each frame of a piece of video. The current tracking technology can achieve reliable results in simple environment over the target with easy identified characteristics. However, in more complex environment, it is easy to lose the target because of the mismatch between the target appearance and its dynamic model. Moreover, the target usually has a complex shape, but the tradition target tracking algorithm usually represents the tracking results by simple geometric such as rectangle or circle, so it cannot provide accurate information for the subsequent upper application. This paper combines a traditional object-tracking technology, Mean-Shift algorithm, with a kind of image segmentation algorithm, Active-Contour model, to get the outlines of objects while the tracking process and automatically handle topology changes. Meanwhile, the outline information is used to aid tracking algorithm to improve it.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dustin Popp; Zander Mausolff; Sedat Goluoglu
We are proposing to use the code, TDKENO, to model TREAT. TDKENO solves the time dependent, three dimensional Boltzmann transport equation with explicit representation of delayed neutrons. Instead of directly integrating this equation, the neutron flux is factored into two components – a rapidly varying amplitude equation and a slowly varying shape equation and each is solved separately on different time scales. The shape equation is solved using the 3D Monte Carlo transport code KENO, from Oak Ridge National Laboratory’s SCALE code package. Using the Monte Carlo method to solve the shape equation is still computationally intensive, but the operationmore » is only performed when needed. The amplitude equation is solved deterministically and frequently, so the solution gives an accurate time-dependent solution without having to repeatedly We have modified TDKENO to incorporate KENO-VI so that we may accurately represent the geometries within TREAT. This paper explains the motivation behind using generalized geometry, and provides the results of our modifications. TDKENO uses the Improved Quasi-Static method to accomplish this. In this method, the neutron flux is factored into two components. One component is a purely time-dependent and rapidly varying amplitude function, which is solved deterministically and very frequently (small time steps). The other is a slowly varying flux shape function that weakly depends on time and is only solved when needed (significantly larger time steps).« less
Backward-gazing method for measuring solar concentrators shape errors.
Coquand, Mathieu; Henault, François; Caliot, Cyril
2017-03-01
This paper describes a backward-gazing method for measuring the optomechanical errors of solar concentrating surfaces. It makes use of four cameras placed near the solar receiver and simultaneously recording images of the sun reflected by the optical surfaces. Simple data processing then allows reconstructing the slope and shape errors of the surfaces. The originality of the method is enforced by the use of generalized quad-cell formulas and approximate mathematical relations between the slope errors of the mirrors and their reflected wavefront in the case of sun-tracking heliostats at high-incidence angles. Numerical simulations demonstrate that the measurement accuracy is compliant with standard requirements of solar concentrating optics in the presence of noise or calibration errors. The method is suited to fine characterization of the optical and mechanical errors of heliostats and their facets, or to provide better control for real-time sun tracking.
NASA Astrophysics Data System (ADS)
Ryashin, N. S.; Malikov, A. G.; Shikalov, V. S.; Gulyaev, I. P.; Kuchumov, B. M.; Klinkov, S. V.; Kosarev, V. F.; Orishich, A. M.
2017-10-01
The paper presents results of the cold spraying of aluminum bronze coatings on substrates profiled with WC/Ni tracks obtained by laser cladding. Reinforcing cermet frames shaped as grids with varied mesh sizes were clad on stainless steel substrates using a CO2 laser machine "Siberia" (ITAM SB RAS, Russia). As a result, surfaces/substrates with heterogeneous shape, composition, and mechanical properties were obtained. Aluminum bronze coatings were deposited from 5lF-NS powder (Oerlikon Metco, Switzerland) on those substrates using cold spraying equipment (ITAM SB RAS). Data of profiling, microstructure diagnostics, EDS analysis, and mechanical tests of obtained composites is reported. Surface relief of the sprayed coatings dependence on substrate structure has been demonstrated.
Estimation of contour motion and deformation for nonrigid object tracking
NASA Astrophysics Data System (ADS)
Shao, Jie; Porikli, Fatih; Chellappa, Rama
2007-08-01
We present an algorithm for nonrigid contour tracking in heavily cluttered background scenes. Based on the properties of nonrigid contour movements, a sequential framework for estimating contour motion and deformation is proposed. We solve the nonrigid contour tracking problem by decomposing it into three subproblems: motion estimation, deformation estimation, and shape regulation. First, we employ a particle filter to estimate the global motion parameters of the affine transform between successive frames. Then we generate a probabilistic deformation map to deform the contour. To improve robustness, multiple cues are used for deformation probability estimation. Finally, we use a shape prior model to constrain the deformed contour. This enables us to retrieve the occluded parts of the contours and accurately track them while allowing shape changes specific to the given object types. Our experiments show that the proposed algorithm significantly improves the tracker performance.
Defeu Soufo, Hervé Joël; Graumann, Peter L
2005-03-03
Bacterial actin-like proteins have been shown to perform essential functions in several aspects of cellular physiology. They affect cell growth, cell shape, chromosome segregation and polar localization of proteins, and localize as helical filaments underneath the cell membrane. Bacillus subtilis MreB and Mbl have been shown to perform dynamic motor like movements within cells, extending along helical tracks in a time scale of few seconds. In this work, we show that Bacillus subtilis MreB has a dual role, both in the formation of rod cell shape, and in chromosome segregation, however, its function in cell shape is distinct from that of MreC. Additionally, MreB is important for the localization of the replication machinery to the cell centre, which becomes aberrant soon after depletion of MreB. 3D image reconstructions suggest that frequently, MreB filaments consist of several discontinuous helical filaments with varying length. The localization of MreB was abnormal in cells with decondensed chromosomes, as well as during depletion of Mbl, MreBH and of the MreC/MreD proteins, which we show localize to the cell membrane. Thus, proper positioning of MreB filaments depends on and is affected by a variety of factors in the cell. Our data provide genetic and cytological links between MreB and the membrane, as well as with other actin like proteins, and further supports the connection of MreB with the chromosome. The functional dependence on MreB of the localization of the replication machinery suggests that the replisome is not anchored at the cell centre, but is positioned in a dynamic manner.
NASA Astrophysics Data System (ADS)
Wei, Kai; Wang, Feng; Wang, Ping; Liu, Zi-xuan; Zhang, Pan
2017-03-01
The soft under baseplate pad of WJ-8 rail fastener frequently used in China's high-speed railways was taken as the study subject, and a laboratory test was performed to measure its temperature and frequency-dependent dynamic performance at 0.3 Hz and at -60°C to 20°C with intervals of 2.5°C. Its higher frequency-dependent results at different temperatures were then further predicted based on the time-temperature superposition (TTS) and Williams-Landel-Ferry (WLF) formula. The fractional derivative Kelvin-Voigt (FDKV) model was used to represent the temperature- and frequency-dependent dynamic properties of the tested rail pad. By means of the FDKV model for rail pads and vehicle-track coupled dynamic theory, high-speed vehicle-track coupled vibrations due to temperature- and frequency-dependent dynamic properties of rail pads was investigated. Finally, further combining with the measured frequency-dependent dynamic performance of vehicle's rubber primary suspension, the high-speed vehicle-track coupled vibration responses were discussed. It is found that the storage stiffness and loss factor of the tested rail pad are sensitive to low temperatures or high frequencies. The proposed FDKV model for the frequency-dependent storage stiffness and loss factors of the tested rail pad can basically meet the fitting precision, especially at ordinary temperatures. The numerical simulation results indicate that the vertical vibration levels of high-speed vehicle-track coupled systems calculated with the FDKV model for rail pads in time domain are higher than those calculated with the ordinary Kelvin-Voigt (KV) model for rail pads. Additionally, the temperature- and frequency-dependent dynamic properties of the tested rail pads would alter the vertical vibration acceleration levels (VALs) of the car body and bogie in 1/3 octave frequencies above 31.5 Hz, especially enlarge the vertical VALs of the wheel set and rail in 1/3 octave frequencies of 31.5-100 Hz and above 315 Hz, which are the dominant frequencies of ground vibration acceleration and rolling noise (or bridge noise) caused by high-speed railways respectively. Since the fractional derivative value of the adopted rubber primary suspension, unlike the tested rail pad, is very close to 1, its frequency-dependent dynamic performance has little effect on high-speed vehicle-track coupled vibration responses.
The Simpsons program 6-D phase space tracking with acceleration
NASA Astrophysics Data System (ADS)
Machida, S.
1993-12-01
A particle tracking code, Simpsons, in 6-D phase space including energy ramping has been developed to model proton synchrotrons and storage rings. We take time as the independent variable to change machine parameters and diagnose beam quality in a quite similar way as real machines, unlike existing tracking codes for synchrotrons which advance a particle element by element. Arbitrary energy ramping and rf voltage curves as a function of time are read as an input file for defining a machine cycle. The code is used to study beam dynamics with time dependent parameters. Some of the examples from simulations of the Superconducting Super Collider (SSC) boosters are shown.
Top-down contextual knowledge guides visual attention in infancy.
Tummeltshammer, Kristen; Amso, Dima
2017-10-26
The visual context in which an object or face resides can provide useful top-down information for guiding attention orienting, object recognition, and visual search. Although infants have demonstrated sensitivity to covariation in spatial arrays, it is presently unclear whether they can use rapidly acquired contextual knowledge to guide attention during visual search. In this eye-tracking experiment, 6- and 10-month-old infants searched for a target face hidden among colorful distracter shapes. Targets appeared in Old or New visual contexts, depending on whether the visual search arrays (defined by the spatial configuration, shape and color of component items in the search display) were repeated or newly generated throughout the experiment. Targets in Old contexts appeared in the same location within the same configuration, such that context covaried with target location. Both 6- and 10-month-olds successfully distinguished between Old and New contexts, exhibiting faster search times, fewer looks at distracters, and more anticipation of targets when contexts repeated. This initial demonstration of contextual cueing effects in infants indicates that they can use top-down information to facilitate orienting during memory-guided visual search. © 2017 John Wiley & Sons Ltd.
Multidirectional four-dimensional shape measurement system
NASA Astrophysics Data System (ADS)
Lenar, Janusz; Sitnik, Robert; Witkowski, Marcin
2012-03-01
Currently, a lot of different scanning techniques are used for 3D imaging of human body. Most of existing systems are based on static registration of internal structures using MRI or CT techniques as well as 3D scanning of outer surface of human body by laser triangulation or structured light methods. On the other hand there is an existing mature 4D method based on tracking in time the position of retro-reflective markers attached to human body. There are two main drawbacks of this solution: markers are attached to skin (no real skeleton movement is registered) and it gives (x, y, z, t) coordinates only in those points (not for the whole surface). In this paper we present a novel multidirectional structured light measurement system that is capable of measuring 3D shape of human body surface with frequency reaching 60Hz. The developed system consists of two spectrally separated and hardware-synchronized 4D measurement heads. The principle of the measurement is based on single frame analysis. Projected frame is composed from sine-modulated intensity pattern and a special stripe allowing absolute phase measurement. Several different geometrical set-ups will be proposed depending on type of movements that are to be registered.
Electrically tunable lens speeds up 3D orbital tracking
Annibale, Paolo; Dvornikov, Alexander; Gratton, Enrico
2015-01-01
3D orbital particle tracking is a versatile and effective microscopy technique that allows following fast moving fluorescent objects within living cells and reconstructing complex 3D shapes using laser scanning microscopes. We demonstrated notable improvements in the range, speed and accuracy of 3D orbital particle tracking by replacing commonly used piezoelectric stages with Electrically Tunable Lens (ETL) that eliminates mechanical movement of objective lenses. This allowed tracking and reconstructing shape of structures extending 500 microns in the axial direction. Using the ETL, we tracked at high speed fluorescently labeled genomic loci within the nucleus of living cells with unprecedented temporal resolution of 8ms using a 1.42NA oil-immersion objective. The presented technology is cost effective and allows easy upgrade of scanning microscopes for fast 3D orbital tracking. PMID:26114037
Regmi, Rajesh; Lovelock, D. Michael; Hunt, Margie; Zhang, Pengpeng; Pham, Hai; Xiong, Jianping; Yorke, Ellen D.; Goodman, Karyn A.; Rimner, Andreas; Mostafavi, Hassan; Mageras, Gig S.
2014-01-01
Purpose: Certain types of commonly used fiducial markers take on irregular shapes upon implantation in soft tissue. This poses a challenge for methods that assume a predefined shape of markers when automatically tracking such markers in kilovoltage (kV) radiographs. The authors have developed a method of automatically tracking regularly and irregularly shaped markers using kV projection images and assessed its potential for detecting intrafractional target motion during rotational treatment. Methods: Template-based matching used a normalized cross-correlation with simplex minimization. Templates were created from computed tomography (CT) images for phantom studies and from end-expiration breath-hold planning CT for patient studies. The kV images were processed using a Sobel filter to enhance marker visibility. To correct for changes in intermarker relative positions between simulation and treatment that can introduce errors in automatic matching, marker offsets in three dimensions were manually determined from an approximately orthogonal pair of kV images. Two studies in anthropomorphic phantom were carried out, one using a gold cylindrical marker representing regular shape, another using a Visicoil marker representing irregular shape. Automatic matching of templates to cone beam CT (CBCT) projection images was performed to known marker positions in phantom. In patient data, automatic matching was compared to manual matching as an approximate ground truth. Positional discrepancy between automatic and manual matching of less than 2 mm was assumed as the criterion for successful tracking. Tracking success rates were examined in kV projection images from 22 CBCT scans of four pancreas, six gastroesophageal junction, and one lung cancer patients. Each patient had at least one irregularly shaped radiopaque marker implanted in or near the tumor. In addition, automatic tracking was tested in intrafraction kV images of three lung cancer patients with irregularly shaped markers during 11 volumetric modulated arc treatments. Purpose-built software developed at our institution was used to create marker templates and track the markers embedded in kV images. Results: Phantom studies showed mean ± standard deviation measurement uncertainty of automatic registration to be 0.14 ± 0.07 mm and 0.17 ± 0.08 mm for Visicoil and gold cylindrical markers, respectively. The mean success rate of automatic tracking with CBCT projections (11 frames per second, fps) of pancreas, gastroesophageal junction, and lung cancer patients was 100%, 99.1% (range 98%–100%), and 100%, respectively. With intrafraction images (approx. 0.2 fps) of lung cancer patients, the success rate was 98.2% (range 97%–100%), and 94.3% (range 93%–97%) using templates from 1.25 mm and 2.5 mm slice spacing CT scans, respectively. Correction of intermarker relative position was found to improve the success rate in two out of eight patients analyzed. Conclusions: The proposed method can track arbitrary marker shapes in kV images using templates generated from a breath-hold CT acquired at simulation. The studies indicate its feasibility for tracking tumor motion during rotational treatment. Investigation of the causes of misregistration suggests that its rate of incidence can be reduced with higher frequency of image acquisition, templates made from smaller CT slice spacing, and correction of changes in intermarker relative positions when they occur. PMID:24989384
DOE Office of Scientific and Technical Information (OSTI.GOV)
Regmi, Rajesh; Lovelock, D. Michael; Hunt, Margie
Purpose: Certain types of commonly used fiducial markers take on irregular shapes upon implantation in soft tissue. This poses a challenge for methods that assume a predefined shape of markers when automatically tracking such markers in kilovoltage (kV) radiographs. The authors have developed a method of automatically tracking regularly and irregularly shaped markers using kV projection images and assessed its potential for detecting intrafractional target motion during rotational treatment. Methods: Template-based matching used a normalized cross-correlation with simplex minimization. Templates were created from computed tomography (CT) images for phantom studies and from end-expiration breath-hold planning CT for patient studies. Themore » kV images were processed using a Sobel filter to enhance marker visibility. To correct for changes in intermarker relative positions between simulation and treatment that can introduce errors in automatic matching, marker offsets in three dimensions were manually determined from an approximately orthogonal pair of kV images. Two studies in anthropomorphic phantom were carried out, one using a gold cylindrical marker representing regular shape, another using a Visicoil marker representing irregular shape. Automatic matching of templates to cone beam CT (CBCT) projection images was performed to known marker positions in phantom. In patient data, automatic matching was compared to manual matching as an approximate ground truth. Positional discrepancy between automatic and manual matching of less than 2 mm was assumed as the criterion for successful tracking. Tracking success rates were examined in kV projection images from 22 CBCT scans of four pancreas, six gastroesophageal junction, and one lung cancer patients. Each patient had at least one irregularly shaped radiopaque marker implanted in or near the tumor. In addition, automatic tracking was tested in intrafraction kV images of three lung cancer patients with irregularly shaped markers during 11 volumetric modulated arc treatments. Purpose-built software developed at our institution was used to create marker templates and track the markers embedded in kV images. Results: Phantom studies showed mean ± standard deviation measurement uncertainty of automatic registration to be 0.14 ± 0.07 mm and 0.17 ± 0.08 mm for Visicoil and gold cylindrical markers, respectively. The mean success rate of automatic tracking with CBCT projections (11 frames per second, fps) of pancreas, gastroesophageal junction, and lung cancer patients was 100%, 99.1% (range 98%–100%), and 100%, respectively. With intrafraction images (approx. 0.2 fps) of lung cancer patients, the success rate was 98.2% (range 97%–100%), and 94.3% (range 93%–97%) using templates from 1.25 mm and 2.5 mm slice spacing CT scans, respectively. Correction of intermarker relative position was found to improve the success rate in two out of eight patients analyzed. Conclusions: The proposed method can track arbitrary marker shapes in kV images using templates generated from a breath-hold CT acquired at simulation. The studies indicate its feasibility for tracking tumor motion during rotational treatment. Investigation of the causes of misregistration suggests that its rate of incidence can be reduced with higher frequency of image acquisition, templates made from smaller CT slice spacing, and correction of changes in intermarker relative positions when they occur.« less
Stress tracking in thin bars by eigenstrain actuation
NASA Astrophysics Data System (ADS)
Schoeftner, J.; Irschik, H.
2016-11-01
This contribution focuses on stress tracking in slender structures. The axial stress distribution of a linear elastic bar is investigated, in particular, we seek for an answer to the following question: in which manner do we have to distribute eigenstrains, such that the axial stress in a bar is equal to a certain desired stress distribution, despite external forces or support excitations are present? In order to track a certain time- and space-dependent stress function, smart actuators, such as piezoelectric actuators, are needed to realize eigenstrains. Based on the equation of motion and the constitutive relation, which relate stress, strain, displacement and eigenstrains, an analytical solution for the stress tracking problem is derived. The starting point for the derivation of a solution for the stress tracking problem is a semi-positive definite integral depending on the error stress which is the difference between the actual stress and the desired stress. Our derived stress tracking theory is verified by two examples: first, a clamped-free bar which is harmonically excited is investigated. It is shown under which circumstances the axial stress vanishes at every location and at every time instant. The second example is a support-excited bar with end mass, where a desired stress profile is prescribed.
Tracking the shape-dependent sintering of platinum-rhodium model catalysts under operando conditions
NASA Astrophysics Data System (ADS)
Hejral, Uta; Müller, Patrick; Balmes, Olivier; Pontoni, Diego; Stierle, Andreas
2016-03-01
Nanoparticle sintering during catalytic reactions is a major cause for catalyst deactivation. Understanding its atomic-scale processes and finding strategies to reduce it is of paramount scientific and economic interest. Here, we report on the composition-dependent three-dimensional restructuring of epitaxial platinum-rhodium alloy nanoparticles on alumina during carbon monoxide oxidation at 550 K and near-atmospheric pressures employing in situ high-energy grazing incidence x-ray diffraction, online mass spectrometry and a combinatorial sample design. For platinum-rich particles our results disclose a dramatic reaction-induced height increase, accompanied by a corresponding reduction of the total particle surface coverage. We find this restructuring to be progressively reduced for particles with increasing rhodium composition. We explain our observations by a carbon monoxide oxidation promoted non-classical Ostwald ripening process during which smaller particles are destabilized by the heat of reaction. Its driving force lies in the initial particle shape which features for platinum-rich particles a kinetically stabilized, low aspect ratio.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, H; Dolly, S; Anastasio, M
Purpose: In-treatment dynamic cine images, provided by the first commercially available MRI-guided radiotherapy system, allow physicians to observe intrafractional motion of head and neck (H&N) internal structures. Nevertheless, high anatomical complexity and relatively poor cine image contrast/resolution have complicated automatic intrafractional motion evaluation. We proposed an integrated model-based approach to automatically delineate and analyze moving structures from on-board cine images. Methods: The H&N upper airway, a complex and highly deformable region wherein severe internal motion often occurs, was selected as the target-to-be-tracked. To reliably capture its motion, a hierarchical structure model containing three statistical shapes (face, face-jaw, and face-jaw-palate) wasmore » first built from a set of manually delineated shapes using principal component analysis. An integrated model-fitting algorithm was then employed to align the statistical shapes to the first to-be-detected cine frame, and multi-feature level-set contour propagation was performed to identify the airway shape change in the remaining frames. Ninety sagittal cine MR image sets, acquired from three H&N cancer patients, were utilized to demonstrate this approach. Results: The tracking accuracy was validated by comparing the results to the average of two manual delineations in 20 randomly selected images from each patient. The resulting dice similarity coefficient (93.28+/−1.46 %) and margin error (0.49+/−0.12 mm) showed good agreement with the manual results. Intrafractional displacements of anterior, posterior, inferior, and superior airway boundaries were observed, with values of 2.62+/−2.92, 1.78+/−1.43, 3.51+/−3.99, and 0.68+/−0.89 mm, respectively. The H&N airway motion was found to vary across directions, fractions, and patients, and highly correlated with patients’ respiratory frequency. Conclusion: We proposed the integrated computational approach, which for the first time allows to automatically identify the H&N upper airway and quantify in-treatment H&N internal motion in real-time. This approach can be applied to track other structures’ motion, and provide guidance on patient-specific prediction of intra-/inter-fractional structure displacements.« less
Time-lapse and slow-motion tracking of temperature changes: response time of a thermometer
NASA Astrophysics Data System (ADS)
Moggio, L.; Onorato, P.; Gratton, L. M.; Oss, S.
2017-03-01
We propose the use of a smartphone based time-lapse and slow-motion video techniques together with tracking analysis as valuable tools for investigating thermal processes such as the response time of a thermometer. The two simple experimental activities presented here, suitable also for high school and undergraduate students, allow one to measure in a simple yet rigorous way the response time of an alcohol thermometer and show its critical dependence on the properties of the surrounding environment giving insight into instrument characteristics, heat transfer and thermal equilibrium concepts.
Electromagnetic tracking for abdominal interventions in computer aided surgery
Zhang, Hui; Banovac, Filip; Lin, Ralph; Glossop, Neil; Wood, Bradford J.; Lindisch, David; Levy, Elliot; Cleary, Kevin
2014-01-01
Electromagnetic tracking has great potential for assisting physicians in precision placement of instruments during minimally invasive interventions in the abdomen, since electromagnetic tracking is not limited by the line-of-sight restrictions of optical tracking. A new generation of electromagnetic tracking has recently become available, with sensors small enough to be included in the tips of instruments. To fully exploit the potential of this technology, our research group has been developing a computer aided, image-guided system that uses electromagnetic tracking for visualization of the internal anatomy during abdominal interventions. As registration is a critical component in developing an accurate image-guided system, we present three registration techniques: 1) enhanced paired-point registration (time-stamp match registration and dynamic registration); 2) orientation-based registration; and 3) needle shape-based registration. Respiration compensation is another important issue, particularly in the abdomen, where respiratory motion can make precise targeting difficult. To address this problem, we propose reference tracking and affine transformation methods. Finally, we present our prototype navigation system, which integrates the registration, segmentation, path-planning and navigation functions to provide real-time image guidance in the clinical environment. The methods presented here have been tested with a respiratory phantom specially designed by our group and in swine animal studies under approved protocols. Based on these tests, we conclude that our system can provide quick and accurate localization of tracked instruments in abdominal interventions, and that it offers a user friendly display for the physician. PMID:16829506
Fuentes, Silvia; Carrasco, Javier; Hatto, Abigail; Navarro, Juan; Armario, Antonio; Monsonet, Manel; Ortiz, Jordi; Nadal, Roser
2018-01-01
Early life stress (ELS) induces long-term effects in later functioning and interacts with further exposure to other stressors in adulthood to shape our responsiveness to reward-related cues. The attribution of incentive salience to food-related cues may be modulated by previous and current exposures to stressors in a sex-dependent manner. We hypothesized from human data that exposure to a traumatic (severe) adult stressor will decrease the attribution of incentive salience to reward-associated cues, especially in females, because these effects are modulated by previous ELS. To study these factors in Long-Evans rats, we used as an ELS model of restriction of nesting material and concurrently evaluated maternal care. In adulthood, the offspring of both sexes were exposed to acute immobilization (IMO), and several days after, a Pavlovian conditioning procedure was used to assess the incentive salience of food-related cues. Some rats developed more attraction to the cue predictive of reward (sign-tracking) and others were attracted to the location of the reward itself, the food-magazine (goal-tracking). Several dopaminergic markers were evaluated by in situ hybridization. The results showed that ELS increased maternal care and decreased body weight gain (only in females). Regarding incentive salience, in absolute control animals, females presented slightly greater sign-tracking behavior than males. Non-ELS male rats exposed to IMO showed a bias towards goal-tracking, whereas in females, IMO produced a bias towards sign-tracking. Animals of both sexes not exposed to IMO displayed an intermediate phenotype. ELS in IMO-treated females was able to reduce sign-tracking and decrease tyrosine hydroxylase expression in the ventral tegmental area and dopamine D1 receptor expression in the accumbens shell. Although the predicted greater decrease in females in sign-tracking after IMO exposure was not corroborated by the data, the results highlight the idea that sex is an important factor in the study of the long-term impact of early and adult stressors.
Fuentes, Silvia; Carrasco, Javier; Hatto, Abigail; Navarro, Juan; Armario, Antonio; Monsonet, Manel; Ortiz, Jordi
2018-01-01
Early life stress (ELS) induces long-term effects in later functioning and interacts with further exposure to other stressors in adulthood to shape our responsiveness to reward-related cues. The attribution of incentive salience to food-related cues may be modulated by previous and current exposures to stressors in a sex-dependent manner. We hypothesized from human data that exposure to a traumatic (severe) adult stressor will decrease the attribution of incentive salience to reward-associated cues, especially in females, because these effects are modulated by previous ELS. To study these factors in Long-Evans rats, we used as an ELS model of restriction of nesting material and concurrently evaluated maternal care. In adulthood, the offspring of both sexes were exposed to acute immobilization (IMO), and several days after, a Pavlovian conditioning procedure was used to assess the incentive salience of food-related cues. Some rats developed more attraction to the cue predictive of reward (sign-tracking) and others were attracted to the location of the reward itself, the food-magazine (goal-tracking). Several dopaminergic markers were evaluated by in situ hybridization. The results showed that ELS increased maternal care and decreased body weight gain (only in females). Regarding incentive salience, in absolute control animals, females presented slightly greater sign-tracking behavior than males. Non-ELS male rats exposed to IMO showed a bias towards goal-tracking, whereas in females, IMO produced a bias towards sign-tracking. Animals of both sexes not exposed to IMO displayed an intermediate phenotype. ELS in IMO-treated females was able to reduce sign-tracking and decrease tyrosine hydroxylase expression in the ventral tegmental area and dopamine D1 receptor expression in the accumbens shell. Although the predicted greater decrease in females in sign-tracking after IMO exposure was not corroborated by the data, the results highlight the idea that sex is an important factor in the study of the long-term impact of early and adult stressors. PMID:29324797
Automatic colonic lesion detection and tracking in endoscopic videos
NASA Astrophysics Data System (ADS)
Li, Wenjing; Gustafsson, Ulf; A-Rahim, Yoursif
2011-03-01
The biology of colorectal cancer offers an opportunity for both early detection and prevention. Compared with other imaging modalities, optical colonoscopy is the procedure of choice for simultaneous detection and removal of colonic polyps. Computer assisted screening makes it possible to assist physicians and potentially improve the accuracy of the diagnostic decision during the exam. This paper presents an unsupervised method to detect and track colonic lesions in endoscopic videos. The aim of the lesion screening and tracking is to facilitate detection of polyps and abnormal mucosa in real time as the physician is performing the procedure. For colonic lesion detection, the conventional marker controlled watershed based segmentation is used to segment the colonic lesions, followed by an adaptive ellipse fitting strategy to further validate the shape. For colonic lesion tracking, a mean shift tracker with background modeling is used to track the target region from the detection phase. The approach has been tested on colonoscopy videos acquired during regular colonoscopic procedures and demonstrated promising results.
Baker, Richard M; Brasch, Megan E; Manning, M Lisa; Henderson, James H
2014-08-06
Understanding single and collective cell motility in model environments is foundational to many current research efforts in biology and bioengineering. To elucidate subtle differences in cell behaviour despite cell-to-cell variability, we introduce an algorithm for tracking large numbers of cells for long time periods and present a set of physics-based metrics that quantify differences in cell trajectories. Our algorithm, termed automated contour-based tracking for in vitro environments (ACTIVE), was designed for adherent cell populations subject to nuclear staining or transfection. ACTIVE is distinct from existing tracking software because it accommodates both variability in image intensity and multi-cell interactions, such as divisions and occlusions. When applied to low-contrast images from live-cell experiments, ACTIVE reduced error in analysing cell occlusion events by as much as 43% compared with a benchmark-tracking program while simultaneously tracking cell divisions and resulting daughter-daughter cell relationships. The large dataset generated by ACTIVE allowed us to develop metrics that capture subtle differences between cell trajectories on different substrates. We present cell motility data for thousands of cells studied at varying densities on shape-memory-polymer-based nanotopographies and identify several quantitative differences, including an unanticipated difference between two 'control' substrates. We expect that ACTIVE will be immediately useful to researchers who require accurate, long-time-scale motility data for many cells. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
Dual Use of Image Based Tracking Techniques: Laser Eye Surgery and Low Vision Prosthesis
NASA Technical Reports Server (NTRS)
Juday, Richard D.; Barton, R. Shane
1994-01-01
With a concentration on Fourier optics pattern recognition, we have developed several methods of tracking objects in dynamic imagery to automate certain space applications such as orbital rendezvous and spacecraft capture, or planetary landing. We are developing two of these techniques for Earth applications in real-time medical image processing. The first is warping of a video image, developed to evoke shift invariance to scale and rotation in correlation pattern recognition. The technology is being applied to compensation for certain field defects in low vision humans. The second is using the optical joint Fourier transform to track the translation of unmodeled scenes. Developed as an image fixation tool to assist in calculating shape from motion, it is being applied to tracking motions of the eyeball quickly enough to keep a laser photocoagulation spot fixed on the retina, thus avoiding collateral damage.
Dual use of image based tracking techniques: Laser eye surgery and low vision prosthesis
NASA Technical Reports Server (NTRS)
Juday, Richard D.
1994-01-01
With a concentration on Fourier optics pattern recognition, we have developed several methods of tracking objects in dynamic imagery to automate certain space applications such as orbital rendezvous and spacecraft capture, or planetary landing. We are developing two of these techniques for Earth applications in real-time medical image processing. The first is warping of a video image, developed to evoke shift invariance to scale and rotation in correlation pattern recognition. The technology is being applied to compensation for certain field defects in low vision humans. The second is using the optical joint Fourier transform to track the translation of unmodeled scenes. Developed as an image fixation tool to assist in calculating shape from motion, it is being applied to tracking motions of the eyeball quickly enough to keep a laser photocoagulation spot fixed on the retina, thus avoiding collateral damage.
NASA Astrophysics Data System (ADS)
Atemkeng, M.; Smirnov, O.; Tasse, C.; Foster, G.; Keimpema, A.; Paragi, Z.; Jonas, J.
2018-07-01
Traditional radio interferometric correlators produce regular-gridded samples of the true uv-distribution by averaging the signal over constant, discrete time-frequency intervals. This regular sampling and averaging then translate to be irregular-gridded samples in the uv-space, and results in a baseline-length-dependent loss of amplitude and phase coherence, which is dependent on the distance from the image phase centre. The effect is often referred to as `decorrelation' in the uv-space, which is equivalent in the source domain to `smearing'. This work discusses and implements a regular-gridded sampling scheme in the uv-space (baseline-dependent sampling) and windowing that allow for data compression, field-of-interest shaping, and source suppression. The baseline-dependent sampling requires irregular-gridded sampling in the time-frequency space, i.e. the time-frequency interval becomes baseline dependent. Analytic models and simulations are used to show that decorrelation remains constant across all the baselines when applying baseline-dependent sampling and windowing. Simulations using MeerKAT telescope and the European Very Long Baseline Interferometry Network show that both data compression, field-of-interest shaping, and outer field-of-interest suppression are achieved.
Berg, Eric; Roncali, Emilie; Hutchcroft, Will; Qi, Jinyi; Cherry, Simon R.
2016-01-01
In a scintillation detector, the light generated in the scintillator by a gamma interaction is converted to photoelectrons by a photodetector and produces a time-dependent waveform, the shape of which depends on the scintillator properties and the photodetector response. Several depth-of-interaction (DOI) encoding strategies have been developed that manipulate the scintillator’s temporal response along the crystal length and therefore require pulse shape discrimination techniques to differentiate waveform shapes. In this work, we demonstrate how maximum likelihood (ML) estimation methods can be applied to pulse shape discrimination to better estimate deposited energy, DOI and interaction time (for time-of-flight (TOF) PET) of a gamma ray in a scintillation detector. We developed likelihood models based on either the estimated detection times of individual photoelectrons or the number of photoelectrons in discrete time bins, and applied to two phosphor-coated crystals (LFS and LYSO) used in a previously developed TOF-DOI detector concept. Compared with conventional analytical methods, ML pulse shape discrimination improved DOI encoding by 27% for both crystals. Using the ML DOI estimate, we were able to counter depth-dependent changes in light collection inherent to long scintillator crystals and recover the energy resolution measured with fixed depth irradiation (~11.5% for both crystals). Lastly, we demonstrated how the Richardson-Lucy algorithm, an iterative, ML-based deconvolution technique, can be applied to the digitized waveforms to deconvolve the photodetector’s single photoelectron response and produce waveforms with a faster rising edge. After deconvolution and applying DOI and time-walk corrections, we demonstrated a 13% improvement in coincidence timing resolution (from 290 to 254 ps) with the LFS crystal and an 8% improvement (323 to 297 ps) with the LYSO crystal. PMID:27295658
Berg, Eric; Roncali, Emilie; Hutchcroft, Will; Qi, Jinyi; Cherry, Simon R
2016-11-01
In a scintillation detector, the light generated in the scintillator by a gamma interaction is converted to photoelectrons by a photodetector and produces a time-dependent waveform, the shape of which depends on the scintillator properties and the photodetector response. Several depth-of-interaction (DOI) encoding strategies have been developed that manipulate the scintillator's temporal response along the crystal length and therefore require pulse shape discrimination techniques to differentiate waveform shapes. In this work, we demonstrate how maximum likelihood (ML) estimation methods can be applied to pulse shape discrimination to better estimate deposited energy, DOI and interaction time (for time-of-flight (TOF) PET) of a gamma ray in a scintillation detector. We developed likelihood models based on either the estimated detection times of individual photoelectrons or the number of photoelectrons in discrete time bins, and applied to two phosphor-coated crystals (LFS and LYSO) used in a previously developed TOF-DOI detector concept. Compared with conventional analytical methods, ML pulse shape discrimination improved DOI encoding by 27% for both crystals. Using the ML DOI estimate, we were able to counter depth-dependent changes in light collection inherent to long scintillator crystals and recover the energy resolution measured with fixed depth irradiation (~11.5% for both crystals). Lastly, we demonstrated how the Richardson-Lucy algorithm, an iterative, ML-based deconvolution technique, can be applied to the digitized waveforms to deconvolve the photodetector's single photoelectron response and produce waveforms with a faster rising edge. After deconvolution and applying DOI and time-walk corrections, we demonstrated a 13% improvement in coincidence timing resolution (from 290 to 254 ps) with the LFS crystal and an 8% improvement (323 to 297 ps) with the LYSO crystal.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Yang-Kyun; Sharp, Gregory C.; Gierga, David P.
2015-06-15
Purpose: Real-time kV projection streaming capability has become recently available for Elekta XVI version 5.0. This study aims to investigate the feasibility and accuracy of real-time fiducial marker tracking during CBCT acquisition with or without simultaneous VMAT delivery using a conventional Elekta linear accelerator. Methods: A client computer was connected to an on-board kV imaging system computer, and receives and processes projection images immediately after image acquisition. In-house marker tracking software based on FFT normalized cross-correlation was developed and installed in the client computer. Three gold fiducial markers with 3 mm length were implanted in a pelvis-shaped phantom with 36more » cm width. The phantom was placed on a programmable motion platform oscillating in anterior-posterior and superior-inferior directions simultaneously. The marker motion was tracked in real-time for (1) a kV-only CBCT scan with treatment beam off and (2) a kV CBCT scan during a 6-MV VMAT delivery. The exposure parameters per projection were 120 kVp and 1.6 mAs. Tracking accuracy was assessed by comparing superior-inferior positions between the programmed and tracked trajectories. Results: The projection images were successfully transferred to the client computer at a frequency of about 5 Hz. In the kV-only scan, highly accurate marker tracking was achieved over the entire range of cone-beam projection angles (detection rate / tracking error were 100.0% / 0.6±0.5 mm). In the kV-VMAT scan, MV-scatter degraded image quality, particularly for lateral projections passing through the thickest part of the phantom (kV source angle ranging 70°-110° and 250°-290°), resulting in a reduced detection rate (90.5%). If the lateral projections are excluded, tracking performance was comparable to the kV-only case (detection rate / tracking error were 100.0% / 0.8±0.5 mm). Conclusion: Our phantom study demonstrated a promising Result for real-time motion tracking using a conventional Elekta linear accelerator. MV-scatter suppression is needed to improve tracking accuracy during MV delivery. This research is funded by Motion Management Research Grant from Elekta.« less
NASA Astrophysics Data System (ADS)
Chamakuri, Nagaiah; Engwer, Christian; Kunisch, Karl
2014-09-01
Optimal control for cardiac electrophysiology based on the bidomain equations in conjunction with the Fenton-Karma ionic model is considered. This generic ventricular model approximates well the restitution properties and spiral wave behavior of more complex ionic models of cardiac action potentials. However, it is challenging due to the appearance of state-dependent discontinuities in the source terms. A computational framework for the numerical realization of optimal control problems is presented. Essential ingredients are a shape calculus based treatment of the sensitivities of the discontinuous source terms and a marching cubes algorithm to track iso-surface of excitation wavefronts. Numerical results exhibit successful defibrillation by applying an optimally controlled extracellular stimulus.
Ullah, Sami; Daud, Hanita; Dass, Sarat C; Khan, Habib Nawaz; Khalil, Alamgir
2017-11-06
Ability to detect potential space-time clusters in spatio-temporal data on disease occurrences is necessary for conducting surveillance and implementing disease prevention policies. Most existing techniques use geometrically shaped (circular, elliptical or square) scanning windows to discover disease clusters. In certain situations, where the disease occurrences tend to cluster in very irregularly shaped areas, these algorithms are not feasible in practise for the detection of space-time clusters. To address this problem, a new algorithm is proposed, which uses a co-clustering strategy to detect prospective and retrospective space-time disease clusters with no restriction on shape and size. The proposed method detects space-time disease clusters by tracking the changes in space-time occurrence structure instead of an in-depth search over space. This method was utilised to detect potential clusters in the annual and monthly malaria data in Khyber Pakhtunkhwa Province, Pakistan from 2012 to 2016 visualising the results on a heat map. The results of the annual data analysis showed that the most likely hotspot emerged in three sub-regions in the years 2013-2014. The most likely hotspots in monthly data appeared in the month of July to October in each year and showed a strong periodic trend.
Re-accumulation Scenarios Governing Final Global Shapes of Rubble-Pile Asteroids
NASA Astrophysics Data System (ADS)
Hestroffer, Daniel; Tanga, P.; Comito, C.; Paolicchi, P.; Walsh, K.; Richardson, D. C.; Cellino, A.
2009-05-01
Asteroids, since the formation of the solar system, are known to have experienced catastrophic collisions, which---depending on the impact energy---can produce a major disruption of the parent body and possibly give birth to asteroid families or binaries [1]. We present a general study of the final shape and dynamical state of asteroids produced by the re-accumulation process following a catastrophic disruption. Starting from a cloud of massive particles (mono-disperse spheres) with given density and velocity distributions, we analyse the final shape, spin state, and angular momentum of the system from numerical integration of a N-body gravitational system (code pkdgrav [2]). The re-accumulation process itself is relatively fast, with a dynamical time corresponding to the spin-period of the final body (several hours). The final global shapes---which are described as tri-axial ellipsoids---exhibit slopes consistent with a degree of shear stress sustained by interlocking particles. We point out a few results: -the final shapes are close to those of hydrostatic equilibrium for incompressible fluids, preferably Maclaurin spheroid rather than Jacobi ellipsoids -for bodies closest to the sequence of hydrostatic equilibrium, there is a direct relation between spin, density and outer shape, suggesting that the outer surface is nearly equipotential -the evolution of the shape during the process follows a track along a gradient of potential energy, without necessarily reaching its minimum -the loose random packing of the particles implies low friction angle and hence fluid-like behaviour, which extends the results of [3]. Future steps of our analysis will include feature refinements of the model initial conditions and re-accumulation process, including impact shakings, realistic velocity distributions, and non equal-sized elementary spheres. References [1] Michel P. et al. 2001. Science 294, 1696 [2] Leinhardt Z.M. et al. 2000. Icarus 146, 133 [3] Richardson D.C. et al. 2005. Icarus 173, 349
Korayem, M H; Nekoo, S R
2015-07-01
This work studies an optimal control problem using the state-dependent Riccati equation (SDRE) in differential form to track for time-varying systems with state and control nonlinearities. The trajectory tracking structure provides two nonlinear differential equations: the state-dependent differential Riccati equation (SDDRE) and the feed-forward differential equation. The independence of the governing equations and stability of the controller are proven along the trajectory using the Lyapunov approach. Backward integration (BI) is capable of solving the equations as a numerical solution; however, the forward solution methods require the closed-form solution to fulfill the task. A closed-form solution is introduced for SDDRE, but the feed-forward differential equation has not yet been obtained. Different ways of solving the problem are expressed and analyzed. These include BI, closed-form solution with corrective assumption, approximate solution, and forward integration. Application of the tracking problem is investigated to control robotic manipulators possessing rigid or flexible joints. The intention is to release a general program for automatic implementation of an SDDRE controller for any manipulator that obeys the Denavit-Hartenberg (D-H) principle when only D-H parameters are received as input data. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
Vehicle Surveillance with a Generic, Adaptive, 3D Vehicle Model.
Leotta, Matthew J; Mundy, Joseph L
2011-07-01
In automated surveillance, one is often interested in tracking road vehicles, measuring their shape in 3D world space, and determining vehicle classification. To address these tasks simultaneously, an effective approach is the constrained alignment of a prior model of 3D vehicle shape to images. Previous 3D vehicle models are either generic but overly simple or rigid and overly complex. Rigid models represent exactly one vehicle design, so a large collection is needed. A single generic model can deform to a wide variety of shapes, but those shapes have been far too primitive. This paper uses a generic 3D vehicle model that deforms to match a wide variety of passenger vehicles. It is adjustable in complexity between the two extremes. The model is aligned to images by predicting and matching image intensity edges. Novel algorithms are presented for fitting models to multiple still images and simultaneous tracking while estimating shape in video. Experiments compare the proposed model to simple generic models in accuracy and reliability of 3D shape recovery from images and tracking in video. Standard techniques for classification are also used to compare the models. The proposed model outperforms the existing simple models at each task.
NASA Astrophysics Data System (ADS)
Hahn, M.; Andert, T.; Asmar, S.; Bird, M. K.; Häusler, B.; Peter, K.; Tellmann, S.; Weissman, P. R.; Barriot, J. P.; Sierks, H.
2017-12-01
When Rosetta arrived at its target comet 67P/Churyumov-Gerasimenko it first performed a series of distant flybys (100 - 30 km). During this mission phase the mass of the comets nucleus could be determined by analyzing the RSI radio tracking data. In combination with the volume from images of the OSIRIS camera this resulted in a precise bulk density determination. That already gave first insights into the comets interior structure. The nucleus appears to be a low-density, highly porous dusty body. From bound orbits with distances below 30 km the low degree and order gravity field coefficients could be derived. The gravity field coefficients strongly depend on the nucleus irregular shape and on the interior mass distribution. The shape is very well reconstructed from of the OSIRIS camera images. Various models of the interior nucleus structure and density distributions are used to compute simulated values of the gravity field coefficients. A comparison with the observed coefficients yields the feasibility of the theoretical interior structure. Thus, the gravity field helps constraining models of the internal structure, the composition and also of the origin and formation of the comets nucleus.
Modeling the Coupled Chemo-Thermo-Mechanical Behavior of Amorphous Polymer Networks.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zimmerman, Jonathan A.; Nguyen, Thao D.; Xiao, Rui
2015-02-01
Amorphous polymers exhibit a rich landscape of time-dependent behavior including viscoelasticity, structural relaxation, and viscoplasticity. These time-dependent mechanisms can be exploited to achieve shape-memory behavior, which allows the material to store a programmed deformed shape indefinitely and to recover entirely the undeformed shape in response to specific environmental stimulus. The shape-memory performance of amorphous polymers depends on the coordination of multiple physical mechanisms, and considerable opportunities exist to tailor the polymer structure and shape-memory programming procedure to achieve the desired performance. The goal of this project was to use a combination of theoretical, numerical and experimental methods to investigate themore » effect of shape memory programming, thermo-mechanical properties, and physical and environmental aging on the shape memory performance. Physical and environmental aging occurs during storage and through exposure to solvents, such as water, and can significantly alter the viscoelastic behavior and shape memory behavior of amorphous polymers. This project – executed primarily by Professor Thao Nguyen and Graduate Student Rui Xiao at Johns Hopkins University in support of a DOE/NNSA Presidential Early Career Award in Science and Engineering (PECASE) – developed a theoretical framework for chemothermo- mechanical behavior of amorphous polymers to model the effects of physical aging and solvent-induced environmental factors on their thermoviscoelastic behavior.« less
NASA Astrophysics Data System (ADS)
Du, Hui-Lin; Zhou, Zhao-Zhong; Sun, Ze-Qing; Ju, Bing-Feng; Xu, Shaoning; Sun, Anyu
2017-06-01
A new prototype non-contact profiler based on surface tracking has been specially developed. Surface tracking is carried out by a specially designed dual stage probe system with the aid of a four-Degree Of Freedom high-precision motion platform. The dual stage probe system keeps a short-range optical probe constantly tracking the surface by a self-developed voice coil motor servo, by which a wide measuring range of up to 10 mm is realized. The system performance evaluation including resolution, repeatability, and scanning speed proved the good capability of the new prototype non-contact profiler. To realize a full area covered 3D profile measurement of special-shaped optics within one scanning procedure, a signal intensity monitor integrated in the surface tracking controller is specially developed. In the experiment, a snip-single-corner-rectangular-shaped freeform surface was successfully measured over full area by the new non-contact profiler. This work provides an effective solution for 3D profile measurement of special-shaped optical surfaces over full reflecting area. Experimental results demonstrate that the proposed measuring system is of great significance in quality evaluation of optical surfaces.
Du, Hui-Lin; Zhou, Zhao-Zhong; Sun, Ze-Qing; Ju, Bing-Feng; Xu, Shaoning; Sun, Anyu
2017-06-01
A new prototype non-contact profiler based on surface tracking has been specially developed. Surface tracking is carried out by a specially designed dual stage probe system with the aid of a four-Degree Of Freedom high-precision motion platform. The dual stage probe system keeps a short-range optical probe constantly tracking the surface by a self-developed voice coil motor servo, by which a wide measuring range of up to 10 mm is realized. The system performance evaluation including resolution, repeatability, and scanning speed proved the good capability of the new prototype non-contact profiler. To realize a full area covered 3D profile measurement of special-shaped optics within one scanning procedure, a signal intensity monitor integrated in the surface tracking controller is specially developed. In the experiment, a snip-single-corner-rectangular-shaped freeform surface was successfully measured over full area by the new non-contact profiler. This work provides an effective solution for 3D profile measurement of special-shaped optical surfaces over full reflecting area. Experimental results demonstrate that the proposed measuring system is of great significance in quality evaluation of optical surfaces.
Track following of Ξ-hyperons in nuclear emulsion for the E07 experiment
NASA Astrophysics Data System (ADS)
Mishina, Akihiro; Nakazawa, Kazuma; Hoshino, Kaoru; Itonaga, Kazunori; Yoshida, Junya; Than Tint, Khin; Kyaw Soe, Myint; Kinbara, Shinji; Itoh, Hiroki; Endo, Yoko; Kobayashi, Hidetaka; Umehara, Kaori; Yokoyama, Hiroyuki; Nakashima, Daisuke; J-PARC E07 Collaboration
2014-09-01
Events of Double- Λ and Twin Single- Λ Hypernuclei are very important to understand Λ- Λ and Ξ--N interaction. We planned the E07 experiment to find Nuclear mass dependences of them with ten times higher statistics than before. In the experiment, the number of Ξ- hyperon stopping at rest is about ten thousands which is ten times larger than before. Such number of tracks for Ξ- hyperon candidates should be followed in nuclear emulsion plate up to their stopping point. To complete its job within one year, it is necessary for development of automated track following system. The important points for track following is Track connection in plate by plate. To carry out these points, we innovated image processing methods. Especially, we applied pattern match of K- beams for 2nd point. Position accuracy of this method was 1.4 +/-0.8 μm . If we succeed this application in about one minute for a track in each plate, all track following can be finished in one year.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaplan, C.R.; Shaddix, C.R.; Smyth, K.C.
This paper presents time-dependent numerical simulations of both steady and time-varying CH{sub 4}/air diffusion flames to examine the differences in combustion conditions which lead to the observed enhancement in soot production in the flickering flames. The numerical model solves the two-dimensional, time-dependent, reactive-flow Navier-Stokes equations coupled with submodels for soot formation and radiation transport. Qualitative comparisons between the experimental and computed steady flame show good agreement for the soot burnout height and overall flame shape except near the burner lip. Quantitative comparisons between experimental and computed radial profiles of temperature and soot volume fraction for the steady flame show goodmore » to excellent agreement at mid-flame heights, but some discrepancies near the burner lip and at high flame heights. For the time-varying CH{sub 4}/air flame, the simulations successfully predict that the maximum soot concentration increases by over four times compared to the steady flame with the same mean fuel and air velocities. By numerically tracking fluid parcels in the flowfield, the temperature and stoichiometry history were followed along their convective pathlines. Results for the pathline which passes through the maximum sooting region show that flickering flames exhibit much longer residence times during which the local temperatures and stoichiometries are favorable for soot production. The simulations also suggest that soot inception occurs later in flickering flames, and at slightly higher temperatures and under somewhat leaner conditions compared to the steady flame. The integrated soot model of Syed et al., which was developed from a steady CH{sub 4}/air flame, successfully predicts soot production in the time-varying CH{sub 4}/air flames.« less
Vision-based object detection and recognition system for intelligent vehicles
NASA Astrophysics Data System (ADS)
Ran, Bin; Liu, Henry X.; Martono, Wilfung
1999-01-01
Recently, a proactive crash mitigation system is proposed to enhance the crash avoidance and survivability of the Intelligent Vehicles. Accurate object detection and recognition system is a prerequisite for a proactive crash mitigation system, as system component deployment algorithms rely on accurate hazard detection, recognition, and tracking information. In this paper, we present a vision-based approach to detect and recognize vehicles and traffic signs, obtain their information, and track multiple objects by using a sequence of color images taken from a moving vehicle. The entire system consist of two sub-systems, the vehicle detection and recognition sub-system and traffic sign detection and recognition sub-system. Both of the sub- systems consist of four models: object detection model, object recognition model, object information model, and object tracking model. In order to detect potential objects on the road, several features of the objects are investigated, which include symmetrical shape and aspect ratio of a vehicle and color and shape information of the signs. A two-layer neural network is trained to recognize different types of vehicles and a parameterized traffic sign model is established in the process of recognizing a sign. Tracking is accomplished by combining the analysis of single image frame with the analysis of consecutive image frames. The analysis of the single image frame is performed every ten full-size images. The information model will obtain the information related to the object, such as time to collision for the object vehicle and relative distance from the traffic sings. Experimental results demonstrated a robust and accurate system in real time object detection and recognition over thousands of image frames.
Intelligent Paging Based Mobile User Tracking Using Fuzzy Logic
NASA Astrophysics Data System (ADS)
Saha, Sajal; Dutta, Raju; Debnath, Soumen; Mukhopadhyay, Asish K.
2010-11-01
In general, a mobile user travels in a predefined path that depends mostly on the user's characteristics. Thus, tracking the locations of a mobile user is one of the challenges for location management. In this paper, we introduce a movement pattern learning strategy system to track the user's movements using adaptive fuzzy logic. Our fuzzy inference system extracts patterns from the historical data record of the cell numbers along with the date and time stamp of the users occupying the cell. Implementation of this strategy has been evaluated with the real time user data which proves the efficiency and accuracy of the model. This mechanism not only reduces user location tracking costs, but also significantly decreases the call-loss rates and average paging delays.
Testing theoretical models of magnetic damping using an air track
NASA Astrophysics Data System (ADS)
Vidaurre, Ana; Riera, Jaime; Monsoriu, Juan A.; Giménez, Marcos H.
2008-03-01
Magnetic braking is a long-established application of Lenz's law. A rigorous analysis of the laws governing this problem involves solving Maxwell's equations in a time-dependent situation. Approximate models have been developed to describe different experimental results related to this phenomenon. In this paper we present a new method for the analysis of magnetic braking using a magnet fixed to the glider of an air track. The forces acting on the glider, a result of the eddy currents, can be easily observed and measured. As a consequence of the air track inclination, the glider accelerates at the beginning, although it asymptotically tends towards a uniform rectilinear movement characterized by a terminal speed. This speed depends on the interaction between the magnetic field and the conductivity properties of the air track. Compared with previous related approaches, in our experimental setup the magnet fixed to the glider produces a magnetic braking force which acts continuously, rather than over a short period of time. The experimental results satisfactorily concur with the theoretical models adapted to this configuration.
Shape and texture fused recognition of flying targets
NASA Astrophysics Data System (ADS)
Kovács, Levente; Utasi, Ákos; Kovács, Andrea; Szirányi, Tamás
2011-06-01
This paper presents visual detection and recognition of flying targets (e.g. planes, missiles) based on automatically extracted shape and object texture information, for application areas like alerting, recognition and tracking. Targets are extracted based on robust background modeling and a novel contour extraction approach, and object recognition is done by comparisons to shape and texture based query results on a previously gathered real life object dataset. Application areas involve passive defense scenarios, including automatic object detection and tracking with cheap commodity hardware components (CPU, camera and GPS).
NASA Astrophysics Data System (ADS)
Olivera, F.; Choi, J.; Socolofsky, S.
2006-12-01
Watershed responses to storm events are strongly affected by the spatial and temporal patterns of rainfall; that is, the spatial distribution of the precipitation intensity and its evolution over time. Although real storms are moving entities with non-uniform intensities in both space and time, hydrological applications often synthesize these attributes by assuming storms that are uniformly distributed and have variable intensity according to a pre-defined hyetograph shape. As one considers watersheds of greater size, the non-uniformity of rainfall becomes more important, because a storm may not cover the watershed's entire area and may not stay in the watershed for its full duration. In order to incorporate parameters such as storm area, propagation velocity and direction, and intensity distribution in the definition of synthetic storms, it is necessary to determine these storm characteristics from spatially distributed precipitation data. To date, most algorithms for identifying and tracking storms have been applied to short time-step radar reflectivity data (i.e., 15 minutes or less), where storm features are captured in an effectively synoptic manner. For the entire United States, however, the most reliable distributed precipitation data are the one-hour accumulated 4 km × 4 km gridded NEXRAD data of the U.S. National Weather Service (NWS) (NWS 2005. The one-hour aggregation level of the data, though, makes it more difficult to identify and track storms than when using sequences of synoptic radar reflectivity data, because storms can traverse over a number of NEXRAD cells and change size and shape appreciably between consecutive data maps. In this paper, we present a methodology to overcome the identification and tracking difficulties and to extract the characteristics of moving storms (e.g. size, propagation velocity and direction, and intensity distribution) from one-hour accumulated distributed rainfall data. The algorithm uses Gaussian Mixture Models (GMM) for storm identification and image processing for storm tracking. The method has been successfully applied to Brazos County in Texas using the 2003 Multi-sensor Precipitation Estimator (MPE) NEXRAD rainfall data.
Experiments on shape perception in stereoscopic displays
NASA Astrophysics Data System (ADS)
Leroy, Laure; Fuchs, Philippe; Paljic, Alexis; Moreau, Guillaume
2009-02-01
Stereoscopic displays are increasingly used for computer-aided design. The aim is to make virtual prototypes to avoid building real ones, so that time, money and raw materials are saved. But do we really know whether virtual displays render the objects in a realistic way to potential users? In this study, we have performed several experiments in which we compare two virtual shapes to their equivalent in the real world, each of these aiming at a specific issue by a comparison: First, we performed some perception tests to evaluate the importance of head tracking to evaluate if it is better to concentrate our efforts on stereoscopic vision; Second, we have studied the effects of interpupillary distance; Third, we studied the effects of the position of the main object in comparison with the screen. Two different tests are used, the first one using a well-known shape (a sphere) and the second one using an irregular shape but with almost the same colour and dimension. These two tests allow us to determine if symmetry is important in their perception. We show that head tracking has a more important effect on shape perception than stereoscopic vision, especially on depth perception because the subject is able to move around the scene. The study also shows that an object between the subject and the screen is perceived better than an object which is on the screen, even if the latter is better for the eye strain.
Shape memory polymer sensors for tracking cumulative environmental exposure
NASA Astrophysics Data System (ADS)
Snyder, Ryan; Rauscher, Michael; Vining, Ben; Havens, Ernie; Havens, Teresa; McFerran, Jace
2010-04-01
Cornerstone Research Group Inc. (CRG) has developed environmental exposure tracking (EET) sensors using shape memory polymers (SMP) to monitor the degradation of perishable items, such as munitions, foods and beverages, or medicines, by measuring the cumulative exposure to temperature and moisture. SMPs are polymers whose qualities have been altered to give them dynamic shape "memory" properties. Under thermal or moisture stimuli, the SMP exhibits a radical change from a rigid thermoset to a highly flexible, elastomeric state. The dynamic response of the SMP can be tailored to match the degradation profile of the perishable item. SMP-based EET sensors require no digital memory or internal power supply and provide the capability of inexpensive, long-term life cycle monitoring of thermal and moisture exposure over time. This technology was developed through Phase I and Phase II SBIR efforts with the Navy. The emphasis of current research centers on transitioning SMP materials from the lab bench to a production environment. Here, CRG presents the commercialization progress of thermally-activated EET sensors, focusing on fabrication scale-up, process refinements, and quality control. In addition, progress on the development of vapor pressure-responsive SMP (VPR-SMP) will be discussed.
Waterjet and laser etching: the nonlinear inverse problem
NASA Astrophysics Data System (ADS)
Bilbao-Guillerna, A.; Axinte, D. A.; Billingham, J.; Cadot, G. B. J.
2017-07-01
In waterjet and laser milling, material is removed from a solid surface in a succession of layers to create a new shape, in a depth-controlled manner. The inverse problem consists of defining the control parameters, in particular, the two-dimensional beam path, to arrive at a prescribed freeform surface. Waterjet milling (WJM) and pulsed laser ablation (PLA) are studied in this paper, since a generic nonlinear material removal model is appropriate for both of these processes. The inverse problem is usually solved for this kind of process by simply controlling dwell time in proportion to the required depth of milling at a sequence of pixels on the surface. However, this approach is only valid when shallow surfaces are etched, since it does not take into account either the footprint of the beam or its overlapping on successive passes. A discrete adjoint algorithm is proposed in this paper to improve the solution. Nonlinear effects and non-straight passes are included in the optimization, while the calculation of the Jacobian matrix does not require large computation times. Several tests are performed to validate the proposed method and the results show that tracking error is reduced typically by a factor of two in comparison to the pixel-by-pixel approach and the classical raster path strategy with straight passes. The tracking error can be as low as 2-5% and 1-2% for WJM and PLA, respectively, depending on the complexity of the target surface.
NASA Technical Reports Server (NTRS)
Ponomarev, Artem L.; George, K.; Cucinotta, F. A.
2011-01-01
New experimental data show how chromosomal aberrations for low- and high-LET radiation are dependent on DSB repair deficiencies in wild-type, AT and NBS cells. We simulated the development of chromosomal aberrations in these cells lines in a stochastic track-structure-dependent model, in which different cells have different kinetics of DSB repair. We updated a previously formulated model of chromosomal aberrations, which was based on a stochastic Monte Carlo approach, to consider the time-dependence of DSB rejoining. The previous version of the model had an assumption that all DSBs would rejoin, and therefore we called it a time-independent model. The chromosomal-aberrations model takes into account the DNA and track structure for low- and high-LET radiations, and provides an explanation and prediction of the statistics of rare and more complex aberrations. We compared the program-simulated kinetics of DSB rejoining to the experimentally-derived bimodal exponential curves of the DSB kinetics. We scored the formation of translocations, dicentrics, acentric and centric rings, deletions, and inversions. The fraction of DSBs participating in aberrations was studied in relation to the rejoining time. Comparisons of simulated dose dependence for simple aberrations to the experimental dose-dependence for HF19, AT and NBS cells will be made.
Lipinski, Doug; Mohseni, Kamran
2010-03-01
A ridge tracking algorithm for the computation and extraction of Lagrangian coherent structures (LCS) is developed. This algorithm takes advantage of the spatial coherence of LCS by tracking the ridges which form LCS to avoid unnecessary computations away from the ridges. We also make use of the temporal coherence of LCS by approximating the time dependent motion of the LCS with passive tracer particles. To justify this approximation, we provide an estimate of the difference between the motion of the LCS and that of tracer particles which begin on the LCS. In addition to the speedup in computational time, the ridge tracking algorithm uses less memory and results in smaller output files than the standard LCS algorithm. Finally, we apply our ridge tracking algorithm to two test cases, an analytically defined double gyre as well as the more complicated example of the numerical simulation of a swimming jellyfish. In our test cases, we find up to a 35 times speedup when compared with the standard LCS algorithm.
Real-Time 3D Tracking and Reconstruction on Mobile Phones.
Prisacariu, Victor Adrian; Kähler, Olaf; Murray, David W; Reid, Ian D
2015-05-01
We present a novel framework for jointly tracking a camera in 3D and reconstructing the 3D model of an observed object. Due to the region based approach, our formulation can handle untextured objects, partial occlusions, motion blur, dynamic backgrounds and imperfect lighting. Our formulation also allows for a very efficient implementation which achieves real-time performance on a mobile phone, by running the pose estimation and the shape optimisation in parallel. We use a level set based pose estimation but completely avoid the, typically required, explicit computation of a global distance. This leads to tracking rates of more than 100 Hz on a desktop PC and 30 Hz on a mobile phone. Further, we incorporate additional orientation information from the phone's inertial sensor which helps us resolve the tracking ambiguities inherent to region based formulations. The reconstruction step first probabilistically integrates 2D image statistics from selected keyframes into a 3D volume, and then imposes coherency and compactness using a total variational regularisation term. The global optimum of the overall energy function is found using a continuous max-flow algorithm and we show that, similar to tracking, the integration of per voxel posteriors instead of likelihoods improves the precision and accuracy of the reconstruction.
Specific contributions of basal ganglia and cerebellum to the neural tracking of rhythm.
Nozaradan, Sylvie; Schwartze, Michael; Obermeier, Christian; Kotz, Sonja A
2017-10-01
How specific brain networks track rhythmic sensory input over time remains a challenge in neuroimaging work. Here we show that subcortical areas, namely the basal ganglia and the cerebellum, specifically contribute to the neural tracking of rhythm. We tested patients with focal lesions in either of these areas and healthy controls by means of electroencephalography (EEG) while they listened to rhythmic sequences known to induce selective neural tracking at a frequency corresponding to the most-often perceived pulse-like beat. Both patients and controls displayed neural responses to the rhythmic sequences. However, these response patterns were different across groups, with patients showing reduced tracking at beat frequency, especially for the more challenging rhythms. In the cerebellar patients, this effect was specific to the rhythm played at a fast tempo, which places high demands on the temporally precise encoding of events. In contrast, basal ganglia patients showed more heterogeneous responses at beat frequency specifically for the most complex rhythm, which requires more internal generation of the beat. These findings provide electrophysiological evidence that these subcortical structures selectively shape the neural representation of rhythm. Moreover, they suggest that the processing of rhythmic auditory input relies on an extended cortico-subcortico-cortical functional network providing specific timing and entrainment sensitivities. Copyright © 2017 Elsevier Ltd. All rights reserved.
Simultaneous Detection and Tracking of Pedestrian from Panoramic Laser Scanning Data
NASA Astrophysics Data System (ADS)
Xiao, Wen; Vallet, Bruno; Schindler, Konrad; Paparoditis, Nicolas
2016-06-01
Pedestrian traffic flow estimation is essential for public place design and construction planning. Traditional data collection by human investigation is tedious, inefficient and expensive. Panoramic laser scanners, e.g. Velodyne HDL-64E, which scan surroundings repetitively at a high frequency, have been increasingly used for 3D object tracking. In this paper, a simultaneous detection and tracking (SDAT) method is proposed for precise and automatic pedestrian trajectory recovery. First, the dynamic environment is detected using two different methods, Nearest-point and Max-distance. Then, all the points on moving objects are transferred into a space-time (x, y, t) coordinate system. The pedestrian detection and tracking amounts to assign the points belonging to pedestrians into continuous trajectories in space-time. We formulate the point assignment task as an energy function which incorporates the point evidence, trajectory number, pedestrian shape and motion. A low energy trajectory will well explain the point observations, and have plausible trajectory trend and length. The method inherently filters out points from other moving objects and false detections. The energy function is solved by a two-step optimization process: tracklet detection in a short temporal window; and global tracklet association through the whole time span. Results demonstrate that the proposed method can automatically recover the pedestrians trajectories with accurate positions and low false detections and mismatches.
NASA Astrophysics Data System (ADS)
Van Zandt, James R.
2012-05-01
Steady-state performance of a tracking filter is traditionally evaluated immediately after a track update. However, there is commonly a further delay (e.g., processing and communications latency) before the tracks can actually be used. We analyze the accuracy of extrapolated target tracks for four tracking filters: Kalman filter with the Singer maneuver model and worst-case correlation time, with piecewise constant white acceleration, and with continuous white acceleration, and the reduced state filter proposed by Mookerjee and Reifler.1, 2 Performance evaluation of a tracking filter is significantly simplified by appropriate normalization. For the Kalman filter with the Singer maneuver model, the steady-state RMS error immediately after an update depends on only two dimensionless parameters.3 By assuming a worst case value of target acceleration correlation time, we reduce this to a single parameter without significantly changing the filter performance (within a few percent for air tracking).4 With this simplification, we find for all four filters that the RMS errors for the extrapolated state are functions of only two dimensionless parameters. We provide simple analytic approximations in each case.
Micro-Optical Distributed Sensors for Aero Propulsion Applications
NASA Astrophysics Data System (ADS)
Arnold, S.; Otugen, V.
2003-01-01
The objective of this research is to develop micro-opto-mechanical system (MOMS)-based sensors for time- and space-resolved measurements of flow properties in aerodynamics applications. The measurement technique we propose uses optical resonances in dielectric micro-spheres that can be excited by radiation tunneling from optical fibers. It exploits the tunneling-induced and morphology-dependent shifts in the resonant frequencies. The shift in the resonant frequency is dependent on the size, shape, and index of refraction of the micro-sphere. A physical change in the environment surrounding a micro-bead can change one or more of these properties of the sphere thereby causing a shift in frequency of resonance. The change of the resonance frequency can be detected with high resolution by scanning a frequency-tunable laser that is coupled into the fiber and observing the transmission spectrum at the output of the fiber. It is expected that, in the future, the measurement concept will lead to a system of distributed micro-sensors providing spatial data resolved in time and space. The present project focuses on the development and demonstration of temperature sensors using the morphology-dependent optical resonances although in the latter part of the work, we will also develop a pressure sensor. During the period covered in this report, the optical and electronic equipment necessary for the experimental work was assembled and the experimental setup was designed for the single sensor temperature measurements. Software was developed for real-time tracking of the optical resonance shifts. Some preliminary experiments were also carried out to detect temperature using a single bead in a water bath.
Micro-optical Distributed Sensors for Aero Propulsion Applications
NASA Technical Reports Server (NTRS)
Arnold, S.; Otugen, V.; Seasholtz, Richard G. (Technical Monitor)
2003-01-01
The objective of this research is to develop micro-opto-mechanical system (MOMS)-based sensors for time- and space-resolved measurements of flow properties in aerodynamics applications. The measurement technique we propose uses optical resonances in dielectric micro-spheres that can be excited by radiation tunneling from optical fibers. It exploits the tunneling-induced and morphology-dependent shifts in the resonant frequencies. The shift in the resonant frequency is dependent on the size, shape, and index of refraction of the micro-sphere. A physical change in the environment surrounding a micro-bead can change one or more of these properties of the sphere thereby causing a shift in frequency of resonance. The change of the resonance frequency can be detected with high resolution by scanning a frequency-tunable laser that is coupled into the fiber and observing the transmission spectrum at the output of the fiber. It is expected that, in the future, the measurement concept will lead to a system of distributed micro-sensors providing spatial data resolved in time and space. The present project focuses on the development and demonstration of temperature sensors using the morphology-dependent optical resonances although in the latter part of the work, we will also develop a pressure sensor. During the period covered in this report, the optical and electronic equipment necessary for the experimental work was assembled and the experimental setup was designed for the single sensor temperature measurements. Software was developed for real-time tracking of the optical resonance shifts. Some preliminary experiments were also carried out to detect temperature using a single bead in a water bath.
FAST TRACK COMMUNICATION Time-dependent exact solutions of the nonlinear Kompaneets equation
NASA Astrophysics Data System (ADS)
Ibragimov, N. H.
2010-12-01
Time-dependent exact solutions of the Kompaneets photon diffusion equation are obtained for several approximations of this equation. One of the approximations describes the case when the induced scattering is dominant. In this case, the Kompaneets equation has an additional symmetry which is used for constructing some exact solutions as group invariant solutions.
Transmembrane protein CD93 diffuses by a continuous time random walk.
NASA Astrophysics Data System (ADS)
Goiko, Maria; de Bruyn, John; Heit, Bryan
Molecular motion within the cell membrane is a poorly-defined process. In this study, we characterized the diffusion of the transmembrane protein CD93. By careful analysis of the dependence of the ensemble-averaged mean squared displacement (EA-MSD, r2) on time t and the ensemble-averaged, time-averaged MSD (EA-TAMSD, δ2) on lag time τ and total measurement time T, we showed that the motion of CD93 is well-described by a continuous-time random walk (CTRW). CD93 tracks were acquired using single particle tracking. The tracks were classified as confined or free, and the behavior of the MSD analyzed. EA-MSDs of both populations grew non-linearly with t, indicative of anomalous diffusion. Their EA-TAMSDs were found to depend on both τ and T, indicating non-ergodicity. Free molecules had r2 tα and δ2 (τ /T 1 - α) , with α 0 . 5 , consistent with a CTRW. Mean maximal excursion analysis supported this result. Confined CD93 had r2 t0 and δ2 (τ / T) α , with α 0 . 3 , consistent with a confined CTRW. CTRWs are described by a series of random jumps interspersed with power-law distributed waiting times, and may arise due to the interactions of CD93 with the endocytic machinery. NSERC.
Real-Time Three-Dimensional Cell Segmentation in Large-Scale Microscopy Data of Developing Embryos.
Stegmaier, Johannes; Amat, Fernando; Lemon, William C; McDole, Katie; Wan, Yinan; Teodoro, George; Mikut, Ralf; Keller, Philipp J
2016-01-25
We present the Real-time Accurate Cell-shape Extractor (RACE), a high-throughput image analysis framework for automated three-dimensional cell segmentation in large-scale images. RACE is 55-330 times faster and 2-5 times more accurate than state-of-the-art methods. We demonstrate the generality of RACE by extracting cell-shape information from entire Drosophila, zebrafish, and mouse embryos imaged with confocal and light-sheet microscopes. Using RACE, we automatically reconstructed cellular-resolution tissue anisotropy maps across developing Drosophila embryos and quantified differences in cell-shape dynamics in wild-type and mutant embryos. We furthermore integrated RACE with our framework for automated cell lineaging and performed joint segmentation and cell tracking in entire Drosophila embryos. RACE processed these terabyte-sized datasets on a single computer within 1.4 days. RACE is easy to use, as it requires adjustment of only three parameters, takes full advantage of state-of-the-art multi-core processors and graphics cards, and is available as open-source software for Windows, Linux, and Mac OS. Copyright © 2016 Elsevier Inc. All rights reserved.
USDA-ARS?s Scientific Manuscript database
The bovine species have witnessed and played a major role in the drastic socio-economical changes that shaped our culture over the last 10,000 years. During this journey, cattle “hitchhiked” on human development and colonized the world, facing strong selective pressures such as dramatic environmenta...
NASA Astrophysics Data System (ADS)
Wang, Ji-Bo; Wang, Ming-Zheng; Ji, Ping
2012-05-01
In this article, we consider a single machine scheduling problem with a time-dependent learning effect and deteriorating jobs. By the effects of time-dependent learning and deterioration, we mean that the job processing time is defined by a function of its starting time and total normal processing time of jobs in front of it in the sequence. The objective is to determine an optimal schedule so as to minimize the total completion time. This problem remains open for the case of -1 < a < 0, where a denotes the learning index; we show that an optimal schedule of the problem is V-shaped with respect to job normal processing times. Three heuristic algorithms utilising the V-shaped property are proposed, and computational experiments show that the last heuristic algorithm performs effectively and efficiently in obtaining near-optimal solutions.
A comparative study on the motion of various objects inside an air tunnel
NASA Astrophysics Data System (ADS)
Shibani, Wanis Mustafa E.; Zulkafli, Mohd Fadhli; Basunoand, Bambang
2017-04-01
This paper presents a comparative study of the movement of various rigid bodies through an air tunnel for both two and three-dimensional flow problems. Three kinds of objects under investigation are in the form of box, ball and wedge shape. The investigation was carried out through the use of a commercial CFD software, named Fluent, in order to determine aerodynamic forces, act on the object as well as to track its movement. Adopted numerical scheme is the time-averaged Navier-Stokes equation with k - ɛ as its turbulence modeling and the scheme was solved using the SIMPLE algorithm. Triangular elements grid was used in 2D case, while tetrahedron elements for 3D case. Grid independence studies were performed for each problem from a coarse to fine grid. The motion of an object is restricted in one direction only and is found by tracking its center of mass at every time step. The result indicates the movement of the object is increasing as the flow moves down stream and the box have the fastest speed compare to the other two shapes for both 2D and 3D cases.
NASA Technical Reports Server (NTRS)
Harris, H. M.; Bergam, M. J.; Kim, S. L.; Smith, E. A.
1987-01-01
Shuttle Mission Design and Operations Software (SMDOS) assists in design and operation of missions involving spacecraft in low orbits around Earth by providing orbital and graphics information. SMDOS performs following five functions: display two world and two polar maps or any user-defined window 5 degrees high in latitude by 5 degrees wide in longitude in one of eight standard projections; designate Earth sites by points or polygon shapes; plot spacecraft ground track with 1-min demarcation lines; display, by means of different colors, availability of Tracking and Data Relay Satellite to Shuttle; and calculate available times and orbits to view particular site, and corresponding look angles. SMDOS written in Laboratory Micro-systems FORTH (1979 standard)
Super-resolution imaging applied to moving object tracking
NASA Astrophysics Data System (ADS)
Swalaganata, Galandaru; Ratna Sulistyaningrum, Dwi; Setiyono, Budi
2017-10-01
Moving object tracking in a video is a method used to detect and analyze changes that occur in an object that being observed. Visual quality and the precision of the tracked target are highly wished in modern tracking system. The fact that the tracked object does not always seem clear causes the tracking result less precise. The reasons are low quality video, system noise, small object, and other factors. In order to improve the precision of the tracked object especially for small object, we propose a two step solution that integrates a super-resolution technique into tracking approach. First step is super-resolution imaging applied into frame sequences. This step was done by cropping the frame in several frame or all of frame. Second step is tracking the result of super-resolution images. Super-resolution image is a technique to obtain high-resolution images from low-resolution images. In this research single frame super-resolution technique is proposed for tracking approach. Single frame super-resolution was a kind of super-resolution that it has the advantage of fast computation time. The method used for tracking is Camshift. The advantages of Camshift was simple calculation based on HSV color that use its histogram for some condition and color of the object varies. The computational complexity and large memory requirements required for the implementation of super-resolution and tracking were reduced and the precision of the tracked target was good. Experiment showed that integrate a super-resolution imaging into tracking technique can track the object precisely with various background, shape changes of the object, and in a good light conditions.
On-Line Tracking Controller for Brushless DC Motor Drives Using Artificial Neural Networks
NASA Technical Reports Server (NTRS)
Rubaai, Ahmed
1996-01-01
A real-time control architecture is developed for time-varying nonlinear brushless dc motors operating in a high performance drives environment. The developed control architecture possesses the capabilities of simultaneous on-line identification and control. The dynamics of the motor are modeled on-line and controlled using an artificial neural network, as the system runs. The control architecture combines the experience and dependability of adaptive tracking systems with potential and promise of the neural computing technology. The sensitivity of real-time controller to parametric changes that occur during training is investigated. Such changes are usually manifested by rapid changes in the load of the brushless motor drives. This sudden change in the external load is simulated for the sigmoidal and sinusoidal reference tracks. The ability of the neuro-controller to maintain reasonable tracking accuracy in the presence of external noise is also verified for a number of desired reference trajectories.
A comparison of gantry-mounted x-ray-based real-time target tracking methods.
Montanaro, Tim; Nguyen, Doan Trang; Keall, Paul J; Booth, Jeremy; Caillet, Vincent; Eade, Thomas; Haddad, Carol; Shieh, Chun-Chien
2018-03-01
Most modern radiotherapy machines are built with a 2D kV imaging system. Combining this imaging system with a 2D-3D inference method would allow for a ready-made option for real-time 3D tumor tracking. This work investigates and compares the accuracy of four existing 2D-3D inference methods using both motion traces inferred from external surrogates and measured internally from implanted beacons. Tumor motion data from 160 fractions (46 thoracic/abdominal patients) of Synchrony traces (inferred traces), and 28 fractions (7 lung patients) of Calypso traces (internal traces) from the LIGHT SABR trial (NCT02514512) were used in this study. The motion traces were used as the ground truth. The ground truth trajectories were used in silico to generate 2D positions projected on the kV detector. These 2D traces were then passed to the 2D-3D inference methods: interdimensional correlation, Gaussian probability density function (PDF), arbitrary-shape PDF, and the Kalman filter. The inferred 3D positions were compared with the ground truth to determine tracking errors. The relationships between tracking error and motion magnitude, interdimensional correlation, and breathing periodicity index (BPI) were also investigated. Larger tracking errors were observed from the Calypso traces, with RMS and 95th percentile 3D errors of 0.84-1.25 mm and 1.72-2.64 mm, compared to 0.45-0.68 mm and 0.74-1.13 mm from the Synchrony traces. The Gaussian PDF method was found to be the most accurate, followed by the Kalman filter, the interdimensional correlation method, and the arbitrary-shape PDF method. Tracking error was found to strongly and positively correlate with motion magnitude for both the Synchrony and Calypso traces and for all four methods. Interdimensional correlation and BPI were found to negatively correlate with tracking error only for the Synchrony traces. The Synchrony traces exhibited higher interdimensional correlation than the Calypso traces especially in the anterior-posterior direction. Inferred traces often exhibit higher interdimensional correlation, which are not true representation of thoracic/abdominal motion and may underestimate kV-based tracking errors. The use of internal traces acquired from systems such as Calypso is advised for future kV-based tracking studies. The Gaussian PDF method is the most accurate 2D-3D inference method for tracking thoracic/abdominal targets. Motion magnitude has significant impact on 2D-3D inference error, and should be considered when estimating kV-based tracking error. © 2018 American Association of Physicists in Medicine.
Modeling human tracking error in several different anti-tank systems
NASA Technical Reports Server (NTRS)
Kleinman, D. L.
1981-01-01
An optimal control model for generating time histories of human tracking errors in antitank systems is outlined. Monte Carlo simulations of human operator responses for three Army antitank systems are compared. System/manipulator dependent data comparisons reflecting human operator limitations in perceiving displayed quantities and executing intended control motions are presented. Motor noise parameters are also discussed.
Learning shapes the aversion and reward responses of lateral habenula neurons
Wang, Daqing; Li, Yi; Feng, Qiru; Guo, Qingchun; Zhou, Jingfeng; Luo, Minmin
2017-01-01
The lateral habenula (LHb) is believed to encode negative motivational values. It remains unknown how LHb neurons respond to various stressors and how learning shapes their responses. Here, we used fiber-photometry and electrophysiology to track LHb neuronal activity in freely-behaving mice. Bitterness, pain, and social attack by aggressors intensively excite LHb neurons. Aversive Pavlovian conditioning induced activation by the aversion-predicting cue in a few trials. The experience of social defeat also conditioned excitatory responses to previously neutral social stimuli. In contrast, fiber photometry and single-unit recordings revealed that sucrose reward inhibited LHb neurons and often produced excitatory rebound. It required prolonged conditioning and high reward probability to induce inhibition by reward-predicting cues. Therefore, LHb neurons can bidirectionally process a diverse array of aversive and reward signals. Importantly, their responses are dynamically shaped by learning, suggesting that the LHb participates in experience-dependent selection of behavioral responses to stressors and rewards. DOI: http://dx.doi.org/10.7554/eLife.23045.001 PMID:28561735
DOE Office of Scientific and Technical Information (OSTI.GOV)
J Zwan, B; Central Coast Cancer Centre, Gosford, NSW; Colvill, E
2016-06-15
Purpose: The added complexity of the real-time adaptive multi-leaf collimator (MLC) tracking increases the likelihood of undetected MLC delivery errors. In this work we develop and test a system for real-time delivery verification and error detection for MLC tracking radiotherapy using an electronic portal imaging device (EPID). Methods: The delivery verification system relies on acquisition and real-time analysis of transit EPID image frames acquired at 8.41 fps. In-house software was developed to extract the MLC positions from each image frame. Three comparison metrics were used to verify the MLC positions in real-time: (1) field size, (2) field location and, (3)more » field shape. The delivery verification system was tested for 8 VMAT MLC tracking deliveries (4 prostate and 4 lung) where real patient target motion was reproduced using a Hexamotion motion stage and a Calypso system. Sensitivity and detection delay was quantified for various types of MLC and system errors. Results: For both the prostate and lung test deliveries the MLC-defined field size was measured with an accuracy of 1.25 cm{sup 2} (1 SD). The field location was measured with an accuracy of 0.6 mm and 0.8 mm (1 SD) for lung and prostate respectively. Field location errors (i.e. tracking in wrong direction) with a magnitude of 3 mm were detected within 0.4 s of occurrence in the X direction and 0.8 s in the Y direction. Systematic MLC gap errors were detected as small as 3 mm. The method was not found to be sensitive to random MLC errors and individual MLC calibration errors up to 5 mm. Conclusion: EPID imaging may be used for independent real-time verification of MLC trajectories during MLC tracking deliveries. Thresholds have been determined for error detection and the system has been shown to be sensitive to a range of delivery errors.« less
Surface adsorption and hopping cause probe-size-dependent microrheology of actin networks
NASA Astrophysics Data System (ADS)
He, Jun; Tang, Jay X.
2011-04-01
A network of filaments formed primarily by the abundant cytoskeletal protein actin gives animal cells their shape and elasticity. The rheological properties of reconstituted actin networks have been studied by tracking micron-sized probe beads embedded within the networks. We investigate how microrheology depends on surface properties of probe particles by varying the stickiness of their surface. For this purpose, we chose carboxylate polystyrene (PS) beads, silica beads, bovine serum albumin (BSA) -coated PS beads, and polyethylene glycol (PEG) -grafted PS beads, which show descending stickiness to actin filaments, characterized by confocal imaging and microrheology. Probe size dependence of microrheology is observed for all four types of beads. For the slippery PEG beads, particle-tracking microrheology detects weaker networks using smaller beads, which tend to diffuse through the network by hopping from one confinement “cage” to another. This trend is reversed for the other three types of beads, for which microrheology measures stiffer networks for smaller beads due to physisorption of nearby filaments to the bead surface. We explain the probe size dependence with two simple models. We also evaluate depletion effect near nonadsorption bead surface using quantitative image analysis and discuss the possible impact of depletion on microrheology. Analysis of these effects is necessary in order to accurately define the actin network rheology both in vitro and in vivo.
Development of a new time domain-based algorithm for train detection and axle counting
NASA Astrophysics Data System (ADS)
Allotta, B.; D'Adamio, P.; Meli, E.; Pugi, L.
2015-12-01
This paper presents an innovative train detection algorithm, able to perform the train localisation and, at the same time, to estimate its speed, the crossing times on a fixed point of the track and the axle number. The proposed solution uses the same approach to evaluate all these quantities, starting from the knowledge of generic track inputs directly measured on the track (for example, the vertical forces on the sleepers, the rail deformation and the rail stress). More particularly, all the inputs are processed through cross-correlation operations to extract the required information in terms of speed, crossing time instants and axle counter. This approach has the advantage to be simple and less invasive than the standard ones (it requires less equipment) and represents a more reliable and robust solution against numerical noise because it exploits the whole shape of the input signal and not only the peak values. A suitable and accurate multibody model of railway vehicle and flexible track has also been developed by the authors to test the algorithm when experimental data are not available and in general, under any operating conditions (fundamental to verify the algorithm accuracy and robustness). The railway vehicle chosen as benchmark is the Manchester Wagon, modelled in the Adams VI-Rail environment. The physical model of the flexible track has been implemented in the Matlab and Comsol Multiphysics environments. A simulation campaign has been performed to verify the performance and the robustness of the proposed algorithm, and the results are quite promising. The research has been carried out in cooperation with Ansaldo STS and ECM Spa.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borot de Battisti, M; Maenhout, M; Lagendijk, J J W
Purpose: This study assesses the potential of Fiber Bragg Grating (FBG)-based sensing for real-time needle (including catheter or tube) tracking during MR-guided HDR brachytherapy. Methods: The proposed FBG-based sensing tracking approach involves a MR-compatible stylet composed of three optic fibers with nine sets of embedded FBG sensors each. When the stylet is inserted inside the lumen of the needle, the FBG sensing system can measure the needle’s deflection. For localization of the needle in physical space, the position and orientation of the stylet base are mandatory. For this purpose, we propose to fix the stylet base and determine its positionmore » and orientation using a MR-based calibration as follows. First, the deflection of a needle inserted in a phantom in two different configurations is measured during simultaneous MR-imaging. Then, after segmentation of the needle shapes on the MR-images, the position and orientation of the stylet base is determined using a rigid registration of the needle shapes on both MR and FBG-based measurements. The calibration method was assessed by measuring the deflection of a needle in a prostate phantom in five different configurations using FBG-based sensing during simultaneous MR-imaging. Any two needle shapes were employed for the calibration step and the proposed FGB-tracking approach was subsequently evaluated on the other three needles configurations. The tracking accuracy was evaluated by computing the Euclidian distance between the 3D FBG vs. MR-based measurements. Results: Over all needle shapes tested, the average(standard deviation) Euclidian distance between the FBG and MR-based measurements was 0.79mm(0.37mm). The update rate and latency of the FBG-based measurements were 100ms and 300ms respectively. Conclusion: The proposed FBG-based protocol can measure the needle position with an accuracy, precision, update rate and latency eligible for accurate needle steering during MR-guided HDR brachytherapy. M. Borot de Battisti is funded by Philips Medical Systems Nederland B.V.; M. Moerland is principal investigator on a contract funded by Philips Medical Systems Nederland B.V.; G. Hautvast and D. Binnekamp are fulltime employees of Philips Medical Systems Nederland B.V.« less
NASA Astrophysics Data System (ADS)
Mefleh, Fuad N.; Baker, G. Hamilton; Kwartowitz, David M.
2014-03-01
In our previous work we presented a novel image-guided surgery (IGS) system, Kit for Navigation by Image Focused Exploration (KNIFE).1,2 KNIFE has been demonstrated to be effective in guiding mock clinical procedures with the tip of an electromagnetically tracked catheter overlaid onto a pre-captured bi-plane fluoroscopic loop. Representation of the catheter in KNIFE differs greatly from what is captured by the fluoroscope, due to distortions and other properties of fluoroscopic images. When imaged by a fluoroscope, catheters can be visualized due to the inclusion of radiopaque materials (i.e. Bi, Ba, W) in the polymer blend.3 However, in KNIFE catheter location is determined using a single tracking seed located in the catheter tip that is represented as a single point overlaid on pre-captured fluoroscopic images. To bridge the gap in catheter representation between KNIFE and traditional methods we constructed a catheter with five tracking seeds positioned along the distal 70 mm of the catheter. We have currently investigated the use of four spline interpolation methods for estimation of true catheter shape and have assesed the error in their estimation of true catheter shape. In this work we present a method for the evaluation of interpolation algorithms with respect to catheter shape determination.
Sampathkumar, Arun; Gutierrez, Ryan; McFarlane, Heather E; Bringmann, Martin; Lindeboom, Jelmer; Emons, Anne-Mie; Samuels, Lacey; Ketelaar, Tijs; Ehrhardt, David W; Persson, Staffan
2013-06-01
The actin and microtubule cytoskeletons regulate cell shape across phyla, from bacteria to metazoans. In organisms with cell walls, the wall acts as a primary constraint of shape, and generation of specific cell shape depends on cytoskeletal organization for wall deposition and/or cell expansion. In higher plants, cortical microtubules help to organize cell wall construction by positioning the delivery of cellulose synthase (CesA) complexes and guiding their trajectories to orient newly synthesized cellulose microfibrils. The actin cytoskeleton is required for normal distribution of CesAs to the plasma membrane, but more specific roles for actin in cell wall assembly and organization remain largely elusive. We show that the actin cytoskeleton functions to regulate the CesA delivery rate to, and lifetime of CesAs at, the plasma membrane, which affects cellulose production. Furthermore, quantitative image analyses revealed that actin organization affects CesA tracking behavior at the plasma membrane and that small CesA compartments were associated with the actin cytoskeleton. By contrast, localized insertion of CesAs adjacent to cortical microtubules was not affected by the actin organization. Hence, both actin and microtubule cytoskeletons play important roles in regulating CesA trafficking, cellulose deposition, and organization of cell wall biogenesis.
Advanced in Visualization of 3D Time-Dependent CFD Solutions
NASA Technical Reports Server (NTRS)
Lane, David A.; Lasinski, T. A. (Technical Monitor)
1995-01-01
Numerical simulations of complex 3D time-dependent (unsteady) flows are becoming increasingly feasible because of the progress in computing systems. Unfortunately, many existing flow visualization systems were developed for time-independent (steady) solutions and do not adequately depict solutions from unsteady flow simulations. Furthermore, most systems only handle one time step of the solutions individually and do not consider the time-dependent nature of the solutions. For example, instantaneous streamlines are computed by tracking the particles using one time step of the solution. However, for streaklines and timelines, particles need to be tracked through all time steps. Streaklines can reveal quite different information about the flow than those revealed by instantaneous streamlines. Comparisons of instantaneous streamlines with dynamic streaklines are shown. For a complex 3D flow simulation, it is common to generate a grid system with several millions of grid points and to have tens of thousands of time steps. The disk requirement for storing the flow data can easily be tens of gigabytes. Visualizing solutions of this magnitude is a challenging problem with today's computer hardware technology. Even interactive visualization of one time step of the flow data can be a problem for some existing flow visualization systems because of the size of the grid. Current approaches for visualizing complex 3D time-dependent CFD solutions are described. The flow visualization system developed at NASA Ames Research Center to compute time-dependent particle traces from unsteady CFD solutions is described. The system computes particle traces (streaklines) by integrating through the time steps. This system has been used by several NASA scientists to visualize their CFD time-dependent solutions. The flow visualization capabilities of this system are described, and visualization results are shown.
Eye gaze tracking based on the shape of pupil image
NASA Astrophysics Data System (ADS)
Wang, Rui; Qiu, Jian; Luo, Kaiqing; Peng, Li; Han, Peng
2018-01-01
Eye tracker is an important instrument for research in psychology, widely used in attention, visual perception, reading and other fields of research. Because of its potential function in human-computer interaction, the eye gaze tracking has already been a topic of research in many fields over the last decades. Nowadays, with the development of technology, non-intrusive methods are more and more welcomed. In this paper, we will present a method based on the shape of pupil image to estimate the gaze point of human eyes without any other intrusive devices such as a hat, a pair of glasses and so on. After using the ellipse fitting algorithm to deal with the pupil image we get, we can determine the direction of the fixation by the shape of the pupil.The innovative aspect of this method is to utilize the new idea of the shape of the pupil so that we can avoid much complicated algorithm. The performance proposed is very helpful for the study of eye gaze tracking, which just needs one camera without infrared light to know the changes in the shape of the pupil to determine the direction of the eye gazing, no additional condition is required.
CRF-Based Model for Instrument Detection and Pose Estimation in Retinal Microsurgery.
Alsheakhali, Mohamed; Eslami, Abouzar; Roodaki, Hessam; Navab, Nassir
2016-01-01
Detection of instrument tip in retinal microsurgery videos is extremely challenging due to rapid motion, illumination changes, the cluttered background, and the deformable shape of the instrument. For the same reason, frequent failures in tracking add the overhead of reinitialization of the tracking. In this work, a new method is proposed to localize not only the instrument center point but also its tips and orientation without the need of manual reinitialization. Our approach models the instrument as a Conditional Random Field (CRF) where each part of the instrument is detected separately. The relations between these parts are modeled to capture the translation, rotation, and the scale changes of the instrument. The tracking is done via separate detection of instrument parts and evaluation of confidence via the modeled dependence functions. In case of low confidence feedback an automatic recovery process is performed. The algorithm is evaluated on in vivo ophthalmic surgery datasets and its performance is comparable to the state-of-the-art methods with the advantage that no manual reinitialization is needed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shiinoki, T; Shibuya, K; Sawada, A
Purpose: The new real-time tumor-tracking radiotherapy (RTRT) system was installed in our institution. This system consists of two x-ray tubes and color image intensifiers (I.I.s). The fiducial marker which was implanted near the tumor was tracked using color fluoroscopic images. However, the implantation of the fiducial marker is very invasive. Color fluoroscopic images enable to increase the recognition of the tumor. However, these images were not suitable to track the tumor without fiducial marker. The purpose of this study was to investigate the feasibility of markerless tracking using dual energy colored fluoroscopic images for real-time tumor-tracking radiotherapy system. Methods: Themore » colored fluoroscopic images of static and moving phantom that had the simulated tumor (30 mm diameter sphere) were experimentally acquired using the RTRT system. The programmable respiratory motion phantom was driven using the sinusoidal pattern in cranio-caudal direction (Amplitude: 20 mm, Time: 4 s). The x-ray condition was set to 55 kV, 50 mA and 105 kV, 50 mA for low energy and high energy, respectively. Dual energy images were calculated based on the weighted logarithmic subtraction of high and low energy images of RGB images. The usefulness of dual energy imaging for real-time tracking with an automated template image matching algorithm was investigated. Results: Our proposed dual energy subtraction improve the contrast between tumor and background to suppress the bone structure. For static phantom, our results showed that high tracking accuracy using dual energy subtraction images. For moving phantom, our results showed that good tracking accuracy using dual energy subtraction images. However, tracking accuracy was dependent on tumor position, tumor size and x-ray conditions. Conclusion: We indicated that feasibility of markerless tracking using dual energy fluoroscopic images for real-time tumor-tracking radiotherapy system. Furthermore, it is needed to investigate the tracking accuracy using proposed dual energy subtraction images for clinical cases.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ge, Y; Keall, P; Poulsen, P
Purpose: Multiple targets with large intrafraction independent motion are often involved in advanced prostate, lung, abdominal, and head and neck cancer radiotherapy. Current standard of care treats these with the originally planned fields, jeopardizing the treatment outcomes. A real-time multi-leaf collimator (MLC) tracking method has been developed to address this problem for the first time. This study evaluates the geometric uncertainty of the multi-target tracking method. Methods: Four treatment scenarios are simulated based on a prostate IMAT plan to treat a moving prostate target and static pelvic node target: 1) real-time multi-target MLC tracking; 2) real-time prostate-only MLC tracking; 3)more » correcting for prostate interfraction motion at setup only; and 4) no motion correction. The geometric uncertainty of the treatment is assessed by the sum of the erroneously underexposed target area and overexposed healthy tissue areas for each individual target. Two patient-measured prostate trajectories of average 2 and 5 mm motion magnitude are used for simulations. Results: Real-time multi-target tracking accumulates the least uncertainty overall. As expected, it covers the static nodes similarly well as no motion correction treatment and covers the moving prostate similarly well as the real-time prostate-only tracking. Multi-target tracking reduces >90% of uncertainty for the static nodal target compared to the real-time prostate-only tracking or interfraction motion correction. For prostate target, depending on the motion trajectory which affects the uncertainty due to leaf-fitting, multi-target tracking may or may not perform better than correcting for interfraction prostate motion by shifting patient at setup, but it reduces ∼50% of uncertainty compared to no motion correction. Conclusion: The developed real-time multi-target MLC tracking can adapt for the independently moving targets better than other available treatment adaptations. This will enable PTV margin reduction to minimize health tissue toxicity while remain tumor coverage when treating advanced disease with independently moving targets involved. The authors acknowledge funding support from the Australian NHMRC Australia Fellowship and NHMRC Project Grant No. APP1042375.« less
Finger tracking for hand-held device interface using profile-matching stereo vision
NASA Astrophysics Data System (ADS)
Chang, Yung-Ping; Lee, Dah-Jye; Moore, Jason; Desai, Alok; Tippetts, Beau
2013-01-01
Hundreds of millions of people use hand-held devices frequently and control them by touching the screen with their fingers. If this method of operation is being used by people who are driving, the probability of deaths and accidents occurring substantially increases. With a non-contact control interface, people do not need to touch the screen. As a result, people will not need to pay as much attention to their phones and thus drive more safely than they would otherwise. This interface can be achieved with real-time stereovision. A novel Intensity Profile Shape-Matching Algorithm is able to obtain 3-D information from a pair of stereo images in real time. While this algorithm does have a trade-off between accuracy and processing speed, the result of this algorithm proves the accuracy is sufficient for the practical use of recognizing human poses and finger movement tracking. By choosing an interval of disparity, an object at a certain distance range can be segmented. In other words, we detect the object by its distance to the cameras. The advantage of this profile shape-matching algorithm is that detection of correspondences relies on the shape of profile and not on intensity values, which are subjected to lighting variations. Based on the resulting 3-D information, the movement of fingers in space from a specific distance can be determined. Finger location and movement can then be analyzed for non-contact control of hand-held devices.
Cavanaugh, Daniel J; Vigderman, Abigail S; Dean, Terry; Garbe, David S; Sehgal, Amita
2016-02-01
Sleep is under the control of homeostatic and circadian processes, which interact to determine sleep timing and duration, but the mechanisms through which the circadian system modulates sleep are largely unknown. We therefore used adult-specific, temporally controlled neuronal activation and inhibition to identify an interaction between the circadian clock and a novel population of sleep-promoting neurons in Drosophila. Transgenic flies expressed either dTRPA1, a neuronal activator, or Shibire(ts1), an inhibitor of synaptic release, in small subsets of neurons. Sleep, as determined by activity monitoring and video tracking, was assessed before and after temperature-induced activation or inhibition using these effector molecules. We compared the effect of these manipulations in control flies and in mutant flies that lacked components of the molecular circadian clock. Adult-specific activation or inhibition of a population of neurons that projects to the sleep-promoting dorsal Fan-Shaped Body resulted in bidirectional control over sleep. Interestingly, the magnitude of the sleep changes were time-of-day dependent. Activation of sleep-promoting neurons was maximally effective during the middle of the day and night, and was relatively ineffective during the day-to-night and night-to-day transitions. These time-ofday specific effects were absent in flies that lacked functional circadian clocks. We conclude that the circadian system functions to gate sleep through active inhibition at specific times of day. These data identify a mechanism through which the circadian system prevents premature sleep onset in the late evening, when homeostatic sleep drive is high. © 2016 Associated Professional Sleep Societies, LLC.
NASA Astrophysics Data System (ADS)
Sohrabi, M.; Habibi, M.; Ramezani, V.
2017-02-01
The paper presents an experimental study and analysis of full helium ion density angular distributions in a 4-kJ plasma focus device (PFD) at pressures of 10, 15, 25, and 30 mbar using large-area polycarbonate track detectors (PCTDs) (15-cm etchable diameter) processed by 50-Hz-HV electrochemical etching (ECE). Helium ion track distributions at different pressures, in particular, at the main axis of the PFD are presented. Maximum ion track density of 4.4 × 104 tracks/cm2 was obtained in the PCTD placed 6 cm from the anode. The ion distributions for all pressures applied are ring-shaped, which is possibly due to the hollow cylindrical copper anode used. The large-area PCTD processed by ECE proves, at the present state-of-theart, a superior method for direct observation and analysis of ion distributions at a glance with minimum efforts and time. Some observations of the ion density distributions at different pressures are reported and discussed.
Shaping charge excitations in chiral edge states with a time-dependent gate voltage
NASA Astrophysics Data System (ADS)
Misiorny, Maciej; Fève, Gwendal; Splettstoesser, Janine
2018-02-01
We study a coherent conductor supporting a single edge channel in which alternating current pulses are created by local time-dependent gating and sent on a beam-splitter realized by a quantum point contact. The current response to the gate voltage in this setup is intrinsically linear. Based on a fully self-consistent treatment employing a Floquet scattering theory, we analyze the effect of different voltage shapes and frequencies, as well as the role of the gate geometry on the injected signal. In particular, we highlight the impact of frequency-dependent screening on the process of shaping the current signal. The feasibility of creating true single-particle excitations with this method is confirmed by investigating the suppression of excess noise, which is otherwise created by additional electron-hole pair excitations in the current signal.
NASA Technical Reports Server (NTRS)
Yang, Weidong; Marshak, Alexander; Kostinski, Alexander B.; Varnai, Tamas
2013-01-01
Motivated by the physical picture of shape-dependent air resistance and, consequently, shape-induced differential sedimentation of dust particles, we searched for and found evidence of dust particle asphericity affecting the evolution and distribution of dust-scattered light depolarization ratio (delta). Specifically, we examined a large data set of Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) observations of Saharan dust from June to August 2007. Observing along a typical transatlantic dust track, we find that (1) median delta is uniformly distributed between 2 and 5?km altitudes as the elevated dust leaves the west coast of Africa, thereby indicating uniformly random mixing of particle shapes with height; (2) vertical homogeneity of median delta breaks down during the westward transport: between 2 and 5?km delta increases with altitude and this increase becomes more pronounced with westward progress; (3) delta tends to increase at higher altitude (greater than 4?km) and decrease at lower altitude (less than 4?km) during the westward transport. All these features are captured qualitatively by a minimal model (two shapes only), suggesting that shape-induced differential settling and consequent sorting indeed contribute significantly to the observed temporal evolution and vertical stratification of dust properties. By implicating particle shape as a likely cause of gravitational sorting, these results will affect the estimates of radiative transfer through Saharan dust layers.
Flow and Jamming of Granular Materials in a Two-dimensional Hopper
NASA Astrophysics Data System (ADS)
Tang, Junyao
Flow in a hopper is both a fertile testing ground for understanding fundamental granular flow rheology and industrially highly relevant. Despite increasing research efforts in this area, a comprehensive physical theory is still lacking for both jamming and flow of granular materials in a hopper. In this work, I have designed a two dimensional (2D) hopper experiment using photoelastic particles (particles' shape: disk or ellipse), with the goal to build a bridge between macroscopic phenomenon of hopper flow and microscopic particle-scale dynamics. Through synchronized data of particle tracking and stress distributions in particles, I have shown differences between my data of the time-averaged velocity/stress profile of 2D hopper flow with previous theoretical predictions. I have also demonstrated the importance of a mechanical stable arch near the opening on controlling hopper flow rheology and suggested a heuristic phase diagram for the hopper flow/jamming transition. Another part of this thesis work is focused on studying the impact of particle shape of particles on hopper flow. By comparing particle-tracking and photoelastic data for ellipses and disks at the appropriate length scale, I have demonstrated an important role for the rotational freedom of elliptical particles in controlling flow rheology through particle tracking and stress analysis. This work has been supported by International Fine Particle Research Institute (IFPRI) .
The effect of visual-motion time-delays on pilot performance in a simulated pursuit tracking task
NASA Technical Reports Server (NTRS)
Miller, G. K., Jr.; Riley, D. R.
1977-01-01
An experimental study was made to determine the effect on pilot performance of time delays in the visual and motion feedback loops of a simulated pursuit tracking task. Three major interrelated factors were identified: task difficulty either in the form of airplane handling qualities or target frequency, the amount and type of motion cues, and time delay itself. In general, the greater the task difficulty, the smaller the time delay that could exist without degrading pilot performance. Conversely, the greater the motion fidelity, the greater the time delay that could be tolerated. The effect of motion was, however, pilot dependent.
NASA Technical Reports Server (NTRS)
Sih, G. C.; Chen, E. P.
1980-01-01
A method is developed for the dynamic stress analysis of a layered composite containing an embedded penny-shaped crack and subjected to normal and radial impact. Quantitatively, the time-dependent stresses near the crack border can be described by the dynamic stress intensity factors. Their magnitude depends on time, on the material properties of the composite and on the relative size of the crack compared to the composite local geometry. Results obtained show that, for the same material properties and geometry of the composite, the dynamic stress intensity factors for an embedded (penny-shaped) crack reach their peak values within a shorter period of time and with a lower magnitude than the corresponding dynamic stress factors for a through-crack.
Recent advances in the development and transfer of machine vision technologies for space
NASA Technical Reports Server (NTRS)
Defigueiredo, Rui J. P.; Pendleton, Thomas
1991-01-01
Recent work concerned with real-time machine vision is briefly reviewed. This work includes methodologies and techniques for optimal illumination, shape-from-shading of general (non-Lambertian) 3D surfaces, laser vision devices and technology, high level vision, sensor fusion, real-time computing, artificial neural network design and use, and motion estimation. Two new methods that are currently being developed for object recognition in clutter and for 3D attitude tracking based on line correspondence are discussed.
Fujisawa, Yuhki; Okajima, Yasutomo
2015-11-01
There are several functional tests for evaluating manual performance; however, quantitative manual tests for ataxia, especially those for evaluating handwriting, are limited. This study aimed to investigate the characteristics of cerebellar ataxia by analyzing handwriting, with a special emphasis on correlation between the movement of the pen tip and the movement of the finger or wrist. This was an observational study. Eleven people who were right-handed and had cerebellar ataxia and 17 people to serve as controls were recruited. The Scale for the Assessment and Rating of Ataxia was used to grade the severity of ataxia. Handwriting movements of both hands were analyzed. The time required for writing a character, the variability of individual handwriting, and the correlation between the movement of the pen tip and the movement of the finger or wrist were evaluated for participants with ataxia and control participants. The writing time was longer and the velocity profile and shape of the track of movement of the pen tip were more variable in participants with ataxia than in control participants. For participants with ataxia, the direction of movement of the pen tip deviated more from that of the finger or wrist, and the shape of the track of movement of the pen tip differed more from that of the finger or wrist. The severity of upper extremity ataxia measured with the Scale for the Assessment and Rating of Ataxia was mostly correlated with the variability parameters. Furthermore, it was correlated with the directional deviation of the trajectory of movement of the pen tip from that of the finger and with increased dissimilarity of the shapes of the tracks. The results may have been influenced by the scale and parameters used to measure movement. Ataxic handwriting with increased movement noise is characterized by irregular pen tip movements unconstrained by the finger or wrist. The severity of ataxia is correlated with these unconstrained movements. © 2015 American Physical Therapy Association.
Trends in scale and shape of survival curves.
Weon, Byung Mook; Je, Jung Ho
2012-01-01
The ageing of the population is an issue in wealthy countries worldwide because of increasing costs for health care and welfare. Survival curves taken from demographic life tables may help shed light on the hypotheses that humans are living longer and that human populations are growing older. We describe a methodology that enables us to obtain separate measurements of scale and shape variances in survival curves. Specifically, 'living longer' is associated with the scale variance of survival curves, whereas 'growing older' is associated with the shape variance. We show how the scale and shape of survival curves have changed over time during recent decades, based on period and cohort female life tables for selected wealthy countries. Our methodology will be useful for performing better tracking of ageing statistics and it is possible that this methodology can help identify the causes of current trends in human ageing.
It All Depends on Your Attitude.
ERIC Educational Resources Information Center
Kastner, Bernice
1992-01-01
Presents six learning exercises that introduce students to the mathematics used to control and track spacecraft attitude. Describes the geocentric system used for Earthbound location and navigation, the celestial sphere, the spacecraft-based celestial system, time-dependent angles, observer-fixed coordinate axes, and spacecraft rotational axes.…
Deformation rate-, hold time-, and cycle-dependent shape-memory performance of Veriflex-E resin
NASA Astrophysics Data System (ADS)
McClung, Amber J. W.; Tandon, Gyaneshwar P.; Baur, Jeffery W.
2013-02-01
Shape-memory polymers have attracted great interest in recent years for application in reconfigurable structures (for instance morphing aircraft, micro air vehicles, and deployable space structures). However, before such applications can be attempted, the mechanical behavior of the shape-memory polymers must be thoroughly understood. The present study represents an assessment of viscous effects during multiple shape-memory cycles of Veriflex-E, an epoxy-based, thermally triggered shape-memory polymer resin. The experimental program is designed to explore the influence of multiple thermomechanical cycles on the shape-memory performance of Veriflex-E. The effects of the deformation rate and hold times at elevated temperature on the shape-memory behavior are also investigated.
Time-Dependent Topology of Railway Prestressed Concrete Sleepers
NASA Astrophysics Data System (ADS)
Li, Dan; Ngamkhanong, Chayut; Kaewunruen, Sakdirat
2017-10-01
The railway sleepers are very important component of railway track structure. The sleepers can be manufactured by using timber, concrete, steel or other engineered materials. Nowadays, prestressed concrete has become most commonly used type of sleepers. Prestressed concrete sleepers have longer life-cycle and lower maintenance cost than reinforced concrete sleepers. They are expected to withstand high dynamic loads and harsh environments. However, durability and long-term performance of prestressed concrete sleepers are largely dependent on creep and shrinkage responses. This study investigates the long-term behaviours of prestressed concrete sleepers and proposes the shortening and deflection diagrams. Comparison between design codes of Eurocode 2 and AS3600-2009 provides the insight into the time-dependent performance of prestressed concrete sleepers. The outcome of this paper will improve the rail maintenance and inspection criteria in order to establish appropriate sensible remote track condition monitor network in practice.
NASA Astrophysics Data System (ADS)
Hussmann, Hauke; Oberst, Jürgen; Wickhusen, Kai; Shi, Xian; Damme, Friedrich; Lüdicke, Fabian; Lupovka, Valery; Bauer, Sven
2012-09-01
In support of the MarcoPolo-R mission, we have carried out numerical simulations of spacecraft trajectories about the binary asteroid 175706 (1996 FG3) under the influence of solar radiation pressure. We study the effects of (1) the asteroid's mass, shape, and rotational parameters, (2) the secondary's mass, shape, and orbit parameters, (3) the spacecraft's mass, surface area, and reflectivity, and (4) the time of arrival, and therefore the relative position to the sun and planets. We have considered distance regimes between 5 and 20 km, the typical range for a detailed characterization of the asteroids - primary and secondary - with imaging systems, spectrometers and by laser altimetry. With solar radiation pressure and gravity forces of the small asteroid competing, orbits are found to be unstable, in general. However, limited orbital stability can be found in the so-called Self-Stabilized Terminator Orbits (SSTO), where initial orbits are circular, orbital planes are oriented approximately perpendicular to the solar radiation pressure, and where the orbital plane of the spacecraft is shifted slightly (between 0.2 and 1 km) from the asteroid in the direction away from the sun. Under the effect of radiation pressure, the vector perpendicular to the orbit plane is observed to follow the sun direction. Shape and rotation parameters of the asteroid as well as gravitational perturbations by the secondary (not to mention sun and planets) were found not to affect the results. Such stable orbits may be suited for long radio tracking runs, which will allow for studying the gravity field. As the effect of the solar radiation pressure depends on the spacecraft mass, shape, and albedo, good knowledge of the spacecraft model and persistent monitoring of the spacecraft orientation are required.
ERIC Educational Resources Information Center
Tkachenko, Oleksandr; Louis, Karen Seashore
2017-01-01
This study retrospectively examines the emergence and development of a new class of full-time non-tenure track employees in a large land grant research university in the U.S., which created the employment category in 1980. We employ cultural-historical activity theory (CHAT) to explore how this class of employees became institutionalized within…
Temperature changes in an initially frozen wood chip pile.
George R. Sampson; Jenifer H. McBeath
1987-01-01
White spruce trees and tops were chipped and placed in a pile near Fairbanks, Alaska, in February 1983. The pile was 6 meters in diameter and 6 meters high in a cylindrical shape. Thermocouples were placed at 25 locations within the pile so that temperatures could be tracked over time. Gypsum blocks were placed at 10 locations to determine changes in moisture content....
Tamaoka, Katsuo; Asano, Michiko; Miyaoka, Yayoi; Yokosawa, Kazuhiko
2014-04-01
Using the eye-tracking method, the present study depicted pre- and post-head processing for simple scrambled sentences of head-final languages. Three versions of simple Japanese active sentences with ditransitive verbs were used: namely, (1) SO₁O₂V canonical, (2) SO₂O₁V single-scrambled, and (3) O₁O₂SV double-scrambled order. First pass reading times indicated that the third noun phrase just before the verb in both single- and double-scrambled sentences required longer reading times compared to canonical sentences. Re-reading times (the sum of all fixations minus the first pass reading) showed that all noun phrases including the crucial phrase before the verb in double-scrambled sentences required longer re-reading times than those required for single-scrambled sentences; single-scrambled sentences had no difference from canonical ones. Therefore, a single filler-gap dependency can be resolved in pre-head anticipatory processing whereas two filler-gap dependencies require much greater cognitive loading than a single case. These two dependencies can be resolved in post-head processing using verb agreement information.
Lessons Learned from OSIRIS-Rex Autonomous Navigation Using Natural Feature Tracking
NASA Technical Reports Server (NTRS)
Lorenz, David A.; Olds, Ryan; May, Alexander; Mario, Courtney; Perry, Mark E.; Palmer, Eric E.; Daly, Michael
2017-01-01
The Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer (Osiris-REx) spacecraft is scheduled to launch in September, 2016 to embark on an asteroid sample return mission. It is expected to rendezvous with the asteroid, Bennu, navigate to the surface, collect a sample (July 20), and return the sample to Earth (September 23). The original mission design called for using one of two Flash Lidar units to provide autonomous navigation to the surface. Following Preliminary design and initial development of the Lidars, reliability issues with the hardware and test program prompted the project to begin development of an alternative navigation technique to be used as a backup to the Lidar. At the critical design review, Natural Feature Tracking (NFT) was added to the mission. NFT is an onboard optical navigation system that compares observed images to a set of asteroid terrain models which are rendered in real-time from a catalog stored in memory on the flight computer. Onboard knowledge of the spacecraft state is then updated by a Kalman filter using the measured residuals between the rendered reference images and the actual observed images. The asteroid terrain models used by NFT are built from a shape model generated from observations collected during earlier phases of the mission and include both terrain shape and albedo information about the asteroid surface. As a result, the success of NFT is highly dependent on selecting a set of topographic features that can be both identified during descent as well as reliably rendered using the shape model data available. During development, the OSIRIS-REx team faced significant challenges in developing a process conducive to robust operation. This was especially true for terrain models to be used as the spacecraft gets close to the asteroid and higher fidelity models are required for reliable image correlation. This paper will present some of the challenges and lessons learned from the development of the NFT system which includes not just the flight hardware and software but the development of the terrain models used to generate the onboard rendered images.
Tracking fronts in solutions of the shallow-water equations
NASA Astrophysics Data System (ADS)
Bennett, Andrew F.; Cummins, Patrick F.
1988-02-01
A front-tracking algorithm of Chern et al. (1986) is tested on the shallow-water equations, using the Parrett and Cullen (1984) and Williams and Hori (1970) initial state, consisting of smooth finite amplitude waves depending on one space dimension alone. At high resolution the solution is almost indistinguishable from that obtained with the Glimm algorithm. The latter is known to converge to the true frontal solution, but is 20 times less efficient at the same resolution. The solutions obtained using the front-tracking algorithm at 8 times coarser resolution are quite acceptable, indicating a very substantial gain in efficiency, which encourages application in realistic ocean models possessing two or three space dimensions.
Makarava, Natallia; Menz, Stephan; Theves, Matthias; Huisinga, Wilhelm; Beta, Carsten; Holschneider, Matthias
2014-10-01
Amoebae explore their environment in a random way, unless external cues like, e.g., nutrients, bias their motion. Even in the absence of cues, however, experimental cell tracks show some degree of persistence. In this paper, we analyzed individual cell tracks in the framework of a linear mixed effects model, where each track is modeled by a fractional Brownian motion, i.e., a Gaussian process exhibiting a long-term correlation structure superposed on a linear trend. The degree of persistence was quantified by the Hurst exponent of fractional Brownian motion. Our analysis of experimental cell tracks of the amoeba Dictyostelium discoideum showed a persistent movement for the majority of tracks. Employing a sliding window approach, we estimated the variations of the Hurst exponent over time, which allowed us to identify points in time, where the correlation structure was distorted ("outliers"). Coarse graining of track data via down-sampling allowed us to identify the dependence of persistence on the spatial scale. While one would expect the (mode of the) Hurst exponent to be constant on different temporal scales due to the self-similarity property of fractional Brownian motion, we observed a trend towards stronger persistence for the down-sampled cell tracks indicating stronger persistence on larger time scales.
Aging of the Johari-Goldstein relaxation in the glass-forming liquids sorbitol and xylitol
NASA Astrophysics Data System (ADS)
Yardimci, Hasan; Leheny, Robert L.
2006-06-01
Employing frequency-dependent dielectric susceptibility we characterize the aging in two supercooled liquids, sorbitol and xylitol, below their calorimetric glass transition temperatures. In addition to the alpha relaxation that tracks the structural dynamics, the susceptibility of both liquids possesses a secondary Johari-Goldstein relaxation at higher frequencies. Following a quench through the glass transition, the susceptibility slowly approaches the equilibrium behavior. For both liquids, the magnitude of the Johari-Goldstein relaxation displays a dependence on the time since the quench, or aging time, that is quantitatively very similar to the age dependence of the alpha peak frequency. The Johari-Goldstein relaxation time remains constant during aging for sorbitol while it decreases slightly with age for xylitol. Hence, one cannot sensibly assign a fictive temperature to the Johari-Goldstein relaxation. This behavior contrasts with that of liquids lacking distinct Johari-Goldstein peaks for which the excess wing of the alpha peak tracks the main part of the peak during aging, enabling the assignment of a single fictive temperature to the entire spectrum. The aging behavior of the Johari-Goldstein relaxation time further calls into question the possibility that the relaxation time possesses stronger temperature dependence in equilibrium than is observed in the out-of-equilibrium state below the glass transition.
Yizraeli, Maayan Lia; Weihs, Daphne
2011-12-01
Direct-current, low-intensity, electric fields were suggested as a minimally invasive treatment for various cancers. The tumor microenvironment may affect treatment efficacy, albeit it has not generally been considered when evaluating novel anti-cancer treatments. We evaluate the effects of electric treatment on epithelial, breast-cancer cells, co-cultured with non-cancerous fibroblasts, a simplified model for the tumor-microenvironment. We evaluate changes in morphology, cytoskeleton, and focus on dynamic intracellular structure and mechanics. Multiple-particle tracking was used within living cells to quantify time-dependent structural and mechanical changes. Cancer cells suffer severe cell death and exhibit transient rounding and changes in internal structural and mechanics. Interestingly, treating cancer cells in co-culture with fibroblasts delays and reduces their responses to treatment. Our particle-tracking data indicates a mechanism relating the observed changes in intracellular transport to transient changes in the microtubule network and its motors. In contrast, fibroblasts are only minimally affected by treatment, separately or in co-culture. To conclude, intracellular mechanics reveal time-dependent responses after treatment, unavailable by bulk measurements. This time-dependence could provide a window of opportunity for continued treatment. We demonstrate the importance of evaluating anti-cancer treatments within their microenvironment, which can affect response magnitude and time-course.
ACE: Automatic Centroid Extractor for real time target tracking
NASA Technical Reports Server (NTRS)
Cameron, K.; Whitaker, S.; Canaris, J.
1990-01-01
A high performance video image processor has been implemented which is capable of grouping contiguous pixels from a raster scan image into groups and then calculating centroid information for each object in a frame. The algorithm employed to group pixels is very efficient and is guaranteed to work properly for all convex shapes as well as most concave shapes. Processing speeds are adequate for real time processing of video images having a pixel rate of up to 20 million pixels per second. Pixels may be up to 8 bits wide. The processor is designed to interface directly to a transputer serial link communications channel with no additional hardware. The full custom VLSI processor was implemented in a 1.6 mu m CMOS process and measures 7200 mu m on a side.
Contour Tracking in Echocardiographic Sequences via Sparse Representation and Dictionary Learning
Huang, Xiaojie; Dione, Donald P.; Compas, Colin B.; Papademetris, Xenophon; Lin, Ben A.; Bregasi, Alda; Sinusas, Albert J.; Staib, Lawrence H.; Duncan, James S.
2013-01-01
This paper presents a dynamical appearance model based on sparse representation and dictionary learning for tracking both endocardial and epicardial contours of the left ventricle in echocardiographic sequences. Instead of learning offline spatiotemporal priors from databases, we exploit the inherent spatiotemporal coherence of individual data to constraint cardiac contour estimation. The contour tracker is initialized with a manual tracing of the first frame. It employs multiscale sparse representation of local image appearance and learns online multiscale appearance dictionaries in a boosting framework as the image sequence is segmented frame-by-frame sequentially. The weights of multiscale appearance dictionaries are optimized automatically. Our region-based level set segmentation integrates a spectrum of complementary multilevel information including intensity, multiscale local appearance, and dynamical shape prediction. The approach is validated on twenty-six 4D canine echocardiographic images acquired from both healthy and post-infarct canines. The segmentation results agree well with expert manual tracings. The ejection fraction estimates also show good agreement with manual results. Advantages of our approach are demonstrated by comparisons with a conventional pure intensity model, a registration-based contour tracker, and a state-of-the-art database-dependent offline dynamical shape model. We also demonstrate the feasibility of clinical application by applying the method to four 4D human data sets. PMID:24292554
Phi-s correlation and dynamic time warping - Two methods for tracking ice floes in SAR images
NASA Technical Reports Server (NTRS)
Mcconnell, Ross; Kober, Wolfgang; Kwok, Ronald; Curlander, John C.; Pang, Shirley S.
1991-01-01
The authors present two algorithms for performing shape matching on ice floe boundaries in SAR (synthetic aperture radar) images. These algorithms quickly produce a set of ice motion and rotation vectors that can be used to guide a pixel value correlator. The algorithms match a shape descriptor known as the Phi-s curve. The first algorithm uses normalized correlation to match the Phi-s curves, while the second uses dynamic programming to compute an elastic match that better accommodates ice floe deformation. Some empirical data on the performance of the algorithms on Seasat SAR images are presented.
Experimental investigation for cavity dimensions of highly porous small bodies
NASA Astrophysics Data System (ADS)
Okamoto, T.; Nakamura, A.; Hasegawa, S.
2014-07-01
Small bodies were probably very porous during the formation of the solar system. In order to understand the surface evolution of highly porous bodies, it is necessary to investigate the impact process for targets with such high porosity. In this study, impact experiments with sintered glass-bead targets of 87 and 94 % porosities were conducted. Growth of cavities with time and the final cavity dimensions were analyzed and compared with previous studies of porous targets. Impact experiments were conducted using a two-stage light-gas gun at ISAS, Japan. The projectiles of a few millimeters were composed of titanium, aluminum, nylon, and basalt. The impact velocities ranged from 1.8 to 7.2 km s^{-1}. In order to observe the inside of the targets, we used a flash X-ray system and a micro-X-ray tomography instrument. The track shape was found to be divided into two types, elongated 'carrot' shape and short 'bulb' shape [1]. The figures on the left and right present a transmission image of the bulb shape track and a sketch of a cross section of the cavity, respectively. The results of the final maximum diameter, D_max and the final entrance-hole diameter, D_ent show that both dimensions tend to increase with impact velocity and decrease with target porosity. We adopted the scaling law of crater diameter [2] for our analysis of D_max and D_ent. The following empirical relations are obtained for targets with porosity ≥ 87 %: {D_max}/{d_p}(ρ_t/ρ_p)^{0.4} =10^{-1.52±0.27} ({Y}/ρ_t{v_0^2})^{-0.49 ± 0.07}, {D_ent}/{d_p}(ρ_t/ρ_p)^{0.4} =10^{-2.12±0.39} ({Y}/ρ_t{v_0^2})^{-0.53 ± 0.11}, where d_p, ρ_t, ρ_p, Y, and v_0 are the projectile diameter, target density, projectile density, target compressive strength, and the impact velocity, respectively. The results of the depth from the entrance hole to the maximum diameter of the cavity, L_max, shows that L_max decreases with impact velocity and increases with target porosity. If we assume that a projectile decelerates by inertial drag [1], the characteristic length L_0, which is the depth from the surface where the kinetic energy of the projectile becomes 1/e of the initial energy, is described as follows: L_0={2ρ_p}/{3C_dρ_t}d_p, where C_d is the drag coefficient that increases with dynamic pressure normalized by tensile strength of the projectile [1]. We found that L_max/d_p increases with L_0/d_p. It indicates that L_max depends on the degree of projectile deformation or disruption through the drag coefficient and also depends on the projectile-target density ratio. We will also discuss the growth of the cavity volume, maximum diameter, and depth of the cavity with time using dimensionless parameters of crater scaling [3].
Shape-Dependent Skin Penetration of Silver Nanoparticles: Does It Really Matter?
Tak, Yu Kyung; Pal, Sukdeb; Naoghare, Pravin K.; Rangasamy, Sabarinathan; Song, Joon Myong
2015-01-01
Advancements in nano-structured materials have facilitated several applications of nanoparticles (NPs). Skin penetration of NPs is a crucial factor for designing suitable topical antibacterial agents with low systemic toxicity. Available reports focus on size-dependent skin penetration of NPs, mainly through follicular pathways. Herein, for the first time, we demonstrate a proof-of-concept study that entails variations in skin permeability and diffusion coefficients, penetration rates and depth-of-penetration of differently shaped silver NPs (AgNPs) via intercellular pathways using both in vitro and in vivo models. The antimicrobial activity of AgNPs is known. Different shapes of AgNPs may exhibit diverse antimicrobial activities and skin penetration capabilities depending upon their active metallic facets. Consideration of the shape dependency of AgNPs in antimicrobial formulations could help developing an ideal topical agent with the highest efficacy and low systemic toxicity. PMID:26584777
Shape Up: An Eye-Tracking Study of Preschoolers' Shape Name Processing and Spatial Development
ERIC Educational Resources Information Center
Verdine, Brian N.; Bunger, Ann; Athanasopoulou, Angeliki; Golinkoff, Roberta Michnick; Hirsh-Pasek, Kathy
2017-01-01
Learning the names of geometric shapes is at the intersection of early spatial, mathematical, and language skills, all important for school-readiness and predictors of later abilities in science, technology, engineering, and mathematics (STEM). We investigated whether socioeconomic status (SES) influenced children's processing of shape names and…
NASA Astrophysics Data System (ADS)
Zeng, Zhi-Ping; Zhao, Yan-Gang; Xu, Wen-Tao; Yu, Zhi-Wu; Chen, Ling-Kun; Lou, Ping
2015-04-01
The frequent use of bridges in high-speed railway lines greatly increases the probability that trains are running on bridges when earthquakes occur. This paper investigates the random vibrations of a high-speed train traversing a slab track on a continuous girder bridge subjected to track irregularities and traveling seismic waves by the pseudo-excitation method (PEM). To derive the equations of motion of the train-slab track-bridge interaction system, the multibody dynamics and finite element method models are used for the train and the track and bridge, respectively. By assuming track irregularities to be fully coherent random excitations with time lags between different wheels and seismic accelerations to be uniformly modulated, non-stationary random excitations with time lags between different foundations, the random load vectors of the equations of motion are transformed into a series of deterministic pseudo-excitations based on PEM and the wheel-rail contact relationship. A computer code is developed to obtain the time-dependent random responses of the entire system. As a case study, the random vibration characteristics of an ICE-3 high-speed train traversing a seven-span continuous girder bridge simultaneously excited by track irregularities and traveling seismic waves are analyzed. The influence of train speed and seismic wave propagation velocity on the random vibration characteristics of the bridge and train are discussed.
NASA Astrophysics Data System (ADS)
Yan, Peng; Zhang, Yangming
2018-06-01
High performance scanning of nano-manipulators is widely deployed in various precision engineering applications such as SPM (scanning probe microscope), where trajectory tracking of sophisticated reference signals is an challenging control problem. The situation is further complicated when rate dependent hysteresis of the piezoelectric actuators and the stress-stiffening induced nonlinear stiffness of the flexure mechanism are considered. In this paper, a novel control framework is proposed to achieve high precision tracking of a piezoelectric nano-manipulator subjected to hysteresis and stiffness nonlinearities. An adaptive parameterized rate-dependent Prandtl-Ishlinskii model is constructed and the corresponding adaptive inverse model based online compensation is derived. Meanwhile a robust adaptive control architecture is further introduced to improve the tracking accuracy and robustness of the compensated system, where the parametric uncertainties of the nonlinear dynamics can be well eliminated by on-line estimations. Comparative experimental studies of the proposed control algorithm are conducted on a PZT actuated nano-manipulating stage, where hysteresis modeling accuracy and excellent tracking performance are demonstrated in real-time implementations, with significant improvement over existing results.
Intelligent robust tracking control for a class of uncertain strict-feedback nonlinear systems.
Chang, Yeong-Chan
2009-02-01
This paper addresses the problem of designing robust tracking controls for a large class of strict-feedback nonlinear systems involving plant uncertainties and external disturbances. The input and virtual input weighting matrices are perturbed by bounded time-varying uncertainties. An adaptive fuzzy-based (or neural-network-based) dynamic feedback tracking controller will be developed such that all the states and signals of the closed-loop system are bounded and the trajectory tracking error should be as small as possible. First, the adaptive approximators with linearly parameterized models are designed, and a partitioned procedure with respect to the developed adaptive approximators is proposed such that the implementation of the fuzzy (or neural network) basis functions depends only on the state variables but does not depend on the tuning approximation parameters. Furthermore, we extend to design the nonlinearly parameterized adaptive approximators. Consequently, the intelligent robust tracking control schemes developed in this paper possess the properties of computational simplicity and easy implementation. Finally, simulation examples are presented to demonstrate the effectiveness of the proposed control algorithms.
Li, Qi; Song, Xiaodong; Wu, Dingjun
2014-05-01
Predicting structure-borne noise from bridges subjected to moving trains using the three-dimensional (3D) boundary element method (BEM) is a time consuming process. This paper presents a two-and-a-half dimensional (2.5D) BEM-based procedure for simulating bridge-borne low-frequency noise with higher efficiency, yet no loss of accuracy. The two-dimensional (2D) BEM of a bridge with a constant cross section along the track direction is adopted to calculate the spatial modal acoustic transfer vectors (MATVs) of the bridge using the space-wave number transforms of its 3D modal shapes. The MATVs calculated using the 2.5D method are then validated by those computed using the 3D BEM. The bridge-borne noise is finally obtained through the MATVs and modal coordinate responses of the bridge, considering time-varying vehicle-track-bridge dynamic interaction. The presented procedure is applied to predict the sound pressure radiating from a U-shaped concrete bridge, and the computed results are compared with those obtained from field tests on Shanghai rail transit line 8. The numerical results match well with the measured results in both time and frequency domains at near-field points. Nevertheless, the computed results are smaller than the measured ones for far-field points, mainly due to the sound radiation from adjacent spans neglected in the current model.
Brownian motion of boomerang colloidal particles.
Chakrabarty, Ayan; Konya, Andrew; Wang, Feng; Selinger, Jonathan V; Sun, Kai; Wei, Qi-Huo
2013-10-18
We investigate the Brownian motion of boomerang colloidal particles confined between two glass plates. Our experimental observations show that the mean displacements are biased towards the center of hydrodynamic stress (CoH), and that the mean-square displacements exhibit a crossover from short-time faster to long-time slower diffusion with the short-time diffusion coefficients dependent on the points used for tracking. A model based on Langevin theory elucidates that these behaviors are ascribed to the superposition of two diffusive modes: the ellipsoidal motion of the CoH and the rotational motion of the tracking point with respect to the CoH.
Brownian Motion of Boomerang Colloidal Particles
NASA Astrophysics Data System (ADS)
Chakrabarty, Ayan; Konya, Andrew; Wang, Feng; Selinger, Jonathan V.; Sun, Kai; Wei, Qi-Huo
2013-10-01
We investigate the Brownian motion of boomerang colloidal particles confined between two glass plates. Our experimental observations show that the mean displacements are biased towards the center of hydrodynamic stress (CoH), and that the mean-square displacements exhibit a crossover from short-time faster to long-time slower diffusion with the short-time diffusion coefficients dependent on the points used for tracking. A model based on Langevin theory elucidates that these behaviors are ascribed to the superposition of two diffusive modes: the ellipsoidal motion of the CoH and the rotational motion of the tracking point with respect to the CoH.
High-speed tracking control of piezoelectric actuators using an ellipse-based hysteresis model.
Gu, Guoying; Zhu, Limin
2010-08-01
In this paper, an ellipse-based mathematic model is developed to characterize the rate-dependent hysteresis in piezoelectric actuators. Based on the proposed model, an expanded input space is constructed to describe the multivalued hysteresis function H[u](t) by a multiple input single output (MISO) mapping Gamma:R(2)-->R. Subsequently, the inverse MISO mapping Gamma(-1)(H[u](t),H[u](t);u(t)) is proposed for real-time hysteresis compensation. In controller design, a hybrid control strategy combining a model-based feedforward controller and a proportional integral differential (PID) feedback loop is used for high-accuracy and high-speed tracking control of piezoelectric actuators. The real-time feedforward controller is developed to cancel the rate-dependent hysteresis based on the inverse hysteresis model, while the PID controller is used to compensate for the creep, modeling errors, and parameter uncertainties. Finally, experiments with and without hysteresis compensation are conducted and the experimental results are compared. The experimental results show that the hysteresis compensation in the feedforward path can reduce the hysteresis-caused error by up to 88% and the tracking performance of the hybrid controller is greatly improved in high-speed tracking control applications, e.g., the root-mean-square tracking error is reduced to only 0.34% of the displacement range under the input frequency of 100 Hz.
Timoshenko, Janis; Lu, Deyu; Lin, Yuewei; ...
2017-09-29
Tracking the structure of heterogeneous catalysts under operando conditions remains a challenge due to the paucity of experimental techniques that can provide atomic-level information for catalytic metal species. Here we report on the use of X-ray absorption near edge structure (XANES) spectroscopy and supervised machine learning (SML) for refining the three-dimensional geometry of metal catalysts. SML is used to unravel the hidden relationship between the XANES features and catalyst geometry. To train our SML method, we rely on ab-initio XANES simulations. Our approach allows one to solve the structure of a metal catalyst from its experimental XANES, as demonstrated heremore » by reconstructing the average size, shape and morphology of well-defined platinum nanoparticles. This method is applicable to the determination of the nanoparticle structure in operando studies and can be generalized to other nanoscale systems. In conclusion, it also allows on-the-fly XANES analysis, and is a promising approach for high-throughput and time-dependent studies.« less
Surfzone Currents Over Irregular Bathymetry: Drifter Observations and Numerical Model Results
NASA Astrophysics Data System (ADS)
Schmidt, W. E.; Slinn, D. N.; Guza, R. T.
2002-12-01
Surfzone currents on alongshore variable bathymetry were observed with recently developed GPS-tracked drifters and numerically modeled with the time-dependent, nonlinear shallow water equations. These currents, forced by alongshore inhomogeneous pressure and radiation stress gradients, contain flow features difficult to resolve with fixed instrument arrays, such as rips, eddies, and meanders. Drifters were repeatedly released and recovered near Scripps Beach, La Jolla, California, in July 2000, 2001, and 2002. The most recent deployment of 10 drifters yielded about 32 hours of drifter data for each 5 hour deployment day. Offshore wave heights were moderate, between 0.3-1.0 m. The bathymetry, measured over a 600-700 m alongshore span with a GPS- and sonar-equipped jetski (2001 and 2002 deployments), was alongshore inhomogeneous primarily where an irregularly shaped bar-trough feature spanned the surf zone. The model simulations suggest that the alongshore inhomogeneous bathymetry strongly influences the location and strength of the observed flow features. Research supported by the California Sea Grant College Program and the Office of Naval Research.
Complex chromosomal neighborhood effects determine the adaptive potential of a gene under selection.
Steinrueck, Magdalena; Guet, Călin C
2017-07-25
How the organization of genes on a chromosome shapes adaptation is essential for understanding evolutionary paths. Here, we investigate how adaptation to rapidly increasing levels of antibiotic depends on the chromosomal neighborhood of a drug-resistance gene inserted at different positions of the Escherichia coli chromosome. Using a dual-fluorescence reporter that allows us to distinguish gene amplifications from other up-mutations, we track in real-time adaptive changes in expression of the drug-resistance gene. We find that the relative contribution of several mutation types differs systematically between loci due to properties of neighboring genes: essentiality, expression, orientation, termination, and presence of duplicates. These properties determine rate and fitness effects of gene amplification, deletions, and mutations compromising transcriptional termination. Thus, the adaptive potential of a gene under selection is a system-property with a complex genetic basis that is specific for each chromosomal locus, and it can be inferred from detailed functional and genomic data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Timoshenko, Janis; Lu, Deyu; Lin, Yuewei
Tracking the structure of heterogeneous catalysts under operando conditions remains a challenge due to the paucity of experimental techniques that can provide atomic-level information for catalytic metal species. Here we report on the use of X-ray absorption near edge structure (XANES) spectroscopy and supervised machine learning (SML) for refining the three-dimensional geometry of metal catalysts. SML is used to unravel the hidden relationship between the XANES features and catalyst geometry. To train our SML method, we rely on ab-initio XANES simulations. Our approach allows one to solve the structure of a metal catalyst from its experimental XANES, as demonstrated heremore » by reconstructing the average size, shape and morphology of well-defined platinum nanoparticles. This method is applicable to the determination of the nanoparticle structure in operando studies and can be generalized to other nanoscale systems. In conclusion, it also allows on-the-fly XANES analysis, and is a promising approach for high-throughput and time-dependent studies.« less
Illumination-invariant hand gesture recognition
NASA Astrophysics Data System (ADS)
Mendoza-Morales, América I.; Miramontes-Jaramillo, Daniel; Kober, Vitaly
2015-09-01
In recent years, human-computer interaction (HCI) has received a lot of interest in industry and science because it provides new ways to interact with modern devices through voice, body, and facial/hand gestures. The application range of the HCI is from easy control of home appliances to entertainment. Hand gesture recognition is a particularly interesting problem because the shape and movement of hands usually are complex and flexible to be able to codify many different signs. In this work we propose a three step algorithm: first, detection of hands in the current frame is carried out; second, hand tracking across the video sequence is performed; finally, robust recognition of gestures across subsequent frames is made. Recognition rate highly depends on non-uniform illumination of the scene and occlusion of hands. In order to overcome these issues we use two Microsoft Kinect devices utilizing combined information from RGB and infrared sensors. The algorithm performance is tested in terms of recognition rate and processing time.
NASA Astrophysics Data System (ADS)
Naidis, G. V.
2010-10-01
The results of a two-dimensional numerical simulation of positive streamer propagation in atmospheric-pressure helium jets injected into ambient air are presented. It is shown that depending on the jet width and the initial radial distribution of electron number density streamer structures of two types can be formed: one with maxima of electric field and electron density at the jet axis and another with maxima of these parameters near the boundary between the jet and surrounding air. The latter structure is similar to the observed ring-shaped structures of plasma bullets.
Repeating firing fields of CA1 neurons shift forward in response to increasing angular velocity.
Cowen, Stephen L; Nitz, Douglas A
2014-01-01
Self-motion information influences spatially-specific firing patterns exhibited by hippocampal neurons. Moreover, these firing patterns can repeat across similar subsegments of an environment, provided that there is similarity of path shape and head orientations across subsegments. The influence of self-motion variables on repeating fields remains to be determined. To investigate the role of path shape and angular rotation on hippocampal activity, we recorded the activity of CA1 neurons from rats trained to run on spiral-shaped tracks. During inbound traversals of circular-spiral tracks, angular velocity increases continuously. Under this condition, most neurons (74%) exhibited repeating fields across at least three adjacent loops. Of these neurons, 86% exhibited forward shifts in the angles of field centers relative to centers on preceding loops. Shifts were absent on squared-spiral tracks, minimal and less reliable on concentric-circle tracks, and absent on outward-bound runs on circular-spiral tracks. However, outward-bound runs on the circular-spiral track in the dark were associated with backward shifts. Together, the most parsimonious interpretation of the results is that continuous increases or decreases in angular velocity are particularly effective at shifting the center of mass of repeating fields, although it is also possible that a nonlinear integration of step counts contributes to the shift. Furthermore, the unexpected absence of field shifts during outward journeys in light (but not darkness) suggests visual cues around the goal location anchored the map of space to an allocentric reference frame.
Bowhead whale localization using time-difference-of-arrival data from asynchronous recorders.
Warner, Graham A; Dosso, Stan E; Hannay, David E
2017-03-01
This paper estimates bowhead whale locations and uncertainties using nonlinear Bayesian inversion of the time-difference-of-arrival (TDOA) of low-frequency whale calls recorded on onmi-directional asynchronous recorders in the shallow waters of the northeastern Chukchi Sea, Alaska. A Y-shaped cluster of seven autonomous ocean-bottom hydrophones, separated by 0.5-9.2 km, was deployed for several months over which time their clocks drifted out of synchronization. Hundreds of recorded whale calls are manually associated between recorders. The TDOA between hydrophone pairs are calculated from filtered waveform cross correlations and depend on the whale locations, hydrophone locations, relative recorder clock offsets, and effective waveguide sound speed. A nonlinear Bayesian inversion estimates all of these parameters and their uncertainties as well as data error statistics. The problem is highly nonlinear and a linearized inversion did not produce physically realistic results. Whale location uncertainties from nonlinear inversion can be low enough to allow accurate tracking of migrating whales that vocalize repeatedly over several minutes. Estimates of clock drift rates are obtained from inversions of TDOA data over two weeks and agree with corresponding estimates obtained from long-time averaged ambient noise cross correlations. The inversion is suitable for application to large data sets of manually or automatically detected whale calls.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rycroft, Chris H.; Bazant, Martin Z.
An advection-diffusion-limited dissolution model of an object being eroded by a two-dimensional potential flow is presented. By taking advantage of the conformal invariance of the model, a numerical method is introduced that tracks the evolution of the object boundary in terms of a time-dependent Laurent series. Simulations of a variety of dissolving objects are shown, which shrink and collapse to a single point in finite time. The simulations reveal a surprising exact relationship, whereby the collapse point is the root of a non-Analytic function given in terms of the flow velocity and the Laurent series coefficients describing the initial shape.more » This result is subsequently derived using residue calculus. The structure of the non-Analytic function is examined for three different test cases, and a practical approach to determine the collapse point using a generalized Newton-Raphson root-finding algorithm is outlined. These examples also illustrate the possibility that the model breaks down in finite time prior to complete collapse, due to a topological singularity, as the dissolving boundary overlaps itself rather than breaking up into multiple domains (analogous to droplet pinch-off in fluid mechanics). In conclusion, the model raises fundamental mathematical questions about broken symmetries in finite-Time singularities of both continuous and stochastic dynamical systems.« less
Asymmetric collapse by dissolution or melting in a uniform flow
Bazant, Martin Z.
2016-01-01
An advection–diffusion-limited dissolution model of an object being eroded by a two-dimensional potential flow is presented. By taking advantage of the conformal invariance of the model, a numerical method is introduced that tracks the evolution of the object boundary in terms of a time-dependent Laurent series. Simulations of a variety of dissolving objects are shown, which shrink and collapse to a single point in finite time. The simulations reveal a surprising exact relationship, whereby the collapse point is the root of a non-analytic function given in terms of the flow velocity and the Laurent series coefficients describing the initial shape. This result is subsequently derived using residue calculus. The structure of the non-analytic function is examined for three different test cases, and a practical approach to determine the collapse point using a generalized Newton–Raphson root-finding algorithm is outlined. These examples also illustrate the possibility that the model breaks down in finite time prior to complete collapse, due to a topological singularity, as the dissolving boundary overlaps itself rather than breaking up into multiple domains (analogous to droplet pinch-off in fluid mechanics). The model raises fundamental mathematical questions about broken symmetries in finite-time singularities of both continuous and stochastic dynamical systems. PMID:26997890
Asymmetric collapse by dissolution or melting in a uniform flow
Rycroft, Chris H.; Bazant, Martin Z.
2016-01-06
An advection-diffusion-limited dissolution model of an object being eroded by a two-dimensional potential flow is presented. By taking advantage of the conformal invariance of the model, a numerical method is introduced that tracks the evolution of the object boundary in terms of a time-dependent Laurent series. Simulations of a variety of dissolving objects are shown, which shrink and collapse to a single point in finite time. The simulations reveal a surprising exact relationship, whereby the collapse point is the root of a non-Analytic function given in terms of the flow velocity and the Laurent series coefficients describing the initial shape.more » This result is subsequently derived using residue calculus. The structure of the non-Analytic function is examined for three different test cases, and a practical approach to determine the collapse point using a generalized Newton-Raphson root-finding algorithm is outlined. These examples also illustrate the possibility that the model breaks down in finite time prior to complete collapse, due to a topological singularity, as the dissolving boundary overlaps itself rather than breaking up into multiple domains (analogous to droplet pinch-off in fluid mechanics). In conclusion, the model raises fundamental mathematical questions about broken symmetries in finite-Time singularities of both continuous and stochastic dynamical systems.« less
The Influence of Academic Tracking on Adolescent Social Networks
ERIC Educational Resources Information Center
Fisher, Kim W.; Shogren, Karrie A.
2016-01-01
This study examined adolescents' social capital, through social network analyses (i.e., ego network analyses), in two high schools where students were placed into academic tracks adopted by the schools and shaped by disability status (i.e., general education, co-taught, segregated special education classrooms). The impact of academic tracks, as…
The Ethnic Dimensions of Social Capital: How Parental Networks Shape Track Placement in Germany.
ERIC Educational Resources Information Center
Werum, Regina E.
This research examined the relationship between parental social capital and children's educational track placement in Germany, and how parental social capital differentially affected the tracking experiences of German and non-German children. Parental social capital was defined as the degree to which adults used family networks or connections to…
Laetoli's lost tracks: 3D generated mean shape and missing footprints.
Bennett, M R; Reynolds, S C; Morse, S A; Budka, M
2016-02-23
The Laetoli site (Tanzania) contains the oldest known hominin footprints, and their interpretation remains open to debate, despite over 35 years of research. The two hominin trackways present are parallel to one another, one of which is a composite formed by at least two individuals walking in single file. Most researchers have focused on the single, clearly discernible G1 trackway while the G2/3 trackway has been largely dismissed due to its composite nature. Here we report the use of a new technique that allows us to decouple the G2 and G3 tracks for the first time. In so doing we are able to quantify the mean footprint topology of the G3 trackway and render it useable for subsequent data analyses. By restoring the effectively 'lost' G3 track, we have doubled the available data on some of the rarest traces directly associated with our Pliocene ancestors.
NASA Technical Reports Server (NTRS)
Tescher, Andrew G. (Editor)
1989-01-01
Various papers on image compression and automatic target recognition are presented. Individual topics addressed include: target cluster detection in cluttered SAR imagery, model-based target recognition using laser radar imagery, Smart Sensor front-end processor for feature extraction of images, object attitude estimation and tracking from a single video sensor, symmetry detection in human vision, analysis of high resolution aerial images for object detection, obscured object recognition for an ATR application, neural networks for adaptive shape tracking, statistical mechanics and pattern recognition, detection of cylinders in aerial range images, moving object tracking using local windows, new transform method for image data compression, quad-tree product vector quantization of images, predictive trellis encoding of imagery, reduced generalized chain code for contour description, compact architecture for a real-time vision system, use of human visibility functions in segmentation coding, color texture analysis and synthesis using Gibbs random fields.
Loop shaping design for tracking performance in machine axes.
Schinstock, Dale E; Wei, Zhouhong; Yang, Tao
2006-01-01
A modern interpretation of classical loop shaping control design methods is presented in the context of tracking control for linear motor stages. Target applications include noncontacting machines such as laser cutters and markers, water jet cutters, and adhesive applicators. The methods are directly applicable to the common PID controller and are pertinent to many electromechanical servo actuators other than linear motors. In addition to explicit design techniques a PID tuning algorithm stressing the importance of tracking is described. While the theory behind these techniques is not new, the analysis of their application to modern systems is unique in the research literature. The techniques and results should be important to control practitioners optimizing PID controller designs for tracking and in comparing results from classical designs to modern techniques. The methods stress high-gain controller design and interpret what this means for PID. Nothing in the methods presented precludes the addition of feedforward control methods for added improvements in tracking. Laboratory results from a linear motor stage demonstrate that with large open-loop gain very good tracking performance can be achieved. The resultant tracking errors compare very favorably to results from similar motions on similar systems that utilize much more complicated controllers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fradkin, D.B.; Hull, L.M.; Laabs, G.W.
The results of dynamic sled track performance testing of advanced tandem configuration shaped-charge warheads against multiple-reactive-element tank armors are presented. Tandem configurations utilizing both currently fielded and experimental shaped-charge warheads were tested. Sled velocities used were between 400 and 1100 ft/s (Mach number 0.35 to 0.95), typical of the terminal approach velocity of TOW-type antitank missiles. High-speed motion pictures (5000 frames/s) of the sled in operation and a typical mock missile'' warhead package approaching the target are shown. Details of the sled design and fabrication and of the warhead package design and fabrication are presented. Sled track instrumentation is discussed.more » This instrumentation includes foil make/break switches and associated time interval meters (TIM) and digital delay units (DDU), magnetic Hall-effect transistors for measuring sled trajectory, and flash x-rays (FXR). Methods for timing the x-rays are presented. Schematic functional diagrams of the experimental setups are also given. Evidence of the ability to accurately time the delay between precursor and main warheads for even very long time delays are presented. FXR pictures illustrate the dynamics of the interaction of the jets with various target elements. The interaction dynamics of the jets is discussed in relation to the overall penetration performance of the tandem warhead. The use of x-ray fluorescence spectroscopy to help diagnose interaction dynamics is illustrated. The results of a test utilizing the missile propulsion rocket motor as a blast shield is presented in this paper. 2 refs., 22 figs.« less
Rigid shape matching by segmentation averaging.
Wang, Hongzhi; Oliensis, John
2010-04-01
We use segmentations to match images by shape. The new matching technique does not require point-to-point edge correspondence and is robust to small shape variations and spatial shifts. To address the unreliability of segmentations computed bottom-up, we give a closed form approximation to an average over all segmentations. Our method has many extensions, yielding new algorithms for tracking, object detection, segmentation, and edge-preserving smoothing. For segmentation, instead of a maximum a posteriori approach, we compute the "central" segmentation minimizing the average distance to all segmentations of an image. For smoothing, instead of smoothing images based on local structures, we smooth based on the global optimal image structures. Our methods for segmentation, smoothing, and object detection perform competitively, and we also show promising results in shape-based tracking.
Laser Prevention of Earth Impact Disasters
NASA Technical Reports Server (NTRS)
Campbell, J.; Smalley, L.; Boccio, D.; Howell, Joe T. (Technical Monitor)
2002-01-01
We now believe that while there are about 2000 earth orbit crossing rocks greater than 1 kilometer in diameter, there may be as many as 100,000 or more objects in the 100m size range. Can anything be done about this fundamental existence question facing us? The answer is a resounding yes! We have the technology to prevent collisions. By using an intelligent combination of Earth and space based sensors coupled with an infrastructure of high-energy laser stations and other secondary mitigation options, we can deflect inbound asteroids, meteoroids, and comets and prevent them from striking the Earth. This can be accomplished by irradiating the surface of an inbound rock with sufficiently intense pulses so that ablation occurs. This ablation acts as a small rocket incrementally changing the shape of the rock's orbit around the Sun. One-kilometer size rocks can be moved sufficiently in a month while smaller rocks may be moved in a shorter time span.We recommend that the World's space objectives be immediately reprioritized to start us moving quickly towards a multiple option defense capability. While lasers should be the primary approach, all mitigation options depend on robust early warning, detection, and tracking resources to find objects sufficiently prior to Earth orbit passage in time to allow mitigation. Infrastructure options should include ground, LEO, GEO, Lunar, and libration point laser and sensor stations for providing early warning, tracking, and deflection. Other options should include space interceptors that will carry both laser and nuclear ablators for close range work. Response options must be developed to deal with the consequences of an impact should we move too slowly.
Gold, Raymond; Roberts, James H.
1989-01-01
A solid state track recording type dosimeter is disclosed to measure the time dependence of the absolute fission rates of nuclides or neutron fluence over a period of time. In a primary species an inner recording drum is rotatably contained within an exterior housing drum that defines a series of collimating slit apertures overlying windows defined in the stationary drum through which radiation can enter. Film type solid state track recorders are positioned circumferentially about the surface of the internal recording drum to record such radiation or its secondary products during relative rotation of the two elements. In another species both the recording element and the aperture element assume the configuration of adjacent disks. Based on slit size of apertures and relative rotational velocity of the inner drum, radiation parameters within a test area may be measured as a function of time and spectra deduced therefrom.
Electromagnetic pulse scattering by a spacecraft nearing light speed.
Garner, Timothy J; Lakhtakia, Akhlesh; Breakall, James K; Bohren, Craig F
2017-08-01
Humans will launch spacecraft that travel at an appreciable fraction of the speed of light. Spacecraft traffic will be tracked by radar. Scattering of pulsed electromagnetic fields by an object in uniform translational motion at relativistic speed may be computed using the frame-hopping technique. Pulse scattering depends strongly on the velocity, shape, orientation, and composition of the object. The peak magnitude of the backscattered signal varies by many orders of magnitude, depending on whether the object is advancing toward or receding from the source of the interrogating signal. The peak magnitude of the backscattered signal goes to zero as the object recedes from the observer at a speed very closely approaching light speed, rendering the object invisible to the observer. The energy scattered by an object in motion may increase or decrease relative to the energy scattered by the same object at rest. Both the magnitude and sign of the change depend on the velocity of the object, as well as on its shape, orientation, and composition. In some cases, the change in total scattered energy is greatest when the object is moving transversely to the propagation direction of the interrogating signal, even though the Doppler effect is strongest when the motion is parallel or antiparallel to the propagation direction.
2010-01-01
Background Cell motility is a critical parameter in many physiological as well as pathophysiological processes. In time-lapse video microscopy, manual cell tracking remains the most common method of analyzing migratory behavior of cell populations. In addition to being labor-intensive, this method is susceptible to user-dependent errors regarding the selection of "representative" subsets of cells and manual determination of precise cell positions. Results We have quantitatively analyzed these error sources, demonstrating that manual cell tracking of pancreatic cancer cells lead to mis-calculation of migration rates of up to 410%. In order to provide for objective measurements of cell migration rates, we have employed multi-target tracking technologies commonly used in radar applications to develop fully automated cell identification and tracking system suitable for high throughput screening of video sequences of unstained living cells. Conclusion We demonstrate that our automatic multi target tracking system identifies cell objects, follows individual cells and computes migration rates with high precision, clearly outperforming manual procedures. PMID:20377897
Influences on particle shape in underwater pelletizing processes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kast, O., E-mail: oliver.kast@ikt.uni-stuttgart.de, E-mail: matthias.musialek@ikt.uni-stuttgart.de, E-mail: kalman.geiger@ikt.uni-stuttgart.de, E-mail: christian.bonten@ikt.uni-stuttgart.de; Musialek, M., E-mail: oliver.kast@ikt.uni-stuttgart.de, E-mail: matthias.musialek@ikt.uni-stuttgart.de, E-mail: kalman.geiger@ikt.uni-stuttgart.de, E-mail: christian.bonten@ikt.uni-stuttgart.de; Geiger, K., E-mail: oliver.kast@ikt.uni-stuttgart.de, E-mail: matthias.musialek@ikt.uni-stuttgart.de, E-mail: kalman.geiger@ikt.uni-stuttgart.de, E-mail: christian.bonten@ikt.uni-stuttgart.de
2014-05-15
Underwater pelletizing has gained high importance within the last years among the different pelletizing technologies, due to its advantages in terms of throughput, automation, pellet quality and applicability to a large variety of thermoplastics. The resulting shape and quality of pellets, however, differ widely, depending on material characteristics and effects not fully understood yet. In an experimental set-up, pellets of different volumes and shapes were produced and the medium pellet mass, the pellet surface and the bulk density were analyzed in order to identify the influence of material properties and process parameters. Additionally, the shaping kinetics at the die openingmore » were watched with a specially developed camera system. It was found that rheological material properties correlate with process parameters and resulting particle form in a complex way. Higher cutting speeds were shown to have a deforming influence on the pellets, leading to less spherical s and lower bulk densities. More viscous materials, however, showed a better resistance against this. Generally, the viscous properties of polypropylene proofed to be dominant over the elastic ones in regard to their influence on pellet shape. It was also shown that the shapes filmed at the die opening and the actual form of the pellets after a cooling track do not always correlate, indicating a significant influence of thermodynamic properties during the cooling.« less
Li, Longfei; Braun, R. J.; Maki, K. L.; Henshaw, W. D.; King-Smith, P. E.
2014-01-01
We study tear film dynamics with evaporation on a wettable eye-shaped ocular surface using a lubrication model. The mathematical model has a time-dependent flux boundary condition that models the cycles of tear fluid supply and drainage; it mimics blinks on a stationary eye-shaped domain. We generate computational grids and solve the nonlinear governing equations using the OVERTURE computational framework. In vivo experimental results using fluorescent imaging are used to visualize the influx and redistribution of tears for an open eye. Results from the numerical simulations are compared with the experiment. The model captures the flow around the meniscus and other dynamic features of human tear film observed in vivo. PMID:24926191
Nearly automatic motion capture system for tracking octopus arm movements in 3D space.
Zelman, Ido; Galun, Meirav; Akselrod-Ballin, Ayelet; Yekutieli, Yoram; Hochner, Binyamin; Flash, Tamar
2009-08-30
Tracking animal movements in 3D space is an essential part of many biomechanical studies. The most popular technique for human motion capture uses markers placed on the skin which are tracked by a dedicated system. However, this technique may be inadequate for tracking animal movements, especially when it is impossible to attach markers to the animal's body either because of its size or shape or because of the environment in which the animal performs its movements. Attaching markers to an animal's body may also alter its behavior. Here we present a nearly automatic markerless motion capture system that overcomes these problems and successfully tracks octopus arm movements in 3D space. The system is based on three successive tracking and processing stages. The first stage uses a recently presented segmentation algorithm to detect the movement in a pair of video sequences recorded by two calibrated cameras. In the second stage, the results of the first stage are processed to produce 2D skeletal representations of the moving arm. Finally, the 2D skeletons are used to reconstruct the octopus arm movement as a sequence of 3D curves varying in time. Motion tracking, segmentation and reconstruction are especially difficult problems in the case of octopus arm movements because of the deformable, non-rigid structure of the octopus arm and the underwater environment in which it moves. Our successful results suggest that the motion-tracking system presented here may be used for tracking other elongated objects.
Time-dependent buoyant puff model for explosive sources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kansa, E.J.
1997-01-01
Several models exist to predict the time dependent behavior of bouyant puffs that result from explosions. This paper presents a new model that is derived from the strong conservative form of the conservation partial differential equations that are integrated over space to yield a coupled system of time dependent nonlinear ordinary differential equations. This model permits the cloud to evolve from an intial spherical shape not an ellipsoidal shape. It ignores the Boussinesq approximation, and treats the turbulence that is generated by the puff itself and the ambient atmospheric tubulence as separate mechanisms in determining the puff history. The puffmore » cloud rise history was found to depend no only on the mass and initial temperature of the explosion, but also upon the stability conditions of the ambient atmosphere. This model was calibrated by comparison with the Roller Coaster experiments.« less
Tracking a Non-Cooperative Target Using Real-Time Stereovision-Based Control: An Experimental Study.
Shtark, Tomer; Gurfil, Pini
2017-03-31
Tracking a non-cooperative target is a challenge, because in unfamiliar environments most targets are unknown and unspecified. Stereovision is suited to deal with this issue, because it allows to passively scan large areas and estimate the relative position, velocity and shape of objects. This research is an experimental effort aimed at developing, implementing and evaluating a real-time non-cooperative target tracking methods using stereovision measurements only. A computer-vision feature detection and matching algorithm was developed in order to identify and locate the target in the captured images. Three different filters were designed for estimating the relative position and velocity, and their performance was compared. A line-of-sight control algorithm was used for the purpose of keeping the target within the field-of-view. Extensive analytical and numerical investigations were conducted on the multi-view stereo projection equations and their solutions, which were used to initialize the different filters. This research shows, using an experimental and numerical evaluation, the benefits of using the unscented Kalman filter and the total least squares technique in the stereovision-based tracking problem. These findings offer a general and more accurate method for solving the static and dynamic stereovision triangulation problems and the concomitant line-of-sight control.
Tracking a Non-Cooperative Target Using Real-Time Stereovision-Based Control: An Experimental Study
Shtark, Tomer; Gurfil, Pini
2017-01-01
Tracking a non-cooperative target is a challenge, because in unfamiliar environments most targets are unknown and unspecified. Stereovision is suited to deal with this issue, because it allows to passively scan large areas and estimate the relative position, velocity and shape of objects. This research is an experimental effort aimed at developing, implementing and evaluating a real-time non-cooperative target tracking methods using stereovision measurements only. A computer-vision feature detection and matching algorithm was developed in order to identify and locate the target in the captured images. Three different filters were designed for estimating the relative position and velocity, and their performance was compared. A line-of-sight control algorithm was used for the purpose of keeping the target within the field-of-view. Extensive analytical and numerical investigations were conducted on the multi-view stereo projection equations and their solutions, which were used to initialize the different filters. This research shows, using an experimental and numerical evaluation, the benefits of using the unscented Kalman filter and the total least squares technique in the stereovision-based tracking problem. These findings offer a general and more accurate method for solving the static and dynamic stereovision triangulation problems and the concomitant line-of-sight control. PMID:28362338
Fast human pose estimation using 3D Zernike descriptors
NASA Astrophysics Data System (ADS)
Berjón, Daniel; Morán, Francisco
2012-03-01
Markerless video-based human pose estimation algorithms face a high-dimensional problem that is frequently broken down into several lower-dimensional ones by estimating the pose of each limb separately. However, in order to do so they need to reliably locate the torso, for which they typically rely on time coherence and tracking algorithms. Their losing track usually results in catastrophic failure of the process, requiring human intervention and thus precluding their usage in real-time applications. We propose a very fast rough pose estimation scheme based on global shape descriptors built on 3D Zernike moments. Using an articulated model that we configure in many poses, a large database of descriptor/pose pairs can be computed off-line. Thus, the only steps that must be done on-line are the extraction of the descriptors for each input volume and a search against the database to get the most likely poses. While the result of such process is not a fine pose estimation, it can be useful to help more sophisticated algorithms to regain track or make more educated guesses when creating new particles in particle-filter-based tracking schemes. We have achieved a performance of about ten fps on a single computer using a database of about one million entries.
Dispersion and shape engineered plasmonic nanosensors
NASA Astrophysics Data System (ADS)
Jeong, Hyeon-Ho; Mark, Andrew G.; Alarcón-Correa, Mariana; Kim, Insook; Oswald, Peter; Lee, Tung-Chun; Fischer, Peer
2016-04-01
Biosensors based on the localized surface plasmon resonance (LSPR) of individual metallic nanoparticles promise to deliver modular, low-cost sensing with high-detection thresholds. However, they continue to suffer from relatively low sensitivity and figures of merit (FOMs). Herein we introduce the idea of sensitivity enhancement of LSPR sensors through engineering of the material dispersion function. Employing dispersion and shape engineering of chiral nanoparticles leads to remarkable refractive index sensitivities (1,091 nm RIU-1 at λ=921 nm) and FOMs (>2,800 RIU-1). A key feature is that the polarization-dependent extinction of the nanoparticles is now characterized by rich spectral features, including bipolar peaks and nulls, suitable for tracking refractive index changes. This sensing modality offers strong optical contrast even in the presence of highly absorbing media, an important consideration for use in complex biological media with limited transmission. The technique is sensitive to surface-specific binding events which we demonstrate through biotin-avidin surface coupling.
Tracking Gravity Probe B gyroscope polhode motion
NASA Technical Reports Server (NTRS)
Keiser, George M.; Parkinson, Bradford W.; Cohen, Clark E.
1990-01-01
The superconducting Gravity Probe B spacecraft is being developed to measure two untested predictions of Einstein's theory of general relativity by using orbiting gyroscopes; it possesses an intrinsic magnetic field which rotates with the rotor and is fixed with respect to the rotor body frame. In this paper, the path of the rotor spin axes is tracked using this trapped magnetic flux as a reference. Both the rotor motion and the magnetic field shape are estimated simultaneously, employing the higher order components of the magnetic field shape.
Size and shape dependent optical properties of InAs quantum dots
NASA Astrophysics Data System (ADS)
Imran, Ali; Jiang, Jianliang; Eric, Deborah; Yousaf, Muhammad
2018-01-01
In this study Electronic states and optical properties of self assembled InAs quantum dots embedded in GaAs matrix have been investigated. Their carrier confinement energies for single quantum dot are calculated by time-independent Schrödinger equation in which hamiltonianian of the system is based on effective mass approximation and position dependent electron momentum. Transition energy, absorption coefficient, refractive index and high frequency dielectric constant for spherical, cylindrical and conical quantum dots with different sizes in different dimensions are calculated. Comparative studies have revealed that size and shape greatly affect the electronic transition energies and absorption coefficient. Peaks of absorption coefficients have been found to be highly shape dependent.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wisotzky, Eric, E-mail: eric.wisotzky@charite.de, E-mail: eric.wisotzky@ipk.fraunhofer.de; O’Brien, Ricky; Keall, Paul J., E-mail: paul.keall@sydney.edu.au
2016-01-15
Purpose: Multileaf collimator (MLC) tracking radiotherapy is complex as the beam pattern needs to be modified due to the planned intensity modulation as well as the real-time target motion. The target motion cannot be planned; therefore, the modified beam pattern differs from the original plan and the MLC sequence needs to be recomputed online. Current MLC tracking algorithms use a greedy heuristic in that they optimize for a given time, but ignore past errors. To overcome this problem, the authors have developed and improved an algorithm that minimizes large underdose and overdose regions. Additionally, previous underdose and overdose events aremore » taken into account to avoid regions with high quantity of dose events. Methods: The authors improved the existing MLC motion control algorithm by introducing a cumulative underdose/overdose map. This map represents the actual projection of the planned tumor shape and logs occurring dose events at each specific regions. These events have an impact on the dose cost calculation and reduce recurrence of dose events at each region. The authors studied the improvement of the new temporal optimization algorithm in terms of the L1-norm minimization of the sum of overdose and underdose compared to not accounting for previous dose events. For evaluation, the authors simulated the delivery of 5 conformal and 14 intensity-modulated radiotherapy (IMRT)-plans with 7 3D patient measured tumor motion traces. Results: Simulations with conformal shapes showed an improvement of L1-norm up to 8.5% after 100 MLC modification steps. Experiments showed comparable improvements with the same type of treatment plans. Conclusions: A novel leaf sequencing optimization algorithm which considers previous dose events for MLC tracking radiotherapy has been developed and investigated. Reductions in underdose/overdose are observed for conformal and IMRT delivery.« less
How Does University Decision Making Shape the Faculty?
ERIC Educational Resources Information Center
Cross, John G.; Goldenberg, Edie N.
2003-01-01
Even a cursory reading of the higher education literature reveals a growing concern with the changing mix of tenure-track and non-tenure-track faculty. The focus a few years ago was on the apparent withdrawal of tenure-track faculty from commitment to instruction, especially at the first- and second-year levels. The focus now is on the rapidly…
Lung tumor tracking in fluoroscopic video based on optical flow
Xu, Qianyi; Hamilton, Russell J.; Schowengerdt, Robert A.; Alexander, Brian; Jiang, Steve B.
2008-01-01
Respiratory gating and tumor tracking for dynamic multileaf collimator delivery require accurate and real-time localization of the lung tumor position during treatment. Deriving tumor position from external surrogates such as abdominal surface motion may have large uncertainties due to the intra- and interfraction variations of the correlation between the external surrogates and internal tumor motion. Implanted fiducial markers can be used to track tumors fluoroscopically in real time with sufficient accuracy. However, it may not be a practical procedure when implanting fiducials bronchoscopically. In this work, a method is presented to track the lung tumor mass or relevant anatomic features projected in fluoroscopic images without implanted fiducial markers based on an optical flow algorithm. The algorithm generates the centroid position of the tracked target and ignores shape changes of the tumor mass shadow. The tracking starts with a segmented tumor projection in an initial image frame. Then, the optical flow between this and all incoming frames acquired during treatment delivery is computed as initial estimations of tumor centroid displacements. The tumor contour in the initial frame is transferred to the incoming frames based on the average of the motion vectors, and its positions in the incoming frames are determined by fine-tuning the contour positions using a template matching algorithm with a small search range. The tracking results were validated by comparing with clinician determined contours on each frame. The position difference in 95% of the frames was found to be less than 1.4 pixels (∼0.7 mm) in the best case and 2.8 pixels (∼1.4 mm) in the worst case for the five patients studied. PMID:19175094
Lung tumor tracking in fluoroscopic video based on optical flow.
Xu, Qianyi; Hamilton, Russell J; Schowengerdt, Robert A; Alexander, Brian; Jiang, Steve B
2008-12-01
Respiratory gating and tumor tracking for dynamic multileaf collimator delivery require accurate and real-time localization of the lung tumor position during treatment. Deriving tumor position from external surrogates such as abdominal surface motion may have large uncertainties due to the intra- and interfraction variations of the correlation between the external surrogates and internal tumor motion. Implanted fiducial markers can be used to track tumors fluoroscopically in real time with sufficient accuracy. However, it may not be a practical procedure when implanting fiducials bronchoscopically. In this work, a method is presented to track the lung tumor mass or relevant anatomic features projected in fluoroscopic images without implanted fiducial markers based on an optical flow algorithm. The algorithm generates the centroid position of the tracked target and ignores shape changes of the tumor mass shadow. The tracking starts with a segmented tumor projection in an initial image frame. Then, the optical flow between this and all incoming frames acquired during treatment delivery is computed as initial estimations of tumor centroid displacements. The tumor contour in the initial frame is transferred to the incoming frames based on the average of the motion vectors, and its positions in the incoming frames are determined by fine-tuning the contour positions using a template matching algorithm with a small search range. The tracking results were validated by comparing with clinician determined contours on each frame. The position difference in 95% of the frames was found to be less than 1.4 pixels (approximately 0.7 mm) in the best case and 2.8 pixels (approximately 1.4 mm) in the worst case for the five patients studied.
Ground-based measurements of inflight antenna patterns for imaging radar systems
NASA Astrophysics Data System (ADS)
Seifert, Pedro; Lentz, Harald; Zink, Manfred; Heel, Franz
1992-11-01
An approach is presented on how to determine the inflight antenna pattern in the cross-track direction for air- and spaceborne synthetic aperture radar (SAR) systems. In the 1991 Oberpfaffenhofen DC-8/E-SAR calibration campaign there was a good opportunity to test ground-based measurement equipment comprising 18 precision calibration receivers and nine polarimetric active radar calibrators (PARC's), all operating in C-band. These devices were designed and manufactured by the Institute of Navigation at the University of Stuttgart (INS). These instruments are capable of handling various pulse lengths, PRF's, and have a very high dynamic range. Together with precise internal clocks, these instruments are suitable for recording the actual radar transmit pulse shape for the later evaluation of the desired inflight antenna pattern. Lining up these devices in the cross-track direction, each receiver yields an azimuth cut of the three-dimensional antenna pattern. The elevation pattern was then obtained by time correlation of these azimuth cuts. Further results concerning pulse shapes, squint angles, and H-V pattern misalignment are presented.
NASA Astrophysics Data System (ADS)
Engelen, L.; Creëlle, S.; Schindfessel, L.; De Mulder, T.
2018-03-01
This paper presents a low-cost and easy-to-implement image-based reconstruction technique for laboratory experiments, which results in a temporal description of the water surface topography. The distortion due to refraction of a known pattern, located below the water surface, is used to fit a low parameter surface model that describes the time-dependent and three-dimensional surface variation. Instead of finding the optimal water depth for characteristic points on the surface, the deformation of the entire pattern is compared to its original shape. This avoids the need for feature tracking adopted in similar techniques, which improves the robustness to suboptimal optical conditions and small-scale, high-frequency surface perturbations. Experimental validation, by comparison with water depth measurements using a level gauge and pressure sensor, proves sub-millimetre accuracy for smooth and steady surface shapes. Although such accuracy cannot be achieved in case of highly dynamic surface phenomena, the low-frequency and large-scale free surface oscillations can still be measured with a temporal and spatial resolution mostly limited by the available optical set-up. The technique is initially intended for periodic surface phenomena, but the results presented in this paper indicate that also irregular surface shapes can robustly be reconstructed. Therefore, the presented technique is a promising tool for other research applications that require non-intrusive, low-cost surface measurements while maintaining visual access to the water below the surface. The latter ensures that the suggested surface reconstruction is compatible with simultaneous image-based velocity measurements, enabling a detailed study of the flow.
Robust motion tracking based on adaptive speckle decorrelation analysis of OCT signal.
Wang, Yuewen; Wang, Yahui; Akansu, Ali; Belfield, Kevin D; Hubbi, Basil; Liu, Xuan
2015-11-01
Speckle decorrelation analysis of optical coherence tomography (OCT) signal has been used in motion tracking. In our previous study, we demonstrated that cross-correlation coefficient (XCC) between Ascans had an explicit functional dependency on the magnitude of lateral displacement (δx). In this study, we evaluated the sensitivity of speckle motion tracking using the derivative of function XCC(δx) on variable δx. We demonstrated the magnitude of the derivative can be maximized. In other words, the sensitivity of OCT speckle tracking can be optimized by using signals with appropriate amount of decorrelation for XCC calculation. Based on this finding, we developed an adaptive speckle decorrelation analysis strategy to achieve motion tracking with optimized sensitivity. Briefly, we used subsequently acquired Ascans and Ascans obtained with larger time intervals to obtain multiple values of XCC and chose the XCC value that maximized motion tracking sensitivity for displacement calculation. Instantaneous motion speed can be calculated by dividing the obtained displacement with time interval between Ascans involved in XCC calculation. We implemented the above-described algorithm in real-time using graphic processing unit (GPU) and demonstrated its effectiveness in reconstructing distortion-free OCT images using data obtained from a manually scanned OCT probe. The adaptive speckle tracking method was validated in manually scanned OCT imaging, on phantom as well as in vivo skin tissue.
Robust motion tracking based on adaptive speckle decorrelation analysis of OCT signal
Wang, Yuewen; Wang, Yahui; Akansu, Ali; Belfield, Kevin D.; Hubbi, Basil; Liu, Xuan
2015-01-01
Speckle decorrelation analysis of optical coherence tomography (OCT) signal has been used in motion tracking. In our previous study, we demonstrated that cross-correlation coefficient (XCC) between Ascans had an explicit functional dependency on the magnitude of lateral displacement (δx). In this study, we evaluated the sensitivity of speckle motion tracking using the derivative of function XCC(δx) on variable δx. We demonstrated the magnitude of the derivative can be maximized. In other words, the sensitivity of OCT speckle tracking can be optimized by using signals with appropriate amount of decorrelation for XCC calculation. Based on this finding, we developed an adaptive speckle decorrelation analysis strategy to achieve motion tracking with optimized sensitivity. Briefly, we used subsequently acquired Ascans and Ascans obtained with larger time intervals to obtain multiple values of XCC and chose the XCC value that maximized motion tracking sensitivity for displacement calculation. Instantaneous motion speed can be calculated by dividing the obtained displacement with time interval between Ascans involved in XCC calculation. We implemented the above-described algorithm in real-time using graphic processing unit (GPU) and demonstrated its effectiveness in reconstructing distortion-free OCT images using data obtained from a manually scanned OCT probe. The adaptive speckle tracking method was validated in manually scanned OCT imaging, on phantom as well as in vivo skin tissue. PMID:26600996
NASA Astrophysics Data System (ADS)
Kim, Moojong; Kim, Jinyoung; Lee, Moon G.
Recently, in micro/nano fabrication equipments, linear motors are widely used as an actuator to position workpiece, machining tool and measurement head. To control them faster and more precise, the motor should have high actuating force and small force ripple. High actuating force enable us to more workpiece with high acceleration. Eventually, it may provide higher throughput. Force ripple gives detrimental effect on the precision and tracking performance of the equipments. In order to accomplish more precise motion, it is important to make lower the force ripple. Force ripple is categorized into cogging and mutual ripple. First is dependent on the shape of magnets and/or core. The second is not dependent on them but dependent on current commutation. In this work, coreless mover i.e. coil winding is applied to the linear motor to avoid the cogging ripple. Therefore, the mutual ripple is only considered to be minimized. Ideal Halbach magnet array has continuously varying magnetization. The THMA (Halbach magnet array with T shape magnets) is proposed to approximate the ideal one. The THMA can not produce ideal sinusoidal flux, therefore, the linear motor with THMA and sinusoidal commutation of current generates the mutual force ripple. In this paper, in order to compensate mutual force ripple by feedforward(FF) controller, we calculate the optimized commutation of input current. The ripple is lower than 1.17% of actuating force if the commutation current agree with the magnetic flux from THMA. The performance of feedforward(FF) controller is verified by experiment.
NASA Astrophysics Data System (ADS)
Fu, Henry; Constantino, Maira; Jabbarzadeh, Mehdi; Bansil, Rama
2017-11-01
It has frequently been hypothesized that the helical body shapes of flagellated bacteria may yield some advantage in swimming ability. The helical-shaped pathogen Helicobacter pylori allows us to test these claims. Using fast time-resolution and high-magnification phase-contrast microscopy to simultaneously image and track individual bacteria we determine cell body shape as well as rotational and translational speeds. Using the method of regularized Stokeslets, we directly compare observed speeds and trajectories to numerical calculations to validate the numerical model. Although experimental observations are limited to select cases, the model allows quantification of the effects of body helicity, length, and diameter. We find that due to relatively slow body rotation rates, the helical shape makes at most a 15% contribution to propulsive thrust. The effect of body shape on swimming speeds is instead dominated by variations in translational drag required to move the cell body. Because helical cells are one of the strongest candidates for propulsion arising from the cell body, our results imply that quite generally, swimming speeds of flagellated bacteria can only be increased a little by by body propulsion.
NASA Technical Reports Server (NTRS)
Lewis, Steven J.; Palacios, David M.
2013-01-01
This software can track multiple moving objects within a video stream simultaneously, use visual features to aid in the tracking, and initiate tracks based on object detection in a subregion. A simple programmatic interface allows plugging into larger image chain modeling suites. It extracts unique visual features for aid in tracking and later analysis, and includes sub-functionality for extracting visual features about an object identified within an image frame. Tracker Toolkit utilizes a feature extraction algorithm to tag each object with metadata features about its size, shape, color, and movement. Its functionality is independent of the scale of objects within a scene. The only assumption made on the tracked objects is that they move. There are no constraints on size within the scene, shape, or type of movement. The Tracker Toolkit is also capable of following an arbitrary number of objects in the same scene, identifying and propagating the track of each object from frame to frame. Target objects may be specified for tracking beforehand, or may be dynamically discovered within a tripwire region. Initialization of the Tracker Toolkit algorithm includes two steps: Initializing the data structures for tracked target objects, including targets preselected for tracking; and initializing the tripwire region. If no tripwire region is desired, this step is skipped. The tripwire region is an area within the frames that is always checked for new objects, and all new objects discovered within the region will be tracked until lost (by leaving the frame, stopping, or blending in to the background).
2013-01-01
Background Functional magnetic resonance (fMR) imaging offers plenty of new opportunities in the diagnosis of central nervous system diseases. Diffusion tensor imaging (DTI) is a technique sensitive to the random motion of water providing information about tissue architecture. We applied DTI to normal appearing spinal cords of 13 dogs of different breeds and body weights in a 3.0 T magnetic resonance (MR) scanner. The aim was to study fiber tracking (FT) patterns by tractography and the variations of the fractional anisotropy (FA) and the apparent diffusion coefficient (ADC) observed in the spinal cords of dogs with different sizes and at different locations (cervical and thoracolumbar). For that reason we added a DTI sequence to the standard clinical MR protocol. The values of FA and ADC were calculated by means of three regions of interest defined on the cervical or the thoracolumbar spinal cord (ROI 1, 2, and 3). Results The shape of the spinal cord fiber tracts was well illustrated following tractography and the exiting nerve roots could be differentiated from the spinal cord fiber tracts. Routine MR scanning times were extended for 8 to 12 min, depending on the size of the field of view (FOV), the slice thickness, and the size of the interslice gaps. In small breed dogs (< 15 kg body weight) the fibers could be tracked over a length of approximately 10 vertebral bodies with scanning times of about 8 min, whereas in large breed dogs (> 25 kg body weight) the traceable fiber length was about 5 vertebral bodies which took 10 to 12 min scanning time. FA and ADC values showed mean values of 0.447 (FA), and 0.560 × 10-3 mm2/s (ADC), respectively without any differences detected with regard to different dog sizes and spinal cord 45 segments examined. Conclusion FT is suitable for the graphical depiction of the canine spinal cord and the exiting nerve roots. The FA and ADC values offer an objective measure for evaluation of the spinal cord fiber integrity in dogs. PMID:23618404
Kevin Ford; Connie Harrington; Sheel Bansal; Peter J. Gould; Brad St. Clair
2016-01-01
Under climate change, the reduction of frost risk, onset of warm temperatures and depletion of soil moisture are all likely to occur earlier in the year in many temperate regions. The resilience of tree species will depend on their ability to track these changes in climate with shifts in phenology that lead to earlier growth initiation in the spring. Exposure to warm...
NASA Astrophysics Data System (ADS)
Gray, Robert H. R.; Leslie, Thomas A.; Civale, John; Kennedy, James E.; ter Haar, Gail
2007-05-01
Real time ultrasound monitoring of tissue ablation in clinical HIFU treatments currently depends on the observation of the appearance of new hyperechoic regions within the target volume, allowing visually directed treatment. These grey-scale changes are attributed to the formation of gas or vapour bubbles. In this study, scanned track lesions have been formed in ex vivo bovine liver samples at a range of ablative intensities (free field spatial peak intensities 7 - 47 kW cm-2), and tracking speeds (1-2 mms-1). Their appearance on conventional B-mode ultrasound images has been assessed using digital imaging techniques over the first 60 seconds following HIFU exposure. The size of the lesion as seen on the ultrasound scan is compared to the macroscopic size of the lesion at dissection. It is seen that the lesion size is highly dependent on the intensity and scanning speed of the transducer. Reliable lesions can be created using scanned tracks at the lowest powers, with increased numbers of cycles, and grey-scale changes correlated strongly with the histological findings. Although not a highly sensitive indication of ablated area, ultrasound monitoring of treatment is highly specific thus confirming its clinical utility.
Examination of ductile spall failure through direct numerical simulation
NASA Astrophysics Data System (ADS)
Becker, Richard
2017-06-01
Direct numerical simulation is used to examine the growth and coalescence of a random population of voids leading to spall failure. Void nucleating particles are explicitly represented in the initial geometry, and the arbitrary Lagrange-Eulerian finite element code tracks the void evolution to create the spall surface. The flow fields capture strain localization associated with void interaction at low porosities and ligament necking at final coalescence. Simulations are run to assess the influence of material strain hardening and strain rate sensitivity on void growth and coalescence. These analyses also provide the evolution of longitudinal stress and the energy dissipated, and they reveal a length scale associated with the spall. Additional calculations are performed to examine the influence of loading pulse shape on spall behavior for triangular shaped pressure loading. A dependence of spall scab thickness on pulse shape is determined. These results show localization delayed until porosities reach a few percent and they demonstrate a consistent stress versus porosity relation. The simulations also provide a direct correlation between the spall stress history and the free surface velocity, which can aid in understanding stress corrections applied to experimental data.
NASA Astrophysics Data System (ADS)
Suzuki, Masahiro; Nakade, Koji; Ido, Atsushi
As the maximum speed of high-speed trains increases, flow-induced vibration of trains in tunnels has become a subject of discussion in Japan. In this paper, we report the result of a study on use of modifications of train shapes as a countermeasure for reducing an unsteady aerodynamic force by on-track tests and a wind tunnel test. First, we conduct a statistical analysis of on-track test data to identify exterior parts of a train which cause the unsteady aerodynamic force. Next, we carry out a wind tunnel test to measure the unsteady aerodynamic force acting on a train in a tunnel and examined train shapes with a particular emphasis on the exterior parts identified by the statistical analysis. The wind tunnel test shows that fins under the car body are effective in reducing the unsteady aerodynamic force. Finally, we test the fins by an on-track test and confirmed its effectiveness.
Plasma boundary shape control and real-time equilibrium reconstruction on NSTX-U
Boyer, M. D.; Battaglia, D. J.; Mueller, D.; ...
2018-01-25
Here, the upgrade to the National Spherical Torus eXperiment (NSTX-U) included two main improvements: a larger center-stack, enabling higher toroidal field and longer pulse duration, and the addition of three new tangentially aimed neutral beam sources, which increase available heating and current drive, and allow for flexibility in shaping power, torque, current, and particle deposition profiles. To best use these new capabilities and meet the high-performance operational goals of NSTX-U, major upgrades to the NSTX-U control system (NCS) hardware and software have been made. Several control algorithms, including those used for real-time equilibrium reconstruction and shape control, have been upgradedmore » to improve and extend plasma control capabilities. As part of the commissioning phase of first plasma operations, the shape control system was tuned to control the boundary in both inner-wall limited and diverted discharges. It has been used to accurately track the requested evolution of the boundary (including the size of the inner gap between the plasma and central solenoid, which is a challenge for the ST configuration), X-point locations, and strike point locations, enabling repeatable discharge evolutions for scenario development and diagnostic commissioning.« less
Plasma boundary shape control and real-time equilibrium reconstruction on NSTX-U
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boyer, M. D.; Battaglia, D. J.; Mueller, D.
Here, the upgrade to the National Spherical Torus eXperiment (NSTX-U) included two main improvements: a larger center-stack, enabling higher toroidal field and longer pulse duration, and the addition of three new tangentially aimed neutral beam sources, which increase available heating and current drive, and allow for flexibility in shaping power, torque, current, and particle deposition profiles. To best use these new capabilities and meet the high-performance operational goals of NSTX-U, major upgrades to the NSTX-U control system (NCS) hardware and software have been made. Several control algorithms, including those used for real-time equilibrium reconstruction and shape control, have been upgradedmore » to improve and extend plasma control capabilities. As part of the commissioning phase of first plasma operations, the shape control system was tuned to control the boundary in both inner-wall limited and diverted discharges. It has been used to accurately track the requested evolution of the boundary (including the size of the inner gap between the plasma and central solenoid, which is a challenge for the ST configuration), X-point locations, and strike point locations, enabling repeatable discharge evolutions for scenario development and diagnostic commissioning.« less
Plasma boundary shape control and real-time equilibrium reconstruction on NSTX-U
NASA Astrophysics Data System (ADS)
Boyer, M. D.; Battaglia, D. J.; Mueller, D.; Eidietis, N.; Erickson, K.; Ferron, J.; Gates, D. A.; Gerhardt, S.; Johnson, R.; Kolemen, E.; Menard, J.; Myers, C. E.; Sabbagh, S. A.; Scotti, F.; Vail, P.
2018-03-01
The upgrade to the National Spherical Torus eXperiment (NSTX-U) included two main improvements: a larger center-stack, enabling higher toroidal field and longer pulse duration, and the addition of three new tangentially aimed neutral beam sources, which increase available heating and current drive, and allow for flexibility in shaping power, torque, current, and particle deposition profiles. To best use these new capabilities and meet the high-performance operational goals of NSTX-U, major upgrades to the NSTX-U control system (NCS) hardware and software have been made. Several control algorithms, including those used for real-time equilibrium reconstruction and shape control, have been upgraded to improve and extend plasma control capabilities. As part of the commissioning phase of first plasma operations, the shape control system was tuned to control the boundary in both inner-wall limited and diverted discharges. It has been used to accurately track the requested evolution of the boundary (including the size of the inner gap between the plasma and central solenoid, which is a challenge for the ST configuration), X-point locations, and strike point locations, enabling repeatable discharge evolutions for scenario development and diagnostic commissioning.
NASA Astrophysics Data System (ADS)
Yin, Xin; Liu, Aiping; Thornburg, Kent L.; Wang, Ruikang K.; Rugonyi, Sandra
2012-09-01
Recent advances in optical coherence tomography (OCT), and the development of image reconstruction algorithms, enabled four-dimensional (4-D) (three-dimensional imaging over time) imaging of the embryonic heart. To further analyze and quantify the dynamics of cardiac beating, segmentation procedures that can extract the shape of the heart and its motion are needed. Most previous studies analyzed cardiac image sequences using manually extracted shapes and measurements. However, this is time consuming and subject to inter-operator variability. Automated or semi-automated analyses of 4-D cardiac OCT images, although very desirable, are also extremely challenging. This work proposes a robust algorithm to semi automatically detect and track cardiac tissue layers from 4-D OCT images of early (tubular) embryonic hearts. Our algorithm uses a two-dimensional (2-D) deformable double-line model (DLM) to detect target cardiac tissues. The detection algorithm uses a maximum-likelihood estimator and was successfully applied to 4-D in vivo OCT images of the heart outflow tract of day three chicken embryos. The extracted shapes captured the dynamics of the chick embryonic heart outflow tract wall, enabling further analysis of cardiac motion.
Brownian Motion of Boomerang Colloidal Particles
NASA Astrophysics Data System (ADS)
Wei, Qi-Huo; Konya, Andrew; Wang, Feng; Selinger, Jonathan V.; Sun, Kai; Chakrabarty, Ayan
2014-03-01
We present experimental and theoretical studies on the Brownian motion of boomerang colloidal particles confined between two glass plates. Our experimental observations show that the mean displacements are biased towards the center of hydrodynamic stress (CoH), and that the mean-square displacements exhibit a crossover from short-time faster to long-time slower diffusion with the short-time diffusion coefficients dependent on the points used for tracking. A model based on Langevin theory elucidates that these behaviors are ascribed to the superposition of two diffusive modes: the ellipsoidal motion of the CoH and the rotational motion of the tracking point with respect to the CoH.
Kriegel, Fabian L; Köhler, Ralf; Bayat-Sarmadi, Jannike; Bayerl, Simon; Hauser, Anja E; Niesner, Raluca; Luch, Andreas; Cseresnyes, Zoltan
2018-03-01
Cells in their natural environment often exhibit complex kinetic behavior and radical adjustments of their shapes. This enables them to accommodate to short- and long-term changes in their surroundings under physiological and pathological conditions. Intravital multi-photon microscopy is a powerful tool to record this complex behavior. Traditionally, cell behavior is characterized by tracking the cells' movements, which yields numerous parameters describing the spatiotemporal characteristics of cells. Cells can be classified according to their tracking behavior using all or a subset of these kinetic parameters. This categorization can be supported by the a priori knowledge of experts. While such an approach provides an excellent starting point for analyzing complex intravital imaging data, faster methods are required for automated and unbiased characterization. In addition to their kinetic behavior, the 3D shape of these cells also provide essential clues about the cells' status and functionality. New approaches that include the study of cell shapes as well may also allow the discovery of correlations amongst the track- and shape-describing parameters. In the current study, we examine the applicability of a set of Fourier components produced by Discrete Fourier Transform (DFT) as a tool for more efficient and less biased classification of complex cell shapes. By carrying out a number of 3D-to-2D projections of surface-rendered cells, the applied method reduces the more complex 3D shape characterization to a series of 2D DFTs. The resulting shape factors are used to train a Self-Organizing Map (SOM), which provides an unbiased estimate for the best clustering of the data, thereby characterizing groups of cells according to their shape. We propose and demonstrate that such shape characterization is a powerful addition to, or a replacement for kinetic analysis. This would make it especially useful in situations where live kinetic imaging is less practical or not possible at all. © 2017 International Society for Advancement of Cytometry. © 2017 International Society for Advancement of Cytometry.
Fast regional readout CMOS Image Sensor for dynamic MLC tracking
NASA Astrophysics Data System (ADS)
Zin, H.; Harris, E.; Osmond, J.; Evans, P.
2014-03-01
Advanced radiotherapy techniques such as volumetric modulated arc therapy (VMAT) require verification of the complex beam delivery including tracking of multileaf collimators (MLC) and monitoring the dose rate. This work explores the feasibility of a prototype Complementary metal-oxide semiconductor Image Sensor (CIS) for tracking these complex treatments by utilising fast, region of interest (ROI) read out functionality. An automatic edge tracking algorithm was used to locate the MLC leaves edges moving at various speeds (from a moving triangle field shape) and imaged with various sensor frame rates. The CIS demonstrates successful edge detection of the dynamic MLC motion within accuracy of 1.0 mm. This demonstrates the feasibility of the sensor to verify treatment delivery involving dynamic MLC up to ~400 frames per second (equivalent to the linac pulse rate), which is superior to any current techniques such as using electronic portal imaging devices (EPID). CIS provides the basis to an essential real-time verification tool, useful in accessing accurate delivery of complex high energy radiation to the tumour and ultimately to achieve better cure rates for cancer patients.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sohrabi, M.; Habibi, M., E-mail: mortezahabibi@gmail.com; Ramezani, V.
2017-02-15
The paper presents an experimental study and analysis of full helium ion density angular distributions in a 4-kJ plasma focus device (PFD) at pressures of 10, 15, 25, and 30 mbar using large-area polycarbonate track detectors (PCTDs) (15-cm etchable diameter) processed by 50-Hz-HV electrochemical etching (ECE). Helium ion track distributions at different pressures, in particular, at the main axis of the PFD are presented. Maximum ion track density of ~4.4 × 10{sup 4} tracks/cm{sup 2} was obtained in the PCTD placed 6 cm from the anode. The ion distributions for all pressures applied are ring-shaped, which is possibly due tomore » the hollow cylindrical copper anode used. The large-area PCTD processed by ECE proves, at the present state-of-theart, a superior method for direct observation and analysis of ion distributions at a glance with minimum efforts and time. Some observations of the ion density distributions at different pressures are reported and discussed.« less
Multi-Scale Modeling of the Gamma Radiolysis of Nitrate Solutions.
Horne, Gregory P; Donoclift, Thomas A; Sims, Howard E; Orr, Robin M; Pimblott, Simon M
2016-11-17
A multiscale modeling approach has been developed for the extended time scale long-term radiolysis of aqueous systems. The approach uses a combination of stochastic track structure and track chemistry as well as deterministic homogeneous chemistry techniques and involves four key stages: radiation track structure simulation, the subsequent physicochemical processes, nonhomogeneous diffusion-reaction kinetic evolution, and homogeneous bulk chemistry modeling. The first three components model the physical and chemical evolution of an isolated radiation chemical track and provide radiolysis yields, within the extremely low dose isolated track paradigm, as the input parameters for a bulk deterministic chemistry model. This approach to radiation chemical modeling has been tested by comparison with the experimentally observed yield of nitrite from the gamma radiolysis of sodium nitrate solutions. This is a complex radiation chemical system which is strongly dependent on secondary reaction processes. The concentration of nitrite is not just dependent upon the evolution of radiation track chemistry and the scavenging of the hydrated electron and its precursors but also on the subsequent reactions of the products of these scavenging reactions with other water radiolysis products. Without the inclusion of intratrack chemistry, the deterministic component of the multiscale model is unable to correctly predict experimental data, highlighting the importance of intratrack radiation chemistry in the chemical evolution of the irradiated system.
NASA Astrophysics Data System (ADS)
Schäfer-Nolte, Eike; Schlipf, Lukas; Ternes, Markus; Reinhard, Friedemann; Kern, Klaus; Wrachtrup, Jörg
2014-11-01
We demonstrate the tracking of the spin dynamics of ensemble and individual magnetic ferritin proteins from cryogenic up to room temperature using the nitrogen-vacancy color center in diamond as a magnetic sensor. We employ different detection protocols to probe the influence of the ferritin nanomagnets on the longitudinal and transverse relaxation of the nitrogen-vacancy center, which enables magnetic sensing over a wide frequency range from Hz to GHz. The temperature dependence of the observed spectral features can be well understood by the thermally induced magnetization reversals of the ferritin and enables the determination of the anisotropy barrier of single ferritin molecules.
Using Icebergs to Constrain Fjord Circulation and Link to Glacier Dynamics
NASA Astrophysics Data System (ADS)
Sutherland, D.; Straneo, F.; Hamilton, G. S.; Stearns, L. A.; Roth, G.
2014-12-01
The importance of icebergs is increasingly being recognized in the ocean-glacier interactions community. Icebergs are ubiquitous in Greenland's outlet glacial fjords and provide a physical link between the glacier and the ocean into which they melt. The iceberg shape is influenced by glacier size and calving mechanics, while the amount of melt produced depends on ambient water properties and the residence time of the iceberg in the fjord. Here, we use hourly positions of icebergs tracked with helicopter deployed GPS sensors to calculate velocities in the Sermilik Fjord/Helheim Glacier system. Data comes from three summertime deployments in 2012-2014, where icebergs were tagged in the ice mélange and moved through the fjord and onto the continental shelf. The iceberg-derived velocities provide information on ice mélange movement, fjord variability, and coastal currents on the shelf. Using simple melt rate parameterizations, we estimate the total freshwater input due to iceberg melt in Sermilik Fjord based on the observed residence times and satellite-derived iceberg distributions. These observations complement conventional oceanographic and glaciological data, and can quickly, and relatively inexpensively, characterize circulation throughout any given glacier-ocean system.
NASA Astrophysics Data System (ADS)
Meier, D.; Lukin, G.; Thieme, N.; Bönisch, P.; Dadzis, K.; Büttner, L.; Pätzold, O.; Czarske, J.; Stelter, M.
2017-03-01
This paper describes novel equipment for model experiments designed for detailed studies on electromagnetically driven flows as well as solidification and melting processes with low-melting metals in a square-based container. Such model experiments are relevant for a validation of numerical flow simulation, in particular in the field of directional solidification of multi-crystalline photovoltaic silicon ingots. The equipment includes two square-shaped electromagnetic coils and a melt container with a base of 220×220 mm2 and thermostat-controlled heat exchangers at top and bottom. A system for dual-plane, spatial- and time-resolved flow measurements as well as for in-situ tracking of the solid-liquid interface is developed on the basis of the ultrasound Doppler velocimetry. The parameters of the model experiment are chosen to meet the scaling laws for a transfer of experimental results to real silicon growth processes. The eutectic GaInSn alloy and elemental gallium with melting points of 10.5 °C and 29.8 °C, respectively, are used as model substances. Results of experiments for testing the equipment are presented and discussed.
Motion tracing system for ultrasound guided HIFU
NASA Astrophysics Data System (ADS)
Xiao, Xu; Jiang, Tingyi; Corner, George; Huang, Zhihong
2017-03-01
One main limitation in HIFU treatment is the abdominal movement in liver and kidney caused by respiration. The study has set up a tracking model which mainly compromises of a target carrying box and a motion driving balloon. A real-time B-mode ultrasound guidance method suitable for tracking of the abdominal organ motion in 2D was established and tested. For the setup, the phantoms mimicking moving organs are carefully prepared with agar surrounding round-shaped egg-white as the target of focused ultrasound ablation. Physiological phantoms and animal tissues are driven moving reciprocally along the main axial direction of the ultrasound image probe with slightly motion perpendicular to the axial direction. The moving speed and range could be adjusted by controlling the inflation and deflation speed and amount of the balloon driven by a medical ventilator. A 6-DOF robotic arm was used to position the focused ultrasound transducer. The overall system was trying to estimate to simulate the actual movement caused by human respiration. HIFU ablation experiments using phantoms and animal organs were conducted to test the tracking effect. Ultrasound strain elastography was used to post estimate the efficiency of the tracking algorithms and system. In moving state, the axial size of the lesion (perpendicular to the movement direction) are averagely 4mm, which is one third larger than the lesion got when the target was not moving. This presents the possibility of developing a low-cost real-time method of tracking organ motion during HIFU treatment in liver or kidney.
Model reference tracking control of an aircraft: a robust adaptive approach
NASA Astrophysics Data System (ADS)
Tanyer, Ilker; Tatlicioglu, Enver; Zergeroglu, Erkan
2017-05-01
This work presents the design and the corresponding analysis of a nonlinear robust adaptive controller for model reference tracking of an aircraft that has parametric uncertainties in its system matrices and additive state- and/or time-dependent nonlinear disturbance-like terms in its dynamics. Specifically, robust integral of the sign of the error feedback term and an adaptive term is fused with a proportional integral controller. Lyapunov-based stability analysis techniques are utilised to prove global asymptotic convergence of the output tracking error. Extensive numerical simulations are presented to illustrate the performance of the proposed robust adaptive controller.
2011-12-02
construction and validation of predictive computer models such as those used in Time-domain Analysis Simulation for Advanced Tracking (TASAT), a...characterization data, successful construction and validation of predictive computer models was accomplished. And an investigation in pose determination from...currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES
NASA Technical Reports Server (NTRS)
Hung, R. J.; Tsao, Y. D.; Hong, B. B.; Leslie, F. W.
1988-01-01
Time dependent evolutions of the profile of free surface (bubble shapes) for a cylindrical container partially filled with a Newtonian fluid of constant density, rotating about its axis of symmetry, have been studied. Numerical computations of the dynamics of bubble shapes have been carried out with the following situations: (1) linear functions of spin-up and spin-down in low and microgravity environments, (2) step functions of spin-up and spin-down in a low gravity environment, and (3) sinusoidal function oscillation of gravity environment in high and low rotating cylinder speeds.
Tracking control of time-varying knee exoskeleton disturbed by interaction torque.
Li, Zhan; Ma, Wenhao; Yin, Ziguang; Guo, Hongliang
2017-11-01
Knee exoskeletons have been increasingly applied as assistive devices to help lower-extremity impaired people to make their knee joints move through providing external movement compensation. Tracking control of knee exoskeletons guided by human intentions often encounters time-varying (time-dependent) issues and the disturbance interaction torque, which may dramatically put an influence up on their dynamic behaviors. Inertial and viscous parameters of knee exoskeletons can be estimated to be time-varying due to unexpected mechanical vibrations and contact interactions. Moreover, the interaction torque produced from knee joint of wearers has an evident disturbance effect on regular motions of knee exoskeleton. All of these points can increase difficultly of accurate control of knee exoskeletons to follow desired joint angle trajectories. This paper proposes a novel control strategy for controlling knee exoskeleton with time-varying inertial and viscous coefficients disturbed by interaction torque. Such designed controller is able to make the tracking error of joint angle of knee exoskeletons exponentially converge to zero. Meanwhile, the proposed approach is robust to guarantee the tracking error bounded when the interaction torque exists. Illustrative simulation and experiment results are presented to show efficiency of the proposed controller. Additionally, comparisons with gradient dynamic (GD) approach and other methods are also presented to demonstrate efficiency and superiority of the proposed control strategy for tracking joint angle of knee exoskeleton. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Opto-numerical procedures supporting dynamic lower limbs monitoring and their medical diagnosis
NASA Astrophysics Data System (ADS)
Witkowski, Marcin; Kujawińska, Malgorzata; Rapp, Walter; Sitnik, Robert
2006-01-01
New optical full-field shape measurement systems allow transient shape capture at rates between 15 and 30 Hz. These frequency rates are enough to monitor controlled movements used e.g. for medical examination purposes. In this paper we present a set of algorithms which may be applied for processing of data gathered by fringe projection method implemented for lower limbs shape measurement. The purpose of presented algorithms is to locate anatomical structures based on the limb shape and its deformation in time. The algorithms are based on local surface curvature calculation and analysis of curvature maps changes during the measurement sequence. One of anatomical structure of high medical interest that is possible to scan and analyze, is patella. Tracking of patella position and orientation under dynamic conditions may lead to detect pathological patella movements and help in knee joint disease diagnosis. Therefore the usefulness of the algorithms developed was proven at examples of patella localization and monitoring.
The effect of haptic guidance and visual feedback on learning a complex tennis task.
Marchal-Crespo, Laura; van Raai, Mark; Rauter, Georg; Wolf, Peter; Riener, Robert
2013-11-01
While haptic guidance can improve ongoing performance of a motor task, several studies have found that it ultimately impairs motor learning. However, some recent studies suggest that the haptic demonstration of optimal timing, rather than movement magnitude, enhances learning in subjects trained with haptic guidance. Timing of an action plays a crucial role in the proper accomplishment of many motor skills, such as hitting a moving object (discrete timing task) or learning a velocity profile (time-critical tracking task). The aim of the present study is to evaluate which feedback conditions-visual or haptic guidance-optimize learning of the discrete and continuous elements of a timing task. The experiment consisted in performing a fast tennis forehand stroke in a virtual environment. A tendon-based parallel robot connected to the end of a racket was used to apply haptic guidance during training. In two different experiments, we evaluated which feedback condition was more adequate for learning: (1) a time-dependent discrete task-learning to start a tennis stroke and (2) a tracking task-learning to follow a velocity profile. The effect that the task difficulty and subject's initial skill level have on the selection of the optimal training condition was further evaluated. Results showed that the training condition that maximizes learning of the discrete time-dependent motor task depends on the subjects' initial skill level. Haptic guidance was especially suitable for less-skilled subjects and in especially difficult discrete tasks, while visual feedback seems to benefit more skilled subjects. Additionally, haptic guidance seemed to promote learning in a time-critical tracking task, while visual feedback tended to deteriorate the performance independently of the task difficulty and subjects' initial skill level. Haptic guidance outperformed visual feedback, although additional studies are needed to further analyze the effect of other types of feedback visualization on motor learning of time-critical tasks.
NASA Astrophysics Data System (ADS)
Tanaka, T.; Washimi, H.
1999-06-01
The global structure of the solar wind/very local interstellar medium interaction is studied from a fully three-dimensional time-dependent magnetohydrodynamic model, in which the solar wind speed increases from 400 to 800 km/s in going from the ecliptic to pole and the heliolatitude of the low-high-speed boundary changes from 30° to 80° in going from the solar minimum to solar maximum. In addition, the interplanetary magnetic field (IMF) changes its polarity at the solar maximum. As a whole, the shapes of the terminal shock (TS) and heliopause (HP) are elongated along the solar polar axis owing to a high solar wind ram pressure over the poles. In the ecliptic plane, the heliospheric structure changes little throughout a solar cycle. The TS in this plane shows a characteristic bullet-shaped structure. In the polar plane, on the other hand, the shape of the TS exhibits many specific structures according to the stage of the solar cycle. These structures include the polygonal configuration of the polar TS seen around the solar minimum, the mesa- and terrace-shaped TSs in the high- and low-speed solar wind regions seen around the ascending phase, and the chimney-shaped TS in the high-speed solar wind region seen around the solar maximum. These structures are formed from different combinations of right-angle shock, oblique shock, and steep oblique shock so as to transport the heliosheath plasma most efficiently toward the heliotail (HT). In the HT, the hot and weakly-magnetized plasma from the high-heliolatitude TS invades as far as the ecliptic plane. A weakly time-dependent recirculation flow in the HT is a manifestation of invading flow. Distributions of magnetic field in the HT, which are a pile-up of the compressed MF over several solar cycles, are modified by the flow from high-heliolatitude.
Trajectory Adjustments Underlying Task-Specific Intermittent Force Behaviors and Muscular Rhythms
Chen, Yi-Ching; Lin, Yen-Ting; Huang, Chien-Ting; Shih, Chia-Li; Yang, Zong-Ru; Hwang, Ing-Shiou
2013-01-01
Force intermittency is one of the major causes of motor variability. Focusing on the dynamics of force intermittency, this study was undertaken to investigate how force trajectory is fine-tuned for static and dynamic force-tracking of a comparable physical load. Twenty-two healthy adults performed two unilateral resistance protocols (static force-tracking at 75% maximal effort and dynamic force-tracking in the range of 50%–100% maximal effort) using the left hand. The electromyographic activity and force profile of the designated hand were monitored. Gripping force was off-line decomposed into a primary movement spectrally identical to the target motion and a force intermittency profile containing numerous force pulses. The results showed that dynamic force-tracking exhibited greater intermittency amplitude and force pulse but a smaller amplitude ratio of primary movement to force intermittency than static force-tracking. Multi-scale entropy analysis revealed that force intermittency during dynamic force-tracking was more complex on a low time scale but more regular on a high time scale than that of static force-tracking. Together with task-dependent force intermittency properties, dynamic force-tracking exhibited a smaller 8–12 Hz muscular oscillation but a more potentiated muscular oscillation at 35–50 Hz than static force-tracking. In conclusion, force intermittency reflects differing trajectory controls for static and dynamic force-tracking. The target goal of dynamic tracking is achieved through trajectory adjustments that are more intricate and more frequent than those of static tracking, pertaining to differing organizations and functioning of muscular oscillations in the alpha and gamma bands. PMID:24098640
Zhang, Xinfu; Wang, Chao; Jin, Liji; Han, Zhuo; Xiao, Yi
2014-08-13
Plasma membranes can sense the stimulations and transmit the signals from extracellular environment and then make further responses through changes in locations, shapes or morphologies. Common fluorescent membrane markers are not well suited for long time tracking due to their shorter retention time inside plasma membranes and/or their lower photostability. To this end, we develop a new bipolar marker, Mem-SQAC, which can stably insert into plasma membranes of different cells and exhibits a long retention time over 30 min. Mem-SQAC also inherits excellent photostability from the BODIPY dye family. Large two-photon absorption cross sections and long wavelength fluorescence emissions further enhance the competitiveness of Mem-SQAC as a membrane marker. By using Mem-SQAC, significant morphological changes of plasma membranes have been monitored during heavy metal poisoning and drug induced apoptosis of MCF-7 cells; the change tendencies are so distinctly different from each other that they can be used as indicators to distinguish different cell injuries. Further on, the complete processes of endocytosis toward Staphylococcus aureus and Escherichia coli by RAW 264.7 cells have been dynamically tracked. It is discovered that plasma membranes take quite different actions in response to the two bacteria, information unavailable in previous research reports.
Probst, Thomas; Pryss, Rüdiger C.; Langguth, Berthold; Rauschecker, Josef P.; Schobel, Johannes; Reichert, Manfred; Spiliopoulou, Myra; Schlee, Winfried; Zimmermann, Johannes
2017-01-01
Only few previous studies used ecological momentary assessments to explore the time-of-day-dependence of tinnitus. The present study used data from the mobile application “TrackYourTinnitus” to explore whether tinnitus loudness and tinnitus distress fluctuate within a 24-h interval. Multilevel models were performed to account for the nested structure of assessments (level 1: 17,209 daily life assessments) nested within days (level 2: 3,570 days with at least three completed assessments), and days nested within participants (level 3: 350 participants). Results revealed a time-of-day-dependence of tinnitus. In particular, tinnitus was perceived as louder and more distressing during the night and early morning hours (from 12 a.m. to 8 a.m.) than during the upcoming day. Since previous studies suggested that stress (and stress-associated hormones) show a circadian rhythm and this might influence the time-of-day-dependence of tinnitus, we evaluated whether the described results change when statistically controlling for subjectively reported stress-levels. Correcting for subjective stress-levels, however, did not change the result that tinnitus (loudness and distress) was most severe at night and early morning. These results show that time-of-day contributes to the level of both tinnitus loudness and tinnitus distress. Possible implications of our results for the clinical management of tinnitus are that tailoring the timing of therapeutic interventions to the circadian rhythm of individual patients (chronotherapy) might be promising. PMID:28824415
Facts About Derechos - Very Damaging Windstorms
or bowed shape. The bow-shaped storms are called bow echoes.  Bow echoes typically arise when thunderstorms (typically from 40 miles to 250 miles in length) that may at times take the shape of a single bow yield vastly different outcomes --- that is, a derecho or no derecho --- depending upon how the
Backward-gazing method for heliostats shape errors measurement and calibration
NASA Astrophysics Data System (ADS)
Coquand, Mathieu; Caliot, Cyril; Hénault, François
2017-06-01
The pointing and canting accuracies and the surface shape of the heliostats have a great influence on the solar tower power plant efficiency. At the industrial scale, one of the issues to solve is the time and the efforts devoted to adjust the different mirrors of the faceted heliostats, which could take several months if the current methods were used. Accurate control of heliostat tracking requires complicated and onerous devices. Thus, methods used to adjust quickly the whole field of a plant are essential for the rise of solar tower technology with a huge number of heliostats. Wavefront detection is widely use in adaptive optics and shape error reconstruction. Such systems can be sources of inspiration for the measurement of solar facets misalignment and tracking errors. We propose a new method of heliostat characterization inspired by adaptive optics devices. This method aims at observing the brightness distributions on heliostat's surface, from different points of view close to the receiver of the power plant, in order to calculate the wavefront of the reflection of the sun on the concentrated surface to determine its errors. The originality of this new method is to use the profile of the sun to determine the defects of the mirrors. In addition, this method would be easy to set-up and could be implemented without sophisticated apparatus: only four cameras would be used to perform the acquisitions.
2012-05-15
subroutine by adding time-dependence to the thermal expansion coefficient. The user subroutine was written in Intel Visual Fortran that is compatible...temperature history dependent expansion and contraction, and the molds were modeled as elastic taking into account both mechanical and thermal strain. In...behavior was approximated by assuming the thermal coefficient of expansion to be a fourth order polynomial function of temperature. The authors
Conductive tracks of 30-MeV C60 clusters in doped and undoped tetrahedral amorphous carbon
NASA Astrophysics Data System (ADS)
Krauser, J.; Gehrke, H.-G.; Hofsäss, H.; Trautmann, C.; Weidinger, A.
2013-07-01
In insulating tetrahedral amorphous carbon (ta-C), the irradiation with 30-MeV C60 cluster ions leads to the formation of well conducting tracks. While electrical currents through individual tracks produced with monoatomic projectiles (e.g. Au or U) often exhibit rather large track to track fluctuations, C60 clusters are shown to generate highly conducting tracks with very narrow current distributions. Additionally, all recorded current-voltage curves show linear characteristics. These findings are attributed to the large specific energy loss dE/dx of the 30-MeV C60 clusters. We also investigated C60 tracks in ta-C films which were slightly doped with B, N or Fe during film growth. Doping apparently increases the ion track conductivity. However, at the same time the insulating characteristics of the pristine ta-C film can be reduced. The present C60 results are compared with data from earlier experiments with monoatomic heavy ion beams. The investigations were performed by means of atomic force microscopy including temperature dependent conductivity measurements of single ion tracks.
Object motion computation for the initiation of smooth pursuit eye movements in humans.
Wallace, Julian M; Stone, Leland S; Masson, Guillaume S
2005-04-01
Pursuing an object with smooth eye movements requires an accurate estimate of its two-dimensional (2D) trajectory. This 2D motion computation requires that different local motion measurements are extracted and combined to recover the global object-motion direction and speed. Several combination rules have been proposed such as vector averaging (VA), intersection of constraints (IOC), or 2D feature tracking (2DFT). To examine this computation, we investigated the time course of smooth pursuit eye movements driven by simple objects of different shapes. For type II diamond (where the direction of true object motion is dramatically different from the vector average of the 1-dimensional edge motions, i.e., VA not equal IOC = 2DFT), the ocular tracking is initiated in the vector average direction. Over a period of less than 300 ms, the eye-tracking direction converges on the true object motion. The reduction of the tracking error starts before the closing of the oculomotor loop. For type I diamonds (where the direction of true object motion is identical to the vector average direction, i.e., VA = IOC = 2DFT), there is no such bias. We quantified this effect by calculating the direction error between responses to types I and II and measuring its maximum value and time constant. At low contrast and high speeds, the initial bias in tracking direction is larger and takes longer to converge onto the actual object-motion direction. This effect is attenuated with the introduction of more 2D information to the extent that it was totally obliterated with a texture-filled type II diamond. These results suggest a flexible 2D computation for motion integration, which combines all available one-dimensional (edge) and 2D (feature) motion information to refine the estimate of object-motion direction over time.
Navigation with Electromagnetic Tracking for Interventional Radiology Procedures
Wood, Bradford J.; Zhang, Hui; Durrani, Amir; Glossop, Neil; Ranjan, Sohan; Lindisch, David; Levy, Eliott; Banovac, Filip; Borgert, Joern; Krueger, Sascha; Kruecker, Jochen; Viswanathan, Anand; Cleary, Kevin
2008-01-01
PURPOSE To assess the feasibility of the use of preprocedural imaging for guide wire, catheter, and needle navigation with electromagnetic tracking in phantom and animal models. MATERIALS AND METHODS An image-guided intervention software system was developed based on open-source software components. Catheters, needles, and guide wires were constructed with small position and orientation sensors in the tips. A tetrahedral-shaped weak electromagnetic field generator was placed in proximity to an abdominal vascular phantom or three pigs on the angiography table. Preprocedural computed tomographic (CT) images of the phantom or pig were loaded into custom-developed tracking, registration, navigation, and rendering software. Devices were manipulated within the phantom or pig with guidance from the previously acquired CT scan and simultaneous real-time angiography. Navigation within positron emission tomography (PET) and magnetic resonance (MR) volumetric datasets was also performed. External and endovascular fiducials were used for registration in the phantom, and registration error and tracking error were estimated. RESULTS The CT scan position of the devices within phantoms and pigs was accurately determined during angiography and biopsy procedures, with manageable error for some applications. Preprocedural CT depicted the anatomy in the region of the devices with real-time position updating and minimal registration error and tracking error (<5 mm). PET can also be used with this system to guide percutaneous biopsies to the most metabolically active region of a tumor. CONCLUSIONS Previously acquired CT, MR, or PET data can be accurately codisplayed during procedures with reconstructed imaging based on the position and orientation of catheters, guide wires, or needles. Multimodality interventions are feasible by allowing the real-time updated display of previously acquired functional or morphologic imaging during angiography, biopsy, and ablation. PMID:15802449
Software Aids Visualization of Computed Unsteady Flow
NASA Technical Reports Server (NTRS)
Kao, David; Kenwright, David
2003-01-01
Unsteady Flow Analysis Toolkit (UFAT) is a computer program that synthesizes motions of time-dependent flows represented by very large sets of data generated in computational fluid dynamics simulations. Prior to the development of UFAT, it was necessary to rely on static, single-snapshot depictions of time-dependent flows generated by flow-visualization software designed for steady flows. Whereas it typically takes weeks to analyze the results of a largescale unsteady-flow simulation by use of steady-flow visualization software, the analysis time is reduced to hours when UFAT is used. UFAT can be used to generate graphical objects of flow visualization results using multi-block curvilinear grids in the format of a previously developed NASA data-visualization program, PLOT3D. These graphical objects can be rendered using FAST, another popular flow visualization software developed at NASA. Flow-visualization techniques that can be exploited by use of UFAT include time-dependent tracking of particles, detection of vortex cores, extractions of stream ribbons and surfaces, and tetrahedral decomposition for optimal particle tracking. Unique computational features of UFAT include capabilities for automatic (batch) processing, restart, memory mapping, and parallel processing. These capabilities significantly reduce analysis time and storage requirements, relative to those of prior flow-visualization software. UFAT can be executed on a variety of supercomputers.
NASA Astrophysics Data System (ADS)
Danesh Yazdi, M.; Klaus, J.; Condon, L. E.; Maxwell, R. M.
2017-12-01
Recent advancements in analytical solutions to quantify water and solute time-variant travel time distributions (TTDs) and the related StorAge Selection (SAS) functions synthesize catchment complexity into a simplified, lumped representation. While these analytical approaches are easy and efficient in application, they require high frequency hydrochemical data for parameter estimation. Alternatively, integrated hydrologic models coupled to Lagrangian particle-tracking approaches can directly simulate age under different catchment geometries and complexity at a greater computational expense. Here, we compare and contrast the two approaches by exploring the influence of the spatial distribution of subsurface heterogeneity, interactions between distinct flow domains, diversity of flow pathways, and recharge rate on the shape of TTDs and the relating SAS functions. To this end, we use a parallel three-dimensional variably saturated groundwater model, ParFlow, to solve for the velocity fields in the subsurface. A particle-tracking model, SLIM, is then implemented to determine the age distributions at every real time and domain location, facilitating a direct characterization of the SAS functions as opposed to analytical approaches requiring calibration of such functions. Steady-state results reveal that the assumption of random age sampling scheme might only hold in the saturated region of homogeneous catchments resulting in an exponential TTD. This assumption is however violated when the vadose zone is included as the underlying SAS function gives a higher preference to older ages. The dynamical variability of the true SAS functions is also shown to be largely masked by the smooth analytical SAS functions. As the variability of subsurface spatial heterogeneity increases, the shape of TTD approaches a power-law distribution function, including a broader distribution of shorter and longer travel times. We further found that larger (smaller) magnitude of effective precipitation shifts the scale of TTD towards younger (older) travel times, while the shape of the TTD remains untouched. This work constitutes a first step in linking a numerical transport model and analytical solutions of TTD to study their assumptions and limitations, providing physical inferences for empirical parameters.
Zhuang, Jinda; Ju, Y Sungtaek
2015-09-22
The deformation and rupture of axisymmetric liquid bridges being stretched between two fully wetted coaxial disks are studied experimentally and theoretically. We numerically solve the time-dependent Navier-Stokes equations while tracking the deformation of the liquid-air interface using the arbitrary Lagrangian-Eulerian (ALE) moving mesh method to fully account for the effects of inertia and viscous forces on bridge dynamics. The effects of the stretching velocity, liquid properties, and liquid volume on the dynamics of liquid bridges are systematically investigated to provide direct experimental validation of our numerical model for stretching velocities as high as 3 m/s. The Ohnesorge number (Oh) of liquid bridges is a primary factor governing the dynamics of liquid bridge rupture, especially the dependence of the rupture distance on the stretching velocity. The rupture distance generally increases with the stretching velocity, far in excess of the static stability limit. For bridges with low Ohnesorge numbers, however, the rupture distance stay nearly constant or decreases with the stretching velocity within certain velocity windows due to the relative rupture position switching and the thread shape change. Our work provides an experimentally validated modeling approach and experimental data to help establish foundation for systematic further studies and applications of liquid bridges.
NASA Astrophysics Data System (ADS)
Weems, Andrew C.; Boyle, Anthony J.; Maitland, Duncan J.
2017-03-01
The long-term shape-recovery behavior of shape memory polymers has often been shown to be dependent on the length of time the material has been stored in the secondary shape. Typically, recovery performance and shape fixity will decrease with increased time in the secondary shape. In medical materials, a shelf-life is crucial to establish as it sets the upper threshold for device performance in a clinical setting, and a reduction in shape recovery would limit the development of SMP medical devices. Here, we present a two-year study of strain recovery, strain fixity, and shape recovery kinetics for passively and actively actuated SMPs intended for vascular devices. While kinetic experiments using immersion DMA indicate slight material relaxation and a decrease in the time to recovery, these changes are not found for bulk recovery experiments. The results indicate that a two-year shelf-life for these SMPs is very reasonable, as there is no change in the recovery kinetics, strain recovery, or strain fixity associated with this aging time. Further, a thermal accelerated aging test is presented for more rapid testing of the shape memory behavior of these SMPs and is compared with the real time aging results, indicating that this test is a reasonable indicator of the two-year behavior.
MobileFusion: real-time volumetric surface reconstruction and dense tracking on mobile phones.
Ondrúška, Peter; Kohli, Pushmeet; Izadi, Shahram
2015-11-01
We present the first pipeline for real-time volumetric surface reconstruction and dense 6DoF camera tracking running purely on standard, off-the-shelf mobile phones. Using only the embedded RGB camera, our system allows users to scan objects of varying shape, size, and appearance in seconds, with real-time feedback during the capture process. Unlike existing state of the art methods, which produce only point-based 3D models on the phone, or require cloud-based processing, our hybrid GPU/CPU pipeline is unique in that it creates a connected 3D surface model directly on the device at 25Hz. In each frame, we perform dense 6DoF tracking, which continuously registers the RGB input to the incrementally built 3D model, minimizing a noise aware photoconsistency error metric. This is followed by efficient key-frame selection, and dense per-frame stereo matching. These depth maps are fused volumetrically using a method akin to KinectFusion, producing compelling surface models. For each frame, the implicit surface is extracted for live user feedback and pose estimation. We demonstrate scans of a variety of objects, and compare to a Kinect-based baseline, showing on average ∼ 1.5cm error. We qualitatively compare to a state of the art point-based mobile phone method, demonstrating an order of magnitude faster scanning times, and fully connected surface models.
Biasetti, Jacopo; Sampath, Kaushik; Cortez, Angel; Azhir, Alaleh; Gilad, Assaf A; Kickler, Thomas S; Obser, Tobias; Ruggeri, Zaverio M; Katz, Joseph
2017-01-01
Tracking cells and proteins' phenotypic changes in deep suspensions is critical for the direct imaging of blood-related phenomena in in vitro replica of cardiovascular systems and blood-handling devices. This paper introduces fluorescence imaging techniques for space and time resolved detection of platelet activation, von Willebrand factor (VWF) conformational changes, and VWF-platelet interaction in deep suspensions. Labeled VWF, platelets, and VWF-platelet strands are suspended in deep cuvettes, illuminated, and imaged with a high-sensitivity EM-CCD camera, allowing detection using an exposure time of 1 ms. In-house postprocessing algorithms identify and track the moving signals. Recombinant VWF-eGFP (rVWF-eGFP) and VWF labeled with an FITC-conjugated polyclonal antibody are employed. Anti-P-Selectin FITC-conjugated antibodies and the calcium-sensitive probe Indo-1 are used to detect activated platelets. A positive correlation between the mean number of platelets detected per image and the percentage of activated platelets determined through flow cytometry is obtained, validating the technique. An increase in the number of rVWF-eGFP signals upon exposure to shear stress demonstrates the technique's ability to detect breakup of self-aggregates. VWF globular and unfolded conformations and self-aggregation are also observed. The ability to track the size and shape of VWF-platelet strands in space and time provides means to detect pro- and antithrombotic processes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma Yingliang; Housden, R. James; Razavi, Reza
2013-07-15
Purpose: X-ray fluoroscopically guided cardiac electrophysiology (EP) procedures are commonly carried out to treat patients with arrhythmias. X-ray images have poor soft tissue contrast and, for this reason, overlay of a three-dimensional (3D) roadmap derived from preprocedural volumetric images can be used to add anatomical information. It is useful to know the position of the catheter electrodes relative to the cardiac anatomy, for example, to record ablation therapy locations during atrial fibrillation therapy. Also, the electrode positions of the coronary sinus (CS) catheter or lasso catheter can be used for road map motion correction.Methods: In this paper, the authors presentmore » a novel unified computational framework for image-based catheter detection and tracking without any user interaction. The proposed framework includes fast blob detection, shape-constrained searching and model-based detection. In addition, catheter tracking methods were designed based on the customized catheter models input from the detection method. Three real-time detection and tracking methods are derived from the computational framework to detect or track the three most common types of catheters in EP procedures: the ablation catheter, the CS catheter, and the lasso catheter. Since the proposed methods use the same blob detection method to extract key information from x-ray images, the ablation, CS, and lasso catheters can be detected and tracked simultaneously in real-time.Results: The catheter detection methods were tested on 105 different clinical fluoroscopy sequences taken from 31 clinical procedures. Two-dimensional (2D) detection errors of 0.50 {+-} 0.29, 0.92 {+-} 0.61, and 0.63 {+-} 0.45 mm as well as success rates of 99.4%, 97.2%, and 88.9% were achieved for the CS catheter, ablation catheter, and lasso catheter, respectively. With the tracking method, accuracies were increased to 0.45 {+-} 0.28, 0.64 {+-} 0.37, and 0.53 {+-} 0.38 mm and success rates increased to 100%, 99.2%, and 96.5% for the CS, ablation, and lasso catheters, respectively. Subjective clinical evaluation by three experienced electrophysiologists showed that the detection and tracking results were clinically acceptable.Conclusions: The proposed detection and tracking methods are automatic and can detect and track CS, ablation, and lasso catheters simultaneously and in real-time. The accuracy of the proposed methods is sub-mm and the methods are robust toward low-dose x-ray fluoroscopic images, which are mainly used during EP procedures to maintain low radiation dose.« less
Tracking of multiple targets using online learning for reference model adaptation.
Pernkopf, Franz
2008-12-01
Recently, much work has been done in multiple object tracking on the one hand and on reference model adaptation for a single-object tracker on the other side. In this paper, we do both tracking of multiple objects (faces of people) in a meeting scenario and online learning to incrementally update the models of the tracked objects to account for appearance changes during tracking. Additionally, we automatically initialize and terminate tracking of individual objects based on low-level features, i.e., face color, face size, and object movement. Many methods unlike our approach assume that the target region has been initialized by hand in the first frame. For tracking, a particle filter is incorporated to propagate sample distributions over time. We discuss the close relationship between our implemented tracker based on particle filters and genetic algorithms. Numerous experiments on meeting data demonstrate the capabilities of our tracking approach. Additionally, we provide an empirical verification of the reference model learning during tracking of indoor and outdoor scenes which supports a more robust tracking. Therefore, we report the average of the standard deviation of the trajectories over numerous tracking runs depending on the learning rate.
Nanoscale Rheology and Anisotropic Diffusion Using Single Gold Nanorod Probes
NASA Astrophysics Data System (ADS)
Molaei, Mehdi; Atefi, Ehsan; Crocker, John C.
2018-03-01
The complex rotational and translational Brownian motion of anisotropic particles depends on their shape and the viscoelasticity of their surroundings. Because of their strong optical scattering and chemical versatility, gold nanorods would seem to provide the ultimate probes of rheology at the nanoscale, but the suitably accurate orientational tracking required to compute rheology has not been demonstrated. Here we image single gold nanorods with a laser-illuminated dark-field microscope and use optical polarization to determine their three-dimensional orientation to better than one degree. We convert the rotational diffusion of single nanorods in viscoelastic polyethylene glycol solutions to rheology and obtain excellent agreement with bulk measurements. Extensions of earlier models of anisotropic translational diffusion to three dimensions and viscoelastic fluids give excellent agreement with the observed motion of single nanorods. We find that nanorod tracking provides a uniquely capable approach to microrheology and provides a powerful tool for probing nanoscale dynamics and structure in a range of soft materials.
The Shape, Internal Structure and Dynamics of 433 Eros from the NEAR Laser Ranging Investigation
NASA Astrophysics Data System (ADS)
Zuber, M. T.; Smith, D. E.; Cheng, A. F.; Garvin, J. B.; NLR Science Team
2000-10-01
The NEAR Laser Rangefinder, an instrument on the NEAR-Shoemaker spacecraft, has been mapping the detailed shape of asteroid 433 Eros since February 29, 2000. The instrument has a range resolution of 31 cm and a surface spot size that varies between 8 to 45 m (depending on orbital altitude), yielding along-track profiles that are often contiguous or overlapping. The NLR has so far provided over 7 million valid measurements of the range from the NEAR-Shoemaker spacecraft to the surface of 433 Eros, which are converted to mass-centered radii through solutions for the spacecraft orbit from Doppler tracking. The current spherical harmonic model, produced in a joint solution between altimetry and Doppler, is to degree and order 48 and is characterized by a spatial resolution of 470 m and a vertical accuracy of a few tens of meters. The shape model has an RMS misfit of 1000 +/- 126 m to an ellipsoid, which represents a poor fit compared to other measured asteroids. Eros' complex shape was dominated by collisions but the asteroid shows no evidence of dumbbell-like structure suggestive of a contact binary bound loosely by self-gravitation. Clustered regions of high slopes on the walls of the two largest depressions represent evidence for structural competence. The offset between the asteroid's center of mass and center of figure can be explained by a density gradient of only 4.3 kg m-3 km-1. This minor deviation of internal structure from homogeneity is likely due to variations in mechanical competence (regolith distribution and variations in internal porosity) rather than composition. Regolith thicknesses of a few tens of meters are inferred from depths of topographic benches in craters. Impact crater morphology shows evidence of influence from both gravity and structural control. Small-scale topography reveals ridges and grooves likely generated by impact-related fracturing.
An automatic analyzer of solid state nuclear track detectors using an optic RAM as image sensor
NASA Astrophysics Data System (ADS)
Staderini, Enrico Maria; Castellano, Alfredo
1986-02-01
An optic RAM is a conventional digital random access read/write dynamic memory device featuring a quartz windowed package and memory cells regularly ordered on the chip. Such a device is used as an image sensor because each cell retains data stored in it for a time depending on the intensity of the light incident on the cell itself. The authors have developed a system which uses an optic RAM to acquire and digitize images from electrochemically etched CR39 solid state nuclear track detectors (SSNTD) in the track count rate up to 5000 cm -2. On the digital image so obtained, a microprocessor, with appropriate software, performs image analysis, filtering, tracks counting and evaluation.
Active Multimodal Sensor System for Target Recognition and Tracking
Zhang, Guirong; Zou, Zhaofan; Liu, Ziyue; Mao, Jiansen
2017-01-01
High accuracy target recognition and tracking systems using a single sensor or a passive multisensor set are susceptible to external interferences and exhibit environmental dependencies. These difficulties stem mainly from limitations to the available imaging frequency bands, and a general lack of coherent diversity of the available target-related data. This paper proposes an active multimodal sensor system for target recognition and tracking, consisting of a visible, an infrared, and a hyperspectral sensor. The system makes full use of its multisensor information collection abilities; furthermore, it can actively control different sensors to collect additional data, according to the needs of the real-time target recognition and tracking processes. This level of integration between hardware collection control and data processing is experimentally shown to effectively improve the accuracy and robustness of the target recognition and tracking system. PMID:28657609
NASA Technical Reports Server (NTRS)
Barber, P. G.; Berry, R. F.; Debnam, W. J.; Fripp, A. L.; Woodell, G.; Simchick, R. T.
1995-01-01
Using the advanced technology developed to visualize the melt-solid interface in low Prandtl number materials, crystal growth rates and interface shapes have been measured in germanium and lead tin telluride semiconductors grown in vertical Bridgman furnaces. The experimental importance of using in-situ, real time observations to determine interface shapes, to measure crystal growth rates, and to improve furnace and ampoule designs is demonstrated. The interface shapes observed in-situ, in real-time were verified by quenching and mechanically induced interface demarcation, and they were also confirmed using machined models to ascertain the absence of geometric distortions. Interface shapes depended upon the interface position in the furnace insulation zone, varied with the nature of the crystal being grown, and were dependent on the extent of transition zones at the ends of the ampoule. Actual growth rates varied significantly from the constant translation rate in response to the thermophysical properties of the crystal and its melt and the thermal conditions existing in the furnace at the interface. In the elemental semiconductor germanium the observed rates of crystal growth exceeded the imposed translation rate, but in the compound semiconductor lead tin telluride the observed rates of growth were less than the translation rate. Finally, the extent of ampoule thermal loading influenced the interface positions, the shapes, and the growth rates.
Abrasion resistant track shoe grouser
Fischer, Keith D; Diekevers, Mark S; Afdahl, Curt D; Steiner, Kevin L; Barnes, Christopher A
2013-04-23
A track shoe for a track-type vehicle. The track shoe includes a base plate and a grouser projecting away from the base plate. A capping surface structure of substantially horseshoe shaped cross-section is disposed across a distal portion of the grouser. The capping surface structure covers portions of a distal edge surface and adjacent lateral surfaces. The capping surface structure is formed from an material characterized by enhanced wear resistance relative to portions of the grouser underlying the capping surface structure.
Visual object recognition and tracking
NASA Technical Reports Server (NTRS)
Chang, Chu-Yin (Inventor); English, James D. (Inventor); Tardella, Neil M. (Inventor)
2010-01-01
This invention describes a method for identifying and tracking an object from two-dimensional data pictorially representing said object by an object-tracking system through processing said two-dimensional data using at least one tracker-identifier belonging to the object-tracking system for providing an output signal containing: a) a type of the object, and/or b) a position or an orientation of the object in three-dimensions, and/or c) an articulation or a shape change of said object in said three dimensions.
Falk, Marianne; Larsson, Tobias; Keall, Paul; Chul Cho, Byung; Aznar, Marianne; Korreman, Stine; Poulsen, Per; Munck Af Rosenschold, Per
2012-03-01
Real-time dynamic multileaf collimator (MLC) tracking for management of intrafraction tumor motion can be challenging for highly modulated beams, as the leaves need to travel far to adjust for target motion perpendicular to the leaf travel direction. The plan modulation can be reduced by using a leaf position constraint (LPC) that reduces the difference in the position of adjacent MLC leaves in the plan. The purpose of this study was to investigate the impact of the LPC on the quality of inversely optimized arc radiotherapy plans and the effect of the MLC motion pattern on the dosimetric accuracy of MLC tracking delivery. Specifically, the possibility of predicting the accuracy of MLC tracking delivery based on the plan modulation was investigated. Inversely optimized arc radiotherapy plans were created on CT-data of three lung cancer patients. For each case, five plans with a single 358° arc were generated with LPC priorities of 0 (no LPC), 0.25, 0.5, 0.75, and 1 (highest possible LPC), respectively. All the plans had a prescribed dose of 2 Gy × 30, used 6 MV, a maximum dose rate of 600 MU/min and a collimator angle of 45° or 315°. To quantify the plan modulation, an average adjacent leaf distance (ALD) was calculated by averaging the mean adjacent leaf distance for each control point. The linear relationship between the plan quality [i.e., the calculated dose distributions and the number of monitor units (MU)] and the LPC was investigated, and the linear regression coefficient as well as a two tailed confidence level of 95% was used in the evaluation. The effect of the plan modulation on the performance of MLC tracking was tested by delivering the plans to a cylindrical diode array phantom moving with sinusoidal motion in the superior-inferior direction with a peak-to-peak displacement of 2 cm and a cycle time of 6 s. The delivery was adjusted to the target motion using MLC tracking, guided in real-time by an infrared optical system. The dosimetric results were evaluated using gamma index evaluation with static target measurements as reference. The plan quality parameters did not depend significantly on the LPC (p ≥ 0.066), whereas the ALD depended significantly on the LPC (p < 0.001). The gamma index failure rate depended significantly on the ALD, weighted to the percentage of the beam delivered in each control point of the plan (ALD(w)) when MLC tracking was used (p < 0.001), but not for delivery without MLC tracking (p ≥ 0.342). The gamma index failure rate with the criteria of 2% and 2 mm was decreased from > 33.9% without MLC tracking to <31.4% (LPC 0) and <2.2% (LPC 1) with MLC tracking. The results indicate that the dosimetric robustness of MLC tracking delivery of an inversely optimized arc radiotherapy plan can be improved by incorporating leaf position constraints in the objective function without otherwise affecting the plan quality. The dosimetric robustness may be estimated prior to delivery by evaluating the ALD(w) of the plan.
Shape Sensing Techniques for Continuum Robots in Minimally Invasive Surgery: A Survey.
Shi, Chaoyang; Luo, Xiongbiao; Qi, Peng; Li, Tianliang; Song, Shuang; Najdovski, Zoran; Fukuda, Toshio; Ren, Hongliang
2017-08-01
Continuum robots provide inherent structural compliance with high dexterity to access the surgical target sites along tortuous anatomical paths under constrained environments and enable to perform complex and delicate operations through small incisions in minimally invasive surgery. These advantages enable their broad applications with minimal trauma and make challenging clinical procedures possible with miniaturized instrumentation and high curvilinear access capabilities. However, their inherent deformable designs make it difficult to realize 3-D intraoperative real-time shape sensing to accurately model their shape. Solutions to this limitation can lead themselves to further develop closely associated techniques of closed-loop control, path planning, human-robot interaction, and surgical manipulation safety concerns in minimally invasive surgery. Although extensive model-based research that relies on kinematics and mechanics has been performed, accurate shape sensing of continuum robots remains challenging, particularly in cases of unknown and dynamic payloads. This survey investigates the recent advances in alternative emerging techniques for 3-D shape sensing in this field and focuses on the following categories: fiber-optic-sensor-based, electromagnetic-tracking-based, and intraoperative imaging modality-based shape-reconstruction methods. The limitations of existing technologies and prospects of new technologies are also discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chao, M; Yuan, Y; Lo, Y
Purpose: To develop a novel strategy to extract the lung tumor motion from cone beam CT (CBCT) projections by an active contour model with interpolated respiration learned from diaphragm motion. Methods: Tumor tracking on CBCT projections was accomplished with the templates derived from planning CT (pCT). There are three major steps in the proposed algorithm: 1) The pCT was modified to form two CT sets: a tumor removed pCT and a tumor only pCT, the respective digitally reconstructed radiographs DRRtr and DRRto following the same geometry of the CBCT projections were generated correspondingly. 2) The DRRtr was rigidly registered withmore » the CBCT projections on the frame-by-frame basis. Difference images between CBCT projections and the registered DRRtr were generated where the tumor visibility was appreciably enhanced. 3) An active contour method was applied to track the tumor motion on the tumor enhanced projections with DRRto as templates to initialize the tumor tracking while the respiratory motion was compensated for by interpolating the diaphragm motion estimated by our novel constrained linear regression approach. CBCT and pCT from five patients undergoing stereotactic body radiotherapy were included in addition to scans from a Quasar phantom programmed with known motion. Manual tumor tracking was performed on CBCT projections and was compared to the automatic tracking to evaluate the algorithm accuracy. Results: The phantom study showed that the error between the automatic tracking and the ground truth was within 0.2mm. For the patients the discrepancy between the calculation and the manual tracking was between 1.4 and 2.2 mm depending on the location and shape of the lung tumor. Similar patterns were observed in the frequency domain. Conclusion: The new algorithm demonstrated the feasibility to track the lung tumor from noisy CBCT projections, providing a potential solution to better motion management for lung radiation therapy.« less
NASA Astrophysics Data System (ADS)
Gaudin, Damien; Moroni, Monica; Taddeucci, Jacopo; Scarlato, Piergiorgio; Shindler, Luca
2014-07-01
Image-based techniques enable high-resolution observation of the pyroclasts ejected during Strombolian explosions and drawing inferences on the dynamics of volcanic activity. However, data extraction from high-resolution videos is time consuming and operator dependent, while automatic analysis is often challenging due to the highly variable quality of images collected in the field. Here we present a new set of algorithms to automatically analyze image sequences of explosive eruptions: the pyroclast tracking velocimetry (PyTV) toolbox. First, a significant preprocessing is used to remove the image background and to detect the pyroclasts. Then, pyroclast tracking is achieved with a new particle tracking velocimetry algorithm, featuring an original predictor of velocity based on the optical flow equation. Finally, postprocessing corrects the systematic errors of measurements. Four high-speed videos of Strombolian explosions from Yasur and Stromboli volcanoes, representing various observation conditions, have been used to test the efficiency of the PyTV against manual analysis. In all cases, >106 pyroclasts have been successfully detected and tracked by PyTV, with a precision of 1 m/s for the velocity and 20% for the size of the pyroclast. On each video, more than 1000 tracks are several meters long, enabling us to study pyroclast properties and trajectories. Compared to manual tracking, 3 to 100 times more pyroclasts are analyzed. PyTV, by providing time-constrained information, links physical properties and motion of individual pyroclasts. It is a powerful tool for the study of explosive volcanic activity, as well as an ideal complement for other geological and geophysical volcano observation systems.
Optical neural network system for pose determination of spinning satellites
NASA Technical Reports Server (NTRS)
Lee, Andrew; Casasent, David
1990-01-01
An optical neural network architecture and algorithm based on a Hopfield optimization network are presented for multitarget tracking. This tracker utilizes a neuron for every possible target track, and a quadratic energy function of neural activities which is minimized using gradient descent neural evolution. The neural net tracker is demonstrated as part of a system for determining position and orientation (pose) of spinning satellites with respect to a robotic spacecraft. The input to the system is time sequence video from a single camera. Novelty detection and filtering are utilized to locate and segment novel regions from the input images. The neural net multitarget tracker determines the correspondences (or tracks) of the novel regions as a function of time, and hence the paths of object (satellite) parts. The path traced out by a given part or region is approximately elliptical in image space, and the position, shape and orientation of the ellipse are functions of the satellite geometry and its pose. Having a geometric model of the satellite, and the elliptical path of a part in image space, the three-dimensional pose of the satellite is determined. Digital simulation results using this algorithm are presented for various satellite poses and lighting conditions.
Brownian motion of a particle with arbitrary shape.
Cichocki, Bogdan; Ekiel-Jeżewska, Maria L; Wajnryb, Eligiusz
2015-06-07
Brownian motion of a particle with an arbitrary shape is investigated theoretically. Analytical expressions for the time-dependent cross-correlations of the Brownian translational and rotational displacements are derived from the Smoluchowski equation. The role of the particle mobility center is determined and discussed.
History dependence in insect flight decisions during odor tracking.
Pang, Rich; van Breugel, Floris; Dickinson, Michael; Riffell, Jeffrey A; Fairhall, Adrienne
2018-02-01
Natural decision-making often involves extended decision sequences in response to variable stimuli with complex structure. As an example, many animals follow odor plumes to locate food sources or mates, but turbulence breaks up the advected odor signal into intermittent filaments and puffs. This scenario provides an opportunity to ask how animals use sparse, instantaneous, and stochastic signal encounters to generate goal-oriented behavioral sequences. Here we examined the trajectories of flying fruit flies (Drosophila melanogaster) and mosquitoes (Aedes aegypti) navigating in controlled plumes of attractive odorants. While it is known that mean odor-triggered flight responses are dominated by upwind turns, individual responses are highly variable. We asked whether deviations from mean responses depended on specific features of odor encounters, and found that odor-triggered turns were slightly but significantly modulated by two features of odor encounters. First, encounters with higher concentrations triggered stronger upwind turns. Second, encounters occurring later in a sequence triggered weaker upwind turns. To contextualize the latter history dependence theoretically, we examined trajectories simulated from three normative tracking strategies. We found that neither a purely reactive strategy nor a strategy in which the tracker learned the plume centerline over time captured the observed history dependence. In contrast, "infotaxis", in which flight decisions maximized expected information gain about source location, exhibited a history dependence aligned in sign with the data, though much larger in magnitude. These findings suggest that while true plume tracking is dominated by a reactive odor response it might also involve a history-dependent modulation of responses consistent with the accumulation of information about a source over multi-encounter timescales. This suggests that short-term memory processes modulating decision sequences may play a role in natural plume tracking.
History dependence in insect flight decisions during odor tracking
van Breugel, Floris; Dickinson, Michael; Riffell, Jeffrey A.; Fairhall, Adrienne
2018-01-01
Natural decision-making often involves extended decision sequences in response to variable stimuli with complex structure. As an example, many animals follow odor plumes to locate food sources or mates, but turbulence breaks up the advected odor signal into intermittent filaments and puffs. This scenario provides an opportunity to ask how animals use sparse, instantaneous, and stochastic signal encounters to generate goal-oriented behavioral sequences. Here we examined the trajectories of flying fruit flies (Drosophila melanogaster) and mosquitoes (Aedes aegypti) navigating in controlled plumes of attractive odorants. While it is known that mean odor-triggered flight responses are dominated by upwind turns, individual responses are highly variable. We asked whether deviations from mean responses depended on specific features of odor encounters, and found that odor-triggered turns were slightly but significantly modulated by two features of odor encounters. First, encounters with higher concentrations triggered stronger upwind turns. Second, encounters occurring later in a sequence triggered weaker upwind turns. To contextualize the latter history dependence theoretically, we examined trajectories simulated from three normative tracking strategies. We found that neither a purely reactive strategy nor a strategy in which the tracker learned the plume centerline over time captured the observed history dependence. In contrast, “infotaxis”, in which flight decisions maximized expected information gain about source location, exhibited a history dependence aligned in sign with the data, though much larger in magnitude. These findings suggest that while true plume tracking is dominated by a reactive odor response it might also involve a history-dependent modulation of responses consistent with the accumulation of information about a source over multi-encounter timescales. This suggests that short-term memory processes modulating decision sequences may play a role in natural plume tracking. PMID:29432454
NASA Astrophysics Data System (ADS)
Nielsen, Jens C. O.; Li, Xin
2018-01-01
An iterative procedure for numerical prediction of long-term degradation of railway track geometry (longitudinal level) due to accumulated differential settlement of ballast/subgrade is presented. The procedure is based on a time-domain model of dynamic vehicle-track interaction to calculate the contact loads between sleepers and ballast in the short-term, which are then used in an empirical model to determine the settlement of ballast/subgrade below each sleeper in the long-term. The number of load cycles (wheel passages) accounted for in each iteration step is determined by an adaptive step length given by a maximum settlement increment. To reduce the computational effort for the simulations of dynamic vehicle-track interaction, complex-valued modal synthesis with a truncated modal set is applied for the linear subset of the discretely supported track model with non-proportional spatial distribution of viscous damping. Gravity loads and state-dependent vehicle, track and wheel-rail contact conditions are accounted for as external loads on the modal model, including situations involving loss of (and recovered) wheel-rail contact, impact between hanging sleeper and ballast, and/or a prescribed variation of non-linear track support stiffness properties along the track model. The procedure is demonstrated by calculating the degradation of longitudinal level over time as initiated by a prescribed initial local rail irregularity (dipped welded rail joint).
Object acquisition and tracking for space-based surveillance
NASA Astrophysics Data System (ADS)
1991-11-01
This report presents the results of research carried out by Space Computer Corporation under the U.S. government's Small Business Innovation Research (SBIR) Program. The work was sponsored by the Strategic Defense Initiative Organization and managed by the Office of Naval Research under Contracts N00014-87-C-0801 (Phase 1) and N00014-89-C-0015 (Phase 2). The basic purpose of this research was to develop and demonstrate a new approach to the detection of, and initiation of track on, moving targets using data from a passive infrared or visual sensor. This approach differs in very significant ways from the traditional approach of dividing the required processing into time dependent, object dependent, and data dependent processing stages. In that approach individual targets are first detected in individual image frames, and the detections are then assembled into tracks. That requires that the signal to noise ratio in each image frame be sufficient for fairly reliable target detection. In contrast, our approach bases detection of targets on multiple image frames, and, accordingly, requires a smaller signal to noise ratio. It is sometimes referred to as track before detect, and can lead to a significant reduction in total system cost. For example, it can allow greater detection range for a single sensor, or it can allow the use of smaller sensor optics. Both the traditional and track before detect approaches are applicable to systems using scanning sensors, as well as those which use staring sensors.
Object acquisition and tracking for space-based surveillance. Final report, Dec 88-May 90
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1991-11-27
This report presents the results of research carried out by Space Computer Corporation under the U.S. government's Small Business Innovation Research (SBIR) Program. The work was sponsored by the Strategic Defense Initiative Organization and managed by the Office of Naval Research under Contracts N00014-87-C-0801 (Phase I) and N00014-89-C-0015 (Phase II). The basic purpose of this research was to develop and demonstrate a new approach to the detection of, and initiation of track on, moving targets using data from a passive infrared or visual sensor. This approach differs in very significant ways from the traditional approach of dividing the required processingmore » into time dependent, object-dependent, and data-dependent processing stages. In that approach individual targets are first detected in individual image frames, and the detections are then assembled into tracks. That requires that the signal to noise ratio in each image frame be sufficient for fairly reliable target detection. In contrast, our approach bases detection of targets on multiple image frames, and, accordingly, requires a smaller signal to noise ratio. It is sometimes referred to as track before detect, and can lead to a significant reduction in total system cost. For example, it can allow greater detection range for a single sensor, or it can allow the use of smaller sensor optics. Both the traditional and track before detect approaches are applicable to systems using scanning sensors, as well as those which use staring sensors.« less
Runaways and weathervanes: The shape of stellar bow shocks
NASA Astrophysics Data System (ADS)
Henney, W. J.; Tarango-Yong, J. A.
2017-11-01
Stellar bow shocks are the result of the supersonic interaction between a stellar wind and its environment. Some of these are "runaways": high-velocity stars that have been ejected from a star cluster. Others are "weather vanes", where it is the local interstellar medium itself that is moving, perhaps as the result of a champagne flow of ionized gas from a nearby HII region. We propose a new two-dimensional classification scheme for bow shapes, which is based on dimensionless geometric ratios that can be estimated from observational images. The two ratios are related to the flatness of the bow’s apex, which we term "planitude" and the openness of its wings, which we term "alatude". We calculate the inclination-dependent tracks on the planitude-alatude plane that are predicted by simple models for the bow shock shape. We also measure the shapes of bow shocks from three different observational datasets: mid-infrared arcs around hot main-sequence stars, far-infrared arcs around luminous cool stars, and emission-line arcs around proplyds and other young stars in the Orion Nebula. Clear differences are found between the different datasets in their distributions on the planitude-alatude plane, which can be used to constrain the physics of the bow shock interaction and emission mechanisms in the different classes of object.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Babailov, S. P., E-mail: babajlov@niic.nsc.ru; National Research Tomsk Polytechnic University, Lenin Avenue 30, Tomsk 634050; Purtov, P. A.
An expression has been derived for the time dependence of the NMR line shape for systems with multi-site chemical exchange in the absence of spin-spin coupling, in a zero saturation limit. The dynamics of variation of the NMR line shape with time is considered in detail for the case of two-site chemical exchange. Mathematical programs have been designed for numerical simulation of the NMR spectra of chemical exchange systems. The analytical expressions obtained are useful for NMR line shape simulations for systems with photoinduced chemical exchange.
Shape-Constrained Segmentation Approach for Arctic Multiyear Sea Ice Floe Analysis
NASA Technical Reports Server (NTRS)
Tarabalka, Yuliya; Brucker, Ludovic; Ivanoff, Alvaro; Tilton, James C.
2013-01-01
The melting of sea ice is correlated to increases in sea surface temperature and associated climatic changes. Therefore, it is important to investigate how rapidly sea ice floes melt. For this purpose, a new Tempo Seg method for multi temporal segmentation of multi year ice floes is proposed. The microwave radiometer is used to track the position of an ice floe. Then,a time series of MODIS images are created with the ice floe in the image center. A Tempo Seg method is performed to segment these images into two regions: Floe and Background.First, morphological feature extraction is applied. Then, the central image pixel is marked as Floe, and shape-constrained best merge region growing is performed. The resulting tworegionmap is post-filtered by applying morphological operators.We have successfully tested our method on a set of MODIS images and estimated the area of a sea ice floe as afunction of time.
NASA Technical Reports Server (NTRS)
Banks, H. T.; Silcox, R. J.; Keeling, S. L.; Wang, C.
1989-01-01
A unified treatment of the linear quadratic tracking (LQT) problem, in which a control system's dynamics are modeled by a linear evolution equation with a nonhomogeneous component that is linearly dependent on the control function u, is presented; the treatment proceeds from the theoretical formulation to a numerical approximation framework. Attention is given to two categories of LQT problems in an infinite time interval: the finite energy and the finite average energy. The behavior of the optimal solution for finite time-interval problems as the length of the interval tends to infinity is discussed. Also presented are the formulations and properties of LQT problems in a finite time interval.
Roussel, Nicolas; Sprenger, Jeff; Tappan, Susan J; Glaser, Jack R
2014-01-01
The behavior of the well-characterized nematode, Caenorhabditis elegans (C. elegans), is often used to study the neurologic control of sensory and motor systems in models of health and neurodegenerative disease. To advance the quantification of behaviors to match the progress made in the breakthroughs of genetics, RNA, proteins, and neuronal circuitry, analysis must be able to extract subtle changes in worm locomotion across a population. The analysis of worm crawling motion is complex due to self-overlap, coiling, and entanglement. Using current techniques, the scope of the analysis is typically restricted to worms to their non-occluded, uncoiled state which is incomplete and fundamentally biased. Using a model describing the worm shape and crawling motion, we designed a deformable shape estimation algorithm that is robust to coiling and entanglement. This model-based shape estimation algorithm has been incorporated into a framework where multiple worms can be automatically detected and tracked simultaneously throughout the entire video sequence, thereby increasing throughput as well as data validity. The newly developed algorithms were validated against 10 manually labeled datasets obtained from video sequences comprised of various image resolutions and video frame rates. The data presented demonstrate that tracking methods incorporated in WormLab enable stable and accurate detection of these worms through coiling and entanglement. Such challenging tracking scenarios are common occurrences during normal worm locomotion. The ability for the described approach to provide stable and accurate detection of C. elegans is critical to achieve unbiased locomotory analysis of worm motion. PMID:26435884
The Kinect as an interventional tracking system
NASA Astrophysics Data System (ADS)
Wang, Xiang L.; Stolka, Philipp J.; Boctor, Emad; Hager, Gregory; Choti, Michael
2012-02-01
This work explores the suitability of low-cost sensors for "serious" medical applications, such as tracking of interventional tools in the OR, for simulation, and for education. Although such tracking - i.e. the acquisition of pose data e.g. for ultrasound probes, tissue manipulation tools, needles, but also tissue, bone etc. - is well established, it relies mostly on external devices such as optical or electromagnetic trackers, both of which mandate the use of special markers or sensors attached to each single entity whose pose is to be recorded, and also require their calibration to the tracked entity, i.e. the determination of the geometric relationship between the marker's and the object's intrinsic coordinate frames. The Microsoft Kinect sensor is a recently introduced device for full-body tracking in the gaming market, but it was quickly hacked - due to its wide range of tightly integrated sensors (RGB camera, IR depth and greyscale camera, microphones, accelerometers, and basic actuation) - and used beyond this area. As its field of view and its accuracy are within reasonable usability limits, we describe a medical needle-tracking system for interventional applications based on the Kinect sensor, standard biopsy needles, and no necessary attachments, thus saving both cost and time. Its twin cameras are used as a stereo pair to detect needle-shaped objects, reconstruct their pose in four degrees of freedom, and provide information about the most likely candidate.
Modeling and controller design of a 6-DOF precision positioning system
NASA Astrophysics Data System (ADS)
Cai, Kunhai; Tian, Yanling; Liu, Xianping; Fatikow, Sergej; Wang, Fujun; Cui, Liangyu; Zhang, Dawei; Shirinzadeh, Bijan
2018-05-01
A key hurdle to meet the needs of micro/nano manipulation in some complex cases is the inadequate workspace and flexibility of the operation ends. This paper presents a 6-degree of freedom (DOF) serial-parallel precision positioning system, which consists of two compact type 3-DOF parallel mechanisms. Each parallel mechanism is driven by three piezoelectric actuators (PEAs), guided by three symmetric T-shape hinges and three elliptical flexible hinges, respectively. It can extend workspace and improve flexibility of the operation ends. The proposed system can be assembled easily, which will greatly reduce the assembly errors and improve the positioning accuracy. In addition, the kinematic and dynamic model of the 6-DOF system are established, respectively. Furthermore, in order to reduce the tracking error and improve the positioning accuracy, the Discrete-time Model Predictive Controller (DMPC) is applied as an effective control method. Meanwhile, the effectiveness of the DMCP control method is verified. Finally, the tracking experiment is performed to verify the tracking performances of the 6-DOF stage.
Passive Markers for Tracking Surgical Instruments in Real-Time 3-D Ultrasound Imaging
Stoll, Jeffrey; Ren, Hongliang; Dupont, Pierre E.
2013-01-01
A family of passive echogenic markers is presented by which the position and orientation of a surgical instrument can be determined in a 3-D ultrasound volume, using simple image processing. Markers are attached near the distal end of the instrument so that they appear in the ultrasound volume along with the instrument tip. They are detected and measured within the ultrasound image, thus requiring no external tracking device. This approach facilitates imaging instruments and tissue simultaneously in ultrasound-guided interventions. Marker-based estimates of instrument pose can be used in augmented reality displays or for image-based servoing. Design principles for marker shapes are presented that ensure imaging system and measurement uniqueness constraints are met. An error analysis is included that can be used to guide marker design and which also establishes a lower bound on measurement uncertainty. Finally, examples of marker measurement and tracking algorithms are presented along with experimental validation of the concepts. PMID:22042148
Modeling the glass transition of amorphous networks for shape-memory behavior
NASA Astrophysics Data System (ADS)
Xiao, Rui; Choi, Jinwoo; Lakhera, Nishant; Yakacki, Christopher M.; Frick, Carl P.; Nguyen, Thao D.
2013-07-01
In this paper, a thermomechanical constitutive model was developed for the time-dependent behaviors of the glass transition of amorphous networks. The model used multiple discrete relaxation processes to describe the distribution of relaxation times for stress relaxation, structural relaxation, and stress-activated viscous flow. A non-equilibrium thermodynamic framework based on the fictive temperature was introduced to demonstrate the thermodynamic consistency of the constitutive theory. Experimental and theoretical methods were developed to determine the parameters describing the distribution of stress and structural relaxation times and the dependence of the relaxation times on temperature, structure, and driving stress. The model was applied to study the effects of deformation temperatures and physical aging on the shape-memory behavior of amorphous networks. The model was able to reproduce important features of the partially constrained recovery response observed in experiments. Specifically, the model demonstrated a strain-recovery overshoot for cases programmed below Tg and subjected to a constant mechanical load. This phenomenon was not observed for materials programmed above Tg. Physical aging, in which the material was annealed for an extended period of time below Tg, shifted the activation of strain recovery to higher temperatures and increased significantly the initial recovery rate. For fixed-strain recovery, the model showed a larger overshoot in the stress response for cases programmed below Tg, which was consistent with previous experimental observations. Altogether, this work demonstrates how an understanding of the time-dependent behaviors of the glass transition can be used to tailor the temperature and deformation history of the shape-memory programming process to achieve more complex shape recovery pathways, faster recovery responses, and larger activation stresses.
Fenn, Daniel J; Porter, Mason A; McDonald, Mark; Williams, Stacy; Johnson, Neil F; Jones, Nick S
2009-09-01
We study the cluster dynamics of multichannel (multivariate) time series by representing their correlations as time-dependent networks and investigating the evolution of network communities. We employ a node-centric approach that allows us to track the effects of the community evolution on the functional roles of individual nodes without having to track entire communities. As an example, we consider a foreign exchange market network in which each node represents an exchange rate and each edge represents a time-dependent correlation between the rates. We study the period 2005-2008, which includes the recent credit and liquidity crisis. Using community detection, we find that exchange rates that are strongly attached to their community are persistently grouped with the same set of rates, whereas exchange rates that are important for the transfer of information tend to be positioned on the edges of communities. Our analysis successfully uncovers major trading changes that occurred in the market during the credit crisis.
NASA Astrophysics Data System (ADS)
Fenn, Daniel J.; Porter, Mason A.; McDonald, Mark; Williams, Stacy; Johnson, Neil F.; Jones, Nick S.
2009-09-01
We study the cluster dynamics of multichannel (multivariate) time series by representing their correlations as time-dependent networks and investigating the evolution of network communities. We employ a node-centric approach that allows us to track the effects of the community evolution on the functional roles of individual nodes without having to track entire communities. As an example, we consider a foreign exchange market network in which each node represents an exchange rate and each edge represents a time-dependent correlation between the rates. We study the period 2005-2008, which includes the recent credit and liquidity crisis. Using community detection, we find that exchange rates that are strongly attached to their community are persistently grouped with the same set of rates, whereas exchange rates that are important for the transfer of information tend to be positioned on the edges of communities. Our analysis successfully uncovers major trading changes that occurred in the market during the credit crisis.
Laser Metal Deposition as Repair Technology for a Gas Turbine Burner Made of Inconel 718
NASA Astrophysics Data System (ADS)
Petrat, Torsten; Graf, Benjamin; Gumenyuk, Andrey; Rethmeier, Michael
Maintenance, repair and overhaul of components are of increasing interest for parts of high complexity and expensive manufacturing costs. In this paper a production process for laser metal deposition is presented, and used to repair a gas turbine burner of Inconel 718. Different parameters for defined track geometries were determined to attain a near net shape deposition with consistent build-up rate for changing wall thicknesses over the manufacturing process. Spot diameter, powder feed rate, welding velocity and laser power were changed as main parameters for a different track size. An optimal overlap rate for a constant layer height was used to calculate the best track size for a fitting layer width similar to the part dimension. Deviations in width and height over the whole build-up process were detected and customized build-up strategies for the 3D sequences were designed. The results show the possibility of a near net shape repair by using different track geometries with laser metal deposition.
Nanowire growth from the viewpoint of the thin film polylayer growth theory
NASA Astrophysics Data System (ADS)
Kashchiev, Dimo
2018-03-01
The theory of polylayer growth of thin solid films is employed for description of the growth kinetics of single-crystal nanowires. Expressions are derived for the dependences of the height h and radius r of a given nanowire on time t, as well as for the h(r) dependence. These dependences are applicable immediately after the nanowire nucleation on the substrate and thus include the period during which the nucleated nanowire changes its shape from that of cap to that of column. The analysis shows that the nanowire cap-to-column shape transition is continuous and makes it possible to kinetically define the nanowire shape-transition radius by means of the nanowire radial and axial growth rates. The obtained h(t), r(t) and h(r) dependences are found to provide a good description of available experimental data for growth of self-nucleated GaN nanowires by the vapor-solid mechanism.
Manifestation of two-channel nonlocal spin transport in the shapes of Hanle curves
NASA Astrophysics Data System (ADS)
Roundy, R. C.; Prestgard, M. C.; Tiwari, A.; Mishchenko, E. G.; Raikh, M. E.
2014-09-01
The dynamics of charge-density fluctuations in a system of two tunnel-coupled wires contains two diffusion modes with dispersion iω =Dq2 and iω =Dq2+2/τt, where D is the diffusion coefficient and τt is the tunneling time between the wires. The dispersion of corresponding spin-density modes depends on magnetic field as a result of the spin precession with Larmour frequency ωL. The presence of two modes affects the shape of the Hanle curve describing the spin-dependent resistance R between the ferromagnetic strips covering the nonmagnetic wires. We demonstrate that the relative shapes of the R (ωL) curves, one measured within the same wire and the other measured between the wires, depends on the ratio τt/τs, where τs is the spin-diffusion time. If the coupling between the wires is local, i.e., only at the point x =0, then the difference of the shapes of intrawire and interwire Hanle curves reflects the difference in statistics of diffusive trajectories, which "switch" or do not switch near x =0. When one of the coupled wires is bent into a loop with a radius a, the shape of the Hanle curve reflects the statistics of random walks on the loop. This statistics is governed by the dimensionless parameter a /√Dτs .
Effect of form of obstacle on speed of crowd evacuation
NASA Astrophysics Data System (ADS)
Yano, Ryosuke
2018-03-01
This paper investigates the effect of the form of an obstacle on the time that a crowd takes to evacuate a room, using a toy model. Pedestrians are modeled as active soft matter moving toward a point with intended velocities. An obstacle is placed in front of the exit, and it has one of four shapes: a cylindrical column, a triangular prism, a quadratic prism, or a diamond prism. Numerical results indicate that the evacuation-completion time depends on the shape of the obstacle. Obstacles with a circular cylinder (C.C.) shape yield the shortest evacuation-completion time in the proposed model.
Computer image analysis of etched tracks from ionizing radiation
NASA Technical Reports Server (NTRS)
Blanford, George E.
1994-01-01
I proposed to continue a cooperative research project with Dr. David S. McKay concerning image analysis of tracks. Last summer we showed that we could measure track densities using the Oxford Instruments eXL computer and software that is attached to an ISI scanning electron microscope (SEM) located in building 31 at JSC. To reduce the dependence on JSC equipment, we proposed to transfer the SEM images to UHCL for analysis. Last summer we developed techniques to use digitized scanning electron micrographs and computer image analysis programs to measure track densities in lunar soil grains. Tracks were formed by highly ionizing solar energetic particles and cosmic rays during near surface exposure on the Moon. The track densities are related to the exposure conditions (depth and time). Distributions of the number of grains as a function of their track densities can reveal the modality of soil maturation. As part of a consortium effort to better understand the maturation of lunar soil and its relation to its infrared reflectance properties, we worked on lunar samples 67701,205 and 61221,134. These samples were etched for a shorter time (6 hours) than last summer's sample and this difference has presented problems for establishing the correct analysis conditions. We used computer counting and measurement of area to obtain preliminary track densities and a track density distribution that we could interpret for sample 67701,205. This sample is a submature soil consisting of approximately 85 percent mature soil mixed with approximately 15 percent immature, but not pristine, soil.
Speed-constrained three-axes attitude control using kinematic steering
NASA Astrophysics Data System (ADS)
Schaub, Hanspeter; Piggott, Scott
2018-06-01
Spacecraft attitude control solutions typically are torque-level algorithms that simultaneously control both the attitude and angular velocity tracking errors. In contrast, robotic control solutions are kinematic steering commands where rates are treated as the control variable, and a servo-tracking control subsystem is present to achieve the desired control rates. In this paper kinematic attitude steering controls are developed where an outer control loop establishes a desired angular response history to a tracking error, and an inner control loop tracks the commanded body angular rates. The overall stability relies on the separation principle of the inner and outer control loops which must have sufficiently different response time scales. The benefit is that the outer steering law response can be readily shaped to a desired behavior, such as limiting the approach angular velocity when a large tracking error is corrected. A Modified Rodrigues Parameters implementation is presented that smoothly saturates the speed response. A robust nonlinear body rate servo loop is developed which includes integral feedback. This approach provides a convenient modular framework that makes it simple to interchange outer and inner control loops to readily setup new control implementations. Numerical simulations illustrate the expected performance for an aggressive reorientation maneuver subject to an unknown external torque.
NASA Astrophysics Data System (ADS)
Ndem Ikot, Akpan; Akpan, Ita O.; Abbey, T. M.; Hassanabadi, Hassan
2016-05-01
We propose improved ring shaped like potential of the form, V(r, θ) = V(r) + (ħ2/2Mr2)[(β sin2 θ + γ cos2 θ + λ) / sin θ cos θ]2 and its exact solutions are presented via the Nikiforov-Uvarov method. The angle dependent part V(θ) = (ħ2 / 2 Mr2)[(β sin2 θ + γ cos2 θ + λ) / sin θ cos θ]2, which is reported for the first time embodied the novel angle dependent (NAD) potential and harmonic novel angle dependent potential (HNAD) as special cases. We discuss in detail the effects of the improved ring shaped like potential on the radial parts of the spherical harmonic and Coulomb potentials.
Time-over-threshold for pulse shape discrimination in a time-of-flight phoswich PET detector.
Chang, Chen-Ming; Cates, Joshua W; Levin, Craig S
2017-01-07
It is well known that a PET detector capable of measuring both photon time-of-flight (TOF) and depth-of-interaction (DOI) improves the image quality and accuracy. Phoswich designs have been realized in PET detectors to measure DOI for more than a decade. However, PET detectors based on phoswich designs put great demand on the readout circuits, which have to differentiate the pulse shape produced by different crystal layers. A simple pulse shape discrimination approach is required to realize the phoswich designs in a clinical PET scanner, which consists of thousands of scintillation crystal elements. In this work, we studied time-over-threshold (ToT) as a pulse shape parameter for DOI. The energy, timing and DOI performance were evaluated for a phoswich detector design comprising [Formula: see text] mm LYSO:Ce crystal optically coupled to [Formula: see text] mm calcium co-doped LSO:Ce,Ca(0.4%) crystal read out by a silicon photomultiplier (SiPM). A DOI accuracy of 97.2% has been achieved for photopeak events using the proposed time-over-threshold (ToT) processing. The energy resolution without correction for SiPM non-linearity was [Formula: see text]% and [Formula: see text]% FWHM at 511 keV for LYSO and LSO crystal layers, respectively. The coincidence time resolution for photopeak events ranges from 164.6 ps to 183.1 ps FWHM, depending on the layer combinations. The coincidence time resolution for inter-crystal scatter events ranges from 214.6 ps to 418.3 ps FWHM, depending on the energy windows applied. These results show great promises of using ToT for pulse shape discrimination in a TOF phoswich detector since a ToT measurement can be easily implemented in readout electronics.
NASA Astrophysics Data System (ADS)
Granade, Christopher; Combes, Joshua; Cory, D. G.
2016-03-01
In recent years, Bayesian methods have been proposed as a solution to a wide range of issues in quantum state and process tomography. State-of-the-art Bayesian tomography solutions suffer from three problems: numerical intractability, a lack of informative prior distributions, and an inability to track time-dependent processes. Here, we address all three problems. First, we use modern statistical methods, as pioneered by Huszár and Houlsby (2012 Phys. Rev. A 85 052120) and by Ferrie (2014 New J. Phys. 16 093035), to make Bayesian tomography numerically tractable. Our approach allows for practical computation of Bayesian point and region estimators for quantum states and channels. Second, we propose the first priors on quantum states and channels that allow for including useful experimental insight. Finally, we develop a method that allows tracking of time-dependent states and estimates the drift and diffusion processes affecting a state. We provide source code and animated visual examples for our methods.
Adaptive and accelerated tracking-learning-detection
NASA Astrophysics Data System (ADS)
Guo, Pengyu; Li, Xin; Ding, Shaowen; Tian, Zunhua; Zhang, Xiaohu
2013-08-01
An improved online long-term visual tracking algorithm, named adaptive and accelerated TLD (AA-TLD) based on Tracking-Learning-Detection (TLD) which is a novel tracking framework has been introduced in this paper. The improvement focuses on two aspects, one is adaption, which makes the algorithm not dependent on the pre-defined scanning grids by online generating scale space, and the other is efficiency, which uses not only algorithm-level acceleration like scale prediction that employs auto-regression and moving average (ARMA) model to learn the object motion to lessen the detector's searching range and the fixed number of positive and negative samples that ensures a constant retrieving time, but also CPU and GPU parallel technology to achieve hardware acceleration. In addition, in order to obtain a better effect, some TLD's details are redesigned, which uses a weight including both normalized correlation coefficient and scale size to integrate results, and adjusts distance metric thresholds online. A contrastive experiment on success rate, center location error and execution time, is carried out to show a performance and efficiency upgrade over state-of-the-art TLD with partial TLD datasets and Shenzhou IX return capsule image sequences. The algorithm can be used in the field of video surveillance to meet the need of real-time video tracking.
Novel Behavioral and Neural Evidences for Age-Related changes in Force complexity.
Chen, Yi-Ching; Lin, Linda L; Hwang, Ing-Shiou
2018-02-17
This study investigated age-related changes in behavioral and neural complexity for a polyrhythmic movement, which appeared to be an exception to the loss of complexity hypothesis. Young (n = 15; age = 24.2 years) and older (15; 68.1 years) adults performed low-level force-tracking with isometric index abduction to couple a compound sinusoidal target. Multi-scale entropy (MSE) of tracking force and inter-spike interval (ISI) of motor unit (MU) in the first dorsal interosseus muscle were assessed. The MSE area of tracking force at shorter time scales of older adults was greater (more complex) than that of young adults, whereas an opposite trend (less complex for the elders) was noted at longer time scales. The MSE area of force fluctuations (the stochastic component of the tracking force) were generally smaller (less complex) for older adults. Along with greater mean and coefficient of ISI, the MSE area of the cumulative discharge rate of elders tended to be lower (less complex) than that of young adults. In conclusion, age-related complexity changes in polyrhythmic force-tracking depended on the time scale. The adaptive behavioral consequences could be multi-factorial origins of the age-related impairment in rate coding, increased discharge noises, and lower discharge complexity of pooled MUs.
Weng, Mo
2016-01-01
Although Snail is essential for disassembly of adherens junctions during epithelial–mesenchymal transitions (EMTs), loss of adherens junctions in Drosophila melanogaster gastrula is delayed until mesoderm is internalized, despite the early expression of Snail in that primordium. By combining live imaging and quantitative image analysis, we track the behavior of E-cadherin–rich junction clusters, demonstrating that in the early stages of gastrulation most subapical clusters in mesoderm not only persist, but move apically and enhance in density and total intensity. All three phenomena depend on myosin II and are temporally correlated with the pulses of actomyosin accumulation that drive initial cell shape changes during gastrulation. When contractile myosin is absent, the normal Snail expression in mesoderm, or ectopic Snail expression in ectoderm, is sufficient to drive early disassembly of junctions. In both cases, junctional disassembly can be blocked by simultaneous induction of myosin contractility. Our findings provide in vivo evidence for mechanosensitivity of cell–cell junctions and imply that myosin-mediated tension can prevent Snail-driven EMT. PMID:26754645
Detection of Storm Damage Tracks with EOS Data
NASA Technical Reports Server (NTRS)
Jedlovec, Gary J.; Nair, Udaysankar; Haines, Stephanie L.
2006-01-01
The damage surveys conducted by the NWS in the aftermath of a reported tornadic event are used to document the location of the tornado ground damage track (pathlength and width) and an estimation of the tornado intensity. This study explores the possibility of using near-real-time medium and high spatial resolution satellite imagery from the NASA Earth Observing System satellites to provide additional information for the surveys. Moderate Resolution Imaging Spectroradiometer (MODIS) and Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data were used to study the damage tracks from three tornadic storms: the La Plata, Maryland, storm of 28 April 2002 and the Ellsinore and Marquand, Missouri, storms of 24 April 2002. These storms varied in intensity and occurred over regions with significantly different land cover. It was found that, depending on the nature of the land cover, tornado damage tracks from intense storms (F1 or greater) and hail storms may be evident in ASTER, Landsat, and MODIS satellite imagery. In areas where the land cover is dominated by forests, the scar patterns can show up very clearly, while in areas of grassland and regions with few trees, scar patterns are not as obvious or cannot be seen at all in the satellite imagery. The detection of previously unidentified segments of a damage track caused by the 24 April 2002 Marquand, Missouri, tornado demonstrates the utility of satellite imagery for damage surveys. However, the capability to detect tornado tracks in satellite imagery depends on the ability to observe the ground without obstruction from space and appears to be as much dependent on the nature of the underlying surface and land cover as on the severity of the tornadic storm.
Normal and radial impact of composites with embedded penny-shaped cracks
NASA Technical Reports Server (NTRS)
Sih, G. C.
1979-01-01
A method is developed for the dynamic stress analysis of a layered composite containing an embedded penny-shaped crack and subjected to normal and radial impact. The material properties of the layers are chosen such that the crack lies in a layer of matrix material while the surrounding material possesses the average elastic properties of a two-phase medium consisting of a large number of fibers embedded in the matrix. Quantitatively, the time-dependent stresses near the crack border can be described by the dynamic stress intensity factors. Their magnitude depends on time, on the material properties of the composite and on the relative size of the crack compared to the composite local geometry. Results obtained show that, for the same material properties and geometry of the composite, the dynamic stress intensity factors for an embedded (penny-shaped) crack reach their peak values within a shorter period of time and with a lower magnitude than the corresponding dynamic stress intensity factors for a through-crack.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kulagin, Victor V.; Cherepenin, Vladimir A.; Hur, Min Sup
2007-11-15
A self-consistent one-dimensional (1D) flying mirror model is developed for description of an interaction of an ultra-intense laser pulse with a thin plasma layer (foil). In this model, electrons of the foil can have large longitudinal displacements and relativistic longitudinal momenta. An approximate analytical solution for a transmitted field is derived. Transmittance of the foil shows not only a nonlinear dependence on the amplitude of the incident laser pulse, but also time dependence and shape dependence in the high-transparency regime. The results are compared with particle-in-cell (PIC) simulations and a good agreement is ascertained. Shaping of incident laser pulses usingmore » the flying mirror model is also considered. It can be used either for removing a prepulse or for reducing the length of a short laser pulse. The parameters of the system for effective shaping are specified. Predictions of the flying mirror model for shaping are compared with the 1D PIC simulations, showing good agreement.« less
NASA Astrophysics Data System (ADS)
Okazaki, Masakazu; Hattori, Ichiro; Shiraiwa, Fujio; Koizumi, Takashi
1983-08-01
Effect of strain wave shape on strain-controlled low-cycle fatigue crack propagation of SUS 304 stainless steel was investigated at 600 and 700 °C. It was found that the rate of crack propagation in a cycle-dependent region was successfully correlated with the range of cyclic J-integral, Δ Jf, regardless of the strain wave shape, frequency, and test temperature. It was also shown that the rate of crack propagation gradually increased from cycle-dependent curve to time-dependent one with decreasing frequency and slow-fast strain wave shape, and that one of the factors governing the rate of crack propagation in such a region was the ratio of the range of creep J-integral to that of total J-integral, Δ J c/Δ JT. Based on the results thus obtained, an interaction damage rule proposed semi-empirically was interpreted, with regard to crack propagation. Furthermore, fatigue crack initiation mechanism in slow-fast strain wave shape was studied, and it was shown that grain boundary sliding took an important role in it.
Recent Advances in Near-Net-Shape Fabrication of Al-Li Alloy 2195 for Launch Vehicles
NASA Technical Reports Server (NTRS)
Wagner, John; Domack, Marcia; Hoffman, Eric
2007-01-01
Recent applications in launch vehicles use 2195 processed to Super Lightweight Tank specifications. Potential benefits exist by tailoring heat treatment and other processing parameters to the application. Assess the potential benefits and advocate application of Al-Li near-net-shape technologies for other launch vehicle structural components. Work with manufacturing and material producers to optimize Al-Li ingot shape and size for enhanced near-net-shape processing. Examine time dependent properties of 2195 critical for reusable applications.
NASA Astrophysics Data System (ADS)
Rojas Vera, E. A.; Mescua, J.; Folguera, A.; Becker, T. P.; Sagripanti, L.; Fennell, L.; Orts, D.; Ramos, V. A.
2015-12-01
The Chos Malal and Agrio fold and thrust belts are located in the western part of the Neuquén basin, an Andean retroarc basin of central-western Argentina. Both belts show evidence of tectonic inversion at the western part during Late Cretaceous times. The eastern part is dominated by late Miocene deformation which also partially reactivated the western structures. This work focuses on the study of the regional structure and the deformational event that shaped the relief of this part of the Andes. Based on new field work and structural data and previously published works a detailed map of the central part of the Neuquén basin is presented. Three regional structural cross sections were surveyed and balanced using the 2d Move™ software. In order to define a more accurate uplift history, new apatite fission track analyses were carried on selected structures. These data was used for new thermal history modeling of the inner part of the Agrio and Chos Malal fold and thrust belts. The results of the fission track analyses improve the knowledge of how these fold and thrust belts have grown trough time. Two main deformational events are defined in Late Cretaceous to Paleocene and Late Miocene times. Based on this regional structural analysis and the fission track data the precise location of the orogenic front for the Late Cretaceous-Paleocene times is reconstructed and it is proposed a structural evolution of this segment of the Andes. This new exhumation data show how the Late Cretaceous to Paleocene event was a continuous and uninterrupted deformational event.
Conjugate LEP Events at Palmer Station, Antarctica: Hemisphere-Dependent Timing
NASA Astrophysics Data System (ADS)
Kim, D.; Moore, R. C.
2016-12-01
During March 2015, a large number of lightning-induced electron precipitation (LEP) events were simultaneously observed using very low frequency receivers in both the northern and southern hemispheres. After removing overlapping events and unclear (or not well-defined) events, 22 conjugate LEP events remain and are used to statistically analyze the hemispheric dependence of LEP onset time. LEP events were detected in the northern hemisphere using the VLF remote sensing method by tracking the NAA transmitter signal (24.0 kHz, Cutler, Maine) at Tuscaloosa, Alabama. In the southern hemisphere, the NPM transmitter signal (21.4 kHz, Laulaulei, Hawii) is tracked at Palmer station, Antarctica. In each case, the GLD360 dataset from Vaisala is used to determine the hemisphere of the causative lightning flash, and this is compared with the hemisphere in which the LEP event is detected first. The onset times and onset durations can be calculated using a number of different methods, however. In this paper, we compare and contrast the onset times and durations calculated using multiple different methods, with each method applied to the same 22 conjugate LEP events.
Jeon, Jae-Hyung; Chechkin, Aleksei V; Metzler, Ralf
2014-08-14
Anomalous diffusion is frequently described by scaled Brownian motion (SBM), a Gaussian process with a power-law time dependent diffusion coefficient. Its mean squared displacement is 〈x(2)(t)〉 ≃ 2K(t)t with K(t) ≃ t(α-1) for 0 < α < 2. SBM may provide a seemingly adequate description in the case of unbounded diffusion, for which its probability density function coincides with that of fractional Brownian motion. Here we show that free SBM is weakly non-ergodic but does not exhibit a significant amplitude scatter of the time averaged mean squared displacement. More severely, we demonstrate that under confinement, the dynamics encoded by SBM is fundamentally different from both fractional Brownian motion and continuous time random walks. SBM is highly non-stationary and cannot provide a physical description for particles in a thermalised stationary system. Our findings have direct impact on the modelling of single particle tracking experiments, in particular, under confinement inside cellular compartments or when optical tweezers tracking methods are used.
Wall-shaped hohlraum influence on symmetry and energetics in gas-filled hohlraums
NASA Astrophysics Data System (ADS)
Tassin, Veronique; Philippe, Franck; Laffite, Stephane; Videau, Laurent; Monteil, Marie-Christine; Villette, Bruno; Stemmler, Philippe; Bednarczyk, Sophie; Peche, Emilie; Reneaume, Benoit; Thessieux, Christian
2008-11-01
On the way to the LMJ completion, achieving ignition with 40 quads in a 2-cone configuration will be attempted as a first step. Theoretical investigation of a rugby-shaped hohlraum shows energetics optimization and a better symmetry control compared to a cylindrical hohlraum [1]. We recently conducted experiments on the Omega laser facility with 3 different wall-shaped methane-filled hohlraum configurations. We present here the experimental results. Energetics benefits are shown for reduced wall area hohlraums. The wall-shaped hohlraum influence on time-dependent radiation symmetry is also discussed. For the 3 gas-filled hohlraums configurations, we compare the foamball early-time radiographs, the D2Ar-filled capsule time-integrated images and the core self-emission images. [1] M. Vandenboomgaerde, Phys. Rev. Lett., 99, 065004 (2007).
Hannen, Jennifer C; Crews, John H; Buckner, Gregory D
2012-08-01
This paper introduces an indirect intelligent sliding mode controller (IISMC) for shape memory alloy (SMA) actuators, specifically a flexible beam deflected by a single offset SMA tendon. The controller manipulates applied voltage, which alters SMA tendon temperature to track reference bending angles. A hysteretic recurrent neural network (HRNN) captures the nonlinear, hysteretic relationship between SMA temperature and bending angle. The variable structure control strategy provides robustness to model uncertainties and parameter variations, while effectively compensating for system nonlinearities, achieving superior tracking compared to an optimized PI controller.
ERIC Educational Resources Information Center
Groetsch, Charles W.
2008-01-01
How fast does a tank drain? Of course this depends on the shape of the tank and is governed by a physical principle known as Torricelli's law. This note investigates some connections between tank shape and a mathematical function related to the time required for the tank to drain completely. The techniques employed provide some interesting…
An estimation of distribution method for infrared target detection based on Copulas
NASA Astrophysics Data System (ADS)
Wang, Shuo; Zhang, Yiqun
2015-10-01
Track-before-detect (TBD) based target detection involves a hypothesis test of merit functions which measure each track as a possible target track. Its accuracy depends on the precision of the distribution of merit functions, which determines the threshold for a test. Generally, merit functions are regarded Gaussian, and on this basis the distribution is estimated, which is true for most methods such as the multiple hypothesis tracking (MHT). However, merit functions for some other methods such as the dynamic programming algorithm (DPA) are non-Guassian and cross-correlated. Since existing methods cannot reasonably measure the correlation, the exact distribution can hardly be estimated. If merit functions are assumed Guassian and independent, the error between an actual distribution and its approximation may occasionally over 30 percent, and is divergent by propagation. Hence, in this paper, we propose a novel estimation of distribution method based on Copulas, by which the distribution can be estimated precisely, where the error is less than 1 percent without propagation. Moreover, the estimation merely depends on the form of merit functions and the structure of a tracking algorithm, and is invariant to measurements. Thus, the distribution can be estimated in advance, greatly reducing the demand for real-time calculation of distribution functions.
Orlov, Tanya; Zohary, Ehud
2018-01-17
We typically recognize visual objects using the spatial layout of their parts, which are present simultaneously on the retina. Therefore, shape extraction is based on integration of the relevant retinal information over space. The lateral occipital complex (LOC) can represent shape faithfully in such conditions. However, integration over time is sometimes required to determine object shape. To study shape extraction through temporal integration of successive partial shape views, we presented human participants (both men and women) with artificial shapes that moved behind a narrow vertical or horizontal slit. Only a tiny fraction of the shape was visible at any instant at the same retinal location. However, observers perceived a coherent whole shape instead of a jumbled pattern. Using fMRI and multivoxel pattern analysis, we searched for brain regions that encode temporally integrated shape identity. We further required that the representation of shape should be invariant to changes in the slit orientation. We show that slit-invariant shape information is most accurate in the LOC. Importantly, the slit-invariant shape representations matched the conventional whole-shape representations assessed during full-image runs. Moreover, when the same slit-dependent shape slivers were shuffled, thereby preventing their spatiotemporal integration, slit-invariant shape information was reduced dramatically. The slit-invariant representation of the various shapes also mirrored the structure of shape perceptual space as assessed by perceptual similarity judgment tests. Therefore, the LOC is likely to mediate temporal integration of slit-dependent shape views, generating a slit-invariant whole-shape percept. These findings provide strong evidence for a global encoding of shape in the LOC regardless of integration processes required to generate the shape percept. SIGNIFICANCE STATEMENT Visual objects are recognized through spatial integration of features available simultaneously on the retina. The lateral occipital complex (LOC) represents shape faithfully in such conditions even if the object is partially occluded. However, shape must sometimes be reconstructed over both space and time. Such is the case in anorthoscopic perception, when an object is moving behind a narrow slit. In this scenario, spatial information is limited at any moment so the whole-shape percept can only be inferred by integration of successive shape views over time. We find that LOC carries shape-specific information recovered using such temporal integration processes. The shape representation is invariant to slit orientation and is similar to that evoked by a fully viewed image. Existing models of object recognition lack such capabilities. Copyright © 2018 the authors 0270-6474/18/380659-20$15.00/0.
Land processes lead to surprising patterns in atmospheric residence time
NASA Astrophysics Data System (ADS)
van der Ent, R.; Tuinenburg, O.
2017-12-01
Our research using atmospheric moisture tracking methods shows that the global average atmospheric residence time of evaporation is 8-10 days. This residence time appears to be Gamma distributed with a higher probability of shorter than average residence times and a long tail. As a consequence the median of this residence time is around 5 days. In some places in the world the first few hours/days after evaporation there seems to be a little chance for a moisture particle to precipitate again, which is reflected by a Gamma distribution having a shape parameter below 1. In this study we present global maps of this parameter using different datasets (GLDAS and ERA-Interim). The shape parameter is as such also a measure for the land-atmospheric coupling strength along the path of the atmospheric water particle. We also find that different evaporation components: canopy interception, soil evaporation and transpiration appear to have different residence time distributions. We find a daily cycle in the residence time distribution over land, which is not present over the oceans. In this paper we will show which of the evaporation components is mainly responsible for this daily pattern and thus exhibits the largest daily cycle of land-atmosphere coupling strength.
Accuracy of lesion boundary tracking in navigated breast tumor excision
NASA Astrophysics Data System (ADS)
Heffernan, Emily; Ungi, Tamas; Vaughan, Thomas; Pezeshki, Padina; Lasso, Andras; Gauvin, Gabrielle; Rudan, John; Engel, C. Jay; Morin, Evelyn; Fichtinger, Gabor
2016-03-01
PURPOSE: An electromagnetic navigation system for tumor excision in breast conserving surgery has recently been developed. Preoperatively, a hooked needle is positioned in the tumor and the tumor boundaries are defined in the needle coordinate system. The needle is tracked electromagnetically throughout the procedure to localize the tumor. However, the needle may move and the tissue may deform, leading to errors in maintaining a correct excision boundary. It is imperative to quantify these errors so the surgeon can choose an appropriate resection margin. METHODS: A commercial breast biopsy phantom with several inclusions was used. Location and shape of a lesion before and after mechanical deformation were determined using 3D ultrasound volumes. Tumor location and shape were estimated from initial contours and tracking data. The difference in estimated and actual location and shape of the lesion after deformation was quantified using the Hausdorff distance. Data collection and analysis were done using our 3D Slicer software application and PLUS toolkit. RESULTS: The deformation of the breast resulted in 3.72 mm (STD 0.67 mm) average boundary displacement for an isoelastic lesion and 3.88 mm (STD 0.43 mm) for a hyperelastic lesion. The difference between the actual and estimated tracked tumor boundary was 0.88 mm (STD 0.20 mm) for the isoelastic and 1.78 mm (STD 0.18 mm) for the hyperelastic lesion. CONCLUSION: The average lesion boundary tracking error was below 2mm, which is clinically acceptable. We suspect that stiffness of the phantom tissue affected the error measurements. Results will be validated in patient studies.
Invariantly propagating dissolution fingers in finite-width systems
NASA Astrophysics Data System (ADS)
Dutka, Filip; Szymczak, Piotr
2016-04-01
Dissolution fingers are formed in porous medium due to positive feedback between transport of reactant and chemical reactions [1-4]. We investigate two-dimensional semi-infinite systems, with constant width W in one direction. In numerical simulations we solve the Darcy flow problem combined with advection-dispersion-reaction equation for the solute transport to track the evolving shapes of the fingers and concentration of reactant in the system. We find the stationary, invariantly propagating finger shapes for different widths of the system, flow and reaction rates. Shape of the reaction front, turns out to be controlled by two dimensionless numbers - the (width-based) Péclet number PeW = vW/Dφ0 and Damköhler number DaW = ksW/v, where k is the reaction rate, s - specific reactive surface area, v - characteristic flow rate, D - diffusion coefficient of the solute, and φ0 - initial porosity of the rock matrix. Depending on PeW and DaW stationary shapes can be divided into seperate classes, e.g. parabolic-like and needle-like structures, which can be inferred from theoretical predictions. In addition we determine velocity of propagating fingers in time and concentration of reagent in the system. Our simulations are compared with natural forms (solution pipes). P. Ortoleva, J. Chadam, E. Merino, and A. Sen, Geochemical self-organization II: the reactive-infiltration instability, Am. J. Sci, 287, 1008-1040 (1987). M. L. Hoefner, and H. S. Fogler. Pore evolution and channel formation during flow and reaction in porous media, AIChE Journal 34, 45-54 (1988). C. E. Cohen, D. Ding, M. Quintard, and B. Bazin, From pore scale to wellbore scale: impact of geometry on wormhole growth in carbonate acidization, Chemical Engineering Science 63, 3088-3099 (2008). P. Szymczak and A. J. C. Ladd, Reactive-infiltration nstabilities in rocks. Part II: Dissolution of a porous matrix, J. Fluid Mech. 738, 591-630 (2014).
Three-dimensional reconstruction of the fast-start swimming kinematics of densely schooling fish
Paley, Derek A.
2012-01-01
Information transmission via non-verbal cues such as a fright response can be quantified in a fish school by reconstructing individual fish motion in three dimensions. In this paper, we describe an automated tracking framework to reconstruct the full-body trajectories of densely schooling fish using two-dimensional silhouettes in multiple cameras. We model the shape of each fish as a series of elliptical cross sections along a flexible midline. We estimate the size of each ellipse using an iterated extended Kalman filter. The shape model is used in a model-based tracking framework in which simulated annealing is applied at each step to estimate the midline. Results are presented for eight fish with occlusions. The tracking system is currently being used to investigate fast-start behaviour of schooling fish in response to looming stimuli. PMID:21642367
Current transport of leatherback sea turtles (Dermochelys coriacea) in the ocean.
Luschi, P; Sale, A; Mencacci, R; Hughes, G R; Lutjeharms, J R E; Papi, F
2003-11-07
While the long-distance movements of pelagic vertebrates are becoming known thanks to satellite telemetry, the factors determining their courses have hardly been investigated. We have analysed the effects of oceanographic factors on the post-nesting movements of three satellite-tracked leatherback turtles (Dermochelys coriacea) moving in the southwest Indian Ocean. By superimposing the turtle tracks on contemporaneous images of sea-surface temperatures and sea height anomalies, we show that currentrelated features dominate the shape of the reconstructed routes. After an initial offshore movement, turtles moved along straight routes when in the core of the current, or executed loops within eddies. Large parts of the routes were strikingly similar to those of surface drifters tracked in the same region. These findings document that long-lasting oceanic movements of marine turtles may be shaped by oceanic currents.
Current transport of leatherback sea turtles (Dermochelys coriacea) in the ocean.
Luschi, P; Sale, A; Mencacci, R; Hughes, G R; Lutjeharms, J R E; Papi, F
2003-01-01
While the long-distance movements of pelagic vertebrates are becoming known thanks to satellite telemetry, the factors determining their courses have hardly been investigated. We have analysed the effects of oceanographic factors on the post-nesting movements of three satellite-tracked leatherback turtles (Dermochelys coriacea) moving in the southwest Indian Ocean. By superimposing the turtle tracks on contemporaneous images of sea-surface temperatures and sea height anomalies, we show that currentrelated features dominate the shape of the reconstructed routes. After an initial offshore movement, turtles moved along straight routes when in the core of the current, or executed loops within eddies. Large parts of the routes were strikingly similar to those of surface drifters tracked in the same region. These findings document that long-lasting oceanic movements of marine turtles may be shaped by oceanic currents. PMID:14667360
NASA Astrophysics Data System (ADS)
Peng, Yonggang; Xie, Shijie; Zheng, Yujun; Brown, Frank L. H.
2009-12-01
Generating function calculations are extended to allow for laser pulse envelopes of arbitrary shape in numerical applications. We investigate photon emission statistics for two-level and V- and Λ-type three-level systems under time-dependent excitation. Applications relevant to electromagnetically induced transparency and photon emission from single quantum dots are presented.
Does Helicobacter pylori exhibit corkscrew motion while swimming?
NASA Astrophysics Data System (ADS)
Constantino, Maira; Hardcastle, Joseph; Bansil, Rama
2015-03-01
Helicobacter pylori is a spiral shaped bacterium associated with ulcers, gastric cancer, gastritis among other diseases. In order to colonize the harsh acidic environment of the stomach H. pylori has to go across the viscoelastic mucus layer of the stomach. Many studies have been conducted on the swimming of H. pylori in viscous media however none have taken into account the influence of cell-body shape on the trajectory. We present an experimental study of the effects of body shape in the swimming trajectory of H. pylori in viscous media by a quantitative analysis of the bacterium rotation and translation in gels using phase contrast microscopy and particle tracking techniques. Preliminary microscopic tracking measurements show very well defined helical trajectories in the spiral-shaped wild type H. pylori. These helical trajectories are not seen in rod-shaped mutants which sometimes display whirling motion about one end acting as a hinge. We will present an analysis of the different trajectories for bacteria swimming in media with different viscoelastic parameters. Supported by the National Science Foundation PHY PoLS.
Development of Automated Tracking System with Active Cameras for Figure Skating
NASA Astrophysics Data System (ADS)
Haraguchi, Tomohiko; Taki, Tsuyoshi; Hasegawa, Junichi
This paper presents a system based on the control of PTZ cameras for automated real-time tracking of individual figure skaters moving on an ice rink. In the video images of figure skating, irregular trajectories, various postures, rapid movements, and various costume colors are included. Therefore, it is difficult to determine some features useful for image tracking. On the other hand, an ice rink has a limited area and uniform high intensity, and skating is always performed on ice. In the proposed system, an ice rink region is first extracted from a video image by the region growing method, and then, a skater region is extracted using the rink shape information. In the camera control process, each camera is automatically panned and/or tilted so that the skater region is as close to the center of the image as possible; further, the camera is zoomed to maintain the skater image at an appropriate scale. The results of experiments performed for 10 training scenes show that the skater extraction rate is approximately 98%. Thus, it was concluded that tracking with camera control was successful for almost all the cases considered in the study.
Haptic Guidance Improves the Visuo-Manual Tracking of Trajectories
Bluteau, Jérémy; Coquillart, Sabine; Payan, Yohan; Gentaz, Edouard
2008-01-01
Background Learning to perform new movements is usually achieved by following visual demonstrations. Haptic guidance by a force feedback device is a recent and original technology which provides additional proprioceptive cues during visuo-motor learning tasks. The effects of two types of haptic guidances-control in position (HGP) or in force (HGF)–on visuo-manual tracking (“following”) of trajectories are still under debate. Methodology/Principals Findings Three training techniques of haptic guidance (HGP, HGF or control condition, NHG, without haptic guidance) were evaluated in two experiments. Movements produced by adults were assessed in terms of shapes (dynamic time warping) and kinematics criteria (number of velocity peaks and mean velocity) before and after the training sessions. Trajectories consisted of two Arabic and two Japanese-inspired letters in Experiment 1 and ellipses in Experiment 2. We observed that the use of HGF globally improves the fluency of the visuo-manual tracking of trajectories while no significant improvement was found for HGP or NHG. Conclusion/Significance These results show that the addition of haptic information, probably encoded in force coordinates, play a crucial role on the visuo-manual tracking of new trajectories. PMID:18335049
NASA Technical Reports Server (NTRS)
Cheng, W.; Wen, J. T.
1992-01-01
A novel fast learning rule with fast weight identification is proposed for the two-time-scale neural controller, and a two-stage learning strategy is developed for the proposed neural controller. The results of the stability analysis show that both the tracking error and the fast weight error will be uniformly bounded and converge to a bounded region which depends only on the accuracy of the slow learning if the system is sufficiently excited. The efficiency of the two-stage learning is also demonstrated by a simulation of a two-link arm.
Franco-Watkins, Ana M; Davis, Matthew E; Johnson, Joseph G
2016-11-01
Many decisions are made under suboptimal circumstances, such as time constraints. We examined how different experiences of time constraints affected decision strategies on a probabilistic inference task and whether individual differences in working memory accounted for complex strategy use across different levels of time. To examine information search and attentional processing, we used an interactive eye-tracking paradigm where task information was occluded and only revealed by an eye fixation to a given cell. Our results indicate that although participants change search strategies during the most restricted times, the occurrence of the shift in strategies depends both on how the constraints are applied as well as individual differences in working memory. This suggests that, in situations that require making decisions under time constraints, one can influence performance by being sensitive to working memory and, potentially, by acclimating people to the task time gradually.
Hydroclimatology of Extreme Precipitation and Floods Originating from the North Atlantic Ocean
NASA Astrophysics Data System (ADS)
Nakamura, Jennifer
This study explores seasonal patterns and structures of moisture transport pathways from the North Atlantic Ocean and the Gulf of Mexico that lead to extreme large-scale precipitation and floods over land. Storm tracks, such as the tropical cyclone tracks in the Northern Atlantic Ocean, are an example of moisture transport pathways. In the first part, North Atlantic cyclone tracks are clustered by the moments to identify common traits in genesis locations, track shapes, intensities, life spans, landfalls, seasonal patterns, and trends. The clustering results of part one show the dynamical behavior differences of tropical cyclones born in different parts of the basin. Drawing on these conclusions, in the second part, statistical track segment model is developed for simulation of tracks to improve reliability of tropical cyclone risk probabilities. Moisture transport pathways from the North Atlantic Ocean are also explored though the specific regional flood dynamics of the U.S. Midwest and the United Kingdom in part three of the dissertation. Part I. Classifying North Atlantic Tropical Cyclones Tracks by Mass Moments. A new method for classifying tropical cyclones or similar features is introduced. The cyclone track is considered as an open spatial curve, with the wind speed or power information along the curve considered as a mass attribute. The first and second moments of the resulting object are computed and then used to classify the historical tracks using standard clustering algorithms. Mass moments allow the whole track shape, length and location to be incorporated into the clustering methodology. Tropical cyclones in the North Atlantic basin are clustered with K-means by mass moments producing an optimum of six clusters with differing genesis locations, track shapes, intensities, life spans, landfalls, seasonality, and trends. Even variables that are not directly clustered show distinct separation between clusters. A trend analysis confirms recent conclusions of increasing tropical cyclones in the basin over the past two decades. However, the trends vary across clusters. Part II: Tropical cyclone Intensity and Track Simulator (HITS) with Atlantic Ocean Applications for Risk Assessment. A nonparametric stochastic model is developed and tested for the simulation of tropical cyclone tracks. Tropical cyclone tracks demonstrate continuity and memory over many time and space steps. Clusters of tracks can be coherent, and the separation between clusters may be marked by geographical locations where groups of tracks diverge due to the physics of the underlying process. Consequently, their evolution may be non-Markovian. Markovian simulation models, as often used, may produce tracks that potentially diverge or lose memory quicker than nature. This is addressed here through a model that simulates tracks by randomly sampling track segments of varying length, selected from historical tracks. For performance evaluation, a spatial grid is imposed on the domain of interest. For each grid box, long-term tropical cyclone risk is assessed through the annual probability distributions of the number of storm hours, landfalls, winds, and other statistics. Total storm length is determined at birth by local distribution, and movement to other tropical cyclone segments by distance to neighbor tracks, comparative vector, and age of track. An assessment of the performance for tropical cyclone track simulation and potential directions for the improvement and use of such model are discussed. Part III: Dynamical Structure of Extreme Floods in the U.S. Midwest and the United Kingdom. Twenty extreme spring floods that occurred in the Ohio Basin between 1901 and 2008, identified from daily river discharge data, are investigated and compared to the April 2011 Ohio River flood event. Composites of synoptic fields for the flood events show that all these floods are associated with a similar pattern of sustained advection of low-level moisture and warm air from the tropical Atlantic Ocean and the Gulf of Mexico. The typical flow conditions are governed by an anomalous semi-stationary ridge situated east of the US East Coast, which steers the moisture and converges it into the Ohio Valley. Significantly, the moisture path common to all the 20 cases studied here as well as the case of April 2011 is distinctly different from the normal path of Atlantic moisture during spring, which occurs further west. It is shown further that the Ohio basin moisture convergence responsible for the floods is caused primarily by the atmospheric circulation anomaly advecting the climatological mean moisture field. Transport and related convergence due to the covariance between moisture anomalies and circulation anomalies are of secondary but non-negligible importance. The importance of atmospheric circulation anomalies to floods is confirmed by conducting a similar analysis for a series of winter floods on the River Eden in northwest England.
Motion of variable-length MreB filaments at the bacterial cell membrane influences cell morphology
Reimold, Christian; Defeu Soufo, Herve Joel; Dempwolff, Felix; Graumann, Peter L.
2013-01-01
The maintenance of rod-cell shape in many bacteria depends on actin-like MreB proteins and several membrane proteins that interact with MreB. Using superresolution microscopy, we show that at 50-nm resolution, Bacillus subtilis MreB forms filamentous structures of length up to 3.4 μm underneath the cell membrane, which run at angles diverging up to 40° relative to the cell circumference. MreB from Escherichia coli forms at least 1.4-μm-long filaments. MreB filaments move along various tracks with a maximal speed of 85 nm/s, and the loss of ATPase activity leads to the formation of extended and static filaments. Suboptimal growth conditions lead to formation of patch-like structures rather than extended filaments. Coexpression of wild-type MreB with MreB mutated in the subunit interface leads to formation of shorter MreB filaments and a strong effect on cell shape, revealing a link between filament length and cell morphology. Thus MreB has an extended-filament architecture with the potential to position membrane proteins over long distances, whose localization in turn may affect the shape of the cell wall. PMID:23783036
Motion of variable-length MreB filaments at the bacterial cell membrane influences cell morphology.
Reimold, Christian; Defeu Soufo, Herve Joel; Dempwolff, Felix; Graumann, Peter L
2013-08-01
The maintenance of rod-cell shape in many bacteria depends on actin-like MreB proteins and several membrane proteins that interact with MreB. Using superresolution microscopy, we show that at 50-nm resolution, Bacillus subtilis MreB forms filamentous structures of length up to 3.4 μm underneath the cell membrane, which run at angles diverging up to 40° relative to the cell circumference. MreB from Escherichia coli forms at least 1.4-μm-long filaments. MreB filaments move along various tracks with a maximal speed of 85 nm/s, and the loss of ATPase activity leads to the formation of extended and static filaments. Suboptimal growth conditions lead to formation of patch-like structures rather than extended filaments. Coexpression of wild-type MreB with MreB mutated in the subunit interface leads to formation of shorter MreB filaments and a strong effect on cell shape, revealing a link between filament length and cell morphology. Thus MreB has an extended-filament architecture with the potential to position membrane proteins over long distances, whose localization in turn may affect the shape of the cell wall.
B1 field-insensitive transformers for RF-safe transmission lines.
Krafft, Axel; Müller, Sven; Umathum, Reiner; Semmler, Wolfhard; Bock, Michael
2006-11-01
Integration of transformers into transmission lines suppresses radiofrequency (RF)-induced heating. New figure-of-eight-shaped transformer coils are compared to conventional loop transformer coils to assess their signal transmission properties and safety profile. The transmission properties of figure-of-eight-shaped transformers were measured and compared to transformers with loop coils. Experiments to quantify the effect of decoupling from the B1 field of the MR system were conducted. Temperature measurements were performed to demonstrate the effective reduction of RF-induced heating. The transformers were investigated during active tracking experiments. Coupling to the B1 field was reduced by 18 dB over conventional loop-shaped transformer coils. MR images showed a significantly reduced artifact for the figure-of-eight- shaped coils generated by local flip-angle amplification. Comparable transmission properties were seen for both transformer types. Temperature measurements showed a maximal temperature increase of 30 K/3.5 K for an unsegmented/segmented cable. With a segmented transmission line a robotic assistance system could be successfully localized using active tracking. The figure-of-eight-shaped transformer design reduces both RF field coupling with the MR system and artifact sizes. Anatomical structure close to the figure-of-eight-shaped transformer may be less obscured as with loop-shaped transformers if these transformers are integrated into e.g. intravascular catheters.
Shape dependent electronic structure and exciton dynamics in small In(Ga)As quantum dots
NASA Astrophysics Data System (ADS)
Gomis, J.; Martínez-Pastor, J.; Alén, B.; Granados, D.; García, J. M.; Roussignol, P.
2006-12-01
We present a study of the primary optical transitions and recombination dynamics in InGaAs self-assembled quantum nanostructures with different shape. Starting from the same quantum dot seeding layer, and depending on the overgrowth conditions, these new nanostructures can be tailored in shape and are characterized by heights lower than 2 nm and base lengths around 100 nm. The geometrical shape strongly influences the electronic and optical properties of these nanostructuctures. We measure for them ground state optical transitions in the range 1.25 1.35 eV and varying energy splitting between their excited states. The temperature dependence of the exciton recombination dynamics is reported focusing on the intermediate temperature regime (before thermal escape begins to be important). In this range, an important increase of the effective photoluminescence decay time is observed and attributed to the state filling and exciton thermalization between excited and ground states. A rate equation model is also developed reproducing quite well the observed exciton dynamics.
Modelling and measurements of bunch profiles at the LHC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Papadopoulou, S.; Antoniou, F.; Argyropoulos, T.
The bunch profiles in the LHC are often observed to be non-Gaussian, both at Flat Bottom (FB) and Flat Top (FT) energies. Especially at FT, an evolution of the tail population in time is observed. In this respect, the Monte-Carlo Software for IBS and Radiation effects (SIRE) is used to track different types of beam distributions. The impact of the distribution shape on the evolution of bunch characteristics is studied. The results are compared with observations from the LHC Run 2 data.
NASA Astrophysics Data System (ADS)
Wagner, Ryan; Killgore, Jason P.; Tung, Ryan C.; Raman, Arvind; Hurley, Donna C.
2015-01-01
Contact resonance atomic force microscopy (CR-AFM) methods currently utilize the eigenvalues, or resonant frequencies, of an AFM cantilever in contact with a surface to quantify local mechanical properties. However, the cantilever eigenmodes, or vibrational shapes, also depend strongly on tip-sample contact stiffness. In this paper, we evaluate the potential of eigenmode measurements for improved accuracy and sensitivity of CR-AFM. We apply a recently developed, in situ laser scanning method to experimentally measure changes in cantilever eigenmodes as a function of tip-sample stiffness. Regions of maximum sensitivity for eigenvalues and eigenmodes are compared and found to occur at different values of contact stiffness. The results allow the development of practical guidelines for CR-AFM experiments, such as optimum laser spot positioning for different experimental conditions. These experiments provide insight into the complex system dynamics that can affect CR-AFM and lay a foundation for enhanced nanomechanical measurements with CR-AFM.
Target tracking and surveillance by fusing stereo and RFID information
NASA Astrophysics Data System (ADS)
Raza, Rana H.; Stockman, George C.
2012-06-01
Ensuring security in high risk areas such as an airport is an important but complex problem. Effectively tracking personnel, containers, and machines is a crucial task. Moreover, security and safety require understanding the interaction of persons and objects. Computer vision (CV) has been a classic tool; however, variable lighting, imaging, and random occlusions present difficulties for real-time surveillance, resulting in erroneous object detection and trajectories. Determining object ID via CV at any instance of time in a crowded area is computationally prohibitive, yet the trajectories of personnel and objects should be known in real time. Radio Frequency Identification (RFID) can be used to reliably identify target objects and can even locate targets at coarse spatial resolution, while CV provides fuzzy features for target ID at finer resolution. Our research demonstrates benefits obtained when most objects are "cooperative" by being RFID tagged. Fusion provides a method to simplify the correspondence problem in 3D space. A surveillance system can query for unique object ID as well as tag ID information, such as target height, texture, shape and color, which can greatly enhance scene analysis. We extend geometry-based tracking so that intermittent information on ID and location can be used in determining a set of trajectories of N targets over T time steps. We show that partial-targetinformation obtained through RFID can reduce computation time (by 99.9% in some cases) and also increase the likelihood of producing correct trajectories. We conclude that real-time decision-making should be possible if the surveillance system can integrate information effectively between the sensor level and activity understanding level.
Temperature dependent evolution of wrinkled single-crystal silicon ribbons on shape memory polymers.
Wang, Yu; Yu, Kai; Qi, H Jerry; Xiao, Jianliang
2017-10-25
Shape memory polymers (SMPs) can remember two or more distinct shapes, and thus can have a lot of potential applications. This paper presents combined experimental and theoretical studies on the wrinkling of single-crystal Si ribbons on SMPs and the temperature dependent evolution. Using the shape memory effect of heat responsive SMPs, this study provides a method to build wavy forms of single-crystal silicon thin films on top of SMP substrates. Silicon ribbons obtained from a Si-on-insulator (SOI) wafer are released and transferred onto the surface of programmed SMPs. Then such bilayer systems are recovered at different temperatures, yielding well-defined, wavy profiles of Si ribbons. The wavy profiles are shown to evolve with time, and the evolution behavior strongly depends on the recovery temperature. At relatively low recovery temperatures, both wrinkle wavelength and amplitude increase with time as evolution progresses. Finite element analysis (FEA) accounting for the thermomechanical behavior of SMPs is conducted to study the wrinkling of Si ribbons on SMPs, which shows good agreement with experiment. Merging of wrinkles is observed in FEA, which could explain the increase of wrinkle wavelength observed in the experiment. This study can have important implications for smart stretchable electronics, wrinkling mechanics, stimuli-responsive surface engineering, and advanced manufacturing.
Time-Resolved CubeSat Photometry with a Low Cost Electro-Optics System
NASA Astrophysics Data System (ADS)
Gasdia, F.; Barjatya, A.; Bilardi, S.
2016-09-01
Once the orbits of small debris or CubeSats are determined, optical rate-track follow-up observations can provide information for characterization or identification of these objects. Using the Celestron 11" RASA telescope and an inexpensive CMOS machine vision camera, we have obtained time-series photometry from dozens of passes of small satellites and CubeSats over sites in Florida and Massachusetts. The fast readout time of the CMOS detector allows temporally resolved sampling of glints from small wire antennae and structural facets of rapidly tumbling objects. Because the shape of most CubeSats is known, these light curves can be used in a mission support function for small satellite operators to diagnose or verify the proper functioning of an attitude control system or deployed antenna or instrument. We call this telescope system and the accompanying analysis tools OSCOM for Optical tracking and Spectral characterization of CubeSats for Operational Missions. We introduce the capability of OSCOM for space object characterization, and present photometric observations demonstrating the potential of high frame rate small satellite photometry.
Time-dependent strains and stresses in a pumpkin balloon
NASA Technical Reports Server (NTRS)
Gerngross, T.; Xu, Y.; Pellegrino, S.
2006-01-01
This paper presents a study of pumpkin-shaped superpressure balloons, consisting of gores made from a thin polymeric film attached to high stiffness, meridional tendons. This type of design is being used for the NASA ULDB balloons. The gore film shows considerable time-dependent stress relaxation, whereas the behaviour of the tendons is essentially time-independent. Upon inflation and pressurization, the "instantaneous", i.e. linear-elastic strain and stress distribution in the film show significantly higher values in the meridional direction. However, over time, and due to the biaxial visco-elastic stress relaxation of the the material, the hoop strains increase and the meridional stresses decrease, whereas the remaining strain and stress components remain substantially unchanged. These results are important for a correct assessment of the structural integrity of a pumpkin balloon in a long-duration mission, both in terms of the material performance and the overall stability of the shape of the balloon. An experimental investigation of the time dependence of the biaxial strain distribution in the film of a 4 m diameter, 48 gore pumpkin balloon is presented. The inflated shape of selected gores has been measured using photogrammetry and the time variation in strain components at some particular points of these gores has been measured under constant pressure and temperature. The results show good correlation with a numerical study, using the ABAQUS finite-element package, that includes a widely used model of the visco-elastic response of the gore material:
Gao, Xiao; Deng, Xiao; Yang, Jia; Liang, Shuang; Liu, Jie; Chen, Hong
2014-12-01
Visual attentional bias has important functions during the appearance social comparisons. However, for the limitations of experimental paradigms or analysis methods in previous studies, the time course of attentional bias to thin and fat body images among women with body dissatisfaction (BD) has still been unclear. In using free reviewing task combined with eye movement tracking, and based on event-related analyses of the critical first eye movement events, as well as epoch-related analyses of gaze durations, the current study investigated different attentional bias components to body shape/part images during 15s presentation time among 34 high BD and 34 non-BD young women. In comparison to the controls, women with BD showed sustained maintenance biases on thin and fat body images during both early automatic and late strategic processing stages. This study highlights a clear need for research on the dynamics of attentional biases related to body image and eating disturbances. Copyright © 2014 Elsevier Ltd. All rights reserved.
McMahon, Ryan; Berbeco, Ross; Nishioka, Seiko; Ishikawa, Masayori; Papiez, Lech
2008-09-01
An MLC control algorithm for delivering intensity modulated radiation therapy (IMRT) to targets that are undergoing two-dimensional (2D) rigid motion in the beam's eye view (BEV) is presented. The goal of this method is to deliver 3D-derived fluence maps over a moving patient anatomy. Target motion measured prior to delivery is first used to design a set of planned dynamic-MLC (DMLC) sliding-window leaf trajectories. During actual delivery, the algorithm relies on real-time feedback to compensate for target motion that does not agree with the motion measured during planning. The methodology is based on an existing one-dimensional (ID) algorithm that uses on-the-fly intensity calculations to appropriately adjust the DMLC leaf trajectories in real-time during exposure delivery [McMahon et al., Med. Phys. 34, 3211-3223 (2007)]. To extend the 1D algorithm's application to 2D target motion, a real-time leaf-pair shifting mechanism has been developed. Target motion that is orthogonal to leaf travel is tracked by appropriately shifting the positions of all MLC leaves. The performance of the tracking algorithm was tested for a single beam of a fractionated IMRT treatment, using a clinically derived intensity profile and a 2D target trajectory based on measured patient data. Comparisons were made between 2D tracking, 1D tracking, and no tracking. The impact of the tracking lag time and the frequency of real-time imaging were investigated. A study of the dependence of the algorithm's performance on the level of agreement between the motion measured during planning and delivery was also included. Results demonstrated that tracking both components of the 2D motion (i.e., parallel and orthogonal to leaf travel) results in delivered fluence profiles that are superior to those that track the component of motion that is parallel to leaf travel alone. Tracking lag time effects may lead to relatively large intensity delivery errors compared to the other sources of error investigated. However, the algorithm presented is robust in the sense that it does not rely on a high level of agreement between the target motion measured during treatment planning and delivery.
Method for distance determination using range-gated imaging suitable for an arbitrary pulse shape
NASA Astrophysics Data System (ADS)
Kabashnikov, Vitaly; Kuntsevich, Boris
2017-10-01
A method for distance determination with the help of range-gated viewing systems suitable for the arbitrary shape of the illumination pulse is proposed. The method is based on finding the delay time at which maximum of the return pulse energy takes place. The maximum position depends on the pulse and gate durations and, generally speaking, on the pulse shape. If the pulse length is less than or equal to the gate duration, the delay time appropriate to the maximum does not depend on the pulse shape. At equal pulse and gate durations, there is a strict local maximum, which turns into a plateau when pulse is shorter than gate duration. A delay time appropriate to the strict local maximum or the far boundary of the plateau (where non-strict maximum is) is directly related to the distance to the object. These findings are confirmed by analytical relationships for trapezoid pulses and numerical results for the real pulse shape. To verify the proposed method we used a vertical wall located at different distances from 15 to 120m as an observed object. Delay time was changing discretely in increments of 5 ns. Maximum of the signal was determined by visual observation of the object on the monitor screen. The distance defined by the proposed method coincided with the direct measurement with accuracy 1- 2m, which is comparable with the delay time step multiplied by half of the light velocity. The results can be useful in the development of 3-D vision systems.
ISS Asset Tracking Using SAW RFID Technology
NASA Technical Reports Server (NTRS)
Schellhase, Amy; Powers, Annie
2004-01-01
A team at the NASA Johnson Space Center (JSC) is undergoing final preparations to test Surface Acoustic Wave (SAW) Radio Frequency Identification (RFID) technology to track assets aboard the International Space Station (ISS). Currently, almost 10,000 U.S. items onboard the ISS are tracked within a database maintained by both the JSC ground teams and crew onboard the ISS. This barcode-based inventory management system has successfully tracked the location of 97% of the items onboard, but its accuracy is dependant on the crew to report hardware movements, taking valuable time away from science and other activities. With the addition of future modules, the volume of inventory to be tracked is expected to increase significantly. The first test of RFID technology on ISS, which will be conducted by the Expedition 16 crew later this year, will evaluate the ability of RFID technology to track consumable items. These consumables, which include office supplies and clothing, are regularly supplied to ISS and can be tagged on the ground. Automation will eliminate line-of-sight auditing requirements, directly saving crew time. This first step in automating an inventory tracking system will pave the way for future uses of RFID for inventory tracking in space. Not only are there immediate benefits for ISS applications, it is a crucial step to ensure efficient logistics support for future vehicles and exploration missions where resupplies are not readily available. Following a successful initial test, the team plans to execute additional tests for new technology, expanded operations concepts, and increased automation.
Size and shape dependence of electronic and optical excitations in TiO2 nanocrystals
NASA Astrophysics Data System (ADS)
Baishya, Kopinjol; Ogut, Serdar
2013-03-01
We present results for the electronic structures, quasi-particle gaps, and the absorption spectra of TiO2 nanocrystals of both rutile and anatase phases with various shapes, sizes, and surfaces exposed. We study the size and shape dependences of these electronic and optical properties, computed both within time-dependent density functional theory and many-body perturbation methods such as the GW-BSE, using appropriately passivated nanocrystals to mimic bulk termination. Surface effects are examined by using nanocrystals of various sizes with particular surfaces, such as (110) in rutile and (101) in anatase phases, exposed. We interpret the resulting optical absorption spectra of these nanocrystals in terms of the bulk spectra and compare them with predictions from classical Mie-Gans theory. This work was supported by the DOE Grant No. DE-FG02-09ER16072.
Vehicle trajectory linearisation to enable efficient optimisation of the constant speed racing line
NASA Astrophysics Data System (ADS)
Timings, Julian P.; Cole, David J.
2012-06-01
A driver model is presented capable of optimising the trajectory of a simple dynamic nonlinear vehicle, at constant forward speed, so that progression along a predefined track is maximised as a function of time. In doing so, the model is able to continually operate a vehicle at its lateral-handling limit, maximising vehicle performance. The technique used forms a part of the solution to the motor racing objective of minimising lap time. A new approach of formulating the minimum lap time problem is motivated by the need for a more computationally efficient and robust tool-set for understanding on-the-limit driving behaviour. This has been achieved through set point-dependent linearisation of the vehicle model and coupling the vehicle-track system using an intrinsic coordinate description. Through this, the geometric vehicle trajectory had been linearised relative to the track reference, leading to new path optimisation algorithm which can be formed as a computationally efficient convex quadratic programming problem.
Under-Track CFD-Based Shape Optimization for a Low-Boom Demonstrator Concept
NASA Technical Reports Server (NTRS)
Wintzer, Mathias; Ordaz, Irian; Fenbert, James W.
2015-01-01
The detailed outer mold line shaping of a Mach 1.6, demonstrator-sized low-boom concept is presented. Cruise trim is incorporated a priori as part of the shaping objective, using an equivalent-area-based approach. Design work is performed using a gradient-driven optimization framework that incorporates a three-dimensional, nonlinear flow solver, a parametric geometry modeler, and sensitivities derived using the adjoint method. The shaping effort is focused on reducing the under-track sonic boom level using an inverse design approach, while simultaneously satisfying the trim requirement. Conceptual-level geometric constraints are incorporated in the optimization process, including the internal layout of fuel tanks, landing gear, engine, and crew station. Details of the model parameterization and design process are documented for both flow-through and powered states, and the performance of these optimized vehicles presented in terms of inviscid L/D, trim state, pressures in the near-field and at the ground, and predicted sonic boom loudness.
Boulanger, Pierre; Flores-Mir, Carlos; Ramirez, Juan F; Mesa, Elizabeth; Branch, John W
2009-01-01
The measurements from registered images obtained from Cone Beam Computed Tomography (CBCT) and a photogrammetric sensor are used to track three-dimensional shape variations of orthodontic patients before and after their treatments. The methodology consists of five main steps: (1) the patient's bone and skin shapes are measured in 3D using the fusion of images from a CBCT and a photogrammetric sensor. (2) The bone shape is extracted from the CBCT data using a standard marching cube algorithm. (3) The bone and skin shape measurements are registered using titanium targets located on the head of the patient. (4) Using a manual segmentation technique the head and lower jaw geometry are extracted separately to deal with jaw motion at the different record visits. (5) Using natural features of the upper head the two datasets are then registered with each other and then compared to evaluate bone, teeth, and skin displacements before and after treatments. This procedure is now used at the University of Alberta orthodontic clinic.
Lévy-taxis: a novel search strategy for finding odor plumes in turbulent flow-dominated environments
NASA Astrophysics Data System (ADS)
Pasternak, Zohar; Bartumeus, Frederic; Grasso, Frank W.
2009-10-01
Locating chemical plumes in aquatic or terrestrial environments is important for many economic, conservation, security and health related human activities. The localization process is composed mainly of two phases: finding the chemical plume and then tracking it to its source. Plume tracking has been the subject of considerable study whereas plume finding has received little attention. We address here the latter issue, where the searching agent must find the plume in a region often many times larger than the plume and devoid of the relevant chemical cues. The probability of detecting the plume not only depends on the movements of the searching agent but also on the fluid mechanical regime, shaping plume intermittency in space and time; this is a basic, general problem when exploring for ephemeral resources (e.g. moving and/or concealing targets). Here we present a bio-inspired search strategy named Lévy-taxis that, under certain conditions, located odor plumes significantly faster and with a better success rate than other search strategies such as Lévy walks (LW), correlated random walks (CRW) and systematic zig-zag. These results are based on computer simulations which contain, for the first time ever, digitalized real-world water flow and chemical plume instead of their theoretical model approximations. Combining elements of LW and CRW, Lévy-taxis is particularly efficient for searching in flow-dominated environments: it adaptively controls the stochastic search pattern using environmental information (i.e. flow) that is available throughout the course of the search and shows correlation with the source providing the cues. This strategy finds natural application in real-world search missions, both by humans and autonomous robots, since it accomodates the stochastic nature of chemical mixing in turbulent flows. In addition, it may prove useful in the field of behavioral ecology, explaining and predicting the movement patterns of various animals searching for food or mates.
Data Fusion for a Vision-Radiological System: a Statistical Calibration Algorithm
DOE Office of Scientific and Technical Information (OSTI.GOV)
Enqvist, Andreas; Koppal, Sanjeev; Riley, Phillip
2015-07-01
Presented here is a fusion system based on simple, low-cost computer vision and radiological sensors for tracking of multiple objects and identifying potential radiological materials being transported or shipped. The main focus of this work is the development of calibration algorithms for characterizing the fused sensor system as a single entity. There is an apparent need for correcting for a scene deviation from the basic inverse distance-squared law governing the detection rates even when evaluating system calibration algorithms. In particular, the computer vision system enables a map of distance-dependence of the sources being tracked, to which the time-dependent radiological datamore » can be incorporated by means of data fusion of the two sensors' output data. (authors)« less
Savriama, Yoland; Jernvall, Jukka
2018-01-01
From gastrulation to late organogenesis animal development involves many genetic and bio-mechanical interactions between epithelial and mesenchymal tissues. Ectodermal organs, such as hairs, feathers and teeth are well studied examples of organs whose development is based on epithelial-mesenchymal interactions. These develop from a similar primordium through an epithelial folding and its interaction with the mesenchyme. Despite extensive knowledge on the molecular pathways involved, little is known about the role of bio-mechanical processes in the morphogenesis of these organs. We propose a simple computational model for the biomechanics of one such organ, the tooth, and contrast its predictions against cell-tracking experiments, mechanical relaxation experiments and the observed tooth shape changes over developmental time. We found that two biomechanical processes, differential tissue growth and differential cell adhesion, were enough, in the model, for the development of the 3D morphology of the early tooth germ. This was largely determined by the length and direction of growth of the cervical loops, lateral folds of the enamel epithelium. The formation of these cervical loops was found to require accelerated epithelial growth relative to other tissues and their direction of growth depended on specific differential adhesion between the three tooth tissues. These two processes and geometrical constraints in early tooth bud also explained the shape asymmetry between the lateral cervical loops and those forming in the anterior and posterior of the tooth. By performing mechanical perturbations ex vivo and in silico we inferred the distribution and direction of tensile stresses in the mesenchyme that restricted cervical loop lateral growth and forced them to grow downwards. Overall our study suggests detailed quantitative explanations for how bio-mechanical processes lead to specific morphological 3D changes over developmental time. PMID:29481561
Matich, Philip; Heithaus, Michael R
2015-06-01
Ontogenetic niche shifts are common among animals, yet most studies only investigate niche shifts at the population level, which may overlook considerable differences among individuals in the timing and dynamics of these shifts. Such divergent behaviors within size-/age-classes have important implications for the roles a population-and specific age-classes-play in their respective ecosystem(s). Using acoustic telemetry, we tracked the movements of juvenile bull sharks in the Shark River Estuary of Everglades National Park, Florida, and found that sharks increased their use of marine microhabitats with age to take advantage of more abundant resources, but continued to use freshwater and estuarine microhabitats as refuges from marine predators. Within this population-level ontogenetic niche shift, however, movement patterns varied among individual sharks, with 47 % of sharks exhibiting condition-dependent habitat use and 53 % appearing risk-averse regardless of body condition. Among sharks older than age 0, fifty percent made regular movements between adjacent regions of the estuary, while the other half made less predictable movements that often featured long-term residence in specific regions. Individual differences were apparently shaped by both intrinsic and extrinsic factors, including individual responses to food-risk trade-offs and body condition. These differences appear to develop early in the lives of bull sharks, and persist throughout their residencies in nursery habitats. The widespread occurrence of intraspecific variation in behavior among mobile taxa suggests it is important in shaping population dynamics of at least some species, and elucidating the contexts and timing in which it develops and persists is important for understanding its role within communities.
Kinetics of distribution of infections in networks
NASA Astrophysics Data System (ADS)
Avramov, I.
2007-06-01
SummaryWe develop a model for disease spreading in networks in a manner similar to the kinetics of crystallization of undercooled melts. The same kind of equations can be used in ecology and in sociology studies. For instance, they control the spread of gossip among the population. The time t dependence of the overall fraction α( t) of an infected network mass (individuals) affected by the disease is represented by an S-shaped curve. The derivative, i.e. the time dependence of intensity W( t) with which the epidemic evolves, is a bell-shaped curve. In essence, an analytical solution is offered describing the kinetics of spread of information along a ( d-dimensional) network.
Mokkath, Junais Habeeb
2017-12-20
Using first-principles time-dependent density functional theory calculations, we investigate the shape-anisotropy effects on the optical response of a spherical aluminium nanoparticle subjected to a stretching process in different directions. Progressively increased stretching in one direction resulted in prolate spheroid (nanorice) geometries and produced a couple of well-distinguishable dominant peaks together with some satellite peaks in the UV-visible region of the electromagnetic spectrum. On the other hand, progressively increased stretching in two directions caused multiple peaks to appear in the UV-visible region of the electromagnetic spectrum. We believe that our findings can be beneficial for the emerging and potentially far-reaching field of aluminum plasmonics.
Wan, Y.; Hansen, C.
2018-01-01
Research on microscopy data from developing biological samples usually requires tracking individual cells over time. When cells are three-dimensionally and densely packed in a time-dependent scan of volumes, tracking results can become unreliable and uncertain. Not only are cell segmentation results often inaccurate to start with, but it also lacks a simple method to evaluate the tracking outcome. Previous cell tracking methods have been validated against benchmark data from real scans or artificial data, whose ground truth results are established by manual work or simulation. However, the wide variety of real-world data makes an exhaustive validation impossible. Established cell tracking tools often fail on new data, whose issues are also difficult to diagnose with only manual examinations. Therefore, data-independent tracking evaluation methods are desired for an explosion of microscopy data with increasing scale and resolution. In this paper, we propose the uncertainty footprint, an uncertainty quantification and visualization technique that examines nonuniformity at local convergence for an iterative evaluation process on a spatial domain supported by partially overlapping bases. We demonstrate that the patterns revealed by the uncertainty footprint indicate data processing quality in two algorithms from a typical cell tracking workflow – cell identification and association. A detailed analysis of the patterns further allows us to diagnose issues and design methods for improvements. A 4D cell tracking workflow equipped with the uncertainty footprint is capable of self diagnosis and correction for a higher accuracy than previous methods whose evaluation is limited by manual examinations. PMID:29456279
People detection in crowded scenes using active contour models
NASA Astrophysics Data System (ADS)
Sidla, Oliver
2009-01-01
The detection of pedestrians in real-world scenes is a daunting task, especially in crowded situations. Our experience over the last years has shown that active shape models (ASM) can contribute significantly to a robust pedestrian detection system. The paper starts with an overview of shape model approaches, it then explains our approach which builds on top of Eigenshape models which have been trained using real-world data. These models are placed over candidate regions and matched to image gradients using a scoring function which integrates i) point distribution, ii) local gradient orientations iii) local image gradient strengths. A matching and shape model update process is iteratively applied in order to fit the flexible models to the local image content. The weights of the scoring function have a significant impact on the ASM performance. We analyze different settings of scoring weights for gradient magnitude, relative orientation differences, distance between model and gradient in an experiment which uses real-world data. Although for only one pedestrian model in an image computation time is low, the number of necessary processing cycles which is needed to track many people in crowded scenes can become the bottleneck in a real-time application. We describe the measures which have been taken in order to improve the speed of the ASM implementation and make it real-time capable.
Coceancigh, Herman; Tran-Ba, Khanh-Hoa; Siepser, Natasha; ...
2017-09-27
Here in this study, the longitudinally controlled modification of the inner surfaces of poly(ethylene terephthalate) (PET) track-etched pores was explored using an electrochemically assisted Cu(I)-catalyzed azide–alkyne cycloaddition (CuAAC) click reaction. Cylindrical or conical PET track-etched pores were first decorated with ethynyl groups via the amidation of surface -COOH groups, filled with a solution containing Cu(II) and azide-tagged fluorescent dye, and then sandwiched between comb-shaped and planar gold electrodes. Cu(I) was produced at the comb-shaped working electrode by the reduction of Cu(II); it diffused along the pores toward the other electrode and catalyzed CuAAC between an azide-tagged fluorescent dye and amore » pore-tethered ethynyl group. The modification efficiency of cylindrical pores (ca. 1 μm in diameter) was assessed from planar and cross-sectional fluorescence microscope images of modified membranes. Planar images showed that pore modification took place only above the teeth of the comb-shaped electrode with a higher reaction yield for longer Cu(II) reduction times. Cross-sectional images revealed micrometer-scale gradient modification along the pore axis, which reflected a Cu(I) concentration profile within the pores, as supported by finite-element computer simulations. The reported approach was applicable to the asymmetric modification of cylindrical pores with two different fluorescent dyes in the opposite directions and also for the selective visualization of the tip and base openings of conical pores (ca. 3.5 μm in base diameter and ca. 1 μm in tip diameter). Lastly, the method based on electrochemically assisted CuAAC provides a controlled means to fabricate asymmetrically modified nanoporous membranes and, in the future, will be applicable for chemical separations and the development of sequential catalytic reactors.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coceancigh, Herman; Tran-Ba, Khanh-Hoa; Siepser, Natasha
Here in this study, the longitudinally controlled modification of the inner surfaces of poly(ethylene terephthalate) (PET) track-etched pores was explored using an electrochemically assisted Cu(I)-catalyzed azide–alkyne cycloaddition (CuAAC) click reaction. Cylindrical or conical PET track-etched pores were first decorated with ethynyl groups via the amidation of surface -COOH groups, filled with a solution containing Cu(II) and azide-tagged fluorescent dye, and then sandwiched between comb-shaped and planar gold electrodes. Cu(I) was produced at the comb-shaped working electrode by the reduction of Cu(II); it diffused along the pores toward the other electrode and catalyzed CuAAC between an azide-tagged fluorescent dye and amore » pore-tethered ethynyl group. The modification efficiency of cylindrical pores (ca. 1 μm in diameter) was assessed from planar and cross-sectional fluorescence microscope images of modified membranes. Planar images showed that pore modification took place only above the teeth of the comb-shaped electrode with a higher reaction yield for longer Cu(II) reduction times. Cross-sectional images revealed micrometer-scale gradient modification along the pore axis, which reflected a Cu(I) concentration profile within the pores, as supported by finite-element computer simulations. The reported approach was applicable to the asymmetric modification of cylindrical pores with two different fluorescent dyes in the opposite directions and also for the selective visualization of the tip and base openings of conical pores (ca. 3.5 μm in base diameter and ca. 1 μm in tip diameter). Lastly, the method based on electrochemically assisted CuAAC provides a controlled means to fabricate asymmetrically modified nanoporous membranes and, in the future, will be applicable for chemical separations and the development of sequential catalytic reactors.« less
OMA analysis of a launcher under operational conditions with time-varying properties
NASA Astrophysics Data System (ADS)
Eugeni, M.; Coppotelli, G.; Mastroddi, F.; Gaudenzi, P.; Muller, S.; Troclet, B.
2018-05-01
The objective of this paper is the investigation of the capability of operational modal analysis approaches to deal with time-varying system in the low-frequency domain. Specifically, the problem of the identification of the dynamic properties of a launch vehicle, working under actual operative conditions, is studied. Two OMA methods are considered: the frequency-domain decomposition and the Hilbert transform method. It is demonstrated that both OMA approaches allow the time-tracking of modal parameters, namely, natural frequencies, damping ratios, and mode shapes, from the response accelerations only recorded during actual flight tests of a launcher characterized by a large mass variation due to fuel burning typical of the first phase of the flight.
Bordy, Emese M.; Reid, Mhairi; Abrahams, Miengah
2016-01-01
Footprint morphology (e.g., outline shape, depth of impression) is one of the key diagnostic features used in the interpretation of ancient vertebrate tracks. Over 80 tridactyl tracks, confined to the same bedding surface in the Lower Jurassic Elliot Formation at Mafube (eastern Free State, South Africa), show large shape variability over the length of the study site. These morphological differences are considered here to be mainly due to variations in the substrate rheology as opposed to differences in the trackmaker’s foot anatomy, foot kinematics or recent weathering of the bedding surface. The sedimentary structures (e.g., desiccation cracks, ripple marks) preserved in association with and within some of the Mafube tracks suggest that the imprints were produced essentially contemporaneous and are true dinosaur tracks rather than undertracks or erosional remnants. They are therefore valuable not only for the interpretation of the ancient environment (i.e., seasonally dry river channels) but also for taxonomic assessments as some of them closely resemble the original anatomy of the trackmaker’s foot. The tracks are grouped, based on size, into two morphotypes that can be identified as Eubrontes-like and Grallator-like ichnogenera. The Mafube morphotypes are tentatively attributable to large and small tridactyl theropod trackmakers, possibly to Dracovenator and Coelophysis based on the following criteria: (a) lack of manus impressions indicative of obligate bipeds; (b) long, slender-digits that are asymmetrical and taper; (c) often end in a claw impression or point; and (d) the tracks that are longer than broad. To enable high-resolution preservation, curation and subsequent remote studying of the morphological variations of and the secondary features in the tracks, low viscosity silicone rubber was used to generate casts of the Mafube tracks. PMID:27635310
How predation shapes the social interaction rules of shoaling fish
Rosén, Emil; Ioannou, Christos C.; Rogell, Björn; Perna, Andrea; Ramnarine, Indar W.; Kolm, Niclas
2017-01-01
Predation is thought to shape the macroscopic properties of animal groups, making moving groups more cohesive and coordinated. Precisely how predation has shaped individuals' fine-scale social interactions in natural populations, however, is unknown. Using high-resolution tracking data of shoaling fish (Poecilia reticulata) from populations differing in natural predation pressure, we show how predation adapts individuals' social interaction rules. Fish originating from high predation environments formed larger, more cohesive, but not more polarized groups than fish from low predation environments. Using a new approach to detect the discrete points in time when individuals decide to update their movements based on the available social cues, we determine how these collective properties emerge from individuals' microscopic social interactions. We first confirm predictions that predation shapes the attraction–repulsion dynamic of these fish, reducing the critical distance at which neighbours move apart, or come back together. While we find strong evidence that fish align with their near neighbours, we do not find that predation shapes the strength or likelihood of these alignment tendencies. We also find that predation sharpens individuals' acceleration and deceleration responses, implying key perceptual and energetic differences associated with how individuals move in different predation regimes. Our results reveal how predation can shape the social interactions of individuals in groups, ultimately driving differences in groups' collective behaviour. PMID:28855361
GINGA observations of Cygnus X-2.
NASA Astrophysics Data System (ADS)
Wijnands, R. A. D.; van der Klis, M.; Kuulkers, E.; Asai, K.; Hasinger, G.
1997-07-01
We have analysed all available X-ray data on the low-mass X-ray binary Cygnus X-2 obtained with the Ginga satellite. A detailed analysis of the spectral and fast timing behaviour of these 4 years of data provides new insights in the behaviour of this Z source. We confirm the previously observed recurrent patterns of behaviour in the X-ray colour-colour and hardness-intensity diagrams consisting of shifts and shape changes in the Z track. However, we find a continuous range of patterns rather than a discrete set. The source behaviour in the diagrams is correlated with overall intensity, which varied by a factor of 1.34 in the Ginga data. We find that when the overall intensity increases, the mean velocity and acceleration of the motion along the normal branch of the Z track increase, as well as the width of the normal branch in the hardness-intensity diagram. Contrary to previous results we find that, during different observations, when the source is at the same position in the normal branch of the Z track the rapid X-ray variability differs significantly. During the Kuulkers et al. (1996A&A...311..197K) ``medium'' level, a normal branch quasi-periodic oscillation is detected, which is not seen during the ``high'' overall intensity level. Also, during the high overall intensity level episodes the very-low frequency noise on the lower normal branch is very strong and steep, whereas during the medium overall intensity level episodes this noise component at the same position in the Z track is weak and less steep. The explanation of the different overall intensity levels with a precessing accretion disk is difficult to reconcile with our data. Furthermore, we found that the frequency of the horizontal branch quasi-periodic oscillation decreases when Cygnus X-2 enters the upper normal branch, giving a model dependent upper limit on the magnetic field strength at the magnetic equator of ~8.5x10^9^G. We also report five bursts, with durations between two and eight seconds, whose occurrence seems to be uncorrelated with location in the Z track, overall intensity level or orbital phase. The burst properties indicate that they are not regular type I bursts.
Appearance-based multimodal human tracking and identification for healthcare in the digital home.
Yang, Mau-Tsuen; Huang, Shen-Yen
2014-08-05
There is an urgent need for intelligent home surveillance systems to provide home security, monitor health conditions, and detect emergencies of family members. One of the fundamental problems to realize the power of these intelligent services is how to detect, track, and identify people at home. Compared to RFID tags that need to be worn all the time, vision-based sensors provide a natural and nonintrusive solution. Observing that body appearance and body build, as well as face, provide valuable cues for human identification, we model and record multi-view faces, full-body colors and shapes of family members in an appearance database by using two Kinects located at a home's entrance. Then the Kinects and another set of color cameras installed in other parts of the house are used to detect, track, and identify people by matching the captured color images with the registered templates in the appearance database. People are detected and tracked by multisensor fusion (Kinects and color cameras) using a Kalman filter that can handle duplicate or partial measurements. People are identified by multimodal fusion (face, body appearance, and silhouette) using a track-based majority voting. Moreover, the appearance-based human detection, tracking, and identification modules can cooperate seamlessly and benefit from each other. Experimental results show the effectiveness of the human tracking across multiple sensors and human identification considering the information of multi-view faces, full-body clothes, and silhouettes. The proposed home surveillance system can be applied to domestic applications in digital home security and intelligent healthcare.
Appearance-Based Multimodal Human Tracking and Identification for Healthcare in the Digital Home
Yang, Mau-Tsuen; Huang, Shen-Yen
2014-01-01
There is an urgent need for intelligent home surveillance systems to provide home security, monitor health conditions, and detect emergencies of family members. One of the fundamental problems to realize the power of these intelligent services is how to detect, track, and identify people at home. Compared to RFID tags that need to be worn all the time, vision-based sensors provide a natural and nonintrusive solution. Observing that body appearance and body build, as well as face, provide valuable cues for human identification, we model and record multi-view faces, full-body colors and shapes of family members in an appearance database by using two Kinects located at a home's entrance. Then the Kinects and another set of color cameras installed in other parts of the house are used to detect, track, and identify people by matching the captured color images with the registered templates in the appearance database. People are detected and tracked by multisensor fusion (Kinects and color cameras) using a Kalman filter that can handle duplicate or partial measurements. People are identified by multimodal fusion (face, body appearance, and silhouette) using a track-based majority voting. Moreover, the appearance-based human detection, tracking, and identification modules can cooperate seamlessly and benefit from each other. Experimental results show the effectiveness of the human tracking across multiple sensors and human identification considering the information of multi-view faces, full-body clothes, and silhouettes. The proposed home surveillance system can be applied to domestic applications in digital home security and intelligent healthcare. PMID:25098207
Observation and Kinematic Description of Long Actin Tracks Induced by Spherical Beads
Kang, Hyeran; Perlmutter, David S.; Shenoy, Vivek B.; Tang, Jay X.
2010-01-01
We report an in vitro study comparing the growth of long actin tails induced by spherical beads coated with the verprolin central acidic domain of the polymerization enzyme N-WASP to that induced by Listeria monocytogenes in similar cellular extracts. The tracks behind the beads show characteristic differences in shape and curvature from those left by the bacteria, which have an elongated shape and a similar polymerization-inducing enzyme distributed only on the rear surface of the cell. The experimental tracks are simulated using a generalized kinematic model, which incorporates three modes of bead rotation with respect to the tail. The results show that the trajectories of spherical beads are mechanically deterministic rather than random, as suggested by stochastic models. Assessment of the bead rotation and its mechanistic basis offers insights into the biological function of actin-based motility. PMID:21044576
Tracking modern human population history from linguistic and cranial phenotype
Reyes-Centeno, Hugo; Harvati, Katerina; Jäger, Gerhard
2016-01-01
Languages and genes arguably follow parallel evolutionary trajectories, descending from a common source and subsequently differentiating. However, although common ancestry is established within language families, it remains controversial whether language preserves a deep historical signal. To address this question, we evaluate the association between linguistic and geographic distances across 265 language families, as well as between linguistic, geographic, and cranial distances among eleven populations from Africa, Asia, and Australia. We take advantage of differential population history signals reflected by human cranial anatomy, where temporal bone shape reliably tracks deep population history and neutral genetic changes, while facial shape is more strongly associated with recent environmental effects. We show that linguistic distances are strongly geographically patterned, even within widely dispersed groups. However, they are correlated predominantly with facial, rather than temporal bone, morphology, suggesting that variation in vocabulary likely tracks relatively recent events and possibly population contact. PMID:27833101
An image engineering system for the inspection of transparent construction materials
NASA Astrophysics Data System (ADS)
Hinz, S.; Stephani, M.; Schiemann, L.; Zeller, K.
This article presents a modular photogrammetric recording and image analysis system for inspecting the material characteristics of transparent foils, in particular Ethylen-TetraFluorEthylen-Copolymer (ETFE) foils. The foils are put under increasing air pressure and are observed by a stereo camera system. Determining the time-variable 3D shape of transparent material imposes a number of challenges: especially the automatic point transfer between stereo images and, in temporal domain, from one image pair to the next. We developed an automatic approach that accommodates for these particular circumstances and allows reconstruction of the 3D shape for each epoch as well as determining 3D translation vectors between epochs by feature tracking. Examples including numerical results and accuracy measures prove the applicability of the system.
Lambert, Amaury; Stadler, Tanja
2013-12-01
Forward-in-time models of diversification (i.e., speciation and extinction) produce phylogenetic trees that grow "vertically" as time goes by. Pruning the extinct lineages out of such trees leads to natural models for reconstructed trees (i.e., phylogenies of extant species). Alternatively, reconstructed trees can be modelled by coalescent point processes (CPPs), where trees grow "horizontally" by the sequential addition of vertical edges. Each new edge starts at some random speciation time and ends at the present time; speciation times are drawn from the same distribution independently. CPPs lead to extremely fast computation of tree likelihoods and simulation of reconstructed trees. Their topology always follows the uniform distribution on ranked tree shapes (URT). We characterize which forward-in-time models lead to URT reconstructed trees and among these, which lead to CPP reconstructed trees. We show that for any "asymmetric" diversification model in which speciation rates only depend on time and extinction rates only depend on time and on a non-heritable trait (e.g., age), the reconstructed tree is CPP, even if extant species are incompletely sampled. If rates additionally depend on the number of species, the reconstructed tree is (only) URT (but not CPP). We characterize the common distribution of speciation times in the CPP description, and discuss incomplete species sampling as well as three special model cases in detail: (1) the extinction rate does not depend on a trait; (2) rates do not depend on time; (3) mass extinctions may happen additionally at certain points in the past. Copyright © 2013 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Jonas, A. M.; Legras, R.; Ferain, E.
1998-03-01
Nanoporous track-etched membranes with narrow pore size distributions and average pore size diameters tunable from 100 to 1000 Åare produced by the chemical etching of latent tracks in polymer films after irradiation by a beam of accelerated heavy ions. Nanoporous membranes are used for highly demanding filtration purposes, or as templates to obtain metallic or polymeric nanowires (L. Piraux et al., Nucl. Instr. Meth. Phys. Res. 1997, B131, 357). Such applications call for developments in nanopore size characterization techniques. In this respect, we report on the characterization by small-angle X-ray scattering (SAXS) of nanopore size distribution (nPSD) in polycarbonate track-etched membranes. The obtention of nPSD requires inverting an ill-conditioned inhomogeneous equation. We present different numerical routes to overcome the amplification of experimental errors in the resulting solutions, including a regularization technique allowing to obtain the nPSD without a priori knowledge of its shape. The effect of deviations from cylindrical pore shape on the resulting distributions are analyzed. Finally, SAXS results are compared to results obtained by electron microscopy and conductometry.
Measuring zebrafish turning rate.
Mwaffo, Violet; Butail, Sachit; di Bernardo, Mario; Porfiri, Maurizio
2015-06-01
Zebrafish is becoming a popular animal model in preclinical research, and zebrafish turning rate has been proposed for the analysis of activity in several domains. The turning rate is often estimated from the trajectory of the fish centroid that is output by commercial or custom-made target tracking software run on overhead videos of fish swimming. However, the accuracy of such indirect methods with respect to the turning rate associated with changes in heading during zebrafish locomotion is largely untested. Here, we compare two indirect methods for the turning rate estimation using the centroid velocity or position data, with full shape tracking for three different video sampling rates. We use tracking data from the overhead video recorded at 60, 30, and 15 frames per second of zebrafish swimming in a shallow water tank. Statistical comparisons of absolute turning rate across methods and sampling rates indicate that, while indirect methods are indistinguishable from full shape tracking, the video sampling rate significantly influences the turning rate measurement. The results of this study can aid in the selection of the video capture frame rate, an experimental design parameter in zebrafish behavioral experiments where activity is an important measure.
NASA Astrophysics Data System (ADS)
Shrestha, K. P.; Chitrakar, S.; Thapa, B.; Dahlhaug, O. G.
2018-06-01
Erosion on hydro turbine mostly depends on impingement velocity, angle of impact, concentration, shape, size and distribution of erodent particle and substrate material. In the case of Francis turbines, the sediment particles tend to erode more in the off-designed conditions than at the best efficiency point. Previous studies focused on the optimized runner blade design to reduce erosion at the designed flow. However, the effect of the change in the design on other operating conditions was not studied. This paper demonstrates the performance of optimized Francis turbine exposed to sediment erosion in various operating conditions. Comparative study has been carryout among the five different shapes of runner, different set of guide vane and stay vane angles. The effect of erosion is studied in terms of average erosion density rate on optimized design Francis runner with Lagrangian particle tracking method in CFD analysis. The numerical sensitivity of the results are investigated by comparing two turbulence models. Numerical results are validated from the velocity measurements carried out in the actual turbine. Results show that runner blades are susceptible to more erosion at part load conditions compared to BEP, whereas for the case of guide vanes, more erosion occurs at full load conditions. Out of the five shapes compared, Shape 5 provides an optimum combination of efficiency and erosion on the studied operating conditions.
Time-dependent evolution of the near nuclear coma of cometary nuclei during their rotational motion
NASA Astrophysics Data System (ADS)
Szego, K.; Crifo, J.-F.; Fulle, M.; Rodionov, A. V.
2003-04-01
The new physical model of Rodionov et al. (Planetary and Space Sci., 50, 983, 2002) that describes the cometary activity based on a 3-d collisional gas dynamical model has been successfully applied to account for the dust features observed by the cameras flying onboard of the VEGA and Giotto probes during the encounter with comet Halley. This indicates, in particular, that these structures are dominantly controlled by the nucleus topography. An upgraded version of this model has been recently developed and is being applied to the vast body of data gathered in 1986 on comet Halley. This new version is tridimensional as previously, and, in addition, time-dependent. This allows the exact, self-consistent computation of the whole coma structure (primary and daughter molecules, dust), allowing to study its dependence upon nucleus shape, composition, and rotation. The results presented here assume that the coma is formed by solar-driven sublimation of a homogeneous dusty-ice nucleus with shape and rotational state derived for P/Halley. The results are, however, of quite general significance -- in particular they remain valid for different shapes and for inhomogeneous nucleus. This presentation focuses on the time dependence of the dust and gas features obtained around the nucleus. Movies will summarize the results of the calculations exhibiting the time development of the dust and gas coma and its relation to the surface orography for a rotating nucleus. The effect of nucleus activity on its rotational motion, and possible constraints hampering the observation of the activity will be also analyzed.
Track Detection in Railway Sidings Based on MEMS Gyroscope Sensors
Broquetas, Antoni; Comerón, Adolf; Gelonch, Antoni; Fuertes, Josep M.; Castro, J. Antonio; Felip, Damià; López, Miguel A.; Pulido, José A.
2012-01-01
The paper presents a two-step technique for real-time track detection in single-track railway sidings using low-cost MEMS gyroscopes. The objective is to reliably know the path the train has taken in a switch, diverted or main road, immediately after the train head leaves the switch. The signal delivered by the gyroscope is first processed by an adaptive low-pass filter that rejects noise and converts the temporal turn rate data in degree/second units into spatial turn rate data in degree/meter. The conversion is based on the travelled distance taken from odometer data. The filter is implemented to achieve a speed-dependent cut-off frequency to maximize the signal-to-noise ratio. Although direct comparison of the filtered turn rate signal with a predetermined threshold is possible, the paper shows that better detection performance can be achieved by processing the turn rate signal with a filter matched to the rail switch curvature parameters. Implementation aspects of the track detector have been optimized for real-time operation. The detector has been tested with both simulated data and real data acquired in railway campaigns. PMID:23443376
NASA Astrophysics Data System (ADS)
Gross, Markus
2018-03-01
We consider a one-dimensional fluctuating interfacial profile governed by the Edwards–Wilkinson or the stochastic Mullins-Herring equation for periodic, standard Dirichlet and Dirichlet no-flux boundary conditions. The minimum action path of an interfacial fluctuation conditioned to reach a given maximum height M at a finite (first-passage) time T is calculated within the weak-noise approximation. Dynamic and static scaling functions for the profile shape are obtained in the transient and the equilibrium regime, i.e. for first-passage times T smaller or larger than the characteristic relaxation time, respectively. In both regimes, the profile approaches the maximum height M with a universal algebraic time dependence characterized solely by the dynamic exponent of the model. It is shown that, in the equilibrium regime, the spatial shape of the profile depends sensitively on boundary conditions and conservation laws, but it is essentially independent of them in the transient regime.
NASA Astrophysics Data System (ADS)
Kumar, Sunil; Kang, T. W.; Bala, Suman; Kamboj, Sunil; Jeon, H. C.
2018-04-01
A novel niosomes-based system composed of Hypromellose (HPMC) functionalized fluorescent, biocompatible ZnS:Mn quantum dots (QDs), and anti-HIV drug Tenofovir disoproxil fumarate (TDF) was designed. An appropriate ratio of surfactant Sorbitan Monostearate (SPAN-60) and cholesterol was used to obtain an optimal entrapment efficiency. Initially, after observing the successful interaction of HPMC with SPAN-60, the noisome formulation including (QDs + drug) and HPMC-coated QDs was synthesized by a wet chemical route and characterized by X-ray diffraction (XRD), Transmission electron microscope (TEM) and Selected Electron Diffraction (SAED). Secondly, (QDs + drug) loaded niosome formulations were studied by varying the ratio of SPAN-60 and cholesterol. Multiple studies were done to characterize the shape, size, viscosity, colloidal stability, and entrapment efficiency of (QDs + drug) loaded niosomes. Lastly, pH-dependent (QDs + drug) release profiles were studied by a spectroscopic technique considering the pH of the human gastrointestinal region to obtain the formulation stability of (QDs + drug) release from the niosome vesicles. These studies also include pH-dependent photo-stability measurements based on laser-induced multiphoton excitation technique in the Infrared region. The multiphoton time-resolved studies were completed to avoid the UV induced phototoxicity in the drug delivery modules. Current studies on the formulation of niosomes-based (QDs + drug) system laid a foundation to make a complete phototoxicity free system for tracking controlled drug release and its imaging.
Effect of Pulse Shape on Spall Strength
NASA Astrophysics Data System (ADS)
Smirnov, V. I.; Petrov, Yu. V.
2018-03-01
This paper analyzes the effect of the time-dependent shape of a load pulse on the spall strength of materials. Within the framework of a classical one-dimensional scheme, triangular pulses with signal rise and decay portions and with no signal rise portions considered. Calculation results for the threshold characteristics of fracture for rail steel are given. The possibility of optimization of fracture by selecting a loading time with the use of an introduced characteristic of dynamic strength (pulse fracture capacity) is demonstrated. The study is carried out using a structure-time fracture criterion.
Assessment of input-output properties and control of neuroprosthetic hand grasp.
Hines, A E; Owens, N E; Crago, P E
1992-06-01
Three tests have been developed to evaluate rapidly and quantitatively the input-output properties and patient control of neuroprosthetic hand grasp. Each test utilizes a visual pursuit tracking task during which the subject controls the grasp force and grasp opening (position) of the hand. The first test characterizes the static input-output properties of the hand grasp, where the input is a slowly changing patient generated command signal and the outputs are grasp force and grasp opening. Nonlinearities and inappropriate slopes have been documented in these relationships, and in some instances the need for system returning has been indicated. For each subject larger grasp forces were produced when grasping larger objects, and for some subjects the shapes of the relationships also varied with object size. The second test quantifies the ability of the subject to control the hand grasp outputs while tracking steps and ramps. Neuroprosthesis users had rms errors two to three times larger when tracking steps versus ramps, and had rms errors four to five times larger than normals when tracking ramps. The third test provides an estimate of the frequency response of the hand grasp system dynamics, from input and output data collected during a random tracking task. Transfer functions were estimated by spectral analysis after removal of the static input-output nonlinearities measured in the first test. The dynamics had low-pass filter characteristics with 3 dB cutoff frequencies from 1.0 to 1.4 Hz. The tests developed in this study provide a rapid evaluation of both the system and the user. They provide information to 1) help interpret subject performance of functional tasks, 2) evaluate the efficacy of system features such as closed-loop control, and 3) screen the neuroprosthesis to indicate the need for retuning.
Modeling cometary photopolarimetric characteristics with Sh-matrix method
NASA Astrophysics Data System (ADS)
Kolokolova, L.; Petrov, D.
2017-12-01
Cometary dust is dominated by particles of complex shape and structure, which are often considered as fractal aggregates. Rigorous modeling of light scattering by such particles, even using parallelized codes and NASA supercomputer resources, is very computer time and memory consuming. We are presenting a new approach to modeling cometary dust that is based on the Sh-matrix technique (e.g., Petrov et al., JQSRT, 112, 2012). This method is based on the T-matrix technique (e.g., Mishchenko et al., JQSRT, 55, 1996) and was developed after it had been found that the shape-dependent factors could be separated from the size- and refractive-index-dependent factors and presented as a shape matrix, or Sh-matrix. Size and refractive index dependences are incorporated through analytical operations on the Sh-matrix to produce the elements of T-matrix. Sh-matrix method keeps all advantages of the T-matrix method, including analytical averaging over particle orientation. Moreover, the surface integrals describing the Sh-matrix elements themselves can be solvable analytically for particles of any shape. This makes Sh-matrix approach an effective technique to simulate light scattering by particles of complex shape and surface structure. In this paper, we present cometary dust as an ensemble of Gaussian random particles. The shape of these particles is described by a log-normal distribution of their radius length and direction (Muinonen, EMP, 72, 1996). Changing one of the parameters of this distribution, the correlation angle, from 0 to 90 deg., we can model a variety of particles from spheres to particles of a random complex shape. We survey the angular and spectral dependencies of intensity and polarization resulted from light scattering by such particles, studying how they depend on the particle shape, size, and composition (including porous particles to simulate aggregates) to find the best fit to the cometary observations.
Azcona, Juan Diego; Li, Ruijiang; Mok, Edward; Hancock, Steven; Xing, Lei
2013-03-01
Real-time tracking of implanted fiducials in cine megavoltage (MV) imaging during volumetric modulated arc therapy (VMAT) delivery is complicated due to the inherent low contrast of MV images and potential blockage of dynamic leaves configurations. The purpose of this work is to develop a clinically practical autodetection algorithm for motion management during VMAT. The expected field-specific segments and the planned fiducial position from the Eclipse (Varian Medical Systems, Palo Alto, CA) treatment planning system were projected onto the MV images. The fiducials were enhanced by applying a Laplacian of Gaussian filter in the spatial domain for each image, with a blob-shaped object as the impulse response. The search of implanted fiducials was then performed on a region of interest centered on the projection of the fiducial when it was within an open field including the case when it was close to the field edge or partially occluded by the leaves. A universal template formula was proposed for template matching and normalized cross correlation was employed for its simplicity and computational efficiency. The search region for every image was adaptively updated through a prediction model that employed the 3D position of the fiducial estimated from the localized positions in previous images. This prediction model allowed the actual fiducial position to be tracked dynamically and was used to initialize the search region. The artifacts caused by electronic interference during the acquisition were effectively removed. A score map was computed by combining both morphological information and image intensity. The pixel location with the highest score was selected as the detected fiducial position. The sets of cine MV images taken during treatment were analyzed with in-house developed software written in MATLAB (The Mathworks, Inc., Natick, MA). Five prostate patients were analyzed to assess the algorithm performance by measuring their positioning accuracy during treatment. The algorithm was able to accurately localize the fiducial position on MV images with success rates of more than 90% per case. The percentage of images in which each fiducial was localized in the studied cases varied between 23% and 65%, with at least one fiducial having been localized between 40% and 95% of the images. This depended mainly on the modulation of the plan and fiducial blockage. The prostate movement in the presented cases varied between 0.8 and 3.5 mm (mean values). The maximum displacement detected among all patients was of 5.7 mm. An algorithm for automatic detection of fiducial markers in cine MV images has been developed and tested with five clinical cases. Despite the challenges posed by complex beam aperture shapes, fiducial localization close to the field edge, partial occlusion of fiducials, fast leaf and gantry movement, and inherently low MV image quality, good localization results were achieved in patient images. This work provides a technique for enabling real-time accurate fiducial detection and tumor tracking during VMAT treatments without the use of extra imaging dose.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Azcona, Juan Diego; Li Ruijiang; Mok, Edward
2013-03-15
Purpose: Real-time tracking of implanted fiducials in cine megavoltage (MV) imaging during volumetric modulated arc therapy (VMAT) delivery is complicated due to the inherent low contrast of MV images and potential blockage of dynamic leaves configurations. The purpose of this work is to develop a clinically practical autodetection algorithm for motion management during VMAT. Methods: The expected field-specific segments and the planned fiducial position from the Eclipse (Varian Medical Systems, Palo Alto, CA) treatment planning system were projected onto the MV images. The fiducials were enhanced by applying a Laplacian of Gaussian filter in the spatial domain for each image,more » with a blob-shaped object as the impulse response. The search of implanted fiducials was then performed on a region of interest centered on the projection of the fiducial when it was within an open field including the case when it was close to the field edge or partially occluded by the leaves. A universal template formula was proposed for template matching and normalized cross correlation was employed for its simplicity and computational efficiency. The search region for every image was adaptively updated through a prediction model that employed the 3D position of the fiducial estimated from the localized positions in previous images. This prediction model allowed the actual fiducial position to be tracked dynamically and was used to initialize the search region. The artifacts caused by electronic interference during the acquisition were effectively removed. A score map was computed by combining both morphological information and image intensity. The pixel location with the highest score was selected as the detected fiducial position. The sets of cine MV images taken during treatment were analyzed with in-house developed software written in MATLAB (The Mathworks, Inc., Natick, MA). Five prostate patients were analyzed to assess the algorithm performance by measuring their positioning accuracy during treatment. Results: The algorithm was able to accurately localize the fiducial position on MV images with success rates of more than 90% per case. The percentage of images in which each fiducial was localized in the studied cases varied between 23% and 65%, with at least one fiducial having been localized between 40% and 95% of the images. This depended mainly on the modulation of the plan and fiducial blockage. The prostate movement in the presented cases varied between 0.8 and 3.5 mm (mean values). The maximum displacement detected among all patients was of 5.7 mm. Conclusions: An algorithm for automatic detection of fiducial markers in cine MV images has been developed and tested with five clinical cases. Despite the challenges posed by complex beam aperture shapes, fiducial localization close to the field edge, partial occlusion of fiducials, fast leaf and gantry movement, and inherently low MV image quality, good localization results were achieved in patient images. This work provides a technique for enabling real-time accurate fiducial detection and tumor tracking during VMAT treatments without the use of extra imaging dose.« less
Loprinzi, Paul D; Kane, Christy J; Mahoney, Sara; Walker, Jerome F
2015-02-01
The association between nicotine dependence and physical activity (PA) is relatively unknown. No study has concurrently examined the cross-sectional and longitudinal associations between PA and nicotine dependence, which was the primary purpose of this study. A secondary purpose was to examine how well nicotine dependence and PA behavior track over a two-year period. Data from the 2003-2005 National Youth Smoking Cessation Survey (NYSCS) were used, with young adults (18-24 yrs; n=1168) being followed over a two-year period. Physical activity was assessed using a questionnaire and nicotine dependence was assessed using the modified Fagerstrom Test for Nicotine Dependence scale. This study identified three notable findings: 1) baseline PA and nicotine dependence demonstrated a bidirectional, cross-sectional association (e.g., β=-0.23; 95% CI: -0.44 to -0.02; p=0.02); 2) when examined longitudinally, nicotine dependence influenced PA (OR=0.90; 95% CI: 0.82-0.99; p=0.04), but there was no evidence of the reverse pathway (i.e., PA influencing 2-year follow-up smoking status [OR=0.95; 95% CI: 0.66-1.39; p=0.82) or nicotine dependence (β=0.05; 95% CI: -0.14 to 0.24, p=0.61]); and 3) both PA (OR=3.52, 95% CI: 2.68-4.69; p<0.001) and nicotine dependence (β=0.52; 95% CI: 0.46-0.58, p<0.001) tracked relatively well over a two-year period during early adulthood. These findings suggest that both behaviors (physical activity and nicotine dependence) track over time, but nicotine dependence appears to be driving the cross-sectional relationship between nicotine dependence and physical activity, as opposed to the reverse pathway. Copyright © 2014 Elsevier Inc. All rights reserved.
2008-09-03
CAPE CANAVERAL, Fla. – Space shuttle Atlantis stands ready in the Vehicle Assembly Building at NASA’s Kennedy Space Center for the pending rollout to Launch Pad 39A. The Sept. 2 rollout date was postponed due to Tropical Storm Hanna’s shift to a northern track. Managers are closely following Hanna to determine when would be the best time this week to move space shuttle Atlantis to its launch pad. The tentative rollout time is 10 a.m. Sept. 4, depending on the track Hanna follows along the Florida coast. Atlantis is scheduled to launch on the STS-125 mission to service NASA’s Hubble Space Telescope. Launch is targeted for Oct. 8. Photo credit: NASA/Jack Pfaller
Experimental Modal Analysis on a Rotating Fan Using Tracking-CSLDV
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gasparoni, Andrea; Castellini, Paolo; Tomasini, Enrico P.
2010-05-28
Continuous Scan Laser Doppler Vibrometry (CSLDV) modifies the traditional mode of operation of a vibrometer by sweeping the laser measurement point continuously over the structure while measuring, enabling one to measure spatially detailed mode shapes quickly and minimizing the inconsistencies that can arise if the structure or test conditions change with time. When a periodic scan path is employed, one can decompose the measurement into the response that would have been measured at each point traversed by the laser and obtain the structure's mode shapes and natural frequencies using conventional modal analysis software. In this paper, continuous-scan vibrometry is performedmore » on a rotating fan, using computer controlled mirrors to track the rotating fan blades while simultaneously sweeping the measurement point over the blades. This has the potential to circumvent the difficulty of attaching contact sensors such as strain gauges, which might modify the structure and invalidate the results. In this work, impact excitation was used to excite a 3-blade fan rotating at various speeds, and the blades were scanned with a cloverleaf pattern that captured the bending of all three blades simultaneously. Some specialized signal processing is helpful in minimizing the effect of rotation frequency harmonics in the measurements, and specific scan strategies are needed to avoid those frequencies, both of these issues are discussed in the paper. While noise in the laser vibrometer does pose some difficulty, the results show that several modes could be extracted and that the tracking-CSLDV results agree with measurements obtained from the parked fan.« less
Miniregoliths. I - Dusty lunar rocks and lunar soil layers
NASA Technical Reports Server (NTRS)
Comstock, G. M.
1978-01-01
A detailed Monte-Carlo model for rock surface evolution shows that erosion processes alone cannot account for the shapes of the solar flare particle track profiles generally observed at depths of about 100 microns and less in rocks. The observed profiles are easily explained by a steady accumulation of fine dust at a rate of 0.3 to 3 mm per m.y., depending on the micrometeoroid impact rate which controls the dust cover and results in maximum dust thicknesses on the order of 100 microns to 1 mm. The commonly used lunar soil track parameters are derived in terms of parameters characterizing the exposure of soil grains in the few-millimeter-thick surface mixing and maturation zone which is one form of miniregolith. Correlation plots permit determining the degree of mixing in soil samples and the amount of processing (maturation) in surface miniregoliths. It is shown that the sampling process often artificially mixes together finer distinct layers, and that ancient miniregolith layers on the order of a millimeter thick are probably common in the lunar soil.
Quantitative evaluation of age-related decline in control of preprogramed movement
Lee, Jongho; Kodama, Mitsuhiko; Kakei, Shinji; Masakado, Yoshihisa
2017-01-01
In this paper, we examined the age-related changes in control of preprogramed movement, with emphasis on its accuracy. Forty-nine healthy subjects participated in this study, and were divided into three groups depending on their ages: the young group (20–39 years) (n = 16), the middle-age group (40–59 years) (n = 16), and the elderly group (60–79 years) (n = 17). We asked the subjects to perform step-tracking movements of the wrist joint with a manipulandum, and recorded the movements. We evaluated the accuracy of control of preprogramed movement in the three groups in terms of the primary submovement, which was identified as the first segment of the step-tracking movement based on the bell-shaped velocity profile, and calculated the distance between the end position of the primary submovement and the target (i.e. error). The error in the young group was found to be significantly smaller than that in the middle-age and elderly groups, i.e., the error was larger for the higher age groups. These results suggest that young subjects have better control of preprogramed movement than middle-age or elderly subjects. Finally, we examined the temporal property of the primary submovement and its age-related changes. The duration of the primary submovement tended to be longer for the aged groups, although significance was reached only for the elderly group. In particular, the ratio of the duration of the primary submovement to total movement time tended to be lower for the aged groups, suggesting that the proportion of additional movements that are required to compensate for the incomplete control in the preprogramed movement, which are under feedback control, was higher for the aged groups. Consequently, our results indicate that the distance between the end point of the primary submovement and the target center (i.e. error) in the step-tracking movement is a useful parameter to evaluate the age-related changes in control of preprogramed movement. PMID:29186168
Quantitative evaluation of age-related decline in control of preprogramed movement.
Shimoda, Naoshi; Lee, Jongho; Kodama, Mitsuhiko; Kakei, Shinji; Masakado, Yoshihisa
2017-01-01
In this paper, we examined the age-related changes in control of preprogramed movement, with emphasis on its accuracy. Forty-nine healthy subjects participated in this study, and were divided into three groups depending on their ages: the young group (20-39 years) (n = 16), the middle-age group (40-59 years) (n = 16), and the elderly group (60-79 years) (n = 17). We asked the subjects to perform step-tracking movements of the wrist joint with a manipulandum, and recorded the movements. We evaluated the accuracy of control of preprogramed movement in the three groups in terms of the primary submovement, which was identified as the first segment of the step-tracking movement based on the bell-shaped velocity profile, and calculated the distance between the end position of the primary submovement and the target (i.e. error). The error in the young group was found to be significantly smaller than that in the middle-age and elderly groups, i.e., the error was larger for the higher age groups. These results suggest that young subjects have better control of preprogramed movement than middle-age or elderly subjects. Finally, we examined the temporal property of the primary submovement and its age-related changes. The duration of the primary submovement tended to be longer for the aged groups, although significance was reached only for the elderly group. In particular, the ratio of the duration of the primary submovement to total movement time tended to be lower for the aged groups, suggesting that the proportion of additional movements that are required to compensate for the incomplete control in the preprogramed movement, which are under feedback control, was higher for the aged groups. Consequently, our results indicate that the distance between the end point of the primary submovement and the target center (i.e. error) in the step-tracking movement is a useful parameter to evaluate the age-related changes in control of preprogramed movement.
Ahtola, Eero; Stjerna, Susanna; Yrttiaho, Santeri; Nelson, Charles A.; Leppänen, Jukka M.; Vanhatalo, Sampsa
2014-01-01
Objective To develop new standardized eye tracking based measures and metrics for infants’ gaze dynamics in the face-distractor competition paradigm. Method Eye tracking data were collected from two samples of healthy 7-month-old (total n = 45), as well as one sample of 5-month-old infants (n = 22) in a paradigm with a picture of a face or a non-face pattern as a central stimulus, and a geometric shape as a lateral stimulus. The data were analyzed by using conventional measures of infants’ initial disengagement from the central to the lateral stimulus (i.e., saccadic reaction time and probability) and, additionally, novel measures reflecting infants gaze dynamics after the initial disengagement (i.e., cumulative allocation of attention to the central vs. peripheral stimulus). Results The results showed that the initial saccade away from the centrally presented stimulus is followed by a rapid re-engagement of attention with the central stimulus, leading to cumulative preference for the central stimulus over the lateral stimulus over time. This pattern tended to be stronger for salient facial expressions as compared to non-face patterns, was replicable across two independent samples of 7-month-old infants, and differentiated between 7 and 5 month-old infants. Conclusion The results suggest that eye tracking based assessments of infants’ cumulative preference for faces over time can be readily parameterized and standardized, and may provide valuable techniques for future studies examining normative developmental changes in preference for social signals. Significance Standardized measures of early developing face preferences may have potential to become surrogate biomarkers of neurocognitive and social development. PMID:24845102
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, X; Belcher, AH; Grelewicz, Z
Purpose: Real-time kV fluoroscopic tumor tracking has the benefit of direct tumor position monitoring. However, there is clinical concern over the excess kV imaging dose cost to the patient when imaging in continuous fluoroscopic mode. This work addresses this specific issue by proposing a combined MV+kV direct-aperture optimization (DAO) approach to integrate the kV imaging beam into a treatment planning such that the kV radiation is considered as a contributor to the overall dose delivery. Methods: The combined MV+kV DAO approach includes three algorithms. First, a projected Quasi-Newton algorithm (L-BFGS) is used to find optimized fluence with MV+kV dose formore » the best possible dose distribution. Then, Engel’s algorithm is applied to optimize the total number of monitor units and heuristically optimize the number of apertures. Finally, an aperture shape optimization (ASO) algorithm is applied to locally optimize the leaf positions of MLC. Results: Compared to conventional DAO MV plans with continuous kV fluoroscopic tracking, combined MV+kV DAO plan leads to a reduction in the total number of MV monitor units due to inclusion of kV dose as part of the PTV, and was also found to reduce the mean and maximum doses on the organs at risk (OAR). Compared to conventional DAO MV plan without kV tracking, the OAR dose in the combined MV+kV DAO plan was only slightly higher. DVH curves show that combined MV+kV DAO plan provided about the same PTV coverage as that in the conventional DAO plans without kV imaging. Conclusion: We report a combined MV+kV DAO approach that allows real time kV imager tumor tracking with only a trivial increasing on the OAR doses while providing the same coverage to PTV. The approach is suitable for clinic implementation.« less
NASA Astrophysics Data System (ADS)
Bateman, R.
2016-12-01
The Interdecadal Pacific Oscillation (IPO) and Atlantic Multidecadal Oscillation (AMO) exert influence over the position and strength of storm tracks through ocean interactions with the atmosphere. This study utilizes a comprehensive set of satellite and in situ data from 1915-2011 to show how the IPO and AMO may have influenced and are related to historical cool season storm track activity (STA) over the north Pacific and southwest US (SWUS) precipitation and streamflow. SWUS river basin water supply for people, agriculture and energy production throughout the year is predominantly dependent on snowpack depth and by changes in ocean conditions across multiple time scales. Positive STA, precipitation, and streamflow anomalies are most strongly related to positive (warm) IPO phases across datasets and time periods while negative (cool) IPO phases are more robustly linked to negative precipitation anomalies, especially during the mid-20th century. Sub-basin precipitation is differentially dependent on STA over specific north Pacific regions. Additionally, results show evidence for a small eastward shift in north Pacific STA and a lack in mean poleward movement in historical data. Moreover, the interannual to interdecadal variability discussed in this study will continue to be important to water resource managers throughout the region, regardless of future changes to the mean regional state of the climate.
Magnetophoretic Conductors and Diodes in a 3D Magnetic Field.
Abedini-Nassab, Roozbeh; Joh, Daniel Y; Van Heest, Melissa; Baker, Cody; Chilkoti, Ashutosh; Murdoch, David M; Yellen, Benjamin B
2016-06-14
We demonstrate magnetophoretic conductor tracks that can transport single magnetized beads and magnetically labeled single cells in a 3-dimensional time-varying magnetic field. The vertical field bias, in addition to the in-plane rotating field, has the advantage of reducing the attraction between particles, which inhibits the formation of particle clusters. However, the inclusion of a vertical field requires the re-design of magnetic track geometries which can transport magnetized objects across the substrate. Following insights from magnetic bubble technology, we found that successful magnetic conductor geometries defined in soft magnetic materials must be composed of alternating sections of positive and negative curvature. In addition to the previously studied magnetic tracks taken from the magnetic bubble literature, a drop-shape pattern was found to be even more adept at transporting small magnetic beads and single cells. Symmetric patterns are shown to achieve bi-directional conduction, whereas asymmetric patterns achieve unidirectional conduction. These designs represent the electrical circuit corollaries of the conductor and diode, respectively. Finally, we demonstrate biological applications in transporting single cells and in the size based separation of magnetic particles.
Thermal management and mechanical structures for silicon detector systems
NASA Astrophysics Data System (ADS)
Viehhauser, G.
2015-09-01
Due to the size of current silicon tracking systems system aspects have become a major design driver. This article discusses requirements for the engineering of the mechanical structures and thermal management of such systems and reviews solutions developed to satisfy them. Modern materials and fabrication techniques have been instrumental in constructing these devices and will be discussed here. Finally, this paper will describe current and potential future developments in the engineering of silicon tracking systems which will shape the silicon tracking systems of the future.
Robust lane detection and tracking using multiple visual cues under stochastic lane shape conditions
NASA Astrophysics Data System (ADS)
Huang, Zhi; Fan, Baozheng; Song, Xiaolin
2018-03-01
As one of the essential components of environment perception techniques for an intelligent vehicle, lane detection is confronted with challenges including robustness against the complicated disturbance and illumination, also adaptability to stochastic lane shapes. To overcome these issues, we proposed a robust lane detection method named classification-generation-growth-based (CGG) operator to the detected lines, whereby the linear lane markings are identified by synergizing multiple visual cues with the a priori knowledge and spatial-temporal information. According to the quality of linear lane fitting, the linear and linear-parabolic models are dynamically switched to describe the actual lane. The Kalman filter with adaptive noise covariance and the region of interests (ROI) tracking are applied to improve the robustness and efficiency. Experiments were conducted with images covering various challenging scenarios. The experimental results evaluate the effectiveness of the presented method for complicated disturbances, illumination, and stochastic lane shapes.
Impact of morphology on diffusive dynamics on curved surfaces
NASA Astrophysics Data System (ADS)
Kusters, Remy; Storm, Cornelis
2014-03-01
Diffusive processes on nonplanar substrates are deeply relevant for cellular function and transport and increasingly used to probe and characterize the behavior of proteins in membranes. We present analytical and numerical analyses of in-plane diffusion of discrete particles on curved geometries reflecting various generic motifs in biology and explore, in particular, the effect that the shape of the substrate has on the characteristic time scales of diffusive processes. To this end, we consider both collective measures (the relaxation of concentration profiles towards equilibrium) and single-particle measures (escape rates and first passage times of individual diffusing molecules): the first relevant for the correct interpretation of FRAP experiments in curved environments; the second, for single-particle tracking probes. Each of these measures is sensitively affected by the morphology of the substrate, and we find that the exit rate out of a domain is not uniquely set by the size of its boundary, illustrating the general principle we reveal: By varying the shape of a substrate, Nature can control the diffusive time scales in a microenvironment without changing the bare substrate properties.
Constantino, Maira A.; Jabbarzadeh, Mehdi; Fu, Henry C.; Bansil, Rama
2016-01-01
It has frequently been hypothesized that the helical body shapes of flagellated bacteria may yield some advantage in swimming ability. In particular, the helical-shaped pathogen Helicobacter pylori is often claimed to swim like a corkscrew through its harsh gastric habitat, but there has been no direct confirmation or quantification of such claims. Using fast time-resolution and high-magnification two-dimensional (2D) phase-contrast microscopy to simultaneously image and track individual bacteria in bacterial broth as well as mucin solutions, we show that both helical and rod-shaped H. pylori rotated as they swam, producing a helical trajectory. Cell shape analysis enabled us to determine shape as well as the rotational and translational speed for both forward and reverse motions, thereby inferring flagellar kinematics. Using the method of regularized Stokeslets, we directly compare observed speeds and trajectories to numerical calculations for both helical and rod-shaped bacteria in mucin and broth to validate the numerical model. Although experimental observations are limited to select cases, the model allows quantification of the effects of body helicity, length, and diameter. We find that due to relatively slow body rotation rates, the helical shape makes at most a 15% contribution to propulsive thrust. The effect of body shape on swimming speeds is instead dominated by variations in translational drag required to move the cell body. Because helical cells are one of the strongest candidates for propulsion arising from the cell body, our results imply that quite generally, swimming speeds of flagellated bacteria can only be increased a little by body propulsion. PMID:28138539
The impact of reward and punishment on skill learning depends on task demands
Steel, Adam; Silson, Edward H.; Stagg, Charlotte J.; Baker, Chris I.
2016-01-01
Reward and punishment motivate behavior, but it is unclear exactly how they impact skill performance and whether the effect varies across skills. The present study investigated the effect of reward and punishment in both a sequencing skill and a motor skill context. Participants trained on either a sequencing skill (serial reaction time task) or a motor skill (force-tracking task). Skill knowledge was tested immediately after training, and again 1 hour, 24–48 hours, and 30 days after training. We found a dissociation of the effects of reward and punishment on the tasks, primarily reflecting the impact of punishment. While punishment improved serial reaction time task performance, it impaired force-tracking task performance. In contrast to prior literature, neither reward nor punishment benefitted memory retention, arguing against the common assumption that reward ubiquitously benefits skill retention. Collectively, these results suggest that punishment impacts skilled behavior more than reward in a complex, task dependent fashion. PMID:27786302
The impact of reward and punishment on skill learning depends on task demands.
Steel, Adam; Silson, Edward H; Stagg, Charlotte J; Baker, Chris I
2016-10-27
Reward and punishment motivate behavior, but it is unclear exactly how they impact skill performance and whether the effect varies across skills. The present study investigated the effect of reward and punishment in both a sequencing skill and a motor skill context. Participants trained on either a sequencing skill (serial reaction time task) or a motor skill (force-tracking task). Skill knowledge was tested immediately after training, and again 1 hour, 24-48 hours, and 30 days after training. We found a dissociation of the effects of reward and punishment on the tasks, primarily reflecting the impact of punishment. While punishment improved serial reaction time task performance, it impaired force-tracking task performance. In contrast to prior literature, neither reward nor punishment benefitted memory retention, arguing against the common assumption that reward ubiquitously benefits skill retention. Collectively, these results suggest that punishment impacts skilled behavior more than reward in a complex, task dependent fashion.
Time-over-threshold for pulse shape discrimination in a time-of-flight phoswich PET detector
Chang, Chen-Ming; Cates, Joshua W.; Levin, Craig S.
2016-01-01
It is well known that a PET detector capable of measuring both photon time-of-flight (TOF) and depth-of-interaction (DOI) improves the image quality and accuracy. Phoswich designs have been realized in PET detectors to measure DOI for more than a decade. However, PET detectors based on phoswich designs put great demand on the readout circuits, which have to differentiate the pulse shape produced by different crystal layers. A simple pulse shape discrimination approach is required to realize the phoswich designs in a clinical PET scanner, which consists of thousands of scintillation crystal elements. In this work, we studied time-over-threshold (ToT) as a pulse shape parameter for DOI. The energy, timing and DOI performance were evaluated for a phoswich detector design comprising 3 mm × 3 mm × 10 mm LYSO:Ce crystal optically coupled to 3 mm × 3 mm × 10 mm calcium co-doped LSO:Ce,Ca(0.4%) crystal read out by a silicon photomultiplier (SiPM). A DOI accuracy of 97.2% has been achieved for photopeak events using the proposed time-over-threshold (ToT) processing. The energy resolution without correction for SiPM non-linearity was 9.7 ± 0.2% and 11.3 ± 0.2% FWHM at 511 keV for LYSO and LSO crystal layers, respectively. The coincidence time resolution for photopeak events ranges from 164.6 ps to 183.1 ps FWHM, depending on the layer combinations. The coincidence time resolution for inter-crystal scatter events ranges from 214.6 ps to 418.3 ps FWHM, depending on the energy windows applied. These results show great promises of using ToT for pulse shape discrimination in a TOF phoswich detector since a ToT measurement can be easily implemented in readout electronics. PMID:27991437
Theoretical Studies of Defects in Tetrahedral Semiconductors.
1980-08-01
pulse. The exact time of the maximal sur- has been measured by Shvarev et al. [I I at 1.0, face temperature depends on pulse duration, thermal 0.7 and...0.4 lAn from 57.50 off normal incidence. diffusivity (which is generally T dependent ), pulse Auston et al. (81 reported the time resolved reflec- shape...surface occur 30 to 40 ns after the peak of their 25 ns HWHM or ripples on the surface or a temperature depend - gaussian pulse rather than within
NASA Astrophysics Data System (ADS)
Yang, Jihee; Ihas, Gary G.; Ekdahl, Dan
2017-10-01
It is common that a physical system resonates at a particular frequency, whose frequency depends on physical parameters which may change in time. Often, one would like to automatically track this signal as the frequency changes, measuring, for example, its amplitude. In scientific research, one would also like to utilize the standard methods, such as lock-in amplifiers, to improve the signal to noise ratio. We present a complete He ii second sound system that uses positive feedback to generate a sinusoidal signal of constant amplitude via automatic gain control. This signal is used to produce temperature/entropy waves (second sound) in superfluid helium-4 (He ii). A lock-in amplifier limits the oscillation to a desirable frequency and demodulates the received sound signal. Using this tracking system, a second sound signal probed turbulent decay in He ii. We present results showing that the tracking system is more reliable than those of a conventional fixed frequency method; there is less correlation with temperature (frequency) fluctuation when the tracking system is used.
Reading Mathematics Representations: An Eye-Tracking Study
ERIC Educational Resources Information Center
Andrá, Chiara; Lindström, Paulina; Arzarello, Ferdinando; Holmqvist, Kenneth; Robutti, Ornella; Sabena, Cristina
2015-01-01
We use eye tracking as a method to examine how different mathematical representations of the same mathematical object are attended to by students. The results of this study show that there is a meaningful difference in the eye movements between formulas and graphs. This difference can be understood in terms of the cultural and social shaping of…
The Haskins Optically Corrected Ultrasound System
ERIC Educational Resources Information Center
Whalen, D. H.; Iskarous, Khalil; Tiede, Mark K.; Ostry, David J.; Lehnert-LeHouillier, Heike; Vatikiotis-Bateson, Eric; Hailey, Donald S.
2005-01-01
The tongue is critical in the production of speech, yet its nature has made it difficult to measure. Not only does its ability to attain complex shapes make it difficult to track, it is also largely hidden from view during speech. The present article describes a new combination of optical tracking and ultrasound imaging that allows for a…
Experimenting with a Superconducting Levitation Train
ERIC Educational Resources Information Center
Miryala, Santosh; Koblischka, M. R.
2014-01-01
The construction and operation of a prototype high-"Tc" superconducting train model is presented. The train is levitated by a melt-processed GdBa[subscript 2]Cu[subscript 3]O[subscript x] (Gd-123) superconducting material over a magnetic rail (track). The oval shaped track is constructed in S-N-S or PM3N configuration arranged on an iron…
NASA Astrophysics Data System (ADS)
Sone, H.; Cheung, C.; Rivers, M. L.; Wang, Y.; Yu, T.
2016-12-01
Knowledge about the ductile time-dependent constitutive behavior of geological materials is essential when evaluating the long-term integrity of subsurface structures and predicting the long-term geomechanical response of the surrounding formations. To this end, it is not only important to measure the bulk time-dependent behavior but also essential to understand the microscale mechanism by which rocks exhibit time-dependence, because laboratory data needs to be extrapolated to time-scales much beyond laboratory experiments. We conducted long-term creep experiments using Green River shale samples and obtained synchrotron X-ray images during the tests in an attempt to capture the microscale strain-partitioning that occurs within the sample. Shale samples of few millimeter dimensions were stressed up to several tens of MPa by a spring-loaded device within an X-ray transparent load frame, and the load was held constant for up to several months to allow creep deformation. Tomographic images of about 5 micron resolution were reconstructed from images collected at different timings of the experiment, which allows us to investigate where and how much strain localized during elastic and creep deformation. Tracking the position of some outstanding features in the rock texture (e.g. pyrite grains, organic material patches) indicate that strain magnitudes expected from the sample elastic and relaxation modulus can be successfully recovered from the tomographic images. We also attempt to use digital volume correlation to track sub-voxel displacements and to characterize the spatial heterogeneity of the deformation.
Shape-dependent antibacterial effects of non-cytotoxic gold nanoparticles
Penders, Jelle; Stolzoff, Michelle; Hickey, Daniel J; Andersson, Martin; Webster, Thomas J
2017-01-01
Gold nanoparticles (AuNPs) of various shapes (including spheres, stars and flowers), with similar dimensions, were synthesized and evaluated for their antibacterial effects toward Staphylococcus aureus, a bacterium responsible for numerous life-threatening infections worldwide. Optical growth curve measurements and Gompertz modeling showed significant AuNP shape- and concentration-dependent decreases in bacterial growth with increases in bacterial growth lag time. To evaluate prospective use in in vivo systems, the cytotoxicity of the same AuNPs was evaluated toward human dermal fibroblasts in vitro by 3-(4,5 dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) viability assays and confocal microscopy. No indication of any mammalian cell toxicity or morphological effects was found. Additionally, it was observed that the AuNPs were readily internalized in fibroblasts after 4 days of incubation. Most importantly, the results of the present study showed that gold nanoflowers in particular possessed the most promising non-cytotoxic mammalian cell behavior with the greatest shape-dependent antibacterial activity-promising properties for their future investigation in a wide range of anti-infection applications. PMID:28408817
Bubble masks for time-encoded imaging of fast neutrons.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brubaker, Erik; Brennan, James S.; Marleau, Peter
2013-09-01
Time-encoded imaging is an approach to directional radiation detection that is being developed at SNL with a focus on fast neutron directional detection. In this technique, a time modulation of a detected neutron signal is inducedtypically, a moving mask that attenuates neutrons with a time structure that depends on the source position. An important challenge in time-encoded imaging is to develop high-resolution two-dimensional imaging capabilities; building a mechanically moving high-resolution mask presents challenges both theoretical and technical. We have investigated an alternative to mechanical masks that replaces the solid mask with a liquid such as mineral oil. Instead of fixedmore » blocks of solid material that move in pre-defined patterns, the oil is contained in tubing structures, and carefully introduced air gapsbubblespropagate through the tubing, generating moving patterns of oil mask elements and air apertures. Compared to current moving-mask techniques, the bubble mask is simple, since mechanical motion is replaced by gravity-driven bubble propagation; it is flexible, since arbitrary bubble patterns can be generated by a software-controlled valve actuator; and it is potentially high performance, since the tubing and bubble size can be tuned for high-resolution imaging requirements. We have built and tested various single-tube mask elements, and will present results on bubble introduction and propagation as a function of tubing size and cross-sectional shape; real-time bubble position tracking; neutron source imaging tests; and reconstruction techniques demonstrated on simple test data as well as a simulated full detector system.« less
Morphology and kinetics of crystals growth in amorphous films of Cr2O3, deposited by laser ablation
NASA Astrophysics Data System (ADS)
Bagmut, Aleksandr
2018-06-01
An electron microscopic investigation was performed on the structure and kinetics of the crystallization of amorphous Cr2O3 films, deposited by pulsed laser sputtering of chromium target in an oxygen atmosphere. The crystallization was initiated by the action of an electron beam on an amorphous film in the column of a transmission electron microscope. The kinetic curves were plotted on the basis of a frame-by-frame analysis of the video recorded during the crystallization of the film. It was found that the amorphous phase - crystal phase transition in Cr2O3 films occurs as a layer polymorphic crystallization and is characterized by the values of the dimensionless relative length unit δ0 ≈ 2000-3100. The action of the electron beam initiates the formation of crystals of two basic morphological forms: disk-shaped and sickle-shaped. Growth of a disk-shaped crystals is characterized by a constant rate v and the quadratic dependence of the fraction of the crystalline phase x on the time t. Sickle-shaped crystal at an initial stage, as it grows, becomes as ring-shaped and disk-shaped crystal. The growth of a sickle-shaped crystal is characterized by normal and tangential velocity components, which depend on the time as ∼√t and as ∼1/√t respectively The end point of the arc at the interface between the amorphous and crystalline phases as the crystal grows describes a curve, which is similar to the Fermat helix. For sickle-shaped, as well as for disk-shaped crystals, the degree of crystallinity x ∼ t2.
Reducing Interprocessor Dependence in Recoverable Distributed Shared Memory
NASA Technical Reports Server (NTRS)
Janssens, Bob; Fuchs, W. Kent
1994-01-01
Checkpointing techniques in parallel systems use dependency tracking and/or message logging to ensure that a system rolls back to a consistent state. Traditional dependency tracking in distributed shared memory (DSM) systems is expensive because of high communication frequency. In this paper we show that, if designed correctly, a DSM system only needs to consider dependencies due to the transfer of blocks of data, resulting in reduced dependency tracking overhead and reduced potential for rollback propagation. We develop an ownership timestamp scheme to tolerate the loss of block state information and develop a passive server model of execution where interactions between processors are considered atomic. With our scheme, dependencies are significantly reduced compared to the traditional message-passing model.
A study on the dependence of nuclear viscosity on temperature
NASA Astrophysics Data System (ADS)
Vardaci, E.; Di Nitto, A.; Nadtochy, P. N.; La Rana, G.; Cinausero, M.; Prete, G.; Gelli, N.; Ashaduzzaman, M.; Davide, F.; Pulcini, A.; Quero, D.; Kozulin, E. M.; Knyazheva, G. N.; Itkis, I. M.
2018-05-01
Nuclear viscosity is an irreplaceable ingredient of nuclear fission collective dynamical models. It drives the exchange of energy between the collective variables and the thermal bath of single particle degrees of freedom. Its dependence on the shape and temperature is a matter of controversy. By using systems of intermediate fissility we have demonstrated in a recent study that the viscosity parameters is larger for compact shapes, and decreases for larger deformations of the fissioning system, at variance with the conclusions of the statistical model modified to include empirically viscosity and time scales. In this contribution we propose an experimental scenario to highlight the possible dependence of the viscosity from the temperature.
Detection and tracking of drones using advanced acoustic cameras
NASA Astrophysics Data System (ADS)
Busset, Joël.; Perrodin, Florian; Wellig, Peter; Ott, Beat; Heutschi, Kurt; Rühl, Torben; Nussbaumer, Thomas
2015-10-01
Recent events of drones flying over city centers, official buildings and nuclear installations stressed the growing threat of uncontrolled drone proliferation and the lack of real countermeasure. Indeed, detecting and tracking them can be difficult with traditional techniques. A system to acoustically detect and track small moving objects, such as drones or ground robots, using acoustic cameras is presented. The described sensor, is completely passive, and composed of a 120-element microphone array and a video camera. The acoustic imaging algorithm determines in real-time the sound power level coming from all directions, using the phase of the sound signals. A tracking algorithm is then able to follow the sound sources. Additionally, a beamforming algorithm selectively extracts the sound coming from each tracked sound source. This extracted sound signal can be used to identify sound signatures and determine the type of object. The described techniques can detect and track any object that produces noise (engines, propellers, tires, etc). It is a good complementary approach to more traditional techniques such as (i) optical and infrared cameras, for which the object may only represent few pixels and may be hidden by the blooming of a bright background, and (ii) radar or other echo-localization techniques, suffering from the weakness of the echo signal coming back to the sensor. The distance of detection depends on the type (frequency range) and volume of the noise emitted by the object, and on the background noise of the environment. Detection range and resilience to background noise were tested in both, laboratory environments and outdoor conditions. It was determined that drones can be tracked up to 160 to 250 meters, depending on their type. Speech extraction was also experimentally investigated: the speech signal of a person being 80 to 100 meters away can be captured with acceptable speech intelligibility.
Multiscale characterization and analysis of shapes
Prasad, Lakshman; Rao, Ramana
2002-01-01
An adaptive multiscale method approximates shapes with continuous or uniformly and densely sampled contours, with the purpose of sparsely and nonuniformly discretizing the boundaries of shapes at any prescribed resolution, while at the same time retaining the salient shape features at that resolution. In another aspect, a fundamental geometric filtering scheme using the Constrained Delaunay Triangulation (CDT) of polygonized shapes creates an efficient parsing of shapes into components that have semantic significance dependent only on the shapes' structure and not on their representations per se. A shape skeletonization process generalizes to sparsely discretized shapes, with the additional benefit of prunability to filter out irrelevant and morphologically insignificant features. The skeletal representation of characters of varying thickness and the elimination of insignificant and noisy spurs and branches from the skeleton greatly increases the robustness, reliability and recognition rates of character recognition algorithms.
GEMS X-ray Polarimeter Performance Simulations
NASA Technical Reports Server (NTRS)
Baumgartner, Wayne H.; Strohmayer, Tod; Kallman, Tim; Black, J. Kevin; Hill, Joanne; Swank, Jean
2012-01-01
The Gravity and Extreme Magnetism Small explorer (GEMS) is an X-ray polarization telescope selected as a NASA small explorer satellite mission. The X-ray Polarimeter on GEMS uses a Time Projection Chamber gas proportional counter to measure the polarization of astrophysical X-rays in the 2-10 keV band by sensing the direction of the track of the primary photoelectron excited by the incident X-ray. We have simulated the expected sensitivity of the polarimeter to polarized X-rays. We use the simulation package Penelope to model the physics of the interaction of the initial photoelectron with the detector gas and to determine the distribution of charge deposited in the detector volume. We then model the charge diffusion in the detector,and produce simulated track images. Within the track reconstruction algorithm we apply cuts on the track shape and focus on the initial photoelectron direction in order to maximize the overall sensitivity of the instrument, using this technique we have predicted instrument modulation factors nu(sub 100) for 100% polarized X-rays ranging from 10% to over 60% across the 2-10 keV X-ray band. We also discuss the simulation program used to develop and model some of the algorithms used for triggering, and energy measurement of events in the polarimeter.
Object Tracking Vision System for Mapping the UCN τ Apparatus Volume
NASA Astrophysics Data System (ADS)
Lumb, Rowan; UCNtau Collaboration
2016-09-01
The UCN τ collaboration has an immediate goal to measure the lifetime of the free neutron to within 0.1%, i.e. about 1 s. The UCN τ apparatus is a magneto-gravitational ``bottle'' system. This system holds low energy, or ultracold, neutrons in the apparatus with the constraint of gravity, and keeps these low energy neutrons from interacting with the bottle via a strong 1 T surface magnetic field created by a bowl-shaped array of permanent magnets. The apparatus is wrapped with energized coils to supply a magnetic field throughout the ''bottle'' volume to prevent depolarization of the neutrons. An object-tracking stereo-vision system will be presented that precisely tracks a Hall probe and allows a mapping of the magnetic field throughout the volume of the UCN τ bottle. The stereo-vision system utilizes two cameras and open source openCV software to track an object's 3-d position in space in real time. The desired resolution is +/-1 mm resolution along each axis. The vision system is being used as part of an even larger system to map the magnetic field of the UCN τ apparatus and expose any possible systematic effects due to field cancellation or low field points which could allow neutrons to depolarize and possibly escape from the apparatus undetected. Tennessee Technological University.
Automatic tracking of cells for video microscopy in patch clamp experiments
2014-01-01
Background Visualisation of neurons labeled with fluorescent proteins or compounds generally require exposure to intense light for a relatively long period of time, often leading to bleaching of the fluorescent probe and photodamage of the tissue. Here we created a technique to drastically shorten light exposure and improve the targeting of fluorescent labeled cells that is specially useful for patch-clamp recordings. We applied image tracking and mask overlay to reduce the time of fluorescence exposure and minimise mistakes when identifying neurons. Methods Neurons are first identified according to visual criteria (e.g. fluorescence protein expression, shape, viability etc.) and a transmission microscopy image Differential Interference Contrast (DIC) or Dodt contrast containing the cell used as a reference for the tracking algorithm. A fluorescence image can also be acquired later to be used as a mask (that can be overlaid on the target during live transmission video). As patch-clamp experiments require translating the microscope stage, we used pattern matching to track reference neurons in order to move the fluorescence mask to match the new position of the objective in relation to the sample. For the image processing we used the Open Source Computer Vision (OpenCV) library, including the Speeded-Up Robust Features (SURF) for tracking cells. The dataset of images (n = 720) was analyzed under normal conditions of acquisition and with influence of noise (defocusing and brightness). Results We validated the method in dissociated neuronal cultures and fresh brain slices expressing Enhanced Yellow Fluorescent Protein (eYFP) or Tandem Dimer Tomato (tdTomato) proteins, which considerably decreased the exposure to fluorescence excitation, thereby minimising photodamage. We also show that the neuron tracking can be used in differential interference contrast or Dodt contrast microscopy. Conclusion The techniques of digital image processing used in this work are an important addition to the set of microscopy tools used in modern electrophysiology, specially in experiments with neuron cultures and brain slices. PMID:24946774
Automatic tracking of cells for video microscopy in patch clamp experiments.
Peixoto, Helton M; Munguba, Hermany; Cruz, Rossana M S; Guerreiro, Ana M G; Leao, Richardson N
2014-06-20
Visualisation of neurons labeled with fluorescent proteins or compounds generally require exposure to intense light for a relatively long period of time, often leading to bleaching of the fluorescent probe and photodamage of the tissue. Here we created a technique to drastically shorten light exposure and improve the targeting of fluorescent labeled cells that is specially useful for patch-clamp recordings. We applied image tracking and mask overlay to reduce the time of fluorescence exposure and minimise mistakes when identifying neurons. Neurons are first identified according to visual criteria (e.g. fluorescence protein expression, shape, viability etc.) and a transmission microscopy image Differential Interference Contrast (DIC) or Dodt contrast containing the cell used as a reference for the tracking algorithm. A fluorescence image can also be acquired later to be used as a mask (that can be overlaid on the target during live transmission video). As patch-clamp experiments require translating the microscope stage, we used pattern matching to track reference neurons in order to move the fluorescence mask to match the new position of the objective in relation to the sample. For the image processing we used the Open Source Computer Vision (OpenCV) library, including the Speeded-Up Robust Features (SURF) for tracking cells. The dataset of images (n = 720) was analyzed under normal conditions of acquisition and with influence of noise (defocusing and brightness). We validated the method in dissociated neuronal cultures and fresh brain slices expressing Enhanced Yellow Fluorescent Protein (eYFP) or Tandem Dimer Tomato (tdTomato) proteins, which considerably decreased the exposure to fluorescence excitation, thereby minimising photodamage. We also show that the neuron tracking can be used in differential interference contrast or Dodt contrast microscopy. The techniques of digital image processing used in this work are an important addition to the set of microscopy tools used in modern electrophysiology, specially in experiments with neuron cultures and brain slices.
Wei, Jeng; Yin, Wei-Hsian; Lee, Yung-Tsai; Hsiung, Ming C; Tsai, Shen-Kou; Chuang, Yi Cheng; Ou, Ching-Huei; Chou, Yi-Pen
2015-03-01
Paravalvular leaks (PVLs) are a common complication of prosthetic valve replacement. Use of the transcatheter intervention technique is a suitable alternative in high-risk patients who may not tolerate repeat surgery. Common reasons for failure of this demanding intervention include poor imaging quality and unsuitable anatomy. The purpose of this study was to assess the usefulness and the incremental value of real-time three-dimensional (RT 3D) transesophageal echocardiography (TEE) over two-dimensional (2D) TEE findings in the evaluation of the geometry and track of mitral PVLs during transcatheter closure. Five patients with six mitral PVLs at high risk for repeat surgery underwent transcatheter leak closure. Intraoperative RT 3DTEE was used to assess the location, shape, number, and size of the defects. Transapical approaches were used in all cases with fluoroscopic and RT 3D TEE guidance of the wire and catheter, device positioning, and assessment of residual leak after the procedure. In all of the cases, defects with irregular crescent shapes and distorted tracks were clearly delineated by RT 3D TEE. This was compared to those results obtained through 2D TEE, which was unable to characterize the defects. Three cases showed small leaks, which were completely occluded with a patent ductus arteriosus (PDA) device in two cases, and a muscular ventricular septal defect (mVSD) occluder combined with coil devices in one case. One case involved a large leak and early device embolization of the muscular VSD occluder, which was removed surgically, and demonstrated a crescent-shaped defect. One patient had two releaks 2 months subsequent to the procedure due to two new extended leaks at the tails of the crescent-shaped defect. RT 3D TEE can clearly delineate the geometries of defects in their entirety, including shape, size, and location of the defect and track canal. It would also appear that RT 3D TEE is superior to 2D TEE in the process of guiding the wire through the difficult canal anatomy, facilitating the overall procedure. The small mitral PVLs can be completely occluded, but subsequent complications occurred with large defect closures because of embolization or releak. Therefore, transcatheter closure of PVLs seems to be an attractive alternative for these patients, but newer occluder designs that better conform to leak geometry will be required to improve outcomes. Copyright © 2014. Published by Elsevier Taiwan.
Manipulating matter rogue waves and breathers in Bose-Einstein condensates.
Manikandan, K; Muruganandam, P; Senthilvelan, M; Lakshmanan, M
2014-12-01
We construct higher-order rogue wave solutions and breather profiles for the quasi-one-dimensional Gross-Pitaevskii equation with a time-dependent interatomic interaction and external trap through the similarity transformation technique. We consider three different forms of traps: (i) the time-independent expulsive trap, (ii) time-dependent monotonous trap, and (iii) time-dependent periodic trap. Our results show that when we change a parameter appearing in the time-independent or time-dependent trap the second- and third-order rogue waves transform into the first-order-like rogue waves. We also analyze the density profiles of breather solutions. Here we also show that the shapes of the breathers change when we tune the strength of the trap parameter. Our results may help to manage rogue waves experimentally in a BEC system.
Xiao, Xiaoyin; Fischer, Arthur J.; Coltrin, Michael E.; ...
2014-10-22
We report here the characteristics of photoelectrochemical (PEC) etching of epitaxial InGaN semiconductor thin films using narrowband lasers with linewidth less than ~1 nm. In the initial stages of PEC etching, when the thin film is flat, characteristic voltammogram shapes are observed. At low photo-excitation rates, voltammograms are S-shaped, indicating the onset of a voltage-independent rate-limiting process associated with electron-hole-pair creation and/or annihilation. At high photo-excitation rates, voltammograms are superlinear in shape, indicating, for the voltage ranges studied here, a voltage-dependent rate-limiting process associated with surface electrochemical oxidation. As PEC etching proceeds, the thin film becomes rough at the nanoscale,more » and ultimately evolves into an ensemble of nanoparticles. As a result, this change in InGaN film volume and morphology leads to a characteristic dependence of PEC etch rate on time: an incubation time, followed by a rise, then a peak, then a slow decay.« less
Creating Shape Templates for Patient Specific Biventricular Modeling in Congenital Heart Disease
Gilbert, Kathleen; Farrar, Genevieve; Cowan, Brett R.; Suinesiaputra, Avan; Occleshaw, Christopher; Pontré, Beau; Perry, James; Hegde, Sanjeet; Marsden, Alison; Omens, Jeff; McCulloch, Andrew; Young, Alistair A.
2018-01-01
Survival rates for infants with congenital heart disease (CHD) are improving, resulting in a growing population of adults with CHD. However, the analysis of left and right ventricular function is very time-consuming owing to the variety of congenital morphologies. Efficient customization of patient geometry and function depends on high quality shape templates specifically designed for the application. In this paper, we combine a method for creating finite element shape templates with an interactive template customization to patient MRI examinations. This enables different templates to be chosen depending on patient morphology. To demonstrate this pipeline, a new biventricular template with 162 elements was created and tested in place of an existing 82-element template. The method was able to provide fast interactive biventricular analysis with 0.31 sec per edit response time. The new template was customized to 13 CHD patients with similar biventricular topology, showing improved performance over the previous template and good agreement with clinical indices. PMID:26736353
NASA Astrophysics Data System (ADS)
Veloce, L. M.; Kuźniak, M.; Di Stefano, P. C. F.; Noble, A. J.; Boulay, M. G.; Nadeau, P.; Pollmann, T.; Clark, M.; Piquemal, M.; Schreiner, K.
2016-06-01
Liquid noble based particle detectors often use the organic wavelength shifter 1,1,4,4-tetraphenyl-1,3-butadiene (TPB) which shifts UV scintillation light to the visible regime, facilitating its detection, but which also can scintillate on its own. Dark matter searches based on this type of detector commonly rely on pulse-shape discrimination (PSD) for background mitigation. Alpha-induced scintillation therefore represents a possible background source in dark matter searches. The timing characteristics of this scintillation determine whether this background can be mitigated through PSD. We have therefore characterized the pulse shape and light yield of alpha induced TPB scintillation at temperatures ranging from 300 K down to 4 K, with special attention given to liquid noble gas temperatures. We find that the pulse shapes and light yield depend strongly on temperature. In addition, the significant contribution of long time constants above ~50 K provides an avenue for discrimination between alpha decay events in TPB and nuclear-recoil events in noble liquid detectors.
Doublet Pulse Coherent Laser Radar for Tracking of Resident Space Objects
NASA Technical Reports Server (NTRS)
Prasad, Narasimha S.; Rudd, Van; Shald, Scott; Sandford, Stephen; Dimarcantonio, Albert
2014-01-01
In this paper, the development of a long range ladar system known as ExoSPEAR at NASA Langley Research Center for tracking rapidly moving resident space objects is discussed. Based on 100 W, nanosecond class, near-IR laser, this ladar system with coherent detection technique is currently being investigated for short dwell time measurements of resident space objects (RSOs) in LEO and beyond for space surveillance applications. This unique ladar architecture is configured using a continuously agile doublet-pulse waveform scheme coupled to a closed-loop tracking and control loop approach to simultaneously achieve mm class range precision and mm/s velocity precision and hence obtain unprecedented track accuracies. Salient features of the design architecture followed by performance modeling and engagement simulations illustrating the dependence of range and velocity precision in LEO orbits on ladar parameters are presented. Estimated limits on detectable optical cross sections of RSOs in LEO orbits are discussed.
NASA Astrophysics Data System (ADS)
Fomin, V. M.; Golyshev, A. A.; Kosarev, V. F.; Malikov, A. G.; Orishich, A. M.; Ryashin, N. S.; Filippov, A. A.; Shikalov, V. S.
2017-09-01
A method is proposed for creating principally new functionally graded heterogeneous materials on the basis of B4C ceramic powders with different mass fractions in the original mixture and plastic metallic additive of Ni by a combined method of cold spraying with subsequent layer-by-layer laser treatment. Mechanical properties of the resultant tracks are examined. It is shown that the track microhardness increases with increasing B4C concentration in the original mixture. The track structure is found to depend on the size of ceramic particles in the interval from 3 to 75 μm. Reduction of the B4C particle size (approximately by a factor of 2-3) inside the track owing to fragmentation under the action of the laser beam is observed for the first time.
Menten, Martin J; Fast, Martin F; Nill, Simeon; Oelfke, Uwe
2015-12-01
Real-time, markerless localization of lung tumors with kV imaging is often inhibited by ribs obscuring the tumor and poor soft-tissue contrast. This study investigates the use of dual-energy imaging, which can generate radiographs with reduced bone visibility, to enhance automated lung tumor tracking for real-time adaptive radiotherapy. kV images of an anthropomorphic breathing chest phantom were experimentally acquired and radiographs of actual lung cancer patients were Monte-Carlo-simulated at three imaging settings: low-energy (70 kVp, 1.5 mAs), high-energy (140 kVp, 2.5 mAs, 1 mm additional tin filtration), and clinical (120 kVp, 0.25 mAs). Regular dual-energy images were calculated by weighted logarithmic subtraction of high- and low-energy images and filter-free dual-energy images were generated from clinical and low-energy radiographs. The weighting factor to calculate the dual-energy images was determined by means of a novel objective score. The usefulness of dual-energy imaging for real-time tracking with an automated template matching algorithm was investigated. Regular dual-energy imaging was able to increase tracking accuracy in left-right images of the anthropomorphic phantom as well as in 7 out of 24 investigated patient cases. Tracking accuracy remained comparable in three cases and decreased in five cases. Filter-free dual-energy imaging was only able to increase accuracy in 2 out of 24 cases. In four cases no change in accuracy was observed and tracking accuracy worsened in nine cases. In 9 out of 24 cases, it was not possible to define a tracking template due to poor soft-tissue contrast regardless of input images. The mean localization errors using clinical, regular dual-energy, and filter-free dual-energy radiographs were 3.85, 3.32, and 5.24 mm, respectively. Tracking success was dependent on tumor position, tumor size, imaging beam angle, and patient size. This study has highlighted the influence of patient anatomy on the success rate of real-time markerless tumor tracking using dual-energy imaging. Additionally, the importance of the spectral separation of the imaging beams used to generate the dual-energy images has been shown.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Menten, Martin J., E-mail: martin.menten@icr.ac.uk; Fast, Martin F.; Nill, Simeon
2015-12-15
Purpose: Real-time, markerless localization of lung tumors with kV imaging is often inhibited by ribs obscuring the tumor and poor soft-tissue contrast. This study investigates the use of dual-energy imaging, which can generate radiographs with reduced bone visibility, to enhance automated lung tumor tracking for real-time adaptive radiotherapy. Methods: kV images of an anthropomorphic breathing chest phantom were experimentally acquired and radiographs of actual lung cancer patients were Monte-Carlo-simulated at three imaging settings: low-energy (70 kVp, 1.5 mAs), high-energy (140 kVp, 2.5 mAs, 1 mm additional tin filtration), and clinical (120 kVp, 0.25 mAs). Regular dual-energy images were calculated bymore » weighted logarithmic subtraction of high- and low-energy images and filter-free dual-energy images were generated from clinical and low-energy radiographs. The weighting factor to calculate the dual-energy images was determined by means of a novel objective score. The usefulness of dual-energy imaging for real-time tracking with an automated template matching algorithm was investigated. Results: Regular dual-energy imaging was able to increase tracking accuracy in left–right images of the anthropomorphic phantom as well as in 7 out of 24 investigated patient cases. Tracking accuracy remained comparable in three cases and decreased in five cases. Filter-free dual-energy imaging was only able to increase accuracy in 2 out of 24 cases. In four cases no change in accuracy was observed and tracking accuracy worsened in nine cases. In 9 out of 24 cases, it was not possible to define a tracking template due to poor soft-tissue contrast regardless of input images. The mean localization errors using clinical, regular dual-energy, and filter-free dual-energy radiographs were 3.85, 3.32, and 5.24 mm, respectively. Tracking success was dependent on tumor position, tumor size, imaging beam angle, and patient size. Conclusions: This study has highlighted the influence of patient anatomy on the success rate of real-time markerless tumor tracking using dual-energy imaging. Additionally, the importance of the spectral separation of the imaging beams used to generate the dual-energy images has been shown.« less
NASA Technical Reports Server (NTRS)
2004-01-01
The circular shapes seen on the martian surface in these images are 'footprints' left by the Mars Exploration Rover Opportunity's airbags during landing as the spacecraft gently rolled to a stop. Opportunity landed at approximately 9:05 p.m. PST on Saturday, Jan. 24, 2004, Earth-received time. The circular region of the flower-like feature on the right is about the size of a basketball. Scientists are studying the prints for more clues about the makeup of martian soil. The images were taken at Meridiani Planum, Mars, by the panoramic camera on the Mars Exploration Rover Opportunity.
Recent results on CVD diamond radiation sensors
NASA Astrophysics Data System (ADS)
Weilhammer, P.; Adam, W.; Bauer, C.; Berdermann, E.; Bogani, F.; Borchi, E.; Bruzzi, M.; Colledani, C.; Conway, J.; Dabrowski, W.; Delpierre, P.; Deneuville, A.; Dulinski, W.; v. d. Eijk, R.; van Eijk, B.; Fallou, A.; Fish, D.; Fried, M.; Gan, K. K.; Gheeraert, E.; Grigoriev, E.; Hallewell, G.; Hall-Wilton, R.; Han, S.; Hartjes, F.; Hrubec, J.; Husson, D.; Kagan, H.; Kania, D.; Kaplon, J.; Kass, R.; Knopfle, K. T.; Krammer, M.; Manfredi, P. F.; Meier, D.; LeNormand; Pan, L. S.; Pernegger, H.; Pernicka, M.; Plano, R.; Re, V.; Riester, J. L.; Roe, S.; Roff; Rudge, A.; Schieber, M.; Schnetzer, S.; Sciortino, S.; Speziali, V.; Stelzer, H.; Stone, R.; Tapper, R. J.; Tesarek, R.; Thomson, G. B.; Trawick, M.; Trischuk, W.; Turchetta, R.; RD 42 Collaboration
1998-02-01
CVD diamond radiation sensors are being developed for possible use in trackers in the LHC experiments. The diamond promises to be radiation hard well beyond particle fluences that can be tolerated by Si sensors. Recent results from the RD 42 collaboration on charge collection distance and on radiation hardness of CVD diamond samples will be reported. Measurements with diamond tracking devices, both strip detectors and pixel detectors, will be discussed. Results from beam tests using a diamond strip detector which was read out with fast, 25 ns shaping time, radiation-hard pipeline electronics will be presented.
NASA Technical Reports Server (NTRS)
Morinelli, Patrick J.; Ward, Douglas T.; Blizzard, Michael R.; Mendelsohn, Chad R.
2008-01-01
This paper provides an overview of the lessons learned from the National Aeronautics and Space Administration (NASA) Goddard Space Flight Center s (GSFC) Flight Dynamics Facility s (FDF) support of the Time History of Events and Macroscale Interactions during Substorms (THEMIS) spacecraft emergency in February 2007, and the Tracking and Data Relay Satellite-3 (TDRS-3) spacecraft emergency in March 2006. A successful and timely recovery from both of these spacecraft emergencies depended on accurate knowledge of the orbit. Unfortunately, the combination of each spacecraft emergency with very little tracking data contributed to difficulties in estimating and predicting the orbit and delayed recovery efforts in both cases. In both the THEMIS and TDRS-3 spacecraft emergencies, numerous factors contributed to problems with obtaining nominal tracking data measurements. This paper details the various causative factors and challenges. This paper further enumerates lessons learned from FDF s recovery efforts involving the THEMIS and TDRS-3 spacecraft emergencies and scant tracking data, as well as recommendations for improvements and corrective actions. In addition, this paper describes the broad range of resources and complex navigation methods employed within the FDF for supporting critical navigation activities during all mission phases, including launch, early orbit, and on-orbit operations.
Lykins, Amy D; Meana, Marta; Kambe, Gretchen
2006-10-01
As a first step in the investigation of the role of visual attention in the processing of erotic stimuli, eye-tracking methodology was employed to measure eye movements during erotic scene presentation. Because eye-tracking is a novel methodology in sexuality research, we attempted to determine whether the eye-tracker could detect differences (should they exist) in visual attention to erotic and non-erotic scenes. A total of 20 men and 20 women were presented with a series of erotic and non-erotic images and tracked their eye movements during image presentation. Comparisons between erotic and non-erotic image groups showed significant differences on two of three dependent measures of visual attention (number of fixations and total time) in both men and women. As hypothesized, there was a significant Stimulus x Scene Region interaction, indicating that participants visually attended to the body more in the erotic stimuli than in the non-erotic stimuli, as evidenced by a greater number of fixations and longer total time devoted to that region. These findings provide support for the application of eye-tracking methodology as a measure of visual attentional capture in sexuality research. Future applications of this methodology to expand our knowledge of the role of cognition in sexuality are suggested.