Sample records for tracker real time

  1. Compressed multi-block local binary pattern for object tracking

    NASA Astrophysics Data System (ADS)

    Li, Tianwen; Gao, Yun; Zhao, Lei; Zhou, Hao

    2018-04-01

    Both robustness and real-time are very important for the application of object tracking under a real environment. The focused trackers based on deep learning are difficult to satisfy with the real-time of tracking. Compressive sensing provided a technical support for real-time tracking. In this paper, an object can be tracked via a multi-block local binary pattern feature. The feature vector was extracted based on the multi-block local binary pattern feature, which was compressed via a sparse random Gaussian matrix as the measurement matrix. The experiments showed that the proposed tracker ran in real-time and outperformed the existed compressive trackers based on Haar-like feature on many challenging video sequences in terms of accuracy and robustness.

  2. Fast Deep Tracking via Semi-Online Domain Adaptation

    NASA Astrophysics Data System (ADS)

    Li, Xiaoping; Luo, Wenbing; Zhu, Yi; Li, Hanxi; Wang, Mingwen

    2018-04-01

    Deep tracking has been illustrating overwhelming superiorities over the shallow methods. Unfortunately, it also suffers from low FPS rates. To alleviate the problem, a number of real-time deep trackers have been proposed via removing the online updating procedure on the CNN model. However, the absent of the online update leads to a significant drop on tracking accuracy. In this work, we propose to perform the domain adaptation for visual tracking in two stages for transferring the information from the visual tracking domain and the instance domain respectively. In this way, the proposed visual tracker achieves comparable tracking accuracy to the state-of-the-art trackers and runs at real-time speed on an average consuming GPU.

  3. Compressed normalized block difference for object tracking

    NASA Astrophysics Data System (ADS)

    Gao, Yun; Zhang, Dengzhuo; Cai, Donglan; Zhou, Hao; Lan, Ge

    2018-04-01

    Feature extraction is very important for robust and real-time tracking. Compressive sensing provided a technical support for real-time feature extraction. However, all existing compressive tracking were based on compressed Haar-like feature, and how to compress many more excellent high-dimensional features is worth researching. In this paper, a novel compressed normalized block difference feature (CNBD) was proposed. For resisting noise effectively in a highdimensional normalized pixel difference feature (NPD), a normalized block difference feature extends two pixels in the original formula of NPD to two blocks. A CNBD feature can be obtained by compressing a normalized block difference feature based on compressive sensing theory, with the sparse random Gaussian matrix as the measurement matrix. The comparative experiments of 7 trackers on 20 challenging sequences showed that the tracker based on CNBD feature can perform better than other trackers, especially than FCT tracker based on compressed Haar-like feature, in terms of AUC, SR and Precision.

  4. Action-Driven Visual Object Tracking With Deep Reinforcement Learning.

    PubMed

    Yun, Sangdoo; Choi, Jongwon; Yoo, Youngjoon; Yun, Kimin; Choi, Jin Young

    2018-06-01

    In this paper, we propose an efficient visual tracker, which directly captures a bounding box containing the target object in a video by means of sequential actions learned using deep neural networks. The proposed deep neural network to control tracking actions is pretrained using various training video sequences and fine-tuned during actual tracking for online adaptation to a change of target and background. The pretraining is done by utilizing deep reinforcement learning (RL) as well as supervised learning. The use of RL enables even partially labeled data to be successfully utilized for semisupervised learning. Through the evaluation of the object tracking benchmark data set, the proposed tracker is validated to achieve a competitive performance at three times the speed of existing deep network-based trackers. The fast version of the proposed method, which operates in real time on graphics processing unit, outperforms the state-of-the-art real-time trackers with an accuracy improvement of more than 8%.

  5. Evaluating a robust contour tracker on echocardiographic sequences.

    PubMed

    Jacob, G; Noble, J A; Mulet-Parada, M; Blake, A

    1999-03-01

    In this paper we present an evaluation of a robust visual image tracker on echocardiographic image sequences. We show how the tracking framework can be customized to define an appropriate shape space that describes heart shape deformations that can be learnt from a training data set. We also investigate energy-based temporal boundary enhancement methods to improve image feature measurement. Results are presented demonstrating real-time tracking on real normal heart motion data sequences and abnormal synthesized and real heart motion data sequences. We conclude by discussing some of our current research efforts.

  6. Exposure Time Optimization for Highly Dynamic Star Trackers

    PubMed Central

    Wei, Xinguo; Tan, Wei; Li, Jian; Zhang, Guangjun

    2014-01-01

    Under highly dynamic conditions, the star-spots on the image sensor of a star tracker move across many pixels during the exposure time, which will reduce star detection sensitivity and increase star location errors. However, this kind of effect can be compensated well by setting an appropriate exposure time. This paper focuses on how exposure time affects the star tracker under highly dynamic conditions and how to determine the most appropriate exposure time for this case. Firstly, the effect of exposure time on star detection sensitivity is analyzed by establishing the dynamic star-spot imaging model. Then the star location error is deduced based on the error analysis of the sub-pixel centroiding algorithm. Combining these analyses, the effect of exposure time on attitude accuracy is finally determined. Some simulations are carried out to validate these effects, and the results show that there are different optimal exposure times for different angular velocities of a star tracker with a given configuration. In addition, the results of night sky experiments using a real star tracker agree with the simulation results. The summarized regularities in this paper should prove helpful in the system design and dynamic performance evaluation of the highly dynamic star trackers. PMID:24618776

  7. Using LabView for real-time monitoring and tracking of multiple biological objects

    NASA Astrophysics Data System (ADS)

    Nikolskyy, Aleksandr I.; Krasilenko, Vladimir G.; Bilynsky, Yosyp Y.; Starovier, Anzhelika

    2017-04-01

    Today real-time studying and tracking of movement dynamics of various biological objects is important and widely researched. Features of objects, conditions of their visualization and model parameters strongly influence the choice of optimal methods and algorithms for a specific task. Therefore, to automate the processes of adaptation of recognition tracking algorithms, several Labview project trackers are considered in the article. Projects allow changing templates for training and retraining the system quickly. They adapt to the speed of objects and statistical characteristics of noise in images. New functions of comparison of images or their features, descriptors and pre-processing methods will be discussed. The experiments carried out to test the trackers on real video files will be presented and analyzed.

  8. XpertTrack: Precision Autonomous Measuring Device Developed for Real Time Shipments Tracker

    PubMed Central

    Viman, Liviu; Daraban, Mihai; Fizesan, Raul; Iuonas, Mircea

    2016-01-01

    This paper proposes a software and hardware solution for real time condition monitoring applications. The proposed device, called XpertTrack, exchanges data through the GPRS protocol over a GSM network and monitories temperature and vibrations of critical merchandise during commercial shipments anywhere on the globe. Another feature of this real time tracker is to provide GPS and GSM positioning with a precision of 10 m or less. In order to interpret the condition of the merchandise, the data acquisition, analysis and visualization are done with 0.1 °C accuracy for the temperature sensor, and 10 levels of shock sensitivity for the acceleration sensor. In addition to this, the architecture allows increasing the number and the types of sensors, so that companies can use this flexible solution to monitor a large percentage of their fleet. PMID:26978360

  9. XpertTrack: Precision Autonomous Measuring Device Developed for Real Time Shipments Tracker.

    PubMed

    Viman, Liviu; Daraban, Mihai; Fizesan, Raul; Iuonas, Mircea

    2016-03-10

    This paper proposes a software and hardware solution for real time condition monitoring applications. The proposed device, called XpertTrack, exchanges data through the GPRS protocol over a GSM network and monitories temperature and vibrations of critical merchandise during commercial shipments anywhere on the globe. Another feature of this real time tracker is to provide GPS and GSM positioning with a precision of 10 m or less. In order to interpret the condition of the merchandise, the data acquisition, analysis and visualization are done with 0.1 °C accuracy for the temperature sensor, and 10 levels of shock sensitivity for the acceleration sensor. In addition to this, the architecture allows increasing the number and the types of sensors, so that companies can use this flexible solution to monitor a large percentage of their fleet.

  10. A Reliable and Real-Time Tracking Method with Color Distribution

    PubMed Central

    Zhao, Zishu; Han, Yuqi; Xu, Tingfa; Li, Xiangmin; Song, Haiping; Luo, Jiqiang

    2017-01-01

    Occlusion is a challenging problem in visual tracking. Therefore, in recent years, many trackers have been explored to solve this problem, but most of them cannot track the target in real time because of the heavy computational cost. A spatio-temporal context (STC) tracker was proposed to accelerate the task by calculating context information in the Fourier domain, alleviating the performance in handling occlusion. In this paper, we take advantage of the high efficiency of the STC tracker and employ salient prior model information based on color distribution to improve the robustness. Furthermore, we exploit a scale pyramid for accurate scale estimation. In particular, a new high-confidence update strategy and a re-searching mechanism are used to avoid the model corruption and handle occlusion. Extensive experimental results demonstrate our algorithm outperforms several state-of-the-art algorithms on the OTB2015 dataset. PMID:28994748

  11. Cyclometalated Iridium(III) Complexes as AIE Phosphorescent Probes for Real-Time Monitoring of Mitophagy in Living Cells

    NASA Astrophysics Data System (ADS)

    Jin, Chengzhi; Liu, Jiangping; Chen, Yu; Guan, Ruilin; Ouyang, Cheng; Zhu, Yanjiao; Ji, Liangnian; Chao, Hui

    2016-02-01

    Mitophagy, which is a special autophagy that removes damaging mitochondria to maintain sufficient healthy mitochondria, provides an alternative path for addressing dysfunctional mitochondria and avoiding cellular death. In the present study, by coupling the triphenylamine group with 2-phenylimidazo[4,5-f][1,10]phenanthroline derivatives, we synthesized five Ir(III) complexes with an AIE property that are expected to fulfill requirements for real-time monitoring of mitophagy. Ir1-Ir5 were exploited to image mitochondria with a short incubation time by confocal microscopy and inductive coupled plasma-mass spectrometry (ICP-MS). Due to aggregation-induced emission (AIE), Ir1-Ir5 exhibited excellent photostability compared to MitoTracker Green (MTG). Moreover, Ir1-Ir5 manifested satisfactory photostability in the mitochondrial physiological pH range. In addition, the uptake mechanism of Ir1 was investigated using confocal microscopy and flow cytometry analysis. Finally, using both Ir1 and LysoTracker Green, we were able to achieve real-time monitoring of mitophagy.

  12. Uncertainty estimation and multi sensor fusion for kinematic laser tracker measurements

    NASA Astrophysics Data System (ADS)

    Ulrich, Thomas

    2013-08-01

    Laser trackers are widely used to measure kinematic tasks such as tracking robot movements. Common methods to evaluate the uncertainty in the kinematic measurement include approximations specified by the manufacturers, various analytical adjustment methods and the Kalman filter. In this paper a new, real-time technique is proposed, which estimates the 4D-path (3D-position + time) uncertainty of an arbitrary path in space. Here a hybrid system estimator is applied in conjunction with the kinematic measurement model. This method can be applied to processes, which include various types of kinematic behaviour, constant velocity, variable acceleration or variable turn rates. The new approach is compared with the Kalman filter and a manufacturer's approximations. The comparison was made using data obtained by tracking an industrial robot's tool centre point with a Leica laser tracker AT901 and a Leica laser tracker LTD500. It shows that the new approach is more appropriate to analysing kinematic processes than the Kalman filter, as it reduces overshoots and decreases the estimated variance. In comparison with the manufacturer's approximations, the new approach takes account of kinematic behaviour with an improved description of the real measurement process and a reduction in estimated variance. This approach is therefore well suited to the analysis of kinematic processes with unknown changes in kinematic behaviour as well as the fusion among laser trackers.

  13. Three-dimensional face pose detection and tracking using monocular videos: tool and application.

    PubMed

    Dornaika, Fadi; Raducanu, Bogdan

    2009-08-01

    Recently, we have proposed a real-time tracker that simultaneously tracks the 3-D head pose and facial actions in monocular video sequences that can be provided by low quality cameras. This paper has two main contributions. First, we propose an automatic 3-D face pose initialization scheme for the real-time tracker by adopting a 2-D face detector and an eigenface system. Second, we use the proposed methods-the initialization and tracking-for enhancing the human-machine interaction functionality of an AIBO robot. More precisely, we show how the orientation of the robot's camera (or any active vision system) can be controlled through the estimation of the user's head pose. Applications based on head-pose imitation such as telepresence, virtual reality, and video games can directly exploit the proposed techniques. Experiments on real videos confirm the robustness and usefulness of the proposed methods.

  14. One-kilohertz eye tracker and active intraoperative torsion detection in the NIDEK CXIII and Quest excimer lasers.

    PubMed

    Waring, George O

    2009-10-01

    To describe recent technological additions to the NIDEK CXIII and Quest excimer lasers. A summary article with data from previous published studies outlining the benefits of newer technology. The addition of a 1-kHz infrared eye tracker decreased the spread of laser spot placement from a mean of 228.79 microm without a tracker to 38.47 microm with the eye tracker. The addition of real-time torsion error correction produced a statistically significantly lower cylinder dispersion, mean manifest refractive cylinder, and error of angle postoperatively in eyes that underwent LASIK. The incorporation of an ultrahigh speed eye tracker and active cyclotorsion correction surpasses the minimal technology criteria required for accurate wavefront-based ablations. Copyright 2009, SLACK Incorporated.

  15. A robust star identification algorithm with star shortlisting

    NASA Astrophysics Data System (ADS)

    Mehta, Deval Samirbhai; Chen, Shoushun; Low, Kay Soon

    2018-05-01

    A star tracker provides the most accurate attitude solution in terms of arc seconds compared to the other existing attitude sensors. When no prior attitude information is available, it operates in "Lost-In-Space (LIS)" mode. Star pattern recognition, also known as star identification algorithm, forms the most crucial part of a star tracker in the LIS mode. Recognition reliability and speed are the two most important parameters of a star pattern recognition technique. In this paper, a novel star identification algorithm with star ID shortlisting is proposed. Firstly, the star IDs are shortlisted based on worst-case patch mismatch, and later stars are identified in the image by an initial match confirmed with a running sequential angular match technique. The proposed idea is tested on 16,200 simulated star images having magnitude uncertainty, noise stars, positional deviation, and varying size of the field of view. The proposed idea is also benchmarked with the state-of-the-art star pattern recognition techniques. Finally, the real-time performance of the proposed technique is tested on the 3104 real star images captured by a star tracker SST-20S currently mounted on a satellite. The proposed technique can achieve an identification accuracy of 98% and takes only 8.2 ms for identification on real images. Simulation and real-time results depict that the proposed technique is highly robust and achieves a high speed of identification suitable for actual space applications.

  16. Laser vision seam tracking system based on image processing and continuous convolution operator tracker

    NASA Astrophysics Data System (ADS)

    Zou, Yanbiao; Chen, Tao

    2018-06-01

    To address the problem of low welding precision caused by the poor real-time tracking performance of common welding robots, a novel seam tracking system with excellent real-time tracking performance and high accuracy is designed based on the morphological image processing method and continuous convolution operator tracker (CCOT) object tracking algorithm. The system consists of a six-axis welding robot, a line laser sensor, and an industrial computer. This work also studies the measurement principle involved in the designed system. Through the CCOT algorithm, the weld feature points are determined in real time from the noise image during the welding process, and the 3D coordinate values of these points are obtained according to the measurement principle to control the movement of the robot and the torch in real time. Experimental results show that the sensor has a frequency of 50 Hz. The welding torch runs smoothly with a strong arc light and splash interference. Tracking error can reach ±0.2 mm, and the minimal distance between the laser stripe and the welding molten pool can reach 15 mm, which can significantly fulfill actual welding requirements.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zaks, D; Fletcher, R; Salamon, S

    Purpose: To develop an online framework that tracks a patient’s plan from initial simulation to treatment and that helps automate elements of the physics plan checks usually performed in the record and verify (RV) system and treatment planning system. Methods: We have developed PlanTracker, an online plan tracking system that automatically imports new patients tasks and follows it through treatment planning, physics checks, therapy check, and chart rounds. A survey was designed to collect information about the amount of time spent by medical physicists in non-physics related tasks. We then assessed these non-physics tasks for automation. Using these surveys, wemore » directed our PlanTracker software development towards the automation of intra-plan physics review. We then conducted a systematic evaluation of PlanTracker’s accuracy by generating test plans in the RV system software designed to mimic real plans, in order to test its efficacy in catching errors both real and theoretical. Results: PlanTracker has proven to be an effective improvement to the clinical workflow in a radiotherapy clinic. We present data indicating that roughly 1/3 of the physics plan check can be automated, and the workflow optimized, and show the functionality of PlanTracker. When the full system is in clinical use we will present data on improvement of time use in comparison to survey data prior to PlanTracker implementation. Conclusion: We have developed a framework for plan tracking and automatic checks in radiation therapy. We anticipate using PlanTracker as a basis for further development in clinical/research software. We hope that by eliminating the most simple and time consuming checks, medical physicists may be able to spend their time on plan quality and other physics tasks rather than in arithmetic and logic checks. We see this development as part of a broader initiative to advance the clinical/research informatics infrastructure surrounding the radiotherapy clinic. This research project has been financially supported by Varian Medical Systems, Palo Alto, CA, through a Varian MRA.« less

  18. Development of a real time multiple target, multi camera tracker for civil security applications

    NASA Astrophysics Data System (ADS)

    Åkerlund, Hans

    2009-09-01

    A surveillance system has been developed that can use multiple TV-cameras to detect and track personnel and objects in real time in public areas. The document describes the development and the system setup. The system is called NIVS Networked Intelligent Video Surveillance. Persons in the images are tracked and displayed on a 3D map of the surveyed area.

  19. Robust object tacking based on self-adaptive search area

    NASA Astrophysics Data System (ADS)

    Dong, Taihang; Zhong, Sheng

    2018-02-01

    Discriminative correlation filter (DCF) based trackers have recently achieved excellent performance with great computational efficiency. However, DCF based trackers suffer boundary effects, which result in the unstable performance in challenging situations exhibiting fast motion. In this paper, we propose a novel method to mitigate this side-effect in DCF based trackers. We change the search area according to the prediction of target motion. When the object moves fast, broad search area could alleviate boundary effects and reserve the probability of locating object. When the object moves slowly, narrow search area could prevent effect of useless background information and improve computational efficiency to attain real-time performance. This strategy can impressively soothe boundary effects in situations exhibiting fast motion and motion blur, and it can be used in almost all DCF based trackers. The experiments on OTB benchmark show that the proposed framework improves the performance compared with the baseline trackers.

  20. Real-Time Detection and Tracking of Multiple People in Laser Scan Frames

    NASA Astrophysics Data System (ADS)

    Cui, J.; Song, X.; Zhao, H.; Zha, H.; Shibasaki, R.

    This chapter presents an approach to detect and track multiple people ro bustly in real time using laser scan frames. The detection and tracking of people in real time is a problem that arises in a variety of different contexts. Examples in clude intelligent surveillance for security purposes, scene analysis for service robot, and crowd behavior analysis for human behavior study. Over the last several years, an increasing number of laser-based people-tracking systems have been developed in both mobile robotics platforms and fixed platforms using one or multiple laser scanners. It has been proved that processing on laser scanner data makes the tracker much faster and more robust than a vision-only based one in complex situations. In this chapter, we present a novel robust tracker to detect and track multiple people in a crowded and open area in real time. First, raw data are obtained that measures two legs for each people at a height of 16 cm from horizontal ground with multiple registered laser scanners. A stable feature is extracted using accumulated distribu tion of successive laser frames. In this way, the noise that generates split and merged measurements is smoothed well, and the pattern of rhythmic swinging legs is uti lized to extract each leg. Second, a probabilistic tracking model is presented, and then a sequential inference process using a Bayesian rule is described. A sequential inference process is difficult to compute analytically, so two strategies are presented to simplify the computation. In the case of independent tracking, the Kalman fil ter is used with a more efficient measurement likelihood model based on a region coherency property. Finally, to deal with trajectory fragments we present a concise approach to fuse just a little visual information from synchronized video camera to laser data. Evaluation with real data shows that the proposed method is robust and effective. It achieves a significant improvement compared with existing laser-based trackers.

  1. Real-time probabilistic covariance tracking with efficient model update.

    PubMed

    Wu, Yi; Cheng, Jian; Wang, Jinqiao; Lu, Hanqing; Wang, Jun; Ling, Haibin; Blasch, Erik; Bai, Li

    2012-05-01

    The recently proposed covariance region descriptor has been proven robust and versatile for a modest computational cost. The covariance matrix enables efficient fusion of different types of features, where the spatial and statistical properties, as well as their correlation, are characterized. The similarity between two covariance descriptors is measured on Riemannian manifolds. Based on the same metric but with a probabilistic framework, we propose a novel tracking approach on Riemannian manifolds with a novel incremental covariance tensor learning (ICTL). To address the appearance variations, ICTL incrementally learns a low-dimensional covariance tensor representation and efficiently adapts online to appearance changes of the target with only O(1) computational complexity, resulting in a real-time performance. The covariance-based representation and the ICTL are then combined with the particle filter framework to allow better handling of background clutter, as well as the temporary occlusions. We test the proposed probabilistic ICTL tracker on numerous benchmark sequences involving different types of challenges including occlusions and variations in illumination, scale, and pose. The proposed approach demonstrates excellent real-time performance, both qualitatively and quantitatively, in comparison with several previously proposed trackers.

  2. Wellbeing in the Making: Peoples' Experiences with Wearable Activity Trackers.

    PubMed

    Karapanos, Evangelos; Gouveia, Rúben; Hassenzahl, Marc; Forlizzi, Jodi

    Wearable activity trackers have become a viable business opportunity. Nevertheless, research has raised concerns over their potentially detrimental effects on wellbeing. For example, a recent study found that while counting steps with a pedometer increased steps taken throughout the day, at the same time it decreased the enjoyment people derived from walking. This poses a serious threat to the incorporation of healthy routines into everyday life. Most studies aim at proving the effectiveness of activity trackers. In contrast, a wellbeing-oriented perspective calls for a deeper understanding of how trackers create and mediate meaningful experiences in everyday life. We present a study of real life experiences with three wearable activity trackers: Fitbit , Jawbone Up and Nike  +  Fuelband . Using need fulfillment as a theoretical lens, we study recent, memorable experiences submitted by 133 users of activity trackers. We reveal a two-dimensional structure of users' experience driven by the needs of physical thriving or relatedness. Our qualitative findings further show a nuanced picture of the adoption of activity trackers and their impact on wellbeing. For instance, while reflection about own exercising practices lost its relevance over time, users continued to wear the tracker to document and collect their runs. More than just supporting behavioral change, we find trackers to provide multiple psychological benefits. For instance, they enhance feelings of autonomy as people gain more control about their exercising regime. Others experience relatedness, when family members purchase a tracker for relatives and join them in their efforts towards a better, healthier self. The study highlights that activity trackers can be more than "tools" to change behavior. Through incorporation in daily life, they offer new social experiences, new ways of boosting our self-esteem and getting closer to our ideal selves.

  3. Analysis of eye-tracking experiments performed on a Tobii T60

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Banks, David C

    2008-01-01

    Commercial eye-gaze trackers have the potential to be an important tool for quantifying the benefits of new visualization techniques. The expense of such trackers has made their use relatively infrequent in visualization studies. As such, it is difficult for researchers to compare multiple devices obtaining several demonstration models is impractical in cost and time, and quantitative measures from real-world use are not readily available. In this paper, we present a sample protocol to determine the accuracy of a gaze-tacking device.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Argo, P.E.; DeLapp, D.; Sutherland, C.D.

    TRACKER is an extension of a three-dimensional Hamiltonian raytrace code developed some thirty years ago by R. Michael Jones. Subsequent modifications to this code, which is commonly called the {open_quotes}Jones Code,{close_quotes} were documented by Jones and Stephensen (1975). TRACKER incorporates an interactive user`s interface, modern differential equation integrators, graphical outputs, homing algorithms, and the Ionospheric Conductivity and Electron Density (ICED) ionosphere. TRACKER predicts the three-dimensional paths of radio waves through model ionospheres by numerically integrating Hamilton`s equations, which are a differential expression of Fermat`s principle of least time. By using continuous models, the Hamiltonian method avoids false caustics and discontinuousmore » raypath properties often encountered in other raytracing methods. In addition to computing the raypath, TRACKER also calculates the group path (or pulse travel time), the phase path, the geometrical (or {open_quotes}real{close_quotes}) pathlength, and the Doppler shift (if the time variation of the ionosphere is explicitly included). Computational speed can be traded for accuracy by specifying the maximum allowable integration error per step in the integration. Only geometrical optics are included in the main raytrace code; no partial reflections or diffraction effects are taken into account. In addition, TRACKER does not lend itself to statistical descriptions of propagation -- it requires a deterministic model of the ionosphere.« less

  5. Feedback from video for virtual reality Navigation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsap, L V

    2000-10-27

    Important preconditions for wide acceptance of virtual reality (VR) systems include their comfort, ease and naturalness to use. Most existing trackers super from discomfort-related issues. For example, body-based trackers (hand controllers, joysticks, helmet attachments, etc.) restrict spontaneity and naturalness of motion, while ground-based devices (e.g., hand controllers) limit the workspace by literally binding an operator to the ground. There are similar problems with controls. This paper describes using real-time video with registered depth information (from a commercially available camera) for virtual reality navigation. Camera-based setup can replace cumbersome trackers. The method includes selective depth processing for increased speed, and amore » robust skin-color segmentation for accounting illumination variations.« less

  6. A protocol for evaluating video trackers under real-world conditions.

    PubMed

    Nawaz, Tahir; Cavallaro, Andrea

    2013-04-01

    The absence of a commonly adopted performance evaluation framework is hampering advances in the design of effective video trackers. In this paper, we present a single-score evaluation measure and a protocol to objectively compare trackers. The proposed measure evaluates tracking accuracy and failure, and combines them for both summative and formative performance assessment. The proposed protocol is composed of a set of trials that evaluate the robustness of trackers on a range of test scenarios representing several real-world conditions. The protocol is validated on a set of sequences with a diversity of targets (head, vehicle and person) and challenges (occlusions, background clutter, pose changes and scale changes) using six state-of-the-art trackers, highlighting their strengths and weaknesses on more than 187000 frames. The software implementing the protocol and the evaluation results are made available online and new results can be included, thus facilitating the comparison of trackers.

  7. Real-Time Robust Tracking for Motion Blur and Fast Motion via Correlation Filters.

    PubMed

    Xu, Lingyun; Luo, Haibo; Hui, Bin; Chang, Zheng

    2016-09-07

    Visual tracking has extensive applications in intelligent monitoring and guidance systems. Among state-of-the-art tracking algorithms, Correlation Filter methods perform favorably in robustness, accuracy and speed. However, it also has shortcomings when dealing with pervasive target scale variation, motion blur and fast motion. In this paper we proposed a new real-time robust scheme based on Kernelized Correlation Filter (KCF) to significantly improve performance on motion blur and fast motion. By fusing KCF and STC trackers, our algorithm also solve the estimation of scale variation in many scenarios. We theoretically analyze the problem for CFs towards motions and utilize the point sharpness function of the target patch to evaluate the motion state of target. Then we set up an efficient scheme to handle the motion and scale variation without much time consuming. Our algorithm preserves the properties of KCF besides the ability to handle special scenarios. In the end extensive experimental results on benchmark of VOT datasets show our algorithm performs advantageously competed with the top-rank trackers.

  8. iShadow: Design of a Wearable, Real-Time Mobile Gaze Tracker.

    PubMed

    Mayberry, Addison; Hu, Pan; Marlin, Benjamin; Salthouse, Christopher; Ganesan, Deepak

    2014-06-01

    Continuous, real-time tracking of eye gaze is valuable in a variety of scenarios including hands-free interaction with the physical world, detection of unsafe behaviors, leveraging visual context for advertising, life logging, and others. While eye tracking is commonly used in clinical trials and user studies, it has not bridged the gap to everyday consumer use. The challenge is that a real-time eye tracker is a power-hungry and computation-intensive device which requires continuous sensing of the eye using an imager running at many tens of frames per second, and continuous processing of the image stream using sophisticated gaze estimation algorithms. Our key contribution is the design of an eye tracker that dramatically reduces the sensing and computation needs for eye tracking, thereby achieving orders of magnitude reductions in power consumption and form-factor. The key idea is that eye images are extremely redundant, therefore we can estimate gaze by using a small subset of carefully chosen pixels per frame. We instantiate this idea in a prototype hardware platform equipped with a low-power image sensor that provides random access to pixel values, a low-power ARM Cortex M3 microcontroller, and a bluetooth radio to communicate with a mobile phone. The sparse pixel-based gaze estimation algorithm is a multi-layer neural network learned using a state-of-the-art sparsity-inducing regularization function that minimizes the gaze prediction error while simultaneously minimizing the number of pixels used. Our results show that we can operate at roughly 70mW of power, while continuously estimating eye gaze at the rate of 30 Hz with errors of roughly 3 degrees.

  9. A Kinect-Based Real-Time Compressive Tracking Prototype System for Amphibious Spherical Robots

    PubMed Central

    Pan, Shaowu; Shi, Liwei; Guo, Shuxiang

    2015-01-01

    A visual tracking system is essential as a basis for visual servoing, autonomous navigation, path planning, robot-human interaction and other robotic functions. To execute various tasks in diverse and ever-changing environments, a mobile robot requires high levels of robustness, precision, environmental adaptability and real-time performance of the visual tracking system. In keeping with the application characteristics of our amphibious spherical robot, which was proposed for flexible and economical underwater exploration in 2012, an improved RGB-D visual tracking algorithm is proposed and implemented. Given the limited power source and computational capabilities of mobile robots, compressive tracking (CT), which is the effective and efficient algorithm that was proposed in 2012, was selected as the basis of the proposed algorithm to process colour images. A Kalman filter with a second-order motion model was implemented to predict the state of the target and select candidate patches or samples for the CT tracker. In addition, a variance ratio features shift (VR-V) tracker with a Kalman estimation mechanism was used to process depth images. Using a feedback strategy, the depth tracking results were used to assist the CT tracker in updating classifier parameters at an adaptive rate. In this way, most of the deficiencies of CT, including drift and poor robustness to occlusion and high-speed target motion, were partly solved. To evaluate the proposed algorithm, a Microsoft Kinect sensor, which combines colour and infrared depth cameras, was adopted for use in a prototype of the robotic tracking system. The experimental results with various image sequences demonstrated the effectiveness, robustness and real-time performance of the tracking system. PMID:25856331

  10. iShadow: Design of a Wearable, Real-Time Mobile Gaze Tracker

    PubMed Central

    Mayberry, Addison; Hu, Pan; Marlin, Benjamin; Salthouse, Christopher; Ganesan, Deepak

    2015-01-01

    Continuous, real-time tracking of eye gaze is valuable in a variety of scenarios including hands-free interaction with the physical world, detection of unsafe behaviors, leveraging visual context for advertising, life logging, and others. While eye tracking is commonly used in clinical trials and user studies, it has not bridged the gap to everyday consumer use. The challenge is that a real-time eye tracker is a power-hungry and computation-intensive device which requires continuous sensing of the eye using an imager running at many tens of frames per second, and continuous processing of the image stream using sophisticated gaze estimation algorithms. Our key contribution is the design of an eye tracker that dramatically reduces the sensing and computation needs for eye tracking, thereby achieving orders of magnitude reductions in power consumption and form-factor. The key idea is that eye images are extremely redundant, therefore we can estimate gaze by using a small subset of carefully chosen pixels per frame. We instantiate this idea in a prototype hardware platform equipped with a low-power image sensor that provides random access to pixel values, a low-power ARM Cortex M3 microcontroller, and a bluetooth radio to communicate with a mobile phone. The sparse pixel-based gaze estimation algorithm is a multi-layer neural network learned using a state-of-the-art sparsity-inducing regularization function that minimizes the gaze prediction error while simultaneously minimizing the number of pixels used. Our results show that we can operate at roughly 70mW of power, while continuously estimating eye gaze at the rate of 30 Hz with errors of roughly 3 degrees. PMID:26539565

  11. A Kinect-based real-time compressive tracking prototype system for amphibious spherical robots.

    PubMed

    Pan, Shaowu; Shi, Liwei; Guo, Shuxiang

    2015-04-08

    A visual tracking system is essential as a basis for visual servoing, autonomous navigation, path planning, robot-human interaction and other robotic functions. To execute various tasks in diverse and ever-changing environments, a mobile robot requires high levels of robustness, precision, environmental adaptability and real-time performance of the visual tracking system. In keeping with the application characteristics of our amphibious spherical robot, which was proposed for flexible and economical underwater exploration in 2012, an improved RGB-D visual tracking algorithm is proposed and implemented. Given the limited power source and computational capabilities of mobile robots, compressive tracking (CT), which is the effective and efficient algorithm that was proposed in 2012, was selected as the basis of the proposed algorithm to process colour images. A Kalman filter with a second-order motion model was implemented to predict the state of the target and select candidate patches or samples for the CT tracker. In addition, a variance ratio features shift (VR-V) tracker with a Kalman estimation mechanism was used to process depth images. Using a feedback strategy, the depth tracking results were used to assist the CT tracker in updating classifier parameters at an adaptive rate. In this way, most of the deficiencies of CT, including drift and poor robustness to occlusion and high-speed target motion, were partly solved. To evaluate the proposed algorithm, a Microsoft Kinect sensor, which combines colour and infrared depth cameras, was adopted for use in a prototype of the robotic tracking system. The experimental results with various image sequences demonstrated the effectiveness, robustness and real-time performance of the tracking system.

  12. Experience from the in-flight calibration of the Extreme Ultraviolet Explorer (EUVE) and Upper Atmosphere Research Satellite (UARS) fixed head star trackers (FHSTs)

    NASA Technical Reports Server (NTRS)

    Lee, Michael

    1995-01-01

    Since the original post-launch calibration of the FHSTs (Fixed Head Star Trackers) on EUVE (Extreme Ultraviolet Explorer) and UARS (Upper Atmosphere Research Satellite), the Flight Dynamics task has continued to analyze the FHST performance. The algorithm used for inflight alignment of spacecraft sensors is described and the equations for the errors in the relative alignment for the simple 2 star tracker case are shown. Simulated data and real data are used to compute the covariance of the relative alignment errors. Several methods for correcting the alignment are compared and results analyzed. The specific problems seen on orbit with UARS and EUVE are then discussed. UARS has experienced anomalous tracker performance on an FHST resulting in continuous variation in apparent tracker alignment. On EUVE, the FHST residuals from the attitude determination algorithm showed a dependence on the direction of roll during survey mode. This dependence is traced back to time tagging errors and the original post launch alignment is found to be in error due to the impact of the time tagging errors on the alignment algorithm. The methods used by the FDF (Flight Dynamics Facility) to correct for these problems is described.

  13. Evaluating the effectiveness of organisational-level strategies with or without an activity tracker to reduce office workers' sitting time: a cluster-randomised trial.

    PubMed

    Brakenridge, C L; Fjeldsoe, B S; Young, D C; Winkler, E A H; Dunstan, D W; Straker, L M; Healy, G N

    2016-11-04

    Office workers engage in high levels of sitting time. Effective, context-specific, and scalable strategies are needed to support widespread sitting reduction. This study aimed to evaluate organisational-support strategies alone or in combination with an activity tracker to reduce sitting in office workers. From one organisation, 153 desk-based office workers were cluster-randomised (by team) to organisational support only (e.g., manager support, emails; 'Group ORG', 9 teams, 87 participants), or organisational support plus LUMOback activity tracker ('Group ORG + Tracker', 9 teams, 66 participants). The waist-worn tracker provided real-time feedback and prompts on sitting and posture. ActivPAL3 monitors were used to ascertain primary outcomes (sitting time during work- and overall hours) and other activity outcomes: prolonged sitting time (≥30 min bouts), time between sitting bouts, standing time, stepping time, and number of steps. Health and work outcomes were assessed by questionnaire. Changes within each group (three- and 12 months) and differences between groups were analysed by linear mixed models. Missing data were multiply imputed. At baseline, participants (46 % women, 23-58 years) spent (mean ± SD) 74.3 ± 9.7 % of their workday sitting, 17.5 ± 8.3 % standing and 8.1 ± 2.7 % stepping. Significant (p < 0.05) reductions in sitting time (both work and overall) were observed within both groups, but only at 12 months. For secondary activity outcomes, Group ORG significantly improved in work prolonged sitting, time between sitting bouts and standing time, and overall prolonged sitting time (12 months), and in overall standing time (three- and 12 months); while Group ORG + Tracker, significantly improved in work prolonged sitting, standing, stepping and overall standing time (12 months). Adjusted for confounders, the only significant between-group differences were a greater stepping time and step count for Group ORG + Tracker relative to Group ORG (+20.6 min/16 h day, 95 % CI: 3.1, 38.1, p = 0.021; +846.5steps/16 h day, 95 % CI: 67.8, 1625.2, p = 0.033) at 12 months. Observed changes in health and work outcomes were small and not statistically significant. Organisational-support strategies with or without an activity tracker resulted in improvements in sitting, prolonged sitting and standing; adding a tracker enhanced stepping changes. Improvements were most evident at 12 months, suggesting the organisational-support strategies may have taken time to embed within the organisation. Australian New Zealand Clinical Trial Registry: ACTRN12614000252617 . Registered 10 March 2014.

  14. PILOT: An intelligent distributed operations support system

    NASA Technical Reports Server (NTRS)

    Rasmussen, Arthur N.

    1993-01-01

    The Real-Time Data System (RTDS) project is exploring the application of advanced technologies to the real-time flight operations environment of the Mission Control Centers at NASA's Johnson Space Center. The system, based on a network of engineering workstations, provides services such as delivery of real time telemetry data to flight control applications. To automate the operation of this complex distributed environment, a facility called PILOT (Process Integrity Level and Operation Tracker) is being developed. PILOT comprises a set of distributed agents cooperating with a rule-based expert system; together they monitor process operation and data flows throughout the RTDS network. The goal of PILOT is to provide unattended management and automated operation under user control.

  15. Real-Time Robust Tracking for Motion Blur and Fast Motion via Correlation Filters

    PubMed Central

    Xu, Lingyun; Luo, Haibo; Hui, Bin; Chang, Zheng

    2016-01-01

    Visual tracking has extensive applications in intelligent monitoring and guidance systems. Among state-of-the-art tracking algorithms, Correlation Filter methods perform favorably in robustness, accuracy and speed. However, it also has shortcomings when dealing with pervasive target scale variation, motion blur and fast motion. In this paper we proposed a new real-time robust scheme based on Kernelized Correlation Filter (KCF) to significantly improve performance on motion blur and fast motion. By fusing KCF and STC trackers, our algorithm also solve the estimation of scale variation in many scenarios. We theoretically analyze the problem for CFs towards motions and utilize the point sharpness function of the target patch to evaluate the motion state of target. Then we set up an efficient scheme to handle the motion and scale variation without much time consuming. Our algorithm preserves the properties of KCF besides the ability to handle special scenarios. In the end extensive experimental results on benchmark of VOT datasets show our algorithm performs advantageously competed with the top-rank trackers. PMID:27618046

  16. Fully distributed monitoring architecture supporting multiple trackees and trackers in indoor mobile asset management application.

    PubMed

    Jeong, Seol Young; Jo, Hyeong Gon; Kang, Soon Ju

    2014-03-21

    A tracking service like asset management is essential in a dynamic hospital environment consisting of numerous mobile assets (e.g., wheelchairs or infusion pumps) that are continuously relocated throughout a hospital. The tracking service is accomplished based on the key technologies of an indoor location-based service (LBS), such as locating and monitoring multiple mobile targets inside a building in real time. An indoor LBS such as a tracking service entails numerous resource lookups being requested concurrently and frequently from several locations, as well as a network infrastructure requiring support for high scalability in indoor environments. A traditional centralized architecture needs to maintain a geographic map of the entire building or complex in its central server, which can cause low scalability and traffic congestion. This paper presents a self-organizing and fully distributed indoor mobile asset management (MAM) platform, and proposes an architecture for multiple trackees (such as mobile assets) and trackers based on the proposed distributed platform in real time. In order to verify the suggested platform, scalability performance according to increases in the number of concurrent lookups was evaluated in a real test bed. Tracking latency and traffic load ratio in the proposed tracking architecture was also evaluated.

  17. Real-Time Visual Tracking through Fusion Features

    PubMed Central

    Ruan, Yang; Wei, Zhenzhong

    2016-01-01

    Due to their high-speed, correlation filters for object tracking have begun to receive increasing attention. Traditional object trackers based on correlation filters typically use a single type of feature. In this paper, we attempt to integrate multiple feature types to improve the performance, and we propose a new DD-HOG fusion feature that consists of discriminative descriptors (DDs) and histograms of oriented gradients (HOG). However, fusion features as multi-vector descriptors cannot be directly used in prior correlation filters. To overcome this difficulty, we propose a multi-vector correlation filter (MVCF) that can directly convolve with a multi-vector descriptor to obtain a single-channel response that indicates the location of an object. Experiments on the CVPR2013 tracking benchmark with the evaluation of state-of-the-art trackers show the effectiveness and speed of the proposed method. Moreover, we show that our MVCF tracker, which uses the DD-HOG descriptor, outperforms the structure-preserving object tracker (SPOT) in multi-object tracking because of its high-speed and ability to address heavy occlusion. PMID:27347951

  18. Closed-form recursive formula for an optimal tracker with terminal constraints

    NASA Technical Reports Server (NTRS)

    Juang, J.-N.; Turner, J. D.; Chun, H. M.

    1984-01-01

    Feedback control laws are derived for a class of optimal finite time tracking problems with terminal constraints. Analytical solutions are obtained for the feedback gain and the closed-loop response trajectory. Such formulations are expressed in recursive forms so that a real-time computer implementation becomes feasible. Two examples are given to illustrate the validity and usefulness of the formulations.

  19. Users' experiences of wearable activity trackers: a cross-sectional study.

    PubMed

    Maher, Carol; Ryan, Jillian; Ambrosi, Christina; Edney, Sarah

    2017-11-15

    Wearable activity trackers offer considerable promise for helping users to adopt healthier lifestyles. This study aimed to explore users' experience of activity trackers, including usage patterns, sharing of data to social media, perceived behaviour change (physical activity, diet and sleep), and technical issues/barriers to use. A cross-sectional online survey was developed and administered to Australian adults who were current or former activity tracker users. Results were analysed descriptively, with differences between current and former users and wearable brands explored using independent samples t-tests, Mann-Whitney, and chi square tests. Participants included 200 current and 37 former activity tracker users (total N = 237) with a mean age of 33.1 years (SD 12.4, range 18-74 years). Fitbit (67.5%) and Garmin devices (16.5%) were most commonly reported. Participants typically used their trackers for sustained periods (5-7 months) and most intended to continue usage. Participants reported they had improved their physical activity (51-81%) more commonly than they had their diet (14-40%) or sleep (11-24%), and slightly more participants reported to value the real time feedback (89%) compared to the long-term monitoring (78%). Most users (70%) reported they had experienced functionality issues with their devices, most commonly related to battery life and technical difficulties. Results suggest users find activity trackers appealing and useful tools for increasing perceived physical activity levels over a sustained period.

  20. The LINC-NIRVANA fringe and flexure tracker: Linux real-time solutions

    NASA Astrophysics Data System (ADS)

    Wang, Yeping; Bertram, Thomas; Straubmeier, Christian; Rost, Steffen; Eckart, Andreas

    2006-06-01

    The correction of atmospheric differential piston and instrumental flexure effects is mandatory for optimum interferometric performance of the LBT NIR interferometric imaging camera LINC-NIRVANA. The task of the Fringe and Flexure Tracking System (FFTS) is to detect and correct these effects in a real-time closed loop. On a timescale of milliseconds, image data of the order of 4K bytes has to be retrieved from the FFTS detector, analyzed, and the results have to be sent to the control system. The need for a reliable communication between several processes within a confined period of time calls for solutions with good real-time performance. We investigated two soft real-time options for the Linux platform. The design we present takes advantage of several features that follow the POSIX standard with improved real-time performance, which were implemented in the new Linux kernel (2.6.12). Several concepts, such as synchronization, shared memory, and preemptive scheduling are considered and the performance of the most time-critical parts of the FFTS software is tested.

  1. A Real-Time Optical 3D Tracker for Head-Mounted Display Systems

    DTIC Science & Technology

    1990-03-01

    paper. OPTOTRAK [Nor88] uses one camera with two dual-axis CCD infrared position sensors. Each position sen- sor has a dedicated processor board to...enhance the use- [Nor88] Northern Digital. Trade literature on Optotrak fulness of head-mounted display systems. - Northern Digital’s Three Dimensional

  2. A Real-Time Optical 6D Tracker for Head-Mounted Display Systems

    DTIC Science & Technology

    1990-03-01

    provides a limited working volumne an(J do not sense orientation directly. OPTOTRAK [Nor88] is a new system which claims to be much more accurate than...1987. [Nor88] Northern Digital. Trade literature on Optotrak - Nor’hern Digital’- Three Di- mensional Optical Motion Tracking and Analysis System

  3. Fully Distributed Monitoring Architecture Supporting Multiple Trackees and Trackers in Indoor Mobile Asset Management Application

    PubMed Central

    Jeong, Seol Young; Jo, Hyeong Gon; Kang, Soon Ju

    2014-01-01

    A tracking service like asset management is essential in a dynamic hospital environment consisting of numerous mobile assets (e.g., wheelchairs or infusion pumps) that are continuously relocated throughout a hospital. The tracking service is accomplished based on the key technologies of an indoor location-based service (LBS), such as locating and monitoring multiple mobile targets inside a building in real time. An indoor LBS such as a tracking service entails numerous resource lookups being requested concurrently and frequently from several locations, as well as a network infrastructure requiring support for high scalability in indoor environments. A traditional centralized architecture needs to maintain a geographic map of the entire building or complex in its central server, which can cause low scalability and traffic congestion. This paper presents a self-organizing and fully distributed indoor mobile asset management (MAM) platform, and proposes an architecture for multiple trackees (such as mobile assets) and trackers based on the proposed distributed platform in real time. In order to verify the suggested platform, scalability performance according to increases in the number of concurrent lookups was evaluated in a real test bed. Tracking latency and traffic load ratio in the proposed tracking architecture was also evaluated. PMID:24662407

  4. Design and characterization of a real time particle radiography system based on scintillating optical fibers

    NASA Astrophysics Data System (ADS)

    Longhitano, F.; Lo Presti, D.; Bonanno, D. L.; Bongiovanni, D. G.; Leonora, E.; Randazzo, N.; Reito, S.; Sipala, V.; Gallo, G.

    2017-02-01

    The fabrication and characterization of a charged particle imaging system composed of a tracker and a residual range detector (RRD) is described. The tracker is composed of four layers of scintillating fibers (SciFi), 500 μm side square section, arranged to form two planes orthogonal to each other. The fibers are coupled to two Multi-Pixel Photon Counter (MPPC) arrays by means of a channel reduction system patented by the Istituto Nazionale di Fisica Nucleare (INFN) (Presti, 2015) [1]. Sixty parallel layers of the same fibers used in the tracker compose the RRD. The various layers are optically coupled to a MPPC array by means of wavelength shifting (WLS) fibers. The sensitive area of the two detectors is 9×9 cm2. The results of the measurements, acquired by the prototypes with CATANA (Cirrone, 2008) [2] proton beam, and a comparison with the simulations of the detectors are presented.

  5. Improved semi-supervised online boosting for object tracking

    NASA Astrophysics Data System (ADS)

    Li, Yicui; Qi, Lin; Tan, Shukun

    2016-10-01

    The advantage of an online semi-supervised boosting method which takes object tracking problem as a classification problem, is training a binary classifier from labeled and unlabeled examples. Appropriate object features are selected based on real time changes in the object. However, the online semi-supervised boosting method faces one key problem: The traditional self-training using the classification results to update the classifier itself, often leads to drifting or tracking failure, due to the accumulated error during each update of the tracker. To overcome the disadvantages of semi-supervised online boosting based on object tracking methods, the contribution of this paper is an improved online semi-supervised boosting method, in which the learning process is guided by positive (P) and negative (N) constraints, termed P-N constraints, which restrict the labeling of the unlabeled samples. First, we train the classification by an online semi-supervised boosting. Then, this classification is used to process the next frame. Finally, the classification is analyzed by the P-N constraints, which are used to verify if the labels of unlabeled data assigned by the classifier are in line with the assumptions made about positive and negative samples. The proposed algorithm can effectively improve the discriminative ability of the classifier and significantly alleviate the drifting problem in tracking applications. In the experiments, we demonstrate real-time tracking of our tracker on several challenging test sequences where our tracker outperforms other related on-line tracking methods and achieves promising tracking performance.

  6. Development of a digital mobile solar tracker

    NASA Astrophysics Data System (ADS)

    Baidar, S.; Kille, N.; Ortega, I.; Sinreich, R.; Thomson, D.; Hannigan, J.; Volkamer, R.

    2015-11-01

    We have constructed and deployed a fast digital solar tracker aboard a moving ground-based platform. The tracker consists of two rotating mirrors, a lens, an imaging camera, and a motion compensation system that provides the Euler angles of the mobile platform in real time. The tracker can be simultaneously coupled to UV-Vis and FTIR spectrometers making it a versatile tool to measure the absorption of trace gases using solar incoming radiation. The integrated system allows the tracker to operate autonomously while the mobile laboratory is in motion. Mobile direct sun Differential Optical Absorption Spectroscopy (mobile DS-DOAS) observations using this tracker were conducted during summer 2014 as part of the Front Range Photochemistry and Pollution Experiment (FRAPPE) in Colorado, USA. We demonstrate an angular precision of 0.052° (about 1/10 of the solar disk diameter) during research drives, and verify this tracking precision from measurements of the center to limb darkening (CLD, the changing appearance of Fraunhofer lines) in the mobile DS-DOAS spectra. The high photon flux from direct sun observation enables measurements of nitrogen dioxide (NO2) slant columns with high temporal resolution, and reveals spatial detail in the variations of NO2 vertical column densities (VCDs). The NO2 VCD from DS-DOAS is compared with a co-located MAX-DOAS instrument. Overall good agreement is observed amid a highly heterogeneous air mass.

  7. Development of a digital mobile solar tracker

    NASA Astrophysics Data System (ADS)

    Baidar, Sunil; Kille, Natalie; Ortega, Ivan; Sinreich, Roman; Thomson, David; Hannigan, James; Volkamer, Rainer

    2016-03-01

    We have constructed and deployed a fast digital solar tracker aboard a moving ground-based platform. The tracker consists of two rotating mirrors, a lens, an imaging camera, and a motion compensation system that provides the Euler angles of the mobile platform in real time. The tracker can be simultaneously coupled to UV-Vis and Fourier transform infrared spectrometers, making it a versatile tool to measure the absorption of trace gases using solar incoming radiation. The integrated system allows the tracker to operate autonomously while the mobile laboratory is in motion. Mobile direct sun differential optical absorption spectroscopy (mobile DS-DOAS) observations using this tracker were conducted during summer 2014 as part of the Front Range Air Pollution and Photochemistry Experiment (FRAPPE) in Colorado, USA. We demonstrate an angular precision of 0.052° (about 1/10 of the solar disk diameter) during research drives and verify this tracking precision from measurements of the center to limb darkening (CLD, the changing appearance of Fraunhofer lines) in the mobile DS-DOAS spectra. The high photon flux from direct sun observation enables measurements of nitrogen dioxide (NO2) slant columns with high temporal resolution and reveals spatial detail in the variations of NO2 vertical column densities (VCDs). The NO2 VCD from DS-DOAS is compared with a co-located MAX-DOAS instrument. Overall good agreement is observed amid a highly heterogeneous air mass.

  8. Closed-form recursive formula for an optimal tracker with terminal constraints

    NASA Technical Reports Server (NTRS)

    Juang, J. N.; Turner, J. D.; Chun, H. M.

    1986-01-01

    Feedback control laws are derived for a class of optimal finite time tracking problems with terminal constraints. Analytical solutions are obtained for the feedback gain and the closed-loop response trajectory. Such formulations are expressed in recursive forms so that a real-time computer implementation becomes feasible. An example involving the feedback slewing of a flexible spacecraft is given to illustrate the validity and usefulness of the formulations.

  9. In vitro three-dimensional aortic vasculature modeling based on sensor fusion between intravascular ultrasound and magnetic tracker.

    PubMed

    Shi, Chaoyang; Tercero, Carlos; Ikeda, Seiichi; Ooe, Katsutoshi; Fukuda, Toshio; Komori, Kimihiro; Yamamoto, Kiyohito

    2012-09-01

    It is desirable to reduce aortic stent graft installation time and the amount of contrast media used for this process. Guidance with augmented reality can achieve this by facilitating alignment of the stent graft with the renal and mesenteric arteries. For this purpose, a sensor fusion is proposed between intravascular ultrasound (IVUS) and magnetic trackers to construct three-dimensional virtual reality models of the blood vessels, as well as improvements to the gradient vector flow snake for boundary detection in ultrasound images. In vitro vasculature imaging experiments were done with hybrid probe and silicone models of the vasculature. The dispersion of samples for the magnetic tracker in the hybrid probe increased less than 1 mm when the IVUS was activated. Three-dimensional models of the descending thoracic aorta, with cross-section radius average error of 0.94 mm, were built from the data fusion. The development of this technology will enable reduction in the amount of contrast media required for in vivo and real-time three-dimensional blood vessel imaging. Copyright © 2012 John Wiley & Sons, Ltd.

  10. Tracker-on-C for cone-beam CT-guided surgery: evaluation of geometric accuracy and clinical applications

    NASA Astrophysics Data System (ADS)

    Reaungamornrat, S.; Otake, Y.; Uneri, A.; Schafer, S.; Mirota, D. J.; Nithiananthan, S.; Stayman, J. W.; Khanna, A. J.; Reh, D. D.; Gallia, G. L.; Taylor, R. H.; Siewerdsen, J. H.

    2012-02-01

    Conventional surgical tracking configurations carry a variety of limitations in line-of-sight, geometric accuracy, and mismatch with the surgeon's perspective (for video augmentation). With increasing utilization of mobile C-arms, particularly those allowing cone-beam CT (CBCT), there is opportunity to better integrate surgical trackers at bedside to address such limitations. This paper describes a tracker configuration in which the tracker is mounted directly on the Carm. To maintain registration within a dynamic coordinate system, a reference marker visible across the full C-arm rotation is implemented, and the "Tracker-on-C" configuration is shown to provide improved target registration error (TRE) over a conventional in-room setup - (0.9+/-0.4) mm vs (1.9+/-0.7) mm, respectively. The system also can generate digitally reconstructed radiographs (DRRs) from the perspective of a tracked tool ("x-ray flashlight"), the tracker, or the C-arm ("virtual fluoroscopy"), with geometric accuracy in virtual fluoroscopy of (0.4+/-0.2) mm. Using a video-based tracker, planning data and DRRs can be superimposed on the video scene from a natural perspective over the surgical field, with geometric accuracy (0.8+/-0.3) pixels for planning data overlay and (0.6+/-0.4) pixels for DRR overlay across all C-arm angles. The field-of-view of fluoroscopy or CBCT can also be overlaid on real-time video ("Virtual Field Light") to assist C-arm positioning. The fixed transformation between the x-ray image and tracker facilitated quick, accurate intraoperative registration. The workflow and precision associated with a variety of realistic surgical tasks were significantly improved using the Tracker-on-C - for example, nearly a factor of 2 reduction in time required for C-arm positioning, reduction or elimination of dose in "hunting" for a specific fluoroscopic view, and confident placement of the x-ray FOV on the surgical target. The proposed configuration streamlines the integration of C-arm CBCT with realtime tracking and demonstrated utility in a spectrum of image-guided interventions (e.g., spine surgery) benefiting from improved accuracy, enhanced visualization, and reduced radiation exposure.

  11. Near real-time geomagnetic data for space weather applications in the European sector

    NASA Astrophysics Data System (ADS)

    Johnsen, M. G.; Hansen, T. L.

    2012-12-01

    Tromsø Geophysical Observatory (TGO) is responsible for making and maintaining long time-series of geomagnetic measurements in Norway. TGO is currently operating 3 geomagnetic observatories and 11 variometer stations from southern Norway to Svalbard . Data from these 14 locations are acquired, processed and made available for the user community in near real-time. TGO is participating in several European Union (EU) and European Space Agency (ESA) space weather related projects where both near real-time data and derived products are provided. In addition the petroleum industry is benefiting from our real-time data services for directional drilling. Near real-time data from TGO is freely available for non-commercial purposes. TGO is exchanging data in near real-time with several institutions, enabling the presentation of near real-time geomagnetic data from more than 40 different locations in Fennoscandia and Greenland. The open exchange of non real-time geomagnetic data has been successfully going on for many years through services such as the world data center in Kyoto, SuperMAG, IMAGE and SPIDR. TGO's vision is to take this one step further and make the exchange of near real-time geomagnetic data equally available for the whole community. This presentation contains an overview of TGO, our activities and future aims. We will show how our near real-time data are presented. Our contribution to the space weather forecasting and nowcasting effort in the EU and ESA will be presented with emphasis on our real-time auroral activity index and brand new auroral activity monitor and electrojet tracker.

  12. Improved performance of the LHCb Outer Tracker in LHC Run 2

    NASA Astrophysics Data System (ADS)

    d'Argent, P.; Dufour, L.; Grillo, L.; de Vries, J. A.; Ukleja, A.; Aaij, R.; Archilli, F.; Bachmann, S.; Berninghoff, D.; Birnkraut, A.; Blouw, J.; De Cian, M.; Ciezarek, G.; Färber, C.; Demmer, M.; Dettori, F.; Gersabeck, E.; Grabowski, J.; Hulsbergen, W. D.; Khanji, B.; Kolpin, M.; Kucharczyk, M.; Malecki, B. P.; Merk, M.; Mulder, M.; Müller, J.; Mueller, V.; Pellegrino, A.; Pikies, M.; Rachwal, B.; Schmelzer, T.; Spaan, B.; Szczekowski, M.; van Tilburg, J.; Tolk, S.; Tuning, N.; Uwer, U.; Wishahi, J.; Witek, M.

    2017-11-01

    The LHCb Outer Tracker is a gaseous detector covering an area of 5 × 6 m2 with 12 double layers of straw tubes. The performance of the detector is presented based on data of the LHC Run 2 running period from 2015 and 2016. Occupancies and operational experience for data collected in pp, pPb and PbPb collisions are described. An updated study of the ageing effects is presented showing no signs of gain deterioration or other radiation damage effects. In addition several improvements with respect to LHC Run 1 data taking are introduced. A novel real-time calibration of the time-alignment of the detector and the alignment of the single monolayers composing detector modules are presented, improving the drift-time and position resolution of the detector by 20%. Finally, a potential use of the improved resolution for the timing of charged tracks is described, showing the possibility to identify low-momentum hadrons with their time-of-flight.

  13. Teaching Physics with Basketball

    NASA Astrophysics Data System (ADS)

    Chanpichai, N.; Wattanakasiwich, P.

    2010-07-01

    Recently, technologies and computer takes important roles in learning and teaching, including physics. Advance in technologies can help us better relating physics taught in the classroom to the real world. In this study, we developed a module on teaching a projectile motion through shooting a basketball. Students learned about physics of projectile motion, and then they took videos of their classmates shooting a basketball by using the high speed camera. Then they analyzed videos by using Tracker, a video analysis and modeling tool. While working with Tracker, students learned about the relationships between three kinematics graphs. Moreover, they learned about a real projectile motion (with an air resistance) through modeling tools. Students' abilities to interpret kinematics graphs were investigated before and after the instruction by using the Test of Understanding Graphs in Kinematics (TUG-K). The maximum normalized gain or is 0.77, which indicated students' improvement in determining displacement from the velocity-time graph. The minimum is 0.20, which indicated that most students still have difficulties interpreting the change in velocity from the acceleration-time graph. Results from evaluation questionnaires revealed that students also satisfied with the instructions that related physics contents to shooting basketball.

  14. Let Our Powers Combine! Harnessing NASA's Earth Observatory Natural Event Tracker (EONET) in Worldview

    NASA Technical Reports Server (NTRS)

    Wong, Min Minnie; Ward, Kevin; Boller, Ryan; Gunnoe, Taylor; Baynes, Kathleen; King, Benjamin

    2016-01-01

    Constellations of NASA Earth Observing System (EOS) satellites orbit the earth to collect images and data about the planet in near real-time. Within hours of satellite overpass, you can discover where the latest wildfires, severe storms, volcanic eruptions, and dust and haze events are occurring using NASA's Worldview web application. By harnessing a repository of curated natural event metadata from NASA Earth Observatory's Natural Event Tracker (EONET), Worldview has moved natural event discovery to the forefront and allows users to select events-of-interest from a curated list, zooms to the area, and adds the most relevant imagery layers for that type of natural event. This poster will highlight NASA Worldviews new natural event feed functionality.

  15. Close to real-time robust pedestrian detection and tracking

    NASA Astrophysics Data System (ADS)

    Lipetski, Y.; Loibner, G.; Sidla, O.

    2015-03-01

    Fully automated video based pedestrian detection and tracking is a challenging task with many practical and important applications. We present our work aimed to allow robust and simultaneously close to real-time tracking of pedestrians. The presented approach is stable to occlusions, lighting conditions and is generalized to be applied on arbitrary video data. The core tracking approach is built upon tracking-by-detections principle. We describe our cascaded HOG detector with successive CNN verification in detail. For the tracking and re-identification task, we did an extensive analysis of appearance based features as well as their combinations. The tracker was tested on many hours of video data for different scenarios; the results are presented and discussed.

  16. A viscosity sensitive fluorescent dye for real-time monitoring of mitochondria transport in neurons.

    PubMed

    Baek, Yeonju; Park, Sang Jun; Zhou, Xin; Kim, Gyungmi; Kim, Hwan Myung; Yoon, Juyoung

    2016-12-15

    We present here a viscosity sensitive fluorescent dye, namely thiophene dihemicyanine (TDHC), that enables the specific staining of mitochondria. In comparison to the common mitochondria tracker (Mitotracker Deep Red, MTDR), this dye demonstrated its unique ability for robust staining of mitochondria with high photostability and ultrahigh signal-to-noise ratio (SNR). Moreover, TDHC also showed high sensitivity towards mitochondria membrane potential (ΔΨm) and intramitochondria viscosity change. Consequently, this dye was utilized in real-time monitoring of mitochondria transport in primary cortical neurons. Finally, the Two-Photon Microscopy (TPM) imaging ability of TDHC was also demonstrated. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Centroid tracker and aimpoint selection

    NASA Astrophysics Data System (ADS)

    Venkateswarlu, Ronda; Sujata, K. V.; Venkateswara Rao, B.

    1992-11-01

    Autonomous fire and forget weapons have gained importance to achieve accurate first pass kill by hitting the target at an appropriate aim point. Centroid of the image presented by a target in the field of view (FOV) of a sensor is generally accepted as the aimpoint for these weapons. Centroid trackers are applicable only when the target image is of significant size in the FOV of the sensor but does not overflow the FOV. But as the range between the sensor and the target decreases the image of the target will grow and finally overflow the FOV at close ranges and the centroid point on the target will keep on changing which is not desirable. And also centroid need not be the most desired/vulnerable point on the target. For hardened targets like tanks, proper aimpoint selection and guidance up to almost zero range is essential to achieve maximum kill probability. This paper presents a centroid tracker realization. As centroid offers a stable tracking point, it can be used as a reference to select the proper aimpoint. The centroid and the desired aimpoint are simultaneously tracked to avoid jamming by flares and also to take care of the problems arising due to image overflow. Thresholding of gray level image to binary image is a crucial step in centroid tracker. Different thresholding algorithms are discussed and a suitable algorithm is chosen. The real-time hardware implementation of centroid tracker with a suitable thresholding technique is presented including the interfacing to a multimode tracker for autonomous target tracking and aimpoint selection. The hardware uses very high speed arithmetic and programmable logic devices to meet the speed requirement and a microprocessor based subsystem for the system control. The tracker has been evaluated in a field environment.

  18. Selection and quality assessment of Landsat data for the North American forest dynamics forest history maps of the US

    Treesearch

    Karen Schleeweis; Samuel N. Goward; Chengquan Huang; John L. Dwyer; Jennifer L. Dungan; Mary A. Lindsey; Andrew Michaelis; Khaldoun Rishmawi; Jeffery G. Masek

    2016-01-01

    Using the NASA Earth Exchange platform, the North American Forest Dynamics (NAFD) project mapped forest history wall-to-wall, annually for the contiguous US (1986-2010) using the Vegetation Change Tracker algorithm. As with any effort to identify real changes in remotely sensed time-series, data gaps, shifts in seasonality, misregistration, inconsistent radiometry and...

  19. Star tracking method based on multiexposure imaging for intensified star trackers.

    PubMed

    Yu, Wenbo; Jiang, Jie; Zhang, Guangjun

    2017-07-20

    The requirements for the dynamic performance of star trackers are rapidly increasing with the development of space exploration technologies. However, insufficient knowledge of the angular acceleration has largely decreased the performance of the existing star tracking methods, and star trackers may even fail to track under highly dynamic conditions. This study proposes a star tracking method based on multiexposure imaging for intensified star trackers. The accurate estimation model of the complete motion parameters, including the angular velocity and angular acceleration, is established according to the working characteristic of multiexposure imaging. The estimation of the complete motion parameters is utilized to generate the predictive star image accurately. Therefore, the correct matching and tracking between stars in the real and predictive star images can be reliably accomplished under highly dynamic conditions. Simulations with specific dynamic conditions are conducted to verify the feasibility and effectiveness of the proposed method. Experiments with real starry night sky observation are also conducted for further verification. Simulations and experiments demonstrate that the proposed method is effective and shows excellent performance under highly dynamic conditions.

  20. WE-G-17A-05: Real-Time Catheter Localization Using An Active MR Tracker for Interstitial Brachytherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, W; Damato, A; Viswanathan, A

    2014-06-15

    Purpose: To develop a novel active MR-tracking system which can provide accurate and rapid localization of brachytherapy catheters, and assess its reliability and spatial accuracy in comparison to standard catheter digitization using MR images. Methods: An active MR tracker for brachytherapy was constructed by adding three printed-circuit micro-coils to the shaft of a commercial metallic stylet. A gel phantom with an embedded framework was built, into which fifteen 14-Gauge catheters were placed, following either with parallel or crossed paths. The tracker was inserted sequentially into each catheter, with MR-tracking running continuously. Tracking was also performed during the tracker's removal frommore » each catheter. Catheter trajectories measured from the insertion and the removal procedures using the same micro-coil were compared, as well as trajectories obtained using different micro-coils. A 3D high-resolution MR image dataset of the phantom was acquired and imported into a treatment planning system (TPS) for catheter digitization. A comparison between MR-tracked positions and positions digitized from MR images by TPS was performed. Results: The MR tracking shows good consistency for varying catheter paths and for all micro-coils (mean difference ∼1.1 mm). The average distance between the MR-tracking trajectory and catheter digitization from the MR images was 1.1 mm. Ambiguity in catheter assignment from images due to crossed paths was resolved by active tracking. When tracking was interleaved with imaging, real-time images were continuously acquired at the instantaneous tip positions and displayed on an external workstation. Conclusion: The active MR tracker may be used to provide an independent measurement of catheter location in the MR environment, potentially eliminating the need for subsequent CT. It may also be used to control realtime imaging of catheter placement. This will enable MR-based brachytherapy planning of interstitial implants without ionizing radiation, with the potential to enable dosimetric guidance of catheter placement. We gratefully acknowledge support from the American Heart Association SDG 10SDG2610139, NIH 1R21CA158987-01A1, U41-RR019703, and R21 CA 167800, as well as a BWH Department of Radiation Oncology post-doctoral fellowship support. Li Pan and Wesley Gilson are employees of Siemens Corporation, Corporate Technology. Ravi Seethamraju is an employee of Siemens Healthcare.« less

  1. Using Real-time Event Tracking Sensitivity Analysis to Overcome Sensor Measurement Uncertainties of Geo-Information Management in Drilling Disasters

    NASA Astrophysics Data System (ADS)

    Tavakoli, S.; Poslad, S.; Fruhwirth, R.; Winter, M.

    2012-04-01

    This paper introduces an application of a novel EventTracker platform for instantaneous Sensitivity Analysis (SA) of large scale real-time geo-information. Earth disaster management systems demand high quality information to aid a quick and timely response to their evolving environments. The idea behind the proposed EventTracker platform is the assumption that modern information management systems are able to capture data in real-time and have the technological flexibility to adjust their services to work with specific sources of data/information. However, to assure this adaptation in real time, the online data should be collected, interpreted, and translated into corrective actions in a concise and timely manner. This can hardly be handled by existing sensitivity analysis methods because they rely on historical data and lazy processing algorithms. In event-driven systems, the effect of system inputs on its state is of value, as events could cause this state to change. This 'event triggering' situation underpins the logic of the proposed approach. Event tracking sensitivity analysis method describes the system variables and states as a collection of events. The higher the occurrence of an input variable during the trigger of event, the greater its potential impact will be on the final analysis of the system state. Experiments were designed to compare the proposed event tracking sensitivity analysis with existing Entropy-based sensitivity analysis methods. The results have shown a 10% improvement in a computational efficiency with no compromise for accuracy. It has also shown that the computational time to perform the sensitivity analysis is 0.5% of the time required compared to using the Entropy-based method. The proposed method has been applied to real world data in the context of preventing emerging crises at drilling rigs. One of the major purposes of such rigs is to drill boreholes to explore oil or gas reservoirs with the final scope of recovering the content of such reservoirs; both in onshore regions as well as in offshore regions. Drilling a well is always guided by technical, economic and security constraints to prevent crew, equipment and environment from injury, damage and pollution. Although risk assessment and local practice provides a high degree of security, uncertainty is given by the behaviour of the formation which may cause crucial situations at the rig. To overcome such uncertainties real-time sensor measurements form a base to predict and thus prevent such crises, the proposed method supports the identification of the data necessary for that.

  2. An on-line acoustic fluorocarbon coolant mixture analyzer for the ATLAS silicon tracker

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bates, R.; Battistin, M.; Berry, S.

    2011-07-01

    The ATLAS silicon tracker community foresees an upgrade from the present octafluoro-propane (C{sub 3}F{sub 8}) evaporative cooling fluid - to a composite fluid with a probable 10-20% admixture of hexafluoro-ethane (C{sub 2}F{sub 6}). Such a fluid will allow a lower evaporation temperature and will afford the tracker silicon substrates a better safety margin against leakage current-induced thermal runaway caused by cumulative radiation damage as the luminosity profile at the CERN Large Hadron Collider increases. Central to the use of this new fluid is a new custom-developed speed-of-sound instrument for continuous real-time measurement of the C{sub 3}F{sub 8}/C{sub 2}F{sub 6} mixturemore » ratio and flow. An acoustic vapour mixture analyzer/flow meter with new custom electronics allowing ultrasonic frequency transmission through gas mixtures has been developed for this application. Synchronous with the emission of an ultrasound 'chirp' from an acoustic transmitter, a fast readout clock (40 MHz) is started. The clock is stopped on receipt of an above threshold sound pulse at the receiver. Sound is alternately transmitted parallel and anti-parallel with the vapour flow for volume flow measurement from transducers that can serve as acoustic transmitters or receivers. In the development version, continuous real-time measurement of C{sub 3}F{sub 8}/C{sub 2}F{sub 6} flow and calculation of the mixture ratio is performed within a graphical user interface developed in PVSS-II, the Supervisory, Control and Data Acquisition standard chosen for LHC and its experiments at CERN. The described instrument has numerous potential applications - including refrigerant leak detection, the analysis of hydrocarbons, vapour mixtures for semiconductor manufacture and anesthetic gas mixtures. (authors)« less

  3. An On-Line Acoustic Fluorocarbon Coolant Mixture Analyzer for the ATLAS Silicon Tracker

    NASA Astrophysics Data System (ADS)

    Bates, R.; Battistin, M.; Berry, S.; Bitadze, A.; Bonneau, P.; Bousson, N.; Boyd, G.; Botelho-Direito, J.; DiGirolamo, B.; Doubek, M.; Egorov, K.; Godlewski, J.; Hallewell, G.; Katunin, S.; Mathieu, M.; McMahon, S.; Nagai, K.; Perez-Rodriguez, E.; Rozanov, A.; Vacek, V.; Vitek, M.

    2012-10-01

    The ATLAS silicon tracker community foresees an upgrade from the present octafluoropropane (C3F8) evaporative cooling fluid to a composite fluid with a probable 10-20% admixture of hexafluoroethane (C2F6). Such a fluid will allow a lower evaporation temperature and will afford the tracker silicon substrates a better safety margin against leakage current-induced thermal runaway caused by cumulative radiation damage as the luminosity profile at the CERN Large Hadron Collider increases. Central to the use of this new fluid is a new custom-developed speed-of-sound instrument for continuous real-time measurement of the C3F8/C2F6 mixture ratio and flow. An acoustic vapour mixture analyzer/flow meter with new custom electronics allowing ultrasonic frequency transmission through gas mixtures has been developed for this application. Synchronous with the emission of an ultrasound `chirp' from an acoustic transmitter, a fast readout clock (40 MHz) is started. The clock is stopped on receipt of an above threshold sound pulse at the receiver. Sound is alternately transmitted parallel and anti-parallel with the vapour flow for volume flow measurement from transducers that can serve as acoustic transmitters or receivers. In the development version, continuous real-time measurement of C3F8/C2F6 flow and calculation of the mixture ratio is performed within a graphical user interface developed in PVSS-II, the Supervisory, Control and Data Acquisition standard chosen for LHC and its experiments at CERN. The described instrument has numerous potential applications - including refrigerant leak detection, the analysis of hydrocarbons, vapour mixtures for semi-conductor manufacture and anesthetic gas mixtures.

  4. Determination of use of a real time tone tracker to obtain same beam interferometry data

    NASA Technical Reports Server (NTRS)

    Nandi, S.; Border, J. S.; Folkner, W. M.

    1993-01-01

    The radio metric tracking technique known as Same-Beam Interferometry (SBI) has been shown to improve orbit determination accuracy for the Magellan and Pioneer 12 orbiter. Previous efforts to explore the technique were carried out by making open loop recordings of the carrier signals from the two spacecraft and extracting their phases through post processing. This paper reports on the use of a closed loop receiver to simultaneously measure the carrier signals from two spacecraft in order to produce SBI data in near real time. The Experiment Tone Tracker is a digital closed loop receiver installed in two of NASA's Deep Space Network stations which can simultaneously extract the phase of up to eight tones. The receivers were used in late September and October of 1992 to collect Doppler and SBI data from Pioneer 12 and Magellan. The demise of the Pionner 12 on October 8th during the start-up phase of our tests precluded the collection of an extensive set of SBI data, however two passes of SBI and several arcs of single spacecraft Doppler data were recorded. The SBI data were analyzed and determined to have statistical errors consistent with error models and similar to open loop data.

  5. Fusion of electromagnetic trackers to improve needle deflection estimation: simulation study.

    PubMed

    Sadjadi, Hossein; Hashtrudi-Zaad, Keyvan; Fichtinger, Gabor

    2013-10-01

    We present a needle deflection estimation method to anticipate needle bending during insertion into deformable tissue. Using limited additional sensory information, our approach reduces the estimation error caused by uncertainties inherent in the conventional needle deflection estimation methods. We use Kalman filters to combine a kinematic needle deflection model with the position measurements of the base and the tip of the needle taken by electromagnetic (EM) trackers. One EM tracker is installed on the needle base and estimates the needle tip position indirectly using the kinematic needle deflection model. Another EM tracker is installed on the needle tip and estimates the needle tip position through direct, but noisy measurements. Kalman filters are then employed to fuse these two estimates in real time and provide a reliable estimate of the needle tip position, with reduced variance in the estimation error. We implemented this method to compensate for needle deflection during simulated needle insertions and performed sensitivity analysis for various conditions. At an insertion depth of 150 mm, we observed needle tip estimation error reductions in the range of 28% (from 1.8 to 1.3 mm) to 74% (from 4.8 to 1.2 mm), which demonstrates the effectiveness of our method, offering a clinically practical solution.

  6. Self-motion perception: assessment by real-time computer-generated animations

    NASA Technical Reports Server (NTRS)

    Parker, D. E.; Phillips, J. O.

    2001-01-01

    We report a new procedure for assessing complex self-motion perception. In three experiments, subjects manipulated a 6 degree-of-freedom magnetic-field tracker which controlled the motion of a virtual avatar so that its motion corresponded to the subjects' perceived self-motion. The real-time animation created by this procedure was stored using a virtual video recorder for subsequent analysis. Combined real and illusory self-motion and vestibulo-ocular reflex eye movements were evoked by cross-coupled angular accelerations produced by roll and pitch head movements during passive yaw rotation in a chair. Contrary to previous reports, illusory self-motion did not correspond to expectations based on semicircular canal stimulation. Illusory pitch head-motion directions were as predicted for only 37% of trials; whereas, slow-phase eye movements were in the predicted direction for 98% of the trials. The real-time computer-generated animations procedure permits use of naive, untrained subjects who lack a vocabulary for reporting motion perception and is applicable to basic self-motion perception studies, evaluation of motion simulators, assessment of balance disorders and so on.

  7. Development of Real-Time Image and In Situ Data Analysis at Sea

    DTIC Science & Technology

    1991-10-16

    for continuous capture from multiple satellites. The Blackhole System is the analysis machine used either by researchers to process/analyze their...Orbital Tracker and the antenna subsystem was overhauled. THE BLACKHOLE ANALYSIS SYSTEM A new HP9000/350 workstation was installed at SSOC to perform...L 4)L Scripps Satellite Oceanography Center Blackhole System Diagram (Analysis Machine) HP 350 Workstation Motorola 68020 CPU 2 - 512 MB hard disks

  8. Effective real-time vehicle tracking using discriminative sparse coding on local patches

    NASA Astrophysics Data System (ADS)

    Chen, XiangJun; Ye, Feiyue; Ruan, Yaduan; Chen, Qimei

    2016-01-01

    A visual tracking framework that provides an object detector and tracker, which focuses on effective and efficient visual tracking in surveillance of real-world intelligent transport system applications, is proposed. The framework casts the tracking task as problems of object detection, feature representation, and classification, which is different from appearance model-matching approaches. Through a feature representation of discriminative sparse coding on local patches called DSCLP, which trains a dictionary on local clustered patches sampled from both positive and negative datasets, the discriminative power and robustness has been improved remarkably, which makes our method more robust to a complex realistic setting with all kinds of degraded image quality. Moreover, by catching objects through one-time background subtraction, along with offline dictionary training, computation time is dramatically reduced, which enables our framework to achieve real-time tracking performance even in a high-definition sequence with heavy traffic. Experiment results show that our work outperforms some state-of-the-art methods in terms of speed, accuracy, and robustness and exhibits increased robustness in a complex real-world scenario with degraded image quality caused by vehicle occlusion, image blur of rain or fog, and change in viewpoint or scale.

  9. Real-Time Visualization of Spacecraft Telemetry for the GLAST and LRO Missions

    NASA Technical Reports Server (NTRS)

    Stoneking, Eric T.; Shah, Neerav; Chai, Dean J.

    2010-01-01

    GlastCam and LROCam are closely-related tools developed at NASA Goddard Space Flight Center for real-time visualization of spacecraft telemetry, developed for the Gamma-Ray Large Area Space Telescope (GLAST) and Lunar Reconnaissance Orbiter (LRO) missions, respectively. Derived from a common simulation tool, they use related but different architectures to ingest real-time spacecraft telemetry and ground predicted ephemerides, and to compute and display features of special interest to each mission in its operational environment. We describe the architectures of GlastCam and LROCam, the customizations required to fit into the mission operations environment, and the features that were found to be especially useful in early operations for their respective missions. Both tools have a primary window depicting a three-dimensional Cam view of the spacecraft that may be freely manipulated by the user. The scene is augmented with fields of view, pointing constraints, and other features which enhance situational awareness. Each tool also has another "Map" window showing the spacecraft's groundtrack projected onto a map of the Earth or Moon, along with useful features such as the Sun, eclipse regions, and TDRS satellite locations. Additional windows support specialized checkout tasks. One such window shows the star tracker fields of view, with tracking window locations and the mission star catalog. This view was instrumental for GLAST in quickly resolving a star tracker mounting polarity issue; visualization made the 180-deg mismatch immediately obvious. Full access to GlastCam's source code also made possible a rapid coarse star tracker mounting calibration with some on the fly code adjustments; adding a fine grid to measure alignment offsets, and introducing a calibration quaternion which could be adjusted within GlastCam without perturbing the flight parameters. This calibration, from concept to completion, took less than half an hour. Both GlastCam and LROCam were developed in the C language, with non-proprietary support libraries, for ease of customization and portability. This no-blackboxes aspect enables engineers to adapt quickly to unforeseen circumstances in the intense operations environment. GlastCam and LROCam were installed on multiple workstations in the operations support rooms, allowing independent use by multiple subsystems, systems engineers and managers, with negligible draw on telemetry system resources.

  10. Toward faster and more accurate star sensors using recursive centroiding and star identification

    NASA Astrophysics Data System (ADS)

    Samaan, Malak Anees

    The objective of this research is to study different novel developed techniques for spacecraft attitude determination methods using star tracker sensors. This dissertation addresses various issues on developing improved star tracker software, presents new approaches for better performance of star trackers, and considers applications to realize high precision attitude estimates. Star-sensors are often included in a spacecraft attitude-system instrument suite, where high accuracy pointing capability is required. Novel methods for image processing, camera parameters ground calibration, autonomous star pattern recognition, and recursive star identification are researched and implemented to achieve high accuracy and a high frame rate star tracker that can be used for many space missions. This dissertation presents the methods and algorithms implemented for the one Field of View 'FOV'Star NavI sensor that was tested aboard the STS-107 mission in spring 2003 and the two fields of view StarNavII sensor for the EO-3 spacecraft scheduled for launch in 2007. The results of this research enable advances in spacecraft attitude determination based upon real time star sensing and pattern recognition. Building upon recent developments in image processing, pattern recognition algorithms, focal plane detectors, electro-optics, and microprocessors, the star tracker concept utilized in this research has the following key objectives for spacecraft of the future: lower cost, lower mass and smaller volume, increased robustness to environment-induced aging and instrument response variations, increased adaptability and autonomy via recursive self-calibration and health-monitoring on-orbit. Many of these attributes are consequences of improved algorithms that are derived in this dissertation.

  11. Adaptive guidance and control for future remote sensing systems

    NASA Technical Reports Server (NTRS)

    Lowrie, J. W.; Myers, J. E.

    1980-01-01

    A unique approach to onboard processing was developed that is capable of acquiring high quality image data for users in near real time. The approach is divided into two steps: the development of an onboard cloud detection system; and the development of a landmark tracker. The results of these two developments are outlined and the requirements of an operational guidance and control system capable of providing continuous estimation of the sensor boresight position are summarized.

  12. Adaptive marker-free registration using a multiple point strategy for real-time and robust endoscope electromagnetic navigation.

    PubMed

    Luo, Xiongbiao; Wan, Ying; He, Xiangjian; Mori, Kensaku

    2015-02-01

    Registration of pre-clinical images to physical space is indispensable for computer-assisted endoscopic interventions in operating rooms. Electromagnetically navigated endoscopic interventions are increasingly performed at current diagnoses and treatments. Such interventions use an electromagnetic tracker with a miniature sensor that is usually attached at an endoscope distal tip to real time track endoscope movements in a pre-clinical image space. Spatial alignment between the electromagnetic tracker (or sensor) and pre-clinical images must be performed to navigate the endoscope to target regions. This paper proposes an adaptive marker-free registration method that uses a multiple point selection strategy. This method seeks to address an assumption that the endoscope is operated along the centerline of an intraluminal organ which is easily violated during interventions. We introduce an adaptive strategy that generates multiple points in terms of sensor measurements and endoscope tip center calibration. From these generated points, we adaptively choose the optimal point, which is the closest to its assigned the centerline of the hollow organ, to perform registration. The experimental results demonstrate that our proposed adaptive strategy significantly reduced the target registration error from 5.32 to 2.59 mm in static phantoms validation, as well as from at least 7.58 mm to 4.71 mm in dynamic phantom validation compared to current available methods. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  13. H(infinity)/H(2)/Kalman filtering of linear dynamical systems via variational techniques with applications to target tracking

    NASA Astrophysics Data System (ADS)

    Rawicz, Paul Lawrence

    In this thesis, the similarities between the structure of the H infinity, H2, and Kalman filters are examined. The filters used in this examination have been derived through duality to the full information controller. In addition, a direct variation of parameters derivation of the Hinfinity filter is presented for both continuous and discrete time (staler case). Direct and controller dual derivations using differential games exist in the literature and also employ variational techniques. Using a variational, rather than a differential games, viewpoint has resulted in a simple relationship between the Riccati equations that arise from the derivation and the results of the Bounded Real Lemma. This same relation has previously been found in the literature and used to relate the Riccati inequality for linear systems to the Hamilton Jacobi inequality for nonlinear systems when implementing the Hinfinity controller. The Hinfinity, H2, and Kalman filters are applied to the two-state target tracking problem. In continuous time, closed form analytic expressions for the trackers and their performance are determined. To evaluate the trackers using a neutral, realistic, criterion, the probability of target escape is developed. That is, the probability that the target position error will be such that the target is outside the radar beam width resulting in a loss of measurement. In discrete time, a numerical example, using the probability of target escape, is presented to illustrate the differences in tracker performance.

  14. Evaluation of the Intel RealSense SR300 camera for image-guided interventions and application in vertebral level localization

    NASA Astrophysics Data System (ADS)

    House, Rachael; Lasso, Andras; Harish, Vinyas; Baum, Zachary; Fichtinger, Gabor

    2017-03-01

    PURPOSE: Optical pose tracking of medical instruments is often used in image-guided interventions. Unfortunately, compared to commonly used computing devices, optical trackers tend to be large, heavy, and expensive devices. Compact 3D vision systems, such as Intel RealSense cameras can capture 3D pose information at several magnitudes lower cost, size, and weight. We propose to use Intel SR300 device for applications where it is not practical or feasible to use conventional trackers and limited range and tracking accuracy is acceptable. We also put forward a vertebral level localization application utilizing the SR300 to reduce risk of wrong-level surgery. METHODS: The SR300 was utilized as an object tracker by extending the PLUS toolkit to support data collection from RealSense cameras. Accuracy of the camera was tested by comparing to a high-accuracy optical tracker. CT images of a lumbar spine phantom were obtained and used to create a 3D model in 3D Slicer. The SR300 was used to obtain a surface model of the phantom. Markers were attached to the phantom and a pointer and tracked using Intel RealSense SDK's built-in object tracking feature. 3D Slicer was used to align CT image with phantom using landmark registration and display the CT image overlaid on the optical image. RESULTS: Accuracy of the camera yielded a median position error of 3.3mm (95th percentile 6.7mm) and orientation error of 1.6° (95th percentile 4.3°) in a 20x16x10cm workspace, constantly maintaining proper marker orientation. The model and surface correctly aligned demonstrating the vertebral level localization application. CONCLUSION: The SR300 may be usable for pose tracking in medical procedures where limited accuracy is acceptable. Initial results suggest the SR300 is suitable for vertebral level localization.

  15. Measuring saccade peak velocity using a low-frequency sampling rate of 50 Hz.

    PubMed

    Wierts, Roel; Janssen, Maurice J A; Kingma, Herman

    2008-12-01

    During the last decades, small head-mounted video eye trackers have been developed in order to record eye movements. Real-time systems-with a low sampling frequency of 50/60 Hz-are used for clinical vestibular practice, but are generally considered not to be suited for measuring fast eye movements. In this paper, it is shown that saccadic eye movements, having an amplitude of at least 5 degrees, can, in good approximation, be considered to be bandwidth limited up to a frequency of 25-30 Hz. Using the Nyquist theorem to reconstruct saccadic eye movement signals at higher temporal resolutions, it is shown that accurate values for saccade peak velocities, recorded at 50 Hz, can be obtained, but saccade peak accelerations and decelerations cannot. In conclusion, video eye trackers sampling at 50/60 Hz are appropriate for detecting the clinical relevant saccade peak velocities in contrast to what has been stated up till now.

  16. Submillimeter Wave Astronomy Satellite (SWAS) Launch and Early Orbit Support Experiences

    NASA Technical Reports Server (NTRS)

    Kirschner, S.; Sedlak, J.; Challa, M.; Nicholson, A.; Sande, C.; Rohrbaugh, D.

    1999-01-01

    The Submillimeter Wave Astronomy Satellite (SWAS) was successfully launched on December 6, 1998 at 00:58 UTC. The two year mission is the fourth in the series of Small Explorer (SMEX) missions. SWAS is dedicated to the study of star formation and interstellar chemistry. SWAS was injected into a 635 km by 650 km orbit with an inclination of nearly 70 deg by an Orbital Sciences Corporation Pegasus XL launch vehicle. The Flight Dynamics attitude and navigation teams supported all phases of the early mission. This support included orbit determination, attitude determination, real-time monitoring, and sensor calibration. This paper reports the main results and lessons learned concerning navigation, support software, star tracker performance, magnetometer and gyroscope calibrations, and anomaly resolution. This includes information on spacecraft tip-off rates, first-day navigation problems, target acquisition anomalies, star tracker anomalies, and significant sensor improvements due to calibration efforts.

  17. Design considerations for imaging charge-coupled device

    NASA Astrophysics Data System (ADS)

    1981-04-01

    The image dissector tube, which was formerly used as detector in star trackers, will be replaced by solid state imaging devices. The technology advances of charge transfer devices, like the charge-coupled device (CCD) and the charge-injection device (CID) have made their application to star trackers an immediate reality. The Air Force in 1979 funded an American Aerospace company to develop an imaging CCD (ICCD) star sensor for the Multimission Attitude Determination and Autonomous Navigation (MADAN) system. The MADAN system is a technology development for a strapdown attitude and navigation system which can be used on all Air Force 3-axis stabilized satellites. The system will be autonomous and will provide real-time satellite attitude and position information. The star sensor accuracy provides an overall MADAN attitude accuracy of 2 arcsec for star rates up to 300 arcsec/sec. The ICCD is basically an integrating device. Its pixel resolution in not yet satisfactory for precision applications.

  18. An Adaptive Kalman Filter using a Simple Residual Tuning Method

    NASA Technical Reports Server (NTRS)

    Harman, Richard R.

    1999-01-01

    One difficulty in using Kalman filters in real world situations is the selection of the correct process noise, measurement noise, and initial state estimate and covariance. These parameters are commonly referred to as tuning parameters. Multiple methods have been developed to estimate these parameters. Most of those methods such as maximum likelihood, subspace, and observer Kalman Identification require extensive offline processing and are not suitable for real time processing. One technique, which is suitable for real time processing, is the residual tuning method. Any mismodeling of the filter tuning parameters will result in a non-white sequence for the filter measurement residuals. The residual tuning technique uses this information to estimate corrections to those tuning parameters. The actual implementation results in a set of sequential equations that run in parallel with the Kalman filter. Equations for the estimation of the measurement noise have also been developed. These algorithms are used to estimate the process noise and measurement noise for the Wide Field Infrared Explorer star tracker and gyro.

  19. A digital video tracking system

    NASA Astrophysics Data System (ADS)

    Giles, M. K.

    1980-01-01

    The Real-Time Videotheodolite (RTV) was developed in connection with the requirement to replace film as a recording medium to obtain the real-time location of an object in the field-of-view (FOV) of a long focal length theodolite. Design philosophy called for a system capable of discriminatory judgment in identifying the object to be tracked with 60 independent observations per second, capable of locating the center of mass of the object projection on the image plane within about 2% of the FOV in rapidly changing background/foreground situations, and able to generate a predicted observation angle for the next observation. A description is given of a number of subsystems of the RTV, taking into account the processor configuration, the video processor, the projection processor, the tracker processor, the control processor, and the optics interface and imaging subsystem.

  20. Cyber-security Considerations for Real-Time Physiological Status Monitoring: Threats, Goals, and Use Cases

    DTIC Science & Technology

    2016-11-01

    low- power RF transmissions used by the OBAN system. B. Threat Analysis Methodology To analyze the risk presented by a particular threat we use a... power efficiency5 and in the absolute worst case a compromise of the wireless channel could result in death. Fitness trackers on the other hand are...analysis is intended to inform the development of secure RT-PSM architectures. I. INTRODUCTION The development of very low- power computing devices and

  1. The investigation of man-made modifications of the ionosphere. [effects of detonations and rocket exhaust

    NASA Technical Reports Server (NTRS)

    Bernhardt, P. A.; Darosa, A. V.; Price, K. M.

    1980-01-01

    Topics covered include: (1) the application of ionosphere modifications models to the simulation of results obtained when rocket-borne explosives were detonated in the ionosphere; (2) the problem of hypersonic vapor releases from orbiting vehicles; (3) measuring the electron content reduction resulting from the firing of a Centaur rocket in the ionosphere; and (4) the preliminary design of the critical frequency tracker which displays the value of electron concentration at the peak of the F 2 region, in real time.

  2. Continued Data Acquisition Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwellenbach, David

    This task focused on improving techniques for integrating data acquisition of secondary particles correlated in time with detected cosmic-ray muons. Scintillation detectors with Pulse Shape Discrimination (PSD) capability show the most promise as a detector technology based on work in FY13. Typically PSD parameters are determined prior to an experiment and the results are based on these parameters. By saving data in list mode, including the fully digitized waveform, any experiment can effectively be replayed to adjust PSD and other parameters for the best data capture. List mode requires time synchronization of two independent data acquisitions (DAQ) systems: the muonmore » tracker and the particle detector system. Techniques to synchronize these systems were studied. Two basic techniques were identified: real time mode and sequential mode. Real time mode is the preferred system but has proven to be a significant challenge since two FPGA systems with different clocking parameters must be synchronized. Sequential processing is expected to work with virtually any DAQ but requires more post processing to extract the data.« less

  3. An accuracy measurement method for star trackers based on direct astronomic observation

    PubMed Central

    Sun, Ting; Xing, Fei; Wang, Xiaochu; You, Zheng; Chu, Daping

    2016-01-01

    Star tracker is one of the most promising optical attitude measurement devices and it is widely used in spacecraft for its high accuracy. However, how to realize and verify such an accuracy remains a crucial but unsolved issue until now. The authenticity of the accuracy measurement method of a star tracker will eventually determine the satellite performance. A new and robust accuracy measurement method for a star tracker based on the direct astronomical observation is proposed here. In comparison with the conventional method with simulated stars, this method utilizes real navigation stars as observation targets which makes the measurement results more authoritative and authentic. Transformations between different coordinate systems are conducted on the account of the precision movements of the Earth, and the error curves of directional vectors are obtained along the three axes. Based on error analysis and accuracy definitions, a three-axis accuracy evaluation criterion has been proposed in this paper, which could determine pointing and rolling accuracy of a star tracker directly. Experimental measurements confirm that this method is effective and convenient to implement. Such a measurement environment is close to the in-orbit conditions and it can satisfy the stringent requirement for high-accuracy star trackers. PMID:26948412

  4. An accuracy measurement method for star trackers based on direct astronomic observation.

    PubMed

    Sun, Ting; Xing, Fei; Wang, Xiaochu; You, Zheng; Chu, Daping

    2016-03-07

    Star tracker is one of the most promising optical attitude measurement devices and it is widely used in spacecraft for its high accuracy. However, how to realize and verify such an accuracy remains a crucial but unsolved issue until now. The authenticity of the accuracy measurement method of a star tracker will eventually determine the satellite performance. A new and robust accuracy measurement method for a star tracker based on the direct astronomical observation is proposed here. In comparison with the conventional method with simulated stars, this method utilizes real navigation stars as observation targets which makes the measurement results more authoritative and authentic. Transformations between different coordinate systems are conducted on the account of the precision movements of the Earth, and the error curves of directional vectors are obtained along the three axes. Based on error analysis and accuracy definitions, a three-axis accuracy evaluation criterion has been proposed in this paper, which could determine pointing and rolling accuracy of a star tracker directly. Experimental measurements confirm that this method is effective and convenient to implement. Such a measurement environment is close to the in-orbit conditions and it can satisfy the stringent requirement for high-accuracy star trackers.

  5. Absolute vs. relative error characterization of electromagnetic tracking accuracy

    NASA Astrophysics Data System (ADS)

    Matinfar, Mohammad; Narayanasamy, Ganesh; Gutierrez, Luis; Chan, Raymond; Jain, Ameet

    2010-02-01

    Electromagnetic (EM) tracking systems are often used for real time navigation of medical tools in an Image Guided Therapy (IGT) system. They are specifically advantageous when the medical device requires tracking within the body of a patient where line of sight constraints prevent the use of conventional optical tracking. EM tracking systems are however very sensitive to electromagnetic field distortions. These distortions, arising from changes in the electromagnetic environment due to the presence of conductive ferromagnetic surgical tools or other medical equipment, limit the accuracy of EM tracking, in some cases potentially rendering tracking data unusable. We present a mapping method for the operating region over which EM tracking sensors are used, allowing for characterization of measurement errors, in turn providing physicians with visual feedback about measurement confidence or reliability of localization estimates. In this instance, we employ a calibration phantom to assess distortion within the operating field of the EM tracker and to display in real time the distribution of measurement errors, as well as the location and extent of the field associated with minimal spatial distortion. The accuracy is assessed relative to successive measurements. Error is computed for a reference point and consecutive measurement errors are displayed relative to the reference in order to characterize the accuracy in near-real-time. In an initial set-up phase, the phantom geometry is calibrated by registering the data from a multitude of EM sensors in a non-ferromagnetic ("clean") EM environment. The registration results in the locations of sensors with respect to each other and defines the geometry of the sensors in the phantom. In a measurement phase, the position and orientation data from all sensors are compared with the known geometry of the sensor spacing, and localization errors (displacement and orientation) are computed. Based on error thresholds provided by the operator, the spatial distribution of localization errors are clustered and dynamically displayed as separate confidence zones within the operating region of the EM tracker space.

  6. The MITy micro-rover: Sensing, control, and operation

    NASA Technical Reports Server (NTRS)

    Malafeew, Eric; Kaliardos, William

    1994-01-01

    The sensory, control, and operation systems of the 'MITy' Mars micro-rover are discussed. It is shown that the customized sun tracker and laser rangefinder provide internal, autonomous dead reckoning and hazard detection in unstructured environments. The micro-rover consists of three articulated platforms with sensing, processing and payload subsystems connected by a dual spring suspension system. A reactive obstacle avoidance routine makes intelligent use of robot-centered laser information to maneuver through cluttered environments. The hazard sensors include a rangefinder, inclinometers, proximity sensors and collision sensors. A 486/66 laptop computer runs the graphical user interface and programming environment. A graphical window displays robot telemetry in real time and a small TV/VCR is used for real time supervisory control. Guidance, navigation, and control routines work in conjunction with the mapping and obstacle avoidance functions to provide heading and speed commands that maneuver the robot around obstacles and towards the target.

  7. Real Stimulus Act of 2009

    THOMAS, 111th Congress

    Rep. Blackburn, Marsha [R-TN-7

    2009-10-26

    House - 10/27/2009 Referred to the Subcommittee on Communications, Technology, and the Internet. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  8. A New GPU-Enabled MODTRAN Thermal Model for the PLUME TRACKER Volcanic Emission Analysis Toolkit

    NASA Astrophysics Data System (ADS)

    Acharya, P. K.; Berk, A.; Guiang, C.; Kennett, R.; Perkins, T.; Realmuto, V. J.

    2013-12-01

    Real-time quantification of volcanic gaseous and particulate releases is important for (1) recognizing rapid increases in SO2 gaseous emissions which may signal an impending eruption; (2) characterizing ash clouds to enable safe and efficient commercial aviation; and (3) quantifying the impact of volcanic aerosols on climate forcing. The Jet Propulsion Laboratory (JPL) has developed state-of-the-art algorithms, embedded in their analyst-driven Plume Tracker toolkit, for performing SO2, NH3, and CH4 retrievals from remotely sensed multi-spectral Thermal InfraRed spectral imagery. While Plume Tracker provides accurate results, it typically requires extensive analyst time. A major bottleneck in this processing is the relatively slow but accurate FORTRAN-based MODTRAN atmospheric and plume radiance model, developed by Spectral Sciences, Inc. (SSI). To overcome this bottleneck, SSI in collaboration with JPL, is porting these slow thermal radiance algorithms onto massively parallel, relatively inexpensive and commercially-available GPUs. This paper discusses SSI's efforts to accelerate the MODTRAN thermal emission algorithms used by Plume Tracker. Specifically, we are developing a GPU implementation of the Curtis-Godson averaging and the Voigt in-band transmittances from near line center molecular absorption, which comprise the major computational bottleneck. The transmittance calculations were decomposed into separate functions, individually implemented as GPU kernels, and tested for accuracy and performance relative to the original CPU code. Speedup factors of 14 to 30× were realized for individual processing components on an NVIDIA GeForce GTX 295 graphics card with no loss of accuracy. Due to the separate host (CPU) and device (GPU) memory spaces, a redesign of the MODTRAN architecture was required to ensure efficient data transfer between host and device, and to facilitate high parallel throughput. Currently, we are incorporating the separate GPU kernels into a single function for calculating the Voigt in-band transmittance, and subsequently for integration into the re-architectured MODTRAN6 code. Our overall objective is that by combining the GPU processing with more efficient Plume Tracker retrieval algorithms, a 100-fold increase in the computational speed will be realized. Since the Plume Tracker runs on Windows-based platforms, the GPU-enhanced MODTRAN6 will be packaged as a DLL. We do however anticipate that the accelerated option will be made available to the general MODTRAN community through an application programming interface (API).

  9. Monitoring the CMS strip tracker readout system

    NASA Astrophysics Data System (ADS)

    Mersi, S.; Bainbridge, R.; Baulieu, G.; Bel, S.; Cole, J.; Cripps, N.; Delaere, C.; Drouhin, F.; Fulcher, J.; Giassi, A.; Gross, L.; Hahn, K.; Mirabito, L.; Nikolic, M.; Tkaczyk, S.; Wingham, M.

    2008-07-01

    The CMS Silicon Strip Tracker at the LHC comprises a sensitive area of approximately 200 m2 and 10 million readout channels. Its data acquisition system is based around a custom analogue front-end chip. Both the control and the readout of the front-end electronics are performed by off-detector VME boards in the counting room, which digitise the raw event data and perform zero-suppression and formatting. The data acquisition system uses the CMS online software framework to configure, control and monitor the hardware components and steer the data acquisition. The first data analysis is performed online within the official CMS reconstruction framework, which provides many services, such as distributed analysis, access to geometry and conditions data, and a Data Quality Monitoring tool based on the online physics reconstruction. The data acquisition monitoring of the Strip Tracker uses both the data acquisition and the reconstruction software frameworks in order to provide real-time feedback to shifters on the operational state of the detector, archiving for later analysis and possibly trigger automatic recovery actions in case of errors. Here we review the proposed architecture of the monitoring system and we describe its software components, which are already in place, the various monitoring streams available, and our experiences of operating and monitoring a large-scale system.

  10. Collaborative emitter tracking using Rao-Blackwellized random exchange diffusion particle filtering

    NASA Astrophysics Data System (ADS)

    Bruno, Marcelo G. S.; Dias, Stiven S.

    2014-12-01

    We introduce in this paper the fully distributed, random exchange diffusion particle filter (ReDif-PF) to track a moving emitter using multiple received signal strength (RSS) sensors. We consider scenarios with both known and unknown sensor model parameters. In the unknown parameter case, a Rao-Blackwellized (RB) version of the random exchange diffusion particle filter, referred to as the RB ReDif-PF, is introduced. In a simulated scenario with a partially connected network, the proposed ReDif-PF outperformed a PF tracker that assimilates local neighboring measurements only and also outperformed a linearized random exchange distributed extended Kalman filter (ReDif-EKF). Furthermore, the novel ReDif-PF matched the tracking error performance of alternative suboptimal distributed PFs based respectively on iterative Markov chain move steps and selective average gossiping with an inter-node communication cost that is roughly two orders of magnitude lower than the corresponding cost for the Markov chain and selective gossip filters. Compared to a broadcast-based filter which exactly mimics the optimal centralized tracker or its equivalent (exact) consensus-based implementations, ReDif-PF showed a degradation in steady-state error performance. However, compared to the optimal consensus-based trackers, ReDif-PF is better suited for real-time applications since it does not require iterative inter-node communication between measurement arrivals.

  11. Scanning mid-IR laser apparatus with eye tracking for refractive surgery

    NASA Astrophysics Data System (ADS)

    Telfair, William B.; Yoder, Paul R., Jr.; Bekker, Carsten; Hoffman, Hanna J.; Jensen, Eric F.

    1999-06-01

    A robust, real-time, dynamic eye tracker has been integrated with the short pulse mid-infrared laser scanning delivery system previously described. This system employs a Q- switched Nd:YAG laser pumped optical parametric oscillator operating at 2.94 micrometers. Previous ablation studies on human cadaver eyes and in-vivo cat eyes demonstrated very smooth ablations with extremely low damage levels similar to results with an excimer. A 4-month healing study with cats indicated no adverse healing effects. In order to treat human eyes, the tracker is required because the eyes move during the procedure due to both voluntary and involuntary motions such as breathing, heartbeat, drift, loss of fixation, saccades and microsaccades. Eye tracking techniques from the literature were compared. A limbus tracking system was best for this application. Temporal and spectral filtering techniques were implemented to reduce tracking errors, reject stray light, and increase signal to noise ratio. The expanded-capability system (IRVision AccuScan 2000 Laser System) has been tested in the lab on simulated eye targets, glass eyes, cadaver eyes, and live human subjects. Circular targets ranging from 10-mm to 14-mm diameter were successfully tracked. The tracker performed beyond expectations while the system performed myopic photorefractive keratectomy procedures on several legally blind human subjects.

  12. A retrospective analysis of real-world use of the eaTracker® My Goals website by adults from Ontario and Alberta, Canada.

    PubMed

    Lieffers, Jessica R L; Haresign, Helen; Mehling, Christine; Hanning, Rhona M

    2016-09-15

    Little is known about use of goal setting and tracking tools within online programs to support nutrition and physical activity behaviour change. In 2011, Dietitians of Canada added "My Goals," a nutrition and physical activity behaviour goal setting and tracking tool to their free publicly available self-monitoring website (eaTracker® ( http://www.eaTracker.ca/ )). My Goals allows users to: a) set "ready-made" SMART (Specific, Measurable, Attainable, Realistic, Time-related) goals (choice of n = 87 goals from n = 13 categories) or "write your own" goals, and b) track progress using the "My Goals Tracker." The purpose of this study was to characterize: a) My Goals user demographics, b) types of goals set, and c) My Goals Tracker use. Anonymous data on all goals set using the My Goals feature from December 6/2012-April 28/2014 by users ≥19y from Ontario and Alberta, Canada were obtained. This dataset contained: anonymous self-reported user demographic data, user set goals, and My Goals Tracker use data. Write your own goals were categorized by topic and specificity. Data were summarized using descriptive statistics. Multivariate binary logistic regression was used to determine associations between user demographics and a) goal topic areas and b) My Goals Tracker use. Overall, n = 16,511 goal statements (75.4 % ready-made; 24.6 % write your own) set by n = 8,067 adult users 19-85y (83.3 % female; mean age 41.1 ± 15.0y, mean BMI 28.8 ± 7.6kg/m(2)) were included for analysis. Overall, 33.1 % of ready-made goals were from the "Managing your Weight" category. Of write your own goal entries, 42.3 % were solely distal goals (most related to weight management); 38.6 % addressed nutrition behaviour change (16.6 % had unspecific general eating goals); 18.1 % addressed physical activity behaviour change (47.3 % had goals without information on exercise amount and type). Many write your own goals were poor quality (e.g., non-specific (e.g., missing amounts)), and possibly unrealistic (e.g., no sugar). Few goals were tracked (<10 %). Demographic variables had statistically significant relations with goal topic areas and My Goals Tracker use. eaTracker® users had high interest in goal setting and the My Goals feature, however, self-written goals were often poor quality and goal tracking was rare. Further research is needed to better support users.

  13. Real-time eye tracking for the assessment of driver fatigue.

    PubMed

    Xu, Junli; Min, Jianliang; Hu, Jianfeng

    2018-04-01

    Eye-tracking is an important approach to collect evidence regarding some participants' driving fatigue. In this contribution, the authors present a non-intrusive system for evaluating driver fatigue by tracking eye movement behaviours. A real-time eye-tracker was used to monitor participants' eye state for collecting eye-movement data. These data are useful to get insights into assessing participants' fatigue state during monotonous driving. Ten healthy subjects performed continuous simulated driving for 1-2 h with eye state monitoring on a driving simulator in this study, and these measured features of the fixation time and the pupil area were recorded via using eye movement tracking device. For achieving a good cost-performance ratio and fast computation time, the fuzzy K -nearest neighbour was employed to evaluate and analyse the influence of different participants on the variations in the fixation duration and pupil area of drivers. The findings of this study indicated that there are significant differences in domain value distribution of the pupil area under the condition with normal and fatigue driving state. Result also suggests that the recognition accuracy by jackknife validation reaches to about 89% in average, implying that show a significant potential of real-time applicability of the proposed approach and is capable of detecting driver fatigue.

  14. Real-time eye tracking for the assessment of driver fatigue

    PubMed Central

    Xu, Junli; Min, Jianliang

    2018-01-01

    Eye-tracking is an important approach to collect evidence regarding some participants’ driving fatigue. In this contribution, the authors present a non-intrusive system for evaluating driver fatigue by tracking eye movement behaviours. A real-time eye-tracker was used to monitor participants’ eye state for collecting eye-movement data. These data are useful to get insights into assessing participants’ fatigue state during monotonous driving. Ten healthy subjects performed continuous simulated driving for 1–2 h with eye state monitoring on a driving simulator in this study, and these measured features of the fixation time and the pupil area were recorded via using eye movement tracking device. For achieving a good cost-performance ratio and fast computation time, the fuzzy K-nearest neighbour was employed to evaluate and analyse the influence of different participants on the variations in the fixation duration and pupil area of drivers. The findings of this study indicated that there are significant differences in domain value distribution of the pupil area under the condition with normal and fatigue driving state. Result also suggests that the recognition accuracy by jackknife validation reaches to about 89% in average, implying that show a significant potential of real-time applicability of the proposed approach and is capable of detecting driver fatigue. PMID:29750113

  15. Repeal REAL ID Act

    THOMAS, 113th Congress

    Sen. Walsh, John E. [D-MT

    2014-03-12

    Senate - 03/12/2014 Read twice and referred to the Committee on Homeland Security and Governmental Affairs. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  16. Creating Real Opportunities for Prosperity (CROP) Act

    THOMAS, 112th Congress

    Rep. Fincher, Stephen Lee [R-TN-8

    2011-04-15

    House - 05/11/2011 Referred to the Subcommittee on Department Operations, Oversight, and Credit. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  17. REAL Act of 2010

    THOMAS, 111th Congress

    Sen. LeMieux, George S. [R-FL

    2010-05-24

    Senate - 05/24/2010 Read twice and referred to the Committee on Banking, Housing, and Urban Affairs. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  18. An Adaptive Kalman Filter Using a Simple Residual Tuning Method

    NASA Technical Reports Server (NTRS)

    Harman, Richard R.

    1999-01-01

    One difficulty in using Kalman filters in real world situations is the selection of the correct process noise, measurement noise, and initial state estimate and covariance. These parameters are commonly referred to as tuning parameters. Multiple methods have been developed to estimate these parameters. Most of those methods such as maximum likelihood, subspace, and observer Kalman Identification require extensive offline processing and are not suitable for real time processing. One technique, which is suitable for real time processing, is the residual tuning method. Any mismodeling of the filter tuning parameters will result in a non-white sequence for the filter measurement residuals. The residual tuning technique uses this information to estimate corrections to those tuning parameters. The actual implementation results in a set of sequential equations that run in parallel with the Kalman filter. A. H. Jazwinski developed a specialized version of this technique for estimation of process noise. Equations for the estimation of the measurement noise have also been developed. These algorithms are used to estimate the process noise and measurement noise for the Wide Field Infrared Explorer star tracker and gyro.

  19. Operational support for Upper Atmosphere Research Satellite (UARS) attitude sensors

    NASA Technical Reports Server (NTRS)

    Lee, M.; Garber, A.; Lambertson, M.; Raina, P.; Underwood, S.; Woodruff, C.

    1994-01-01

    The Upper Atmosphere Research Satellite (UARS) has several sensors that can provide observations for attitude determination: star trackers, Sun sensors (gimbaled as well as fixed), magnetometers, Earth sensors, and gyroscopes. The accuracy of these observations is important for mission success. Analysts on the Flight Dynamics Facility (FDF) UARS Attitude task monitor these data to evaluate the performance of the sensors taking corrective action when appropriate. Monitoring activities range from examining the data during real-time passes to constructing long-term trend plots. Increasing residuals (differences) between the observed and expected quantities is a prime indicator of sensor problems. Residual increases may be due to alignment shifts and/or degradation in sensor output. Residuals from star tracker data revealed and anomalous behavior that contributes to attitude errors. Compensating for this behavior has significantly reduced the attitude errors. This paper discusses the methods used by the FDF UARS attitude task for maintenance of the attitude sensors, including short- and long-term monitoring, trend analysis, and calibration methods, and presents the results obtained through corrective action.

  20. Federal Real Property Asset Management Reform Act of 2012

    THOMAS, 112th Congress

    Sen. Carper, Thomas R. [D-DE

    2012-03-08

    Senate - 11/27/2012 Placed on Senate Legislative Calendar under General Orders. Calendar No. 555. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  1. Community Choice in Real Estate Act

    THOMAS, 111th Congress

    Sen. Boxer, Barbara [D-CA

    2009-01-29

    Senate - 01/29/2009 Read twice and referred to the Committee on Banking, Housing, and Urban Affairs. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  2. Real Transparency in Airfares Act of 2014

    THOMAS, 113th Congress

    Sen. Menendez, Robert [D-NJ

    2014-05-05

    Senate - 05/05/2014 Read twice and referred to the Committee on Commerce, Science, and Transportation. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  3. Federal Real Property Disposal Enhancement Act of 2011

    THOMAS, 112th Congress

    Rep. Quigley, Mike [D-IL-5

    2011-03-17

    House - 04/01/2011 Referred to the Subcommittee on Government Organization, Efficiency, and Financial Management. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  4. Federal Real Property Asset Management Reform Act of 2013

    THOMAS, 113th Congress

    Sen. Carper, Thomas R. [D-DE

    2013-07-30

    Senate - 11/19/2013 Placed on Senate Legislative Calendar under General Orders. Calendar No. 249. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  5. Deterministic object tracking using Gaussian ringlet and directional edge features

    NASA Astrophysics Data System (ADS)

    Krieger, Evan W.; Sidike, Paheding; Aspiras, Theus; Asari, Vijayan K.

    2017-10-01

    Challenges currently existing for intensity-based histogram feature tracking methods in wide area motion imagery (WAMI) data include object structural information distortions, background variations, and object scale change. These issues are caused by different pavement or ground types and from changing the sensor or altitude. All of these challenges need to be overcome in order to have a robust object tracker, while attaining a computation time appropriate for real-time processing. To achieve this, we present a novel method, Directional Ringlet Intensity Feature Transform (DRIFT), which employs Kirsch kernel filtering for edge features and a ringlet feature mapping for rotational invariance. The method also includes an automatic scale change component to obtain accurate object boundaries and improvements for lowering computation times. We evaluated the DRIFT algorithm on two challenging WAMI datasets, namely Columbus Large Image Format (CLIF) and Large Area Image Recorder (LAIR), to evaluate its robustness and efficiency. Additional evaluations on general tracking video sequences are performed using the Visual Tracker Benchmark and Visual Object Tracking 2014 databases to demonstrate the algorithms ability with additional challenges in long complex sequences including scale change. Experimental results show that the proposed approach yields competitive results compared to state-of-the-art object tracking methods on the testing datasets.

  6. The Earth Observatory Natural Event Tracker (EONET): An API for Matching Natural Events to GIBS Imagery

    NASA Astrophysics Data System (ADS)

    Ward, K.

    2015-12-01

    Hidden within the terabytes of imagery in NASA's Global Imagery Browse Services (GIBS) collection are hundreds of daily natural events. Some events are newsworthy, devastating, and visibly obvious at a global scale, others are merely regional curiosities. Regardless of the scope and significance of any one event, it is likely that multiple GIBS layers can be viewed to provide a multispectral, dataset-based view of the event. To facilitate linking between the discrete event and the representative dataset imagery, NASA's Earth Observatory Group has developed a prototype application programming interface (API): the Earth Observatory Natural Event Tracker (EONET). EONET supports an API model that allows users to retrieve event-specific metadata--date/time, location, and type (wildfire, storm, etc.)--and web service layer-specific metadata which can be used to link to event-relevant dataset imagery in GIBS. GIBS' ability to ingest many near real time datasets, combined with its growing archive of past imagery, means that API users will be able to develop client applications that not only show ongoing events but can also look at imagery from before and after. In our poster, we will present the API and show examples of its use.

  7. Real Estate Mortgage Investment Conduit Improvement Act of 2009

    THOMAS, 111th Congress

    Sen. Reed, Jack [D-RI

    2009-02-04

    Senate - 02/04/2009 Read twice and referred to the Committee on Banking, Housing, and Urban Affairs. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  8. Real Education for Healthy Youth Act of 2011

    THOMAS, 112th Congress

    Sen. Lautenberg, Frank R. [D-NJ

    2011-11-02

    Senate - 11/02/2011 Read twice and referred to the Committee on Health, Education, Labor, and Pensions. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  9. Real Education for Healthy Youth Act of 2013

    THOMAS, 113th Congress

    Sen. Lautenberg, Frank R. [D-NJ

    2013-02-14

    Senate - 02/14/2013 Read twice and referred to the Committee on Health, Education, Labor, and Pensions. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  10. Federal Real Property Disposal Enhancement Act of 2011

    THOMAS, 112th Congress

    Sen. Pryor, Mark L. [D-AR

    2011-03-03

    Senate - 03/03/2011 Read twice and referred to the Committee on Homeland Security and Governmental Affairs. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  11. REAL ID Repeal and Identification Security Enhancement Act of 2009

    THOMAS, 111th Congress

    Rep. Cohen, Steve [D-TN-9

    2009-07-31

    House - 10/23/2009 Referred to the Subcommittee on Information Policy, Census, and National Archives. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  12. A joint data assimilation system (Tan-Tracker) to simultaneously estimate surface CO2 fluxes and 3-D atmospheric CO2 concentrations from observations

    NASA Astrophysics Data System (ADS)

    Tian, X.; Xie, Z.; Liu, Y.; Cai, Z.; Fu, Y.; Zhang, H.; Feng, L.

    2014-12-01

    We have developed a novel framework ("Tan-Tracker") for assimilating observations of atmospheric CO2 concentrations, based on the POD-based (proper orthogonal decomposition) ensemble four-dimensional variational data assimilation method (PODEn4DVar). The high flexibility and the high computational efficiency of the PODEn4DVar approach allow us to include both the atmospheric CO2 concentrations and the surface CO2 fluxes as part of the large state vector to be simultaneously estimated from assimilation of atmospheric CO2 observations. Compared to most modern top-down flux inversion approaches, where only surface fluxes are considered as control variables, one major advantage of our joint data assimilation system is that, in principle, no assumption on perfect transport models is needed. In addition, the possibility for Tan-Tracker to use a complete dynamic model to consistently describe the time evolution of CO2 surface fluxes (CFs) and the atmospheric CO2 concentrations represents a better use of observation information for recycling the analyses at each assimilation step in order to improve the forecasts for the following assimilations. An experimental Tan-Tracker system has been built based on a complete augmented dynamical model, where (1) the surface atmosphere CO2 exchanges are prescribed by using a persistent forecasting model for the scaling factors of the first-guess net CO2 surface fluxes and (2) the atmospheric CO2 transport is simulated by using the GEOS-Chem three-dimensional global chemistry transport model. Observing system simulation experiments (OSSEs) for assimilating synthetic in situ observations of surface CO2 concentrations are carefully designed to evaluate the effectiveness of the Tan-Tracker system. In particular, detailed comparisons are made with its simplified version (referred to as TT-S) with only CFs taken as the prognostic variables. It is found that our Tan-Tracker system is capable of outperforming TT-S with higher assimilation precision for both CO2 concentrations and CO2 fluxes, mainly due to the simultaneous estimation of CO2 concentrations and CFs in our Tan-Tracker data assimilation system. A experiment for assimilating the real dry-air column CO2 retrievals (XCO2) from the Japanese Greenhouse Gases Observation Satellite (GOSAT) further demonstrates its potential wide applications.

  13. North American CO2 fluxes for 2007-2015 from NOAA's CarbonTracker-Lagrange Regional Inverse Modeling Framework

    NASA Astrophysics Data System (ADS)

    Andrews, A. E.; Hu, L.; Thoning, K. W.; Nehrkorn, T.; Mountain, M. E.; Jacobson, A. R.; Michalak, A.; Dlugokencky, E. J.; Sweeney, C.; Worthy, D. E. J.; Miller, J. B.; Fischer, M. L.; Biraud, S.; van der Velde, I. R.; Basu, S.; Tans, P. P.

    2017-12-01

    CarbonTracker-Lagrange (CT-L) is a new high-resolution regional inverse modeling system for improved estimation of North American CO2 fluxes. CT-L uses footprints from the Stochastic Time-Inverted Lagrangian Transport (STILT) model driven by high-resolution (10 to 30 km) meteorological fields from the Weather Research and Forecasting (WRF) model. We performed a suite of synthetic-data experiments to evaluate a variety of inversion configurations, including (1) solving for scaling factors to an a priori flux versus additive corrections, (2) solving for fluxes at 3-hrly resolution versus at coarser temporal resolution, (3) solving for fluxes at 1o × 1o resolution versus at large eco-regional scales. Our framework explicitly and objectively solves for the optimal solution with a full error covariance matrix with maximum likelihood estimation, thereby enabling rigorous uncertainty estimates for the derived fluxes. In the synthetic-data inversions, we find that solving for weekly scaling factors of a priori Net Ecosystem Exchange (NEE) at 1o × 1o resolution with optimization of diurnal cycles of CO2 fluxes yields faithful retrieval of the specified "true" fluxes as those solved at 3-hrly resolution. In contrast, a scheme that does not allow for optimization of diurnal cycles of CO2 fluxes suffered from larger aggregation errors. We then applied the optimal inversion setup to estimate North American fluxes for 2007-2015 using real atmospheric CO2 observations, multiple prior estimates of NEE, and multiple boundary values estimated from the NOAA's global Eulerian CarbonTracker (CarbonTracker) and from an empirical approach. Our derived North American land CO2 fluxes show larger seasonal amplitude than those estimated from the CarbonTracker, removing seasonal biases in the CarbonTracker's simulated CO2 mole fractions. Independent evaluations using in-situ CO2 eddy covariance flux measurements and independent aircraft profiles also suggest an improved estimation on North American CO2 fluxes from CT-L. Furthermore, our derived CO2 flux anomalies over North America corresponding to the 2012 North American drought and the 2015 El Niño are larger than derived by the CarbonTracker. They also indicate different responses of ecosystems to those anomalous climatic events.

  14. Fault Diagnosis of Power Systems Using Intelligent Systems

    NASA Technical Reports Server (NTRS)

    Momoh, James A.; Oliver, Walter E. , Jr.

    1996-01-01

    The power system operator's need for a reliable power delivery system calls for a real-time or near-real-time Al-based fault diagnosis tool. Such a tool will allow NASA ground controllers to re-establish a normal or near-normal degraded operating state of the EPS (a DC power system) for Space Station Alpha by isolating the faulted branches and loads of the system. And after isolation, re-energizing those branches and loads that have been found not to have any faults in them. A proposed solution involves using the Fault Diagnosis Intelligent System (FDIS) to perform near-real time fault diagnosis of Alpha's EPS by downloading power transient telemetry at fault-time from onboard data loggers. The FDIS uses an ANN clustering algorithm augmented with a wavelet transform feature extractor. This combination enables this system to perform pattern recognition of the power transient signatures to diagnose the fault type and its location down to the orbital replaceable unit. FDIS has been tested using a simulation of the LeRC Testbed Space Station Freedom configuration including the topology from the DDCU's to the electrical loads attached to the TPDU's. FDIS will work in conjunction with the Power Management Load Scheduler to determine what the state of the system was at the time of the fault condition. This information is used to activate the appropriate diagnostic section, and to refine if necessary the solution obtained. In the latter case, if the FDIS reports back that it is equally likely that the faulty device as 'start tracker #1' and 'time generation unit,' then based on a priori knowledge of the system's state, the refined solution would be 'star tracker #1' located in cabinet ITAS2. It is concluded from the present studies that artificial intelligence diagnostic abilities are improved with the addition of the wavelet transform, and that when such a system such as FDIS is coupled to the Power Management Load Scheduler, a faulty device can be located and isolated from the rest of the system. The benefit of these studies provides NASA with the ability to quickly restore the operating status of a space station from a critical state to a safe degraded mode, thereby saving costs in experimentation rescheduling, fault diagnostics, and prevention of loss-of-life.

  15. A nontoxic, photostable and high signal-to-noise ratio mitochondrial probe with mitochondrial membrane potential and viscosity detectivity

    NASA Astrophysics Data System (ADS)

    Chen, Yanan; Qi, Jianguo; Huang, Jing; Zhou, Xiaomin; Niu, Linqiang; Yan, Zhijie; Wang, Jianhong

    2018-01-01

    Herein, we reported a yellow emission probe 1-methyl-4-(6-morpholino-1, 3-dioxo-1H-benzo[de]isoquinolin-2(3H)-yl) pyridin-1-ium iodide which could specifically stain mitochondria in living immortalized and normal cells. In comparison to the common mitochondria tracker (Mitotracker Deep Red, MTDR), this probe was nontoxic, photostable and ultrahigh signal-to-noise ratio, which could real-time monitor mitochondria for a long time. Moreover, this probe also showed high sensitivity towards mitochondrial membrane potential and intramitochondrial viscosity change. Consequently, this probe was used for imaging mitochondria, detecting changes in mitochondrial membrane potential and intramitochondrial viscosity in physiological and pathological processes.

  16. MediaTracker system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sandoval, D. M.; Strittmatter, R. B.; Abeyta, J. D.

    2004-01-01

    The initial objectives of this effort were to provide a hardware and software platform that can address the requirements for the accountability of classified removable electronic media and vault access logging. The Media Tracker system software assists classified media custodian in managing vault access logging and Media Tracking to prevent the inadvertent violation of rules or policies for the access to a restricted area and the movement and use of tracked items. The MediaTracker system includes the software tools to track and account for high consequence security assets and high value items. The overall benefits include: (1) real-time access tomore » the disposition of all Classified Removable Electronic Media (CREM), (2) streamlined security procedures and requirements, (3) removal of ambiguity and managerial inconsistencies, (4) prevention of incidents that can and should be prevented, (5) alignment with the DOE's initiative to achieve improvements in security and facility operations through technology deployment, and (6) enhanced individual responsibility by providing a consistent method of dealing with daily responsibilities. In response to initiatives to enhance the control of classified removable electronic media (CREM), the Media Tracker software suite was developed, piloted and implemented at the Los Alamos National Laboratory beginning in July 2000. The Media Tracker software suite assists in the accountability and tracking of CREM and other high-value assets. One component of the MediaTracker software suite provides a Laboratory-approved media tracking system. Using commercial touch screen and bar code technology, the MediaTracker (MT) component of the MediaTracker software suite provides an efficient and effective means to meet current Laboratory requirements and provides new-engineered controls to help assure compliance with those requirements. It also establishes a computer infrastructure at vault entrances for vault access logging, and can accommodate several methods of positive identification including smart cards and biometrics. Currently, we have three mechanisms that provide added security for accountability and tracking purposes. One mechanism consists of a portable, hand-held inventory scanner, which allows the custodian to physically track the items that are not accessible within a particular area. The second mechanism is a radio frequency identification (RFID) consisting of a monitoring portal, which tracks and logs in a database all activity tagged of items that pass through the portals. The third mechanism consists of an electronic tagging of a flash memory device for automated inventory of CREM in storage. By modifying this USB device the user is provided with added assurance, limiting the data from being obtained from any other computer.« less

  17. Development and evaluation of a hand tracker using depth images captured from an overhead perspective.

    PubMed

    Czarnuch, Stephen; Mihailidis, Alex

    2015-03-27

    We present the development and evaluation of a robust hand tracker based on single overhead depth images for use in the COACH, an assistive technology for people with dementia. The new hand tracker was designed to overcome limitations experienced by the COACH in previous clinical trials. We train a random decision forest classifier using ∼5000 manually labeled, unbalanced, training images. Hand positions from the classifier are translated into task actions based on proximity to environmental objects. Tracker performance is evaluated using a large set of ∼24 000 manually labeled images captured from 41 participants in a fully-functional washroom, and compared to the system's previous colour-based hand tracker. Precision and recall were 0.994 and 0.938 for the depth tracker compared to 0.981 and 0.822 for the colour tracker with the current data, and 0.989 and 0.466 in the previous study. The improved tracking performance supports integration of the depth-based tracker into the COACH toward unsupervised, real-world trials. Implications for Rehabilitation The COACH is an intelligent assistive technology that can enable people with cognitive disabilities to stay at home longer, supporting the concept of aging-in-place. Automated prompting systems, a type of intelligent assistive technology, can help to support the independent completion of activities of daily living, increasing the independence of people with cognitive disabilities while reducing the burden of care experienced by caregivers. Robust motion tracking using depth imaging supports the development of intelligent assistive technologies like the COACH. Robust motion tracking also has application to other forms of assistive technologies including gaming, human-computer interaction and automated assessments.

  18. Novel approach to improve the attitude update rate of a star tracker.

    PubMed

    Zhang, Shuo; Xing, Fei; Sun, Ting; You, Zheng; Wei, Minsong

    2018-03-05

    The star tracker is widely used in attitude control systems of spacecraft for attitude measurement. The attitude update rate of a star tracker is important to guarantee the attitude control performance. In this paper, we propose a novel approach to improve the attitude update rate of a star tracker. The electronic Rolling Shutter (RS) imaging mode of the complementary metal-oxide semiconductor (CMOS) image sensor in the star tracker is applied to acquire star images in which the star spots are exposed with row-to-row time offsets, thereby reflecting the rotation of star tracker at different times. The attitude estimation method with a single star spot is developed to realize the multiple attitude updates by a star image, so as to reach a high update rate. The simulation and experiment are performed to verify the proposed approaches. The test results demonstrate that the proposed approach is effective and the attitude update rate of a star tracker is increased significantly.

  19. Development of the FitSight Fitness Tracker to Increase Time Outdoors to Prevent Myopia.

    PubMed

    Verkicharla, Pavan K; Ramamurthy, Dharani; Nguyen, Quang Duc; Zhang, Xinquan; Pu, Suan-Hui; Malhotra, Rahul; Ostbye, Truls; Lamoureux, Ecosse L; Saw, Seang-Mei

    2017-06-01

    To develop a fitness tracker (FitSight) to encourage children to increase time spent outdoors. To evaluate the wear pattern for this tracker and outdoor time pattern by estimating light illumination levels among children. The development of the FitSight fitness tracker involved the designing of two components: (1) the smartwatch with custom-made FitSight watch application (app) to log the instant light illuminance levels the wearer is exposed to, and (2) a companion smartphone app that synchronizes the time outdoors recorded by the smartwatch to smartphone via Bluetooth communication. Smartwatch wear patterns and tracker-recorded daily light illuminance levels data were gathered over 7 days from 23 Singapore children (mean ± standard deviation age: 9.2 ± 1.4 years). Feedback about the tracker was obtained from 14 parents using a three-level rating scale: very poor/poor/good. Of the 14 parents, 93% rated the complete "FitSight fitness tracker" as good and 64% rated its wearability as good. While 61% of 23 children wore the watch on all study days (i.e., 0 nonwear days), 26% had 1 nonwear day, and 4.5% children each had 3, 4, and 5 nonwear days, respectively. On average, children spent approximately 1 hour in light levels greater than 1000 lux on weekdays and 1.3 hours on weekends (60 ± 46 vs. 79 ± 53 minutes, P = 0.19). Mean number of outdoor "spurts" (light illuminance levels >1000 lux) per day was 8 ± 3 spurts with spurt duration of 34 ± 32 minutes. The FitSight tracker with its novel features may motivate children to increase time outdoors and play an important role in supplementing community outdoor programs to prevent myopia. If the developed noninvasive, wearable, smartwatch-based fitness tracker, FitSight, promotes daytime outdoor activity among children, it will be beneficial in addressing the epidemic of myopia.

  20. Analysis of the effects of Eye-Tracker performance on the pulse positioning errors during refractive surgery☆

    PubMed Central

    Arba-Mosquera, Samuel; Aslanides, Ioannis M.

    2012-01-01

    Purpose To analyze the effects of Eye-Tracker performance on the pulse positioning errors during refractive surgery. Methods A comprehensive model, which directly considers eye movements, including saccades, vestibular, optokinetic, vergence, and miniature, as well as, eye-tracker acquisition rate, eye-tracker latency time, scanner positioning time, laser firing rate, and laser trigger delay have been developed. Results Eye-tracker acquisition rates below 100 Hz correspond to pulse positioning errors above 1.5 mm. Eye-tracker latency times to about 15 ms correspond to pulse positioning errors of up to 3.5 mm. Scanner positioning times to about 9 ms correspond to pulse positioning errors of up to 2 mm. Laser firing rates faster than eye-tracker acquisition rates basically duplicate pulse-positioning errors. Laser trigger delays to about 300 μs have minor to no impact on pulse-positioning errors. Conclusions The proposed model can be used for comparison of laser systems used for ablation processes. Due to the pseudo-random nature of eye movements, positioning errors of single pulses are much larger than observed decentrations in the clinical settings. There is no single parameter that ‘alone’ minimizes the positioning error. It is the optimal combination of the several parameters that minimizes the error. The results of this analysis are important to understand the limitations of correcting very irregular ablation patterns.

  1. Real-Time Vision-Based Stiffness Mapping †.

    PubMed

    Faragasso, Angela; Bimbo, João; Stilli, Agostino; Wurdemann, Helge Arne; Althoefer, Kaspar; Asama, Hajime

    2018-04-26

    This paper presents new findings concerning a hand-held stiffness probe for the medical diagnosis of abnormalities during palpation of soft-tissue. Palpation is recognized by the medical community as an essential and low-cost method to detect and diagnose disease in soft-tissue. However, differences are often subtle and clinicians need to train for many years before they can conduct a reliable diagnosis. The probe presented here fills this gap providing a means to easily obtain stiffness values of soft tissue during a palpation procedure. Our stiffness sensor is equipped with a multi degree of freedom (DoF) Aurora magnetic tracker, allowing us to track and record the 3D position of the probe whilst examining a tissue area, and generate a 3D stiffness map in real-time. The stiffness probe was integrated in a robotic arm and tested in an artificial environment representing a good model of soft tissue organs; the results show that the sensor can accurately measure and map the stiffness of a silicon phantom embedded with areas of varying stiffness.

  2. High-Accuracy Decoupling Estimation of the Systematic Coordinate Errors of an INS and Intensified High Dynamic Star Tracker Based on the Constrained Least Squares Method

    PubMed Central

    Jiang, Jie; Yu, Wenbo; Zhang, Guangjun

    2017-01-01

    Navigation accuracy is one of the key performance indicators of an inertial navigation system (INS). Requirements for an accuracy assessment of an INS in a real work environment are exceedingly urgent because of enormous differences between real work and laboratory test environments. An attitude accuracy assessment of an INS based on the intensified high dynamic star tracker (IHDST) is particularly suitable for a real complex dynamic environment. However, the coupled systematic coordinate errors of an INS and the IHDST severely decrease the attitude assessment accuracy of an INS. Given that, a high-accuracy decoupling estimation method of the above systematic coordinate errors based on the constrained least squares (CLS) method is proposed in this paper. The reference frame of the IHDST is firstly converted to be consistent with that of the INS because their reference frames are completely different. Thereafter, the decoupling estimation model of the systematic coordinate errors is established and the CLS-based optimization method is utilized to estimate errors accurately. After compensating for error, the attitude accuracy of an INS can be assessed based on IHDST accurately. Both simulated experiments and real flight experiments of aircraft are conducted, and the experimental results demonstrate that the proposed method is effective and shows excellent performance for the attitude accuracy assessment of an INS in a real work environment. PMID:28991179

  3. Organizational-Level Strategies With or Without an Activity Tracker to Reduce Office Workers’ Sitting Time: Rationale and Study Design of a Pilot Cluster-Randomized Trial

    PubMed Central

    Fjeldsoe, Brianna S; Young, Duncan C; Winkler, Elisabeth A H; Dunstan, David W; Straker, Leon M; Brakenridge, Christian J; Healy, Genevieve N

    2016-01-01

    Background The office workplace is a key setting in which to address excessive sitting time and inadequate physical activity. One major influence on workplace sitting is the organizational environment. However, the impact of organizational-level strategies on individual level activity change is unknown. Further, the emergence of sophisticated, consumer-targeted wearable activity trackers that facilitate real-time self-monitoring of activity, may be a useful adjunct to support organizational-level strategies, but to date have received little evaluation in this workplace setting. Objective The aim of this study is to evaluate the feasibility, acceptability, and effectiveness of organizational-level strategies with or without an activity tracker on sitting, standing, and stepping in office workers in the short (3 months, primary aim) and long-term (12 months, secondary aim). Methods This study is a pilot, cluster-randomized trial (with work teams as the unit of clustering) of two interventions in office workers: organizational-level support strategies (eg, visible management support, emails) or organizational-level strategies plus the use of a waist-worn activity tracker (the LUMOback) that enables self-monitoring of sitting, standing, and stepping time and enables users to set sitting and posture alerts. The key intervention message is to ‘Stand Up, Sit Less, and Move More.’ Intervention elements will be implemented from within the organization by the Head of Workplace Wellbeing. Participants will be recruited via email and enrolled face-to-face. Assessments will occur at baseline, 3, and 12 months. Time spent sitting, sitting in prolonged (≥30 minute) bouts, standing, and stepping during work hours and across the day will be measured with activPAL3 activity monitors (7 days, 24 hours/day protocol), with total sitting time and sitting time during work hours the primary outcomes. Web-based questionnaires, LUMOback recorded data, telephone interviews, and focus groups will measure the feasibility and acceptability of both interventions and potential predictors of behavior change. Results Baseline and follow-up data collection has finished. Results are expected in 2016. Conclusions This pilot, cluster-randomized trial will evaluate the feasibility, acceptability, and effectiveness of two interventions targeting reductions in sitting and increases in standing and stepping in office workers. Few studies have evaluated these intervention strategies and this study has the potential to contribute both short and long-term findings. PMID:27226457

  4. Real-time recording and classification of eye movements in an immersive virtual environment.

    PubMed

    Diaz, Gabriel; Cooper, Joseph; Kit, Dmitry; Hayhoe, Mary

    2013-10-10

    Despite the growing popularity of virtual reality environments, few laboratories are equipped to investigate eye movements within these environments. This primer is intended to reduce the time and effort required to incorporate eye-tracking equipment into a virtual reality environment. We discuss issues related to the initial startup and provide algorithms necessary for basic analysis. Algorithms are provided for the calculation of gaze angle within a virtual world using a monocular eye-tracker in a three-dimensional environment. In addition, we provide algorithms for the calculation of the angular distance between the gaze and a relevant virtual object and for the identification of fixations, saccades, and pursuit eye movements. Finally, we provide tools that temporally synchronize gaze data and the visual stimulus and enable real-time assembly of a video-based record of the experiment using the Quicktime MOV format, available at http://sourceforge.net/p/utdvrlibraries/. This record contains the visual stimulus, the gaze cursor, and associated numerical data and can be used for data exportation, visual inspection, and validation of calculated gaze movements.

  5. Real-time recording and classification of eye movements in an immersive virtual environment

    PubMed Central

    Diaz, Gabriel; Cooper, Joseph; Kit, Dmitry; Hayhoe, Mary

    2013-01-01

    Despite the growing popularity of virtual reality environments, few laboratories are equipped to investigate eye movements within these environments. This primer is intended to reduce the time and effort required to incorporate eye-tracking equipment into a virtual reality environment. We discuss issues related to the initial startup and provide algorithms necessary for basic analysis. Algorithms are provided for the calculation of gaze angle within a virtual world using a monocular eye-tracker in a three-dimensional environment. In addition, we provide algorithms for the calculation of the angular distance between the gaze and a relevant virtual object and for the identification of fixations, saccades, and pursuit eye movements. Finally, we provide tools that temporally synchronize gaze data and the visual stimulus and enable real-time assembly of a video-based record of the experiment using the Quicktime MOV format, available at http://sourceforge.net/p/utdvrlibraries/. This record contains the visual stimulus, the gaze cursor, and associated numerical data and can be used for data exportation, visual inspection, and validation of calculated gaze movements. PMID:24113087

  6. Compensation for Time-Dependent Star Tracker Thermal Deformation on the Aqua Spacecraft

    NASA Technical Reports Server (NTRS)

    Hashmall, Joseph A.; Natanson, Gregory; Glickman, Jonathan; Sedlak, Joseph

    2004-01-01

    Analysis of attitude sensor data from the Aqua mission showed small but systematic differences between batch least-squares and extended Kalman filter attitudes. These differences were also found to be correlated with star tracker residuals, gyro bias estimates, and star tracker baseplate temperatures. This paper describes the analysis that shows that these correlations are all consistent with a single cause: time-dependent thermal deformation of star tracker alignments. These varying alignments can be separated into relative and common components. The relative misalignments can be determined and compensated for. The common misalignments can only be determined in special cases.

  7. The Soldier Fitness Tracker: global delivery of Comprehensive Soldier Fitness.

    PubMed

    Fravell, Mike; Nasser, Katherine; Cornum, Rhonda

    2011-01-01

    Carefully implemented technology strategies are vital to the success of large-scale initiatives such as the U.S. Army's Comprehensive Soldier Fitness (CSF) program. Achieving the U.S. Army's vision for CSF required a robust information technology platform that was scaled to millions of users and that leveraged the Internet to enable global reach. The platform needed to be agile, provide powerful real-time reporting, and have the capacity to quickly transform to meet emerging requirements. Existing organizational applications, such as "Single Sign-On," and authoritative data sources were exploited to the maximum extent possible. Development of the "Soldier Fitness Tracker" is the most recent, and possibly the best, demonstration of the potential benefits possible when existing organizational capabilities are married to new, innovative applications. Combining the capabilities of the extant applications with the newly developed applications expedited development, eliminated redundant data collection, resulted in the exceeding of program objectives, and produced a comfortable experience for the end user, all in less than six months. This is a model for future technology integration. (c) 2010 APA, all rights reserved.

  8. Evaluating the Usability of Pinchigator, a system for Navigating Virtual Worlds using Pinch Gloves

    NASA Technical Reports Server (NTRS)

    Hamilton, George S.; Brookman, Stephen; Dumas, Joseph D. II; Tilghman, Neal

    2003-01-01

    Appropriate design of two dimensional user interfaces (2D U/I) utilizing the well known WIMP (Window, Icon, Menu, Pointing device) environment for computer software is well studied and guidance can be found in several standards. Three-dimensional U/I design is not nearly so mature as 2D U/I, and standards bodies have not reached consensus on what makes a usable interface. This is especially true when the tools for interacting with the virtual environment may include stereo viewing, real time trackers and pinch gloves instead of just a mouse & keyboard. Over the last several years the authors have created a 3D U/I system dubbed Pinchigator for navigating virtual worlds based on the dVise dV/Mockup visualization software, Fakespace Pinch Gloves and Pohlemus trackers. The current work is to test the usability of the system on several virtual worlds, suggest improvements to increase Pinchigator s usability, and then to generalize about what was learned and how those lessons might be applied to improve other 3D U/I systems.

  9. Oculomatic: High speed, reliable, and accurate open-source eye tracking for humans and non-human primates.

    PubMed

    Zimmermann, Jan; Vazquez, Yuriria; Glimcher, Paul W; Pesaran, Bijan; Louie, Kenway

    2016-09-01

    Video-based noninvasive eye trackers are an extremely useful tool for many areas of research. Many open-source eye trackers are available but current open-source systems are not designed to track eye movements with the temporal resolution required to investigate the mechanisms of oculomotor behavior. Commercial systems are available but employ closed source hardware and software and are relatively expensive, limiting wide-spread use. Here we present Oculomatic, an open-source software and modular hardware solution to eye tracking for use in humans and non-human primates. Oculomatic features high temporal resolution (up to 600Hz), real-time eye tracking with high spatial accuracy (<0.5°), and low system latency (∼1.8ms, 0.32ms STD) at a relatively low-cost. Oculomatic compares favorably to our existing scleral search-coil system while being fully non invasive. We propose that Oculomatic can support a wide range of research into the properties and neural mechanisms of oculomotor behavior. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Real-time 3D motion tracking for small animal brain PET

    NASA Astrophysics Data System (ADS)

    Kyme, A. Z.; Zhou, V. W.; Meikle, S. R.; Fulton, R. R.

    2008-05-01

    High-resolution positron emission tomography (PET) imaging of conscious, unrestrained laboratory animals presents many challenges. Some form of motion correction will normally be necessary to avoid motion artefacts in the reconstruction. The aim of the current work was to develop and evaluate a motion tracking system potentially suitable for use in small animal PET. This system is based on the commercially available stereo-optical MicronTracker S60 which we have integrated with a Siemens Focus-220 microPET scanner. We present measured performance limits of the tracker and the technical details of our implementation, including calibration and synchronization of the system. A phantom study demonstrating motion tracking and correction was also performed. The system can be calibrated with sub-millimetre accuracy, and small lightweight markers can be constructed to provide accurate 3D motion data. A marked reduction in motion artefacts was demonstrated in the phantom study. The techniques and results described here represent a step towards a practical method for rigid-body motion correction in small animal PET. There is scope to achieve further improvements in the accuracy of synchronization and pose measurements in future work.

  11. Design of a solar tracking interactive kiosk

    NASA Astrophysics Data System (ADS)

    Greene, Nathaniel R.; Brunskill, Jeffrey C.

    2017-01-01

    A two-axis solar tracker and its interactive kiosk were designed by an interdisciplinary team of students and faculty. The objective was to develop a publicly accessible kiosk that would facilitate the study of energy usage and production on campus. Tracking is accomplished by an open-loop algorithm, microcontroller, and ham radio rotator. Solar panel output is monitored in real time and displayed to the public with lights and digits that can be read by the casual passersby. While maximum power point tracking is the most accurate means of quantifying the output power of a photovoltaic panel, simplicity and design constraints dictated the use of short-circuit current as a proxy for power. A touchscreen display allows kiosk visitors to compare two solar panels, an automatic tracker that faces the sun, and an identical panel whose elevation and azimuth can be controlled with a virtual joystick. This project was a capstone experience for students in physics/engineering, computer science, and instructional technology. We discuss technical challenges and design choices, as well as the educational goals of the kiosk.

  12. A low-cost experiment to visualise the Fourier series: video analysis of a real plucked coiled spring

    NASA Astrophysics Data System (ADS)

    de Jesus, V. L. B.; Haubrichs, C.; de Oliveira, A. L.; Sasaki, D. G. G.

    2018-03-01

    In the present work, we develop a low-cost and simple experiment to visualise Fourier’s synthesis using a short, soft, and light plastic coiled spring oscillating in a horizontal plane, and a basic camera (120 fps). It is shown that the spring obeys a linear wave differential equation, as gravitational influence is neglected. A nonlinear criterion is evaluated to determine if magnitudes of the parameters in the initial conditions satisfy the linear wave equation. Our setup promotes some desirable characteristics that make Fourier’s synthesis experiments feasible, visual, and enlightening: (i) it requires few, common, and cheap resources, and the experiment can be carried out even in a high-school laboratory; (ii) since the spring’s tension is small (∼1 N, on average), the frequencies of normal modes are low (close to 2 Hz), and therefore, it is possible to record the oscillations just with the camera and extract a considerable number of position and time data in just one cycle; (iii) when the video is loaded in the Tracker free software, it can be reproduced in slow motion. Since the frequencies involved are low, an interesting and instructive temporal sequence of images of the spring displaying the typical trapezoidal shape appears clearly; (iv) the tools associated with the Tracker software tools can yield the relevant oscillation parameters, such as the damping constant, amplitudes, frequencies, and phases; and (v) it is possible to carry out superposition of a snapshot of the spring in Tracker at any time, and to draw the related Fourier synthesis graphs. The visual match between the shape of the spring and the theoretical graph is remarkable, and can be enhanced by adding the damping term.

  13. [Ablation on the undersurface of a LASIK flap. Instrument and method for continuous eye tracking].

    PubMed

    Taneri, S; Azar, D T

    2007-02-01

    The risk of iatrogenic keratectasia after laser in situ keratomileusis (LASIK) increases with thinner posterior stromal beds. Ablations on the undersurface of a LASIK flap could only be performed without the guidance of an eye tracker, which may lead to decentration. A new method for laser ablation with flying spot lasers on the undersurface of a LASIK flap was developed that enables the use of an active eye tracker by utilizing a novel instrument. The first clinical results are reported. Patients wishing an enhancement procedure were eligible for a modified repeat LASIK procedure if the flaps cut in the initial procedure were thick enough to perform the intended additional ablation on the undersurface leaving at least 90 microm of flap thickness behind. (1) The horizontal axis and the center of the entrance pupil were marked on the epithelial side of the flap using gentian violet dye. (2) The flap was reflected on a newly designed flap holder which had a donut-shaped black marking. (3) The eye tracker was centered on the mark visible in transparency on the flap. (4) Ablation with a flying spot Bausch & Lomb Technolas 217z laser was performed on the undersurface of the flap with a superior hinge taking into account that in astigmatic ablations the cylinder axis had to be mirrored according to the formula: axis on the undersurface=180 degrees -axis on the stromal bed. (5) The flap was repositioned. Detection of the marking on the modified flap holder and continuous tracking instead of the real pupil was possible in all of the 12 eyes treated with this technique. It may be necessary to cover the real pupil during ablation in order not to confuse the eye tracker. Ablation could be performed without decentration or loss of best spectacle-corrected visual acuity. Refractive results in minor corrections were good without nomogram adjustment. Using this novel flap holder with a marking that is tracked instead of the real pupil, centered ablations with a flying spot laser on the undersurface of a LASIK flap are feasible. Thus, the additional risk of iatrogenic keratectasia associated with stromal enhancement ablations is avoided.

  14. To resolve title issues involving real property and equipment acquired using funds provided under the Alaska Kiln Drying Grant Program.

    THOMAS, 112th Congress

    Rep. Young, Don [R-AK-At Large

    2012-01-17

    House - 02/08/2012 Referred to the Subcommittee on Department Operations, Oversight, and Credit. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  15. To resolve title issues involving real property and equipment acquired using funds provided under the Alaska Kiln Drying Grant Program.

    THOMAS, 113th Congress

    Rep. Young, Don [R-AK-At Large

    2013-02-15

    House - 03/13/2013 Referred to the Subcommittee on Department Operations, Oversight, and Nutrition. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  16. Construction and Operation of a High-Speed, High-Precision Eye Tracker for Tight Stimulus Synchronization and Real-Time Gaze Monitoring in Human and Animal Subjects.

    PubMed

    Farivar, Reza; Michaud-Landry, Danny

    2016-01-01

    Measurements of the fast and precise movements of the eye-critical to many vision, oculomotor, and animal behavior studies-can be made non-invasively by video oculography. The protocol here describes the construction and operation of a research-grade video oculography system with ~0.1° precision over the full typical viewing range at over 450 Hz with tight synchronization with stimulus onset. The protocol consists of three stages: (1) system assembly, (2) calibration for both cooperative, and for minimally cooperative subjects (e.g., animals or infants), and (3) gaze monitoring and recording.

  17. GlastCam: A Telemetry-Driven Spacecraft Visualization Tool

    NASA Technical Reports Server (NTRS)

    Stoneking, Eric T.; Tsai, Dean

    2009-01-01

    Developed for the GLAST project, which is now the Fermi Gamma-ray Space Telescope, GlastCam software ingests telemetry from the Integrated Test and Operations System (ITOS) and generates four graphical displays of geometric properties in real time, allowing visual assessment of the attitude, configuration, position, and various cross-checks. Four windows are displayed: a "cam" window shows a 3D view of the satellite; a second window shows the standard position plot of the satellite on a Mercator map of the Earth; a third window displays star tracker fields of view, showing which stars are visible from the spacecraft in order to verify star tracking; and the fourth window depicts

  18. A multi-hypothesis tracker for clicking whales.

    PubMed

    Baggenstoss, Paul M

    2015-05-01

    This paper describes a tracker specially designed to track clicking beaked whales using widely spaced bottom-mounted hydrophones, although it can be adapted to different species and sensors. The input to the tracker is a sequence of static localization solutions obtained using time difference of arrival information at widely spaced hydrophones. To effectively handle input localizations with high ambiguity, the tracker is based on multi-hypothesis tracker concepts, so it considers all potential association hypotheses and keeps a large number of potential tracks in memory. The method is demonstrated on actual data and shown to successfully track multiple beaked whales at depth.

  19. A bronchoscopic navigation system using bronchoscope center calibration for accurate registration of electromagnetic tracker and CT volume without markers.

    PubMed

    Luo, Xiongbiao

    2014-06-01

    Various bronchoscopic navigation systems are developed for diagnosis, staging, and treatment of lung and bronchus cancers. To construct electromagnetically navigated bronchoscopy systems, registration of preoperative images and an electromagnetic tracker must be performed. This paper proposes a new marker-free registration method, which uses the centerlines of the bronchial tree and the center of a bronchoscope tip where an electromagnetic sensor is attached, to align preoperative images and electromagnetic tracker systems. The chest computed tomography (CT) volume (preoperative images) was segmented to extract the bronchial centerlines. An electromagnetic sensor was fixed at the bronchoscope tip surface. A model was designed and printed using a 3D printer to calibrate the relationship between the fixed sensor and the bronchoscope tip center. For each sensor measurement that includes sensor position and orientation information, its corresponding bronchoscope tip center position was calculated. By minimizing the distance between each bronchoscope tip center position and the bronchial centerlines, the spatial alignment of the electromagnetic tracker system and the CT volume was determined. After obtaining the spatial alignment, an electromagnetic navigation bronchoscopy system was established to real-timely track or locate a bronchoscope inside the bronchial tree during bronchoscopic examinations. The electromagnetic navigation bronchoscopy system was validated on a dynamic bronchial phantom that can simulate respiratory motion with a breath rate range of 0-10 min(-1). The fiducial and target registration errors of this navigation system were evaluated. The average fiducial registration error was reduced from 8.7 to 6.6 mm. The average target registration error, which indicates all tracked or navigated bronchoscope position accuracy, was much reduced from 6.8 to 4.5 mm compared to previous registration methods. An electromagnetically navigated bronchoscopy system was constructed with accurate registration of an electromagnetic tracker and the CT volume on the basis of an improved marker-free registration approach that uses the bronchial centerlines and bronchoscope tip center information. The fiducial and target registration errors of our electromagnetic navigation system were about 6.6 and 4.5 mm in dynamic bronchial phantom validation.

  20. A bronchoscopic navigation system using bronchoscope center calibration for accurate registration of electromagnetic tracker and CT volume without markers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Xiongbiao, E-mail: xiongbiao.luo@gmail.com

    2014-06-15

    Purpose: Various bronchoscopic navigation systems are developed for diagnosis, staging, and treatment of lung and bronchus cancers. To construct electromagnetically navigated bronchoscopy systems, registration of preoperative images and an electromagnetic tracker must be performed. This paper proposes a new marker-free registration method, which uses the centerlines of the bronchial tree and the center of a bronchoscope tip where an electromagnetic sensor is attached, to align preoperative images and electromagnetic tracker systems. Methods: The chest computed tomography (CT) volume (preoperative images) was segmented to extract the bronchial centerlines. An electromagnetic sensor was fixed at the bronchoscope tip surface. A model wasmore » designed and printed using a 3D printer to calibrate the relationship between the fixed sensor and the bronchoscope tip center. For each sensor measurement that includes sensor position and orientation information, its corresponding bronchoscope tip center position was calculated. By minimizing the distance between each bronchoscope tip center position and the bronchial centerlines, the spatial alignment of the electromagnetic tracker system and the CT volume was determined. After obtaining the spatial alignment, an electromagnetic navigation bronchoscopy system was established to real-timely track or locate a bronchoscope inside the bronchial tree during bronchoscopic examinations. Results: The electromagnetic navigation bronchoscopy system was validated on a dynamic bronchial phantom that can simulate respiratory motion with a breath rate range of 0–10 min{sup −1}. The fiducial and target registration errors of this navigation system were evaluated. The average fiducial registration error was reduced from 8.7 to 6.6 mm. The average target registration error, which indicates all tracked or navigated bronchoscope position accuracy, was much reduced from 6.8 to 4.5 mm compared to previous registration methods. Conclusions: An electromagnetically navigated bronchoscopy system was constructed with accurate registration of an electromagnetic tracker and the CT volume on the basis of an improved marker-free registration approach that uses the bronchial centerlines and bronchoscope tip center information. The fiducial and target registration errors of our electromagnetic navigation system were about 6.6 and 4.5 mm in dynamic bronchial phantom validation.« less

  1. A secure mobile crowdsensing (MCS) location tracker for elderly in smart city

    NASA Astrophysics Data System (ADS)

    Shien, Lau Khai; Singh, Manmeet Mahinderjit

    2017-10-01

    According to the UN's (United Nations) projection, Malaysia will achieve ageing population status by 2030. The challenge of the growing ageing population is health and social care services. As the population lives longer, the costs of institutional care rises and elderly who not able live independently in their own homes without caregivers. Moreover, it restricted their activity area, safety and freedom in their daily life. Hence, a tracking system is worthy for their caregivers to track their real-time location with efficient. Currently tracking and monitoring systems are unable to satisfy the needs of the community. Hence, Indoor-Outdoor Elderly Secure and Tracking care system (IOET) proposed to track and monitor elderly. This Mobile Crowdsensing type of system is using indoor and outdoor positioning system to locate elder which utilizes the RFID, NFC, biometric system and GPS aim to secure the safety of elderly within indoors and outdoors environment. A mobile application and web-based application to be designed for this system. This system able to real-time tracking by combining GPS and NFC for outdoor coverage where ideally in smart city. In indoor coverage, the system utilizes active RFID tracking elderly movement. The system will prompt caregiver wherever elderly movement or request by using the notification service which provided the real-time notify. Caregiver also can review the place that visited by elderly and trace back elderly movement.

  2. Real-time tracking of visually attended objects in virtual environments and its application to LOD.

    PubMed

    Lee, Sungkil; Kim, Gerard Jounghyun; Choi, Seungmoon

    2009-01-01

    This paper presents a real-time framework for computationally tracking objects visually attended by the user while navigating in interactive virtual environments. In addition to the conventional bottom-up (stimulus-driven) saliency map, the proposed framework uses top-down (goal-directed) contexts inferred from the user's spatial and temporal behaviors, and identifies the most plausibly attended objects among candidates in the object saliency map. The computational framework was implemented using GPU, exhibiting high computational performance adequate for interactive virtual environments. A user experiment was also conducted to evaluate the prediction accuracy of the tracking framework by comparing objects regarded as visually attended by the framework to actual human gaze collected with an eye tracker. The results indicated that the accuracy was in the level well supported by the theory of human cognition for visually identifying single and multiple attentive targets, especially owing to the addition of top-down contextual information. Finally, we demonstrate how the visual attention tracking framework can be applied to managing the level of details in virtual environments, without any hardware for head or eye tracking.

  3. Real-Time Vision-Based Stiffness Mapping †

    PubMed Central

    Althoefer, Kaspar; Asama, Hajime

    2018-01-01

    This paper presents new findings concerning a hand-held stiffness probe for the medical diagnosis of abnormalities during palpation of soft-tissue. Palpation is recognized by the medical community as an essential and low-cost method to detect and diagnose disease in soft-tissue. However, differences are often subtle and clinicians need to train for many years before they can conduct a reliable diagnosis. The probe presented here fills this gap providing a means to easily obtain stiffness values of soft tissue during a palpation procedure. Our stiffness sensor is equipped with a multi degree of freedom (DoF) Aurora magnetic tracker, allowing us to track and record the 3D position of the probe whilst examining a tissue area, and generate a 3D stiffness map in real-time. The stiffness probe was integrated in a robotic arm and tested in an artificial environment representing a good model of soft tissue organs; the results show that the sensor can accurately measure and map the stiffness of a silicon phantom embedded with areas of varying stiffness. PMID:29701704

  4. Vision-based overlay of a virtual object into real scene for designing room interior

    NASA Astrophysics Data System (ADS)

    Harasaki, Shunsuke; Saito, Hideo

    2001-10-01

    In this paper, we introduce a geometric registration method for augmented reality (AR) and an application system, interior simulator, in which a virtual (CG) object can be overlaid into a real world space. Interior simulator is developed as an example of an AR application of the proposed method. Using interior simulator, users can visually simulate the location of virtual furniture and articles in the living room so that they can easily design the living room interior without placing real furniture and articles, by viewing from many different locations and orientations in real-time. In our system, two base images of a real world space are captured from two different views for defining a projective coordinate of object 3D space. Then each projective view of a virtual object in the base images are registered interactively. After such coordinate determination, an image sequence of a real world space is captured by hand-held camera with tracking non-metric measured feature points for overlaying a virtual object. Virtual objects can be overlaid onto the image sequence by taking each relationship between the images. With the proposed system, 3D position tracking device, such as magnetic trackers, are not required for the overlay of virtual objects. Experimental results demonstrate that 3D virtual furniture can be overlaid into an image sequence of the scene of a living room nearly at video rate (20 frames per second).

  5. A post-processing algorithm for time domain pitch trackers

    NASA Astrophysics Data System (ADS)

    Specker, P.

    1983-01-01

    This paper describes a powerful post-processing algorithm for time-domain pitch trackers. On two successive passes, the post-processing algorithm eliminates errors produced during a first pass by a time-domain pitch tracker. During the second pass, incorrect pitch values are detected as outliers by computing the distribution of values over a sliding 80 msec window. During the third pass (based on artificial intelligence techniques), remaining pitch pulses are used as anchor points to reconstruct the pitch train from the original waveform. The algorithm produced a decrease in the error rate from 21% obtained with the original time domain pitch tracker to 2% for isolated words and sentences produced in an office environment by 3 male and 3 female talkers. In a noisy computer room errors decreased from 52% to 2.9% for the same stimuli produced by 2 male talkers. The algorithm is efficient, accurate, and resistant to noise. The fundamental frequency micro-structure is tracked sufficiently well to be used in extracting phonetic features in a feature-based recognition system.

  6. To authorize the Administrator of General Services to convey a parcel of real property to the town of Nantucket, Massachusetts, and for other purposes.

    THOMAS, 111th Congress

    Rep. Delahunt, Bill [D-MA-10

    2009-10-07

    House - 10/08/2009 Referred to the Subcommittee on Economic Development, Public Buildings and Emergency Management. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  7. A bill to provide for the addition of certain real property to the reservation of the Siletz Tribe in the State of Oregon.

    THOMAS, 112th Congress

    Sen. Wyden, Ron [D-OR

    2011-05-05

    Senate - 02/02/2012 Committee on Indian Affairs. Hearings held. Hearings printed: S.Hrg. 112-626. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  8. To authorize the Secretary of Commerce to convey real property, including improvements, of the National Oceanic and Atmospheric Administration in Ketchikan, Alaska, and for other purposes.

    THOMAS, 112th Congress

    Rep. Young, Don [R-AK-At Large

    2011-07-25

    House - 07/26/2011 Referred to the Subcommittee on Fisheries, Wildlife, Oceans, and Insular Affairs. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  9. Covariance analysis for evaluating head trackers

    NASA Astrophysics Data System (ADS)

    Kang, Donghoon

    2017-10-01

    Existing methods for evaluating the performance of head trackers usually rely on publicly available face databases, which contain facial images and the ground truths of their corresponding head orientations. However, most of the existing publicly available face databases are constructed by assuming that a frontal head orientation can be determined by compelling the person under examination to look straight ahead at the camera on the first video frame. Since nobody can accurately direct one's head toward the camera, this assumption may be unrealistic. Rather than obtaining estimation errors, we present a method for computing the covariance of estimation error rotations to evaluate the reliability of head trackers. As an uncertainty measure of estimators, the Schatten 2-norm of a square root of error covariance (or the algebraic average of relative error angles) can be used. The merit of the proposed method is that it does not disturb the person under examination by asking him to direct his head toward certain directions. Experimental results using real data validate the usefulness of our method.

  10. Mechatronic Prototype of Parabolic Solar Tracker.

    PubMed

    Morón, Carlos; Díaz, Jorge Pablo; Ferrández, Daniel; Ramos, Mari Paz

    2016-06-15

    In the last 30 years numerous attempts have been made to improve the efficiency of the parabolic collectors in the electric power production, although most of the studies have focused on the industrial production of thermoelectric power. This research focuses on the application of this concentrating solar thermal power in the unexplored field of building construction. To that end, a mechatronic prototype of a hybrid paraboloidal and cylindrical-parabolic tracker based on the Arduido technology has been designed. The prototype is able to measure meteorological data autonomously in order to quantify the energy potential of any location. In this way, it is possible to reliably model real commercial equipment behavior before its deployment in buildings and single family houses.

  11. Mechatronic Prototype of Parabolic Solar Tracker

    PubMed Central

    Morón, Carlos; Díaz, Jorge Pablo; Ferrández, Daniel; Ramos, Mari Paz

    2016-01-01

    In the last 30 years numerous attempts have been made to improve the efficiency of the parabolic collectors in the electric power production, although most of the studies have focused on the industrial production of thermoelectric power. This research focuses on the application of this concentrating solar thermal power in the unexplored field of building construction. To that end, a mechatronic prototype of a hybrid paraboloidal and cylindrical-parabolic tracker based on the Arduido technology has been designed. The prototype is able to measure meteorological data autonomously in order to quantify the energy potential of any location. In this way, it is possible to reliably model real commercial equipment behavior before its deployment in buildings and single family houses. PMID:27314359

  12. Gaze-Aware Streaming Solutions for the Next Generation of Mobile VR Experiences.

    PubMed

    Lungaro, Pietro; Sjoberg, Rickard; Valero, Alfredo Jose Fanghella; Mittal, Ashutosh; Tollmar, Konrad

    2018-04-01

    This paper presents a novel approach to content delivery for video streaming services. It exploits information from connected eye-trackers embedded in the next generation of VR Head Mounted Displays (HMDs). The proposed solution aims to deliver high visual quality, in real time, around the users' fixations points while lowering the quality everywhere else. The goal of the proposed approach is to substantially reduce the overall bandwidth requirements for supporting VR video experiences while delivering high levels of user perceived quality. The prerequisites to achieve these results are: (1) mechanisms that can cope with different degrees of latency in the system and (2) solutions that support fast adaptation of video quality in different parts of a frame, without requiring a large increase in bitrate. A novel codec configuration, capable of supporting near-instantaneous video quality adaptation in specific portions of a video frame, is presented. The proposed method exploits in-built properties of HEVC encoders and while it introduces a moderate amount of error, these errors are indetectable by users. Fast adaptation is the key to enable gaze-aware streaming and its reduction in bandwidth. A testbed implementing gaze-aware streaming, together with a prototype HMD with in-built eye tracker, is presented and was used for testing with real users. The studies quantified the bandwidth savings achievable by the proposed approach and characterize the relationships between Quality of Experience (QoE) and network latency. The results showed that up to 83% less bandwidth is required to deliver high QoE levels to the users, as compared to conventional solutions.

  13. A technical innovation for improving identification of the trackers by the LED cameras in navigation-assisted total knee arthroplasty.

    PubMed

    Darmanis, Spyridon; Toms, Andrew; Durman, Robert; Moore, Donna; Eyres, Keith

    2007-07-01

    To reduce the operating time in computer-assisted navigated total knee replacement (TKR), by improving communication between the infrared camera and the trackers placed on the patient. The innovation involves placing a routinely used laser pointer on top of the camera, so that the infrared cameras focus precisely on the trackers located on the knee to be operated on. A prospective randomized study was performed involving 40 patients divided into two groups, A and B. Both groups underwent navigated TKR, but for group B patients a laser pointer was used to improve the targeting capabilities of the cameras. Without the laser pointer, the camera had to move a mean 9.2 times in order to identify the trackers. With the introduction of the laser pointer, this was reduced to 0.9 times. Accordingly, the additional mean time required without the laser pointer was 11.6 minutes. Time delays are a major problem in computer-assisted surgery, and our technical suggestion can contribute towards reducing the delays associated with this particular application.

  14. Wireless data transfer with mm-waves for future tracking detectors

    NASA Astrophysics Data System (ADS)

    Pelikan, D.; Bingefors, N.; Brenner, R.; Dancila, D.; Gustafsson, L.

    2014-11-01

    Wireless data transfer has revolutionized the consumer market for the last decade generating many products equipped with transmitters and receivers for wireless data transfer. Wireless technology opens attractive possibilities for data transfer in future tracking detectors. The reduction of wires and connectors for data links is certainly beneficial both for the material budget and the reliability of the system. An advantage of wireless data transfer is the freedom of routing signals which today is particularly complicated when bringing the data the first 50 cm out of the tracker. With wireless links intelligence can be built into a tracker by introducing communication between tracking layers within a region of interest which would allow the construction of track primitives in real time. The wireless technology used in consumer products is however not suitable for tracker readouts. The low data transfer capacity of current 5 GHz transceivers and the relatively large feature sizes of the components is a disadvantage.Due to the requirement of high data rates in tracking detectors high bandwidth is required. The frequency band around 60 GHz turns out to be a very promising candidate for data transfer in a detector system. The high baseband frequency allows for data transfer in the order of several Gbit/s. Due to the small wavelength in the mm range only small structures are needed for the transmitting and receiving electronics. The 60 GHz frequency band is a strong candidate for future WLAN applications hence components are already starting to be available on the market.Patch antennas produced on flexible Printed Circuit Board substrate that can be used for wireless communication in future trackers are presented in this article. The antennas can be connected to transceivers for data transmission/reception or be connected by wave-guides to structures capable of bringing the 60 GHz signal behind boundaries. Results on simulation and fabrication of these antennas are presented as well as studies on the sensitivity of production tolerances.

  15. Can a Free Wearable Activity Tracker Change Behavior? The Impact of Trackers on Adults in a Physician-Led Wellness Group.

    PubMed

    Gualtieri, Lisa; Rosenbluth, Sandra; Phillips, Jeffrey

    2016-11-30

    Wearable activity trackers (trackers) are increasingly popular devices used to track step count and other health indicators. Trackers have the potential to benefit those in need of increased physical activity, such as adults who are older and face significant health challenges. These populations are least likely to purchase trackers and most likely to face challenges in using them, yet may derive educational, motivational, and health benefits from their use once these barriers are removed. The aim of this pilot research is to investigate the use of trackers by adults with chronic medical conditions who have never used trackers previously. Specifically, we aim to determine (1) if participants would accept and use trackers to increase their physical activity; (2) if there were barriers to use besides cost and training; (3) if trackers would educate participants on their baseline and ongoing activity levels and support behavior change; and (4) if clinical outcomes would show improvements in participants' health. This study was conducted with patients (N=10) in a 12-week physician-led wellness group offered by Family Doctors, LLC. Patients were given trackers in the second week of The Wellness Group and were interviewed 2 to 4 weeks after it ended. The study investigators analyzed the interview notes to extract themes about the participants' attitudes and behavior changes and collected and analyzed participants' clinical data, including weight and low-density lipoprotein (LDL) cholesterol over the course of the study. Over the 12 to 14 weeks of tracker use, improvements were seen in clinical outcomes, attitudes towards the trackers, and physical activity behaviors. Participants lost an average of 0.5 lbs per week (SD 0.4), with a mean total weight loss of 5.97 lbs (P=.004). Other short-term clinical outcomes included a 9.2% decrease in LDL levels (P=.038). All participants reported an increase in well-being and confidence in their ability to lead more active lives. We identified the following 6 major attitudinal themes from our qualitative analysis of the interview notes: (1) barriers to tracker purchase included cost, perceived value, and choice confusion; (2) attitudes towards the trackers shifted for many, from half of the participants expressing excitement and hope and half expressing hesitation or trepidation, to all participants feeling positive towards their tracker at the time of the interviews; (3) trackers served as educational tools for baseline activity levels; (4) trackers provided concrete feedback on physical activity, which motivated behavior change; (5) tracker use reinforced wellness group activities and goals; and (6) although commitment to tracker use did not waver, external circumstances influenced some participants' ongoing use. Our findings suggest that adding trackers to wellness groups comprising primarily older adults with chronic medical conditions can support education and behavior change to be more physically active. The trackers increased participant self-efficacy by providing a tangible, visible reminder of a commitment to increasing activity and immediate feedback on step count and progress towards a daily step goal. While acceptance was high and attitudes ultimately positive, training and support are needed and short-term drop-off in participant use is to be expected. Future research will further consider the potential of trackers in older adults with chronic medical conditions who are unlikely to purchase them, and studies will use larger samples, continue over a longer period of time, and evaluate outcomes independent of a wellness group. ©Lisa Gualtieri, Sandra Rosenbluth, Jeffrey Phillips. Originally published in JMIR Research Protocols (http://www.researchprotocols.org), 30.11.2016.

  16. Tracking-Learning-Detection.

    PubMed

    Kalal, Zdenek; Mikolajczyk, Krystian; Matas, Jiri

    2012-07-01

    This paper investigates long-term tracking of unknown objects in a video stream. The object is defined by its location and extent in a single frame. In every frame that follows, the task is to determine the object's location and extent or indicate that the object is not present. We propose a novel tracking framework (TLD) that explicitly decomposes the long-term tracking task into tracking, learning, and detection. The tracker follows the object from frame to frame. The detector localizes all appearances that have been observed so far and corrects the tracker if necessary. The learning estimates the detector's errors and updates it to avoid these errors in the future. We study how to identify the detector's errors and learn from them. We develop a novel learning method (P-N learning) which estimates the errors by a pair of "experts": (1) P-expert estimates missed detections, and (2) N-expert estimates false alarms. The learning process is modeled as a discrete dynamical system and the conditions under which the learning guarantees improvement are found. We describe our real-time implementation of the TLD framework and the P-N learning. We carry out an extensive quantitative evaluation which shows a significant improvement over state-of-the-art approaches.

  17. First Results of an “Artificial Retina” Processor Prototype

    DOE PAGES

    Cenci, Riccardo; Bedeschi, Franco; Marino, Pietro; ...

    2016-11-15

    We report on the performance of a specialized processor capable of reconstructing charged particle tracks in a realistic LHC silicon tracker detector, at the same speed of the readout and with sub-microsecond latency. The processor is based on an innovative pattern-recognition algorithm, called “artificial retina algorithm”, inspired from the vision system of mammals. A prototype of the processor has been designed, simulated, and implemented on Tel62 boards equipped with high-bandwidth Altera Stratix III FPGA devices. Also, the prototype is the first step towards a real-time track reconstruction device aimed at processing complex events of high-luminosity LHC experiments at 40 MHzmore » crossing rate.« less

  18. A UNIX SVR4-OS 9 distributed data acquisition for high energy physics

    NASA Astrophysics Data System (ADS)

    Drouhin, F.; Schwaller, B.; Fontaine, J. C.; Charles, F.; Pallares, A.; Huss, D.

    1998-08-01

    The distributed data acquisition (DAQ) system developed by the GRPHE (Groupe de Recherche en Physique des Hautes Energies) group is a combination of hardware and software dedicated to high energy physics. The system described here is used in the beam tests of the CMS tracker. The central processor of the system is a RISC CPU hosted in a VME card, running a POSIX compliant UNIX system. Specialized real-time OS9 VME cards perform the instrumentation control. The main data flow goes over a deterministic high speed network. The UNIX system manages a list of OS9 front-end systems with a synchronisation protocol running over a TCP/IP layer.

  19. First Results of an “Artificial Retina” Processor Prototype

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cenci, Riccardo; Bedeschi, Franco; Marino, Pietro

    We report on the performance of a specialized processor capable of reconstructing charged particle tracks in a realistic LHC silicon tracker detector, at the same speed of the readout and with sub-microsecond latency. The processor is based on an innovative pattern-recognition algorithm, called “artificial retina algorithm”, inspired from the vision system of mammals. A prototype of the processor has been designed, simulated, and implemented on Tel62 boards equipped with high-bandwidth Altera Stratix III FPGA devices. Also, the prototype is the first step towards a real-time track reconstruction device aimed at processing complex events of high-luminosity LHC experiments at 40 MHzmore » crossing rate.« less

  20. P-REx: The Piston Reconstruction Experiment for infrared interferometry

    NASA Astrophysics Data System (ADS)

    Widmann, Felix; Pott, Jörg-Uwe; Velasco, Sergio

    2018-03-01

    For sensitive infrared interferometry, it is crucial to control the differential piston evolution between the used telescopes. This is classically done by the use of a fringe tracker. In this work, we develop a new method to reconstruct the temporal piston variation from the atmosphere, by using real-time data from adaptive optics (AO) wavefront sensing: the Piston Reconstruction Experiment (P-REx). In order to understand the principle performance of the system in a realistic multilayer atmosphere, it is first extensively tested in simulations. The gained insights are then used to apply P-REx to real data, in order to demonstrate the benefit of using P-REx as an auxiliary system in a real interferometer. All tests show positive results, which encourages further research and eventually a real implementation. Especially, the tests on on-sky data showed that the atmosphere is, under decent observing conditions, sufficiently well structured and stable, in order to apply P-REx. It was possible to conveniently reconstruct the piston evolution in two-thirds of the data sets from good observing conditions (r0 ˜ 30 cm). The main conclusion is that applying the piston reconstruction in a real system would reduce the piston variation from around 10 μm down to 1-2 μm over time-scales of up to two seconds. This suggests an application for mid-infrared interferometry, for example for MATISSE at the very large telescope interferometer or the large binocular telescope interferometer. P-REx therefore provides the possibility to improve interferometric measurements without the need for more complex AO systems than already in regular use at 8-m-class telescopes.

  1. Improvement of Hungarian Joint Terminal Attack Program

    DTIC Science & Technology

    2013-06-13

    LST Laser Spot Tracker NVG Night Vision Goggle ROMAD Radio Operator Maintainer and Driver ROVER Remotely Operated Video Enhanced Receiver TACP...visual target designation. The other component consists of a laser spot tracker (LST), which identifies targets by tracking laser energy reflecting...capability for every type of night time missions, laser spot tracker for laser spot search missions, remotely operated video enhanced receiver

  2. Grumman S2F-1 Tracker at NACA Lewis

    NASA Image and Video Library

    1956-08-21

    The NACA’s Lewis Flight Propulsion Laboratory acquired the Grumman S2F-1 Tracker from the Navy in 1955 to study icing instrumentation. Lewis’s icing research program was winding down at the time. The use of jet engines was increasing thus reducing the threat of ice accumulation. Nonetheless Lewis continued research on the instrumentation used to detect icing conditions. The S2F-1 Tracker was a carrier-based submarine hunter for the Navy. Grumman developed the Tracker as a successor to its Korean War-era Guardian patrol aircraft. Prototypes first flew in late 1952 and battle-ready versions entered Naval service in early 1954. The Navy utilized the Trackers to protect fleets from attack.

  3. Development of a Robust star identification technique for use in attitude determination of the ACE spacecraft

    NASA Technical Reports Server (NTRS)

    Woodard, Mark; Rohrbaugh, Dave

    1995-01-01

    The Advanced Composition Explorer (ACE) spacecraft is designed to fly in a spin-stabilized attitude. The spacecraft will carry two attitude sensors - a digital fine Sun sensor and a charge coupled device (CCD) star tracker - to allow ground-based determination of the spacecraft attitude and spin rate. Part of the processing that must be performed on the CCD star tracker data is the star identification. Star data received from the spacecraft must be matched with star information in the SKYMAP catalog to determine exactly which stars the sensor is tracking. This information, along with the Sun vector measured by the Sun sensor, is used to determine the spacecraft attitude. Several existing star identification (star ID) systems were examined to determine whether they could be modified for use on the ACE mission. Star ID systems which exist for three-axis stabilized spacecraft tend to be complex in nature and many require fairly good knowledge of the spacecraft attitude, making their use for ACE excessive. Star ID systems used for spinners carrying traditional slit star sensors would have to be modified to model the CCD star tracker. The ACE star ID algorithm must also be robust, in that it will be able to correctly identify stars even though the attitude is not known to a high degree of accuracy, and must be very efficient to allow real-time star identification. The paper presents the star ID algorithm that was developed for ACE. Results from prototype testing are also presented to demonstrate the efficiency, accuracy, and robustness of the algorithm.

  4. Towards Reconfigurable, Separable and Hard Real-Time Hybrid Simulation and Test Systems

    NASA Astrophysics Data System (ADS)

    Quartier, F.; Delatte, B.; Joubert, M.

    2009-05-01

    Formation flight needs several new technologies, new disciplines, new approaches and above all, more concurrent engineering by more players. One of the problems to be addressed are more complex simulation and test systems that are easy to re-configure to include parts of the target hardware and that can provide sufficient power to handle simulation cores that are requiring one to two orders of magnitude more processing power than the current technology provides. Critical technologies that are already addressed by CNES and Spacebel are study model reuse and simulator reconfigurability (Basiles), model portability (SMP2) and the federation of several simulators using HLA. Two more critical issues are addressed in ongoing R&D work by CNES and Spacebel and are covered by this paper and concern the time engineering and management. The first issue concerns separability (characterisation, identification and handling of separable subsystems) and the consequences on practical systems. Experiments on the Pleiades operational simulator have shown that adding precise simulation of instruments such as Doris and the Star Tracker can be added without significantly impacting overall performance. Improved time analysis leads to better system understanding and testability. The second issue concerns architectures for distributed hybrid simulators systems that provide hard real-time capabilities and can react with a relative time precision and jitter that is in the 10 to 50 µsecond range using mainstream PC's and mainstream Operating Systems. This opens a way to make smaller economic hardware test systems that can be reconfigured to make large hardware test systems without restarting development. Although such systems were considered next to impossible till now, distributed hard real-time systems are getting in reach when modern but mainstream electronics are used and when processor cores can be isolated and reserved for real-time cores. This requires a complete rethinking of the overall system, but needs very little overall changes. Automated identification of potential parallel simulation capability might become possible in a not so distant future.

  5. A bill to authorize the Secretary of Commerce to convey real property, including improvements, of the National Oceanic and Atmospheric Administration in Ketchikan, Alaska, and for other purposes.

    THOMAS, 112th Congress

    Sen. Begich, Mark [D-AK

    2011-06-30

    Senate - 11/14/2012 Placed on Senate Legislative Calendar under General Orders. Calendar No. 547. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  6. Testing FlowTracker2 Performance and Wading Rod Flow Disturbance in Laboratory Tow Tanks

    NASA Astrophysics Data System (ADS)

    Fan, X.; Wagenaar, D.

    2016-12-01

    The FlowTracker2 was released in February 2016 by SonTek (Xylem) to be a more feature-rich and technologically advanced replacement to the Original FlowTracker ADV. These instruments are Acoustic Doppler Velocimeters (ADVs) used for taking high-precision wading discharge and velocity measurements. The accuracy of the FlowTracker2 probe was tested in tow tanks at three different facilities: the USGS Hydrologic Instrumentation Facility (HIF), the Swiss Federal Institute for Metrology (METAS), and at the SonTek Research and Development facility. Multiple mounting configurations were examined, including mounting the ADV probe directly to the tow carts, and incorporating the two most-used wading rods for the FlowTracker (round and hex). Tow speeds ranged from 5cm/s to 1.5m/s, and different tow tank seeding schemes and wait times were examined. In addition, the performance of the FlowTracker2 probe in low Signal-to-Noise Ratio (SNR) environments was compared to the Original FlowTracker ADV. Results confirmed that the FlowTracker2 probe itself performed well within the 1%+0.25cm/s accuracy specification advertised. Tows using the wading rods created a reduced measured velocity by 1.3% of the expected velocity due to flow disturbance, a result similar to the Original FlowTracker ADV despite the change in the FlowTracker2 probe design. Finally, due to improvements in its electronics, the FlowTracker2's performance in low SNR tests exceeded that of the Original FlowTracker ADV, showing less standard error in these conditions compared to its predecessor.

  7. Star Identification Without Attitude Knowledge: Testing with X-Ray Timing Experiment Data

    NASA Technical Reports Server (NTRS)

    Ketchum, Eleanor

    1997-01-01

    As the budget for the scientific exploration of space shrinks, the need for more autonomous spacecraft increases. For a spacecraft with a star tracker, the ability to determinate attitude from a lost in space state autonomously requires the capability to identify the stars in the field of view of the tracker. Although there have been efforts to produce autonomous star trackers which perform this function internally, many programs cannot afford these sensors. The author previously presented a method for identifying stars without a priori attitude knowledge specifically targeted for onboard computers as it minimizes the necessary computer storage. The method has previously been tested with simulated data. This paper provides results of star identification without a priori attitude knowledge using flight data from two 8 by 8 degree charge coupled device star trackers onboard the X-Ray Timing Experiment.

  8. Visual Navigation - SARE Mission

    NASA Technical Reports Server (NTRS)

    Alonso, Roberto; Kuba, Jose; Caruso, Daniel

    2007-01-01

    The SARE Earth Observing and Technological Mission is part of the Argentinean Space Agency (CONAE - Comision Nacional de Actividades Espaciales) Small and Technological Payloads Program. The Argentinean National Space Program requires from the SARE program mission to test in a real environment of several units, assemblies and components to reduce the risk of using these equipments in more expensive Space Missions. The objective is to make use those components with an acceptable maturity in design or development, but without any heritage at space. From the application point of view, this mission offers new products in the Earth Observation data market which are listed in the present paper. One of the technological payload on board of the SARE satellite is the sensor Ground Tracker. It computes the satellite attitude and orbit in real time (goal) and/or by ground processing. For the first operating mode a dedicated computer and mass memory are necessary to be part of the mentioned sensor. For the second operational mode the hardware and software are much simpler.

  9. Real-time particle tracking for studying intracellular trafficking of pharmaceutical nanocarriers.

    PubMed

    Huang, Feiran; Watson, Erin; Dempsey, Christopher; Suh, Junghae

    2013-01-01

    Real-time particle tracking is a technique that combines fluorescence microscopy with object tracking and computing and can be used to extract quantitative transport parameters for small particles inside cells. Since the success of a nanocarrier can often be determined by how effectively it delivers cargo to the target organelle, understanding the complex intracellular transport of pharmaceutical nanocarriers is critical. Real-time particle tracking provides insight into the dynamics of the intracellular behavior of nanoparticles, which may lead to significant improvements in the design and development of novel delivery systems. Unfortunately, this technique is not often fully understood, limiting its implementation by researchers in the field of nanomedicine. In this chapter, one of the most complicated aspects of particle tracking, the mean square displacement (MSD) calculation, is explained in a simple manner designed for the novice particle tracker. Pseudo code for performing the MSD calculation in MATLAB is also provided. This chapter contains clear and comprehensive instructions for a series of basic procedures in the technique of particle tracking. Instructions for performing confocal microscopy of nanoparticle samples are provided, and two methods of determining particle trajectories that do not require commercial particle-tracking software are provided. Trajectory analysis and determination of the tracking resolution are also explained. By providing comprehensive instructions needed to perform particle-tracking experiments, this chapter will enable researchers to gain new insight into the intracellular dynamics of nanocarriers, potentially leading to the development of more effective and intelligent therapeutic delivery vectors.

  10. A Methodology to Analyze Photovoltaic Tracker Uptime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muller, Matthew T; Ruth, Dan

    A metric is developed to analyze the daily performance of single-axis photovoltaic (PV) trackers. The metric relies on comparing correlations between the daily time series of the PV power output and an array of simulated plane-of-array irradiances for the given day. Mathematical thresholds and a logic sequence are presented, so the daily tracking metric can be applied in an automated fashion on large-scale PV systems. The results of applying the metric are visually examined against the time series of the power output data for a large number of days and for various systems. The visual inspection results suggest that overall,more » the algorithm is accurate in identifying stuck or functioning trackers on clear-sky days. Visual inspection also shows that there are days that are not classified by the metric where the power output data may be sufficient to identify a stuck tracker. Based on the daily tracking metric, uptime results are calculated for 83 different inverters at 34 PV sites. The mean tracker uptime is calculated at 99% based on 2 different calculation methods. The daily tracking metric clearly has limitations, but as there is no existing metrics in the literature, it provides a valuable tool for flagging stuck trackers.« less

  11. Radiation hardness and timing studies of a monolithic TowerJazz pixel design for the new ATLAS Inner Tracker

    NASA Astrophysics Data System (ADS)

    Riegel, C.; Backhaus, M.; Van Hoorne, J. W.; Kugathasan, T.; Musa, L.; Pernegger, H.; Riedler, P.; Schaefer, D.; Snoeys, W.; Wagner, W.

    2017-01-01

    A part of the upcoming HL-LHC upgrade of the ATLAS Detector is the construction of a new Inner Tracker. This upgrade opens new possibilities, but also presents challenges in terms of occupancy and radiation tolerance. For the pixel detector inside the inner tracker, hybrid modules containing passive silicon sensors and connected readout chips are presently used, but require expensive assembly techniques like fine-pitch bump bonding. Silicon devices fabricated in standard commercial CMOS technologies, which include part or all of the readout chain, are also investigated offering a reduced cost as they are cheaper per unit area than traditional silicon detectors. If they contain the full readout chain, as for a fully monolithic approach, there is no need for the expensive flip-chip assembly, resulting in a further cost reduction and material savings. In the outer pixel layers of the ATLAS Inner Tracker, the pixel sensors must withstand non-ionising energy losses of up to 1015 n/cm2 and offer a timing resolution of 25 ns or less. This paper presents test results obtained on a monolithic test chip, the TowerJazz 180nm Investigator, towards these specifications. The presented program of radiation hardness and timing studies has been launched to investigate this technology's potential for the new ATLAS Inner Tracker.

  12. Promoting physical activity using a wearable activity tracker in college students: A cluster randomized controlled trial.

    PubMed

    Kim, Youngdeok; Lumpkin, Angela; Lochbaum, Marc; Stegemeier, Steven; Kitten, Karla

    2018-08-01

    This study examined the effects of utilizing a wearable activity tracker in a credit-based physical activity instructional program (PAIP) for promoting physical activity (PA) in college students. Fourteen PAIP courses in a large public university were randomly assigned into intervention (k = 7; n = 101) and control (k = 7; n = 86) groups. All courses focused on a core curriculum that covers basic exercise and behavioral science contents through lectures and activity sessions. A Misfit Flash activity tracker was provided to students in the intervention group. Objective PA assessments occurred at baseline, mid-, and end-of-semester during a 15-week academic semester. The control group showed a significant reduction in moderate- and vigorous-intensity PA (MVPA) minutes from baseline to the end-of-semester (P <.05), whereas the intervention group showed no changes in MVPA minutes over time. However, the intervention group also showed increased sedentary time and decreased time spent in light-intensity PA during the intervention period. Taken together, the present study found null effects of utilizing the wearable activity tracker in promoting PA in college students suggesting that intervention of primary using the wearable activity tracker as a behavior change strategy may not be effective to increase in PA in this setting.

  13. Track classification within wireless sensor network

    NASA Astrophysics Data System (ADS)

    Doumerc, Robin; Pannetier, Benjamin; Moras, Julien; Dezert, Jean; Canevet, Loic

    2017-05-01

    In this paper, we present our study on track classification by taking into account environmental information and target estimated states. The tracker uses several motion model adapted to different target dynamics (pedestrian, ground vehicle and SUAV, i.e. small unmanned aerial vehicle) and works in centralized architecture. The main idea is to explore both: classification given by heterogeneous sensors and classification obtained with our fusion module. The fusion module, presented in his paper, provides a class on each track according to track location, velocity and associated uncertainty. To model the likelihood on each class, a fuzzy approach is used considering constraints on target capability to move in the environment. Then the evidential reasoning approach based on Dempster-Shafer Theory (DST) is used to perform a time integration of this classifier output. The fusion rules are tested and compared on real data obtained with our wireless sensor network.In order to handle realistic ground target tracking scenarios, we use an autonomous smart computer deposited in the surveillance area. After the calibration step of the heterogeneous sensor network, our system is able to handle real data from a wireless ground sensor network. The performance of this system is evaluated in a real exercise for intelligence operation ("hunter hunt" scenario).

  14. Cross modality registration of video and magnetic tracker data for 3D appearance and structure modeling

    NASA Astrophysics Data System (ADS)

    Sargent, Dusty; Chen, Chao-I.; Wang, Yuan-Fang

    2010-02-01

    The paper reports a fully-automated, cross-modality sensor data registration scheme between video and magnetic tracker data. This registration scheme is intended for use in computerized imaging systems to model the appearance, structure, and dimension of human anatomy in three dimensions (3D) from endoscopic videos, particularly colonoscopic videos, for cancer research and clinical practices. The proposed cross-modality calibration procedure operates this way: Before a colonoscopic procedure, the surgeon inserts a magnetic tracker into the working channel of the endoscope or otherwise fixes the tracker's position on the scope. The surgeon then maneuvers the scope-tracker assembly to view a checkerboard calibration pattern from a few different viewpoints for a few seconds. The calibration procedure is then completed, and the relative pose (translation and rotation) between the reference frames of the magnetic tracker and the scope is determined. During the colonoscopic procedure, the readings from the magnetic tracker are used to automatically deduce the pose (both position and orientation) of the scope's reference frame over time, without complicated image analysis. Knowing the scope movement over time then allows us to infer the 3D appearance and structure of the organs and tissues in the scene. While there are other well-established mechanisms for inferring the movement of the camera (scope) from images, they are often sensitive to mistakes in image analysis, error accumulation, and structure deformation. The proposed method using a magnetic tracker to establish the camera motion parameters thus provides a robust and efficient alternative for 3D model construction. Furthermore, the calibration procedure does not require special training nor use expensive calibration equipment (except for a camera calibration pattern-a checkerboard pattern-that can be printed on any laser or inkjet printer).

  15. Which cue to ‘want’? Opioid stimulation of central amygdala makes goal-trackers show stronger goal-tracking, just as sign-trackers show stronger sign-tracking

    PubMed Central

    DiFeliceantonio, Alexandra G.; Berridge, Kent C.

    2012-01-01

    Pavlovian cues that have been paired with reward can gain incentive salience. Drug addicts find drug cues motivationally attractive and binge eaters are attracted by food cues. But the level of incentive salience elicited by a cue re-encounter still varies across time and brain states. In an animal model, cues become attractive and ‘wanted’ in an ‘autoshaping’ paradigm, where different targets of incentive salience emerge for different individuals. Some individuals (sign-trackers) find a predictive discrete cue attractive while others find a reward contiguous and goal cue more attractive (location where reward arrives: goal-trackers). Here we assessed whether central amygdala mu opioid receptor stimulation enhances the phasic incentive salience of the goal-cue for goal-trackers during moments of predictive cue presence (expressed in both approach and consummatory behaviors to goal cue), just as it enhances the attractiveness of the predictive cue target for sign-trackers. Using detailed video analysis we measured the approaches, nibbles, sniffs, and bites directed at their preferred target for both sign-trackers and goal-trackers. We report that DAMGO microinjections in central amygdala made goal-trackers, like sign-trackers, show phasic increases in appetitive nibbles and sniffs directed at the goal-cue expressed selectively whenever the predictive cue was present. This indicates enhancement of incentive salience attributed by both goal trackers and sign-trackers, but attributed in different directions: each to their own target cue. For both phenotypes, amygdala opioid stimulation makes the individual’s prepotent cue into a stronger motivational magnet at phasic moments triggered by a CS that predicts the reward UCS. PMID:22391118

  16. Recognizing that the cause of liberty demands that government should be made accountable again to the consent of the governed, and calling for the real decentralization of power through the restoration of American federalism.

    THOMAS, 111th Congress

    Rep. Bishop, Rob [R-UT-1

    2010-07-30

    House - 09/20/2010 Referred to the Subcommittee on the Constitution, Civil Rights, and Civil Liberties. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  17. Using Eye Trackers for Usability Evaluation of Health Information Technology: A Systematic Literature Review

    PubMed Central

    Yang, Yushi

    2015-01-01

    Background Eye-tracking technology has been used to measure human cognitive processes and has the potential to improve the usability of health information technology (HIT). However, it is still unclear how the eye-tracking method can be integrated with other traditional usability methodologies to achieve its full potential. Objective The objective of this study was to report on HIT evaluation studies that have used eye-tracker technology, and to envision the potential use of eye-tracking technology in future research. Methods We used four reference databases to initially identify 5248 related papers, which resulted in only 9 articles that met our inclusion criteria. Results Eye-tracking technology was useful in finding usability problems in many ways, but is still in its infancy for HIT usability evaluation. Limited types of HITs have been evaluated by eye trackers, and there has been a lack of evaluation research in natural settings. Conclusions More research should be done in natural settings to discover the real contextual-based usability problems of clinical and mobile HITs using eye-tracking technology with more standardized methodologies and guidance. PMID:27026079

  18. A Unix SVR-4-OS9 distributed data acquisition for high energy physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drouhin, F.; Schwaller, B.; Fontaine, J.C.

    1998-08-01

    The distributed data acquisition (DAQ) system developed by the GRPHE (Groupe de Recherche en Physique des Hautes Energies) group is a combination of hardware and software dedicated to high energy physics. The system described here is used in the beam tests of the CMs tracker. The central processor of the system is a RISC CPU hosted in a VME card, running a POSIX compliant UNIX system. Specialized real-time OS9 VME cards perform the instrumentation control. The main data flow goes over a deterministic high speed network. The Unix system manages a list of OS9 front-end systems with a synchronization protocolmore » running over a TCP/IP layer.« less

  19. Advantages and Limitations of Wearable Activity Trackers: Considerations for Patients and Clinicians.

    PubMed

    Walker, Rachel K; Hickey, Amanda M; Freedson, Patty S

    2016-12-01

    Exercise, light physical activity, and decreased sedentary time all have been associated with health benefits following cancer diagnoses. Commercially available wearable activity trackers may help patients monitor and self-manage their behaviors to achieve these benefits. This article highlights some advantages and limitations clinicians should be aware of when discussing the use of activity trackers with cancer survivors. Limited research has assessed the accuracy of commercially available activity trackers compared to research-grade devices. Because most devices use confidential, proprietary algorithms to convert accelerometry data to meaningful output like total steps, assessing whether these algorithms account for differences in gait abnormalities, functional limitations, and different body morphologies can be difficult. Quantification of sedentary behaviors and light physical activities present additional challenges. The global market for activity trackers is growing, which presents clinicians with a tremendous opportunity to incorporate these devices into clinical practice as tools to promote activity. This article highlights important considerations about tracker accuracy and usage by cancer survivors.

  20. Imaging of Nuclear Weapon Trainers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwellenbach, David

    2017-12-06

    The Configurable Muon Tracker (CMT) is an adaptation of the existing drift tube detector commercially available from Decision Sciences International Corporation (DSIC). NSTec engineered the CMT around commercially available drift tube assemblies to make a detector that is more versatile than previous drift tube assemblies. The CMT became operational in February 2013. Traditionally, cosmic-ray muon trackers rely on near-vertical trajectory muons for imaging. Since there are scenarios where imaging using vertical trajectory muons is not practical, NSTec designed the CMT specifically for quick configurability to track muons from any trajectory. The CMT was originally designed to be changed from verticalmore » imaging mode to horizontal imaging mode in a few hours with access to a crane or other lifting equipment. In FY14, locations for imaging weapon trainers and SNM were identified and it was determined that lifting equipment would not typically be available in experimental areas. The CMT was further modified and a portable lifting system was developed to allow reconfiguration of the CMT without access to lifting equipment at the facility. This system was first deployed at Los Alamos National Laboratory’s W-division, where several trainers were imaged in both horizontal and vertical modes. Real-time images have been compared in both modes showing that imaging can be done in both modes with the expected longer integration time for horizontal mode. Further imaging and post processing of the data is expected to continue into early FY15.« less

  1. Utility of the T2 Mood Tracker mobile application among army warrior transition unit service members.

    PubMed

    Bush, Nigel E; Ouellette, Gary; Kinn, Julie

    2014-12-01

    Many military personnel returning from deployment experience increases in psychological symptoms, including post-traumatic stress disorder (PTSD), depression, and mood changes. Patient health diaries are commonly used for self-reporting over time away from the clinic. "T2 Mood Tracker" is an application ("app") for smartphones and other mobile devices that enables users to rate their moods, to self-monitor across time, and to report their emotional experiences to health providers. We designed T2 Mood Tracker to track symptoms associated with deployment-related behavioral health issues, including PTSD, Head Injury, Stress, Depression, Anxiety, and General Well-Being. We field-tested T2 Mood Tracker with a small sample of redeployed soldiers under treatment for behavioral health issues at a Warrior Transition Unit. Participants used the app an average of 10 different days over the 2- to 3-week test period. Consensus was that T2 Mood Tracker was easy to use, useful and beneficial. The majority said they would use the app in the future, would recommend it to other service members, and would use the app to share their mood information with a provider. Warrior Transition Unit providers were enthusiastic about the potential of T2 Mood Tracker as a tool for use with their patients. Reprint & Copyright © 2014 Association of Military Surgeons of the U.S.

  2. A binary link tracker for the BaBar level 1 trigger system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berenyi, A.; Chen, H.K.; Dao, K.

    1999-08-01

    The BaBar detector at PEP-II will operate in a high-luminosity e{sup +}e{sup {minus}} collider environment near the {Upsilon}(4S) resonance with the primary goal of studying CP violation in the B meson system. In this environment, typical physics events of interest involve multiple charged particles. These events are identified by counting these tracks in a fast first level (Level 1) trigger system, by reconstructing the tracks in real time. For this purpose, a Binary Link Tracker Module (BLTM) was designed and fabricated for the BaBar Level 1 Drift Chamber trigger system. The BLTM is responsible for linking track segments, constructed bymore » the Track Segment Finder Modules (TSFM), into complete tracks. A single BLTM module processes a 360 MBytes/s stream of segment hit data, corresponding to information from the entire Drift Chamber, and implements a fast and robust algorithm that tolerates high hit occupancies as well as local inefficiencies of the Drift Chamber. The algorithms and the necessary control logic of the BLTM were implemented in Field Programmable Gate Arrays (FPGAs), using the VHDL hardware description language. The finished 9U x 400 mm Euro-format board contains roughly 75,000 gates of programmable logic or about 10,000 lines of VHDL code synthesized into five FPGAs.« less

  3. Nulling at the Keck Interferometer

    NASA Technical Reports Server (NTRS)

    Colavita, M. Mark; Serabyn, Gene; Wizinowich, Peter L.; Akeson, Rachel L.

    2006-01-01

    The nulling mode of the Keck Interferometer is being commissioned at the Mauna Kea summit. The nuller combines the two Keck telescope apertures in a split-pupil mode to both cancel the on-axis starlight and to coherently detect the residual signal. The nuller, working at 10 um, is tightly integrated with the other interferometer subsystems including the fringe and angle trackers, the delay lines and laser metrology, and the real-time control system. Since first 10 um light in August 2004, the system integration is proceeding with increasing functionality and performance, leading to demonstration of a 100:1 on-sky null in 2005. That level of performance has now been extended to observations with longer coherent integration times. An overview of the overall system is presented, with emphasis on the observing sequence, phasing system, and differences with respect to the V2 system, along with a presentation of some recent engineering data.

  4. Model-Based Reinforcement of Kinect Depth Data for Human Motion Capture Applications

    PubMed Central

    Calderita, Luis Vicente; Bandera, Juan Pedro; Bustos, Pablo; Skiadopoulos, Andreas

    2013-01-01

    Motion capture systems have recently experienced a strong evolution. New cheap depth sensors and open source frameworks, such as OpenNI, allow for perceiving human motion on-line without using invasive systems. However, these proposals do not evaluate the validity of the obtained poses. This paper addresses this issue using a model-based pose generator to complement the OpenNI human tracker. The proposed system enforces kinematics constraints, eliminates odd poses and filters sensor noise, while learning the real dimensions of the performer's body. The system is composed by a PrimeSense sensor, an OpenNI tracker and a kinematics-based filter and has been extensively tested. Experiments show that the proposed system improves pure OpenNI results at a very low computational cost. PMID:23845933

  5. Using the GOCE star trackers for validating the calibration of its accelerometers

    NASA Astrophysics Data System (ADS)

    Visser, P. N. A. M.

    2017-12-01

    A method for validating the calibration parameters of the six accelerometers on board the Gravity field and steady-state Ocean Circulation Explorer (GOCE) from star tracker observations that was originally tested by an end-to-end simulation, has been updated and applied to real data from GOCE. It is shown that the method provides estimates of scale factors for all three axes of the six GOCE accelerometers that are consistent at a level significantly better than 0.01 compared to the a priori calibrated value of 1. In addition, relative accelerometer biases and drift terms were estimated consistent with values obtained by precise orbit determination, where the first GOCE accelerometer served as reference. The calibration results clearly reveal the different behavior of the sensitive and less-sensitive accelerometer axes.

  6. CMS tracker towards the HL-LHC

    NASA Astrophysics Data System (ADS)

    Alunni Solestizi, L.

    2015-01-01

    In sight of the incoming new LHC era (High Luminosity - LHC), characterized by a jump forward in the precision boundary and in the event rate, all the CMS sub-detector are developing and studying innovative strategies of trigger, pattern recognition, event timing and so on. A crucial aspect will be the online event selection: a totally new paradigm is needed, given the huge amount of events. In this picture the most granular and innermost sub-detector, the tracker, will play a decisive role. The phase-2 tracker will be involved in the L1 Trigger and, taking advantage of both the Associative Memories and the FPGA, it can ensure a trigger decision in proper time and with satisfactory performances.

  7. Radiation-Hard Breadboard Star Tracker. Attachment 1.

    DTIC Science & Technology

    1985-09-01

    fdL RETURN DONE !! * . *• , . -+., -• -: . . E+ . . .. j , ’ - - V.r.*r - , It - ’Cjf0 Q -****r.. ... " * *. " . -. tu ’ * Checkadapt 3- 2"Jj...TRACK POSITION, it will use the 3 70! CURRENT STAR #, X POSITION, Y POSITION for 5180 ! information sent to the tracker interface. 7_390 5t0 0 Track _it...CRITERIA which is currently defines as the number of times 57 20 ! the tracker will try and track the star before it is dropped, 5730 it will also

  8. Collaborative real-time motion video analysis by human observer and image exploitation algorithms

    NASA Astrophysics Data System (ADS)

    Hild, Jutta; Krüger, Wolfgang; Brüstle, Stefan; Trantelle, Patrick; Unmüßig, Gabriel; Heinze, Norbert; Peinsipp-Byma, Elisabeth; Beyerer, Jürgen

    2015-05-01

    Motion video analysis is a challenging task, especially in real-time applications. In most safety and security critical applications, a human observer is an obligatory part of the overall analysis system. Over the last years, substantial progress has been made in the development of automated image exploitation algorithms. Hence, we investigate how the benefits of automated video analysis can be integrated suitably into the current video exploitation systems. In this paper, a system design is introduced which strives to combine both the qualities of the human observer's perception and the automated algorithms, thus aiming to improve the overall performance of a real-time video analysis system. The system design builds on prior work where we showed the benefits for the human observer by means of a user interface which utilizes the human visual focus of attention revealed by the eye gaze direction for interaction with the image exploitation system; eye tracker-based interaction allows much faster, more convenient, and equally precise moving target acquisition in video images than traditional computer mouse selection. The system design also builds on prior work we did on automated target detection, segmentation, and tracking algorithms. Beside the system design, a first pilot study is presented, where we investigated how the participants (all non-experts in video analysis) performed in initializing an object tracking subsystem by selecting a target for tracking. Preliminary results show that the gaze + key press technique is an effective, efficient, and easy to use interaction technique when performing selection operations on moving targets in videos in order to initialize an object tracking function.

  9. Using analog instruments in Tracker video-based experiments to understand the phenomena of electricity and magnetism in physics education

    NASA Astrophysics Data System (ADS)

    Aguilar-Marín, Pablo; Chavez-Bacilio, Mario; Jáuregui-Rosas, Segundo

    2018-05-01

    Tracker is a piece of freeware software, designed to use video recorded images of the motion of objects as input data, and has been mostly applied in physics education to analyse and simulate physical phenomena in mechanics. In this work we report the application of Tracker to the study of experiments in electricity and magnetism using analog instruments for electrical signal measurements. As we are unable to directly video-track the motion of electrons in electric circuits, the angular deflections of the instruments’ pointers were video captured instead. The kinematic variables (angular position as a function of time) had to be related to the electrical ones (voltages and currents as a function of time). Two well-known experiments in physics teaching, the RC circuit for charging and discharging a capacitor and Faraday electromagnetic induction, were chosen to illustrate the procedures. The third experiment analysed and modeled with Tracker was the rather well-known electromagnetic retardation of disk- or cylinder-shaped magnets falling inside non-magnetic metallic pipes. Instead of metallic pipes we used an aluminum plate with an arrangement of a couple of parallelepiped-shaped magnets falling parallel to the plate. In the three cases studied, the experimental and the Tracker simulation results were in very good agreement. These outcomes show that it is possible to exploit the potential of Tracker software in areas other than mechanics, in areas where electrical signals are involved. The experiments are inexpensive and simple to perform, and are suitable for high school and introductory undergraduate courses in electricity, magnetism and electronics. We propose the use of Tracker combined with analog measuring devices to explore further its applications in electricity, magnetism, electronics and in other experimental sciences where electrical signals are involved.

  10. A Bit of Fit: Minimalist Intervention in Adolescents Based on a Physical Activity Tracker

    PubMed Central

    Gaudet, Jeffrey; Gallant, François

    2017-01-01

    Background Only 5% of Canadian youth meet the recommended 60 minutes of moderate to vigorous physical activity (MVPA) per day, with leisure time being increasingly allocated to technology usage. Direct-to-consumer mHealth devices that promote physical activity, such as wrist-worn physical activity trackers, have features with potential appeal to youth. Objective The primary purpose of this study was to determine whether a minimalist physical activity tracker-based intervention would lead to an increase in physical activity in young adolescents. A secondary aim of this study was to assess change in physical activity across a 7-week intervention, as measured by the tracker. Methods Using a quasi-experimental crossover design, two groups of 23 young adolescents (aged 13-14 years) were randomly assigned to immediate intervention or delayed intervention. The intervention consisted of wearing a Fitbit-Charge-HR physical activity tracker over a 7-week period. Actical accelerometers were used to measure participants’ levels of MVPA before and at the end of intervention periods for each group. Covariates such as age, sex, stage of change for physical activity behavior, and goal commitment were also measured. Results There was an increase in physical activity over the course of the study period, though it was not related to overall physical activity tracker use. An intervention response did, however, occur in a subset of participants. Specifically, exposure to the physical activity tracker was associated with an average daily increase in MVPA by more than 15 minutes (P=.01) among participants who reported being in the action and maintenance stages of behavior change in relation to participation in physical activity. Participants in the precontemplation, contemplation, and preparation stages of behavior change had no change in their level of MVPA (P=.81). Conclusions These results suggest that physical activity trackers may elicit improved physical activity related behavior in young adolescents demonstrating a readiness to be active. Future studies should seek to investigate if integrating physical activity trackers as part of more intensive interventions leads to greater increases in physical activity across different levels of stages of behavior change and if these changes can be sustained over longer periods of time. PMID:28684384

  11. A Brightness-Referenced Star Identification Algorithm for APS Star Trackers

    PubMed Central

    Zhang, Peng; Zhao, Qile; Liu, Jingnan; Liu, Ning

    2014-01-01

    Star trackers are currently the most accurate spacecraft attitude sensors. As a result, they are widely used in remote sensing satellites. Since traditional charge-coupled device (CCD)-based star trackers have a limited sensitivity range and dynamic range, the matching process for a star tracker is typically not very sensitive to star brightness. For active pixel sensor (APS) star trackers, the intensity of an imaged star is valuable information that can be used in star identification process. In this paper an improved brightness referenced star identification algorithm is presented. This algorithm utilizes the k-vector search theory and adds imaged stars' intensities to narrow the search scope and therefore increase the efficiency of the matching process. Based on different imaging conditions (slew, bright bodies, etc.) the developed matching algorithm operates in one of two identification modes: a three-star mode, and a four-star mode. If the reference bright stars (the stars brighter than three magnitude) show up, the algorithm runs the three-star mode and efficiency is further improved. The proposed method was compared with other two distinctive methods the pyramid and geometric voting methods. All three methods were tested with simulation data and actual in orbit data from the APS star tracker of ZY-3. Using a catalog composed of 1500 stars, the results show that without false stars the efficiency of this new method is 4∼5 times that of the pyramid method and 35∼37 times that of the geometric method. PMID:25299950

  12. A brightness-referenced star identification algorithm for APS star trackers.

    PubMed

    Zhang, Peng; Zhao, Qile; Liu, Jingnan; Liu, Ning

    2014-10-08

    Star trackers are currently the most accurate spacecraft attitude sensors. As a result, they are widely used in remote sensing satellites. Since traditional charge-coupled device (CCD)-based star trackers have a limited sensitivity range and dynamic range, the matching process for a star tracker is typically not very sensitive to star brightness. For active pixel sensor (APS) star trackers, the intensity of an imaged star is valuable information that can be used in star identification process. In this paper an improved brightness referenced star identification algorithm is presented. This algorithm utilizes the k-vector search theory and adds imaged stars' intensities to narrow the search scope and therefore increase the efficiency of the matching process. Based on different imaging conditions (slew, bright bodies, etc.) the developed matching algorithm operates in one of two identification modes: a three-star mode, and a four-star mode. If the reference bright stars (the stars brighter than three magnitude) show up, the algorithm runs the three-star mode and efficiency is further improved. The proposed method was compared with other two distinctive methods the pyramid and geometric voting methods. All three methods were tested with simulation data and actual in orbit data from the APS star tracker of ZY-3. Using a catalog composed of 1500 stars, the results show that without false stars the efficiency of this new method is 4~5 times that of the pyramid method and 35~37 times that of the geometric method.

  13. Digital Avionics

    NASA Technical Reports Server (NTRS)

    Koelbl, Terry G.; Ponchak, Denise; Lamarche, Teresa

    2002-01-01

    The field of digital avionics experienced another year of important advances in civil aviation, military systems, and space applications. As a result of the events of 9/11/2001, NASA has pursued activities to apply its aerospace technologies toward improved aviation security. Both NASA Glenn Research Center and Langley Research Center have performed flight research demonstrations using advanced datalink concepts to transmit live pictures from inside a jetliner, and to downlink the contents of the plane's 'black box' recorder in real time. The U.S. Navy and General Electric demonstrated survivable engine control (SEC) algorithms during engine ground tests at the Weapons Survivability Laboratory at China Lake. The scientists at Boeing Satellite Systems advanced the field of stellar inertial technology with the development of a new method for positioning optical star trackers on satellites.

  14. 8 years of CPV: ISFOC CPV plants, long-term performance analysis and results

    NASA Astrophysics Data System (ADS)

    Martínez, María; Sánchez, Daniel; Calvo-Parra, Gustavo; Gil, Eduardo; Hipólito, Ángel; de Gregorio, Fernando; de la Rubia, Oscar

    2017-09-01

    ISFOC is an R&D center focused on CPV in Puertollano (Spain). It was founded in 2006 and has 2.3MW of CPV plants in operation and connected to the grid since 2008. Therefore, for the time of the conference ISFOC has more than 8 years of real operation data. The performance analysis has been focused on ISFOC - La Nava CPV plant: 800kW of Concentrix (Soitec), SolFocus and Isofotón and one flat PV plant mounted on two-axis tracker. The main result obtained is that the rate of performance decrease obtained for a mature CPV technology and IEC 62108 certified is in the range of flat PV values, this means that the CPV technology does not present higher degradation rates than flat PV.

  15. OAO-3 end of mission power subsystem evaluation

    NASA Technical Reports Server (NTRS)

    Tasevoli, M.

    1982-01-01

    End of mission tests were performed on the OAO-3 power subsystem in three component areas: solar array, nickel-cadmium batteries and the On-Board Processor (OBP) power boost operation. Solar array evaluation consisted of analyzing array performance characteristics and comparing them to earlier flight data. Measured solar array degradation of 14.1 to 17.7% after 8 1/3 years is in good agreement with theortical radiation damage losses. Battery discharge characteristics were compared to results of laboratory life cycle tests performed on similar cells. Comparison of cell voltage profils reveals close correlation and confirms the validity of real time life cycle simulation. The successful operation of the system in the OBP/power boost regulation mode demonstrates the excellent life, reliability and greater system utilization of power subsystems using maximum power trackers.

  16. S-band range tracker and Surveillance Lab interface

    NASA Astrophysics Data System (ADS)

    Bush, B. D.

    1983-09-01

    This report documents the design, construction, test and laboratory integration of the range tracker and associated subsystems for the RADC/OC Surveillance Laboratory's S-Band tracking radar. This development was accomplished over the period from December 1981 to November 1983 and was designed, constructed and tested entirely in-house. This report contains information on the use of the range tracker, its interfaces to other laboratory equipment, the philosophy behind its design, the detailed design of the hardware (including schematics, timing and cabling diagrams), the detailed software design (including flowcharts), and the mathematical description of its algorithms. The range tracker will be used in conjunction with other equipment in the OC Surveillance Lab in the taking and recording of radar data during flight tests.

  17. The New Realm of 3-D Vision

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Dimension Technologies Inc., developed a line of 2-D/3-D Liquid Crystal Display (LCD) screens, including a 15-inch model priced at consumer levels. DTI's family of flat panel LCD displays, called the Virtual Window(TM), provide real-time 3-D images without the use of glasses, head trackers, helmets, or other viewing aids. Most of the company initial 3-D display research was funded through NASA's Small Business Innovation Research (SBIR) program. The images on DTI's displays appear to leap off the screen and hang in space. The display accepts input from computers or stereo video sources, and can be switched from 3-D to full-resolution 2-D viewing with the push of a button. The Virtual Window displays have applications in data visualization, medicine, architecture, business, real estate, entertainment, and other research, design, military, and consumer applications. Displays are currently used for computer games, protein analysis, and surgical imaging. The technology greatly benefits the medical field, as surgical simulators are helping to increase the skills of surgical residents. Virtual Window(TM) is a trademark of Dimension Technologies Inc.

  18. To authorize the Administrator of General Services to convey a parcel of real property in Tracy, California, to the City of Tracy.

    THOMAS, 112th Congress

    Rep. McNerney, Jerry [D-CA-11

    2011-07-06

    House - 07/07/2011 Referred to the Subcommittee on Economic Development, Public Buildings and Emergency Management. (All Actions) Notes: For further action, see S.1302, which became Public Law 112-119 on 5/15/2012. Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  19. Standard metrics for a plug-and-play tracker

    NASA Astrophysics Data System (ADS)

    Antonisse, Jim; Young, Darrell

    2012-06-01

    The Motion Imagery Standards Board (MISB) has previously established a metadata "micro-architecture" for standards-based tracking. The intent of this work is to facilitate both the collaborative development of competent tracking systems, and the potentially distributed and dispersed execution of tracker system components in real-world execution environments. The approach standardizes a set of five quasi-sequential modules in image-based tracking. However, in order to make the plug-and-play architecture truly useful we need metrics associated with each module (so that, for instance, a researcher who "plugs in" a new component can ascertain whether he/she did better or worse with the component). This paper proposes the choice of a new, unifying set of metrics based on an informationtheoretic approach to tracking, which the MISB is nominating as DoD/IC/NATO standards.

  20. Project-focused activity and knowledge tracker: a unified data analysis, collaboration, and workflow tool for medicinal chemistry project teams.

    PubMed

    Brodney, Marian D; Brosius, Arthur D; Gregory, Tracy; Heck, Steven D; Klug-McLeod, Jacquelyn L; Poss, Christopher S

    2009-12-01

    Advances in the field of drug discovery have brought an explosion in the quantity of data available to medicinal chemists and other project team members. New strategies and systems are needed to help these scientists to efficiently gather, organize, analyze, annotate, and share data about potential new drug molecules of interest to their project teams. Herein we describe a suite of integrated services and end-user applications that facilitate these activities throughout the medicinal chemistry design cycle. The Automated Data Presentation (ADP) and Virtual Compound Profiler (VCP) processes automate the gathering, organization, and storage of real and virtual molecules, respectively, and associated data. The Project-Focused Activity and Knowledge Tracker (PFAKT) provides a unified data analysis and collaboration environment, enhancing decision-making, improving team communication, and increasing efficiency.

  1. Elliptically framed tip-tilt mirror optimized for stellar tracking

    NASA Astrophysics Data System (ADS)

    Clark, James H.; Penado, F. E.; Petak, Jeremy

    2015-09-01

    We compare a design innovation of an elliptically framed tip-tilt optical tracker with an existing circularly framed tracker for the Navy Precision Optical Interferometer. The tracker stabilizes a 12.5 cm stellar beam on a target hundreds of meters away and requires an increase in operational frequency. We reduced mass and size by integrating an elliptical mirror as one of the rotating components, which eliminated a rotating frame. We used the same materials as the existing tracker; however, light-weighted both the aluminum frame and Zerodur® mirror. We generated a computer-aided design model, converted it into a finite element model and performed modal analysis on two load cases. In load case 1, we tied down three points on the bottom surface of the tracker corresponding to the tie-down points of the comparison tracker. This reveals a first mode (lowest) frequency of 140 Hz, a factor of two over the baseline tracker's first mode frequency of 67 Hz. In load case 2, we constrained four additional points inboard of the corners of the tracker base, for a total of seven tie-downs, simulating a firmly bolted and secured mount. The first mode of vibration for this case is 211 Hz, an increase over load case 1 by a factor of 1.5 and more than three times the fundamental frequency of the existing tracker. We conclude that these geometrical changes with the additional tie-down bolts are a viable solution path forward to improve steering speed and recommend a continuation with this effort.

  2. The influence of a consumer-wearable activity tracker on sedentary time and prolonged sedentary bouts: secondary analysis of a randomized controlled trial.

    PubMed

    Sloan, Robert A; Kim, Youngdeok; Sahasranaman, Aarti; Müller-Riemenschneider, Falk; Biddle, Stuart J H; Finkelstein, Eric A

    2018-03-22

    A recent meta-analysis surmised pedometers were a useful panacea to independently reduce sedentary time (ST). To further test and expand on this deduction, we analyzed the ability of a consumer-wearable activity tracker to reduce ST and prolonged sedentary bouts (PSB). We originally conducted a 12-month randomized control trial where 800 employees from 13 organizations were assigned to control, activity tracker, or one of two activity tracker plus incentive groups designed to increase step count. The primary outcome was accelerometer measured moderate-to-vigorous physical activity. We conducted a secondary analysis on accelerometer measured daily ST and PSB bouts. A general linear mixed model was used to examine changes in ST and prolonged sedentary bouts, followed by between-group pairwise comparisons. Regression analyses were conducted to examine the association of changes in step counts with ST and PSB. The changes in ST and PSB were not statistically significant and not different between the groups (P < 0.05). Increases in step counts were concomitantly associated with decreases in ST and PSB, regardless of intervention (P < 0.05). Caution should be taken when considering consumer-wearable activity trackers as a means to reduce sedentary behavior. Trial registration NCT01855776 Registered: August 8, 2012.

  3. Research on inosculation between master of ceremonies or players and virtual scene in virtual studio

    NASA Astrophysics Data System (ADS)

    Li, Zili; Zhu, Guangxi; Zhu, Yaoting

    2003-04-01

    A technical principle about construction of virtual studio has been proposed where orientation tracker and telemeter has been used for improving conventional BETACAM pickup camera and connecting with the software module of the host. A model of virtual camera named Camera & Post-camera Coupling Pair has been put forward, which is different from the common model in computer graphics and has been bound to real BETACAM pickup camera for shooting. The formula has been educed to compute the foreground frame buffer image and the background frame buffer image of the virtual scene whose boundary is based on the depth information of target point of the real BETACAM pickup camera's projective ray. The effect of real-time consistency has been achieved between the video image sequences of the master of ceremonies or players and the CG video image sequences for the virtual scene in spatial position, perspective relationship and image object masking. The experimental result has shown that the technological scheme of construction of virtual studio submitted in this paper is feasible and more applicative and more effective than the existing technology to establish a virtual studio based on color-key and image synthesis with background using non-linear video editing technique.

  4. Guidance simulation and test support for differential GPS flight experiment

    NASA Technical Reports Server (NTRS)

    Geier, G. J.; Loomis, P. V. W.; Cabak, A.

    1987-01-01

    Three separate tasks which supported the test preparation, test operations, and post test analysis of the NASA Ames flight test evaluation of the differential Global Positioning System (GPS) are presented. Task 1 consisted of a navigation filter design, coding, and testing to optimally make use of GPS in a differential mode. The filter can be configured to accept inputs from external censors such as an accelerometer and a barometric or radar altimeter. The filter runs in real time onboard a NASA helicopter. It processes raw pseudo and delta range measurements from a single channel sequential GPS receiver. The Kalman filter software interfaces are described in detail, followed by a description of the filter algorithm, including the basic propagation and measurement update equations. The performance during flight tests is reviewed and discussed. Task 2 describes a refinement performed on the lateral and vertical steering algorithms developed on a previous contract. The refinements include modification of the internal logic to allow more diverse inflight initialization procedures, further data smoothing and compensation for system induced time delays. Task 3 describes the TAU Corp participation in the analysis of the real time Kalman navigation filter. The performance was compared to that of the Z-set filter in flight and to the laser tracker position data during post test analysis. This analysis allowed a more optimum selection of the parameters of the filter.

  5. Plume Tracker: A New Toolkit for the Mapping of Volcanic Plumes with Multispectral Thermal Infrared Remote Sensing

    NASA Astrophysics Data System (ADS)

    Realmuto, V. J.; Baxter, S.; Webley, P. W.

    2011-12-01

    Plume Tracker is the next generation of interactive plume mapping tools pioneered by MAP_SO2. First developed in 1995, MAP_SO2 has been used to study plumes at a number of volcanoes worldwide with data acquired by both airborne and space-borne instruments. The foundation of these tools is a radiative transfer (RT) model, based on MODTRAN, which we use as the forward model for our estimation of ground temperature and sulfur dioxide concentration. Plume Tracker retains the main functions of MAP_SO2, providing interactive tools to input radiance measurements and ancillary data, such as profiles of atmospheric temperature and humidity, to the retrieval procedure, generating the retrievals, and visualizing the resulting retrievals. Plume Tracker improves upon MAP_SO2 in the following areas: (1) an RT model based on an updated version of MODTRAN, (2) a retrieval procedure based on maximizing the vector projection of model spectra onto observed spectra, rather than minimizing the least-squares misfit between the model and observed spectra, (3) an ability to input ozone profiles to the RT model, (4) increased control over the vertical distribution of the atmospheric gas species used in the model, (5) a standard programmatic interface to the RT model code, based on the Component Object Model (COM) interface, which will provide access to any programming language that conforms to the COM standard, and (6) a new binning algorithm that decreases running time by exploiting spatial redundancy in the radiance data. Based on our initial testing, the binning algorithm can reduce running time by an order of magnitude. The Plume Tracker project is a collaborative effort between the Jet Propulsion Laboratory and Geophysical Institute (GI) of the University of Alaska-Fairbanks. Plume Tracker is integrated into the GI's operational plume dispersion modeling system and will ingest temperature and humidity profiles generated by the Weather Research and Forecasting model, together with plume height estimates from the Puff model. The access to timely forecasts of atmospheric conditions, together with the reductions in running time, will increase the utility of Plume Tracker in the Alaska Volcano Observatory's mission to mitigate volcanic hazards in Alaska and the Northern Pacific region.

  6. Object tracking with adaptive HOG detector and adaptive Rao-Blackwellised particle filter

    NASA Astrophysics Data System (ADS)

    Rosa, Stefano; Paleari, Marco; Ariano, Paolo; Bona, Basilio

    2012-01-01

    Scenarios for a manned mission to the Moon or Mars call for astronaut teams to be accompanied by semiautonomous robots. A prerequisite for human-robot interaction is the capability of successfully tracking humans and objects in the environment. In this paper we present a system for real-time visual object tracking in 2D images for mobile robotic systems. The proposed algorithm is able to specialize to individual objects and to adapt to substantial changes in illumination and object appearance during tracking. The algorithm is composed by two main blocks: a detector based on Histogram of Oriented Gradient (HOG) descriptors and linear Support Vector Machines (SVM), and a tracker which is implemented by an adaptive Rao-Blackwellised particle filter (RBPF). The SVM is re-trained online on new samples taken from previous predicted positions. We use the effective sample size to decide when the classifier needs to be re-trained. Position hypotheses for the tracked object are the result of a clustering procedure applied on the set of particles. The algorithm has been tested on challenging video sequences presenting strong changes in object appearance, illumination, and occlusion. Experimental tests show that the presented method is able to achieve near real-time performances with a precision of about 7 pixels on standard video sequences of dimensions 320 × 240.

  7. Endoscopic add-on stiffness probe for real-time soft surface characterisation in MIS.

    PubMed

    Faragasso, A; Stilli, A; Bimbo, J; Noh, Y; Liu, H; Nanayakkara, T; Dasgupta, P; Wurdemann, H A; Althoefer, K

    2014-01-01

    This paper explores a novel stiffness sensor which is mounted on the tip of a laparoscopic camera. The proposed device is able to compute stiffness when interacting with soft surfaces. The sensor can be used in Minimally Invasive Surgery, for instance, to localise tumor tissue which commonly has a higher stiffness when compared to healthy tissue. The purely mechanical sensor structure utilizes the functionality of an endoscopic camera to the maximum by visually analyzing the behavior of trackers within the field of view. Two pairs of spheres (used as easily identifiable features in the camera images) are connected to two springs with known but different spring constants. Four individual indenters attached to the spheres are used to palpate the surface. During palpation, the spheres move linearly towards the objective lens (i.e. the distance between lens and spheres is changing) resulting in variations of their diameters in the camera images. Relating the measured diameters to the different spring constants, a developed mathematical model is able to determine the surface stiffness in real-time. Tests were performed using a surgical endoscope to palpate silicon phantoms presenting different stiffness. Results show that the accuracy of the sensing system developed increases with the softness of the examined tissue.

  8. Spacecraft angular velocity estimation algorithm for star tracker based on optical flow techniques

    NASA Astrophysics Data System (ADS)

    Tang, Yujie; Li, Jian; Wang, Gangyi

    2018-02-01

    An integrated navigation system often uses the traditional gyro and star tracker for high precision navigation with the shortcomings of large volume, heavy weight and high-cost. With the development of autonomous navigation for deep space and small spacecraft, star tracker has been gradually used for attitude calculation and angular velocity measurement directly. At the same time, with the dynamic imaging requirements of remote sensing satellites and other imaging satellites, how to measure the angular velocity in the dynamic situation to improve the accuracy of the star tracker is the hotspot of future research. We propose the approach to measure angular rate with a nongyro and improve the dynamic performance of the star tracker. First, the star extraction algorithm based on morphology is used to extract the star region, and the stars in the two images are matched according to the method of angular distance voting. The calculation of the displacement of the star image is measured by the improved optical flow method. Finally, the triaxial angular velocity of the star tracker is calculated by the star vector using the least squares method. The method has the advantages of fast matching speed, strong antinoise ability, and good dynamic performance. The triaxial angular velocity of star tracker can be obtained accurately with these methods. So, the star tracker can achieve better tracking performance and dynamic attitude positioning accuracy to lay a good foundation for the wide application of various satellites and complex space missions.

  9. Are Currently Available Wearable Devices for Activity Tracking and Heart Rate Monitoring Accurate, Precise, and Medically Beneficial?

    PubMed Central

    El-Amrawy, Fatema

    2015-01-01

    Objectives The new wave of wireless technologies, fitness trackers, and body sensor devices can have great impact on healthcare systems and the quality of life. However, there have not been enough studies to prove the accuracy and precision of these trackers. The objective of this study was to evaluate the accuracy, precision, and overall performance of seventeen wearable devices currently available compared with direct observation of step counts and heart rate monitoring. Methods Each participant in this study used three accelerometers at a time, running the three corresponding applications of each tracker on an Android or iOS device simultaneously. Each participant was instructed to walk 200, 500, and 1,000 steps. Each set was repeated 40 times. Data was recorded after each trial, and the mean step count, standard deviation, accuracy, and precision were estimated for each tracker. Heart rate was measured by all trackers (if applicable), which support heart rate monitoring, and compared to a positive control, the Onyx Vantage 9590 professional clinical pulse oximeter. Results The accuracy of the tested products ranged between 79.8% and 99.1%, while the coefficient of variation (precision) ranged between 4% and 17.5%. MisFit Shine showed the highest accuracy and precision (along with Qualcomm Toq), while Samsung Gear 2 showed the lowest accuracy, and Jawbone UP showed the lowest precision. However, Xiaomi Mi band showed the best package compared to its price. Conclusions The accuracy and precision of the selected fitness trackers are reasonable and can indicate the average level of activity and thus average energy expenditure. PMID:26618039

  10. Are Currently Available Wearable Devices for Activity Tracking and Heart Rate Monitoring Accurate, Precise, and Medically Beneficial?

    PubMed

    El-Amrawy, Fatema; Nounou, Mohamed Ismail

    2015-10-01

    The new wave of wireless technologies, fitness trackers, and body sensor devices can have great impact on healthcare systems and the quality of life. However, there have not been enough studies to prove the accuracy and precision of these trackers. The objective of this study was to evaluate the accuracy, precision, and overall performance of seventeen wearable devices currently available compared with direct observation of step counts and heart rate monitoring. Each participant in this study used three accelerometers at a time, running the three corresponding applications of each tracker on an Android or iOS device simultaneously. Each participant was instructed to walk 200, 500, and 1,000 steps. Each set was repeated 40 times. Data was recorded after each trial, and the mean step count, standard deviation, accuracy, and precision were estimated for each tracker. Heart rate was measured by all trackers (if applicable), which support heart rate monitoring, and compared to a positive control, the Onyx Vantage 9590 professional clinical pulse oximeter. The accuracy of the tested products ranged between 79.8% and 99.1%, while the coefficient of variation (precision) ranged between 4% and 17.5%. MisFit Shine showed the highest accuracy and precision (along with Qualcomm Toq), while Samsung Gear 2 showed the lowest accuracy, and Jawbone UP showed the lowest precision. However, Xiaomi Mi band showed the best package compared to its price. The accuracy and precision of the selected fitness trackers are reasonable and can indicate the average level of activity and thus average energy expenditure.

  11. Star tracker operation in a high density proton field

    NASA Technical Reports Server (NTRS)

    Miklus, Kenneth J.; Kissh, Frank; Flynn, David J.

    1993-01-01

    Algorithms that reject transient signals due to proton effects on charge coupled device (CCD) sensors have been implemented in the HDOS ASTRA-l Star Trackers to be flown on the TOPEX mission scheduled for launch in July 1992. A unique technique for simulating a proton-rich environment to test trackers is described, as well as the test results obtained. Solar flares or an orbit that passes through the South Atlantic Anomaly can subject the vehicle to very high proton flux levels. There are three ways in which spurious proton generated signals can impact tracker performance: the many false signals can prevent or extend the time to acquire a star; a proton-generated signal can compromise the accuracy of the star's reported magnitude and position; and the tracked star can be lost, requiring reacquisition. Tests simulating a proton-rich environment were performed on two ASTRA-1 Star Trackers utilizing these new algorithms. There were no false acquisitions, no lost stars, and a significant reduction in reported position errors due to these improvements.

  12. The application of the HyPer fluorescent sensor in the real-time detection of H2O2 in Babesia bovis merozoites in vitro.

    PubMed

    Asada, Masahito; Hakimi, Hassan; Kawazu, Shin-Ichiro

    2018-05-15

    In recent years, genetically encoded fluorescent probes have allowed a dramatic advancement in time-lapse imaging, enabling this imaging modality to be used to investigate intracellular events in several apicomplexan parasite species. In this study, we constructed a plasmid vector to stably express a genetically encoded H 2 O 2 sensor probe called HyPer in Babesia bovis. The HyPer-transfected parasite population was successfully developed and subjected to a time-lapse imaging analysis under in vitro culture conditions. HyPer was capable of sensing an increasing H 2 O 2 concentration in the parasite cells which was induced by the administration of paraquat as a superoxide donor. HyPer fluorescence co-staining with MitoTracker Red indicated the mitochondria as the major source of reactive oxygen species (ROS) in parasite cells. The fluctuating ROS dynamics in the parasite gliding toward, attaching to, and invading the target red blood cell was visualized and monitored in real time with the HyPer expressing parasite population. This is the first report to describe the application of the HyPer probe in an imaging analysis involving Babesia parasites. Hyper-expressing parasites can be widely utilized in studies to investigate the mechanisms of emergence and the reduction of oxidative stress, as well as the signal transduction in the parasite cells during host invasion and intercellular development. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Ultra-low-cost 3D gaze estimation: an intuitive high information throughput compliment to direct brain-machine interfaces

    NASA Astrophysics Data System (ADS)

    Abbott, W. W.; Faisal, A. A.

    2012-08-01

    Eye movements are highly correlated with motor intentions and are often retained by patients with serious motor deficiencies. Despite this, eye tracking is not widely used as control interface for movement in impaired patients due to poor signal interpretation and lack of control flexibility. We propose that tracking the gaze position in 3D rather than 2D provides a considerably richer signal for human machine interfaces by allowing direct interaction with the environment rather than via computer displays. We demonstrate here that by using mass-produced video-game hardware, it is possible to produce an ultra-low-cost binocular eye-tracker with comparable performance to commercial systems, yet 800 times cheaper. Our head-mounted system has 30 USD material costs and operates at over 120 Hz sampling rate with a 0.5-1 degree of visual angle resolution. We perform 2D and 3D gaze estimation, controlling a real-time volumetric cursor essential for driving complex user interfaces. Our approach yields an information throughput of 43 bits s-1, more than ten times that of invasive and semi-invasive brain-machine interfaces (BMIs) that are vastly more expensive. Unlike many BMIs our system yields effective real-time closed loop control of devices (10 ms latency), after just ten minutes of training, which we demonstrate through a novel BMI benchmark—the control of the video arcade game ‘Pong’.

  14. Measuring Scale Errors in a Laser Tracker’s Horizontal Angle Encoder Through Simple Length Measurement and Two-Face System Tests

    PubMed Central

    Muralikrishnan, B.; Blackburn, C.; Sawyer, D.; Phillips, S.; Bridges, R.

    2010-01-01

    We describe a method to estimate the scale errors in the horizontal angle encoder of a laser tracker in this paper. The method does not require expensive instrumentation such as a rotary stage or even a calibrated artifact. An uncalibrated but stable length is realized between two targets mounted on stands that are at tracker height. The tracker measures the distance between these two targets from different azimuthal positions (say, in intervals of 20° over 360°). Each target is measured in both front face and back face. Low order harmonic scale errors can be estimated from this data and may then be used to correct the encoder’s error map to improve the tracker’s angle measurement accuracy. We have demonstrated this for the second order harmonic in this paper. It is important to compensate for even order harmonics as their influence cannot be removed by averaging front face and back face measurements whereas odd orders can be removed by averaging. We tested six trackers from three different manufacturers. Two of those trackers are newer models introduced at the time of writing of this paper. For older trackers from two manufacturers, the length errors in a 7.75 m horizontal length placed 7 m away from a tracker were of the order of ± 65 μm before correcting the error map. They reduced to less than ± 25 μm after correcting the error map for second order scale errors. Newer trackers from the same manufacturers did not show this error. An older tracker from a third manufacturer also did not show this error. PMID:27134789

  15. Individual Differences in the Attribution of Incentive Salience to a Pavlovian Alcohol Cue.

    PubMed

    Villaruel, Franz R; Chaudhri, Nadia

    2016-01-01

    Individual differences exist in the attribution of incentive salience to conditioned stimuli associated with food. Here, we investigated whether individual differences also manifested with a Pavlovian alcohol conditioned stimulus (CS). We compiled data from five experiments that used a Pavlovian autoshaping paradigm and tests of conditioned reinforcement. In all experiments, male, Long-Evans rats with unrestricted access to food and water were acclimated to 15% ethanol. Next, rats received Pavlovian autoshaping training, in which a 10 s presentation of a retractable lever served as the CS and 0.2 mL of 15% ethanol served as the unconditioned stimulus (US). Finally, rats underwent conditioned reinforcement tests in which nose-pokes to an active aperture led to brief presentations of the lever-CS, but nose-pokes to an inactive aperture had no consequence. Rats were categorized as sign-trackers, goal-trackers and intermediates based on a response bias score that reflected their tendencies to sign-track or goal-track at different times during training. We found that distinct groups of rats either consistently interacted with the lever-CS ("sign-trackers") or routinely approached the port during the lever-CS ("goal-trackers") across a majority of the training sessions. However, some individuals ("shifted sign-trackers") with an early tendency to goal-track later shifted to comparable asymptotic levels of sign-tracking as the group identified as sign-trackers. The lever-CS functioned as a conditioned reinforcer for sign-trackers and shifted sign-trackers, but not for goal-trackers. These results provide evidence of robust individual differences in the extent to which a Pavlovian alcohol cue gains incentive salience and functions as a conditioned reinforcer.

  16. Siamese convolutional networks for tracking the spine motion

    NASA Astrophysics Data System (ADS)

    Liu, Yuan; Sui, Xiubao; Sun, Yicheng; Liu, Chengwei; Hu, Yong

    2017-09-01

    Deep learning models have demonstrated great success in various computer vision tasks such as image classification and object tracking. However, tracking the lumbar spine by digitalized video fluoroscopic imaging (DVFI), which can quantitatively analyze the motion mode of spine to diagnose lumbar instability, has not yet been well developed due to the lack of steady and robust tracking method. In this paper, we propose a novel visual tracking algorithm of the lumbar vertebra motion based on a Siamese convolutional neural network (CNN) model. We train a full-convolutional neural network offline to learn generic image features. The network is trained to learn a similarity function that compares the labeled target in the first frame with the candidate patches in the current frame. The similarity function returns a high score if the two images depict the same object. Once learned, the similarity function is used to track a previously unseen object without any adapting online. In the current frame, our tracker is performed by evaluating the candidate rotated patches sampled around the previous frame target position and presents a rotated bounding box to locate the predicted target precisely. Results indicate that the proposed tracking method can detect the lumbar vertebra steadily and robustly. Especially for images with low contrast and cluttered background, the presented tracker can still achieve good tracking performance. Further, the proposed algorithm operates at high speed for real time tracking.

  17. A software module for implementing auditory and visual feedback on a video-based eye tracking system

    NASA Astrophysics Data System (ADS)

    Rosanlall, Bharat; Gertner, Izidor; Geri, George A.; Arrington, Karl F.

    2016-05-01

    We describe here the design and implementation of a software module that provides both auditory and visual feedback of the eye position measured by a commercially available eye tracking system. The present audio-visual feedback module (AVFM) serves as an extension to the Arrington Research ViewPoint EyeTracker, but it can be easily modified for use with other similar systems. Two modes of audio feedback and one mode of visual feedback are provided in reference to a circular area-of-interest (AOI). Auditory feedback can be either a click tone emitted when the user's gaze point enters or leaves the AOI, or a sinusoidal waveform with frequency inversely proportional to the distance from the gaze point to the center of the AOI. Visual feedback is in the form of a small circular light patch that is presented whenever the gaze-point is within the AOI. The AVFM processes data that are sent to a dynamic-link library by the EyeTracker. The AVFM's multithreaded implementation also allows real-time data collection (1 kHz sampling rate) and graphics processing that allow display of the current/past gaze-points as well as the AOI. The feedback provided by the AVFM described here has applications in military target acquisition and personnel training, as well as in visual experimentation, clinical research, marketing research, and sports training.

  18. A Bit of Fit: Minimalist Intervention in Adolescents Based on a Physical Activity Tracker.

    PubMed

    Gaudet, Jeffrey; Gallant, François; Bélanger, Mathieu

    2017-07-06

    Only 5% of Canadian youth meet the recommended 60 minutes of moderate to vigorous physical activity (MVPA) per day, with leisure time being increasingly allocated to technology usage. Direct-to-consumer mHealth devices that promote physical activity, such as wrist-worn physical activity trackers, have features with potential appeal to youth. The primary purpose of this study was to determine whether a minimalist physical activity tracker-based intervention would lead to an increase in physical activity in young adolescents. A secondary aim of this study was to assess change in physical activity across a 7-week intervention, as measured by the tracker. Using a quasi-experimental crossover design, two groups of 23 young adolescents (aged 13-14 years) were randomly assigned to immediate intervention or delayed intervention. The intervention consisted of wearing a Fitbit-Charge-HR physical activity tracker over a 7-week period. Actical accelerometers were used to measure participants' levels of MVPA before and at the end of intervention periods for each group. Covariates such as age, sex, stage of change for physical activity behavior, and goal commitment were also measured. There was an increase in physical activity over the course of the study period, though it was not related to overall physical activity tracker use. An intervention response did, however, occur in a subset of participants. Specifically, exposure to the physical activity tracker was associated with an average daily increase in MVPA by more than 15 minutes (P=.01) among participants who reported being in the action and maintenance stages of behavior change in relation to participation in physical activity. Participants in the precontemplation, contemplation, and preparation stages of behavior change had no change in their level of MVPA (P=.81). These results suggest that physical activity trackers may elicit improved physical activity related behavior in young adolescents demonstrating a readiness to be active. Future studies should seek to investigate if integrating physical activity trackers as part of more intensive interventions leads to greater increases in physical activity across different levels of stages of behavior change and if these changes can be sustained over longer periods of time. ©Jeffrey Gaudet, François Gallant, Mathieu Bélanger. Originally published in JMIR Mhealth and Uhealth (http://mhealth.jmir.org), 06.07.2017.

  19. A real-time algorithm for integrating differential satellite and inertial navigation information during helicopter approach. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Hoang, TY

    1994-01-01

    A real-time, high-rate precision navigation Kalman filter algorithm is developed and analyzed. This Navigation algorithm blends various navigation data collected during terminal area approach of an instrumented helicopter. Navigation data collected include helicopter position and velocity from a global position system in differential mode (DGPS) as well as helicopter velocity and attitude from an inertial navigation system (INS). The goal of the Navigation algorithm is to increase the DGPS accuracy while producing navigational data at the 64 Hertz INS update rate. It is important to note that while the data was post flight processed, the Navigation algorithm was designed for real-time analysis. The design of the Navigation algorithm resulted in a nine-state Kalman filter. The Kalman filter's state matrix contains position, velocity, and velocity bias components. The filter updates positional readings with DGPS position, INS velocity, and velocity bias information. In addition, the filter incorporates a sporadic data rejection scheme. This relatively simple model met and exceeded the ten meter absolute positional requirement. The Navigation algorithm results were compared with truth data derived from a laser tracker. The helicopter flight profile included terminal glideslope angles of 3, 6, and 9 degrees. Two flight segments extracted during each terminal approach were used to evaluate the Navigation algorithm. The first segment recorded small dynamic maneuver in the lateral plane while motion in the vertical plane was recorded by the second segment. The longitudinal, lateral, and vertical averaged positional accuracies for all three glideslope approaches are as follows (mean plus or minus two standard deviations in meters): longitudinal (-0.03 plus or minus 1.41), lateral (-1.29 plus or minus 2.36), and vertical (-0.76 plus or minus 2.05).

  20. Stereoscopic augmented reality for laparoscopic surgery.

    PubMed

    Kang, Xin; Azizian, Mahdi; Wilson, Emmanuel; Wu, Kyle; Martin, Aaron D; Kane, Timothy D; Peters, Craig A; Cleary, Kevin; Shekhar, Raj

    2014-07-01

    Conventional laparoscopes provide a flat representation of the three-dimensional (3D) operating field and are incapable of visualizing internal structures located beneath visible organ surfaces. Computed tomography (CT) and magnetic resonance (MR) images are difficult to fuse in real time with laparoscopic views due to the deformable nature of soft-tissue organs. Utilizing emerging camera technology, we have developed a real-time stereoscopic augmented-reality (AR) system for laparoscopic surgery by merging live laparoscopic ultrasound (LUS) with stereoscopic video. The system creates two new visual cues: (1) perception of true depth with improved understanding of 3D spatial relationships among anatomical structures, and (2) visualization of critical internal structures along with a more comprehensive visualization of the operating field. The stereoscopic AR system has been designed for near-term clinical translation with seamless integration into the existing surgical workflow. It is composed of a stereoscopic vision system, a LUS system, and an optical tracker. Specialized software processes streams of imaging data from the tracked devices and registers those in real time. The resulting two ultrasound-augmented video streams (one for the left and one for the right eye) give a live stereoscopic AR view of the operating field. The team conducted a series of stereoscopic AR interrogations of the liver, gallbladder, biliary tree, and kidneys in two swine. The preclinical studies demonstrated the feasibility of the stereoscopic AR system during in vivo procedures. Major internal structures could be easily identified. The system exhibited unobservable latency with acceptable image-to-video registration accuracy. We presented the first in vivo use of a complete system with stereoscopic AR visualization capability. This new capability introduces new visual cues and enhances visualization of the surgical anatomy. The system shows promise to improve the precision and expand the capacity of minimally invasive laparoscopic surgeries.

  1. Real-time tracking of liver motion and deformation using a flexible needle

    PubMed Central

    Lei, Peng; Moeslein, Fred; Wood, Bradford J.

    2012-01-01

    Purpose A real-time 3D image guidance system is needed to facilitate treatment of liver masses using radiofrequency ablation, for example. This study investigates the feasibility and accuracy of using an electromagnetically tracked flexible needle inserted into the liver to track liver motion and deformation. Methods This proof-of-principle study was conducted both ex vivo and in vivo with a CT scanner taking the place of an electromagnetic tracking system as the spatial tracker. Deformations of excised livers were artificially created by altering the shape of the stage on which the excised livers rested. Free breathing or controlled ventilation created deformations of live swine livers. The positions of the needle and test targets were determined through CT scans. The shape of the needle was reconstructed using data simulating multiple embedded electromagnetic sensors. Displacement of liver tissues in the vicinity of the needle was derived from the change in the reconstructed shape of the needle. Results The needle shape was successfully reconstructed with tracking information of two on-needle points. Within 30 mm of the needle, the registration error of implanted test targets was 2.4 ± 1.0 mm ex vivo and 2.8 ± 1.5 mm in vivo. Conclusion A practical approach was developed to measure the motion and deformation of the liver in real time within a region of interest. The approach relies on redesigning the often-used seeker needle to include embedded electromagnetic tracking sensors. With the nonrigid motion and deformation information of the tracked needle, a single- or multimodality 3D image of the intraprocedural liver, now clinically obtained with some delay, can be updated continuously to monitor intraprocedural changes in hepatic anatomy. This capability may be useful in radiofrequency ablation and other percutaneous ablative procedures. PMID:20700662

  2. Intraoperative magnetic tracker calibration using a magneto-optic hybrid tracker for 3-D ultrasound-based navigation in laparoscopic surgery.

    PubMed

    Nakamoto, Masahiko; Nakada, Kazuhisa; Sato, Yoshinobu; Konishi, Kozo; Hashizume, Makoto; Tamura, Shinichi

    2008-02-01

    This paper describes a ultrasound (3-D US) system that aims to achieve augmented reality (AR) visualization during laparoscopic surgery, especially for the liver. To acquire 3-D US data of the liver, the tip of a laparoscopic ultrasound probe is tracked inside the abdominal cavity using a magnetic tracker. The accuracy of magnetic trackers, however, is greatly affected by magnetic field distortion that results from the close proximity of metal objects and electronic equipment, which is usually unavoidable in the operating room. In this paper, we describe a calibration method for intraoperative magnetic distortion that can be applied to laparoscopic 3-D US data acquisition; we evaluate the accuracy and feasibility of the method by in vitro and in vivo experiments. Although calibration data can be acquired freehand using a magneto-optic hybrid tracker, there are two problems associated with this method--error caused by the time delay between measurements of the optical and magnetic trackers, and instability of the calibration accuracy that results from the uniformity and density of calibration data. A temporal calibration procedure is developed to estimate the time delay, which is then integrated into the calibration, and a distortion model is formulated by zeroth-degree to fourth-degree polynomial fitting to the calibration data. In the in vivo experiment using a pig, the positional error caused by magnetic distortion was reduced from 44.1 to 2.9 mm. The standard deviation of corrected target positions was less than 1.0 mm. Freehand acquisition of calibration data was performed smoothly using a magneto-optic hybrid sampling tool through a trocar under guidance by realtime 3-D monitoring of the tool trajectory; data acquisition time was less than 2 min. The present study suggests that our proposed method could correct for magnetic field distortion inside the patient's abdomen during a laparoscopic procedure within a clinically permissible period of time, as well as enabling an accurate 3-D US reconstruction to be obtained that can be superimposed onto live endoscopic images.

  3. Development of students' conceptual thinking by means of video analysis and interactive simulations at technical universities

    NASA Astrophysics Data System (ADS)

    Hockicko, Peter; Krišt‧ák, L.‧uboš; Němec, Miroslav

    2015-03-01

    Video analysis, using the program Tracker (Open Source Physics), in the educational process introduces a new creative method of teaching physics and makes natural sciences more interesting for students. This way of exploring the laws of nature can amaze students because this illustrative and interactive educational software inspires them to think creatively, improves their performance and helps them in studying physics. This paper deals with increasing the key competencies in engineering by analysing real-life situation videos - physical problems - by means of video analysis and the modelling tools using the program Tracker and simulations of physical phenomena from The Physics Education Technology (PhET™) Project (VAS method of problem tasks). The statistical testing using the t-test confirmed the significance of the differences in the knowledge of the experimental and control groups, which were the result of interactive method application.

  4. Synthetic depth data creation for sensor setup planning and evaluation of multi-camera multi-person trackers

    NASA Astrophysics Data System (ADS)

    Pattke, Marco; Martin, Manuel; Voit, Michael

    2017-05-01

    Tracking people with cameras in public areas is common today. However with an increasing number of cameras it becomes harder and harder to view the data manually. Especially in safety critical areas automatic image exploitation could help to solve this problem. Setting up such a system can however be difficult because of its increased complexity. Sensor placement is critical to ensure that people are detected and tracked reliably. We try to solve this problem using a simulation framework that is able to simulate different camera setups in the desired environment including animated characters. We combine this framework with our self developed distributed and scalable system for people tracking to test its effectiveness and can show the results of the tracking system in real time in the simulated environment.

  5. Initial Performance of the Attitude Control and Aspect Determination Subsystems on the Chandra Observatory

    NASA Technical Reports Server (NTRS)

    Cameron, R.; Aldcroft, T.; Podgorski, W. A.; Freeman, M. D.

    2000-01-01

    The aspect determination system of the Chandra X-ray Observatory plays a key role in realizing the full potential of Chandra's X-ray optics and detectors. We review the performance of the spacecraft hardware components and sub-systems, which provide information for both real time control of the attitude and attitude stability of the Chandra Observatory and also for more accurate post-facto attitude reconstruction. These flight components are comprised of the aspect camera (star tracker) and inertial reference units (gyros), plus the fiducial lights and fiducial transfer optics which provide an alignment null reference system for the science instruments and X-ray optics, together with associated thermal and structural components. Key performance measures will be presented for aspect camera focal plane data, gyro performance both during stable pointing and during maneuvers, alignment stability and mechanism repeatability.

  6. Sun Tracker Operates a Year Between Calibrations

    NASA Technical Reports Server (NTRS)

    Berdahl, C. M.

    1984-01-01

    Low-cost modification of Sun tracker automatically compensates equation of time and seasonal variations in declination of Sun. Output of Scotch Yoke drive mechanism adjusted through proper sizing of crank, yoke and other components and through choice of gear ratios to approximate seasonal northand south motion of Sun. Used for industrial solar-energy monitoring and in remote meteorological stations.

  7. Analyzing Impulse Using iPhone and Tracker

    ERIC Educational Resources Information Center

    Ayop, Shahrul Kadri

    2017-01-01

    The iPhone 6 introduced a new feature of recording video in Slo-Mo mode at 240 fps (4.17 ms interval). This great capability when integrated with video analysis freeware such as Tracker offers in-depth exploration for physical phenomena such as collisions that occur in a very short duration of time. This article discusses one such usage in…

  8. Precise Haptic Device Co-Location for Visuo-Haptic Augmented Reality.

    PubMed

    Eck, Ulrich; Pankratz, Frieder; Sandor, Christian; Klinker, Gudrun; Laga, Hamid

    2015-12-01

    Visuo-haptic augmented reality systems enable users to see and touch digital information that is embedded in the real world. PHANToM haptic devices are often employed to provide haptic feedback. Precise co-location of computer-generated graphics and the haptic stylus is necessary to provide a realistic user experience. Previous work has focused on calibration procedures that compensate the non-linear position error caused by inaccuracies in the joint angle sensors. In this article we present a more complete procedure that additionally compensates for errors in the gimbal sensors and improves position calibration. The proposed procedure further includes software-based temporal alignment of sensor data and a method for the estimation of a reference for position calibration, resulting in increased robustness against haptic device initialization and external tracker noise. We designed our procedure to require minimal user input to maximize usability. We conducted an extensive evaluation with two different PHANToMs, two different optical trackers, and a mechanical tracker. Compared to state-of-the-art calibration procedures, our approach significantly improves the co-location of the haptic stylus. This results in higher fidelity visual and haptic augmentations, which are crucial for fine-motor tasks in areas such as medical training simulators, assembly planning tools, or rapid prototyping applications.

  9. Evaluation of the Consistency among In Situ and Remote Sensing Measurements of CO2 over North America using the CarbonTracker-Lagrange Regional Inverse Modeling Framework

    NASA Astrophysics Data System (ADS)

    Andrews, A. E.; Trudeau, M.; Hu, L.; Thoning, K. W.; Shiga, Y. P.; Michalak, A. M.; Benmergui, J. S.; Mountain, M. E.; Nehrkorn, T.; O'Dell, C.; Jacobson, A. R.; Miller, J.; Sweeney, C.; Chen, H.; Ploeger, F.; Tans, P. P.

    2017-12-01

    CarbonTracker-Lagrange (CT-L) is a regional inverse modeling system for estimating CO2 fluxes with rigorous uncertainty quantification. CT-L uses footprints from the Stochastic Time-Inverted Lagrangian Transport (STILT) model driven by high-resolution (10 to 30 km) meteorological fields from the Weather Research and Forecasting (WRF) model. We have computed a library of footprints corresponding to in situ and remote sensing measurements of CO2 over North America for 2007-2015. GOSAT and OCO-2 XCO2 retrievals are simulated using a suite of CT-L terrestrial ecosystem flux estimates that have been optimized with respect to in situ atmospheric CO2 measurements along with fossil fuel fluxes from emissions inventories. A vertical profile of STILT-WRF footprints was constructed corresponding to each simulated satellite retrieval, and CO2 profiles are generated by convolving the footprints with fluxes and attaching initial values advected from the domain boundaries. The stratospheric contribution to XCO2 has been estimated using 4-dimensional CO2 fields from the NOAA CarbonTracker model (version CT2016) and from the Chemical Lagrangian Model of the Stratosphere (CLaMS), after scaling the model fields to match data from the NOAA AirCore surface-to-stratosphere air sampling system. Tropospheric lateral boundary conditions are from CT2016 and from an empirical boundary value product derived from aircraft and marine boundary layer data. The averaging kernel and a priori CO2 profile are taken into account for direct comparisons with retrievals. We have focused on North America due to the relatively dense in situ measurements available with the aim of developing strategies for combined assimilation of in situ and remote sensing data. We will consider the extent to which interannual variability in terrestrial fluxes is manifest in the real and simulated satellite retrievals, and we will investigate possible systematic biases in the satellite retrievals and in the model.

  10. Validity, reliability and feasibility of commercially available activity trackers in physical therapy for people with a chronic disease: a study protocol of a mixed methods research.

    PubMed

    Beekman, Emmylou; Braun, Susy M; Ummels, Darcy; van Vijven, Kim; Moser, Albine; Beurskens, Anna J

    2017-01-01

    For older people and people with a chronic disease, physical activity provides health benefits. Patients and healthcare professionals can use commercially available activity trackers to objectively monitor (alterations in) activity levels and patterns and to support physical activity. However, insight in the validity, reliability, and feasibility of these trackers in people with a chronic disease is needed. In this article, a study protocol is described in which the validity, reliability (part A), and feasibility from a patient and therapist's point of view (part B) of commercially available activity trackers in daily life and health care is investigated. In part A, a quantitative cross-sectional study, an activity protocol that simulates everyday life activities will be used to determine the validity and reliability of nine commercially available activity trackers. Video recordings will act as the gold standard. In part B, a qualitative participatory action research study will be performed to gain insight in the use of activity trackers in peoples' daily life and therapy settings. Objective feasibility of the activity trackers will be measured with questionnaires, and subjective feasibility (experiences) will be explored in a community of practice. Physical therapists ( n  = 8) will regularly meet during 6 months to learn from each other regarding the actual use of activity trackers in therapy. Therapists and patients ( n  = 48) will decide together which tracker will be used in therapy and for which purpose (e.g., monitoring, goal setting). Data from the therapist' and patients' experiences will be collected by interviews (individual and focus groups) and analyzed by a directed content analysis. At the time of submission, selection of activity trackers, development of the activity protocol, and the ethical approval process are finished. Data collection and data processing are ongoing. The relevance of the study as well as the advantages and disadvantages of several aspects of the chosen design are discussed. The results acquired from both study parts can be used to create decision aids that may assist therapists and people with a chronic disease in choosing a suitable activity tracker, and to facilitate use of these activity trackers in health care settings. Ethical approval has been obtained from two medical-ethical committees (nr. 15-N-109, 15-N-48 and MEC-15-07).

  11. The AMchip04 and the processing unit prototype for the FastTracker

    NASA Astrophysics Data System (ADS)

    Andreani, A.; Annovi, A.; Beretta, M.; Bogdan, M.; Citterio, M.; Alberti, F.; Giannetti, P.; Lanza, A.; Magalotti, D.; Piendibene, M.; Shochet, M.; Stabile, A.; Tang, J.; Tompkins, L.; Volpi, G.

    2012-08-01

    Modern experiments search for extremely rare processes hidden in much larger background levels. As the experiment`s complexity, the accelerator backgrounds and luminosity increase we need increasingly complex and exclusive event selection. We present the first prototype of a new Processing Unit (PU), the core of the FastTracker processor (FTK). FTK is a real time tracking device for the ATLAS experiment`s trigger upgrade. The computing power of the PU is such that a few hundred of them will be able to reconstruct all the tracks with transverse momentum above 1 GeV/c in ATLAS events up to Phase II instantaneous luminosities (3 × 1034 cm-2 s-1) with an event input rate of 100 kHz and a latency below a hundred microseconds. The PU provides massive computing power to minimize the online execution time of complex tracking algorithms. The time consuming pattern recognition problem, generally referred to as the ``combinatorial challenge'', is solved by the Associative Memory (AM) technology exploiting parallelism to the maximum extent; it compares the event to all pre-calculated ``expectations'' or ``patterns'' (pattern matching) simultaneously, looking for candidate tracks called ``roads''. This approach reduces to a linear behavior the typical exponential complexity of the CPU based algorithms. Pattern recognition is completed by the time data are loaded into the AM devices. We report on the design of the first Processing Unit prototypes. The design had to address the most challenging aspects of this technology: a huge number of detector clusters (``hits'') must be distributed at high rate with very large fan-out to all patterns (10 Million patterns will be located on 128 chips placed on a single board) and a huge number of roads must be collected and sent back to the FTK post-pattern-recognition functions. A network of high speed serial links is used to solve the data distribution problem.

  12. To provide for the conveyance of the Bureau of Land Management parcels known as the White Acre and Gambel Oak properties and related real property to Park City, Utah, and for other purposes.

    THOMAS, 111th Congress

    Rep. Bishop, Rob [R-UT-1

    2009-01-16

    House - 02/04/2009 Referred to the Subcommittee on National Parks, Forests and Public Lands. (All Actions) Notes: For further action, see H.R.146, which became Public Law 111-11 on 3/30/2009. Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  13. SU-F-T-99: Data Visualization From a Treatment Planning Tracking System for Radiation Oncology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cline, K; Kabat, C; Li, Y

    2016-06-15

    Purpose: A treatment planning process tracker database with input forms and a TV-viewable display webpage was developed and implemented in our clinic to collect time data points throughout the process. Tracking plan times is important because it directly affects the patient quality of care. Simply, the longer a patient waits after their initial simulation CT for treatment to begin, the more time the cancer has to progress. The tracker helps to drive workflow through the clinic, while the data collected can be used to understand and manage the process to find and eliminate inefficiencies. Methods: The overall process steps trackedmore » are CT-simulation, mark patient, draw normal contours, draw target volumes, create plan, and review/approve plan. Time stamps for task completion were extracted and used to generate a set of clinic metrics, among which include average time for each step in the process split apart by type of treatment, average time to completion for plans started in a given week, and individual overall completion time per plan. Results: Trends have been tracked for fourteen weeks of clinical data (196 plans). On average, drawing normal contours and target volumes is taking 2–5 times as long as creating the plan itself. This is potentially an issue because it could mean the process is taking too long initially, and it could be forcing the planning step to be done in a short amount of time. We also saw from our graphs that there appears to be no clear trend on the average amount of time per plan week-to-week. Conclusion: A tracker of this type has the potential to provide insight into how time is utilized in our clinic. By equipping our dosimetrists, radiation oncologists, and physicists with individualized metric sets, the tracker can help provide visibility and drive workflow. Funded in part by CPRIT (RP140105).« less

  14. Star Tracker Performance Estimate with IMU

    NASA Technical Reports Server (NTRS)

    Aretskin-Hariton, Eliot D.; Swank, Aaron J.

    2015-01-01

    A software tool for estimating cross-boresight error of a star tracker combined with an inertial measurement unit (IMU) was developed to support trade studies for the Integrated Radio and Optical Communication project (iROC) at the National Aeronautics and Space Administration Glenn Research Center. Typical laser communication systems, such as the Lunar Laser Communication Demonstration (LLCD) and the Laser Communication Relay Demonstration (LCRD), use a beacon to locate ground stations. iROC is investigating the use of beaconless precision laser pointing to enable laser communication at Mars orbits and beyond. Precision attitude knowledge is essential to the iROC mission to enable high-speed steering of the optical link. The preliminary concept to achieve this precision attitude knowledge is to use star trackers combined with an IMU. The Star Tracker Accuracy (STAcc) software was developed to rapidly assess the capabilities of star tracker and IMU configurations. STAcc determines the overall cross-boresight error of a star tracker with an IMU given the characteristic parameters: quantum efficiency, aperture, apparent star magnitude, exposure time, field of view, photon spread, detector pixels, spacecraft slew rate, maximum stars used for quaternion estimation, and IMU angular random walk. This paper discusses the supporting theory used to construct STAcc, verification of the program and sample results.

  15. SU-F-T-464: Development of a Secondary Check Procedure to Evaluated Flatness and Symmetry Discrepancies Detected During Daily Morning QA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wagar, M; Friesen, S; Lyatskaya, Y

    2016-06-15

    Purpose: A daily QA device is used to monitor output, flatness and symmetry constancy for all linac photon and electron energies. If large deviations from baseline in flatness or symmetry are reported it becomes necessary to crosscheck the measurements with a second device. Setting up another device such as Matrixx (IBA Dosimetry) can be time consuming, due to its warm-up time, and trained personnel may not be readily available to analyze the results. Furthermore, this discrepancy is frequently isolated to a single energy. Unaffected energies could still be used, avoiding further patient delays, if a method to gather data formore » offline analysis could be developed. We find that optically stimulated luminescent dosimeters (OSLDs) provide a quick, simple, and inexpensive solution to this important clinical problem. Methods: The exact geometry of the detectors on the daily tracker (Keithley Therapy Beam Evaluator) was reproduced by placing nanoDot OSLDs (Landauer) on a solid water phantom. A combination of bolus and solid water was placed on top to provide buildup and prevent air gaps. Standard daily measurements of output, flatness and symmetry were taken for 2 photon energies (6x,10x) and 5 electron energies (6e,9e,12e,15e,18e) using the tracker. These measurements were then repeated with the OSLD phantom. Results: The time it took to set up the OSLD phantom was comparable to that of the tracker. The inline and crossline OSLD phantom measurements of flatness and symmetry agreed with the tracker results to within 2%. Conclusion: OSLDs provide a good solution for a quick second check when questionable flatness and symmetry results are detected with the tracker during daily QA.« less

  16. Robust visual tracking via multiscale deep sparse networks

    NASA Astrophysics Data System (ADS)

    Wang, Xin; Hou, Zhiqiang; Yu, Wangsheng; Xue, Yang; Jin, Zefenfen; Dai, Bo

    2017-04-01

    In visual tracking, deep learning with offline pretraining can extract more intrinsic and robust features. It has significant success solving the tracking drift in a complicated environment. However, offline pretraining requires numerous auxiliary training datasets and is considerably time-consuming for tracking tasks. To solve these problems, a multiscale sparse networks-based tracker (MSNT) under the particle filter framework is proposed. Based on the stacked sparse autoencoders and rectifier linear unit, the tracker has a flexible and adjustable architecture without the offline pretraining process and exploits the robust and powerful features effectively only through online training of limited labeled data. Meanwhile, the tracker builds four deep sparse networks of different scales, according to the target's profile type. During tracking, the tracker selects the matched tracking network adaptively in accordance with the initial target's profile type. It preserves the inherent structural information more efficiently than the single-scale networks. Additionally, a corresponding update strategy is proposed to improve the robustness of the tracker. Extensive experimental results on a large scale benchmark dataset show that the proposed method performs favorably against state-of-the-art methods in challenging environments.

  17. Intraoperative visualization and assessment of electromagnetic tracking error

    NASA Astrophysics Data System (ADS)

    Harish, Vinyas; Ungi, Tamas; Lasso, Andras; MacDonald, Andrew; Nanji, Sulaiman; Fichtinger, Gabor

    2015-03-01

    Electromagnetic tracking allows for increased flexibility in designing image-guided interventions, however it is well understood that electromagnetic tracking is prone to error. Visualization and assessment of the tracking error should take place in the operating room with minimal interference with the clinical procedure. The goal was to achieve this ideal in an open-source software implementation in a plug and play manner, without requiring programming from the user. We use optical tracking as a ground truth. An electromagnetic sensor and optical markers are mounted onto a stylus device, pivot calibrated for both trackers. Electromagnetic tracking error is defined as difference of tool tip position between electromagnetic and optical readings. Multiple measurements are interpolated into the thin-plate B-spline transform visualized in real time using 3D Slicer. All tracked devices are used in a plug and play manner through the open-source SlicerIGT and PLUS extensions of the 3D Slicer platform. Tracking error was measured multiple times to assess reproducibility of the method, both with and without placing ferromagnetic objects in the workspace. Results from exhaustive grid sampling and freehand sampling were similar, indicating that a quick freehand sampling is sufficient to detect unexpected or excessive field distortion in the operating room. The software is available as a plug-in for the 3D Slicer platforms. Results demonstrate potential for visualizing electromagnetic tracking error in real time for intraoperative environments in feasibility clinical trials in image-guided interventions.

  18. Combined Feature Based and Shape Based Visual Tracker for Robot Navigation

    NASA Technical Reports Server (NTRS)

    Deans, J.; Kunz, C.; Sargent, R.; Park, E.; Pedersen, L.

    2005-01-01

    We have developed a combined feature based and shape based visual tracking system designed to enable a planetary rover to visually track and servo to specific points chosen by a user with centimeter precision. The feature based tracker uses invariant feature detection and matching across a stereo pair, as well as matching pairs before and after robot movement in order to compute an incremental 6-DOF motion at each tracker update. This tracking method is subject to drift over time, which can be compensated by the shape based method. The shape based tracking method consists of 3D model registration, which recovers 6-DOF motion given sufficient shape and proper initialization. By integrating complementary algorithms, the combined tracker leverages the efficiency and robustness of feature based methods with the precision and accuracy of model registration. In this paper, we present the algorithms and their integration into a combined visual tracking system.

  19. Determinants for Sustained Use of an Activity Tracker: Observational Study

    PubMed Central

    Moons, Jonas; Kerkhof, Peter; Wiekens, Carina; De Groot, Martijn

    2017-01-01

    Background A lack of physical activity is considered to cause 6% of deaths globally. Feedback from wearables such as activity trackers has the potential to encourage daily physical activity. To date, little research is available on the natural development of adherence to activity trackers or on potential factors that predict which users manage to keep using their activity tracker during the first year (and thereby increasing the chance of healthy behavior change) and which users discontinue using their trackers after a short time. Objective The aim of this study was to identify the determinants for sustained use in the first year after purchase. Specifically, we look at the relative importance of demographic and socioeconomic, psychological, health-related, goal-related, technological, user experience–related, and social predictors of feedback device use. Furthermore, this study tests the effect of these predictors on physical activity. Methods A total of 711 participants from four urban areas in France received an activity tracker (Fitbit Zip) and gave permission to use their logged data. Participants filled out three Web-based questionnaires: at start, after 98 days, and after 232 days to measure the aforementioned determinants. Furthermore, for each participant, we collected activity data tracked by their Fitbit tracker for 320 days. We determined the relative importance of all included predictors by using Random Forest, a machine learning analysis technique. Results The data showed a slow exponential decay in Fitbit use, with 73.9% (526/711) of participants still tracking after 100 days and 16.0% (114/711) of participants tracking after 320 days. On average, participants used the tracker for 129 days. Most important reasons to quit tracking were technical issues such as empty batteries and broken trackers or lost trackers (21.5% of all Q3 respondents, 130/601). Random Forest analysis of predictors revealed that the most influential determinants were age, user experience–related factors, mobile phone type, household type, perceived effect of the Fitbit tracker, and goal-related factors. We explore the role of those predictors that show meaningful differences in the number of days the tracker was worn. Conclusions This study offers an overview of the natural development of the use of an activity tracker, as well as the relative importance of a range of determinants from literature. Decay is exponential but slower than may be expected from existing literature. Many factors have a small contribution to sustained use. The most important determinants are technical condition, age, user experience, and goal-related factors. This finding suggests that activity tracking is potentially beneficial for a broad range of target groups, but more attention should be paid to technical and user experience–related aspects of activity trackers. PMID:29084709

  20. Bayesian Estimation and Inference Using Stochastic Electronics

    PubMed Central

    Thakur, Chetan Singh; Afshar, Saeed; Wang, Runchun M.; Hamilton, Tara J.; Tapson, Jonathan; van Schaik, André

    2016-01-01

    In this paper, we present the implementation of two types of Bayesian inference problems to demonstrate the potential of building probabilistic algorithms in hardware using single set of building blocks with the ability to perform these computations in real time. The first implementation, referred to as the BEAST (Bayesian Estimation and Stochastic Tracker), demonstrates a simple problem where an observer uses an underlying Hidden Markov Model (HMM) to track a target in one dimension. In this implementation, sensors make noisy observations of the target position at discrete time steps. The tracker learns the transition model for target movement, and the observation model for the noisy sensors, and uses these to estimate the target position by solving the Bayesian recursive equation online. We show the tracking performance of the system and demonstrate how it can learn the observation model, the transition model, and the external distractor (noise) probability interfering with the observations. In the second implementation, referred to as the Bayesian INference in DAG (BIND), we show how inference can be performed in a Directed Acyclic Graph (DAG) using stochastic circuits. We show how these building blocks can be easily implemented using simple digital logic gates. An advantage of the stochastic electronic implementation is that it is robust to certain types of noise, which may become an issue in integrated circuit (IC) technology with feature sizes in the order of tens of nanometers due to their low noise margin, the effect of high-energy cosmic rays and the low supply voltage. In our framework, the flipping of random individual bits would not affect the system performance because information is encoded in a bit stream. PMID:27047326

  1. Onboard Robust Visual Tracking for UAVs Using a Reliable Global-Local Object Model

    PubMed Central

    Fu, Changhong; Duan, Ran; Kircali, Dogan; Kayacan, Erdal

    2016-01-01

    In this paper, we present a novel onboard robust visual algorithm for long-term arbitrary 2D and 3D object tracking using a reliable global-local object model for unmanned aerial vehicle (UAV) applications, e.g., autonomous tracking and chasing a moving target. The first main approach in this novel algorithm is the use of a global matching and local tracking approach. In other words, the algorithm initially finds feature correspondences in a way that an improved binary descriptor is developed for global feature matching and an iterative Lucas–Kanade optical flow algorithm is employed for local feature tracking. The second main module is the use of an efficient local geometric filter (LGF), which handles outlier feature correspondences based on a new forward-backward pairwise dissimilarity measure, thereby maintaining pairwise geometric consistency. In the proposed LGF module, a hierarchical agglomerative clustering, i.e., bottom-up aggregation, is applied using an effective single-link method. The third proposed module is a heuristic local outlier factor (to the best of our knowledge, it is utilized for the first time to deal with outlier features in a visual tracking application), which further maximizes the representation of the target object in which we formulate outlier feature detection as a binary classification problem with the output features of the LGF module. Extensive UAV flight experiments show that the proposed visual tracker achieves real-time frame rates of more than thirty-five frames per second on an i7 processor with 640 × 512 image resolution and outperforms the most popular state-of-the-art trackers favorably in terms of robustness, efficiency and accuracy. PMID:27589769

  2. Commonly available activity tracker apps and wearables as a mental health outcome indicator: A prospective observational cohort study among young adults with psychological distress.

    PubMed

    Knight, Alissa; Bidargaddi, Niranjan

    2018-08-15

    Monitoring is integral to adequately recognise and track mental health indicators of symptoms and functioning. Early identification of warning signs from digital footprints could facilitate adaptive and dynamic just in-time monitoring and care for individuals with common mental disorders. Self-report data on mental health and lifestyle behaviour from 120 male and female Australian young adults experiencing psychological distress were collected online. API software was used to download participant's daily activity duration measurements over eight months from linked commercial activity tracker apps and wearables in real time. An independent samples t-test was conducted to compare the differences in daily durations of recorded physical activity between wearable devises and smartphone apps. Entropy techniques using R interpol package were used to analyse volatility in daily activity duration. DASS-21 depression, stress and anxiety sub-scale scores indicated the study sample on average, had a moderate level of psychological distress. Daily activity duration was significantly greater from wearable devices when compared with smartphone apps (t-test = 25.4, p < 0.001). Entropy indices were not related with any of the DASS-21 measures. However, significant correlation between DASS-21 anxiety subscale scores and entropy of those with over 45 days measurements (r = 0.58, p = 0.02) was observed. The observational nature of this study prohibits causal inference. As a convenience sample was used, the results may lack generalisability to the wider population. Continuous monitoring using commercial apps and wearables as a resource to help clinicians augment clinical care for common mental disorders appears viable. Copyright © 2018. Published by Elsevier B.V.

  3. Bayesian Estimation and Inference Using Stochastic Electronics.

    PubMed

    Thakur, Chetan Singh; Afshar, Saeed; Wang, Runchun M; Hamilton, Tara J; Tapson, Jonathan; van Schaik, André

    2016-01-01

    In this paper, we present the implementation of two types of Bayesian inference problems to demonstrate the potential of building probabilistic algorithms in hardware using single set of building blocks with the ability to perform these computations in real time. The first implementation, referred to as the BEAST (Bayesian Estimation and Stochastic Tracker), demonstrates a simple problem where an observer uses an underlying Hidden Markov Model (HMM) to track a target in one dimension. In this implementation, sensors make noisy observations of the target position at discrete time steps. The tracker learns the transition model for target movement, and the observation model for the noisy sensors, and uses these to estimate the target position by solving the Bayesian recursive equation online. We show the tracking performance of the system and demonstrate how it can learn the observation model, the transition model, and the external distractor (noise) probability interfering with the observations. In the second implementation, referred to as the Bayesian INference in DAG (BIND), we show how inference can be performed in a Directed Acyclic Graph (DAG) using stochastic circuits. We show how these building blocks can be easily implemented using simple digital logic gates. An advantage of the stochastic electronic implementation is that it is robust to certain types of noise, which may become an issue in integrated circuit (IC) technology with feature sizes in the order of tens of nanometers due to their low noise margin, the effect of high-energy cosmic rays and the low supply voltage. In our framework, the flipping of random individual bits would not affect the system performance because information is encoded in a bit stream.

  4. Autonomous Real Time Requirements Tracing

    NASA Technical Reports Server (NTRS)

    Plattsmier, George I.; Stetson, Howard K.

    2014-01-01

    One of the more challenging aspects of software development is the ability to verify and validate the functional software requirements dictated by the Software Requirements Specification (SRS) and the Software Detail Design (SDD). Insuring the software has achieved the intended requirements is the responsibility of the Software Quality team and the Software Test team. The utilization of Timeliner-TLX(sup TM) Auto-Procedures for relocating ground operations positions to ISS automated on-board operations has begun the transition that would be required for manned deep space missions with minimal crew requirements. This transition also moves the auto-procedures from the procedure realm into the flight software arena and as such the operational requirements and testing will be more structured and rigorous. The autoprocedures would be required to meet NASA software standards as specified in the Software Safety Standard (NASASTD- 8719), the Software Engineering Requirements (NPR 7150), the Software Assurance Standard (NASA-STD-8739) and also the Human Rating Requirements (NPR-8705). The Autonomous Fluid Transfer System (AFTS) test-bed utilizes the Timeliner-TLX(sup TM) Language for development of autonomous command and control software. The Timeliner- TLX(sup TM) system has the unique feature of providing the current line of the statement in execution during real-time execution of the software. The feature of execution line number internal reporting unlocks the capability of monitoring the execution autonomously by use of a companion Timeliner-TLX(sup TM) sequence as the line number reporting is embedded inside the Timeliner-TLX(sup TM) execution engine. This negates I/O processing of this type data as the line number status of executing sequences is built-in as a function reference. This paper will outline the design and capabilities of the AFTS Autonomous Requirements Tracker, which traces and logs SRS requirements as they are being met during real-time execution of the targeted system. It is envisioned that real time requirements tracing will greatly assist the movement of autoprocedures to flight software enhancing the software assurance of auto-procedures and also their acceptance as reliable commanders

  5. Autonomous Real Time Requirements Tracing

    NASA Technical Reports Server (NTRS)

    Plattsmier, George; Stetson, Howard

    2014-01-01

    One of the more challenging aspects of software development is the ability to verify and validate the functional software requirements dictated by the Software Requirements Specification (SRS) and the Software Detail Design (SDD). Insuring the software has achieved the intended requirements is the responsibility of the Software Quality team and the Software Test team. The utilization of Timeliner-TLX(sup TM) Auto- Procedures for relocating ground operations positions to ISS automated on-board operations has begun the transition that would be required for manned deep space missions with minimal crew requirements. This transition also moves the auto-procedures from the procedure realm into the flight software arena and as such the operational requirements and testing will be more structured and rigorous. The autoprocedures would be required to meet NASA software standards as specified in the Software Safety Standard (NASASTD- 8719), the Software Engineering Requirements (NPR 7150), the Software Assurance Standard (NASA-STD-8739) and also the Human Rating Requirements (NPR-8705). The Autonomous Fluid Transfer System (AFTS) test-bed utilizes the Timeliner-TLX(sup TM) Language for development of autonomous command and control software. The Timeliner-TLX(sup TM) system has the unique feature of providing the current line of the statement in execution during real-time execution of the software. The feature of execution line number internal reporting unlocks the capability of monitoring the execution autonomously by use of a companion Timeliner-TLX(sup TM) sequence as the line number reporting is embedded inside the Timeliner-TLX(sup TM) execution engine. This negates I/O processing of this type data as the line number status of executing sequences is built-in as a function reference. This paper will outline the design and capabilities of the AFTS Autonomous Requirements Tracker, which traces and logs SRS requirements as they are being met during real-time execution of the targeted system. It is envisioned that real time requirements tracing will greatly assist the movement of autoprocedures to flight software enhancing the software assurance of auto-procedures and also their acceptance as reliable commanders.

  6. Intelligent Launch and Range Operations Virtual Test Bed (ILRO-VTB)

    NASA Technical Reports Server (NTRS)

    Bardina, Jorge; Rajkumar, T.

    2003-01-01

    Intelligent Launch and Range Operations Virtual Test Bed (ILRO-VTB) is a real-time web-based command and control, communication, and intelligent simulation environment of ground-vehicle, launch and range operation activities. ILRO-VTB consists of a variety of simulation models combined with commercial and indigenous software developments (NASA Ames). It creates a hybrid software/hardware environment suitable for testing various integrated control system components of launch and range. The dynamic interactions of the integrated simulated control systems are not well understood. Insight into such systems can only be achieved through simulation/emulation. For that reason, NASA has established a VTB where we can learn the actual control and dynamics of designs for future space programs, including testing and performance evaluation. The current implementation of the VTB simulates the operations of a sub-orbital vehicle of mission, control, ground-vehicle engineering, launch and range operations. The present development of the test bed simulates the operations of Space Shuttle Vehicle (SSV) at NASA Kennedy Space Center. The test bed supports a wide variety of shuttle missions with ancillary modeling capabilities like weather forecasting, lightning tracker, toxic gas dispersion model, debris dispersion model, telemetry, trajectory modeling, ground operations, payload models and etc. To achieve the simulations, all models are linked using Common Object Request Broker Architecture (CORBA). The test bed provides opportunities for government, universities, researchers and industries to do a real time of shuttle launch in cyber space.

  7. Intelligent launch and range operations virtual testbed (ILRO-VTB)

    NASA Astrophysics Data System (ADS)

    Bardina, Jorge; Rajkumar, Thirumalainambi

    2003-09-01

    Intelligent Launch and Range Operations Virtual Test Bed (ILRO-VTB) is a real-time web-based command and control, communication, and intelligent simulation environment of ground-vehicle, launch and range operation activities. ILRO-VTB consists of a variety of simulation models combined with commercial and indigenous software developments (NASA Ames). It creates a hybrid software/hardware environment suitable for testing various integrated control system components of launch and range. The dynamic interactions of the integrated simulated control systems are not well understood. Insight into such systems can only be achieved through simulation/emulation. For that reason, NASA has established a VTB where we can learn the actual control and dynamics of designs for future space programs, including testing and performance evaluation. The current implementation of the VTB simulates the operations of a sub-orbital vehicle of mission, control, ground-vehicle engineering, launch and range operations. The present development of the test bed simulates the operations of Space Shuttle Vehicle (SSV) at NASA Kennedy Space Center. The test bed supports a wide variety of shuttle missions with ancillary modeling capabilities like weather forecasting, lightning tracker, toxic gas dispersion model, debris dispersion model, telemetry, trajectory modeling, ground operations, payload models and etc. To achieve the simulations, all models are linked using Common Object Request Broker Architecture (CORBA). The test bed provides opportunities for government, universities, researchers and industries to do a real time of shuttle launch in cyber space.

  8. Time Course of Visual Extrapolation Accuracy

    DTIC Science & Technology

    1995-09-01

    The pond and duckweed problem: Three experiments on the misperception of exponential growth . Acta Psychologica 43, 239-251. Wiener, E.L., 1962...random variation in tracker velocity. Both models predicted changes in hit and false alarm rates well, except in a condition where response asymmetries...systematic velocity error in tracking, only random variation in tracker velocity. Both models predicted changes in hit and false alarm rates well

  9. Asynchronous timing and Doppler recovery in DSP based DPSK modems for fixed and mobile satellite applications

    NASA Astrophysics Data System (ADS)

    Koblents, B.; Belanger, M.; Woods, D.; McLane, P. J.

    While conventional analog modems employ some kind of clock wave regenerator circuit for synchronous timing recovery, in sampled modem receivers the timing is recovered asynchronously to the incoming data stream, with no adjustment being made to the input sampling rate. All timing corrections are accomplished by digital operations on the sampled data stream, and timing recovery is asynchronous with the uncontrolled, input A/D system. A good timing error measurement algorithm is a zero crossing tracker proposed by Gardner. Digital, speech rate (2400 - 4800 bps) M-PSK modem receivers employing Gardner's zero crossing tracker were implemented and tested and found to achieve BER performance very close to theoretical values on the AWGN channel. Nyguist pulse shaped modem systems with excess bandwidth factors ranging from 100 to 60 percent were considered. We can show that for any symmetric M-PSK signal set Gardner's NDA algorithm is free of pattern jitter for any carrier phase offset for rectangular pulses and for Nyquist pulses having 100 percent excess bandwidth. Also, the Nyquist pulse shaped system is studied on the mobile satellite channel, where Doppler shifts and multipath fading degrade the pi/4-DQPSK signal. Two simple modifications to Gardner's zero crossing tracker enable it to remain useful in the presence of multipath fading.

  10. Asynchronous timing and Doppler recovery in DSP based DPSK modems for fixed and mobile satellite applications

    NASA Technical Reports Server (NTRS)

    Koblents, B.; Belanger, M.; Woods, D.; Mclane, P. J.

    1993-01-01

    While conventional analog modems employ some kind of clock wave regenerator circuit for synchronous timing recovery, in sampled modem receivers the timing is recovered asynchronously to the incoming data stream, with no adjustment being made to the input sampling rate. All timing corrections are accomplished by digital operations on the sampled data stream, and timing recovery is asynchronous with the uncontrolled, input A/D system. A good timing error measurement algorithm is a zero crossing tracker proposed by Gardner. Digital, speech rate (2400 - 4800 bps) M-PSK modem receivers employing Gardner's zero crossing tracker were implemented and tested and found to achieve BER performance very close to theoretical values on the AWGN channel. Nyguist pulse shaped modem systems with excess bandwidth factors ranging from 100 to 60 percent were considered. We can show that for any symmetric M-PSK signal set Gardner's NDA algorithm is free of pattern jitter for any carrier phase offset for rectangular pulses and for Nyquist pulses having 100 percent excess bandwidth. Also, the Nyquist pulse shaped system is studied on the mobile satellite channel, where Doppler shifts and multipath fading degrade the pi/4-DQPSK signal. Two simple modifications to Gardner's zero crossing tracker enable it to remain useful in the presence of multipath fading.

  11. The Muon Portal Double Tracker for the Inspection of Travelling Containers

    NASA Astrophysics Data System (ADS)

    Pugliatti, C.; Antonuccio, V.; Bandieramonte, M.; Becciani, U.; Belluomo, F.; Blancato, A.; Bonanno, G.; Costa, A.; Fallica, P. G.; Garozzo, S.; Grillo, A.; Indelicato, V.; La Rocca, P.; Leonora, E.; Longhitano, F.; Longo, S.; Lo Presti, D.; Marano, D.; Massimino, P.; Petta, C.; Pistagna, C.; Puglisi, M.; Randazzo, N.; Riggi, F.; Riggi, S.; Romeo, G.; Russo, G. V.; Santagati, G.; Timpanaro, M. C.; Valvo, G.; Vitello, F.; Zaia, A.

    2015-12-01

    The Muon Portal Project has as its goal the design and construction of a real-size working detector prototype in scale 1:1, to inspect the content of travelling containers by means of the secondary cosmic-ray muon radiation and to recognize high-Z hidden materials (i.e. U, Pu). The tomographic image is obtained by reconstructing the input and output trajectories of each muon when it crosses the container and, consequently, the scattering angle, making use of two trackers placed above and below the container. The scan is performed without adding any external radiation, in a reasonable time (few minutes) and with a good spatial and angular resolution. The detector consists of 8 planes each segmented in 6 identical modules. Each module is made of scintillating strips with two WaveLength Shifting fibers (WLS) inside, coupled to Silicon photomultipliers. The customized read-out electronics employs programmable boards. Thanks to a smart read-out system, the number of output channels is reduced by a factor 10. The signals from the front-end modules are sent to the read-out boards, in order to convert analog signals to digital ones, by comparison with a threshold. The data are pre-analyzed and stored into a data acquisition PC. After an intense measurement and simulation campaign to carefully characterize the detector components, the first detection modules ( 1 ×3 m2) have been already built. In this paper the detector architecture, particularly focusing on the used electronics and the main preliminary results will be presented.

  12. The Promise of Using Energy Tracking Data to Promote Home-School Connections and Youth Agency in Climate Action

    NASA Astrophysics Data System (ADS)

    Walsh, E.; Jenkins, D.; Cordero, E.

    2015-12-01

    Formal classroom learning experiences that support energy conservation behaviors outside the classroom necessarily must bridge students' home and school lives, as knowledge and practice learned in the classroom is implemented outside of school. To this end, we study the impact of the Green Ninja Energy Tracker curriculum, which uses students' home energy data in the classroom to promote engagement in climate change and conservation behaviors. Data is drawn from class observations, a focus group, and pre- and post- surveys of a pilot implementation of this curriculum in a diverse 12th-grade Earth Science classroom at an alternative school. We investigate what factors contributed to student engagement in learning about and participating in energy conservation behaviors. We found that students were engaged by the immediacy of tracking their energy use in near-real time, and were motivated by the economic benefits experienced as a direct result of changing their behaviors. In addition, students reported discussing and problem-solving energy use with their families, and surfaced considerations that informed which energy behaviors were implemented and why. Students also reported high levels of personal agency in taking action on climate change, but were pessimistic about the likelihood of society as a whole taking action. We suggest that this pilot demonstrates that potential power of connecting students' home and school lives through energy tracker software as a catalyst for developing scientific expertise and engagement, and supporting energy conservation behaviors.

  13. A versatile photogrammetric camera automatic calibration suite for multispectral fusion and optical helmet tracking

    NASA Astrophysics Data System (ADS)

    de Villiers, Jason; Jermy, Robert; Nicolls, Fred

    2014-06-01

    This paper presents a system to determine the photogrammetric parameters of a camera. The lens distortion, focal length and camera six degree of freedom (DOF) position are calculated. The system caters for cameras of different sensitivity spectra and fields of view without any mechanical modifications. The distortion characterization, a variant of Brown's classic plumb line method, allows many radial and tangential distortion coefficients and finds the optimal principal point. Typical values are 5 radial and 3 tangential coefficients. These parameters are determined stably and demonstrably produce superior results to low order models despite popular and prevalent misconceptions to the contrary. The system produces coefficients to model both the distorted to undistorted pixel coordinate transformation (e.g. for target designation) and the inverse transformation (e.g. for image stitching and fusion) allowing deterministic rates far exceeding real time. The focal length is determined to minimise the error in absolute photogrammetric positional measurement for both multi camera systems or monocular (e.g. helmet tracker) systems. The system determines the 6 DOF position of the camera in a chosen coordinate system. It can also determine the 6 DOF offset of the camera relative to its mechanical mount. This allows faulty cameras to be replaced without requiring a recalibration of the entire system (such as an aircraft cockpit). Results from two simple applications of the calibration results are presented: stitching and fusion of the images from a dual-band visual/ LWIR camera array, and a simple laboratory optical helmet tracker.

  14. SOFIA tracking image simulation

    NASA Astrophysics Data System (ADS)

    Taylor, Charles R.; Gross, Michael A. K.

    2016-09-01

    The Stratospheric Observatory for Infrared Astronomy (SOFIA) tracking camera simulator is a component of the Telescope Assembly Simulator (TASim). TASim is a software simulation of the telescope optics, mounting, and control software. Currently in its fifth major version, TASim is relied upon for telescope operator training, mission planning and rehearsal, and mission control and science instrument software development and testing. TASim has recently been extended for hardware-in-the-loop operation in support of telescope and camera hardware development and control and tracking software improvements. All three SOFIA optical tracking cameras are simulated, including the Focal Plane Imager (FPI), which has recently been upgraded to the status of a science instrument that can be used on its own or in parallel with one of the seven infrared science instruments. The simulation includes tracking camera image simulation of starfields based on the UCAC4 catalog at real-time rates of 4-20 frames per second. For its role in training and planning, it is important for the tracker image simulation to provide images with a realistic appearance and response to changes in operating parameters. For its role in tracker software improvements, it is vital to have realistic signal and noise levels and precise star positions. The design of the software simulation for precise subpixel starfield rendering (including radial distortion), realistic point-spread function as a function of focus, tilt, and collimation, and streaking due to telescope motion will be described. The calibration of the simulation for light sensitivity, dark and bias signal, and noise will also be presented

  15. Experiments and hands-on activities for geoscience observing and measuring by using low-priced instruments

    NASA Astrophysics Data System (ADS)

    Yang, S. S.; Lin, Y. Y.; Tang-Iunn, S. S.

    2016-12-01

    In this presentation, we will introduce five experiments and hands-on activities for geoscience observing and measuring by using low-priced and small-sized commercial instruments. The Black Box for Environmental Measuring (BBEM) system is based on Arduino platform, low-power consumption sensors are employed to measure meteorological and environmental parameters. Commercial GPS receiver is used to observe the influence of geomagnetic storms on GPS system. Webcam is an accessible instrument which is suitable for detecting and recording sprites, thunders, and the development of cumulonimbus. Real-time flight trackers and websites are employed to determine the altitude of cloud base. A simple VLF receiver is built by using the audio interface on computer, and the observed signals showed the variations of the D-region of the ionosphere. All these experiments and activities are practical and have been applied in classroom and science outreach in Taiwan.

  16. The forensic holodeck: an immersive display for forensic crime scene reconstructions.

    PubMed

    Ebert, Lars C; Nguyen, Tuan T; Breitbeck, Robert; Braun, Marcel; Thali, Michael J; Ross, Steffen

    2014-12-01

    In forensic investigations, crime scene reconstructions are created based on a variety of three-dimensional image modalities. Although the data gathered are three-dimensional, their presentation on computer screens and paper is two-dimensional, which incurs a loss of information. By applying immersive virtual reality (VR) techniques, we propose a system that allows a crime scene to be viewed as if the investigator were present at the scene. We used a low-cost VR headset originally developed for computer gaming in our system. The headset offers a large viewing volume and tracks the user's head orientation in real-time, and an optical tracker is used for positional information. In addition, we created a crime scene reconstruction to demonstrate the system. In this article, we present a low-cost system that allows immersive, three-dimensional and interactive visualization of forensic incident scene reconstructions.

  17. Sparse Coding and Counting for Robust Visual Tracking

    PubMed Central

    Liu, Risheng; Wang, Jing; Shang, Xiaoke; Wang, Yiyang; Su, Zhixun; Cai, Yu

    2016-01-01

    In this paper, we propose a novel sparse coding and counting method under Bayesian framework for visual tracking. In contrast to existing methods, the proposed method employs the combination of L0 and L1 norm to regularize the linear coefficients of incrementally updated linear basis. The sparsity constraint enables the tracker to effectively handle difficult challenges, such as occlusion or image corruption. To achieve real-time processing, we propose a fast and efficient numerical algorithm for solving the proposed model. Although it is an NP-hard problem, the proposed accelerated proximal gradient (APG) approach is guaranteed to converge to a solution quickly. Besides, we provide a closed solution of combining L0 and L1 regularized representation to obtain better sparsity. Experimental results on challenging video sequences demonstrate that the proposed method achieves state-of-the-art results both in accuracy and speed. PMID:27992474

  18. Co-located haptic and 3D graphic interface for medical simulations.

    PubMed

    Berkelman, Peter; Miyasaka, Muneaki; Bozlee, Sebastian

    2013-01-01

    We describe a system which provides high-fidelity haptic feedback in the same physical location as a 3D graphical display, in order to enable realistic physical interaction with virtual anatomical tissue during modelled procedures such as needle driving, palpation, and other interventions performed using handheld instruments. The haptic feedback is produced by the interaction between an array of coils located behind a thin flat LCD screen, and permanent magnets embedded in the instrument held by the user. The coil and magnet configuration permits arbitrary forces and torques to be generated on the instrument in real time according to the dynamics of the simulated tissue by activating the coils in combination. A rigid-body motion tracker provides position and orientation feedback of the handheld instrument to the computer simulation, and the 3D display is produced using LCD shutter glasses and a head-tracking system for the user.

  19. Investigating Intrinsic and Extrinsic Variables During Simulated Internet Search

    NASA Technical Reports Server (NTRS)

    Liechty, Molly M.; Madhavan, Poornima

    2011-01-01

    Using an eye tracker we examined decision-making processes during an internet search task. Twenty experienced homebuyers and twenty-five undergraduates from Old Dominion University viewed homes on a simulated real estate website. Several of the homes included physical properties that had the potential to negatively impact individual perceptions. These negative externalities were either easy to change (Level 1) or impossible to change (Level 2). Eye movements were analyzed to examine the relationship between participants' "stated preferences"[verbalized preferences], "revealed preferences" [actual decisions[, and experience. Dwell times, fixation durations/counts, and saccade counts/amplitudes were analyzed. Results revealed that experienced homebuyers demonstrated a more refined search pattern than novice searchers. Experienced homebuyers were also less impacted by negative externalities. Furthermore, stated preferences were discrepant from revealed preferences; although participants initially stated they liked/disliked a graphic, their eye movement patterns did not reflect this trend. These results have important implications for design of user-friendly web interfaces.

  20. Miniature Laser Tracker

    DOEpatents

    Vann, Charles S.

    2003-09-09

    This small, inexpensive, non-contact laser sensor can detect the location of a retroreflective target in a relatively large volume and up to six degrees of position. The tracker's laser beam is formed into a plane of light which is swept across the space of interest. When the beam illuminates the retroreflector, some of the light returns to the tracker. The intensity, angle, and time of the return beam is measured to calculate the three dimensional location of the target. With three retroreflectors on the target, the locations of three points on the target are measured, enabling the calculation of all six degrees of target position. Until now, devices for three-dimensional tracking of objects in a large volume have been heavy, large, and very expensive. Because of the simplicity and unique characteristics of this tracker, it is capable of three-dimensional tracking of one to several objects in a large volume, yet it is compact, light-weight, and relatively inexpensive. Alternatively, a tracker produces a diverging laser beam which is directed towards a fixed position, and senses when a retroreflective target enters the fixed field of view. An optically bar coded target can be read by the tracker to provide information about the target. The target can be formed of a ball lens with a bar code on one end. As the target moves through the field, the ball lens causes the laser beam to scan across the bar code.

  1. Muon trackers for imaging a nuclear reactor

    NASA Astrophysics Data System (ADS)

    Kume, N.; Miyadera, H.; Morris, C. L.; Bacon, J.; Borozdin, K. N.; Durham, J. M.; Fuzita, K.; Guardincerri, E.; Izumi, M.; Nakayama, K.; Saltus, M.; Sugita, T.; Takakura, K.; Yoshioka, K.

    2016-09-01

    A detector system for assessing damage to the cores of the Fukushima Daiichi nuclear reactors by using cosmic-ray muon tomography was developed. The system consists of a pair of drift-tube tracking detectors of 7.2× 7.2-m2 area. Each muon tracker consists of 6 x-layer and 6 y-layer drift-tube detectors. Each tracker is capable of measuring muon tracks with 12 mrad angular resolutions, and is capable of operating under 50-μ Sv/h radiation environment by removing gamma induced background with a novel time-coincidence logic. An estimated resolution to observe nuclear fuel debris at Fukushima Daiichi is 0.3 m when the core is imaged from outside the reactor building.

  2. Sensing and perception research for space telerobotics at JPL

    NASA Technical Reports Server (NTRS)

    Gennery, Donald B.; Litwin, Todd; Wilcox, Brian; Bon, Bruce

    1987-01-01

    PIFLEX is a pipelined-image processor that can perform elaborate computations whose exact nature is not fixed in the hardware, and that can handle multiple images. A wire-wrapped prototype PIFEX module has been produced and debugged, using a version of the convolver composed of three custom VLSI chips (plus the line buffers). A printed circuit layout is being designed for use with a single-chip convolver, leading to production of a PIFEX with about 120 modules. A high-level language for programming PIFEX has been designed, and a compiler will be written for it. The camera calibration software has been completed and tested. Two more terms in the camera model, for lens distortion, probably will be added later. The acquisition and tracking system has been designed and most of it has been coded in Pascal for the MicroVAX-II. The feature tracker, motion stereo module and stereo matcher have executed successfully. The model matcher is still under development, and coding has begun on the tracking initializer. The object tracker was running on a different computer from the VAX, and preliminary runs on real images have been performed there. Once all modules are working, optimization and integration will begin. Finally, when a sufficiently large PIFEX is available, appropriate parts of acquisition and tracking, including much of the feature tracker, will be programmed into PIFEX, thus increasing the speed and robustness of the system.

  3. Do you see what I see? Mobile eye-tracker contextual analysis and inter-rater reliability.

    PubMed

    Stuart, S; Hunt, D; Nell, J; Godfrey, A; Hausdorff, J M; Rochester, L; Alcock, L

    2018-02-01

    Mobile eye-trackers are currently used during real-world tasks (e.g. gait) to monitor visual and cognitive processes, particularly in ageing and Parkinson's disease (PD). However, contextual analysis involving fixation locations during such tasks is rarely performed due to its complexity. This study adapted a validated algorithm and developed a classification method to semi-automate contextual analysis of mobile eye-tracking data. We further assessed inter-rater reliability of the proposed classification method. A mobile eye-tracker recorded eye-movements during walking in five healthy older adult controls (HC) and five people with PD. Fixations were identified using a previously validated algorithm, which was adapted to provide still images of fixation locations (n = 116). The fixation location was manually identified by two raters (DH, JN), who classified the locations. Cohen's kappa correlation coefficients determined the inter-rater reliability. The algorithm successfully provided still images for each fixation, allowing manual contextual analysis to be performed. The inter-rater reliability for classifying the fixation location was high for both PD (kappa = 0.80, 95% agreement) and HC groups (kappa = 0.80, 91% agreement), which indicated a reliable classification method. This study developed a reliable semi-automated contextual analysis method for gait studies in HC and PD. Future studies could adapt this methodology for various gait-related eye-tracking studies.

  4. Echo tracker/range finder for radars and sonars

    NASA Technical Reports Server (NTRS)

    Constantinides, N. J. (Inventor)

    1982-01-01

    An echo tracker/range finder or altimeter is described. The pulse repetition frequency (PFR) of a predetermined plurality of transmitted pulses is adjusted so that echo pulses received from a reflecting object are positioned between transmitted pulses and divided their interpulse time interval into two time intervals having a predetermined ratio with respect to each other. The invention described provides a means whereby the arrival time of a plurality of echo pulses is defined as the time at which a composite echo pulse formed of a sum of the individual echo pulses has the highest amplitude. The invention is applicable to radar systems, sonar systems, or any other kind of system in which pulses are transmitted and echoes received therefrom.

  5. Front-end electronics for the Muon Portal project

    NASA Astrophysics Data System (ADS)

    Garozzo, S.; Marano, D.; Bonanno, G.; Grillo, A.; Romeo, G.; Timpanaro, M. C.; Lo Presti, D.; Riggi, F.; Russo, V.; Bonanno, D.; La Rocca, P.; Longhitano, F.; Bongiovanni, D. G.; Fallica, G.; Valvo, G.

    2016-10-01

    The Muon Portal Project was born as a joint initiative between Italian research and industrial partners, aimed at the construction of a real-size working detector prototype to inspect the content of traveling containers by means of secondary cosmic-ray muon radiation and recognize potentially dangerous hidden materials. The tomographic image is obtained by reconstructing the incoming and outgoing muon trajectories when crossing the inspected volume, employing two tracker planes located above and below the container under inspection. In this paper, the design and development of the front-end electronics of the Muon Portal detector is presented, with particular emphasis being devoted to the photo-sensor devices detecting the scintillation light and to the read-out circuitry which is in charge of processing and digitizing the analog pulse signals. In addition, the remote control system, mechanical housing, and thermal cooling system of all structural blocks of the Muon Portal tracker are also discussed, demonstrating the effectiveness and functionality of the adopted design.

  6. Matching Real and Synthetic Panoramic Images Using a Variant of Geometric Hashing

    NASA Astrophysics Data System (ADS)

    Li-Chee-Ming, J.; Armenakis, C.

    2017-05-01

    This work demonstrates an approach to automatically initialize a visual model-based tracker, and recover from lost tracking, without prior camera pose information. These approaches are commonly referred to as tracking-by-detection. Previous tracking-by-detection techniques used either fiducials (i.e. landmarks or markers) or the object's texture. The main contribution of this work is the development of a tracking-by-detection algorithm that is based solely on natural geometric features. A variant of geometric hashing, a model-to-image registration algorithm, is proposed that searches for a matching panoramic image from a database of synthetic panoramic images captured in a 3D virtual environment. The approach identifies corresponding features between the matched panoramic images. The corresponding features are to be used in a photogrammetric space resection to estimate the camera pose. The experiments apply this algorithm to initialize a model-based tracker in an indoor environment using the 3D CAD model of the building.

  7. Understanding usage of a hybrid website and smartphone app for weight management: a mixed-methods study.

    PubMed

    Morrison, Leanne G; Hargood, Charlie; Lin, Sharon Xiaowen; Dennison, Laura; Joseph, Judith; Hughes, Stephanie; Michaelides, Danius T; Johnston, Derek; Johnston, Marie; Michie, Susan; Little, Paul; Smith, Peter Wf; Weal, Mark J; Yardley, Lucy

    2014-10-22

    Advancements in mobile phone technology offer huge potential for enhancing the timely delivery of health behavior change interventions. The development of smartphone-based health interventions (apps) is a rapidly growing field of research, yet there have been few longitudinal examinations of how people experience and use these apps within their day-to-day routines, particularly within the context of a hybrid Web- and app-based intervention. This study used an in-depth mixed-methods design to examine individual variation in (1) impact on self-reported goal engagement (ie, motivation, self-efficacy, awareness, effort, achievement) of access to a weight management app (POWeR Tracker) when provided alongside a Web-based weight management intervention (POWeR) and (2) usage and views of POWeR Tracker. Thirteen adults were provided access to POWeR and were monitored over a 4-week period. Access to POWeR Tracker was provided in 2 alternate weeks (ie, weeks 1 and 3 or weeks 2 and 4). Participants' goal engagement was measured daily via self-report. Mixed effects models were used to examine change in goal engagement between the weeks when POWeR Tracker was and was not available and whether the extent of change in goal engagement varied between individual participants. Usage of POWeR and POWeR Tracker was automatically recorded for each participant. Telephone interviews were conducted and analyzed using inductive thematic analysis to further explore participants' experiences using POWeR and POWeR Tracker. Access to POWeR Tracker was associated with a significant increase in participants' awareness of their eating (β1=0.31, P=.04) and physical activity goals (β1=0.28, P=.03). The level of increase varied between individual participants. Usage data showed that participants used the POWeR website for similar amounts of time during the weeks when POWeR Tracker was (mean 29 minutes, SD 31 minutes) and was not available (mean 27 minutes, SD 33 minutes). POWeR Tracker was mostly accessed in short bursts (mean 3 minutes, SD 2 minutes) during convenient moments or moments when participants deemed the intervention content most relevant. The qualitative data indicated that nearly all participants agreed that it was more convenient to access information on-the-go via their mobiles compared to a computer. However, participants varied in their views and usage of the Web- versus app-based components and the informational versus tracking tools provided by POWeR Tracker. This study provides evidence that smartphones have the potential to improve individuals' engagement with their health-related goals when used as a supplement to an existing online intervention. The perceived convenience of mobile access to information does not appear to deter use of Web-based interventions or strengthen the impact of app access on goal engagement. A mixed-methods design enabled exploration of individual variation in daily usage of the app-based tools.

  8. Understanding Usage of a Hybrid Website and Smartphone App for Weight Management: A Mixed-Methods Study

    PubMed Central

    Hargood, Charlie; Lin, Sharon Xiaowen; Dennison, Laura; Joseph, Judith; Hughes, Stephanie; Michaelides, Danius T; Johnston, Derek; Johnston, Marie; Michie, Susan; Little, Paul; Smith, Peter WF; Weal, Mark J; Yardley, Lucy

    2014-01-01

    Background Advancements in mobile phone technology offer huge potential for enhancing the timely delivery of health behavior change interventions. The development of smartphone-based health interventions (apps) is a rapidly growing field of research, yet there have been few longitudinal examinations of how people experience and use these apps within their day-to-day routines, particularly within the context of a hybrid Web- and app-based intervention. Objective This study used an in-depth mixed-methods design to examine individual variation in (1) impact on self-reported goal engagement (ie, motivation, self-efficacy, awareness, effort, achievement) of access to a weight management app (POWeR Tracker) when provided alongside a Web-based weight management intervention (POWeR) and (2) usage and views of POWeR Tracker. Methods Thirteen adults were provided access to POWeR and were monitored over a 4-week period. Access to POWeR Tracker was provided in 2 alternate weeks (ie, weeks 1 and 3 or weeks 2 and 4). Participants’ goal engagement was measured daily via self-report. Mixed effects models were used to examine change in goal engagement between the weeks when POWeR Tracker was and was not available and whether the extent of change in goal engagement varied between individual participants. Usage of POWeR and POWeR Tracker was automatically recorded for each participant. Telephone interviews were conducted and analyzed using inductive thematic analysis to further explore participants’ experiences using POWeR and POWeR Tracker. Results Access to POWeR Tracker was associated with a significant increase in participants’ awareness of their eating (β1=0.31, P=.04) and physical activity goals (β1=0.28, P=.03). The level of increase varied between individual participants. Usage data showed that participants used the POWeR website for similar amounts of time during the weeks when POWeR Tracker was (mean 29 minutes, SD 31 minutes) and was not available (mean 27 minutes, SD 33 minutes). POWeR Tracker was mostly accessed in short bursts (mean 3 minutes, SD 2 minutes) during convenient moments or moments when participants deemed the intervention content most relevant. The qualitative data indicated that nearly all participants agreed that it was more convenient to access information on-the-go via their mobiles compared to a computer. However, participants varied in their views and usage of the Web- versus app-based components and the informational versus tracking tools provided by POWeR Tracker. Conclusions This study provides evidence that smartphones have the potential to improve individuals’ engagement with their health-related goals when used as a supplement to an existing online intervention. The perceived convenience of mobile access to information does not appear to deter use of Web-based interventions or strengthen the impact of app access on goal engagement. A mixed-methods design enabled exploration of individual variation in daily usage of the app-based tools. PMID:25355131

  9. ATON (Autonomous Terrain-based Optical Navigation) for exploration missions: recent flight test results

    NASA Astrophysics Data System (ADS)

    Theil, S.; Ammann, N.; Andert, F.; Franz, T.; Krüger, H.; Lehner, H.; Lingenauber, M.; Lüdtke, D.; Maass, B.; Paproth, C.; Wohlfeil, J.

    2018-03-01

    Since 2010 the German Aerospace Center is working on the project Autonomous Terrain-based Optical Navigation (ATON). Its objective is the development of technologies which allow autonomous navigation of spacecraft in orbit around and during landing on celestial bodies like the Moon, planets, asteroids and comets. The project developed different image processing techniques and optical navigation methods as well as sensor data fusion. The setup—which is applicable to many exploration missions—consists of an inertial measurement unit, a laser altimeter, a star tracker and one or multiple navigation cameras. In the past years, several milestones have been achieved. It started with the setup of a simulation environment including the detailed simulation of camera images. This was continued by hardware-in-the-loop tests in the Testbed for Robotic Optical Navigation (TRON) where images were generated by real cameras in a simulated downscaled lunar landing scene. Data were recorded in helicopter flight tests and post-processed in real-time to increase maturity of the algorithms and to optimize the software. Recently, two more milestones have been achieved. In late 2016, the whole navigation system setup was flying on an unmanned helicopter while processing all sensor information onboard in real time. For the latest milestone the navigation system was tested in closed-loop on the unmanned helicopter. For that purpose the ATON navigation system provided the navigation state for the guidance and control of the unmanned helicopter replacing the GPS-based standard navigation system. The paper will give an introduction to the ATON project and its concept. The methods and algorithms of ATON are briefly described. The flight test results of the latest two milestones are presented and discussed.

  10. A resolution recognizing the 50th anniversary of the date of enactment of the law that created real estate investment trusts (REITs) and gave millions of Americans new investment opportunities that helped them build a solid foundation for retirement and has contributed to the overall strength of the economy of the United States.

    THOMAS, 112th Congress

    Sen. Isakson, Johnny [R-GA

    2011-02-17

    Senate - 02/17/2011 Submitted in the Senate, considered, and agreed to without amendment and with a preamble by Unanimous Consent. (All Actions) Tracker: This bill has the status Agreed to in SenateHere are the steps for Status of Legislation:

  11. Use of LysoTracker dyes: a flow cytometric study of autophagy.

    PubMed

    Chikte, Shaheen; Panchal, Neelam; Warnes, Gary

    2014-02-01

    The flow cytometric use of LysoTracker dyes was employed to investigate the autophagic process and to compare this with the upregulation of autophagy marker, the microtubule-associated protein LC3B. Although the mechanism of action of LysoTracker dyes is not fully understood, they have been used in microscopy to image acidic spherical organelles, and their use in flow cytometry has not been thoroughly investigated in the study of autophagy. This investigation uses numerous autophagy-inducing agents including chloroquine (CQ), rapamycin, low serum (<1%) RPMI, and nutrient starvation to induce autophagy in Jurkat T-cell leukemia and K562 erythromyeloid cell lines. LC3B showed an increase with CQ treatment although this was different to LysoTracker signals in terms of dose and time. Rapamycin, low serum (<1%) RPMI, and nutrient starvation induction of autophagy also induced an increase in LysoTracker and LC3B signals. CQ also induced apoptosis in cell lines, which was blocked by pan-caspase inhibitor z-VAD resulting in a reduction in cells undergoing apoptosis and a subsequent upregulation of autophagic markers LC3B and lysosomal dye signals. Given that LC3B and LysoTracker are measuring different biological events in the autophagic process, they surprisingly both upregulated during autophagic process. This study, however, shows that although LysoTracker dyes do not specifically label lysosomes or autophagosomes within the cell, they allow the simultaneous measurement of an autophagy-related process and other live-cell functions, which are not possible with the standard LC3B antibody-labeling technique. This method has the advantage of other live-cell LCB-GFP-tagged experiments in that be used to analyze patient cells as well as easier to use and significantly less costly. Copyright © 2013 International Society for Advancement of Cytometry.

  12. A photostable near-infrared fluorescent tracker with pH-independent specificity to lysosomes for long time and multicolor imaging.

    PubMed

    Zhang, Xinfu; Wang, Chao; Han, Zhuo; Xiao, Yi

    2014-12-10

    A new boron-dipyrromethene-based lysosome tracker, Lyso-NIR, is facilely synthesized. Besides the intensive near-infrared (NIR) fluorescence and high photostability, Lyso-NIR shows the capability to stably localize in lysosomes, which is independent of the local pH. Lyso-NIR does not have the problematic alkalization effect suffered by the commonly used lysotrackers; thus, it shows ignorable cytotoxicity and slightly affects normal physiological functions of lysosomes. The above advantages of Lyso-NIR make it feasible to track lysosomes' dynamic changes in a relatively long time during the full cellular processes such as apoptosis, heavy metal stimulation, and endocytosis, as is demonstrated in this work. Moreover, Lyso-NIR's narrow NIR emission at 740 nm with a full width at half-maximum smaller than 50 nm makes it easy to avoid the crosstalk with the emissions from other common fluorescent probes, which strengthens Lyso-NIR's competitiveness as a standard lysosome tracker for multicolor bioimaging.

  13. Muon trackers for imaging a nuclear reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kume, N.; Miyadera, H.; Morris, C. L.

    A detector system for assessing damage to the cores of the Fukushima Daiichi nuclear reactors by using cosmic-ray muon tomography was developed. Furthermore, the system consists of a pair of drift-tube tracking detectors of 7.2× 7.2-m 2 area. In each muon tracker there consists 6 x-layer and 6 y-layer drift-tube detectors. Each tracker is capable of measuring muon tracks with 12 mrad angular resolutions, and is capable of operating under 50-μ Sv/h radiation environment by removing gamma induced background with a novel time-coincidence logic. An estimated resolution to observe nuclear fuel debris at Fukushima Daiichi is 0.3 m when themore » core is imaged from outside the reactor building.« less

  14. Muon trackers for imaging a nuclear reactor

    DOE PAGES

    Kume, N.; Miyadera, H.; Morris, C. L.; ...

    2016-09-21

    A detector system for assessing damage to the cores of the Fukushima Daiichi nuclear reactors by using cosmic-ray muon tomography was developed. Furthermore, the system consists of a pair of drift-tube tracking detectors of 7.2× 7.2-m 2 area. In each muon tracker there consists 6 x-layer and 6 y-layer drift-tube detectors. Each tracker is capable of measuring muon tracks with 12 mrad angular resolutions, and is capable of operating under 50-μ Sv/h radiation environment by removing gamma induced background with a novel time-coincidence logic. An estimated resolution to observe nuclear fuel debris at Fukushima Daiichi is 0.3 m when themore » core is imaged from outside the reactor building.« less

  15. Abnormal Vestibulo-Ocular Reflexes in Autism: A Potential Endophenotype

    DTIC Science & Technology

    2014-08-01

    among. Saccades and smooth pursuit are complex sensorimotor behaviors that involve several spatially distant brain regions and long- fiber tracts between...time, at a rate of 100 Hz. Visual stimuli were presented as a red laser -light, generated by NKI Pursuit Tracker® laser . The Pursuit Tracker® laser ...the testing equipment by projecting a laser stimulus onto the cylindrical screen and providing a fixed target at + 10º in both the horizontal and

  16. Simulation of Human-induced Vibrations Based on the Characterized In-field Pedestrian Behavior

    PubMed Central

    Van Nimmen, Katrien; Lombaert, Geert; De Roeck, Guido; Van den Broeck, Peter

    2016-01-01

    For slender and lightweight structures, vibration serviceability is a matter of growing concern, often constituting the critical design requirement. With designs governed by the dynamic performance under human-induced loads, a strong demand exists for the verification and refinement of currently available load models. The present contribution uses a 3D inertial motion tracking technique for the characterization of the in-field pedestrian behavior. The technique is first tested in laboratory experiments with simultaneous registration of the corresponding ground reaction forces. The experiments include walking persons as well as rhythmical human activities such as jumping and bobbing. It is shown that the registered motion allows for the identification of the time variant pacing rate of the activity. Together with the weight of the person and the application of generalized force models available in literature, the identified time-variant pacing rate allows to characterize the human-induced loads. In addition, time synchronization among the wireless motion trackers allows identifying the synchronization rate among the participants. Subsequently, the technique is used on a real footbridge where both the motion of the persons and the induced structural vibrations are registered. It is shown how the characterized in-field pedestrian behavior can be applied to simulate the induced structural response. It is demonstrated that the in situ identified pacing rate and synchronization rate constitute an essential input for the simulation and verification of the human-induced loads. The main potential applications of the proposed methodology are the estimation of human-structure interaction phenomena and the development of suitable models for the correlation among pedestrians in real traffic conditions. PMID:27167309

  17. Generic Software Architecture for Launchers

    NASA Astrophysics Data System (ADS)

    Carre, Emilien; Gast, Philippe; Hiron, Emmanuel; Leblanc, Alain; Lesens, David; Mescam, Emmanuelle; Moro, Pierre

    2015-09-01

    The definition and reuse of generic software architecture for launchers is not so usual for several reasons: the number of European launcher families is very small (Ariane 5 and Vega for these last decades); the real time constraints (reactivity and determinism needs) are very hard; low levels of versatility are required (implying often an ad hoc development of the launcher mission). In comparison, satellites are often built on a generic platform made up of reusable hardware building blocks (processors, star-trackers, gyroscopes, etc.) and reusable software building blocks (middleware, TM/TC, On Board Control Procedure, etc.). If some of these reasons are still valid (e.g. the limited number of development), the increase of the available CPU power makes today an approach based on a generic time triggered middleware (ensuring the full determinism of the system) and a centralised mission and vehicle management (offering more flexibility in the design and facilitating the long term maintenance) achievable. This paper presents an example of generic software architecture which could be envisaged for future launchers, based on the previously described principles and supported by model driven engineering and automatic code generation.

  18. The Solar and Heliospheric Observatory (SOHO) Mission: An Overview of Flight Dynamics Support of the Early Mission Phase

    NASA Technical Reports Server (NTRS)

    Short, R.; Behuncik, J.

    1996-01-01

    The SOHO spacecraft was successfully launched by an Atlas 2AS from the Eastern Range on December 2, 1995. After a short time in a nearly circular parking orbit, the spacecraft was placed by the Centaur upper stage on a transfer trajectory to the L1 libration point where it was inserted into a class 1 Halo orbit. The nominal mission lifetime is two years which will be spent collecting data from the Sun using a complement of twelve instruments. An overview of the early phases of Flight Dynamics Facility support of the mission is given. Maneuvers required for the mission are discussed, and an evaluation of these maneuvers is given with the attendent effects on the resultant orbit. Thruster performance is presented as well as real time monitoring of thruster activity during maneuvers. Attitude areas presented are the star identification process and role angle determination, momentum management, operating constraints on the star tracker, and guide star switching. A brief description of the two Heads Up displays is given.

  19. Eye-pupil displacement and prediction: effects on residual wavefront in adaptive optics retinal imaging

    PubMed Central

    Kulcsár, Caroline; Raynaud, Henri-François; Garcia-Rissmann, Aurea

    2016-01-01

    This paper studies the effect of pupil displacements on the best achievable performance of retinal imaging adaptive optics (AO) systems, using 52 trajectories of horizontal and vertical displacements sampled at 80 Hz by a pupil tracker (PT) device on 13 different subjects. This effect is quantified in the form of minimal root mean square (rms) of the residual phase affecting image formation, as a function of the delay between PT measurement and wavefront correction. It is shown that simple dynamic models identified from data can be used to predict horizontal and vertical pupil displacements with greater accuracy (in terms of average rms) over short-term time horizons. The potential impact of these improvements on residual wavefront rms is investigated. These results allow to quantify the part of disturbances corrected by retinal imaging systems that are caused by relative displacements of an otherwise fixed or slowy-varying subject-dependent aberration. They also suggest that prediction has a limited impact on wavefront rms and that taking into account PT measurements in real time improves the performance of AO retinal imaging systems. PMID:27231607

  20. System and method for calibrating inter-star-tracker misalignments in a stellar inertial attitude determination system

    NASA Technical Reports Server (NTRS)

    Li, Rongsheng (Inventor); Wu, Yeong-Wei Andy (Inventor); Hein, Douglas H. (Inventor)

    2004-01-01

    A method and apparatus for determining star tracker misalignments is disclosed. The method comprises the steps of defining a defining a reference frame for the star tracker assembly according to a boresight of the primary star tracker and a boresight of a second star tracker wherein the boresight of the primary star tracker and a plane spanned by the boresight of the primary star tracker and the boresight of the second star tracker at least partially define a datum for the reference frame for the star tracker assembly; and determining the misalignment of the at least one star tracker as a rotation of the defined reference frame.

  1. Time-Of-Flight Camera, Optical Tracker and Computed Tomography in Pairwise Data Registration.

    PubMed

    Pycinski, Bartlomiej; Czajkowska, Joanna; Badura, Pawel; Juszczyk, Jan; Pietka, Ewa

    2016-01-01

    A growing number of medical applications, including minimal invasive surgery, depends on multi-modal or multi-sensors data processing. Fast and accurate 3D scene analysis, comprising data registration, seems to be crucial for the development of computer aided diagnosis and therapy. The advancement of surface tracking system based on optical trackers already plays an important role in surgical procedures planning. However, new modalities, like the time-of-flight (ToF) sensors, widely explored in non-medical fields are powerful and have the potential to become a part of computer aided surgery set-up. Connection of different acquisition systems promises to provide a valuable support for operating room procedures. Therefore, the detailed analysis of the accuracy of such multi-sensors positioning systems is needed. We present the system combining pre-operative CT series with intra-operative ToF-sensor and optical tracker point clouds. The methodology contains: optical sensor set-up and the ToF-camera calibration procedures, data pre-processing algorithms, and registration technique. The data pre-processing yields a surface, in case of CT, and point clouds for ToF-sensor and marker-driven optical tracker representation of an object of interest. An applied registration technique is based on Iterative Closest Point algorithm. The experiments validate the registration of each pair of modalities/sensors involving phantoms of four various human organs in terms of Hausdorff distance and mean absolute distance metrics. The best surface alignment was obtained for CT and optical tracker combination, whereas the worst for experiments involving ToF-camera. The obtained accuracies encourage to further develop the multi-sensors systems. The presented substantive discussion concerning the system limitations and possible improvements mainly related to the depth information produced by the ToF-sensor is useful for computer aided surgery developers.

  2. The Development of the Puerto Rico Lightning Detection Network for Meteorological Research

    NASA Technical Reports Server (NTRS)

    Legault, Marc D.; Miranda, Carmelo; Medin, J.; Ojeda, L. J.; Blakeslee, Richard J.

    2011-01-01

    A land-based Puerto Rico Lightning Detection Network (PR-LDN) dedicated to the academic research of meteorological phenomena has being developed. Five Boltek StormTracker PCI-Receivers with LTS-2 Timestamp Cards with GPS and lightning detectors were integrated to Pentium III PC-workstations running the CentOS linux operating system. The Boltek detector linux driver was compiled under CentOS, modified, and thoroughly tested. These PC-workstations with integrated lightning detectors were installed at five of the University of Puerto Rico (UPR) campuses distributed around the island of PR. The PC-workstations are left on permanently in order to monitor lightning activity at all times. Each is networked to their campus network-backbone permitting quasi-instantaneous data transfer to a central server at the UPR-Bayam n campus. Information generated by each lightning detector is managed by a C-program developed by us called the LDN-client. The LDN-client maintains an open connection to the central server operating the LDN-server program where data is sent real-time for analysis and archival. The LDN-client also manages the storing of data on the PC-workstation hard disk. The LDN-server software (also an in-house effort) analyses the data from each client and performs event triangulations. Time-of-arrival (TOA) and related hybrid algorithms, lightning-type and event discriminating routines are also implemented in the LDN-server software. We also have developed software to visually monitor lightning events in real-time from all clients and the triangulated events. We are currently monitoring and studying the spatial, temporal, and type distribution of lightning strikes associated with electrical storms and tropical cyclones in the vicinity of Puerto Rico.

  3. Custom ultrasonic instrumentation for flow measurement and real-time binary gas analysis in the CERN ATLAS experiment

    NASA Astrophysics Data System (ADS)

    Alhroob, M.; Battistin, M.; Berry, S.; Bitadze, A.; Bonneau, P.; Boyd, G.; Crespo-Lopez, O.; Degeorge, C.; Deterre, C.; Di Girolamo, B.; Doubek, M.; Favre, G.; Hallewell, G.; Katunin, S.; Lombard, D.; Madsen, A.; McMahon, S.; Nagai, K.; O'Rourke, A.; Pearson, B.; Robinson, D.; Rossi, C.; Rozanov, A.; Stanecka, E.; Strauss, M.; Vacek, V.; Vaglio, R.; Young, J.; Zwalinski, L.

    2017-01-01

    The development of custom ultrasonic instrumentation was motivated by the need for continuous real-time monitoring of possible leaks and mass flow measurement in the evaporative cooling systems of the ATLAS silicon trackers. The instruments use pairs of ultrasonic transducers transmitting sound bursts and measuring transit times in opposite directions. The gas flow rate is calculated from the difference in transit times, while the sound velocity is deduced from their average. The gas composition is then evaluated by comparison with a molar composition vs. sound velocity database, based on the direct dependence between sound velocity and component molar concentration in a gas mixture at a known temperature and pressure. The instrumentation has been developed in several geometries, with five instruments now integrated and in continuous operation within the ATLAS Detector Control System (DCS) and its finite state machine. One instrument monitors C3F8 coolant leaks into the Pixel detector N2 envelope with a molar resolution better than 2ṡ 10-5, and has indicated a level of 0.14 % when all the cooling loops of the recently re-installed Pixel detector are operational. Another instrument monitors air ingress into the C3F8 condenser of the new C3F8 thermosiphon coolant recirculator, with sub-percent precision. The recent effect of the introduction of a small quantity of N2 volume into the 9.5 m3 total volume of the thermosiphon system was clearly seen with this instrument. Custom microcontroller-based readout has been developed for the instruments, allowing readout into the ATLAS DCS via Modbus TCP/IP on Ethernet. The instrumentation has many potential applications where continuous binary gas composition is required, including in hydrocarbon and anaesthetic gas mixtures.

  4. Three-Axis Attitude Estimation With a High-Bandwidth Angular Rate Sensor

    NASA Technical Reports Server (NTRS)

    Bayard, David S.; Green, Joseph J.

    2013-01-01

    A continuing challenge for modern instrument pointing control systems is to meet the increasingly stringent pointing performance requirements imposed by emerging advanced scientific, defense, and civilian payloads. Instruments such as adaptive optics telescopes, space interferometers, and optical communications make unprecedented demands on precision pointing capabilities. A cost-effective method was developed for increasing the pointing performance for this class of NASA applications. The solution was to develop an attitude estimator that fuses star tracker and gyro measurements with a high-bandwidth angular rotation sensor (ARS). An ARS is a rate sensor whose bandwidth extends well beyond that of the gyro, typically up to 1,000 Hz or higher. The most promising ARS sensor technology is based on a magnetohydrodynamic concept, and has recently become available commercially. The key idea is that the sensor fusion of the star tracker, gyro, and ARS provides a high-bandwidth attitude estimate suitable for supporting pointing control with a fast-steering mirror or other type of tip/tilt correction for increased performance. The ARS is relatively inexpensive and can be bolted directly next to the gyro and star tracker on the spacecraft bus. The high-bandwidth attitude estimator fuses an ARS sensor with a standard three-axis suite comprised of a gyro and star tracker. The estimation architecture is based on a dual-complementary filter (DCF) structure. The DCF takes a frequency- weighted combination of the sensors such that each sensor is most heavily weighted in a frequency region where it has the lowest noise. An important property of the DCF is that it avoids the need to model disturbance torques in the filter mechanization. This is important because the disturbance torques are generally not known in applications. This property represents an advantage over the prior art because it overcomes a weakness of the Kalman filter that arises when fusing more than one rate measurement. An additional advantage over prior art is that, computationally, the DCF requires significantly fewer real-time calculations than a Kalman filter formulation. There are essentially two reasons for this: the DCF state is not augmented with angular rate, and measurement updates occur at the slower gyro rate instead of the faster ARS sampling rate. Finally, the DCF has a simple and compelling architecture. The DCF is exactly equivalent to flying two identical attitude observers, one at low rate and one at high rate. These attitude observers are exactly of the form currently flown on typical three-axis spacecraft.

  5. Premature responding is associated with approach to a food cue in male and female heterogeneous stock rats.

    PubMed

    King, Christopher P; Palmer, Abraham A; Woods, Leah C Solberg; Hawk, Larry W; Richards, Jerry B; Meyer, Paul J

    2016-07-01

    Disorders of behavioral regulation, including attention deficit hyperactivity disorder (ADHD) and drug addiction, are in part due to poor inhibitory control, attentional deficits, and hyper-responsivity to reward-associated cues. To determine whether these traits are related, we tested genetically variable male and female heterogeneous stock rats in the choice reaction time (CRT) task and Pavlovian conditioned approach (PavCA). Sex differences in the response to methylphenidate during the CRT were also assessed. In the CRT task, rats were required to withhold responding until one of two lights indicated whether responses into a left or right port would be reinforced with water. Reaction time on correct trials and premature responses were the operational definitions of attention and response inhibition, respectively. Rats were also pretreated with oral methylphenidate (0, 2, 4 mg/kg) during the CRT task to determine whether this drug would improve performance. Subsequently, during PavCA, presentation of an illuminated lever predicted the delivery of a food pellet into a food-cup. Lever-directed approach (sign-tracking) and food-cup approach (goal-tracking) were the primary measures, and rats were categorized as "sign-trackers" and "goal-trackers" using an index based on these measures. Sign-trackers made more premature responses than goal-trackers but showed no differences in reaction time. There were sex differences in both tasks, with females having higher sign-tracking, completing more CRT trials, and making more premature responses after methylphenidate administration. These results indicate that response inhibition is related to reward-cue responsivity, suggesting that these traits are influenced by common genetic factors.

  6. Preliminary clinical trial in percutaneous nephrolithotomy using a real-time navigation system for percutaneous kidney access

    NASA Astrophysics Data System (ADS)

    Rodrigues, Pedro L.; Moreira, António H. J.; Rodrigues, Nuno F.; Pinho, A. C. M.; Fonseca, Jaime C.; Lima, Estevão.; Vilaça, João. L.

    2014-03-01

    Background: Precise needle puncture of renal calyces is a challenging and essential step for successful percutaneous nephrolithotomy. This work tests and evaluates, through a clinical trial, a real-time navigation system to plan and guide percutaneous kidney puncture. Methods: A novel system, entitled i3DPuncture, was developed to aid surgeons in establishing the desired puncture site and the best virtual puncture trajectory, by gathering and processing data from a tracked needle with optical passive markers. In order to navigate and superimpose the needle to a preoperative volume, the patient, 3D image data and tracker system were previously registered intraoperatively using seven points that were strategically chosen based on rigid bone structures and nearby kidney area. In addition, relevant anatomical structures for surgical navigation were automatically segmented using a multi-organ segmentation algorithm that clusters volumes based on statistical properties and minimum description length criterion. For each cluster, a rendering transfer function enhanced the visualization of different organs and surrounding tissues. Results: One puncture attempt was sufficient to achieve a successful kidney puncture. The puncture took 265 seconds, and 32 seconds were necessary to plan the puncture trajectory. The virtual puncture path was followed correctively until the needle tip reached the desired kidney calyceal. Conclusions: This new solution provided spatial information regarding the needle inside the body and the possibility to visualize surrounding organs. It may offer a promising and innovative solution for percutaneous punctures.

  7. Synchronization of discrete-time neural networks with delays and Markov jump topologies based on tracker information.

    PubMed

    Yang, Xinsong; Feng, Zhiguo; Feng, Jianwen; Cao, Jinde

    2017-01-01

    In this paper, synchronization in an array of discrete-time neural networks (DTNNs) with time-varying delays coupled by Markov jump topologies is considered. It is assumed that the switching information can be collected by a tracker with a certain probability and transmitted from the tracker to controller precisely. Then the controller selects suitable control gains based on the received switching information to synchronize the network. This new control scheme makes full use of received information and overcomes the shortcomings of mode-dependent and mode-independent control schemes. Moreover, the proposed control method includes both the mode-dependent and mode-independent control techniques as special cases. By using linear matrix inequality (LMI) method and designing new Lyapunov functionals, delay-dependent conditions are derived to guarantee that the DTNNs with Markov jump topologies to be asymptotically synchronized. Compared with existing results on Markov systems which are obtained by separately using mode-dependent and mode-independent methods, our result has great flexibility in practical applications. Numerical simulations are finally given to demonstrate the effectiveness of the theoretical results. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Apollo Telescope Mount (ATM) gimballed star tracker. [developed for the Skylab program

    NASA Technical Reports Server (NTRS)

    Lana, J. D.

    1974-01-01

    Design and development of six gimballed star trackers for Skylab's Apollo Telescope Mount, which performed successfully on all three manned Skylab missions and accumulated a total usage time of approximately 3,500 hours, is described in terms of configurations, materials and construction, qualification testing, performance, and reliability characteristics. A brief program history and design changes incorporated during the life of the program are also discussed. Extensive drawings, block diagrams, and photographs are provided.

  9. Analyzing Impulse Using iPhone and Tracker

    NASA Astrophysics Data System (ADS)

    Ayop, Shahrul Kadri

    2017-11-01

    The iPhone 6 introduced a new feature of recording video in Slo-Mo mode at 240 fps (4.17 ms interval). This great capability when integrated with video analysis freeware such as Tracker offers in-depth exploration for physical phenomena such as collisions that occur in a very short duration of time. This article discusses one such usage in analyzing impulse for a simple collision experiment. Students can benefit through investigation of various related mechanics concepts in the collision.

  10. TLM-Tracker: software for cell segmentation, tracking and lineage analysis in time-lapse microscopy movies.

    PubMed

    Klein, Johannes; Leupold, Stefan; Biegler, Ilona; Biedendieck, Rebekka; Münch, Richard; Jahn, Dieter

    2012-09-01

    Time-lapse imaging in combination with fluorescence microscopy techniques enable the investigation of gene regulatory circuits and uncovered phenomena like culture heterogeneity. In this context, computational image processing for the analysis of single cell behaviour plays an increasing role in systems biology and mathematical modelling approaches. Consequently, we developed a software package with graphical user interface for the analysis of single bacterial cell behaviour. A new software called TLM-Tracker allows for the flexible and user-friendly interpretation for the segmentation, tracking and lineage analysis of microbial cells in time-lapse movies. The software package, including manual, tutorial video and examples, is available as Matlab code or executable binaries at http://www.tlmtracker.tu-bs.de.

  11. HETDEX tracker control system design and implementation

    NASA Astrophysics Data System (ADS)

    Beno, Joseph H.; Hayes, Richard; Leck, Ron; Penney, Charles; Soukup, Ian

    2012-09-01

    To enable the Hobby-Eberly Telescope Dark Energy Experiment, The University of Texas at Austin Center for Electromechanics and McDonald Observatory developed a precision tracker and control system - an 18,000 kg robot to position a 3,100 kg payload within 10 microns of a desired dynamic track. Performance requirements to meet science needs and safety requirements that emerged from detailed Failure Modes and Effects Analysis resulted in a system of 13 precision controlled actuators and 100 additional analog and digital devices (primarily sensors and safety limit switches). Due to this complexity, demanding accuracy requirements, and stringent safety requirements, two independent control systems were developed. First, a versatile and easily configurable centralized control system that links with modeling and simulation tools during the hardware and software design process was deemed essential for normal operation including motion control. A second, parallel, control system, the Hardware Fault Controller (HFC) provides independent monitoring and fault control through a dedicated microcontroller to force a safe, controlled shutdown of the entire system in the event a fault is detected. Motion controls were developed in a Matlab-Simulink simulation environment, and coupled with dSPACE controller hardware. The dSPACE real-time operating system collects sensor information; motor commands are transmitted over a PROFIBUS network to servo amplifiers and drive motor status is received over the same network. To interface the dSPACE controller directly to absolute Heidenhain sensors with EnDat 2.2 protocol, a custom communication board was developed. This paper covers details of operational control software, the HFC, algorithms, tuning, debugging, testing, and lessons learned.

  12. Tracker controls development and control architecture for the Hobby-Eberly Telescope Wide Field Upgrade

    NASA Astrophysics Data System (ADS)

    Mock, Jason R.; Beno, Joe; Rafferty, Tom H.; Cornell, Mark E.

    2010-07-01

    To enable the Hobby-Eberly Telescope Wide Field Upgrade, the University of Texas Center for Electromechanics and McDonald Observatory are developing a precision tracker system - a 15,000 kg robot to position a 3,100 kg payload within 10 microns of a desired dynamic track. Performance requirements to meet science needs and safety requirements that emerged from detailed Failure Modes and Effects Analysis resulted in a system of 14 precision controlled actuators and 100 additional analog and digital devices (primarily sensors and safety limit switches). This level of system complexity and emphasis on fail-safe operation is typical of large modern telescopes and numerous industrial applications. Due to this complexity, demanding accuracy requirements, and stringent safety requirements, a highly versatile and easily configurable centralized control system that easily links with modeling and simulation tools during the hardware and software design process was deemed essential. The Matlab/Simulink simulation environment, coupled with dSPACE controller hardware, was selected for controls development and realization. The dSPACE real-time operating system collects sensor information; motor commands are transmitted over a PROFIBUS network to servo amplifiers and drive motor status is received over the same network. Custom designed position feedback loops, supplemented by feed forward force commands for enhanced performance, and algorithms to accommodate self-locking gearboxes (for safety), reside in dSPACE. To interface the dSPACE controller directly to absolute Heidenhain sensors with EnDat 2.2 protocol, a custom communication board was developed. This paper covers details of software and hardware, design choices and analysis, and supporting simulations (primarily Simulink).

  13. The Parallel Worm Tracker: A Platform for Measuring Average Speed and Drug-Induced Paralysis in Nematodes

    PubMed Central

    Ramot, Daniel; Johnson, Brandon E.; Berry, Tommie L.; Carnell, Lucinda; Goodman, Miriam B.

    2008-01-01

    Background Caenorhabditis elegans locomotion is a simple behavior that has been widely used to dissect genetic components of behavior, synaptic transmission, and muscle function. Many of the paradigms that have been created to study C. elegans locomotion rely on qualitative experimenter observation. Here we report the implementation of an automated tracking system developed to quantify the locomotion of multiple individual worms in parallel. Methodology/Principal Findings Our tracking system generates a consistent measurement of locomotion that allows direct comparison of results across experiments and experimenters and provides a standard method to share data between laboratories. The tracker utilizes a video camera attached to a zoom lens and a software package implemented in MATLAB®. We demonstrate several proof-of-principle applications for the tracker including measuring speed in the absence and presence of food and in the presence of serotonin. We further use the tracker to automatically quantify the time course of paralysis of worms exposed to aldicarb and levamisole and show that tracker performance compares favorably to data generated using a hand-scored metric. Conclusions/Signficance Although this is not the first automated tracking system developed to measure C. elegans locomotion, our tracking software package is freely available and provides a simple interface that includes tools for rapid data collection and analysis. By contrast with other tools, it is not dependent on a specific set of hardware. We propose that the tracker may be used for a broad range of additional worm locomotion applications including genetic and chemical screening. PMID:18493300

  14. A holographic waveguide based eye tracker

    NASA Astrophysics Data System (ADS)

    Liu, Changgeng; Pazzucconi, Beatrice; Liu, Juan; Liu, Lei; Yao, Xincheng

    2018-02-01

    We demonstrated the feasibility of using holographic waveguide for eye tracking. A custom-built holographic waveguide, a 20 mm x 60 mm x 3 mm flat glass substrate with integrated in- and out-couplers, was used for the prototype development. The in- and out-couplers, photopolymer films with holographic fringes, induced total internal reflection in the glass substrate. Diffractive optical elements were integrated into the in-coupler to serve as an optical collimator. The waveguide captured images of the anterior segment of the eye right in front of it and guided the images to a processing unit distant from the eye. The vector connecting the pupil center (PC) and the corneal reflex (CR) of the eye was used to compute eye position in the socket. An eye model, made of a high quality prosthetic eye, was used prototype validation. The benchtop prototype demonstrated a linear relationship between the angular eye position and the PC/CR vector over a range of 60 horizontal degrees and 30 vertical degrees at a resolution of 0.64-0.69 degrees/pixel by simple pixel count. The uncertainties of the measurements at different angular positions were within 1.2 pixels, which indicated that the prototype exhibited a high level of repeatability. These results confirmed that the holographic waveguide technology could be a feasible platform for developing a wearable eye tracker. Further development can lead to a compact, see-through eye tracker, which allows continuous monitoring of eye movement during real life tasks, and thus benefits diagnosis of oculomotor disorders.

  15. Hyperspectral-Augmented Target Tracking

    DTIC Science & Technology

    2008-03-01

    detectable velocity ( MDV ) of 1.5m/s. After several seconds, the vehicles depart heading in the same di- rection, but this time, the top vehicle speeds up... vehicles begin to speed up ( MDV > 1.5m/s), the tracker once again initiates each track using the class ID of the nearest vehicle , effectively swapping the...Fig. 4.5(b)). After both vehicles speed up to an MDV > 1.5m/s, the tracker initiates each track using the class ID of the nearest vehicle , “re-assigning

  16. Legibility difference between e-books and paper books by using an eye tracker.

    PubMed

    Kim, Jung-Yong; Min, Seung-Nam; Subramaniyam, Murali; Cho, Young-Jin

    2014-01-01

    The aim of the study was to evaluate the difference in legibility between e-books and paper books by using an eye tracker. Eight male and eight female subjects free of eye disease participated in the experiment. The experiment was conducted using a 2 × 3 within-subject design. The book type (e-book, paper book) and font size (8 pt, 10 pt, 12 pt) were independent variables, and fixation duration time, saccade length, blink rate and subjective discomfort were dependent variables. In the results, all dependent variables showed that reading paper books provided a better experience than reading e-books did. These results indicate that the legibility of e-books needs further improvement, considering fixation duration time, saccade movement, eye fatigue, device and so on. This study evaluated the legibility difference between e-books and paper books from the viewpoint of readability, eye fatigue and subjective discomfort by using an eye tracker. The results showed that paper books provided a better experience than e-books. This indicates that the readability of e-books needs further improvement in relation to paper books.

  17. Bar coded retroreflective target

    DOEpatents

    Vann, Charles S.

    2000-01-01

    This small, inexpensive, non-contact laser sensor can detect the location of a retroreflective target in a relatively large volume and up to six degrees of position. The tracker's laser beam is formed into a plane of light which is swept across the space of interest. When the beam illuminates the retroreflector, some of the light returns to the tracker. The intensity, angle, and time of the return beam is measured to calculate the three dimensional location of the target. With three retroreflectors on the target, the locations of three points on the target are measured, enabling the calculation of all six degrees of target position. Until now, devices for three-dimensional tracking of objects in a large volume have been heavy, large, and very expensive. Because of the simplicity and unique characteristics of this tracker, it is capable of three-dimensional tracking of one to several objects in a large volume, yet it is compact, light-weight, and relatively inexpensive. Alternatively, a tracker produces a diverging laser beam which is directed towards a fixed position, and senses when a retroreflective target enters the fixed field of view. An optically bar coded target can be read by the tracker to provide information about the target. The target can be formed of a ball lens with a bar code on one end. As the target moves through the field, the ball lens causes the laser beam to scan across the bar code.

  18. Deep coupling of star tracker and MEMS-gyro data under highly dynamic and long exposure conditions

    NASA Astrophysics Data System (ADS)

    Sun, Ting; Xing, Fei; You, Zheng; Wang, Xiaochu; Li, Bin

    2014-08-01

    Star trackers and gyroscopes are the two most widely used attitude measurement devices in spacecrafts. The star tracker is supposed to have the highest accuracy in stable conditions among different types of attitude measurement devices. In general, to detect faint stars and reduce the size of the star tracker, a method with long exposure time method is usually used. Thus, under dynamic conditions, smearing of the star image may appear and result in decreased accuracy or even failed extraction of the star spot. This may cause inaccuracies in attitude measurement. Gyros have relatively good dynamic performance and are usually used in combination with star trackers. However, current combination methods focus mainly on the data fusion of the output attitude data levels, which are inadequate for utilizing and processing internal blurred star image information. A method for tracking deep coupling stars and MEMS-gyro data is proposed in this work. The method achieves deep fusion at the star image level. First, dynamic star image processing is performed based on the angular velocity information of the MEMS-gyro. Signal-to-noise ratio (SNR) of the star spot could be improved, and extraction is achieved more effectively. Then, a prediction model for optimal estimation of the star spot position is obtained through the MEMS-gyro, and an extended Kalman filter is introduced. Meanwhile, the MEMS-gyro drift can be estimated and compensated though the proposed method. These enable the star tracker to achieve high star centroid determination accuracy under dynamic conditions. The MEMS-gyro drift can be corrected even when attitude data of the star tracker are unable to be solved and only one navigation star is captured in the field of view. Laboratory experiments were performed to verify the effectiveness of the proposed method and the whole system.

  19. A bipolar analog front-end integrated circuit for the SDC silicon tracker

    NASA Astrophysics Data System (ADS)

    Kipnis, I.; Spieler, H.; Collins, T.

    1993-11-01

    A low noise, low power, high bandwidth, radiation hard, silicon bipolar transistor full-custom integrated circuit (IC) containing 64 channels of analog signal processing has been developed for the SDC silicon tracker. The IC was designed and tested at LBL and was fabricated using CBIC-U2, 4 GHz f(sub T) complementary bipolar technology. Each channel contains the following functions: low noise preamplification, pulse shaping, and threshold discrimination. This is the first iteration of the production analog IC for the SDC silicon tracker. The IC is laid out to directly match the 50 micron pitch double-sided silicon strip detector. The chip measures 6.8 mm by 3.1 mm and contains 3,600 transistors. Three stages of amplification provide 180 mV/fC of gain with a 35 nsec peaking time at the comparator input. For a 14 pF detector capacitance, the equivalent noise charge is 1300 el. rms at a power consumption of 1 mW/channel from a single 3.5 V supply. With the discriminator threshold set to four times the noise level, a 16 nsec time-walk for 1.25 to 10 fC signals is achieved using a time-walk compensation network. Irradiation tests at TRIUMF to a Phi = 10(exp 14) protons/sq cm have been performed on the IC, demonstrating the radiation hardness of the complementary bipolar process.

  20. Trajectory prediction of saccadic eye movements using a compressed exponential model

    PubMed Central

    Han, Peng; Saunders, Daniel R.; Woods, Russell L.; Luo, Gang

    2013-01-01

    Gaze-contingent display paradigms play an important role in vision research. The time delay due to data transmission from eye tracker to monitor may lead to a misalignment between the gaze direction and image manipulation during eye movements, and therefore compromise the contingency. We present a method to reduce this misalignment by using a compressed exponential function to model the trajectories of saccadic eye movements. Our algorithm was evaluated using experimental data from 1,212 saccades ranging from 3° to 30°, which were collected with an EyeLink 1000 and a Dual-Purkinje Image (DPI) eye tracker. The model fits eye displacement with a high agreement (R2 > 0.96). When assuming a 10-millisecond time delay, prediction of 2D saccade trajectories using our model could reduce the misalignment by 30% to 60% with the EyeLink tracker and 20% to 40% with the DPI tracker for saccades larger than 8°. Because a certain number of samples are required for model fitting, the prediction did not offer improvement for most small saccades and the early stages of large saccades. Evaluation was also performed for a simulated 100-Hz gaze-contingent display using the prerecorded saccade data. With prediction, the percentage of misalignment larger than 2° dropped from 45% to 20% for EyeLink and 42% to 26% for DPI data. These results suggest that the saccade-prediction algorithm may help create more accurate gaze-contingent displays. PMID:23902753

  1. Studies for a 10 μs, thin, high resolution CMOS pixel sensor for future vertex detectors

    NASA Astrophysics Data System (ADS)

    Voutsinas, G.; Amar-Youcef, S.; Baudot, J.; Bertolone, G.; Brogna, A.; Chon-Sen, N.; Claus, G.; Colledani, C.; Dorokhov, A.; Dozière, G.; Dulinski, W.; Degerli, Y.; De Masi, R.; Deveaux, M.; Gelin, M.; Goffe, M.; Hu-Guo, Ch.; Himmi, A.; Jaaskelainen, K.; Koziel, M.; Morel, F.; Müntz, C.; Orsini, F.; Santos, C.; Schrader, C.; Specht, M.; Stroth, J.; Valin, I.; Wagner, F. M.; Winter, M.

    2011-06-01

    Future high energy physics (HEP) experiments require detectors with unprecedented performances for track and vertex reconstruction. These requirements call for high precision sensors, with low material budget and short integration time. The development of CMOS sensors for HEP applications was initiated at IPHC Strasbourg more than 10 years ago, motivated by the needs for vertex detectors at the International Linear Collider (ILC) [R. Turchetta et al, NIM A 458 (2001) 677]. Since then several other applications emerged. The first real scale digital CMOS sensor MIMOSA26 equips Flavour Tracker at RHIC, as well as for the microvertex detector of the CBM experiment at FAIR. MIMOSA sensors may also offer attractive performances for the ALICE upgrade at LHC. This paper will demonstrate the substantial performance improvement of CMOS sensors based on a high resistivity epitaxial layer. First studies for integrating the sensors into a detector system will be addressed and finally the way to go to a 10 μs readout sensor will be discussed.

  2. A New Definition for Ground Control

    NASA Technical Reports Server (NTRS)

    2002-01-01

    LandForm(R) VisualFlight(R) blends the power of a geographic information system with the speed of a flight simulator to transform a user's desktop computer into a "virtual cockpit." The software product, which is fully compatible with all Microsoft(R) Windows(R) operating systems, provides distributed, real-time three-dimensional flight visualization over a host of networks. From a desktop, a user can immediately obtain a cockpit view, a chase-plane view, or an airborne tracker view. A customizable display also allows the user to overlay various flight parameters, including latitude, longitude, altitude, pitch, roll, and heading information. Rapid Imaging Software sought assistance from NASA, and the VisualFlight technology came to fruition under a Phase II SBIR contract with Johnson Space Center in 1998. Three years later, on December 13, 2001, Ken Ham successfully flew NASA's X-38 spacecraft from a remote, ground-based cockpit using LandForm VisualFlight as part of his primary situation awareness display in a flight test at Edwards Air Force Base, California.

  3. Towards a Cognitive Radar: Canada's Third-Generation High Frequency Surface Wave Radar (HFSWR) for Surveillance of the 200 Nautical Mile Exclusive Economic Zone.

    PubMed

    Ponsford, Anthony; McKerracher, Rick; Ding, Zhen; Moo, Peter; Yee, Derek

    2017-07-07

    Canada's third-generation HFSWR forms the foundation of a maritime domain awareness system that provides enforcement agencies with real-time persistent surveillance out to and beyond the 200 nautical mile exclusive economic zone (EEZ). Cognitive sense-and-adapt technology and dynamic spectrum management ensures robust and resilient operation in the highly congested High Frequency (HF) band. Dynamic spectrum access enables the system to simultaneously operate on two frequencies on a non-interference and non-protected basis, without impacting other spectrum users. Sense-and-adapt technologies ensure that the system instantaneously switches to a new vacant channel on the detection of another user or unwanted jamming signal. Adaptive signal processing techniques mitigate against electrical noise, interference and clutter. Sense-and-adapt techniques applied at the detector and tracker stages maximize the probability of track initiation whilst minimizing the probability of false or otherwise erroneous track data.

  4. Advanced shape tracking to improve flexible endoscopic diagnostics

    NASA Astrophysics Data System (ADS)

    Cao, Caroline G. L.; Wong, Peter Y.; Lilge, Lothar; Gavalis, Robb M.; Xing, Hua; Zamarripa, Nate

    2008-03-01

    Colonoscopy is the gold standard for screening for inflammatory bowel disease and colorectal cancer. Flexible endoscopes are difficult to manipulate, especially in the distensible and tortuous colon, sometimes leading to disorientation during the procedure and missed diagnosis of lesions. Our goal is to design a navigational aid to guide colonoscopies, presenting a three dimensional representation of the endoscope in real-time. Therefore, a flexible sensor that can track the position and shape of the entire length of the endoscope is needed. We describe a novel shape-tracking technology utilizing a single modified optical fiber. By embedding fluorophores in the buffer of the fiber, we demonstrated a relationship between fluorescence intensity and fiber curvature. As much as a 40% increase in fluorescence intensity was achieved when the fiber's local bend radius decreased from 58 mm to 11 mm. This approach allows for the construction of a three-dimensional shape tracker that is small enough to be easily inserted into the biopsy channel of current endoscopes.

  5. Automatic colonic lesion detection and tracking in endoscopic videos

    NASA Astrophysics Data System (ADS)

    Li, Wenjing; Gustafsson, Ulf; A-Rahim, Yoursif

    2011-03-01

    The biology of colorectal cancer offers an opportunity for both early detection and prevention. Compared with other imaging modalities, optical colonoscopy is the procedure of choice for simultaneous detection and removal of colonic polyps. Computer assisted screening makes it possible to assist physicians and potentially improve the accuracy of the diagnostic decision during the exam. This paper presents an unsupervised method to detect and track colonic lesions in endoscopic videos. The aim of the lesion screening and tracking is to facilitate detection of polyps and abnormal mucosa in real time as the physician is performing the procedure. For colonic lesion detection, the conventional marker controlled watershed based segmentation is used to segment the colonic lesions, followed by an adaptive ellipse fitting strategy to further validate the shape. For colonic lesion tracking, a mean shift tracker with background modeling is used to track the target region from the detection phase. The approach has been tested on colonoscopy videos acquired during regular colonoscopic procedures and demonstrated promising results.

  6. Helicopter Approach Capability Using the Differential Global Positioning System

    NASA Technical Reports Server (NTRS)

    Kaufmann, David N.

    1994-01-01

    The results of flight tests to determine the feasibility of using the Global Positioning System (GPS) in the Differential mode (DGPS) to provide high accuracy, precision navigation and guidance for helicopter approaches to landing are presented. The airborne DGPS receiver and associated equipment is installed in a NASA UH-60 Black Hawk helicopter. The ground-based DGPS reference receiver is located at a surveyed test site and is equipped with a real-time VHF data link to transmit correction information to the airborne DGPS receiver. The corrected airborne DGPS information, together with the preset approach geometry, is used to calculate guidance commands which are sent to the aircraft's approach guidance instruments. The use of DGPS derived guidance for helicopter approaches to landing is evaluated by comparing the DGPS data with the laser tracker truth data. The errors indicate that the helicopter position based on DGPS guidance satisfies the International Civil Aviation Organization (ICAO) Category 1 (CAT 1) lateral and vertical navigational accuracy requirements.

  7. Interactive visualization and analysis of multimodal datasets for surgical applications.

    PubMed

    Kirmizibayrak, Can; Yim, Yeny; Wakid, Mike; Hahn, James

    2012-12-01

    Surgeons use information from multiple sources when making surgical decisions. These include volumetric datasets (such as CT, PET, MRI, and their variants), 2D datasets (such as endoscopic videos), and vector-valued datasets (such as computer simulations). Presenting all the information to the user in an effective manner is a challenging problem. In this paper, we present a visualization approach that displays the information from various sources in a single coherent view. The system allows the user to explore and manipulate volumetric datasets, display analysis of dataset values in local regions, combine 2D and 3D imaging modalities and display results of vector-based computer simulations. Several interaction methods are discussed: in addition to traditional interfaces including mouse and trackers, gesture-based natural interaction methods are shown to control these visualizations with real-time performance. An example of a medical application (medialization laryngoplasty) is presented to demonstrate how the combination of different modalities can be used in a surgical setting with our approach.

  8. Anatomically correct visualization of the human upper airway using a high-speed long range optical coherence tomography system with an integrated positioning sensor

    NASA Astrophysics Data System (ADS)

    Jing, Joseph C.; Chou, Lidek; Su, Erica; Wong, Brian J. F.; Chen, Zhongping

    2016-12-01

    The upper airway is a complex tissue structure that is prone to collapse. Current methods for studying airway obstruction are inadequate in safety, cost, or availability, such as CT or MRI, or only provide localized qualitative information such as flexible endoscopy. Long range optical coherence tomography (OCT) has been used to visualize the human airway in vivo, however the limited imaging range has prevented full delineation of the various shapes and sizes of the lumen. We present a new long range OCT system that integrates high speed imaging with a real-time position tracker to allow for the acquisition of an accurate 3D anatomical structure in vivo. The new system can achieve an imaging range of 30 mm at a frame rate of 200 Hz. The system is capable of generating a rapid and complete visualization and quantification of the airway, which can then be used in computational simulations to determine obstruction sites.

  9. Very high frame rate volumetric integration of depth images on mobile devices.

    PubMed

    Kähler, Olaf; Adrian Prisacariu, Victor; Yuheng Ren, Carl; Sun, Xin; Torr, Philip; Murray, David

    2015-11-01

    Volumetric methods provide efficient, flexible and simple ways of integrating multiple depth images into a full 3D model. They provide dense and photorealistic 3D reconstructions, and parallelised implementations on GPUs achieve real-time performance on modern graphics hardware. To run such methods on mobile devices, providing users with freedom of movement and instantaneous reconstruction feedback, remains challenging however. In this paper we present a range of modifications to existing volumetric integration methods based on voxel block hashing, considerably improving their performance and making them applicable to tablet computer applications. We present (i) optimisations for the basic data structure, and its allocation and integration; (ii) a highly optimised raycasting pipeline; and (iii) extensions to the camera tracker to incorporate IMU data. In total, our system thus achieves frame rates up 47 Hz on a Nvidia Shield Tablet and 910 Hz on a Nvidia GTX Titan XGPU, or even beyond 1.1 kHz without visualisation.

  10. Prediction of Winter Storm Tracks and Intensities Using the GFDL fvGFS Model

    NASA Astrophysics Data System (ADS)

    Rees, S.; Boaggio, K.; Marchok, T.; Morin, M.; Lin, S. J.

    2017-12-01

    The GFDL Finite-Volume Cubed-Sphere Dynamical core (FV3) is coupled to a modified version of the Global Forecast System (GFS) physics and initial conditions, to form the fvGFS model. This model is similar to the one being implemented as the next-generation operational weather model for the NWS, which is also FV3-powered. Much work has been done to verify fvGFS tropical cyclone prediction, but little has been done to verify winter storm prediction. These costly and dangerous storms impact parts of the U.S. every year. To verify winter storms we ran the NCEP operational cyclone tracker, developed at GFDL, on semi-real-time 13 km horizontal resolution fvGFS forecasts. We have found that fvGFS compares well to the operational GFS in storm track and intensity, though often predicts slightly higher intensities. This presentation will show the track and intensity verification from the past two winter seasons and explore possible reasons for bias.

  11. Towards a Cognitive Radar: Canada’s Third-Generation High Frequency Surface Wave Radar (HFSWR) for Surveillance of the 200 Nautical Mile Exclusive Economic Zone

    PubMed Central

    Ponsford, Anthony; McKerracher, Rick; Ding, Zhen; Moo, Peter; Yee, Derek

    2017-01-01

    Canada’s third-generation HFSWR forms the foundation of a maritime domain awareness system that provides enforcement agencies with real-time persistent surveillance out to and beyond the 200 nautical mile exclusive economic zone (EEZ). Cognitive sense-and-adapt technology and dynamic spectrum management ensures robust and resilient operation in the highly congested High Frequency (HF) band. Dynamic spectrum access enables the system to simultaneously operate on two frequencies on a non-interference and non-protected basis, without impacting other spectrum users. Sense-and-adapt technologies ensure that the system instantaneously switches to a new vacant channel on the detection of another user or unwanted jamming signal. Adaptive signal processing techniques mitigate against electrical noise, interference and clutter. Sense-and-adapt techniques applied at the detector and tracker stages maximize the probability of track initiation whilst minimizing the probability of false or otherwise erroneous track data. PMID:28686198

  12. Construction and Evaluation of an Ultra Low Latency Frameless Renderer for VR.

    PubMed

    Friston, Sebastian; Steed, Anthony; Tilbury, Simon; Gaydadjiev, Georgi

    2016-04-01

    Latency - the delay between a user's action and the response to this action - is known to be detrimental to virtual reality. Latency is typically considered to be a discrete value characterising a delay, constant in time and space - but this characterisation is incomplete. Latency changes across the display during scan-out, and how it does so is dependent on the rendering approach used. In this study, we present an ultra-low latency real-time ray-casting renderer for virtual reality, implemented on an FPGA. Our renderer has a latency of ~1 ms from 'tracker to pixel'. Its frameless nature means that the region of the display with the lowest latency immediately follows the scan-beam. This is in contrast to frame-based systems such as those using typical GPUs, for which the latency increases as scan-out proceeds. Using a series of high and low speed videos of our system in use, we confirm its latency of ~1 ms. We examine how the renderer performs when driving a traditional sequential scan-out display on a readily available HMO, the Oculus Rift OK2. We contrast this with an equivalent apparatus built using a GPU. Using captured human head motion and a set of image quality measures, we assess the ability of these systems to faithfully recreate the stimuli of an ideal virtual reality system - one with a zero latency tracker, renderer and display running at 1 kHz. Finally, we examine the results of these quality measures, and how each rendering approach is affected by velocity of movement and display persistence. We find that our system, with a lower average latency, can more faithfully draw what the ideal virtual reality system would. Further, we find that with low display persistence, the sensitivity to velocity of both systems is lowered, but that it is much lower for ours.

  13. Individual Differences in the Attribution of Incentive Salience to a Pavlovian Alcohol Cue

    PubMed Central

    Villaruel, Franz R.; Chaudhri, Nadia

    2016-01-01

    Individual differences exist in the attribution of incentive salience to conditioned stimuli associated with food. Here, we investigated whether individual differences also manifested with a Pavlovian alcohol conditioned stimulus (CS). We compiled data from five experiments that used a Pavlovian autoshaping paradigm and tests of conditioned reinforcement. In all experiments, male, Long-Evans rats with unrestricted access to food and water were acclimated to 15% ethanol. Next, rats received Pavlovian autoshaping training, in which a 10 s presentation of a retractable lever served as the CS and 0.2 mL of 15% ethanol served as the unconditioned stimulus (US). Finally, rats underwent conditioned reinforcement tests in which nose-pokes to an active aperture led to brief presentations of the lever-CS, but nose-pokes to an inactive aperture had no consequence. Rats were categorized as sign-trackers, goal-trackers and intermediates based on a response bias score that reflected their tendencies to sign-track or goal-track at different times during training. We found that distinct groups of rats either consistently interacted with the lever-CS (“sign-trackers”) or routinely approached the port during the lever-CS (“goal-trackers”) across a majority of the training sessions. However, some individuals (“shifted sign-trackers”) with an early tendency to goal-track later shifted to comparable asymptotic levels of sign-tracking as the group identified as sign-trackers. The lever-CS functioned as a conditioned reinforcer for sign-trackers and shifted sign-trackers, but not for goal-trackers. These results provide evidence of robust individual differences in the extent to which a Pavlovian alcohol cue gains incentive salience and functions as a conditioned reinforcer. PMID:28082877

  14. Needle placement for piriformis injection using 3-D imaging.

    PubMed

    Clendenen, Steven R; Candler, Shawn A; Osborne, Michael D; Palmer, Scott C; Duench, Stephanie; Glynn, Laura; Ghazi, Salim M

    2013-01-01

    Piriformis syndrome is a pain syndrome originating in the buttock and is attributed to 6% - 8% of patients referred for the treatment of back and leg pain. The treatment for piriformis syndrome using fluoroscopy, computed tomography (CT), electromyography (EMG), and ultrasound (US) has become standard practice. The treatment of Piriformis Syndrome has evolved to include fluoroscopy and EMG with CT guidance. We present a case study of 5 successful piriformis injections using 3-D computer-assisted electromagnet needle tracking coupled with ultrasound. A 6-degree of freedom electromagnetic position tracker was attached to the ultrasound probe that allowed the system to detect the position and orientation of the probe in the magnetic field. The tracked ultrasound probe was used to find the posterior superior iliac spine. Subsequently, 3 points were captured to register the ultrasound image with the CT or magnetic resonance image scan. Moreover, after the registration was obtained, the navigation system visualized the tracked needle relative to the CT scan in real-time using 2 orthogonal multi-planar reconstructions centered at the tracked needle tip. Conversely, a recent study revealed that fluoroscopically guided injections had 30% accuracy compared to ultrasound guided injections, which tripled the accuracy percentage. This novel technique exhibited an accurate needle guidance injection precision of 98% while advancing to the piriformis muscle and avoiding the sciatic nerve. The mean (± SD) procedure time was 19.08 (± 4.9) minutes. This technique allows for electromagnetic instrument tip tracking with real-time 3-D guidance to the selected target. As with any new technique, a learning curve is expected; however, this technique could offer an alternative, minimizing radiation exposure.

  15. An analog front-end bipolar-transistor integrated circuit for the SDC silicon tracker

    NASA Astrophysics Data System (ADS)

    Kipnis, I.; Spieler, H.; Collins, T.

    1994-08-01

    A low-noise, low-power, high-bandwidth, radiation hard, silicon bipolar-transistor full-custom integrated circuit (IC) containing 64 channels of analog signal processing has been developed for the SDC silicon tracker The IC was designed and tested at LBL and was fabricated using AT&T's CBIC-U2, 4 GHz f/sub /spl tau// complementary bipolar technology. Each channel contains the following functions: low-noise preamplification, pulse shaping and threshold discrimination. This is the first iteration of the production analog IC for the SDC silicon tracker. The IC is laid out to directly match the 50 /spl mu/m pitch double-sided silicon strip detector. The chip measures 6.8 mm/spl times/3.1 mm and contains 3,600 transistors. Three stages of amplification provide 180 mV/fC of gain with a 35 nsec peaking time at the comparator input. For a 14 pF detector capacitance, the equivalent noise charge is 1300 el. RMS at a power consumption of 1 mW/channel from a single 3.5 V supply. With the discriminator threshold set to 4 times the noise level, a 16 nsec time-walk for 1.25 to 10 fC signals is achieved using a time-walk compensation network. Irradiation tests at TRIUMF to a /spl Phi/=10/sup 14/ protons/cm/sup 2/ have been performed on the IC, demonstrating the radiation hardness of the complementary bipolar process.

  16. Chapter 6: CPV Tracking and Trackers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luque-Heredia, Ignacio; Magalhaes, Pedro; Muller, Matthew

    2016-04-15

    This chapter explains the functional requirements of a concentrator photovoltaic (CPV) sun tracker. It derives the design specifications of a CPV tracker. The chapter presents taxonomy of trackers describing the most common tracking architectures, based on the number of axes, their relative position, and the foundation and placing of tracking drives. It deals with the structural issues related to tracker design, mainly related to structural flexure and its impact on the system's acceptance angle. The chapter analyzes the auto-calibrated sun tracking control, by describing the state of the art and its development background. It explores the sun tracking accuracy measurementmore » with a practical example. The chapter discusses tracker manufacturing and tracker field works. It reviews survey of different types of tracker designs obtained from different manufacturers. Finally, the chapter deals with IEC62817, the technical standard developed for CPV sun trackers.« less

  17. Automatic target recognition and detection in infrared imagery under cluttered background

    NASA Astrophysics Data System (ADS)

    Gundogdu, Erhan; Koç, Aykut; Alatan, A. Aydın.

    2017-10-01

    Visual object classification has long been studied in visible spectrum by utilizing conventional cameras. Since the labeled images has recently increased in number, it is possible to train deep Convolutional Neural Networks (CNN) with significant amount of parameters. As the infrared (IR) sensor technology has been improved during the last two decades, labeled images extracted from IR sensors have been started to be used for object detection and recognition tasks. We address the problem of infrared object recognition and detection by exploiting 15K images from the real-field with long-wave and mid-wave IR sensors. For feature learning, a stacked denoising autoencoder is trained in this IR dataset. To recognize the objects, the trained stacked denoising autoencoder is fine-tuned according to the binary classification loss of the target object. Once the training is completed, the test samples are propagated over the network, and the probability of the test sample belonging to a class is computed. Moreover, the trained classifier is utilized in a detect-by-classification method, where the classification is performed in a set of candidate object boxes and the maximum confidence score in a particular location is accepted as the score of the detected object. To decrease the computational complexity, the detection step at every frame is avoided by running an efficient correlation filter based tracker. The detection part is performed when the tracker confidence is below a pre-defined threshold. The experiments conducted on the real field images demonstrate that the proposed detection and tracking framework presents satisfactory results for detecting tanks under cluttered background.

  18. Time-Of-Flight Camera, Optical Tracker and Computed Tomography in Pairwise Data Registration

    PubMed Central

    Badura, Pawel; Juszczyk, Jan; Pietka, Ewa

    2016-01-01

    Purpose A growing number of medical applications, including minimal invasive surgery, depends on multi-modal or multi-sensors data processing. Fast and accurate 3D scene analysis, comprising data registration, seems to be crucial for the development of computer aided diagnosis and therapy. The advancement of surface tracking system based on optical trackers already plays an important role in surgical procedures planning. However, new modalities, like the time-of-flight (ToF) sensors, widely explored in non-medical fields are powerful and have the potential to become a part of computer aided surgery set-up. Connection of different acquisition systems promises to provide a valuable support for operating room procedures. Therefore, the detailed analysis of the accuracy of such multi-sensors positioning systems is needed. Methods We present the system combining pre-operative CT series with intra-operative ToF-sensor and optical tracker point clouds. The methodology contains: optical sensor set-up and the ToF-camera calibration procedures, data pre-processing algorithms, and registration technique. The data pre-processing yields a surface, in case of CT, and point clouds for ToF-sensor and marker-driven optical tracker representation of an object of interest. An applied registration technique is based on Iterative Closest Point algorithm. Results The experiments validate the registration of each pair of modalities/sensors involving phantoms of four various human organs in terms of Hausdorff distance and mean absolute distance metrics. The best surface alignment was obtained for CT and optical tracker combination, whereas the worst for experiments involving ToF-camera. Conclusion The obtained accuracies encourage to further develop the multi-sensors systems. The presented substantive discussion concerning the system limitations and possible improvements mainly related to the depth information produced by the ToF-sensor is useful for computer aided surgery developers. PMID:27434396

  19. Cosmology of a covariant Galilean field.

    PubMed

    De Felice, Antonio; Tsujikawa, Shinji

    2010-09-10

    We study the cosmology of a covariant scalar field respecting a Galilean symmetry in flat space-time. We show the existence of a tracker solution that finally approaches a de Sitter fixed point responsible for cosmic acceleration today. The viable region of model parameters is clarified by deriving conditions under which ghosts and Laplacian instabilities of scalar and tensor perturbations are absent. The field equation of state exhibits a peculiar phantomlike behavior along the tracker, which allows a possibility to observationally distinguish the Galileon gravity from the cold dark matter model with a cosmological constant.

  20. LysoTracker and MitoTracker Red are transport substrates of P-glycoprotein: implications for anticancer drug design evading multidrug resistance.

    PubMed

    Zhitomirsky, Benny; Farber, Hodaya; Assaraf, Yehuda G

    2018-04-01

    LysoTracker and MitoTracker Red are fluorescent probes widely used for viable cell staining of lysosomes and mitochondria, respectively. They are utilized to study organelle localization and their resident proteins, assess organelle functionality and quantification of organelle numbers. The ATP-driven efflux transporter P-glycoprotein (P-gp) is expressed in normal and malignant tissues and extrudes structurally distinct endogenous and exogenous cytotoxic compounds. Thus, once aromatic hydrophobic compounds such as the above-mentioned fluorescent probes are recognized as transport substrates, efflux pumps including P-gp may abolish their ability to reach their cellular target organelles. Herein, we show that LysoTracker and MitoTracker Red are expelled from P-gp-overexpressing cancer cells, thus hindering their ability to fluorescently mark target organelles. We further demonstrate that tariquidar, a potent P-gp transport inhibitor, restores LysoTracker and MitoTracker Red cell entry. We conclude that LysoTracker and MitoTracker Red are P-gp transport substrates, and therefore, P-gp expression must be taken into consideration prior to cellular applications using these probes. Importantly, as MitoTracker was a superior P-gp substrate than LysoTracker Red, we discuss the implications for the future design of chemotherapeutics evading cancer multidrug resistance. Furthermore, restoration of MitoTracker Red fluorescence in P-gp-overexpressing cells may facilitate the identification of potent P-gp transport inhibitors (i.e. chemosensitizers). © 2018 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  1. Equations for solar tracking.

    PubMed

    Merlaud, Alexis; De Mazière, Martine; Hermans, Christian; Cornet, Alain

    2012-01-01

    Direct sunlight absorption by trace gases can be used to quantify them and investigate atmospheric chemistry. In such experiments, the main optical apparatus is often a grating or a Fourier transform spectrometer. A solar tracker based on motorized rotating mirrors is commonly used to direct the light along the spectrometer axis, correcting for the apparent rotation of the Sun. Calculating the Sun azimuth and altitude for a given time and location can be achieved with high accuracy but different sources of angular offsets appear in practice when positioning the mirrors. A feedback on the motors, using a light position sensor close to the spectrometer, is almost always needed. This paper aims to gather the main geometrical formulas necessary for the use of a widely used kind of solar tracker, based on two 45° mirrors in altazimuthal set-up with a light sensor on the spectrometer, and to illustrate them with a tracker developed by our group for atmospheric research.

  2. Equations for Solar Tracking

    PubMed Central

    Merlaud, Alexis; De Mazière, Martine; Hermans, Christian; Cornet, Alain

    2012-01-01

    Direct sunlight absorption by trace gases can be used to quantify them and investigate atmospheric chemistry. In such experiments, the main optical apparatus is often a grating or a Fourier transform spectrometer. A solar tracker based on motorized rotating mirrors is commonly used to direct the light along the spectrometer axis, correcting for the apparent rotation of the Sun. Calculating the Sun azimuth and altitude for a given time and location can be achieved with high accuracy but different sources of angular offsets appear in practice when positioning the mirrors. A feedback on the motors, using a light position sensor close to the spectrometer, is almost always needed. This paper aims to gather the main geometrical formulas necessary for the use of a widely used kind of solar tracker, based on two 45° mirrors in altazimuthal set-up with a light sensor on the spectrometer, and to illustrate them with a tracker developed by our group for atmospheric research. PMID:22666019

  3. CellTracker (not only) for dummies.

    PubMed

    Piccinini, Filippo; Kiss, Alexa; Horvath, Peter

    2016-03-15

    Time-lapse experiments play a key role in studying the dynamic behavior of cells. Single-cell tracking is one of the fundamental tools for such analyses. The vast majority of the recently introduced cell tracking methods are limited to fluorescently labeled cells. An equally important limitation is that most software cannot be effectively used by biologists without reasonable expertise in image processing. Here we present CellTracker, a user-friendly open-source software tool for tracking cells imaged with various imaging modalities, including fluorescent, phase contrast and differential interference contrast (DIC) techniques. CellTracker is written in MATLAB (The MathWorks, Inc., USA). It works with Windows, Macintosh and UNIX-based systems. Source code and graphical user interface (GUI) are freely available at: http://celltracker.website/ horvath.peter@brc.mta.hu Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  4. Real-time self-calibration of a tracked augmented reality display

    NASA Astrophysics Data System (ADS)

    Baum, Zachary; Lasso, Andras; Ungi, Tamas; Fichtinger, Gabor

    2016-03-01

    PURPOSE: Augmented reality systems have been proposed for image-guided needle interventions but they have not become widely used in clinical practice due to restrictions such as limited portability, low display refresh rates, and tedious calibration procedures. We propose a handheld tablet-based self-calibrating image overlay system. METHODS: A modular handheld augmented reality viewbox was constructed from a tablet computer and a semi-transparent mirror. A consistent and precise self-calibration method, without the use of any temporary markers, was designed to achieve an accurate calibration of the system. Markers attached to the viewbox and patient are simultaneously tracked using an optical pose tracker to report the position of the patient with respect to a displayed image plane that is visualized in real-time. The software was built using the open-source 3D Slicer application platform's SlicerIGT extension and the PLUS toolkit. RESULTS: The accuracy of the image overlay with image-guided needle interventions yielded a mean absolute position error of 0.99 mm (95th percentile 1.93 mm) in-plane of the overlay and a mean absolute position error of 0.61 mm (95th percentile 1.19 mm) out-of-plane. This accuracy is clinically acceptable for tool guidance during various procedures, such as musculoskeletal injections. CONCLUSION: A self-calibration method was developed and evaluated for a tracked augmented reality display. The results show potential for the use of handheld image overlays in clinical studies with image-guided needle interventions.

  5. Effects of aging on eye movements in the real world

    PubMed Central

    Dowiasch, Stefan; Marx, Svenja; Einhäuser, Wolfgang; Bremmer, Frank

    2015-01-01

    The effects of aging on eye movements are well studied in the laboratory. Increased saccade latencies or decreased smooth-pursuit gain are well established findings. The question remains whether these findings are influenced by the rather untypical environment of a laboratory; that is, whether or not they transfer to the real world. We measured 34 healthy participants between the age of 25 and 85 during two everyday tasks in the real world: (I) walking down a hallway with free gaze, (II) visual tracking of an earth-fixed object while walking straight-ahead. Eye movements were recorded with a mobile light-weight eye tracker, the EyeSeeCam (ESC). We find that age significantly influences saccade parameters. With increasing age, saccade frequency, amplitude, peak velocity, and mean velocity are reduced and the velocity/amplitude distribution as well as the velocity profile become less skewed. In contrast to laboratory results on smooth pursuit, we did not find a significant effect of age on tracking eye-movements in the real world. Taken together, age-related eye-movement changes as measured in the laboratory only partly resemble those in the real world. It is well-conceivable that in the real world additional sensory cues, such as head-movement or vestibular signals, may partially compensate for age-related effects, which, according to this view, would be specific to early motion processing. In any case, our results highlight the importance of validity for natural situations when studying the impact of aging on real-life performance. PMID:25713524

  6. Effects of aging on eye movements in the real world.

    PubMed

    Dowiasch, Stefan; Marx, Svenja; Einhäuser, Wolfgang; Bremmer, Frank

    2015-01-01

    The effects of aging on eye movements are well studied in the laboratory. Increased saccade latencies or decreased smooth-pursuit gain are well established findings. The question remains whether these findings are influenced by the rather untypical environment of a laboratory; that is, whether or not they transfer to the real world. We measured 34 healthy participants between the age of 25 and 85 during two everyday tasks in the real world: (I) walking down a hallway with free gaze, (II) visual tracking of an earth-fixed object while walking straight-ahead. Eye movements were recorded with a mobile light-weight eye tracker, the EyeSeeCam (ESC). We find that age significantly influences saccade parameters. With increasing age, saccade frequency, amplitude, peak velocity, and mean velocity are reduced and the velocity/amplitude distribution as well as the velocity profile become less skewed. In contrast to laboratory results on smooth pursuit, we did not find a significant effect of age on tracking eye-movements in the real world. Taken together, age-related eye-movement changes as measured in the laboratory only partly resemble those in the real world. It is well-conceivable that in the real world additional sensory cues, such as head-movement or vestibular signals, may partially compensate for age-related effects, which, according to this view, would be specific to early motion processing. In any case, our results highlight the importance of validity for natural situations when studying the impact of aging on real-life performance.

  7. How valid are wearable physical activity trackers for measuring steps?

    PubMed

    An, Hyun-Sung; Jones, Gregory C; Kang, Seoung-Ki; Welk, Gregory J; Lee, Jung-Min

    2017-04-01

    Wearable activity trackers have become popular for tracking individual's daily physical activity, but little information is available to substantiate the validity of these devices in step counts. Thirty-five healthy individuals completed three conditions of activity tracker measurement: walking/jogging on a treadmill, walking over-ground on an indoor track, and a 24-hour free-living condition. Participants wore 10 activity trackers at the same time for both treadmill and over-ground protocol. Of these 10 activity trackers three were randomly given for 24-hour free-living condition. Correlations of steps measured to steps observed were r = 0.84 and r = 0.67 on a treadmill and over-ground protocol, respectively. The mean MAPE (mean absolute percentage error) score for all devices and speeds on a treadmill was 8.2% against manually counted steps. The MAPE value was higher for over-ground walking (9.9%) and even higher for the 24-hour free-living period (18.48%) on step counts. Equivalence testing for step count measurement resulted in a significant level within ±5% for the Fitbit Zip, Withings Pulse, and Jawbone UP24 and within ±10% for the Basis B1 band, Garmin VivoFit, and SenseWear Armband Mini. The results show that the Fitbit Zip and Withings Pulse provided the most accurate measures of step count under all three different conditions (i.e. treadmill, over-ground, and 24-hour condition), and considerable variability in accuracy across monitors and also by speeds and conditions.

  8. Retrofit Weight-Loss Outcomes at 6, 12, and 24 Months and Characteristics of 12-Month High Performers: A Retrospective Analysis.

    PubMed

    Painter, Stefanie; Ditsch, Gary; Ahmed, Rezwan; Hanson, Nicholas Buck; Kachin, Kevin; Berger, Jan

    2016-08-22

    Obesity is the leading cause of preventable death costing the health care system billions of dollars. Combining self-monitoring technology with personalized behavior change strategies results in clinically significant weight loss. However, there is a lack of real-world outcomes in commercial weight-loss program research. Retrofit is a personalized weight management and disease-prevention solution. This study aimed to report Retrofit's weight-loss outcomes at 6, 12, and 24 months and characterize behaviors, age, and sex of high-performing participants who achieved weight loss of 10% or greater at 12 months. A retrospective analysis was performed from 2011 to 2014 using 2720 participants enrolled in a Retrofit weight-loss program. Participants had a starting body mass index (BMI) of >25 kg/m² and were at least 18 years of age. Weight measurements were assessed at 6, 12, and 24 months in the program to evaluate change in body weight, BMI, and percentage of participants who achieved 5% or greater weight loss. A secondary analysis characterized high-performing participants who lost ≥10% of their starting weight (n=238). Characterized behaviors were evaluated, including self-monitoring through weigh-ins, number of days wearing an activity tracker, daily step count average, and engagement through coaching conversations via Web-based messages, and number of coaching sessions attended. Average weight loss at 6 months was -5.55% for male and -4.86% for female participants. Male and female participants had an average weight loss of -6.28% and -5.37% at 12 months, respectively. Average weight loss at 24 months was -5.03% and -3.15% for males and females, respectively. Behaviors of high-performing participants were assessed at 12 months. Number of weigh-ins were greater in high-performing male (197.3 times vs 165.4 times, P=.001) and female participants (222 times vs 167 times, P<.001) compared with remaining participants. Total activity tracker days and average steps per day were greater in high-performing females (304.7 vs 266.6 days, P<.001; 8380.9 vs 7059.7 steps, P<.001, respectively) and males (297.1 vs 255.3 days, P<.001; 9099.3 vs 8251.4 steps, P=.008, respectively). High-performing female participants had significantly more coaching conversations via Web-based messages than remaining female participants (341.4 vs 301.1, P=.03), as well as more days with at least one such electronic message (118 vs 108 days, P=.03). High-performing male participants displayed similar behavior. Participants on the Retrofit program lost an average of -5.21% at 6 months, -5.83% at 12 months, and -4.09% at 24 months. High-performing participants show greater adherence to self-monitoring behaviors of weighing in, number of days wearing an activity tracker, and average number of steps per day. Female high performers have higher coaching engagement through conversation days and total number of coaching conversations.

  9. Resonant acoustic measurement of vapor phase transport phenomenon in porous media

    NASA Astrophysics Data System (ADS)

    Schuhmann, Richard; Garrett, Steven

    2002-05-01

    Diffusion of gases through porous media is commonly described using Fick's law and is characterized by a gas diffusion coefficient modified by a media-specific tortuosity parameter. A phase-locked-loop resonance frequency tracker [J. Acoust. Soc. Am. 108, 2520 (2000)] has been upgraded with an insulated copper resonator and a bellows-sealed piston instrumented with an accelerometer. Average system stability (temperature divided by frequency squared) is about 180 ppm. Glass-bead-filled cores of different lengths are fitted into an o-ring sealed opening at the top of the resonator. The rate at which the tracer gas is replaced by air within the resonator is controlled by the core's diffusion constant. Mean molecular weight of the gas mixture in the resonator is determined in real time from the ratio of the absolute temperature to the square of the fundamental acoustic resonance frequency. Molecular weight of the gas mixture is determined approximately six times per minute. Changes in the gas mixture concentration are exponential in time (within 0.1%) over nearly two decades in concentration. We will report diffusion constants for two different sizes of glass beads, in samples of five different lengths, using two different tracer gases, to establish the validity of this approach. [Work supported by ONR.

  10. A Real-Time Position-Locating Algorithm for CCD-Based Sunspot Tracking

    NASA Technical Reports Server (NTRS)

    Taylor, Jaime R.

    1996-01-01

    NASA Marshall Space Flight Center's (MSFC) EXperimental Vector Magnetograph (EXVM) polarimeter measures the sun's vector magnetic field. These measurements are taken to improve understanding of the sun's magnetic field in the hopes to better predict solar flares. Part of the procedure for the EXVM requires image motion stabilization over a period of a few minutes. A high speed tracker can be used to reduce image motion produced by wind loading on the EXVM, fluctuations in the atmosphere and other vibrations. The tracker consists of two elements, an image motion detector and a control system. The image motion detector determines the image movement from one frame to the next and sends an error signal to the control system. For the ground based application to reduce image motion due to atmospheric fluctuations requires an error determination at the rate of at least 100 hz. It would be desirable to have an error determination rate of 1 kHz to assure that higher rate image motion is reduced and to increase the control system stability. Two algorithms are presented that are typically used for tracking. These algorithms are examined for their applicability for tracking sunspots, specifically their accuracy if only one column and one row of CCD pixels are used. To examine the accuracy of this method two techniques are used. One involves moving a sunspot image a known distance with computer software, then applying the particular algorithm to see how accurately it determines this movement. The second technique involves using a rate table to control the object motion, then applying the algorithms to see how accurately each determines the actual motion. Results from these two techniques are presented.

  11. Multi-Complementary Model for Long-Term Tracking

    PubMed Central

    Zhang, Deng; Zhang, Junchang; Xia, Chenyang

    2018-01-01

    In recent years, video target tracking algorithms have been widely used. However, many tracking algorithms do not achieve satisfactory performance, especially when dealing with problems such as object occlusions, background clutters, motion blur, low illumination color images, and sudden illumination changes in real scenes. In this paper, we incorporate an object model based on contour information into a Staple tracker that combines the correlation filter model and color model to greatly improve the tracking robustness. Since each model is responsible for tracking specific features, the three complementary models combine for more robust tracking. In addition, we propose an efficient object detection model with contour and color histogram features, which has good detection performance and better detection efficiency compared to the traditional target detection algorithm. Finally, we optimize the traditional scale calculation, which greatly improves the tracking execution speed. We evaluate our tracker on the Object Tracking Benchmarks 2013 (OTB-13) and Object Tracking Benchmarks 2015 (OTB-15) benchmark datasets. With the OTB-13 benchmark datasets, our algorithm is improved by 4.8%, 9.6%, and 10.9% on the success plots of OPE, TRE and SRE, respectively, in contrast to another classic LCT (Long-term Correlation Tracking) algorithm. On the OTB-15 benchmark datasets, when compared with the LCT algorithm, our algorithm achieves 10.4%, 12.5%, and 16.1% improvement on the success plots of OPE, TRE, and SRE, respectively. At the same time, it needs to be emphasized that, due to the high computational efficiency of the color model and the object detection model using efficient data structures, and the speed advantage of the correlation filters, our tracking algorithm could still achieve good tracking speed. PMID:29425170

  12. Individual differences in food cue responsivity are associated with acute and repeated cocaine-induced vocalizations, but not cue-induced vocalizations.

    PubMed

    Tripi, Jordan A; Dent, Micheal L; Meyer, Paul J

    2017-02-01

    Individuals prone to attribute incentive salience to food-associated stimuli ("cues") are also more sensitive to cues during drug seeking and drug taking. This may be due in part to a difference in sensitivity to the affective or other stimulus properties of the drug. In rats, these properties are associated with 50-kHz ultrasonic vocalizations (USVs), in that they are elicited during putative positive affective and motivational states, including in response to drugs of abuse. We sought to determine whether individual differences in the tendency to attribute incentive salience to a food cue (as measured by approach) were associated with differences in cocaine-induced USVs. We also tested whether the food cue would elicit USVs and if this response was related to approach to the food cue. In experiment 1, rats underwent Pavlovian conditioned approach (PavCA) training where they learned to associate a cue (an illuminated lever) with the delivery of a food pellet into a food cup. Subjects were categorized based on their approach to the cue ("sign-trackers") or to the food cup ("goal-trackers"). Rats subsequently underwent nine testing days in which they were given saline or cocaine (10 mg/kg i.p) and placed into a locomotor chamber. In experiment 2, rats were first tested in the locomotor chambers for one saline-treated day followed by one cocaine-treated day and then trained in PavCA. USVs were recorded from a subset of individuals during the last day of PavCA to determine if the food cue would elicit USVs. Sign-trackers produced 5-24 times more cocaine-induced 50 kHz USVs compared to goal-trackers for all days of experiment 1, and this response sensitized with repeated cocaine, only in sign-trackers. Similarly in experiment 2, individuals that produced the most cocaine-induced USVs on a single exposure also showed the greatest tendency to sign-track during PavCA. Lastly, while sign-trackers produced more USVs during PavCA generally, the cue itself did not elicit additional USVs in sign- or goal-trackers. These results indicate a robust and consistent relationship between approach to a food cue and cocaine-induced USV production. Thus, these USVs may index the neurobiological differences underlying the behavioral distinctions of sign- and goal-trackers.

  13. Microinverter Thermal Performance in the Real-World: Measurements and Modeling

    PubMed Central

    Hossain, Mohammad Akram; Xu, Yifan; Peshek, Timothy J.; Ji, Liang; Abramson, Alexis R.; French, Roger H.

    2015-01-01

    Real-world performance, durability and reliability of microinverters are critical concerns for microinverter-equipped photovoltaic systems. We conducted a data-driven study of the thermal performance of 24 new microinverters (Enphase M215) connected to 8 different brands of PV modules on dual-axis trackers at the Solar Durability and Lifetime Extension (SDLE) SunFarm at Case Western Reserve University, based on minute by minute power and thermal data from the microinverters and PV modules along with insolation and environmental data from July through October 2013. The analysis shows the strengths of the associations of microinverter temperature with ambient temperature, PV module temperature, irradiance and AC power of the PV systems. The importance of the covariates are rank ordered. A multiple regression model was developed and tested based on stable solar noon-time data, which gives both an overall function that predicts the temperature of microinverters under typical local conditions, and coefficients adjustments reecting refined prediction of the microinverter temperature connected to the 8 brands of PV modules in the study. The model allows for prediction of internal temperature for the Enphase M215 given similar climatic condition and can be expanded to predict microinverter temperature in fixed-rack and roof-top PV systems. This study is foundational in that similar models built on later stage data in the life of a device could reveal potential influencing factors in performance degradation. PMID:26147339

  14. Optical neural network system for pose determination of spinning satellites

    NASA Technical Reports Server (NTRS)

    Lee, Andrew; Casasent, David

    1990-01-01

    An optical neural network architecture and algorithm based on a Hopfield optimization network are presented for multitarget tracking. This tracker utilizes a neuron for every possible target track, and a quadratic energy function of neural activities which is minimized using gradient descent neural evolution. The neural net tracker is demonstrated as part of a system for determining position and orientation (pose) of spinning satellites with respect to a robotic spacecraft. The input to the system is time sequence video from a single camera. Novelty detection and filtering are utilized to locate and segment novel regions from the input images. The neural net multitarget tracker determines the correspondences (or tracks) of the novel regions as a function of time, and hence the paths of object (satellite) parts. The path traced out by a given part or region is approximately elliptical in image space, and the position, shape and orientation of the ellipse are functions of the satellite geometry and its pose. Having a geometric model of the satellite, and the elliptical path of a part in image space, the three-dimensional pose of the satellite is determined. Digital simulation results using this algorithm are presented for various satellite poses and lighting conditions.

  15. Searches for long-lived charged particles in pp collisions at $$ \\sqrt{s} $$ =7 and 8 TeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chatrchyan, S.; Khachatryan, V.; Sirunyan, A. M.

    2013-07-01

    Results of searches for heavy stable charged particles produced in pp collisions at = 7 and 8 TeV are presented corresponding to an integrated luminosity of 5.0 fb(-1) and 18.8 fb(-1), respectively. Data collected with the CMS detector are used to study the momentum, energy deposition, and time-of-flight of signal candidates. Leptons with an electric charge between e/3 and 8e, as well as bound states that can undergo charge exchange with the detector material, are studied. Analysis results are presented for various combinations of signatures in the inner tracker only, inner tracker and muon detector, and muon detector only. Detectormore » signatures utilized are long time-of-flight to the outer muon system and anomalously high (or low) energy deposition in the inner tracker. The data are consistent with the expected background, and upper limits are set on the production cross section of long-lived gluinos, scalar top quarks, and scalar τ leptons, as well as pair produced long-lived leptons. Corresponding lower mass limits, ranging up to 1322 GeV/c (2) for gluinos, are the most stringent to date.« less

  16. Searches for long-lived charged particles in pp collisions at $$\\sqrt{s}$$ = 7 and 8 TeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chatrchyan, S.; Khachatryan, V.; Sirunyan, A. M.

    2013-07-19

    Results of searches for heavy stable charged particles produced in pp collisions atmore » $$\\sqrt{s}$$ =7 and 8 TeV are presented corresponding to an integrated luminosity of 5.0 fb -1 and 18.8 fb -1, respectively. Data collected with the CMS detector are used to study the momentum, energy deposition, and time-of-flight of signal candidates. Leptons with an electric charge between e/3 and 8e, as well as bound states that can undergo charge exchange with the detector material, are studied. Analysis results are presented for various combinations of signatures in the inner tracker only, inner tracker and muon detector, and muon detector only. Detector signatures utilized are long time-of-flight to the outer muon system and anomalously high (or low) energy deposition in the inner tracker. The data are consistent with the expected background, and upper limits are set on the production cross section of long-lived gluinos, scalar top quarks, and scalar τ leptons, as well as pair produced long-lived leptons. Corresponding lower mass limits, ranging up to 1322 GeV/c (2) for gluinos, are the most stringent to date.« less

  17. Quantifying gaze and mouse interactions on spatial visual interfaces with a new movement analytics methodology

    PubMed Central

    2017-01-01

    Eye movements provide insights into what people pay attention to, and therefore are commonly included in a variety of human-computer interaction studies. Eye movement recording devices (eye trackers) produce gaze trajectories, that is, sequences of gaze location on the screen. Despite recent technological developments that enabled more affordable hardware, gaze data are still costly and time consuming to collect, therefore some propose using mouse movements instead. These are easy to collect automatically and on a large scale. If and how these two movement types are linked, however, is less clear and highly debated. We address this problem in two ways. First, we introduce a new movement analytics methodology to quantify the level of dynamic interaction between the gaze and the mouse pointer on the screen. Our method uses volumetric representation of movement, the space-time densities, which allows us to calculate interaction levels between two physically different types of movement. We describe the method and compare the results with existing dynamic interaction methods from movement ecology. The sensitivity to method parameters is evaluated on simulated trajectories where we can control interaction levels. Second, we perform an experiment with eye and mouse tracking to generate real data with real levels of interaction, to apply and test our new methodology on a real case. Further, as our experiment tasks mimics route-tracing when using a map, it is more than a data collection exercise and it simultaneously allows us to investigate the actual connection between the eye and the mouse. We find that there seem to be natural coupling when eyes are not under conscious control, but that this coupling breaks down when instructed to move them intentionally. Based on these observations, we tentatively suggest that for natural tracing tasks, mouse tracking could potentially provide similar information as eye-tracking and therefore be used as a proxy for attention. However, more research is needed to confirm this. PMID:28777822

  18. Quantifying gaze and mouse interactions on spatial visual interfaces with a new movement analytics methodology.

    PubMed

    Demšar, Urška; Çöltekin, Arzu

    2017-01-01

    Eye movements provide insights into what people pay attention to, and therefore are commonly included in a variety of human-computer interaction studies. Eye movement recording devices (eye trackers) produce gaze trajectories, that is, sequences of gaze location on the screen. Despite recent technological developments that enabled more affordable hardware, gaze data are still costly and time consuming to collect, therefore some propose using mouse movements instead. These are easy to collect automatically and on a large scale. If and how these two movement types are linked, however, is less clear and highly debated. We address this problem in two ways. First, we introduce a new movement analytics methodology to quantify the level of dynamic interaction between the gaze and the mouse pointer on the screen. Our method uses volumetric representation of movement, the space-time densities, which allows us to calculate interaction levels between two physically different types of movement. We describe the method and compare the results with existing dynamic interaction methods from movement ecology. The sensitivity to method parameters is evaluated on simulated trajectories where we can control interaction levels. Second, we perform an experiment with eye and mouse tracking to generate real data with real levels of interaction, to apply and test our new methodology on a real case. Further, as our experiment tasks mimics route-tracing when using a map, it is more than a data collection exercise and it simultaneously allows us to investigate the actual connection between the eye and the mouse. We find that there seem to be natural coupling when eyes are not under conscious control, but that this coupling breaks down when instructed to move them intentionally. Based on these observations, we tentatively suggest that for natural tracing tasks, mouse tracking could potentially provide similar information as eye-tracking and therefore be used as a proxy for attention. However, more research is needed to confirm this.

  19. Audio Tracking in Noisy Environments by Acoustic Map and Spectral Signature.

    PubMed

    Crocco, Marco; Martelli, Samuele; Trucco, Andrea; Zunino, Andrea; Murino, Vittorio

    2018-05-01

    A novel method is proposed for generic target tracking by audio measurements from a microphone array. To cope with noisy environments characterized by persistent and high energy interfering sources, a classification map (CM) based on spectral signatures is calculated by means of a machine learning algorithm. Next, the CM is combined with the acoustic map, describing the spatial distribution of sound energy, in order to obtain a cleaned joint map in which contributions from the disturbing sources are removed. A likelihood function is derived from this map and fed to a particle filter yielding the target location estimation on the acoustic image. The method is tested on two real environments, addressing both speaker and vehicle tracking. The comparison with a couple of trackers, relying on the acoustic map only, shows a sharp improvement in performance, paving the way to the application of audio tracking in real challenging environments.

  20. Fluorescence Dynamics in the Endoplasmic Reticulum of a Live Cell: Time-Resolved Confocal Microscopy.

    PubMed

    Ghosh, Shirsendu; Nandi, Somen; Ghosh, Catherine; Bhattacharyya, Kankan

    2016-09-19

    Fluorescence dynamics in the endoplasmic reticulum (ER) of a live non-cancer lung cell (WI38) and a lung cancer cell (A549) are studied by using time-resolved confocal microscopy. To selectively study the organelle, ER, we have used an ER-Tracker dye. From the emission maximum (λmaxem) of the ER-Tracker dye, polarity (i.e. dielectric constant, ϵ) in the ER region of the cells (≈500 nm in WI38 and ≈510 nm in A549) is estimated to be similar to that of chloroform (λmaxem =506 nm, ϵ≈5). The red shift by 10 nm in λmaxem in the cancer cell (A549) suggests a slightly higher polarity compared to the non-cancer cell (WI38). The fluorescence intensity of the ER-Tracker dye exhibits prolonged intermittent oscillations on a timescale of 2-6 seconds for the cancer cell (A549). For the non-cancer cell (WI38), such fluorescence oscillations are much less prominent. The marked fluorescence intensity oscillations in the cancer cell are attributed to enhanced calcium oscillations. The average solvent relaxation time (<τs >) of the ER region in the lung cancer cell (A549, 250±50 ps) is about four times faster than that in the non-cancer cell (WI38, 1000±50 ps). © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Sun-Relative Pointing for Dual-Axis Solar Trackers Employing Azimuth and Elevation Rotations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riley, Daniel; Hansen, Clifford W.

    Dual axis trackers employing azimuth and elevation rotations are common in the field of photovoltaic (PV) energy generation. Accurate sun-tracking algorithms are widely available. However, a steering algorithm has not been available to accurately point the tracker away from the sun such that a vector projection of the sun beam onto the tracker face falls along a desired path relative to the tracker face. We have developed an algorithm which produces the appropriate azimuth and elevation angles for a dual axis tracker when given the sun position, desired angle of incidence, and the desired projection of the sun beam ontomore » the tracker face. Development of this algorithm was inspired by the need to accurately steer a tracker to desired sun-relative positions in order to better characterize the electro-optical properties of PV and CPV modules.« less

  2. Simplified paraboloid phase model-based phase tracker for demodulation of a single complex fringe.

    PubMed

    He, A; Deepan, B; Quan, C

    2017-09-01

    A regularized phase tracker (RPT) is an effective method for demodulation of single closed-fringe patterns. However, lengthy calculation time, specially designed scanning strategy, and sign-ambiguity problems caused by noise and saddle points reduce its effectiveness, especially for demodulating large and complex fringe patterns. In this paper, a simplified paraboloid phase model-based regularized phase tracker (SPRPT) is proposed. In SPRPT, first and second phase derivatives are pre-determined by the density-direction-combined method and discrete higher-order demodulation algorithm, respectively. Hence, cost function is effectively simplified to reduce the computation time significantly. Moreover, pre-determined phase derivatives improve the robustness of the demodulation of closed, complex fringe patterns. Thus, no specifically designed scanning strategy is needed; nevertheless, it is robust against the sign-ambiguity problem. The paraboloid phase model also assures better accuracy and robustness against noise. Both the simulated and experimental fringe patterns (obtained using electronic speckle pattern interferometry) are used to validate the proposed method, and a comparison of the proposed method with existing RPT methods is carried out. The simulation results show that the proposed method has achieved the highest accuracy with less computational time. The experimental result proves the robustness and the accuracy of the proposed method for demodulation of noisy fringe patterns and its feasibility for static and dynamic applications.

  3. Semi-physical simulation test for micro CMOS star sensor

    NASA Astrophysics Data System (ADS)

    Yang, Jian; Zhang, Guang-jun; Jiang, Jie; Fan, Qiao-yun

    2008-03-01

    A designed star sensor must be extensively tested before launching. Testing star sensor requires complicated process with much time and resources input. Even observing sky on the ground is a challenging and time-consuming job, requiring complicated and expensive equipments, suitable time and location, and prone to be interfered by weather. And moreover, not all stars distributed on the sky can be observed by this testing method. Semi-physical simulation in laboratory reduces the testing cost and helps to debug, analyze and evaluate the star sensor system while developing the model. The test system is composed of optical platform, star field simulator, star field simulator computer, star sensor and the central data processing computer. The test system simulates the starlight with high accuracy and good parallelism, and creates static or dynamic image in FOV (Field of View). The conditions of the test are close to observing real sky. With this system, the test of a micro star tracker designed by Beijing University of Aeronautics and Astronautics has been performed successfully. Some indices including full-sky autonomous star identification time, attitude update frequency and attitude precision etc. meet design requirement of the star sensor. Error source of the testing system is also analyzed. It is concluded that the testing system is cost-saving, efficient, and contributes to optimizing the embed arithmetic, shortening the development cycle and improving engineering design processes.

  4. The ASACUSA Micromegas Tracker: A cylindrical, bulk Micromegas detector for antimatter research.

    PubMed

    Radics, B; Nagata, Y; Yamazaki, Y; Ishikawa, S; Kuroda, N; Matsuda, Y; Anfreville, M; Aune, S; Boyer, M; Chateau, F; Combet, M; Granelli, R; Legou, P; Mandjavidze, I; Procureur, S; Riallot, M; Vallage, B; Vandenbroucke, M

    2015-08-01

    The ASACUSA Micromegas Tracker (AMT; ASACUSA: Atomic Spectroscopy and Collisions Using Slow Antiprotons) was designed to be able to reconstruct antiproton-nucleon annihilation vertices in three dimensions. The goal of this device is to study antihydrogen formation processes in the ASACUSA cusp trap, which was designed to synthesise a spin-polarised antihydrogen beam for precise tests of Charge, Parity, and Time (CPT) symmetry invariance. This paper discusses the structure and technical details of an AMT detector built into such an environment, its data acquisition system and the first performance with cosmic rays.

  5. The ASACUSA Micromegas Tracker: A cylindrical, bulk Micromegas detector for antimatter research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Radics, B., E-mail: balint.radics@riken.jp; Nagata, Y.; Yamazaki, Y.

    2015-08-15

    The ASACUSA Micromegas Tracker (AMT; ASACUSA: Atomic Spectroscopy and Collisions Using Slow Antiprotons) was designed to be able to reconstruct antiproton-nucleon annihilation vertices in three dimensions. The goal of this device is to study antihydrogen formation processes in the ASACUSA cusp trap, which was designed to synthesise a spin-polarised antihydrogen beam for precise tests of Charge, Parity, and Time (CPT) symmetry invariance. This paper discusses the structure and technical details of an AMT detector built into such an environment, its data acquisition system and the first performance with cosmic rays.

  6. Lineage mapper: A versatile cell and particle tracker

    NASA Astrophysics Data System (ADS)

    Chalfoun, Joe; Majurski, Michael; Dima, Alden; Halter, Michael; Bhadriraju, Kiran; Brady, Mary

    2016-11-01

    The ability to accurately track cells and particles from images is critical to many biomedical problems. To address this, we developed Lineage Mapper, an open-source tracker for time-lapse images of biological cells, colonies, and particles. Lineage Mapper tracks objects independently of the segmentation method, detects mitosis in confluence, separates cell clumps mistakenly segmented as a single cell, provides accuracy and scalability even on terabyte-sized datasets, and creates division and/or fusion lineages. Lineage Mapper has been tested and validated on multiple biological and simulated problems. The software is available in ImageJ and Matlab at isg.nist.gov.

  7. Monitoring the performance of the Southern African Large Telescope

    NASA Astrophysics Data System (ADS)

    Hettlage, Christian; Coetzee, Chris; Väisänen, Petri; Romero Colmenero, Encarni; Crawford, Steven M.; Kotze, Paul; Rabe, Paul; Hulme, Stephen; Brink, Janus; Maartens, Deneys; Browne, Keith; Strydom, Ockert; De Bruyn, David

    2016-07-01

    The efficient operation of a telescope requires awareness of its performance on a daily and long-term basis. This paper outlines the Fault Tracker, WebSAMMI and the Dashboard used by the Southern African Large Telescope (SALT) to achieve this aim. Faults are mostly logged automatically, but the Fault Tracker allows users to add and edit faults. The SALT Astronomer and SALT Operator record weather conditions and telescope usage with WebSAMMI. Various efficiency metrics are shown for different time periods on the Dashboard. A kiosk mode for displaying on a public screen is included. Possible applications for other telescopes are discussed.

  8. ON TIME Act of 2009

    THOMAS, 111th Congress

    Rep. Calvert, Ken [R-CA-44

    2009-02-10

    House - 02/11/2009 Referred to the Subcommittee on Railroads, Pipelines, and Hazardous Materials. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  9. Ruby on Rails Issue Tracker

    NASA Technical Reports Server (NTRS)

    Rodriguez, Juan Jared

    2014-01-01

    The purpose of this report is to detail the tasks accomplished as a NASA NIFS intern for the summer 2014 session. This internship opportunity is to develop an issue tracker Ruby on Rails web application to improve the communication of developmental anomalies between the Support Software Computer Software Configuration Item (CSCI) teams, System Build and Information Architecture. As many may know software development is an arduous, time consuming, collaborative effort. It involves nearly as much work designing, planning, collaborating, discussing, and resolving issues as effort expended in actual development. This internship opportunity was put in place to help alleviate the amount of time spent discussing issues such as bugs, missing tests, new requirements, and usability concerns that arise during development and throughout the life cycle of software applications once in production.

  10. Using Tracker to understand ‘toss up’ and free fall motion: a case study

    NASA Astrophysics Data System (ADS)

    Wee, Loo Kang; Kia Tan, Kim; Leong, Tze Kwang; Tan, Ching

    2015-07-01

    This paper reports the use of Tracker as a computer-based learning tool to support effective learning and teaching of ‘toss up’ and free fall motion for beginning secondary three (15 year-old) students. The case study involved (N = 123) students from express pure physics classes at a mainstream school in Singapore. We used eight multiple-choice questions pre- and post-test to gauge the impact on learning. The experimental group showed learning gains of d = 0.79  ±  0.23 (large effect) for Cohen’s d effect size analysis, and gains with a gradient of  total = 0.42  ±  0.08 (medium gain) above the traditional baseline value of  non interactive = 0.23 for Hake’s normalized gain regression analysis. This applied to all of the teachers and students who participated in this study. Our initial research findings suggest that allowing learners to relate abstract physics concepts to real life through coupling traditional video analysis with video modelling might be an innovative and effective method for teaching and learning about free fall motion.

  11. Autonomous star tracker based on active pixel sensors (APS)

    NASA Astrophysics Data System (ADS)

    Schmidt, U.

    2017-11-01

    Star trackers are opto-electronic sensors used onboard of satellites for the autonomous inertial attitude determination. During the last years, star trackers became more and more important in the field of the attitude and orbit control system (AOCS) sensors. High performance star trackers are based up today on charge coupled device (CCD) optical camera heads. The Jena-Optronik GmbH is active in the field of opto-electronic sensors like star trackers since the early 80-ties. Today, with the product family ASTRO5, ASTRO10 and ASTRO15, all marked segments like earth observation, scientific applications and geo-telecom are supplied to European and Overseas customers. A new generation of star trackers can be designed based on the APS detector technical features. The measurement performance of the current CCD based star trackers can be maintained, the star tracker functionality, reliability and robustness can be increased while the unit costs are saved.

  12. A multimodal interface to resolve the Midas-Touch problem in gaze controlled wheelchair.

    PubMed

    Meena, Yogesh Kumar; Cecotti, Hubert; Wong-Lin, KongFatt; Prasad, Girijesh

    2017-07-01

    Human-computer interaction (HCI) research has been playing an essential role in the field of rehabilitation. The usability of the gaze controlled powered wheelchair is limited due to Midas-Touch problem. In this work, we propose a multimodal graphical user interface (GUI) to control a powered wheelchair that aims to help upper-limb mobility impaired people in daily living activities. The GUI was designed to include a portable and low-cost eye-tracker and a soft-switch wherein the wheelchair can be controlled in three different ways: 1) with a touchpad 2) with an eye-tracker only, and 3) eye-tracker with soft-switch. The interface includes nine different commands (eight directions and stop) and integrated within a powered wheelchair system. We evaluated the performance of the multimodal interface in terms of lap-completion time, the number of commands, and the information transfer rate (ITR) with eight healthy participants. The analysis of the results showed that the eye-tracker with soft-switch provides superior performance with an ITR of 37.77 bits/min among the three different conditions (p<;0.05). Thus, the proposed system provides an effective and economical solution to the Midas-Touch problem and extended usability for the large population of disabled users.

  13. Reconstruction of neutrino induced NC-1π{sup 0} using the T2K-ND280 tracker

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O’Keeffe, H. M.; Vacheret, A.; Barr, G. D.

    2015-05-15

    Single π{sup 0} production is the one of the most important backgrounds in the υ{sub e} appearance measurement in T2K. Large uncertainties in this production make it difficult to predict. Measurement at the near detector (ND280) is required both to constrain the background prediction at the far detector (Super-K) and also at the near detector to improve knowledge of beam υ{sub e} contamination. We present an analysis based on Monte Carlo simulation of neutral current (NC) single π{sup 0} in the tracker region. NC-1π{sup 0} events are selected using a specific two-gamma signature in the tracker region. One decay gammamore » is reconstructed by selecting an e+/e− pair starting in the Fine-Grained target Detector (FGD) and extending into the TPC, where the leptons can be identified and their momentum measured accurately. The second gamma is then selected in-time in the Calorimeter modules surrounding the tracker. Selections cuts, efficiency and purity of the selection are presented and projection of the expected number of single π{sup 0} candidates for 3 × 10{sup 20} protons on target (PoT) exposure is made.« less

  14. Opportunity Science Using the Juno Magnetometer Investigation Star Trackers

    NASA Astrophysics Data System (ADS)

    Joergensen, J. L.; Connerney, J. E.; Bang, A. M.; Denver, T.; Oliversen, R. J.; Benn, M.; Lawton, P.

    2013-12-01

    The magnetometer experiment onboard Juno is equipped with four non-magnetic star tracker camera heads, two of which reside on each of the magnetometer sensor optical benches. These are located 10 and 12 m from the spacecraft body at the end of one of the three solar panel wings. The star tracker, collectively referred to as the Advanced Stellar Compass (ASC), provides high accuracy attitude information for the magnetometer sensors throughout science operations. The star tracker camera heads are pointed +/- 13 deg off the spin vector, in the anti-sun direction, imaging a 13 x 20 deg field of view every ¼ second as Juno rotates at 1 or 2 rpm. The ASC is a fully autonomous star tracker, producing a time series of attitude quaternions for each camera head, utilizing a suite of internal support functions. These include imaging capabilities, autonomous object tracking, automatic dark-sky monitoring, and related capabilities; these internal functions may be accessed via telecommand. During Juno's cruise phase, this capability can be tapped to provide unique science and engineering data available along the Juno trajectory. We present a few examples of the JUNO ASC opportunity science here. As the Juno spacecraft approached the Earth-Moon system for the close encounter with the Earth on October 9, 2013, one of the ASC camera heads obtained imagery of the Earth-Moon system while the other three remained in full science (attitude determination) operation. This enabled the first movie of the Earth and Moon obtained by a spacecraft flying past the Earth in gravity assist. We also use the many artificial satellites in orbit about the Earth as calibration targets for the autonomous asteroid detection system inherent to the ASC autonomous star tracker. We shall also profile the zodiacal dust disk, using the interstellar image data, and present the outlook for small asteroid body detection and distribution being performed during Juno's passage from Earth flyby to Jovian orbit insertion.

  15. GPS-based Microenvironment Tracker (MicroTrac) Model to Estimate Time-Location of Individuals for Air Pollution Exposure Assessments: Model Evaluation in Central North Carolina

    EPA Science Inventory

    A critical aspect of air pollution exposure assessment is the estimation of the time spent by individuals in various microenvironments (ME). Accounting for the time spent in different ME with different pollutant concentrations can reduce exposure misclassifications, while failure...

  16. Interest and preferences for using advanced physical activity tracking devices: results of a national cross-sectional survey

    PubMed Central

    Alley, Stephanie; Schoeppe, Stephanie; Guertler, Diana; Jennings, Cally; Vandelanotte, Corneel

    2016-01-01

    Objectives Pedometers are an effective self-monitoring tool to increase users' physical activity. However, a range of advanced trackers that measure physical activity 24 hours per day have emerged (eg, Fitbit). The current study aims to determine people's current use, interest and preferences for advanced trackers. Design and participants A cross-sectional national telephone survey was conducted in Australia with 1349 respondents. Outcome measures Regression analyses were used to determine whether tracker interest and use, and use of advanced trackers over pedometers is a function of demographics. Preferences for tracker features and reasons for not wanting to wear a tracker are also presented. Results Over one-third of participants (35%) had used a tracker, and 16% are interested in using one. Multinomial regression (n=1257) revealed that the use of trackers was lower in males (OR=0.48, 95% CI 0.36 to 0.65), non-working participants (OR=0.43, 95% CI 0.30 to 0.61), participants with lower education (OR=0.52, 95% CI 0.38 to 0.72) and inactive participants (OR=0.52, 95% CI 0.39 to 0.70). Interest in using a tracker was higher in younger participants (OR=1.73, 95% CI 1.15 to 2.58). The most frequently used tracker was a pedometer (59%). Logistic regression (n=445) revealed that use of advanced trackers compared with pedometers was higher in males (OR=1.67, 95% CI 1.01 to 2.79) and younger participants (OR=2.96, 95% CI 1.71 to 5.13), and lower in inactive participants (OR=0.35, 95% CI 0.19 to 0.63). Over half of current or interested tracker users (53%) prefer to wear it on their wrist, 31% considered counting steps the most important function and 30% regarded accuracy as the most important characteristic. The main reasons for not wanting to use a tracker were, ‘I don't think it would help me’ (39%), and ‘I don't want to increase my activity’ (47%). Conclusions Activity trackers are a promising tool to engage people in self-monitoring a physical activity. Trackers used in physical activity interventions should align with the preferences of target groups, and should be able to be worn on the wrist, measure steps and be accurate. PMID:27388359

  17. A comparison of wearable fitness devices.

    PubMed

    Kaewkannate, Kanitthika; Kim, Soochan

    2016-05-24

    Wearable trackers can help motivate you during workouts and provide information about your daily routine or fitness in combination with your smartphone without requiring potentially disruptive manual calculations or records. This paper summarizes and compares wearable fitness devices, also called "fitness trackers" or "activity trackers." These devices are becoming increasingly popular in personal healthcare, motivating people to exercise more throughout the day without the need for lifestyle changes. The various choices in the market for wearable devices are also increasing, with customers searching for products that best suit their personal needs. Further, using a wearable device or fitness tracker can help people reach a fitness goal or finish line. Generally, companies display advertising for these kinds of products and depict them as beneficial, user friendly, and accurate. However, there are no objective research results to prove the veracity of their words. This research features subjective and objective experimental results, which reveal that some devices perform better than others. The four most popular wristband style wearable devices currently on the market (Withings Pulse, Misfit Shine, Jawbone Up24, and Fitbit Flex) are selected and compared. The accuracy of fitness tracking is one of the key components for fitness tracking, and some devices perform better than others. This research shows subjective and objective experimental results that are used to compare the accuracy of four wearable devices in conjunction with user friendliness and satisfaction of 7 real users. In addition, this research matches the opinions between reviewers on an Internet site and those of subjects when using the device. Withings Pulse is the most friendly and satisfactory from the users' viewpoint. It is the most accurate and repeatable for step and distance tracking, which is the most important measurement of fitness tracking, followed by Fitbit Flex, Jawbone Up24, and Misfit Shine. In contrast, Misfit Shine has the highest score for design and hardware, which is also appreciated by users. From the results of experiments on four wearable devices, it is determined that the most acceptable in terms of price and satisfaction levels is the Withings Pulse, followed by the Fitbit Flex, Jawbone Up24, and Misfit Shine.

  18. Precision Pointing Control System (PPCS) star tracker test

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Tests performed on the TRW precision star tracker are described. The unit tested was a two-axis gimballed star tracker designed to provide star LOS data to an accuracy of 1 to 2 sec. The tracker features a unique bearing system and utilizes thermal and mechanical symmetry techniques to achieve high precision which can be demonstrated in a one g environment. The test program included a laboratory evaluation of tracker functional operation, sensitivity, repeatibility, and thermal stability.

  19. Small star trackers for modern space vehicles

    NASA Astrophysics Data System (ADS)

    Kouzmin, Vladimir; Jushkov, Vladimir; Zaikin, Vladimir

    2017-11-01

    Based on experience of many years creation of spacecrafts' star trackers with diversified detectors (from the first star trackers of 60's to tens versions of star trackers in the following years), using technological achievements in the field of optics and electronics the NPP "Geofizika-Cosmos" has provided celestial orientation for all the space vehicles created in Russia and now has developed a series of new star trackers with CCD matrix and special processors, which are able to meet needs in celestial orientation of the modern spacecrafts for the nearest 10-15 years. In the given article the main characteristics and description of some star trackers' versions are presented. The star trackers have various levels of technical characteristics and use both combined (Russian and foreign) procurement parts, and only national (Russian) procurement parts for the main units.

  20. Are fixations in static natural scenes a useful predictor of attention in the real world?

    PubMed

    Foulsham, Tom; Kingstone, Alan

    2017-06-01

    Research investigating scene perception normally involves laboratory experiments using static images. Much has been learned about how observers look at pictures of the real world and the attentional mechanisms underlying this behaviour. However, the use of static, isolated pictures as a proxy for studying everyday attention in real environments has led to the criticism that such experiments are artificial. We report a new study that tests the extent to which the real world can be reduced to simpler laboratory stimuli. We recorded the gaze of participants walking on a university campus with a mobile eye tracker, and then showed static frames from this walk to new participants, in either a random or sequential order. The aim was to compare the gaze of participants walking in the real environment with fixations on pictures of the same scene. The data show that picture order affects interobserver fixation consistency and changes looking patterns. Critically, while fixations on the static images overlapped significantly with the actual real-world eye movements, they did so no more than a model that assumed a general bias to the centre. Remarkably, a model that simply takes into account where the eyes are normally positioned in the head-independent of what is actually in the scene-does far better than any other model. These data reveal that viewing patterns to static scenes are a relatively poor proxy for predicting real world eye movement behaviour, while raising intriguing possibilities for how to best measure attention in everyday life. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  1. SECURE IT

    THOMAS, 112th Congress

    Sen. McCain, John [R-AZ

    2012-06-27

    Senate - 06/28/2012 Read the second time. Placed on Senate Legislative Calendar under General Orders. Calendar No. 438. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  2. RAISE Act

    THOMAS, 112th Congress

    Sen. Rubio, Marco [R-FL

    2012-05-22

    Senate - 05/23/2012 Read the second time. Placed on Senate Legislative Calendar under General Orders. Calendar No. 411. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  3. SOAR Act

    THOMAS, 111th Congress

    Sen. Lieberman, Joseph I. [ID-CT

    2009-07-30

    Senate - 07/31/2009 Read the second time. Placed on Senate Legislative Calendar under General Orders. Calendar No. 145. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  4. The Mu2e undoped CsI crystal calorimeter

    NASA Astrophysics Data System (ADS)

    Atanov, N.; Baranov, V.; Budagov, J.; Cervelli, F.; Colao, F.; Cordelli, M.; Corradi, G.; Davydov, Y. I.; Di Falco, S.; Diociaiuti, E.; Donati, S.; Donghia, R.; Echenard, B.; Giovannella, S.; Glagolev, V.; Grancagnolo, F.; Happacher, F.; Hitlin, D. G.; Martini, M.; Miscetti, S.; Miyashita, T.; Morescalchi, L.; Murat, P.; Pedreschi, E.; Pezzullo, G.; Porter, F.; Raffaelli, F.; Ricci, M.; Saputi, A.; Sarra, I.; Spinella, F.; Tassielli, G.; Tereshchenko, V.; Usubov, Z.; Zhu, R. Y.

    2018-02-01

    The Mu2e experiment at Fermilab will search for Charged Lepton Flavor Violating conversion of a muon to an electron in an atomic field. The Mu2e detector is composed of a tracker, an electromagnetic calorimeter and an external system, surrounding the solenoid, to veto cosmic rays. The calorimeter plays an important role to provide: a) excellent particle identification capabilities; b) a fast trigger filter; c) an easier tracker track reconstruction. Two disks, located downstream of the tracker, contain 674 pure CsI crystals each. Each crystal is read out by two arrays of UV-extended SiPMs. The choice of the crystals and SiPMs has been finalized after a thorough test campaign. A first small scale prototype consisting of 51 crystals and 102 SiPM arrays has been exposed to an electron beam at the BTF (Beam Test Facility) in Frascati. Although the readout electronics were not final, results show that the current design is able to meet the timing and energy resolution required by the Mu2e experiment.

  5. Dual mode scanner-tracker

    NASA Astrophysics Data System (ADS)

    Mongeon, R. J.

    1984-11-01

    The beam of a laser radar is moved over the field of view by means of a pair of scanner/trackers arranged in cascade along the laser beam. One of the scanner/trackers operates at high speed, with high resolution and a wide field and is located in the demagnified portion of the laser beam. The two scanner/trackers complement each other to achieve high speed, high resolution scanning as well as tracking of moving targets. A beam steering telescope for an airborne laser radar which incorporates the novel dual mode scanner/tracker is also shown. The other scanner/tracker operates at low speed with low resolution and a wide field and is located in the magnified portion of the laser beam.

  6. Comparing Eye Tracking with Electrooculography for Measuring Individual Sentence Comprehension Duration

    PubMed Central

    Müller, Jana Annina; Wendt, Dorothea; Kollmeier, Birger; Brand, Thomas

    2016-01-01

    The aim of this study was to validate a procedure for performing the audio-visual paradigm introduced by Wendt et al. (2015) with reduced practical challenges. The original paradigm records eye fixations using an eye tracker and calculates the duration of sentence comprehension based on a bootstrap procedure. In order to reduce practical challenges, we first reduced the measurement time by evaluating a smaller measurement set with fewer trials. The results of 16 listeners showed effects comparable to those obtained when testing the original full measurement set on a different collective of listeners. Secondly, we introduced electrooculography as an alternative technique for recording eye movements. The correlation between the results of the two recording techniques (eye tracker and electrooculography) was r = 0.97, indicating that both methods are suitable for estimating the processing duration of individual participants. Similar changes in processing duration arising from sentence complexity were found using the eye tracker and the electrooculography procedure. Thirdly, the time course of eye fixations was estimated with an alternative procedure, growth curve analysis, which is more commonly used in recent studies analyzing eye tracking data. The results of the growth curve analysis were compared with the results of the bootstrap procedure. Both analysis methods show similar processing durations. PMID:27764125

  7. Evaluation of helmet-mounted display targeting symbology based on eye tracking technology

    NASA Astrophysics Data System (ADS)

    Wang, Lijing; Wen, Fuzhen; Ma, Caixin; Zhao, Shengchu; Liu, Xiaodong

    2014-06-01

    The purpose of this paper is to find the Target Locator Lines (TLLs) which perform best by contrasting and comparing experiment based on three kinds of TTLs of fighter HMD. 10 university students, male, with an average age of 21-23, corrected visual acuity 1.5, participated in the experiment. In the experiment, head movement data was obtained by TrackIR. The geometric relationship between the coordinates of the real world and coordinates of the visual display was obtained by calculating the distance from viewpoint to midpoint of both eyes and the head movement data. Virtual helmet system simulation experiment environment was created by drawing TLLs of fighter HMD in the flight simulator visual scene. In the experiment, eye tracker was used to record the time and saccade trajectory. The results were evaluated by the duration of the time and saccade trajectory. The results showed that the symbol"locator line with digital vector length indication" cost most time and had the longest length of the saccade trajectory. It is the most ineffective and most unacceptable way. "Locator line with extending head vector length symbol" cost less time and had less length of the saccade trajectory. It is effective and acceptable;"Locator line with reflected vector length symbol" cost the least time and had the least length of the saccade trajectory. It is the most effective and most acceptable way. "Locator line with reflected vector length symbol" performs best. The results will provide reference value for the research of TTLs in future.

  8. Expatriate Terrorists Act

    THOMAS, 113th Congress

    Sen. Cruz, Ted [R-TX

    2014-09-08

    Senate - 09/09/2014 Read the second time. Placed on Senate Legislative Calendar under General Orders. Calendar No. 554. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  9. Medicare Protection Act

    THOMAS, 113th Congress

    Sen. Pryor, Mark L. [D-AR

    2014-06-18

    Senate - 06/19/2014 Read the second time. Placed on Senate Legislative Calendar under General Orders. Calendar No. 437. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  10. ACCESS ADAP Act

    THOMAS, 111th Congress

    Sen. Burr, Richard [R-NC

    2010-12-03

    Senate - 12/04/2010 Read the second time. Placed on Senate Legislative Calendar under General Orders. Calendar No. 672. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  11. Impact Aid Timely Repayment Act of 2011

    THOMAS, 112th Congress

    Rep. Larsen, Rick [D-WA-2

    2011-06-02

    House - 09/08/2011 Referred to the Subcommittee on Early Childhood, Elementary, and Secondary Education. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  12. DISCLOSE Act

    THOMAS, 111th Congress

    Rep. Van Hollen, Chris [D-MD-8

    2010-04-29

    Senate - 06/29/2010 Read the second time. Placed on Senate Legislative Calendar under General Orders. Calendar No. 448. (All Actions) Tracker: This bill has the status Passed HouseHere are the steps for Status of Legislation:

  13. Default Prevention Act

    THOMAS, 113th Congress

    Sen. Paul, Rand [R-KY

    2013-01-23

    Senate - 01/28/2013 Read the second time. Placed on Senate Legislative Calendar under General Orders. Calendar No. 3. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  14. SOAR Act

    THOMAS, 112th Congress

    Rep. Boehner, John A. [R-OH-8

    2011-01-26

    Senate - 04/04/2011 Read the second time. Placed on Senate Legislative Calendar under General Orders. Calendar No. 24. (All Actions) Tracker: This bill has the status Passed HouseHere are the steps for Status of Legislation:

  15. A Novel Performance Evaluation Methodology for Single-Target Trackers.

    PubMed

    Kristan, Matej; Matas, Jiri; Leonardis, Ales; Vojir, Tomas; Pflugfelder, Roman; Fernandez, Gustavo; Nebehay, Georg; Porikli, Fatih; Cehovin, Luka

    2016-11-01

    This paper addresses the problem of single-target tracker performance evaluation. We consider the performance measures, the dataset and the evaluation system to be the most important components of tracker evaluation and propose requirements for each of them. The requirements are the basis of a new evaluation methodology that aims at a simple and easily interpretable tracker comparison. The ranking-based methodology addresses tracker equivalence in terms of statistical significance and practical differences. A fully-annotated dataset with per-frame annotations with several visual attributes is introduced. The diversity of its visual properties is maximized in a novel way by clustering a large number of videos according to their visual attributes. This makes it the most sophistically constructed and annotated dataset to date. A multi-platform evaluation system allowing easy integration of third-party trackers is presented as well. The proposed evaluation methodology was tested on the VOT2014 challenge on the new dataset and 38 trackers, making it the largest benchmark to date. Most of the tested trackers are indeed state-of-the-art since they outperform the standard baselines, resulting in a highly-challenging benchmark. An exhaustive analysis of the dataset from the perspective of tracking difficulty is carried out. To facilitate tracker comparison a new performance visualization technique is proposed.

  16. Intra-operative fiducial-based CT/fluoroscope image registration framework for image-guided robot-assisted joint fracture surgery.

    PubMed

    Dagnino, Giulio; Georgilas, Ioannis; Morad, Samir; Gibbons, Peter; Tarassoli, Payam; Atkins, Roger; Dogramadzi, Sanja

    2017-08-01

    Joint fractures must be accurately reduced minimising soft tissue damages to avoid negative surgical outcomes. To this regard, we have developed the RAFS surgical system, which allows the percutaneous reduction of intra-articular fractures and provides intra-operative real-time 3D image guidance to the surgeon. Earlier experiments showed the effectiveness of the RAFS system on phantoms, but also key issues which precluded its use in a clinical application. This work proposes a redesign of the RAFS's navigation system overcoming the earlier version's issues, aiming to move the RAFS system into a surgical environment. The navigation system is improved through an image registration framework allowing the intra-operative registration between pre-operative CT images and intra-operative fluoroscopic images of a fractured bone using a custom-made fiducial marker. The objective of the registration is to estimate the relative pose between a bone fragment and an orthopaedic manipulation pin inserted into it intra-operatively. The actual pose of the bone fragment can be updated in real time using an optical tracker, enabling the image guidance. Experiments on phantom and cadavers demonstrated the accuracy and reliability of the registration framework, showing a reduction accuracy (sTRE) of about [Formula: see text] (phantom) and [Formula: see text] (cadavers). Four distal femur fractures were successfully reduced in cadaveric specimens using the improved navigation system and the RAFS system following the new clinical workflow (reduction error [Formula: see text], [Formula: see text]. Experiments showed the feasibility of the image registration framework. It was successfully integrated into the navigation system, allowing the use of the RAFS system in a realistic surgical application.

  17. Elastography using multi-stream GPU: an application to online tracked ultrasound elastography, in-vivo and the da Vinci Surgical System.

    PubMed

    Deshmukh, Nishikant P; Kang, Hyun Jae; Billings, Seth D; Taylor, Russell H; Hager, Gregory D; Boctor, Emad M

    2014-01-01

    A system for real-time ultrasound (US) elastography will advance interventions for the diagnosis and treatment of cancer by advancing methods such as thermal monitoring of tissue ablation. A multi-stream graphics processing unit (GPU) based accelerated normalized cross-correlation (NCC) elastography, with a maximum frame rate of 78 frames per second, is presented in this paper. A study of NCC window size is undertaken to determine the effect on frame rate and the quality of output elastography images. This paper also presents a novel system for Online Tracked Ultrasound Elastography (O-TRuE), which extends prior work on an offline method. By tracking the US probe with an electromagnetic (EM) tracker, the system selects in-plane radio frequency (RF) data frames for generating high quality elastograms. A novel method for evaluating the quality of an elastography output stream is presented, suggesting that O-TRuE generates more stable elastograms than generated by untracked, free-hand palpation. Since EM tracking cannot be used in all systems, an integration of real-time elastography and the da Vinci Surgical System is presented and evaluated for elastography stream quality based on our metric. The da Vinci surgical robot is outfitted with a laparoscopic US probe, and palpation motions are autonomously generated by customized software. It is found that a stable output stream can be achieved, which is affected by both the frequency and amplitude of palpation. The GPU framework is validated using data from in-vivo pig liver ablation; the generated elastography images identify the ablated region, outlined more clearly than in the corresponding B-mode US images.

  18. Elastography Using Multi-Stream GPU: An Application to Online Tracked Ultrasound Elastography, In-Vivo and the da Vinci Surgical System

    PubMed Central

    Deshmukh, Nishikant P.; Kang, Hyun Jae; Billings, Seth D.; Taylor, Russell H.; Hager, Gregory D.; Boctor, Emad M.

    2014-01-01

    A system for real-time ultrasound (US) elastography will advance interventions for the diagnosis and treatment of cancer by advancing methods such as thermal monitoring of tissue ablation. A multi-stream graphics processing unit (GPU) based accelerated normalized cross-correlation (NCC) elastography, with a maximum frame rate of 78 frames per second, is presented in this paper. A study of NCC window size is undertaken to determine the effect on frame rate and the quality of output elastography images. This paper also presents a novel system for Online Tracked Ultrasound Elastography (O-TRuE), which extends prior work on an offline method. By tracking the US probe with an electromagnetic (EM) tracker, the system selects in-plane radio frequency (RF) data frames for generating high quality elastograms. A novel method for evaluating the quality of an elastography output stream is presented, suggesting that O-TRuE generates more stable elastograms than generated by untracked, free-hand palpation. Since EM tracking cannot be used in all systems, an integration of real-time elastography and the da Vinci Surgical System is presented and evaluated for elastography stream quality based on our metric. The da Vinci surgical robot is outfitted with a laparoscopic US probe, and palpation motions are autonomously generated by customized software. It is found that a stable output stream can be achieved, which is affected by both the frequency and amplitude of palpation. The GPU framework is validated using data from in-vivo pig liver ablation; the generated elastography images identify the ablated region, outlined more clearly than in the corresponding B-mode US images. PMID:25541954

  19. How Accurate Is Your Activity Tracker? A Comparative Study of Step Counts in Low-Intensity Physical Activities

    PubMed Central

    2017-01-01

    Background As commercially available activity trackers are being utilized in clinical trials, the research community remains uncertain about reliability of the trackers, particularly in studies that involve walking aids and low-intensity activities. While these trackers have been tested for reliability during walking and running activities, there has been limited research on validating them during low-intensity activities and walking with assistive tools. Objective The aim of this study was to (1) determine the accuracy of 3 Fitbit devices (ie, Zip, One, and Flex) at different wearing positions (ie, pants pocket, chest, and wrist) during walking at 3 different speeds, 2.5, 5, and 8 km/h, performed by healthy adults on a treadmill; (2) determine the accuracy of the mentioned trackers worn at different sites during activities of daily living; and (3) examine whether intensity of physical activity (PA) impacts the choice of optimal wearing site of the tracker. Methods We recruited 15 healthy young adults to perform 6 PAs while wearing 3 Fitbit devices (ie, Zip, One, and Flex) on their chest, pants pocket, and wrist. The activities include walking at 2.5, 5, and 8 km/h, pushing a shopping cart, walking with aid of a walker, and eating while sitting. We compared the number of steps counted by each tracker with gold standard numbers. We performed multiple statistical analyses to compute descriptive statistics (ie, ANOVA test), intraclass correlation coefficient (ICC), mean absolute error rate, and correlation by comparing the tracker-recorded data with that of the gold standard. Results All the 3 trackers demonstrated good-to-excellent (ICC>0.75) correlation with the gold standard step counts during treadmill experiments. The correlation was poor (ICC<0.60), and the error rate was significantly higher in walker experiment compared to other activities. There was no significant difference between the trackers and the gold standard in the shopping cart experiment. The wrist worn tracker, Flex, counted several steps when eating (P<.01). The chest tracker was identified as the most promising site to capture steps in more intense activities, while the wrist was the optimal wearing site in less intense activities. Conclusions This feasibility study focused on 6 PAs and demonstrated that Fitbit trackers were most accurate when walking on a treadmill and least accurate during walking with a walking aid and for low-intensity activities. This may suggest excluding participants with assistive devices from studies that focus on PA interventions using commercially available trackers. This study also indicates that the wearing site of the tracker is an important factor impacting the accuracy performance. A larger scale study with a more diverse population, various activity tracker vendors, and a larger activity set are warranted to generalize our results. PMID:28801304

  20. Network of wireless gamma ray sensors for radiological detection and identification

    NASA Astrophysics Data System (ADS)

    Barzilov, A.; Womble, P.; Novikov, I.; Paschal, J.; Board, J.; Moss, K.

    2007-04-01

    The paper describes the design and development of a network of wireless gamma-ray sensors based on cell phone or WiFi technology. The system is intended for gamma-ray detection and automatic identification of radioactive isotopes and nuclear materials. The sensor is a gamma-ray spectrometer that uses wireless technology to distribute the results. A small-size sensor module contains a scintillation detector along with a small size data acquisition system, PDA, battery, and WiFi radio or a cell phone modem. The PDA with data acquisition and analysis software analyzes the accumulated spectrum on real-time basis and returns results to the screen reporting the isotopic composition and intensity of detected radiation source. The system has been programmed to mitigate false alarms from medical isotopes and naturally occurring radioactive materials. The decision-making software can be "trained" to indicate specific signatures of radiation sources like special nuclear materials. The sensor is supplied with GPS tracker coupling radiological information with geographical coordinates. The sensor is designed for easy use and rapid deployment in common wireless networks.

  1. Flexible coordinate measurement system based on robot for industries

    NASA Astrophysics Data System (ADS)

    Guo, Yin; Yang, Xue-you; Liu, Chang-jie; Ye, Sheng-hua

    2010-10-01

    The flexible coordinate measurement system based on robot which is applicable to multi-model vehicle is designed to meet the needs of online measurement for current mainstream mixed body-in-white(BIW) production line. The moderate precision, good flexibility and no blind angle are the benefits of this measurement system. According to the measurement system, a monocular structured light vision sensor has been designed, which can measure not only edges, but also planes, apertures and other features. And a effective way to fast on-site calibration of the whole system using the laser tracker has also been proposed, which achieves the unity of various coordinate systems in industrial fields. The experimental results show satisfactory precision of +/-0.30mm of this measurement system, which is sufficient for the needs of online measurement for body-in-white(BIW) in the auto production line. The system achieves real-time detection and monitoring of the whole process of the car body's manufacture, and provides a complete data support in purpose of overcoming the manufacturing error immediately and accurately and improving the manufacturing precision.

  2. Analysis of DGPS/INS and MLS/INS final approach navigation errors and control performance data

    NASA Technical Reports Server (NTRS)

    Hueschen, Richard M.; Spitzer, Cary R.

    1992-01-01

    Flight tests were conducted jointly by NASA Langley Research Center and Honeywell, Inc., on a B-737 research aircraft to record a data base for evaluating the performance of a differential DGPS/inertial navigation system (INS) which used GPS Course/Acquisition code receivers. Estimates from the DGPS/INS and a Microwave Landing System (MLS)/INS, and various aircraft parameter data were recorded in real time aboard the aircraft while flying along the final approach path to landing. This paper presents the mean and standard deviation of the DGPS/INS and MLS/INS navigation position errors computed relative to the laser tracker system and of the difference between the DGPS/INS and MLS/INS velocity estimates. RMS errors are presented for DGPS/INS and MLS/INS guidance errors (localizer and glideslope). The mean navigation position errors and standard deviation of the x position coordinate of the DGPS/INS and MLS/INS systems were found to be of similar magnitude while the standard deviation of the y and z position coordinate errors were significantly larger for DGPS/INS compared to MLS/INS.

  3. Using postural synergies to animate a low-dimensional hand avatar in haptic simulation.

    PubMed

    Mulatto, Sara; Formaglio, Alessandro; Malvezzi, Monica; Prattichizzo, Domenico

    2013-01-01

    A technique to animate a realistic hand avatar with 20 DoFs based on the biomechanics of the human hand is presented. The animation does not use any sensor glove or advanced tracker with markers. The proposed approach is based on the knowledge of a set of kinematic constraints on the model of the hand, referred to as postural synergies, which allows to represent the hand posture using a number of variables lower than the number of joints of the hand model. This low-dimensional set of parameters is estimated from direct measurement of the motion of thumb and index finger tracked using two haptic devices. A kinematic inversion algorithm has been developed, which takes synergies into account and estimates the kinematic configuration of the whole hand, i.e., also of the fingers whose end tips are not directly tracked by the two haptic devices. The hand skin is deformable and its deformation is computed using a linear vertex blending technique. The proposed synergy-based animation of the hand avatar involves only algebraic computations and is suitable for real-time implementation as required in haptics.

  4. Pay for Printing Act

    THOMAS, 112th Congress

    Sen. DeMint, Jim [R-SC

    2012-08-02

    Senate - 09/10/2012 Read the second time. Placed on Senate Legislative Calendar under General Orders. Calendar No. 501. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  5. Bipartisan Sportsmen's Act of 2014

    THOMAS, 113th Congress

    Sen. Hagan, Kay R. [D-NC

    2014-02-04

    Senate - 02/06/2014 Read the second time. Placed on Senate Legislative Calendar under General Orders. Calendar No. 304. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  6. Lumbee Recognition Act

    THOMAS, 111th Congress

    Rep. McIntyre, Mike [D-NC-7

    2009-01-06

    Senate - 06/09/2009 Read the second time. Placed on Senate Legislative Calendar under General Orders. Calendar No. 72. (All Actions) Tracker: This bill has the status Passed HouseHere are the steps for Status of Legislation:

  7. Time for Innovation Matters in Education Act of 2011

    THOMAS, 112th Congress

    Rep. Payne, Donald M. [D-NJ-10

    2011-04-15

    House - 05/20/2011 Referred to the Subcommittee on Early Childhood, Elementary, and Secondary Education. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  8. Interest Rate Reduction Act

    THOMAS, 112th Congress

    Rep. Biggert, Judy [R-IL-13

    2012-04-25

    Senate - 05/08/2012 Read the second time. Placed on Senate Legislative Calendar under General Orders. Calendar No. 393. (All Actions) Tracker: This bill has the status Passed HouseHere are the steps for Status of Legislation:

  9. Earmark Elimination Act of 2011

    THOMAS, 112th Congress

    Sen. Toomey, Pat [R-PA

    2011-11-30

    Senate - 12/01/2011 Read the second time. Placed on Senate Legislative Calendar under General Orders. Calendar No. 243. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  10. National Right-to-Work Act

    THOMAS, 112th Congress

    Sen. DeMint, Jim [R-SC

    2012-03-07

    Senate - 03/08/2012 Read the second time. Placed on Senate Legislative Calendar under General Orders. Calendar No. 333. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  11. ObamaCare Repeal Act

    THOMAS, 113th Congress

    Sen. Cruz, Ted [R-TX

    2013-01-29

    Senate - 01/30/2013 Read the second time. Placed on Senate Legislative Calendar under General Orders. Calendar No. 9. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  12. Protect Taxpayers From ACORN Act

    THOMAS, 111th Congress

    Sen. Johanns, Mike [R-NE

    2009-09-17

    Senate - 09/21/2009 Read the second time. Placed on Senate Legislative Calendar under General Orders. Calendar No. 162. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  13. Honor Our Promise Act

    THOMAS, 113th Congress

    Sen. Ayotte, Kelly [R-NH

    2014-01-30

    Senate - 02/03/2014 Read the second time. Placed on Senate Legislative Calendar under General Orders. Calendar No. 300. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  14. Regulatory Time-Out Act of 2011

    THOMAS, 112th Congress

    Sen. Collins, Susan M. [R-ME

    2011-09-12

    Senate - 09/12/2011 Read twice and referred to the Committee on Homeland Security and Governmental Affairs. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  15. DREAM Act of 2010

    THOMAS, 111th Congress

    Sen. Durbin, Richard J. [D-IL

    2010-11-17

    Senate - 11/18/2010 Read the second time. Placed on Senate Legislative Calendar under General Orders. Calendar No. 644. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  16. DREAM Act of 2010

    THOMAS, 111th Congress

    Sen. Durbin, Richard J. [D-IL

    2010-11-17

    Senate - 11/18/2010 Read the second time. Placed on Senate Legislative Calendar under General Orders. Calendar No. 645. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  17. DREAM Act of 2010

    THOMAS, 111th Congress

    Sen. Durbin, Richard J. [D-IL

    2010-09-22

    Senate - 09/23/2010 Read the second time. Placed on Senate Legislative Calendar under General Orders. Calendar No. 583. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  18. Arts Require Timely Service (ARTS) Act

    THOMAS, 111th Congress

    Rep. Berman, Howard L. [D-CA-28

    2009-03-30

    House - 04/27/2009 Referred to the Subcommittee on Immigration, Citizenship, Refugees, Border Security, and International Law. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  19. Defund Obamacare Act of 2013

    THOMAS, 113th Congress

    Sen. Cruz, Ted [R-TX

    2013-07-11

    Senate - 07/16/2013 Read the second time. Placed on Senate Legislative Calendar under General Orders. Calendar No. 135. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  20. Tax Relief Act of 2012

    THOMAS, 112th Congress

    Sen. Hatch, Orrin G. [R-UT

    2012-07-18

    Senate - 07/19/2012 Read the second time. Placed on Senate Legislative Calendar under General Orders. Calendar No. 460. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  1. Protect Taxpayers From ACORN Act

    THOMAS, 111th Congress

    Sen. Johanns, Mike [R-NE

    2009-10-05

    Senate - 10/06/2009 Read the second time. Placed on Senate Legislative Calendar under General Orders. Calendar No. 173. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  2. Jobs for America Act

    THOMAS, 113th Congress

    Rep. Camp, Dave [R-MI-4

    2014-09-15

    Senate - 11/13/2014 Read the second time. Placed on Senate Legislative Calendar under General Orders. Calendar No. 597. (All Actions) Tracker: This bill has the status Passed HouseHere are the steps for Status of Legislation:

  3. Jobs Through Growth Act

    THOMAS, 112th Congress

    Sen. McCain, John [R-AZ

    2011-10-17

    Senate - 10/18/2011 Read the second time. Placed on Senate Legislative Calendar under General Orders. Calendar No. 203. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  4. American Jobs Act of 2011

    THOMAS, 112th Congress

    Sen. Reid, Harry [D-NV

    2011-09-13

    Senate - 09/14/2011 Read the second time. Placed on Senate Legislative Calendar under General Orders. Calendar No. 165. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  5. Health Care Bureaucrats Elimination Act

    THOMAS, 112th Congress

    Sen. Cornyn, John [R-TX

    2012-02-16

    Senate - 02/17/2012 Read the second time. Placed on Senate Legislative Calendar under General Orders. Calendar No. 326. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  6. Highway Investment Protection Act

    THOMAS, 111th Congress

    Sen. Vitter, David [R-LA

    2009-06-24

    Senate - 06/25/2009 Read the second time. Placed on Senate Legislative Calendar under General Orders. Calendar No. 86. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  7. Impact Aid Timely Repayment Act of 2011

    THOMAS, 112th Congress

    Sen. Murray, Patty [D-WA

    2011-03-16

    Senate - 03/16/2011 Read twice and referred to the Committee on Health, Education, Labor, and Pensions. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  8. Compensation Fairness Act of 2009

    THOMAS, 111th Congress

    Sen. Baucus, Max [D-MT

    2009-03-19

    Senate - 03/23/2009 Read the second time. Placed on Senate Legislative Calendar under General Orders. Calendar No. 37. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  9. Tax Relief Certainty Act

    THOMAS, 111th Congress

    Sen. DeMint, Jim [R-SC

    2010-11-18

    Senate - 11/19/2010 Read the second time. Placed on Senate Legislative Calendar under General Orders. Calendar No. 651. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  10. Part-Time Reemployment of Annuitants Act of 2009

    THOMAS, 111th Congress

    Sen. Collins, Susan M. [R-ME

    2009-03-18

    Senate - 04/12/2010 Placed on Senate Legislative Calendar under General Orders. Calendar No. 342. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  11. Cyber Crime Protection Security Act

    THOMAS, 112th Congress

    Sen. Leahy, Patrick J. [D-VT

    2012-02-15

    Senate - 02/16/2012 Read the second time. Placed on Senate Legislative Calendar under General Orders. Calendar No. 324. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  12. Fiscal Responsibility Act of 2009

    THOMAS, 111th Congress

    Sen. Reid, Harry [D-NV

    2009-01-06

    Senate - 01/07/2009 Read the second time. Placed on Senate Legislative Calendar under General Orders. Calendar No. 10. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  13. Victims Protection Act of 2013

    THOMAS, 113th Congress

    Sen. McCaskill, Claire [D-MO

    2013-11-21

    Senate - 12/09/2013 Read the second time. Placed on Senate Legislative Calendar under General Orders. Calendar No. 253. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  14. Broadcaster Freedom Act of 2009

    THOMAS, 111th Congress

    Sen. DeMint, Jim [R-SC

    2009-01-06

    Senate - 01/07/2009 Read the second time. Placed on Senate Legislative Calendar under General Orders. Calendar No. 12. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  15. Senate Campaign Disclosure Parity Act

    THOMAS, 111th Congress

    Sen. Feingold, Russell D. [D-WI

    2009-10-22

    Senate - 10/26/2009 Read the second time. Placed on Senate Legislative Calendar under General Orders. Calendar No. 187. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  16. Senate Campaign Disclosure Parity Act

    THOMAS, 111th Congress

    Sen. Feingold, Russell D. [D-WI

    2009-02-25

    Senate - 02/26/2009 Read the second time. Placed on Senate Legislative Calendar under General Orders. Calendar No. 25. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  17. Fourth Amendment Restoration Act

    THOMAS, 112th Congress

    Sen. Paul, Rand [R-KY

    2011-05-23

    Senate - 05/24/2011 Read the second time. Placed on Senate Legislative Calendar under General Orders. Calendar No. 66. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  18. Full Faith and Credit Act

    THOMAS, 112th Congress

    Sen. Toomey, Pat [R-PA

    2011-01-25

    Senate - 01/26/2011 Read the second time. Placed on Senate Legislative Calendar under General Orders. Calendar No. 2. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  19. North American Energy Security Act

    THOMAS, 112th Congress

    Sen. Lugar, Richard G. [R-IN

    2011-11-30

    Senate - 12/01/2011 Read the second time. Placed on Senate Legislative Calendar under General Orders. Calendar No. 245. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  20. Bring Jobs Home Act

    THOMAS, 113th Congress

    Sen. Stabenow, Debbie [D-MI

    2014-06-26

    Senate - 07/07/2014 Read the second time. Placed on Senate Legislative Calendar under General Orders. Calendar No. 451. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  1. Education Opportunity Act of 2009

    THOMAS, 111th Congress

    Sen. Reid, Harry [D-NV

    2009-01-06

    Senate - 01/07/2009 Read the second time. Placed on Senate Legislative Calendar under General Orders. Calendar No. 7. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  2. Permanent Tax Relief Act

    THOMAS, 112th Congress

    Sen. Lee, Mike [R-UT

    2012-07-23

    Senate - 07/24/2012 Read the second time. Placed on Senate Legislative Calendar under General Orders. Calendar No. 472. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  3. SIMPLE Fairness Act

    THOMAS, 113th Congress

    Rep. Jenkins, Lynn [R-KS-2

    2014-02-28

    Senate - 03/10/2014 Read the second time. Placed on Senate Legislative Calendar under General Orders. Calendar No. 319. (All Actions) Tracker: This bill has the status Passed HouseHere are the steps for Status of Legislation:

  4. Repeal of Obamacare Act

    THOMAS, 112th Congress

    Rep. Cantor, Eric [R-VA-7

    2012-07-09

    Senate - 07/16/2012 Read the second time. Placed on Senate Legislative Calendar under General Orders. Calendar No. 451. (All Actions) Tracker: This bill has the status Passed HouseHere are the steps for Status of Legislation:

  5. Middle Class Tax Cut Act

    THOMAS, 112th Congress

    Sen. Reid, Harry [D-NV

    2012-07-17

    Senate - 07/18/2012 Read the second time. Placed on Senate Legislative Calendar under General Orders. Calendar No. 457. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  6. A generalised optimal linear quadratic tracker with universal applications. Part 2: discrete-time systems

    NASA Astrophysics Data System (ADS)

    Ebrahimzadeh, Faezeh; Tsai, Jason Sheng-Hong; Chung, Min-Ching; Liao, Ying Ting; Guo, Shu-Mei; Shieh, Leang-San; Wang, Li

    2017-01-01

    Contrastive to Part 1, Part 2 presents a generalised optimal linear quadratic digital tracker (LQDT) with universal applications for the discrete-time (DT) systems. This includes (1) a generalised optimal LQDT design for the system with the pre-specified trajectories of the output and the control input and additionally with both the input-to-output direct-feedthrough term and known/estimated system disturbances or extra input/output signals; (2) a new optimal filter-shaped proportional plus integral state-feedback LQDT design for non-square non-minimum phase DT systems to achieve a minimum-phase-like tracking performance; (3) a new approach for computing the control zeros of the given non-square DT systems; and (4) a one-learning-epoch input-constrained iterative learning LQDT design for the repetitive DT systems.

  7. A bill to provide an extension of time for filing individual income tax returns in the case of a Federal Government shutdown.

    THOMAS, 112th Congress

    Sen. Thune, John [R-SD

    2011-04-08

    Senate - 04/12/2011 Read the second time. Placed on Senate Legislative Calendar under General Orders. Calendar No. 32. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  8. Precision Attitude Determination System (PADS) system design and analysis: Single-axis gimbal star tracker

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The feasibility is evaluated of an evolutionary development for use of a single-axis gimbal star tracker from prior two-axis gimbal star tracker based system applications. Detailed evaluation of the star tracker gimbal encoder is considered. A brief system description is given including the aspects of tracker evolution and encoder evaluation. System analysis includes evaluation of star availability and mounting constraints for the geosynchronous orbit application, and a covariance simulation analysis to evaluate performance potential. Star availability and covariance analysis digital computer programs are included.

  9. Status of the AFP project in the ATLAS experiment

    NASA Astrophysics Data System (ADS)

    Taševský, Marek

    2015-04-01

    Status of the AFP project in the ATLAS experiment is summarized. The AFP system is composed of a tracker to detect intact, diffractively scattered protons, and of a time-of-flight detector serving to suppress background from pile-up interactions. The whole system, located around 210 m from the main ATLAS detector, is placed in Roman Pots which move detectors from and to the incident proton beams. A typical distance of the closest approach of the tracker to these beams is 2-3 mm. The main physics motivation lies in measuring diffractive processes in runs with not a very high amount of pile-up.

  10. Study of a stereo electro-optical tracker system for the measurement of model deformations at the national transonic facility

    NASA Technical Reports Server (NTRS)

    Hertel, R. J.

    1979-01-01

    An electro-optical method to measure the aeroelastic deformations of wind tunnel models is examined. The multitarget tracking performance of one of the two electronic cameras comprising the stereo pair is modeled and measured. The properties of the targets at the model, the camera optics, target illumination, number of targets, acquisition time, target velocities, and tracker performance are considered. The electronic camera system is shown to be capable of locating, measuring, and following the positions of 5 to 50 targets attached to the model at measuring rates up to 5000 targets per second.

  11. Retrofit Weight-Loss Outcomes at 6, 12, and 24 Months and Characteristics of 12-Month High Performers: A Retrospective Analysis

    PubMed Central

    Hanson, Nicholas Buck; Kachin, Kevin; Berger, Jan

    2016-01-01

    Background Obesity is the leading cause of preventable death costing the health care system billions of dollars. Combining self-monitoring technology with personalized behavior change strategies results in clinically significant weight loss. However, there is a lack of real-world outcomes in commercial weight-loss program research. Objective Retrofit is a personalized weight management and disease-prevention solution. This study aimed to report Retrofit’s weight-loss outcomes at 6, 12, and 24 months and characterize behaviors, age, and sex of high-performing participants who achieved weight loss of 10% or greater at 12 months. Methods A retrospective analysis was performed from 2011 to 2014 using 2720 participants enrolled in a Retrofit weight-loss program. Participants had a starting body mass index (BMI) of >25 kg/m² and were at least 18 years of age. Weight measurements were assessed at 6, 12, and 24 months in the program to evaluate change in body weight, BMI, and percentage of participants who achieved 5% or greater weight loss. A secondary analysis characterized high-performing participants who lost ≥10% of their starting weight (n=238). Characterized behaviors were evaluated, including self-monitoring through weigh-ins, number of days wearing an activity tracker, daily step count average, and engagement through coaching conversations via Web-based messages, and number of coaching sessions attended. Results Average weight loss at 6 months was −5.55% for male and −4.86% for female participants. Male and female participants had an average weight loss of −6.28% and −5.37% at 12 months, respectively. Average weight loss at 24 months was −5.03% and −3.15% for males and females, respectively. Behaviors of high-performing participants were assessed at 12 months. Number of weigh-ins were greater in high-performing male (197.3 times vs 165.4 times, P=.001) and female participants (222 times vs 167 times, P<.001) compared with remaining participants. Total activity tracker days and average steps per day were greater in high-performing females (304.7 vs 266.6 days, P<.001; 8380.9 vs 7059.7 steps, P<.001, respectively) and males (297.1 vs 255.3 days, P<.001; 9099.3 vs 8251.4 steps, P=.008, respectively). High-performing female participants had significantly more coaching conversations via Web-based messages than remaining female participants (341.4 vs 301.1, P=.03), as well as more days with at least one such electronic message (118 vs 108 days, P=.03). High-performing male participants displayed similar behavior. Conclusions Participants on the Retrofit program lost an average of −5.21% at 6 months, −5.83% at 12 months, and −4.09% at 24 months. High-performing participants show greater adherence to self-monitoring behaviors of weighing in, number of days wearing an activity tracker, and average number of steps per day. Female high performers have higher coaching engagement through conversation days and total number of coaching conversations. PMID:27549134

  12. A novel adaptive sun tracker for spacecraft solar panel based on hybrid unsymmetric composite laminates

    NASA Astrophysics Data System (ADS)

    Wu, Zhangming; Li, Hao

    2017-11-01

    This paper proposes a novel adaptive sun tracker which is constructed by hybrid unsymmetric composite laminates. The adaptive sun tracker could be applied on spacecraft solar panels to increase their energy efficiency through decreasing the inclined angle between the sunlight and the solar panel normal. The sun tracker possesses a large rotation freedom and its rotation angle depends on the laminate temperature, which is affected by the light condition in the orbit. Both analytical model and finite element model (FEM) are developed for the sun tracker to predict its rotation angle in different light conditions. In this work, the light condition of the geosynchronous orbit on winter solstice is considered in the numerical prediction of the temperatures of the hybrid laminates. The final inclined angle between the sunlight and the solar panel normal during a solar day is computed using the finite element model. Parametric study of the adaptive sun tracker is conducted to improve its capacity and effectiveness of sun tracking. The improved adaptive sun tracker is lightweight and has a state-of-the-art design. In addition, the adaptive sun tracker does not consume any power of the solar panel, since it has no electrical driving devices. The proposed adaptive sun tracker provides a potential alternative to replace the traditional sophisticated electrical driving mechanisms for spacecraft solar panels.

  13. Validation of an Electronic System for Recording Medical Student Patient Encounters

    PubMed Central

    Nkoy, Flory L.; Petersen, Sarah; Matheny Antommaria, Armand H.; Maloney, Christopher G.

    2008-01-01

    The Liaison Committee for Medical Education requires monitoring of the students’ clinical experiences. Student logs, typically used for this purpose, have a number of limitations. We used an electronic system called Patient Tracker to passively generate student encounter data. The data contained in Patient Tracker was compared to the information reported on student logs and data abstracted from the patients’ charts. Patient Tracker identified 30% more encounters than the student logs. Compared to the student logs, Patient Tracker contained a higher average number of diagnoses per encounter (2.28 vs. 1.03, p<0.01). The diagnostic data contained in Patient Tracker was also more accurate under 4 different definitions of accuracy. Only 1.3% (9/677) of diagnoses in Patient Tracker vs. 16.9% (102/601) diagnoses in the logs could not be validated in patients’ charts (p<0.01). Patient Tracker is a more effective and accurate tool for documenting student clinical encounters than the conventional student logs. PMID:18999155

  14. Physical Activity Assessment Using an Activity Tracker in Patients with Rheumatoid Arthritis and Axial Spondyloarthritis: Prospective Observational Study

    PubMed Central

    Servy, Hervé; Molto, Anna; Sellam, Jérémie; Foltz, Violaine; Gandjbakhch, Frédérique; Hudry, Christophe; Mitrovic, Stéphane; Fautrel, Bruno; Gossec, Laure

    2018-01-01

    Background Physical activity can be tracked using mobile devices and is recommended in rheumatoid arthritis (RA) and axial spondyloarthritis (axSpA) management. The World Health Organization (WHO) recommends at least 150 min per week of moderate to vigorous physical activity (MVPA). Objective The objectives of this study were to assess and compare physical activity and its patterns in patients with RA and axSpA using an activity tracker and to assess the feasibility of mobile devices in this population. Methods This multicentric prospective observational study (ActConnect) included patients who had definite RA or axSpA, and a smartphone. Physical activity was assessed over 3 months using a mobile activity tracker, recording the number of steps per minute. The number of patients reaching the WHO recommendations was calculated. RA and axSpA were compared, using linear mixed models, for number of steps, proportion of morning steps, duration of total activity, and MVPA. Physical activity trajectories were identified using the K-means method, and factors related to the low activity trajectory were explored by logistic regression. Acceptability was assessed by the mean number of days the tracker was worn over the 3 months (ie, adherence), the percentage of wearing time, and by an acceptability questionnaire. Results A total of 157 patients (83 RA and 74 axSpA) were analyzed; 36.3% (57/157) patients were males, and their mean age was 46 (standard deviation [SD] 12) years and mean disease duration was 11 (SD 9) years. RA and axSpA patients had similar physical activity levels of 16 (SD 11) and 15 (SD 12) min per day of MVPA (P=.80), respectively. Only 27.4% (43/157) patients reached the recommendations with a mean MVPA of 106 (SD 77) min per week. The following three trajectories were identified with constant activity: low (54.1% [85/157] of patients), moderate (42.7% [67/157] of patients), and high (3.2% [5/157] of patients) levels of MVPA. A higher body mass index was significantly related to less physical activity (odds ratio 1.12, 95% CI 1.11-1.14). The activity trackers were worn during a mean of 79 (SD 17) days over the 90 days follow-up. Overall, patients considered the use of the tracker very acceptable, with a mean score of 8 out 10. Conclusions Patients with RA and axSpA performed insufficient physical activity with similar levels in both groups, despite the differences between the 2 diseases. Activity trackers allow longitudinal assessment of physical activity in these patients. The good adherence to this study and the good acceptability of wearing activity trackers confirmed the feasibility of the use of a mobile activity tracker in patients with rheumatic diseases. PMID:29295810

  15. Tracker: Image-Processing and Object-Tracking System Developed

    NASA Technical Reports Server (NTRS)

    Klimek, Robert B.; Wright, Theodore W.

    1999-01-01

    Tracker is an object-tracking and image-processing program designed and developed at the NASA Lewis Research Center to help with the analysis of images generated by microgravity combustion and fluid physics experiments. Experiments are often recorded on film or videotape for analysis later. Tracker automates the process of examining each frame of the recorded experiment, performing image-processing operations to bring out the desired detail, and recording the positions of the objects of interest. It can load sequences of images from disk files or acquire images (via a frame grabber) from film transports, videotape, laser disks, or a live camera. Tracker controls the image source to automatically advance to the next frame. It can employ a large array of image-processing operations to enhance the detail of the acquired images and can analyze an arbitrarily large number of objects simultaneously. Several different tracking algorithms are available, including conventional threshold and correlation-based techniques, and more esoteric procedures such as "snake" tracking and automated recognition of character data in the image. The Tracker software was written to be operated by researchers, thus every attempt was made to make the software as user friendly and self-explanatory as possible. Tracker is used by most of the microgravity combustion and fluid physics experiments performed by Lewis, and by visiting researchers. This includes experiments performed on the space shuttles, Mir, sounding rockets, zero-g research airplanes, drop towers, and ground-based laboratories. This software automates the analysis of the flame or liquid s physical parameters such as position, velocity, acceleration, size, shape, intensity characteristics, color, and centroid, as well as a number of other measurements. It can perform these operations on multiple objects simultaneously. Another key feature of Tracker is that it performs optical character recognition (OCR). This feature is useful in extracting numerical instrumentation data that are embedded in images. All the results are saved in files for further data reduction and graphing. There are currently three Tracking Systems (workstations) operating near the laboratories and offices of Lewis Microgravity Science Division researchers. These systems are used independently by students, scientists, and university-based principal investigators. The researchers bring their tapes or films to the workstation and perform the tracking analysis. The resultant data files generated by the tracking process can then be analyzed on the spot, although most of the time researchers prefer to transfer them via the network to their offices for further analysis or plotting. In addition, many researchers have installed Tracker on computers in their office for desktop analysis of digital image sequences, which can be digitized by the Tracking System or some other means. Tracker has not only provided a capability to efficiently and automatically analyze large volumes of data, saving many hours of tedious work, but has also provided new capabilities to extract valuable information and phenomena that was heretofore undetected and unexploited.

  16. An efficient fluorescent single-particle position tracking system for long-term pulsed measurements of nitrogen-vacancy centers in diamond

    NASA Astrophysics Data System (ADS)

    Kim, Kiho; Yun, Jiwon; Lee, Donghyuck; Kim, Dohun

    2018-02-01

    A simple and convenient design enables real-time three-dimensional position tracking of nitrogen-vacancy (NV) centers in diamond. The system consists entirely of commercially available components (a single-photon counter, a high-speed digital-to-analog converter, a phase-sensitive detector-based feedback device, and a piezo stage), eliminating the need for custom programming or rigorous optimization processes. With a large input range of counters and trackers combined with high sensitivity of single-photon counting, high-speed position tracking (upper bound recovery time of 0.9 s upon 250 nm of step-like positional shift) not only of bright ensembles, but also of low-photon-collection-efficiency single to few NV centers (down to 103 s-1) is possible. The tracking requires position modulation of only 10 nm, which allows simultaneous position tracking and pulsed measurements in the long term. Therefore, this tracking system enables measuring a single-spin magnetic resonance and Rabi oscillations at a very high resolution even without photon collection optimization. The system is widely applicable to various fields related to NV center quantum manipulation research such as NV optical trapping, NV tracking in fluid dynamics, and biological sensing using NV centers inside a biological cell.

  17. Virtual-reality techniques resolve the visual cues used by fruit flies to evaluate object distances.

    PubMed

    Schuster, Stefan; Strauss, Roland; Götz, Karl G

    2002-09-17

    Insects can estimate distance or time-to-contact of surrounding objects from locomotion-induced changes in their retinal position and/or size. Freely walking fruit flies (Drosophila melanogaster) use the received mixture of different distance cues to select the nearest objects for subsequent visits. Conventional methods of behavioral analysis fail to elucidate the underlying data extraction. Here we demonstrate first comprehensive solutions of this problem by substituting virtual for real objects; a tracker-controlled 360 degrees panorama converts a fruit fly's changing coordinates into object illusions that require the perception of specific cues to appear at preselected distances up to infinity. An application reveals the following: (1) en-route sampling of retinal-image changes accounts for distance discrimination within a surprising range of at least 8-80 body lengths (20-200 mm). Stereopsis and peering are not involved. (2) Distance from image translation in the expected direction (motion parallax) outweighs distance from image expansion, which accounts for impact-avoiding flight reactions to looming objects. (3) The ability to discriminate distances is robust to artificially delayed updating of image translation. Fruit flies appear to interrelate self-motion and its visual feedback within a surprisingly long time window of about 2 s. The comparative distance inspection practiced in the small fruit fly deserves utilization in self-moving robots.

  18. Responsible Homeowner Refinancing Act of 2012

    THOMAS, 112th Congress

    Sen. Menendez, Robert [D-NJ

    2012-09-10

    Senate - 09/11/2012 Read the second time. Placed on Senate Legislative Calendar under General Orders. Calendar No. 503. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  19. Stronger Economy, Stronger Borders Act of 2009

    THOMAS, 111th Congress

    Sen. Reid, Harry [D-NV

    2009-01-06

    Senate - 01/07/2009 Read the second time. Placed on Senate Legislative Calendar under General Orders. Calendar No. 9. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  20. Health Insurance Industry Fair Competition Act

    THOMAS, 111th Congress

    Rep. Perriello, Thomas S.P. [D-VA-5

    2010-02-22

    Senate - 03/01/2010 Read the second time. Placed on Senate Legislative Calendar under General Orders. Calendar No. 277. (All Actions) Tracker: This bill has the status Passed HouseHere are the steps for Status of Legislation:

  1. Cleaner, Greener, and Smarter Act of 2009

    THOMAS, 111th Congress

    Sen. Reid, Harry [D-NV

    2009-01-06

    Senate - 01/07/2009 Read the second time. Placed on Senate Legislative Calendar under General Orders. Calendar No. 5. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  2. Student and Family Tax Simplification Act

    THOMAS, 113th Congress

    Rep. Black, Diane [R-TN-6

    2013-10-30

    Senate - 07/29/2014 Read the second time. Placed on Senate Legislative Calendar under General Orders. Calendar No. 493. (All Actions) Tracker: This bill has the status Passed HouseHere are the steps for Status of Legislation:

  3. Sequester Replacement Reconciliation Act of 2012

    THOMAS, 112th Congress

    Rep. Ryan, Paul [R-WI-1

    2012-05-09

    Senate - 05/15/2012 Read the second time. Placed on Senate Legislative Calendar under General Orders. Calendar No. 398. (All Actions) Tracker: This bill has the status Passed HouseHere are the steps for Status of Legislation:

  4. Time for Innovation Matters in Education Act of 2011

    THOMAS, 112th Congress

    Sen. Harkin, Tom [D-IA

    2011-04-14

    Senate - 04/14/2011 Read twice and referred to the Committee on Health, Education, Labor, and Pensions. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  5. Time for Innovation Matters in Education Act of 2009

    THOMAS, 111th Congress

    Sen. Kennedy, Edward M. [D-MA

    2009-07-08

    Senate - 07/08/2009 Read twice and referred to the Committee on Health, Education, Labor, and Pensions. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  6. Reversing President Obama's Offshore Moratorium Act

    THOMAS, 112th Congress

    Rep. Hastings, Doc [R-WA-4

    2011-03-29

    Senate - 05/17/2011 Read the second time. Placed on Senate Legislative Calendar under General Orders. Calendar No. 52. (All Actions) Tracker: This bill has the status Passed HouseHere are the steps for Status of Legislation:

  7. Part-Time Federal Employees Equity Act of 2009

    THOMAS, 111th Congress

    Rep. Moran, James P. [D-VA-8

    2009-02-25

    House - 06/26/2009 Referred to the Subcommittee on Federal Workforce, Post Office, and the District of Columbia. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  8. Energy Freedom and Economic Prosperity Act

    THOMAS, 112th Congress

    Sen. DeMint, Jim [R-SC

    2012-02-02

    Senate - 02/06/2012 Read the second time. Placed on Senate Legislative Calendar under General Orders. Calendar No. 309. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  9. North American-Made Energy Security Act

    THOMAS, 112th Congress

    Rep. Terry, Lee [R-NE-2

    2011-05-23

    Senate - 07/28/2011 Read the second time. Placed on Senate Legislative Calendar under General Orders. Calendar No. 116. (All Actions) Tracker: This bill has the status Passed HouseHere are the steps for Status of Legislation:

  10. Export-Import Bank Reauthorization Act of 2014

    THOMAS, 113th Congress

    Sen. Manchin, Joe, III [D-WV

    2014-07-30

    Senate - 07/31/2014 Read the second time. Placed on Senate Legislative Calendar under General Orders. Calendar No. 502. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  11. Electricity Security and Affordability Act

    THOMAS, 113th Congress

    Rep. Whitfield, Ed [R-KY-1

    2014-01-09

    Senate - 05/08/2014 Read the second time. Placed on Senate Legislative Calendar under General Orders. Calendar No. 374. (All Actions) Tracker: This bill has the status Passed HouseHere are the steps for Status of Legislation:

  12. Microenvironment Tracker (MicroTrac)

    EPA Science Inventory

    Epidemiologic studies have shown associations between air pollution concentrations measured at central-site ambient monitors and adverse health outcomes. Using central-site concentrations as exposure surrogates, however, can lead to exposure errors due to time spent in various in...

  13. Life at Conception Act of 2013

    THOMAS, 113th Congress

    Sen. Paul, Rand [R-KY

    2013-03-14

    Senate - 03/18/2013 Read the second time. Placed on Senate Legislative Calendar under General Orders. Calendar No. 30. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  14. Delay Until Fully Functional Act of 2013

    THOMAS, 113th Congress

    Sen. Rubio, Marco [R-FL

    2013-10-28

    Senate - 10/29/2013 Read the second time. Placed on Senate Legislative Calendar under General Orders. Calendar No. 225. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  15. insurance mandate, and for other purposes.

    THOMAS, 113th Congress

    Rep. Young, Todd C. [R-IN-9

    2013-07-11

    Senate - 07/24/2013 Read the second time. Placed on Senate Legislative Calendar under General Orders. Calendar No. 145. (All Actions) Tracker: This bill has the status Passed HouseHere are the steps for Status of Legislation:

  16. Small Business Lending Enhancement Act of 2012

    THOMAS, 112th Congress

    Sen. Udall, Mark [D-CO

    2012-03-22

    Senate - 03/26/2012 Read the second time. Placed on Senate Legislative Calendar under General Orders. Calendar No. 340. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  17. Middle Class Opportunity Act of 2009

    THOMAS, 111th Congress

    Sen. Reid, Harry [D-NV

    2009-01-06

    Senate - 01/07/2009 Read the second time. Placed on Senate Legislative Calendar under General Orders. Calendar No. 2. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  18. Ethanol Subsidy and Tariff Repeal Act

    THOMAS, 112th Congress

    Sen. Coburn, Tom [R-OK

    2011-05-24

    Senate - 05/25/2011 Read the second time. Placed on Senate Legislative Calendar under General Orders. Calendar No. 69. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  19. Stop Exploitation Through Trafficking Act of 2014

    THOMAS, 113th Congress

    Sen. Klobuchar, Amy [D-MN

    2014-07-14

    Senate - 07/15/2014 Read the second time. Placed on Senate Legislative Calendar under General Orders. Calendar No. 464. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  20. North American Energy Infrastructure Act

    THOMAS, 113th Congress

    Rep. Upton, Fred [R-MI-6

    2013-10-22

    Senate - 06/26/2014 Read the second time. Placed on Senate Legislative Calendar under General Orders. Calendar No. 442. (All Actions) Tracker: This bill has the status Passed HouseHere are the steps for Status of Legislation:

  1. Government Shutdown Prevention Act of 2011

    THOMAS, 112th Congress

    Sen. Paul, Rand [R-KY

    2011-04-07

    Senate - 04/08/2011 Read the second time. Placed on Senate Legislative Calendar under General Orders. Calendar No. 30. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  2. Government Shutdown Prevention Act of 2013

    THOMAS, 113th Congress

    Sen. Paul, Rand [R-KY

    2013-01-23

    Senate - 01/28/2013 Read the second time. Placed on Senate Legislative Calendar under General Orders. Calendar No. 5. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  3. USA PATRIOT Act Improvements Act of 2011

    THOMAS, 112th Congress

    Sen. Leahy, Patrick J. [D-VT

    2011-05-26

    Senate - 06/06/2011 Read the second time. Placed on Senate Legislative Calendar under General Orders. Calendar No. 71. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  4. STEM Jobs Act of 2012

    THOMAS, 112th Congress

    Rep. Smith, Lamar [R-TX-21

    2012-09-18

    Senate - 12/04/2012 Read the second time. Placed on Senate Legislative Calendar under General Orders. Calendar No. 559. (All Actions) Tracker: This bill has the status Passed HouseHere are the steps for Status of Legislation:

  5. America Gives More Act of 2014

    THOMAS, 113th Congress

    Rep. Reed, Tom [R-NY-23

    2014-05-22

    Senate - 07/23/2014 Read the second time. Placed on Senate Legislative Calendar under General Orders. Calendar No. 477. (All Actions) Tracker: This bill has the status Passed HouseHere are the steps for Status of Legislation:

  6. High-Capacity Ammunition Magazine Ban of 2013

    THOMAS, 113th Congress

    Sen. Lautenberg, Frank R. [D-NJ

    2013-04-09

    Senate - 04/10/2013 Read the second time. Placed on Senate Legislative Calendar under General Orders. Calendar No. 36. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  7. Oil Spill Response Improvement Act of 2010

    THOMAS, 111th Congress

    Sen. McConnell, Mitch [R-KY

    2010-07-22

    Senate - 07/26/2010 Read the second time. Placed on Senate Legislative Calendar under General Orders. Calendar No. 483. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  8. Saving Coal Jobs Act of 2013

    THOMAS, 113th Congress

    Sen. McConnell, Mitch [R-KY

    2013-09-17

    Senate - 09/18/2013 Read the second time. Placed on Senate Legislative Calendar under General Orders. Calendar No. 191. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  9. Microenvironment Tracker (MicroTrac) Model helps track air quality

    EPA Pesticide Factsheets

    MicroTrac is a model that uses global positioning system (GPS) data to estimate time of day and duration that people spend in different microenvironments (e.g., indoors and outdoors at home, work, school).

  10. Cut Federal Spending Act of 2011

    THOMAS, 112th Congress

    Sen. Paul, Rand [R-KY

    2011-01-25

    Senate - 01/26/2011 Read the second time. Placed on Senate Legislative Calendar under General Orders. Calendar No. 1. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  11. Renewable Electricity Promotion Act of 2010

    THOMAS, 111th Congress

    Sen. Bingaman, Jeff [D-NM

    2010-09-21

    Senate - 09/22/2010 Read the second time. Placed on Senate Legislative Calendar under General Orders. Calendar No. 576. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  12. Drinking Water Supply Assistance Act of 2013

    THOMAS, 113th Congress

    Sen. Enzi, Michael B. [R-WY

    2013-12-13

    Senate - 12/15/2013 Read the second time. Placed on Senate Legislative Calendar under General Orders. Calendar No. 261. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  13. Sportsmen's Heritage And Recreational Enhancement Act

    THOMAS, 113th Congress

    Rep. Latta, Robert E. [R-OH-5

    2013-11-21

    Senate - 02/10/2014 Read the second time. Placed on Senate Legislative Calendar under General Orders. Calendar No. 305. (All Actions) Tracker: This bill has the status Passed HouseHere are the steps for Status of Legislation:

  14. Anti-Trust Freedom Act of 2013

    THOMAS, 113th Congress

    Sen. Paul, Rand [R-KY

    2013-05-21

    Senate - 05/22/2013 Read the second time. Placed on Senate Legislative Calendar under General Orders. Calendar No. 77. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  15. Corolla Wild Horses Protection Act

    THOMAS, 113th Congress

    Rep. Jones, Walter B., Jr. [R-NC-3

    2013-01-03

    Senate - 06/10/2013 Read the second time. Placed on Senate Legislative Calendar under General Orders. Calendar No. 84. (All Actions) Tracker: This bill has the status Passed HouseHere are the steps for Status of Legislation:

  16. PATRIOT Sunsets Extension Act of 2011

    THOMAS, 112th Congress

    Sen. Reid, Harry [D-NV

    2011-05-18

    Senate - 05/19/2011 Read the second time. Placed on Senate Legislative Calendar under General Orders. Calendar No. 58. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  17. USA PATRIOT Reauthorization Act of 2011

    THOMAS, 112th Congress

    Sen. McConnell, Mitch [R-KY

    2011-02-03

    Senate - 02/04/2011 Read the second time. Placed on Senate Legislative Calendar under General Orders. Calendar No. 9. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  18. Firearm Straw Purchasing and Trafficking Prevention Act

    THOMAS, 113th Congress

    Sen. Cruz, Ted [R-TX

    2013-04-15

    Senate - 04/16/2013 Read the second time. Placed on Senate Legislative Calendar under General Orders. Calendar No. 40. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  19. Disarm Criminals and Protect Communities Act

    THOMAS, 113th Congress

    Sen. Cruz, Ted [R-TX

    2013-04-15

    Senate - 04/16/2013 Read the second time. Placed on Senate Legislative Calendar under General Orders. Calendar No. 39. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  20. No Cost Stimulus Act of 2009

    THOMAS, 111th Congress

    Sen. Vitter, David [R-LA

    2009-03-11

    Senate - 03/12/2009 Read the second time. Placed on Senate Legislative Calendar under General Orders. Calendar No. 31. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  1. EPA Regulatory Relief Act of 2011

    THOMAS, 112th Congress

    Rep. Griffith, H. Morgan [R-VA-9

    2011-06-21

    Senate - 10/18/2011 Read the second time. Placed on Senate Legislative Calendar under General Orders. Calendar No. 201. (All Actions) Tracker: This bill has the status Passed HouseHere are the steps for Status of Legislation:

  2. Fourth Amendment Restoration Act of 2013

    THOMAS, 113th Congress

    Sen. Paul, Rand [R-KY

    2013-06-07

    Senate - 06/10/2013 Read the second time. Placed on Senate Legislative Calendar under General Orders. Calendar No. 83. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  3. Secret Ballot Protection Act of 2009

    THOMAS, 111th Congress

    Sen. DeMint, Jim [R-SC

    2009-02-25

    Senate - 02/26/2009 Read the second time. Placed on Senate Legislative Calendar under General Orders. Calendar No. 24. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  4. Surface Transportation Extension Act of 2009

    THOMAS, 111th Congress

    Rep. Oberstar, James L. [D-MN-8

    2009-09-22

    Senate - 10/29/2009 Read the second time. Placed on Senate Legislative Calendar under General Orders. Calendar No. 191. (All Actions) Tracker: This bill has the status Passed HouseHere are the steps for Status of Legislation:

  5. Workforce Democracy and Fairness Act

    THOMAS, 112th Congress

    Rep. Kline, John [R-MN-2

    2011-10-05

    Senate - 12/16/2011 Read the second time. Placed on Senate Legislative Calendar under General Orders. Calendar No. 262. (All Actions) Tracker: This bill has the status Passed HouseHere are the steps for Status of Legislation:

  6. Microenvironment Tracker (MicroTrac) Factsheet

    EPA Pesticide Factsheets

    MicroTrac is a model developed by EPA that uses GPS data to estimate time of day and duration that people spend in different microenvironments, such as indoors and outdoors at home, work, school, and inside vehicles.

  7. Returning Government to the American People Act

    THOMAS, 111th Congress

    Sen. Reid, Harry [D-NV

    2009-01-06

    Senate - 01/07/2009 Read the second time. Placed on Senate Legislative Calendar under General Orders. Calendar No. 8. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  8. Protecting Jobs From Government Interference Act

    THOMAS, 112th Congress

    Rep. Scott, Tim [R-SC-1

    2011-07-19

    Senate - 09/16/2011 Read the second time. Placed on Senate Legislative Calendar under General Orders. Calendar No. 173. (All Actions) Tracker: This bill has the status Passed HouseHere are the steps for Status of Legislation:

  9. Cut, Cap, and Balance Act of 2011

    THOMAS, 112th Congress

    Sen. Lee, Mike [R-UT

    2011-07-07

    Senate - 07/11/2011 Read the second time. Placed on Senate Legislative Calendar under General Orders. Calendar No. 97. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  10. Restoring America's Power Act of 2009

    THOMAS, 111th Congress

    Sen. Reid, Harry [D-NV

    2009-01-06

    Senate - 01/07/2009 Read the second time. Placed on Senate Legislative Calendar under General Orders. Calendar No. 6. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  11. Tax Hike Prevention Act of 2010

    THOMAS, 111th Congress

    Sen. McConnell, Mitch [R-KY

    2010-09-13

    Senate - 09/14/2010 Read the second time. Placed on Senate Legislative Calendar under General Orders. Calendar No. 562. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  12. Idaho Wilderness Water Resources Protection Act

    THOMAS, 112th Congress

    Rep. Simpson, Michael K. [R-ID-2

    2011-05-26

    Senate - 05/08/2012 Read the second time. Placed on Senate Legislative Calendar under General Orders. Calendar No. 391. (All Actions) Tracker: This bill has the status Passed HouseHere are the steps for Status of Legislation:

  13. Protecting Access to Healthcare Act

    THOMAS, 112th Congress

    Rep. Gingrey, Phil [R-GA-11

    2011-01-24

    Senate - 04/16/2012 Read the second time. Placed on Senate Legislative Calendar under General Orders. Calendar No. 353. (All Actions) Tracker: This bill has the status Passed HouseHere are the steps for Status of Legislation:

  14. State Marriage Defense Act of 2014

    THOMAS, 113th Congress

    Sen. Cruz, Ted [R-TX

    2014-02-12

    Senate - 02/24/2014 Read the second time. Placed on Senate Legislative Calendar under General Orders. Calendar No. 308. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  15. Nuclear Weapon Free Iran Act of 2013

    THOMAS, 113th Congress

    Sen. Menendez, Robert [D-NJ

    2013-12-19

    Senate - 12/20/2013 Read the second time. Placed on Senate Legislative Calendar under General Orders. Calendar No. 288. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  16. Federal Reserve Transparency Act of 2013

    THOMAS, 113th Congress

    Sen. Paul, Rand [R-KY

    2013-02-04

    Senate - 02/07/2013 Read the second time. Placed on Senate Legislative Calendar under General Orders. Calendar No. 12. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  17. Federal Employee Retroactive Pay Fairness Act

    THOMAS, 113th Congress

    Rep. Moran, James P. [D-VA-8

    2013-09-30

    Senate - 10/07/2013 Read the second time. Placed on Senate Legislative Calendar under General Orders. Calendar No. 208. (All Actions) Tracker: This bill has the status Passed HouseHere are the steps for Status of Legislation:

  18. Credit Card Rate Freeze Act of 2009

    THOMAS, 111th Congress

    Sen. Dodd, Christopher J. [D-CT

    2009-10-26

    Senate - 10/27/2009 Read the second time. Placed on Senate Legislative Calendar under General Orders. Calendar No. 189. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  19. Head Start Continuing Appropriations Resolution, 2014

    THOMAS, 113th Congress

    Rep. Rogers, Harold [R-KY-5

    2013-10-03

    Senate - 10/10/2013 Read the second time. Placed on Senate Legislative Calendar under General Orders. Calendar No. 213. (All Actions) Tracker: This bill has the status Passed HouseHere are the steps for Status of Legislation:

  20. Military Justice Improvement Act of 2014

    THOMAS, 113th Congress

    Sen. Gillibrand, Kirsten E. [D-NY

    2014-12-09

    Senate - 12/10/2014 Read the second time. Placed on Senate Legislative Calendar under General Orders. Calendar No. 644. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

Top