Attitude guidance and tracking for spacecraft with two reaction wheels
NASA Astrophysics Data System (ADS)
Biggs, James D.; Bai, Yuliang; Henninger, Helen
2018-04-01
This paper addresses the guidance and tracking problem for a rigid-spacecraft using two reaction wheels (RWs). The guidance problem is formulated as an optimal control problem on the special orthogonal group SO(3). The optimal motion is solved analytically as a function of time and is used to reduce the original guidance problem to one of computing the minimum of a nonlinear function. A tracking control using two RWs is developed that extends previous singular quaternion stabilisation controls to tracking controls on the rotation group. The controller is proved to locally asymptotically track the generated reference motions using Lyapunov's direct method. Simulations of a 3U CubeSat demonstrate that this tracking control is robust to initial rotation errors and angular velocity errors in the controlled axis. For initial angular velocity errors in the uncontrolled axis and under significant disturbances the control fails to track. However, the singular tracking control is combined with a nano-magnetic torquer which simply damps the angular velocity in the uncontrolled axis and is shown to provide a practical control method for tracking in the presence of disturbances and initial condition errors.
Near-Optimal Tracking Control of Mobile Robots Via Receding-Horizon Dual Heuristic Programming.
Lian, Chuanqiang; Xu, Xin; Chen, Hong; He, Haibo
2016-11-01
Trajectory tracking control of wheeled mobile robots (WMRs) has been an important research topic in control theory and robotics. Although various tracking control methods with stability have been developed for WMRs, it is still difficult to design optimal or near-optimal tracking controller under uncertainties and disturbances. In this paper, a near-optimal tracking control method is presented for WMRs based on receding-horizon dual heuristic programming (RHDHP). In the proposed method, a backstepping kinematic controller is designed to generate desired velocity profiles and the receding horizon strategy is used to decompose the infinite-horizon optimal control problem into a series of finite-horizon optimal control problems. In each horizon, a closed-loop tracking control policy is successively updated using a class of approximate dynamic programming algorithms called finite-horizon dual heuristic programming (DHP). The convergence property of the proposed method is analyzed and it is shown that the tracking control system based on RHDHP is asymptotically stable by using the Lyapunov approach. Simulation results on three tracking control problems demonstrate that the proposed method has improved control performance when compared with conventional model predictive control (MPC) and DHP. It is also illustrated that the proposed method has lower computational burden than conventional MPC, which is very beneficial for real-time tracking control.
Approximate optimal tracking control for near-surface AUVs with wave disturbances
NASA Astrophysics Data System (ADS)
Yang, Qing; Su, Hao; Tang, Gongyou
2016-10-01
This paper considers the optimal trajectory tracking control problem for near-surface autonomous underwater vehicles (AUVs) in the presence of wave disturbances. An approximate optimal tracking control (AOTC) approach is proposed. Firstly, a six-degrees-of-freedom (six-DOF) AUV model with its body-fixed coordinate system is decoupled and simplified and then a nonlinear control model of AUVs in the vertical plane is given. Also, an exosystem model of wave disturbances is constructed based on Hirom approximation formula. Secondly, the time-parameterized desired trajectory which is tracked by the AUV's system is represented by the exosystem. Then, the coupled two-point boundary value (TPBV) problem of optimal tracking control for AUVs is derived from the theory of quadratic optimal control. By using a recently developed successive approximation approach to construct sequences, the coupled TPBV problem is transformed into a problem of solving two decoupled linear differential sequences of state vectors and adjoint vectors. By iteratively solving the two equation sequences, the AOTC law is obtained, which consists of a nonlinear optimal feedback item, an expected output tracking item, a feedforward disturbances rejection item, and a nonlinear compensatory term. Furthermore, a wave disturbances observer model is designed in order to solve the physically realizable problem. Simulation is carried out by using the Remote Environmental Unit (REMUS) AUV model to demonstrate the effectiveness of the proposed algorithm.
NASA Technical Reports Server (NTRS)
Markopoulos, N.; Calise, A. J.
1993-01-01
The class of all piecewise time-continuous controllers tracking a given hypersurface in the state space of a dynamical system can be split by the present transformation technique into two disjoint classes; while the first of these contains all controllers which track the hypersurface in finite time, the second contains all controllers that track the hypersurface asymptotically. On this basis, a reformulation is presented for optimal control problems involving state-variable inequality constraints. If the state constraint is regarded as 'soft', there may exist controllers which are asymptotic, two-sided, and able to yield the optimal value of the performance index.
Relative tracking control of constellation satellites considering inter-satellite link
NASA Astrophysics Data System (ADS)
Fakoor, M.; Amozegary, F.; Bakhtiari, M.; Daneshjou, K.
2017-11-01
In this article, two main issues related to the large-scale relative motion of satellites in the constellation are investigated to establish the Inter Satellite Link (ISL) which means the dynamic and control problems. In the section related to dynamic problems, a detailed and effective analytical solution is initially provided for the problem of satellite relative motion considering perturbations. The direct geometric method utilizing spherical coordinates is employed to achieve this solution. The evaluation of simulation shows that the solution obtained from the geometric method calculates the relative motion of the satellite with high accuracy. Thus, the proposed analytical solution will be applicable and effective. In the section related to control problems, the relative tracking control system between two satellites will be designed in order to establish a communication link between the satellites utilizing analytical solution for relative motion of satellites with respect to the reference trajectory. Sliding mode control approach is employed to develop the relative tracking control system for body to body and payload to payload tracking control. Efficiency of sliding mode control approach is compared with PID and LQR controllers. Two types of payload to payload tracking control considering with and without payload degree of freedom are designed and suitable one for practical ISL applications is introduced. Also, Fuzzy controller is utilized to eliminate the control input in the sliding mode controller.
Actor-critic-based optimal tracking for partially unknown nonlinear discrete-time systems.
Kiumarsi, Bahare; Lewis, Frank L
2015-01-01
This paper presents a partially model-free adaptive optimal control solution to the deterministic nonlinear discrete-time (DT) tracking control problem in the presence of input constraints. The tracking error dynamics and reference trajectory dynamics are first combined to form an augmented system. Then, a new discounted performance function based on the augmented system is presented for the optimal nonlinear tracking problem. In contrast to the standard solution, which finds the feedforward and feedback terms of the control input separately, the minimization of the proposed discounted performance function gives both feedback and feedforward parts of the control input simultaneously. This enables us to encode the input constraints into the optimization problem using a nonquadratic performance function. The DT tracking Bellman equation and tracking Hamilton-Jacobi-Bellman (HJB) are derived. An actor-critic-based reinforcement learning algorithm is used to learn the solution to the tracking HJB equation online without requiring knowledge of the system drift dynamics. That is, two neural networks (NNs), namely, actor NN and critic NN, are tuned online and simultaneously to generate the optimal bounded control policy. A simulation example is given to show the effectiveness of the proposed method.
Non-Static error tracking control for near space airship loading platform
NASA Astrophysics Data System (ADS)
Ni, Ming; Tao, Fei; Yang, Jiandong
2018-01-01
A control scheme based on internal model with non-static error is presented against the uncertainty of the near space airship loading platform system. The uncertainty in the tracking table is represented as interval variations in stability and control derivatives. By formulating the tracking problem of the uncertainty system as a robust state feedback stabilization problem of an augmented system, sufficient condition for the existence of robust tracking controller is derived in the form of linear matrix inequality (LMI). Finally, simulation results show that the new method not only has better anti-jamming performance, but also improves the dynamic performance of the high-order systems.
Liu, Ping; Li, Guodong; Liu, Xinggao; Xiao, Long; Wang, Yalin; Yang, Chunhua; Gui, Weihua
2018-02-01
High quality control method is essential for the implementation of aircraft autopilot system. An optimal control problem model considering the safe aerodynamic envelop is therefore established to improve the control quality of aircraft flight level tracking. A novel non-uniform control vector parameterization (CVP) method with time grid refinement is then proposed for solving the optimal control problem. By introducing the Hilbert-Huang transform (HHT) analysis, an efficient time grid refinement approach is presented and an adaptive time grid is automatically obtained. With this refinement, the proposed method needs fewer optimization parameters to achieve better control quality when compared with uniform refinement CVP method, whereas the computational cost is lower. Two well-known flight level altitude tracking problems and one minimum time cost problem are tested as illustrations and the uniform refinement control vector parameterization method is adopted as the comparative base. Numerical results show that the proposed method achieves better performances in terms of optimization accuracy and computation cost; meanwhile, the control quality is efficiently improved. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Hu, Qinglei; Zhang, Jian
2015-01-01
This paper investigates finite-time relative position coordinated tracking problem by output feedback for spacecraft formation flying without velocity measurement. By employing homogeneous system theory, a finite-time relative position coordinated tracking controller by state feedback is firstly developed, where the desired time-varying trajectory given in advance can be tracked by the formation. Then, to address the problem of lack of velocity measurements, a finite-time output feedback controller is proposed by involving a novel filter to recover unknown velocity information in a finite time. Rigorous proof shows that the proposed control law ensures global stability and guarantees the position of spacecraft formation to track a time-varying reference in finite time. Finally, simulation results are presented to illustrate the performance of the proposed controller. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Cai, Wei-wei; Yang, Le-ping; Zhu, Yan-wei
2015-01-01
This paper presents a novel method integrating nominal trajectory optimization and tracking for the reorientation control of an underactuated spacecraft with only two available control torque inputs. By employing a pseudo input along the uncontrolled axis, the flatness property of a general underactuated spacecraft is extended explicitly, by which the reorientation trajectory optimization problem is formulated into the flat output space with all the differential constraints eliminated. Ultimately, the flat output optimization problem is transformed into a nonlinear programming problem via the Chebyshev pseudospectral method, which is improved by the conformal map and barycentric rational interpolation techniques to overcome the side effects of the differential matrix's ill-conditions on numerical accuracy. Treating the trajectory tracking control as a state regulation problem, we develop a robust closed-loop tracking control law using the receding-horizon control method, and compute the feedback control at each control cycle rapidly via the differential transformation method. Numerical simulation results show that the proposed control scheme is feasible and effective for the reorientation maneuver.
Intelligent Control of Flexible-Joint Robotic Manipulators
NASA Technical Reports Server (NTRS)
Colbaugh, R.; Gallegos, G.
1997-01-01
This paper considers the trajectory tracking problem for uncertain rigid-link. flexible.joint manipulators, and presents a new intelligent controller as a solution to this problem. The proposed control strategy is simple and computationally efficient, requires little information concerning either the manipulator or actuator/transmission models and ensures uniform boundedness of all signals and arbitrarily accurate task-space trajectory tracking.
NASA Astrophysics Data System (ADS)
Lu, Yanrong; Liao, Fucheng; Deng, Jiamei; Liu, Huiyang
2017-09-01
This paper investigates the cooperative global optimal preview tracking problem of linear multi-agent systems under the assumption that the output of a leader is a previewable periodic signal and the topology graph contains a directed spanning tree. First, a type of distributed internal model is introduced, and the cooperative preview tracking problem is converted to a global optimal regulation problem of an augmented system. Second, an optimal controller, which can guarantee the asymptotic stability of the augmented system, is obtained by means of the standard linear quadratic optimal preview control theory. Third, on the basis of proving the existence conditions of the controller, sufficient conditions are given for the original problem to be solvable, meanwhile a cooperative global optimal controller with error integral and preview compensation is derived. Finally, the validity of theoretical results is demonstrated by a numerical simulation.
Fairbank, Michael; Li, Shuhui; Fu, Xingang; Alonso, Eduardo; Wunsch, Donald
2014-01-01
We present a recurrent neural-network (RNN) controller designed to solve the tracking problem for control systems. We demonstrate that a major difficulty in training any RNN is the problem of exploding gradients, and we propose a solution to this in the case of tracking problems, by introducing a stabilization matrix and by using carefully constrained context units. This solution allows us to achieve consistently lower training errors, and hence allows us to more easily introduce adaptive capabilities. The resulting RNN is one that has been trained off-line to be rapidly adaptive to changing plant conditions and changing tracking targets. The case study we use is a renewable-energy generator application; that of producing an efficient controller for a three-phase grid-connected converter. The controller we produce can cope with the random variation of system parameters and fluctuating grid voltages. It produces tracking control with almost instantaneous response to changing reference states, and virtually zero oscillation. This compares very favorably to the classical proportional integrator (PI) controllers, which we show produce a much slower response and settling time. In addition, the RNN we propose exhibits better learning stability and convergence properties, and can exhibit faster adaptation, than has been achieved with adaptive critic designs. Copyright © 2013 Elsevier Ltd. All rights reserved.
Telemetry, Tracking, and Control Working Group report
NASA Technical Reports Server (NTRS)
Campbell, Richard; Rogers, L. Joseph
1986-01-01
After assessing the design implications and the criteria to be used in technology selection, the technical problems that face the telemetry, tracking, and control (TTC) area were defined. For each of the problems identified, recommendations were made for needed technology developments. These recommendations are listed and ranked according to priority.
Optimal Output Trajectory Redesign for Invertible Systems
NASA Technical Reports Server (NTRS)
Devasia, S.
1996-01-01
Given a desired output trajectory, inversion-based techniques find input-state trajectories required to exactly track the output. These inversion-based techniques have been successfully applied to the endpoint tracking control of multijoint flexible manipulators and to aircraft control. The specified output trajectory uniquely determines the required input and state trajectories that are found through inversion. These input-state trajectories exactly track the desired output; however, they might not meet acceptable performance requirements. For example, during slewing maneuvers of flexible structures, the structural deformations, which depend on the required state trajectories, may be unacceptably large. Further, the required inputs might cause actuator saturation during an exact tracking maneuver, for example, in the flight control of conventional takeoff and landing aircraft. In such situations, a compromise is desired between the tracking requirement and other goals such as reduction of internal vibrations and prevention of actuator saturation; the desired output trajectory needs to redesigned. Here, we pose the trajectory redesign problem as an optimization of a general quadratic cost function and solve it in the context of linear systems. The solution is obtained as an off-line prefilter of the desired output trajectory. An advantage of our technique is that the prefilter is independent of the particular trajectory. The prefilter can therefore be precomputed, which is a major advantage over other optimization approaches. Previous works have addressed the issue of preshaping inputs to minimize residual and in-maneuver vibrations for flexible structures; Since the command preshaping is computed off-line. Further minimization of optimal quadratic cost functions has also been previously use to preshape command inputs for disturbance rejection. All of these approaches are applicable when the inputs to the system are known a priori. Typically, outputs (not inputs) are specified in tracking problems, and hence the input trajectories have to be computed. The inputs to the system are however, difficult to determine for non-minimum phase systems like flexible structures. One approach to solve this problem is to (1) choose a tracking controller (the desired output trajectory is now an input to the closed-loop system and (2) redesign this input to the closed-loop system. Thus we effectively perform output redesign. These redesigns are however, dependent on the choice of the tracking controllers. Thus the controller optimization and trajectory redesign problems become coupled; this coupled optimization is still an open problem. In contrast, we decouple the trajectory redesign problem from the choice of feedback-based tracking controller. It is noted that our approach remains valid when a particular tracking controller is chosen. In addition, the formulation of our problem not only allows for the minimization of residual vibration as in available techniques but also allows for the optimal reduction fo vibrations during the maneuver, e.g., the altitude control of flexible spacecraft. We begin by formulating the optimal output trajectory redesign problem and then solve it in the context of general linear systems. This theory is then applied to an example flexible structure, and simulation results are provided.
Intelligent Tracking Control for a Class of Uncertain High-Order Nonlinear Systems.
Zhao, Xudong; Shi, Peng; Zheng, Xiaolong; Zhang, Jianhua
2016-09-01
This brief is concerned with the problem of intelligent tracking control for a class of high-order nonlinear systems with completely unknown nonlinearities. An intelligent adaptive control algorithm is presented by combining the adaptive backstepping technique with the neural networks' approximation ability. It is shown that the practical output tracking performance of the system is achieved using the proposed state-feedback controller under two mild assumptions. In particular, by introducing a parameter in the derivations, the tracking error between the time-varying target signal and the output can be reduced via tuning the controller design parameters. Moreover, in order to solve the problem of overparameterization, which is a common issue in adaptive control design, a controller with one adaptive law is also designed. Finally, simulation results are given to show the effectiveness of the theoretical approaches and the potential of the proposed new design techniques.
Adaptive quaternion tracking with nonlinear extended state observer
NASA Astrophysics Data System (ADS)
Bai, Yu-liang; Wang, Xiao-gang; Xu, Jiang-tao; Cui, Nai-gang
2017-10-01
This paper addresses the problem of attitude tracking for spacecraft in the presence of uncertainties in moments of inertia and environmental disturbances. An adaptive quaternion tracking control is combined with a nonlinear extended state observer and the disturbances compensated for in each sampling period. The tracking controller is proved to asymptotically track a prescribed motion in the presence of these uncertainties. Simulations of a nano-spacecraft demonstrate a significant improvement in pointing accuracy and tracking error when compared to a conventional attitude controller. The proposed tracking control is completely deterministic, simple to implement, does not require knowledge of the uncertainties and does not suffer from chattering.
Indirect learning control for nonlinear dynamical systems
NASA Technical Reports Server (NTRS)
Ryu, Yeong Soon; Longman, Richard W.
1993-01-01
In a previous paper, learning control algorithms were developed based on adaptive control ideas for linear time variant systems. The learning control methods were shown to have certain advantages over their adaptive control counterparts, such as the ability to produce zero tracking error in time varying systems, and the ability to eliminate repetitive disturbances. In recent years, certain adaptive control algorithms have been developed for multi-body dynamic systems such as robots, with global guaranteed convergence to zero tracking error for the nonlinear system euations. In this paper we study the relationship between such adaptive control methods designed for this specific class of nonlinear systems, and the learning control problem for such systems, seeking to converge to zero tracking error in following a specific command repeatedly, starting from the same initial conditions each time. The extension of these methods from the adaptive control problem to the learning control problem is seen to be trivial. The advantages and disadvantages of using learning control based on such adaptive control concepts for nonlinear systems, and the use of other currently available learning control algorithms are discussed.
Yu, Jinpeng; Shi, Peng; Yu, Haisheng; Chen, Bing; Lin, Chong
2015-07-01
This paper considers the problem of discrete-time adaptive position tracking control for a interior permanent magnet synchronous motor (IPMSM) based on fuzzy-approximation. Fuzzy logic systems are used to approximate the nonlinearities of the discrete-time IPMSM drive system which is derived by direct discretization using Euler method, and a discrete-time fuzzy position tracking controller is designed via backstepping approach. In contrast to existing results, the advantage of the scheme is that the number of the adjustable parameters is reduced to two only and the problem of coupling nonlinearity can be overcome. It is shown that the proposed discrete-time fuzzy controller can guarantee the tracking error converges to a small neighborhood of the origin and all the signals are bounded. Simulation results illustrate the effectiveness and the potentials of the theoretic results obtained.
Baigzadehnoe, Barmak; Rahmani, Zahra; Khosravi, Alireza; Rezaie, Behrooz
2017-09-01
In this paper, the position and force tracking control problem of cooperative robot manipulator system handling a common rigid object with unknown dynamical models and unknown external disturbances is investigated. The universal approximation properties of fuzzy logic systems are employed to estimate the unknown system dynamics. On the other hand, by defining new state variables based on the integral and differential of position and orientation errors of the grasped object, the error system of coordinated robot manipulators is constructed. Subsequently by defining the appropriate change of coordinates and using the backstepping design strategy, an adaptive fuzzy backstepping position tracking control scheme is proposed for multi-robot manipulator systems. By utilizing the properties of internal forces, extra terms are also added to the control signals to consider the force tracking problem. Moreover, it is shown that the proposed adaptive fuzzy backstepping position/force control approach ensures all the signals of the closed loop system uniformly ultimately bounded and tracking errors of both positions and forces can converge to small desired values by proper selection of the design parameters. Finally, the theoretic achievements are tested on the two three-link planar robot manipulators cooperatively handling a common object to illustrate the effectiveness of the proposed approach. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Li, Zhaoying; Zhou, Wenjie; Liu, Hao
2016-09-01
This paper addresses the nonlinear robust tracking controller design problem for hypersonic vehicles. This problem is challenging due to strong coupling between the aerodynamics and the propulsion system, and the uncertainties involved in the vehicle dynamics including parametric uncertainties, unmodeled model uncertainties, and external disturbances. By utilizing the feedback linearization technique, a linear tracking error system is established with prescribed references. For the linear model, a robust controller is proposed based on the signal compensation theory to guarantee that the tracking error dynamics is robustly stable. Numerical simulation results are given to show the advantages of the proposed nonlinear robust control method, compared to the robust loop-shaping control approach. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
Optimal Dynamic Strategies for Index Tracking and Algorithmic Trading
NASA Astrophysics Data System (ADS)
Ward, Brian
In this thesis we study dynamic strategies for index tracking and algorithmic trading. Tracking problems have become ever more important in Financial Engineering as investors seek to precisely control their portfolio risks and exposures over different time horizons. This thesis analyzes various tracking problems and elucidates the tracking errors and strategies one can employ to minimize those errors and maximize profit. In Chapters 2 and 3, we study the empirical tracking properties of exchange traded funds (ETFs), leveraged ETFs (LETFs), and futures products related to spot gold and the Chicago Board Option Exchange (CBOE) Volatility Index (VIX), respectively. These two markets provide interesting and differing examples for understanding index tracking. We find that static strategies work well in the nonleveraged case for gold, but fail to track well in the corresponding leveraged case. For VIX, tracking via neither ETFs, nor futures\\ portfolios succeeds, even in the nonleveraged case. This motivates the need for dynamic strategies, some of which we construct in these two chapters and further expand on in Chapter 4. There, we analyze a framework for index tracking and risk exposure control through financial derivatives. We derive a tracking condition that restricts our exposure choices and also define a slippage process that characterizes the deviations from the index over longer horizons. The framework is applied to a number of models, for example, Black Scholes model and Heston model for equity index tracking, as well as the Square Root (SQR) model and the Concatenated Square Root (CSQR) model for VIX tracking. By specifying how each of these models fall into our framework, we are able to understand the tracking errors in each of these models. Finally, Chapter 5 analyzes a tracking problem of a different kind that arises in algorithmic trading: schedule following for optimal execution. We formulate and solve a stochastic control problem to obtain the optimal trading rates using both market and limit orders. There is a quadratic terminal penalty to ensure complete liquidation as well as a trade speed limiter and trader director to provide better control on the trading rates. The latter two penalties allow the trader to tailor the magnitude and sign (respectively) of the optimal trading rates. We demonstrate the applicability of the model to following a benchmark schedule. In addition, we identify conditions on the model parameters to ensure optimality of the controls and finiteness of the associated value functions. Throughout the chapter, numerical simulations are provided to demonstrate the properties of the optimal trading rates.
Differential Flatness and Cooperative Tracking in the Lorenz System
NASA Technical Reports Server (NTRS)
Crespo, Luis G.
2002-01-01
In this paper the control of the Lorenz system for both stabilization and tracking problems is studied via feedback linearization and differential flatness. By using the Rayleigh number as the control, only variable physically tunable, a barrier in the controllability of the system is incidentally imposed. This is reflected in the appearance of a singularity in the state transformation. Composite controllers that overcome this difficulty are designed and evaluated. The transition through the manifold defined by such a singularity is achieved by inducing a chaotic response within a boundary layer that contains it. Outside this region, a conventional feedback nonlinear control is applied. In this fashion, the authority of the control is enlarged to the whole. state space and the need for high control efforts is mitigated. In addition, the differential parametrization of the problem is used to track nonlinear functions of one state variable (single tracking) as well as several state variables (cooperative tracking). Control tasks that lead to integrable and non-integrable differential equations for the nominal flat output in steady-state are considered. In particular, a novel numerical strategy to deal with the non-integrable case is proposed. Numerical results validate very well the control design.
Chang, Yeong-Chan
2005-12-01
This paper addresses the problem of designing adaptive fuzzy-based (or neural network-based) robust controls for a large class of uncertain nonlinear time-varying systems. This class of systems can be perturbed by plant uncertainties, unmodeled perturbations, and external disturbances. Nonlinear H(infinity) control technique incorporated with adaptive control technique and VSC technique is employed to construct the intelligent robust stabilization controller such that an H(infinity) control is achieved. The problem of the robust tracking control design for uncertain robotic systems is employed to demonstrate the effectiveness of the developed robust stabilization control scheme. Therefore, an intelligent robust tracking controller for uncertain robotic systems in the presence of high-degree uncertainties can easily be implemented. Its solution requires only to solve a linear algebraic matrix inequality and a satisfactorily transient and asymptotical tracking performance is guaranteed. A simulation example is made to confirm the performance of the developed control algorithms.
Adaptive tracking control of a wheeled mobile robot via an uncalibrated camera system.
Dixon, W E; Dawson, D M; Zergeroglu, E; Behal, A
2001-01-01
This paper considers the problem of position/orientation tracking control of wheeled mobile robots via visual servoing in the presence of parametric uncertainty associated with the mechanical dynamics and the camera system. Specifically, we design an adaptive controller that compensates for uncertain camera and mechanical parameters and ensures global asymptotic position/orientation tracking. Simulation and experimental results are included to illustrate the performance of the control law.
Korayem, M H; Nekoo, S R
2015-07-01
This work studies an optimal control problem using the state-dependent Riccati equation (SDRE) in differential form to track for time-varying systems with state and control nonlinearities. The trajectory tracking structure provides two nonlinear differential equations: the state-dependent differential Riccati equation (SDDRE) and the feed-forward differential equation. The independence of the governing equations and stability of the controller are proven along the trajectory using the Lyapunov approach. Backward integration (BI) is capable of solving the equations as a numerical solution; however, the forward solution methods require the closed-form solution to fulfill the task. A closed-form solution is introduced for SDDRE, but the feed-forward differential equation has not yet been obtained. Different ways of solving the problem are expressed and analyzed. These include BI, closed-form solution with corrective assumption, approximate solution, and forward integration. Application of the tracking problem is investigated to control robotic manipulators possessing rigid or flexible joints. The intention is to release a general program for automatic implementation of an SDDRE controller for any manipulator that obeys the Denavit-Hartenberg (D-H) principle when only D-H parameters are received as input data. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
Internal Model-Based Robust Tracking Control Design for the MEMS Electromagnetic Micromirror.
Tan, Jiazheng; Sun, Weijie; Yeow, John T W
2017-05-26
The micromirror based on micro-electro-mechanical systems (MEMS) technology is widely employed in different areas, such as scanning, imaging and optical switching. This paper studies the MEMS electromagnetic micromirror for scanning or imaging application. In these application scenarios, the micromirror is required to track the command sinusoidal signal, which can be converted to an output regulation problem theoretically. In this paper, based on the internal model principle, the output regulation problem is solved by designing a robust controller that is able to force the micromirror to track the command signal accurately. The proposed controller relies little on the accuracy of the model. Further, the proposed controller is implemented, and its effectiveness is examined by experiments. The experimental results demonstrate that the performance of the proposed controller is satisfying.
Internal Model-Based Robust Tracking Control Design for the MEMS Electromagnetic Micromirror
Tan, Jiazheng; Sun, Weijie; Yeow, John T. W.
2017-01-01
The micromirror based on micro-electro-mechanical systems (MEMS) technology is widely employed in different areas, such as scanning, imaging and optical switching. This paper studies the MEMS electromagnetic micromirror for scanning or imaging application. In these application scenarios, the micromirror is required to track the command sinusoidal signal, which can be converted to an output regulation problem theoretically. In this paper, based on the internal model principle, the output regulation problem is solved by designing a robust controller that is able to force the micromirror to track the command signal accurately. The proposed controller relies little on the accuracy of the model. Further, the proposed controller is implemented, and its effectiveness is examined by experiments. The experimental results demonstrate that the performance of the proposed controller is satisfying. PMID:28587105
NASA Astrophysics Data System (ADS)
Zhang, Yunong; Zhang, Yinyan; Chen, Dechao; Xiao, Zhengli; Yan, Xiaogang
2017-01-01
In this paper, the division-by-zero (DBO) problem in the field of nonlinear control, which is traditionally termed the control singularity problem (or specifically, controller singularity problem), is investigated by the Zhang dynamics (ZD) method and the Zhang-gradient (ZG) method. According to the impact of the DBO problem on the state variables of the controlled nonlinear system, the concepts of the pseudo-DBO problem and the true-DBO problem are proposed in this paper, which provide a new perspective for the researchers on the DBO problems as well as nonlinear control systems. Besides, the two classes of DBO problems are solved under the framework of the ZG method. Specific examples are shown and investigated in this paper to illustrate the two proposed concepts and the efficacy of the ZG method in conquering pseudo-DBO and true-DBO problems. The application of the ZG method to the tracking control of a two-wheeled mobile robot further substantiates the effectiveness of the ZG method. In addition, the ZG method is successfully applied to the tracking control of a pure-feedback nonlinear system.
Radac, Mircea-Bogdan; Precup, Radu-Emil; Petriu, Emil M
2015-11-01
This paper proposes a novel model-free trajectory tracking of multiple-input multiple-output (MIMO) systems by the combination of iterative learning control (ILC) and primitives. The optimal trajectory tracking solution is obtained in terms of previously learned solutions to simple tasks called primitives. The library of primitives that are stored in memory consists of pairs of reference input/controlled output signals. The reference input primitives are optimized in a model-free ILC framework without using knowledge of the controlled process. The guaranteed convergence of the learning scheme is built upon a model-free virtual reference feedback tuning design of the feedback decoupling controller. Each new complex trajectory to be tracked is decomposed into the output primitives regarded as basis functions. The optimal reference input for the control system to track the desired trajectory is next recomposed from the reference input primitives. This is advantageous because the optimal reference input is computed straightforward without the need to learn from repeated executions of the tracking task. In addition, the optimization problem specific to trajectory tracking of square MIMO systems is decomposed in a set of optimization problems assigned to each separate single-input single-output control channel that ensures a convenient model-free decoupling. The new model-free primitive-based ILC approach is capable of planning, reasoning, and learning. A case study dealing with the model-free control tuning for a nonlinear aerodynamic system is included to validate the new approach. The experimental results are given.
An Application of Fuzzy Logic Control to a Classical Military Tracking Problem
1994-05-19
34, Fuzzy Sets and Systems, vol.4., 1980, pp.13-30. Berenji , Hamid R . and Pratap Khedkar. "Learning and Tuning Fuzzy Logic Controllers Through...A TRIDENT SCHOLAR PROJECT REPORT" NO. 222 "An Application of Fuzzy Logic Control to a Classical Military Tracking Problem" DTIC •S r F UNITED STATES...Zq qAvail andlor ____________________I__________ Dist SpecialDate USNA- 1531-2 REPORT DOCUMENTATION PAGE r •,,,op APmw OMB no. 0704.0188 ¢iQiiati~m.f
Model-Free Optimal Tracking Control via Critic-Only Q-Learning.
Luo, Biao; Liu, Derong; Huang, Tingwen; Wang, Ding
2016-10-01
Model-free control is an important and promising topic in control fields, which has attracted extensive attention in the past few years. In this paper, we aim to solve the model-free optimal tracking control problem of nonaffine nonlinear discrete-time systems. A critic-only Q-learning (CoQL) method is developed, which learns the optimal tracking control from real system data, and thus avoids solving the tracking Hamilton-Jacobi-Bellman equation. First, the Q-learning algorithm is proposed based on the augmented system, and its convergence is established. Using only one neural network for approximating the Q-function, the CoQL method is developed to implement the Q-learning algorithm. Furthermore, the convergence of the CoQL method is proved with the consideration of neural network approximation error. With the convergent Q-function obtained from the CoQL method, the adaptive optimal tracking control is designed based on the gradient descent scheme. Finally, the effectiveness of the developed CoQL method is demonstrated through simulation studies. The developed CoQL method learns with off-policy data and implements with a critic-only structure, thus it is easy to realize and overcome the inadequate exploration problem.
Wang, Ding; Liu, Derong; Zhang, Yun; Li, Hongyi
2018-01-01
In this paper, we aim to tackle the neural robust tracking control problem for a class of nonlinear systems using the adaptive critic technique. The main contribution is that a neural-network-based robust tracking control scheme is established for nonlinear systems involving matched uncertainties. The augmented system considering the tracking error and the reference trajectory is formulated and then addressed under adaptive critic optimal control formulation, where the initial stabilizing controller is not needed. The approximate control law is derived via solving the Hamilton-Jacobi-Bellman equation related to the nominal augmented system, followed by closed-loop stability analysis. The robust tracking control performance is guaranteed theoretically via Lyapunov approach and also verified through simulation illustration. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Banks, H. T.; Silcox, R. J.; Keeling, S. L.; Wang, C.
1989-01-01
A unified treatment of the linear quadratic tracking (LQT) problem, in which a control system's dynamics are modeled by a linear evolution equation with a nonhomogeneous component that is linearly dependent on the control function u, is presented; the treatment proceeds from the theoretical formulation to a numerical approximation framework. Attention is given to two categories of LQT problems in an infinite time interval: the finite energy and the finite average energy. The behavior of the optimal solution for finite time-interval problems as the length of the interval tends to infinity is discussed. Also presented are the formulations and properties of LQT problems in a finite time interval.
NASA Astrophysics Data System (ADS)
Yu, Jiang-Bo; Zhao, Yan; Wu, Yu-Qiang
2014-04-01
This article considers the global robust output regulation problem via output feedback for a class of cascaded nonlinear systems with input-to-state stable inverse dynamics. The system uncertainties depend not only on the measured output but also all the unmeasurable states. By introducing an internal model, the output regulation problem is converted into a stabilisation problem for an appropriately augmented system. The designed dynamic controller could achieve the global asymptotic tracking control for a class of time-varying reference signals for the system output while keeping all other closed-loop signals bounded. It is of interest to note that the developed control approach can be applied to the speed tracking control of the fan speed control system. The simulation results demonstrate its effectiveness.
Long, Lijun; Zhao, Jun
2015-07-01
This paper investigates the problem of adaptive neural tracking control via output-feedback for a class of switched uncertain nonlinear systems without the measurements of the system states. The unknown control signals are approximated directly by neural networks. A novel adaptive neural control technique for the problem studied is set up by exploiting the average dwell time method and backstepping. A switched filter and different update laws are designed to reduce the conservativeness caused by adoption of a common observer and a common update law for all subsystems. The proposed controllers of subsystems guarantee that all closed-loop signals remain bounded under a class of switching signals with average dwell time, while the output tracking error converges to a small neighborhood of the origin. As an application of the proposed design method, adaptive output feedback neural tracking controllers for a mass-spring-damper system are constructed.
Feedback attitude sliding mode regulation control of spacecraft using arm motion
NASA Astrophysics Data System (ADS)
Shi, Ye; Liang, Bin; Xu, Dong; Wang, Xueqian; Xu, Wenfu
2013-09-01
The problem of spacecraft attitude regulation based on the reaction of arm motion has attracted extensive attentions from both engineering and academic fields. Most of the solutions of the manipulator’s motion tracking problem just achieve asymptotical stabilization performance, so that these controllers cannot realize precise attitude regulation because of the existence of non-holonomic constraints. Thus, sliding mode control algorithms are adopted to stabilize the tracking error with zero transient process. Due to the switching effects of the variable structure controller, once the tracking error reaches the designed hyper-plane, it will be restricted to this plane permanently even with the existence of external disturbances. Thus, precise attitude regulation can be achieved. Furthermore, taking the non-zero initial tracking errors and chattering phenomenon into consideration, saturation functions are used to replace sign functions to smooth the control torques. The relations between the upper bounds of tracking errors and the controller parameters are derived to reveal physical characteristic of the controller. Mathematical models of free-floating space manipulator are established and simulations are conducted in the end. The results show that the spacecraft’s attitude can be regulated to the position as desired by using the proposed algorithm, the steady state error is 0.000 2 rad. In addition, the joint tracking trajectory is smooth, the joint tracking errors converges to zero quickly with a satisfactory continuous joint control input. The proposed research provides a feasible solution for spacecraft attitude regulation by using arm motion, and improves the precision of the spacecraft attitude regulation.
Continuous fractional-order Zero Phase Error Tracking Control.
Liu, Lu; Tian, Siyuan; Xue, Dingyu; Zhang, Tao; Chen, YangQuan
2018-04-01
A continuous time fractional-order feedforward control algorithm for tracking desired time varying input signals is proposed in this paper. The presented controller cancels the phase shift caused by the zeros and poles of controlled closed-loop fractional-order system, so it is called Fractional-Order Zero Phase Tracking Controller (FZPETC). The controlled systems are divided into two categories i.e. with and without non-cancellable (non-minimum-phase) zeros which stand in unstable region or on stability boundary. Each kinds of systems has a targeted FZPETC design control strategy. The improved tracking performance has been evaluated successfully by applying the proposed controller to three different kinds of fractional-order controlled systems. Besides, a modified quasi-perfect tracking scheme is presented for those systems which may not have available future tracking trajectory information or have problem in high frequency disturbance rejection if the perfect tracking algorithm is applied. A simulation comparison and a hardware-in-the-loop thermal peltier platform are shown to validate the practicality of the proposed quasi-perfect control algorithm. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.
Robust leader-follower formation tracking control of multiple underactuated surface vessels
NASA Astrophysics Data System (ADS)
Peng, Zhou-hua; Wang, Dan; Lan, Wei-yao; Sun, Gang
2012-09-01
This paper is concerned with the formation control problem of multiple underactuated surface vessels moving in a leader-follower formation. The formation is achieved by the follower to track a virtual target defined relative to the leader. A robust adaptive target tracking law is proposed by using neural network and backstepping techniques. The advantage of the proposed control scheme is that the uncertain nonlinear dynamics caused by Coriolis/centripetal forces, nonlinear damping, unmodeled hydrodynamics and disturbances from the environment can be compensated by on line learning. Based on Lyapunov analysis, the proposed controller guarantees the tracking errors converge to a small neighborhood of the origin. Simulation results demonstrate the effectiveness of the control strategy.
Campos, Andre N.; Souza, Efren L.; Nakamura, Fabiola G.; Nakamura, Eduardo F.; Rodrigues, Joel J. P. C.
2012-01-01
Target tracking is an important application of wireless sensor networks. The networks' ability to locate and track an object is directed linked to the nodes' ability to locate themselves. Consequently, localization systems are essential for target tracking applications. In addition, sensor networks are often deployed in remote or hostile environments. Therefore, density control algorithms are used to increase network lifetime while maintaining its sensing capabilities. In this work, we analyze the impact of localization algorithms (RPE and DPE) and density control algorithms (GAF, A3 and OGDC) on target tracking applications. We adapt the density control algorithms to address the k-coverage problem. In addition, we analyze the impact of network density, residual integration with density control, and k-coverage on both target tracking accuracy and network lifetime. Our results show that DPE is a better choice for target tracking applications than RPE. Moreover, among the evaluated density control algorithms, OGDC is the best option among the three. Although the choice of the density control algorithm has little impact on the tracking precision, OGDC outperforms GAF and A3 in terms of tracking time. PMID:22969329
Decentralised consensus-based formation tracking of multiple differential drive robots
NASA Astrophysics Data System (ADS)
Chu, Xing; Peng, Zhaoxia; Wen, Guoguang; Rahmani, Ahmed
2017-11-01
This article investigates the control problem for formation tracking of multiple nonholonomic robots under distributed manner which means each robot only needs local information exchange. A class of general state and input transform is introduced to convert the formation-tracking issue of multi-robot systems into the consensus-like problem with time-varying reference. The distributed observer-based protocol with nonlinear dynamics is developed for each robot to achieve the consensus tracking of the new system, which namely means a group of nonholonomic mobile robots can form the desired formation configuration with its centroid moving along the predefined reference trajectory. The finite-time stability of observer and control law is analysed rigorously by using the Lyapunov direct method, algebraic graph theory and matrix analysis. Numerical examples are finally provided to illustrate the effectiveness of the theory results proposed in this paper.
Compensating Unknown Time-Varying Delay in Opto-Electronic Platform Tracking Servo System.
Xie, Ruihong; Zhang, Tao; Li, Jiaquan; Dai, Ming
2017-05-09
This paper investigates the problem of compensating miss-distance delay in opto-electronic platform tracking servo system. According to the characteristic of LOS (light-of-sight) motion, we setup the Markovian process model and compensate this unknown time-varying delay by feed-forward forecasting controller based on robust H∞ control. Finally, simulation based on double closed-loop PI (Proportion Integration) control system indicates that the proposed method is effective for compensating unknown time-varying delay. Tracking experiments on the opto-electronic platform indicate that RMS (root-mean-square) error is 1.253 mrad when tracking 10° 0.2 Hz signal.
NASA Astrophysics Data System (ADS)
Li, Chengcheng; Li, Yuefeng; Wang, Guanglin
2017-07-01
The work presented in this paper seeks to address the tracking problem for uncertain continuous nonlinear systems with external disturbances. The objective is to obtain a model that uses a reference-based output feedback tracking control law. The control scheme is based on neural networks and a linear difference inclusion (LDI) model, and a PDC structure and H∞ performance criterion are used to attenuate external disturbances. The stability of the whole closed-loop model is investigated using the well-known quadratic Lyapunov function. The key principles of the proposed approach are as follows: neural networks are first used to approximate nonlinearities, to enable a nonlinear system to then be represented as a linearised LDI model. An LMI (linear matrix inequality) formula is obtained for uncertain and disturbed linear systems. This formula enables a solution to be obtained through an interior point optimisation method for some nonlinear output tracking control problems. Finally, simulations and comparisons are provided on two practical examples to illustrate the validity and effectiveness of the proposed method.
Feedforward Tracking Control of Flat Recurrent Fuzzy Systems
NASA Astrophysics Data System (ADS)
Gering, Stefan; Adamy, Jürgen
2014-12-01
Flatness based feedforward control has proven to be a feasible solution for the problem of tracking control, which may be applied to a broad class of nonlinear systems. If a flat output of the system is known, the control is often based on a feedforward controller generating a nominal input in combination with a linear controller stabilizing the linearized error dynamics around the trajectory. We show in this paper that the very same idea may be incorporated for tracking control of MIMO recurrent fuzzy systems. Their dynamics is given by means of linguistic differential equations but may be converted into a hybrid system representation, which then serves as the basis for controller synthesis.
Indirect iterative learning control for a discrete visual servo without a camera-robot model.
Jiang, Ping; Bamforth, Leon C A; Feng, Zuren; Baruch, John E F; Chen, YangQuan
2007-08-01
This paper presents a discrete learning controller for vision-guided robot trajectory imitation with no prior knowledge of the camera-robot model. A teacher demonstrates a desired movement in front of a camera, and then, the robot is tasked to replay it by repetitive tracking. The imitation procedure is considered as a discrete tracking control problem in the image plane, with an unknown and time-varying image Jacobian matrix. Instead of updating the control signal directly, as is usually done in iterative learning control (ILC), a series of neural networks are used to approximate the unknown Jacobian matrix around every sample point in the demonstrated trajectory, and the time-varying weights of local neural networks are identified through repetitive tracking, i.e., indirect ILC. This makes repetitive segmented training possible, and a segmented training strategy is presented to retain the training trajectories solely within the effective region for neural network approximation. However, a singularity problem may occur if an unmodified neural-network-based Jacobian estimation is used to calculate the robot end-effector velocity. A new weight modification algorithm is proposed which ensures invertibility of the estimation, thus circumventing the problem. Stability is further discussed, and the relationship between the approximation capability of the neural network and the tracking accuracy is obtained. Simulations and experiments are carried out to illustrate the validity of the proposed controller for trajectory imitation of robot manipulators with unknown time-varying Jacobian matrices.
A gunner model for an AAA tracking task with interrupted observations
NASA Technical Reports Server (NTRS)
Yu, C. F.; Wei, K. C.; Vikmanis, M.
1982-01-01
The problem of modeling a trained human operator's tracking performance in an anti-aircraft system under various display blanking conditions is discussed. The input to the gunner is the observable tracking error subjected to repeated interruptions (blanking). A simple and effective gunner model was developed. The effect of blanking on the gunner's tracking performance is approached via modeling the observer and controller gains.
NASA Astrophysics Data System (ADS)
Ren, Wei
Cooperative control problems for multiple vehicle systems can be categorized as either formation control problems with applications to mobile robots, unmanned air vehicles, autonomous underwater vehicles, satellites, aircraft, spacecraft, and automated highway systems, or non-formation control problems such as task assignment, cooperative transport, cooperative role assignment, air traffic control, cooperative timing, and cooperative search. The cooperative control of multiple vehicle systems poses significant theoretical and practical challenges. For cooperative control strategies to be successful, numerous issues must be addressed. We consider three important and correlated issues: consensus seeking, formation keeping, and trajectory tracking. For consensus seeking, we investigate algorithms and protocols so that a team of vehicles can reach consensus on the values of the coordination data in the presence of imperfect sensors, communication dropout, sparse communication topologies, and noisy and unreliable communication links. The main contribution of this dissertation in this area is that we show necessary and/or sufficient conditions for consensus seeking with limited, unidirectional, and unreliable information exchange under fixed and switching interaction topologies (through either communication or sensing). For formation keeping, we apply a so-called "virtual structure" approach to spacecraft formation flying and multi-vehicle formation maneuvers. As a result, single vehicle path planning and trajectory generation techniques can be employed for the virtual structure while trajectory tracking strategies can be employed for each vehicle. The main contribution of this dissertation in this area is that we propose a decentralized architecture for multiple spacecraft formation flying in deep space with formation feedback introduced. This architecture ensures the necessary precision in the presence of actuator saturation, internal and external disturbances, and stringent inter-vehicle communication limitations. A constructive approach based on the satisficing control paradigm is also applied to multi-robot coordination in hardware. For trajectory tracking, we investigate nonlinear tracking controllers for fixed wing unmanned air vehicles and nonholonomic mobile robots with velocity and heading rate constraints. The main contribution of this dissertation in this area is that our proposed tracking controllers are shown to be robust to input uncertainties and measurement noise, and are computationally simple and can be implemented with low-cost, low-power microcontrollers. In addition, our approach allows piecewise continuous reference velocity and heading rate and can be extended to derive a variety of other trajectory tracking strategies.
Aerospace plane guidance using geometric control theory
NASA Technical Reports Server (NTRS)
Van Buren, Mark A.; Mease, Kenneth D.
1990-01-01
A reduced-order method employing decomposition, based on time-scale separation, of the 4-D state space in a 2-D slow manifold and a family of 2-D fast manifolds is shown to provide an excellent approximation to the full-order minimum-fuel ascent trajectory. Near-optimal guidance is obtained by tracking the reduced-order trajectory. The tracking problem is solved as regulation problems on the family of fast manifolds, using the exact linearization methodology from nonlinear geometric control theory. The validity of the overall guidance approach is indicated by simulation.
High precision tracking control of a servo gantry with dynamic friction compensation.
Zhang, Yangming; Yan, Peng; Zhang, Zhen
2016-05-01
This paper is concerned with the tracking control problem of a voice coil motor (VCM) actuated servo gantry system. By utilizing an adaptive control technique combined with a sliding mode approach, an adaptive sliding mode control (ASMC) law with friction compensation scheme is proposed in presence of both frictions and external disturbances. Based on the LuGre dynamic friction model, a dual-observer structure is used to estimate the unmeasurable friction state, and an adaptive control law is synthesized to effectively handle the unknown friction model parameters as well as the bound of the disturbances. Moreover, the proposed control law is also implemented on a VCM servo gantry system for motion tracking. Simulations and experimental results demonstrate good tracking performance, which outperform traditional control approaches. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Dywer, T. A. W., III; Lee, G. K. F.
1984-01-01
In connection with the current interest in agile spacecraft maneuvers, it has become necessary to consider the nonlinear coupling effects of multiaxial rotation in the treatment of command generation and tracking problems. Multiaxial maneuvers will be required in military missions involving a fast acquisition of moving targets in space. In addition, such maneuvers are also needed for the efficient operation of robot manipulators. Attention is given to details regarding the direct nonlinear command generation and tracking, an approach which has been successfully applied to the design of control systems for V/STOL aircraft, linearizing transformations for spacecraft controlled with external thrusters, the case of flexible spacecraft dynamics, examples from robot dynamics, and problems of implementation and testing.
Adaptive relative pose control of spacecraft with model couplings and uncertainties
NASA Astrophysics Data System (ADS)
Sun, Liang; Zheng, Zewei
2018-02-01
The spacecraft pose tracking control problem for an uncertain pursuer approaching to a space target is researched in this paper. After modeling the nonlinearly coupled dynamics for relative translational and rotational motions between two spacecraft, position tracking and attitude synchronization controllers are developed independently by using a robust adaptive control approach. The unknown kinematic couplings, parametric uncertainties, and bounded external disturbances are handled with adaptive updating laws. It is proved via Lyapunov method that the pose tracking errors converge to zero asymptotically. Spacecraft close-range rendezvous and proximity operations are introduced as an example to validate the effectiveness of the proposed control approach.
Robust H(infinity) tracking control of boiler-turbine systems.
Wu, J; Nguang, S K; Shen, J; Liu, G; Li, Y G
2010-07-01
In this paper, the problem of designing a fuzzy H(infinity) state feedback tracking control of a boiler-turbine is solved. First, the Takagi and Sugeno fuzzy model is used to model a boiler-turbine system. Next, based on the Takagi and Sugeno fuzzy model, sufficient conditions for the existence of a fuzzy H(infinity) nonlinear state feedback tracking control are derived in terms of linear matrix inequalities. The advantage of the proposed tracking control design is that it does not involve feedback linearization technique and complicated adaptive scheme. An industrial boiler-turbine system is used to illustrate the effectiveness of the proposed design as compared with a linearized approach. 2010 ISA. Published by Elsevier Ltd. All rights reserved.
Wang, Minlin; Ren, Xuemei; Chen, Qiang
2018-01-01
The multi-motor servomechanism (MMS) is a multi-variable, high coupling and nonlinear system, which makes the controller design challenging. In this paper, an adaptive robust H-infinity control scheme is proposed to achieve both the load tracking and multi-motor synchronization of MMS. This control scheme consists of two parts: a robust tracking controller and a distributed synchronization controller. The robust tracking controller is constructed by incorporating a neural network (NN) K-filter observer into the dynamic surface control, while the distributed synchronization controller is designed by combining the mean deviation coupling control strategy with the distributed technique. The proposed control scheme has several merits: 1) by using the mean deviation coupling synchronization control strategy, the tracking controller and the synchronization controller can be designed individually without any coupling problem; 2) the immeasurable states and unknown nonlinearities are handled by a NN K-filter observer, where the number of NN weights is largely reduced by using the minimal learning parameter technique; 3) the H-infinity performances of tracking error and synchronization error are guaranteed by introducing a robust term into the tracking controller and the synchronization controller, respectively. The stabilities of the tracking and synchronization control systems are analyzed by the Lyapunov theory. Simulation and experimental results based on a four-motor servomechanism are conducted to demonstrate the effectiveness of the proposed method. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
ADRC for spacecraft attitude and position synchronization in libration point orbits
NASA Astrophysics Data System (ADS)
Gao, Chen; Yuan, Jianping; Zhao, Yakun
2018-04-01
This paper addresses the problem of spacecraft attitude and position synchronization in libration point orbits between a leader and a follower. Using dual quaternion, the dimensionless relative coupled dynamical model is derived considering computation efficiency and accuracy. Then a model-independent dimensionless cascade pose-feedback active disturbance rejection controller is designed to spacecraft attitude and position tracking control problems considering parameter uncertainties and external disturbances. Numerical simulations for the final approach phase in spacecraft rendezvous and docking and formation flying are done, and the results show high-precision tracking errors and satisfactory convergent rates under bounded control torque and force which validate the proposed approach.
Disturbance observer based model predictive control for accurate atmospheric entry of spacecraft
NASA Astrophysics Data System (ADS)
Wu, Chao; Yang, Jun; Li, Shihua; Li, Qi; Guo, Lei
2018-05-01
Facing the complex aerodynamic environment of Mars atmosphere, a composite atmospheric entry trajectory tracking strategy is investigated in this paper. External disturbances, initial states uncertainties and aerodynamic parameters uncertainties are the main problems. The composite strategy is designed to solve these problems and improve the accuracy of Mars atmospheric entry. This strategy includes a model predictive control for optimized trajectory tracking performance, as well as a disturbance observer based feedforward compensation for external disturbances and uncertainties attenuation. 500-run Monte Carlo simulations show that the proposed composite control scheme achieves more precise Mars atmospheric entry (3.8 km parachute deployment point distribution error) than the baseline control scheme (8.4 km) and integral control scheme (5.8 km).
Terminal Sliding Mode Tracking Controller Design for Automatic Guided Vehicle
NASA Astrophysics Data System (ADS)
Chen, Hongbin
2018-03-01
Based on sliding mode variable structure control theory, the path tracking problem of automatic guided vehicle is studied, proposed a controller design method based on the terminal sliding mode. First of all, through analyzing the characteristics of the automatic guided vehicle movement, the kinematics model is presented. Then to improve the traditional expression of terminal sliding mode, design a nonlinear sliding mode which the convergence speed is faster than the former, verified by theoretical analysis, the design of sliding mode is steady and fast convergence in the limited time. Finally combining Lyapunov method to design the tracking control law of automatic guided vehicle, the controller can make the automatic guided vehicle track the desired trajectory in the global sense as well as in finite time. The simulation results verify the correctness and effectiveness of the control law.
NASA Astrophysics Data System (ADS)
Davoodi, M.; Meskin, N.; Khorasani, K.
2018-03-01
The problem of simultaneous fault detection, isolation and tracking (SFDIT) control design for linear systems subject to both bounded energy and bounded peak disturbances is considered in this work. A dynamic observer is proposed and implemented by using the H∞/H-/L1 formulation of the SFDIT problem. A single dynamic observer module is designed that generates the residuals as well as the control signals. The objective of the SFDIT module is to ensure that simultaneously the effects of disturbances and control signals on the residual signals are minimised (in order to accomplish the fault detection goal) subject to the constraint that the transfer matrix from the faults to the residuals is equal to a pre-assigned diagonal transfer matrix (in order to accomplish the fault isolation goal), while the effects of disturbances, reference inputs and faults on the specified control outputs are minimised (in order to accomplish the fault-tolerant and tracking control goals). A set of linear matrix inequality (LMI) feasibility conditions are derived to ensure solvability of the problem. In order to illustrate and demonstrate the effectiveness of our proposed design methodology, the developed and proposed schemes are applied to an autonomous unmanned underwater vehicle (AUV).
Quantization-Based Adaptive Actor-Critic Tracking Control With Tracking Error Constraints.
Fan, Quan-Yong; Yang, Guang-Hong; Ye, Dan
2018-04-01
In this paper, the problem of adaptive actor-critic (AC) tracking control is investigated for a class of continuous-time nonlinear systems with unknown nonlinearities and quantized inputs. Different from the existing results based on reinforcement learning, the tracking error constraints are considered and new critic functions are constructed to improve the performance further. To ensure that the tracking errors keep within the predefined time-varying boundaries, a tracking error transformation technique is used to constitute an augmented error system. Specific critic functions, rather than the long-term cost function, are introduced to supervise the tracking performance and tune the weights of the AC neural networks (NNs). A novel adaptive controller with a special structure is designed to reduce the effect of the NN reconstruction errors, input quantization, and disturbances. Based on the Lyapunov stability theory, the boundedness of the closed-loop signals and the desired tracking performance can be guaranteed. Finally, simulations on two connected inverted pendulums are given to illustrate the effectiveness of the proposed method.
Energy management and attitude control for spacecraft
NASA Astrophysics Data System (ADS)
Costic, Bret Thomas
2001-07-01
This PhD dissertation describes the design and implementation of various control strategies centered around spacecraft applications: (i) an attitude control system for spacecraft, (ii) flywheels used for combined attitude and energy tracking, and (iii) an adaptive autobalancing control algorithm. The theory found in each of these sections is demonstrated through simulation or experimental results. An introduction to each of these three primary chapters can be found in chapter one. The main problem addressed in the second chapter is the quaternion-based, attitude tracking control of rigid spacecraft without angular velocity measurements and in the presence of an unknown inertia matrix. As a stepping-stone, an adaptive, full-state feedback controller that compensates for parametric uncertainty while ensuring asymptotic attitude tracking errors is designed. The adaptive, full-state feedback controller is then redesigned such that the need for angular velocity measurements is eliminated. The proposed adaptive, output feedback controller ensures asymptotic attitude tracking. This work uses a four-parameter representation of the spacecraft attitude that does not exhibit singular orientations as in the case of the previous three-parameter representation-based results. To the best of my knowledge, this represents the first solution to the adaptive, output feedback, attitude tracking control problem for the quaternion representation. Simulation results are included to illustrate the performance of the proposed output feedback control strategy. The third chapter is devoted to the use of multiple flywheels that integrate the energy storage and attitude control functions in space vehicles. This concept, which is referred to as an Integrated Energy Management and Attitude Control (IEMAC) system, reduces the space vehicle bus mass, volume, cost, and maintenance requirements while maintaining or improving the space vehicle performance. To this end, two nonlinear IEMAC strategies (model-based and adaptive) that simultaneously track a desired attitude trajectory and desired energy/power profile are presented. Both strategies ensure asymptotic tracking while the adaptive controller compensates for uncertain spacecraft inertia. In the final chapter, a control strategy is designed for a rotating, unbalanced disk. The control strategy, which is composed of a control torque and two control forces, regulates the disk displacement and ensures angular velocity tracking. The controller uses a desired compensation adaptation law and a gain adjusted forgetting factor to achieve exponential stability despite the lack of knowledge of the imbalance-related parameters, provided a mild persistency of excitation condition is satisfied.
Learning-Based Adaptive Optimal Tracking Control of Strict-Feedback Nonlinear Systems.
Gao, Weinan; Jiang, Zhong-Ping; Weinan Gao; Zhong-Ping Jiang; Gao, Weinan; Jiang, Zhong-Ping
2018-06-01
This paper proposes a novel data-driven control approach to address the problem of adaptive optimal tracking for a class of nonlinear systems taking the strict-feedback form. Adaptive dynamic programming (ADP) and nonlinear output regulation theories are integrated for the first time to compute an adaptive near-optimal tracker without any a priori knowledge of the system dynamics. Fundamentally different from adaptive optimal stabilization problems, the solution to a Hamilton-Jacobi-Bellman (HJB) equation, not necessarily a positive definite function, cannot be approximated through the existing iterative methods. This paper proposes a novel policy iteration technique for solving positive semidefinite HJB equations with rigorous convergence analysis. A two-phase data-driven learning method is developed and implemented online by ADP. The efficacy of the proposed adaptive optimal tracking control methodology is demonstrated via a Van der Pol oscillator with time-varying exogenous signals.
A Lyapunov-Based Approach for Time-Coordinated 3D Path-Following of Multiple Quadrotors
2012-12-01
presented in [10] as solutions for accommodating the nonlinear disturbances for outdoor altitude control . Finally, in [11] a trajectory- tracking ... control algorithm is formulated using the Special Orthogonal group SO(3) for attitude representation, leading to a simple and singularity-free solution for...the trajectory tracking problem. Cooperation between multiple unmanned vehicles has also received significant attention in the control community in
NASA Astrophysics Data System (ADS)
Shao, Xingling; Liu, Jun; Wang, Honglun
2018-05-01
In this paper, a robust back-stepping output feedback trajectory tracking controller is proposed for quadrotors subject to parametric uncertainties and external disturbances. Based on the hierarchical control principle, the quadrotor dynamics is decomposed into translational and rotational subsystems to facilitate the back-stepping control design. With given model information incorporated into observer design, a high-order extended state observer (ESO) that relies only on position measurements is developed to estimate the remaining unmeasurable states and the lumped disturbances in rotational subsystem simultaneously. To overcome the problem of "explosion of complexity" in the back-stepping design, the sigmoid tracking differentiator (STD) is introduced to compute the derivative of virtual control laws. The advantage is that the proposed controller via output-feedback scheme not only can ensure good tracking performance using very limited information of quadrotors, but also has the ability of handling the undesired uncertainties. The stability analysis is established using the Lyapunov theory. Simulation results demonstrate the effectiveness of the proposed control scheme in achieving a guaranteed tracking performance with respect to an 8-shaped reference trajectory.
Quadrotor trajectory tracking using PID cascade control
NASA Astrophysics Data System (ADS)
Idres, M.; Mustapha, O.; Okasha, M.
2017-12-01
Quadrotors have been applied to collect information for traffic, weather monitoring, surveillance and aerial photography. In order to accomplish their mission, quadrotors have to follow specific trajectories. This paper presents proportional-integral-derivative (PID) cascade control of a quadrotor for path tracking problem when velocity and acceleration are small. It is based on near hover controller for small attitude angles. The integral of time-weighted absolute error (ITAE) criterion is used to determine the PID gains as a function of quadrotor modeling parameters. The controller is evaluated in three-dimensional environment in Simulink. Overall, the tracking performance is found to be excellent for small velocity condition.
NASA Astrophysics Data System (ADS)
Chak, Yew-Chung; Varatharajoo, Renuganth
2016-07-01
Many spacecraft attitude control systems today use reaction wheels to deliver precise torques to achieve three-axis attitude stabilization. However, irrecoverable mechanical failure of reaction wheels could potentially lead to mission interruption or total loss. The electrically-powered Solar Array Drive Assemblies (SADA) are usually installed in the pitch axis which rotate the solar arrays to track the Sun, can produce torques to compensate for the pitch-axis wheel failure. In addition, the attitude control of a flexible spacecraft poses a difficult problem. These difficulties include the strong nonlinear coupled dynamics between the rigid hub and flexible solar arrays, and the imprecisely known system parameters, such as inertia matrix, damping ratios, and flexible mode frequencies. In order to overcome these drawbacks, the adaptive Jacobian tracking fuzzy control is proposed for the combined attitude and sun-tracking control problem of a flexible spacecraft during attitude maneuvers in this work. For the adaptation of kinematic and dynamic uncertainties, the proposed scheme uses an adaptive sliding vector based on estimated attitude velocity via approximate Jacobian matrix. The unknown nonlinearities are approximated by deriving the fuzzy models with a set of linguistic If-Then rules using the idea of sector nonlinearity and local approximation in fuzzy partition spaces. The uncertain parameters of the estimated nonlinearities and the Jacobian matrix are being adjusted online by an adaptive law to realize feedback control. The attitude of the spacecraft can be directly controlled with the Jacobian feedback control when the attitude pointing trajectory is designed with respect to the spacecraft coordinate frame itself. A significant feature of this work is that the proposed adaptive Jacobian tracking scheme will result in not only the convergence of angular position and angular velocity tracking errors, but also the convergence of estimated angular velocity to the actual angular velocity. Numerical results are presented to demonstrate the effectiveness of the proposed scheme in tracking the desired attitude, as well as suppressing the elastic deflection effects of solar arrays during maneuver.
Accommodating Sensor Bias in MRAC for State Tracking
NASA Technical Reports Server (NTRS)
Patre, Parag; Joshi, Suresh M.
2011-01-01
The problem of accommodating unknown sensor bias is considered in a direct model reference adaptive control (MRAC) setting for state tracking using state feedback. Sensor faults can occur during operation, and if the biased state measurements are directly used with a standard MRAC control law, neither closed-loop signal boundedness, nor asymptotic tracking can be guaranteed and the resulting tracking errors may be unbounded or unacceptably large. A modified MRAC law is proposed, which combines a bias estimator with control gain adaptation, and it is shown that signal boundedness can be accomplished, although the tracking error may not go to zero. Further, for the case wherein an asymptotically stable sensor bias estimator is available, an MRAC control law is proposed to accomplish asymptotic tracking and signal boundedness. Such a sensor bias estimator can be designed if additional sensor measurements are available, as illustrated for the case wherein bias is present in the rate gyro and airspeed measurements. Numerical example results are presented to illustrate each of the schemes.
Robust output tracking control of a laboratory helicopter for automatic landing
NASA Astrophysics Data System (ADS)
Liu, Hao; Lu, Geng; Zhong, Yisheng
2014-11-01
In this paper, robust output tracking control problem of a laboratory helicopter for automatic landing in high seas is investigated. The motion of the helicopter is required to synchronise with that of an oscillating platform, e.g. the deck of a vessel subject to wave-induced motions. A robust linear time-invariant output feedback controller consisting of a nominal controller and a robust compensator is designed. The robust compensator is introduced to restrain the influences of parametric uncertainties, nonlinearities and external disturbances. It is shown that robust stability and robust tracking property can be achieved simultaneously. Experimental results on the laboratory helicopter for automatic landing demonstrate the effectiveness of the designed control approach.
Alternative Attitude Commanding and Control for Precise Spacecraft Landing
NASA Technical Reports Server (NTRS)
Singh, Gurkirpal
2004-01-01
A report proposes an alternative method of control for precision landing on a remote planet. In the traditional method, the attitude of a spacecraft is required to track a commanded translational acceleration vector, which is generated at each time step by solving a two-point boundary value problem. No requirement of continuity is imposed on the acceleration. The translational acceleration does not necessarily vary smoothly. Tracking of a non-smooth acceleration causes the vehicle attitude to exhibit undesirable transients and poor pointing stability behavior. In the alternative method, the two-point boundary value problem is not solved at each time step. A smooth reference position profile is computed. The profile is recomputed only when the control errors get sufficiently large. The nominal attitude is still required to track the smooth reference acceleration command. A steering logic is proposed that controls the position and velocity errors about the reference profile by perturbing the attitude slightly about the nominal attitude. The overall pointing behavior is therefore smooth, greatly reducing the degree of pointing instability.
Free terminal time optimal control problem of an HIV model based on a conjugate gradient method.
Jang, Taesoo; Kwon, Hee-Dae; Lee, Jeehyun
2011-10-01
The minimum duration of treatment periods and the optimal multidrug therapy for human immunodeficiency virus (HIV) type 1 infection are considered. We formulate an optimal tracking problem, attempting to drive the states of the model to a "healthy" steady state in which the viral load is low and the immune response is strong. We study an optimal time frame as well as HIV therapeutic strategies by analyzing the free terminal time optimal tracking control problem. The minimum duration of treatment periods and the optimal multidrug therapy are found by solving the corresponding optimality systems with the additional transversality condition for the terminal time. We demonstrate by numerical simulations that the optimal dynamic multidrug therapy can lead to the long-term control of HIV by the strong immune response after discontinuation of therapy.
Wang, Huanqing; Chen, Bing; Liu, Xiaoping; Liu, Kefu; Lin, Chong
2013-12-01
This paper is concerned with the problem of adaptive fuzzy tracking control for a class of pure-feedback stochastic nonlinear systems with input saturation. To overcome the design difficulty from nondifferential saturation nonlinearity, a smooth nonlinear function of the control input signal is first introduced to approximate the saturation function; then, an adaptive fuzzy tracking controller based on the mean-value theorem is constructed by using backstepping technique. The proposed adaptive fuzzy controller guarantees that all signals in the closed-loop system are bounded in probability and the system output eventually converges to a small neighborhood of the desired reference signal in the sense of mean quartic value. Simulation results further illustrate the effectiveness of the proposed control scheme.
Proportional plus integral MIMO controller for regulation and tracking with anti-wind-up features
DOE Office of Scientific and Technical Information (OSTI.GOV)
Puleston, P.F.; Mantz, R.J.
1993-11-01
A proportional plus integral matrix control structure for MIMO systems is proposed. Based on a standard optimal control structure with integral action, it permits a greater degree of independence of the design and tuning of the regulating and tracking features, without considerably increasing the controller complexity. Fast recovery from load disturbances is achieved, while large overshoots associated with set-point changes and reset wind-up problems can be reduced. A simple effective procedure for practical tuning is introduced.
Chen, Weisheng
2009-07-01
This paper focuses on the problem of adaptive neural network tracking control for a class of discrete-time pure-feedback systems with unknown control direction under amplitude and rate actuator constraints. Two novel state-feedback and output-feedback dynamic control laws are established where the function tanh(.) is employed to solve the saturation constraint problem. Implicit function theorem and mean value theorem are exploited to deal with non-affine variables that are used as actual control. Radial basis function neural networks are used to approximate the desired input function. Discrete Nussbaum gain is used to estimate the unknown sign of control gain. The uniform boundedness of all closed-loop signals is guaranteed. The tracking error is proved to converge to a small residual set around the origin. A simulation example is provided to illustrate the effectiveness of control schemes proposed in this paper.
Modeling and controlling a robotic convoy using guidance laws strategies.
Belkhouche, Fethi; Belkhouche, Boumediene
2005-08-01
This paper deals with the problem of modeling and controlling a robotic convoy. Guidance laws techniques are used to provide a mathematical formulation of the problem. The guidance laws used for this purpose are the velocity pursuit, the deviated pursuit, and the proportional navigation. The velocity pursuit equations model the robot's path under various sensors based control laws. A systematic study of the tracking problem based on this technique is undertaken. These guidance laws are applied to derive decentralized control laws for the angular and linear velocities. For the angular velocity, the control law is directly derived from the guidance laws after considering the relative kinematics equations between successive robots. The second control law maintains the distance between successive robots constant by controlling the linear velocity. This control law is derived by considering the kinematics equations between successive robots under the considered guidance law. Properties of the method are discussed and proven. Simulation results confirm the validity of our approach, as well as the validity of the properties of the method. Index Terms-Guidance laws, relative kinematics equations, robotic convoy, tracking.
Chen, Gang; Song, Yongduan; Guan, Yanfeng
2018-03-01
This brief investigates the finite-time consensus tracking control problem for networked uncertain mechanical systems on digraphs. A new terminal sliding-mode-based cooperative control scheme is developed to guarantee that the tracking errors converge to an arbitrarily small bound around zero in finite time. All the networked systems can have different dynamics and all the dynamics are unknown. A neural network is used at each node to approximate the local unknown dynamics. The control schemes are implemented in a fully distributed manner. The proposed control method eliminates some limitations in the existing terminal sliding-mode-based consensus control methods and extends the existing analysis methods to the case of directed graphs. Simulation results on networked robot manipulators are provided to show the effectiveness of the proposed control algorithms.
Experimental study of adaptive pointing and tracking for large flexible space structures
NASA Technical Reports Server (NTRS)
Boussalis, D.; Bayard, D. S.; Ih, C.; Wang, S. J.; Ahmed, A.
1991-01-01
This paper describes an experimental study of adaptive pointing and tracking control for flexible spacecraft conducted on a complex ground experiment facility. The algorithm used in this study is based on a multivariable direct model reference adaptive control law. Several experimental validation studies were performed earlier using this algorithm for vibration damping and robust regulation, with excellent results. The current work extends previous studies by addressing the pointing and tracking problem. As is consistent with an adaptive control framework, the plant is assumed to be poorly known to the extent that only system level knowledge of its dynamics is available. Explicit bounds on the steady-state pointing error are derived as functions of the adaptive controller design parameters. It is shown that good tracking performance can be achieved in an experimental setting by adjusting adaptive controller design weightings according to the guidelines indicated by the analytical expressions for the error.
A Direct Adaptive Control Approach in the Presence of Model Mismatch
NASA Technical Reports Server (NTRS)
Joshi, Suresh M.; Tao, Gang; Khong, Thuan
2009-01-01
This paper considers the problem of direct model reference adaptive control when the plant-model matching conditions are violated due to abnormal changes in the plant or incorrect knowledge of the plant's mathematical structure. The approach consists of direct adaptation of state feedback gains for state tracking, and simultaneous estimation of the plant-model mismatch. Because of the mismatch, the plant can no longer track the state of the original reference model, but may be able to track a new reference model that still provides satisfactory performance. The reference model is updated if the estimated plant-model mismatch exceeds a bound that is determined via robust stability and/or performance criteria. The resulting controller is a hybrid direct-indirect adaptive controller that offers asymptotic state tracking in the presence of plant-model mismatch as well as parameter deviations.
Hu, Jianqiang; Li, Yaping; Yong, Taiyou; Cao, Jinde; Yu, Jie; Mao, Wenbo
2014-01-01
Cooperative regulation of multiagent systems has become an active research area in the past decade. This paper reviews some recent progress in distributed coordination control for leader-following multiagent systems and its applications in power system and mainly focuses on the cooperative tracking control in terms of consensus tracking control and containment tracking control. Next, methods on how to rank the network nodes are summarized for undirected/directed network, based on which one can determine which follower should be connected to leaders such that partial followers can perceive leaders' information. Furthermore, we present a survey of the most relevant scientific studies investigating the regulation and optimization problems in power systems based on distributed strategies. Finally, some potential applications in the frequency tracking regulation of smart grids are discussed at the end of the paper.
Li, Yaping; Yong, Taiyou; Yu, Jie; Mao, Wenbo
2014-01-01
Cooperative regulation of multiagent systems has become an active research area in the past decade. This paper reviews some recent progress in distributed coordination control for leader-following multiagent systems and its applications in power system and mainly focuses on the cooperative tracking control in terms of consensus tracking control and containment tracking control. Next, methods on how to rank the network nodes are summarized for undirected/directed network, based on which one can determine which follower should be connected to leaders such that partial followers can perceive leaders' information. Furthermore, we present a survey of the most relevant scientific studies investigating the regulation and optimization problems in power systems based on distributed strategies. Finally, some potential applications in the frequency tracking regulation of smart grids are discussed at the end of the paper. PMID:25243199
Yong-Feng Gao; Xi-Ming Sun; Changyun Wen; Wei Wang
2017-07-01
This paper is concerned with the problem of adaptive tracking control for a class of uncertain nonlinear systems with nonsymmetric input saturation and immeasurable states. The radial basis function of neural network (NN) is employed to approximate unknown functions, and an NN state observer is designed to estimate the immeasurable states. To analyze the effect of input saturation, an auxiliary system is employed. By the aid of adaptive backstepping technique, an adaptive tracking control approach is developed. Under the proposed adaptive tracking controller, the boundedness of all the signals in the closed-loop system is achieved. Moreover, distinct from most of the existing references, the tracking error can be bounded by an explicit function of design parameters and saturation input error. Finally, an example is given to show the effectiveness of the proposed method.
NASA Astrophysics Data System (ADS)
Sutrisno; Widowati; Heru Tjahjana, R.
2017-01-01
In this paper, we propose a mathematical model in the form of dynamic/multi-stage optimization to solve an integrated supplier selection problem and tracking control problem of single product inventory system with product discount. The product discount will be stated as a piece-wise linear function. We use dynamic programming to solve this proposed optimization to determine the optimal supplier and the optimal product volume that will be purchased from the optimal supplier for each time period so that the inventory level tracks a reference trajectory given by decision maker with minimal total cost. We give a numerical experiment to evaluate the proposed model. From the result, the optimal supplier was determined for each time period and the inventory level follows the given reference well.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Unseren, M.A.
The report discusses the orientation tracking control problem for a kinematically redundant, autonomous manipulator moving in a three dimensional workspace. The orientation error is derived using the normalized quaternion error method of Ickes, the Luh, Walker, and Paul error method, and a method suggested here utilizing the Rodrigues parameters, all of which are expressed in terms of normalized quaternions. The analytical time derivatives of the orientation errors are determined. The latter, along with the translational velocity error, form a dosed loop kinematic velocity model of the manipulator using normalized quaternion and translational position feedback. An analysis of the singularities associatedmore » with expressing the models in a form suitable for solving the inverse kinematics problem is given. Two redundancy resolution algorithms originally developed using an open loop kinematic velocity model of the manipulator are extended to properly take into account the orientation tracking control problem. This report furnishes the necessary mathematical framework required prior to experimental implementation of the orientation tracking control schemes on the seven axis CESARm research manipulator or on the seven-axis Robotics Research K1207i dexterous manipulator, the latter of which is to be delivered to the Oak Ridge National Laboratory in 1993.« less
Albert, Dustin; Belsky, Daniel W.; Crowley, D. Max; Latendresse, Shawn J.; Aliev, Fazil; Riley, Brien; Sun, Cuie; Dick, Danielle M.; Dodge, Kenneth R.
2014-01-01
Early interventions are a preferred method for addressing behavioral problems in high-risk children, but often have only modest effects. Identifying sources of variation in intervention effects can suggest means to improve efficiency. One potential source of such variation is the genome. We conducted a genetic analysis of the Fast Track Randomized Control Trial, a 10-year-long intervention to prevent high-risk kindergarteners from developing adult externalizing problems including substance abuse and antisocial behavior. We tested whether variants of the glucocorticoid receptor gene NR3C1 were associated with differences in response to the Fast Track intervention. We found that in European-American children, a variant of NR3C1 identified by the single-nucleotide polymorphism rs10482672 was associated with increased risk for externalizing psychopathology in control group children and decreased risk for externalizing psychopathology in intervention group children. Variation in NR3C1 measured in this study was not associated with differential intervention response in African-American children. We discuss implications for efforts to prevent externalizing problems in high-risk children and for public policy in the genomic era. PMID:26106668
NASA Astrophysics Data System (ADS)
Wu, Jiang; Liao, Fucheng; Tomizuka, Masayoshi
2017-01-01
This paper discusses the design of the optimal preview controller for a linear continuous-time stochastic control system in finite-time horizon, using the method of augmented error system. First, an assistant system is introduced for state shifting. Then, in order to overcome the difficulty of the state equation of the stochastic control system being unable to be differentiated because of Brownian motion, the integrator is introduced. Thus, the augmented error system which contains the integrator vector, control input, reference signal, error vector and state of the system is reconstructed. This leads to the tracking problem of the optimal preview control of the linear stochastic control system being transformed into the optimal output tracking problem of the augmented error system. With the method of dynamic programming in the theory of stochastic control, the optimal controller with previewable signals of the augmented error system being equal to the controller of the original system is obtained. Finally, numerical simulations show the effectiveness of the controller.
PROBLEM OF FORMING IN A MAN-OPERATOR A HABIT OF TRACKING A MOVING TARGET,
Cybernetics stimulated the large-scale use of the method of functional analogy which makes it possible to compare technical and human activity systems...interesting and highly efficient human activity because of the psychological control factor involved in its operation. The human tracking system is
NASA Astrophysics Data System (ADS)
Sun, Zhiyong; Hao, Lina; Song, Bo; Yang, Ruiguo; Cao, Ruimin; Cheng, Yu
2016-10-01
Micro/nano positioning technologies have been attractive for decades for their various applications in both industrial and scientific fields. The actuators employed in these technologies are typically smart material actuators, which possess inherent hysteresis that may cause systems behave unexpectedly. Periodic reference tracking capability is fundamental for apparatuses such as scanning probe microscope, which employs smart material actuators to generate periodic scanning motion. However, traditional controller such as PID method cannot guarantee accurate fast periodic scanning motion. To tackle this problem and to conduct practical implementation in digital devices, this paper proposes a novel control method named discrete extended unparallel Prandtl-Ishlinskii model based internal model (d-EUPI-IM) control approach. To tackle modeling uncertainties, the robust d-EUPI-IM control approach is investigated, and the associated sufficient stabilizing conditions are derived. The advantages of the proposed controller are: it is designed and represented in discrete form, thus practical for digital devices implementation; the extended unparallel Prandtl-Ishlinskii model can precisely represent forward/inverse complex hysteretic characteristics, thus can reduce modeling uncertainties and benefits controllers design; in addition, the internal model principle based control module can be utilized as a natural oscillator for tackling periodic references tracking problem. The proposed controller was verified through comparative experiments on a piezoelectric actuator platform, and convincing results have been achieved.
Robust feedback zoom tracking for digital video surveillance.
Zou, Tengyue; Tang, Xiaoqi; Song, Bao; Wang, Jin; Chen, Jihong
2012-01-01
Zoom tracking is an important function in video surveillance, particularly in traffic management and security monitoring. It involves keeping an object of interest in focus during the zoom operation. Zoom tracking is typically achieved by moving the zoom and focus motors in lenses following the so-called "trace curve", which shows the in-focus motor positions versus the zoom motor positions for a specific object distance. The main task of a zoom tracking approach is to accurately estimate the trace curve for the specified object. Because a proportional integral derivative (PID) controller has historically been considered to be the best controller in the absence of knowledge of the underlying process and its high-quality performance in motor control, in this paper, we propose a novel feedback zoom tracking (FZT) approach based on the geometric trace curve estimation and PID feedback controller. The performance of this approach is compared with existing zoom tracking methods in digital video surveillance. The real-time implementation results obtained on an actual digital video platform indicate that the developed FZT approach not only solves the traditional one-to-many mapping problem without pre-training but also improves the robustness for tracking moving or switching objects which is the key challenge in video surveillance.
Li, Da-Peng; Li, Dong-Juan; Liu, Yan-Jun; Tong, Shaocheng; Chen, C L Philip
2017-10-01
This paper deals with the tracking control problem for a class of nonlinear multiple input multiple output unknown time-varying delay systems with full state constraints. To overcome the challenges which cause by the appearances of the unknown time-varying delays and full-state constraints simultaneously in the systems, an adaptive control method is presented for such systems for the first time. The appropriate Lyapunov-Krasovskii functions and a separation technique are employed to eliminate the effect of unknown time-varying delays. The barrier Lyapunov functions are employed to prevent the violation of the full state constraints. The singular problems are dealt with by introducing the signal function. Finally, it is proven that the proposed method can both guarantee the good tracking performance of the systems output, all states are remained in the constrained interval and all the closed-loop signals are bounded in the design process based on choosing appropriate design parameters. The practicability of the proposed control technique is demonstrated by a simulation study in this paper.
Trajectory control of robot manipulators with closed-kinematic chain mechanism
NASA Technical Reports Server (NTRS)
Nguyen, Charles C.; Pooran, Farhad J.; Premack, Timothy
1987-01-01
The problem of Cartesian trajectory control of a closed-kinematic chain mechanism robot manipulator, recently built at CAIR to study the assembly of NASA hardware for the future Space Station, is considered. The study is performed by both computer simulation and experimentation for tracking of three different paths: a straight line, a sinusoid, and a circle. Linearization and pole placement methods are employed to design controller gains. Results show that the controllers are robust and there are good agreements between simulation and experimentation. The results also show excellent tracking quality and small overshoots.
Adaptive tracking control for a class of stochastic switched systems
NASA Astrophysics Data System (ADS)
Zhang, Hui; Xia, Yuanqing
2018-02-01
The problem of adaptive tracking is considered for a class of stochastic switched systems, in this paper. As preliminaries, the criterion of global asymptotical practical stability in probability is first presented by the aid of common Lyapunov function method. Based on the Lyapunov stability criterion, adaptive backstepping controllers are designed to guarantee that the closed-loop system has a unique global solution, which is globally asymptotically practically stable in probability, and the tracking error in the fourth moment converges to an arbitrarily small neighbourhood of zero. Simulation examples are given to demonstrate the efficiency of the proposed schemes.
Global finite-time attitude consensus tracking control for a group of rigid spacecraft
NASA Astrophysics Data System (ADS)
Li, Penghua
2017-10-01
The problem of finite-time attitude consensus for multiple rigid spacecraft with a leader-follower architecture is investigated in this paper. To achieve the finite-time attitude consensus, at the first step, a distributed finite-time convergent observer is proposed for each follower to estimate the leader's attitude in a finite time. Then based on the terminal sliding mode control method, a new finite-time attitude tracking controller is designed such that the leader's attitude can be tracked in a finite time. Finally, a finite-time observer-based distributed control strategy is proposed. It is shown that the attitude consensus can be achieved in a finite time under the proposed controller. Simulation results are given to show the effectiveness of the proposed method.
Intelligent robust tracking control for a class of uncertain strict-feedback nonlinear systems.
Chang, Yeong-Chan
2009-02-01
This paper addresses the problem of designing robust tracking controls for a large class of strict-feedback nonlinear systems involving plant uncertainties and external disturbances. The input and virtual input weighting matrices are perturbed by bounded time-varying uncertainties. An adaptive fuzzy-based (or neural-network-based) dynamic feedback tracking controller will be developed such that all the states and signals of the closed-loop system are bounded and the trajectory tracking error should be as small as possible. First, the adaptive approximators with linearly parameterized models are designed, and a partitioned procedure with respect to the developed adaptive approximators is proposed such that the implementation of the fuzzy (or neural network) basis functions depends only on the state variables but does not depend on the tuning approximation parameters. Furthermore, we extend to design the nonlinearly parameterized adaptive approximators. Consequently, the intelligent robust tracking control schemes developed in this paper possess the properties of computational simplicity and easy implementation. Finally, simulation examples are presented to demonstrate the effectiveness of the proposed control algorithms.
Survey of adaptive control using Liapunov design
NASA Technical Reports Server (NTRS)
Lindorff, D. P.; Carroll, R. L.
1973-01-01
A survey of the literature in which Liapunov's second method is used in determining the control law is presented, with emphasis placed on the model-tracking adaptive control problem. Forty references are listed. Following a brief tutorial exposition of the adaptive control problem, the techniques for treating reduction of order, disturbance and time-varying parameters, multivariable systems, identification, and adaptive observers are discussed. The method is critically evaluated, particularly with respect to possibilities for application.
Coordinated Dynamic Behaviors for Multirobot Systems With Collision Avoidance.
Sabattini, Lorenzo; Secchi, Cristian; Fantuzzi, Cesare
2017-12-01
In this paper, we propose a novel methodology for achieving complex dynamic behaviors in multirobot systems. In particular, we consider a multirobot system partitioned into two subgroups: 1) dependent and 2) independent robots. Independent robots are utilized as a control input, and their motion is controlled in such a way that the dependent robots solve a tracking problem, that is following arbitrarily defined setpoint trajectories, in a coordinated manner. The control strategy proposed in this paper explicitly addresses the collision avoidance problem, utilizing a null space-based behavioral approach: this leads to combining, in a non conflicting manner, the tracking control law with a collision avoidance strategy. The combination of these control actions allows the robots to execute their task in a safe way. Avoidance of collisions is formally proven in this paper, and the proposed methodology is validated by means of simulations and experiments on real robots.
Cartesian control of redundant robots
NASA Technical Reports Server (NTRS)
Colbaugh, R.; Glass, K.
1989-01-01
A Cartesian-space position/force controller is presented for redundant robots. The proposed control structure partitions the control problem into a nonredundant position/force trajectory tracking problem and a redundant mapping problem between Cartesian control input F is a set member of the set R(sup m) and robot actuator torque T is a set member of the set R(sup n) (for redundant robots, m is less than n). The underdetermined nature of the F yields T map is exploited so that the robot redundancy is utilized to improve the dynamic response of the robot. This dynamically optimal F yields T map is implemented locally (in time) so that it is computationally efficient for on-line control; however, it is shown that the map possesses globally optimal characteristics. Additionally, it is demonstrated that the dynamically optimal F yields T map can be modified so that the robot redundancy is used to simultaneously improve the dynamic response and realize any specified kinematic performance objective (e.g., manipulability maximization or obstacle avoidance). Computer simulation results are given for a four degree of freedom planar redundant robot under Cartesian control, and demonstrate that position/force trajectory tracking and effective redundancy utilization can be achieved simultaneously with the proposed controller.
NASA Astrophysics Data System (ADS)
Goodwin, Graham. C.; Medioli, Adrian. M.
2013-08-01
Model predictive control has been a major success story in process control. More recently, the methodology has been used in other contexts, including automotive engine control, power electronics and telecommunications. Most applications focus on set-point tracking and use single-sequence optimisation. Here we consider an alternative class of problems motivated by the scheduling of emergency vehicles. Here disturbances are the dominant feature. We develop a novel closed-loop model predictive control strategy aimed at this class of problems. We motivate, and illustrate, the ideas via the problem of fluid deployment of ambulance resources.
Report #09-P-0128, March 25, 2009. Lack of compliance with established project management procedures resulted in transitional problems in 2005 that delayed ICTS development and negatively affected contractor performance.
NASA Technical Reports Server (NTRS)
Devasia, Santosh
1996-01-01
A technique to achieve output tracking for nonminimum phase linear systems with non-hyperbolic and near non-hyperbolic internal dynamics is presented. This approach integrates stable inversion techniques, that achieve exact-tracking, with approximation techniques, that modify the internal dynamics to achieve desirable performance. Such modification of the internal dynamics is used (1) to remove non-hyperbolicity which an obstruction to applying stable inversion techniques and (2) to reduce large pre-actuation time needed to apply stable inversion for near non-hyperbolic cases. The method is applied to an example helicopter hover control problem with near non-hyperbolic internal dynamic for illustrating the trade-off between exact tracking and reduction of pre-actuation time.
Control theory and splines, applied to signature storage
NASA Technical Reports Server (NTRS)
Enqvist, Per
1994-01-01
In this report the problem we are going to study is the interpolation of a set of points in the plane with the use of control theory. We will discover how different systems generate different kinds of splines, cubic and exponential, and investigate the effect that the different systems have on the tracking problems. Actually we will see that the important parameters will be the two eigenvalues of the control matrix.
Generating optimal control simulations of musculoskeletal movement using OpenSim and MATLAB.
Lee, Leng-Feng; Umberger, Brian R
2016-01-01
Computer modeling, simulation and optimization are powerful tools that have seen increased use in biomechanics research. Dynamic optimizations can be categorized as either data-tracking or predictive problems. The data-tracking approach has been used extensively to address human movement problems of clinical relevance. The predictive approach also holds great promise, but has seen limited use in clinical applications. Enhanced software tools would facilitate the application of predictive musculoskeletal simulations to clinically-relevant research. The open-source software OpenSim provides tools for generating tracking simulations but not predictive simulations. However, OpenSim includes an extensive application programming interface that permits extending its capabilities with scripting languages such as MATLAB. In the work presented here, we combine the computational tools provided by MATLAB with the musculoskeletal modeling capabilities of OpenSim to create a framework for generating predictive simulations of musculoskeletal movement based on direct collocation optimal control techniques. In many cases, the direct collocation approach can be used to solve optimal control problems considerably faster than traditional shooting methods. Cyclical and discrete movement problems were solved using a simple 1 degree of freedom musculoskeletal model and a model of the human lower limb, respectively. The problems could be solved in reasonable amounts of time (several seconds to 1-2 hours) using the open-source IPOPT solver. The problems could also be solved using the fmincon solver that is included with MATLAB, but the computation times were excessively long for all but the smallest of problems. The performance advantage for IPOPT was derived primarily by exploiting sparsity in the constraints Jacobian. The framework presented here provides a powerful and flexible approach for generating optimal control simulations of musculoskeletal movement using OpenSim and MATLAB. This should allow researchers to more readily use predictive simulation as a tool to address clinical conditions that limit human mobility.
Generating optimal control simulations of musculoskeletal movement using OpenSim and MATLAB
Lee, Leng-Feng
2016-01-01
Computer modeling, simulation and optimization are powerful tools that have seen increased use in biomechanics research. Dynamic optimizations can be categorized as either data-tracking or predictive problems. The data-tracking approach has been used extensively to address human movement problems of clinical relevance. The predictive approach also holds great promise, but has seen limited use in clinical applications. Enhanced software tools would facilitate the application of predictive musculoskeletal simulations to clinically-relevant research. The open-source software OpenSim provides tools for generating tracking simulations but not predictive simulations. However, OpenSim includes an extensive application programming interface that permits extending its capabilities with scripting languages such as MATLAB. In the work presented here, we combine the computational tools provided by MATLAB with the musculoskeletal modeling capabilities of OpenSim to create a framework for generating predictive simulations of musculoskeletal movement based on direct collocation optimal control techniques. In many cases, the direct collocation approach can be used to solve optimal control problems considerably faster than traditional shooting methods. Cyclical and discrete movement problems were solved using a simple 1 degree of freedom musculoskeletal model and a model of the human lower limb, respectively. The problems could be solved in reasonable amounts of time (several seconds to 1–2 hours) using the open-source IPOPT solver. The problems could also be solved using the fmincon solver that is included with MATLAB, but the computation times were excessively long for all but the smallest of problems. The performance advantage for IPOPT was derived primarily by exploiting sparsity in the constraints Jacobian. The framework presented here provides a powerful and flexible approach for generating optimal control simulations of musculoskeletal movement using OpenSim and MATLAB. This should allow researchers to more readily use predictive simulation as a tool to address clinical conditions that limit human mobility. PMID:26835184
The Impact of Tutoring on Early Reading Achievement for Children with and without Attention Problems
ERIC Educational Resources Information Center
Rabiner, David L.; Malone, Patrick S.
2004-01-01
This study examined whether the benefits of reading tutoring in first grade were moderated by children's level of attention problems. Participants were 581 children from the intervention and control samples of Fast Track, a longitudinal multisite investigation of the development and prevention of conduct problems. Standardized reading achievement…
Li, Xiao-Jian; Yang, Guang-Hong
2018-01-01
This paper is concerned with the adaptive decentralized fault-tolerant tracking control problem for a class of uncertain interconnected nonlinear systems with unknown strong interconnections. An algebraic graph theory result is introduced to address the considered interconnections. In addition, to achieve the desirable tracking performance, a neural-network-based robust adaptive decentralized fault-tolerant control (FTC) scheme is given to compensate the actuator faults and system uncertainties. Furthermore, via the Lyapunov analysis method, it is proven that all the signals of the resulting closed-loop system are semiglobally bounded, and the tracking errors of each subsystem exponentially converge to a compact set, whose radius is adjustable by choosing different controller design parameters. Finally, the effectiveness and advantages of the proposed FTC approach are illustrated with two simulated examples.
Robust guaranteed cost tracking control of quadrotor UAV with uncertainties.
Xu, Zhiwei; Nian, Xiaohong; Wang, Haibo; Chen, Yinsheng
2017-07-01
In this paper, a robust guaranteed cost controller (RGCC) is proposed for quadrotor UAV system with uncertainties to address set-point tracking problem. A sufficient condition of the existence for RGCC is derived by Lyapunov stability theorem. The designed RGCC not only guarantees the whole closed-loop system asymptotically stable but also makes the quadratic performance level built for the closed-loop system have an upper bound irrespective to all admissible parameter uncertainties. Then, an optimal robust guaranteed cost controller is developed to minimize the upper bound of performance level. Simulation results verify the presented control algorithms possess small overshoot and short setting time, with which the quadrotor has ability to perform set-point tracking task well. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Unseren, M.A.
1993-04-01
The report discusses the orientation tracking control problem for a kinematically redundant, autonomous manipulator moving in a three dimensional workspace. The orientation error is derived using the normalized quaternion error method of Ickes, the Luh, Walker, and Paul error method, and a method suggested here utilizing the Rodrigues parameters, all of which are expressed in terms of normalized quaternions. The analytical time derivatives of the orientation errors are determined. The latter, along with the translational velocity error, form a dosed loop kinematic velocity model of the manipulator using normalized quaternion and translational position feedback. An analysis of the singularities associatedmore » with expressing the models in a form suitable for solving the inverse kinematics problem is given. Two redundancy resolution algorithms originally developed using an open loop kinematic velocity model of the manipulator are extended to properly take into account the orientation tracking control problem. This report furnishes the necessary mathematical framework required prior to experimental implementation of the orientation tracking control schemes on the seven axis CESARm research manipulator or on the seven-axis Robotics Research K1207i dexterous manipulator, the latter of which is to be delivered to the Oak Ridge National Laboratory in 1993.« less
Receding horizon online optimization for torque control of gasoline engines.
Kang, Mingxin; Shen, Tielong
2016-11-01
This paper proposes a model-based nonlinear receding horizon optimal control scheme for the engine torque tracking problem. The controller design directly employs the nonlinear model exploited based on mean-value modeling principle of engine systems without any linearizing reformation, and the online optimization is achieved by applying the Continuation/GMRES (generalized minimum residual) approach. Several receding horizon control schemes are designed to investigate the effects of the integral action and integral gain selection. Simulation analyses and experimental validations are implemented to demonstrate the real-time optimization performance and control effects of the proposed torque tracking controllers. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Pan, Yongping; Huang, Daoping
2011-03-01
In this comment, we point out the inappropriateness of Theorem 1 in the article [Tsung-Chih Lin, Mehdi Roopaei. Based on interval type-2 adaptive fuzzy H∞ tracking controller for SISO time-delay nonlinear systems. Commun Nonlinear Sci Numer Simulat 2010;15:4065-75]. For solving this problem, some formular mistakes are corrected and novel parameter adaptive laws of interval type-2 fuzzy neural network system are given.
Automatic detection, tracking and sensor integration
NASA Astrophysics Data System (ADS)
Trunk, G. V.
1988-06-01
This report surveys the state of the art of automatic detection, tracking, and sensor integration. In the area of detection, various noncoherent integrators such as the moving window integrator, feedback integrator, two-pole filter, binary integrator, and batch processor are discussed. Next, the three techniques for controlling false alarms, adapting thresholds, nonparametric detectors, and clutter maps are presented. In the area of tracking, a general outline is given of a track-while-scan system, and then a discussion is presented of the file system, contact-entry logic, coordinate systems, tracking filters, maneuver-following logic, tracking initiating, track-drop logic, and correlation procedures. Finally, in the area of multisensor integration the problems of colocated-radar integration, multisite-radar integration, radar-IFF integration, and radar-DF bearing strobe integration are treated.
Robust Feedback Zoom Tracking for Digital Video Surveillance
Zou, Tengyue; Tang, Xiaoqi; Song, Bao; Wang, Jin; Chen, Jihong
2012-01-01
Zoom tracking is an important function in video surveillance, particularly in traffic management and security monitoring. It involves keeping an object of interest in focus during the zoom operation. Zoom tracking is typically achieved by moving the zoom and focus motors in lenses following the so-called “trace curve”, which shows the in-focus motor positions versus the zoom motor positions for a specific object distance. The main task of a zoom tracking approach is to accurately estimate the trace curve for the specified object. Because a proportional integral derivative (PID) controller has historically been considered to be the best controller in the absence of knowledge of the underlying process and its high-quality performance in motor control, in this paper, we propose a novel feedback zoom tracking (FZT) approach based on the geometric trace curve estimation and PID feedback controller. The performance of this approach is compared with existing zoom tracking methods in digital video surveillance. The real-time implementation results obtained on an actual digital video platform indicate that the developed FZT approach not only solves the traditional one-to-many mapping problem without pre-training but also improves the robustness for tracking moving or switching objects which is the key challenge in video surveillance. PMID:22969388
NASA Astrophysics Data System (ADS)
Chak, Yew-Chung; Varatharajoo, Renuganth; Razoumny, Yury
2017-04-01
This paper investigates the combined attitude and sun-tracking control problem in the presence of external disturbances and internal disturbances, caused by flexible appendages. A new method based on Pythagorean trigonometric identity is proposed to drive the solar arrays. Using the control input and attitude output, a disturbance observer is developed to estimate the lumped disturbances consisting of the external and internal disturbances, and then compensated by the disturbance observer-based controller via a feed-forward control. The stability analysis demonstrates that the desired attitude trajectories are followed even in the presence of external disturbance and internal flexible modes. The main features of the proposed control scheme are that it can be designed separately and incorporated into the baseline controller to form the observer-based control system, and the combined attitude and sun-tracking control is achieved without the conventional attitude actuators. The attitude and sun-tracking performance using the proposed strategy is evaluated and validated through numerical simulations. The proposed control solution can serve as a fail-safe measure in case of failure of the conventional attitude actuator, which triggered by automatic reconfiguration of the attitude control components.
NASA Astrophysics Data System (ADS)
Yan, Peng; Zhang, Yangming
2018-06-01
High performance scanning of nano-manipulators is widely deployed in various precision engineering applications such as SPM (scanning probe microscope), where trajectory tracking of sophisticated reference signals is an challenging control problem. The situation is further complicated when rate dependent hysteresis of the piezoelectric actuators and the stress-stiffening induced nonlinear stiffness of the flexure mechanism are considered. In this paper, a novel control framework is proposed to achieve high precision tracking of a piezoelectric nano-manipulator subjected to hysteresis and stiffness nonlinearities. An adaptive parameterized rate-dependent Prandtl-Ishlinskii model is constructed and the corresponding adaptive inverse model based online compensation is derived. Meanwhile a robust adaptive control architecture is further introduced to improve the tracking accuracy and robustness of the compensated system, where the parametric uncertainties of the nonlinear dynamics can be well eliminated by on-line estimations. Comparative experimental studies of the proposed control algorithm are conducted on a PZT actuated nano-manipulating stage, where hysteresis modeling accuracy and excellent tracking performance are demonstrated in real-time implementations, with significant improvement over existing results.
NASA Astrophysics Data System (ADS)
Leon, Barbara D.; Heller, Paul R.
1987-05-01
A surveillance network is a group of multiplatform sensors cooperating to improve network performance. Network control is distributed as a measure to decrease vulnerability to enemy threat. The network may contain diverse sensor types such as radar, ESM (Electronic Support Measures), IRST (Infrared search and track) and E-0 (Electro-Optical). Each platform may contain a single sensor or suite of sensors. In a surveillance network it is desirable to control sensors to make the overall system more effective. This problem has come to be known as sensor management and control (SM&C). Two major facets of network performance are surveillance and survivability. In a netted environment, surveillance can be enhanced if information from all sensors is combined and sensor operating conditions are controlled to provide a synergistic effect. In contrast, when survivability is the main concern for the network, the best operating status for all sensors would be passive or off. Of course, improving survivability tends to degrade surveillance. Hence, the objective of SM&C is to optimize surveillance and survivability of the network. Too voluminous data of various formats and the quick response time are two characteristics of this problem which make it an ideal application for Artificial Intelligence. A solution to the SM&C problem, presented as a computer simulation, will be presented in this paper. The simulation is a hybrid production written in LISP and FORTRAN. It combines the latest conventional computer programming methods with Artificial Intelligence techniques to produce a flexible state-of-the-art tool to evaluate network performance. The event-driven simulation contains environment models coupled with an expert system. These environment models include sensor (track-while-scan and agile beam) and target models, local tracking, and system tracking. These models are used to generate the environment for the sensor management and control expert system. The expert system, driven by a forward chaining inference engine, makes decisions based on the global database. The global database contains current track and sensor information supplied by the simulation. At present, the rule base emphasizes the surveillance features with rules grouped into three main categories: maintenance and enhancing track on prioritized targets; filling coverage holes and countering jamming; and evaluating sensor status. The paper will describe the architecture used for the expert system and the reasons for selecting the chosen methods. The SM&C simulation produces a graphical representation of sensors and their associated tracks such that the benefits of the sensor management and control expert system are evident. Jammer locations are also part of the display. The paper will describe results from several scenarios that best illustrate the sensor management and control concepts.
Event-triggered consensus tracking of multi-agent systems with Lur'e nonlinear dynamics
NASA Astrophysics Data System (ADS)
Huang, Na; Duan, Zhisheng; Wen, Guanghui; Zhao, Yu
2016-05-01
In this paper, distributed consensus tracking problem for networked Lur'e systems is investigated based on event-triggered information interactions. An event-triggered control algorithm is designed with the advantages of reducing controller update frequency and sensor energy consumption. By using tools of ?-procedure and Lyapunov functional method, some sufficient conditions are derived to guarantee that consensus tracking is achieved under a directed communication topology. Meanwhile, it is shown that Zeno behaviour of triggering time sequences is excluded for the proposed event-triggered rule. Finally, some numerical simulations on coupled Chua's circuits are performed to illustrate the effectiveness of the theoretical algorithms.
Tracking a Non-Cooperative Target Using Real-Time Stereovision-Based Control: An Experimental Study.
Shtark, Tomer; Gurfil, Pini
2017-03-31
Tracking a non-cooperative target is a challenge, because in unfamiliar environments most targets are unknown and unspecified. Stereovision is suited to deal with this issue, because it allows to passively scan large areas and estimate the relative position, velocity and shape of objects. This research is an experimental effort aimed at developing, implementing and evaluating a real-time non-cooperative target tracking methods using stereovision measurements only. A computer-vision feature detection and matching algorithm was developed in order to identify and locate the target in the captured images. Three different filters were designed for estimating the relative position and velocity, and their performance was compared. A line-of-sight control algorithm was used for the purpose of keeping the target within the field-of-view. Extensive analytical and numerical investigations were conducted on the multi-view stereo projection equations and their solutions, which were used to initialize the different filters. This research shows, using an experimental and numerical evaluation, the benefits of using the unscented Kalman filter and the total least squares technique in the stereovision-based tracking problem. These findings offer a general and more accurate method for solving the static and dynamic stereovision triangulation problems and the concomitant line-of-sight control.
Tracking a Non-Cooperative Target Using Real-Time Stereovision-Based Control: An Experimental Study
Shtark, Tomer; Gurfil, Pini
2017-01-01
Tracking a non-cooperative target is a challenge, because in unfamiliar environments most targets are unknown and unspecified. Stereovision is suited to deal with this issue, because it allows to passively scan large areas and estimate the relative position, velocity and shape of objects. This research is an experimental effort aimed at developing, implementing and evaluating a real-time non-cooperative target tracking methods using stereovision measurements only. A computer-vision feature detection and matching algorithm was developed in order to identify and locate the target in the captured images. Three different filters were designed for estimating the relative position and velocity, and their performance was compared. A line-of-sight control algorithm was used for the purpose of keeping the target within the field-of-view. Extensive analytical and numerical investigations were conducted on the multi-view stereo projection equations and their solutions, which were used to initialize the different filters. This research shows, using an experimental and numerical evaluation, the benefits of using the unscented Kalman filter and the total least squares technique in the stereovision-based tracking problem. These findings offer a general and more accurate method for solving the static and dynamic stereovision triangulation problems and the concomitant line-of-sight control. PMID:28362338
Guidance of Nonlinear Nonminimum-Phase Dynamic Systems
NASA Technical Reports Server (NTRS)
Devasia, Santosh
1996-01-01
The research work has advanced the inversion-based guidance theory for: systems with non-hyperbolic internal dynamics; systems with parameter jumps; and systems where a redesign of the output trajectory is desired. A technique to achieve output tracking for nonminimum phase linear systems with non-hyperbolic and near non-hyperbolic internal dynamics was developed. This approach integrated stable inversion techniques, that achieve exact-tracking, with approximation techniques, that modify the internal dynamics to achieve desirable performance. Such modification of the internal dynamics was used (a) to remove non-hyperbolicity which is an obstruction to applying stable inversion techniques and (b) to reduce large preactuation times needed to apply stable inversion for near non-hyperbolic cases. The method was applied to an example helicopter hover control problem with near non-hyperbolic internal dynamics for illustrating the trade-off between exact tracking and reduction of preactuation time. Future work will extend these results to guidance of nonlinear non-hyperbolic systems. The exact output tracking problem for systems with parameter jumps was considered. Necessary and sufficient conditions were derived for the elimination of switching-introduced output transient. While previous works had studied this problem by developing a regulator that maintains exact tracking through parameter jumps (switches), such techniques are, however, only applicable to minimum-phase systems. In contrast, our approach is also applicable to nonminimum-phase systems and leads to bounded but possibly non-causal solutions. In addition, for the case when the reference trajectories are generated by an exosystem, we developed an exact-tracking controller which could be written in a feedback form. As in standard regulator theory, we also obtained a linear map from the states of the exosystem to the desired system state, which was defined via a matrix differential equation.
Robust preview control for a class of uncertain discrete-time systems with time-varying delay.
Li, Li; Liao, Fucheng
2018-02-01
This paper proposes a concept of robust preview tracking control for uncertain discrete-time systems with time-varying delay. Firstly, a model transformation is employed for an uncertain discrete system with time-varying delay. Then, the auxiliary variables related to the system state and input are introduced to derive an augmented error system that includes future information on the reference signal. This leads to the tracking problem being transformed into a regulator problem. Finally, for the augmented error system, a sufficient condition of asymptotic stability is derived and the preview controller design method is proposed based on the scaled small gain theorem and linear matrix inequality (LMI) technique. The method proposed in this paper not only solves the difficulty problem of applying the difference operator to the time-varying matrices but also simplifies the structure of the augmented error system. The numerical simulation example also illustrates the effectiveness of the results presented in the paper. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.
Relay tracking control for second-order multi-agent systems with damaged agents.
Dong, Lijing; Li, Jing; Liu, Qin
2017-11-01
This paper investigates a situation where smart agents capable of sensory and mobility are deployed to monitor a designated area. A preset number of agents start tracking when a target intrudes this area. Some of the tracking agents are possible to be out of order over the tracking course. Thus, we propose a cooperative relay tracking strategy to ensure the successful tracking with existence of damaged agents. Relay means that, when a tracking agent quits tracking due to malfunction, one of the near deployed agents replaces it to continue the tracking task. This results in jump of tracking errors and dynamic switching of topology of the multi-agent system. Switched system technique is employed to solve this specific problem. Finally, the effectiveness of proposed tracking strategy and validity of the theoretical results are verified by conducting a numerical simulation. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Tracked robot controllers for climbing obstacles autonomously
NASA Astrophysics Data System (ADS)
Vincent, Isabelle
2009-05-01
Research in mobile robot navigation has demonstrated some success in navigating flat indoor environments while avoiding obstacles. However, the challenge of analyzing complex environments to climb obstacles autonomously has had very little success due to the complexity of the task. Unmanned ground vehicles currently exhibit simple autonomous behaviours compared to the human ability to move in the world. This paper presents the control algorithms designed for a tracked mobile robot to autonomously climb obstacles by varying its tracks configuration. Two control algorithms are proposed to solve the autonomous locomotion problem for climbing obstacles. First, a reactive controller evaluates the appropriate geometric configuration based on terrain and vehicle geometric considerations. Then, a reinforcement learning algorithm finds alternative solutions when the reactive controller gets stuck while climbing an obstacle. The methodology combines reactivity to learning. The controllers have been demonstrated in box and stair climbing simulations. The experiments illustrate the effectiveness of the proposed approach for crossing obstacles.
A hierarchical framework for air traffic control
NASA Astrophysics Data System (ADS)
Roy, Kaushik
Air travel in recent years has been plagued by record delays, with over $8 billion in direct operating costs being attributed to 100 million flight delay minutes in 2007. Major contributing factors to delay include weather, congestion, and aging infrastructure; the Next Generation Air Transportation System (NextGen) aims to alleviate these delays through an upgrade of the air traffic control system. Changes to large-scale networked systems such as air traffic control are complicated by the need for coordinated solutions over disparate temporal and spatial scales. Individual air traffic controllers must ensure aircraft maintain safe separation locally with a time horizon of seconds to minutes, whereas regional plans are formulated to efficiently route flows of aircraft around weather and congestion on the order of every hour. More efficient control algorithms that provide a coordinated solution are required to safely handle a larger number of aircraft in a fixed amount of airspace. Improved estimation algorithms are also needed to provide accurate aircraft state information and situational awareness for human controllers. A hierarchical framework is developed to simultaneously solve the sometimes conflicting goals of regional efficiency and local safety. Careful attention is given in defining the interactions between the layers of this hierarchy. In this way, solutions to individual air traffic problems can be targeted and implemented as needed. First, the regional traffic flow management problem is posed as an optimization problem and shown to be NP-Hard. Approximation methods based on aggregate flow models are developed to enable real-time implementation of algorithms that reduce the impact of congestion and adverse weather. Second, the local trajectory design problem is solved using a novel slot-based sector model. This model is used to analyze sector capacity under varying traffic patterns, providing a more comprehensive understanding of how increased automation in NextGen will affect the overall performance of air traffic control. The dissertation also provides solutions to several key estimation problems that support corresponding control tasks. Throughout the development of these estimation algorithms, aircraft motion is modeled using hybrid systems, which encapsulate both the discrete flight mode of an aircraft and the evolution of continuous states such as position and velocity. The target-tracking problem is posed as one of hybrid state estimation, and two new algorithms are developed to exploit structure specific to aircraft motion, especially near airports. First, discrete mode evolution is modeled using state-dependent transitions, in which the likelihood of changing flight modes is dependent on aircraft state. Second, an estimator is designed for systems with limited mode changes, including arrival aircraft. Improved target tracking facilitates increased safety in collision avoidance and trajectory design problems. A multiple-target tracking and identity management algorithm is developed to improve situational awareness for controllers about multiple maneuvering targets in a congested region. Finally, tracking algorithms are extended to predict aircraft landing times; estimated time of arrival prediction is one example of important decision support information for air traffic control.
Robust Optimal Adaptive Control Method with Large Adaptive Gain
NASA Technical Reports Server (NTRS)
Nguyen, Nhan T.
2009-01-01
In the presence of large uncertainties, a control system needs to be able to adapt rapidly to regain performance. Fast adaptation is referred to the implementation of adaptive control with a large adaptive gain to reduce the tracking error rapidly. However, a large adaptive gain can lead to high-frequency oscillations which can adversely affect robustness of an adaptive control law. A new adaptive control modification is presented that can achieve robust adaptation with a large adaptive gain without incurring high-frequency oscillations as with the standard model-reference adaptive control. The modification is based on the minimization of the Y2 norm of the tracking error, which is formulated as an optimal control problem. The optimality condition is used to derive the modification using the gradient method. The optimal control modification results in a stable adaptation and allows a large adaptive gain to be used for better tracking while providing sufficient stability robustness. Simulations were conducted for a damaged generic transport aircraft with both standard adaptive control and the adaptive optimal control modification technique. The results demonstrate the effectiveness of the proposed modification in tracking a reference model while maintaining a sufficient time delay margin.
Real-Time Control of an Ensemble of Heterogeneous Resources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bernstein, Andrey; Bouman, Niek J.; Le Boudec, Jean-Yves
This paper focuses on the problem of controlling an ensemble of heterogeneous resources connected to an electrical grid at the same point of common coupling (PCC). The controller receives an aggregate power setpoint for the ensemble in real time and tracks this setpoint by issuing individual optimal setpoints to the resources. The resources can have continuous or discrete nature (e.g., heating systems consisting of a finite number of heaters that each can be either switched on or off) and/or can be highly uncertain (e.g., photovoltaic (PV) systems or residential loads). A naive approach would lead to a stochastic mixed-integer optimizationmore » problem to be solved at the controller at each time step, which might be infeasible in real time. Instead, we allow the controller to solve a continuous convex optimization problem and compensate for the errors at the resource level by using a variant of the well-known error diffusion algorithm. We give conditions guaranteeing that our algorithm tracks the power setpoint at the PCC on average while issuing optimal setpoints to individual resources. We illustrate the approach numerically by controlling a collection of batteries, PV systems, and discrete loads.« less
Exact-Output Tracking Theory for Systems with Parameter Jumps
NASA Technical Reports Server (NTRS)
Devasia, Santosh; Paden, Brad; Rossi, Carlo
1996-01-01
In this paper we consider the exact output tracking problem for systems with parameter jumps. Necessary and sufficient conditions are derived for the elimination of switching-introduced output transient. Previous works have studied this problem by developing a regulator that maintains exact tracking through parameter jumps (switches). Such techniques are, however, only applicable to minimum-phase systems. In contrast, our approach is applicable to nonminimum-phase systems and obtains bounded but possibly non-causal solutions. If the reference trajectories are generated by an exo-system, then we develop an exact-tracking controller in a feedback form. As in standard regulator theory, we obtain a linear map from the states of the exo-system to the desired system state which is defined via a matrix differential equation. The constant solution of this differential equation provides asymptotic tracking, and coincides with the feedback law used in standard regulator theory. The obtained results are applied to a simple flexible manipulator with jumps in the pay-load mass.
Exact-Output Tracking Theory for Systems with Parameter Jumps
NASA Technical Reports Server (NTRS)
Devasia, Santosh; Paden, Brad; Rossi, Carlo
1997-01-01
We consider the exact output tracking problem for systems with parameter jumps. Necessary and sufficient conditions are derived for the elimination of switching-introduced output transient. Previous works have studied this problem by developing a regulator that maintains exact tracking through parameter jumps (switches). Such techniques are, however, only applicable to minimum-phase systems. In contrast, our approach is applicable to non-minimum-phase systems and it obtains bounded but possibly non-causal solutions. If the reference trajectories are generated by an exosystem, then we develop an exact-tracking controller in a feed-back form. As in standard regulator theory, we obtain a linear map from the states of the exosystem to the desired system state which is defined via a matrix differential equation. The constant solution of this differential equation provides asymptotic tracking, and coincides with the feedback law used in standard regulator theory. The obtained results are applied to a simple flexible manipulator with jumps in the pay-load mass.
Space debris tracking at San Fernando laser station
NASA Astrophysics Data System (ADS)
Catalán, M.; Quijano, M.; Pazos, A.; Martín Davila, J.; Cortina, L. M.
2016-12-01
For years to come space debris will be a major issue for society. It has a negative impact on active artificial satellites, having implications for future missions. Tracking space debris as accurately as possible is the first step towards controlling this problem, yet it presents a challenge for science. The main limitation is the relatively low accuracy of the methods used to date for tracking these objects. Clearly, improving the predicted orbit accuracy is crucial (avoiding unnecessary anti-collision maneuvers). A new field of research was recently instituted by our satellite laser ranging station: tracking decommissioned artificial satellites equipped with retroreflectors. To this end we work in conjunction with international space agencies which provide increasing attention to this problem. We thus proposed to share our time-schedule of use of the satellite laser ranging station for obtaining data that would make orbital element predictions far more accurate (meter accuracy), whilst maintaining our tracking routines for active satellites. This manuscript reports on the actions carried out so far.
Human-tracking strategies for a six-legged rescue robot based on distance and view
NASA Astrophysics Data System (ADS)
Pan, Yang; Gao, Feng; Qi, Chenkun; Chai, Xun
2016-03-01
Human tracking is an important issue for intelligent robotic control and can be used in many scenarios, such as robotic services and human-robot cooperation. Most of current human-tracking methods are targeted for mobile/tracked robots, but few of them can be used for legged robots. Two novel human-tracking strategies, view priority strategy and distance priority strategy, are proposed specially for legged robots, which enable them to track humans in various complex terrains. View priority strategy focuses on keeping humans in its view angle arrange with priority, while its counterpart, distance priority strategy, focuses on keeping human at a reasonable distance with priority. To evaluate these strategies, two indexes(average and minimum tracking capability) are defined. With the help of these indexes, the view priority strategy shows advantages compared with distance priority strategy. The optimization is done in terms of these indexes, which let the robot has maximum tracking capability. The simulation results show that the robot can track humans with different curves like square, circular, sine and screw paths. Two novel control strategies are proposed which specially concerning legged robot characteristics to solve human tracking problems more efficiently in rescue circumstances.
Effects of computing time delay on real-time control systems
NASA Technical Reports Server (NTRS)
Shin, Kang G.; Cui, Xianzhong
1988-01-01
The reliability of a real-time digital control system depends not only on the reliability of the hardware and software used, but also on the speed in executing control algorithms. The latter is due to the negative effects of computing time delay on control system performance. For a given sampling interval, the effects of computing time delay are classified into the delay problem and the loss problem. Analysis of these two problems is presented as a means of evaluating real-time control systems. As an example, both the self-tuning predicted (STP) control and Proportional-Integral-Derivative (PID) control are applied to the problem of tracking robot trajectories, and their respective effects of computing time delay on control performance are comparatively evaluated. For this example, the STP (PID) controller is shown to outperform the PID (STP) controller in coping with the delay (loss) problem.
Observer-Based Adaptive Fault-Tolerant Tracking Control of Nonlinear Nonstrict-Feedback Systems.
Wu, Chengwei; Liu, Jianxing; Xiong, Yongyang; Wu, Ligang
2017-06-28
This paper studies an output-based adaptive fault-tolerant control problem for nonlinear systems with nonstrict-feedback form. Neural networks are utilized to identify the unknown nonlinear characteristics in the system. An observer and a general fault model are constructed to estimate the unavailable states and describe the fault, respectively. Adaptive parameters are constructed to overcome the difficulties in the design process for nonstrict-feedback systems. Meanwhile, dynamic surface control technique is introduced to avoid the problem of ''explosion of complexity''. Furthermore, based on adaptive backstepping control method, an output-based adaptive neural tracking control strategy is developed for the considered system against actuator fault, which can ensure that all the signals in the resulting closed-loop system are bounded, and the system output signal can be regulated to follow the response of the given reference signal with a small error. Finally, the simulation results are provided to validate the effectiveness of the control strategy proposed in this paper.
Synchronous response modelling and control of an annular momentum control device
NASA Astrophysics Data System (ADS)
Hockney, Richard; Johnson, Bruce G.; Misovec, Kathleen
1988-08-01
Research on the synchronous response modelling and control of an advanced Annular Momentun Control Device (AMCD) used to control the attitude of a spacecraft is described. For the flexible rotor AMCD, two sources of synchronous vibrations were identified. One source, which corresponds to the mass unbalance problem of rigid rotors suspended in conventional bearings, is caused by measurement errors of the rotor center of mass position. The other sources of synchronous vibrations is misalignment between the hub and flywheel masses of the AMCD. Four different control algorithms were examined. These were lead-lag compensators that mimic conventional bearing dynamics, tracking notch filters used in the feedback loop, tracking differential-notch filters, and model-based compensators. The tracking differential-notch filters were shown to have a number of advantages over more conventional approaches for both rigid-body rotor applications and flexible rotor applications such as the AMCD. Hardware implementation schemes for the tracking differential-notch filter were investigated. A simple design was developed that can be implemented with analog multipliers and low bandwidth, digital hardware.
Synchronous response modelling and control of an annular momentum control device
NASA Technical Reports Server (NTRS)
Hockney, Richard; Johnson, Bruce G.; Misovec, Kathleen
1988-01-01
Research on the synchronous response modelling and control of an advanced Annular Momentun Control Device (AMCD) used to control the attitude of a spacecraft is described. For the flexible rotor AMCD, two sources of synchronous vibrations were identified. One source, which corresponds to the mass unbalance problem of rigid rotors suspended in conventional bearings, is caused by measurement errors of the rotor center of mass position. The other sources of synchronous vibrations is misalignment between the hub and flywheel masses of the AMCD. Four different control algorithms were examined. These were lead-lag compensators that mimic conventional bearing dynamics, tracking notch filters used in the feedback loop, tracking differential-notch filters, and model-based compensators. The tracking differential-notch filters were shown to have a number of advantages over more conventional approaches for both rigid-body rotor applications and flexible rotor applications such as the AMCD. Hardware implementation schemes for the tracking differential-notch filter were investigated. A simple design was developed that can be implemented with analog multipliers and low bandwidth, digital hardware.
An adaptive critic-based scheme for consensus control of nonlinear multi-agent systems
NASA Astrophysics Data System (ADS)
Heydari, Ali; Balakrishnan, S. N.
2014-12-01
The problem of decentralised consensus control of a network of heterogeneous nonlinear systems is formulated as an optimal tracking problem and a solution is proposed using an approximate dynamic programming based neurocontroller. The neurocontroller training comprises an initial offline training phase and an online re-optimisation phase to account for the fact that the reference signal subject to tracking is not fully known and available ahead of time, i.e., during the offline training phase. As long as the dynamics of the agents are controllable, and the communication graph has a directed spanning tree, this scheme guarantees the synchronisation/consensus even under switching communication topology and directed communication graph. Finally, an aerospace application is selected for the evaluation of the performance of the method. Simulation results demonstrate the potential of the scheme.
Eccentricity and argument of perigee control for orbits with repeat ground tracks
NASA Technical Reports Server (NTRS)
Vincent, Mark A.
1992-01-01
In order to gain an understanding into the problem of eccentricity (e) and argument of perigee (omega) control for TOPEX/Poseidon, the two cases where the highest latitude crossing time and one of the equator crossings are held constant are investigated. Variations in e and omega cause a significant effect on the satellite's ground-track repeatability. Maintaining e and omega near their frozen values will minimize this variation. Analytical expressions are found to express this relationship while keeping an arbitrary point of the ground track fixed. The initial offset of the ground track from its nominal path determines the subsequent evolution of e and omega about their frozen values. This long-term behavior is numerically determined using an earth gravitational field including the first 17 zonal harmonics. The numerical results are plotted together with the analytical constraints to see if the later values of e and omega cause unacceptable deviation in the ground track.
NASA Astrophysics Data System (ADS)
Han, Ke-Zhen; Feng, Jian; Cui, Xiaohong
2017-10-01
This paper considers the fault-tolerant optimised tracking control (FTOTC) problem for unknown discrete-time linear system. A research scheme is proposed on the basis of data-based parity space identification, reinforcement learning and residual compensation techniques. The main characteristic of this research scheme lies in the parity-space-identification-based simultaneous tracking control and residual compensation. The specific technical line consists of four main contents: apply subspace aided method to design observer-based residual generator; use reinforcement Q-learning approach to solve optimised tracking control policy; rely on robust H∞ theory to achieve noise attenuation; adopt fault estimation triggered by residual generator to perform fault compensation. To clarify the design and implementation procedures, an integrated algorithm is further constructed to link up these four functional units. The detailed analysis and proof are subsequently given to explain the guaranteed FTOTC performance of the proposed conclusions. Finally, a case simulation is provided to verify its effectiveness.
Sensor Compromise Detection in Multiple-Target Tracking Systems
Doucette, Emily A.; Curtis, Jess W.
2018-01-01
Tracking multiple targets using a single estimator is a problem that is commonly approached within a trusted framework. There are many weaknesses that an adversary can exploit if it gains control over the sensors. Because the number of targets that the estimator has to track is not known with anticipation, an adversary could cause a loss of information or a degradation in the tracking precision. Other concerns include the introduction of false targets, which would result in a waste of computational and material resources, depending on the application. In this work, we study the problem of detecting compromised or faulty sensors in a multiple-target tracker, starting with the single-sensor case and then considering the multiple-sensor scenario. We propose an algorithm to detect a variety of attacks in the multiple-sensor case, via the application of finite set statistics (FISST), one-class classifiers and hypothesis testing using nonparametric techniques. PMID:29466314
NASA Technical Reports Server (NTRS)
Halyo, Nesim
1987-01-01
A combined stochastic feedforward and feedback control design methodology was developed. The objective of the feedforward control law is to track the commanded trajectory, whereas the feedback control law tries to maintain the plant state near the desired trajectory in the presence of disturbances and uncertainties about the plant. The feedforward control law design is formulated as a stochastic optimization problem and is embedded into the stochastic output feedback problem where the plant contains unstable and uncontrollable modes. An algorithm to compute the optimal feedforward is developed. In this approach, the use of error integral feedback, dynamic compensation, control rate command structures are an integral part of the methodology. An incremental implementation is recommended. Results on the eigenvalues of the implemented versus designed control laws are presented. The stochastic feedforward/feedback control methodology is used to design a digital automatic landing system for the ATOPS Research Vehicle, a Boeing 737-100 aircraft. The system control modes include localizer and glideslope capture and track, and flare to touchdown. Results of a detailed nonlinear simulation of the digital control laws, actuator systems, and aircraft aerodynamics are presented.
Large scale systems : a study of computer organizations for air traffic control applications.
DOT National Transportation Integrated Search
1971-06-01
Based on current sizing estimates and tracking algorithms, some computer organizations applicable to future air traffic control computing systems are described and assessed. Hardware and software problem areas are defined and solutions are outlined.
Experimental and Theoretical Results in Output Trajectory Redesign for Flexible Structures
NASA Technical Reports Server (NTRS)
Dewey, J. S.; Leang, K.; Devasia, S.
1998-01-01
In this paper we study the optimal redesign of output trajectories for linear invertible systems. This is particularly important for tracking control of flexible structures because the input-state trajectores, that achieve tracking of the required output may cause excessive vibrations in the structure. We pose and solve this problem, in the context of linear systems, as the minimization of a quadratic cost function. The theory is developed and applied to the output tracking of a flexible structure and experimental results are presented.
An Optimal Control Modification to Model-Reference Adaptive Control for Fast Adaptation
NASA Technical Reports Server (NTRS)
Nguyen, Nhan T.; Krishnakumar, Kalmanje; Boskovic, Jovan
2008-01-01
This paper presents a method that can achieve fast adaptation for a class of model-reference adaptive control. It is well-known that standard model-reference adaptive control exhibits high-gain control behaviors when a large adaptive gain is used to achieve fast adaptation in order to reduce tracking error rapidly. High gain control creates high-frequency oscillations that can excite unmodeled dynamics and can lead to instability. The fast adaptation approach is based on the minimization of the squares of the tracking error, which is formulated as an optimal control problem. The necessary condition of optimality is used to derive an adaptive law using the gradient method. This adaptive law is shown to result in uniform boundedness of the tracking error by means of the Lyapunov s direct method. Furthermore, this adaptive law allows a large adaptive gain to be used without causing undesired high-gain control effects. The method is shown to be more robust than standard model-reference adaptive control. Simulations demonstrate the effectiveness of the proposed method.
NASA Astrophysics Data System (ADS)
Zhou, Danfeng; Yu, Peichang; Wang, Lianchun; Li, Jie
2017-11-01
The levitation gap of the urban maglev train is around 8 mm, which puts a rather high requirement on the smoothness of the track. In practice, it is found that the track irregularity may cause stability problems when the maglev train is traveling. In this paper, the dynamic response of the levitation module, which is the basic levitation structure of the urban maglev train, is investigated in the presence of track irregularities. Analyses show that due to the structural configuration of the levitation module, the vibration of the levitation gap may be amplified and "resonances" may be observed under some specified track wavelengths and train speeds; besides, it is found that the gap vibration of the rear levitation unit in a levitation module is more significant than that of the front levitation unit, which agrees well with practice. To suppress the vibration of the rear levitation gap, an adaptive vibration control method is proposed, which utilizes the information of the front levitation unit as a reference. A pair of mirror FIR (finite impulse response) filters are designed and tuned by an adaptive mechanism, and they produce a compensation signal for the rear levitation controller to cancel the disturbance brought by the track irregularity. Simulations under some typical track conditions, including the sinusoidal track profile, random track irregularity, as well as track steps, indicate that the adaptive vibration control scheme can significantly reduce the amplitude of the rear gap vibration, which provides a method to improve the stability and ride comfort of the maglev train.
Xingling, Shao; Honglun, Wang
2014-11-01
This paper proposes a novel hybrid control framework by combing observer-based sliding mode control (SMC) with trajectory linearization control (TLC) for hypersonic reentry vehicle (HRV) attitude tracking problem. First, fewer control consumption is achieved using nonlinear tracking differentiator (TD) in the attitude loop. Second, a novel SMC that employs extended disturbance observer (EDO) to counteract the effect of uncertainties using a new sliding surface which includes the estimation error is integrated to address the tracking error stabilization issues in the attitude and angular rate loop, respectively. In addition, new results associated with EDO are examined in terms of dynamic response and noise-tolerant performance, as well as estimation accuracy. The key feature of the proposed compound control approach is that chattering free tracking performance with high accuracy can be ensured for HRV in the presence of multiple uncertainties under control constraints. Based on finite time convergence stability theory, the stability of the resulting closed-loop system is well established. Also, comparisons and extensive simulation results are presented to demonstrate the effectiveness of the control strategy. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
Reusable Launch Vehicle Control in Multiple Time Scale Sliding Modes
NASA Technical Reports Server (NTRS)
Shtessel, Yuri
1999-01-01
A reusable launch vehicle control problem during ascent is addressed via multiple-time scaled continuous sliding mode control. The proposed sliding mode controller utilizes a two-loop structure and provides robust, de-coupled tracking of both orientation angle command profiles and angular rate command profiles in the presence of bounded external disturbances and plant uncertainties. Sliding mode control causes the angular rate and orientation angle tracking error dynamics to be constrained to linear, de-coupled, homogeneous, and vector valued differential equations with desired eigenvalues placement. The dual-time scale sliding mode controller was designed for the X-33 technology demonstration sub-orbital launch vehicle in the launch mode. 6DOF simulation results show that the designed controller provides robust, accurate, de-coupled tracking of the orientation angle command profiles in presence of external disturbances and vehicle inertia uncertainties. It creates possibility to operate the X-33 vehicle in an aircraft-like mode with reduced pre-launch adjustment of the control system.
Wang, Tong; Gao, Huijun; Qiu, Jianbin
2016-02-01
This paper investigates the multirate networked industrial process control problem in double-layer architecture. First, the output tracking problem for sampled-data nonlinear plant at device layer with sampling period T(d) is investigated using adaptive neural network (NN) control, and it is shown that the outputs of subsystems at device layer can track the decomposed setpoints. Then, the outputs and inputs of the device layer subsystems are sampled with sampling period T(u) at operation layer to form the index prediction, which is used to predict the overall performance index at lower frequency. Radial basis function NN is utilized as the prediction function due to its approximation ability. Then, considering the dynamics of the overall closed-loop system, nonlinear model predictive control method is proposed to guarantee the system stability and compensate the network-induced delays and packet dropouts. Finally, a continuous stirred tank reactor system is given in the simulation part to demonstrate the effectiveness of the proposed method.
Distributed cluster management techniques for unattended ground sensor networks
NASA Astrophysics Data System (ADS)
Essawy, Magdi A.; Stelzig, Chad A.; Bevington, James E.; Minor, Sharon
2005-05-01
Smart Sensor Networks are becoming important target detection and tracking tools. The challenging problems in such networks include the sensor fusion, data management and communication schemes. This work discusses techniques used to distribute sensor management and multi-target tracking responsibilities across an ad hoc, self-healing cluster of sensor nodes. Although miniaturized computing resources possess the ability to host complex tracking and data fusion algorithms, there still exist inherent bandwidth constraints on the RF channel. Therefore, special attention is placed on the reduction of node-to-node communications within the cluster by minimizing unsolicited messaging, and distributing the sensor fusion and tracking tasks onto local portions of the network. Several challenging problems are addressed in this work including track initialization and conflict resolution, track ownership handling, and communication control optimization. Emphasis is also placed on increasing the overall robustness of the sensor cluster through independent decision capabilities on all sensor nodes. Track initiation is performed using collaborative sensing within a neighborhood of sensor nodes, allowing each node to independently determine if initial track ownership should be assumed. This autonomous track initiation prevents the formation of duplicate tracks while eliminating the need for a central "management" node to assign tracking responsibilities. Track update is performed as an ownership node requests sensor reports from neighboring nodes based on track error covariance and the neighboring nodes geo-positional location. Track ownership is periodically recomputed using propagated track states to determine which sensing node provides the desired coverage characteristics. High fidelity multi-target simulation results are presented, indicating the distribution of sensor management and tracking capabilities to not only reduce communication bandwidth consumption, but to also simplify multi-target tracking within the cluster.
Dealing with the time-varying parameter problem of robot manipulators performing path tracking tasks
NASA Technical Reports Server (NTRS)
Song, Y. D.; Middleton, R. H.
1992-01-01
Many robotic applications involve time-varying payloads during the operation of the robot. It is therefore of interest to consider control schemes that deal with time-varying parameters. Using the properties of the element by element (or Hadarmad) product of matrices, we obtain the robot dynamics in parameter-isolated form, from which a new control scheme is developed. The controller proposed yields zero asymptotic tracking errors when applied to robotic systems with time-varying parameters by using a switching type control law. The results obtained are global in the initial state of the robot, and can be applied to rapidly varying systems.
Dynamic inverse models in human-cyber-physical systems
NASA Astrophysics Data System (ADS)
Robinson, Ryan M.; Scobee, Dexter R. R.; Burden, Samuel A.; Sastry, S. Shankar
2016-05-01
Human interaction with the physical world is increasingly mediated by automation. This interaction is characterized by dynamic coupling between robotic (i.e. cyber) and neuromechanical (i.e. human) decision-making agents. Guaranteeing performance of such human-cyber-physical systems will require predictive mathematical models of this dynamic coupling. Toward this end, we propose a rapprochement between robotics and neuromechanics premised on the existence of internal forward and inverse models in the human agent. We hypothesize that, in tele-robotic applications of interest, a human operator learns to invert automation dynamics, directly translating from desired task to required control input. By formulating the model inversion problem in the context of a tracking task for a nonlinear control system in control-a_ne form, we derive criteria for exponential tracking and show that the resulting dynamic inverse model generally renders a portion of the physical system state (i.e., the internal dynamics) unobservable from the human operator's perspective. Under stability conditions, we show that the human can achieve exponential tracking without formulating an estimate of the system's state so long as they possess an accurate model of the system's dynamics. These theoretical results are illustrated using a planar quadrotor example. We then demonstrate that the automation can intervene to improve performance of the tracking task by solving an optimal control problem. Performance is guaranteed to improve under the assumption that the human learns and inverts the dynamic model of the altered system. We conclude with a discussion of practical limitations that may hinder exact dynamic model inversion.
Wang, Dandan; Zong, Qun; Tian, Bailing; Shao, Shikai; Zhang, Xiuyun; Zhao, Xinyi
2018-02-01
The distributed finite-time formation tracking control problem for multiple unmanned helicopters is investigated in this paper. The control object is to maintain the positions of follower helicopters in formation with external interferences. The helicopter model is divided into a second order outer-loop subsystem and a second order inner-loop subsystem based on multiple-time scale features. Using radial basis function neural network (RBFNN) technique, we first propose a novel finite-time multivariable neural network disturbance observer (FMNNDO) to estimate the external disturbance and model uncertainty, where the neural network (NN) approximation errors can be dynamically compensated by adaptive law. Next, based on FMNNDO, a distributed finite-time formation tracking controller and a finite-time attitude tracking controller are designed using the nonsingular fast terminal sliding mode (NFTSM) method. In order to estimate the second derivative of the virtual desired attitude signal, a novel finite-time sliding mode integral filter is designed. Finally, Lyapunov analysis and multiple-time scale principle ensure the realization of control goal in finite-time. The effectiveness of the proposed FMNNDO and controllers are then verified by numerical simulations. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Adaptive Flight Control Design with Optimal Control Modification on an F-18 Aircraft Model
NASA Technical Reports Server (NTRS)
Burken, John J.; Nguyen, Nhan T.; Griffin, Brian J.
2010-01-01
In the presence of large uncertainties, a control system needs to be able to adapt rapidly to regain performance. Fast adaptation is referred to as the implementation of adaptive control with a large adaptive gain to reduce the tracking error rapidly; however, a large adaptive gain can lead to high-frequency oscillations which can adversely affect the robustness of an adaptive control law. A new adaptive control modification is presented that can achieve robust adaptation with a large adaptive gain without incurring high-frequency oscillations as with the standard model-reference adaptive control. The modification is based on the minimization of the Y2 norm of the tracking error, which is formulated as an optimal control problem. The optimality condition is used to derive the modification using the gradient method. The optimal control modification results in a stable adaptation and allows a large adaptive gain to be used for better tracking while providing sufficient robustness. A damping term (v) is added in the modification to increase damping as needed. Simulations were conducted on a damaged F-18 aircraft (McDonnell Douglas, now The Boeing Company, Chicago, Illinois) with both the standard baseline dynamic inversion controller and the adaptive optimal control modification technique. The results demonstrate the effectiveness of the proposed modification in tracking a reference model.
NASA Astrophysics Data System (ADS)
Meng, Deyuan; Tao, Guoliang; Liu, Hao; Zhu, Xiaocong
2014-07-01
Friction compensation is particularly important for motion trajectory tracking control of pneumatic cylinders at low speed movement. However, most of the existing model-based friction compensation schemes use simple classical models, which are not enough to address applications with high-accuracy position requirements. Furthermore, the friction force in the cylinder is time-varying, and there exist rather severe unmodelled dynamics and unknown disturbances in the pneumatic system. To deal with these problems effectively, an adaptive robust controller with LuGre model-based dynamic friction compensation is constructed. The proposed controller employs on-line recursive least squares estimation (RLSE) to reduce the extent of parametric uncertainties, and utilizes the sliding mode control method to attenuate the effects of parameter estimation errors, unmodelled dynamics and disturbances. In addition, in order to realize LuGre model-based friction compensation, the modified dual-observer structure for estimating immeasurable friction internal state is developed. Therefore, a prescribed motion tracking transient performance and final tracking accuracy can be guaranteed. Since the system model uncertainties are unmatched, the recursive backstepping design technology is applied. In order to solve the conflicts between the sliding mode control design and the adaptive control design, the projection mapping is used to condition the RLSE algorithm so that the parameter estimates are kept within a known bounded convex set. Finally, the proposed controller is tested for tracking sinusoidal trajectories and smooth square trajectory under different loads and sudden disturbance. The testing results demonstrate that the achievable performance of the proposed controller is excellent and is much better than most other studies in literature. Especially when a 0.5 Hz sinusoidal trajectory is tracked, the maximum tracking error is 0.96 mm and the average tracking error is 0.45 mm. This paper constructs an adaptive robust controller which can compensate the friction force in the cylinder.
Adaptive fixed-time trajectory tracking control of a stratospheric airship.
Zheng, Zewei; Feroskhan, Mir; Sun, Liang
2018-05-01
This paper addresses the fixed-time trajectory tracking control problem of a stratospheric airship. By extending the method of adding a power integrator to a novel adaptive fixed-time control method, the convergence of a stratospheric airship to its reference trajectory is guaranteed to be achieved within a fixed time. The control algorithm is firstly formulated without the consideration of external disturbances to establish the stability of the closed-loop system in fixed-time and demonstrate that the convergence time of the airship is essentially independent of its initial conditions. Subsequently, a smooth adaptive law is incorporated into the proposed fixed-time control framework to provide the system with robustness to external disturbances. Theoretical analyses demonstrate that under the adaptive fixed-time controller, the tracking errors will converge towards a residual set in fixed-time. The results of a comparative simulation study with other recent methods illustrate the remarkable performance and superiority of the proposed control method. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.
Modeling human target acquisition in ground-to-air weapon systems
NASA Technical Reports Server (NTRS)
Phatak, A. V.; Mohr, R. L.; Vikmanis, M.; Wei, K. C.
1982-01-01
The problems associated with formulating and validating mathematical models for describing and predicting human target acquisition response are considered. In particular, the extension of the human observer model to include the acquisition phase as well as the tracking segment is presented. Relationship of the Observer model structure to the more complex Standard Optimal Control model formulation and to the simpler Transfer Function/Noise representation is discussed. Problems pertinent to structural identifiability and the form of the parameterization are elucidated. A systematic approach toward the identification of the observer acquisition model parameters from ensemble tracking error data is presented.
Xiong, Wenjun; Yu, Xinghuo; Chen, Yao; Gao, Jie
2017-06-01
This brief investigates the quantized iterative learning problem for digital networks with time-varying topologies. The information is first encoded as symbolic data and then transmitted. After the data are received, a decoder is used by the receiver to get an estimate of the sender's state. Iterative learning quantized communication is considered in the process of encoding and decoding. A sufficient condition is then presented to achieve the consensus tracking problem in a finite interval using the quantized iterative learning controllers. Finally, simulation results are given to illustrate the usefulness of the developed criterion.
Application of simple adaptive control to water hydraulic servo cylinder system
NASA Astrophysics Data System (ADS)
Ito, Kazuhisa; Yamada, Tsuyoshi; Ikeo, Shigeru; Takahashi, Koji
2012-09-01
Although conventional model reference adaptive control (MRAC) achieves good tracking performance for cylinder control, the controller structure is much more complicated and has less robustness to disturbance in real applications. This paper discusses the use of simple adaptive control (SAC) for positioning a water hydraulic servo cylinder system. Compared with MRAC, SAC has a simpler and lower order structure, i.e., higher feasibility. The control performance of SAC is examined and evaluated on a water hydraulic servo cylinder system. With the recent increased concerns over global environmental problems, the water hydraulic technique using pure tap water as a pressure medium has become a new drive source comparable to electric, oil hydraulic, and pneumatic drive systems. This technique is also preferred because of its high power density, high safety against fire hazards in production plants, and easy availability. However, the main problems for precise control in a water hydraulic system are steady state errors and overshoot due to its large friction torque and considerable leakage flow. MRAC has been already applied to compensate for these effects, and better control performances have been obtained. However, there have been no reports on the application of SAC for water hydraulics. To make clear the merits of SAC, the tracking control performance and robustness are discussed based on experimental results. SAC is confirmed to give better tracking performance compared with PI control, and a control precision comparable to MRAC (within 10 μm of the reference position) and higher robustness to parameter change, despite the simple controller. The research results ensure a wider application of simple adaptive control in real mechanical systems.
Data to Action: Using Environmental Public Health Tracking to Inform Decision Making
Qualters, Judith R; Strosnider, Heather M; Bell, Rosalyn
2017-01-01
Context Public health surveillance includes dissemination of data and information to those who need it to take action to prevent or control disease. The concept of data to action is explicit in the mission of the Centers for Disease Control and Prevention’s (CDC) National Environmental Public Health Tracking Program (Tracking Program). CDC has built a National Environmental Public Health Tracking Network (Tracking Network) to integrate health and environmental data to drive public health action (PHA) to improve communities’ health. Objective To assess the utility of the Tracking Program and its Network in environmental public health practice and policy-making. Design We analyzed information on how Tracking has been used to drive PHAs within funded states and cities (grantees). Two case studies illustrate such use. Setting Analyses included all grantees funded between 2005 and 2013. Participants The number of grantees varied from 17 for 2006–2008 to 24 for 2010–2013. Main Outcome Measures We categorized each PHA reported to determine how grantees became involved, their role, the problems addressed, and the overall action. Results Tracking grantees reported 178 PHAs from 2006–2013. The most common overall action was “provided information in response to concern” (n=42) followed by “improved a public health program, intervention, or response plan” (n=35). Tracking’s role was most often to enhance surveillance (24%) or to analyze data (23%). In 47% of PHAs, the underlying problem was a concern about possible elevated rates of a health outcome, a potential exposure, or a potential association between a hazard and health. PHAs were started by a request for assistance (48%), in response to an emergency (8%), and though routine work by Tracking programs (43%). Conclusion Our review shows that the data, expertise, technical infrastructure, and other resources of the Tracking Program and its Network are driving state and local PHAs. PMID:25621441
Air traffic surveillance and control using hybrid estimation and protocol-based conflict resolution
NASA Astrophysics Data System (ADS)
Hwang, Inseok
The continued growth of air travel and recent advances in new technologies for navigation, surveillance, and communication have led to proposals by the Federal Aviation Administration (FAA) to provide reliable and efficient tools to aid Air Traffic Control (ATC) in performing their tasks. In this dissertation, we address four problems frequently encountered in air traffic surveillance and control; multiple target tracking and identity management, conflict detection, conflict resolution, and safety verification. We develop a set of algorithms and tools to aid ATC; These algorithms have the provable properties of safety, computational efficiency, and convergence. Firstly, we develop a multiple-maneuvering-target tracking and identity management algorithm which can keep track of maneuvering aircraft in noisy environments and of their identities. Secondly, we propose a hybrid probabilistic conflict detection algorithm between multiple aircraft which uses flight mode estimates as well as aircraft current state estimates. Our algorithm is based on hybrid models of aircraft, which incorporate both continuous dynamics and discrete mode switching. Thirdly, we develop an algorithm for multiple (greater than two) aircraft conflict avoidance that is based on a closed-form analytic solution and thus provides guarantees of safety. Finally, we consider the problem of safety verification of control laws for safety critical systems, with application to air traffic control systems. We approach safety verification through reachability analysis, which is a computationally expensive problem. We develop an over-approximate method for reachable set computation using polytopic approximation methods and dynamic optimization. These algorithms may be used either in a fully autonomous way, or as supporting tools to increase controllers' situational awareness and to reduce their work load.
Observed-Based Adaptive Fuzzy Tracking Control for Switched Nonlinear Systems With Dead-Zone.
Tong, Shaocheng; Sui, Shuai; Li, Yongming
2015-12-01
In this paper, the problem of adaptive fuzzy output-feedback control is investigated for a class of uncertain switched nonlinear systems in strict-feedback form. The considered switched systems contain unknown nonlinearities, dead-zone, and immeasurable states. Fuzzy logic systems are utilized to approximate the unknown nonlinear functions, a switched fuzzy state observer is designed and thus the immeasurable states are obtained by it. By applying the adaptive backstepping design principle and the average dwell time method, an adaptive fuzzy output-feedback tracking control approach is developed. It is proved that the proposed control approach can guarantee that all the variables in the closed-loop system are bounded under a class of switching signals with average dwell time, and also that the system output can track a given reference signal as closely as possible. The simulation results are given to check the effectiveness of the proposed approach.
NASA Astrophysics Data System (ADS)
Jie, Cao; Zhi-Hai, Wu; Li, Peng
2016-05-01
This paper investigates the consensus tracking problems of second-order multi-agent systems with a virtual leader via event-triggered control. A novel distributed event-triggered transmission scheme is proposed, which is intermittently examined at constant sampling instants. Only partial neighbor information and local measurements are required for event detection. Then the corresponding event-triggered consensus tracking protocol is presented to guarantee second-order multi-agent systems to achieve consensus tracking. Numerical simulations are given to illustrate the effectiveness of the proposed strategy. Project supported by the National Natural Science Foundation of China (Grant Nos. 61203147, 61374047, and 61403168).
Cooperative Robots to Observe Moving Targets: Review.
Khan, Asif; Rinner, Bernhard; Cavallaro, Andrea
2018-01-01
The deployment of multiple robots for achieving a common goal helps to improve the performance, efficiency, and/or robustness in a variety of tasks. In particular, the observation of moving targets is an important multirobot application that still exhibits numerous open challenges, including the effective coordination of the robots. This paper reviews control techniques for cooperative mobile robots monitoring multiple targets. The simultaneous movement of robots and targets makes this problem particularly interesting, and our review systematically addresses this cooperative multirobot problem for the first time. We classify and critically discuss the control techniques: cooperative multirobot observation of multiple moving targets, cooperative search, acquisition, and track, cooperative tracking, and multirobot pursuit evasion. We also identify the five major elements that characterize this problem, namely, the coordination method, the environment, the target, the robot and its sensor(s). These elements are used to systematically analyze the control techniques. The majority of the studied work is based on simulation and laboratory studies, which may not accurately reflect real-world operational conditions. Importantly, while our systematic analysis is focused on multitarget observation, our proposed classification is useful also for related multirobot applications.
Adaptive boundary concentration control using Zakai equation
NASA Astrophysics Data System (ADS)
Tenno, R.; Mendelson, A.
2010-06-01
A mean-variance control problem is formulated with respect to a partially observed nonlinear system that includes unknown constant parameters. A physical prototype of the system is the cathode surface reaction in an electrolysis cell, where the controller aim is to keep the boundary concentration of species in the near vicinity of the cathode surface low but not zero. The boundary concentration is a diffusion-controlled process observed through the measured current density and, in practice, controlled through the applied voltage. The former incomplete data control problem is converted to complete data-to the so-called separated control problem whose solution is given by the infinite-dimensional Zakai equation. In this article, the separated control problem is solved numerically using pathwise integration of the Zakai equation. This article demonstrates precise tracking of the target trajectory with a rapid convergence of estimates to unknown parameters, which take place simultaneously with control.
Niu, Jie; Yang, Qianqian; Wang, Xiaoyun; Song, Rong
2017-01-01
Robot-aided rehabilitation has become an important technology to restore and reinforce motor functions of patients with extremity impairment, whereas it can be extremely challenging to achieve satisfactory tracking performance due to uncertainties and disturbances during rehabilitation training. In this paper, a wire-driven rehabilitation robot that can work over a three-dimensional space is designed for upper-limb rehabilitation, and sliding mode control with nonlinear disturbance observer is designed for the robot to deal with the problem of unpredictable disturbances during robot-assisted training. Then, simulation and experiments of trajectory tracking are carried out to evaluate the performance of the system, the position errors, and the output forces of the designed control scheme are compared with those of the traditional sliding mode control (SMC) scheme. The results show that the designed control scheme can effectively reduce the tracking errors and chattering of the output forces as compared with the traditional SMC scheme, which indicates that the nonlinear disturbance observer can reduce the effect of unpredictable disturbances. The designed control scheme for the wire-driven rehabilitation robot has potential to assist patients with stroke in performing repetitive rehabilitation training.
NASA Astrophysics Data System (ADS)
Zalogin, Stanislav M.; Zalogin, M. S.
1997-02-01
The problem for construction of control algorithm in OEST the information track of the optical record carrier the realization of which is based on the use of accelerations is considered. Such control algorithms render the designed system the properties of adaptability, feeble sensitivity to the system parameter change and the action of disturbing forces what gives known advantages to information carriers with such system under operation in hard climate conditions as well as at maladjustment, workpieces wear and change of friction in the system. In the paper are investigated dynamic characteristics of a closed OEST, it is shown, that the designed stable system with given quality indices is a high-precision one. The validated recommendations as to design of control algorithms parameters are confirmed by results of mathematical simulation of controlled processes. The proposed methods for OEST synthesis on the basis of the control acceleration principle can be recommended for the use at industrial production of optical information record carriers.
Choi, Yun Ho; Yoo, Sung Jin
2018-06-01
This paper investigates the event-triggered decentralized adaptive tracking problem of a class of uncertain interconnected nonlinear systems with unexpected actuator failures. It is assumed that local control signals are transmitted to local actuators with time-varying faults whenever predefined conditions for triggering events are satisfied. Compared with the existing control-input-based event-triggering strategy for adaptive control of uncertain nonlinear systems, the aim of this paper is to propose a tracking-error-based event-triggering strategy in the decentralized adaptive fault-tolerant tracking framework. The proposed approach can relax drastic changes in control inputs caused by actuator faults in the existing triggering strategy. The stability of the proposed event-triggering control system is analyzed in the Lyapunov sense. Finally, simulation comparisons of the proposed and existing approaches are provided to show the effectiveness of the proposed theoretical result in the presence of actuator faults. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.
Choi, Yun Ho; Yoo, Sung Jin
2017-03-28
A minimal-approximation-based distributed adaptive consensus tracking approach is presented for strict-feedback multiagent systems with unknown heterogeneous nonlinearities and control directions under a directed network. Existing approximation-based consensus results for uncertain nonlinear multiagent systems in lower-triangular form have used multiple function approximators in each local controller to approximate unmatched nonlinearities of each follower. Thus, as the follower's order increases, the number of the approximators used in its local controller increases. However, the proposed approach employs only one function approximator to construct the local controller of each follower regardless of the order of the follower. The recursive design methodology using a new error transformation is derived for the proposed minimal-approximation-based design. Furthermore, a bounding lemma on parameters of Nussbaum functions is presented to handle the unknown control direction problem in the minimal-approximation-based distributed consensus tracking framework and the stability of the overall closed-loop system is rigorously analyzed in the Lyapunov sense.
Control strategy of grid-connected photovoltaic generation system based on GMPPT method
NASA Astrophysics Data System (ADS)
Wang, Zhongfeng; Zhang, Xuyang; Hu, Bo; Liu, Jun; Li, Ligang; Gu, Yongqiang; Zhou, Bowen
2018-02-01
There are multiple local maximum power points when photovoltaic (PV) array runs under partial shading condition (PSC).However, the traditional maximum power point tracking (MPPT) algorithm might be easily trapped in local maximum power points (MPPs) and cannot find the global maximum power point (GMPP). To solve such problem, a global maximum power point tracking method (GMPPT) is improved, combined with traditional MPPT method and particle swarm optimization (PSO) algorithm. Under different operating conditions of PV cells, different tracking algorithms are used. When the environment changes, the improved PSO algorithm is adopted to realize the global optimal search, and the variable step incremental conductance (INC) method is adopted to achieve MPPT in optimal local location. Based on the simulation model of the PV grid system built in Matlab/Simulink, comparative analysis of the tracking effect of MPPT by the proposed control algorithm and the traditional MPPT method under the uniform solar condition and PSC, validate the correctness, feasibility and effectiveness of the proposed control strategy.
Experimental and Theoretical Results in Output-Trajectory Redesign for Flexible Structures
NASA Technical Reports Server (NTRS)
Dewey, J. S.; Devasia, Santosh
1996-01-01
In this paper we study the optimal redesign of output trajectory for linear invertible systems. This is particularly important for tracking control of flexible structures because the input-state trajectories that achieve the required output may cause excessive vibrations in the structure. A trade-off is then required between tracking and vibrations reduction. We pose and solve this problem as the minimization of a quadratic cost function. The theory is developed and applied to the output tracking of a flexible structure and experimental results are presented.
Finite-time tracking control for multiple non-holonomic mobile robots based on visual servoing
NASA Astrophysics Data System (ADS)
Ou, Meiying; Li, Shihua; Wang, Chaoli
2013-12-01
This paper investigates finite-time tracking control problem of multiple non-holonomic mobile robots via visual servoing. It is assumed that the pinhole camera is fixed to the ceiling, and camera parameters are unknown. The desired reference trajectory is represented by a virtual leader whose states are available to only a subset of the followers, and the followers have only interaction. First, the camera-objective visual kinematic model is introduced by utilising the pinhole camera model for each mobile robot. Second, a unified tracking error system between camera-objective visual servoing model and desired reference trajectory is introduced. Third, based on the neighbour rule and by using finite-time control method, continuous distributed cooperative finite-time tracking control laws are designed for each mobile robot with unknown camera parameters, where the communication topology among the multiple mobile robots is assumed to be a directed graph. Rigorous proof shows that the group of mobile robots converges to the desired reference trajectory in finite time. Simulation example illustrates the effectiveness of our method.
NASA Astrophysics Data System (ADS)
Fu, Junjie; Wang, Jin-zhi
2017-09-01
In this paper, we study the finite-time consensus problems with globally bounded convergence time also known as fixed-time consensus problems for multi-agent systems subject to directed communication graphs. Two new distributed control strategies are proposed such that leaderless and leader-follower consensus are achieved with convergence time independent on the initial conditions of the agents. Fixed-time formation generation and formation tracking problems are also solved as the generalizations. Simulation examples are provided to demonstrate the performance of the new controllers.
Two Reconfigurable Flight-Control Design Methods: Robust Servomechanism and Control Allocation
NASA Technical Reports Server (NTRS)
Burken, John J.; Lu, Ping; Wu, Zheng-Lu; Bahm, Cathy
2001-01-01
Two methods for control system reconfiguration have been investigated. The first method is a robust servomechanism control approach (optimal tracking problem) that is a generalization of the classical proportional-plus-integral control to multiple input-multiple output systems. The second method is a control-allocation approach based on a quadratic programming formulation. A globally convergent fixed-point iteration algorithm has been developed to make onboard implementation of this method feasible. These methods have been applied to reconfigurable entry flight control design for the X-33 vehicle. Examples presented demonstrate simultaneous tracking of angle-of-attack and roll angle commands during failures of the fight body flap actuator. Although simulations demonstrate success of the first method in most cases, the control-allocation method appears to provide uniformly better performance in all cases.
NASA Technical Reports Server (NTRS)
Erikson, Carol-Lee; Hooker, Peggy
1989-01-01
The Power and Attitude Control Expert System (PACES) is an object oriented and rule based expert system which provides spacecraft engineers with assistance in isolating and correcting problems within the Power and Attitude Control Subsystems of the Tracking and Data Relay Satellites (TDRS). PACES is designed to act in a consultant role. It will not interface to telemetry data, thus preserving full operator control over spacecraft operations. The spacecraft engineer will input requested information. This information will include telemetry data, action being performed, problem characteristics, spectral characteristics, and judgments of spacecraft functioning. Questions are answered either by clicking on appropriate responses (for text), or entering numeric values. A context sensitive help facility allows access to additional information when the user has difficulty understanding a question or deciding on an answer. The major functionality of PACES is to act as a knowledge rich system which includes block diagrams, text, and graphics, linked using hypermedia techniques. This allows easy movement among pieces of the knowledge. Considerable documentation of the spacecraft Power and Attitude Control Subsystems is embedded within PACES. The development phase of TDRSS expert system technology is intended to provide NASA with the necessary expertise and capability to define requirements, evaluate proposals, and monitor the development progress of a highly competent expert system for NASA's Tracking and Data Relay Satellite Program.
Developmental Mediation of Genetic Variation in Response to the Fast Track Prevention Program
Albert, Dustin; Belsky, Daniel W.; Crowley, D. Max; Bates, John E.; Pettit, Gregory S.; Lansford, Jennifer E.; Dick, Danielle; Dodge, Kenneth A.
2015-01-01
We conducted a developmental analysis of genetic moderation of the effect of the Fast Track intervention on adult externalizing psychopathology. The Fast Track intervention enrolled 891 children at high risk to develop externalizing behavior problems when they were in kindergarten. Half of the enrolled children were randomly assigned to receive 10 years of treatment with a range of services and resources provided to the children and their families and the other half to usual care (controls). We previously showed that the effect of the Fast Track intervention on participants’ risk of externalizing psychopathology at age 25 years was moderated by a variant in the Glucocorticoid Receptor Gene (NR3C1). Children who carried copies of the A-allele of the single-nucleotide polymorphism rs10482672 had the highest risk of externalizing psychopathology if they were in the control arm of the trial and the lowest risk of externalizing psychopathology if they were in the treatment arm. In this study, we test a developmental hypothesis about the origins of this for-better-and-for-worse gene-by-intervention interaction (GxI): That the observed GxI effect on adult psychopathology is mediated by the proximal impact of intervention on childhood externalizing problems and adolescent substance use and delinquency. We analyzed longitudinal data tracking the 270 European-American children in the Fast Track RCT with available genetic information (129 intervention children and 141 control-group peers, 69% male) from kindergarten through age 25 years. Results show that the same pattern of “for-better-and-for-worse” susceptibility to intervention observed at the age-25 follow-up was evident already during childhood. At the elementary school follow-ups and at the middle/high-school follow-ups, rs10482672 predicted better adjustment among children receiving the Fast Track intervention, and worse adjustment among children in the control condition. In turn, these proximal GxI effects early in development mediated the ultimate GxI effect on externalizing psychopathology at age 25 years. We discuss the contribution of these findings to the growing literature on genetic susceptibility to environmental intervention. PMID:25640832
Development and validation of a low-cost mobile robotics testbed
NASA Astrophysics Data System (ADS)
Johnson, Michael; Hayes, Martin J.
2012-03-01
This paper considers the design, construction and validation of a low-cost experimental robotic testbed, which allows for the localisation and tracking of multiple robotic agents in real time. The testbed system is suitable for research and education in a range of different mobile robotic applications, for validating theoretical as well as practical research work in the field of digital control, mobile robotics, graphical programming and video tracking systems. It provides a reconfigurable floor space for mobile robotic agents to operate within, while tracking the position of multiple agents in real-time using the overhead vision system. The overall system provides a highly cost-effective solution to the topical problem of providing students with practical robotics experience within severe budget constraints. Several problems encountered in the design and development of the mobile robotic testbed and associated tracking system, such as radial lens distortion and the selection of robot identifier templates are clearly addressed. The testbed performance is quantified and several experiments involving LEGO Mindstorm NXT and Merlin System MiaBot robots are discussed.
Hua, Yongzhao; Dong, Xiwang; Li, Qingdong; Ren, Zhang
2017-05-18
This paper investigates the time-varying formation robust tracking problems for high-order linear multiagent systems with a leader of unknown control input in the presence of heterogeneous parameter uncertainties and external disturbances. The followers need to accomplish an expected time-varying formation in the state space and track the state trajectory produced by the leader simultaneously. First, a time-varying formation robust tracking protocol with a totally distributed form is proposed utilizing the neighborhood state information. With the adaptive updating mechanism, neither any global knowledge about the communication topology nor the upper bounds of the parameter uncertainties, external disturbances and leader's unknown input are required in the proposed protocol. Then, in order to determine the control parameters, an algorithm with four steps is presented, where feasible conditions for the followers to accomplish the expected time-varying formation tracking are provided. Furthermore, based on the Lyapunov-like analysis theory, it is proved that the formation tracking error can converge to zero asymptotically. Finally, the effectiveness of the theoretical results is verified by simulation examples.
Zhang, Huaguang; Song, Ruizhuo; Wei, Qinglai; Zhang, Tieyan
2011-12-01
In this paper, a novel heuristic dynamic programming (HDP) iteration algorithm is proposed to solve the optimal tracking control problem for a class of nonlinear discrete-time systems with time delays. The novel algorithm contains state updating, control policy iteration, and performance index iteration. To get the optimal states, the states are also updated. Furthermore, the "backward iteration" is applied to state updating. Two neural networks are used to approximate the performance index function and compute the optimal control policy for facilitating the implementation of HDP iteration algorithm. At last, we present two examples to demonstrate the effectiveness of the proposed HDP iteration algorithm.
Output Control Using Feedforward And Cascade Controllers
NASA Technical Reports Server (NTRS)
Seraji, Homayoun
1990-01-01
Report presents theoretical study of open-loop control elements in single-input, single-output linear system. Focus on output-control (servomechanism) problem, in which objective is to find control scheme that causes output to track certain command inputs and to reject certain disturbance inputs in steady state. Report closes with brief discussion of characteristics and relative merits of feedforward, cascade, and feedback controllers and combinations thereof.
ERIC Educational Resources Information Center
McLawhorn, Kerry
2001-01-01
Explains how the Scotland County School District in Laurinburg, North Carolina, tackled the problem of controlling building and room keys for fifteen K-12 schools and 7,000 students by marrying a computerized records management system for key tracking with a patented hardware system that produces keys that can't be duplicated. (GR)
Control of Systems With Slow Actuators Using Time Scale Separation
NASA Technical Reports Server (NTRS)
Stepanyan, Vehram; Nguyen, Nhan
2009-01-01
This paper addresses the problem of controlling a nonlinear plant with a slow actuator using singular perturbation method. For the known plant-actuator cascaded system the proposed scheme achieves tracking of a given reference model with considerably less control demand than would otherwise result when using conventional design techniques. This is the consequence of excluding the small parameter from the actuator dynamics via time scale separation. The resulting tracking error is within the order of this small parameter. For the unknown system the adaptive counterpart is developed based on the prediction model, which is driven towards the reference model by the control design. It is proven that the prediction model tracks the reference model with an error proportional to the small parameter, while the prediction error converges to zero. The resulting closed-loop system with all prediction models and adaptive laws remains stable. The benefits of the approach are demonstrated in simulation studies and compared to conventional control approaches.
Adaptive Neural Tracking Control for Switched High-Order Stochastic Nonlinear Systems.
Zhao, Xudong; Wang, Xinyong; Zong, Guangdeng; Zheng, Xiaolong
2017-10-01
This paper deals with adaptive neural tracking control design for a class of switched high-order stochastic nonlinear systems with unknown uncertainties and arbitrary deterministic switching. The considered issues are: 1) completely unknown uncertainties; 2) stochastic disturbances; and 3) high-order nonstrict-feedback system structure. The considered mathematical models can represent many practical systems in the actual engineering. By adopting the approximation ability of neural networks, common stochastic Lyapunov function method together with adding an improved power integrator technique, an adaptive state feedback controller with multiple adaptive laws is systematically designed for the systems. Subsequently, a controller with only two adaptive laws is proposed to solve the problem of over parameterization. Under the designed controllers, all the signals in the closed-loop system are bounded-input bounded-output stable in probability, and the system output can almost surely track the target trajectory within a specified bounded error. Finally, simulation results are presented to show the effectiveness of the proposed approaches.
Reconfigurable Flight Control Designs With Application to the X-33 Vehicle
NASA Technical Reports Server (NTRS)
Burken, John J.; Lu, Ping; Wu, Zhenglu
1999-01-01
Two methods for control system reconfiguration have been investigated. The first method is a robust servomechanism control approach (optimal tracking problem) that is a generalization of the classical proportional-plus-integral control to multiple input-multiple output systems. The second method is a control-allocation approach based on a quadratic programming formulation. A globally convergent fixed-point iteration algorithm has been developed to make onboard implementation of this method feasible. These methods have been applied to reconfigurable entry flight control design for the X-33 vehicle. Examples presented demonstrate simultaneous tracking of angle-of-attack and roll angle commands during failures of the right body flap actuator. Although simulations demonstrate success of the first method in most cases, the control-allocation method appears to provide uniformly better performance in all cases.
Design and simulation of flight control system for man-portable micro reconnaissance quadcopter
NASA Astrophysics Data System (ADS)
Yin, Xinfan; Zhang, Daibing; Fang, Qiang; Shen, Lincheng
2017-10-01
The quadcopter has been widely used in the field of aerial photography and environmental detection, because of its advantages of VTOL, simple structure, and easy-control. In the field of urban anti-terrorism or special operations, micro reconnaissance quadcpter has its unique advantages such as all-weather taking off and landing, small noise and so on, and it is very popular with special forces and riot police. This paper aims at the flight control problem of the micro quadcopter, for the purposes of attitude stabilization control and trajectory tracking control of the micro quadcopter, first, the modeling of the micro quadcopter is presented. And using the MATLAB/SIMULINK toolbox to build the flight controller of the micro quadcopter, and then simulation analysis and real flight test are given. The results of the experiment show that the designed PID controller can correct the flight attitude shift effectively and track the planned tracks well, and can achieve the goal of stable and reliable flight of the quadcopter. It can be a useful reference for the flight control system design of future special operations micro UAV.
Distributed Secure Coordinated Control for Multiagent Systems Under Strategic Attacks.
Feng, Zhi; Wen, Guanghui; Hu, Guoqiang
2017-05-01
This paper studies a distributed secure consensus tracking control problem for multiagent systems subject to strategic cyber attacks modeled by a random Markov process. A hybrid stochastic secure control framework is established for designing a distributed secure control law such that mean-square exponential consensus tracking is achieved. A connectivity restoration mechanism is considered and the properties on attack frequency and attack length rate are investigated, respectively. Based on the solutions of an algebraic Riccati equation and an algebraic Riccati inequality, a procedure to select the control gains is provided and stability analysis is studied by using Lyapunov's method.. The effect of strategic attacks on discrete-time systems is also investigated. Finally, numerical examples are provided to illustrate the effectiveness of theoretical analysis.
NASA Astrophysics Data System (ADS)
Luy, N. T.
2018-04-01
The design of distributed cooperative H∞ optimal controllers for multi-agent systems is a major challenge when the agents' models are uncertain multi-input and multi-output nonlinear systems in strict-feedback form in the presence of external disturbances. In this paper, first, the distributed cooperative H∞ optimal tracking problem is transformed into controlling the cooperative tracking error dynamics in affine form. Second, control schemes and online algorithms are proposed via adaptive dynamic programming (ADP) and the theory of zero-sum differential graphical games. The schemes use only one neural network (NN) for each agent instead of three from ADP to reduce computational complexity as well as avoid choosing initial NN weights for stabilising controllers. It is shown that despite not using knowledge of cooperative internal dynamics, the proposed algorithms not only approximate values to Nash equilibrium but also guarantee all signals, such as the NN weight approximation errors and the cooperative tracking errors in the closed-loop system, to be uniformly ultimately bounded. Finally, the effectiveness of the proposed method is shown by simulation results of an application to wheeled mobile multi-robot systems.
NASA Technical Reports Server (NTRS)
Tao, Gang; Joshi, Suresh M.
2008-01-01
In this paper, the problem of controlling systems with failures and faults is introduced, and an overview of recent work on direct adaptive control for compensation of uncertain actuator failures is presented. Actuator failures may be characterized by some unknown system inputs being stuck at some unknown (fixed or varying) values at unknown time instants, that cannot be influenced by the control signals. The key task of adaptive compensation is to design the control signals in such a manner that the remaining actuators can automatically and seamlessly take over for the failed ones, and achieve desired stability and asymptotic tracking. A certain degree of redundancy is necessary to accomplish failure compensation. The objective of adaptive control design is to effectively use the available actuation redundancy to handle failures without the knowledge of the failure patterns, parameters, and time of occurrence. This is a challenging problem because failures introduce large uncertainties in the dynamic structure of the system, in addition to parametric uncertainties and unknown disturbances. The paper addresses some theoretical issues in adaptive actuator failure compensation: actuator failure modeling, redundant actuation requirements, plant-model matching, error system dynamics, adaptation laws, and stability, tracking, and performance analysis. Adaptive control designs can be shown to effectively handle uncertain actuator failures without explicit failure detection. Some open technical challenges and research problems in this important research area are discussed.
NASA Technical Reports Server (NTRS)
Pines, S.
1982-01-01
The problems in navigation and guidance encountered by aircraft in the initial transition period in changing from distance measuring equipment, VORTAC, and barometric instruments to the more precise microwave landing system data type navaids in the terminal area are investigated. The effects of the resulting discontinuities on the estimates of position and velocity for both optimal (Kalman type navigation schemes) and fixed gain (complementary type) navigation filters, and the effects of the errors in cross track, track angle, and altitude on the guidance equation and control commands during the critical landing phase are discussed. A method is presented to remove the discontinuities from the navigation loop and to reconstruct an RNAV path designed to land the aircraft with minimal turns and altitude changes.
Optimal control of nonlinear continuous-time systems in strict-feedback form.
Zargarzadeh, Hassan; Dierks, Travis; Jagannathan, Sarangapani
2015-10-01
This paper proposes a novel optimal tracking control scheme for nonlinear continuous-time systems in strict-feedback form with uncertain dynamics. The optimal tracking problem is transformed into an equivalent optimal regulation problem through a feedforward adaptive control input that is generated by modifying the standard backstepping technique. Subsequently, a neural network-based optimal control scheme is introduced to estimate the cost, or value function, over an infinite horizon for the resulting nonlinear continuous-time systems in affine form when the internal dynamics are unknown. The estimated cost function is then used to obtain the optimal feedback control input; therefore, the overall optimal control input for the nonlinear continuous-time system in strict-feedback form includes the feedforward plus the optimal feedback terms. It is shown that the estimated cost function minimizes the Hamilton-Jacobi-Bellman estimation error in a forward-in-time manner without using any value or policy iterations. Finally, optimal output feedback control is introduced through the design of a suitable observer. Lyapunov theory is utilized to show the overall stability of the proposed schemes without requiring an initial admissible controller. Simulation examples are provided to validate the theoretical results.
Robust Neural Sliding Mode Control of Robot Manipulators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguyen Tran Hiep; Pham Thuong Cat
2009-03-05
This paper proposes a robust neural sliding mode control method for robot tracking problem to overcome the noises and large uncertainties in robot dynamics. The Lyapunov direct method has been used to prove the stability of the overall system. Simulation results are given to illustrate the applicability of the proposed method.
Stable H(infinity) Controller Design for the Longitudinal Dynamics of an Aircraft
NASA Technical Reports Server (NTRS)
Oezbay, Hitay; Garg, Sanjay
1995-01-01
This report discusses different approaches to stable H infinity controller design applied to the problem of augmenting the longitudinal dynamics of an aircraft. Stability of the H infinity controller is investigated by analyzing the effects of changes in the performance index weights, and modifications in the measured outputs. The existence of a stable suboptimal controller is also investigated. It is shown that this is equivalent to finding a stable controller, whose infinity norm is less than a specified bound, for an unstable plant which is determined from parametrization of all H infinity controllers. Examples are given for a gust alleviation and a command tracking problem.
ERIC Educational Resources Information Center
Cubbage, Charlotte
2002-01-01
Discusses problems with patron Internet access in academic libraries and describes a study conducted at Northwestern University (Illinois) that used Internet tracking software to assess user Internet behavior. Topics include Internet use policies; pornography; and loss of control over library services and information content that is provided. (LRW)
NASA Astrophysics Data System (ADS)
Ahmed, Mousumi
Designing the control technique for nonlinear dynamic systems is a significant challenge. Approaches to designing a nonlinear controller are studied and an extensive study on backstepping based technique is performed in this research with the purpose of tracking a moving target autonomously. Our main motivation is to explore the controller for cooperative and coordinating unmanned vehicles in a target tracking application. To start with, a general theoretical framework for target tracking is studied and a controller in three dimensional environment for a single UAV is designed. This research is primarily focused on finding a generalized method which can be applied to track almost any reference trajectory. The backstepping technique is employed to derive the controller for a simplified UAV kinematic model. This controller can compute three autopilot modes i.e. velocity, ground heading (or course angle), and flight path angle for tracking the unmanned vehicle. Numerical implementation is performed in MATLAB with the assumption of having perfect and full state information of the target to investigate the accuracy of the proposed controller. This controller is then frozen for the multi-vehicle problem. Distributed or decentralized cooperative control is discussed in the context of multi-agent systems. A consensus based cooperative control is studied; such consensus based control problem can be viewed from the algebraic graph theory concepts. The communication structure between the UAVs is represented by the dynamic graph where UAVs are represented by the nodes and the communication links are represented by the edges. The previously designed controller is augmented to account for the group to obtain consensus based on their communication. A theoretical development of the controller for the cooperative group of UAVs is presented and the simulation results for different communication topologies are shown. This research also investigates the cases where the communication topology switches to a different topology over particular time instants. Lyapunov analysis is performed to show stability in all cases. Another important aspect of this dissertation research is to implement the controller for the case, where perfect or full state information is not available. This necessitates the design of an estimator to estimate the system state. A nonlinear estimator, Extended Kalman Filter (EKF) is first developed for target tracking with a single UAV. The uncertainties involved with the measurement model and dynamics model are considered as zero mean Gaussian noises with some known covariances. The measurements of the full state of the target are not available and only the range, elevation, and azimuth angle are available from an onboard seeker sensor. A separate EKF is designed to estimate the UAV's own state where the state measurement is available through on-board sensors. The controller computes the three control commands based on the estimated states of target and its own states. Estimation based control laws is also implemented for colored noise measurement uncertainties, and the controller performance is shown with the simulation results. The estimation based control approach is then extended for the cooperative target tracking case. The target information is available to the network and a separate estimator is used to estimate target states. All of the UAVs in the network apply the same control law and the only difference is that each UAV updates the commands according to their connection. The simulation is performed for both cases of fixed and time varying communication topology. Monte Carlo simulation is also performed with different sample noises to investigate the performance of the estimator. The proposed technique is shown to be simple and robust to noisy environments.
NASA Technical Reports Server (NTRS)
Edwards, M. H.; Arvidson, R. E.; Guinness, E. A.
1984-01-01
The problem of displaying information on the seafloor morphology is attacked by utilizing digital image processing techniques to generate images for Seabeam data covering three young seamounts on the eastern flank of the East Pacific Rise. Errors in locations between crossing tracks are corrected by interactively identifying features and translating tracks relative to a control track. Spatial interpolation techniques using moving averages are used to interpolate between gridded depth values to produce images in shaded relief and color-coded forms. The digitally processed images clarify the structural control on seamount growth and clearly show the lateral extent of volcanic materials, including the distribution and fault control of subsidiary volcanic constructional features. The image presentations also clearly show artifacts related to both residual navigational errors and to depth or location differences that depend on ship heading relative to slope orientation in regions with steep slopes.
Wang, Jianhui; Liu, Zhi; Chen, C L Philip; Zhang, Yun
2017-10-12
Hysteresis exists ubiquitously in physical actuators. Besides, actuator failures/faults may also occur in practice. Both effects would deteriorate the transient tracking performance, and even trigger instability. In this paper, we consider the problem of compensating for actuator failures and input hysteresis by proposing a fuzzy control scheme for stochastic nonlinear systems. Compared with the existing research on stochastic nonlinear uncertain systems, it is found that how to guarantee a prescribed transient tracking performance when taking into account actuator failures and hysteresis simultaneously also remains to be answered. Our proposed control scheme is designed on the basis of the fuzzy logic system and backstepping techniques for this purpose. It is proven that all the signals remain bounded and the tracking error is ensured to be within a preestablished bound with the failures of hysteretic actuator. Finally, simulations are provided to illustrate the effectiveness of the obtained theoretical results.
Hua, Changchun; Zhang, Liuliu; Guan, Xinping
2017-01-01
This paper studies the problem of distributed output tracking consensus control for a class of high-order stochastic nonlinear multiagent systems with unknown nonlinear dead-zone under a directed graph topology. The adaptive neural networks are used to approximate the unknown nonlinear functions and a new inequality is used to deal with the completely unknown dead-zone input. Then, we design the controllers based on backstepping method and the dynamic surface control technique. It is strictly proved that the resulting closed-loop system is stable in probability in the sense of semiglobally uniform ultimate boundedness and the tracking errors between the leader and the followers approach to a small residual set based on Lyapunov stability theory. Finally, two simulation examples are presented to show the effectiveness and the advantages of the proposed techniques.
NASA Astrophysics Data System (ADS)
Sumantri, Bambang; Uchiyama, Naoki; Sano, Shigenori
2016-01-01
In this paper, a new control structure for a quad-rotor helicopter that employs the least squares method is introduced. This proposed algorithm solves the overdetermined problem of the control input for the translational motion of a quad-rotor helicopter. The algorithm allows all six degrees of freedom to be considered to calculate the control input. The sliding mode controller is applied to achieve robust tracking and stabilization. A saturation function is designed around a boundary layer to reduce the chattering phenomenon that is a common problem in sliding mode control. In order to improve the tracking performance, an integral sliding surface is designed. An energy saving effect because of chattering reduction is also evaluated. First, the dynamics of the quad-rotor helicopter is derived by the Newton-Euler formulation for a rigid body. Second, a constant plus proportional reaching law is introduced to increase the reaching rate of the sliding mode controller. Global stability of the proposed control strategy is guaranteed based on the Lyapunov's stability theory. Finally, the robustness and effectiveness of the proposed control system are demonstrated experimentally under wind gusts, and are compared with a regular sliding mode controller, a proportional-differential controller, and a proportional-integral-differential controller.
NASA Astrophysics Data System (ADS)
Pudovkin, A. P.; Panasyuk, Yu N.; Danilov, S. N.; Moskvitin, S. P.
2018-05-01
The problem of improving automated air traffic control systems is considered through the example of the operation algorithm synthesis for a range measurement channel to track the aircraft, using its kinematic and dynamic parameters. The choice of the state and observation models has been justified, the computer simulations have been performed and the results of the investigated algorithms have been obtained.
UCAV path planning in the presence of radar-guided surface-to-air missile threats
NASA Astrophysics Data System (ADS)
Zeitz, Frederick H., III
This dissertation addresses the problem of path planning for unmanned combat aerial vehicles (UCAVs) in the presence of radar-guided surface-to-air missiles (SAMs). The radars, collocated with SAM launch sites, operate within the structure of an Integrated Air Defense System (IADS) that permits communication and cooperation between individual radars. The problem is formulated in the framework of the interaction between three sub-systems: the aircraft, the IADS, and the missile. The main features of this integrated model are: The aircraft radar cross section (RCS) depends explicitly on both the aspect and bank angles; hence, the RCS and aircraft dynamics are coupled. The probabilistic nature of IADS tracking is accounted for; namely, the probability that the aircraft has been continuously tracked by the IADS depends on the aircraft RCS and range from the perspective of each radar within the IADS. Finally, the requirement to maintain tracking prior to missile launch and during missile flyout are also modeled. Based on this model, the problem of UCAV path planning is formulated as a minimax optimal control problem, with the aircraft bank angle serving as control. Necessary conditions of optimality for this minimax problem are derived. Based on these necessary conditions, properties of the optimal paths are derived. These properties are used to discretize the dynamic optimization problem into a finite-dimensional, nonlinear programming problem that can be solved numerically. Properties of the optimal paths are also used to initialize the numerical procedure. A homotopy method is proposed to solve the finite-dimensional, nonlinear programming problem, and a heuristic method is proposed to improve the discretization during the homotopy process. Based upon the properties of numerical solutions, a method is proposed for parameterizing and storing information for later recall in flight to permit rapid replanning in response to changing threats. Illustrative examples are presented that confirm the standard flying tactics of "denying range, aspect, and aim," by yielding flight paths that "weave" to avoid long exposures of aspects with large RCS.
Real Time Optima Tracking Using Harvesting Models of the Genetic Algorithm
NASA Technical Reports Server (NTRS)
Baskaran, Subbiah; Noever, D.
1999-01-01
Tracking optima in real time propulsion control, particularly for non-stationary optimization problems is a challenging task. Several approaches have been put forward for such a study including the numerical method called the genetic algorithm. In brief, this approach is built upon Darwinian-style competition between numerical alternatives displayed in the form of binary strings, or by analogy to 'pseudogenes'. Breeding of improved solution is an often cited parallel to natural selection in.evolutionary or soft computing. In this report we present our results of applying a novel model of a genetic algorithm for tracking optima in propulsion engineering and in real time control. We specialize the algorithm to mission profiling and planning optimizations, both to select reduced propulsion needs through trajectory planning and to explore time or fuel conservation strategies.
Potential problems relative to TDRS/IUS tilt table elevation with failed VRCS
NASA Technical Reports Server (NTRS)
Bell, J.
1980-01-01
Operational concerns and preliminary solution alternatives related to elevating the inertial upper stage/tracking and data relay satellite (IUS/TDRS) with a failed orbiter vernier reaction control system (VRCS) are presented. Problems arise from the combination of TDRS thermal constraints and tilt table constraints (the primary reaction control system (PRCS) cannot be used to hold attitude while the tilt table is being elevated), and the problems are compounded by the minimum PRCS attitude deadband. The potential solution options are affected by the launch window, flight profile, crew procedures, vehicle capability and constraints, and flight rules.
Attitude and Configuration Control of Flexible Multi-Body Spacecraft
NASA Astrophysics Data System (ADS)
Cho, Sung-Ki; Cochran, John E., Jr.
2002-06-01
Multi-body spacecraft attitude and configuration control formulations based on the use of collaborative control theory are considered. The control formulations are based on two-player, nonzero-sum, differential game theory applied using a Nash strategy. It is desired that the control laws allow different components of the multi-body system to perform different tasks. For example, it may be desired that one body points toward a fixed star while another body in the system slews to track another satellite. Although similar to the linear quadratic regulator formulation, the collaborative control formulation contains a number of additional design parameters because the problem is formulated as two control problems coupled together. The use of the freedom of the partitioning of the total problem into two coupled control problems and the selection of the elements of the cross-coupling matrices are specific problems addressed in this paper. Examples are used to show that significant improvement in performance, as measured by realistic criteria, of collaborative control over conventional linear quadratic regulator control can be achieved by using proposed design guidelines.
Reusable Launch Vehicle Control In Multiple Time Scale Sliding Modes
NASA Technical Reports Server (NTRS)
Shtessel, Yuri; Hall, Charles; Jackson, Mark
2000-01-01
A reusable launch vehicle control problem during ascent is addressed via multiple-time scaled continuous sliding mode control. The proposed sliding mode controller utilizes a two-loop structure and provides robust, de-coupled tracking of both orientation angle command profiles and angular rate command profiles in the presence of bounded external disturbances and plant uncertainties. Sliding mode control causes the angular rate and orientation angle tracking error dynamics to be constrained to linear, de-coupled, homogeneous, and vector valued differential equations with desired eigenvalues placement. Overall stability of a two-loop control system is addressed. An optimal control allocation algorithm is designed that allocates torque commands into end-effector deflection commands, which are executed by the actuators. The dual-time scale sliding mode controller was designed for the X-33 technology demonstration sub-orbital launch vehicle in the launch mode. Simulation results show that the designed controller provides robust, accurate, de-coupled tracking of the orientation angle command profiles in presence of external disturbances and vehicle inertia uncertainties. This is a significant advancement in performance over that achieved with linear, gain scheduled control systems currently being used for launch vehicles.
High-accuracy resolver-to-digital conversion via phase locked loop based on PID controller
NASA Astrophysics Data System (ADS)
Li, Yaoling; Wu, Zhong
2018-03-01
The problem of resolver-to-digital conversion (RDC) is transformed into the problem of angle tracking control, and a phase locked loop (PLL) method based on PID controller is proposed in this paper. This controller comprises a typical PI controller plus an incomplete differential which can avoid the amplification of higher-frequency noise components by filtering the phase detection error with a low-pass filter. Compared with conventional ones, the proposed PLL method makes the converter a system of type III and thus the conversion accuracy can be improved. Experimental results demonstrate the effectiveness of the proposed method.
Ramírez-Neria, M; Sira-Ramírez, H; Garrido-Moctezuma, R; Luviano-Juárez, A
2014-07-01
An Active Disturbance Rejection Control (ADRC) scheme is proposed for a trajectory tracking problem defined on a nonfeedback linearizable Furuta Pendulum example. A desired rest to rest angular position reference trajectory is to be tracked by the horizontal arm while the unactuated vertical pendulum arm stays around its unstable vertical position without falling down during the entire maneuver and long after it concludes. A linear observer-based linear controller of the ADRC type is designed on the basis of the flat tangent linearization of the system around an arbitrary equilibrium. The advantageous combination of flatness and the ADRC method makes it possible to on-line estimate and cancels the undesirable effects of the higher order nonlinearities disregarded by the linearization. These effects are triggered by fast horizontal arm tracking maneuvers driving the pendulum substantially away from the initial equilibrium point. Convincing experimental results, including a comparative test with a sliding mode controller, are presented. © 2013 ISA. Published by ISA. All rights reserved.
Adaptive Control in the Presence of Simultaneous Sensor Bias and Actuator Failures
NASA Technical Reports Server (NTRS)
Joshi, Suresh M.
2012-01-01
The problem of simultaneously accommodating unknown sensor biases and unknown actuator failures in uncertain systems is considered in a direct model reference adaptive control (MRAC) setting for state tracking using state feedback. Sensor biases and actuator faults may be present at the outset or may occur at unknown instants of time during operation. A modified MRAC law is proposed, which combines sensor bias estimation with control gain adaptation for accommodation of sensor biases and actuator failures. This control law is shown to provide signal boundedness in the resulting system. For the case when an external asymptotically stable sensor bias estimator is available, an MRAC law is developed to accomplish asymptotic state tracking and signal boundedness. For a special case wherein biases are only present in the rate measurements and bias-free position measurements are available, an MRAC law is developed using a model-independent bias estimator, and is shown to provide asymptotic state tracking with signal boundedness.
NASA Astrophysics Data System (ADS)
Liu, Chun; Jiang, Bin; Zhang, Ke
2018-03-01
This paper investigates the attitude and position tracking control problem for Lead-Wing close formation systems in the presence of loss of effectiveness and lock-in-place or hardover failure. In close formation flight, Wing unmanned aerial vehicle movements are influenced by vortex effects of the neighbouring Lead unmanned aerial vehicle. This situation allows modelling of aerodynamic coupling vortex-effects and linearisation based on optimal close formation geometry. Linearised Lead-Wing close formation model is transformed into nominal robust H-infinity models with respect to Mach hold, Heading hold, and Altitude hold autopilots; static feedback H-infinity controller is designed to guarantee effective tracking of attitude and position while manoeuvring Lead unmanned aerial vehicle. Based on H-infinity control design, an integrated multiple-model adaptive fault identification and reconfigurable fault-tolerant control scheme is developed to guarantee asymptotic stability of close-loop systems, error signal boundedness, and attitude and position tracking properties. Simulation results for Lead-Wing close formation systems validate the efficiency of the proposed integrated multiple-model adaptive control algorithm.
Non linear predictive control of a LEGO mobile robot
NASA Astrophysics Data System (ADS)
Merabti, H.; Bouchemal, B.; Belarbi, K.; Boucherma, D.; Amouri, A.
2014-10-01
Metaheuristics are general purpose heuristics which have shown a great potential for the solution of difficult optimization problems. In this work, we apply the meta heuristic, namely particle swarm optimization, PSO, for the solution of the optimization problem arising in NLMPC. This algorithm is easy to code and may be considered as alternatives for the more classical solution procedures. The PSO- NLMPC is applied to control a mobile robot for the tracking trajectory and obstacles avoidance. Experimental results show the strength of this approach.
Eye-Tracking Study of Complexity in Gas Law Problems
ERIC Educational Resources Information Center
Tang, Hui; Pienta, Norbert
2012-01-01
This study, part of a series investigating students' use of online tools to assess problem solving, uses eye-tracking hardware and software to explore the effect of problem difficulty and cognitive processes when students solve gas law word problems. Eye movements are indices of cognition; eye-tracking data typically include the location,…
VTOL controls for shipboard landing. M.S.Thesis
NASA Technical Reports Server (NTRS)
Mcmuldroch, C. G.
1979-01-01
The problem of landing a VTOL aircraft on a small ship in rough seas using an automatic controller is examined. The controller design uses the linear quadratic Gaussian results of modern control theory. Linear time invariant dynamic models are developed for the aircraft, ship, and wave motions. A hover controller commands the aircraft to track position and orientation of the ship deck using only low levels of control power. Commands for this task are generated by the solution of the steady state linear quadratic gaussian regulator problem. Analytical performance and control requirement tradeoffs are obtained. A landing controller commands the aircraft from stationary hover along a smooth, low control effort trajectory, to a touchdown on a predicted crest of ship motion. The design problem is formulated and solved as an approximate finite-time linear quadratic stochastic regulator. Performance and control results are found by Monte Carlo simulations.
Prediction-Correction Algorithms for Time-Varying Constrained Optimization
Simonetto, Andrea; Dall'Anese, Emiliano
2017-07-26
This article develops online algorithms to track solutions of time-varying constrained optimization problems. Particularly, resembling workhorse Kalman filtering-based approaches for dynamical systems, the proposed methods involve prediction-correction steps to provably track the trajectory of the optimal solutions of time-varying convex problems. The merits of existing prediction-correction methods have been shown for unconstrained problems and for setups where computing the inverse of the Hessian of the cost function is computationally affordable. This paper addresses the limitations of existing methods by tackling constrained problems and by designing first-order prediction steps that rely on the Hessian of the cost function (and do notmore » require the computation of its inverse). In addition, the proposed methods are shown to improve the convergence speed of existing prediction-correction methods when applied to unconstrained problems. Numerical simulations corroborate the analytical results and showcase performance and benefits of the proposed algorithms. A realistic application of the proposed method to real-time control of energy resources is presented.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simonetto, Andrea; Dall'Anese, Emiliano
This article develops online algorithms to track solutions of time-varying constrained optimization problems. Particularly, resembling workhorse Kalman filtering-based approaches for dynamical systems, the proposed methods involve prediction-correction steps to provably track the trajectory of the optimal solutions of time-varying convex problems. The merits of existing prediction-correction methods have been shown for unconstrained problems and for setups where computing the inverse of the Hessian of the cost function is computationally affordable. This paper addresses the limitations of existing methods by tackling constrained problems and by designing first-order prediction steps that rely on the Hessian of the cost function (and do notmore » require the computation of its inverse). In addition, the proposed methods are shown to improve the convergence speed of existing prediction-correction methods when applied to unconstrained problems. Numerical simulations corroborate the analytical results and showcase performance and benefits of the proposed algorithms. A realistic application of the proposed method to real-time control of energy resources is presented.« less
Cheng, Long; Hou, Zeng-Guang; Tan, Min; Zhang, W J
2012-10-01
The trajectory tracking problem of a closed-chain five-bar robot is studied in this paper. Based on an error transformation function and the backstepping technique, an approximation-based tracking algorithm is proposed, which can guarantee the control performance of the robotic system in both the stable and transient phases. In particular, the overshoot, settling time, and final tracking error of the robotic system can be all adjusted by properly setting the parameters in the error transformation function. The radial basis function neural network (RBFNN) is used to compensate the complicated nonlinear terms in the closed-loop dynamics of the robotic system. The approximation error of the RBFNN is only required to be bounded, which simplifies the initial "trail-and-error" configuration of the neural network. Illustrative examples are given to verify the theoretical analysis and illustrate the effectiveness of the proposed algorithm. Finally, it is also shown that the proposed approximation-based controller can be simplified by a smart mechanical design of the closed-chain robot, which demonstrates the promise of the integrated design and control philosophy.
Variable Neural Adaptive Robust Control: A Switched System Approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lian, Jianming; Hu, Jianghai; Zak, Stanislaw H.
2015-05-01
Variable neural adaptive robust control strategies are proposed for the output tracking control of a class of multi-input multi-output uncertain systems. The controllers incorporate a variable-structure radial basis function (RBF) network as the self-organizing approximator for unknown system dynamics. The variable-structure RBF network solves the problem of structure determination associated with fixed-structure RBF networks. It can determine the network structure on-line dynamically by adding or removing radial basis functions according to the tracking performance. The structure variation is taken into account in the stability analysis of the closed-loop system using a switched system approach with the aid of the piecewisemore » quadratic Lyapunov function. The performance of the proposed variable neural adaptive robust controllers is illustrated with simulations.« less
Ye, Linqi; Zong, Qun; Tian, Bailing; Zhang, Xiuyun; Wang, Fang
2017-09-01
In this paper, the nonminimum phase problem of a flexible hypersonic vehicle is investigated. The main challenge of nonminimum phase is the prevention of dynamic inversion methods to nonlinear control design. To solve this problem, we make research on the relationship between nonminimum phase and backstepping control, finding that a stable nonlinear controller can be obtained by changing the control loop on the basis of backstepping control. By extending the control loop to cover the internal dynamics in it, the internal states are directly controlled by the inputs and simultaneously serve as virtual control for the external states, making it possible to guarantee output tracking as well as internal stability. Then, based on the extended control loop, a simplified control-oriented model is developed to enable the applicability of adaptive backstepping method. It simplifies the design process and releases some limitations caused by direct use of the no simplified control-oriented model. Next, under proper assumptions, asymptotic stability is proved for constant commands, while bounded stability is proved for varying commands. The proposed method is compared with approximate backstepping control and dynamic surface control and is shown to have superior tracking accuracy as well as robustness from the simulation results. This paper may also provide a beneficial guidance for control design of other complex systems. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
van Stolk-Cooke, Katherine; Kuerbis, Alexis; Stadler, Gertraud; Baumel, Amit; Shao, Sijing; McKay, James R.; Morgenstern, Jon
2017-01-01
Introduction Recent evidence suggests that text messaging may help to reduce problem drinking as an extension to in-person services, but very little is known about the effectiveness of remote messaging on problem drinking as a stand-alone intervention, or how different types of messages may improve drinking outcomes in those seeking to moderate their alcohol consumption. Methods We conducted an exploratory, single-blind randomized controlled pilot study comparing four different types of alcohol reduction-themed text messages sent daily to weekly drink self-tracking texts in order to determine their impact on drinking outcomes over a 12-week period in 152 participants (≈ 30 per group) seeking to reduce their drinking on the internet. Messaging interventions included: weekly drink self-tracking mobile assessment texts (MA), loss-framed texts (LF), gain-framed texts (GF), static tailored texts (ST), and adaptive tailored texts (TA). Poisson and least squares regressions were used to compare differences between each active messaging group and the MA control. Results When adjusting for baseline drinking, participants in all messaging groups except GF significantly reduced the number of drinks consumed per week and the number of heavy drinking days compared to MA. Only the TA and GF groups were significantly different from MA in reducing the number of drinking days. While the TA group yielded the largest effect sizes on all outcome measures, there were no significant differences between active messaging groups on any outcome measure. 79.6% of individuals enrolled in the study wanted to continue receiving messages for an additional 12 weeks at the end of the study. Discussion Results of this pilot study indicate that remote automated text messages delivered daily can help adult problem drinkers reduce drinking frequency and quantity significantly more than once-a-week self-tracking messages only, and that tailored adaptive texts yield the largest effect sizes across outcomes compared to MA. Larger samples are needed to understand differences between messaging interventions and to target their mechanisms of efficacy. PMID:28146560
Analysis of a dc bus system with a nonlinear constant power load and its delayed feedback control.
Konishi, Keiji; Sugitani, Yoshiki; Hara, Naoyuki
2014-02-01
This paper tackles a destabilizing problem of a direct-current (dc) bus system with constant power loads, which can be considered a fundamental problem of dc power grid networks. The present paper clarifies scenarios of the destabilization and applies the well-known delayed-feedback control to the stabilization of the destabilized bus system on the basis of nonlinear science. Further, we propose a systematic procedure for designing the delayed feedback controller. This controller can converge the bus voltage exactly on an unstable operating point without accurate information and can track it using tiny control energy even when a system parameter, such as the power consumption of the load, is slowly varied. These features demonstrate that delayed feedback control can be considered a strong candidate for solving the destabilizing problem.
Dynamic learning from adaptive neural network control of a class of nonaffine nonlinear systems.
Dai, Shi-Lu; Wang, Cong; Wang, Min
2014-01-01
This paper studies the problem of learning from adaptive neural network (NN) control of a class of nonaffine nonlinear systems in uncertain dynamic environments. In the control design process, a stable adaptive NN tracking control design technique is proposed for the nonaffine nonlinear systems with a mild assumption by combining a filtered tracking error with the implicit function theorem, input-to-state stability, and the small-gain theorem. The proposed stable control design technique not only overcomes the difficulty in controlling nonaffine nonlinear systems but also relaxes constraint conditions of the considered systems. In the learning process, the partial persistent excitation (PE) condition of radial basis function NNs is satisfied during tracking control to a recurrent reference trajectory. Under the PE condition and an appropriate state transformation, the proposed adaptive NN control is shown to be capable of acquiring knowledge on the implicit desired control input dynamics in the stable control process and of storing the learned knowledge in memory. Subsequently, an NN learning control design technique that effectively exploits the learned knowledge without re-adapting to the controller parameters is proposed to achieve closed-loop stability and improved control performance. Simulation studies are performed to demonstrate the effectiveness of the proposed design techniques.
Li, Yongming; Tong, Shaocheng
The problem of active fault-tolerant control (FTC) is investigated for the large-scale nonlinear systems in nonstrict-feedback form. The nonstrict-feedback nonlinear systems considered in this paper consist of unstructured uncertainties, unmeasured states, unknown interconnected terms, and actuator faults (e.g., bias fault and gain fault). A state observer is designed to solve the unmeasurable state problem. Neural networks (NNs) are used to identify the unknown lumped nonlinear functions so that the problems of unstructured uncertainties and unknown interconnected terms can be solved. By combining the adaptive backstepping design principle with the combination Nussbaum gain function property, a novel NN adaptive output-feedback FTC approach is developed. The proposed FTC controller can guarantee that all signals in all subsystems are bounded, and the tracking errors for each subsystem converge to a small neighborhood of zero. Finally, numerical results of practical examples are presented to further demonstrate the effectiveness of the proposed control strategy.The problem of active fault-tolerant control (FTC) is investigated for the large-scale nonlinear systems in nonstrict-feedback form. The nonstrict-feedback nonlinear systems considered in this paper consist of unstructured uncertainties, unmeasured states, unknown interconnected terms, and actuator faults (e.g., bias fault and gain fault). A state observer is designed to solve the unmeasurable state problem. Neural networks (NNs) are used to identify the unknown lumped nonlinear functions so that the problems of unstructured uncertainties and unknown interconnected terms can be solved. By combining the adaptive backstepping design principle with the combination Nussbaum gain function property, a novel NN adaptive output-feedback FTC approach is developed. The proposed FTC controller can guarantee that all signals in all subsystems are bounded, and the tracking errors for each subsystem converge to a small neighborhood of zero. Finally, numerical results of practical examples are presented to further demonstrate the effectiveness of the proposed control strategy.
Maity, Arnab; Hocht, Leonhard; Heise, Christian; Holzapfel, Florian
2018-01-01
A new efficient adaptive optimal control approach is presented in this paper based on the indirect model reference adaptive control (MRAC) architecture for improvement of adaptation and tracking performance of the uncertain system. The system accounts here for both matched and unmatched unknown uncertainties that can act as plant as well as input effectiveness failures or damages. For adaptation of the unknown parameters of these uncertainties, the frequency selective learning approach is used. Its idea is to compute a filtered expression of the system uncertainty using multiple filters based on online instantaneous information, which is used for augmentation of the update law. It is capable of adjusting a sudden change in system dynamics without depending on high adaptation gains and can satisfy exponential parameter error convergence under certain conditions in the presence of structured matched and unmatched uncertainties as well. Additionally, the controller of the MRAC system is designed using a new optimal control method. This method is a new linear quadratic regulator-based optimal control formulation for both output regulation and command tracking problems. It provides a closed-form control solution. The proposed overall approach is applied in a control of lateral dynamics of an unmanned aircraft problem to show its effectiveness.
Optimal and Autonomous Control Using Reinforcement Learning: A Survey.
Kiumarsi, Bahare; Vamvoudakis, Kyriakos G; Modares, Hamidreza; Lewis, Frank L
2018-06-01
This paper reviews the current state of the art on reinforcement learning (RL)-based feedback control solutions to optimal regulation and tracking of single and multiagent systems. Existing RL solutions to both optimal and control problems, as well as graphical games, will be reviewed. RL methods learn the solution to optimal control and game problems online and using measured data along the system trajectories. We discuss Q-learning and the integral RL algorithm as core algorithms for discrete-time (DT) and continuous-time (CT) systems, respectively. Moreover, we discuss a new direction of off-policy RL for both CT and DT systems. Finally, we review several applications.
Feasibility of touch-less control of operating room lights.
Hartmann, Florian; Schlaefer, Alexander
2013-03-01
Today's highly technical operating rooms lead to fairly complex surgical workflows where the surgeon has to interact with a number of devices, including the operating room light. Hence, ideally, the surgeon could direct the light without major disruption of his work. We studied whether a gesture tracking-based control of an automated operating room light is feasible. So far, there has been little research on control approaches for operating lights. We have implemented an exemplary setup to mimic an automated light controlled by a gesture tracking system. The setup includes a articulated arm to position the light source and an off-the-shelf RGBD camera to detect the user interaction. We assessed the tracking performance using a robot-mounted hand phantom and ran a number of tests with 18 volunteers to evaluate the potential of touch-less light control. All test persons were comfortable with using the gesture-based system and quickly learned how to move a light spot on flat surface. The hand tracking error is direction-dependent and in the range of several centimeters, with a standard deviation of less than 1 mm and up to 3.5 mm orthogonal and parallel to the finger orientation, respectively. However, the subjects had no problems following even more complex paths with a width of less than 10 cm. The average speed was 0.15 m/s, and even initially slow subjects improved over time. Gestures to initiate control can be performed in approximately 2 s. Two-thirds of the subjects considered gesture control to be simple, and a majority considered it to be rather efficient. Implementation of an automated operating room light and touch-less control using an RGBD camera for gesture tracking is feasible. The remaining tracking error does not affect smooth control, and the use of the system is intuitive even for inexperienced users.
Adaptive NN controller design for a class of nonlinear MIMO discrete-time systems.
Liu, Yan-Jun; Tang, Li; Tong, Shaocheng; Chen, C L Philip
2015-05-01
An adaptive neural network tracking control is studied for a class of multiple-input multiple-output (MIMO) nonlinear systems. The studied systems are in discrete-time form and the discretized dead-zone inputs are considered. In addition, the studied MIMO systems are composed of N subsystems, and each subsystem contains unknown functions and external disturbance. Due to the complicated framework of the discrete-time systems, the existence of the dead zone and the noncausal problem in discrete-time, it brings about difficulties for controlling such a class of systems. To overcome the noncausal problem, by defining the coordinate transformations, the studied systems are transformed into a special form, which is suitable for the backstepping design. The radial basis functions NNs are utilized to approximate the unknown functions of the systems. The adaptation laws and the controllers are designed based on the transformed systems. By using the Lyapunov method, it is proved that the closed-loop system is stable in the sense that the semiglobally uniformly ultimately bounded of all the signals and the tracking errors converge to a bounded compact set. The simulation examples and the comparisons with previous approaches are provided to illustrate the effectiveness of the proposed control algorithm.
A unified perspective on robot control - The energy Lyapunov function approach
NASA Technical Reports Server (NTRS)
Wen, John T.
1990-01-01
A unified framework for the stability analysis of robot tracking control is presented. By using an energy-motivated Lyapunov function candidate, the closed-loop stability is shown for a large family of control laws sharing a common structure of proportional and derivative feedback and a model-based feedforward. The feedforward can be zero, partial or complete linearized dynamics, partial or complete nonlinear dynamics, or linearized or nonlinear dynamics with parameter adaptation. As result, the dichotomous approaches to the robot control problem based on the open-loop linearization and nonlinear Lyapunov analysis are both included in this treatment. Furthermore, quantitative estimates of the trade-offs between different schemes in terms of the tracking performance, steady state error, domain of convergence, realtime computation load and required a prior model information are derived.
Chen, Wentao; Zhang, Weidong
2009-10-01
In an optical disk drive servo system, to attenuate the external periodic disturbances induced by inevitable disk eccentricity, repetitive control has been used successfully. The performance of a repetitive controller greatly depends on the bandwidth of the low-pass filter included in the repetitive controller. However, owing to the plant uncertainty and system stability, it is difficult to maximize the bandwidth of the low-pass filter. In this paper, we propose an optimality based repetitive controller design method for the track-following servo system with norm-bounded uncertainties. By embedding a lead compensator in the repetitive controller, both the system gain at periodic signal's harmonics and the bandwidth of the low-pass filter are greatly increased. The optimal values of the repetitive controller's parameters are obtained by solving two optimization problems. Simulation and experimental results are provided to illustrate the effectiveness of the proposed method.
Fuzzy Adaptive Control Design and Discretization for a Class of Nonlinear Uncertain Systems.
Zhao, Xudong; Shi, Peng; Zheng, Xiaolong
2016-06-01
In this paper, tracking control problems are investigated for a class of uncertain nonlinear systems in lower triangular form. First, a state-feedback controller is designed by using adaptive backstepping technique and the universal approximation ability of fuzzy logic systems. During the design procedure, a developed method with less computation is proposed by constructing one maximum adaptive parameter. Furthermore, adaptive controllers with nonsymmetric dead-zone are also designed for the systems. Then, a sampled-data control scheme is presented to discretize the obtained continuous-time controller by using the forward Euler method. It is shown that both proposed continuous and discrete controllers can ensure that the system output tracks the target signal with a small bounded error and the other closed-loop signals remain bounded. Two simulation examples are presented to verify the effectiveness and applicability of the proposed new design techniques.
Bellman Continuum (3rd) International Workshop (13-14 June 1988)
1988-06-01
Modelling Uncertain Problem ................. 53 David Bensoussan ,---,>Asymptotic Linearization of Uncertain Multivariable Systems by Sliding Modes...K. Ghosh .-. Robust Model Tracking for a Class of Singularly Perturbed Nonlinear Systems via Composite Control ....... 93 F. Garofalo and L. Glielmo...MODELISATION ET COMMANDE EN ECONOMIE MODELS AND CONTROL POLICIES IN ECONOMICS Qualitative Differential Games : A Viability Approach ............. 117
Subsea Cable Tracking by Autonomous Underwater Vehicle with Magnetic Sensing Guidance.
Xiang, Xianbo; Yu, Caoyang; Niu, Zemin; Zhang, Qin
2016-08-20
The changes of the seabed environment caused by a natural disaster or human activities dramatically affect the life span of the subsea buried cable. It is essential to track the cable route in order to inspect the condition of the buried cable and protect its surviving seabed environment. The magnetic sensor is instrumental in guiding the remotely-operated vehicle (ROV) to track and inspect the buried cable underseas. In this paper, a novel framework integrating the underwater cable localization method with the magnetic guidance and control algorithm is proposed, in order to enable the automatic cable tracking by a three-degrees-of-freedom (3-DOF) under-actuated autonomous underwater vehicle (AUV) without human beings in the loop. The work relies on the passive magnetic sensing method to localize the subsea cable by using two tri-axial magnetometers, and a new analytic formulation is presented to compute the heading deviation, horizontal offset and buried depth of the cable. With the magnetic localization, the cable tracking and inspection mission is elaborately constructed as a straight-line path following control problem in the horizontal plane. A dedicated magnetic line-of-sight (LOS) guidance is built based on the relative geometric relationship between the vehicle and the cable, and the feedback linearizing technique is adopted to design a simplified cable tracking controller considering the side-slip effects, such that the under-actuated vehicle is able to move towards the subsea cable and then inspect its buried environment, which further guides the environmental protection of the cable by setting prohibited fishing/anchoring zones and increasing the buried depth. Finally, numerical simulation results show the effectiveness of the proposed magnetic guidance and control algorithm on the envisioned subsea cable tracking and the potential protection of the seabed environment along the cable route.
Subsea Cable Tracking by Autonomous Underwater Vehicle with Magnetic Sensing Guidance
Xiang, Xianbo; Yu, Caoyang; Niu, Zemin; Zhang, Qin
2016-01-01
The changes of the seabed environment caused by a natural disaster or human activities dramatically affect the life span of the subsea buried cable. It is essential to track the cable route in order to inspect the condition of the buried cable and protect its surviving seabed environment. The magnetic sensor is instrumental in guiding the remotely-operated vehicle (ROV) to track and inspect the buried cable underseas. In this paper, a novel framework integrating the underwater cable localization method with the magnetic guidance and control algorithm is proposed, in order to enable the automatic cable tracking by a three-degrees-of-freedom (3-DOF) under-actuated autonomous underwater vehicle (AUV) without human beings in the loop. The work relies on the passive magnetic sensing method to localize the subsea cable by using two tri-axial magnetometers, and a new analytic formulation is presented to compute the heading deviation, horizontal offset and buried depth of the cable. With the magnetic localization, the cable tracking and inspection mission is elaborately constructed as a straight-line path following control problem in the horizontal plane. A dedicated magnetic line-of-sight (LOS) guidance is built based on the relative geometric relationship between the vehicle and the cable, and the feedback linearizing technique is adopted to design a simplified cable tracking controller considering the side-slip effects, such that the under-actuated vehicle is able to move towards the subsea cable and then inspect its buried environment, which further guides the environmental protection of the cable by setting prohibited fishing/anchoring zones and increasing the buried depth. Finally, numerical simulation results show the effectiveness of the proposed magnetic guidance and control algorithm on the envisioned subsea cable tracking and the potential protection of the seabed environment along the cable route. PMID:27556465
NL(q) Theory: A Neural Control Framework with Global Asymptotic Stability Criteria.
Vandewalle, Joos; De Moor, Bart L.R.; Suykens, Johan A.K.
1997-06-01
In this paper a framework for model-based neural control design is presented, consisting of nonlinear state space models and controllers, parametrized by multilayer feedforward neural networks. The models and closed-loop systems are transformed into so-called NL(q) system form. NL(q) systems represent a large class of nonlinear dynamical systems consisting of q layers with alternating linear and static nonlinear operators that satisfy a sector condition. For such NL(q)s sufficient conditions for global asymptotic stability, input/output stability (dissipativity with finite L(2)-gain) and robust stability and performance are presented. The stability criteria are expressed as linear matrix inequalities. In the analysis problem it is shown how stability of a given controller can be checked. In the synthesis problem two methods for neural control design are discussed. In the first method Narendra's dynamic backpropagation for tracking on a set of specific reference inputs is modified with an NL(q) stability constraint in order to ensure, e.g., closed-loop stability. In a second method control design is done without tracking on specific reference inputs, but based on the input/output stability criteria itself, within a standard plant framework as this is done, for example, in H( infinity ) control theory and &mgr; theory. Copyright 1997 Elsevier Science Ltd.
Boukattaya, Mohamed; Mezghani, Neila; Damak, Tarak
2018-06-01
In this paper, robust and adaptive nonsingular fast terminal sliding-mode (NFTSM) control schemes for the trajectory tracking problem are proposed with known or unknown upper bound of the system uncertainty and external disturbances. The developed controllers take the advantage of the NFTSM theory to ensure fast convergence rate, singularity avoidance, and robustness against uncertainties and external disturbances. First, a robust NFTSM controller is proposed which guarantees that sliding surface and equilibrium point can be reached in a short finite-time from any initial state. Then, in order to cope with the unknown upper bound of the system uncertainty which may be occurring in practical applications, a new adaptive NFTSM algorithm is developed. One feature of the proposed control law is their adaptation techniques where the prior knowledge of parameters uncertainty and disturbances is not needed. However, the adaptive tuning law can estimate the upper bound of these uncertainties using only position and velocity measurements. Moreover, the proposed controller eliminates the chattering effect without losing the robustness property and the precision. Stability analysis is performed using the Lyapunov stability theory, and simulation studies are conducted to verify the effectiveness of the developed control schemes. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.
Efficient integration of spectral features for vehicle tracking utilizing an adaptive sensor
NASA Astrophysics Data System (ADS)
Uzkent, Burak; Hoffman, Matthew J.; Vodacek, Anthony
2015-03-01
Object tracking in urban environments is an important and challenging problem that is traditionally tackled using visible and near infrared wavelengths. By inserting extended data such as spectral features of the objects one can improve the reliability of the identification process. However, huge increase in data created by hyperspectral imaging is usually prohibitive. To overcome the complexity problem, we propose a persistent air-to-ground target tracking system inspired by a state-of-the-art, adaptive, multi-modal sensor. The adaptive sensor is capable of providing panchromatic images as well as the spectra of desired pixels. This addresses the data challenge of hyperspectral tracking by only recording spectral data as needed. Spectral likelihoods are integrated into a data association algorithm in a Bayesian fashion to minimize the likelihood of misidentification. A framework for controlling spectral data collection is developed by incorporating motion segmentation information and prior information from a Gaussian Sum filter (GSF) movement predictions from a multi-model forecasting set. An intersection mask of the surveillance area is extracted from OpenStreetMap source and incorporated into the tracking algorithm to perform online refinement of multiple model set. The proposed system is tested using challenging and realistic scenarios generated in an adverse environment.
Object tracking using plenoptic image sequences
NASA Astrophysics Data System (ADS)
Kim, Jae Woo; Bae, Seong-Joon; Park, Seongjin; Kim, Do Hyung
2017-05-01
Object tracking is a very important problem in computer vision research. Among the difficulties of object tracking, partial occlusion problem is one of the most serious and challenging problems. To address the problem, we proposed novel approaches to object tracking on plenoptic image sequences. Our approaches take advantage of the refocusing capability that plenoptic images provide. Our approaches input the sequences of focal stacks constructed from plenoptic image sequences. The proposed image selection algorithms select the sequence of optimal images that can maximize the tracking accuracy from the sequence of focal stacks. Focus measure approach and confidence measure approach were proposed for image selection and both of the approaches were validated by the experiments using thirteen plenoptic image sequences that include heavily occluded target objects. The experimental results showed that the proposed approaches were satisfactory comparing to the conventional 2D object tracking algorithms.
Tracking and Control of a Neutral Particle Beam Using Multiple Model Adaptive Meer Filter.
1987-12-01
34 method incorporated by Zicker in 1983 [32]. Once the beam estimation problem had been solved, the problem of beam control was examined. Zicker conducted a...filter. Then, the methods applied by Meer, and later Zicker , to reduce the computational load of a simple Meer filter, will be presented. 2.5.1 Basic...number of possible methods to prune the hypothesis tree and chose the "Best Half Method" as the most viable (21). Zicker [323, applied the work of Weiss
NASA Technical Reports Server (NTRS)
Gordon, Steven C.
1993-01-01
Spacecraft in orbit near libration point L1 in the Sun-Earth system are excellent platforms for research concerning solar effects on the terrestrial environment. One spacecraft mission launched in 1978 used an L1 orbit for nearly 4 years, and future L1 orbital missions are also being planned. Orbit determination and station-keeping are, however, required for these orbits. In particular, orbit determination error analysis may be used to compute the state uncertainty after a predetermined tracking period; the predicted state uncertainty levels then will impact the control costs computed in station-keeping simulations. Error sources, such as solar radiation pressure and planetary mass uncertainties, are also incorporated. For future missions, there may be some flexibility in the type and size of the spacecraft's nominal trajectory, but different orbits may produce varying error analysis and station-keeping results. The nominal path, for instance, can be (nearly) periodic or distinctly quasi-periodic. A periodic 'halo' orbit may be constructed to be significantly larger than a quasi-periodic 'Lissajous' path; both may meet mission requirements, but perhaps the required control costs for these orbits are probably different. Also for this spacecraft tracking and control simulation problem, experimental design methods can be used to determine the most significant uncertainties. That is, these methods can determine the error sources in the tracking and control problem that most impact the control cost (output); it also produces an equation that gives the approximate functional relationship between the error inputs and the output.
Application studies of RFID technology in the process of coal logistics transport
NASA Astrophysics Data System (ADS)
Qiao, Bingqin; Chang, Xiaoming; Hao, Meiyan; Kong, Dejin
2012-04-01
For quality control problems in coal transport, RFID technology has been proposed to be applied to coal transportation process. The whole process RFID traceability system from coal production to consumption has been designed and coal supply chain logistics tracking system integration platform has been built, to form the coal supply chain traceability and transport tracking system and providing more and more transparent tracking and monitoring of coal quality information for consumers of coal. Currently direct transport and combined transport are the main forms of coal transportation in China. The means of transport are cars, trains and ships. In the booming networking environment of RFID technology, the RFID technology will be applied to coal logistics and provide opportunity for the coal transportation tracking in the process transportation.
Monitour: Tracking global routes of electronic waste.
Lee, David; Offenhuber, Dietmar; Duarte, Fábio; Biderman, Assaf; Ratti, Carlo
2018-02-01
Many nations seek to control or prevent the inflow of waste electronic and electrical equipment, but such flows are difficult to track due to undocumented, often illegal global trade in e-waste. We apply wireless GPS location trackers to this problem, detecting potential cases of non-compliant recycling operations in the United States as well as the global trajectories of exported e-waste. By planting hidden trackers inside discarded computer monitors and printers, we tracked dozens of devices being sent overseas to various ports in Asia, flows likely unreported in official trade data. We discuss how location tracking enables new ways to monitor, regulate, and enforce rules on the international movement of hazardous electronic waste materials, and the limitations of such methods. Copyright © 2017 Elsevier Ltd. All rights reserved.
Using model order tests to determine sensory inputs in a motion study
NASA Technical Reports Server (NTRS)
Repperger, D. W.; Junker, A. M.
1977-01-01
In the study of motion effects on tracking performance, a problem of interest is the determination of what sensory inputs a human uses in controlling his tracking task. In the approach presented here a simple canonical model (FID or a proportional, integral, derivative structure) is used to model the human's input-output time series. A study of significant changes in reduction of the output error loss functional is conducted as different permutations of parameters are considered. Since this canonical model includes parameters which are related to inputs to the human (such as the error signal, its derivatives and integration), the study of model order is equivalent to the study of which sensory inputs are being used by the tracker. The parameters are obtained which have the greatest effect on reducing the loss function significantly. In this manner the identification procedure converts the problem of testing for model order into the problem of determining sensory inputs.
Silva, Leonardo W T; Barros, Vitor F; Silva, Sandro G
2014-08-18
In launching operations, Rocket Tracking Systems (RTS) process the trajectory data obtained by radar sensors. In order to improve functionality and maintenance, radars can be upgraded by replacing antennas with parabolic reflectors (PRs) with phased arrays (PAs). These arrays enable the electronic control of the radiation pattern by adjusting the signal supplied to each radiating element. However, in projects of phased array radars (PARs), the modeling of the problem is subject to various combinations of excitation signals producing a complex optimization problem. In this case, it is possible to calculate the problem solutions with optimization methods such as genetic algorithms (GAs). For this, the Genetic Algorithm with Maximum-Minimum Crossover (GA-MMC) method was developed to control the radiation pattern of PAs. The GA-MMC uses a reconfigurable algorithm with multiple objectives, differentiated coding and a new crossover genetic operator. This operator has a different approach from the conventional one, because it performs the crossover of the fittest individuals with the least fit individuals in order to enhance the genetic diversity. Thus, GA-MMC was successful in more than 90% of the tests for each application, increased the fitness of the final population by more than 20% and reduced the premature convergence.
Silva, Leonardo W. T.; Barros, Vitor F.; Silva, Sandro G.
2014-01-01
In launching operations, Rocket Tracking Systems (RTS) process the trajectory data obtained by radar sensors. In order to improve functionality and maintenance, radars can be upgraded by replacing antennas with parabolic reflectors (PRs) with phased arrays (PAs). These arrays enable the electronic control of the radiation pattern by adjusting the signal supplied to each radiating element. However, in projects of phased array radars (PARs), the modeling of the problem is subject to various combinations of excitation signals producing a complex optimization problem. In this case, it is possible to calculate the problem solutions with optimization methods such as genetic algorithms (GAs). For this, the Genetic Algorithm with Maximum-Minimum Crossover (GA-MMC) method was developed to control the radiation pattern of PAs. The GA-MMC uses a reconfigurable algorithm with multiple objectives, differentiated coding and a new crossover genetic operator. This operator has a different approach from the conventional one, because it performs the crossover of the fittest individuals with the least fit individuals in order to enhance the genetic diversity. Thus, GA-MMC was successful in more than 90% of the tests for each application, increased the fitness of the final population by more than 20% and reduced the premature convergence. PMID:25196013
Robust Task Space Trajectory Tracking Control of Robotic Manipulators
NASA Astrophysics Data System (ADS)
Galicki, M.
2016-08-01
This work deals with the problem of the accurate task space trajectory tracking subject to finite-time convergence. Kinematic and dynamic equations of a redundant manipulator are assumed to be uncertain. Moreover, globally unbounded disturbances are allowed to act on the manipulator when tracking the trajectory by the end-effector. Furthermore, the movement is to be accomplished in such a way as to reduce both the manipulator torques and their oscillations thus eliminating the potential robot vibrations. Based on suitably defined task space non-singular terminal sliding vector variable and the Lyapunov stability theory, we propose a class of chattering-free robust controllers, based on the estimation of transpose Jacobian, which seem to be effective in counteracting both uncertain kinematics and dynamics, unbounded disturbances and (possible) kinematic and/or algorithmic singularities met on the robot trajectory. The numerical simulations carried out for a redundant manipulator of a SCARA type consisting of the three revolute kinematic pairs and operating in a two-dimensional task space, illustrate performance of the proposed controllers as well as comparisons with other well known control schemes.
Liu, Yan-Jun; Tong, Shaocheng
2015-03-01
In the paper, an adaptive tracking control design is studied for a class of nonlinear discrete-time systems with dead-zone input. The considered systems are of the nonaffine pure-feedback form and the dead-zone input appears nonlinearly in the systems. The contributions of the paper are that: 1) it is for the first time to investigate the control problem for this class of discrete-time systems with dead-zone; 2) there are major difficulties for stabilizing such systems and in order to overcome the difficulties, the systems are transformed into an n-step-ahead predictor but nonaffine function is still existent; and 3) an adaptive compensative term is constructed to compensate for the parameters of the dead-zone. The neural networks are used to approximate the unknown functions in the transformed systems. Based on the Lyapunov theory, it is proven that all the signals in the closed-loop system are semi-globally uniformly ultimately bounded and the tracking error converges to a small neighborhood of zero. Two simulation examples are provided to verify the effectiveness of the control approach in the paper.
NASA Astrophysics Data System (ADS)
Hafner, D.
2015-09-01
The application of ground-based boresight sources for calibration and testing of tracking antennas usually entails various difficulties, mostly due to unwanted ground effects. To avoid this problem, DLR MORABA developed a small, lightweight, frequency-adjustable S-band boresight source, mounted on a small remote-controlled multirotor aircraft. Highly accurate GPS-supported, position and altitude control functions allow both, very steady positioning of the aircraft in mid-air, and precise waypoint-based, semi-autonomous flights. In contrast to fixed near-ground boresight sources this flying setup enables to avoid obstructions in the Fresnel zone between source and antenna. Further, it minimizes ground reflections and other multipath effects which can affect antenna calibration. In addition, the large operating range of a flying boresight simplifies measurements in the far field of the antenna and permits undisturbed antenna pattern tests. A unique application is the realistic simulation of sophisticated flight paths, including overhead tracking and demanding trajectories of fast objects such as sounding rockets. Likewise, dynamic tracking tests are feasible which provide crucial information about the antenna pedestal performance — particularly at high elevations — and reveal weaknesses in the autotrack control loop of tracking antenna systems. During acceptance tests of MORABA's new tracking antennas, a manned aircraft was never used, since the Flying Boresight surpassed all expectations regarding usability, efficiency, and precision. Hence, it became an integral part of MORABA's standard antenna setup and calibration procedures.
NASA Technical Reports Server (NTRS)
Troudet, T.; Garg, S.; Merrill, W.
1992-01-01
The design of a dynamic neurocontroller with good robustness properties is presented for a multivariable aircraft control problem. The internal dynamics of the neurocontroller are synthesized by a state estimator feedback loop. The neurocontrol is generated by a multilayer feedforward neural network which is trained through backpropagation to minimize an objective function that is a weighted sum of tracking errors, and control input commands and rates. The neurocontroller exhibits good robustness through stability margins in phase and vehicle output gains. By maintaining performance and stability in the presence of sensor failures in the error loops, the structure of the neurocontroller is also consistent with the classical approach of flight control design.
Neural networks for feedback feedforward nonlinear control systems.
Parisini, T; Zoppoli, R
1994-01-01
This paper deals with the problem of designing feedback feedforward control strategies to drive the state of a dynamic system (in general, nonlinear) so as to track any desired trajectory joining the points of given compact sets, while minimizing a certain cost function (in general, nonquadratic). Due to the generality of the problem, conventional methods are difficult to apply. Thus, an approximate solution is sought by constraining control strategies to take on the structure of multilayer feedforward neural networks. After discussing the approximation properties of neural control strategies, a particular neural architecture is presented, which is based on what has been called the "linear-structure preserving principle". The original functional problem is then reduced to a nonlinear programming one, and backpropagation is applied to derive the optimal values of the synaptic weights. Recursive equations to compute the gradient components are presented, which generalize the classical adjoint system equations of N-stage optimal control theory. Simulation results related to nonlinear nonquadratic problems show the effectiveness of the proposed method.
A distributed database view of network tracking systems
NASA Astrophysics Data System (ADS)
Yosinski, Jason; Paffenroth, Randy
2008-04-01
In distributed tracking systems, multiple non-collocated trackers cooperate to fuse local sensor data into a global track picture. Generating this global track picture at a central location is fairly straightforward, but the single point of failure and excessive bandwidth requirements introduced by centralized processing motivate the development of decentralized methods. In many decentralized tracking systems, trackers communicate with their peers via a lossy, bandwidth-limited network in which dropped, delayed, and out of order packets are typical. Oftentimes the decentralized tracking problem is viewed as a local tracking problem with a networking twist; we believe this view can underestimate the network complexities to be overcome. Indeed, a subsequent 'oversight' layer is often introduced to detect and handle track inconsistencies arising from a lack of robustness to network conditions. We instead pose the decentralized tracking problem as a distributed database problem, enabling us to draw inspiration from the vast extant literature on distributed databases. Using the two-phase commit algorithm, a well known technique for resolving transactions across a lossy network, we describe several ways in which one may build a distributed multiple hypothesis tracking system from the ground up to be robust to typical network intricacies. We pay particular attention to the dissimilar challenges presented by network track initiation vs. maintenance and suggest a hybrid system that balances speed and robustness by utilizing two-phase commit for only track initiation transactions. Finally, we present simulation results contrasting the performance of such a system with that of more traditional decentralized tracking implementations.
Machine Learning Control For Highly Reconfigurable High-Order Systems
2015-01-02
develop and flight test a Reinforcement Learning based approach for autonomous tracking of ground targets using a fixed wing Unmanned...Reinforcement Learning - based algorithms are developed for learning agents’ time dependent dynamics while also learning to control them. Three algorithms...to a wide range of engineering- based problems . Implementation of these solutions, however, is often complicated by the hysteretic, non-linear,
Comparison between goal programming and cointegration approaches in enhanced index tracking
NASA Astrophysics Data System (ADS)
Lam, Weng Siew; Jamaan, Saiful Hafizah Hj.
2013-04-01
Index tracking is a popular form of passive fund management in stock market. Passive management is a buy-and-hold strategy that aims to achieve rate of return similar to the market return. Index tracking problem is a problem of reproducing the performance of a stock market index, without purchasing all of the stocks that make up the index. This can be done by establishing an optimal portfolio that minimizes risk or tracking error. An improved index tracking (enhanced index tracking) is a dual-objective optimization problem, a trade-off between maximizing the mean return and minimizing the tracking error. Enhanced index tracking aims to generate excess return over the return achieved by the index. The objective of this study is to compare the portfolio compositions and performances by using two different approaches in enhanced index tracking problem, which are goal programming and cointegration. The result of this study shows that the optimal portfolios for both approaches are able to outperform the Malaysia market index which is Kuala Lumpur Composite Index. Both approaches give different optimal portfolio compositions. Besides, the cointegration approach outperforms the goal programming approach because the cointegration approach gives higher mean return and lower risk or tracking error. Therefore, the cointegration approach is more appropriate for the investors in Malaysia.
A minimum attention control law for ball catching.
Jang, Cheongjae; Lee, Jee-eun; Lee, Sohee; Park, F C
2015-10-06
Digital implementations of control laws typically involve discretization with respect to both time and space, and a control law that can achieve a task at coarser levels of discretization can be said to require less control attention, and also reduced implementation costs. One means of quantitatively capturing the attention of a control law is to measure the rate of change of the control with respect to changes in state and time. In this paper we present an attention-minimizing control law for ball catching and other target tracking tasks based on Brockett's attention criterion. We first highlight the connections between this attention criterion and some well-known principles from human motor control. Under the assumption that the optimal control law is the sum of a linear time-varying feedback term and a time-varying feedforward term, we derive an LQR-based minimum attention tracking control law that is stable, and obtained efficiently via a finite-dimensional optimization over the symmetric positive-definite matrices. Taking ball catching as our primary task, we perform numerical experiments comparing the performance of the various control strategies examined in the paper. Consistent with prevailing theories about human ball catching, our results exhibit several familiar features, e.g., the transition from open-loop to closed-loop control during the catching movement, and improved robustness to spatiotemporal discretization. The presented control laws are applicable to more general tracking problems that are subject to limited communication resources.
A new smooth robust control design for uncertain nonlinear systems with non-vanishing disturbances
NASA Astrophysics Data System (ADS)
Xian, Bin; Zhang, Yao
2016-06-01
In this paper, we consider the control problem for a general class of nonlinear system subjected to uncertain dynamics and non-varnishing disturbances. A smooth nonlinear control algorithm is presented to tackle these uncertainties and disturbances. The proposed control design employs the integral of a nonlinear sigmoid function to compensate the uncertain dynamics, and achieve a uniformly semi-global practical asymptotic stable tracking control of the system outputs. A novel Lyapunov-based stability analysis is employed to prove the convergence of the tracking errors and the stability of the closed-loop system. Numerical simulation results on a two-link robot manipulator are presented to illustrate the performance of the proposed control algorithm comparing with the layer-boundary sliding mode controller and the robust of integration of sign of error control design. Furthermore, real-time experiment results for the attitude control of a quadrotor helicopter are also included to confirm the effectiveness of the proposed algorithm.
Dong, Hongyang; Hu, Qinglei; Ma, Guangfu
2016-03-01
Study results of developing control system for spacecraft formation proximity operations between a target and a chaser are presented. In particular, a coupled model using dual quaternion is employed to describe the proximity problem of spacecraft formation, and a nonlinear adaptive fault-tolerant feedback control law is developed to enable the chaser spacecraft to track the position and attitude of the target even though its actuator occurs fault. Multiple-task capability of the proposed control system is further demonstrated in the presence of disturbances and parametric uncertainties as well. In addition, the practical finite-time stability feature of the closed-loop system is guaranteed theoretically under the designed control law. Numerical simulation of the proposed method is presented to demonstrate the advantages with respect to interference suppression, fast tracking, fault tolerant and practical finite-time stability. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
Adaptive Fuzzy Tracking Control for a Class of MIMO Nonlinear Systems in Nonstrict-Feedback Form.
Chen, Bing; Lin, Chong; Liu, Xiaoping; Liu, Kefu
2015-12-01
This paper focuses on the problem of fuzzy adaptive control for a class of multiinput and multioutput (MIMO) nonlinear systems in nonstrict-feedback form, which contains the strict-feedback form as a special case. By the condition of variable partition, a new fuzzy adaptive backstepping is proposed for such a class of nonlinear MIMO systems. The suggested fuzzy adaptive controller guarantees that the proposed control scheme can guarantee that all the signals in the closed-loop system are semi-globally uniformly ultimately bounded and the tracking errors eventually converge to a small neighborhood around the origin. The main advantage of this paper is that a control approach is systematically derived for nonlinear systems with strong interconnected terms which are the functions of all states of the whole system. Simulation results further illustrate the effectiveness of the suggested approach.
Analyses of Phase III Dynamic Buckling Tests. Final Report
DOT National Transportation Integrated Search
1990-02-01
Thermal buckling of railroad tracks in the lateral plane is an important problem in the design and maintenance of continuous welded rail (CWR) tracks. The problem is manifested through derailments which are attributable to track buckling, indicating ...
Maximum power point tracker for photovoltaic power plants
NASA Astrophysics Data System (ADS)
Arcidiacono, V.; Corsi, S.; Lambri, L.
The paper describes two different closed-loop control criteria for the maximum power point tracking of the voltage-current characteristic of a photovoltaic generator. The two criteria are discussed and compared, inter alia, with regard to the setting-up problems that they pose. Although a detailed analysis is not embarked upon, the paper also provides some quantitative information on the energy advantages obtained by using electronic maximum power point tracking systems, as compared with the situation in which the point of operation of the photovoltaic generator is not controlled at all. Lastly, the paper presents two high-efficiency MPPT converters for experimental photovoltaic plants of the stand-alone and the grid-interconnected type.
An event-triggered control approach for the leader-tracking problem with heterogeneous agents
NASA Astrophysics Data System (ADS)
Garcia, Eloy; Cao, Yongcan; Casbeer, David W.
2018-05-01
This paper presents an event-triggered control and communication framework for the cooperative leader-tracking problem with communication constraints. Continuous communication among agents is not assumed in this work and decentralised event-based strategies are proposed for agents with heterogeneous linear dynamics. Also, the leader dynamics are unknown and only intermittent measurements of its states are obtained by a subset of the followers. The event-based method not only represents a way to restrict communication among agents, but it also provides a decentralised scheme for scheduling information broadcasts. Notably, each agent is able to determine its own broadcasting instants independently of any other agent in the network. In an extension, the case where transmission of information is affected by time-varying communication delays is addressed. Finally, positive lower-bounds on the inter-event time intervals are obtained in order to show that Zeno behaviour does not exist and, therefore, continuous exchange of information is never needed in this framework.
NASA Astrophysics Data System (ADS)
Yoo, Sung Jin
2016-11-01
This paper presents a theoretical design approach for output-feedback formation tracking of multiple mobile robots under wheel perturbations. It is assumed that these perturbations are unknown and the linear and angular velocities of the robots are unmeasurable. First, adaptive state observers for estimating unmeasurable velocities of the robots are developed under the robots' kinematics and dynamics including wheel perturbation effects. Then, we derive a virtual-structure-based formation tracker scheme according to the observer dynamic surface design procedure. The main difficulty of the output-feedback control design is to manage the coupling problems between unmeasurable velocities and unknown wheel perturbation effects. These problems are avoided by using the adaptive technique and the function approximation property based on fuzzy logic systems. From the Lyapunov stability analysis, it is shown that point tracking errors of each robot and synchronisation errors for the desired formation converge to an adjustable neighbourhood of the origin, while all signals in the controlled closed-loop system are semiglobally uniformly ultimately bounded.
Li, Luyang; Liu, Yun-Hui; Jiang, Tianjiao; Wang, Kai; Fang, Mu
2018-02-01
Despite tremendous efforts made for years, trajectory tracking control (TC) of a nonholonomic mobile robot (NMR) without global positioning system remains an open problem. The major reason is the difficulty to localize the robot by using its onboard sensors only. In this paper, a newly designed adaptive trajectory TC method is proposed for the NMR without its position, orientation, and velocity measurements. The controller is designed on the basis of a novel algorithm to estimate position and velocity of the robot online from visual feedback of an omnidirectional camera. It is theoretically proved that the proposed algorithm yields the TC errors to asymptotically converge to zero. Real-world experiments are conducted on a wheeled NMR to validate the feasibility of the control system.
NASA Astrophysics Data System (ADS)
Kladis, Georgios P.; Menon, Prathyush P.; Edwards, Christopher
2016-12-01
This article proposes a systematic analysis for a tracking problem which ensures cooperation amongst a swarm of unmanned aerial vehicles (UAVs), modelled as nonlinear systems with linear and angular velocity constraints, in order to achieve different goals. A distributed Takagi-Sugeno (TS) framework design is adopted for the representation of the nonlinear model of the dynamics of the UAVs. The distributed control law which is introduced is composed of both node and network level information. Firstly, feedback gains are synthesised using a parallel distributed compensation (PDC) control law structure, for a collection of isolated UAVs; ignoring communications among the swarm. Then secondly, based on an alternation-like procedure, the resulting feedback gains are used to determine Lyapunov matrices which are utilised at network level to incorporate into the control law, the relative differences in the states of the vehicles, and to induce cooperative behaviour. Eventually stability is guaranteed for the entire swarm. The control synthesis is performed using tools from linear control theory: in particular the design criteria are posed as linear matrix inequalities (LMIs). An example based on a UAV tracking scenario is included to outline the efficacy of the approach.
Experimental Investigations of Dynamic Buckling of CWR Tracks
DOT National Transportation Integrated Search
1986-11-01
Thermal buckling of railroad tracks in the lateral plane is an important problem in the design and maintenance of continuous welded rail (CWR) tracks. The severity of the problem is manifested through the large number of derailments which are attribu...
Determination of Track Lateral Resistance from Lateral Pull Tests
DOT National Transportation Integrated Search
1986-04-01
Thermal buckling of railroad tracks in the lateral plane is an important problem in the design and maintenance of continuous welded rail (CWR) track. The severity of the problem is manifested through the number of derailments which are attributable t...
Reflector control technology in space laser communication
NASA Astrophysics Data System (ADS)
Xie, Meilin; Ma, Caiwen; Yao, Cheng; Huang, Wei; Lian, Xuezheng; Feng, Xubin; Jing, Feng
2017-11-01
The optical frequencies band is used as information carrier to realize laser communication between two low-orbit micro-satellites in space which equipped with inter-satellite laser communication terminals, optical switches, space routers and other payload. The laser communication terminal adopts a two-dimensional turntable with a single mirror structure. In this paper, the perturbation model of satellite platform is established in this paper. The relationship between the coupling and coordinate transformation of satellite disturbance is analyzed and the laser pointing vector is deduced. Using the tracking differentiator to speed up the circular grating angle information constitute speed loop feedback, which avoids the problem of error amplification caused by the high frequency of the conventional difference algorithm. Finally, the suppression ability of the satellite platform disturbance and the tracking accuracy of the tracking system are simulated and analyzed. The results show that the tracking accuracy of the whole system is 10μrad in the case of satellite vibration, which provides the basis for the optimization of the performance of the space-borne laser communication control system.
Yoo, Sung Jin; Park, Bong Seok
2017-09-06
This paper addresses a distributed connectivity-preserving synchronized tracking problem of multiple uncertain nonholonomic mobile robots with limited communication ranges. The information of the time-varying leader robot is assumed to be accessible to only a small fraction of follower robots. The main contribution of this paper is to introduce a new distributed nonlinear error surface for dealing with both the synchronized tracking and the preservation of the initial connectivity patterns among nonholonomic robots. Based on this nonlinear error surface, the recursive design methodology is presented to construct the approximation-based local adaptive tracking scheme at the robot dynamic level. Furthermore, a technical lemma is established to analyze the stability and the connectivity preservation of the total closed-loop control system in the Lyapunov sense. An example is provided to illustrate the effectiveness of the proposed methodology.
Medical entomology--back to the future?
Reisen, William K
2014-12-01
Some of problems and challenges facing Medical/Veterinary Entomology are presented from my perspective, focusing on the current millennium. Topics include anthropogenic environmental changes created by population growth, administrative problems hindering science's response to these changes, and some of the scientific discoveries potentially providing solutions. As the title implies, many recent research discoveries have yet to be translated into major changes in control approaches for the major vectorborne public health problems, thereby providing an interesting mix of modern surveillance technology used to track problems and direct historical intervention solutions. Copyright © 2013 Elsevier B.V. All rights reserved.
Gambling involvement and increased risk of gambling problems.
Phillips, James G; Ogeil, Rowan; Chow, Yang-Wai; Blaszczynski, Alex
2013-12-01
The opportunity to gamble has undergone rapid expansion with technology allowing for access to gambling products 24 h a day. This increased online availability challenges governments' abilities to restrict access to gambling. Indeed, the ready access to multiple forms of gambling may potentially contribute to impaired control over urges for problem gamblers. The present study considered whether problem gamblers manifested a tendency to engage in multiple forms of gambling and identified forms of gambling which were more strongly related to problem gambling. In reanalyses of two surveys (Sample 1, N = 464, Sample 2, N = 1141), significant relationships accounting for between 11.3 and 13.5% of the variance were found between the numbers of forms of gambling accessed and degree of problem. Participation in online poker, playing cards and sports wagering were linked to problem gambling. Access to multiple forms of gambling may pose difficulties for the tracking and control of gambling.
Virtual decoupling flight control via real-time trajectory synthesis and tracking
NASA Astrophysics Data System (ADS)
Zhang, Xuefu
The production of the General Aviation industry has declined in the past 25 years. Ironically, however, the increasing demand for air travel as a fast, safe, and high-quality mode of transportation has been far from satisfied. Addressing this demand shortfall with personal air transportation necessitates advanced systems for navigation, guidance, control, flight management, and flight traffic control. Among them, an effective decoupling flight control system will not only improve flight quality, safety, and simplicity, and increase air space usage, but also reduce expenses on pilot initial and current training, and thus expand the current market and explore new markets. Because of the formidable difficulties encountered in the actual decoupling of non-linear, time-variant, and highly coupled flight control systems through traditional approaches, a new approach, which essentially converts the decoupling problem into a real-time trajectory synthesis and tracking problem, is employed. Then, the converted problem is solved and a virtual decoupling effect is achieved. In this approach, a trajectory in inertial space can be predefined and dynamically modified based on the flight mission and the pilot's commands. A feedforward-feedback control architecture is constructed to guide the airplane along the trajectory as precisely as possible. Through this approach, the pilot has much simpler, virtually decoupled control of the airplane in terms of speed, flight path angle and horizontal radius of curvature. To verify and evaluate this approach, extensive computer simulation is performed. A great deal of test cases are designed for the flight control under different flight conditions. The simulation results show that our decoupling strategy is satisfactory and promising, and therefore the research can serve as a consolidated foundation for future practical applications.
Initial Impact of the Fast Track Prevention Trial for Conduct Problems: II. Classroom Effects
2009-01-01
This study examined the effectiveness of the universal component of the Fast Track prevention model: the PATHS (Promoting Alternative THinking Strategies) curriculum and teacher consultation. This randomized clinical trial involved 198 intervention and 180 comparison classrooms from neighborhoods with greater than average crime in 4 U.S. locations. In the intervention schools, Grade 1 teachers delivered a 57-lesson social competence intervention focused on self-control, emotional awareness, peer relations, and problem solving. Findings indicated significant effects on peer ratings of aggression and hyperactive–disruptive behavior and observer ratings of classroom atmosphere. Quality of implementation predicted variation in assessments of classroom functioning. The results are discussed in terms of both the efficacy of universal, school-based prevention models and the need to examine comprehensive, multiyear programs. PMID:10535231
Visual tracking using objectness-bounding box regression and correlation filters
NASA Astrophysics Data System (ADS)
Mbelwa, Jimmy T.; Zhao, Qingjie; Lu, Yao; Wang, Fasheng; Mbise, Mercy
2018-03-01
Visual tracking is a fundamental problem in computer vision with extensive application domains in surveillance and intelligent systems. Recently, correlation filter-based tracking methods have shown a great achievement in terms of robustness, accuracy, and speed. However, such methods have a problem of dealing with fast motion (FM), motion blur (MB), illumination variation (IV), and drifting caused by occlusion (OCC). To solve this problem, a tracking method that integrates objectness-bounding box regression (O-BBR) model and a scheme based on kernelized correlation filter (KCF) is proposed. The scheme based on KCF is used to improve the tracking performance of FM and MB. For handling drift problem caused by OCC and IV, we propose objectness proposals trained in bounding box regression as prior knowledge to provide candidates and background suppression. Finally, scheme KCF as a base tracker and O-BBR are fused to obtain a state of a target object. Extensive experimental comparisons of the developed tracking method with other state-of-the-art trackers are performed on some of the challenging video sequences. Experimental comparison results show that our proposed tracking method outperforms other state-of-the-art tracking methods in terms of effectiveness, accuracy, and robustness.
Centralized Multi-Sensor Square Root Cubature Joint Probabilistic Data Association
Liu, Jun; Li, Gang; Qi, Lin; Li, Yaowen; He, You
2017-01-01
This paper focuses on the tracking problem of multiple targets with multiple sensors in a nonlinear cluttered environment. To avoid Jacobian matrix computation and scaling parameter adjustment, improve numerical stability, and acquire more accurate estimated results for centralized nonlinear tracking, a novel centralized multi-sensor square root cubature joint probabilistic data association algorithm (CMSCJPDA) is proposed. Firstly, the multi-sensor tracking problem is decomposed into several single-sensor multi-target tracking problems, which are sequentially processed during the estimation. Then, in each sensor, the assignment of its measurements to target tracks is accomplished on the basis of joint probabilistic data association (JPDA), and a weighted probability fusion method with square root version of a cubature Kalman filter (SRCKF) is utilized to estimate the targets’ state. With the measurements in all sensors processed CMSCJPDA is derived and the global estimated state is achieved. Experimental results show that CMSCJPDA is superior to the state-of-the-art algorithms in the aspects of tracking accuracy, numerical stability, and computational cost, which provides a new idea to solve multi-sensor tracking problems. PMID:29113085
Centralized Multi-Sensor Square Root Cubature Joint Probabilistic Data Association.
Liu, Yu; Liu, Jun; Li, Gang; Qi, Lin; Li, Yaowen; He, You
2017-11-05
This paper focuses on the tracking problem of multiple targets with multiple sensors in a nonlinear cluttered environment. To avoid Jacobian matrix computation and scaling parameter adjustment, improve numerical stability, and acquire more accurate estimated results for centralized nonlinear tracking, a novel centralized multi-sensor square root cubature joint probabilistic data association algorithm (CMSCJPDA) is proposed. Firstly, the multi-sensor tracking problem is decomposed into several single-sensor multi-target tracking problems, which are sequentially processed during the estimation. Then, in each sensor, the assignment of its measurements to target tracks is accomplished on the basis of joint probabilistic data association (JPDA), and a weighted probability fusion method with square root version of a cubature Kalman filter (SRCKF) is utilized to estimate the targets' state. With the measurements in all sensors processed CMSCJPDA is derived and the global estimated state is achieved. Experimental results show that CMSCJPDA is superior to the state-of-the-art algorithms in the aspects of tracking accuracy, numerical stability, and computational cost, which provides a new idea to solve multi-sensor tracking problems.
Towards large scale multi-target tracking
NASA Astrophysics Data System (ADS)
Vo, Ba-Ngu; Vo, Ba-Tuong; Reuter, Stephan; Lam, Quang; Dietmayer, Klaus
2014-06-01
Multi-target tracking is intrinsically an NP-hard problem and the complexity of multi-target tracking solutions usually do not scale gracefully with problem size. Multi-target tracking for on-line applications involving a large number of targets is extremely challenging. This article demonstrates the capability of the random finite set approach to provide large scale multi-target tracking algorithms. In particular it is shown that an approximate filter known as the labeled multi-Bernoulli filter can simultaneously track one thousand five hundred targets in clutter on a standard laptop computer.
A Corrosion Control Manual for Rail Rapid Transit
NASA Technical Reports Server (NTRS)
Gilbert, L. O.; Fitzgerald, J. H., III; Menke, J. T.; Lizak, R. M. (Editor)
1982-01-01
This manual addresses corrosion problems in the design, contruction, and maintenance of rapid transit systems. Design and maintenance solutions are provided for each problem covered. The scope encompasses all facilities of urban rapid transit systems: structures and tracks, platforms and stations, power and signals, and cars. The types of corrosion and their causes as well as rapid transit properties are described. Corrosion control committees, and NASA, DOD, and ASTM specifications and design criteria to which reference is made in the manual are listed. A bibliography of papers and excerpts of reports is provided and a glossary of frequently used terms is included.
NASA Technical Reports Server (NTRS)
Jenkins, George
1986-01-01
Prelaunch, launch, mission, and landing distribution of RF and hardline uplink/downlink information between Space Shuttle Orbiter/cargo elements, tracking antennas, and control centers at JSC, KSC, MSFC, GSFC, ESMC/RCC, and Sunnyvale are presented as functional block diagrams. Typical mismatch problems encountered during spacecraft-to-project control center telemetry transmissions are listed along with new items for future support enhancement.
NASA Astrophysics Data System (ADS)
Kim, A. A.; Klochkov, D. V.; Konyaev, M. A.; Mihaylenko, A. S.
2017-11-01
The article considers the problem of control and verification of the laser ceilometers basic performance parameters and describes an alternative method based on the use of multi-length fiber optic delay line, simulating atmospheric track. The results of the described experiment demonstrate the great potential of this method for inspection and verification procedures of laser ceilometers.
NASA Astrophysics Data System (ADS)
Jenkins, George
Prelaunch, launch, mission, and landing distribution of RF and hardline uplink/downlink information between Space Shuttle Orbiter/cargo elements, tracking antennas, and control centers at JSC, KSC, MSFC, GSFC, ESMC/RCC, and Sunnyvale are presented as functional block diagrams. Typical mismatch problems encountered during spacecraft-to-project control center telemetry transmissions are listed along with new items for future support enhancement.
Increasing the reliability of labor of railroad engineers
NASA Technical Reports Server (NTRS)
Genes, V. S.; Madiyevskiy, Y. M.
1975-01-01
It has been shown that the group of problems related to temporary overloads still require serious development with respect to further automating the basic control operation - programmed selection of speed and braking. The problem of systems for warning the engineer about the condition of the unseen track segments remains a very serious one. Systems of hygenic support of the engineer also require constructive development. The problems of ensuring the reliability of work of engineers in periods of low information load, requiring motor acts, can basically be considered theoretically solved.
Chen, Zhenfeng; Ge, Shuzhi Sam; Zhang, Yun; Li, Yanan
2014-11-01
This paper presents adaptive neural tracking control for a class of uncertain multiinput-multioutput (MIMO) nonlinear systems in block-triangular form. All subsystems within these MIMO nonlinear systems are of completely nonaffine pure-feedback form and allowed to have different orders. To deal with the nonaffine appearance of the control variables, the mean value theorem is employed to transform the systems into a block-triangular strict-feedback form with control coefficients being couplings among various inputs and outputs. A systematic procedure is proposed for the design of a new singularity-free adaptive neural tracking control strategy. Such a design procedure can remove the couplings among subsystems and hence avoids the possible circular control construction problem. As a consequence, all the signals in the closed-loop system are guaranteed to be semiglobally uniformly ultimately bounded. Moreover, the outputs of the systems are ensured to converge to a small neighborhood of the desired trajectories. Simulation studies verify the theoretical findings revealed in this paper.
Novel neural control for a class of uncertain pure-feedback systems.
Shen, Qikun; Shi, Peng; Zhang, Tianping; Lim, Cheng-Chew
2014-04-01
This paper is concerned with the problem of adaptive neural tracking control for a class of uncertain pure-feedback nonlinear systems. Using the implicit function theorem and backstepping technique, a practical robust adaptive neural control scheme is proposed to guarantee that the tracking error converges to an adjusted neighborhood of the origin by choosing appropriate design parameters. In contrast to conventional Lyapunov-based design techniques, an alternative Lyapunov function is constructed for the development of control law and learning algorithms. Differing from the existing results in the literature, the control scheme does not need to compute the derivatives of virtual control signals at each step in backstepping design procedures. Furthermore, the scheme requires the desired trajectory and its first derivative rather than its first n derivatives. In addition, the useful property of the basis function of the radial basis function, which will be used in control design, is explored. Simulation results illustrate the effectiveness of the proposed techniques.
Influence of Vehicle Induced Loads on the Lateral Stability of CWR Track
DOT National Transportation Integrated Search
1985-11-01
Thermal buckling of railroad tracks in the lateral plane is an important problem in the design and maintenance of continuous welded rail (CWR) track. The severity of the problem is manifested through the increasing number of derailments which are att...
From Fault-Diagnosis and Performance Recovery of a Controlled System to Chaotic Secure Communication
NASA Astrophysics Data System (ADS)
Hsu, Wen-Teng; Tsai, Jason Sheng-Hong; Guo, Fang-Cheng; Guo, Shu-Mei; Shieh, Leang-San
Chaotic systems are often applied to encryption on secure communication, but they may not provide high-degree security. In order to improve the security of communication, chaotic systems may need to add other secure signals, but this may cause the system to diverge. In this paper, we redesign a communication scheme that could create secure communication with additional secure signals, and the proposed scheme could keep system convergence. First, we introduce the universal state-space adaptive observer-based fault diagnosis/estimator and the high-performance tracker for the sampled-data linear time-varying system with unanticipated decay factors in actuators/system states. Besides, robustness, convergence in the mean, and tracking ability are given in this paper. A residual generation scheme and a mechanism for auto-tuning switched gain is also presented, so that the introduced methodology is applicable for the fault detection and diagnosis (FDD) for actuator and state faults to yield a high tracking performance recovery. The evolutionary programming-based adaptive observer is then applied to the problem of secure communication. Whenever the tracker induces a large control input which might not conform to the input constraint of some physical systems, the proposed modified linear quadratic optimal tracker (LQT) can effectively restrict the control input within the specified constraint interval, under the acceptable tracking performance. The effectiveness of the proposed design methodology is illustrated through tracking control simulation examples.
Li, Yongming; Ma, Zhiyao; Tong, Shaocheng
2017-09-01
The problem of adaptive fuzzy output-constrained tracking fault-tolerant control (FTC) is investigated for the large-scale stochastic nonlinear systems of pure-feedback form. The nonlinear systems considered in this paper possess the unstructured uncertainties, unknown interconnected terms and unknown nonaffine nonlinear faults. The fuzzy logic systems are employed to identify the unknown lumped nonlinear functions so that the problems of structured uncertainties can be solved. An adaptive fuzzy state observer is designed to solve the nonmeasurable state problem. By combining the barrier Lyapunov function theory, adaptive decentralized and stochastic control principles, a novel fuzzy adaptive output-constrained FTC approach is constructed. All the signals in the closed-loop system are proved to be bounded in probability and the system outputs are constrained in a given compact set. Finally, the applicability of the proposed controller is well carried out by a simulation example.
Kim, Kwangtaek; Kim, Joongrock; Choi, Jaesung; Kim, Junghyun; Lee, Sangyoun
2015-01-01
Vision-based hand gesture interactions are natural and intuitive when interacting with computers, since we naturally exploit gestures to communicate with other people. However, it is agreed that users suffer from discomfort and fatigue when using gesture-controlled interfaces, due to the lack of physical feedback. To solve the problem, we propose a novel complete solution of a hand gesture control system employing immersive tactile feedback to the user's hand. For this goal, we first developed a fast and accurate hand-tracking algorithm with a Kinect sensor using the proposed MLBP (modified local binary pattern) that can efficiently analyze 3D shapes in depth images. The superiority of our tracking method was verified in terms of tracking accuracy and speed by comparing with existing methods, Natural Interaction Technology for End-user (NITE), 3D Hand Tracker and CamShift. As the second step, a new tactile feedback technology with a piezoelectric actuator has been developed and integrated into the developed hand tracking algorithm, including the DTW (dynamic time warping) gesture recognition algorithm for a complete solution of an immersive gesture control system. The quantitative and qualitative evaluations of the integrated system were conducted with human subjects, and the results demonstrate that our gesture control with tactile feedback is a promising technology compared to a vision-based gesture control system that has typically no feedback for the user's gesture inputs. Our study provides researchers and designers with informative guidelines to develop more natural gesture control systems or immersive user interfaces with haptic feedback. PMID:25580901
Kim, Kwangtaek; Kim, Joongrock; Choi, Jaesung; Kim, Junghyun; Lee, Sangyoun
2015-01-08
Vision-based hand gesture interactions are natural and intuitive when interacting with computers, since we naturally exploit gestures to communicate with other people. However, it is agreed that users suffer from discomfort and fatigue when using gesture-controlled interfaces, due to the lack of physical feedback. To solve the problem, we propose a novel complete solution of a hand gesture control system employing immersive tactile feedback to the user's hand. For this goal, we first developed a fast and accurate hand-tracking algorithm with a Kinect sensor using the proposed MLBP (modified local binary pattern) that can efficiently analyze 3D shapes in depth images. The superiority of our tracking method was verified in terms of tracking accuracy and speed by comparing with existing methods, Natural Interaction Technology for End-user (NITE), 3D Hand Tracker and CamShift. As the second step, a new tactile feedback technology with a piezoelectric actuator has been developed and integrated into the developed hand tracking algorithm, including the DTW (dynamic time warping) gesture recognition algorithm for a complete solution of an immersive gesture control system. The quantitative and qualitative evaluations of the integrated system were conducted with human subjects, and the results demonstrate that our gesture control with tactile feedback is a promising technology compared to a vision-based gesture control system that has typically no feedback for the user's gesture inputs. Our study provides researchers and designers with informative guidelines to develop more natural gesture control systems or immersive user interfaces with haptic feedback.
Hovakimyan, N; Nardi, F; Calise, A; Kim, Nakwan
2002-01-01
We consider adaptive output feedback control of uncertain nonlinear systems, in which both the dynamics and the dimension of the regulated system may be unknown. However, the relative degree of the regulated output is assumed to be known. Given a smooth reference trajectory, the problem is to design a controller that forces the system measurement to track it with bounded errors. The classical approach requires a state observer. Finding a good observer for an uncertain nonlinear system is not an obvious task. We argue that it is sufficient to build an observer for the output tracking error. Ultimate boundedness of the error signals is shown through Lyapunov's direct method. The theoretical results are illustrated in the design of a controller for a fourth-order nonlinear system of relative degree two and a high-bandwidth attitude command system for a model R-50 helicopter.
Sliding Mode Control (SMC) of Robot Manipulator via Intelligent Controllers
NASA Astrophysics Data System (ADS)
Kapoor, Neha; Ohri, Jyoti
2017-02-01
Inspite of so much research, key technical problem, naming chattering of conventional, simple and robust SMC is still a challenge to the researchers and hence limits its practical application. However, newly developed soft computing based techniques can provide solution. In order to have advantages of conventional and heuristic soft computing based control techniques, in this paper various commonly used intelligent techniques, neural network, fuzzy logic and adaptive neuro fuzzy inference system (ANFIS) have been combined with sliding mode controller (SMC). For validation, proposed hybrid control schemes have been implemented for tracking a predefined trajectory by robotic manipulator, incorporating structured and unstructured uncertainties in the system. After reviewing numerous papers, all the commonly occurring uncertainties like continuous disturbance, uniform random white noise, static friction like coulomb friction and viscous friction, dynamic friction like Dhal friction and LuGre friction have been inserted in the system. Various performance indices like norm of tracking error, chattering in control input, norm of input torque, disturbance rejection, chattering rejection have been used. Comparative results show that with almost eliminated chattering the intelligent SMC controllers are found to be more efficient over simple SMC. It has also been observed from results that ANFIS based controller has the best tracking performance with the reduced burden on the system. No paper in the literature has found to have all these structured and unstructured uncertainties together for motion control of robotic manipulator.
Adaptive Tracking Control for Robots With an Interneural Computing Scheme.
Tsai, Feng-Sheng; Hsu, Sheng-Yi; Shih, Mau-Hsiang
2018-04-01
Adaptive tracking control of mobile robots requires the ability to follow a trajectory generated by a moving target. The conventional analysis of adaptive tracking uses energy minimization to study the convergence and robustness of the tracking error when the mobile robot follows a desired trajectory. However, in the case that the moving target generates trajectories with uncertainties, a common Lyapunov-like function for energy minimization may be extremely difficult to determine. Here, to solve the adaptive tracking problem with uncertainties, we wish to implement an interneural computing scheme in the design of a mobile robot for behavior-based navigation. The behavior-based navigation adopts an adaptive plan of behavior patterns learning from the uncertainties of the environment. The characteristic feature of the interneural computing scheme is the use of neural path pruning with rewards and punishment interacting with the environment. On this basis, the mobile robot can be exploited to change its coupling weights in paths of neural connections systematically, which can then inhibit or enhance the effect of flow elimination in the dynamics of the evolutionary neural network. Such dynamical flow translation ultimately leads to robust sensory-to-motor transformations adapting to the uncertainties of the environment. A simulation result shows that the mobile robot with the interneural computing scheme can perform fault-tolerant behavior of tracking by maintaining suitable behavior patterns at high frequency levels.
Distributed multirobot sensing and tracking: a behavior-based approach
NASA Astrophysics Data System (ADS)
Parker, Lynne E.
1995-09-01
An important issue that arises in the automation of many large-scale surveillance and reconnaissance tasks is that of tracking the movements of (or maintaining passive contact with) objects navigating in a bounded area of interest. Oftentimes in these problems, the area to be monitored will move over time or will not permit fixed sensors, thus requiring a team of mobile sensors--or robots--to monitor the area collectively. In these situations, the robots must not only have mechanisms for determining how to track objects and how to fuse information from neighboring robots, but they must also have distributed control strategies for ensuring that the entire area of interest is continually covered to the greatest extent possible. This paper focuses on the distributed control issue by describing a proposed decentralized control mechanism that allows a team of robots to collectively track and monitor objects in an uncluttered area of interest. The approach is based upon an extension to the ALLIANCE behavior-based architecture that generalizes from the domain of loosely-coupled, independent applications to the domain of strongly cooperative applications, in which the action selection of a robot is dependent upon the actions selected by its teammates. We conclude the paper be describing our ongoing implementation of the proposed approach on a team of four mobile robots.
The Mathematics of Go to Telescopes
ERIC Educational Resources Information Center
Teets, Donald
2007-01-01
This article presents the mathematics involved in finding and tracking celestial objects with an electronically controlled telescope. The essential idea in solving this problem is to choose several different coordinate systems that simplify the various motions of the earth and other celestial objects. These coordinate systems are then related by…
NASA Technical Reports Server (NTRS)
Nguyen, Nhan T.; Hashemi, Kelley E.; Yucelen, Tansel; Arabi, Ehsan
2017-01-01
This paper presents a new adaptive control approach that involves a performance optimization objective. The problem is cast as a multi-objective optimal control. The control synthesis involves the design of a performance optimizing controller from a subset of control inputs. The effect of the performance optimizing controller is to introduce an uncertainty into the system that can degrade tracking of the reference model. An adaptive controller from the remaining control inputs is designed to reduce the effect of the uncertainty while maintaining a notion of performance optimization in the adaptive control system.
Minimum energy control for a two-compartment neuron to extracellular electric fields
NASA Astrophysics Data System (ADS)
Yi, Guo-Sheng; Wang, Jiang; Li, Hui-Yan; Wei, Xi-Le; Deng, Bin
2016-11-01
The energy optimization of extracellular electric field (EF) stimulus for a neuron is considered in this paper. We employ the optimal control theory to design a low energy EF input for a reduced two-compartment model. It works by driving the neuron to closely track a prescriptive spike train. A cost function is introduced to balance the contradictory objectives, i.e., tracking errors and EF stimulus energy. By using the calculus of variations, we transform the minimization of cost function to a six-dimensional two-point boundary value problem (BVP). Through solving the obtained BVP in the cases of three fundamental bifurcations, it is shown that the control method is able to provide an optimal EF stimulus of reduced energy for the neuron to effectively track a prescriptive spike train. Further, the feasibility of the adopted method is interpreted from the point of view of the biophysical basis of spike initiation. These investigations are conducive to designing stimulating dose for extracellular neural stimulation, which are also helpful to interpret the effects of extracellular field on neural activity.
Fast spacecraft adaptive attitude tracking control through immersion and invariance design
NASA Astrophysics Data System (ADS)
Wen, Haowei; Yue, Xiaokui; Li, Peng; Yuan, Jianping
2017-10-01
This paper presents a novel non-certainty-equivalence adaptive control method for the attitude tracking control problem of spacecraft with inertia uncertainties. The proposed immersion and invariance (I&I) based adaptation law provides a more direct and flexible approach to circumvent the limitations of the basic I&I method without employing any filter signal. By virtue of the adaptation high-gain equivalence property derived from the proposed adaptive method, the closed-loop adaptive system with a low adaptation gain could recover the high adaptation gain performance of the filter-based I&I method, and the resulting control torque demands during the initial transient has been significantly reduced. A special feature of this method is that the convergence of the parameter estimation error has been observably improved by utilizing an adaptation gain matrix instead of a single adaptation gain value. Numerical simulations are presented to highlight the various benefits of the proposed method compared with the certainty-equivalence-based control method and filter-based I&I control schemes.
Robust adaptive cruise control of high speed trains.
Faieghi, Mohammadreza; Jalali, Aliakbar; Mashhadi, Seyed Kamal-e-ddin Mousavi
2014-03-01
The cruise control problem of high speed trains in the presence of unknown parameters and external disturbances is considered. In particular a Lyapunov-based robust adaptive controller is presented to achieve asymptotic tracking and disturbance rejection. The system under consideration is nonlinear, MIMO and non-minimum phase. To deal with the limitations arising from the unstable zero-dynamics we do an output redefinition such that the zero-dynamics with respect to new outputs becomes stable. Rigorous stability analyses are presented which establish the boundedness of all the internal states and simultaneously asymptotic stability of the tracking error dynamics. The results are presented for two common configurations of high speed trains, i.e. the DD and PPD designs, based on the multi-body model and are verified by several numerical simulations. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Patel, R. V.; Toda, M.; Sridhar, B.
1977-01-01
The paper deals with the problem of expressing the robustness (stability) property of a linear quadratic state feedback (LQSF) design quantitatively in terms of bounds on the perturbations (modeling errors or parameter variations) in the system matrices so that the closed-loop system remains stable. Nonlinear time-varying and linear time-invariant perturbations are considered. The only computation required in obtaining a measure of the robustness of an LQSF design is to determine the eigenvalues of two symmetric matrices determined when solving the algebraic Riccati equation corresponding to the LQSF design problem. Results are applied to a complex dynamic system consisting of the flare control of a STOL aircraft. The design of the flare control is formulated as an LQSF tracking problem.
Tracking Algorithm of Multiple Pedestrians Based on Particle Filters in Video Sequences
Liu, Yun; Wang, Chuanxu; Zhang, Shujun; Cui, Xuehong
2016-01-01
Pedestrian tracking is a critical problem in the field of computer vision. Particle filters have been proven to be very useful in pedestrian tracking for nonlinear and non-Gaussian estimation problems. However, pedestrian tracking in complex environment is still facing many problems due to changes of pedestrian postures and scale, moving background, mutual occlusion, and presence of pedestrian. To surmount these difficulties, this paper presents tracking algorithm of multiple pedestrians based on particle filters in video sequences. The algorithm acquires confidence value of the object and the background through extracting a priori knowledge thus to achieve multipedestrian detection; it adopts color and texture features into particle filter to get better observation results and then automatically adjusts weight value of each feature according to current tracking environment. During the process of tracking, the algorithm processes severe occlusion condition to prevent drift and loss phenomena caused by object occlusion and associates detection results with particle state to propose discriminated method for object disappearance and emergence thus to achieve robust tracking of multiple pedestrians. Experimental verification and analysis in video sequences demonstrate that proposed algorithm improves the tracking performance and has better tracking results. PMID:27847514
Considerations for multiple hypothesis correlation on tactical platforms
NASA Astrophysics Data System (ADS)
Thomas, Alan M.; Turpen, James E.
2013-05-01
Tactical platforms benefit greatly from the fusion of tracks from multiple sources in terms of increased situation awareness. As a necessary precursor to this track fusion, track-to-track association, or correlation, must first be performed. The related measurement-to-track fusion problem has been well studied with multiple hypothesis tracking and multiple frame assignment methods showing the most success. The track-to-track problem differs from this one in that measurements themselves are not available but rather track state update reports from the measuring sensors. Multiple hypothesis, multiple frame correlation systems have previously been considered; however, their practical implementation under the constraints imposed by tactical platforms is daunting. The situation is further exacerbated by the inconvenient nature of reports from legacy sensor systems on bandwidth- limited communications networks. In this paper, consideration is given to the special difficulties encountered when attempting the correlation of tracks from legacy sensors on tactical aircraft. Those difficulties include the following: covariance information from reporting sensors is frequently absent or incomplete; system latencies can create temporal uncertainty in data; and computational processing is severely limited by hardware and architecture. Moreover, consideration is given to practical solutions for dealing with these problems in a multiple hypothesis correlator.
Doppler tracking in time-dependent cosmological spacetimes
NASA Astrophysics Data System (ADS)
Giulini, Domenico; Carrera, Matteo
I will discuss the theoretical problems associated with Doppler tracking in time dependent background geometries, where ordinary Newtonian kinematics fails. A derivation of an exact general-relativistic formula for the two-way Doppler tracking of a spacecraft in homogeneous and isotropic Friedmann-Lemaitre-Robertson-Walker (FLRW) spacetimes is presented, as well as a controlled approximation in McVittie spacetimes representing an FLRW background with a single spherically-symmetric inhomogeneity (e.g. a single star or black hole). The leading-order corrections of the acceleration as compared to the Newtonian expression are calculated, which are due to retardation and cosmological expansion and which in the Solar System turn out to be significantly below the scale (nanometer per square-second) set by the Pioneer Anomaly. Last, but not least, I discuss kinematical ambiguities connected with notions of "simultaneity" and "spatial distance", which, in principle, also lead to tracking corrections.
A Fuzzy Logic Optimal Control Law Solution to the CMMCA Tracking Problem
1993-03-01
or from a transfer function. Many times, however, the resulting algorithms are so complex as to be completely or essentially useless. Applications...implemented in a nearly real time computer simulation. Located within the LQ framework are all the performance data for both the ClMCA and the CX...repuired nor desired. 34 - / k more general and less exacting framework was used. In order to concentrate on tho theory and problem solution, it was
NASA Astrophysics Data System (ADS)
Shankar, Praveen
The performance of nonlinear control algorithms such as feedback linearization and dynamic inversion is heavily dependent on the fidelity of the dynamic model being inverted. Incomplete or incorrect knowledge of the dynamics results in reduced performance and may lead to instability. Augmenting the baseline controller with approximators which utilize a parametrization structure that is adapted online reduces the effect of this error between the design model and actual dynamics. However, currently existing parameterizations employ a fixed set of basis functions that do not guarantee arbitrary tracking error performance. To address this problem, we develop a self-organizing parametrization structure that is proven to be stable and can guarantee arbitrary tracking error performance. The training algorithm to grow the network and adapt the parameters is derived from Lyapunov theory. In addition to growing the network of basis functions, a pruning strategy is incorporated to keep the size of the network as small as possible. This algorithm is implemented on a high performance flight vehicle such as F-15 military aircraft. The baseline dynamic inversion controller is augmented with a Self-Organizing Radial Basis Function Network (SORBFN) to minimize the effect of the inversion error which may occur due to imperfect modeling, approximate inversion or sudden changes in aircraft dynamics. The dynamic inversion controller is simulated for different situations including control surface failures, modeling errors and external disturbances with and without the adaptive network. A performance measure of maximum tracking error is specified for both the controllers a priori. Excellent tracking error minimization to a pre-specified level using the adaptive approximation based controller was achieved while the baseline dynamic inversion controller failed to meet this performance specification. The performance of the SORBFN based controller is also compared to a fixed RBF network based adaptive controller. While the fixed RBF network based controller which is tuned to compensate for control surface failures fails to achieve the same performance under modeling uncertainty and disturbances, the SORBFN is able to achieve good tracking convergence under all error conditions.
2013-01-01
This paper examines the effects of the Fast Track preventive intervention on youths’ functioning in three domains: disruptive behavior problems, involvement with deviant peers, and social skills during the middle school years. Eight hundred ninety-one children had been randomly assigned by sets of schools within four sites to intervention (n = 445) or to control (n = 446) conditions. In contrast to prior findings of the effectiveness of the Fast Track intervention during the elementary school years, the current findings indicate that Fast Track had little overall impact on children’s functioning in these domains during this age period. There were positive intervention effects on only 2 of 17 outcomes examined. Although the intervention had positive impact on children’s hyperactive and self-reported delinquent behaviors in seventh grade, there were no intervention effects on other externalizing behavior problems or on social skills, and there was a negative intervention effect on children’s involvement with deviant peers during this age period. PMID:24319308
NASA Technical Reports Server (NTRS)
Brown, S. C.; Hardy, G. H.; Hindson, W. S.
1984-01-01
As part of a comprehensive flight-test investigation of short takeoff and landing (STOL) operating systems for the terminal systems for the terminal area, an automatic landing system has been developed and evaluated for a light wing-loading turboprop-powered aircraft. An advanced digital avionics system performed display, navigation, guidance, and control functions for the test aircraft. Control signals were generated in order to command powered actuators for all conventional controls and for a set of symmetrically driven wing spoilers. This report describes effects of the spoiler control on longitudinal autoland (automatic landing) performance. Flight-test results, with and without spoiler control, are presented and compared with available (basically, conventional takeoff and landing) performance criteria. These comparisons are augmented by results from a comprehensive simulation of the controlled aircraft that included representations of the microwave landing system navigation errors that were encountered in flight as well as expected variations in atmospheric turbulence and wind shear. Flight-test results show that the addition of spoiler control improves the touchdown performance of the automatic landing system. Spoilers improve longitudinal touchdown and landing pitch-attitude performance, particularly in tailwind conditions. Furthermore, simulation results indicate that performance would probably be satisfactory for a wider range of atmospheric disturbances than those encountered in flight. Flight results also indicate that the addition of spoiler control during the final approach does not result in any measurable change in glidepath track performance, and results in a very small deterioration in airspeed tracking. This difference contrasts with simulations results, which indicate some improvement in glidepath tracking and no appreciable change in airspeed tracking. The modeling problem in the simulation that contributed to this discrepancy with flight was not resolved.
Control strategies for systems with limited actuators
NASA Technical Reports Server (NTRS)
Marcopoli, Vincent R.; Phillips, Stephen M.
1994-01-01
This work investigates the effects of actuator saturation in multi-input, multi-output (MIMO) control systems. The adverse system behavior introduced by the saturation nonlinearity is viewed here as resulting from two mechanisms: controller windup - a problem caused by the discrepancy between the limited actuator commands and the corresponding control signals, and directionality - the problem of how to use nonlimited actuators when a limited condition exists. The tracking mode and Hanus methods are two common strategies for dealing with the windup problem. It is seen that while these methods alleviate windup, performance problems remain due to plant directionality. Though high gain conventional antiwindup as well as more general linear methods have the potential to address both windup and directionality, no systematic design method for these schemes has emerged; most approaches used in practice are application driven. An alternative method of addressing the directionality problem is presented which involves the introduction of a control direction preserving nonlinearity to the Hanus antiwindup system. A nonlinearity is subsequently proposed which reduces the conservation inherent in the former direction-preserving approach, improving performance. The concept of multivariable sensitivity is seen to play a key role in the success of the new method.
Control of a HexaPOD treatment couch for robot-assisted radiotherapy.
Hermann, Christian; Ma, Lei; Wilbert, Jürgen; Baier, Kurt; Schilling, Klaus
2012-10-01
Moving tumors, for example in the vicinity of the lungs, pose a challenging problem in radiotherapy, as healthy tissue should not be irradiated. Apart from gating approaches, one standard method is to irradiate the complete volume within which a tumor moves plus a safety margin containing a considerable volume of healthy tissue. This work deals with a system for tumor motion compensation using the HexaPOD® robotic treatment couch (Medical Intelligence GmbH, Schwabmünchen, Germany). The HexaPOD, carrying the patient during treatment, is instructed to perform translational movements such that the tumor motion, from the beams-eye view of the linear accelerator, is eliminated. The dynamics of the HexaPOD are characterized by time delays, saturations, and other non-linearities that make the design of control a challenging task. The focus of this work lies on two control methods for the HexaPOD that can be used for reference tracking. The first method uses a model predictive controller based on a model gained through system identification methods, and the second method uses a position control scheme useful for reference tracking. We compared the tracking performance of both methods in various experiments with real hardware using ideal reference trajectories, prerecorded patient trajectories, and human volunteers whose breathing motion was compensated by the system.
Automatically Detect and Track Multiple Fish Swimming in Shallow Water with Frequent Occlusion
Qian, Zhi-Ming; Cheng, Xi En; Chen, Yan Qiu
2014-01-01
Due to its universality, swarm behavior in nature attracts much attention of scientists from many fields. Fish schools are examples of biological communities that demonstrate swarm behavior. The detection and tracking of fish in a school are of important significance for the quantitative research on swarm behavior. However, different from other biological communities, there are three problems in the detection and tracking of fish school, that is, variable appearances, complex motion and frequent occlusion. To solve these problems, we propose an effective method of fish detection and tracking. In this method, first, the fish head region is positioned through extremum detection and ellipse fitting; second, The Kalman filtering and feature matching are used to track the target in complex motion; finally, according to the feature information obtained by the detection and tracking, the tracking problems caused by frequent occlusion are processed through trajectory linking. We apply this method to track swimming fish school of different densities. The experimental results show that the proposed method is both accurate and reliable. PMID:25207811
Precup, Radu-Emil; David, Radu-Codrut; Petriu, Emil M; Radac, Mircea-Bogdan; Preitl, Stefan
2014-11-01
This paper suggests a new generation of optimal PI controllers for a class of servo systems characterized by saturation and dead zone static nonlinearities and second-order models with an integral component. The objective functions are expressed as the integral of time multiplied by absolute error plus the weighted sum of the integrals of output sensitivity functions of the state sensitivity models with respect to two process parametric variations. The PI controller tuning conditions applied to a simplified linear process model involve a single design parameter specific to the extended symmetrical optimum (ESO) method which offers the desired tradeoff to several control system performance indices. An original back-calculation and tracking anti-windup scheme is proposed in order to prevent the integrator wind-up and to compensate for the dead zone nonlinearity of the process. The minimization of the objective functions is carried out in the framework of optimization problems with inequality constraints which guarantee the robust stability with respect to the process parametric variations and the controller robustness. An adaptive gravitational search algorithm (GSA) solves the optimization problems focused on the optimal tuning of the design parameter specific to the ESO method and of the anti-windup tracking gain. A tuning method for PI controllers is proposed as an efficient approach to the design of resilient control systems. The tuning method and the PI controllers are experimentally validated by the adaptive GSA-based tuning of PI controllers for the angular position control of a laboratory servo system.
Inertial-space disturbance rejection for robotic manipulators
NASA Technical Reports Server (NTRS)
Holt, Kevin
1992-01-01
The disturbance rejection control problem for a 6-DOF (degree of freedom) PUMA manipulator mounted on a 3-DOF platform is investigated. A control algorithm is designed to track the desired position and attitude of the end-effector in inertial space, subject to unknown disturbances in the platform axes. Conditions for the stability of the closed-loop system are derived. The performance of the controller is compared for step, sinusoidal, and random disturbances in the platform rotational axis and in the neighborhood of kinematic singularities.
Peng, Zhouhua; Wang, Dan; Wang, Wei; Liu, Lu
2015-11-01
This paper investigates the containment control problem of networked autonomous underwater vehicles in the presence of model uncertainty and unknown ocean disturbances. A predictor-based neural dynamic surface control design method is presented to develop the distributed adaptive containment controllers, under which the trajectories of follower vehicles nearly converge to the dynamic convex hull spanned by multiple reference trajectories over a directed network. Prediction errors, rather than tracking errors, are used to update the neural adaptation laws, which are independent of the tracking error dynamics, resulting in two time-scales to govern the entire system. The stability property of the closed-loop network is established via Lyapunov analysis, and transient property is quantified in terms of L2 norms of the derivatives of neural weights, which are shown to be smaller than the classical neural dynamic surface control approach. Comparative studies are given to show the substantial improvements of the proposed new method. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
Dual adaptive dynamic control of mobile robots using neural networks.
Bugeja, Marvin K; Fabri, Simon G; Camilleri, Liberato
2009-02-01
This paper proposes two novel dual adaptive neural control schemes for the dynamic control of nonholonomic mobile robots. The two schemes are developed in discrete time, and the robot's nonlinear dynamic functions are assumed to be unknown. Gaussian radial basis function and sigmoidal multilayer perceptron neural networks are used for function approximation. In each scheme, the unknown network parameters are estimated stochastically in real time, and no preliminary offline neural network training is used. In contrast to other adaptive techniques hitherto proposed in the literature on mobile robots, the dual control laws presented in this paper do not rely on the heuristic certainty equivalence property but account for the uncertainty in the estimates. This results in a major improvement in tracking performance, despite the plant uncertainty and unmodeled dynamics. Monte Carlo simulation and statistical hypothesis testing are used to illustrate the effectiveness of the two proposed stochastic controllers as applied to the trajectory-tracking problem of a differentially driven wheeled mobile robot.
The IBM HeadTracking Pointer: improvements in vision-based pointer control.
Kjeldsen, Rick
2008-07-01
Vision-based head trackers have been around for some years and are even beginning to be commercialized, but problems remain with respect to usability. Users without the ability to use traditional pointing devices--the intended audience of such systems--have no alternative if the automatic bootstrapping process fails. There is room for improvement in face tracking, and the pointer movement dynamics do not support accurate and efficient pointing. This paper describes the IBM HeadTracking Pointer, a system which attempts to directly address some of these issues. Head gestures are used to provide the end user a greater level of autonomous control over the system. A novel face-tracking algorithm reduces drift under variable lighting conditions, allowing the use of absolute, rather than relative, pointer positioning. Most importantly, the pointer dynamics have been designed to take into account the constraints of head-based pointing, with a non-linear gain which allows stability in fine pointer movement, high speed on long transitions and adjustability to support users with different movement dynamics. User studies have identified some difficulties with training the system and some characteristics of the pointer motion that take time to get used to, but also good user feedback and very promising performance results.
ERIC Educational Resources Information Center
Tang, Hui; Kirk, John; Pienta, Norbert J.
2014-01-01
This paper includes two experiments, one investigating complexity factors in stoichiometry word problems, and the other identifying students' problem-solving protocols by using eye-tracking technology. The word problems used in this study had five different complexity factors, which were randomly assigned by a Web-based tool that we developed. The…
NASA Technical Reports Server (NTRS)
Ghosh, D.; Montgomery, R. C.
1987-01-01
The work being done at NASA LaRC on developing control laws for the Mini-Mast experimental facility is reviewed with particular attention given to the problems associated with the stroke limit of the reaction mass actuators used in conjunction with the LQG control. An algorithm for converting the force commands of the LQG algorithm into position command for the reaction mass devices is described. It is shown that the position command can be used as an input to a local controller so that the relative position of the reaction mass would track the commanded relative position. The stabilization of the integration scheme makes it possible to avoid the position drift arising in the direct double integration method of converting force commands to position commands.
2012-09-03
prac- tice to solve these initial value problems. Additionally, the predictor / corrector methods are combined with adaptive stepsize and adaptive ...for implementing a numerical path tracking algorithm is to decide which predictor / corrector method to employ, how large to take the step ∆t, and what...the endgame algorithm . Output: A steady state solution Set ǫ = 1 while ǫ >= ǫend do set the stepsize ∆ǫ by using adaptive stepsize control algorithm
Acting to gain information: Real-time reasoning meets real-time perception
NASA Technical Reports Server (NTRS)
Rosenschein, Stan
1994-01-01
Recent advances in intelligent reactive systems suggest new approaches to the problem of deriving task-relevant information from perceptual systems in real time. The author will describe work in progress aimed at coupling intelligent control mechanisms to real-time perception systems, with special emphasis on frame rate visual measurement systems. A model for integrated reasoning and perception will be discussed, and recent progress in applying these ideas to problems of sensor utilization for efficient recognition and tracking will be described.
NASA Astrophysics Data System (ADS)
Li, Yutong; Hansen, Andreas; Karl Hedrick, J.; Zhang, Junzhi
2017-12-01
Active control of electric powertrains is challenging, due to the fact that backlash and structural flexibility in transmission components can cause severe performance degradation or even instability of the control system. Furthermore, high impact forces in transmissions reduce driving comfort and possibly lead to damage of the mechanical elements in contact. In this paper, a nonlinear electric powertrain is modelled as a piecewise affine (PWA) system. The novel receding horizon sliding control (RHSC) idea is extended to constrained PWA systems and utilised to systematically address the active control problem for electric powertrains. Simulations are conducted in Matlab/Simulink in conjunction with the high fidelity Carsim software. RHSC shows superior jerk suppression and target wheel speed tracking performance as well as reduced computational cost over classical model predictive control (MPC). This indicates the newly proposed RHSC is an effective method to address the active control problem for electric powertrains.
Control of joint motion simulators for biomechanical research
NASA Technical Reports Server (NTRS)
Colbaugh, R.; Glass, K.
1992-01-01
The authors present a hierarchical adaptive algorithm for controlling upper extremity human joint motion simulators. A joint motion simulator is a computer-controlled, electromechanical system which permits the application of forces to the tendons of a human cadaver specimen in such a way that the cadaver joint under study achieves a desired motion in a physiologic manner. The proposed control scheme does not require knowledge of the cadaver specimen dynamic model, and solves on-line the indeterminate problem which arises because human joints typically possess more actuators than degrees of freedom. Computer simulation results are given for an elbow/forearm system and wrist/hand system under hierarchical control. The results demonstrate that any desired normal joint motion can be accurately tracked with the proposed algorithm. These simulation results indicate that the controller resolved the indeterminate problem redundancy in a physiologic manner, and show that the control scheme was robust to parameter uncertainty and to sensor noise.
Tracking Multiple People Online and in Real Time
2015-12-21
NO. 0704-0188 3. DATES COVERED (From - To) - UU UU UU UU 21-12-2015 Approved for public release; distribution is unlimited. Tracking multiple people ...online and in real time We cast the problem of tracking several people as a graph partitioning problem that takes the form of an NP-hard binary...PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. Duke University 2200 West Main Street Suite 710 Durham, NC 27705 -4010 ABSTRACT Tracking multiple
Fuzzy Finite-Time Command Filtered Control of Nonlinear Systems With Input Saturation.
Yu, Jinpeng; Zhao, Lin; Yu, Haisheng; Lin, Chong; Dong, Wenjie
2017-08-22
This paper considers the fuzzy finite-time tracking control problem for a class of nonlinear systems with input saturation. A novel fuzzy finite-time command filtered backstepping approach is proposed by introducing the fuzzy finite-time command filter, designing the new virtual control signals and the modified error compensation signals. The proposed approach not only holds the advantages of the conventional command-filtered backstepping control, but also guarantees the finite-time convergence. A practical example is included to show the effectiveness of the proposed method.
Gain-Scheduled Fault Tolerance Control Under False Identification
NASA Technical Reports Server (NTRS)
Shin, Jong-Yeob; Belcastro, Christine (Technical Monitor)
2006-01-01
An active fault tolerant control (FTC) law is generally sensitive to false identification since the control gain is reconfigured for fault occurrence. In the conventional FTC law design procedure, dynamic variations due to false identification are not considered. In this paper, an FTC synthesis method is developed in order to consider possible variations of closed-loop dynamics under false identification into the control design procedure. An active FTC synthesis problem is formulated into an LMI optimization problem to minimize the upper bound of the induced-L2 norm which can represent the worst-case performance degradation due to false identification. The developed synthesis method is applied for control of the longitudinal motions of FASER (Free-flying Airplane for Subscale Experimental Research). The designed FTC law of the airplane is simulated for pitch angle command tracking under a false identification case.
Learning control system design based on 2-D theory - An application to parallel link manipulator
NASA Technical Reports Server (NTRS)
Geng, Z.; Carroll, R. L.; Lee, J. D.; Haynes, L. H.
1990-01-01
An approach to iterative learning control system design based on two-dimensional system theory is presented. A two-dimensional model for the iterative learning control system which reveals the connections between learning control systems and two-dimensional system theory is established. A learning control algorithm is proposed, and the convergence of learning using this algorithm is guaranteed by two-dimensional stability. The learning algorithm is applied successfully to the trajectory tracking control problem for a parallel link robot manipulator. The excellent performance of this learning algorithm is demonstrated by the computer simulation results.
A corrosion control manual for rail rapid transit
NASA Technical Reports Server (NTRS)
Gilbert, L. O.; Fitzgerald, J. F., II; Menke, J. T.
1982-01-01
In 1979, during the planning stage of the Metropolitan Dade County Transit System, the need was expressed for a corrosion control manual oriented to urban rapid transit system use. This manual responds to that need. The objective of the manual is to aid rail rapid transit agencies by providing practical solutions to selected corrosion problems. The scope of the manual encompasses corrosion problems of the facilities of rapid transit systems: structures and tracks, platforms and stations, power and signals, and cars. It also discusses stray electric current corrosion. Both design and maintenance solutions are provided for each problem. Also included are descriptions of the types of corrosion and their causes, descriptions of rapid transit properties, a list of corrosion control committees and NASA, DOD, and ASTM specifications and design criteria to which reference is made in the manual. A bibliography of papers and excerpts of reports and a glossary of frequency used terms are provided.
2014-09-01
not losing track of the original facts of the situation. However, hippocampal episodic memory also has limitations – it operates one memory at a...ability to strategically control the use of episodic memory . Specific areas of PFC are implicated as these episodic control structures, including...certainly start by encoding the problem into hippocampal episodic memory , so they can retrieve it when interference overtakes the system and they
DOE Office of Scientific and Technical Information (OSTI.GOV)
Makedonska, Nataliia; Painter, Scott L.; Bui, Quan M.
The discrete fracture network (DFN) model is a method to mimic discrete pathways for fluid flow through a fractured low-permeable rock mass, and may be combined with particle tracking simulations to address solute transport. However, experience has shown that it is challenging to obtain accurate transport results in three-dimensional DFNs because of the high computational burden and difficulty in constructing a high-quality unstructured computational mesh on simulated fractures. We present a new particle tracking capability, which is adapted to control volume (Voronoi polygons) flow solutions on unstructured grids (Delaunay triangulations) on three-dimensional DFNs. The locally mass-conserving finite-volume approach eliminates massmore » balance-related problems during particle tracking. The scalar fluxes calculated for each control volume face by the flow solver are used to reconstruct a Darcy velocity at each control volume centroid. The groundwater velocities can then be continuously interpolated to any point in the domain of interest. The control volumes at fracture intersections are split into four pieces, and the velocity is reconstructed independently on each piece, which results in multiple groundwater velocities at the intersection, one for each fracture on each side of the intersection line. This technique enables detailed particle transport representation through a complex DFN structure. Verified for small DFNs, the new simulation capability enables numerical experiments on advective transport in large DFNs to be performed. As a result, we demonstrate this particle transport approach on a DFN model using parameters similar to those of crystalline rock at a proposed geologic repository for spent nuclear fuel in Forsmark, Sweden.« less
Makedonska, Nataliia; Painter, Scott L.; Bui, Quan M.; ...
2015-09-16
The discrete fracture network (DFN) model is a method to mimic discrete pathways for fluid flow through a fractured low-permeable rock mass, and may be combined with particle tracking simulations to address solute transport. However, experience has shown that it is challenging to obtain accurate transport results in three-dimensional DFNs because of the high computational burden and difficulty in constructing a high-quality unstructured computational mesh on simulated fractures. We present a new particle tracking capability, which is adapted to control volume (Voronoi polygons) flow solutions on unstructured grids (Delaunay triangulations) on three-dimensional DFNs. The locally mass-conserving finite-volume approach eliminates massmore » balance-related problems during particle tracking. The scalar fluxes calculated for each control volume face by the flow solver are used to reconstruct a Darcy velocity at each control volume centroid. The groundwater velocities can then be continuously interpolated to any point in the domain of interest. The control volumes at fracture intersections are split into four pieces, and the velocity is reconstructed independently on each piece, which results in multiple groundwater velocities at the intersection, one for each fracture on each side of the intersection line. This technique enables detailed particle transport representation through a complex DFN structure. Verified for small DFNs, the new simulation capability enables numerical experiments on advective transport in large DFNs to be performed. As a result, we demonstrate this particle transport approach on a DFN model using parameters similar to those of crystalline rock at a proposed geologic repository for spent nuclear fuel in Forsmark, Sweden.« less
Robust online tracking via adaptive samples selection with saliency detection
NASA Astrophysics Data System (ADS)
Yan, Jia; Chen, Xi; Zhu, QiuPing
2013-12-01
Online tracking has shown to be successful in tracking of previously unknown objects. However, there are two important factors which lead to drift problem of online tracking, the one is how to select the exact labeled samples even when the target locations are inaccurate, and the other is how to handle the confusors which have similar features with the target. In this article, we propose a robust online tracking algorithm with adaptive samples selection based on saliency detection to overcome the drift problem. To deal with the problem of degrading the classifiers using mis-aligned samples, we introduce the saliency detection method to our tracking problem. Saliency maps and the strong classifiers are combined to extract the most correct positive samples. Our approach employs a simple yet saliency detection algorithm based on image spectral residual analysis. Furthermore, instead of using the random patches as the negative samples, we propose a reasonable selection criterion, in which both the saliency confidence and similarity are considered with the benefits that confusors in the surrounding background are incorporated into the classifiers update process before the drift occurs. The tracking task is formulated as a binary classification via online boosting framework. Experiment results in several challenging video sequences demonstrate the accuracy and stability of our tracker.
Terrain mapping and control of unmanned aerial vehicles
NASA Astrophysics Data System (ADS)
Kang, Yeonsik
In this thesis, methods for terrain mapping and control of unmanned aerial vehicles (UAVs) are proposed. First, robust obstacle detection and tracking algorithm are introduced to eliminate the clutter noise uncorrelated with the real obstacle. This is an important problem since most types of sensor measurements are vulnerable to noise. In order to eliminate such noise, a Kalman filter-based interacting multiple model (IMM) algorithm is employed to effectively detect obstacles and estimate their positions precisely. Using the outcome of the IMM-based obstacle detection algorithm, a new method of building a probabilistic occupancy grid map is proposed based on Bayes rule in probability theory. Since the proposed map update law uses the outputs of the IMM-based obstacle detection algorithm, simultaneous tracking of moving targets and mapping of stationary obstacles are possible. This can be helpful especially in a noisy outdoor environment where different types of obstacles exist. Another feature of the algorithm is its capability to eliminate clutter noise as well as measurement noise. The proposed algorithm is simulated in Matlab using realistic sensor models. The results show close agreement with the layout of real obstacles. An efficient method called "quadtree" is used to process massive geographical information in a convenient manner. The algorithm is evaluated in a realistic simulation environment called RIPTIDE, which the NASA Ames Research Center developed to access the performance of complicated software for UAVs. Supposing that a UAV is equipped with abovementioned obstacle detection and mapping algorithm, the control problem of a small fixed-wing UAV is studied. A Nonlinear Model Predictive Control (NMPC is designed as a high level controller for the fixed-wing UAV using a kinematic model of the UAV. The kinematic model is employed because of the assumption that there exist low level controls on the UAV. The UAV dynamics are nonlinear with input constraints which is the main challenge explored in this thesis. The control objective of the NMPC is determined to track a desired line, and the analysis of the designed NMPC's stability is followed to find the conditions that can assure stability. Then, the control objective is extended to track adjoined multiple line segments with obstacle avoidance capability. In simulation, the performance of the NMPC is superb with fast convergence and small overshoot. The computation time is not a burden for a fixed-wing UAV controller with a Pentium level on-board computer that provides a reasonable control update rate.
Density control in ITER: an iterative learning control and robust control approach
NASA Astrophysics Data System (ADS)
Ravensbergen, T.; de Vries, P. C.; Felici, F.; Blanken, T. C.; Nouailletas, R.; Zabeo, L.
2018-01-01
Plasma density control for next generation tokamaks, such as ITER, is challenging because of multiple reasons. The response of the usual gas valve actuators in future, larger fusion devices, might be too slow for feedback control. Both pellet fuelling and the use of feedforward-based control may help to solve this problem. Also, tight density limits arise during ramp-up, due to operational limits related to divertor detachment and radiative collapses. As the number of shots available for controller tuning will be limited in ITER, in this paper, iterative learning control (ILC) is proposed to determine optimal feedforward actuator inputs based on tracking errors, obtained in previous shots. This control method can take the actuator and density limits into account and can deal with large actuator delays. However, a purely feedforward-based density control may not be sufficient due to the presence of disturbances and shot-to-shot differences. Therefore, robust control synthesis is used to construct a robustly stabilizing feedback controller. In simulations, it is shown that this combined controller strategy is able to achieve good tracking performance in the presence of shot-to-shot differences, tight constraints, and model mismatches.
Inductrack III configuration--a maglev system for high loads
Post, Richard F
2015-03-24
Inductrack III configurations are suited for use in transporting heavy freight loads. Inductrack III addresses a problem associated with the cantilevered track of the Inductrack II configuration. The use of a cantilevered track could present mechanical design problems in attempting to achieve a strong enough track system such that it would be capable of supporting very heavy loads. In Inductrack III, the levitating portion of the track can be supported uniformly from below, as the levitating Halbach array used on the moving vehicle is a single-sided one, thus does not require the cantilevered track as employed in Inductrack II.
Inductrack III configuration--a maglev system for high loads
Post, Richard F
2013-11-12
Inductrack III configurations are suited for use in transporting heavy freight loads. Inductrack III addresses a problem associated with the cantilevered track of the Inductrack II configuration. The use of a cantilevered track could present mechanical design problems in attempting to achieve a strong enough track system such that it would be capable of supporting very heavy loads. In Inductrack III, the levitating portion of the track can be supported uniformly from below, as the levitating Halbach array used on the moving vehicle is a single-sided one, thus does not require the cantilevered track as employed in Inductrack II.
NASA Technical Reports Server (NTRS)
Adams, James L.
1961-01-01
A series of pursuit tracking tasks were performed incorporating a transport lag in the control loop. The target was a mixture of four sine waves, the fastest having a frequency of 16 cycles per minute at full speed. An attempt was made to design the experiments so that they would provide data applicable to remote control of a ground vehicle over long transmission distances. Three programs were run. In each the time lag was placed between the control and the display. In the first program a velocity control was used and the operator was told that his knob controlled a vehicle, the problem represented a road 9 and he was to drive his vehicle along the road 9 using the delayed vehicle position as feedback for whatever means he desired. The objective was not to match the display traces. In the second program a velocity control was used, and the operator was told that the problem trace represented a road and the delayed trace represented a vehicle and he was to keep them together. The objective was to match display traces. The third program was identical with the first, except that an acceleration control was used rather than a velocity control. Target speeds used were full speed, 1/2 speed, 1/4 speed, 1/8 speed, and 1/16 speed. Time lags were 1/4 second, l/2 second, 1 second, 1-1/2 second, 2 second, 3 second, and 6 seconds. The experimental results are presented in the last section of this report.
Waterjet and laser etching: the nonlinear inverse problem
NASA Astrophysics Data System (ADS)
Bilbao-Guillerna, A.; Axinte, D. A.; Billingham, J.; Cadot, G. B. J.
2017-07-01
In waterjet and laser milling, material is removed from a solid surface in a succession of layers to create a new shape, in a depth-controlled manner. The inverse problem consists of defining the control parameters, in particular, the two-dimensional beam path, to arrive at a prescribed freeform surface. Waterjet milling (WJM) and pulsed laser ablation (PLA) are studied in this paper, since a generic nonlinear material removal model is appropriate for both of these processes. The inverse problem is usually solved for this kind of process by simply controlling dwell time in proportion to the required depth of milling at a sequence of pixels on the surface. However, this approach is only valid when shallow surfaces are etched, since it does not take into account either the footprint of the beam or its overlapping on successive passes. A discrete adjoint algorithm is proposed in this paper to improve the solution. Nonlinear effects and non-straight passes are included in the optimization, while the calculation of the Jacobian matrix does not require large computation times. Several tests are performed to validate the proposed method and the results show that tracking error is reduced typically by a factor of two in comparison to the pixel-by-pixel approach and the classical raster path strategy with straight passes. The tracking error can be as low as 2-5% and 1-2% for WJM and PLA, respectively, depending on the complexity of the target surface.
Adaptive block online learning target tracking based on super pixel segmentation
NASA Astrophysics Data System (ADS)
Cheng, Yue; Li, Jianzeng
2018-04-01
Video target tracking technology under the unremitting exploration of predecessors has made big progress, but there are still lots of problems not solved. This paper proposed a new algorithm of target tracking based on image segmentation technology. Firstly we divide the selected region using simple linear iterative clustering (SLIC) algorithm, after that, we block the area with the improved density-based spatial clustering of applications with noise (DBSCAN) clustering algorithm. Each sub-block independently trained classifier and tracked, then the algorithm ignore the failed tracking sub-block while reintegrate the rest of the sub-blocks into tracking box to complete the target tracking. The experimental results show that our algorithm can work effectively under occlusion interference, rotation change, scale change and many other problems in target tracking compared with the current mainstream algorithms.
Autorotation flight control system
NASA Technical Reports Server (NTRS)
Bachelder, Edward N. (Inventor); Aponso, Bimal L. (Inventor); Lee, Dong-Chan (Inventor)
2011-01-01
The present invention provides computer implemented methodology that permits the safe landing and recovery of rotorcraft following engine failure. With this invention successful autorotations may be performed from well within the unsafe operating area of the height-velocity profile of a helicopter by employing the fast and robust real-time trajectory optimization algorithm that commands control motion through an intuitive pilot display, or directly in the case of autonomous rotorcraft. The algorithm generates optimal trajectories and control commands via the direct-collocation optimization method, solved using a nonlinear programming problem solver. The control inputs computed are collective pitch and aircraft pitch, which are easily tracked and manipulated by the pilot or converted to control actuator commands for automated operation during autorotation in the case of an autonomous rotorcraft. The formulation of the optimal control problem has been carefully tailored so the solutions resemble those of an expert pilot, accounting for the performance limitations of the rotorcraft and safety concerns.
Jagannathan, Sarangapani; He, Pingan
2008-12-01
In this paper, a suite of adaptive neural network (NN) controllers is designed to deliver a desired tracking performance for the control of an unknown, second-order, nonlinear discrete-time system expressed in nonstrict feedback form. In the first approach, two feedforward NNs are employed in the controller with tracking error as the feedback variable whereas in the adaptive critic NN architecture, three feedforward NNs are used. In the adaptive critic architecture, two action NNs produce virtual and actual control inputs, respectively, whereas the third critic NN approximates certain strategic utility function and its output is employed for tuning action NN weights in order to attain the near-optimal control action. Both the NN control methods present a well-defined controller design and the noncausal problem in discrete-time backstepping design is avoided via NN approximation. A comparison between the controller methodologies is highlighted. The stability analysis of the closed-loop control schemes is demonstrated. The NN controller schemes do not require an offline learning phase and the NN weights can be initialized at zero or random. Results show that the performance of the proposed controller schemes is highly satisfactory while meeting the closed-loop stability.
Sigmoid function based integral-derivative observer and application to autopilot design
NASA Astrophysics Data System (ADS)
Shao, Xingling; Wang, Honglun; Liu, Jun; Tang, Jun; Li, Jie; Zhang, Xiaoming; Shen, Chong
2017-02-01
To handle problems of accurate signal reconstruction and controller implementation with integral and derivative components in the presence of noisy measurement, motivated by the design principle of sigmoid function based tracking differentiator and nonlinear continuous integral-derivative observer, a novel integral-derivative observer (SIDO) using sigmoid function is developed. The key merit of the proposed SIDO is that it can simultaneously provide continuous integral and differential estimates with almost no drift phenomena and chattering effect, as well as acceptable noise-tolerance performance from output measurement, and the stability is established based on exponential stability and singular perturbation theory. In addition, the effectiveness of SIDO in suppressing drift phenomena and high frequency noises is firstly revealed using describing function and confirmed through simulation comparisons. Finally, the theoretical results on SIDO are demonstrated with application to autopilot design: 1) the integral and tracking estimates are extracted from the sensed pitch angular rate contaminated by nonwhite noises in feedback loop, 2) the PID(proportional-integral-derivative) based attitude controller is realized by adopting the error estimates offered by SIDO instead of using the ideal integral and derivative operator to achieve satisfactory tracking performance under control constraint.
Wang, Yajie; Shi, Yunbo; Yu, Xiaoyu; Liu, Yongjie
2016-01-01
Currently, tracking in photovoltaic (PV) systems suffers from some problems such as high energy consumption, poor anti-interference performance, and large tracking errors. This paper presents a solar PV tracking system on the basis of an improved perturbation and observation method, which maximizes photoelectric conversion efficiency. According to the projection principle, we design a sensor module with a light-intensity-detection module for environmental light-intensity measurement. The effect of environmental factors on the system operation is reduced, and intelligent identification of the weather is realized. This system adopts the discrete-type tracking method to reduce power consumption. A mechanical structure with a level-pitch double-degree-of-freedom is designed, and attitude correction is performed by closed-loop control. A worm-and-gear mechanism is added, and the reliability, stability, and precision of the system are improved. Finally, the perturbation and observation method designed and improved by this study was tested by simulated experiments. The experiments verified that the photoelectric sensor resolution can reach 0.344°, the tracking error is less than 2.5°, the largest improvement in the charge efficiency can reach 44.5%, and the system steadily and reliably works.
Wang, Yajie; Shi, Yunbo; Yu, Xiaoyu; Liu, Yongjie
2016-01-01
Currently, tracking in photovoltaic (PV) systems suffers from some problems such as high energy consumption, poor anti-interference performance, and large tracking errors. This paper presents a solar PV tracking system on the basis of an improved perturbation and observation method, which maximizes photoelectric conversion efficiency. According to the projection principle, we design a sensor module with a light-intensity-detection module for environmental light-intensity measurement. The effect of environmental factors on the system operation is reduced, and intelligent identification of the weather is realized. This system adopts the discrete-type tracking method to reduce power consumption. A mechanical structure with a level-pitch double-degree-of-freedom is designed, and attitude correction is performed by closed-loop control. A worm-and-gear mechanism is added, and the reliability, stability, and precision of the system are improved. Finally, the perturbation and observation method designed and improved by this study was tested by simulated experiments. The experiments verified that the photoelectric sensor resolution can reach 0.344°, the tracking error is less than 2.5°, the largest improvement in the charge efficiency can reach 44.5%, and the system steadily and reliably works. PMID:27327657
NASA Astrophysics Data System (ADS)
Zou, Yanbiao; Chen, Tao
2018-06-01
To address the problem of low welding precision caused by the poor real-time tracking performance of common welding robots, a novel seam tracking system with excellent real-time tracking performance and high accuracy is designed based on the morphological image processing method and continuous convolution operator tracker (CCOT) object tracking algorithm. The system consists of a six-axis welding robot, a line laser sensor, and an industrial computer. This work also studies the measurement principle involved in the designed system. Through the CCOT algorithm, the weld feature points are determined in real time from the noise image during the welding process, and the 3D coordinate values of these points are obtained according to the measurement principle to control the movement of the robot and the torch in real time. Experimental results show that the sensor has a frequency of 50 Hz. The welding torch runs smoothly with a strong arc light and splash interference. Tracking error can reach ±0.2 mm, and the minimal distance between the laser stripe and the welding molten pool can reach 15 mm, which can significantly fulfill actual welding requirements.
Strategic Gang Scheduling for Railroad Maintenance
DOT National Transportation Integrated Search
2012-08-14
We address the railway track maintenance scheduling problem. The problem stems from the : significant percentage of the annual budget invested by the railway industry for maintaining its railway : tracks. The process requires consideration of human r...
NASA Astrophysics Data System (ADS)
Cui, Bing; Zhao, Chunhui; Ma, Tiedong; Feng, Chi
2017-02-01
In this paper, the cooperative adaptive consensus tracking problem for heterogeneous nonlinear multi-agent systems on directed graph is addressed. Each follower is modelled as a general nonlinear system with the unknown and nonidentical nonlinear dynamics, disturbances and actuator failures. Cooperative fault tolerant neural network tracking controllers with online adaptive learning features are proposed to guarantee that all agents synchronise to the trajectory of one leader with bounded adjustable synchronisation errors. With the help of linear quadratic regulator-based optimal design, a graph-dependent Lyapunov proof provides error bounds that depend on the graph topology, one virtual matrix and some design parameters. Of particular interest is that if the control gain is selected appropriately, the proposed control scheme can be implemented in a unified framework no matter whether there are faults or not. Furthermore, the fault detection and isolation are not needed to implement. Finally, a simulation is given to verify the effectiveness of the proposed method.
Performance constraints and compensation for teleoperation with delay
NASA Technical Reports Server (NTRS)
Mclaughlin, J. S.; Staunton, B. D.
1989-01-01
A classical control perspective is used to characterize performance constraints and evaluate compensation techniques for teleoperation with delay. Use of control concepts such as open and closed loop performance, stability, and bandwidth yield insight to the delay problem. Teleoperator performance constraints are viewed as an open loop time delay lag and as a delay-induced closed loop bandwidth constraint. These constraints are illustrated with a simple analytical tracking example which is corroborated by a real time, 'man-in-the-loop' tracking experiment. The experiment also provides insight to those controller characteristics which are unique to a human operator. Predictive displays and feedforward commands are shown to provide open loop compensation for delay lag. Low pass filtering of telemetry or feedback signals is interpreted as closed loop compensation used to maintain a sufficiently low bandwidth for stability. A new closed loop compensation approach is proposed that uses a reactive (or force feedback) hand controller to restrict system bandwidth by impeding operator inputs.
Passivity/Lyapunov based controller design for trajectory tracking of flexible joint manipulators
NASA Technical Reports Server (NTRS)
Sicard, Pierre; Wen, John T.; Lanari, Leonardo
1992-01-01
A passivity and Lyapunov based approach for the control design for the trajectory tracking problem of flexible joint robots is presented. The basic structure of the proposed controller is the sum of a model-based feedforward and a model-independent feedback. Feedforward selection and solution is analyzed for a general model for flexible joints, and for more specific and practical model structures. Passivity theory is used to design a motor state-based controller in order to input-output stabilize the error system formed by the feedforward. Observability conditions for asymptotic stability are stated and verified. In order to accommodate for modeling uncertainties and to allow for the implementation of a simplified feedforward compensation, the stability of the system is analyzed in presence of approximations in the feedforward by using a Lyapunov based robustness analysis. It is shown that under certain conditions, e.g., the desired trajectory is varying slowly enough, stability is maintained for various approximations of a canonical feedforward.
ORACLS: A system for linear-quadratic-Gaussian control law design
NASA Technical Reports Server (NTRS)
Armstrong, E. S.
1978-01-01
A modern control theory design package (ORACLS) for constructing controllers and optimal filters for systems modeled by linear time-invariant differential or difference equations is described. Numerical linear-algebra procedures are used to implement the linear-quadratic-Gaussian (LQG) methodology of modern control theory. Algorithms are included for computing eigensystems of real matrices, the relative stability of a matrix, factored forms for nonnegative definite matrices, the solutions and least squares approximations to the solutions of certain linear matrix algebraic equations, the controllability properties of a linear time-invariant system, and the steady state covariance matrix of an open-loop stable system forced by white noise. Subroutines are provided for solving both the continuous and discrete optimal linear regulator problems with noise free measurements and the sampled-data optimal linear regulator problem. For measurement noise, duality theory and the optimal regulator algorithms are used to solve the continuous and discrete Kalman-Bucy filter problems. Subroutines are also included which give control laws causing the output of a system to track the output of a prescribed model.
Improved semi-supervised online boosting for object tracking
NASA Astrophysics Data System (ADS)
Li, Yicui; Qi, Lin; Tan, Shukun
2016-10-01
The advantage of an online semi-supervised boosting method which takes object tracking problem as a classification problem, is training a binary classifier from labeled and unlabeled examples. Appropriate object features are selected based on real time changes in the object. However, the online semi-supervised boosting method faces one key problem: The traditional self-training using the classification results to update the classifier itself, often leads to drifting or tracking failure, due to the accumulated error during each update of the tracker. To overcome the disadvantages of semi-supervised online boosting based on object tracking methods, the contribution of this paper is an improved online semi-supervised boosting method, in which the learning process is guided by positive (P) and negative (N) constraints, termed P-N constraints, which restrict the labeling of the unlabeled samples. First, we train the classification by an online semi-supervised boosting. Then, this classification is used to process the next frame. Finally, the classification is analyzed by the P-N constraints, which are used to verify if the labels of unlabeled data assigned by the classifier are in line with the assumptions made about positive and negative samples. The proposed algorithm can effectively improve the discriminative ability of the classifier and significantly alleviate the drifting problem in tracking applications. In the experiments, we demonstrate real-time tracking of our tracker on several challenging test sequences where our tracker outperforms other related on-line tracking methods and achieves promising tracking performance.
Preventing Serious Conduct Problems in School-Age Youth: The Fast Track Program
ERIC Educational Resources Information Center
Slough, Nancy M.; McMahon, Robert J.; Bierman, Karen L.; Coie, John D.; Dodge, Kenneth A.; Foster, E. Michael; Greenberg, Mark T.; Lochman, John E.; McMahon, Robert J.; Pinderhughes, Ellen E.
2008-01-01
Children with early-starting conduct problems have a very poor prognosis and exact a high cost to society. The Fast Track project is a multisite, collaborative research project investigating the efficacy of a comprehensive, long-term, multicomponent intervention designed to "prevent" the development of serious conduct problems in high-risk…
Visual Attention for Solving Multiple-Choice Science Problem: An Eye-Tracking Analysis
ERIC Educational Resources Information Center
Tsai, Meng-Jung; Hou, Huei-Tse; Lai, Meng-Lung; Liu, Wan-Yi; Yang, Fang-Ying
2012-01-01
This study employed an eye-tracking technique to examine students' visual attention when solving a multiple-choice science problem. Six university students participated in a problem-solving task to predict occurrences of landslide hazards from four images representing four combinations of four factors. Participants' responses and visual attention…
Output control using feedforward and cascade controllers
NASA Technical Reports Server (NTRS)
Seraji, H.
1987-01-01
An open-loop solution to the output control problem in SISO (single-input, single-output) systems by means of feedforward and cascade controllers is investigated. A simple characterization of feedforward controllers, which achieve steady-state disturbance rejection, is given in a transfer-function setting. Cascade controllers which cause steady-state command tracking are characterized. Disturbance decoupling and command matching controllers are identified. Conditions for existence of feedforward and cascade controllers are given. For unstable systems, it is shown that a stabilizing feedback controller can be used without affecting the feedforward and cascade controllers used for output control; hence, the three controllers can be designed independently. Output control by a combination of feedforward and feedback is discussed.
Bu, Xiangwei; Wu, Xiaoyan; Tian, Mingyan; Huang, Jiaqi; Zhang, Rui; Ma, Zhen
2015-09-01
In this paper, an adaptive neural controller is exploited for a constrained flexible air-breathing hypersonic vehicle (FAHV) based on high-order tracking differentiator (HTD). By utilizing functional decomposition methodology, the dynamic model is reasonably decomposed into the respective velocity subsystem and altitude subsystem. For the velocity subsystem, a dynamic inversion based neural controller is constructed. By introducing the HTD to adaptively estimate the newly defined states generated in the process of model transformation, a novel neural based altitude controller that is quite simpler than the ones derived from back-stepping is addressed based on the normal output-feedback form instead of the strict-feedback formulation. Based on minimal-learning parameter scheme, only two neural networks with two adaptive parameters are needed for neural approximation. Especially, a novel auxiliary system is explored to deal with the problem of control inputs constraints. Finally, simulation results are presented to test the effectiveness of the proposed control strategy in the presence of system uncertainties and actuators constraints. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
[Design of Adjustable Magnetic Field Generating Device in the Capsule Endoscope Tracking System].
Ruan, Chao; Guo, Xudong; Yang, Fei
2015-08-01
The capsule endoscope swallowed from the mouth into the digestive system can capture the images of important gastrointestinal tract regions. It can compensate for the blind spot of traditional endoscopic techniques. It enables inspection of the digestive system without discomfort or need for sedation. However, currently available clinical capsule endoscope has some limitations such as the diagnostic information being not able to correspond to the orientation in the body, since the doctor is unable to control the capsule motion and orientation. To solve the problem, it is significant to track the position and orientation of the capsule in the human body. This study presents an AC excitation wireless tracking method in the capsule endoscope, and the sensor embedded in the capsule can measure the magnetic field generated by excitation coil. And then the position and orientation of the capsule can be obtained by solving a magnetic field inverse problem. Since the magnetic field decays with distance dramatically, the dynamic range of the received signal spans three orders of magnitude, we designed an adjustable alternating magnetic field generating device. The device can adjust the strength of the alternating magnetic field automatically through the feedback signal from the sensor. The prototype experiment showed that the adjustable magnetic field generating device was feasible. It could realize the automatic adjustment of the magnetic field strength successfully, and improve the tracking accuracy.
X33 Reusable Launch Vehicle Control on Sliding Modes: Concepts for a Control System Development
NASA Technical Reports Server (NTRS)
Shtessel, Yuri B.
1998-01-01
Control of the X33 reusable launch vehicle is considered. The launch control problem consists of automatic tracking of the launch trajectory which is assumed to be optimally precalculated. It requires development of a reliable, robust control algorithm that can automatically adjust to some changes in mission specifications (mass of payload, target orbit) and the operating environment (atmospheric perturbations, interconnection perturbations from the other subsystems of the vehicle, thrust deficiencies, failure scenarios). One of the effective control strategies successfully applied in nonlinear systems is the Sliding Mode Control. The main advantage of the Sliding Mode Control is that the system's state response in the sliding surface remains insensitive to certain parameter variations, nonlinearities and disturbances. Employing the time scaling concept, a new two (three)-loop structure of the control system for the X33 launch vehicle was developed. Smoothed sliding mode controllers were designed to robustly enforce the given closed-loop dynamics. Simulations of the 3-DOF model of the X33 launch vehicle with the table-look-up models for Euler angle reference profiles and disturbance torque profiles showed a very accurate, robust tracking performance.
Twelfth Annual Conference on Manual Control
NASA Technical Reports Server (NTRS)
Wempe, T. E.
1976-01-01
Main topics discussed cover multi-task decision making, attention allocation and workload measurement, displays and controls, nonvisual displays, tracking and other psychomotor tasks, automobile driving, handling qualities and pilot ratings, remote manipulation, system identification, control models, and motion and visual cues. Sixty-five papers are included with presentations on results of analytical studies to develop and evaluate human operator models for a range of control task, vehicle dynamics and display situations; results of tests of physiological control systems and applications to medical problems; and on results of simulator and flight tests to determine display, control and dynamics effects on operator performance and workload for aircraft, automobile, and remote control systems.
Multi-object tracking of human spermatozoa
NASA Astrophysics Data System (ADS)
Sørensen, Lauge; Østergaard, Jakob; Johansen, Peter; de Bruijne, Marleen
2008-03-01
We propose a system for tracking of human spermatozoa in phase-contrast microscopy image sequences. One of the main aims of a computer-aided sperm analysis (CASA) system is to automatically assess sperm quality based on spermatozoa motility variables. In our case, the problem of assessing sperm quality is cast as a multi-object tracking problem, where the objects being tracked are the spermatozoa. The system combines a particle filter and Kalman filters for robust motion estimation of the spermatozoa tracks. Further, the combinatorial aspect of assigning observations to labels in the particle filter is formulated as a linear assignment problem solved using the Hungarian algorithm on a rectangular cost matrix, making the algorithm capable of handling missing or spurious observations. The costs are calculated using hidden Markov models that express the plausibility of an observation being the next position in the track history of the particle labels. Observations are extracted using a scale-space blob detector utilizing the fact that the spermatozoa appear as bright blobs in a phase-contrast microscope. The output of the system is the complete motion track of each of the spermatozoa. Based on these tracks, different CASA motility variables can be computed, for example curvilinear velocity or straight-line velocity. The performance of the system is tested on three different phase-contrast image sequences of varying complexity, both by visual inspection of the estimated spermatozoa tracks and by measuring the mean squared error (MSE) between the estimated spermatozoa tracks and manually annotated tracks, showing good agreement.
Optimal Decentralized Protocol for Electric Vehicle Charging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gan, LW; Topcu, U; Low, SH
We propose a decentralized algorithm to optimally schedule electric vehicle (EV) charging. The algorithm exploits the elasticity of electric vehicle loads to fill the valleys in electric load profiles. We first formulate the EV charging scheduling problem as an optimal control problem, whose objective is to impose a generalized notion of valley-filling, and study properties of optimal charging profiles. We then give a decentralized algorithm to iteratively solve the optimal control problem. In each iteration, EVs update their charging profiles according to the control signal broadcast by the utility company, and the utility company alters the control signal to guidemore » their updates. The algorithm converges to optimal charging profiles (that are as "flat" as they can possibly be) irrespective of the specifications (e.g., maximum charging rate and deadline) of EVs, even if EVs do not necessarily update their charging profiles in every iteration, and use potentially outdated control signal when they update. Moreover, the algorithm only requires each EV solving its local problem, hence its implementation requires low computation capability. We also extend the algorithm to track a given load profile and to real-time implementation.« less
Development of a Test Facility for Air Revitalization Technology Evaluation
NASA Technical Reports Server (NTRS)
Lu, Sao-Dung; Lin, Amy; Campbell, Melissa; Smith, Frederick
2006-01-01
An active fault tolerant control (FTC) law is generally sensitive to false identification since the control gain is reconfigured for fault occurrence. In the conventional FTC law design procedure, dynamic variations due to false identification are not considered. In this paper, an FTC synthesis method is developed in order to consider possible variations of closed-loop dynamics under false identification into the control design procedure. An active FTC synthesis problem is formulated into an LMI optimization problem to minimize the upper bound of the induced-L2 norm which can represent the worst-case performance degradation due to false identification. The developed synthesis method is applied for control of the longitudinal motions of FASER (Free-flying Airplane for Subscale Experimental Research). The designed FTC law of the airplane is simulated for pitch angle command tracking under a false identification case.
Driver face tracking using semantics-based feature of eyes on single FPGA
NASA Astrophysics Data System (ADS)
Yu, Ying-Hao; Chen, Ji-An; Ting, Yi-Siang; Kwok, Ngaiming
2017-06-01
Tracking driver's face is one of the essentialities for driving safety control. This kind of system is usually designed with complicated algorithms to recognize driver's face by means of powerful computers. The design problem is not only about detecting rate but also from parts damages under rigorous environments by vibration, heat, and humidity. A feasible strategy to counteract these damages is to integrate entire system into a single chip in order to achieve minimum installation dimension, weight, power consumption, and exposure to air. Meanwhile, an extraordinary methodology is also indispensable to overcome the dilemma of low-computing capability and real-time performance on a low-end chip. In this paper, a novel driver face tracking system is proposed by employing semantics-based vague image representation (SVIR) for minimum hardware resource usages on a FPGA, and the real-time performance is also guaranteed at the same time. Our experimental results have indicated that the proposed face tracking system is viable and promising for the smart car design in the future.
Bierman, Karen L; Coie, John; Dodge, Kenneth; Greenberg, Mark; Lochman, John; McMohan, Robert; Pinderhughes, Ellen
2013-01-01
A multi-gate screening process identified 891 children with aggressive-disruptive behavior problems at school entry. Fast Track provided a multi-component preventive intervention in the context of a randomized-controlled design. In addition to psychosocial support and skill training for parents and children, the intervention included intensive reading tutoring in first grade, behavioral management consultation with teachers, and the provision of homework support (as needed) through tenth grade. This study examined the impact of the intervention, as well as the impact of the child's initial aggressive-disruptive behaviors and associated school readiness skills (cognitive ability, reading readiness, attention problems) on academic progress and educational placements during elementary school (Grades 1-4) and during the secondary school years (Grades 7-10), as well as high school graduation. Child behavior problems and skills at school entry predicted school difficulties (low grades, grade retention, placement in a self-contained classroom, behavior disorder classification, and failure to graduate). Disappointingly, intervention did not significantly improve these long-term school outcomes. © 2013 Wiley Periodicals, Inc.
Bierman, Karen L.; Coie, John; Dodge, Kenneth; Greenberg, Mark; Lochman, John; McMohan, Robert; Pinderhughes, Ellen
2013-01-01
A multi-gate screening process identified 891 children with aggressive-disruptive behavior problems at school entry. Fast Track provided a multi-component preventive intervention in the context of a randomized-controlled design. In addition to psychosocial support and skill training for parents and children, the intervention included intensive reading tutoring in first grade, behavioral management consultation with teachers, and the provision of homework support (as needed) through tenth grade. This study examined the impact of the intervention, as well as the impact of the child's initial aggressive-disruptive behaviors and associated school readiness skills (cognitive ability, reading readiness, attention problems) on academic progress and educational placements during elementary school (Grades 1–4) and during the secondary school years (Grades 7–10), as well as high school graduation. Child behavior problems and skills at school entry predicted school difficulties (low grades, grade retention, placement in a self-contained classroom, behavior disorder classification, and failure to graduate). Disappointingly, intervention did not significantly improve these long-term school outcomes. PMID:23386568
Problem reporting and tracking system: a systems engineering challenge
NASA Astrophysics Data System (ADS)
Cortez, Vasco; Lopez, Bernhard; Whyborn, Nicholas; Price, Roberto; Hernandez, Octavio; Gairing, Stefan; Barrios, Emilio; Alarcon, Hector
2016-08-01
The problem reporting and tracking system (PRTS) is the ALMA system to register operational problems, track unplanned corrective operational maintenance activities and follow the investigations of all problems or possible issues arisen in operation activities. After the PRTS implementation appeared several issues that finally produced a lack in the management of the investigations, problems to produce KPIs, loss of information, among others. In order to improve PRTS, we carried out a process to review the status of system, define a set of modifications and implement a solution; all according to the stakeholder requirements. In this work, we shall present the methodology applied to define a set of concrete actions at the basis of understanding the complexity of the problem, which finally got to improve the interactions between different subsystems and enhance the communication at different levels.
Fuzzy Adaptive Output Feedback Control of Uncertain Nonlinear Systems With Prescribed Performance.
Zhang, Jin-Xi; Yang, Guang-Hong
2018-05-01
This paper investigates the tracking control problem for a family of strict-feedback systems in the presence of unknown nonlinearities and immeasurable system states. A low-complexity adaptive fuzzy output feedback control scheme is proposed, based on a backstepping method. In the control design, a fuzzy adaptive state observer is first employed to estimate the unmeasured states. Then, a novel error transformation approach together with a new modification mechanism is introduced to guarantee the finite-time convergence of the output error to a predefined region and ensure the closed-loop stability. Compared with the existing methods, the main advantages of our approach are that: 1) without using extra command filters or auxiliary dynamic surface control techniques, the problem of explosion of complexity can still be addressed and 2) the design procedures are independent of the initial conditions. Finally, two practical examples are performed to further illustrate the above theoretic findings.
MOORE: A prototype expert system for diagnosing spacecraft problems
NASA Technical Reports Server (NTRS)
Howlin, Katherine; Weissert, Jerry; Krantz, Kerry
1988-01-01
MOORE is a rule-based, prototype expert system that assists in diagnosing operational Tracking and Data Relay Satellite (TDRS) problems. It is intended to assist spacecraft engineers at the TDRS ground terminal in trouble shooting problems that are not readily solved with routine procedures, and without expert counsel. An additional goal of the prototype system is to develop in-house expert system and knowledge engineering skills. The prototype system diagnoses antenna pointing and earth pointing problems that may occur within the TDRS Attitude Control System (ACS). Plans include expansion to fault isolation of problems in the most critical subsystems of the TDRS spacecraft. Long term benefits are anticipated with use of an expert system during future TDRS programs with increased mission support time, reduced problem solving time, and retained expert knowledge and experience. Phase 2 of the project is intended to provide NASA the necessary expertise and capability to define requirements, evaluate proposals, and monitor the development progress of a highly competent expert system for NASA's Tracking Data Relay Satellite. Phase 2 also envisions addressing two unexplored applications for expert systems, spacecraft integration and tests (I and T) and support to launch activities. The concept, goals, domain, tools, knowledge acquisition, developmental approach, and design of the expert system. It will explain how NASA obtained the knowledge and capability to develop the system in-house without assistance from outside consultants. Future plans will also be presented.
Controlling Attitude of a Solar-Sail Spacecraft Using Vanes
NASA Technical Reports Server (NTRS)
Mettler, Edward; Acikmese, Ahmet; Ploen, Scott
2006-01-01
A paper discusses a concept for controlling the attitude and thrust vector of a three-axis stabilized Solar Sail spacecraft using only four single degree-of-freedom articulated spar-tip vanes. The vanes, at the corners of the sail, would be turned to commanded angles about the diagonals of the square sail. Commands would be generated by an adaptive controller that would track a given trajectory while rejecting effects of such disturbance torques as those attributable to offsets between the center of pressure on the sail and the center of mass. The controller would include a standard proportional + derivative part, a feedforward part, and a dynamic component that would act like a generalized integrator. The controller would globally track reference signals, and in the presence of such control-actuator constraints as saturation and delay, the controller would utilize strategies to cancel or reduce their effects. The control scheme would be embodied in a robust, nonlinear algorithm that would allocate torques among the vanes, always finding a stable solution arbitrarily close to the global optimum solution of the control effort allocation problem. The solution would include an acceptably small angle, slow limit-cycle oscillation of the vanes, while providing overall thrust vector pointing stability and performance.
Hurricane Prediction: Progress and Problem Areas
ERIC Educational Resources Information Center
Simpson, R. H.
1973-01-01
Describes progress made in recent decades in predicting the track and landfall of hurricanes. Examines the problems of detecting, tracking, and describing tropical cyclones, and the difficulties which continue to complicate the matter of warning and evacuating coastal residents. (JR)
New class of control laws for robotic manipulators. I - Nonadaptive case. II - Adaptive case
NASA Technical Reports Server (NTRS)
Wen, John T.; Bayard, David S.
1988-01-01
A new class of exponentially stabilizing control laws for joint level control of robot arms is discussed. Closed-loop exponential stability has been demonstrated for both the set point and tracking control problems by a slight modification of the energy Lyapunov function and the use of a lemma which handles third-order terms in the Lyapunov function derivatives. In the second part, these control laws are adapted in a simple fashion to achieve asymptotically stable adaptive control. The analysis addresses the nonlinear dynamics directly without approximation, linearization, or ad hoc assumptions, and uses a parameterization based on physical (time-invariant) quantities.
NASA Astrophysics Data System (ADS)
Sutrisno; Widowati; Solikhin
2016-06-01
In this paper, we propose a mathematical model in stochastic dynamic optimization form to determine the optimal strategy for an integrated single product inventory control problem and supplier selection problem where the demand and purchasing cost parameters are random. For each time period, by using the proposed model, we decide the optimal supplier and calculate the optimal product volume purchased from the optimal supplier so that the inventory level will be located at some point as close as possible to the reference point with minimal cost. We use stochastic dynamic programming to solve this problem and give several numerical experiments to evaluate the model. From the results, for each time period, the proposed model was generated the optimal supplier and the inventory level was tracked the reference point well.
Distributed control topologies for deep space formation flying spacecraft
NASA Technical Reports Server (NTRS)
Hadaegh, F. Y.; Smith, R. S.
2002-01-01
A formation of satellites flying in deep space can be specified in terms of the relative satellite positions and absolute satellite orientations. The redundancy in the relative position specification generates a family of control topologies with equivalent stability and reference tracking performance, one of which can be implemented without requiring communication between the spacecraft. A relative position design formulation is inherently unobservable, and a methodology for circumventing this problem is presented. Additional redundancy in the control actuation space can be exploited for feed-forward control of the formation centroid's location in space, or for minimization of total fuel consumption.
On-Line Path Generation and Tracking for High-Speed Wheeled Autonomous Vehicles
2006-02-17
On-Line Path Generation and Tracking for High-Speed Wheeled Autonomous Vehicles Report Title ABSTRACT In this work we proposed two semi-analytic...298-102 Enclosure 1 On-Line Path Generation and Tracking for High-Speed Wheeled Autonomous Vehicles by...Specifically, the following problems will be addressed during this project: 2.1 Challenges The problem of trajectory planning for high-speed autonomous vehicles is
Lv, Yueyong; Hu, Qinglei; Ma, Guangfu; Zhou, Jiakang
2011-10-01
This paper treats the problem of synchronized control of spacecraft formation flying (SFF) in the presence of input constraint and parameter uncertainties. More specifically, backstepping based robust control is first developed for the total 6 DOF dynamic model of SFF with parameter uncertainties, in which the model consists of relative translation and attitude rotation. Then this controller is redesigned to deal with the input constraint problem by incorporating a command filter such that the generated control could be implementable even under physical or operating constraints on the control input. The convergence of the proposed control algorithms is proved by the Lyapunov stability theorem. Compared with conventional methods, illustrative simulations of spacecraft formation flying are conducted to verify the effectiveness of the proposed approach to achieve the spacecraft track the desired attitude and position trajectories in a synchronized fashion even in the presence of uncertainties, external disturbances and control saturation constraint. Copyright © 2011 ISA. Published by Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Porter, D. W.; Lefler, R. M.
1979-01-01
A generalized hypothesis testing approach is applied to the problem of tracking several objects where several different associations of data with objects are possible. Such problems occur, for instance, when attempting to distinctly track several aircraft maneuvering near each other or when tracking ships at sea. Conceptually, the problem is solved by first, associating data with objects in a statistically reasonable fashion and then, tracking with a bank of Kalman filters. The objects are assumed to have motion characterized by a fixed but unknown deterministic portion plus a random process portion modeled by a shaping filter. For example, the object might be assumed to have a mean straight line path about which it maneuvers in a random manner. Several hypothesized associations of data with objects are possible because of ambiguity as to which object the data comes from, false alarm/detection errors, and possible uncertainty in the number of objects being tracked. The statistical likelihood function is computed for each possible hypothesized association of data with objects. Then the generalized likelihood is computed by maximizing the likelihood over parameters that define the deterministic motion of the object.
NASA Astrophysics Data System (ADS)
Bu, Xiangwei; Wu, Xiaoyan; Huang, Jiaqi; Wei, Daozhi
2016-11-01
This paper investigates the design of a novel estimation-free prescribed performance non-affine control strategy for the longitudinal dynamics of an air-breathing hypersonic vehicle (AHV) via back-stepping. The proposed control scheme is capable of guaranteeing tracking errors of velocity, altitude, flight-path angle, pitch angle and pitch rate with prescribed performance. By prescribed performance, we mean that the tracking error is limited to a predefined arbitrarily small residual set, with convergence rate no less than a certain constant, exhibiting maximum overshoot less than a given value. Unlike traditional back-stepping designs, there is no need of an affine model in this paper. Moreover, both the tedious analytic and numerical computations of time derivatives of virtual control laws are completely avoided. In contrast to estimation-based strategies, the presented estimation-free controller possesses much lower computational costs, while successfully eliminating the potential problem of parameter drifting. Owing to its independence on an accurate AHV model, the studied methodology exhibits excellent robustness against system uncertainties. Finally, simulation results from a fully nonlinear model clarify and verify the design.
NASA Technical Reports Server (NTRS)
Calise, A. J.; Kadushin, I.; Kramer, F.
1981-01-01
The current status of research on the application of variable structure system (VSS) theory to design aircraft flight control systems is summarized. Two aircraft types are currently being investigated: the Augmentor Wing Jet STOL Research Aircraft (AWJSRA), and AV-8A Harrier. The AWJSRA design considers automatic control of longitudinal dynamics during the landing phase. The main task for the AWJSRA is to design an automatic landing system that captures and tracks a localizer beam. The control task for the AV-8A is to track velocity commands in a hovering flight configuration. Much effort was devoted to developing computer programs that are needed to carry out VSS design in a multivariable frame work, and in becoming familiar with the dynamics and control problems associated with the aircraft types under investigation. Numerous VSS design schemes were explored, particularly for the AWJSRA. The approaches that appear best suited for these aircraft types are presented. Examples are given of the numerical results currently being generated.
Online two-stage association method for robust multiple people tracking
NASA Astrophysics Data System (ADS)
Lv, Jingqin; Fang, Jiangxiong; Yang, Jie
2011-07-01
Robust multiple people tracking is very important for many applications. It is a challenging problem due to occlusion and interaction in crowded scenarios. This paper proposes an online two-stage association method for robust multiple people tracking. In the first stage, short tracklets generated by linking people detection responses grow longer by particle filter based tracking, with detection confidence embedded into the observation model. And, an examining scheme runs at each frame for the reliability of tracking. In the second stage, multiple people tracking is achieved by linking tracklets to generate trajectories. An online tracklet association method is proposed to solve the linking problem, which allows applications in time-critical scenarios. This method is evaluated on the popular CAVIAR dataset. The experimental results show that our two-stage method is robust.
Real-Time Mutual Gaze Perception Enhances Collaborative Learning and Collaboration Quality
ERIC Educational Resources Information Center
Schneider, Bertrand; Pea, Roy
2013-01-01
In this paper we present the results of an eye-tracking study on collaborative problem-solving dyads. Dyads remotely collaborated to learn from contrasting cases involving basic concepts about how the human brain processes visual information. In one condition, dyads saw the eye gazes of their partner on the screen; in a control group, they did not…
Closed-form recursive formula for an optimal tracker with terminal constraints
NASA Technical Reports Server (NTRS)
Juang, J.-N.; Turner, J. D.; Chun, H. M.
1984-01-01
Feedback control laws are derived for a class of optimal finite time tracking problems with terminal constraints. Analytical solutions are obtained for the feedback gain and the closed-loop response trajectory. Such formulations are expressed in recursive forms so that a real-time computer implementation becomes feasible. Two examples are given to illustrate the validity and usefulness of the formulations.
Saini, Sanjay; Zakaria, Nordin; Rambli, Dayang Rohaya Awang; Sulaiman, Suziah
2015-01-01
The high-dimensional search space involved in markerless full-body articulated human motion tracking from multiple-views video sequences has led to a number of solutions based on metaheuristics, the most recent form of which is Particle Swarm Optimization (PSO). However, the classical PSO suffers from premature convergence and it is trapped easily into local optima, significantly affecting the tracking accuracy. To overcome these drawbacks, we have developed a method for the problem based on Hierarchical Multi-Swarm Cooperative Particle Swarm Optimization (H-MCPSO). The tracking problem is formulated as a non-linear 34-dimensional function optimization problem where the fitness function quantifies the difference between the observed image and a projection of the model configuration. Both the silhouette and edge likelihoods are used in the fitness function. Experiments using Brown and HumanEva-II dataset demonstrated that H-MCPSO performance is better than two leading alternative approaches-Annealed Particle Filter (APF) and Hierarchical Particle Swarm Optimization (HPSO). Further, the proposed tracking method is capable of automatic initialization and self-recovery from temporary tracking failures. Comprehensive experimental results are presented to support the claims.
Physiological Self-Regulation and Adaptive Automation
NASA Technical Reports Server (NTRS)
Prinzell, Lawrence J.; Pope, Alan T.; Freeman, Frederick G.
2007-01-01
Adaptive automation has been proposed as a solution to current problems of human-automation interaction. Past research has shown the potential of this advanced form of automation to enhance pilot engagement and lower cognitive workload. However, there have been concerns voiced regarding issues, such as automation surprises, associated with the use of adaptive automation. This study examined the use of psychophysiological self-regulation training with adaptive automation that may help pilots deal with these problems through the enhancement of cognitive resource management skills. Eighteen participants were assigned to 3 groups (self-regulation training, false feedback, and control) and performed resource management, monitoring, and tracking tasks from the Multiple Attribute Task Battery. The tracking task was cycled between 3 levels of task difficulty (automatic, adaptive aiding, manual) on the basis of the electroencephalogram-derived engagement index. The other two tasks remained in automatic mode that had a single automation failure. Those participants who had received self-regulation training performed significantly better and reported lower National Aeronautics and Space Administration Task Load Index scores than participants in the false feedback and control groups. The theoretical and practical implications of these results for adaptive automation are discussed.
Tracking problem solving by multivariate pattern analysis and Hidden Markov Model algorithms.
Anderson, John R
2012-03-01
Multivariate pattern analysis can be combined with Hidden Markov Model algorithms to track the second-by-second thinking as people solve complex problems. Two applications of this methodology are illustrated with a data set taken from children as they interacted with an intelligent tutoring system for algebra. The first "mind reading" application involves using fMRI activity to track what students are doing as they solve a sequence of algebra problems. The methodology achieves considerable accuracy at determining both what problem-solving step the students are taking and whether they are performing that step correctly. The second "model discovery" application involves using statistical model evaluation to determine how many substates are involved in performing a step of algebraic problem solving. This research indicates that different steps involve different numbers of substates and these substates are associated with different fluency in algebra problem solving. Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Rowell, S.; Popov, A. A.; Meijaard, J. P.
2010-04-01
The response of a motorcycle is heavily dependent on the rider's control actions, and consequently a means of replicating the rider's behaviour provides an important extension to motorcycle dynamics. The primary objective here is to develop effective path-following simulations and to understand how riders control motorcycles. Optimal control theory is applied to the tracking of roadway by a motorcycle, using a non-linear motorcycle model operating in free control by steering torque input. A path-following controller with road preview is designed by minimising tracking errors and control effort. Tight controls with high weightings on performance and loose controls with high weightings on control power are defined. Special attention is paid to the modelling of multipoint preview in local and global coordinate systems. The controller model is simulated over a standard single lane-change manoeuvre. It is argued that the local coordinates point of view is more representative of the way that a human rider operates and interprets information. The simulations suggest that for accurate path following, using optimal control, the problem must be solved by the local coordinates approach in order to achieve accurate results with short preview horizons. Furthermore, some weaknesses of the optimal control approach are highlighted here.
Empty tracks optimization based on Z-Map model
NASA Astrophysics Data System (ADS)
Liu, Le; Yan, Guangrong; Wang, Zaijun; Zang, Genao
2017-12-01
For parts with many features, there are more empty tracks during machining. If these tracks are not optimized, the machining efficiency will be seriously affected. In this paper, the characteristics of the empty tracks are studied in detail. Combining with the existing optimization algorithm, a new tracks optimization method based on Z-Map model is proposed. In this method, the tool tracks are divided into the unit processing section, and then the Z-Map model simulation technique is used to analyze the order constraint between the unit segments. The empty stroke optimization problem is transformed into the TSP with sequential constraints, and then through the genetic algorithm solves the established TSP problem. This kind of optimization method can not only optimize the simple structural parts, but also optimize the complex structural parts, so as to effectively plan the empty tracks and greatly improve the processing efficiency.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Yimin; Lv, Hui, E-mail: lvhui207@gmail.com
In this paper, we consider the control problem of a class of uncertain fractional-order chaotic systems preceded by unknown backlash-like hysteresis nonlinearities based on backstepping control algorithm. We model the hysteresis by using a differential equation. Based on the fractional Lyapunov stability criterion and the backstepping algorithm procedures, an adaptive neural network controller is driven. No knowledge of the upper bound of the disturbance and system uncertainty is required in our controller, and the asymptotical convergence of the tracking error can be guaranteed. Finally, we give two simulation examples to confirm our theoretical results.
Track and Field Practice and Bone Outcomes among Adolescents: A Pilot Study (ABCD-Growth Study).
Faustino-da-Silva, Yuri da Silva Ventura; Agostinete, Ricardo Ribeiro; Werneck, André Oliveira; Maillane-Vanegas, Santiago; Lynch, Kyle Robinson; Exupério, Isabella Neto; Ito, Igor Hideki; Fernandes, Romulo Araújo
2018-02-01
Osteoporosis is considered a public health problem with high worldwide prevalence. One approach to prevention is through the promotion of physical activity, especially exercise, during adolescence. This study compared bone variables in different body segments in adolescents according to participation in track and field. The study included 34 adolescents (22 boys), of whom 17 were track and field athletes and 17 were control subjects. Bone mineral density (BMD, g/cm 2 ) and bone mineral content (BMC, g) were analyzed using dual energy X-ray absorptiometry (total body stratified by body segments). Peak height velocity was used to estimate somatic maturation. Athletes had higher BMD ( P =0.003) and BMC ( P =0.011) values in the lower limbs and higher whole body BMD ( P =0.025) than the control group. However, when adjusted for confounding factors, the difference was not maintained. The groups had similar lean soft tissue values ( P =0.094). Training overload was positively correlated with BMD in the upper limbs (r=0.504; 95% confidence interval, 0.031-0.793). Although track and field athletes had higher BMD and BMC values in the lower limbs, these differences were not significant when adjusted for confounding factors. Track and field participation in adolescence appears to influence BMD and BMC in lower limbs, and fat-free mass seems to mediate this effect. Also, higher training loads were found to be positive for bone health in upper limbs.
Track and Field Practice and Bone Outcomes among Adolescents: A Pilot Study (ABCD-Growth Study)
Faustino-da-Silva, Yuri da Silva Ventura; Werneck, André Oliveira; Maillane-Vanegas, Santiago; Lynch, Kyle Robinson; Exupério, Isabella Neto; Ito, Igor Hideki; Fernandes, Romulo Araújo
2018-01-01
Background Osteoporosis is considered a public health problem with high worldwide prevalence. One approach to prevention is through the promotion of physical activity, especially exercise, during adolescence. Methods This study compared bone variables in different body segments in adolescents according to participation in track and field. The study included 34 adolescents (22 boys), of whom 17 were track and field athletes and 17 were control subjects. Bone mineral density (BMD, g/cm2) and bone mineral content (BMC, g) were analyzed using dual energy X-ray absorptiometry (total body stratified by body segments). Peak height velocity was used to estimate somatic maturation. Results Athletes had higher BMD (P=0.003) and BMC (P=0.011) values in the lower limbs and higher whole body BMD (P=0.025) than the control group. However, when adjusted for confounding factors, the difference was not maintained. The groups had similar lean soft tissue values (P=0.094). Training overload was positively correlated with BMD in the upper limbs (r=0.504; 95% confidence interval, 0.031-0.793). Although track and field athletes had higher BMD and BMC values in the lower limbs, these differences were not significant when adjusted for confounding factors. Conclusions Track and field participation in adolescence appears to influence BMD and BMC in lower limbs, and fat-free mass seems to mediate this effect. Also, higher training loads were found to be positive for bone health in upper limbs. PMID:29564304
Neural network-based nonlinear model predictive control vs. linear quadratic gaussian control
Cho, C.; Vance, R.; Mardi, N.; Qian, Z.; Prisbrey, K.
1997-01-01
One problem with the application of neural networks to the multivariable control of mineral and extractive processes is determining whether and how to use them. The objective of this investigation was to compare neural network control to more conventional strategies and to determine if there are any advantages in using neural network control in terms of set-point tracking, rise time, settling time, disturbance rejection and other criteria. The procedure involved developing neural network controllers using both historical plant data and simulation models. Various control patterns were tried, including both inverse and direct neural network plant models. These were compared to state space controllers that are, by nature, linear. For grinding and leaching circuits, a nonlinear neural network-based model predictive control strategy was superior to a state space-based linear quadratic gaussian controller. The investigation pointed out the importance of incorporating state space into neural networks by making them recurrent, i.e., feeding certain output state variables into input nodes in the neural network. It was concluded that neural network controllers can have better disturbance rejection, set-point tracking, rise time, settling time and lower set-point overshoot, and it was also concluded that neural network controllers can be more reliable and easy to implement in complex, multivariable plants.
Finite time control for MIMO nonlinear system based on higher-order sliding mode.
Liu, Xiangjie; Han, Yaozhen
2014-11-01
Considering a class of MIMO uncertain nonlinear system, a novel finite time stable control algorithm is proposed based on higher-order sliding mode concept. The higher-order sliding mode control problem of MIMO nonlinear system is firstly transformed into finite time stability problem of multivariable system. Then continuous control law, which can guarantee finite time stabilization of nominal integral chain system, is employed. The second-order sliding mode is used to overcome the system uncertainties. High frequency chattering phenomenon of sliding mode is greatly weakened, and the arbitrarily fast convergence is reached. The finite time stability is proved based on the quadratic form Lyapunov function. Examples concerning the triple integral chain system with uncertainty and the hovercraft trajectory tracking are simulated respectively to verify the effectiveness and the robustness of the proposed algorithm. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
Decontaminate feature for tracking: adaptive tracking via evolutionary feature subset
NASA Astrophysics Data System (ADS)
Liu, Qiaoyuan; Wang, Yuru; Yin, Minghao; Ren, Jinchang; Li, Ruizhi
2017-11-01
Although various visual tracking algorithms have been proposed in the last 2-3 decades, it remains a challenging problem for effective tracking with fast motion, deformation, occlusion, etc. Under complex tracking conditions, most tracking models are not discriminative and adaptive enough. When the combined feature vectors are inputted to the visual models, this may lead to redundancy causing low efficiency and ambiguity causing poor performance. An effective tracking algorithm is proposed to decontaminate features for each video sequence adaptively, where the visual modeling is treated as an optimization problem from the perspective of evolution. Every feature vector is compared to a biological individual and then decontaminated via classical evolutionary algorithms. With the optimized subsets of features, the "curse of dimensionality" has been avoided while the accuracy of the visual model has been improved. The proposed algorithm has been tested on several publicly available datasets with various tracking challenges and benchmarked with a number of state-of-the-art approaches. The comprehensive experiments have demonstrated the efficacy of the proposed methodology.
Use of case-based reasoning to enhance intensive management of patients on insulin pump therapy.
Schwartz, Frank L; Shubrook, Jay H; Marling, Cynthia R
2008-07-01
This study was conducted to develop case-based decision support software to improve glucose control in patients with type 1 diabetes mellitus (T1DM) on insulin pump therapy. While the benefits of good glucose control are well known, achieving and maintaining good glucose control remains a difficult task. Case-based decision support software may assist by recalling past problems in glucose control and their associated therapeutic adjustments. Twenty patients with T1DM on insulin pumps were enrolled in a 6-week study. Subjects performed self-glucose monitoring and provided daily logs via the Internet, tracking insulin dosages, work, sleep, exercise, meals, stress, illness, menstrual cycles, infusion set changes, pump problems, hypoglycemic episodes, and other events. Subjects wore a continuous glucose monitoring system at weeks 1, 3, and 6. Clinical data were interpreted by physicians, who explained the relationship between life events and observed glucose patterns as well as treatment rationales to knowledge engineers. Knowledge engineers built a prototypical system that contained cases of problems in glucose control together with their associated solutions. Twelve patients completed the study. Fifty cases of clinical problems and solutions were developed and stored in a case base. The prototypical system detected 12 distinct types of clinical problems. It displayed the stored problems that are most similar to the problems detected, and offered learned solutions as decision support to the physician. This software can screen large volumes of clinical data and glucose levels from patients with T1DM, identify clinical problems, and offer solutions. It has potential application in managing all forms of diabetes.
Sequential bearings-only-tracking initiation with particle filtering method.
Liu, Bin; Hao, Chengpeng
2013-01-01
The tracking initiation problem is examined in the context of autonomous bearings-only-tracking (BOT) of a single appearing/disappearing target in the presence of clutter measurements. In general, this problem suffers from a combinatorial explosion in the number of potential tracks resulted from the uncertainty in the linkage between the target and the measurement (a.k.a the data association problem). In addition, the nonlinear measurements lead to a non-Gaussian posterior probability density function (pdf) in the optimal Bayesian sequential estimation framework. The consequence of this nonlinear/non-Gaussian context is the absence of a closed-form solution. This paper models the linkage uncertainty and the nonlinear/non-Gaussian estimation problem jointly with solid Bayesian formalism. A particle filtering (PF) algorithm is derived for estimating the model's parameters in a sequential manner. Numerical results show that the proposed solution provides a significant benefit over the most commonly used methods, IPDA and IMMPDA. The posterior Cramér-Rao bounds are also involved for performance evaluation.
NASA Technical Reports Server (NTRS)
Schmidt, Phillip; Garg, Sanjay; Holowecky, Brian
1992-01-01
A parameter optimization framework is presented to solve the problem of partitioning a centralized controller into a decentralized hierarchical structure suitable for integrated flight/propulsion control implementation. The controller partitioning problem is briefly discussed and a cost function to be minimized is formulated, such that the resulting 'optimal' partitioned subsystem controllers will closely match the performance (including robustness) properties of the closed-loop system with the centralized controller while maintaining the desired controller partitioning structure. The cost function is written in terms of parameters in a state-space representation of the partitioned sub-controllers. Analytical expressions are obtained for the gradient of this cost function with respect to parameters, and an optimization algorithm is developed using modern computer-aided control design and analysis software. The capabilities of the algorithm are demonstrated by application to partitioned integrated flight/propulsion control design for a modern fighter aircraft in the short approach to landing task. The partitioning optimization is shown to lead to reduced-order subcontrollers that match the closed-loop command tracking and decoupling performance achieved by a high-order centralized controller.
NASA Technical Reports Server (NTRS)
Schmidt, Phillip H.; Garg, Sanjay; Holowecky, Brian R.
1993-01-01
A parameter optimization framework is presented to solve the problem of partitioning a centralized controller into a decentralized hierarchical structure suitable for integrated flight/propulsion control implementation. The controller partitioning problem is briefly discussed and a cost function to be minimized is formulated, such that the resulting 'optimal' partitioned subsystem controllers will closely match the performance (including robustness) properties of the closed-loop system with the centralized controller while maintaining the desired controller partitioning structure. The cost function is written in terms of parameters in a state-space representation of the partitioned sub-controllers. Analytical expressions are obtained for the gradient of this cost function with respect to parameters, and an optimization algorithm is developed using modern computer-aided control design and analysis software. The capabilities of the algorithm are demonstrated by application to partitioned integrated flight/propulsion control design for a modern fighter aircraft in the short approach to landing task. The partitioning optimization is shown to lead to reduced-order subcontrollers that match the closed-loop command tracking and decoupling performance achieved by a high-order centralized controller.
Zhong, Zhixiong; Zhu, Yanzheng; Ahn, Choon Ki
2018-07-01
In this paper, we address the problem of reachable set estimation for continuous-time Takagi-Sugeno (T-S) fuzzy systems subject to unknown output delays. Based on the reachable set concept, a new controller design method is also discussed for such systems. An effective method is developed to attenuate the negative impact from the unknown output delays, which likely degrade the performance/stability of systems. First, an augmented fuzzy observer is proposed to capacitate a synchronous estimation for the system state and the disturbance term owing to the unknown output delays, which ensures that the reachable set of the estimation error is limited via the intersection operation of ellipsoids. Then, a compensation technique is employed to eliminate the influence on the system performance stemmed from the unknown output delays. Finally, the effectiveness and correctness of the obtained theories are verified by the tracking control of autonomous underwater vehicles. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.
Adaptive tracking control of leader-following linear multi-agent systems with external disturbances
NASA Astrophysics Data System (ADS)
Lin, Hanquan; Wei, Qinglai; Liu, Derong; Ma, Hongwen
2016-10-01
In this paper, the consensus problem for leader-following linear multi-agent systems with external disturbances is investigated. Brownian motions are used to describe exogenous disturbances. A distributed tracking controller based on Riccati inequalities with an adaptive law for adjusting coupling weights between neighbouring agents is designed for leader-following multi-agent systems under fixed and switching topologies. In traditional distributed static controllers, the coupling weights depend on the communication graph. However, coupling weights associated with the feedback gain matrix in our method are updated by state errors between neighbouring agents. We further present the stability analysis of leader-following multi-agent systems with stochastic disturbances under switching topology. Most traditional literature requires the graph to be connected all the time, while the communication graph is only assumed to be jointly connected in this paper. The design technique is based on Riccati inequalities and algebraic graph theory. Finally, simulations are given to show the validity of our method.
Adaptive control of a quadrotor aerial vehicle with input constraints and uncertain parameters
NASA Astrophysics Data System (ADS)
Tran, Trong-Toan; Ge, Shuzhi Sam; He, Wei
2018-05-01
In this paper, we address the problem of adaptive bounded control for the trajectory tracking of a Quadrotor Aerial Vehicle (QAV) while the input saturations and uncertain parameters with the known bounds are simultaneously taken into account. First, to deal with the underactuated property of the QAV model, we decouple and construct the QAV model as a cascaded structure which consists of two fully actuated subsystems. Second, to handle the input constraints and uncertain parameters, we use a combination of the smooth saturation function and smooth projection operator in the control design. Third, to ensure the stability of the overall system of the QAV, we develop the technique for the cascaded system in the presence of both the input constraints and uncertain parameters. Finally, the region of stability of the closed-loop system is constructed explicitly, and our design ensures the asymptotic convergence of the tracking errors to the origin. The simulation results are provided to illustrate the effectiveness of the proposed method.
NASA Astrophysics Data System (ADS)
Dragone, Mauro; O'Donoghue, Ruadhan; Leonard, John J.; O'Hare, Gregory; Duffy, Brian; Patrikalakis, Andrew; Leederkerken, Jacques
2005-06-01
The paper describes an ongoing effort to enable autonomous mobile robots to play soccer in unstructured, everyday environments. Unlike conventional robot soccer competitions that are usually held on purpose-built robot soccer "fields", in our work we seek to develop the capability for robots to demonstrate aspects of soccer-playing in more diverse environments, such as schools, hospitals, or shopping malls, with static obstacles (furniture) and dynamic natural obstacles (people). This problem of "Soccer Anywhere" presents numerous research challenges including: (1) Simultaneous Localization and Mapping (SLAM) in dynamic, unstructured environments, (2) software control architectures for decentralized, distributed control of mobile agents, (3) integration of vision-based object tracking with dynamic control, and (4) social interaction with human participants. In addition to the intrinsic research merit of these topics, we believe that this capability would prove useful for outreach activities, in demonstrating robotics technology to primary and secondary school students, to motivate them to pursue careers in science and engineering.
UAV formation control design with obstacle avoidance in dynamic three-dimensional environment.
Chang, Kai; Xia, Yuanqing; Huang, Kaoli
2016-01-01
This paper considers the artificial potential field method combined with rotational vectors for a general problem of multi-unmanned aerial vehicle (UAV) systems tracking a moving target in dynamic three-dimensional environment. An attractive potential field is generated between the leader and the target. It drives the leader to track the target based on the relative position of them. The other UAVs in the formation are controlled to follow the leader by the attractive control force. The repulsive force affects among the UAVs to avoid collisions and distribute the UAVs evenly on the spherical surface whose center is the leader-UAV. Specific orders or positions of the UAVs are not required. The trajectories of avoidance obstacle can be obtained through two kinds of potential field with rotation vectors. Every UAV can choose the optimal trajectory to avoid the obstacle and reconfigure the formation after passing the obstacle. Simulations study on UAV are presented to demonstrate the effectiveness of proposed method.
Signal and array processing techniques for RFID readers
NASA Astrophysics Data System (ADS)
Wang, Jing; Amin, Moeness; Zhang, Yimin
2006-05-01
Radio Frequency Identification (RFID) has recently attracted much attention in both the technical and business communities. It has found wide applications in, for example, toll collection, supply-chain management, access control, localization tracking, real-time monitoring, and object identification. Situations may arise where the movement directions of the tagged RFID items through a portal is of interest and must be determined. Doppler estimation may prove complicated or impractical to perform by RFID readers. Several alternative approaches, including the use of an array of sensors with arbitrary geometry, can be applied. In this paper, we consider direction-of-arrival (DOA) estimation techniques for application to near-field narrowband RFID problems. Particularly, we examine the use of a pair of RFID antennas to track moving RFID tagged items through a portal. With two antennas, the near-field DOA estimation problem can be simplified to a far-field problem, yielding a simple way for identifying the direction of the tag movement, where only one parameter, the angle, needs to be considered. In this case, tracking of the moving direction of the tag simply amounts to computing the spatial cross-correlation between the data samples received at the two antennas. It is pointed out that the radiation patterns of the reader and tag antennas, particularly their phase characteristics, have a significant effect on the performance of DOA estimation. Indoor experiments are conducted in the Radar Imaging and RFID Labs at Villanova University for validating the proposed technique for target movement direction estimations.
Discriminative correlation filter tracking with occlusion detection
NASA Astrophysics Data System (ADS)
Zhang, Shuo; Chen, Zhong; Yu, XiPeng; Zhang, Ting; He, Jing
2018-03-01
Aiming at the problem that the correlation filter-based tracking algorithm can not track the target of severe occlusion, a target re-detection mechanism is proposed. First of all, based on the ECO, we propose the multi-peak detection model and the response value to distinguish the occlusion and deformation in the target tracking, which improve the success rate of tracking. And then we add the confidence model to update the mechanism to effectively prevent the model offset problem which due to similar targets or background during the tracking process. Finally, the redetection mechanism of the target is added, and the relocation is performed after the target is lost, which increases the accuracy of the target positioning. The experimental results demonstrate that the proposed tracker performs favorably against state-of-the-art methods in terms of robustness and accuracy.
Multiple object tracking using the shortest path faster association algorithm.
Xi, Zhenghao; Liu, Heping; Liu, Huaping; Yang, Bin
2014-01-01
To solve the persistently multiple object tracking in cluttered environments, this paper presents a novel tracking association approach based on the shortest path faster algorithm. First, the multiple object tracking is formulated as an integer programming problem of the flow network. Then we relax the integer programming to a standard linear programming problem. Therefore, the global optimum can be quickly obtained using the shortest path faster algorithm. The proposed method avoids the difficulties of integer programming, and it has a lower worst-case complexity than competing methods but better robustness and tracking accuracy in complex environments. Simulation results show that the proposed algorithm takes less time than other state-of-the-art methods and can operate in real time.
Multiple Object Tracking Using the Shortest Path Faster Association Algorithm
Liu, Heping; Liu, Huaping; Yang, Bin
2014-01-01
To solve the persistently multiple object tracking in cluttered environments, this paper presents a novel tracking association approach based on the shortest path faster algorithm. First, the multiple object tracking is formulated as an integer programming problem of the flow network. Then we relax the integer programming to a standard linear programming problem. Therefore, the global optimum can be quickly obtained using the shortest path faster algorithm. The proposed method avoids the difficulties of integer programming, and it has a lower worst-case complexity than competing methods but better robustness and tracking accuracy in complex environments. Simulation results show that the proposed algorithm takes less time than other state-of-the-art methods and can operate in real time. PMID:25215322
Xing, Junliang; Ai, Haizhou; Liu, Liwei; Lao, Shihong
2011-06-01
Multiple object tracking (MOT) is a very challenging task yet of fundamental importance for many practical applications. In this paper, we focus on the problem of tracking multiple players in sports video which is even more difficult due to the abrupt movements of players and their complex interactions. To handle the difficulties in this problem, we present a new MOT algorithm which contributes both in the observation modeling level and in the tracking strategy level. For the observation modeling, we develop a progressive observation modeling process that is able to provide strong tracking observations and greatly facilitate the tracking task. For the tracking strategy, we propose a dual-mode two-way Bayesian inference approach which dynamically switches between an offline general model and an online dedicated model to deal with single isolated object tracking and multiple occluded object tracking integrally by forward filtering and backward smoothing. Extensive experiments on different kinds of sports videos, including football, basketball, as well as hockey, demonstrate the effectiveness and efficiency of the proposed method.
Fuzzy control for a nonlinear mimo-liquid level problem
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, R. E.; Mortensen, F. N.; Wantuck, P. J.
2001-01-01
Nonlinear systems are very common in the chemical process industries. Control of these systems, particularly multivariable systems, is extremely difficult. In many chemical plants, because of this difficulty, control is seldom optimal. Quite often, the best control is obtained in the manual mode using experienced operators. Liquid level control is probably one of the most common control problems in a chemical plant. Liquid level is important in heat exchanger control where heat and mass transfer rates can be controlled by the amount of liquid covering the tubes. Distillation columns, mixing tanks, and surge tanks are other examples where liquid levelmore » control is very important. The problem discussed in this paper is based on the simultaneous level control of three tanks connected in series. Each tank holds slightly less than 0.01 m{sup 3} of liquid. All three tanks are connected, Liquid is pumped into the first and the third tanks to maintain their levels. The third tank in the series drains to the system exit. The levels in the first and third tank control the level in the middle tank. The level in the middle tank affects the levels in the two end tanks. Many other chemical plant systems can be controlled in a manner similar to this three-tank system. For example, in any distillation column liquid level control problems can be represented as a total condenser with liquid level control, a reboiler with liquid level control, with the interactive column in between. The solution to the three-tank-problem can provide insight into many of the nonlinear control problems in the chemical process industries. The system was tested using the fuzzy logic controller and a proportional-integral (PI) controller, in both the setpoint tracking mode and disturbance rejection mode. The experimental results are discussed and comparisons between fuzzy controller and the standard PI controller are made.« less
Li, Yongming; Tong, Shaocheng
2017-06-28
In this paper, an adaptive neural networks (NNs)-based decentralized control scheme with the prescribed performance is proposed for uncertain switched nonstrict-feedback interconnected nonlinear systems. It is assumed that nonlinear interconnected terms and nonlinear functions of the concerned systems are unknown, and also the switching signals are unknown and arbitrary. A linear state estimator is constructed to solve the problem of unmeasured states. The NNs are employed to approximate unknown interconnected terms and nonlinear functions. A new output feedback decentralized control scheme is developed by using the adaptive backstepping design technique. The control design problem of nonlinear interconnected switched systems with unknown switching signals can be solved by the proposed scheme, and only a tuning parameter is needed for each subsystem. The proposed scheme can ensure that all variables of the control systems are semi-globally uniformly ultimately bounded and the tracking errors converge to a small residual set with the prescribed performance bound. The effectiveness of the proposed control approach is verified by some simulation results.
Analysis of alternative means of transporting heavy tracked vehicles at Fort Hood, Texas
DOT National Transportation Integrated Search
1987-08-01
The problem addressed in this report is a transportation problem--Given that a volume of heavy tracked vehicles must be moved from storage and maintenance locations to field training and other locations, what is the best way to move them? The options...
Servo Platform Circuit Design of Pendulous Gyroscope Based on DSP
NASA Astrophysics Data System (ADS)
Tan, Lilong; Wang, Pengcheng; Zhong, Qiyuan; Zhang, Cui; Liu, Yunfei
2018-03-01
In order to solve the problem when a certain type of pendulous gyroscope in the initial installation deviation more than 40 degrees, that the servo platform can not be up to the speed of the gyroscope in the rough north seeking phase. This paper takes the digital signal processor TMS320F28027 as the core, uses incremental digital PID algorithm, carries out the circuit design of the servo platform. Firstly, the hardware circuit is divided into three parts: DSP minimum system, motor driving circuit and signal processing circuit, then the mathematical model of incremental digital PID algorithm is established, based on the model, writes the PID control program in CCS3.3, finally, the servo motor tracking control experiment is carried out, it shows that the design can significantly improve the tracking ability of the servo platform, and the design has good engineering practice.
Maximum power point tracking for photovoltaic applications by using two-level DC/DC boost converter
NASA Astrophysics Data System (ADS)
Moamaei, Parvin
Recently, photovoltaic (PV) generation is becoming increasingly popular in industrial applications. As a renewable and alternative source of energy they feature superior characteristics such as being clean and silent along with less maintenance problems compared to other sources of the energy. In PV generation, employing a Maximum Power Point Tracking (MPPT) method is essential to obtain the maximum available solar energy. Among several proposed MPPT techniques, the Perturbation and Observation (P&O;) and Model Predictive Control (MPC) methods are adopted in this work. The components of the MPPT control system which are P&O; and MPC algorithms, PV module and high gain DC-DC boost converter are simulated in MATLAB Simulink. They are evaluated theoretically under rapidly and slowly changing of solar irradiation and temperature and their performance is shown by the simulation results, finally a comprehensive comparison is presented.
Robust optimization based energy dispatch in smart grids considering demand uncertainty
NASA Astrophysics Data System (ADS)
Nassourou, M.; Puig, V.; Blesa, J.
2017-01-01
In this study we discuss the application of robust optimization to the problem of economic energy dispatch in smart grids. Robust optimization based MPC strategies for tackling uncertain load demands are developed. Unexpected additive disturbances are modelled by defining an affine dependence between the control inputs and the uncertain load demands. The developed strategies were applied to a hybrid power system connected to an electrical power grid. Furthermore, to demonstrate the superiority of the standard Economic MPC over the MPC tracking, a comparison (e.g average daily cost) between the standard MPC tracking, the standard Economic MPC, and the integration of both in one-layer and two-layer approaches was carried out. The goal of this research is to design a controller based on Economic MPC strategies, that tackles uncertainties, in order to minimise economic costs and guarantee service reliability of the system.
Intelligent on-line fault tolerant control for unanticipated catastrophic failures.
Yen, Gary G; Ho, Liang-Wei
2004-10-01
As dynamic systems become increasingly complex, experience rapidly changing environments, and encounter a greater variety of unexpected component failures, solving the control problems of such systems is a grand challenge for control engineers. Traditional control design techniques are not adequate to cope with these systems, which may suffer from unanticipated dynamic failures. In this research work, we investigate the on-line fault tolerant control problem and propose an intelligent on-line control strategy to handle the desired trajectories tracking problem for systems suffering from various unanticipated catastrophic faults. Through theoretical analysis, the sufficient condition of system stability has been derived and two different on-line control laws have been developed. The approach of the proposed intelligent control strategy is to continuously monitor the system performance and identify what the system's current state is by using a fault detection method based upon our best knowledge of the nominal system and nominal controller. Once a fault is detected, the proposed intelligent controller will adjust its control signal to compensate for the unknown system failure dynamics by using an artificial neural network as an on-line estimator to approximate the unexpected and unknown failure dynamics. The first control law is derived directly from the Lyapunov stability theory, while the second control law is derived based upon the discrete-time sliding mode control technique. Both control laws have been implemented in a variety of failure scenarios to validate the proposed intelligent control scheme. The simulation results, including a three-tank benchmark problem, comply with theoretical analysis and demonstrate a significant improvement in trajectory following performance based upon the proposed intelligent control strategy.
Research on control strategy based on fuzzy PR for grid-connected inverter
NASA Astrophysics Data System (ADS)
Zhang, Qian; Guan, Weiguo; Miao, Wen
2018-04-01
In the traditional PI controller, there is static error in tracking ac signals. To solve the problem, the control strategy of a fuzzy PR and the grid voltage feed-forward is proposed. The fuzzy PR controller is to eliminate the static error of the system. It also adjusts parameters of PR controller in real time, which avoids the defect of fixed parameter fixed. The grid voltage feed-forward control can ensure the quality of current and improve the system's anti-interference ability when the grid voltage is distorted. Finally, the simulation results show that the system can output grid current with good quality and also has good dynamic and steady state performance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alves, D.; Coelho, R.; Collaboration: JET-EFDA Contributors
2013-08-15
The real-time tracking of instantaneous quantities such as frequency, amplitude, and phase of components immerse in noisy signals has been a common problem in many scientific and engineering fields such as power systems and delivery, telecommunications, and acoustics for the past decades. In magnetically confined fusion research, extracting this sort of information from magnetic signals can be of valuable assistance in, for instance, feedback control of detrimental magnetohydrodynamic modes and disruption avoidance mechanisms by monitoring instability growth or anticipating mode-locking events. This work is focused on nonlinear Kalman filter based methods for tackling this problem. Similar methods have already provenmore » their merits and have been successfully employed in this scientific domain in applications such as amplitude demodulation for the motional Stark effect diagnostic. In the course of this work, three approaches are described, compared, and discussed using magnetic signals from the Joint European Torus tokamak plasma discharges for benchmarking purposes.« less
Ehsani, Hossein; Rostami, Mostafa; Gudarzi, Mohammad
2016-02-01
Computation of muscle force patterns that produce specified movements of muscle-actuated dynamic models is an important and challenging problem. This problem is an undetermined one, and then a proper optimization is required to calculate muscle forces. The purpose of this paper is to develop a general model for calculating all muscle activation and force patterns in an arbitrary human body movement. For this aim, the equations of a multibody system forward dynamics, which is considered for skeletal system of the human body model, is derived using Lagrange-Euler formulation. Next, muscle contraction dynamics is added to this model and forward dynamics of an arbitrary musculoskeletal system is obtained. For optimization purpose, the obtained model is used in computed muscle control algorithm, and a closed-loop system for tracking desired motions is derived. Finally, a popular sport exercise, biceps curl, is simulated by using this algorithm and the validity of the obtained results is evaluated via EMG signals.
Wu, Yun-Jie; Zuo, Jing-Xing; Sun, Liang-Hua
2017-11-01
In this paper, the altitude and velocity tracking control of a generic hypersonic flight vehicle (HFV) is considered. A novel adaptive terminal sliding mode controller (ATSMC) with strictly lower convex function based nonlinear disturbance observer (SDOB) is proposed for the longitudinal dynamics of HFV in presence of both parametric uncertainties and external disturbances. First, for the sake of enhancing the anti-interference capability, SDOB is presented to estimate and compensate the equivalent disturbances by introducing a strictly lower convex function. Next, the SDOB based ATSMC (SDOB-ATSMC) is proposed to guarantee the system outputs track the reference trajectory. Then, stability of the proposed control scheme is analyzed by the Lyapunov function method. Compared with other HFV control approaches, key novelties of SDOB-ATSMC are that a novel SDOB is proposed and drawn into the (virtual) control laws to compensate the disturbances and that several adaptive laws are used to deal with the differential explosion problem. Finally, it is illustrated by the simulation results that the new method exhibits an excellent robustness and a better disturbance rejection performance than the convention approach. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Neural Modeling of Fuzzy Controllers for Maximum Power Point Tracking in Photovoltaic Energy Systems
NASA Astrophysics Data System (ADS)
Lopez-Guede, Jose Manuel; Ramos-Hernanz, Josean; Altın, Necmi; Ozdemir, Saban; Kurt, Erol; Azkune, Gorka
2018-06-01
One field in which electronic materials have an important role is energy generation, especially within the scope of photovoltaic energy. This paper deals with one of the most relevant enabling technologies within that scope, i.e, the algorithms for maximum power point tracking implemented in the direct current to direct current converters and its modeling through artificial neural networks (ANNs). More specifically, as a proof of concept, we have addressed the problem of modeling a fuzzy logic controller that has shown its performance in previous works, and more specifically the dimensionless duty cycle signal that controls a quadratic boost converter. We achieved a very accurate model since the obtained medium squared error is 3.47 × 10-6, the maximum error is 16.32 × 10-3 and the regression coefficient R is 0.99992, all for the test dataset. This neural implementation has obvious advantages such as a higher fault tolerance and a simpler implementation, dispensing with all the complex elements needed to run a fuzzy controller (fuzzifier, defuzzifier, inference engine and knowledge base) because, ultimately, ANNs are sums and products.
Kinematically Optimal Robust Control of Redundant Manipulators
NASA Astrophysics Data System (ADS)
Galicki, M.
2017-12-01
This work deals with the problem of the robust optimal task space trajectory tracking subject to finite-time convergence. Kinematic and dynamic equations of a redundant manipulator are assumed to be uncertain. Moreover, globally unbounded disturbances are allowed to act on the manipulator when tracking the trajectory by the endeffector. Furthermore, the movement is to be accomplished in such a way as to minimize both the manipulator torques and their oscillations thus eliminating the potential robot vibrations. Based on suitably defined task space non-singular terminal sliding vector variable and the Lyapunov stability theory, we derive a class of chattering-free robust kinematically optimal controllers, based on the estimation of transpose Jacobian, which seem to be effective in counteracting both uncertain kinematics and dynamics, unbounded disturbances and (possible) kinematic and/or algorithmic singularities met on the robot trajectory. The numerical simulations carried out for a redundant manipulator of a SCARA type consisting of the three revolute kinematic pairs and operating in a two-dimensional task space, illustrate performance of the proposed controllers as well as comparisons with other well known control schemes.
Parallax barrier engineering for image quality improvement in an autostereoscopic 3D display.
Kim, Sung-Kyu; Yoon, Ki-Hyuk; Yoon, Seon Kyu; Ju, Heongkyu
2015-05-18
We present a image quality improvement in a parallax barrier (PB)-based multiview autostereoscopic 3D display system under a real-time tracking of positions of a viewer's eyes. The system presented exploits a parallax barrier engineered to offer significantly improved quality of three-dimensional images for a moving viewer without an eyewear under the dynamic eye tracking. The improved image quality includes enhanced uniformity of image brightness, reduced point crosstalk, and no pseudoscopic effects. We control the relative ratio between two parameters i.e., a pixel size and the aperture of a parallax barrier slit to improve uniformity of image brightness at a viewing zone. The eye tracking that monitors positions of a viewer's eyes enables pixel data control software to turn on only pixels for view images near the viewer's eyes (the other pixels turned off), thus reducing point crosstalk. The eye tracking combined software provides right images for the respective eyes, therefore producing no pseudoscopic effects at its zone boundaries. The viewing zone can be spanned over area larger than the central viewing zone offered by a conventional PB-based multiview autostereoscopic 3D display (no eye tracking). Our 3D display system also provides multiviews for motion parallax under eye tracking. More importantly, we demonstrate substantial reduction of point crosstalk of images at the viewing zone, its level being comparable to that of a commercialized eyewear-assisted 3D display system. The multiview autostereoscopic 3D display presented can greatly resolve the point crosstalk problem, which is one of the critical factors that make it difficult for previous technologies for a multiview autostereoscopic 3D display to replace an eyewear-assisted counterpart.
NASA Astrophysics Data System (ADS)
Zittersteijn, M.; Vananti, A.; Schildknecht, T.; Dolado Perez, J. C.; Martinot, V.
2016-11-01
Currently several thousands of objects are being tracked in the MEO and GEO regions through optical means. The problem faced in this framework is that of Multiple Target Tracking (MTT). The MTT problem quickly becomes an NP-hard combinatorial optimization problem. This means that the effort required to solve the MTT problem increases exponentially with the number of tracked objects. In an attempt to find an approximate solution of sufficient quality, several Population-Based Meta-Heuristic (PBMH) algorithms are implemented and tested on simulated optical measurements. These first results show that one of the tested algorithms, namely the Elitist Genetic Algorithm (EGA), consistently displays the desired behavior of finding good approximate solutions before reaching the optimum. The results further suggest that the algorithm possesses a polynomial time complexity, as the computation times are consistent with a polynomial model. With the advent of improved sensors and a heightened interest in the problem of space debris, it is expected that the number of tracked objects will grow by an order of magnitude in the near future. This research aims to provide a method that can treat the association and orbit determination problems simultaneously, and is able to efficiently process large data sets with minimal manual intervention.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Basher, A.M.H.
Poor control of steam generator water level of a nuclear power plant may lead to frequent nuclear reactor shutdowns. These shutdowns are more common at low power where the plant exhibits strong non-minimum phase characteristics and flow measurements at low power are unreliable in many instances. There is need to investigate this problem and systematically design a controller for water level regulation. This work is concerned with the study and the design of a suitable controller for a U-Tube Steam Generator (UTSG) of a Pressurized Water Reactor (PWR) which has time varying dynamics. The controller should be suitable for themore » water level control of UTSG without manual operation from start-up to full load transient condition. Some preliminary simulation results are presented that demonstrate the effectiveness of the proposed controller. The development of the complete control algorithm includes components such as robust output tracking, and adaptively estimating both the system parameters and state variables simultaneously. At the present time all these components are not completed due to time constraints. A robust tracking component of the controller for water level control is developed and its effectiveness on the parameter variations is demonstrated in this study. The results appear encouraging and they are only preliminary. Additional work is warranted to resolve other issues such as robust adaptive estimation.« less
The Impact of Tutoring on Early Reading Achievement for Children With and Without Attention Problems
Rabiner, David L.; Malone, Patrick S.
2009-01-01
This study examined whether the benefits of reading tutoring in first grade were moderated by children’s level of attention problems. Participants were 581 children from the intervention and control samples of Fast Track, a longitudinal multisite investigation of the development and prevention of conduct problems. Standardized reading achievement measures were administered after kindergarten and 1st grade, and teacher ratings of attention problems were obtained during 1st grade. During 1st grade, intervention participants received three 30-min tutoring sessions per week to promote the development of initial reading skills. Results replicated prior findings that attention problems predict reduced 1st grade reading achievement, even after controlling for IQ and earlier reading ability. Intervention was associated with modest reading achievement benefits for inattentive children without early reading difficulties, and substantial benefits for children with early reading difficulties who were not inattentive. It had no discernible impact, however, for children who were both inattentive and poor early readers. Results underscore the need to develop effective academic interventions for inattentive children, particularly for those with co-occurring reading difficulties. PMID:15228176
Open solutions to distributed control in ground tracking stations
NASA Technical Reports Server (NTRS)
Heuser, William Randy
1994-01-01
The advent of high speed local area networks has made it possible to interconnect small, powerful computers to function together as a single large computer. Today, distributed computer systems are the new paradigm for large scale computing systems. However, the communications provided by the local area network is only one part of the solution. The services and protocols used by the application programs to communicate across the network are as indispensable as the local area network. And the selection of services and protocols that do not match the system requirements will limit the capabilities, performance, and expansion of the system. Proprietary solutions are available but are usually limited to a select set of equipment. However, there are two solutions based on 'open' standards. The question that must be answered is 'which one is the best one for my job?' This paper examines a model for tracking stations and their requirements for interprocessor communications in the next century. The model and requirements are matched with the model and services provided by the five different software architectures and supporting protocol solutions. Several key services are examined in detail to determine which services and protocols most closely match the requirements for the tracking station environment. The study reveals that the protocols are tailored to the problem domains for which they were originally designed. Further, the study reveals that the process control model is the closest match to the tracking station model.
Motion control of musculoskeletal systems with redundancy.
Park, Hyunjoo; Durand, Dominique M
2008-12-01
Motion control of musculoskeletal systems for functional electrical stimulation (FES) is a challenging problem due to the inherent complexity of the systems. These include being highly nonlinear, strongly coupled, time-varying, time-delayed, and redundant. The redundancy in particular makes it difficult to find an inverse model of the system for control purposes. We have developed a control system for multiple input multiple output (MIMO) redundant musculoskeletal systems with little prior information. The proposed method separates the steady-state properties from the dynamic properties. The dynamic control uses a steady-state inverse model and is implemented with both a PID controller for disturbance rejection and an artificial neural network (ANN) feedforward controller for fast trajectory tracking. A mechanism to control the sum of the muscle excitation levels is also included. To test the performance of the proposed control system, a two degree of freedom ankle-subtalar joint model with eight muscles was used. The simulation results show that separation of steady-state and dynamic control allow small output tracking errors for different reference trajectories such as pseudo-step, sinusoidal and filtered random signals. The proposed control method also demonstrated robustness against system parameter and controller parameter variations. A possible application of this control algorithm is FES control using multiple contact cuff electrodes where mathematical modeling is not feasible and the redundancy makes the control of dynamic movement difficult.
Adaptive control strategies for flexible robotic arm
NASA Technical Reports Server (NTRS)
Bialasiewicz, Jan T.
1993-01-01
The motivation of this research came about when a neural network direct adaptive control scheme was applied to control the tip position of a flexible robotic arm. Satisfactory control performance was not attainable due to the inherent non-minimum phase characteristics of the flexible robotic arm tip. Most of the existing neural network control algorithms are based on the direct method and exhibit very high sensitivity if not unstable closed-loop behavior. Therefore a neural self-tuning control (NSTC) algorithm is developed and applied to this problem and showed promising results. Simulation results of the NSTC scheme and the conventional self-tuning (STR) control scheme are used to examine performance factors such as control tracking mean square error, estimation mean square error, transient response, and steady state response.
Robust control of dielectric elastomer diaphragm actuator for human pulse signal tracking
NASA Astrophysics Data System (ADS)
Ye, Zhihang; Chen, Zheng; Asmatulu, Ramazan; Chan, Hoyin
2017-08-01
Human pulse signal tracking is an emerging technology that is needed in traditional Chinese medicine. However, soft actuation with multi-frequency tracking capability is needed for tracking human pulse signal. Dielectric elastomer (DE) is one type of soft actuating that has great potential in human pulse signal tracking. In this paper, a DE diaphragm actuator was designed and fabricated to track human pulse pressure signal. A physics-based and control-oriented model has been developed to capture the dynamic behavior of DE diaphragm actuator. Using the physical model, an H-infinity robust control was designed for the actuator to reject high-frequency sensing noises and disturbances. The robust control was then implemented in real-time to track a multi-frequency signal, which verified the tracking capability and robustness of the control system. In the human pulse signal tracking test, a human pulse signal was measured at the City University of Hong Kong and then was tracked using DE actuator at Wichita State University in the US. Experimental results have verified that the DE actuator with its robust control is capable of tracking human pulse signal.
Approaches, field considerations and problems associated with radio tracking carnivores
Sargeant, A.B.; Amlaner, C. J.; MacDonald, D.W.
1979-01-01
The adaptation of radio tracking to ecological studies was a major technological advance affecting field investigations of animal movements and behavior. Carnivores have been the recipients of much attention with this new technology and study approaches have varied from simple to complex. Equipment performance has much improved over the years, but users still face many difficulties. The beginning of all radio tracking studies should be a precise definition of objectives. Study objectives dictate type of gear required and field procedures. Field conditions affect equipment performance and investigator ability to gather data. Radio tracking carnivores is demanding and generally requires greater time than anticipated. Problems should be expected and planned for in study design. Radio tracking can be an asset in carnivore studies but caution is needed in its application.
Multiple-hypothesis multiple-model line tracking
NASA Astrophysics Data System (ADS)
Pace, Donald W.; Owen, Mark W.; Cox, Henry
2000-07-01
Passive sonar signal processing generally includes tracking of narrowband and/or broadband signature components observed on a Lofargram or on a Bearing-Time-Record (BTR) display. Fielded line tracking approaches to date have been recursive and single-hypthesis-oriented Kalman- or alpha-beta filters, with no mechanism for considering tracking alternatives beyond the most recent scan of measurements. While adaptivity is often built into the filter to handle changing track dynamics, these approaches are still extensions of single target tracking solutions to multiple target tracking environment. This paper describes an application of multiple-hypothesis, multiple target tracking technology to the sonar line tracking problem. A Multiple Hypothesis Line Tracker (MHLT) is developed which retains the recursive minimum-mean-square-error tracking behavior of a Kalman Filter in a maximum-a-posteriori delayed-decision multiple hypothesis context. Multiple line track filter states are developed and maintained using the interacting multiple model (IMM) state representation. Further, the data association and assignment problem is enhanced by considering line attribute information (line bandwidth and SNR) in addition to beam/bearing and frequency fit. MHLT results on real sonar data are presented to demonstrate the benefits of the multiple hypothesis approach. The utility of the system in cluttered environments and particularly in crossing line situations is shown.
Bae, Seung-Hwan; Yoon, Kuk-Jin
2018-03-01
Online multi-object tracking aims at estimating the tracks of multiple objects instantly with each incoming frame and the information provided up to the moment. It still remains a difficult problem in complex scenes, because of the large ambiguity in associating multiple objects in consecutive frames and the low discriminability between objects appearances. In this paper, we propose a robust online multi-object tracking method that can handle these difficulties effectively. We first define the tracklet confidence using the detectability and continuity of a tracklet, and decompose a multi-object tracking problem into small subproblems based on the tracklet confidence. We then solve the online multi-object tracking problem by associating tracklets and detections in different ways according to their confidence values. Based on this strategy, tracklets sequentially grow with online-provided detections, and fragmented tracklets are linked up with others without any iterative and expensive association steps. For more reliable association between tracklets and detections, we also propose a deep appearance learning method to learn a discriminative appearance model from large training datasets, since the conventional appearance learning methods do not provide rich representation that can distinguish multiple objects with large appearance variations. In addition, we combine online transfer learning for improving appearance discriminability by adapting the pre-trained deep model during online tracking. Experiments with challenging public datasets show distinct performance improvement over other state-of-the-arts batch and online tracking methods, and prove the effect and usefulness of the proposed methods for online multi-object tracking.
Capabilities Test Operations Center Test Director Range Control Track Control Communications Tracking Radars Us Range Videos/Photos Range Capabilities Test Operations Center Test Director Range Control Track Control Communications Tracking Radars Optical Systems Cinetheodolites Telescopes R&D Telescopes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dall'Anese, Emiliano; Simonetto, Andrea; Dhople, Sairaj
This paper focuses on power distribution networks featuring inverter-interfaced distributed energy resources (DERs), and develops feedback controllers that drive the DER output powers to solutions of time-varying AC optimal power flow (OPF) problems. Control synthesis is grounded on primal-dual-type methods for regularized Lagrangian functions, as well as linear approximations of the AC power-flow equations. Convergence and OPF-solution-tracking capabilities are established while acknowledging: i) communication-packet losses, and ii) partial updates of control signals. The latter case is particularly relevant since it enables asynchronous operation of the controllers where DER setpoints are updated at a fast time scale based on local voltagemore » measurements, and information on the network state is utilized if and when available, based on communication constraints. As an application, the paper considers distribution systems with high photovoltaic integration, and demonstrates that the proposed framework provides fast voltage-regulation capabilities, while enabling the near real-time pursuit of solutions of AC OPF problems.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dall'Anese, Emiliano; Simonetto, Andrea; Dhople, Sairaj
This paper focuses on power distribution networks featuring inverter-interfaced distributed energy resources (DERs), and develops feedback controllers that drive the DER output powers to solutions of time-varying AC optimal power flow (OPF) problems. Control synthesis is grounded on primal-dual-type methods for regularized Lagrangian functions, as well as linear approximations of the AC power-flow equations. Convergence and OPF-solution-tracking capabilities are established while acknowledging: i) communication-packet losses, and ii) partial updates of control signals. The latter case is particularly relevant since it enables asynchronous operation of the controllers where DER setpoints are updated at a fast time scale based on local voltagemore » measurements, and information on the network state is utilized if and when available, based on communication constraints. As an application, the paper considers distribution systems with high photovoltaic integration, and demonstrates that the proposed framework provides fast voltage-regulation capabilities, while enabling the near real-time pursuit of solutions of AC OPF problems.« less
The PMHT: solutions for some of its problems
NASA Astrophysics Data System (ADS)
Wieneke, Monika; Koch, Wolfgang
2007-09-01
Tracking multiple targets in a cluttered environment is a challenging task. Probabilistic Multiple Hypothesis Tracking (PMHT) is an efficient approach for dealing with it. Essentially PMHT is based on the method of Expectation-Maximization for handling with association conflicts. Linearity in the number of targets and measurements is the main motivation for a further development and extension of this methodology. Unfortunately, compared with the Probabilistic Data Association Filter (PDAF), PMHT has not yet shown its superiority in terms of track-lost statistics. Furthermore, the problem of track extraction and deletion is apparently not yet satisfactorily solved within this framework. Four properties of PMHT are responsible for its problems in track maintenance: Non-Adaptivity, Hospitality, Narcissism and Local Maxima. 1, 2 In this work we present a solution for each of them and derive an improved PMHT by integrating the solutions into the PMHT formalism. The new PMHT is evaluated by Monte-Carlo simulations. A sequential Likelihood-Ratio (LR) test for track extraction has been developed and already integrated into the framework of traditional Bayesian Multiple Hypothesis Tracking. 3 As a multi-scan approach, also the PMHT methodology has the potential for track extraction. In this paper an analogous integration of a sequential LR test into the PMHT framework is proposed. We present an LR formula for track extraction and deletion using the PMHT update formulae. As PMHT provides all required ingredients for a sequential LR calculation, the LR is thus a by-product of the PMHT iteration process. Therefore the resulting update formula for the sequential LR test affords the development of Track-Before-Detect algorithms for PMHT. The approach is illustrated by a simple example.
The specificity of attentional biases by type of gambling: An eye-tracking study.
McGrath, Daniel S; Meitner, Amadeus; Sears, Christopher R
2018-01-01
A growing body of research indicates that gamblers develop an attentional bias for gambling-related stimuli. Compared to research on substance use, however, few studies have examined attentional biases in gamblers using eye-gaze tracking, which has many advantages over other measures of attention. In addition, previous studies of attentional biases in gamblers have not directly matched type of gambler with personally-relevant gambling cues. The present study investigated the specificity of attentional biases for individual types of gambling using an eye-gaze tracking paradigm. Three groups of participants (poker players, video lottery terminal/slot machine players, and non-gambling controls) took part in one test session in which they viewed 25 sets of four images (poker, VLTs/slot machines, bingo, and board games). Participants' eye fixations were recorded throughout each 8-second presentation of the four images. The results indicated that, as predicted, the two gambling groups preferentially attended to their primary form of gambling, whereas control participants attended to board games more than gambling images. The findings have clinical implications for the treatment of individuals with gambling disorder. Understanding the importance of personally-salient gambling cues will inform the development of effective attentional bias modification treatments for problem gamblers.
NASA Astrophysics Data System (ADS)
Shen, Dan; Jia, Bin; Chen, Genshe; Blasch, Erik; Pham, Khanh
2015-05-01
This paper develops and evaluates a pursuit-evasion (PE) game approach for elusive orbital maneuver and space object tracking. Unlike the PE games in the literature, where the assumption is that either both players have perfect knowledge of the opponents' positions or use primitive sensing models, the proposed PE approach solves the realistic space situation awareness (SSA) problem with imperfect information, where the evaders will exploit the pursuers' sensing and tracking models to confuse their opponents by maneuvering their orbits to increase the uncertainties, which the pursuers perform orbital maneuvers to minimize. In the game setup, each game player P (pursuer) and E (evader) has its own motion equations with a small continuous low-thrust. The magnitude of the low thrust is fixed and the direction can be controlled by the associated game player. The entropic uncertainty is used to generate the cost functions of game players. The Nash or mixed Nash equilibrium is composed of the directional controls of low-thrusts. Numerical simulations are emulated to demonstrate the performance. Simplified perturbations models (SGP4/SDP4) are exploited to calculate the ground truth of the satellite states (position and speed).
Intelligent Engine Systems: Adaptive Control
NASA Technical Reports Server (NTRS)
Gibson, Nathan
2008-01-01
We have studied the application of the baseline Model Predictive Control (MPC) algorithm to the control of main fuel flow rate (WF36), variable bleed valve (AE24) and variable stator vane (STP25) control of a simulated high-bypass turbofan engine. Using reference trajectories for thrust and turbine inlet temperature (T41) generated by a simulated new engine, we have examined MPC for tracking these two reference outputs while controlling a deteriorated engine. We have examined the results of MPC control for six different transients: two idle-to-takeoff transients at sea level static (SLS) conditions, one takeoff-to-idle transient at SLS, a Bode power command and reverse Bode power command at 20,000 ft/Mach 0.5, and a reverse Bode transient at 35,000 ft/Mach 0.84. For all cases, our primary focus was on the computational effort required by MPC for varying MPC update rates, control horizons, and prediction horizons. We have also considered the effects of these MPC parameters on the performance of the control, with special emphasis on the thrust tracking error, the peak T41, and the sizes of violations of the constraints on the problem, primarily the booster stall margin limit, which for most cases is the lone constraint that is violated with any frequency.
Restructured Freedom configuration characteristics
NASA Technical Reports Server (NTRS)
Troutman, Patrick A.; Heck, Michael L.; Kumar, Renjith R.; Mazanek, Daniel D.
1991-01-01
In Jan. 1991, the LaRc SSFO performed an assessment of the configuration characteristics of the proposed pre-integrated Space Station Freedom (SSF) concept. Of particular concern was the relationship of solar array operation and orientation with respect to spacecraft controllability. For the man-tended configuration (MTC), it was determined that torque equilibrium attitude (TEA) seeking Control Moment Gyroscope (CMG) control laws could not always maintain attitude. The control problems occurred when the solar arrays were tracking the sun to produce full power while flying in an arrow or gravity gradient flight mode. The large solar array articulations that sometimes result from having the functions of the alpha and beta joints reversed on MTC induced large product of inertia changes that can invalidate the control system gains during an orbit. Several modified sun tracking techniques were evaluated with respect to producing a controllable configuration requiring no modifications to the CMG control algorithms. Another assessment involved the permanently manned configuration (PMC) which has a third asymmetric PV unit on one side of the transverse boom. Recommendations include constraining alpha rotations for MTC in the arrow and gravity gradient flight modes and perhaps developing new non-TEA seeking control laws. Recommendations for PMC include raising the operational altitude and moving to a symmetric configuration as soon as possible.
Analytical solutions to optimal underactuated spacecraft formation reconfiguration
NASA Astrophysics Data System (ADS)
Huang, Xu; Yan, Ye; Zhou, Yang
2015-11-01
Underactuated systems can generally be defined as systems with fewer number of control inputs than that of the degrees of freedom to be controlled. In this paper, analytical solutions to optimal underactuated spacecraft formation reconfiguration without either the radial or the in-track control are derived. By using a linear dynamical model of underactuated spacecraft formation in circular orbits, controllability analysis is conducted for either underactuated case. Indirect optimization methods based on the minimum principle are then introduced to generate analytical solutions to optimal open-loop underactuated reconfiguration problems. Both fixed and free final conditions constraints are considered for either underactuated case and comparisons between these two final conditions indicate that the optimal control strategies with free final conditions require less control efforts than those with the fixed ones. Meanwhile, closed-loop adaptive sliding mode controllers for both underactuated cases are designed to guarantee optimal trajectory tracking in the presence of unmatched external perturbations, linearization errors, and system uncertainties. The adaptation laws are designed via a Lyapunov-based method to ensure the overall stability of the closed-loop system. The explicit expressions of the terminal convergent regions of each system states have also been obtained. Numerical simulations demonstrate the validity and feasibility of the proposed open-loop and closed-loop control schemes for optimal underactuated spacecraft formation reconfiguration in circular orbits.
Optimal Predictive Control for Path Following of a Full Drive-by-Wire Vehicle at Varying Speeds
NASA Astrophysics Data System (ADS)
SONG, Pan; GAO, Bolin; XIE, Shugang; FANG, Rui
2017-05-01
The current research of the global chassis control problem for the full drive-by-wire vehicle focuses on the control allocation (CA) of the four-wheel-distributed traction/braking/steering systems. However, the path following performance and the handling stability of the vehicle can be enhanced a step further by automatically adjusting the vehicle speed to the optimal value. The optimal solution for the combined longitudinal and lateral motion control (MC) problem is given. First, a new variable step-size spatial transformation method is proposed and utilized in the prediction model to derive the dynamics of the vehicle with respect to the road, such that the tracking errors can be explicitly obtained over the prediction horizon at varying speeds. Second, a nonlinear model predictive control (NMPC) algorithm is introduced to handle the nonlinear coupling between any two directions of the vehicular planar motion and computes the sequence of the optimal motion states for following the desired path. Third, a hierarchical control structure is proposed to separate the motion controller into a NMPC based path planner and a terminal sliding mode control (TSMC) based path follower. As revealed through off-line simulations, the hierarchical methodology brings nearly 1700% improvement in computational efficiency without loss of control performance. Finally, the control algorithm is verified through a hardware in-the-loop simulation system. Double-lane-change (DLC) test results show that by using the optimal predictive controller, the root-mean-square (RMS) values of the lateral deviations and the orientation errors can be reduced by 41% and 30%, respectively, comparing to those by the optimal preview acceleration (OPA) driver model with the non-preview speed-tracking method. Additionally, the average vehicle speed is increased by 0.26 km/h with the peak sideslip angle suppressed to 1.9°. This research proposes a novel motion controller, which provides the full drive-by-wire vehicle with better lane-keeping and collision-avoidance capabilities during autonomous driving.
The Influence of Different Representations on Solving Concentration Problems at Elementary School
NASA Astrophysics Data System (ADS)
Liu, Chia-Ju; Shen, Ming-Hsun
2011-10-01
This study investigated the students' learning process of the concept of concentration at the elementary school level in Taiwan. The influence of different representational types on the process of proportional reasoning was also explored. The participants included nineteen third-grade and eighteen fifth-grade students. Eye-tracking technology was used in conducting the experiment. The materials were adapted from Noelting's (1980a) "orange juice test" experiment. All problems on concentration included three stages (the intuitive, the concrete operational, and the formal operational), and each problem was displayed in iconic and symbolic representations. The data were collected through eye-tracking technology and post-test interviews. The results showed that the representational types influenced students' solving of concentration problems. Furthermore, the data on eye movement indicated that students used different strategies or rules to solve concentration problems at the different stages of the problems with different representational types. This study is intended to contribute to the understanding of elementary school students' problem-solving strategies and the usability of eye-tracking technology in related studies.
Integrated flight/propulsion control - Subsystem specifications for performance
NASA Technical Reports Server (NTRS)
Neighbors, W. K.; Rock, Stephen M.
1993-01-01
A procedure is presented for calculating multiple subsystem specifications given a number of performance requirements on the integrated system. This procedure applies to problems where the control design must be performed in a partitioned manner. It is based on a structured singular value analysis, and generates specifications as magnitude bounds on subsystem uncertainties. The performance requirements should be provided in the form of bounds on transfer functions of the integrated system. This form allows the expression of model following, command tracking, and disturbance rejection requirements. The procedure is demonstrated on a STOVL aircraft design.
NASA B737 flight test results of the Total Energy Control System
NASA Technical Reports Server (NTRS)
Bruce, K. R.; Kelly, J. R.; Person, L. H., Jr.
1986-01-01
The Total Energy Control System was developed and tested in September 1985 during five flights on the NASA Langley Transport System Research Vehicle, a modified Boeing B737. In the system, the total kinetic and potential energy of the aircraft is controlled by the throttles, and the energy distribution is controlled by the elevator. A common inner loop is used for each mode of the autopilot, and all the control functions of a conventional pitch autopilot and autothrottle are integrated into a single generalized control concept, providing decoupled flightpath and maneuver control, and a coordinated throttle response for all maneuvers. No instabilities or design problems requiring gain adjustment in flight were found, and comparison with simulation results showed excellent path tracking.
Multiple hypothesis tracking for cluttered biological image sequences.
Chenouard, Nicolas; Bloch, Isabelle; Olivo-Marin, Jean-Christophe
2013-11-01
In this paper, we present a method for simultaneously tracking thousands of targets in biological image sequences, which is of major importance in modern biology. The complexity and inherent randomness of the problem lead us to propose a unified probabilistic framework for tracking biological particles in microscope images. The framework includes realistic models of particle motion and existence and of fluorescence image features. For the track extraction process per se, the very cluttered conditions motivate the adoption of a multiframe approach that enforces tracking decision robustness to poor imaging conditions and to random target movements. We tackle the large-scale nature of the problem by adapting the multiple hypothesis tracking algorithm to the proposed framework, resulting in a method with a favorable tradeoff between the model complexity and the computational cost of the tracking procedure. When compared to the state-of-the-art tracking techniques for bioimaging, the proposed algorithm is shown to be the only method providing high-quality results despite the critically poor imaging conditions and the dense target presence. We thus demonstrate the benefits of advanced Bayesian tracking techniques for the accurate computational modeling of dynamical biological processes, which is promising for further developments in this domain.
Preventing Serious Conduct Problems in School-Age Youths: The Fast Track Program
Slough, Nancy M.; McMahon, Robert J.; Bierman, Karen L.; Coie, John D.; Dodge, Kenneth A.; Foster, E. Michael; Greenberg, Mark T.; Lochman, John E.; McMahon, Robert J.; Pinderhughes, Ellen E.
2009-01-01
Children with early-starting conduct Problems have a very poor prognosis and exact a high cost to society. The Fast Track project is a multisite, collaborative research project investigating the efficacy of a comprehensive, long-term, multicomponent intervention designed to prevent the development of serious conduct problems in high-risk children. In this article, we (a) provide an overview of the development model that serves as the conceptual foundation for the Fast Track intervention and describe its integration into the intervention model; (b) outline the research design and intervention model, with an emphasis on the elementary school phase of the intervention; and (c) summarize findings to dale concerning intervention outcomes. We then provide a case illustration, and conclude with a discussion of guidelines for practitioners who work with children with conduct problems. PMID:19890487
Node Depth Adjustment Based Target Tracking in UWSNs Using Improved Harmony Search.
Liu, Meiqin; Zhang, Duo; Zhang, Senlin; Zhang, Qunfei
2017-12-04
Underwater wireless sensor networks (UWSNs) can provide a promising solution to underwater target tracking. Due to the limited computation and bandwidth resources, only a small part of nodes are selected to track the target at each interval. How to improve tracking accuracy with a small number of nodes is a key problem. In recent years, a node depth adjustment system has been developed and applied to issues of network deployment and routing protocol. As far as we know, all existing tracking schemes keep underwater nodes static or moving with water flow, and node depth adjustment has not been utilized for underwater target tracking yet. This paper studies node depth adjustment method for target tracking in UWSNs. Firstly, since a Fisher Information Matrix (FIM) can quantify the estimation accuracy, its relation to node depth is derived as a metric. Secondly, we formulate the node depth adjustment as an optimization problem to determine moving depth of activated node, under the constraint of moving range, the value of FIM is used as objective function, which is aimed to be minimized over moving distance of nodes. Thirdly, to efficiently solve the optimization problem, an improved Harmony Search (HS) algorithm is proposed, in which the generating probability is modified to improve searching speed and accuracy. Finally, simulation results are presented to verify performance of our scheme.
Node Depth Adjustment Based Target Tracking in UWSNs Using Improved Harmony Search
Zhang, Senlin; Zhang, Qunfei
2017-01-01
Underwater wireless sensor networks (UWSNs) can provide a promising solution to underwater target tracking. Due to the limited computation and bandwidth resources, only a small part of nodes are selected to track the target at each interval. How to improve tracking accuracy with a small number of nodes is a key problem. In recent years, a node depth adjustment system has been developed and applied to issues of network deployment and routing protocol. As far as we know, all existing tracking schemes keep underwater nodes static or moving with water flow, and node depth adjustment has not been utilized for underwater target tracking yet. This paper studies node depth adjustment method for target tracking in UWSNs. Firstly, since a Fisher Information Matrix (FIM) can quantify the estimation accuracy, its relation to node depth is derived as a metric. Secondly, we formulate the node depth adjustment as an optimization problem to determine moving depth of activated node, under the constraint of moving range, the value of FIM is used as objective function, which is aimed to be minimized over moving distance of nodes. Thirdly, to efficiently solve the optimization problem, an improved Harmony Search (HS) algorithm is proposed, in which the generating probability is modified to improve searching speed and accuracy. Finally, simulation results are presented to verify performance of our scheme. PMID:29207541
Drift-Free Humanoid State Estimation fusing Kinematic, Inertial and LIDAR Sensing
2014-08-01
registration to this map and other objects in the robot’s vicinity while also contributing to direct low-level control of a Boston Dynamics Atlas robot ...requirements. I. INTRODUCTION Dynamic locomotion of legged robotic systems remains an open and challenging research problem whose solution will enable...humanoids to perform tasks and reach places inaccessible to wheeled or tracked robots . Several research institutions are developing walking and running
Closed-form recursive formula for an optimal tracker with terminal constraints
NASA Technical Reports Server (NTRS)
Juang, J. N.; Turner, J. D.; Chun, H. M.
1986-01-01
Feedback control laws are derived for a class of optimal finite time tracking problems with terminal constraints. Analytical solutions are obtained for the feedback gain and the closed-loop response trajectory. Such formulations are expressed in recursive forms so that a real-time computer implementation becomes feasible. An example involving the feedback slewing of a flexible spacecraft is given to illustrate the validity and usefulness of the formulations.
Clustering of financial time series with application to index and enhanced index tracking portfolio
NASA Astrophysics Data System (ADS)
Dose, Christian; Cincotti, Silvano
2005-09-01
A stochastic-optimization technique based on time series cluster analysis is described for index tracking and enhanced index tracking problems. Our methodology solves the problem in two steps, i.e., by first selecting a subset of stocks and then setting the weight of each stock as a result of an optimization process (asset allocation). Present formulation takes into account constraints on the number of stocks and on the fraction of capital invested in each of them, whilst not including transaction costs. Computational results based on clustering selection are compared to those of random techniques and show the importance of clustering in noise reduction and robust forecasting applications, in particular for enhanced index tracking.
Dual S and Ku-band tracking feed for a TDRS reflector antenna
NASA Technical Reports Server (NTRS)
Pullara, J. C.; Bales, C. W.; Kefalas, G. P.; Uyehara, M.
1974-01-01
The results are presented of a trade study designed to identify a synchronous satellite antenna system suitable for receiving and transmitting data from lower orbiting satellites at both S- and K sub u-bands simultaneously as part of the Tracking and Data Relay Satellite System. All related problems associated with maintaining a data link between two satellites with a K sub u-band half-power beamwidth of 0.4 db are considered including data link maintenance techniques, beam pointing accuracies, gimbal and servo errors, solar heating, angle tracking schemes, acquisition problems and aids, tracking accuracies versus SNR, antenna feed designs, equipment designs, weight and power budgets, and detailed candidate antenna system designs.
NASA Astrophysics Data System (ADS)
Chen, Jiaxi; Li, Junmin
2018-02-01
In this paper, we investigate the perfect consensus problem for second-order linearly parameterised multi-agent systems (MAS) with imprecise communication topology structure. Takagi-Sugeno (T-S) fuzzy models are presented to describe the imprecise communication topology structure of leader-following MAS, and a distributed adaptive iterative learning control protocol is proposed with the dynamic of leader unknown to any of the agent. The proposed protocol guarantees that the follower agents can track the leader perfectly on [0,T] for the consensus problem. Under alignment condition, a sufficient condition of the consensus for closed-loop MAS is given based on Lyapunov stability theory. Finally, a numerical example and a multiple pendulum system are given to illustrate the effectiveness of the proposed algorithm.
Neural networks for self-learning control systems
NASA Technical Reports Server (NTRS)
Nguyen, Derrick H.; Widrow, Bernard
1990-01-01
It is shown how a neural network can learn of its own accord to control a nonlinear dynamic system. An emulator, a multilayered neural network, learns to identify the system's dynamic characteristics. The controller, another multilayered neural network, next learns to control the emulator. The self-trained controller is then used to control the actual dynamic system. The learning process continues as the emulator and controller improve and track the physical process. An example is given to illustrate these ideas. The 'truck backer-upper,' a neural network controller that steers a trailer truck while the truck is backing up to a loading dock, is demonstrated. The controller is able to guide the truck to the dock from almost any initial position. The technique explored should be applicable to a wide variety of nonlinear control problems.
Engaging academia to advance the science and practice of environmental public health tracking.
Strosnider, Heather; Zhou, Ying; Balluz, Lina; Qualters, Judith
2014-10-01
Public health agencies at the federal, state, and local level are responsible for implementing actions and policies that address health problems related to environmental hazards. These actions and policies can be informed by integrating or linking data on health, exposure, hazards, and population. The mission of the Centers for Disease Control and Prevention׳s National Environmental Public Health Tracking Program (Tracking Program) is to provide information from a nationwide network of integrated health, environmental hazard, and exposure data that drives actions to improve the health of communities. The Tracking Program and federal, state, and local partners collect, integrate, analyze, and disseminate data and information to inform environmental public health actions. However, many challenges exist regarding the availability and quality of data, the application of appropriate methods and tools to link data, and the state of the science needed to link and analyze health and environmental data. The Tracking Program has collaborated with academia to address key challenges in these areas. The collaboration has improved our understanding of the uses and limitations of available data and methods, expanded the use of existing data and methods, and increased our knowledge about the connections between health and environment. Valuable working relationships have been forged in this process, and together we have identified opportunities and improvements for future collaborations to further advance the science and practice of environmental public health tracking. Published by Elsevier Inc.
NASA Astrophysics Data System (ADS)
Hassan Asemani, Mohammad; Johari Majd, Vahid
2015-12-01
This paper addresses a robust H∞ fuzzy observer-based tracking design problem for uncertain Takagi-Sugeno fuzzy systems with external disturbances. To have a practical observer-based controller, the premise variables of the system are assumed to be not measurable in general, which leads to a more complex design process. The tracker is synthesised based on a fuzzy Lyapunov function approach and non-parallel distributed compensation (non-PDC) scheme. Using the descriptor redundancy approach, the robust stability conditions are derived in the form of strict linear matrix inequalities (LMIs) even in the presence of uncertainties in the system, input, and output matrices simultaneously. Numerical simulations are provided to show the effectiveness of the proposed method.
NASA Technical Reports Server (NTRS)
Sadoff, Melvin
1958-01-01
The results of a fixed-base simulator study of the effects of variable longitudinal control-system dynamics on pilot opinion are presented and compared with flight-test data. The control-system variables considered in this investigation included stick force per g, time constant, and dead-band, or stabilizer breakout force. In general, the fairly good correlation between flight and simulator results for two pilots demonstrates the validity of fixed-base simulator studies which are designed to complement and supplement flight studies and serve as a guide in control-system preliminary design. However, in the investigation of certain problem areas (e.g., sensitive control-system configurations associated with pilot- induced oscillations in flight), fixed-base simulator results did not predict the occurrence of an instability, although the pilots noted the system was extremely sensitive and unsatisfactory. If it is desired to predict pilot-induced-oscillation tendencies, tests in moving-base simulators may be required. It was found possible to represent the human pilot by a linear pilot analog for the tracking task assumed in the present study. The criterion used to adjust the pilot analog was the root-mean-square tracking error of one of the human pilots on the fixed-base simulator. Matching the tracking error of the pilot analog to that of the human pilot gave an approximation to the variation of human-pilot behavior over a range of control-system dynamics. Results of the pilot-analog study indicated that both for optimized control-system dynamics (for poor airplane dynamics) and for a region of good airplane dynamics, the pilot response characteristics are approximately the same.
An Improved Wake Vortex Tracking Algorithm for Multiple Aircraft
NASA Technical Reports Server (NTRS)
Switzer, George F.; Proctor, Fred H.; Ahmad, Nashat N.; LimonDuparcmeur, Fanny M.
2010-01-01
The accurate tracking of vortex evolution from Large Eddy Simulation (LES) data is a complex and computationally intensive problem. The vortex tracking requires the analysis of very large three-dimensional and time-varying datasets. The complexity of the problem is further compounded by the fact that these vortices are embedded in a background turbulence field, and they may interact with the ground surface. Another level of complication can arise, if vortices from multiple aircrafts are simulated. This paper presents a new technique for post-processing LES data to obtain wake vortex tracks and wake intensities. The new approach isolates vortices by defining "regions of interest" (ROI) around each vortex and has the ability to identify vortex pairs from multiple aircraft. The paper describes the new methodology for tracking wake vortices and presents application of the technique for single and multiple aircraft.
Wang, Xingjian; Liao, Rui; Shi, Cun; Wang, Shaoping
2017-10-25
Moving towards the more electric aircraft (MEA), a hybrid actuator configuration provides an opportunity to introduce electromechanical actuator (EMA) into primary flight control. In the hybrid actuation system (HAS), an electro-hydraulic servo actuator (EHSA) and an EMA operate on the same control surface. In order to solve force fighting problem in HAS, this paper proposes a novel linear extended state observer (LESO)-based motion synchronization control method. To cope with the problem of unavailability of the state signals required by the motion synchronization controller, LESO is designed for EHSA and EMA to observe the state variables. Based on the observed states of LESO, motion synchronization controllers could enable EHSA and EMA to simultaneously track the desired motion trajectories. Additionally, nonlinearities, uncertainties and unknown disturbances as well as the coupling term between EHSA and EMA can be estimated and compensated by using the extended state of the proposed LESO. Finally, comparative simulation results indicate that the proposed LESO-based motion synchronization controller could reduce significant force fighting between EHSA and EMA.
Liao, Rui; Shi, Cun; Wang, Shaoping
2017-01-01
Moving towards the more electric aircraft (MEA), a hybrid actuator configuration provides an opportunity to introduce electromechanical actuator (EMA) into primary flight control. In the hybrid actuation system (HAS), an electro-hydraulic servo actuator (EHSA) and an EMA operate on the same control surface. In order to solve force fighting problem in HAS, this paper proposes a novel linear extended state observer (LESO)-based motion synchronization control method. To cope with the problem of unavailability of the state signals required by the motion synchronization controller, LESO is designed for EHSA and EMA to observe the state variables. Based on the observed states of LESO, motion synchronization controllers could enable EHSA and EMA to simultaneously track the desired motion trajectories. Additionally, nonlinearities, uncertainties and unknown disturbances as well as the coupling term between EHSA and EMA can be estimated and compensated by using the extended state of the proposed LESO. Finally, comparative simulation results indicate that the proposed LESO-based motion synchronization controller could reduce significant force fighting between EHSA and EMA. PMID:29068392
Application of new radio tracking data types to critical spacecraft navigation problems
NASA Technical Reports Server (NTRS)
Ondrasik, V. J.; Rourke, K. H.
1972-01-01
Earth-based radio tracking data types are considered, which involve simultaneous or nearly simultaneous spacecraft tracking from widely separated tracking stations. These data types are conventional tracking instrumentation analogs of the very long baseline interferometry (VLBI) of radio astronomy-hence the name quasi-VLBI. A preliminary analysis of quasi-VLBI is presented using simplified tracking data models. The results of accuracy analyses are presented for a representative mission, Viking 1975. The results indicate that, contingent on projected tracking system accuracy, quasi-VLBI can be expected to significantly improve navigation performance over that expected from conventional tracking data types.
1985-03-01
economically justified. For main lines, access tracks, heavy traffic tracks, and tracks where the de- sign train speed is greater than 40 mph, TM 5... analysis 35. The beam-on-elastic-foundation model is the key to the AREA design procedure. Kerr in "Problems and Needs in Track Structure Design and... Analysis " (Kerr 1977) presents an outline of the development of this model for analysis of track structures. The fundamental differential equation which
Neural network application to aircraft control system design
NASA Technical Reports Server (NTRS)
Troudet, Terry; Garg, Sanjay; Merrill, Walter C.
1991-01-01
The feasibility of using artificial neural networks as control systems for modern, complex aerospace vehicles is investigated via an example aircraft control design study. The problem considered is that of designing a controller for an integrated airframe/propulsion longitudinal dynamics model of a modern fighter aircraft to provide independent control of pitch rate and airspeed responses to pilot command inputs. An explicit model following controller using H infinity control design techniques is first designed to gain insight into the control problem as well as to provide a baseline for evaluation of the neurocontroller. Using the model of the desired dynamics as a command generator, a multilayer feedforward neural network is trained to control the vehicle model within the physical limitations of the actuator dynamics. This is achieved by minimizing an objective function which is a weighted sum of tracking errors and control input commands and rates. To gain insight in the neurocontrol, linearized representations of the nonlinear neurocontroller are analyzed along a commanded trajectory. Linear robustness analysis tools are then applied to the linearized neurocontroller models and to the baseline H infinity based controller. Future areas of research are identified to enhance the practical applicability of neural networks to flight control design.
Neural network application to aircraft control system design
NASA Technical Reports Server (NTRS)
Troudet, Terry; Garg, Sanjay; Merrill, Walter C.
1991-01-01
The feasibility of using artificial neural network as control systems for modern, complex aerospace vehicles is investigated via an example aircraft control design study. The problem considered is that of designing a controller for an integrated airframe/propulsion longitudinal dynamics model of a modern fighter aircraft to provide independent control of pitch rate and airspeed responses to pilot command inputs. An explicit model following controller using H infinity control design techniques is first designed to gain insight into the control problem as well as to provide a baseline for evaluation of the neurocontroller. Using the model of the desired dynamics as a command generator, a multilayer feedforward neural network is trained to control the vehicle model within the physical limitations of the actuator dynamics. This is achieved by minimizing an objective function which is a weighted sum of tracking errors and control input commands and rates. To gain insight in the neurocontrol, linearized representations of the nonlinear neurocontroller are analyzed along a commanded trajectory. Linear robustness analysis tools are then applied to the linearized neurocontroller models and to the baseline H infinity based controller. Future areas of research identified to enhance the practical applicability of neural networks to flight control design.
ERIC Educational Resources Information Center
Andrzejewska, Magdalena; Stolinska, Anna; Blasiak, Wladyslaw; Peczkowski, Pawel; Rosiek, Roman; Rozek, Bozena; Sajka, Miroslawa; Wcislo, Dariusz
2016-01-01
The results of qualitative and quantitative investigations conducted with individuals who learned algorithms in school are presented in this article. In these investigations, eye-tracking technology was used to follow the process of solving algorithmic problems. The algorithmic problems were presented in two comparable variants: in a pseudocode…
Tracking Problem Solving by Multivariate Pattern Analysis and Hidden Markov Model Algorithms
ERIC Educational Resources Information Center
Anderson, John R.
2012-01-01
Multivariate pattern analysis can be combined with Hidden Markov Model algorithms to track the second-by-second thinking as people solve complex problems. Two applications of this methodology are illustrated with a data set taken from children as they interacted with an intelligent tutoring system for algebra. The first "mind reading" application…
Nonlinear robust controller design for multi-robot systems with unknown payloads
NASA Technical Reports Server (NTRS)
Song, Y. D.; Anderson, J. N.; Homaifar, A.; Lai, H. Y.
1992-01-01
This work is concerned with the control problem of a multi-robot system handling a payload with unknown mass properties. Force constraints at the grasp points are considered. Robust control schemes are proposed that cope with the model uncertainty and achieve asymptotic path tracking. To deal with the force constraints, a strategy for optimally sharing the task is suggested. This strategy basically consists of two steps. The first detects the robots that need help and the second arranges that help. It is shown that the overall system is not only robust to uncertain payload parameters, but also satisfies the force constraints.
An optimal control model approach to the design of compensators for simulator delay
NASA Technical Reports Server (NTRS)
Baron, S.; Lancraft, R.; Caglayan, A.
1982-01-01
The effects of display delay on pilot performance and workload and of the design of the filters to ameliorate these effects were investigated. The optimal control model for pilot/vehicle analysis was used both to determine the potential delay effects and to design the compensators. The model was applied to a simple roll tracking task and to a complex hover task. The results confirm that even small delays can degrade performance and impose a workload penalty. A time-domain compensator designed by using the optimal control model directly appears capable of providing extensive compensation for these effects even in multi-input, multi-output problems.
NASA Technical Reports Server (NTRS)
Chung, Ching-Luan
1990-01-01
The term trajectory planning has been used to refer to the process of determining the time history of joint trajectory of each joint variable corresponding to a specified trajectory of the end effector. The trajectory planning problem was solved as a purely kinematic problem. The drawback is that there is no guarantee that the actuators can deliver the effort necessary to track the planned trajectory. To overcome this limitation, a motion planning approach which addresses the kinematics, dynamics, and feedback control of a manipulator in a unified framework was developed. Actuator constraints are taken into account explicitly and a priori in the synthesis of the feedback control law. Therefore the result of applying the motion planning approach described is not only the determination of the entire set of joint trajectories but also a complete specification of the feedback control strategy which would yield these joint trajectories without violating actuator constraints. The effectiveness of the unified motion planning approach is demonstrated on two problems which are of practical interest in manipulator robotics.
NASA Astrophysics Data System (ADS)
Chamakuri, Nagaiah; Engwer, Christian; Kunisch, Karl
2014-09-01
Optimal control for cardiac electrophysiology based on the bidomain equations in conjunction with the Fenton-Karma ionic model is considered. This generic ventricular model approximates well the restitution properties and spiral wave behavior of more complex ionic models of cardiac action potentials. However, it is challenging due to the appearance of state-dependent discontinuities in the source terms. A computational framework for the numerical realization of optimal control problems is presented. Essential ingredients are a shape calculus based treatment of the sensitivities of the discontinuous source terms and a marching cubes algorithm to track iso-surface of excitation wavefronts. Numerical results exhibit successful defibrillation by applying an optimally controlled extracellular stimulus.
An automatic method for segmentation of fission tracks in epidote crystal photomicrographs
NASA Astrophysics Data System (ADS)
de Siqueira, Alexandre Fioravante; Nakasuga, Wagner Massayuki; Pagamisse, Aylton; Tello Saenz, Carlos Alberto; Job, Aldo Eloizo
2014-08-01
Manual identification of fission tracks has practical problems, such as variation due to observe-observation efficiency. An automatic processing method that could identify fission tracks in a photomicrograph could solve this problem and improve the speed of track counting. However, separation of nontrivial images is one of the most difficult tasks in image processing. Several commercial and free softwares are available, but these softwares are meant to be used in specific images. In this paper, an automatic method based on starlet wavelets is presented in order to separate fission tracks in mineral photomicrographs. Automatization is obtained by the Matthews correlation coefficient, and results are evaluated by precision, recall and accuracy. This technique is an improvement of a method aimed at segmentation of scanning electron microscopy images. This method is applied in photomicrographs of epidote phenocrystals, in which accuracy higher than 89% was obtained in fission track segmentation, even for difficult images. Algorithms corresponding to the proposed method are available for download. Using the method presented here, a user could easily determine fission tracks in photomicrographs of mineral samples.
Strong Tracking Spherical Simplex-Radial Cubature Kalman Filter for Maneuvering Target Tracking.
Liu, Hua; Wu, Wen
2017-03-31
Conventional spherical simplex-radial cubature Kalman filter (SSRCKF) for maneuvering target tracking may decline in accuracy and even diverge when a target makes abrupt state changes. To overcome this problem, a novel algorithm named strong tracking spherical simplex-radial cubature Kalman filter (STSSRCKF) is proposed in this paper. The proposed algorithm uses the spherical simplex-radial (SSR) rule to obtain a higher accuracy than cubature Kalman filter (CKF) algorithm. Meanwhile, by introducing strong tracking filter (STF) into SSRCKF and modifying the predicted states' error covariance with a time-varying fading factor, the gain matrix is adjusted on line so that the robustness of the filter and the capability of dealing with uncertainty factors is improved. In this way, the proposed algorithm has the advantages of both STF's strong robustness and SSRCKF's high accuracy. Finally, a maneuvering target tracking problem with abrupt state changes is used to test the performance of the proposed filter. Simulation results show that the STSSRCKF algorithm can get better estimation accuracy and greater robustness for maneuvering target tracking.
Strong Tracking Spherical Simplex-Radial Cubature Kalman Filter for Maneuvering Target Tracking
Liu, Hua; Wu, Wen
2017-01-01
Conventional spherical simplex-radial cubature Kalman filter (SSRCKF) for maneuvering target tracking may decline in accuracy and even diverge when a target makes abrupt state changes. To overcome this problem, a novel algorithm named strong tracking spherical simplex-radial cubature Kalman filter (STSSRCKF) is proposed in this paper. The proposed algorithm uses the spherical simplex-radial (SSR) rule to obtain a higher accuracy than cubature Kalman filter (CKF) algorithm. Meanwhile, by introducing strong tracking filter (STF) into SSRCKF and modifying the predicted states’ error covariance with a time-varying fading factor, the gain matrix is adjusted on line so that the robustness of the filter and the capability of dealing with uncertainty factors is improved. In this way, the proposed algorithm has the advantages of both STF’s strong robustness and SSRCKF’s high accuracy. Finally, a maneuvering target tracking problem with abrupt state changes is used to test the performance of the proposed filter. Simulation results show that the STSSRCKF algorithm can get better estimation accuracy and greater robustness for maneuvering target tracking. PMID:28362347
Insight in the Brain: The Cognitive and Neural Bases of Eureka Moments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beeman, Mark
Where do new ideas come from? Although all new ideas build on old, this can happen in different ways. Some new ideas, or solutions to old problems, are achieved through methodical, analytical processing. Other new ideas come about in a sudden burst of insight, often based on or generating a restructured view of the problem itself. Behavioral, brain imaging, and eye-tracking results all reveal distinct cortical networks contributing to insight solving, as contrasted with analytic solving. Consistently, the way in which people solve problems appears to relate to the way they engage attention and cognitive control: across time, across moods,more » and across individuals. Insight is favored when people can disengage from strong stimuli and associations - figuratively and literally looking "outside the box" of the problem to suddenly solve with a new idea.« less
Neural self-tuning adaptive control of non-minimum phase system
NASA Technical Reports Server (NTRS)
Ho, Long T.; Bialasiewicz, Jan T.; Ho, Hai T.
1993-01-01
The motivation of this research came about when a neural network direct adaptive control scheme was applied to control the tip position of a flexible robotic arm. Satisfactory control performance was not attainable due to the inherent non-minimum phase characteristics of the flexible robotic arm tip. Most of the existing neural network control algorithms are based on the direct method and exhibit very high sensitivity, if not unstable, closed-loop behavior. Therefore, a neural self-tuning control (NSTC) algorithm is developed and applied to this problem and showed promising results. Simulation results of the NSTC scheme and the conventional self-tuning (STR) control scheme are used to examine performance factors such as control tracking mean square error, estimation mean square error, transient response, and steady state response.
Dynamic Buckling Test Analyses of a High Degree CWR Track
DOT National Transportation Integrated Search
1991-02-01
Thermal buckling of railroad tracks in the lateral plane is an important problem in the design and maintenance of continuous welded rail (CWR) tracks. The work reported here is part of a major investigation carried out by the John A. Volpe National T...
Long-term scale adaptive tracking with kernel correlation filters
NASA Astrophysics Data System (ADS)
Wang, Yueren; Zhang, Hong; Zhang, Lei; Yang, Yifan; Sun, Mingui
2018-04-01
Object tracking in video sequences has broad applications in both military and civilian domains. However, as the length of input video sequence increases, a number of problems arise, such as severe object occlusion, object appearance variation, and object out-of-view (some portion or the entire object leaves the image space). To deal with these problems and identify the object being tracked from cluttered background, we present a robust appearance model using Speeded Up Robust Features (SURF) and advanced integrated features consisting of the Felzenszwalb's Histogram of Oriented Gradients (FHOG) and color attributes. Since re-detection is essential in long-term tracking, we develop an effective object re-detection strategy based on moving area detection. We employ the popular kernel correlation filters in our algorithm design, which facilitates high-speed object tracking. Our evaluation using the CVPR2013 Object Tracking Benchmark (OTB2013) dataset illustrates that the proposed algorithm outperforms reference state-of-the-art trackers in various challenging scenarios.
Autonomous stair-climbing with miniature jumping robots.
Stoeter, Sascha A; Papanikolopoulos, Nikolaos
2005-04-01
The problem of vision-guided control of miniature mobile robots is investigated. Untethered mobile robots with small physical dimensions of around 10 cm or less do not permit powerful onboard computers because of size and power constraints. These challenges have, in the past, reduced the functionality of such devices to that of a complex remote control vehicle with fancy sensors. With the help of a computationally more powerful entity such as a larger companion robot, the control loop can be closed. Using the miniature robot's video transmission or that of an observer to localize it in the world, control commands can be computed and relayed to the inept robot. The result is a system that exhibits autonomous capabilities. The framework presented here solves the problem of climbing stairs with the miniature Scout robot. The robot's unique locomotion mode, the jump, is employed to hop one step at a time. Methods for externally tracking the Scout are developed. A large number of real-world experiments are conducted and the results discussed.
The Computational Complexity of RaceTrack
NASA Astrophysics Data System (ADS)
Holzer, Markus; McKenzie, Pierre
Martin Gardner in the early 1970's described the game of RaceTrack [M. Gardner, Mathematical games - Sim, Chomp and Race Track: new games for the intellect (and not for Lady Luck), Scientific American, 228(1):108-115, Jan. 1973]. Here we study the complexity of deciding whether a RaceTrack player has a winning strategy. We first prove that the complexity of RaceTrack reachability, i.e., whether the finish line can be reached or not, crucially depends on whether the car can touch the edge of the carriageway (racetrack): the non-touching variant is NL-complete while the touching variant is equivalent to the undirected grid graph reachability problem, a problem in L but not known to be L-hard. Then we show that single-player RaceTrack is NL-complete, regardless of whether driving on the track boundary is allowed or not, and that deciding the existence of a winning strategy in Gardner's original two-player game is P-complete. Hence RaceTrack is an example of a game that is interesting to play despite the fact that deciding the existence of a winning strategy is most likely not NP-hard.
An Effective and Robust Decentralized Target Tracking Scheme in Wireless Camera Sensor Networks.
Fu, Pengcheng; Cheng, Yongbo; Tang, Hongying; Li, Baoqing; Pei, Jun; Yuan, Xiaobing
2017-03-20
In this paper, we propose an effective and robust decentralized tracking scheme based on the square root cubature information filter (SRCIF) to balance the energy consumption and tracking accuracy in wireless camera sensor networks (WCNs). More specifically, regarding the characteristics and constraints of camera nodes in WCNs, some special mechanisms are put forward and integrated in this tracking scheme. First, a decentralized tracking approach is adopted so that the tracking can be implemented energy-efficiently and steadily. Subsequently, task cluster nodes are dynamically selected by adopting a greedy on-line decision approach based on the defined contribution decision (CD) considering the limited energy of camera nodes. Additionally, we design an efficient cluster head (CH) selection mechanism that casts such selection problem as an optimization problem based on the remaining energy and distance-to-target. Finally, we also perform analysis on the target detection probability when selecting the task cluster nodes and their CH, owing to the directional sensing and observation limitations in field of view (FOV) of camera nodes in WCNs. From simulation results, the proposed tracking scheme shows an obvious improvement in balancing the energy consumption and tracking accuracy over the existing methods.
An Effective and Robust Decentralized Target Tracking Scheme in Wireless Camera Sensor Networks
Fu, Pengcheng; Cheng, Yongbo; Tang, Hongying; Li, Baoqing; Pei, Jun; Yuan, Xiaobing
2017-01-01
In this paper, we propose an effective and robust decentralized tracking scheme based on the square root cubature information filter (SRCIF) to balance the energy consumption and tracking accuracy in wireless camera sensor networks (WCNs). More specifically, regarding the characteristics and constraints of camera nodes in WCNs, some special mechanisms are put forward and integrated in this tracking scheme. First, a decentralized tracking approach is adopted so that the tracking can be implemented energy-efficiently and steadily. Subsequently, task cluster nodes are dynamically selected by adopting a greedy on-line decision approach based on the defined contribution decision (CD) considering the limited energy of camera nodes. Additionally, we design an efficient cluster head (CH) selection mechanism that casts such selection problem as an optimization problem based on the remaining energy and distance-to-target. Finally, we also perform analysis on the target detection probability when selecting the task cluster nodes and their CH, owing to the directional sensing and observation limitations in field of view (FOV) of camera nodes in WCNs. From simulation results, the proposed tracking scheme shows an obvious improvement in balancing the energy consumption and tracking accuracy over the existing methods. PMID:28335537
NASA Astrophysics Data System (ADS)
Ben Regaya, Chiheb; Farhani, Fethi; Zaafouri, Abderrahmen; Chaari, Abdelkader
2018-02-01
This paper presents a new adaptive Backstepping technique to handle the induction motor (IM) rotor resistance tracking problem. The proposed solution leads to improve the robustness of the control system. Given the presence of static error when estimating the rotor resistance with classical methods, and the sensitivity to the load torque variation at low speed, a new Backstepping observer enhanced with an integral action of the tracking errors is presented, which can be established in two steps. The first one consists to estimate the rotor flux using a Backstepping observer. The second step, defines the adaptation mechanism of the rotor resistance based on the estimated rotor-flux. The asymptotic stability of the observer is proven by Lyapunov theory. To validate the proposed solution, a simulation and experimental benchmarking of a 3 kW induction motor are presented and analyzed. The obtained results show the effectiveness of the proposed solution compared to the model reference adaptive system (MRAS) rotor resistance observer presented in other recent works.
A computer simulation approach to measurement of human control strategy
NASA Technical Reports Server (NTRS)
Green, J.; Davenport, E. L.; Engler, H. F.; Sears, W. E., III
1982-01-01
Human control strategy is measured through use of a psychologically-based computer simulation which reflects a broader theory of control behavior. The simulation is called the human operator performance emulator, or HOPE. HOPE was designed to emulate control learning in a one-dimensional preview tracking task and to measure control strategy in that setting. When given a numerical representation of a track and information about current position in relation to that track, HOPE generates positions for a stick controlling the cursor to be moved along the track. In other words, HOPE generates control stick behavior corresponding to that which might be used by a person learning preview tracking.
A flight research program to develop airborne systems for improved terminal area operations
NASA Technical Reports Server (NTRS)
Reeder, J. P.
1974-01-01
The research program considered is concerned with the solution of operational problems for the approximate time period from 1980 to 2000. The problems are related to safety, weather effects, congestion, energy conservation, noise, atmospheric pollution, and the loss in productivity caused by delays, diversions, and schedule stretchouts. The terminal configured vehicle (TCV) program is to develop advanced flight-control capability. The various aspects of the TCV program are discussed, giving attention to avionics equipment, the piloted simulator, terminal-area environment simulation, the Wallops research facility, flight procedures, displays and human factors, flight activities, and questions of vortex-wake reduction and tracking.
A game theory approach to target tracking in sensor networks.
Gu, Dongbing
2011-02-01
In this paper, we investigate a moving-target tracking problem with sensor networks. Each sensor node has a sensor to observe the target and a processor to estimate the target position. It also has wireless communication capability but with limited range and can only communicate with neighbors. The moving target is assumed to be an intelligent agent, which is "smart" enough to escape from the detection by maximizing the estimation error. This adversary behavior makes the target tracking problem more difficult. We formulate this target estimation problem as a zero-sum game in this paper and use a minimax filter to estimate the target position. The minimax filter is a robust filter that minimizes the estimation error by considering the worst case noise. Furthermore, we develop a distributed version of the minimax filter for multiple sensor nodes. The distributed computation is implemented via modeling the information received from neighbors as measurements in the minimax filter. The simulation results show that the target tracking algorithm proposed in this paper provides a satisfactory result.
Optimal design and control of an electromechanical transfemoral prosthesis with energy regeneration.
Rohani, Farbod; Richter, Hanz; van den Bogert, Antonie J
2017-01-01
In this paper, we present the design of an electromechanical above-knee active prosthesis with energy storage and regeneration. The system consists of geared knee and ankle motors, parallel springs for each motor, an ultracapacitor, and controllable four-quadrant power converters. The goal is to maximize the performance of the system by finding optimal controls and design parameters. A model of the system dynamics was developed, and used to solve a combined trajectory and design optimization problem. The objectives of the optimization were to minimize tracking error relative to human joint motions, as well as energy use. The optimization problem was solved by the method of direct collocation, based on joint torque and joint angle data from ten subjects walking at three speeds. After optimization of controls and design parameters, the simulated system could operate at zero energy cost while still closely emulating able-bodied gait. This was achieved by controlled energy transfer between knee and ankle, and by controlled storage and release of energy throughout the gait cycle. Optimal gear ratios and spring parameters were similar across subjects and walking speeds.
Hypersonic vehicle control law development using H infinity and mu-synthesis
NASA Technical Reports Server (NTRS)
Gregory, Irene M.; Chowdhry, Rajiv S.; Mcminn, John D.; Shaughnessy, John D.
1992-01-01
Applicability and effectiveness of robust control techniques to a single-stage-to-orbit (SSTO) airbreathing hypersonic vehicle on an ascent accelerating path and their effectiveness are explored in this paper. An SSTO control system design problem, requiring high accuracy tracking of velocity and altitude commands while limiting angle of attack oscillations, minimizing control power usage and stabilizing the vehicle all in the presence of atmospheric turbulence and uncertainty in the system, was formulated to compare results of the control designs using H infinity and mu-synthesis procedures. The math model, an integrated flight/propulsion dynamic model of a conical accelerator class vehicle, was linearized as the vehicle accelerated through Mach 8. Controller analysis was conducted using the singular value technique and the mu-analysis approach. Analysis results were obtained in both the frequency and the time domains. The results clearly demonstrate the inherent advantages of the structured singular value framework for this class of problems. Since payload performance margins are so critical for the SSTO mission, it is crucial that adequate stability margins be provided without sacrificing any payload mass.
Resource Balancing Control Allocation
NASA Technical Reports Server (NTRS)
Frost, Susan A.; Bodson, Marc
2010-01-01
Next generation aircraft with a large number of actuators will require advanced control allocation methods to compute the actuator commands needed to follow desired trajectories while respecting system constraints. Previously, algorithms were proposed to minimize the l1 or l2 norms of the tracking error and of the control effort. The paper discusses the alternative choice of using the l1 norm for minimization of the tracking error and a normalized l(infinity) norm, or sup norm, for minimization of the control effort. The algorithm computes the norm of the actuator deflections scaled by the actuator limits. Minimization of the control effort then translates into the minimization of the maximum actuator deflection as a percentage of its range of motion. The paper shows how the problem can be solved effectively by converting it into a linear program and solving it using a simplex algorithm. Properties of the algorithm are investigated through examples. In particular, the min-max criterion results in a type of resource balancing, where the resources are the control surfaces and the algorithm balances these resources to achieve the desired command. A study of the sensitivity of the algorithms to the data is presented, which shows that the normalized l(infinity) algorithm has the lowest sensitivity, although high sensitivities are observed whenever the limits of performance are reached.
Connected Component Model for Multi-Object Tracking.
He, Zhenyu; Li, Xin; You, Xinge; Tao, Dacheng; Tang, Yuan Yan
2016-08-01
In multi-object tracking, it is critical to explore the data associations by exploiting the temporal information from a sequence of frames rather than the information from the adjacent two frames. Since straightforwardly obtaining data associations from multi-frames is an NP-hard multi-dimensional assignment (MDA) problem, most existing methods solve this MDA problem by either developing complicated approximate algorithms, or simplifying MDA as a 2D assignment problem based upon the information extracted only from adjacent frames. In this paper, we show that the relation between associations of two observations is the equivalence relation in the data association problem, based on the spatial-temporal constraint that the trajectories of different objects must be disjoint. Therefore, the MDA problem can be equivalently divided into independent subproblems by equivalence partitioning. In contrast to existing works for solving the MDA problem, we develop a connected component model (CCM) by exploiting the constraints of the data association and the equivalence relation on the constraints. Based upon CCM, we can efficiently obtain the global solution of the MDA problem for multi-object tracking by optimizing a sequence of independent data association subproblems. Experiments on challenging public data sets demonstrate that our algorithm outperforms the state-of-the-art approaches.
Polar versus Cartesian velocity models for maneuvering target tracking with IMM
NASA Astrophysics Data System (ADS)
Laneuville, Dann
This paper compares various model sets in different IMM filters for the maneuvering target tracking problem. The aim is to see whether we can improve the tracking performance of what is certainly the most widely used model set in the literature for the maneuvering target tracking problem: a Nearly Constant Velocity model and a Nearly Coordinated Turn model. Our new challenger set consists of a mixed Cartesian position and polar velocity state vector to describe the uniform motion segments and is augmented with the turn rate to obtain the second model for the maneuvering segments. This paper also gives a general procedure to discretize up to second order any non-linear continuous time model with linear diffusion. Comparative simulations on an air defence scenario with a 2D radar, show that this new approach improves significantly the tracking performance in this case.
A micro-fluidic treadmill for observing suspended plankton in the lab
NASA Astrophysics Data System (ADS)
Jaffe, J. S.; Laxton, B.; Garwood, J. C.; Franks, P. J. S.; Roberts, P. L.
2016-02-01
A significant obstacle to laboratory studies of interactions between small organisms ( mm) and their fluid environment is our ability to obtain high-resolution images while allowing freedom of motion. This is because as the organisms sink, they will often move out of the field of view of the observation system. One solution to this problem is to impose a water circulation pattern that preserves their location relative to the camera system while imaging the organisms away from the glass walls. To accomplish this we have designed and created a plankton treadmill. Our computer-controlled system consists of a digital video camera attached to a macro or microscope and a micro-fluidic pump whose flow is regulated to maintain a suspended organism's position relative to the field of view. Organisms are detected and tracked in real time in the video frames, allowing a control algorithm to compensate for any vertical movement by adjusting the flow. The flow control can be manually adjusted using on-screen controls, semi-automatically adjusted to allow the user to select a particular organism to be tracked or fully automatic through the use of classification and tracking algorithms. Experiments with a simple cm-sized cuvette and a number of organisms that are both positively and negatively buoyant have demonstrated the success of the system in permitting longer observation times than would be possible in the absence of a controlled-flow environment. The subjects were observed using a new dual-view, holographic imaging system that provides 3-dimensional microscopic observations with relatively isotropic resolution. We will present the system design, construction, the control algorithm, and some images obtained with the holographic system, demonstrating its effectiveness. Small particles seeded into the flow clearly show the 3D flow fields around the subjects as they freely sink or swim.
Learning from adaptive neural dynamic surface control of strict-feedback systems.
Wang, Min; Wang, Cong
2015-06-01
Learning plays an essential role in autonomous control systems. However, how to achieve learning in the nonstationary environment for nonlinear systems is a challenging problem. In this paper, we present learning method for a class of n th-order strict-feedback systems by adaptive dynamic surface control (DSC) technology, which achieves the human-like ability of learning by doing and doing with learned knowledge. To achieve the learning, this paper first proposes stable adaptive DSC with auxiliary first-order filters, which ensures the boundedness of all the signals in the closed-loop system and the convergence of tracking errors in a finite time. With the help of DSC, the derivative of the filter output variable is used as the neural network (NN) input instead of traditional intermediate variables. As a result, the proposed adaptive DSC method reduces greatly the dimension of NN inputs, especially for high-order systems. After the stable DSC design, we decompose the stable closed-loop system into a series of linear time-varying perturbed subsystems. Using a recursive design, the recurrent property of NN input variables is easily verified since the complexity is overcome using DSC. Subsequently, the partial persistent excitation condition of the radial basis function NN is satisfied. By combining a state transformation, accurate approximations of the closed-loop system dynamics are recursively achieved in a local region along recurrent orbits. Then, the learning control method using the learned knowledge is proposed to achieve the closed-loop stability and the improved control performance. Simulation studies are performed to demonstrate the proposed scheme can not only reuse the learned knowledge to achieve the better control performance with the faster tracking convergence rate and the smaller tracking error but also greatly alleviate the computational burden because of reducing the number and complexity of NN input variables.
ERIC Educational Resources Information Center
Tai, Robert H.; Loehr, John F.; Brigham, Frederick J.
2006-01-01
This pilot study investigated the capacity of eye-gaze tracking to identify differences in problem-solving behaviours within a group of individuals who possessed varying degrees of knowledge and expertise in three disciplines of science (biology, chemistry and physics). The six participants, all pre-service science teachers, completed an 18-item…
ERIC Educational Resources Information Center
Hubers, Mireille D.; Burk, William J.; Segers, Eliane; Kleinjan, Marloes; Scholte, Ron H. J.; Cillessen, Antonius H. N.
2016-01-01
This study examined adolescent personality and problem behaviours as predictors of two types of social status: social preference and popularity. Academic track (college preparatory and vocational) and gender were expected to moderate these associations. The sample included 693 students (49.0% female; M = 15.46 years) attending classrooms in two…
Model reference adaptive control of robots
NASA Technical Reports Server (NTRS)
Steinvorth, Rodrigo
1991-01-01
This project presents the results of controlling two types of robots using new Command Generator Tracker (CGT) based Direct Model Reference Adaptive Control (MRAC) algorithms. Two mathematical models were used to represent a single-link, flexible joint arm and a Unimation PUMA 560 arm; and these were then controlled in simulation using different MRAC algorithms. Special attention was given to the performance of the algorithms in the presence of sudden changes in the robot load. Previously used CGT based MRAC algorithms had several problems. The original algorithm that was developed guaranteed asymptotic stability only for almost strictly positive real (ASPR) plants. This condition is very restrictive, since most systems do not satisfy this assumption. Further developments to the algorithm led to an expansion of the number of plants that could be controlled, however, a steady state error was introduced in the response. These problems led to the introduction of some modifications to the algorithms so that they would be able to control a wider class of plants and at the same time would asymptotically track the reference model. This project presents the development of two algorithms that achieve the desired results and simulates the control of the two robots mentioned before. The results of the simulations are satisfactory and show that the problems stated above have been corrected in the new algorithms. In addition, the responses obtained show that the adaptively controlled processes are resistant to sudden changes in the load.
Wang, Zhe; Lv, Haoliang; Zhou, Xiaojun; Chen, Zhaomeng; Yang, Yong
2018-06-21
Dual-motor Electric Drive Tracked Vehicles (DDTVs) have attracted increasing attention due to their high transmission efficiency and economical fuel consumption. A test bench for the development and validation of new DDTV technologies is necessary and urgent. How to load the vehicle on a DDTV test bench exactly the same as on a real road is a crucial issue when designing the bench. This paper proposes a novel dynamic load emulation method to address this problem. The method adopts dual dynamometers to simulate both the road load and the inertia load that are imposed on the dual independent drive systems. The vehicle’s total inertia equivalent to the drive wheels is calculated with separate consideration of vehicle body, tracks and road wheels to obtain a more accurate inertia load. A speed tracking control strategy with feedforward compensation is implemented to control the dual dynamometers, so as to make the real-time dynamic load emulation possible. Additionally, a MATLAB/Simulink model of the test bench is built based on a dynamics analysis of the platform. Experiments are finally carried out on this test bench under different test conditions. The outcomes show that the proposed load emulation method is effective, and has good robustness and adaptability to complex driving conditions. Besides, the accuracy of the established test bench model is also demonstrated by comparing the results obtained from the simulation model and experiments.
Formation Flying Control of Multiple Spacecraft
NASA Technical Reports Server (NTRS)
Hadaegh, F. Y.; Lau, Kenneth; Wang, P. K. C.
1997-01-01
The problem of coordination and control of multiple spacecraft (MS) moving in formation is considered. Here, each MS is modeled by a rigid body with fixed center of mass. First, various schemes for generating the desired formation patterns are discussed, Then, explicit control laws for formation-keeping and relative attitude alignment based on nearest neighbor-tracking are derived. The necessary data which must be communicated between the MS to achieve effective control are examined. The time-domain behavior of the feedback-controlled MS formation for typical low-Earth orbits is studied both analytically and via computer simulation. The paper concludes with a discussion of the implementation of the derived control laws, and the integration of the MS formation coordination and control system with a proposed inter-spacecraft communication/computing network.
LPV H-infinity Control for the Longitudinal Dynamics of a Flexible Air-Breathing Hypersonic Vehicle
NASA Astrophysics Data System (ADS)
Hughes, Hunter Douglas
This dissertation establishes the method needed to synthesize and simulate an Hinfinity Linear Parameter-Varying (LPV) controller for a flexible air-breathing hypersonic vehicle model. A study was conducted to gain the understanding of the elastic effects on the open loop system. It was determined that three modes of vibration would be suitable for the hypersonic vehicle model. It was also discovered from the open loop study that there is strong coupling in the hypersonic vehicle states, especially between the angle of attack, pitch rate, pitch attitude, and the exible modes of the vehicle. This dissertation outlines the procedure for synthesizing a full state feedback Hinfinity LPV controller for the hypersonic vehicle. The full state feedback study looked at both velocity and altitude tracking for the exible vehicle. A parametric study was conducted on each of these controllers to see the effects of changing the number of gridding points in the parameter space and changing the parameter variation rate limits in the system on the robust performance of the controller. As a result of the parametric study, a 7 x 7 grid ranging from Mach 7 to Mach 9 in velocity and from 70,000 feet to 90,000 feet in altitude, and a parameter variation rate limit of [.5 200]T was used for both the velocity tracking and altitude tracking cases. The resulting Hinfinity robust performances were gamma = 2.2224 for the velocity tracking case and = 1:7582 for the altitude tracking case. A linear analysis was then conducted on five different selected trim points from the Hinfinity LPV controller. This was conducted for the velocity tracking and altitude tracking cases. The results of linear analysis show that there is a slight difference in the response of the Hinfinity LPV controller and the fixed point H infinity controller. For the tracking task, the Hinfinity controller responds more quickly, and has a lower Hinfinity performance value. Next, the H infinity LPV controller was simulated using the nonlinear flexible hypersonic model for both the velocity tracking and altitude tracking cases. Both of these cases were subject to a ramp input and a multi-step input both with and without perturbation in the model. The results of the simulation show that the tracking state follows the command signal successfully though the perturbed system does show some higher frequency characteristics in the non-tracking states. It was discovered that there is an issue with integral windup when switching takes place in the controller, so an algorithm was implemented to reset the integration of the error on the tracking state when the switch takes place. It was also seen that there was a decline in altitude when tracking velocity, and a large change in velocity that occurred during altitude tracking. These results lead to the decision to include a unity gain regulation state on velocity for the altitude tracking and the altitude for the velocity tracking during the output feedback control synthesis. The procedure for synthesizing an output feedback H infinity LPV controller for the hypersonic vehicle is also discussed in this dissertation. The output feedback design looked at velocity tracking and altitude tracking with rigid body motion variables for both the exible and rigid body hypersonic vehicle models. As with the full state feedback controller, a parametric study was conducted on each of these controllers to determine the number of gridding points in the parameter space and the parameter variation rate limits in the system. The parametric study reveals a 7x7 grid ranging from Mach 7 to Mach 9 in velocity and from 70,000 feet to 90,000 feet in altitude, and a parameter variation rate limit of [.1 200]T is preferable for both the velocity tracking and altitude tracking cases with both the exible and rigid body assumptions. The resulting Hinfinity robust performances were gamma = 113:2146 for the exible body velocity tracking case, gamma = 83.6931 for the rigid body velocity tracking case, gamma = 107:2043 for the exible body altitude tracking case, and gamma = 97:7403 for the rigid body altitude tracking case. A linear analysis was then conducted on five different selected trim points from the Hinfinity LPV controller. The results of this analysis show that there is a larger difference in the response of the Hinfinity LPV controller and the Hinfinity controller. For the tracking task, the Hinfinity controller responds more quickly, and has a lower Hinfinity performance value. Next, the Hinfinity LPV controller was applied to the exible nonlinear plant model. The rigid body controllers were applied to the exible plant model to see if the exible nature of the vehicle could be treated as a perturbation to the system. Additionally, there were simulations run both with and without sensor noise and parametric uncertainty. The results of simulation show that the rigid body controller is able to successfully apply to the exible body model for the velocity tracking case, but is unable to stabilize the altitude tracking case. It was also seen that the system is able to track the command signal while minimizing the variations seen in the altitude for the velocity tracking case and in the velocity during the altitude tracking case. Additionally, there was no obvious effect of perturbations in the system on the tracking state or secondary regulation state. There were high frequency responses associated with the other perturbed states.
Space-based IR tracking bias removal using background star observations
NASA Astrophysics Data System (ADS)
Clemons, T. M., III; Chang, K. C.
2009-05-01
This paper provides the results of a proposed methodology for removing sensor bias from a space-based infrared (IR) tracking system through the use of stars detected in the background field of the tracking sensor. The tracking system consists of two satellites flying in a lead-follower formation tracking a ballistic target. Each satellite is equipped with a narrow-view IR sensor that provides azimuth and elevation to the target. The tracking problem is made more difficult due to a constant, non-varying or slowly varying bias error present in each sensor's line of sight measurements. As known stars are detected during the target tracking process, the instantaneous sensor pointing error can be calculated as the difference between star detection reading and the known position of the star. The system then utilizes a separate bias filter to estimate the bias value based on these detections and correct the target line of sight measurements to improve the target state vector. The target state vector is estimated through a Linearized Kalman Filter (LKF) for the highly non-linear problem of tracking a ballistic missile. Scenarios are created using Satellite Toolkit(C) for trajectories with associated sensor observations. Mean Square Error results are given for tracking during the period when the target is in view of the satellite IR sensors. The results of this research provide a potential solution to bias correction while simultaneously tracking a target.
8. INTERIOR, CONTROL AND INSTRUMENTATION ROOM. Looking southwest toward entrance ...
8. INTERIOR, CONTROL AND INSTRUMENTATION ROOM. Looking southwest toward entrance and inner blast door. - Edwards Air Force Base, South Base Sled Track, Firing & Control Blockhouse for 10,000-foot Track, South of Sled Track at midpoint of 20,000-foot track, Lancaster, Los Angeles County, CA
A 3D front tracking method on a CPU/GPU system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bo, Wurigen; Grove, John
2011-01-21
We describe the method to port a sequential 3D interface tracking code to a GPU with CUDA. The interface is represented as a triangular mesh. Interface geometry properties and point propagation are performed on a GPU. Interface mesh adaptation is performed on a CPU. The convergence of the method is assessed from the test problems with given velocity fields. Performance results show overall speedups from 11 to 14 for the test problems under mesh refinement. We also briefly describe our ongoing work to couple the interface tracking method with a hydro solver.
Selection and application of microbial source tracking tools for water-quality investigations
Stoeckel, Donald M.
2005-01-01
Microbial source tracking (MST) is a complex process that includes many decision-making steps. Once a contamination problem has been defined, the potential user of MST tools must thoroughly consider study objectives before deciding upon a source identifier, a detection method, and an analytical approach to apply to the problem. Regardless of which MST protocol is chosen, underlying assumptions can affect the results and interpretation. It is crucial to incorporate tests of those assumptions in the study quality-control plan to help validate results and facilitate interpretation. Detailed descriptions of MST objectives, protocols, and assumptions are provided in this report to assist in selection and application of MST tools for water-quality investigations. Several case studies illustrate real-world applications of MST protocols over a range of settings, spatial scales, and types of contamination. Technical details of many available source identifiers and detection methods are included as appendixes. By use of this information, researchers should be able to formulate realistic expectations for the information that MST tools can provide and, where possible, successfully execute investigations to characterize sources of fecal contamination to resource waters.
Optimal working zone division for safe track maintenance in The Netherlands.
den Hertog, D; van Zante-de Fokkert, J I; Sjamaar, S A; Beusmans, R
2005-09-01
After a sequence of serious accidents, the safety of rail track workers became an urgent and political problem in The Netherlands. It turned out that the rail track workers had one of the most dangerous jobs. The board of the Dutch Railways decided that the Dutch railway infrastructure had to be divided into so-called working zones. Moreover, to carry out maintenance activities, that particular working zone of the railway system had to be taken out of service. An essential problem was how to divide the Dutch railway infrastructure into working zones such that all parties involved are satisfied. Since many parties with conflicting interests were involved, this problem was extremely difficult. In this paper we show the division rules we developed, and which had been implemented in The Netherlands.
An interface tracking model for droplet electrocoalescence.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Erickson, Lindsay Crowl
This report describes an Early Career Laboratory Directed Research and Development (LDRD) project to develop an interface tracking model for droplet electrocoalescence. Many fluid-based technologies rely on electrical fields to control the motion of droplets, e.g. microfluidic devices for high-speed droplet sorting, solution separation for chemical detectors, and purification of biodiesel fuel. Precise control over droplets is crucial to these applications. However, electric fields can induce complex and unpredictable fluid dynamics. Recent experiments (Ristenpart et al. 2009) have demonstrated that oppositely charged droplets bounce rather than coalesce in the presence of strong electric fields. A transient aqueous bridge forms betweenmore » approaching drops prior to pinch-off. This observation applies to many types of fluids, but neither theory nor experiments have been able to offer a satisfactory explanation. Analytic hydrodynamic approximations for interfaces become invalid near coalescence, and therefore detailed numerical simulations are necessary. This is a computationally challenging problem that involves tracking a moving interface and solving complex multi-physics and multi-scale dynamics, which are beyond the capabilities of most state-of-the-art simulations. An interface-tracking model for electro-coalescence can provide a new perspective to a variety of applications in which interfacial physics are coupled with electrodynamics, including electro-osmosis, fabrication of microelectronics, fuel atomization, oil dehydration, nuclear waste reprocessing and solution separation for chemical detectors. We present a conformal decomposition finite element (CDFEM) interface-tracking method for the electrohydrodynamics of two-phase flow to demonstrate electro-coalescence. CDFEM is a sharp interface method that decomposes elements along fluid-fluid boundaries and uses a level set function to represent the interface.« less
SPECSweb Multistatic Tracking on a Truth-Blind Simulated Scenario of the MSTWG
2009-07-01
communications links and fusion/tracking processes, producing too many false tracks. The Specular-Cued Surveillance Web (SPECSweb) multistatic tracker...information from the multistatic nodes to a fusion center. A concept referred to as the “Specular-Cued Surveillance Web (SPECSweb)” is being...producing too many false tracks. The Specular-Cued Surveillance Web (SPECSweb) multistatic tracker mitigates these problems through implementation of two
NASA Astrophysics Data System (ADS)
El-Zoghby, Helmy M.; Bendary, Ahmed F.
2016-10-01
Maximum Power Point Tracking (MPPT) is now widely used method in increasing the photovoltaic (PV) efficiency. The conventional MPPT methods have many problems concerning the accuracy, flexibility and efficiency. The MPP depends on the PV temperature and solar irradiation that randomly varied. In this paper an artificial intelligence based controller is presented through implementing of an Adaptive Neuro-Fuzzy Inference System (ANFIS) to obtain maximum power from PV. The ANFIS inputs are the temperature and cell current, and the output is optimal voltage at maximum power. During operation the trained ANFIS senses the PV current using suitable sensor and also senses the temperature to determine the optimal operating voltage that corresponds to the current at MPP. This voltage is used to control the boost converter duty cycle. The MATLAB simulation results shows the effectiveness of the ANFIS with sensing the PV current in obtaining the MPPT from the PV.
Cong, Zhang
2018-03-01
Based on extended state observer, a novel and practical design method is developed to solve the distributed cooperative tracking problem of higher-order nonlinear multiagent systems with lumped disturbance in a fixed communication topology directed graph. The proposed method is designed to guarantee all the follower nodes ultimately and uniformly converge to the leader node with bounded residual errors. The leader node, modeled as a higher-order non-autonomous nonlinear system, acts as a command generator giving commands only to a small portion of the networked follower nodes. Extended state observer is used to estimate the local states and lumped disturbance of each follower node. Moreover, each distributed controller can work independently only requiring the relative states and/or the estimated relative states information between itself and its neighbors. Finally an engineering application of multi flight simulators systems is demonstrated to test and verify the effectiveness of the proposed algorithm. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.
Homography-based multiple-camera person-tracking
NASA Astrophysics Data System (ADS)
Turk, Matthew R.
2009-01-01
Multiple video cameras are cheaply installed overlooking an area of interest. While computerized single-camera tracking is well-developed, multiple-camera tracking is a relatively new problem. The main multi-camera problem is to give the same tracking label to all projections of a real-world target. This is called the consistent labelling problem. Khan and Shah (2003) introduced a method to use field of view lines to perform multiple-camera tracking. The method creates inter-camera meta-target associations when objects enter at the scene edges. They also said that a plane-induced homography could be used for tracking, but this method was not well described. Their homography-based system would not work if targets use only one side of a camera to enter the scene. This paper overcomes this limitation and fully describes a practical homography-based tracker. A new method to find the feet feature is introduced. The method works especially well if the camera is tilted, when using the bottom centre of the target's bounding-box would produce inaccurate results. The new method is more accurate than the bounding-box method even when the camera is not tilted. Next, a method is presented that uses a series of corresponding point pairs "dropped" by oblivious, live human targets to find a plane-induced homography. The point pairs are created by tracking the feet locations of moving targets that were associated using the field of view line method. Finally, a homography-based multiple-camera tracking algorithm is introduced. Rules governing when to create the homography are specified. The algorithm ensures that homography-based tracking only starts after a non-degenerate homography is found. The method works when not all four field of view lines are discoverable; only one line needs to be found to use the algorithm. To initialize the system, the operator must specify pairs of overlapping cameras. Aside from that, the algorithm is fully automatic and uses the natural movement of live targets for training. No calibration is required. Testing shows that the algorithm performs very well in real-world sequences. The consistent labelling problem is solved, even for targets that appear via in-scene entrances. Full occlusions are handled. Although implemented in Matlab, the multiple-camera tracking system runs at eight frames per second. A faster implementation would be suitable for real-world use at typical video frame rates.
Reachability Analysis Applied to Space Situational Awareness
NASA Astrophysics Data System (ADS)
Holzinger, M.; Scheeres, D.
Several existing and emerging applications of Space Situational Awareness (SSA) relate directly to spacecraft Rendezvous, Proximity Operations, and Docking (RPOD) and Formation / Cluster Flight (FCF). When multiple Resident Space Ob jects (RSOs) are in vicinity of one another with appreciable periods between observations, correlating new RSO tracks to previously known objects becomes a non-trivial problem. A particularly difficult sub-problem is seen when long breaks in observations are coupled with continuous, low- thrust maneuvers. Reachability theory, directly related to optimal control theory, can compute contiguous reachability sets for known or estimated control authority and can support such RSO search and correlation efforts in both ground and on-board settings. Reachability analysis can also directly estimate the minimum control authority of a given RSO. For RPOD and FCF applications, emerging mission concepts such as fractionation drastically increase system complexity of on-board autonomous fault management systems. Reachability theory, as applied to SSA in RPOD and FCF applications, can involve correlation of nearby RSO observations, control authority estimation, and sensor track re-acquisition. Additional uses of reachability analysis are formation reconfiguration, worst-case passive safety, and propulsion failure modes such as a "stuck" thruster. Existing reachability theory is applied to RPOD and FCF regimes. An optimal control policy is developed to maximize the reachability set and optimal control law discontinuities (switching) are examined. The Clohessy-Wiltshire linearized equations of motion are normalized to accentuate relative control authority for spacecraft propulsion systems at both Low Earth Orbit (LEO) and Geostationary Earth Orbit (GEO). Several examples with traditional and low thrust propulsion systems in LEO and GEO are explored to illustrate the effects of relative control authority on the time-varying reachability set surface. Both monopropellant spacecraft at LEO and Hall thruster spacecraft at GEO are shown to be strongly actuated while Hall thruster spacecraft at LEO are found to be weakly actuated. Weaknesses with the current implementation are discussed and future numerical improvements and analytical efforts are discussed.
Distributed multimodal data fusion for large scale wireless sensor networks
NASA Astrophysics Data System (ADS)
Ertin, Emre
2006-05-01
Sensor network technology has enabled new surveillance systems where sensor nodes equipped with processing and communication capabilities can collaboratively detect, classify and track targets of interest over a large surveillance area. In this paper we study distributed fusion of multimodal sensor data for extracting target information from a large scale sensor network. Optimal tracking, classification, and reporting of threat events require joint consideration of multiple sensor modalities. Multiple sensor modalities improve tracking by reducing the uncertainty in the track estimates as well as resolving track-sensor data association problems. Our approach to solving the fusion problem with large number of multimodal sensors is construction of likelihood maps. The likelihood maps provide a summary data for the solution of the detection, tracking and classification problem. The likelihood map presents the sensory information in an easy format for the decision makers to interpret and is suitable with fusion of spatial prior information such as maps, imaging data from stand-off imaging sensors. We follow a statistical approach to combine sensor data at different levels of uncertainty and resolution. The likelihood map transforms each sensor data stream to a spatio-temporal likelihood map ideally suitable for fusion with imaging sensor outputs and prior geographic information about the scene. We also discuss distributed computation of the likelihood map using a gossip based algorithm and present simulation results.
NASA Technical Reports Server (NTRS)
Ostroff, Aaron J.
1998-01-01
This paper describes a redesigned longitudinal controller that flew on the High-Alpha Research Vehicle (HARV) during calendar years (CY) 1995 and 1996. Linear models are developed for both the modified controller and a baseline controller that was flown in CY 1994. The modified controller was developed with three gain sets for flight evaluation, and several linear analysis results are shown comparing the gain sets. A Neal-Smith flying qualities analysis shows that performance for the low- and medium-gain sets is near the level 1 boundary, depending upon the bandwidth assumed, whereas the high-gain set indicates a sensitivity problem. A newly developed high-alpha Bode envelope criterion indicates that the control system gains may be slightly high, even for the low-gain set. A large motion-base simulator in the United Kingdom was used to evaluate the various controllers. Desired performance, which appeared to be satisfactory for flight, was generally met with both the low- and medium-gain sets. Both the high-gain set and the baseline controller were very sensitive, and it was easy to generate pilot-induced oscillation (PIO) in some of the target-tracking maneuvers. Flight target-tracking results varied from level 1 to level 3 and from no sensitivity to PIO. These results were related to pilot technique and whether actuator rate saturation was encountered.
Lateral control system design for VTOL landing on a DD963 in high sea states. M.S. Thesis
NASA Technical Reports Server (NTRS)
Bodson, M.
1982-01-01
The problem of designing lateral control systems for the safe landing of VTOL aircraft on small ships is addressed. A ship model is derived. The issues of estimation and prediction of ship motions are discussed, using optimal linear linear estimation techniques. The roll motion is the most important of the lateral motions, and it is found that it can be predicted for up to 10 seconds in perfect conditions. The automatic landing of the VTOL aircraft is considered, and a lateral controller, defined as a ship motion tracker, is designed, using optimal control techniqes. The tradeoffs between the tracking errors and the control authority are obtained. The important couplings between the lateral motions and controls are demonstrated, and it is shown that the adverse couplings between the sway and the roll motion at the landing pad are significant constraints in the tracking of the lateral ship motions. The robustness of the control system, including the optimal estimator, is studied, using the singular values analysis. Through a robustification procedure, a robust control system is obtained, and the usefulness of the singular values to define stability margins that take into account general types of unstructured modelling errors is demonstrated. The minimal destabilizing perturbations indicated by the singular values analysis are interpreted and related to the multivariable Nyquist diagrams.
NASA Astrophysics Data System (ADS)
Yu, Miao; Huang, Deqing; Yang, Wanqiu
2018-06-01
In this paper, we address the problem of unknown periodicity for a class of discrete-time nonlinear parametric systems without assuming any growth conditions on the nonlinearities. The unknown periodicity hides in the parametric uncertainties, which is difficult to estimate with existing techniques. By incorporating a logic-based switching mechanism, we identify the period and bound of unknown parameter simultaneously. Lyapunov-based analysis is given to demonstrate that a finite number of switchings can guarantee the asymptotic tracking for the nonlinear parametric systems. The simulation result also shows the efficacy of the proposed switching periodic adaptive control approach.
Fusing human and machine skills for remote robotic operations
NASA Technical Reports Server (NTRS)
Schenker, Paul S.; Kim, Won S.; Venema, Steven C.; Bejczy, Antal K.
1991-01-01
The question of how computer assists can improve teleoperator trajectory tracking during both free and force-constrained motions is addressed. Computer graphics techniques which enable the human operator to both visualize and predict detailed 3D trajectories in real-time are reported. Man-machine interactive control procedures for better management of manipulator contact forces and positioning are also described. It is found that collectively, these novel advanced teleoperations techniques both enhance system performance and significantly reduce control problems long associated with teleoperations under time delay. Ongoing robotic simulations of the 1984 space shuttle Solar Maximum EVA Repair Mission are briefly described.
Flatness-based adaptive fuzzy control of chaotic finance dynamics
NASA Astrophysics Data System (ADS)
Rigatos, G.; Siano, P.; Loia, V.; Tommasetti, A.; Troisi, O.
2017-11-01
A flatness-based adaptive fuzzy control is applied to the problem of stabilization of the dynamics of a chaotic finance system, describing interaction between the interest rate, the investment demand and the price exponent. By proving that the system is differentially flat and by applying differential flatness diffeomorphisms, its transformation to the linear canonical (Brunovsky) is performed. For the latter description of the system, the design of a stabilizing state feedback controller becomes possible. A first problem in the design of such a controller is that the dynamic model of the finance system is unknown and thus it has to be identified with the use neurofuzzy approximators. The estimated dynamics provided by the approximators is used in the computation of the control input, thus establishing an indirect adaptive control scheme. The learning rate of the approximators is chosen from the requirement the system's Lyapunov function to have always a negative first-order derivative. Another problem that has to be dealt with is that the control loop is implemented only with the use of output feedback. To estimate the non-measurable state vector elements of the finance system, a state observer is implemented in the control loop. The computation of the feedback control signal requires the solution of two algebraic Riccati equations at each iteration of the control algorithm. Lyapunov stability analysis demonstrates first that an H-infinity tracking performance criterion is satisfied. This signifies elevated robustness against modelling errors and external perturbations. Moreover, the global asymptotic stability is proven for the control loop.
Pasalich, Dave S.; Witkiewitz, Katie; McMahon, Robert J.; Pinderhughes, Ellen E.
2016-01-01
Little is known about intervening processes that explain how prevention programs improve particular youth antisocial outcomes. We examined whether parental harsh discipline and warmth in childhood differentially account for Fast Track intervention effects on conduct disorder (CD) symptoms and callous-unemotional (CU) traits in early adolescence. Participants included 891 high-risk kindergarteners (69% male; 51% African American) from urban and rural United States communities who were randomized into either the Fast Track intervention (n = 445) or non-intervention control (n = 446) groups. The 10-year intervention included parent management training and other services (e.g., social skills training, universal classroom curriculum) targeting various risk factors for the development of conduct problems. Harsh discipline (Grades 1 through 3) and warmth (Grades 1 and 2) were measured using parent responses to vignettes and direct observations of parent-child interaction, respectively. Parents reported on children’s CD symptoms in Grade 6 and CU traits in Grade 7. Results demonstrated indirect effects of the Fast Track intervention on reducing risk for youth antisocial outcomes. That is, Fast Track was associated with lower scores on harsh discipline, which in turn predicted decreased levels of CD symptoms. In addition, Fast Track was associated with higher scores on warmth, which in turn predicted reduced levels of CU traits. Our findings inform developmental and intervention models of youth antisocial behavior by providing evidence for the differential role of harsh discipline and warmth in accounting for indirect effects of Fast Track on CD symptoms versus CU traits, respectively. PMID:26242993
Begon, Mike; Diggle, Peter J.; Serrano, Soledad; Reis, Mitermayer G.; Childs, James E.; Ko, Albert I.; Costa, Federico
2016-01-01
Norway rats (Rattus norvegicus) living in urban environments are a critical public health and economic problem, particularly in urban slums where residents are at a higher risk for rat borne diseases, yet convenient methods to quantitatively assess population sizes are lacking. We evaluated track plates as a method to determine rat distribution and relative abundance in a complex urban slum environment by correlating the presence and intensity of rat-specific marks on track plates with findings from rat infestation surveys and trapping of rats to population exhaustion. To integrate the zero-inflated track plate data we developed a two-component mixture model with one binary and one censored continuous component. Track plate mark-intensity was highly correlated with signs of rodent infestation (all coefficients between 0.61 and 0.79 and all p-values < 0.05). Moreover, the mean level of pre-trapping rat-mark intensity on plates was significantly associated with the number of rats captured subsequently (Odds ratio1.38; 95% CI 1.19-1.61) and declined significantly following trapping (Odds ratio 0.86; 95% CI 0.78-0.95). Track plates provided robust proxy measurements of rat abundance and distribution and detected rat presence even when populations appeared ‘trapped out’. Tracking plates are relatively easy and inexpensive methods that can be used to intensively sample settings such as urban slums, where traditional trapping or mark-recapture studies are impossible to implement, and therefore the results can inform and assess the impact of targeted urban rodent control campaigns. PMID:27453682
Pasalich, Dave S; Witkiewitz, Katie; McMahon, Robert J; Pinderhughes, Ellen E
2016-04-01
Little is known about intervening processes that explain how prevention programs improve particular youth antisocial outcomes. We examined whether parental harsh discipline and warmth in childhood differentially account for Fast Track intervention effects on conduct disorder (CD) symptoms and callous-unemotional (CU) traits in early adolescence. Participants included 891 high-risk kindergarteners (69% male; 51% African American) from urban and rural United States communities who were randomized into either the Fast Track intervention (n = 445) or non-intervention control (n = 446) groups. The 10-year intervention included parent management training and other services (e.g., social skills training, universal classroom curriculum) targeting various risk factors for the development of conduct problems. Harsh discipline (Grades 1 to 3) and warmth (Grades 1 and 2) were measured using parent responses to vignettes and direct observations of parent-child interaction, respectively. Parents reported on children's CD symptoms in Grade 6 and CU traits in Grade 7. Results demonstrated indirect effects of the Fast Track intervention on reducing risk for youth antisocial outcomes. That is, Fast Track was associated with lower scores on harsh discipline, which in turn predicted decreased levels of CD symptoms. In addition, Fast Track was associated with higher scores on warmth, which in turn predicted reduced levels of CU traits. Our findings inform developmental and intervention models of youth antisocial behavior by providing evidence for the differential role of harsh discipline and warmth in accounting for indirect effects of Fast Track on CD symptoms versus CU traits, respectively.
Incipient Social Groups: An Analysis via In-Vivo Behavioral Tracking
Halberstadt, Jamin; Jackson, Joshua Conrad; Bilkey, David; Jong, Jonathan; Whitehouse, Harvey; McNaughton, Craig; Zollmann, Stefanie
2016-01-01
Social psychology is fundamentally the study of individuals in groups, yet there remain basic unanswered questions about group formation, structure, and change. We argue that the problem is methodological. Until recently, there was no way to track who was interacting with whom with anything approximating valid resolution and scale. In the current study we describe a new method that applies recent advances in image-based tracking to study incipient group formation and evolution with experimental precision and control. In this method, which we term “in vivo behavioral tracking,” we track individuals’ movements with a high definition video camera mounted atop a large field laboratory. We report results of an initial study that quantifies the composition, structure, and size of the incipient groups. We also apply in-vivo spatial tracking to study participants’ tendency to cooperate as a function of their embeddedness in those crowds. We find that participants form groups of seven on average, are more likely to approach others of similar attractiveness and (to a lesser extent) gender, and that participants’ gender and attractiveness are both associated with their proximity to the spatial center of groups (such that women and attractive individuals are more likely than men and unattractive individuals to end up in the center of their groups). Furthermore, participants’ proximity to others early in the study predicted the effort they exerted in a subsequent cooperative task, suggesting that submergence in a crowd may predict social loafing. We conclude that in vivo behavioral tracking is a uniquely powerful new tool for answering longstanding, fundamental questions about group dynamics. PMID:27007952
The specificity of attentional biases by type of gambling: An eye-tracking study
Meitner, Amadeus; Sears, Christopher R.
2018-01-01
A growing body of research indicates that gamblers develop an attentional bias for gambling-related stimuli. Compared to research on substance use, however, few studies have examined attentional biases in gamblers using eye-gaze tracking, which has many advantages over other measures of attention. In addition, previous studies of attentional biases in gamblers have not directly matched type of gambler with personally-relevant gambling cues. The present study investigated the specificity of attentional biases for individual types of gambling using an eye-gaze tracking paradigm. Three groups of participants (poker players, video lottery terminal/slot machine players, and non-gambling controls) took part in one test session in which they viewed 25 sets of four images (poker, VLTs/slot machines, bingo, and board games). Participants' eye fixations were recorded throughout each 8-second presentation of the four images. The results indicated that, as predicted, the two gambling groups preferentially attended to their primary form of gambling, whereas control participants attended to board games more than gambling images. The findings have clinical implications for the treatment of individuals with gambling disorder. Understanding the importance of personally-salient gambling cues will inform the development of effective attentional bias modification treatments for problem gamblers. PMID:29385164