Sample records for tracking environment evaluation

  1. A Track Initiation Method for the Underwater Target Tracking Environment

    NASA Astrophysics Data System (ADS)

    Li, Dong-dong; Lin, Yang; Zhang, Yao

    2018-04-01

    A novel efficient track initiation method is proposed for the harsh underwater target tracking environment (heavy clutter and large measurement errors): track splitting, evaluating, pruning and merging method (TSEPM). Track initiation demands that the method should determine the existence and initial state of a target quickly and correctly. Heavy clutter and large measurement errors certainly pose additional difficulties and challenges, which deteriorate and complicate the track initiation in the harsh underwater target tracking environment. There are three primary shortcomings for the current track initiation methods to initialize a target: (a) they cannot eliminate the turbulences of clutter effectively; (b) there may be a high false alarm probability and low detection probability of a track; (c) they cannot estimate the initial state for a new confirmed track correctly. Based on the multiple hypotheses tracking principle and modified logic-based track initiation method, in order to increase the detection probability of a track, track splitting creates a large number of tracks which include the true track originated from the target. And in order to decrease the false alarm probability, based on the evaluation mechanism, track pruning and track merging are proposed to reduce the false tracks. TSEPM method can deal with the track initiation problems derived from heavy clutter and large measurement errors, determine the target's existence and estimate its initial state with the least squares method. What's more, our method is fully automatic and does not require any kind manual input for initializing and tuning any parameter. Simulation results indicate that our new method improves significantly the performance of the track initiation in the harsh underwater target tracking environment.

  2. 40 CFR 610.64 - Track test procedures.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 30 2014-07-01 2014-07-01 false Track test procedures. 610.64 Section 610.64 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY RETROFIT DEVICES Test Procedures and Evaluation Criteria Special Test Procedures § 610.64 Track...

  3. Performance Evaluation of a UWB-RFID System for Potential Space Applications

    NASA Technical Reports Server (NTRS)

    Phan, Chan T.; Arndt, D.; Ngo, P.; Gross, J.; Ni, Jianjun; Rafford, Melinda

    2006-01-01

    This talk presents a brief overview of the ultra-wideband (UWB) RFID system with emphasis on the performance evaluation of a commercially available UWB-RFID system. There are many RFID systems available today, but many provide just basic identification for auditing and inventory tracking. For applications that require high precision real time tracking, UWB technology has been shown to be a viable solution. The use of extremely short bursts of RF pulses offers high immunity to interference from other RF systems, precise tracking due to sub-nanosecond time resolution, and robust performance in multipath environments. The UWB-RFID system Sapphire DART (Digital Active RFID & Tracking) will be introduced in this talk. Laboratory testing using Sapphire DART is performed to evaluate its capability such as coverage area, accuracy, ease of operation, and robustness. Performance evaluation of this system in an operational environment (a receiving warehouse) for inventory tracking is also conducted. Concepts of using the UWB-RFID technology to track astronauts and assets are being proposed for space exploration.

  4. The use of a tracking test battery in the quantitative evaluation of neurological function

    NASA Technical Reports Server (NTRS)

    Repa, B. S.

    1973-01-01

    A number of tracking tasks that have proven useful to control engineers and psychologists measuring skilled performance have been evaluated for clinical use. Normal subjects as well as patients with previous diagnoses of Parkinson's disease, multiple sclerosis, and cerebral palsy were used in the evaluation. The tests that were studied included step tracking, random tracking, and critical tracking. The results of the present experiments encourage the continued use of tracking tasks as assessment precedures in a clinical environment. They have proven to be reliable, valid, and sensitive measures of neurological function.

  5. Multithreaded hybrid feature tracking for markerless augmented reality.

    PubMed

    Lee, Taehee; Höllerer, Tobias

    2009-01-01

    We describe a novel markerless camera tracking approach and user interaction methodology for augmented reality (AR) on unprepared tabletop environments. We propose a real-time system architecture that combines two types of feature tracking. Distinctive image features of the scene are detected and tracked frame-to-frame by computing optical flow. In order to achieve real-time performance, multiple operations are processed in a synchronized multi-threaded manner: capturing a video frame, tracking features using optical flow, detecting distinctive invariant features, and rendering an output frame. We also introduce user interaction methodology for establishing a global coordinate system and for placing virtual objects in the AR environment by tracking a user's outstretched hand and estimating a camera pose relative to it. We evaluate the speed and accuracy of our hybrid feature tracking approach, and demonstrate a proof-of-concept application for enabling AR in unprepared tabletop environments, using bare hands for interaction.

  6. Research on simulation technology of full-path infrared tail flame tracking of photoelectric theodolite in complicated environment

    NASA Astrophysics Data System (ADS)

    Wu, Hai-ying; Zhang, San-xi; Liu, Biao; Yue, Peng; Weng, Ying-hui

    2018-02-01

    The photoelectric theodolite is an important scheme to realize the tracking, detection, quantitative measurement and performance evaluation of weapon systems in ordnance test range. With the improvement of stability requirements for target tracking in complex environment, infrared scene simulation with high sense of reality and complex interference has become an indispensable technical way to evaluate the track performance of photoelectric theodolite. And the tail flame is the most important infrared radiation source of the weapon system. The dynamic tail flame with high reality is a key element for the photoelectric theodolite infrared scene simulation and imaging tracking test. In this paper, an infrared simulation method for the full-path tracking of tail flame by photoelectric theodolite is proposed aiming at the faint boundary, irregular, multi-regulated points. In this work, real tail images are employed. Simultaneously, infrared texture conversion technology is used to generate DDS texture for a particle system map. Thus, dynamic real-time tail flame simulation results with high fidelity from the theodolite perspective can be gained in the tracking process.

  7. Electromagnetic tracking in the clinical environment

    PubMed Central

    Yaniv, Ziv; Wilson, Emmanuel; Lindisch, David; Cleary, Kevin

    2009-01-01

    When choosing an electromagnetic tracking system (EMTS) for image-guided procedures several factors must be taken into consideration. Among others these include the system’s refresh rate, the number of sensors that need to be tracked, the size of the navigated region, the system interaction with the environment, whether the sensors can be embedded into the tools and provide the desired transformation data, and tracking accuracy and robustness. To date, the only factors that have been studied extensively are the accuracy and the susceptibility of EMTSs to distortions caused by ferromagnetic materials. In this paper the authors shift the focus from analysis of system accuracy and stability to the broader set of factors influencing the utility of EMTS in the clinical environment. The authors provide an analysis based on all of the factors specified above, as assessed in three clinical environments. They evaluate two commercial tracking systems, the Aurora system from Northern Digital Inc., and the 3D Guidance system with three different field generators from Ascension Technology Corp. The authors show that these systems are applicable to specific procedures and specific environments, but that currently, no single system configuration provides a comprehensive solution across procedures and environments. PMID:19378748

  8. Robust 3D Position Estimation in Wide and Unconstrained Indoor Environments

    PubMed Central

    Mossel, Annette

    2015-01-01

    In this paper, a system for 3D position estimation in wide, unconstrained indoor environments is presented that employs infrared optical outside-in tracking of rigid-body targets with a stereo camera rig. To overcome limitations of state-of-the-art optical tracking systems, a pipeline for robust target identification and 3D point reconstruction has been investigated that enables camera calibration and tracking in environments with poor illumination, static and moving ambient light sources, occlusions and harsh conditions, such as fog. For evaluation, the system has been successfully applied in three different wide and unconstrained indoor environments, (1) user tracking for virtual and augmented reality applications, (2) handheld target tracking for tunneling and (3) machine guidance for mining. The results of each use case are discussed to embed the presented approach into a larger technological and application context. The experimental results demonstrate the system’s capabilities to track targets up to 100 m. Comparing the proposed approach to prior art in optical tracking in terms of range coverage and accuracy, it significantly extends the available tracking range, while only requiring two cameras and providing a relative 3D point accuracy with sub-centimeter deviation up to 30 m and low-centimeter deviation up to 100 m. PMID:26694388

  9. Large scale tracking algorithms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, Ross L.; Love, Joshua Alan; Melgaard, David Kennett

    2015-01-01

    Low signal-to-noise data processing algorithms for improved detection, tracking, discrimination and situational threat assessment are a key research challenge. As sensor technologies progress, the number of pixels will increase signi cantly. This will result in increased resolution, which could improve object discrimination, but unfortunately, will also result in a significant increase in the number of potential targets to track. Many tracking techniques, like multi-hypothesis trackers, suffer from a combinatorial explosion as the number of potential targets increase. As the resolution increases, the phenomenology applied towards detection algorithms also changes. For low resolution sensors, "blob" tracking is the norm. For highermore » resolution data, additional information may be employed in the detection and classfication steps. The most challenging scenarios are those where the targets cannot be fully resolved, yet must be tracked and distinguished for neighboring closely spaced objects. Tracking vehicles in an urban environment is an example of such a challenging scenario. This report evaluates several potential tracking algorithms for large-scale tracking in an urban environment.« less

  10. Real-time tracking of visually attended objects in virtual environments and its application to LOD.

    PubMed

    Lee, Sungkil; Kim, Gerard Jounghyun; Choi, Seungmoon

    2009-01-01

    This paper presents a real-time framework for computationally tracking objects visually attended by the user while navigating in interactive virtual environments. In addition to the conventional bottom-up (stimulus-driven) saliency map, the proposed framework uses top-down (goal-directed) contexts inferred from the user's spatial and temporal behaviors, and identifies the most plausibly attended objects among candidates in the object saliency map. The computational framework was implemented using GPU, exhibiting high computational performance adequate for interactive virtual environments. A user experiment was also conducted to evaluate the prediction accuracy of the tracking framework by comparing objects regarded as visually attended by the framework to actual human gaze collected with an eye tracker. The results indicated that the accuracy was in the level well supported by the theory of human cognition for visually identifying single and multiple attentive targets, especially owing to the addition of top-down contextual information. Finally, we demonstrate how the visual attention tracking framework can be applied to managing the level of details in virtual environments, without any hardware for head or eye tracking.

  11. Design and Performance Evaluation on Ultra-Wideband Time-Of-Arrival 3D Tracking System

    NASA Technical Reports Server (NTRS)

    Ni, Jianjun; Arndt, Dickey; Ngo, Phong; Dusl, John

    2012-01-01

    A three-dimensional (3D) Ultra-Wideband (UWB) Time--of-Arrival (TOA) tracking system has been studied at NASA Johnson Space Center (JSC) to provide the tracking capability inside the International Space Station (ISS) modules for various applications. One of applications is to locate and report the location where crew experienced possible high level of carbon-dioxide and felt upset. In order to accurately locate those places in a multipath intensive environment like ISS modules, it requires a robust real-time location system (RTLS) which can provide the required accuracy and update rate. A 3D UWB TOA tracking system with two-way ranging has been proposed and studied. The designed system will be tested in the Wireless Habitat Testbed which simulates the ISS module environment. In this presentation, we discuss the 3D TOA tracking algorithm and the performance evaluation based on different tracking baseline configurations. The simulation results show that two configurations of the tracking baseline are feasible. With 100 picoseconds standard deviation (STD) of TOA estimates, the average tracking error 0.2392 feet (about 7 centimeters) can be achieved for configuration Twisted Rectangle while the average tracking error 0.9183 feet (about 28 centimeters) can be achieved for configuration Slightly-Twisted Top Rectangle . The tracking accuracy can be further improved with the improvement of the STD of TOA estimates. With 10 picoseconds STD of TOA estimates, the average tracking error 0.0239 feet (less than 1 centimeter) can be achieved for configuration "Twisted Rectangle".

  12. Assessment of Driver's Reaction Times in Diverisified Research Environments

    NASA Astrophysics Data System (ADS)

    Guzek, Marek; Lozia, Zbigniew; Zdanowicz, Piotr; Jurecki, Rafał S.; Stańczyk, Tomasz L.; Pieniążek, Wiesław

    2012-06-01

    Reaction time is one of the basic parameters that characterize the driver and very important in the analysis of accident situations in road traffic. This paper describes research studies on the reaction time evaluation as conducted in three environments: on a typical device used in the transport psychology labs (the so-called reflexometer), in the driving simulator (autoPW) and on the driving test track (the Kielce Test Track). In all environments, the tests were performed for the same group of drivers. The article presents the characteristics of research in each environment as well as shows and compares exemplary results.

  13. Human emotions track changes in the acoustic environment.

    PubMed

    Ma, Weiyi; Thompson, William Forde

    2015-11-24

    Emotional responses to biologically significant events are essential for human survival. Do human emotions lawfully track changes in the acoustic environment? Here we report that changes in acoustic attributes that are well known to interact with human emotions in speech and music also trigger systematic emotional responses when they occur in environmental sounds, including sounds of human actions, animal calls, machinery, or natural phenomena, such as wind and rain. Three changes in acoustic attributes known to signal emotional states in speech and music were imposed upon 24 environmental sounds. Evaluations of stimuli indicated that human emotions track such changes in environmental sounds just as they do for speech and music. Such changes not only influenced evaluations of the sounds themselves, they also affected the way accompanying facial expressions were interpreted emotionally. The findings illustrate that human emotions are highly attuned to changes in the acoustic environment, and reignite a discussion of Charles Darwin's hypothesis that speech and music originated from a common emotional signal system based on the imitation and modification of environmental sounds.

  14. Fully distributed monitoring architecture supporting multiple trackees and trackers in indoor mobile asset management application.

    PubMed

    Jeong, Seol Young; Jo, Hyeong Gon; Kang, Soon Ju

    2014-03-21

    A tracking service like asset management is essential in a dynamic hospital environment consisting of numerous mobile assets (e.g., wheelchairs or infusion pumps) that are continuously relocated throughout a hospital. The tracking service is accomplished based on the key technologies of an indoor location-based service (LBS), such as locating and monitoring multiple mobile targets inside a building in real time. An indoor LBS such as a tracking service entails numerous resource lookups being requested concurrently and frequently from several locations, as well as a network infrastructure requiring support for high scalability in indoor environments. A traditional centralized architecture needs to maintain a geographic map of the entire building or complex in its central server, which can cause low scalability and traffic congestion. This paper presents a self-organizing and fully distributed indoor mobile asset management (MAM) platform, and proposes an architecture for multiple trackees (such as mobile assets) and trackers based on the proposed distributed platform in real time. In order to verify the suggested platform, scalability performance according to increases in the number of concurrent lookups was evaluated in a real test bed. Tracking latency and traffic load ratio in the proposed tracking architecture was also evaluated.

  15. Human emotions track changes in the acoustic environment

    PubMed Central

    Ma, Weiyi; Thompson, William Forde

    2015-01-01

    Emotional responses to biologically significant events are essential for human survival. Do human emotions lawfully track changes in the acoustic environment? Here we report that changes in acoustic attributes that are well known to interact with human emotions in speech and music also trigger systematic emotional responses when they occur in environmental sounds, including sounds of human actions, animal calls, machinery, or natural phenomena, such as wind and rain. Three changes in acoustic attributes known to signal emotional states in speech and music were imposed upon 24 environmental sounds. Evaluations of stimuli indicated that human emotions track such changes in environmental sounds just as they do for speech and music. Such changes not only influenced evaluations of the sounds themselves, they also affected the way accompanying facial expressions were interpreted emotionally. The findings illustrate that human emotions are highly attuned to changes in the acoustic environment, and reignite a discussion of Charles Darwin’s hypothesis that speech and music originated from a common emotional signal system based on the imitation and modification of environmental sounds. PMID:26553987

  16. Objective Fidelity Evaluation in Multisensory Virtual Environments: Auditory Cue Fidelity in Flight Simulation

    PubMed Central

    Meyer, Georg F.; Wong, Li Ting; Timson, Emma; Perfect, Philip; White, Mark D.

    2012-01-01

    We argue that objective fidelity evaluation of virtual environments, such as flight simulation, should be human-performance-centred and task-specific rather than measure the match between simulation and physical reality. We show how principled experimental paradigms and behavioural models to quantify human performance in simulated environments that have emerged from research in multisensory perception provide a framework for the objective evaluation of the contribution of individual cues to human performance measures of fidelity. We present three examples in a flight simulation environment as a case study: Experiment 1: Detection and categorisation of auditory and kinematic motion cues; Experiment 2: Performance evaluation in a target-tracking task; Experiment 3: Transferrable learning of auditory motion cues. We show how the contribution of individual cues to human performance can be robustly evaluated for each task and that the contribution is highly task dependent. The same auditory cues that can be discriminated and are optimally integrated in experiment 1, do not contribute to target-tracking performance in an in-flight refuelling simulation without training, experiment 2. In experiment 3, however, we demonstrate that the auditory cue leads to significant, transferrable, performance improvements with training. We conclude that objective fidelity evaluation requires a task-specific analysis of the contribution of individual cues. PMID:22957068

  17. Synthetic depth data creation for sensor setup planning and evaluation of multi-camera multi-person trackers

    NASA Astrophysics Data System (ADS)

    Pattke, Marco; Martin, Manuel; Voit, Michael

    2017-05-01

    Tracking people with cameras in public areas is common today. However with an increasing number of cameras it becomes harder and harder to view the data manually. Especially in safety critical areas automatic image exploitation could help to solve this problem. Setting up such a system can however be difficult because of its increased complexity. Sensor placement is critical to ensure that people are detected and tracked reliably. We try to solve this problem using a simulation framework that is able to simulate different camera setups in the desired environment including animated characters. We combine this framework with our self developed distributed and scalable system for people tracking to test its effectiveness and can show the results of the tracking system in real time in the simulated environment.

  18. Long-term soil monitoring at U.S. Geological Survey reference watersheds

    USGS Publications Warehouse

    McHale, Michael R.; Siemion, Jason; Lawrence, Gregory B.; Mast, M. Alisa

    2014-01-01

    Monitoring the environment by making repeated measurements through time is essential to evaluate and track the health of ecosystems (fig. 1). Long-term datasets produced by such monitoring are indispensable for evaluating the effectiveness of environmental legislation and for designing mitigation strategies to address environmental changes in an era when human activities are altering the environment locally and globally.

  19. Towards Kilo-Hertz 6-DoF Visual Tracking Using an Egocentric Cluster of Rolling Shutter Cameras.

    PubMed

    Bapat, Akash; Dunn, Enrique; Frahm, Jan-Michael

    2016-11-01

    To maintain a reliable registration of the virtual world with the real world, augmented reality (AR) applications require highly accurate, low-latency tracking of the device. In this paper, we propose a novel method for performing this fast 6-DOF head pose tracking using a cluster of rolling shutter cameras. The key idea is that a rolling shutter camera works by capturing the rows of an image in rapid succession, essentially acting as a high-frequency 1D image sensor. By integrating multiple rolling shutter cameras on the AR device, our tracker is able to perform 6-DOF markerless tracking in a static indoor environment with minimal latency. Compared to state-of-the-art tracking systems, this tracking approach performs at significantly higher frequency, and it works in generalized environments. To demonstrate the feasibility of our system, we present thorough evaluations on synthetically generated data with tracking frequencies reaching 56.7 kHz. We further validate the method's accuracy on real-world images collected from a prototype of our tracking system against ground truth data using standard commodity GoPro cameras capturing at 120 Hz frame rate.

  20. Intelligence-aided multitarget tracking for urban operations - a case study: counter terrorism

    NASA Astrophysics Data System (ADS)

    Sathyan, T.; Bharadwaj, K.; Sinha, A.; Kirubarajan, T.

    2006-05-01

    In this paper, we present a framework for tracking multiple mobile targets in an urban environment based on data from multiple sources of information, and for evaluating the threat these targets pose to assets of interest (AOI). The motivating scenario is one where we have to track many targets, each with different (unknown) destinations and/or intents. The tracking algorithm is aided by information about the urban environment (e.g., road maps, buildings, hideouts), and strategic and intelligence data. The tracking algorithm needs to be dynamic in that it has to handle a time-varying number of targets and the ever-changing urban environment depending on the locations of the moving objects and AOI. Our solution uses the variable structure interacting multiple model (VS-IMM) estimator, which has been shown to be effective in tracking targets based on road map information. Intelligence information is represented as target class information and incorporated through a combined likelihood calculation within the VS-IMM estimator. In addition, we develop a model to calculate the probability that a particular target can attack a given AOI. This model for the calculation of the probability of attack is based on the target kinematic and class information. Simulation results are presented to demonstrate the operation of the proposed framework on a representative scenario.

  1. An Experimental Evaluation of a Field Sobriety Test Battery in the Marine Environment

    DOT National Transportation Integrated Search

    1990-06-01

    This Report describes an investigation of the accuracy of a FST (Field Sobriety Test) : battery used in the marine environment. FSTs rely on the observation and measurement of : the effect of alcohol intoxication on coordination, visual tracking and ...

  2. Fully Distributed Monitoring Architecture Supporting Multiple Trackees and Trackers in Indoor Mobile Asset Management Application

    PubMed Central

    Jeong, Seol Young; Jo, Hyeong Gon; Kang, Soon Ju

    2014-01-01

    A tracking service like asset management is essential in a dynamic hospital environment consisting of numerous mobile assets (e.g., wheelchairs or infusion pumps) that are continuously relocated throughout a hospital. The tracking service is accomplished based on the key technologies of an indoor location-based service (LBS), such as locating and monitoring multiple mobile targets inside a building in real time. An indoor LBS such as a tracking service entails numerous resource lookups being requested concurrently and frequently from several locations, as well as a network infrastructure requiring support for high scalability in indoor environments. A traditional centralized architecture needs to maintain a geographic map of the entire building or complex in its central server, which can cause low scalability and traffic congestion. This paper presents a self-organizing and fully distributed indoor mobile asset management (MAM) platform, and proposes an architecture for multiple trackees (such as mobile assets) and trackers based on the proposed distributed platform in real time. In order to verify the suggested platform, scalability performance according to increases in the number of concurrent lookups was evaluated in a real test bed. Tracking latency and traffic load ratio in the proposed tracking architecture was also evaluated. PMID:24662407

  3. Boundary Avoidance Tracking for Instigating Pilot Induced Oscillations

    NASA Technical Reports Server (NTRS)

    Craun, Robert W.; Acosta, Diana M.; Beard, Steven D.; Hardy, Gordon H.; Leonard, Michael W.; Weinstein, Michael

    2013-01-01

    In order to advance research in the area of pilot induced oscillations, a reliable method to create PIOs in a simulated environment is necessary. Using a boundary avoidance tracking task, researchers performing an evaluation of control systems were able to create PIO events in 42% of cases using a nominal aircraft, and 91% of cases using an aircraft with reduced actuator rate limits. The simulator evaluation took place in the NASA Ames Vertical Motion Simulator, a high-fidelity motion-based simulation facility.

  4. Eye-tracking for clinical decision support: A method to capture automatically what physicians are viewing in the EMR.

    PubMed

    King, Andrew J; Hochheiser, Harry; Visweswaran, Shyam; Clermont, Gilles; Cooper, Gregory F

    2017-01-01

    Eye-tracking is a valuable research tool that is used in laboratory and limited field environments. We take steps toward developing methods that enable widespread adoption of eye-tracking and its real-time application in clinical decision support. Eye-tracking will enhance awareness and enable intelligent views, more precise alerts, and other forms of decision support in the Electronic Medical Record (EMR). We evaluated a low-cost eye-tracking device and found the device's accuracy to be non-inferior to a more expensive device. We also developed and evaluated an automatic method for mapping eye-tracking data to interface elements in the EMR (e.g., a displayed laboratory test value). Mapping was 88% accurate across the six participants in our experiment. Finally, we piloted the use of the low-cost device and the automatic mapping method to label training data for a Learning EMR (LEMR) which is a system that highlights the EMR elements a physician is predicted to use.

  5. Eye-tracking for clinical decision support: A method to capture automatically what physicians are viewing in the EMR

    PubMed Central

    King, Andrew J.; Hochheiser, Harry; Visweswaran, Shyam; Clermont, Gilles; Cooper, Gregory F.

    2017-01-01

    Eye-tracking is a valuable research tool that is used in laboratory and limited field environments. We take steps toward developing methods that enable widespread adoption of eye-tracking and its real-time application in clinical decision support. Eye-tracking will enhance awareness and enable intelligent views, more precise alerts, and other forms of decision support in the Electronic Medical Record (EMR). We evaluated a low-cost eye-tracking device and found the device’s accuracy to be non-inferior to a more expensive device. We also developed and evaluated an automatic method for mapping eye-tracking data to interface elements in the EMR (e.g., a displayed laboratory test value). Mapping was 88% accurate across the six participants in our experiment. Finally, we piloted the use of the low-cost device and the automatic mapping method to label training data for a Learning EMR (LEMR) which is a system that highlights the EMR elements a physician is predicted to use. PMID:28815151

  6. Integration of Irma tactical scene generator into directed-energy weapon system simulation

    NASA Astrophysics Data System (ADS)

    Owens, Monte A.; Cole, Madison B., III; Laine, Mark R.

    2003-08-01

    Integrated high-fidelity physics-based simulations that include engagement models, image generation, electro-optical hardware models and control system algorithms have previously been developed by Boeing-SVS for various tracking and pointing systems. These simulations, however, had always used images with featureless or random backgrounds and simple target geometries. With the requirement to engage tactical ground targets in the presence of cluttered backgrounds, a new type of scene generation tool was required to fully evaluate system performance in this challenging environment. To answer this need, Irma was integrated into the existing suite of Boeing-SVS simulation tools, allowing scene generation capabilities with unprecedented realism. Irma is a US Air Force research tool used for high-resolution rendering and prediction of target and background signatures. The MATLAB/Simulink-based simulation achieves closed-loop tracking by running track algorithms on the Irma-generated images, processing the track errors through optical control algorithms, and moving simulated electro-optical elements. The geometry of these elements determines the sensor orientation with respect to the Irma database containing the three-dimensional background and target models. This orientation is dynamically passed to Irma through a Simulink S-function to generate the next image. This integrated simulation provides a test-bed for development and evaluation of tracking and control algorithms against representative images including complex background environments and realistic targets calibrated using field measurements.

  7. Laser Spot Tracking Based on Modified Circular Hough Transform and Motion Pattern Analysis

    PubMed Central

    Krstinić, Damir; Skelin, Ana Kuzmanić; Milatić, Ivan

    2014-01-01

    Laser pointers are one of the most widely used interactive and pointing devices in different human-computer interaction systems. Existing approaches to vision-based laser spot tracking are designed for controlled indoor environments with the main assumption that the laser spot is very bright, if not the brightest, spot in images. In this work, we are interested in developing a method for an outdoor, open-space environment, which could be implemented on embedded devices with limited computational resources. Under these circumstances, none of the assumptions of existing methods for laser spot tracking can be applied, yet a novel and fast method with robust performance is required. Throughout the paper, we will propose and evaluate an efficient method based on modified circular Hough transform and Lucas–Kanade motion analysis. Encouraging results on a representative dataset demonstrate the potential of our method in an uncontrolled outdoor environment, while achieving maximal accuracy indoors. Our dataset and ground truth data are made publicly available for further development. PMID:25350502

  8. Laser spot tracking based on modified circular Hough transform and motion pattern analysis.

    PubMed

    Krstinić, Damir; Skelin, Ana Kuzmanić; Milatić, Ivan

    2014-10-27

    Laser pointers are one of the most widely used interactive and pointing devices in different human-computer interaction systems. Existing approaches to vision-based laser spot tracking are designed for controlled indoor environments with the main assumption that the laser spot is very bright, if not the brightest, spot in images. In this work, we are interested in developing a method for an outdoor, open-space environment, which could be implemented on embedded devices with limited computational resources. Under these circumstances, none of the assumptions of existing methods for laser spot tracking can be applied, yet a novel and fast method with robust performance is required. Throughout the paper, we will propose and evaluate an efficient method based on modified circular Hough transform and Lucas-Kanade motion analysis. Encouraging results on a representative dataset demonstrate the potential of our method in an uncontrolled outdoor environment, while achieving maximal accuracy indoors. Our dataset and ground truth data are made publicly available for further development.

  9. Robust pedestrian detection and tracking from a moving vehicle

    NASA Astrophysics Data System (ADS)

    Tuong, Nguyen Xuan; Müller, Thomas; Knoll, Alois

    2011-01-01

    In this paper, we address the problem of multi-person detection, tracking and distance estimation in a complex scenario using multi-cameras. Specifically, we are interested in a vision system for supporting the driver in avoiding any unwanted collision with the pedestrian. We propose an approach using Histograms of Oriented Gradients (HOG) to detect pedestrians on static images and a particle filter as a robust tracking technique to follow targets from frame to frame. Because the depth map requires expensive computation, we extract depth information of targets using Direct Linear Transformation (DLT) to reconstruct 3D-coordinates of correspondent points found by running Speeded Up Robust Features (SURF) on two input images. Using the particle filter the proposed tracker can efficiently handle target occlusions in a simple background environment. However, to achieve reliable performance in complex scenarios with frequent target occlusions and complex cluttered background, results from the detection module are integrated to create feedback and recover the tracker from tracking failures due to the complexity of the environment and target appearance model variability. The proposed approach is evaluated on different data sets both in a simple background scenario and a cluttered background environment. The result shows that, by integrating detector and tracker, a reliable and stable performance is possible even if occlusion occurs frequently in highly complex environment. A vision-based collision avoidance system for an intelligent car, as a result, can be achieved.

  10. Low-Latency Line Tracking Using Event-Based Dynamic Vision Sensors

    PubMed Central

    Everding, Lukas; Conradt, Jörg

    2018-01-01

    In order to safely navigate and orient in their local surroundings autonomous systems need to rapidly extract and persistently track visual features from the environment. While there are many algorithms tackling those tasks for traditional frame-based cameras, these have to deal with the fact that conventional cameras sample their environment with a fixed frequency. Most prominently, the same features have to be found in consecutive frames and corresponding features then need to be matched using elaborate techniques as any information between the two frames is lost. We introduce a novel method to detect and track line structures in data streams of event-based silicon retinae [also known as dynamic vision sensors (DVS)]. In contrast to conventional cameras, these biologically inspired sensors generate a quasicontinuous stream of vision information analogous to the information stream created by the ganglion cells in mammal retinae. All pixels of DVS operate asynchronously without a periodic sampling rate and emit a so-called DVS address event as soon as they perceive a luminance change exceeding an adjustable threshold. We use the high temporal resolution achieved by the DVS to track features continuously through time instead of only at fixed points in time. The focus of this work lies on tracking lines in a mostly static environment which is observed by a moving camera, a typical setting in mobile robotics. Since DVS events are mostly generated at object boundaries and edges which in man-made environments often form lines they were chosen as feature to track. Our method is based on detecting planes of DVS address events in x-y-t-space and tracing these planes through time. It is robust against noise and runs in real time on a standard computer, hence it is suitable for low latency robotics. The efficacy and performance are evaluated on real-world data sets which show artificial structures in an office-building using event data for tracking and frame data for ground-truth estimation from a DAVIS240C sensor. PMID:29515386

  11. Optimization of MLS receivers for multipath environments

    NASA Technical Reports Server (NTRS)

    Mcalpine, G. A.; Highfill, J. H., III

    1979-01-01

    The angle tracking problems in microwave landing system receivers along with a receiver design capable of optimal performance in the multipath environments found in air terminal areas were studied. Included were various theoretical and evaluative studies like: (1) signal model development; (2) derivation of optimal receiver structures; and (3) development and use of computer simulations for receiver algorithm evaluation. The development of an experimental receiver for flight testing is presented. An overview of the work and summary of principal results and conclusions are reported.

  12. Fusion-based multi-target tracking and localization for intelligent surveillance systems

    NASA Astrophysics Data System (ADS)

    Rababaah, Haroun; Shirkhodaie, Amir

    2008-04-01

    In this paper, we have presented two approaches addressing visual target tracking and localization in complex urban environment. The two techniques presented in this paper are: fusion-based multi-target visual tracking, and multi-target localization via camera calibration. For multi-target tracking, the data fusion concepts of hypothesis generation/evaluation/selection, target-to-target registration, and association are employed. An association matrix is implemented using RGB histograms for associated tracking of multi-targets of interests. Motion segmentation of targets of interest (TOI) from the background was achieved by a Gaussian Mixture Model. Foreground segmentation, on other hand, was achieved by the Connected Components Analysis (CCA) technique. The tracking of individual targets was estimated by fusing two sources of information, the centroid with the spatial gating, and the RGB histogram association matrix. The localization problem is addressed through an effective camera calibration technique using edge modeling for grid mapping (EMGM). A two-stage image pixel to world coordinates mapping technique is introduced that performs coarse and fine location estimation of moving TOIs. In coarse estimation, an approximate neighborhood of the target position is estimated based on nearest 4-neighbor method, and in fine estimation, we use Euclidean interpolation to localize the position within the estimated four neighbors. Both techniques were tested and shown reliable results for tracking and localization of Targets of interests in complex urban environment.

  13. Tracked robot controllers for climbing obstacles autonomously

    NASA Astrophysics Data System (ADS)

    Vincent, Isabelle

    2009-05-01

    Research in mobile robot navigation has demonstrated some success in navigating flat indoor environments while avoiding obstacles. However, the challenge of analyzing complex environments to climb obstacles autonomously has had very little success due to the complexity of the task. Unmanned ground vehicles currently exhibit simple autonomous behaviours compared to the human ability to move in the world. This paper presents the control algorithms designed for a tracked mobile robot to autonomously climb obstacles by varying its tracks configuration. Two control algorithms are proposed to solve the autonomous locomotion problem for climbing obstacles. First, a reactive controller evaluates the appropriate geometric configuration based on terrain and vehicle geometric considerations. Then, a reinforcement learning algorithm finds alternative solutions when the reactive controller gets stuck while climbing an obstacle. The methodology combines reactivity to learning. The controllers have been demonstrated in box and stair climbing simulations. The experiments illustrate the effectiveness of the proposed approach for crossing obstacles.

  14. Multi-modal imaging, model-based tracking, and mixed reality visualisation for orthopaedic surgery

    PubMed Central

    Fuerst, Bernhard; Tateno, Keisuke; Johnson, Alex; Fotouhi, Javad; Osgood, Greg; Tombari, Federico; Navab, Nassir

    2017-01-01

    Orthopaedic surgeons are still following the decades old workflow of using dozens of two-dimensional fluoroscopic images to drill through complex 3D structures, e.g. pelvis. This Letter presents a mixed reality support system, which incorporates multi-modal data fusion and model-based surgical tool tracking for creating a mixed reality environment supporting screw placement in orthopaedic surgery. A red–green–blue–depth camera is rigidly attached to a mobile C-arm and is calibrated to the cone-beam computed tomography (CBCT) imaging space via iterative closest point algorithm. This allows real-time automatic fusion of reconstructed surface and/or 3D point clouds and synthetic fluoroscopic images obtained through CBCT imaging. An adapted 3D model-based tracking algorithm with automatic tool segmentation allows for tracking of the surgical tools occluded by hand. This proposed interactive 3D mixed reality environment provides an intuitive understanding of the surgical site and supports surgeons in quickly localising the entry point and orienting the surgical tool during screw placement. The authors validate the augmentation by measuring target registration error and also evaluate the tracking accuracy in the presence of partial occlusion. PMID:29184659

  15. Evaluation of longitudinal tracking and data mining for an imaging informatics-based multiple sclerosis e-folder (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Ma, Kevin C.; Forsyth, Sydney; Amezcua, Lilyana; Liu, Brent J.

    2017-03-01

    We have designed and developed a multiple sclerosis eFolder system for patient data storage, image viewing, and automatic lesion quantification results to allow patient tracking. The web-based system aims to be integrated in DICOM-compliant clinical and research environments to aid clinicians in patient treatments and data analysis. The system quantifies lesion volumes, identify and register lesion locations to track shifts in volume and quantity of lesions in a longitudinal study. We aim to evaluate the two most important features of the system, data mining and longitudinal lesion tracking, to demonstrate the MS eFolder's capability in improving clinical workflow efficiency and outcome analysis for research. In order to evaluate data mining capabilities, we have collected radiological and neurological data from 72 patients, 36 Caucasian and 36 Hispanic matched by gender, disease duration, and age. Data analysis on those patients based on ethnicity is performed, and analysis results are displayed by the system's web-based user interface. The data mining module is able to successfully separate Hispanic and Caucasian patients and compare their disease profiles. For longitudinal lesion tracking, we have collected 4 longitudinal cases and simulated different lesion growths over the next year. As a result, the eFolder is able to detect changes in lesion volume and identifying lesions with the most changes. Data mining and lesion tracking evaluation results show high potential of eFolder's usefulness in patientcare and informatics research for multiple sclerosis.

  16. Efficient physics-based tracking of heart surface motion for beating heart surgery robotic systems.

    PubMed

    Bogatyrenko, Evgeniya; Pompey, Pascal; Hanebeck, Uwe D

    2011-05-01

    Tracking of beating heart motion in a robotic surgery system is required for complex cardiovascular interventions. A heart surface motion tracking method is developed, including a stochastic physics-based heart surface model and an efficient reconstruction algorithm. The algorithm uses the constraints provided by the model that exploits the physical characteristics of the heart. The main advantage of the model is that it is more realistic than most standard heart models. Additionally, no explicit matching between the measurements and the model is required. The application of meshless methods significantly reduces the complexity of physics-based tracking. Based on the stochastic physical model of the heart surface, this approach considers the motion of the intervention area and is robust to occlusions and reflections. The tracking algorithm is evaluated in simulations and experiments on an artificial heart. Providing higher accuracy than the standard model-based methods, it successfully copes with occlusions and provides high performance even when all measurements are not available. Combining the physical and stochastic description of the heart surface motion ensures physically correct and accurate prediction. Automatic initialization of the physics-based cardiac motion tracking enables system evaluation in a clinical environment.

  17. Towards Adaptive Open Learning Environments: Evaluating the Precision of Identifying Learning Styles by Tracking Learners' Behaviours

    ERIC Educational Resources Information Center

    Fasihuddin, Heba; Skinner, Geoff; Athauda, Rukshan

    2017-01-01

    Open learning represents a new form of online learning where courses are provided freely online for large numbers of learners. MOOCs are examples of this form of learning. The authors see an opportunity for personalising open learning environments by adapting to learners' learning styles and providing adaptive support to meet individual learner…

  18. An Operator Perspective from a Facility Evaluation of an RFID-Based UF6 Cylinder Accounting and Tracking System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martyn, Rose; Fitzgerald, Peter; Stehle, Nicholas D

    An operational field test of a Radio-Frequency Identification (RFID) system for tracking and accounting UF6 cylinders was conducted at the Global Nuclear Fuel Americas (GNF) fuel fabrication plant in 2009. The Cylinder Accountability and Tracking System (CATS) was designed and deployed by Oak Ridge National Laboratory (ORNL) and evaluated in cooperation with GNF. The system required that passive RFID be attached to several UF6 30B cylinders as they were received at the site; then the cylinders were tracked as they proceeded to interim storage, to processing in an autoclave, and eventually to disposition from the site. This CATS deployment alsomore » provided a direct integration of scale data from the site accountability scales. The integration of this information into the tracking data provided an attribute for additional safeguards for evaluation. The field test provided insight into the advantages and challenges of using RFID at an operating nuclear facility. The RFID system allowed operators to interact with the technology and demonstrated the survivability of the tags and reader equipment in the process environment. This paper will provide the operator perspective on utilizing RFID technology for locating cylinders within the facility, thereby tracking the cylinders for process and for Material Control & Accounting functions. The paper also will present the operator viewpoint on RFID implemented as an independent safeguards system.« less

  19. Tracking fluid-borne odors in diverse and dynamic environments using multiple sensory mechanisms

    NASA Astrophysics Data System (ADS)

    Taylor, Brian Kyle

    The ability to locate odor sources in different types of environments (i.e. diverse) and environments that change radically during the mission (i.e., dynamic) is essential. While many engineered odor tracking systems have been developed, they appear to be designed for a particular environment (e.g., strong or low flow). In field conditions, agents may encounter both. Insect olfactory orientation studies show that several animals can locate odor sources in both high and low flow environments, and environments where the wind vanishes during tracking behavior. Furthermore, animals use multi-modal sensing, including olfaction, vision and touch to localize a source. This work uses simulated and hardware environments to explore how engineered systems can maintain wind-driven tracking behavior in diverse and dynamic environments. The simulation uses olfaction, vision and tactile attributes to track and localize a source in the following environments: high flow, low flow, and transition from high to low flow (i.e., Wind Stop). The hardware platform tests two disparate tracking strategies (including the simulated strategy) in an environment that transitions from strong to low flow. Results indicate that using a remembered wind direction post wind-shutoff is a viable way to maintain wind-driven tracking behavior in a wind stop environment, which can help bridge the gap between high flow and low flow strategies. Also, multi-modal sensing with tactile attributes, vision and olfaction helps a vehicle to localize a source. In addition to engineered systems, the moth Manduca sexta is challenged to track in the following environments: Wind and Odor, Wind Stop, Odor and No Wind, No Odor and No Wind to gain a better understanding of animal behavior in these environments. Results show that contrary to previous studies of different moth species, M. sexta does not generally maintain its wind-driven tracking behavior post-wind shutoff, but instead executes a stereotyped sequence of maneuvers followed by odor-modulated undirected exploration of its environment. In the Odor and No Wind environment, animals become biased towards the area of the arena where odor is located compared to the No Odor and No Wind environment. Robot and animal results are compared to learn more about both.

  20. Geomorphic and biophysical factors affecting water tracks in northern Alaska

    NASA Astrophysics Data System (ADS)

    Trochim, E. D.; Jorgenson, M. T.; Prakash, A.; Kane, D. L.

    2016-03-01

    A better understanding of water movement on hillslopes in Arctic environments is necessary for evaluating the effects of climate variability. Drainage networks include a range of features that vary in transport capacity from rills to water tracks to rivers. This research focuses on describing and classifying water tracks, which are saturated linear-curvilinear stripes that act as first-order pathways for transporting water off of hillslopes into valley bottoms and streams. Multiple factor analysis was used to develop five water tracks classes based on their geomorphic, soil, and vegetation characteristics. The water track classes were then validated using conditional inference trees, to verify that the classes were repeatable. Analysis of the classes and their characteristics indicate that water tracks cover a broad spectrum of patterns and processes primarily driven by surficial geology. This research demonstrates an improved approach to quantifying water track characteristics for specific areas, which is a major step toward understanding hydrological processes and feedbacks within a region.

  1. Feasibility study of using the RoboEarth cloud engine for rapid mapping and tracking with small unmanned aerial systems

    NASA Astrophysics Data System (ADS)

    Li-Chee-Ming, J.; Armenakis, C.

    2014-11-01

    This paper presents the ongoing development of a small unmanned aerial mapping system (sUAMS) that in the future will track its trajectory and perform 3D mapping in near-real time. As both mapping and tracking algorithms require powerful computational capabilities and large data storage facilities, we propose to use the RoboEarth Cloud Engine (RCE) to offload heavy computation and store data to secure computing environments in the cloud. While the RCE's capabilities have been demonstrated with terrestrial robots in indoor environments, this paper explores the feasibility of using the RCE in mapping and tracking applications in outdoor environments by small UAMS. The experiments presented in this work assess the data processing strategies and evaluate the attainable tracking and mapping accuracies using the data obtained by the sUAMS. Testing was performed with an Aeryon Scout quadcopter. It flew over York University, up to approximately 40 metres above the ground. The quadcopter was equipped with a single-frequency GPS receiver providing positioning to about 3 meter accuracies, an AHRS (Attitude and Heading Reference System) estimating the attitude to about 3 degrees, and an FPV (First Person Viewing) camera. Video images captured from the onboard camera were processed using VisualSFM and SURE, which are being reformed as an Application-as-a-Service via the RCE. The 3D virtual building model of York University was used as a known environment to georeference the point cloud generated from the sUAMS' sensor data. The estimated position and orientation parameters of the video camera show increases in accuracy when compared to the sUAMS' autopilot solution, derived from the onboard GPS and AHRS. The paper presents the proposed approach and the results, along with their accuracies.

  2. Quadrotor trajectory tracking using PID cascade control

    NASA Astrophysics Data System (ADS)

    Idres, M.; Mustapha, O.; Okasha, M.

    2017-12-01

    Quadrotors have been applied to collect information for traffic, weather monitoring, surveillance and aerial photography. In order to accomplish their mission, quadrotors have to follow specific trajectories. This paper presents proportional-integral-derivative (PID) cascade control of a quadrotor for path tracking problem when velocity and acceleration are small. It is based on near hover controller for small attitude angles. The integral of time-weighted absolute error (ITAE) criterion is used to determine the PID gains as a function of quadrotor modeling parameters. The controller is evaluated in three-dimensional environment in Simulink. Overall, the tracking performance is found to be excellent for small velocity condition.

  3. The DOE ETV-1 Electric Test Vehicle. Phase 3: Performance Testing and system evaluation

    NASA Technical Reports Server (NTRS)

    Kurtz, D.

    1981-01-01

    Engineering tests were conducted in order to characterize overall system performance and component efficiencies within the system environment. A dynamometer was used in order to minimize the ambient effects and large uncertainties present in track testing. Extensive test requirements were defined and procedures were carefully controlled in order to maintain a high degree of credibility. Limited track testing was performed in order to corroborate the dynamometer results. Test results include an energy flow analysis through the major subsystems and incorporate the aerodynamic and rolling losses under cyclic and various steady speed conditions. The major output from all relevant dynamometer and track tests is also included.

  4. Fast Markerless Tracking for Augmented Reality in Planar Environment

    NASA Astrophysics Data System (ADS)

    Basori, Ahmad Hoirul; Afif, Fadhil Noer; Almazyad, Abdulaziz S.; AbuJabal, Hamza Ali S.; Rehman, Amjad; Alkawaz, Mohammed Hazim

    2015-12-01

    Markerless tracking for augmented reality should not only be accurate but also fast enough to provide a seamless synchronization between real and virtual beings. Current reported methods showed that a vision-based tracking is accurate but requires high computational power. This paper proposes a real-time hybrid-based method for tracking unknown environments in markerless augmented reality. The proposed method provides collaboration of vision-based approach with accelerometers and gyroscopes sensors as camera pose predictor. To align the augmentation relative to camera motion, the tracking method is done by substituting feature-based camera estimation with combination of inertial sensors with complementary filter to provide more dynamic response. The proposed method managed to track unknown environment with faster processing time compared to available feature-based approaches. Moreover, the proposed method can sustain its estimation in a situation where feature-based tracking loses its track. The collaboration of sensor tracking managed to perform the task for about 22.97 FPS, up to five times faster than feature-based tracking method used as comparison. Therefore, the proposed method can be used to track unknown environments without depending on amount of features on scene, while requiring lower computational cost.

  5. 40 CFR 73.30 - Allowance tracking system accounts.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 16 2011-07-01 2011-07-01 false Allowance tracking system accounts. 73.30 Section 73.30 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) SULFUR DIOXIDE ALLOWANCE SYSTEM Allowance Tracking System § 73.30 Allowance tracking system...

  6. 40 CFR 73.30 - Allowance tracking system accounts.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false Allowance tracking system accounts. 73.30 Section 73.30 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) SULFUR DIOXIDE ALLOWANCE SYSTEM Allowance Tracking System § 73.30 Allowance tracking system...

  7. Evaluation of a Pilot Surveillance System: Health and Environment Linked for Information Exchange in Atlanta (HELIX-Atlanta)

    NASA Technical Reports Server (NTRS)

    Meyer, P.; Shire, J.; Qualters, Judy; Daley, Randolph; Fiero, Leslie Todorov; Autry, Andy; Avchen, Rachel; Stock, Allison; Correa, Adolofo; Siffel, Csaba; hide

    2007-01-01

    CDC and its partners established the Health and Environment Linked for Information Exchange, Atlanta (HELIX-Atlanta) demonstration project, to develop linking and analysis methods that could be used by the National Environmental Public Health Tracking (EPHT) Network. Initiated in October 2003, the Metropolitan Atlanta-based collaborative conducted four projects: asthma and particulate air pollution, birth defects and ozone and particulate air pollution, childhood leukemia and traffic emissions, and children's blood lead testing and neighborhood risk factors for lead poisoning. This report provides an overview of the HELIX-Atlanta projects' goals, methods and outcomes. We discuss priority attributes and common issues and challenges and offer recommendations for implementation of the nascent national environmental public health tracking network.

  8. Towards Gesture-Based Multi-User Interactions in Collaborative Virtual Environments

    NASA Astrophysics Data System (ADS)

    Pretto, N.; Poiesi, F.

    2017-11-01

    We present a virtual reality (VR) setup that enables multiple users to participate in collaborative virtual environments and interact via gestures. A collaborative VR session is established through a network of users that is composed of a server and a set of clients. The server manages the communication amongst clients and is created by one of the users. Each user's VR setup consists of a Head Mounted Display (HMD) for immersive visualisation, a hand tracking system to interact with virtual objects and a single-hand joypad to move in the virtual environment. We use Google Cardboard as a HMD for the VR experience and a Leap Motion for hand tracking, thus making our solution low cost. We evaluate our VR setup though a forensics use case, where real-world objects pertaining to a simulated crime scene are included in a VR environment, acquired using a smartphone-based 3D reconstruction pipeline. Users can interact using virtual gesture-based tools such as pointers and rulers.

  9. Track-to-track association for object matching in an inter-vehicle communication system

    NASA Astrophysics Data System (ADS)

    Yuan, Ting; Roth, Tobias; Chen, Qi; Breu, Jakob; Bogdanovic, Miro; Weiss, Christian A.

    2015-09-01

    Autonomous driving poses unique challenges for vehicle environment perception due to the complex driving environment the autonomous vehicle finds itself in and differentiates from remote vehicles. Due to inherent uncertainty of the traffic environments and incomplete knowledge due to sensor limitation, an autonomous driving system using only local onboard sensor information is generally not sufficiently enough for conducting a reliable intelligent driving with guaranteed safety. In order to overcome limitations of the local (host) vehicle sensing system and to increase the likelihood of correct detections and classifications, collaborative information from cooperative remote vehicles could substantially facilitate effectiveness of vehicle decision making process. Dedicated Short Range Communication (DSRC) system provides a powerful inter-vehicle wireless communication channel to enhance host vehicle environment perceiving capability with the aid of transmitted information from remote vehicles. However, there is a major challenge before one can fuse the DSRC-transmitted remote information and host vehicle Radar-observed information (in the present case): the remote DRSC data must be correctly associated with the corresponding onboard Radar data; namely, an object matching problem. Direct raw data association (i.e., measurement-to-measurement association - M2MA) is straightforward but error-prone, due to inherent uncertain nature of the observation data. The uncertainties could lead to serious difficulty in matching decision, especially, using non-stationary data. In this study, we present an object matching algorithm based on track-to-track association (T2TA) and evaluate the proposed approach with prototype vehicles in real traffic scenarios. To fully exploit potential of the DSRC system, only GPS position data from remote vehicle are used in fusion center (at host vehicle), i.e., we try to get what we need from the least amount of information; additional feature information can help the data association but are not currently considered. Comparing to M2MA, benefits of the T2TA object matching approach are: i) tracks taking into account important statistical information can provide more reliable inference results; ii) the track-formed smoothed trajectories can be used for an easier shape matching; iii) each local vehicle can design its own tracker and sends only tracks to fusion center to alleviate communication constraints. A real traffic study with different driving environments, based on a statistical hypothesis test, shows promising object matching results of significant practical implications.

  10. 40 CFR 97.50 - NOX Allowance Tracking System accounts.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 21 2011-07-01 2011-07-01 false NOX Allowance Tracking System accounts. 97.50 Section 97.50 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Tracking System § 97.50 NOX Allowance Tracking System accounts. (a) Nature and function of compliance...

  11. 40 CFR 97.50 - NOX Allowance Tracking System accounts.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false NOX Allowance Tracking System accounts. 97.50 Section 97.50 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Tracking System § 97.50 NOX Allowance Tracking System accounts. (a) Nature and function of compliance...

  12. Human-like object tracking and gaze estimation with PKD android

    PubMed Central

    Wijayasinghe, Indika B.; Miller, Haylie L.; Das, Sumit K; Bugnariu, Nicoleta L.; Popa, Dan O.

    2018-01-01

    As the use of robots increases for tasks that require human-robot interactions, it is vital that robots exhibit and understand human-like cues for effective communication. In this paper, we describe the implementation of object tracking capability on Philip K. Dick (PKD) android and a gaze tracking algorithm, both of which further robot capabilities with regard to human communication. PKD's ability to track objects with human-like head postures is achieved with visual feedback from a Kinect system and an eye camera. The goal of object tracking with human-like gestures is twofold : to facilitate better human-robot interactions and to enable PKD as a human gaze emulator for future studies. The gaze tracking system employs a mobile eye tracking system (ETG; SensoMotoric Instruments) and a motion capture system (Cortex; Motion Analysis Corp.) for tracking the head orientations. Objects to be tracked are displayed by a virtual reality system, the Computer Assisted Rehabilitation Environment (CAREN; MotekForce Link). The gaze tracking algorithm converts eye tracking data and head orientations to gaze information facilitating two objectives: to evaluate the performance of the object tracking system for PKD and to use the gaze information to predict the intentions of the user, enabling the robot to understand physical cues by humans. PMID:29416193

  13. Ultra-Wideband Tracking System Design for Relative Navigation

    NASA Technical Reports Server (NTRS)

    Ni, Jianjun David; Arndt, Dickey; Bgo, Phong; Dekome, Kent; Dusl, John

    2011-01-01

    This presentation briefly discusses a design effort for a prototype ultra-wideband (UWB) time-difference-of-arrival (TDOA) tracking system that is currently under development at NASA Johnson Space Center (JSC). The system is being designed for use in localization and navigation of a rover in a GPS deprived environment for surface missions. In one application enabled by the UWB tracking, a robotic vehicle carrying equipments can autonomously follow a crewed rover from work site to work site such that resources can be carried from one landing mission to the next thereby saving up-mass. The UWB Systems Group at JSC has developed a UWB TDOA High Resolution Proximity Tracking System which can achieve sub-inch tracking accuracy of a target within the radius of the tracking baseline [1]. By extending the tracking capability beyond the radius of the tracking baseline, a tracking system is being designed to enable relative navigation between two vehicles for surface missions. A prototype UWB TDOA tracking system has been designed, implemented, tested, and proven feasible for relative navigation of robotic vehicles. Future work includes testing the system with the application code to increase the tracking update rate and evaluating the linear tracking baseline to improve the flexibility of antenna mounting on the following vehicle.

  14. Human-like object tracking and gaze estimation with PKD android

    NASA Astrophysics Data System (ADS)

    Wijayasinghe, Indika B.; Miller, Haylie L.; Das, Sumit K.; Bugnariu, Nicoleta L.; Popa, Dan O.

    2016-05-01

    As the use of robots increases for tasks that require human-robot interactions, it is vital that robots exhibit and understand human-like cues for effective communication. In this paper, we describe the implementation of object tracking capability on Philip K. Dick (PKD) android and a gaze tracking algorithm, both of which further robot capabilities with regard to human communication. PKD's ability to track objects with human-like head postures is achieved with visual feedback from a Kinect system and an eye camera. The goal of object tracking with human-like gestures is twofold: to facilitate better human-robot interactions and to enable PKD as a human gaze emulator for future studies. The gaze tracking system employs a mobile eye tracking system (ETG; SensoMotoric Instruments) and a motion capture system (Cortex; Motion Analysis Corp.) for tracking the head orientations. Objects to be tracked are displayed by a virtual reality system, the Computer Assisted Rehabilitation Environment (CAREN; MotekForce Link). The gaze tracking algorithm converts eye tracking data and head orientations to gaze information facilitating two objectives: to evaluate the performance of the object tracking system for PKD and to use the gaze information to predict the intentions of the user, enabling the robot to understand physical cues by humans.

  15. 40 CFR 96.50 - NOX Allowance Tracking System accounts.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 21 2011-07-01 2011-07-01 false NOX Allowance Tracking System accounts. 96.50 Section 96.50 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... IMPLEMENTATION PLANS NOX Allowance Tracking System § 96.50 NOX Allowance Tracking System accounts. (a) Nature and...

  16. 40 CFR 96.50 - NOX Allowance Tracking System accounts.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false NOX Allowance Tracking System accounts. 96.50 Section 96.50 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... IMPLEMENTATION PLANS NOX Allowance Tracking System § 96.50 NOX Allowance Tracking System accounts. (a) Nature and...

  17. On the Impact of Localization and Density Control Algorithms in Target Tracking Applications for Wireless Sensor Networks

    PubMed Central

    Campos, Andre N.; Souza, Efren L.; Nakamura, Fabiola G.; Nakamura, Eduardo F.; Rodrigues, Joel J. P. C.

    2012-01-01

    Target tracking is an important application of wireless sensor networks. The networks' ability to locate and track an object is directed linked to the nodes' ability to locate themselves. Consequently, localization systems are essential for target tracking applications. In addition, sensor networks are often deployed in remote or hostile environments. Therefore, density control algorithms are used to increase network lifetime while maintaining its sensing capabilities. In this work, we analyze the impact of localization algorithms (RPE and DPE) and density control algorithms (GAF, A3 and OGDC) on target tracking applications. We adapt the density control algorithms to address the k-coverage problem. In addition, we analyze the impact of network density, residual integration with density control, and k-coverage on both target tracking accuracy and network lifetime. Our results show that DPE is a better choice for target tracking applications than RPE. Moreover, among the evaluated density control algorithms, OGDC is the best option among the three. Although the choice of the density control algorithm has little impact on the tracking precision, OGDC outperforms GAF and A3 in terms of tracking time. PMID:22969329

  18. Walking simulator for evaluation of ophthalmic devices

    NASA Astrophysics Data System (ADS)

    Barabas, James; Woods, Russell L.; Peli, Eli

    2005-03-01

    Simulating mobility tasks in a virtual environment reduces risk for research subjects, and allows for improved experimental control and measurement. We are currently using a simulated shopping mall environment (where subjects walk on a treadmill in front of a large projected video display) to evaluate a number of ophthalmic devices developed at the Schepens Eye Research Institute for people with vision impairment, particularly visual field defects. We have conducted experiments to study subject's perception of "safe passing distance" when walking towards stationary obstacles. The subject's binary responses about potential collisions are analyzed by fitting a psychometric function, which gives an estimate of the subject's perceived safe passing distance, and the variability of subject responses. The system also enables simulations of visual field defects using head and eye tracking, enabling better understanding of the impact of visual field loss. Technical infrastructure for our simulated walking environment includes a custom eye and head tracking system, a gait feedback system to adjust treadmill speed, and a handheld 3-D pointing device. Images are generated by a graphics workstation, which contains a model with photographs of storefronts from an actual shopping mall, where concurrent validation experiments are being conducted.

  19. An Expert System And Simulation Approach For Sensor Management & Control In A Distributed Surveillance Network

    NASA Astrophysics Data System (ADS)

    Leon, Barbara D.; Heller, Paul R.

    1987-05-01

    A surveillance network is a group of multiplatform sensors cooperating to improve network performance. Network control is distributed as a measure to decrease vulnerability to enemy threat. The network may contain diverse sensor types such as radar, ESM (Electronic Support Measures), IRST (Infrared search and track) and E-0 (Electro-Optical). Each platform may contain a single sensor or suite of sensors. In a surveillance network it is desirable to control sensors to make the overall system more effective. This problem has come to be known as sensor management and control (SM&C). Two major facets of network performance are surveillance and survivability. In a netted environment, surveillance can be enhanced if information from all sensors is combined and sensor operating conditions are controlled to provide a synergistic effect. In contrast, when survivability is the main concern for the network, the best operating status for all sensors would be passive or off. Of course, improving survivability tends to degrade surveillance. Hence, the objective of SM&C is to optimize surveillance and survivability of the network. Too voluminous data of various formats and the quick response time are two characteristics of this problem which make it an ideal application for Artificial Intelligence. A solution to the SM&C problem, presented as a computer simulation, will be presented in this paper. The simulation is a hybrid production written in LISP and FORTRAN. It combines the latest conventional computer programming methods with Artificial Intelligence techniques to produce a flexible state-of-the-art tool to evaluate network performance. The event-driven simulation contains environment models coupled with an expert system. These environment models include sensor (track-while-scan and agile beam) and target models, local tracking, and system tracking. These models are used to generate the environment for the sensor management and control expert system. The expert system, driven by a forward chaining inference engine, makes decisions based on the global database. The global database contains current track and sensor information supplied by the simulation. At present, the rule base emphasizes the surveillance features with rules grouped into three main categories: maintenance and enhancing track on prioritized targets; filling coverage holes and countering jamming; and evaluating sensor status. The paper will describe the architecture used for the expert system and the reasons for selecting the chosen methods. The SM&C simulation produces a graphical representation of sensors and their associated tracks such that the benefits of the sensor management and control expert system are evident. Jammer locations are also part of the display. The paper will describe results from several scenarios that best illustrate the sensor management and control concepts.

  20. A Comparative Assessment of Track Plates to Quantify Fine Scale Variations in the Relative Abundance of Norway Rats in Urban Slums

    PubMed Central

    Begon, Mike; Diggle, Peter J.; Serrano, Soledad; Reis, Mitermayer G.; Childs, James E.; Ko, Albert I.; Costa, Federico

    2016-01-01

    Norway rats (Rattus norvegicus) living in urban environments are a critical public health and economic problem, particularly in urban slums where residents are at a higher risk for rat borne diseases, yet convenient methods to quantitatively assess population sizes are lacking. We evaluated track plates as a method to determine rat distribution and relative abundance in a complex urban slum environment by correlating the presence and intensity of rat-specific marks on track plates with findings from rat infestation surveys and trapping of rats to population exhaustion. To integrate the zero-inflated track plate data we developed a two-component mixture model with one binary and one censored continuous component. Track plate mark-intensity was highly correlated with signs of rodent infestation (all coefficients between 0.61 and 0.79 and all p-values < 0.05). Moreover, the mean level of pre-trapping rat-mark intensity on plates was significantly associated with the number of rats captured subsequently (Odds ratio1.38; 95% CI 1.19-1.61) and declined significantly following trapping (Odds ratio 0.86; 95% CI 0.78-0.95). Track plates provided robust proxy measurements of rat abundance and distribution and detected rat presence even when populations appeared ‘trapped out’. Tracking plates are relatively easy and inexpensive methods that can be used to intensively sample settings such as urban slums, where traditional trapping or mark-recapture studies are impossible to implement, and therefore the results can inform and assess the impact of targeted urban rodent control campaigns. PMID:27453682

  1. Effective Crew Operations: An Analysis of Technologies for Improving Crew Activities and Medical Procedures

    NASA Technical Reports Server (NTRS)

    Harvey, Craig

    2005-01-01

    NASA's vision for space exploration (February 2004) calls for development of a new crew exploration vehicle, sustained lunar operations, and human exploration of Mars. To meet the challenges of planned sustained operations as well as the limited communications between Earth and the crew (e.g., Mars exploration), many systems will require crews to operate in an autonomous environment. It has been estimated that once every 2.4 years a major medical issue will occur while in space. NASA's future travels, especially to Mars, will begin to push this timeframe. Therefore, now is the time for investigating technologies and systems that will support crews in these environments. Therefore, this summer two studies were conducted to evaluate the technology and systems that may be used by crews in future missions. The first study evaluated three commercial Indoor Positioning Systems (IPS) (Versus, Ekahau, and Radianse) that can track equipment and people within a facility. While similar to Global Positioning Systems (GPS), the specific technology used is different. Several conclusions can be drawn from the evaluation conducted, but in summary it is clear that none of the systems provides a complete solution in meeting the tracking and technology integration requirements of NASA. From a functional performance (e.g., system meets user needs) evaluation perspective, Versus performed fairly well on all performance measures as compared to Ekahau and Radianse. However, the system only provides tracking at the room level. Thus, Versus does not provide the level of fidelity required for tracking assets or people for NASA requirements. From an engineering implementation perspective, Ekahau is far simpler to implement that the other two systems because of its wi-fi design (e.g., no required runs of cable). By looking at these two perspectives, one finds there was no clear system that met NASA requirements. Thus it would be premature to suggest that any of these systems are ready for implementation and further study is required.

  2. Developing the leadership skills of new graduates to influence practice environments: a novice nurse leadership program.

    PubMed

    Dyess, Susan; Sherman, Rose

    2011-01-01

    The authors of the recently published Institute of Medicine on the Future of Nursing report emphasized the importance of preparing nurses to lead change to advance health care in the United States. Other scholars linked practice environments to safe quality care. In order for nurses to fully actualize this role in practice environments, they need to possess leadership skills sets that identify and respond to challenges faced. New nurses are no exception. This article presents a program with a 5-year track record that is designed to support transition and enhance the skill sets of leadership for new nurses in their first year of practice. Qualitative and quantitative evaluation measurements at baseline and postprogram provided data for evaluation of the first 4 cohorts in the program. Evaluative outcomes presented indicate that new nurses gained leadership and translational research skills that contributed to their ability to influence practice environments. Nonetheless, practice environments continue to need improvement and ongoing leadership from all levels of nursing must be upheld.

  3. Pilot Study for Definition of Track Component Load Environments

    DOT National Transportation Integrated Search

    1981-02-01

    This report describes the results of an experimental and analytical effort to define the vehicle induced load environment in an at-grade, concrete tie/ballast transit track structure. The experiment was performed on the UMTA transit track oval at the...

  4. Towards photorealistic and immersive virtual-reality environments for simulated prosthetic vision: integrating recent breakthroughs in consumer hardware and software.

    PubMed

    Zapf, Marc P; Matteucci, Paul B; Lovell, Nigel H; Zheng, Steven; Suaning, Gregg J

    2014-01-01

    Simulated prosthetic vision (SPV) in normally sighted subjects is an established way of investigating the prospective efficacy of visual prosthesis designs in visually guided tasks such as mobility. To perform meaningful SPV mobility studies in computer-based environments, a credible representation of both the virtual scene to navigate and the experienced artificial vision has to be established. It is therefore prudent to make optimal use of existing hardware and software solutions when establishing a testing framework. The authors aimed at improving the realism and immersion of SPV by integrating state-of-the-art yet low-cost consumer technology. The feasibility of body motion tracking to control movement in photo-realistic virtual environments was evaluated in a pilot study. Five subjects were recruited and performed an obstacle avoidance and wayfinding task using either keyboard and mouse, gamepad or Kinect motion tracking. Walking speed and collisions were analyzed as basic measures for task performance. Kinect motion tracking resulted in lower performance as compared to classical input methods, yet results were more uniform across vision conditions. The chosen framework was successfully applied in a basic virtual task and is suited to realistically simulate real-world scenes under SPV in mobility research. Classical input peripherals remain a feasible and effective way of controlling the virtual movement. Motion tracking, despite its limitations and early state of implementation, is intuitive and can eliminate between-subject differences due to familiarity to established input methods.

  5. Orientation/Time Management Skill Training Lesson: Development and Evaluation. Final Report.

    ERIC Educational Resources Information Center

    Dobrovolny, Jacqueline L.; And Others

    A lesson was developed containing materials designed to assist students in their adaptation to the novelties of a computer assisted or managed instructional environment, providing students with appropriate role models for increasing acceptance of their increased responsibility for learning and introducing a progress tracking approach to assist…

  6. 78 FR 2695 - Privacy Act of 1974; System of Records

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-14

    ... data elements used in the Workplace Environment Tracking System (WETS), a new electronic national..., Workplace Harassment Fact Finding, Threat Assessment Case Tracking, and Workplace Environment Intervention... tracking system for these four processes will reasonably assure that workplace harassment policies and...

  7. Evaluation of the Jonker-Volgenant-Castanon (JVC) assignment algorithm for track association

    NASA Astrophysics Data System (ADS)

    Malkoff, Donald B.

    1997-07-01

    The Jonker-Volgenant-Castanon (JVC) assignment algorithm was used by Lockheed Martin Advanced Technology Laboratories (ATL) for track association in the Rotorcraft Pilot's Associate (RPA) program. RPA is Army Aviation's largest science and technology program, involving an integrated hardware/software system approach for a next generation helicopter containing advanced sensor equipments and applying artificial intelligence `associate' technologies. ATL is responsible for the multisensor, multitarget, onboard/offboard track fusion. McDonnell Douglas Helicopter Systems is the prime contractor and Lockheed Martin Federal Systems is responsible for developing much of the cognitive decision aiding and controls-and-displays subsystems. RPA is scheduled for flight testing beginning in 1997. RPA is unique in requiring real-time tracking and fusion for large numbers of highly-maneuverable ground (and air) targets in a target-dense environment. It uses diverse sensors and is concerned with a large area of interest. Target class and identification data is tightly integrated with spatial and kinematic data throughout the processing. Because of platform constraints, processing hardware for track fusion was quite limited. No previous experience using JVC in this type environment had been reported. ATL performed extensive testing of the JVC, concentrating on error rates and run- times under a variety of conditions. These included wide ranging numbers and types of targets, sensor uncertainties, target attributes, differing degrees of target maneuverability, and diverse combinations of sensors. Testing utilized Monte Carlo approaches, as well as many kinds of challenging scenarios. Comparisons were made with a nearest-neighbor algorithm and a new, proprietary algorithm (the `Competition' algorithm). The JVC proved to be an excellent choice for the RPA environment, providing a good balance between speed of operation and accuracy of results.

  8. Development and evaluation of a prototype tracking system using the treatment couch

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lang, Stephanie, E-mail: stephanie.lang@usz.ch; Riesterer, Oliver; Klöck, Stephan

    2014-02-15

    Purpose: Tumor motion increases safety margins around the clinical target volume and leads to an increased dose to the surrounding healthy tissue. The authors have developed and evaluated a one-dimensional treatment couch tracking system to counter steer respiratory tumor motion. Three different motion detection sensors with different lag times were evaluated. Methods: The couch tracking system consists of a motion detection sensor, which can be the topometrical system Topos (Cyber Technologies, Germany), the respiratory gating system RPM (Varian Medical Systems) or a laser triangulation system (Micro Epsilon), and the Protura treatment couch (Civco Medical Systems). The control of the treatmentmore » couch was implemented in the block diagram environment Simulink (MathWorks). To achieve real time performance, the Simulink models were executed on a real time engine, provided by Real-Time Windows Target (MathWorks). A proportional-integral control system was implemented. The lag time of the couch tracking system using the three different motion detection sensors was measured. The geometrical accuracy of the system was evaluated by measuring the mean absolute deviation from the reference (static position) during motion tracking. This deviation was compared to the mean absolute deviation without tracking and a reduction factor was defined. A hexapod system was moving according to seven respiration patterns previously acquired with the RPM system as well as according to a sin{sup 6} function with two different frequencies (0.33 and 0.17 Hz) and the treatment table compensated the motion. Results: A prototype system for treatment couch tracking of respiratory motion was developed. The laser based tracking system with a small lag time of 57 ms reduced the residual motion by a factor of 11.9 ± 5.5 (mean value ± standard deviation). An increase in delay time from 57 to 130 ms (RPM based system) resulted in a reduction by a factor of 4.7 ± 2.6. The Topos based tracking system with the largest lag time of 300 ms achieved a mean reduction by a factor of 3.4 ± 2.3. The increase in the penumbra of a profile (1 × 1 cm{sup 2}) for a motion of 6 mm was 1.4 mm. With tracking applied there was no increase in the penumbra. Conclusions: Couch tracking with the Protura treatment couch is achievable. To reliably track all possible respiration patterns without prediction filters a short lag time below 100 ms is needed. More scientific work is necessary to extend our prototype to tracking of internal motion.« less

  9. Investigating the Feasibility of Conducting Human Tracking and Following in an Indoor Environment Using a Microsoft Kinect and the Robot Operating System

    DTIC Science & Technology

    2017-06-01

    implement human following on a mobile robot in an indoor environment . B. FUTURE WORK Future work that could be conducted in the realm of this thesis...FEASIBILITY OF CONDUCTING HUMAN TRACKING AND FOLLOWING IN AN INDOOR ENVIRONMENT USING A MICROSOFT KINECT AND THE ROBOT OPERATING SYSTEM by...FEASIBILITY OF CONDUCTING HUMAN TRACKING AND FOLLOWING IN AN INDOOR ENVIRONMENT USING A MICROSOFT KINECT AND THE ROBOT OPERATING SYSTEM 5. FUNDING NUMBERS

  10. 40 CFR 279.74 - Tracking.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 28 2013-07-01 2013-07-01 false Tracking. 279.74 Section 279.74 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR THE MANAGEMENT OF USED OIL Standards for Used Oil Fuel Marketers § 279.74 Tracking. (a) Off...

  11. 40 CFR 279.74 - Tracking.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 27 2011-07-01 2011-07-01 false Tracking. 279.74 Section 279.74 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR THE MANAGEMENT OF USED OIL Standards for Used Oil Fuel Marketers § 279.74 Tracking. (a) Off...

  12. 40 CFR 279.56 - Tracking.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 28 2012-07-01 2012-07-01 false Tracking. 279.56 Section 279.56 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR THE MANAGEMENT OF USED OIL Standards for Used Oil Processors and Re-Refiners § 279.56 Tracking. (a...

  13. 40 CFR 279.74 - Tracking.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 28 2012-07-01 2012-07-01 false Tracking. 279.74 Section 279.74 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR THE MANAGEMENT OF USED OIL Standards for Used Oil Fuel Marketers § 279.74 Tracking. (a) Off...

  14. 40 CFR 279.56 - Tracking.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 27 2014-07-01 2014-07-01 false Tracking. 279.56 Section 279.56 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR THE MANAGEMENT OF USED OIL Standards for Used Oil Processors and Re-Refiners § 279.56 Tracking. (a...

  15. 40 CFR 279.56 - Tracking.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 28 2013-07-01 2013-07-01 false Tracking. 279.56 Section 279.56 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR THE MANAGEMENT OF USED OIL Standards for Used Oil Processors and Re-Refiners § 279.56 Tracking. (a...

  16. 40 CFR 279.56 - Tracking.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 26 2010-07-01 2010-07-01 false Tracking. 279.56 Section 279.56 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR THE MANAGEMENT OF USED OIL Standards for Used Oil Processors and Re-Refiners § 279.56 Tracking. (a...

  17. 40 CFR 279.56 - Tracking.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 27 2011-07-01 2011-07-01 false Tracking. 279.56 Section 279.56 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR THE MANAGEMENT OF USED OIL Standards for Used Oil Processors and Re-Refiners § 279.56 Tracking. (a...

  18. 40 CFR 279.74 - Tracking.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 27 2014-07-01 2014-07-01 false Tracking. 279.74 Section 279.74 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR THE MANAGEMENT OF USED OIL Standards for Used Oil Fuel Marketers § 279.74 Tracking. (a) Off...

  19. Real-time visual tracking of less textured three-dimensional objects on mobile platforms

    NASA Astrophysics Data System (ADS)

    Seo, Byung-Kuk; Park, Jungsik; Park, Hanhoon; Park, Jong-Il

    2012-12-01

    Natural feature-based approaches are still challenging for mobile applications (e.g., mobile augmented reality), because they are feasible only in limited environments such as highly textured and planar scenes/objects, and they need powerful mobile hardware for fast and reliable tracking. In many cases where conventional approaches are not effective, three-dimensional (3-D) knowledge of target scenes would be beneficial. We present a well-established framework for real-time visual tracking of less textured 3-D objects on mobile platforms. Our framework is based on model-based tracking that efficiently exploits partially known 3-D scene knowledge such as object models and a background's distinctive geometric or photometric knowledge. Moreover, we elaborate on implementation in order to make it suitable for real-time vision processing on mobile hardware. The performance of the framework is tested and evaluated on recent commercially available smartphones, and its feasibility is shown by real-time demonstrations.

  20. 40 CFR 273.19 - Tracking universal waste shipments.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 27 2011-07-01 2011-07-01 false Tracking universal waste shipments. 273.19 Section 273.19 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID... Universal Waste § 273.19 Tracking universal waste shipments. A small quantity handler of universal waste is...

  1. Environmental Influence of Gravity and Pressure on Arc Tracking of Insulated Wires Investigated

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Momentary short-circuit arcs between a defective polyimide-insulated wire and another conductor may thermally char (pyrolize) the insulating material. The charred polyimide, being conductive, can sustain the short-circuit arc, which may propagate along the wire through continuous pyrolization of the polyimide insulation (arc tracking). If the arcing wire is part of a multiple-wire bundle, the polyimide insulation of other wires within the bundle may become thermally charred and start arc tracking also (flash over). Such arc tracking can lead to complete failure of an entire wire bundle, causing other critical spacecraft or aircraft failures. Unfortunately, all tested candidate wire insulations for aerospace vehicles were susceptible to arc tracking. Therefore, a test procedure was designed at the NASA Lewis Research Center to select the insulation type least susceptible to arc tracking. This test procedure addresses the following three areas of concern: (1) probability of initiation, (2) probability of reinitiation (restrike), and (3) extent of arc tracking damage (propagation rate). Item 2 (restrike probability) is an issue if power can be terminated from and reapplied to the arcing wire (by a switch, fuse, or resettable circuit breaker). The degree of damage from an arcing event (item 3) refers to how easily the arc chars nearby insulation and propagates along the wire pair. Ease of nearby insulation charring can be determined by measuring the rate of arc propagation. Insulation that chars easily will propagate the arc faster than insulation that does not char very easily. A popular polyimide insulated wire for aerospace vehicles, MIL-W-81381, was tested to determine a degree of damage from an arcing event (item 3) in the following three environments: (1) microgravity with air at 1-atm pressure, (2) 1g with air at 1 atm, and (3) 1g within a 10^-6 Torr vacuum. The microgravity 1-atm air was the harshest environment, with respect to the rate of damage of arc tracking, for the 20 AWG (American Wiring Gauge) MIL-W-81381 wire insulation type . The vacuum environment resulted in the least damage. Further testing is planned to determine if the environmental results are consistent between insulation types and to evaluate the other two parameters associated with arc tracking susceptibility.

  2. An efficient sequential approach to tracking multiple objects through crowds for real-time intelligent CCTV systems.

    PubMed

    Li, Liyuan; Huang, Weimin; Gu, Irene Yu-Hua; Luo, Ruijiang; Tian, Qi

    2008-10-01

    Efficiency and robustness are the two most important issues for multiobject tracking algorithms in real-time intelligent video surveillance systems. We propose a novel 2.5-D approach to real-time multiobject tracking in crowds, which is formulated as a maximum a posteriori estimation problem and is approximated through an assignment step and a location step. Observing that the occluding object is usually less affected by the occluded objects, sequential solutions for the assignment and the location are derived. A novel dominant color histogram (DCH) is proposed as an efficient object model. The DCH can be regarded as a generalized color histogram, where dominant colors are selected based on a given distance measure. Comparing with conventional color histograms, the DCH only requires a few color components (31 on average). Furthermore, our theoretical analysis and evaluation on real data have shown that DCHs are robust to illumination changes. Using the DCH, efficient implementations of sequential solutions for the assignment and location steps are proposed. The assignment step includes the estimation of the depth order for the objects in a dispersing group, one-by-one assignment, and feature exclusion from the group representation. The location step includes the depth-order estimation for the objects in a new group, the two-phase mean-shift location, and the exclusion of tracked objects from the new position in the group. Multiobject tracking results and evaluation from public data sets are presented. Experiments on image sequences captured from crowded public environments have shown good tracking results, where about 90% of the objects have been successfully tracked with the correct identification numbers by the proposed method. Our results and evaluation have indicated that the method is efficient and robust for tracking multiple objects (>or= 3) in complex occlusion for real-world surveillance scenarios.

  3. Promoting autonomy in a smart home environment with a smarter interface.

    PubMed

    Brennan, C P; McCullagh, P J; Galway, L; Lightbody, G

    2015-01-01

    In the not too distant future, the median population age will tend towards 65; an age at which the need for dependency increases. Most older people want to remain autonomous and self-sufficient for as long as possible. As environments become smarter home automation solutions can be provided to support this aspiration. The technology discussed within this paper focuses on providing a home automation system that can be controlled by most users regardless of mobility restrictions, and hence it may be applicable to older people. It comprises a hybrid Brain-Computer Interface, home automation user interface and actuators. In the first instance, our system is controlled with conventional computer input, which is then replaced with eye tracking and finally a BCI and eye tracking collaboration. The systems have been assessed in terms of information throughput; benefits and limitations are evaluated.

  4. First report of sauropod tracks from the Upper Jurassic Tianchihe Formation of Guxian County, Shanxi Province, China

    NASA Astrophysics Data System (ADS)

    Xu, Huan; Liu, Yong-Qing; Kuang, Hong-Wei; Peng, Nan; Rodríguez-López, Juan Pedro; Xu, Shi-Chao; Wang, Suo-Zhu; Yi, Jian; Xue, Pei-Lin; Jia, Lei

    2018-02-01

    This paper presents the first report of sauropod tracks from the Upper Jurassic of Shanxi Province, China. Dinosaur tracks appear concentrated in five trackways, in different stratigraphic levels of the Late Jurassic Tianchihe Formation. Tracks are dominantly small and medium-size sauropod tracks and are tentatively assigned to Brontopodus based on preserved track morphology, trackway pattern and statistical analysis. The Tianchihe Formation in which the tracks appear shows a gradual change from meandering fluvial to sandy braided fluvial depositional systems developed in a seasonally arid environment. Comparisons of the evaluated speed of bipedal to quadruped trackways indicate that the slower walk more easily produces pes-dominated overprints. Trackways in the Guxian tracksite appear following different orientations, suggesting that these trackways were produced by different sauropods at different times. An unusual trackway following a curved pattern has been identified in the site and could represent a special locomotion character or a social behavior. The presence of eolian deposits in central Shanxi Province could have acted as a paleogeographic and paleoenvironmental barrier for the dispersion of the Yanliao Biota that survived in northern Hebei-western Liaoning and northestern Shanxi Province to the Ordos Basin during the Late Jurassic.

  5. Recognition of ships for long-term tracking

    NASA Astrophysics Data System (ADS)

    van den Broek, Sebastiaan P.; Bouma, Henri; Veerman, Henny E. T.; Benoist, Koen W.; den Hollander, Richard J. M.; Schwering, Piet B. W.

    2014-06-01

    Long-term tracking is important for maritime situational awareness to identify currently observed ships as earlier encounters. In cases of, for example, piracy and smuggling, past location and behavior analysis are useful to determine whether a ship is of interest. Furthermore, it is beneficial to make this assessment with sensors (such as cameras) at a distance, to avoid costs of bringing an own asset closer to the ship for verification. The emphasis of the research presented in this paper, is on the use of several feature extraction and matching methods for recognizing ships from electro-optical imagery within different categories of vessels. We compared central moments, SIFT with localization and SIFT with Fisher Vectors. From the evaluation on imagery of ships, an indication of discriminative power is obtained between and within different categories of ships. This is used to assess the usefulness in persistent tracking, from short intervals (track improvement) to larger intervals (re-identifying ships). The result of this assessment on real data is used in a simulation environment to determine how track continuity is improved. The simulations showed that even limited recognition will improve tracking, connecting both tracks at short intervals as well as over several days.

  6. Efficient Evaluation System for Learning Management Systems

    ERIC Educational Resources Information Center

    Cavus, Nadire

    2009-01-01

    A learning management system (LMS) provides the platform for web-based learning environment by enabling the management, delivery, tracking of learning, testing, communication, registration process and scheduling. There are many LMS systems on the market that can be obtained for free or through payment. It has now become an important task to choose…

  7. EVALUATING THE ROLE OF HABITAT QUALITY ON ESTABLISHMENT OF GM AGROSTIS STOLONIFERA IN NON-AGRONOMIC ENVIRONMENTS

    EPA Science Inventory

    The initial flowering of experimental fields of the GM wind-pollinated plant Agrostis stolonifera L. that expressed an engineered gene (CP4 EPSPS) for resistance to glyphosate herbicide in central Oregon in 2003 afforded researchers a unique opportunity to track gene flow ...

  8. Exploring mobility & workplace choice in a flexible office through post-occupancy evaluation.

    PubMed

    Göçer, Özgür; Göçer, Kenan; Ergöz Karahan, Ebru; İlhan Oygür, Işıl

    2018-02-01

    Developments in information and communication systems, organisational structure and the nature of work have contributed to the restructuring of work environments. In these new types of work environments, employees do not have assigned workplaces. This arrangement helps organisations to minimise rent costs and increase employee interaction and knowledge exchange through mobility. This post-occupancy evaluation (POE) study focuses on a flexible office in a Gold Leadership in Energy and Environmental Design-certified building in Istanbul. An integrated qualitative and quantitative POE technique with occupancy tracking via barcode scanning and instant surveying has been introduced. Using this unique approach, we examined the directives/drivers in workplace choice and mobility from different perspectives. The aggregated data was used to discern work-related consequences such as flexibility, workplace choice, work and indoor environment satisfaction, place attachment and identity. The results show that employees who have a conventional working culture develop a new working style: 'fixed-flexible working'. Practitioner Summary: This paper introduces a new POE approach for flexible offices based on occupancy tracking through barcode scanning to explore workplace choice and mobility. More than half (52.1%) of the participants have tended to choose the same desk every day. However, the satisfaction level of the 'mobile' employees was higher than that of the 'fixed flexible' employees.

  9. Microsoft Kinect Sensor Evaluation

    NASA Technical Reports Server (NTRS)

    Billie, Glennoah

    2011-01-01

    My summer project evaluates the Kinect game sensor input/output and its suitability to perform as part of a human interface for a spacecraft application. The primary objective is to evaluate, understand, and communicate the Kinect system's ability to sense and track fine (human) position and motion. The project will analyze the performance characteristics and capabilities of this game system hardware and its applicability for gross and fine motion tracking. The software development kit for the Kinect was also investigated and some experimentation has begun to understand its development environment. To better understand the software development of the Kinect game sensor, research in hacking communities has brought a better understanding of the potential for a wide range of personal computer (PC) application development. The project also entails the disassembly of the Kinect game sensor. This analysis would involve disassembling a sensor, photographing it, and identifying components and describing its operation.

  10. Novel methodology to examine cognitive and experiential factors in language development: combining eye-tracking and LENA technology

    PubMed Central

    Odean, Rosalie; Nazareth, Alina; Pruden, Shannon M.

    2015-01-01

    Developmental systems theory posits that development cannot be segmented by influences acting in isolation, but should be studied through a scientific lens that highlights the complex interactions between these forces over time (Overton, 2013a). This poses a unique challenge for developmental psychologists studying complex processes like language development. In this paper, we advocate for the combining of highly sophisticated data collection technologies in an effort to move toward a more systemic approach to studying language development. We investigate the efficiency and appropriateness of combining eye-tracking technology and the LENA (Language Environment Analysis) system, an automated language analysis tool, in an effort to explore the relation between language processing in early development, and external dynamic influences like parent and educator language input in the home and school environments. Eye-tracking allows us to study language processing via eye movement analysis; these eye movements have been linked to both conscious and unconscious cognitive processing, and thus provide one means of evaluating cognitive processes underlying language development that does not require the use of subjective parent reports or checklists. The LENA system, on the other hand, provides automated language output that describes a child’s language-rich environment. In combination, these technologies provide critical information not only about a child’s language processing abilities but also about the complexity of the child’s language environment. Thus, when used in conjunction these technologies allow researchers to explore the nature of interacting systems involved in language development. PMID:26379591

  11. Detection and tracking of human targets in indoor and urban environments using through-the-wall radar sensors

    NASA Astrophysics Data System (ADS)

    Radzicki, Vincent R.; Boutte, David; Taylor, Paul; Lee, Hua

    2017-05-01

    Radar based detection of human targets behind walls or in dense urban environments is an important technical challenge with many practical applications in security, defense, and disaster recovery. Radar reflections from a human can be orders of magnitude weaker than those from objects encountered in urban settings such as walls, cars, or possibly rubble after a disaster. Furthermore, these objects can act as secondary reflectors and produce multipath returns from a person. To mitigate these issues, processing of radar return data needs to be optimized for recognizing human motion features such as walking, running, or breathing. This paper presents a theoretical analysis on the modulation effects human motion has on the radar waveform and how high levels of multipath can distort these motion effects. From this analysis, an algorithm is designed and optimized for tracking human motion in heavily clutter environments. The tracking results will be used as the fundamental detection/classification tool to discriminate human targets from others by identifying human motion traits such as predictable walking patterns and periodicity in breathing rates. The theoretical formulations will be tested against simulation and measured data collected using a low power, portable see-through-the-wall radar system that could be practically deployed in real-world scenarios. Lastly, the performance of the algorithm is evaluated in a series of experiments where both a single person and multiple people are moving in an indoor, cluttered environment.

  12. A real-time optical tracking and measurement processing system for flying targets.

    PubMed

    Guo, Pengyu; Ding, Shaowen; Zhang, Hongliang; Zhang, Xiaohu

    2014-01-01

    Optical tracking and measurement for flying targets is unlike the close range photography under a controllable observation environment, which brings extreme conditions like diverse target changes as a result of high maneuver ability and long cruising range. This paper first designed and realized a distributed image interpretation and measurement processing system to achieve resource centralized management, multisite simultaneous interpretation and adaptive estimation algorithm selection; then proposed a real-time interpretation method which contains automatic foreground detection, online target tracking, multiple features location, and human guidance. An experiment is carried out at performance and efficiency evaluation of the method by semisynthetic video. The system can be used in the field of aerospace tests like target analysis including dynamic parameter, transient states, and optical physics characteristics, with security control.

  13. A Real-Time Optical Tracking and Measurement Processing System for Flying Targets

    PubMed Central

    Guo, Pengyu; Ding, Shaowen; Zhang, Hongliang; Zhang, Xiaohu

    2014-01-01

    Optical tracking and measurement for flying targets is unlike the close range photography under a controllable observation environment, which brings extreme conditions like diverse target changes as a result of high maneuver ability and long cruising range. This paper first designed and realized a distributed image interpretation and measurement processing system to achieve resource centralized management, multisite simultaneous interpretation and adaptive estimation algorithm selection; then proposed a real-time interpretation method which contains automatic foreground detection, online target tracking, multiple features location, and human guidance. An experiment is carried out at performance and efficiency evaluation of the method by semisynthetic video. The system can be used in the field of aerospace tests like target analysis including dynamic parameter, transient states, and optical physics characteristics, with security control. PMID:24987748

  14. Security Applications Of Computer Motion Detection

    NASA Astrophysics Data System (ADS)

    Bernat, Andrew P.; Nelan, Joseph; Riter, Stephen; Frankel, Harry

    1987-05-01

    An important area of application of computer vision is the detection of human motion in security systems. This paper describes the development of a computer vision system which can detect and track human movement across the international border between the United States and Mexico. Because of the wide range of environmental conditions, this application represents a stringent test of computer vision algorithms for motion detection and object identification. The desired output of this vision system is accurate, real-time locations for individual aliens and accurate statistical data as to the frequency of illegal border crossings. Because most detection and tracking routines assume rigid body motion, which is not characteristic of humans, new algorithms capable of reliable operation in our application are required. Furthermore, most current detection and tracking algorithms assume a uniform background against which motion is viewed - the urban environment along the US-Mexican border is anything but uniform. The system works in three stages: motion detection, object tracking and object identi-fication. We have implemented motion detection using simple frame differencing, maximum likelihood estimation, mean and median tests and are evaluating them for accuracy and computational efficiency. Due to the complex nature of the urban environment (background and foreground objects consisting of buildings, vegetation, vehicles, wind-blown debris, animals, etc.), motion detection alone is not sufficiently accurate. Object tracking and identification are handled by an expert system which takes shape, location and trajectory information as input and determines if the moving object is indeed representative of an illegal border crossing.

  15. Potential of a suite of robot/computer-assisted motivating systems for personalized, home-based, stroke rehabilitation.

    PubMed

    Johnson, Michelle J; Feng, Xin; Johnson, Laura M; Winters, Jack M

    2007-03-01

    There is a need to improve semi-autonomous stroke therapy in home environments often characterized by low supervision of clinical experts and low extrinsic motivation. Our distributed device approach to this problem consists of an integrated suite of low-cost robotic/computer-assistive technologies driven by a novel universal access software framework called UniTherapy. Our design strategy for personalizing the therapy, providing extrinsic motivation and outcome assessment is presented and evaluated. Three studies were conducted to evaluate the potential of the suite. A conventional force-reflecting joystick, a modified joystick therapy platform (TheraJoy), and a steering wheel platform (TheraDrive) were tested separately with the UniTherapy software. Stroke subjects with hemiparesis and able-bodied subjects completed tracking activities with the devices in different positions. We quantify motor performance across subject groups and across device platforms and muscle activation across devices at two positions in the arm workspace. Trends in the assessment metrics were consistent across devices with able-bodied and high functioning strokes subjects being significantly more accurate and quicker in their motor performance than low functioning subjects. Muscle activation patterns were different for shoulder and elbow across different devices and locations. The Robot/CAMR suite has potential for stroke rehabilitation. By manipulating hardware and software variables, we can create personalized therapy environments that engage patients, address their therapy need, and track their progress. A larger longitudinal study is still needed to evaluate these systems in under-supervised environments such as the home.

  16. SU-G-JeP3-08: Robotic System for Ultrasound Tracking in Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuhlemann, I; Graduate School for Computing in Medicine and Life Sciences, University of Luebeck; Jauer, P

    Purpose: For safe and accurate real-time tracking of tumors for IGRT using 4D ultrasound, it is necessary to make use of novel, high-end force-sensitive lightweight robots designed for human-machine interaction. Such a robot will be integrated into an existing robotized ultrasound system for non-invasive 4D live tracking, using a newly developed real-time control and communication framework. Methods: The new KUKA LWR iiwa robot is used for robotized ultrasound real-time tumor tracking. Besides more precise probe contact pressure detection, this robot provides an additional 7th link, enhancing the dexterity of the kinematic and the mounted transducer. Several integrated, certified safety featuresmore » create a safe environment for the patients during treatment. However, to remotely control the robot for the ultrasound application, a real-time control and communication framework has to be developed. Based on a client/server concept, client-side control commands are received and processed by a central server unit and are implemented by a client module running directly on the robot’s controller. Several special functionalities for robotized ultrasound applications are integrated and the robot can now be used for real-time control of the image quality by adjusting the transducer position, and contact pressure. The framework was evaluated looking at overall real-time capability for communication and processing of three different standard commands. Results: Due to inherent, certified safety modules, the new robot ensures a safe environment for patients during tumor tracking. Furthermore, the developed framework shows overall real-time capability with a maximum average latency of 3.6 ms (Minimum 2.5 ms; 5000 trials). Conclusion: The novel KUKA LBR iiwa robot will advance the current robotized ultrasound tracking system with important features. With the developed framework, it is now possible to remotely control this robot and use it for robotized ultrasound tracking applications, including image quality control and target tracking.« less

  17. On the Right Track.

    ERIC Educational Resources Information Center

    Bieber, Ed

    1983-01-01

    Suggests thinking of "tracks" as clues and using them as the focus of outdoor activities in the urban environment. Provides 24 examples of possible track activities, including: seeds on the ground (track of a nearby tree), litter (track of a litterbug), and peeling paint (track of weathering forces). (JN)

  18. Development of a novel visuomotor integration paradigm by integrating a virtual environment with mobile eye-tracking and motion-capture systems

    PubMed Central

    Miller, Haylie L.; Bugnariu, Nicoleta; Patterson, Rita M.; Wijayasinghe, Indika; Popa, Dan O.

    2018-01-01

    Visuomotor integration (VMI), the use of visual information to guide motor planning, execution, and modification, is necessary for a wide range of functional tasks. To comprehensively, quantitatively assess VMI, we developed a paradigm integrating virtual environments, motion-capture, and mobile eye-tracking. Virtual environments enable tasks to be repeatable, naturalistic, and varied in complexity. Mobile eye-tracking and minimally-restricted movement enable observation of natural strategies for interacting with the environment. This paradigm yields a rich dataset that may inform our understanding of VMI in typical and atypical development. PMID:29876370

  19. Unsupervised learning in persistent sensing for target recognition by wireless ad hoc networks of ground-based sensors

    NASA Astrophysics Data System (ADS)

    Hortos, William S.

    2008-04-01

    In previous work by the author, effective persistent and pervasive sensing for recognition and tracking of battlefield targets were seen to be achieved, using intelligent algorithms implemented by distributed mobile agents over a composite system of unmanned aerial vehicles (UAVs) for persistence and a wireless network of unattended ground sensors for pervasive coverage of the mission environment. While simulated performance results for the supervised algorithms of the composite system are shown to provide satisfactory target recognition over relatively brief periods of system operation, this performance can degrade by as much as 50% as target dynamics in the environment evolve beyond the period of system operation in which the training data are representative. To overcome this limitation, this paper applies the distributed approach using mobile agents to the network of ground-based wireless sensors alone, without the UAV subsystem, to provide persistent as well as pervasive sensing for target recognition and tracking. The supervised algorithms used in the earlier work are supplanted by unsupervised routines, including competitive-learning neural networks (CLNNs) and new versions of support vector machines (SVMs) for characterization of an unknown target environment. To capture the same physical phenomena from battlefield targets as the composite system, the suite of ground-based sensors can be expanded to include imaging and video capabilities. The spatial density of deployed sensor nodes is increased to allow more precise ground-based location and tracking of detected targets by active nodes. The "swarm" mobile agents enabling WSN intelligence are organized in a three processing stages: detection, recognition and sustained tracking of ground targets. Features formed from the compressed sensor data are down-selected according to an information-theoretic algorithm that reduces redundancy within the feature set, reducing the dimension of samples used in the target recognition and tracking routines. Target tracking is based on simplified versions of Kalman filtration. Accuracy of recognition and tracking of implemented versions of the proposed suite of unsupervised algorithms is somewhat degraded from the ideal. Target recognition and tracking by supervised routines and by unsupervised SVM and CLNN routines in the ground-based WSN is evaluated in simulations using published system values and sensor data from vehicular targets in ground-surveillance scenarios. Results are compared with previously published performance for the system of the ground-based sensor network (GSN) and UAV swarm.

  20. On-Demand Calibration and Evaluation for Electromagnetically Tracked Laparoscope in Augmented Reality Visualization

    PubMed Central

    Liu, Xinyang; Plishker, William; Zaki, George; Kang, Sukryool; Kane, Timothy D.; Shekhar, Raj

    2017-01-01

    Purpose Common camera calibration methods employed in current laparoscopic augmented reality systems require the acquisition of multiple images of an entire checkerboard pattern from various poses. This lengthy procedure prevents performing laparoscope calibration in the operating room (OR). The purpose of this work was to develop a fast calibration method for electromagnetically (EM) tracked laparoscopes, such that calibration can be performed in the OR on demand. Methods We designed a mechanical tracking mount to uniquely and snugly position an EM sensor to an appropriate location on a conventional laparoscope. A tool named fCalib was developed to calibrate intrinsic camera parameters, distortion coefficients, and extrinsic parameters (transformation between the scope lens coordinate system and the EM sensor coordinate system) using a single image that shows an arbitrary portion of a special target pattern. For quick evaluation of calibration result in the OR, we integrated a tube phantom with fCalib and overlaid a virtual representation of the tube on the live video scene. Results We compared spatial target registration error between the common OpenCV method and the fCalib method in a laboratory setting. In addition, we compared the calibration re-projection error between the EM tracking-based fCalib and the optical tracking-based fCalib in a clinical setting. Our results suggested that the proposed method is comparable to the OpenCV method. However, changing the environment, e.g., inserting or removing surgical tools, would affect re-projection accuracy for the EM tracking-based approach. Computational time of the fCalib method averaged 14.0 s (range 3.5 s – 22.7 s). Conclusions We developed and validated a prototype for fast calibration and evaluation of EM tracked conventional (forward viewing) laparoscopes. The calibration method achieved acceptable accuracy and was relatively fast and easy to be performed in the OR on demand. PMID:27250853

  1. On-demand calibration and evaluation for electromagnetically tracked laparoscope in augmented reality visualization.

    PubMed

    Liu, Xinyang; Plishker, William; Zaki, George; Kang, Sukryool; Kane, Timothy D; Shekhar, Raj

    2016-06-01

    Common camera calibration methods employed in current laparoscopic augmented reality systems require the acquisition of multiple images of an entire checkerboard pattern from various poses. This lengthy procedure prevents performing laparoscope calibration in the operating room (OR). The purpose of this work was to develop a fast calibration method for electromagnetically (EM) tracked laparoscopes, such that the calibration can be performed in the OR on demand. We designed a mechanical tracking mount to uniquely and snugly position an EM sensor to an appropriate location on a conventional laparoscope. A tool named fCalib was developed to calibrate intrinsic camera parameters, distortion coefficients, and extrinsic parameters (transformation between the scope lens coordinate system and the EM sensor coordinate system) using a single image that shows an arbitrary portion of a special target pattern. For quick evaluation of calibration results in the OR, we integrated a tube phantom with fCalib prototype and overlaid a virtual representation of the tube on the live video scene. We compared spatial target registration error between the common OpenCV method and the fCalib method in a laboratory setting. In addition, we compared the calibration re-projection error between the EM tracking-based fCalib and the optical tracking-based fCalib in a clinical setting. Our results suggest that the proposed method is comparable to the OpenCV method. However, changing the environment, e.g., inserting or removing surgical tools, might affect re-projection accuracy for the EM tracking-based approach. Computational time of the fCalib method averaged 14.0 s (range 3.5 s-22.7 s). We developed and validated a prototype for fast calibration and evaluation of EM tracked conventional (forward viewing) laparoscopes. The calibration method achieved acceptable accuracy and was relatively fast and easy to be performed in the OR on demand.

  2. Persistence of F-specific RNA phages in surface waters from a produce production region along the central coast of California

    USDA-ARS?s Scientific Manuscript database

    F+ RNA coliphages (FRNA) are used to source-track fecal contamination and as surrogates for enteric pathogen persistence in the environment. However, the environmental persistence of FRNA is not clearly understood and thus we evaluated the survival of prototype and environmental isolates of FRNA rep...

  3. Robust Arm and Hand Tracking by Unsupervised Context Learning

    PubMed Central

    Spruyt, Vincent; Ledda, Alessandro; Philips, Wilfried

    2014-01-01

    Hand tracking in video is an increasingly popular research field due to the rise of novel human-computer interaction methods. However, robust and real-time hand tracking in unconstrained environments remains a challenging task due to the high number of degrees of freedom and the non-rigid character of the human hand. In this paper, we propose an unsupervised method to automatically learn the context in which a hand is embedded. This context includes the arm and any other object that coherently moves along with the hand. We introduce two novel methods to incorporate this context information into a probabilistic tracking framework, and introduce a simple yet effective solution to estimate the position of the arm. Finally, we show that our method greatly increases robustness against occlusion and cluttered background, without degrading tracking performance if no contextual information is available. The proposed real-time algorithm is shown to outperform the current state-of-the-art by evaluating it on three publicly available video datasets. Furthermore, a novel dataset is created and made publicly available for the research community. PMID:25004155

  4. Probabilistic multi-person localisation and tracking in image sequences

    NASA Astrophysics Data System (ADS)

    Klinger, T.; Rottensteiner, F.; Heipke, C.

    2017-05-01

    The localisation and tracking of persons in image sequences in commonly guided by recursive filters. Especially in a multi-object tracking environment, where mutual occlusions are inherent, the predictive model is prone to drift away from the actual target position when not taking context into account. Further, if the image-based observations are imprecise, the trajectory is prone to be updated towards a wrong position. In this work we address both these problems by using a new predictive model on the basis of Gaussian Process Regression, and by using generic object detection, as well as instance-specific classification, for refined localisation. The predictive model takes into account the motion of every tracked pedestrian in the scene and the prediction is executed with respect to the velocities of neighbouring persons. In contrast to existing methods our approach uses a Dynamic Bayesian Network in which the state vector of a recursive Bayes filter, as well as the location of the tracked object in the image, are modelled as unknowns. This allows the detection to be corrected before it is incorporated into the recursive filter. Our method is evaluated on a publicly available benchmark dataset and outperforms related methods in terms of geometric precision and tracking accuracy.

  5. Quantitative Evaluation of Stereo Visual Odometry for Autonomous Vessel Localisation in Inland Waterway Sensing Applications

    PubMed Central

    Kriechbaumer, Thomas; Blackburn, Kim; Breckon, Toby P.; Hamilton, Oliver; Rivas Casado, Monica

    2015-01-01

    Autonomous survey vessels can increase the efficiency and availability of wide-area river environment surveying as a tool for environment protection and conservation. A key challenge is the accurate localisation of the vessel, where bank-side vegetation or urban settlement preclude the conventional use of line-of-sight global navigation satellite systems (GNSS). In this paper, we evaluate unaided visual odometry, via an on-board stereo camera rig attached to the survey vessel, as a novel, low-cost localisation strategy. Feature-based and appearance-based visual odometry algorithms are implemented on a six degrees of freedom platform operating under guided motion, but stochastic variation in yaw, pitch and roll. Evaluation is based on a 663 m-long trajectory (>15,000 image frames) and statistical error analysis against ground truth position from a target tracking tachymeter integrating electronic distance and angular measurements. The position error of the feature-based technique (mean of ±0.067 m) is three times smaller than that of the appearance-based algorithm. From multi-variable statistical regression, we are able to attribute this error to the depth of tracked features from the camera in the scene and variations in platform yaw. Our findings inform effective strategies to enhance stereo visual localisation for the specific application of river monitoring. PMID:26694411

  6. Developing Software to “Track and Catch” Missed Follow-up of Abnormal Test Results in a Complex Sociotechnical Environment

    PubMed Central

    Smith, M.; Murphy, D.; Laxmisan, A.; Sittig, D.; Reis, B.; Esquivel, A.; Singh, H.

    2013-01-01

    Summary Background Abnormal test results do not always receive timely follow-up, even when providers are notified through electronic health record (EHR)-based alerts. High workload, alert fatigue, and other demands on attention disrupt a provider’s prospective memory for tasks required to initiate follow-up. Thus, EHR-based tracking and reminding functionalities are needed to improve follow-up. Objectives The purpose of this study was to develop a decision-support software prototype enabling individual and system-wide tracking of abnormal test result alerts lacking follow-up, and to conduct formative evaluations, including usability testing. Methods We developed a working prototype software system, the Alert Watch And Response Engine (AWARE), to detect abnormal test result alerts lacking documented follow-up, and to present context-specific reminders to providers. Development and testing took place within the VA’s EHR and focused on four cancer-related abnormal test results. Design concepts emphasized mitigating the effects of high workload and alert fatigue while being minimally intrusive. We conducted a multifaceted formative evaluation of the software, addressing fit within the larger socio-technical system. Evaluations included usability testing with the prototype and interview questions about organizational and workflow factors. Participants included 23 physicians, 9 clinical information technology specialists, and 8 quality/safety managers. Results Evaluation results indicated that our software prototype fit within the technical environment and clinical workflow, and physicians were able to use it successfully. Quality/safety managers reported that the tool would be useful in future quality assurance activities to detect patients who lack documented follow-up. Additionally, we successfully installed the software on the local facility’s “test” EHR system, thus demonstrating technical compatibility. Conclusion To address the factors involved in missed test results, we developed a software prototype to account for technical, usability, organizational, and workflow needs. Our evaluation has shown the feasibility of the prototype as a means of facilitating better follow-up for cancer-related abnormal test results. PMID:24155789

  7. Developing software to "track and catch" missed follow-up of abnormal test results in a complex sociotechnical environment.

    PubMed

    Smith, M; Murphy, D; Laxmisan, A; Sittig, D; Reis, B; Esquivel, A; Singh, H

    2013-01-01

    Abnormal test results do not always receive timely follow-up, even when providers are notified through electronic health record (EHR)-based alerts. High workload, alert fatigue, and other demands on attention disrupt a provider's prospective memory for tasks required to initiate follow-up. Thus, EHR-based tracking and reminding functionalities are needed to improve follow-up. The purpose of this study was to develop a decision-support software prototype enabling individual and system-wide tracking of abnormal test result alerts lacking follow-up, and to conduct formative evaluations, including usability testing. We developed a working prototype software system, the Alert Watch And Response Engine (AWARE), to detect abnormal test result alerts lacking documented follow-up, and to present context-specific reminders to providers. Development and testing took place within the VA's EHR and focused on four cancer-related abnormal test results. Design concepts emphasized mitigating the effects of high workload and alert fatigue while being minimally intrusive. We conducted a multifaceted formative evaluation of the software, addressing fit within the larger socio-technical system. Evaluations included usability testing with the prototype and interview questions about organizational and workflow factors. Participants included 23 physicians, 9 clinical information technology specialists, and 8 quality/safety managers. Evaluation results indicated that our software prototype fit within the technical environment and clinical workflow, and physicians were able to use it successfully. Quality/safety managers reported that the tool would be useful in future quality assurance activities to detect patients who lack documented follow-up. Additionally, we successfully installed the software on the local facility's "test" EHR system, thus demonstrating technical compatibility. To address the factors involved in missed test results, we developed a software prototype to account for technical, usability, organizational, and workflow needs. Our evaluation has shown the feasibility of the prototype as a means of facilitating better follow-up for cancer-related abnormal test results.

  8. Technical experiences of implementing a wireless tracking and facial biometric verification system for a clinical environment

    NASA Astrophysics Data System (ADS)

    Liu, Brent; Lee, Jasper; Documet, Jorge; Guo, Bing; King, Nelson; Huang, H. K.

    2006-03-01

    By implementing a tracking and verification system, clinical facilities can effectively monitor workflow and heighten information security in today's growing demand towards digital imaging informatics. This paper presents the technical design and implementation experiences encountered during the development of a Location Tracking and Verification System (LTVS) for a clinical environment. LTVS integrates facial biometrics with wireless tracking so that administrators can manage and monitor patient and staff through a web-based application. Implementation challenges fall into three main areas: 1) Development and Integration, 2) Calibration and Optimization of Wi-Fi Tracking System, and 3) Clinical Implementation. An initial prototype LTVS has been implemented within USC's Healthcare Consultation Center II Outpatient Facility, which currently has a fully digital imaging department environment with integrated HIS/RIS/PACS/VR (Voice Recognition).

  9. Detection and Tracking of Dynamic Objects by Using a Multirobot System: Application to Critical Infrastructures Surveillance

    PubMed Central

    Rodríguez-Canosa, Gonzalo; Giner, Jaime del Cerro; Barrientos, Antonio

    2014-01-01

    The detection and tracking of mobile objects (DATMO) is progressively gaining importance for security and surveillance applications. This article proposes a set of new algorithms and procedures for detecting and tracking mobile objects by robots that work collaboratively as part of a multirobot system. These surveillance algorithms are conceived of to work with data provided by long distance range sensors and are intended for highly reliable object detection in wide outdoor environments. Contrary to most common approaches, in which detection and tracking are done by an integrated procedure, the approach proposed here relies on a modular structure, in which detection and tracking are carried out independently, and the latter might accept input data from different detection algorithms. Two movement detection algorithms have been developed for the detection of dynamic objects by using both static and/or mobile robots. The solution to the overall problem is based on the use of a Kalman filter to predict the next state of each tracked object. Additionally, new tracking algorithms capable of combining dynamic objects lists coming from either one or various sources complete the solution. The complementary performance of the separated modular structure for detection and identification is evaluated and, finally, a selection of test examples discussed. PMID:24526305

  10. Non-contact measurement of oxygen saturation with an RGB camera

    PubMed Central

    Guazzi, Alessandro R.; Villarroel, Mauricio; Jorge, João; Daly, Jonathan; Frise, Matthew C.; Robbins, Peter A.; Tarassenko, Lionel

    2015-01-01

    A novel method (Sophia) is presented to track oxygen saturation changes in a controlled environment using an RGB camera placed approximately 1.5 m away from the subject. The method is evaluated on five healthy volunteers (Fitzpatrick skin phenotypes II, III, and IV) whose oxygen saturations were varied between 80% and 100% in a purpose-built chamber over 40 minutes each. The method carefully selects regions of interest (ROI) in the camera image by calculating signal-to-noise ratios for each ROI. This allows it to track changes in oxygen saturation accurately with respect to a conventional pulse oximeter (median coefficient of determination, 0.85). PMID:26417504

  11. Returning nurses to the workforce: developing a fast track back program.

    PubMed

    Burns, Helen K; Sakraida, Teresa J; Englert, Nadine C; Hoffmann, Rosemary L; Tuite, Patricia; Foley, Susan M

    2006-01-01

    Fast Track Back: Re-entry into Nursing Practice program. Describes the development, implementation, and evaluation of a state-of-the-art re-entry program facilitating the return of licensed nonpracticing RNs to the workforce through a quality education program that retools them for the workforce in the areas of pharmacology, skill development using the latest technology, practice standards, and nursing issues. The program consists of didactic content taught via classroom, Internet, skills laboratory, and high fidelity human simulated technology and a clinical component. The program is a mechanism that enables re-entry nurses to improve skills and competencies necessary to practice in today's healthcare environment.

  12. Instructional Suggestions Supporting Science Learning in Digital Environments Based on a Review of Eye-Tracking Studies

    ERIC Educational Resources Information Center

    Yang, Fang-Ying; Tsai, Meng-Jung; Chiou, Guo-Li; Lee, Silvia Wen-Yu; Chang, Cheng-Chieh; Chen, Li-Ling

    2018-01-01

    The main purpose of this study was to provide instructional suggestions for supporting science learning in digital environments based on a review of eye tracking studies in e-learning related areas. Thirty-three eye-tracking studies from 2005 to 2014 were selected from the Social Science Citation Index (SSCI) database for review. Through a…

  13. Webcam mouse using face and eye tracking in various illumination environments.

    PubMed

    Lin, Yuan-Pin; Chao, Yi-Ping; Lin, Chung-Chih; Chen, Jyh-Horng

    2005-01-01

    Nowadays, due to enhancement of computer performance and popular usage of webcam devices, it has become possible to acquire users' gestures for the human-computer-interface with PC via webcam. However, the effects of illumination variation would dramatically decrease the stability and accuracy of skin-based face tracking system; especially for a notebook or portable platform. In this study we present an effective illumination recognition technique, combining K-Nearest Neighbor classifier and adaptive skin model, to realize the real-time tracking system. We have demonstrated that the accuracy of face detection based on the KNN classifier is higher than 92% in various illumination environments. In real-time implementation, the system successfully tracks user face and eyes features at 15 fps under standard notebook platforms. Although KNN classifier only initiates five environments at preliminary stage, the system permits users to define and add their favorite environments to KNN for computer access. Eventually, based on this efficient tracking algorithm, we have developed a "Webcam Mouse" system to control the PC cursor using face and eye tracking. Preliminary studies in "point and click" style PC web games also shows promising applications in consumer electronic markets in the future.

  14. A customized vision system for tracking humans wearing reflective safety clothing from industrial vehicles and machinery.

    PubMed

    Mosberger, Rafael; Andreasson, Henrik; Lilienthal, Achim J

    2014-09-26

    This article presents a novel approach for vision-based detection and tracking of humans wearing high-visibility clothing with retro-reflective markers. Addressing industrial applications where heavy vehicles operate in the vicinity of humans, we deploy a customized stereo camera setup with active illumination that allows for efficient detection of the reflective patterns created by the worker's safety garments. After segmenting reflective objects from the image background, the interest regions are described with local image feature descriptors and classified in order to discriminate safety garments from other reflective objects in the scene. In a final step, the trajectories of the detected humans are estimated in 3D space relative to the camera. We evaluate our tracking system in two industrial real-world work environments on several challenging video sequences. The experimental results indicate accurate tracking performance and good robustness towards partial occlusions, body pose variation, and a wide range of different illumination conditions.

  15. A Customized Vision System for Tracking Humans Wearing Reflective Safety Clothing from Industrial Vehicles and Machinery

    PubMed Central

    Mosberger, Rafael; Andreasson, Henrik; Lilienthal, Achim J.

    2014-01-01

    This article presents a novel approach for vision-based detection and tracking of humans wearing high-visibility clothing with retro-reflective markers. Addressing industrial applications where heavy vehicles operate in the vicinity of humans, we deploy a customized stereo camera setup with active illumination that allows for efficient detection of the reflective patterns created by the worker's safety garments. After segmenting reflective objects from the image background, the interest regions are described with local image feature descriptors and classified in order to discriminate safety garments from other reflective objects in the scene. In a final step, the trajectories of the detected humans are estimated in 3D space relative to the camera. We evaluate our tracking system in two industrial real-world work environments on several challenging video sequences. The experimental results indicate accurate tracking performance and good robustness towards partial occlusions, body pose variation, and a wide range of different illumination conditions. PMID:25264956

  16. Performance Technology Program (PTP-S 2). Volume 9: Evaluation of reentry vehicle nosetip transition and heat transfer in the AEDC hyperballistics track G

    NASA Astrophysics Data System (ADS)

    Wassel, A. T.; Shih, W. C. L.; Curtis, R. J.

    1981-01-01

    Boundary layer transition and surface heating distributions on graphite fine weave carbon-carbon, and metallic nosetip materials were derived from surface temperature responses measured in nitrogen environments during both free-flight and track-guided testing in the AEDC Hyperballistics Range/Track G. Innovative test procedures were developed, and heat transfer results were validated against established theory through experiments using a super-smooth tungsten model. Quantitative definitions of mean transition front locations were established by deriving heat flux distributions from measured temperatures, and comparisons made with existing nosetip transition correlations. Qualitative transition locations were inferred directly from temperature distributions to investigate preferred orientations on fine weave nosetips. Levels of roughness augmented heat transfer were generally shown to be below values predicted by state of the art methods.

  17. Effects of weak electromagnetic fields on Escherichia coli and Staphylococcus aureus

    NASA Astrophysics Data System (ADS)

    Smith, Derek A.

    Previous studies of electromagnetic field effects on bacteria are examined, and new experimental procedures and their results are discussed. Experimental samples of Escherichia coli and Staphylococcus aureus were prepared in different conditions, and measurements of optical density were used to track growth rates after removing the samples from their associated experimental environments. Experimental environments varied in magnetic field intensities and frequencies, including a control environment of minimal field intensity. Plots of experimental data sets and their associated averages are used to visualize the experimental outcomes, and differences in growth patterns are evaluated. Results are then used to hypothesize the mechanisms and consequences of the potentially observed field effects.

  18. Tracking a Non-Cooperative Target Using Real-Time Stereovision-Based Control: An Experimental Study.

    PubMed

    Shtark, Tomer; Gurfil, Pini

    2017-03-31

    Tracking a non-cooperative target is a challenge, because in unfamiliar environments most targets are unknown and unspecified. Stereovision is suited to deal with this issue, because it allows to passively scan large areas and estimate the relative position, velocity and shape of objects. This research is an experimental effort aimed at developing, implementing and evaluating a real-time non-cooperative target tracking methods using stereovision measurements only. A computer-vision feature detection and matching algorithm was developed in order to identify and locate the target in the captured images. Three different filters were designed for estimating the relative position and velocity, and their performance was compared. A line-of-sight control algorithm was used for the purpose of keeping the target within the field-of-view. Extensive analytical and numerical investigations were conducted on the multi-view stereo projection equations and their solutions, which were used to initialize the different filters. This research shows, using an experimental and numerical evaluation, the benefits of using the unscented Kalman filter and the total least squares technique in the stereovision-based tracking problem. These findings offer a general and more accurate method for solving the static and dynamic stereovision triangulation problems and the concomitant line-of-sight control.

  19. Tracking a Non-Cooperative Target Using Real-Time Stereovision-Based Control: An Experimental Study

    PubMed Central

    Shtark, Tomer; Gurfil, Pini

    2017-01-01

    Tracking a non-cooperative target is a challenge, because in unfamiliar environments most targets are unknown and unspecified. Stereovision is suited to deal with this issue, because it allows to passively scan large areas and estimate the relative position, velocity and shape of objects. This research is an experimental effort aimed at developing, implementing and evaluating a real-time non-cooperative target tracking methods using stereovision measurements only. A computer-vision feature detection and matching algorithm was developed in order to identify and locate the target in the captured images. Three different filters were designed for estimating the relative position and velocity, and their performance was compared. A line-of-sight control algorithm was used for the purpose of keeping the target within the field-of-view. Extensive analytical and numerical investigations were conducted on the multi-view stereo projection equations and their solutions, which were used to initialize the different filters. This research shows, using an experimental and numerical evaluation, the benefits of using the unscented Kalman filter and the total least squares technique in the stereovision-based tracking problem. These findings offer a general and more accurate method for solving the static and dynamic stereovision triangulation problems and the concomitant line-of-sight control. PMID:28362338

  20. Digital Pen and Paper Technology as a Means of Classroom Administration Relief

    NASA Astrophysics Data System (ADS)

    Broer, Jan; Wendisch, Tim; Willms, Nina

    This paper contains the results of the Mobile Tools for Teachers project concerning the viability of digital pen and paper technology (DPPT) for administration in a K-12 classroom environment. Filled out forms were evaluated and interviews as well as user tests with teachers were done to show the advantages and disadvantages of DPPT compared to regular methods for attendance tracking and grading. Additionally, the paper addresses the problems that arise with DPPT in a classroom environment and includes suggestions how to deal with those.

  1. Development of a new time domain-based algorithm for train detection and axle counting

    NASA Astrophysics Data System (ADS)

    Allotta, B.; D'Adamio, P.; Meli, E.; Pugi, L.

    2015-12-01

    This paper presents an innovative train detection algorithm, able to perform the train localisation and, at the same time, to estimate its speed, the crossing times on a fixed point of the track and the axle number. The proposed solution uses the same approach to evaluate all these quantities, starting from the knowledge of generic track inputs directly measured on the track (for example, the vertical forces on the sleepers, the rail deformation and the rail stress). More particularly, all the inputs are processed through cross-correlation operations to extract the required information in terms of speed, crossing time instants and axle counter. This approach has the advantage to be simple and less invasive than the standard ones (it requires less equipment) and represents a more reliable and robust solution against numerical noise because it exploits the whole shape of the input signal and not only the peak values. A suitable and accurate multibody model of railway vehicle and flexible track has also been developed by the authors to test the algorithm when experimental data are not available and in general, under any operating conditions (fundamental to verify the algorithm accuracy and robustness). The railway vehicle chosen as benchmark is the Manchester Wagon, modelled in the Adams VI-Rail environment. The physical model of the flexible track has been implemented in the Matlab and Comsol Multiphysics environments. A simulation campaign has been performed to verify the performance and the robustness of the proposed algorithm, and the results are quite promising. The research has been carried out in cooperation with Ansaldo STS and ECM Spa.

  2. Comparison of Arc Tracking Tests in Various Aerospace Environments

    NASA Technical Reports Server (NTRS)

    Stueber, Thomas J.; Hammoud, Ahmad; McCall, David

    1996-01-01

    Momentary short-circuit arcs between a polyimide insulated wire with defective insulation and another conductor may cause pyrolization of the insulation resulting in a conductive path capable of sustaining the arc. These sustained arcs may propagate along the wires or to neighboring wires leading to complete failure of the wire bundle. Wire insulation susceptibility to arc tracking may be dependent on its environment. Because all wire insulation types tested to date arc track, a test procedure has been developed to compare different insulation types with respect to their arc tracking susceptibility. This test procedure is presented along with a comparison of arc tracking in the following three environments: (1) Air at atmospheric pressure and 1 gravitational(g) force; (2) Vacuum (2.67 x 10(exp -3) Pa) and 1g, and (3) Air at atmospheric pressure and microgravity (less than 0.04g).

  3. Audio Tracking in Noisy Environments by Acoustic Map and Spectral Signature.

    PubMed

    Crocco, Marco; Martelli, Samuele; Trucco, Andrea; Zunino, Andrea; Murino, Vittorio

    2018-05-01

    A novel method is proposed for generic target tracking by audio measurements from a microphone array. To cope with noisy environments characterized by persistent and high energy interfering sources, a classification map (CM) based on spectral signatures is calculated by means of a machine learning algorithm. Next, the CM is combined with the acoustic map, describing the spatial distribution of sound energy, in order to obtain a cleaned joint map in which contributions from the disturbing sources are removed. A likelihood function is derived from this map and fed to a particle filter yielding the target location estimation on the acoustic image. The method is tested on two real environments, addressing both speaker and vehicle tracking. The comparison with a couple of trackers, relying on the acoustic map only, shows a sharp improvement in performance, paving the way to the application of audio tracking in real challenging environments.

  4. Haptic control with environment force estimation for telesurgery.

    PubMed

    Bhattacharjee, Tapomayukh; Son, Hyoung Il; Lee, Doo Yong

    2008-01-01

    Success of telesurgical operations depends on better position tracking ability of the slave device. Improved position tracking of the slave device can lead to safer and less strenuous telesurgical operations. The two-channel force-position control architecture is widely used for better position tracking ability. This architecture requires force sensors for direct force feedback. Force sensors may not be a good choice in the telesurgical environment because of the inherent noise, and limitation in the deployable place and space. Hence, environment force estimation is developed using the concept of the robot function parameter matrix and a recursive least squares method. Simulation results show efficacy of the proposed method. The slave device successfully tracks the position of the master device, and the estimation error quickly becomes negligible.

  5. School Crowding, Year-Round Schooling, and Mobile Classroom Use: Evidence from North Carolina

    ERIC Educational Resources Information Center

    McMullen, Steven C.; Rouse, Kathryn E.

    2012-01-01

    This study exploits a unique policy environment and a large panel dataset to evaluate the impact of school crowding on student achievement in Wake County, NC. We also estimate the effects of two education policy initiatives that are often used to address crowding: multi-track year-round calendars and mobile classrooms. We estimate a multi-level…

  6. Radar signature generation for feature-aided tracking research

    NASA Astrophysics Data System (ADS)

    Piatt, Teri L.; Sherwood, John U.; Musick, Stanton H.

    2005-05-01

    Accurately associating sensor kinematic reports to known tracks, new tracks, or clutter is one of the greatest obstacles to effective track estimation. Feature-aiding is one technology that is emerging to address this problem, and it is expected that adding target features will aid report association by enhancing track accuracy and lengthening track life. The Sensor's Directorate of the Air Force Research Laboratory is sponsoring a challenge problem called Feature-Aided Tracking of Stop-move Objects (FATSO). The long-range goal of this research is to provide a full suite of public data and software to encourage researchers from government, industry, and academia to participate in radar-based feature-aided tracking research. The FATSO program is currently releasing a vehicle database coupled to a radar signature generator. The completed FATSO system will incorporate this database/generator into a Monte Carlo simulation environment for evaluating multiplatform/multitarget tracking scenarios. The currently released data and software contains the following: eight target models, including a tank, ammo hauler, and self-propelled artillery vehicles; and a radar signature generator capable of producing SAR and HRR signatures of all eight modeled targets in almost any configuration or articulation. In addition, the signature generator creates Z-buffer data, label map data, and radar cross-section prediction and allows the user to add noise to an image while varying sensor-target geometry (roll, pitch, yaw, squint). Future capabilities of this signature generator, such as scene models and EO signatures as well as details of the complete FATSO testbed, are outlined.

  7. Robust multiperson detection and tracking for mobile service and social robots.

    PubMed

    Li, Liyuan; Yan, Shuicheng; Yu, Xinguo; Tan, Yeow Kee; Li, Haizhou

    2012-10-01

    This paper proposes an efficient system which integrates multiple vision models for robust multiperson detection and tracking for mobile service and social robots in public environments. The core technique is a novel maximum likelihood (ML)-based algorithm which combines the multimodel detections in mean-shift tracking. First, a likelihood probability which integrates detections and similarity to local appearance is defined. Then, an expectation-maximization (EM)-like mean-shift algorithm is derived under the ML framework. In each iteration, the E-step estimates the associations to the detections, and the M-step locates the new position according to the ML criterion. To be robust to the complex crowded scenarios for multiperson tracking, an improved sequential strategy to perform the mean-shift tracking is proposed. Under this strategy, human objects are tracked sequentially according to their priority order. To balance the efficiency and robustness for real-time performance, at each stage, the first two objects from the list of the priority order are tested, and the one with the higher score is selected. The proposed method has been successfully implemented on real-world service and social robots. The vision system integrates stereo-based and histograms-of-oriented-gradients-based human detections, occlusion reasoning, and sequential mean-shift tracking. Various examples to show the advantages and robustness of the proposed system for multiperson tracking from mobile robots are presented. Quantitative evaluations on the performance of multiperson tracking are also performed. Experimental results indicate that significant improvements have been achieved by using the proposed method.

  8. Optical tracking of nanoscale particles in microscale environments

    NASA Astrophysics Data System (ADS)

    Mathai, P. P.; Liddle, J. A.; Stavis, S. M.

    2016-03-01

    The trajectories of nanoscale particles through microscale environments record useful information about both the particles and the environments. Optical microscopes provide efficient access to this information through measurements of light in the far field from nanoparticles. Such measurements necessarily involve trade-offs in tracking capabilities. This article presents a measurement framework, based on information theory, that facilitates a more systematic understanding of such trade-offs to rationally design tracking systems for diverse applications. This framework includes the degrees of freedom of optical microscopes, which determine the limitations of tracking measurements in theory. In the laboratory, tracking systems are assemblies of sources and sensors, optics and stages, and nanoparticle emitters. The combined characteristics of such systems determine the limitations of tracking measurements in practice. This article reviews this tracking hardware with a focus on the essential functions of nanoparticles as optical emitters and microenvironmental probes. Within these theoretical and practical limitations, experimentalists have implemented a variety of tracking systems with different capabilities. This article reviews a selection of apparatuses and techniques for tracking multiple and single particles by tuning illumination and detection, and by using feedback and confinement to improve the measurements. Prior information is also useful in many tracking systems and measurements, which apply across a broad spectrum of science and technology. In the context of the framework and review of apparatuses and techniques, this article reviews a selection of applications, with particle diffusion serving as a prelude to tracking measurements in biological, fluid, and material systems, fabrication and assembly processes, and engineered devices. In so doing, this review identifies trends and gaps in particle tracking that might influence future research.

  9. An evaluation of the accuracy and performance of lightweight GPS collars in a suburban environment.

    PubMed

    Adams, Amy L; Dickinson, Katharine J M; Robertson, Bruce C; van Heezik, Yolanda

    2013-01-01

    The recent development of lightweight GPS collars has enabled medium-to-small sized animals to be tracked via GPS telemetry. Evaluation of the performance and accuracy of GPS collars is largely confined to devices designed for large animals for deployment in natural environments. This study aimed to assess the performance of lightweight GPS collars within a suburban environment, which may be different from natural environments in a way that is relevant to satellite signal acquisition. We assessed the effects of vegetation complexity, sky availability (percentage of clear sky not obstructed by natural or artificial features of the environment), proximity to buildings, and satellite geometry on fix success rate (FSR) and location error (LE) for lightweight GPS collars within a suburban environment. Sky availability had the largest affect on FSR, while LE was influenced by sky availability, vegetation complexity, and HDOP (Horizontal Dilution of Precision). Despite the complexity and modified nature of suburban areas, values for FSR (mean= 90.6%) and LE (mean = 30.1 m) obtained within the suburban environment are comparable to those from previous evaluations of GPS collars designed for larger animals and within less built-up environments. Due to fine-scale patchiness of habitat within urban environments, it is recommended that resource selection methods that are not reliant on buffer sizes be utilised for selection studies.

  10. Potential of a suite of robot/computer-assisted motivating systems for personalized, home-based, stroke rehabilitation

    PubMed Central

    Johnson, Michelle J; Feng, Xin; Johnson, Laura M; Winters, Jack M

    2007-01-01

    Background There is a need to improve semi-autonomous stroke therapy in home environments often characterized by low supervision of clinical experts and low extrinsic motivation. Our distributed device approach to this problem consists of an integrated suite of low-cost robotic/computer-assistive technologies driven by a novel universal access software framework called UniTherapy. Our design strategy for personalizing the therapy, providing extrinsic motivation and outcome assessment is presented and evaluated. Methods Three studies were conducted to evaluate the potential of the suite. A conventional force-reflecting joystick, a modified joystick therapy platform (TheraJoy), and a steering wheel platform (TheraDrive) were tested separately with the UniTherapy software. Stroke subjects with hemiparesis and able-bodied subjects completed tracking activities with the devices in different positions. We quantify motor performance across subject groups and across device platforms and muscle activation across devices at two positions in the arm workspace. Results Trends in the assessment metrics were consistent across devices with able-bodied and high functioning strokes subjects being significantly more accurate and quicker in their motor performance than low functioning subjects. Muscle activation patterns were different for shoulder and elbow across different devices and locations. Conclusion The Robot/CAMR suite has potential for stroke rehabilitation. By manipulating hardware and software variables, we can create personalized therapy environments that engage patients, address their therapy need, and track their progress. A larger longitudinal study is still needed to evaluate these systems in under-supervised environments such as the home. PMID:17331243

  11. Developing the fuzzy c-means clustering algorithm based on maximum entropy for multitarget tracking in a cluttered environment

    NASA Astrophysics Data System (ADS)

    Chen, Xiao; Li, Yaan; Yu, Jing; Li, Yuxing

    2018-01-01

    For fast and more effective implementation of tracking multiple targets in a cluttered environment, we propose a multiple targets tracking (MTT) algorithm called maximum entropy fuzzy c-means clustering joint probabilistic data association that combines fuzzy c-means clustering and the joint probabilistic data association (PDA) algorithm. The algorithm uses the membership value to express the probability of the target originating from measurement. The membership value is obtained through fuzzy c-means clustering objective function optimized by the maximum entropy principle. When considering the effect of the public measurement, we use a correction factor to adjust the association probability matrix to estimate the state of the target. As this algorithm avoids confirmation matrix splitting, it can solve the high computational load problem of the joint PDA algorithm. The results of simulations and analysis conducted for tracking neighbor parallel targets and cross targets in a different density cluttered environment show that the proposed algorithm can realize MTT quickly and efficiently in a cluttered environment. Further, the performance of the proposed algorithm remains constant with increasing process noise variance. The proposed algorithm has the advantages of efficiency and low computational load, which can ensure optimum performance when tracking multiple targets in a dense cluttered environment.

  12. The spacecraft control laboratory experiment optical attitude measurement system

    NASA Technical Reports Server (NTRS)

    Welch, Sharon S.; Montgomery, Raymond C.; Barsky, Michael F.

    1991-01-01

    A stereo camera tracking system was developed to provide a near real-time measure of the position and attitude of the Spacecraft COntrol Laboratory Experiment (SCOLE). The SCOLE is a mockup of the shuttle-like vehicle with an attached flexible mast and (simulated) antenna, and was designed to provide a laboratory environment for the verification and testing of control laws for large flexible spacecraft. Actuators and sensors located on the shuttle and antenna sense the states of the spacecraft and allow the position and attitude to be controlled. The stereo camera tracking system which was developed consists of two position sensitive detector cameras which sense the locations of small infrared LEDs attached to the surface of the shuttle. Information on shuttle position and attitude is provided in six degrees-of-freedom. The design of this optical system, calibration, and tracking algorithm are described. The performance of the system is evaluated for yaw only.

  13. An improved multi-domain convolution tracking algorithm

    NASA Astrophysics Data System (ADS)

    Sun, Xin; Wang, Haiying; Zeng, Yingsen

    2018-04-01

    Along with the wide application of the Deep Learning in the field of Computer vision, Deep learning has become a mainstream direction in the field of object tracking. The tracking algorithm in this paper is based on the improved multidomain convolution neural network, and the VOT video set is pre-trained on the network by multi-domain training strategy. In the process of online tracking, the network evaluates candidate targets sampled from vicinity of the prediction target in the previous with Gaussian distribution, and the candidate target with the highest score is recognized as the prediction target of this frame. The Bounding Box Regression model is introduced to make the prediction target closer to the ground-truths target box of the test set. Grouping-update strategy is involved to extract and select useful update samples in each frame, which can effectively prevent over fitting. And adapt to changes in both target and environment. To improve the speed of the algorithm while maintaining the performance, the number of candidate target succeed in adjusting dynamically with the help of Self-adaption parameter Strategy. Finally, the algorithm is tested by OTB set, compared with other high-performance tracking algorithms, and the plot of success rate and the accuracy are drawn. which illustrates outstanding performance of the tracking algorithm in this paper.

  14. Sensor Spatial Distortion, Visual Latency, and Update Rate Effects on 3D Tracking in Virtual Environments

    NASA Technical Reports Server (NTRS)

    Ellis, S. R.; Adelstein, B. D.; Baumeler, S.; Jense, G. J.; Jacoby, R. H.; Trejo, Leonard (Technical Monitor)

    1998-01-01

    Several common defects that we have sought to minimize in immersing virtual environments are: static sensor spatial distortion, visual latency, and low update rates. Human performance within our environments during large amplitude 3D tracking was assessed by objective and subjective methods in the presence and absence of these defects. Results show that 1) removal of our relatively small spatial sensor distortion had minor effects on the tracking activity, 2) an Adapted Cooper-Harper controllability scale proved the most sensitive subjective indicator of the degradation of dynamic fidelity caused by increasing latency and decreasing frame rates, and 3) performance, as measured by normalized RMS tracking error or subjective impressions, was more markedly influenced by changing visual latency than by update rate.

  15. 40 CFR 97.52 - NOX Allowance Tracking System responsibilities of NOX authorized account representative.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 21 2011-07-01 2011-07-01 false NOX Allowance Tracking System... NOX AND SO2 TRADING PROGRAMS NOX Allowance Tracking System § 97.52 NOX Allowance Tracking System... Tracking System account, all submissions to the Administrator pertaining to the account, including, but not...

  16. 40 CFR 97.52 - NOX Allowance Tracking System responsibilities of NOX authorized account representative.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false NOX Allowance Tracking System... NOX AND SO2 TRADING PROGRAMS NOX Allowance Tracking System § 97.52 NOX Allowance Tracking System... Tracking System account, all submissions to the Administrator pertaining to the account, including, but not...

  17. Low Earth orbit atomic oxygen simulation for durability evaluation of solar reflector surfaces

    NASA Technical Reports Server (NTRS)

    Degroh, Kim K.; Banks, Bruce A.

    1992-01-01

    To evaluate the performance and durability of solar reflector surfaces in the atomic oxygen environment typical of low Earth orbit (LEO), one must expose the reflector surface either directly to LEO or to ground-laboratory atomic oxygen environments. Although actual LEO exposures are most desired, such opportunities are typically scarce, expensive, and of limited duration. As a result, ground-laboratory exposures must be relied upon as the most practical long-term durability evaluation technique. Plasma ashers are widely used as LEO simulation facilities by producing atomic oxygen environments for durability evaluation of potential spacecraft materials. Atomic oxygen arrival differs between ground and space exposure in that plasma asher exposure produces isotropic arrival and space solar tracking produces sweeping arrival. Differences in initial impact reaction probability occur, dependent upon the energy and species existing in these environments. Due to the variations in ground-laboratory and space atomic oxygen, quantification of in-space performance based on plasma asher testing is not straightforward. The various atomic oxygen interactions that can occur with reflector surfaces, such as undercutting in organic substrates at protective coating defect sites, ground-laboratory techniques recommended for evaluating the atomic oxygen durability of reflectors based on asher exposures, and computational techniques which make use of ground-laboratory atomic oxygen exposure to predict in-space LEO durability are addressed.

  18. Injury Surveillance Among NASA Astronauts Using the Barell Injury Diagnosis Matrix

    NASA Technical Reports Server (NTRS)

    Murray, J. D.; Laughlin, M. S.; Eudy, D. L.; Wear, M. L.; VanBaalen, M. G.

    2014-01-01

    Astronauts perform physically demanding tasks and risk incurring musculoskeletal injuries during both groundbased training and missions. Increased injury rates throughout the history of the U.S. space program have been attributed to numerous factors, including an aging astronaut corps, increased Weightless Environment Training Facility (WETF) and Neutral Buoyancy Laboratory (NBL) training to construct the International Space Station, and improved clinical operations that promote injury prevention and reporting. With NASA program changes through the years (including retirement of the Shuttle program) and an improved training environment (including a new astronaut gym), there is no surveillance program to systematically track injury rates. A limited number of research projects have been conducted over the past 20 years to evaluate musculoskeletal injuries: (1) to evaluate orthopedic injuries from 1987 to 1995, (2) to describe upper extremity injuries, (3) to evaluate EVA spacesuit training related injuries, and (4) to evaluate in-flight musculoskeletal injuries. Nevertheless, there has been no consistently performed comprehensive assessment of musculoskeletal injuries among astronauts. The Barell Injury Diagnosis Matrix was introduced at the 2001 meeting of the International Collaborative Effort (ICE) on Injury Statistics. The Matrix proposes a standardized method of classifying body region by nature of injury. Diagnoses are coded using the International Classification of Diseases, Ninth Revision, Clinical Modification (ICD-9-CM) coding system. The purpose of this study is to assess the usefulness and complexity of the Barell Injury Diagnosis Matrix to classify and track musculoskeletal injuries among NASA astronauts.

  19. Tracking Activities in Complex Settings Using Smart Environment Technologies.

    PubMed

    Singla, Geetika; Cook, Diane J; Schmitter-Edgecombe, Maureen

    2009-01-01

    The pervasive sensing technologies found in smart homes offer unprecedented opportunities for providing health monitoring and assistance to individuals experiencing difficulties living independently at home. A primary challenge that needs to be tackled to meet this need is the ability to recognize and track functional activities that people perform in their own homes and everyday settings. In this paper we look at approaches to perform real-time recognition of Activities of Daily Living. We enhance other related research efforts to develop approaches that are effective when activities are interrupted and interleaved. To evaluate the accuracy of our recognition algorithms we assess them using real data collected from participants performing activities in our on-campus smart apartment testbed.

  20. Track classification within wireless sensor network

    NASA Astrophysics Data System (ADS)

    Doumerc, Robin; Pannetier, Benjamin; Moras, Julien; Dezert, Jean; Canevet, Loic

    2017-05-01

    In this paper, we present our study on track classification by taking into account environmental information and target estimated states. The tracker uses several motion model adapted to different target dynamics (pedestrian, ground vehicle and SUAV, i.e. small unmanned aerial vehicle) and works in centralized architecture. The main idea is to explore both: classification given by heterogeneous sensors and classification obtained with our fusion module. The fusion module, presented in his paper, provides a class on each track according to track location, velocity and associated uncertainty. To model the likelihood on each class, a fuzzy approach is used considering constraints on target capability to move in the environment. Then the evidential reasoning approach based on Dempster-Shafer Theory (DST) is used to perform a time integration of this classifier output. The fusion rules are tested and compared on real data obtained with our wireless sensor network.In order to handle realistic ground target tracking scenarios, we use an autonomous smart computer deposited in the surveillance area. After the calibration step of the heterogeneous sensor network, our system is able to handle real data from a wireless ground sensor network. The performance of this system is evaluated in a real exercise for intelligence operation ("hunter hunt" scenario).

  1. Application Mail Tracking Using RSA Algorithm As Security Data and HOT-Fit a Model for Evaluation System

    NASA Astrophysics Data System (ADS)

    Permadi, Ginanjar Setyo; Adi, Kusworo; Gernowo, Rahmad

    2018-02-01

    RSA algorithm give security in the process of the sending of messages or data by using 2 key, namely private key and public key .In this research to ensure and assess directly systems are made have meet goals or desire using a comprehensive evaluation methods HOT-Fit system .The purpose of this research is to build a information system sending mail by applying methods of security RSA algorithm and to evaluate in uses the method HOT-Fit to produce a system corresponding in the faculty physics. Security RSA algorithm located at the difficulty of factoring number of large coiled factors prima, the results of the prime factors has to be done to obtain private key. HOT-Fit has three aspects assessment, in the aspect of technology judging from the system status, the quality of system and quality of service. In the aspect of human judging from the use of systems and satisfaction users while in the aspect of organization judging from the structure and environment. The results of give a tracking system sending message based on the evaluation acquired.

  2. 4. ENVIRONMENT, FROM SOUTHEAST, SHOWING VIRGINIA DEPARTMENT OF TRANSPORTATION BRIDGE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. ENVIRONMENT, FROM SOUTHEAST, SHOWING VIRGINIA DEPARTMENT OF TRANSPORTATION BRIDGE NO. 6023 CARRYING STATE ROUTE 646 (ADEN ROAD) OVER RAILROAD TRACKS - Virginia Department of Transportation Bridge No. 6023, Spanning Norfolk Southern tracks at State Route 646, Nokesville, Prince William County, VA

  3. 40 CFR 279.46 - Tracking.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 26 2010-07-01 2010-07-01 false Tracking. 279.46 Section 279.46 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR THE MANAGEMENT OF USED OIL Standards for Used Oil Transporter and Transfer Facilities § 279.46...

  4. 40 CFR 279.46 - Tracking.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 28 2013-07-01 2013-07-01 false Tracking. 279.46 Section 279.46 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR THE MANAGEMENT OF USED OIL Standards for Used Oil Transporter and Transfer Facilities § 279.46...

  5. 40 CFR 279.46 - Tracking.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 27 2014-07-01 2014-07-01 false Tracking. 279.46 Section 279.46 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR THE MANAGEMENT OF USED OIL Standards for Used Oil Transporter and Transfer Facilities § 279.46...

  6. 40 CFR 279.46 - Tracking.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 28 2012-07-01 2012-07-01 false Tracking. 279.46 Section 279.46 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR THE MANAGEMENT OF USED OIL Standards for Used Oil Transporter and Transfer Facilities § 279.46...

  7. 40 CFR 279.46 - Tracking.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 27 2011-07-01 2011-07-01 false Tracking. 279.46 Section 279.46 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR THE MANAGEMENT OF USED OIL Standards for Used Oil Transporter and Transfer Facilities § 279.46...

  8. Optical tracking of nanoscale particles in microscale environments

    PubMed Central

    Mathai, P. P.; Liddle, J. A.; Stavis, S. M.

    2016-01-01

    The trajectories of nanoscale particles through microscale environments record useful information about both the particles and the environments. Optical microscopes provide efficient access to this information through measurements of light in the far field from nanoparticles. Such measurements necessarily involve trade-offs in tracking capabilities. This article presents a measurement framework, based on information theory, that facilitates a more systematic understanding of such trade-offs to rationally design tracking systems for diverse applications. This framework includes the degrees of freedom of optical microscopes, which determine the limitations of tracking measurements in theory. In the laboratory, tracking systems are assemblies of sources and sensors, optics and stages, and nanoparticle emitters. The combined characteristics of such systems determine the limitations of tracking measurements in practice. This article reviews this tracking hardware with a focus on the essential functions of nanoparticles as optical emitters and microenvironmental probes. Within these theoretical and practical limitations, experimentalists have implemented a variety of tracking systems with different capabilities. This article reviews a selection of apparatuses and techniques for tracking multiple and single particles by tuning illumination and detection, and by using feedback and confinement to improve the measurements. Prior information is also useful in many tracking systems and measurements, which apply across a broad spectrum of science and technology. In the context of the framework and review of apparatuses and techniques, this article reviews a selection of applications, with particle diffusion serving as a prelude to tracking measurements in biological, fluid, and material systems, fabrication and assembly processes, and engineered devices. In so doing, this review identifies trends and gaps in particle tracking that might influence future research. PMID:27213022

  9. Maritime over the Horizon Sensor Integration: High Frequency Surface-Wave-Radar and Automatic Identification System Data Integration Algorithm.

    PubMed

    Nikolic, Dejan; Stojkovic, Nikola; Lekic, Nikola

    2018-04-09

    To obtain the complete operational picture of the maritime situation in the Exclusive Economic Zone (EEZ) which lies over the horizon (OTH) requires the integration of data obtained from various sensors. These sensors include: high frequency surface-wave-radar (HFSWR), satellite automatic identification system (SAIS) and land automatic identification system (LAIS). The algorithm proposed in this paper utilizes radar tracks obtained from the network of HFSWRs, which are already processed by a multi-target tracking algorithm and associates SAIS and LAIS data to the corresponding radar tracks, thus forming an integrated data pair. During the integration process, all HFSWR targets in the vicinity of AIS data are evaluated and the one which has the highest matching factor is used for data association. On the other hand, if there is multiple AIS data in the vicinity of a single HFSWR track, the algorithm still makes only one data pair which consists of AIS and HFSWR data with the highest mutual matching factor. During the design and testing, special attention is given to the latency of AIS data, which could be very high in the EEZs of developing countries. The algorithm is designed, implemented and tested in a real working environment. The testing environment is located in the Gulf of Guinea and includes a network of HFSWRs consisting of two HFSWRs, several coastal sites with LAIS receivers and SAIS data provided by provider of SAIS data.

  10. LASE measurements of water vapor, aerosol, and cloud distribution in hurricane environments and their role in hurricane development

    NASA Technical Reports Server (NTRS)

    Mahoney, M. J.; Ismail, S.; Browell, E. V.; Ferrare, R. A.; Kooi, S. A.; Brasseur, L.; Notari, A.; Petway, L.; Brackett, V.; Clayton, M.; hide

    2002-01-01

    LASE measures high resolution moisture, aerosol, and cloud distributions not available from conventional observations. LASE water vapor measurements were compared with dropsondes to evaluate their accuracy. LASE water vapor measurements were used to assess the capability of hurricane models to improve their track accuracy by 100 km on 3 day forecasts using Florida State University models.

  11. Modeling of the Orbital Debris Environment Risks in the Past, Present, and Future

    NASA Technical Reports Server (NTRS)

    Matney, Mark

    2016-01-01

    Despite of the tireless work by space surveillance assets, much of the Earth debris environment is not easily measured or tracked. For every object that is in an orbit we can track, there are hundreds of small debris that are too small to be tracked but still large enough to damage spacecraft. In addition, even if we knew today's environment with perfect knowledge, the debris environment is dynamic and would change tomorrow. Therefore, orbital debris scientists rely on numerical modeling to understand the nature of the debris environment and its risk to space operations throughout Earth orbit and into the future. This talk will summarize the ways in which modeling complements measurements to help give us a better picture of what is occurring in Earth orbit, and helps us to better conduct current and future space operations.

  12. Performance of Emcore Third Generation CPV Modules in the Low Latitude Marine Environment of Hawaii

    NASA Astrophysics Data System (ADS)

    Hoffman, Richard; Buie, Damien; King, David; Glesne, Thomas

    2011-12-01

    Emcore third generation concentrating photovoltaic (CPV) modules were evaluated in the low latitude location of Kihei, Hawaii. For comparison, the best available monocrystalline silicon flat panel modules were included in both dual-axis tracked and fixed mount configurations. The daily DC uncorrected efficiency value for the CPV modules averaged over the six-month performance period was 25.9% compared to 16% to 17% for the flat panels. Higher daily energy was obtained from CPV modules than tracked flat panels when daily direct solar insolation was greater than 5 kWh/m2 and more than fixed mount flat panel when direct insolation was greater than 3 kWh/m2. The module energy conversion performance was demonstrated to be predictable using a parametric model developed by Sandia National Laboratory. Soiling accumulation on module entrance surface was surprisingly rapid in the local environment. Measured energy loss rate due to soiling were two to six times larger for CPV compared to flat panel losses.

  13. Bayesian source tracking via focalization and marginalization in an uncertain Mediterranean Sea environment.

    PubMed

    Dosso, Stan E; Wilmut, Michael J; Nielsen, Peter L

    2010-07-01

    This paper applies Bayesian source tracking in an uncertain environment to Mediterranean Sea data, and investigates the resulting tracks and track uncertainties as a function of data information content (number of data time-segments, number of frequencies, and signal-to-noise ratio) and of prior information (environmental uncertainties and source-velocity constraints). To track low-level sources, acoustic data recorded for multiple time segments (corresponding to multiple source positions along the track) are inverted simultaneously. Environmental uncertainty is addressed by including unknown water-column and seabed properties as nuisance parameters in an augmented inversion. Two approaches are considered: Focalization-tracking maximizes the posterior probability density (PPD) over the unknown source and environmental parameters. Marginalization-tracking integrates the PPD over environmental parameters to obtain a sequence of joint marginal probability distributions over source coordinates, from which the most-probable track and track uncertainties can be extracted. Both approaches apply track constraints on the maximum allowable vertical and radial source velocity. The two approaches are applied for towed-source acoustic data recorded at a vertical line array at a shallow-water test site in the Mediterranean Sea where previous geoacoustic studies have been carried out.

  14. Quantitative evaluation for accumulative calibration error and video-CT registration errors in electromagnetic-tracked endoscopy.

    PubMed

    Liu, Sheena Xin; Gutiérrez, Luis F; Stanton, Doug

    2011-05-01

    Electromagnetic (EM)-guided endoscopy has demonstrated its value in minimally invasive interventions. Accuracy evaluation of the system is of paramount importance to clinical applications. Previously, a number of researchers have reported the results of calibrating the EM-guided endoscope; however, the accumulated errors of an integrated system, which ultimately reflect intra-operative performance, have not been characterized. To fill this vacancy, we propose a novel system to perform this evaluation and use a 3D metric to reflect the intra-operative procedural accuracy. This paper first presents a portable design and a method for calibration of an electromagnetic (EM)-tracked endoscopy system. An evaluation scheme is then described that uses the calibration results and EM-CT registration to enable real-time data fusion between CT and endoscopic video images. We present quantitative evaluation results for estimating the accuracy of this system using eight internal fiducials as the targets on an anatomical phantom: the error is obtained by comparing the positions of these targets in the CT space, EM space and endoscopy image space. To obtain 3D error estimation, the 3D locations of the targets in the endoscopy image space are reconstructed from stereo views of the EM-tracked monocular endoscope. Thus, the accumulated errors are evaluated in a controlled environment, where the ground truth information is present and systematic performance (including the calibration error) can be assessed. We obtain the mean in-plane error to be on the order of 2 pixels. To evaluate the data integration performance for virtual navigation, target video-CT registration error (TRE) is measured as the 3D Euclidean distance between the 3D-reconstructed targets of endoscopy video images and the targets identified in CT. The 3D error (TRE) encapsulates EM-CT registration error, EM-tracking error, fiducial localization error, and optical-EM calibration error. We present in this paper our calibration method and a virtual navigation evaluation system for quantifying the overall errors of the intra-operative data integration. We believe this phantom not only offers us good insights to understand the systematic errors encountered in all phases of an EM-tracked endoscopy procedure but also can provide quality control of laboratory experiments for endoscopic procedures before the experiments are transferred from the laboratory to human subjects.

  15. Load environment of rail joint bars -- phase II, joint bar service environment and fatigue analysis.

    DOT National Transportation Integrated Search

    2014-07-01

    Detailed analysis of measured bending strains shows that the foundation deflections have the most significant effect on the : magnitude of strains. All other factors, such as track type, track geometry, and fastening systems, have a less significant ...

  16. 40 CFR 279.65 - Tracking.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 28 2012-07-01 2012-07-01 false Tracking. 279.65 Section 279.65 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR THE MANAGEMENT OF USED OIL Standards for Used Oil Burners Who Burn Off-Specification Used Oil for...

  17. 40 CFR 279.65 - Tracking.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 27 2014-07-01 2014-07-01 false Tracking. 279.65 Section 279.65 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR THE MANAGEMENT OF USED OIL Standards for Used Oil Burners Who Burn Off-Specification Used Oil for...

  18. 40 CFR 279.65 - Tracking.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 28 2013-07-01 2013-07-01 false Tracking. 279.65 Section 279.65 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR THE MANAGEMENT OF USED OIL Standards for Used Oil Burners Who Burn Off-Specification Used Oil for...

  19. 40 CFR 279.65 - Tracking.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 26 2010-07-01 2010-07-01 false Tracking. 279.65 Section 279.65 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR THE MANAGEMENT OF USED OIL Standards for Used Oil Burners Who Burn Off-Specification Used Oil for...

  20. 40 CFR 279.65 - Tracking.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 27 2011-07-01 2011-07-01 false Tracking. 279.65 Section 279.65 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR THE MANAGEMENT OF USED OIL Standards for Used Oil Burners Who Burn Off-Specification Used Oil for...

  1. A novel vehicle tracking algorithm based on mean shift and active contour model in complex environment

    NASA Astrophysics Data System (ADS)

    Cai, Lei; Wang, Lin; Li, Bo; Zhang, Libao; Lv, Wen

    2017-06-01

    Vehicle tracking technology is currently one of the most active research topics in machine vision. It is an important part of intelligent transportation system. However, in theory and technology, it still faces many challenges including real-time and robustness. In video surveillance, the targets need to be detected in real-time and to be calculated accurate position for judging the motives. The contents of video sequence images and the target motion are complex, so the objects can't be expressed by a unified mathematical model. Object-tracking is defined as locating the interest moving target in each frame of a piece of video. The current tracking technology can achieve reliable results in simple environment over the target with easy identified characteristics. However, in more complex environment, it is easy to lose the target because of the mismatch between the target appearance and its dynamic model. Moreover, the target usually has a complex shape, but the tradition target tracking algorithm usually represents the tracking results by simple geometric such as rectangle or circle, so it cannot provide accurate information for the subsequent upper application. This paper combines a traditional object-tracking technology, Mean-Shift algorithm, with a kind of image segmentation algorithm, Active-Contour model, to get the outlines of objects while the tracking process and automatically handle topology changes. Meanwhile, the outline information is used to aid tracking algorithm to improve it.

  2. An Adaptive INS-Aided PLL Tracking Method for GNSS Receivers in Harsh Environments.

    PubMed

    Cong, Li; Li, Xin; Jin, Tian; Yue, Song; Xue, Rui

    2016-01-23

    As the weak link in global navigation satellite system (GNSS) signal processing, the phase-locked loop (PLL) is easily influenced with frequent cycle slips and loss of lock as a result of higher vehicle dynamics and lower signal-to-noise ratios. With inertial navigation system (INS) aid, PLLs' tracking performance can be improved. However, for harsh environments with high dynamics and signal attenuation, the traditional INS-aided PLL with fixed loop parameters has some limitations to improve the tracking adaptability. In this paper, an adaptive INS-aided PLL capable of adjusting its noise bandwidth and coherent integration time has been proposed. Through theoretical analysis, the relation between INS-aided PLL phase tracking error and carrier to noise density ratio (C/N₀), vehicle dynamics, aiding information update time, noise bandwidth, and coherent integration time has been built. The relation formulae are used to choose the optimal integration time and bandwidth for a given application under the minimum tracking error criterion. Software and hardware simulation results verify the correctness of the theoretical analysis, and demonstrate that the adaptive tracking method can effectively improve the PLL tracking ability and integrated GNSS/INS navigation performance. For harsh environments, the tracking sensitivity is increased by 3 to 5 dB, velocity errors are decreased by 36% to 50% and position errors are decreased by 6% to 24% when compared with other INS-aided PLL methods.

  3. Satellite (IRLS) tracking of elk

    NASA Technical Reports Server (NTRS)

    Buechner, H. K.

    1972-01-01

    The practicability of tracking free roaming animals in natural environments by satellite systems is reported. Satellite systems combine continuous tracking with simultaneous monitoring of physiological and environmental parameters through a combination of radio tracking and biotelemetric ground systems that lead to a better understanding of animal behavior and migration patterns.

  4. 40 CFR 72.82 - Fast-track modifications.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 17 2014-07-01 2014-07-01 false Fast-track modifications. 72.82... (CONTINUED) PERMITS REGULATION Permit Revisions § 72.82 Fast-track modifications. The following procedures shall apply to all fast-track modifications. (a) If the Administrator is the permitting authority, the...

  5. 40 CFR 72.82 - Fast-track modifications.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 17 2013-07-01 2013-07-01 false Fast-track modifications. 72.82... (CONTINUED) PERMITS REGULATION Permit Revisions § 72.82 Fast-track modifications. The following procedures shall apply to all fast-track modifications. (a) If the Administrator is the permitting authority, the...

  6. 40 CFR 72.82 - Fast-track modifications.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false Fast-track modifications. 72.82... (CONTINUED) PERMITS REGULATION Permit Revisions § 72.82 Fast-track modifications. The following procedures shall apply to all fast-track modifications. (a) If the Administrator is the permitting authority, the...

  7. 40 CFR 72.82 - Fast-track modifications.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 17 2012-07-01 2012-07-01 false Fast-track modifications. 72.82... (CONTINUED) PERMITS REGULATION Permit Revisions § 72.82 Fast-track modifications. The following procedures shall apply to all fast-track modifications. (a) If the Administrator is the permitting authority, the...

  8. 40 CFR 72.82 - Fast-track modifications.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 16 2011-07-01 2011-07-01 false Fast-track modifications. 72.82... (CONTINUED) PERMITS REGULATION Permit Revisions § 72.82 Fast-track modifications. The following procedures shall apply to all fast-track modifications. (a) If the Administrator is the permitting authority, the...

  9. Multiple object tracking using the shortest path faster association algorithm.

    PubMed

    Xi, Zhenghao; Liu, Heping; Liu, Huaping; Yang, Bin

    2014-01-01

    To solve the persistently multiple object tracking in cluttered environments, this paper presents a novel tracking association approach based on the shortest path faster algorithm. First, the multiple object tracking is formulated as an integer programming problem of the flow network. Then we relax the integer programming to a standard linear programming problem. Therefore, the global optimum can be quickly obtained using the shortest path faster algorithm. The proposed method avoids the difficulties of integer programming, and it has a lower worst-case complexity than competing methods but better robustness and tracking accuracy in complex environments. Simulation results show that the proposed algorithm takes less time than other state-of-the-art methods and can operate in real time.

  10. Multiple Object Tracking Using the Shortest Path Faster Association Algorithm

    PubMed Central

    Liu, Heping; Liu, Huaping; Yang, Bin

    2014-01-01

    To solve the persistently multiple object tracking in cluttered environments, this paper presents a novel tracking association approach based on the shortest path faster algorithm. First, the multiple object tracking is formulated as an integer programming problem of the flow network. Then we relax the integer programming to a standard linear programming problem. Therefore, the global optimum can be quickly obtained using the shortest path faster algorithm. The proposed method avoids the difficulties of integer programming, and it has a lower worst-case complexity than competing methods but better robustness and tracking accuracy in complex environments. Simulation results show that the proposed algorithm takes less time than other state-of-the-art methods and can operate in real time. PMID:25215322

  11. Head-mounted display (HMD) assessment for tracked vehicles

    NASA Astrophysics Data System (ADS)

    Nicholson, Gail

    2011-06-01

    Providing the warfighter with Head or Helmet Mounted Displays (HMDs) while in tracked vehicles provides a means to visually maintain access to systems information while in a high vibration environment. The high vibration and unique environment of military tracked and turreted vehicles impact the ability to distinctly see certain information on an HMD, especially small font size or graphics and information that requires long fixation (staring), rather than a brief or peripheral glance. The military and commercial use of HMDs was compiled from market research, market trends, and user feedback. Lessons learned from previous military and commercial use of HMD products were derived to determine the feasibility of HMDs use in the high vibration and the unique environments of tracked vehicles. The results are summarized into factors that determine HMD features which must be specified for successful implementation.

  12. Mobile gaze tracking system for outdoor walking behavioral studies

    PubMed Central

    Tomasi, Matteo; Pundlik, Shrinivas; Bowers, Alex R.; Peli, Eli; Luo, Gang

    2016-01-01

    Most gaze tracking techniques estimate gaze points on screens, on scene images, or in confined spaces. Tracking of gaze in open-world coordinates, especially in walking situations, has rarely been addressed. We use a head-mounted eye tracker combined with two inertial measurement units (IMU) to track gaze orientation relative to the heading direction in outdoor walking. Head movements relative to the body are measured by the difference in output between the IMUs on the head and body trunk. The use of the IMU pair reduces the impact of environmental interference on each sensor. The system was tested in busy urban areas and allowed drift compensation for long (up to 18 min) gaze recording. Comparison with ground truth revealed an average error of 3.3° while walking straight segments. The range of gaze scanning in walking is frequently larger than the estimation error by about one order of magnitude. Our proposed method was also tested with real cases of natural walking and it was found to be suitable for the evaluation of gaze behaviors in outdoor environments. PMID:26894511

  13. Comparison of fingerprint and facial biometric verification technologies for user access and patient identification in a clinical environment

    NASA Astrophysics Data System (ADS)

    Guo, Bing; Zhang, Yu; Documet, Jorge; Liu, Brent; Lee, Jasper; Shrestha, Rasu; Wang, Kevin; Huang, H. K.

    2007-03-01

    As clinical imaging and informatics systems continue to integrate the healthcare enterprise, the need to prevent patient mis-identification and unauthorized access to clinical data becomes more apparent especially under the Health Insurance Portability and Accountability Act (HIPAA) mandate. Last year, we presented a system to track and verify patients and staff within a clinical environment. This year, we further address the biometric verification component in order to determine which Biometric system is the optimal solution for given applications in the complex clinical environment. We install two biometric identification systems including fingerprint and facial recognition systems at an outpatient imaging facility, Healthcare Consultation Center II (HCCII). We evaluated each solution and documented the advantages and pitfalls of each biometric technology in this clinical environment.

  14. 40 CFR 96.52 - NOX Allowance Tracking System responsibilities of NOX authorized account representative.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 21 2011-07-01 2011-07-01 false NOX Allowance Tracking System... SO2 TRADING PROGRAMS FOR STATE IMPLEMENTATION PLANS NOX Allowance Tracking System § 96.52 NOX Allowance Tracking System responsibilities of NOX authorized account representative. (a) Following the...

  15. 40 CFR 96.52 - NOX Allowance Tracking System responsibilities of NOX authorized account representative.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false NOX Allowance Tracking System... SO2 TRADING PROGRAMS FOR STATE IMPLEMENTATION PLANS NOX Allowance Tracking System § 96.52 NOX Allowance Tracking System responsibilities of NOX authorized account representative. (a) Following the...

  16. Real-time object detection, tracking and occlusion reasoning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Divakaran, Ajay; Yu, Qian; Tamrakar, Amir

    A system for object detection and tracking includes technologies to, among other things, detect and track moving objects, such as pedestrians and/or vehicles, in a real-world environment, handle static and dynamic occlusions, and continue tracking moving objects across the fields of view of multiple different cameras.

  17. The PMHT: solutions for some of its problems

    NASA Astrophysics Data System (ADS)

    Wieneke, Monika; Koch, Wolfgang

    2007-09-01

    Tracking multiple targets in a cluttered environment is a challenging task. Probabilistic Multiple Hypothesis Tracking (PMHT) is an efficient approach for dealing with it. Essentially PMHT is based on the method of Expectation-Maximization for handling with association conflicts. Linearity in the number of targets and measurements is the main motivation for a further development and extension of this methodology. Unfortunately, compared with the Probabilistic Data Association Filter (PDAF), PMHT has not yet shown its superiority in terms of track-lost statistics. Furthermore, the problem of track extraction and deletion is apparently not yet satisfactorily solved within this framework. Four properties of PMHT are responsible for its problems in track maintenance: Non-Adaptivity, Hospitality, Narcissism and Local Maxima. 1, 2 In this work we present a solution for each of them and derive an improved PMHT by integrating the solutions into the PMHT formalism. The new PMHT is evaluated by Monte-Carlo simulations. A sequential Likelihood-Ratio (LR) test for track extraction has been developed and already integrated into the framework of traditional Bayesian Multiple Hypothesis Tracking. 3 As a multi-scan approach, also the PMHT methodology has the potential for track extraction. In this paper an analogous integration of a sequential LR test into the PMHT framework is proposed. We present an LR formula for track extraction and deletion using the PMHT update formulae. As PMHT provides all required ingredients for a sequential LR calculation, the LR is thus a by-product of the PMHT iteration process. Therefore the resulting update formula for the sequential LR test affords the development of Track-Before-Detect algorithms for PMHT. The approach is illustrated by a simple example.

  18. Tracking Algorithm of Multiple Pedestrians Based on Particle Filters in Video Sequences

    PubMed Central

    Liu, Yun; Wang, Chuanxu; Zhang, Shujun; Cui, Xuehong

    2016-01-01

    Pedestrian tracking is a critical problem in the field of computer vision. Particle filters have been proven to be very useful in pedestrian tracking for nonlinear and non-Gaussian estimation problems. However, pedestrian tracking in complex environment is still facing many problems due to changes of pedestrian postures and scale, moving background, mutual occlusion, and presence of pedestrian. To surmount these difficulties, this paper presents tracking algorithm of multiple pedestrians based on particle filters in video sequences. The algorithm acquires confidence value of the object and the background through extracting a priori knowledge thus to achieve multipedestrian detection; it adopts color and texture features into particle filter to get better observation results and then automatically adjusts weight value of each feature according to current tracking environment. During the process of tracking, the algorithm processes severe occlusion condition to prevent drift and loss phenomena caused by object occlusion and associates detection results with particle state to propose discriminated method for object disappearance and emergence thus to achieve robust tracking of multiple pedestrians. Experimental verification and analysis in video sequences demonstrate that proposed algorithm improves the tracking performance and has better tracking results. PMID:27847514

  19. Standard-M mobile satellite terminal employing electronic beam squint tracking

    NASA Technical Reports Server (NTRS)

    Hawkins, G. J.; Beach, M. A.; Hilton, G. S.

    1990-01-01

    In recent years, extensive experience has been built up at the University of Bristol in the use of the Electronic Beam Squint (EBS) tracking technique, applied to large earth station facilities. The current interest in land mobile satellite terminals, using small tracking antennas, has prompted the investigation of the applicability of the EBS technique to this environment. The development of an L-band mechanically steered vehicle antenna is presented. A description of the antenna is followed by a detailed investigation of the tracking environment and its implications on the error detection capability of the system. Finally, the overall hardware configuration is described along with plans for future work.

  20. Remote gaze tracking system for 3D environments.

    PubMed

    Congcong Liu; Herrup, Karl; Shi, Bertram E

    2017-07-01

    Eye tracking systems are typically divided into two categories: remote and mobile. Remote systems, where the eye tracker is located near the object being viewed by the subject, have the advantage of being less intrusive, but are typically used for tracking gaze points on fixed two dimensional (2D) computer screens. Mobile systems such as eye tracking glasses, where the eye tracker are attached to the subject, are more intrusive, but are better suited for cases where subjects are viewing objects in the three dimensional (3D) environment. In this paper, we describe how remote gaze tracking systems developed for 2D computer screens can be used to track gaze points in a 3D environment. The system is non-intrusive. It compensates for small head movements by the user, so that the head need not be stabilized by a chin rest or bite bar. The system maps the 3D gaze points of the user onto 2D images from a scene camera and is also located remotely from the subject. Measurement results from this system indicate that it is able to estimate gaze points in the scene camera to within one degree over a wide range of head positions.

  1. Load environment of rail joint bars - phase I, effects of track parameters on rail joint stresses and crack growth.

    DOT National Transportation Integrated Search

    2013-04-01

    The load environment of joint bars was assessed under a variety of loading and track conditions. Bending stresses, thermal stresses, and residual stresses were measured on commonly used joint bars. Crack growth rates from artificially induced cracks ...

  2. 40 CFR 610.64 - Track test procedures.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 31 2012-07-01 2012-07-01 false Track test procedures. 610.64 Section 610.64 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL... necessary to limit testing to times when the wind velocity is less than 5 mph, with gusts less than 10 mph...

  3. 40 CFR 610.64 - Track test procedures.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 31 2013-07-01 2013-07-01 false Track test procedures. 610.64 Section 610.64 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL... necessary to limit testing to times when the wind velocity is less than 5 mph, with gusts less than 10 mph...

  4. 40 CFR 262.21 - Manifest tracking numbers, manifest printing, and obtaining manifests.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 26 2014-07-01 2014-07-01 false Manifest tracking numbers, manifest printing, and obtaining manifests. 262.21 Section 262.21 Protection of Environment ENVIRONMENTAL PROTECTION..., scanned, or faxed, except that the marginal words indicating copy distribution must be printed with a...

  5. 40 CFR 262.21 - Manifest tracking numbers, manifest printing, and obtaining manifests.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Manifest tracking numbers, manifest printing, and obtaining manifests. 262.21 Section 262.21 Protection of Environment ENVIRONMENTAL PROTECTION..., scanned, and faxed, except that the marginal words indicating copy distribution must be in red ink. (5...

  6. 40 CFR 262.21 - Manifest tracking numbers, manifest printing, and obtaining manifests.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 27 2012-07-01 2012-07-01 false Manifest tracking numbers, manifest printing, and obtaining manifests. 262.21 Section 262.21 Protection of Environment ENVIRONMENTAL PROTECTION..., scanned, or faxed, except that the marginal words indicating copy distribution must be printed with a...

  7. 40 CFR 262.21 - Manifest tracking numbers, manifest printing, and obtaining manifests.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 27 2013-07-01 2013-07-01 false Manifest tracking numbers, manifest printing, and obtaining manifests. 262.21 Section 262.21 Protection of Environment ENVIRONMENTAL PROTECTION..., scanned, or faxed, except that the marginal words indicating copy distribution must be printed with a...

  8. Overcoming urban GPS navigation challenges through the use of MEMS inertial sensors and proper verification of navigation system performance

    NASA Astrophysics Data System (ADS)

    Vinande, Eric T.

    This research proposes several means to overcome challenges in the urban environment to ground vehicle global positioning system (GPS) receiver navigation performance through the integration of external sensor information. The effects of narrowband radio frequency interference and signal attenuation, both common in the urban environment, are examined with respect to receiver signal tracking processes. Low-cost microelectromechanical systems (MEMS) inertial sensors, suitable for the consumer market, are the focus of receiver augmentation as they provide an independent measure of motion and are independent of vehicle systems. A method for estimating the mounting angles of an inertial sensor cluster utilizing typical urban driving maneuvers is developed and is able to provide angular measurements within two degrees of truth. The integration of GPS and MEMS inertial sensors is developed utilizing a full state navigation filter. Appropriate statistical methods are developed to evaluate the urban environment navigation improvement due to the addition of MEMS inertial sensors. A receiver evaluation metric that combines accuracy, availability, and maximum error measurements is presented and evaluated over several drive tests. Following a description of proper drive test techniques, record and playback systems are evaluated as the optimal way of testing multiple receivers and/or integrated navigation systems in the urban environment as they simplify vehicle testing requirements.

  9. Development of the ZEUS central tracking detector

    NASA Astrophysics Data System (ADS)

    Brooks, C. B.; Bullock, F. W.; Cashmore, R. J.; Devenish, R. C.; Foster, B.; Fraser, T. J.; Gibson, M. D.; Gilmore, R. S.; Gingrich, D.; Harnew, N.; Hart, J. C.; Heath, G. P.; Hiddleston, J.; Holmes, A. R.; Jamdagni, A. K.; Jones, T. W.; Llewellyn, T. J.; Long, K. R.; Lush, G. J.; Malos, J.; Martin, N. C.; McArthur, I.; McCubbin, N. A.; McQuillan, D.; Miller, D. B.; Mobayyen, M. M.; Morgado, C.; Nash, J.; Nixon, G.; Parham, A. G.; Payne, B. T.; Roberts, J. H. C.; Salmon, G.; Saxon, D. H.; Sephton, A. J.; Shaw, D.; Shaw, T. B.; Shield, P. D.; Shulman, J.; Silvester, I.; Smith, S.; Strachan, D. E.; Tapper, R. J.; Tkaczyk, S. M.; Toudup, L. W.; Wallis, E. W.; Wastie, R.; Wells, J.; White, D. J.; Wilson, F. F.; Yeo, K. L.; ZEUS-UK Collaboration

    1989-11-01

    The design concept and development of the ZEUS central tracking detector is described. This is a cylindrical drift chamber designed for track reconstruction, electron identification and event triggering in a high-crossing-rate, high-magnetic-field environment.

  10. Evaluation of a low-cost 3D sound system for immersive virtual reality training systems.

    PubMed

    Doerr, Kai-Uwe; Rademacher, Holger; Huesgen, Silke; Kubbat, Wolfgang

    2007-01-01

    Since Head Mounted Displays (HMD), datagloves, tracking systems, and powerful computer graphics resources are nowadays in an affordable price range, the usage of PC-based "Virtual Training Systems" becomes very attractive. However, due to the limited field of view of HMD devices, additional modalities have to be provided to benefit from 3D environments. A 3D sound simulation can improve the capabilities of VR systems dramatically. Unfortunately, realistic 3D sound simulations are expensive and demand a tremendous amount of computational power to calculate reverberation, occlusion, and obstruction effects. To use 3D sound in a PC-based training system as a way to direct and guide trainees to observe specific events in 3D space, a cheaper alternative has to be provided, so that a broader range of applications can take advantage of this modality. To address this issue, we focus in this paper on the evaluation of a low-cost 3D sound simulation that is capable of providing traceable 3D sound events. We describe our experimental system setup using conventional stereo headsets in combination with a tracked HMD device and present our results with regard to precision, speed, and used signal types for localizing simulated sound events in a virtual training environment.

  11. Tracking Student Mistreatment Data to Improve the Emergency Medicine Clerkship Learning Environment

    PubMed Central

    House, Joseph B.; Griffith, Max C.; Kappy, Michelle D.; Holman, Elizabeth; Santen, Sally A.

    2018-01-01

    Introduction Medical student mistreatment is a prevalent and significant challenge for medical schools across the country, associated with negative emotional and professional consequences for students. The Association of American Medical Colleges and Liaison Committee on Medical Education have increasingly emphasized the issue of mistreatment in recent years, and medical schools are tasked with creating a positive learning climate. Methods The authors describe the efforts of an emergency department (ED) to improve its clerkship learning environment, using a multifaceted approach for collecting mistreatment data and relaying them to educators and clerkship leadership. Data are gathered through end-of-rotation evaluations, teaching evaluations, and an online reporting system available to medical students. Mistreatment data are then relayed to the ED during semi-annual meetings between clerkship leadership and medical school assistant deans, and through annual mistreatment reports provided to department chairs. Results Over a two-year period, students submitted a total of 56 narrative comments related to mistreatment or unprofessional behavior during their emergency medicine (EM) clerkship. Of these comments, 12 were submitted in 2015–16 and 44 were submitted in 2016–17. The most frequently observed themes were students feeling ignored or marginalized by faculty (14 comments); students being prevented from speaking or working with patients and/or attending faculty (11 comments); and students being treated in an unprofessional manner by staff (other than faculty, 8 comments). Conclusion This article details an ED’s efforts to improve its EM clerkship learning environment by tracking mistreatment data and intentionally communicating the results to educators and clerkship leadership. Continued mistreatment data collection and faculty development will be necessary for these efforts to have a measurable effect on the learning environment. PMID:29383051

  12. Multiple-hypothesis multiple-model line tracking

    NASA Astrophysics Data System (ADS)

    Pace, Donald W.; Owen, Mark W.; Cox, Henry

    2000-07-01

    Passive sonar signal processing generally includes tracking of narrowband and/or broadband signature components observed on a Lofargram or on a Bearing-Time-Record (BTR) display. Fielded line tracking approaches to date have been recursive and single-hypthesis-oriented Kalman- or alpha-beta filters, with no mechanism for considering tracking alternatives beyond the most recent scan of measurements. While adaptivity is often built into the filter to handle changing track dynamics, these approaches are still extensions of single target tracking solutions to multiple target tracking environment. This paper describes an application of multiple-hypothesis, multiple target tracking technology to the sonar line tracking problem. A Multiple Hypothesis Line Tracker (MHLT) is developed which retains the recursive minimum-mean-square-error tracking behavior of a Kalman Filter in a maximum-a-posteriori delayed-decision multiple hypothesis context. Multiple line track filter states are developed and maintained using the interacting multiple model (IMM) state representation. Further, the data association and assignment problem is enhanced by considering line attribute information (line bandwidth and SNR) in addition to beam/bearing and frequency fit. MHLT results on real sonar data are presented to demonstrate the benefits of the multiple hypothesis approach. The utility of the system in cluttered environments and particularly in crossing line situations is shown.

  13. The Latest Succession of Dinosaur Tracksites in Europe: Hadrosaur Ichnology, Track Production and Palaeoenvironments

    PubMed Central

    Vila, Bernat; Oms, Oriol; Fondevilla, Víctor; Gaete, Rodrigo; Galobart, Àngel; Riera, Violeta; Canudo, José Ignacio

    2013-01-01

    A comprehensive review and study of the rich dinosaur track record of the Tremp Formation in the southern Pyrenees of Spain (Southwestern Europe) shows a unique succession of footprint localities prior to the end-Cretaceous mass extinction event. A description of some 30 new tracksites and data on sedimentary environments, track occurrence and preservation, ichnology and chronostratigraphy are provided. These new track localities represent various facies types within a diverse set of fluvial environments. The footprint discoveries mostly represent hadrosaurian and, less abundantly, to sauropod dinosaurs. The hadrosaur tracks are significantly smaller in size than, but morphologically similar to, those of North America and Asia and are attributable to the ichnogenus Hadrosauropodus. The track succession, with more than 40 distinct track levels, indicates that hadrosaur footprints in the Ibero-Armorican region occur predominantly in the late Maaastrichtian (at least above the early Maastrichtian–late Maastrichtian boundary). The highest abundance is found noticeably found in the late Maastrichtian, with tracks occurring in the C29r magnetochron, within about the latest 300,000 years of the Cretaceous. PMID:24019873

  14. Integrated system for point cloud reconstruction and simulated brain shift validation using tracked surgical microscope

    NASA Astrophysics Data System (ADS)

    Yang, Xiaochen; Clements, Logan W.; Luo, Ma; Narasimhan, Saramati; Thompson, Reid C.; Dawant, Benoit M.; Miga, Michael I.

    2017-03-01

    Intra-operative soft tissue deformation, referred to as brain shift, compromises the application of current imageguided surgery (IGS) navigation systems in neurosurgery. A computational model driven by sparse data has been used as a cost effective method to compensate for cortical surface and volumetric displacements. Stereoscopic microscopes and laser range scanners (LRS) are the two most investigated sparse intra-operative imaging modalities for driving these systems. However, integrating these devices in the clinical workflow to facilitate development and evaluation requires developing systems that easily permit data acquisition and processing. In this work we present a mock environment developed to acquire stereo images from a tracked operating microscope and to reconstruct 3D point clouds from these images. A reconstruction error of 1 mm is estimated by using a phantom with a known geometry and independently measured deformation extent. The microscope is tracked via an attached tracking rigid body that facilitates the recording of the position of the microscope via a commercial optical tracking system as it moves during the procedure. Point clouds, reconstructed under different microscope positions, are registered into the same space in order to compute the feature displacements. Using our mock craniotomy device, realistic cortical deformations are generated. Our experimental results report approximately 2mm average displacement error compared with the optical tracking system. These results demonstrate the practicality of using tracked stereoscopic microscope as an alternative to LRS to collect sufficient intraoperative information for brain shift correction.

  15. Integrated Ultra-Wideband Tracking and Carbon Dioxide Sensing System Design for International Space Station Applications

    NASA Technical Reports Server (NTRS)

    Ni, Jianjun (David); Hafermalz, David; Dusl, John; Barton, Rick; Wagner, Ray; Ngo, Phong

    2015-01-01

    A three-dimensional (3D) Ultra-Wideband (UWB) Time-of-Arrival (TOA) tracking system has been studied at NASA Johnson Space Center (JSC) to provide the tracking capability inside the International Space Station (ISS) modules for various applications. One of applications is to locate and report the location where crew experienced possible high level of carbon-dioxide (CO2) and felt upset. Recent findings indicate that frequent, short-term crew exposure to elevated CO2 levels combined with other physiological impacts of microgravity may lead to a number of detrimental effects, including loss of vision. To evaluate the risks associated with transient elevated CO2 levels and design effective countermeasures, doctors must have access to frequent CO2 measurements in the immediate vicinity of individual crew members along with simultaneous measurements of their location in the space environment. To achieve this goal, a small, low-power, wearable system that integrates an accurate CO2 sensor with an ultra-wideband (UWB) radio capable of real-time location estimation and data communication is proposed. This system would be worn by crew members or mounted on a free-flyer and would automatically gather and transmit sampled sensor data tagged with real-time, high-resolution location information. Under the current proposed effort, a breadboard prototype of such a system has been developed. Although the initial effort is targeted to CO2 monitoring, the concept is applicable to other types of sensors. For the initial effort, a micro-controller is leveraged to integrate a low-power CO2 sensor with a commercially available UWB radio system with ranging capability. In order to accurately locate those places in a multipath intensive environment like ISS modules, it requires a robust real-time location system (RTLS) which can provide the required accuracy and update rate. A 3D UWB TOA tracking system with two-way ranging has been proposed and studied. The designed system will be tested in the Wireless Habitat Testbed which simulates the ISS module environment. This report describes the research and development effort for this prototype integrated UWB tracking and CO2 sensing system. The remainder of the report is organized as follows. In Section II, the TOA tracking methodology is introduced and the 3D tracking algorithm is derived. The simulation results are discussed in Section III. In Section VI, prototype system design and field tests are discussed. Some concluding remarks and future works are presented in Section V.

  16. Location detection and tracking of moving targets by a 2D IR-UWB radar system.

    PubMed

    Nguyen, Van-Han; Pyun, Jae-Young

    2015-03-19

    In indoor environments, the Global Positioning System (GPS) and long-range tracking radar systems are not optimal, because of signal propagation limitations in the indoor environment. In recent years, the use of ultra-wide band (UWB) technology has become a possible solution for object detection, localization and tracking in indoor environments, because of its high range resolution, compact size and low cost. This paper presents improved target detection and tracking techniques for moving objects with impulse-radio UWB (IR-UWB) radar in a short-range indoor area. This is achieved through signal-processing steps, such as clutter reduction, target detection, target localization and tracking. In this paper, we introduce a new combination consisting of our proposed signal-processing procedures. In the clutter-reduction step, a filtering method that uses a Kalman filter (KF) is proposed. Then, in the target detection step, a modification of the conventional CLEAN algorithm which is used to estimate the impulse response from observation region is applied for the advanced elimination of false alarms. Then, the output is fed into the target localization and tracking step, in which the target location and trajectory are determined and tracked by using unscented KF in two-dimensional coordinates. In each step, the proposed methods are compared to conventional methods to demonstrate the differences in performance. The experiments are carried out using actual IR-UWB radar under different scenarios. The results verify that the proposed methods can improve the probability and efficiency of target detection and tracking.

  17. Neuro-Analogical Gate Tuning of Trajectory Data Fusion for a Mecanum-Wheeled Special Needs Chair

    PubMed Central

    ElSaharty, M. A.; zakzouk, Ezz Eldin

    2017-01-01

    Trajectory tracking of mobile wheeled chairs using internal shaft encoder and inertia measurement unit(IMU), exhibits several complications and accumulated errors in the tracking process due to wheel slippage, offset drift and integration approximations. These errors can be realized when comparing localization results from such sensors with a camera tracking system. In long trajectory tracking, such errors can accumulate and result in significant deviations which make data from these sensors unreliable for tracking. Meanwhile the utilization of an external camera tracking system is not always a feasible solution depending on the implementation environment. This paper presents a novel sensor fusion method that combines the measurements of internal sensors to accurately predict the location of the wheeled chair in an environment. The method introduces a new analogical OR gate structured with tuned parameters using multi-layer feedforward neural network denoted as “Neuro-Analogical Gate” (NAG). The resulting system minimize any deviation error caused by the sensors, thus accurately tracking the wheeled chair location without the requirement of an external camera tracking system. The fusion methodology has been tested with a prototype Mecanum wheel-based chair, and significant improvement over tracking response, error and performance has been observed. PMID:28045973

  18. Subsea Cable Tracking by Autonomous Underwater Vehicle with Magnetic Sensing Guidance.

    PubMed

    Xiang, Xianbo; Yu, Caoyang; Niu, Zemin; Zhang, Qin

    2016-08-20

    The changes of the seabed environment caused by a natural disaster or human activities dramatically affect the life span of the subsea buried cable. It is essential to track the cable route in order to inspect the condition of the buried cable and protect its surviving seabed environment. The magnetic sensor is instrumental in guiding the remotely-operated vehicle (ROV) to track and inspect the buried cable underseas. In this paper, a novel framework integrating the underwater cable localization method with the magnetic guidance and control algorithm is proposed, in order to enable the automatic cable tracking by a three-degrees-of-freedom (3-DOF) under-actuated autonomous underwater vehicle (AUV) without human beings in the loop. The work relies on the passive magnetic sensing method to localize the subsea cable by using two tri-axial magnetometers, and a new analytic formulation is presented to compute the heading deviation, horizontal offset and buried depth of the cable. With the magnetic localization, the cable tracking and inspection mission is elaborately constructed as a straight-line path following control problem in the horizontal plane. A dedicated magnetic line-of-sight (LOS) guidance is built based on the relative geometric relationship between the vehicle and the cable, and the feedback linearizing technique is adopted to design a simplified cable tracking controller considering the side-slip effects, such that the under-actuated vehicle is able to move towards the subsea cable and then inspect its buried environment, which further guides the environmental protection of the cable by setting prohibited fishing/anchoring zones and increasing the buried depth. Finally, numerical simulation results show the effectiveness of the proposed magnetic guidance and control algorithm on the envisioned subsea cable tracking and the potential protection of the seabed environment along the cable route.

  19. Subsea Cable Tracking by Autonomous Underwater Vehicle with Magnetic Sensing Guidance

    PubMed Central

    Xiang, Xianbo; Yu, Caoyang; Niu, Zemin; Zhang, Qin

    2016-01-01

    The changes of the seabed environment caused by a natural disaster or human activities dramatically affect the life span of the subsea buried cable. It is essential to track the cable route in order to inspect the condition of the buried cable and protect its surviving seabed environment. The magnetic sensor is instrumental in guiding the remotely-operated vehicle (ROV) to track and inspect the buried cable underseas. In this paper, a novel framework integrating the underwater cable localization method with the magnetic guidance and control algorithm is proposed, in order to enable the automatic cable tracking by a three-degrees-of-freedom (3-DOF) under-actuated autonomous underwater vehicle (AUV) without human beings in the loop. The work relies on the passive magnetic sensing method to localize the subsea cable by using two tri-axial magnetometers, and a new analytic formulation is presented to compute the heading deviation, horizontal offset and buried depth of the cable. With the magnetic localization, the cable tracking and inspection mission is elaborately constructed as a straight-line path following control problem in the horizontal plane. A dedicated magnetic line-of-sight (LOS) guidance is built based on the relative geometric relationship between the vehicle and the cable, and the feedback linearizing technique is adopted to design a simplified cable tracking controller considering the side-slip effects, such that the under-actuated vehicle is able to move towards the subsea cable and then inspect its buried environment, which further guides the environmental protection of the cable by setting prohibited fishing/anchoring zones and increasing the buried depth. Finally, numerical simulation results show the effectiveness of the proposed magnetic guidance and control algorithm on the envisioned subsea cable tracking and the potential protection of the seabed environment along the cable route. PMID:27556465

  20. Phylogenetic ctDNA analysis depicts early stage lung cancer evolution

    PubMed Central

    Abbosh, Christopher; Birkbak, Nicolai J.; Wilson, Gareth A.; Jamal-Hanjani, Mariam; Constantin, Tudor; Salari, Raheleh; Le Quesne, John; Moore, David A; Veeriah, Selvaraju; Rosenthal, Rachel; Marafioti, Teresa; Kirkizlar, Eser; Watkins, Thomas B K; McGranahan, Nicholas; Ward, Sophia; Martinson, Luke; Riley, Joan; Fraioli, Francesco; Al Bakir, Maise; Grönroos, Eva; Zambrana, Francisco; Endozo, Raymondo; Bi, Wenya Linda; Fennessy, Fiona M.; Sponer, Nicole; Johnson, Diana; Laycock, Joanne; Shafi, Seema; Czyzewska-Khan, Justyna; Rowan, Andrew; Chambers, Tim; Matthews, Nik; Turajlic, Samra; Hiley, Crispin; Lee, Siow Ming; Forster, Martin D.; Ahmad, Tanya; Falzon, Mary; Borg, Elaine; Lawrence, David; Hayward, Martin; Kolvekar, Shyam; Panagiotopoulos, Nikolaos; Janes, Sam M; Thakrar, Ricky; Ahmed, Asia; Blackhall, Fiona; Summers, Yvonne; Hafez, Dina; Naik, Ashwini; Ganguly, Apratim; Kareht, Stephanie; Shah, Rajesh; Joseph, Leena; Quinn, Anne Marie; Crosbie, Phil; Naidu, Babu; Middleton, Gary; Langman, Gerald; Trotter, Simon; Nicolson, Marianne; Remmen, Hardy; Kerr, Keith; Chetty, Mahendran; Gomersall, Lesley; Fennell, Dean; Nakas, Apostolos; Rathinam, Sridhar; Anand, Girija; Khan, Sajid; Russell, Peter; Ezhil, Veni; Ismail, Babikir; Irvin-sellers, Melanie; Prakash, Vineet; Lester, Jason; Kornaszewska, Malgorzata; Attanoos, Richard; Adams, Haydn; Davies, Helen; Oukrif, Dahmane; Akarca, Ayse U; Hartley, John A; Lowe, Helen L; Lock, Sara; Iles, Natasha; Bell, Harriet; Ngai, Yenting; Elgar, Greg; Szallasi, Zoltan; Schwarz, Roland F; Herrero, Javier; Stewart, Aengus; Quezada, Sergio A; Peggs, Karl S.; Van Loo, Peter; Dive, Caroline; Lin, Jimmy; Rabinowitz, Matthew; Aerts, Hugo JWL; Hackshaw, Allan; Shaw, Jacqui A; Zimmermann, Bernhard G.; Swanton, Charles

    2017-01-01

    Summary The early detection of relapse following primary surgery for non-small cell lung cancer and the characterization of emerging subclones seeding metastatic sites might offer new therapeutic approaches to limit tumor recurrence. The potential to non-invasively track tumor evolutionary dynamics in ctDNA of early-stage lung cancer is not established. Here we conduct a tumour-specific phylogenetic approach to ctDNA profiling in the first 100 TRACERx (TRAcking non-small cell lung Cancer Evolution through therapy (Rx)) study participants, including one patient co-recruited to the PEACE (Posthumous Evaluation of Advanced Cancer Environment) post-mortem study. We identify independent predictors of ctDNA release and perform tumor volume limit of detection analyses. Through blinded profiling of post-operative plasma, we observe evidence of adjuvant chemotherapy resistance and identify patients destined to experience recurrence of their lung cancer. Finally, we show that phylogenetic ctDNA profiling tracks the subclonal nature of lung cancer relapse and metastases, providing a new approach for ctDNA driven therapeutic studies PMID:28445469

  1. A Robust Head Tracking System Based on Monocular Vision and Planar Templates

    PubMed Central

    Caballero, Fernando; Maza, Iván; Molina, Roberto; Esteban, David; Ollero, Aníbal

    2009-01-01

    This paper details the implementation of a head tracking system suitable for its use in teleoperation stations or control centers, taking into account the limitations and constraints usually associated to those environments. The paper discusses and justifies the selection of the different methods and sensors to build the head tracking system, detailing also the processing steps of the system in operation. A prototype to validate the proposed approach is also presented along with several tests in a real environment with promising results. PMID:22291546

  2. A Parallel Finite Set Statistical Simulator for Multi-Target Detection and Tracking

    NASA Astrophysics Data System (ADS)

    Hussein, I.; MacMillan, R.

    2014-09-01

    Finite Set Statistics (FISST) is a powerful Bayesian inference tool for the joint detection, classification and tracking of multi-target environments. FISST is capable of handling phenomena such as clutter, misdetections, and target birth and decay. Implicit within the approach are solutions to the data association and target label-tracking problems. Finally, FISST provides generalized information measures that can be used for sensor allocation across different types of tasks such as: searching for new targets, and classification and tracking of known targets. These FISST capabilities have been demonstrated on several small-scale illustrative examples. However, for implementation in a large-scale system as in the Space Situational Awareness problem, these capabilities require a lot of computational power. In this paper, we implement FISST in a parallel environment for the joint detection and tracking of multi-target systems. In this implementation, false alarms and misdetections will be modeled. Target birth and decay will not be modeled in the present paper. We will demonstrate the success of the method for as many targets as we possibly can in a desktop parallel environment. Performance measures will include: number of targets in the simulation, certainty of detected target tracks, computational time as a function of clutter returns and number of targets, among other factors.

  3. Shuttle GPS R/PA evaluation analysis and performance tradeoff study

    NASA Technical Reports Server (NTRS)

    Booth, R. W. D.; Lindsey, W. C.

    1978-01-01

    Primary responsibility was understanding and analyzing the various GPS receiver functions as they relate to the shuttle environment. These receiver functions included acquisition properties of the sequential detector, acquisition and tracking properties of the various receiver phase locked loops, and the techniques of sequential receiver operation. In addition to these areas, support was provided in the areas of oscillator stability requirements, antenna management, and navigation filter requirements, including preposition aiding.

  4. Along-Track Reef Imaging System (ATRIS)

    USGS Publications Warehouse

    Brock, John; Zawada, Dave

    2006-01-01

    "Along-Track Reef Imaging System (ATRIS)" describes the U.S. Geological Survey's Along-Track Reef Imaging System, a boat-based sensor package for rapidly mapping shallow water benthic environments. ATRIS acquires high resolution, color digital images that are accurately geo-located in real-time.

  5. A Non-invasive Real-time Localization System for Enhanced Efficacy in Nasogastric Intubation.

    PubMed

    Sun, Zhenglong; Foong, Shaohui; Maréchal, Luc; Tan, U-Xuan; Teo, Tee Hui; Shabbir, Asim

    2015-12-01

    Nasogastric (NG) intubation is one of the most commonly performed clinical procedures. Real-time localization and tracking of the NG tube passage at the larynx region into the esophagus is crucial for safety, but is lacking in current practice. In this paper, we present the design, analysis and evaluation of a non-invasive real-time localization system using passive magnetic tracking techniques to improve efficacy of the clinical NG intubation process. By embedding a small permanent magnet at the insertion tip of the NG tube, a wearable system containing embedded sensors around the neck can determine the absolute position of the NG tube inside the body in real-time to assist in insertion. In order to validate the feasibility of the proposed system in detecting erroneous tube placement, typical reference intubation trajectories are first analyzed using anatomically correct models and localization accuracy of the system are evaluated using a precise robotic platform. It is found that the root-mean-squared tracking accuracy is within 5.3 mm for both the esophagus and trachea intubation pathways. Experiments were also designed and performed to demonstrate that the system is capable of tracking the NG tube accurately in biological environments even in presence of stationary ferromagnetic objects (such as clinical instruments). With minimal physical modification to the NG tube and clinical process, this system allows accurate and efficient localization and confirmation of correct NG tube placement without supplemental radiographic methods which is considered the current clinical standard.

  6. User Identification and Tracking in an Educational Web Environment.

    ERIC Educational Resources Information Center

    Marzo-Lazaro, J. L.; Verdu-Carbo, T.; Fabregat-Gesa, R.

    This paper describes a solution to the user identification and tracking problem within an educational World Wide Web environment. The paper begins with an overview of the Teaching Support System project at the University of Girona (Spain); the main objective of the project is to create an integrated set of tools for teachers to use to create and…

  7. 3D environment modeling and location tracking using off-the-shelf components

    NASA Astrophysics Data System (ADS)

    Luke, Robert H.

    2016-05-01

    The remarkable popularity of smartphones over the past decade has led to a technological race for dominance in market share. This has resulted in a flood of new processors and sensors that are inexpensive, low power and high performance. These sensors include accelerometers, gyroscope, barometers and most importantly cameras. This sensor suite, coupled with multicore processors, allows a new community of researchers to build small, high performance platforms for low cost. This paper describes a system using off-the-shelf components to perform position tracking as well as environment modeling. The system relies on tracking using stereo vision and inertial navigation to determine movement of the system as well as create a model of the environment sensed by the system.

  8. Tracking dynamic team activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tambe, M.

    1996-12-31

    AI researchers are striving to build complex multi-agent worlds with intended applications ranging from the RoboCup robotic soccer tournaments, to interactive virtual theatre, to large-scale real-world battlefield simulations. Agent tracking - monitoring other agent`s actions and inferring their higher-level goals and intentions - is a central requirement in such worlds. While previous work has mostly focused on tracking individual agents, this paper goes beyond by focusing on agent teams. Team tracking poses the challenge of tracking a team`s joint goals and plans. Dynamic, real-time environments add to the challenge, as ambiguities have to be resolved in real-time. The central hypothesismore » underlying the present work is that an explicit team-oriented perspective enables effective team tracking. This hypothesis is instantiated using the model tracing technology employed in tracking individual agents. Thus, to track team activities, team models are put to service. Team models are a concrete application of the joint intentions framework and enable an agent to track team activities, regardless of the agent`s being a collaborative participant or a non-participant in the team. To facilitate real-time ambiguity resolution with team models: (i) aspects of tracking are cast as constraint satisfaction problems to exploit constraint propagation techniques; and (ii) a cost minimality criterion is applied to constrain tracking search. Empirical results from two separate tasks in real-world, dynamic environments one collaborative and one competitive - are provided.« less

  9. Integration of trans-esophageal echocardiography with magnetic tracking technology for cardiac interventions

    NASA Astrophysics Data System (ADS)

    Moore, John T.; Wiles, Andrew D.; Wedlake, Chris; Bainbridge, Daniel; Kiaii, Bob; Trejos, Ana Luisa; Patel, Rajni; Peters, Terry M.

    2010-02-01

    Trans-esophageal echocardiography (TEE) is a standard component of patient monitoring during most cardiac surgeries. In recent years magnetic tracking systems (MTS) have become sufficiently robust to function effectively in appropriately structured operating room environments. The ability to track a conventional multiplanar 2D TEE transducer in 3D space offers incredible potential by greatly expanding the cumulative field of view of cardiac anatomy beyond the limited field of view provided by 2D and 3D TEE technology. However, there is currently no TEE probe manufactured with MTS technology embedded in the transducer, which means sensors must be attached to the outer surface of the TEE. This leads to potential safety issues for patients, as well as potential damage to the sensor during procedures. This paper presents a standard 2D TEE probe fully integrated with MTS technology. The system is evaluated in an environment free of magnetic and electromagnetic disturbances, as well as a clinical operating room in the presence of a da Vinci robotic system. Our first integrated TEE device is currently being used in animal studies for virtual reality-enhanced ultrasound guidance of intracardiac surgeries, while the "second generation" TEE is in use in a clinical operating room as part of a project to measure perioperative heart shift and optimal port placement for robotic cardiac surgery. We demonstrate excellent system accuracy for both applications.

  10. Assessment of Atmospheric Winds Aloft during NASA Space Shuttle Program Day-of-Launch Operations

    NASA Technical Reports Server (NTRS)

    Decker, Ryan K.; Leach, Richard

    2005-01-01

    The Natural Environments Branch at the National Aeronautics and Space Administration s Marshall Space Flight Center monitors the winds aloft at Kennedy Space Center in support of the Space Shuttle Program day of launch operations. High resolution wind profiles are derived from radar tracked Jimsphere balloons, which are launched at predetermined times preceding the launch, for evaluation. The spatial (shear) and temporal (persistence) wind characteristics are assessed against a design wind database to ensure wind change does not violate wind change criteria. Evaluations of wind profies are reported to personnel at Johnson Space Center.

  11. Magneto-optical labeling of fetal neural stem cells for in vivo MRI tracking.

    PubMed

    Flexman, J A; Minoshima, S; Kim, Y; Cross, D J

    2006-01-01

    Neural stem cell therapy for neurological pathologies, such as Alzheimer's and Parkinson's disease, may delay the onset of symptoms, replace damaged neurons and/or support the survival of endogenous cells. Magnetic resonance imaging (MRI) can be used to track magnetically labeled cells in vivo to observe migration. Prior to transplantation, labeled cells must be characterized to show that they retain their intrinsic properties, such as cell proliferation into neurospheres in a supplemented environment. In vivo images must also be correlated to sensitive, histological markers. In this study, we show that fetus-derived neural stem cells can be co-labeled with superparamagnetic iron oxide and PKH26, a fluorescent dye. Labeled cells retain the ability to proliferate into neurospheres in culture, but labeling prevents neurospheres from merging in a non-adherent culture environment. After labeled NSCs were transplantation into the rat brain, their location and subsequent migration along the corpus callosum was detected using MRI. This study demonstrates an imaging paradigm with which to develop an in vivo assay for quantitatively evaluating fetal neural stem cell migration.

  12. Quantitative nanoparticle tracking: applications to nanomedicine.

    PubMed

    Huang, Feiran; Dempsey, Christopher; Chona, Daniela; Suh, Junghae

    2011-06-01

    Particle tracking is an invaluable technique to extract quantitative and qualitative information regarding the transport of nanomaterials through complex biological environments. This technique can be used to probe the dynamic behavior of nanoparticles as they interact with and navigate through intra- and extra-cellular barriers. In this article, we focus on the recent developments in the application of particle-tracking technology to nanomedicine, including the study of synthetic and virus-based materials designed for gene and drug delivery. Specifically, we cover research where mean square displacements of nanomaterial transport were explicitly determined in order to quantitatively assess the transport of nanoparticles through biological environments. Particle-tracking experiments can provide important insights that may help guide the design of more intelligent and effective diagnostic and therapeutic nanoparticles.

  13. Performance Analysis of a De-correlated Modified Code Tracking Loop for Synchronous DS-CDMA System under Multiuser Environment

    NASA Astrophysics Data System (ADS)

    Wu, Ya-Ting; Wong, Wai-Ki; Leung, Shu-Hung; Zhu, Yue-Sheng

    This paper presents the performance analysis of a De-correlated Modified Code Tracking Loop (D-MCTL) for synchronous direct-sequence code-division multiple-access (DS-CDMA) systems under multiuser environment. Previous studies have shown that the imbalance of multiple access interference (MAI) in the time lead and time lag portions of the signal causes tracking bias or instability problem in the traditional correlating tracking loop like delay lock loop (DLL) or modified code tracking loop (MCTL). In this paper, we exploit the de-correlating technique to combat the MAI at the on-time code position of the MCTL. Unlike applying the same technique to DLL which requires an extensive search algorithm to compensate the noise imbalance which may introduce small tracking bias under low signal-to-noise ratio (SNR), the proposed D-MCTL has much lower computational complexity and exhibits zero tracking bias for the whole range of SNR, regardless of the number of interfering users. Furthermore, performance analysis and simulations based on Gold codes show that the proposed scheme has better mean square tracking error, mean-time-to-lose-lock and near-far resistance than the other tracking schemes, including traditional DLL (T-DLL), traditional MCTL (T-MCTL) and modified de-correlated DLL (MD-DLL).

  14. Design and Performance Evaluation of a UWB Communication and Tracking System for Mini-AERCam

    NASA Technical Reports Server (NTRS)

    Barton, Richard J.

    2005-01-01

    NASA Johnson Space Center (JSC) is developing a low-volume, low-mass, robotic free-flying camera known as Mini-AERCam (Autonomous Extra-vehicular Robotic Camera) to assist the International Space Station (ISS) operations. Mini-AERCam is designed to provide astronauts and ground control real-time video for camera views of ISS. The system will assist ISS crewmembers and ground personnel to monitor ongoing operations and perform visual inspections of exterior ISS components without requiring extravehicular activity (EAV). Mini-AERCam consists of a great number of subsystems. Many institutions and companies have been involved in the R&D for this project. A Mini-AERCam ground control system has been studied at Texas A&M University [3]. The path planning and control algorithms that direct the motions of Mini-AERCam have been developed through the joint effort of Carnegie Mellon University and the Texas Robotics and Automation Center [5]. NASA JSC has designed a layered control architecture that integrates all functions of Mini-AERCam [8]. The research described in this report is part of a larger effort focused on the communication and tracking subsystem that is designed to perform three major tasks: 1. To transmit commands from ISS to Mini-AERCam for control of robotic camera motions (downlink); 2. To transmit real-time video from Mini-AERCam to ISS for inspections (uplink); 3. To track the position of Mini-AERCam for precise motion control. The ISS propagation environment is unique due to the nature of the ISS structure and multiple RF interference sources [9]. The ISS is composed of various truss segments, solar panels, thermal radiator panels, and modules for laboratories and crew accommodations. A tracking system supplemental to GPS is desirable both to improve accuracy and to eliminate the structural blockage due to the close proximity of the ISS which could at times limit the number of GPS satellites accessible to the Mini-AERCam. Ideally, the tracking system will be a passive component of the communication system which will need to operate in a time-varying multipath environment created as the robot camera moves over the ISS structure. In addition, due to many interference sources located on the ISS, SSO, LEO satellites and ground-based transmitters, selecting a frequency for the ISS and Mini-AERCam link which will coexist with all interferers poses a major design challenge. To meet all of these challenges, ultrawideband (UWB) radio technology is being studied for use in the Mini-AERCam communication and tracking subsystem. The research described in this report is focused on design and evaluation of passive tracking system algorithms based on UWB radio transmissions from mini-AERCam.

  15. Mobile robotic sensors for perimeter detection and tracking.

    PubMed

    Clark, Justin; Fierro, Rafael

    2007-02-01

    Mobile robot/sensor networks have emerged as tools for environmental monitoring, search and rescue, exploration and mapping, evaluation of civil infrastructure, and military operations. These networks consist of many sensors each equipped with embedded processors, wireless communication, and motion capabilities. This paper describes a cooperative mobile robot network capable of detecting and tracking a perimeter defined by a certain substance (e.g., a chemical spill) in the environment. Specifically, the contributions of this paper are twofold: (i) a library of simple reactive motion control algorithms and (ii) a coordination mechanism for effectively carrying out perimeter-sensing missions. The decentralized nature of the methodology implemented could potentially allow the network to scale to many sensors and to reconfigure when adding/deleting sensors. Extensive simulation results and experiments verify the validity of the proposed cooperative control scheme.

  16. The bistatic radar capabilities of the Medicina radiotelescopes in space debris detection and tracking

    NASA Astrophysics Data System (ADS)

    Montebugnoli, S.; Pupillo, G.; Salerno, E.; Pluchino, S.; di Martino, M.

    2010-03-01

    An accurate measurement of the position and trajectory of the space debris fragments is of primary importance for the characterization of the orbital debris environment. The Medicina Radioastronomical Station is a radio observation facility that is here proposed as receiving part of a ground-based space surveillance system for detecting and tracking space debris at different orbital regions (from Low Earth Orbits up to Geostationary Earth Orbits). The proposed system consists of two bistatic radars formed by the existing Medicina receiving antennas coupled with appropriate transmitters. This paper focuses on the current features and future technical development of the receiving part of the observational setup. Outlines of possible transmitting systems will also be given together with the evaluation of the observation strategies achievable with the proposed facilities.

  17. Health and Environment Linked for Information Exchange in Atlanta (HELIX-Atlanta): A Pilot Tracking System

    NASA Technical Reports Server (NTRS)

    Rickman, Doug; Shire, J.; Qualters, J.; Mitchell, K.; Pollard, S.; Rao, R.; Kajumba, N.; Quattrochi, D.; Estes, M., Jr.; Meyer, P.; hide

    2009-01-01

    Objectives. To provide an overview of four environmental public health surveillance projects developed by CDC and its partners for the Health and Environment Linked for Information Exchange, Atlanta (HELIX-Atlanta) and to illustrate common issues and challenges encountered in developing an environmental public health tracking system. Methods. HELIX-Atlanta, initiated in October 2003 to develop data linkage and analysis methods that can be used by the National Environmental Public Health Tracking Network (Tracking Network), conducted four projects. We highlight the projects' work, assess attainment of the HELIX-Atlanta goals and discuss three surveillance attributes. Results. Among the major challenges was the complexity of analytic issues which required multidiscipline teams with technical expertise. This expertise and the data resided across multiple organizations. Conclusions:Establishing formal procedures for sharing data, defining data analysis standards and automating analyses, and committing staff with appropriate expertise is needed to support wide implementation of environmental public health tracking.

  18. Discovering Activities to Recognize and Track in a Smart Environment.

    PubMed

    Rashidi, Parisa; Cook, Diane J; Holder, Lawrence B; Schmitter-Edgecombe, Maureen

    2011-01-01

    The machine learning and pervasive sensing technologies found in smart homes offer unprecedented opportunities for providing health monitoring and assistance to individuals experiencing difficulties living independently at home. In order to monitor the functional health of smart home residents, we need to design technologies that recognize and track activities that people normally perform as part of their daily routines. Although approaches do exist for recognizing activities, the approaches are applied to activities that have been pre-selected and for which labeled training data is available. In contrast, we introduce an automated approach to activity tracking that identifies frequent activities that naturally occur in an individual's routine. With this capability we can then track the occurrence of regular activities to monitor functional health and to detect changes in an individual's patterns and lifestyle. In this paper we describe our activity mining and tracking approach and validate our algorithms on data collected in physical smart environments.

  19. Measurements of Wheel/Rail Loads on Class 5 Track

    DOT National Transportation Integrated Search

    1980-02-01

    Measurements have been made on two tangent test sections and a curved test section to characterize the wheel/rail load environment on Class 5 track. The tangent-track test sections included a 3-mile length of bolted-joint rail under a 3-mile length o...

  20. 40 CFR 273.19 - Tracking universal waste shipments.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 26 2010-07-01 2010-07-01 false Tracking universal waste shipments... WASTES (CONTINUED) STANDARDS FOR UNIVERSAL WASTE MANAGEMENT Standards for Small Quantity Handlers of Universal Waste § 273.19 Tracking universal waste shipments. A small quantity handler of universal waste is...

  1. Soft tissue navigation for laparoscopic prostatectomy: evaluation of camera pose estimation for enhanced visualization

    NASA Astrophysics Data System (ADS)

    Baumhauer, M.; Simpfendörfer, T.; Schwarz, R.; Seitel, M.; Müller-Stich, B. P.; Gutt, C. N.; Rassweiler, J.; Meinzer, H.-P.; Wolf, I.

    2007-03-01

    We introduce a novel navigation system to support minimally invasive prostate surgery. The system utilizes transrectal ultrasonography (TRUS) and needle-shaped navigation aids to visualize hidden structures via Augmented Reality. During the intervention, the navigation aids are segmented once from a 3D TRUS dataset and subsequently tracked by the endoscope camera. Camera Pose Estimation methods directly determine position and orientation of the camera in relation to the navigation aids. Accordingly, our system does not require any external tracking device for registration of endoscope camera and ultrasonography probe. In addition to a preoperative planning step in which the navigation targets are defined, the procedure consists of two main steps which are carried out during the intervention: First, the preoperatively prepared planning data is registered with an intraoperatively acquired 3D TRUS dataset and the segmented navigation aids. Second, the navigation aids are continuously tracked by the endoscope camera. The camera's pose can thereby be derived and relevant medical structures can be superimposed on the video image. This paper focuses on the latter step. We have implemented several promising real-time algorithms and incorporated them into the Open Source Toolkit MITK (www.mitk.org). Furthermore, we have evaluated them for minimally invasive surgery (MIS) navigation scenarios. For this purpose, a virtual evaluation environment has been developed, which allows for the simulation of navigation targets and navigation aids, including their measurement errors. Besides evaluating the accuracy of the computed pose, we have analyzed the impact of an inaccurate pose and the resulting displacement of navigation targets in Augmented Reality.

  2. A Kinect-Based Real-Time Compressive Tracking Prototype System for Amphibious Spherical Robots

    PubMed Central

    Pan, Shaowu; Shi, Liwei; Guo, Shuxiang

    2015-01-01

    A visual tracking system is essential as a basis for visual servoing, autonomous navigation, path planning, robot-human interaction and other robotic functions. To execute various tasks in diverse and ever-changing environments, a mobile robot requires high levels of robustness, precision, environmental adaptability and real-time performance of the visual tracking system. In keeping with the application characteristics of our amphibious spherical robot, which was proposed for flexible and economical underwater exploration in 2012, an improved RGB-D visual tracking algorithm is proposed and implemented. Given the limited power source and computational capabilities of mobile robots, compressive tracking (CT), which is the effective and efficient algorithm that was proposed in 2012, was selected as the basis of the proposed algorithm to process colour images. A Kalman filter with a second-order motion model was implemented to predict the state of the target and select candidate patches or samples for the CT tracker. In addition, a variance ratio features shift (VR-V) tracker with a Kalman estimation mechanism was used to process depth images. Using a feedback strategy, the depth tracking results were used to assist the CT tracker in updating classifier parameters at an adaptive rate. In this way, most of the deficiencies of CT, including drift and poor robustness to occlusion and high-speed target motion, were partly solved. To evaluate the proposed algorithm, a Microsoft Kinect sensor, which combines colour and infrared depth cameras, was adopted for use in a prototype of the robotic tracking system. The experimental results with various image sequences demonstrated the effectiveness, robustness and real-time performance of the tracking system. PMID:25856331

  3. A Kinect-based real-time compressive tracking prototype system for amphibious spherical robots.

    PubMed

    Pan, Shaowu; Shi, Liwei; Guo, Shuxiang

    2015-04-08

    A visual tracking system is essential as a basis for visual servoing, autonomous navigation, path planning, robot-human interaction and other robotic functions. To execute various tasks in diverse and ever-changing environments, a mobile robot requires high levels of robustness, precision, environmental adaptability and real-time performance of the visual tracking system. In keeping with the application characteristics of our amphibious spherical robot, which was proposed for flexible and economical underwater exploration in 2012, an improved RGB-D visual tracking algorithm is proposed and implemented. Given the limited power source and computational capabilities of mobile robots, compressive tracking (CT), which is the effective and efficient algorithm that was proposed in 2012, was selected as the basis of the proposed algorithm to process colour images. A Kalman filter with a second-order motion model was implemented to predict the state of the target and select candidate patches or samples for the CT tracker. In addition, a variance ratio features shift (VR-V) tracker with a Kalman estimation mechanism was used to process depth images. Using a feedback strategy, the depth tracking results were used to assist the CT tracker in updating classifier parameters at an adaptive rate. In this way, most of the deficiencies of CT, including drift and poor robustness to occlusion and high-speed target motion, were partly solved. To evaluate the proposed algorithm, a Microsoft Kinect sensor, which combines colour and infrared depth cameras, was adopted for use in a prototype of the robotic tracking system. The experimental results with various image sequences demonstrated the effectiveness, robustness and real-time performance of the tracking system.

  4. Robotic vehicle with multiple tracked mobility platforms

    DOEpatents

    Salton, Jonathan R [Albuquerque, NM; Buttz, James H [Albuquerque, NM; Garretson, Justin [Albuquerque, NM; Hayward, David R [Wetmore, CO; Hobart, Clinton G [Albuquerque, NM; Deuel, Jr., Jamieson K.

    2012-07-24

    A robotic vehicle having two or more tracked mobility platforms that are mechanically linked together with a two-dimensional coupling, thereby forming a composite vehicle of increased mobility. The robotic vehicle is operative in hazardous environments and can be capable of semi-submersible operation. The robotic vehicle is capable of remote controlled operation via radio frequency and/or fiber optic communication link to a remote operator control unit. The tracks have a plurality of track-edge scallop cut-outs that allow the tracks to easily grab onto and roll across railroad tracks, especially when crossing the railroad tracks at an oblique angle.

  5. Momentum--"Evaluating Your Marketing Program: Measuring and Tracking Techniques."

    ERIC Educational Resources Information Center

    Meservey, Lynne D.

    1990-01-01

    Suggests 10 tracking techniques for evaluating marketing performance. Techniques involve utilization rate, inquiry and source of inquiry tracking, appointment and interview tracking, enrollment conversion, cost per inquiry and per enrollment, retention rate, survey results, and "mystery shopper." (RJC)

  6. Person and gesture tracking with smart stereo cameras

    NASA Astrophysics Data System (ADS)

    Gordon, Gaile; Chen, Xiangrong; Buck, Ron

    2008-02-01

    Physical security increasingly involves sophisticated, real-time visual tracking of a person's location inside a given environment, often in conjunction with biometrics and other security-related technologies. However, demanding real-world conditions like crowded rooms, changes in lighting and physical obstructions have proved incredibly challenging for 2D computer vision technology. In contrast, 3D imaging technology is not affected by constant changes in lighting and apparent color, and thus allows tracking accuracy to be maintained in dynamically lit environments. In addition, person tracking with a 3D stereo camera can provide the location and movement of each individual very precisely, even in a very crowded environment. 3D vision only requires that the subject be partially visible to a single stereo camera to be correctly tracked; multiple cameras are used to extend the system's operational footprint, and to contend with heavy occlusion. A successful person tracking system, must not only perform visual analysis robustly, but also be small, cheap and consume relatively little power. The TYZX Embedded 3D Vision systems are perfectly suited to provide the low power, small footprint, and low cost points required by these types of volume applications. Several security-focused organizations, including the U.S Government, have deployed TYZX 3D stereo vision systems in security applications. 3D image data is also advantageous in the related application area of gesture tracking. Visual (uninstrumented) tracking of natural hand gestures and movement provides new opportunities for interactive control including: video gaming, location based entertainment, and interactive displays. 2D images have been used to extract the location of hands within a plane, but 3D hand location enables a much broader range of interactive applications. In this paper, we provide some background on the TYZX smart stereo cameras platform, describe the person tracking and gesture tracking systems implemented on this platform, and discuss some deployed applications.

  7. Environmental Public Health Tracking: Health and Environment Linked for Information Exchange-Atlanta (HEXIX-Atlanta: A cooperative Program Between CDC and NASA for Development of an Environmental Public Health Tracking Network in the Atlanta Metropolitan Area

    NASA Technical Reports Server (NTRS)

    Quattrochi, Dale A.; Niskar, Amanda Sue

    2005-01-01

    The Centers for Disease Control and Prevention (CDC) is coordinating HELIX- Atlanta to provide information regarding the five-county Metropolitan Atlanta Area (Clayton, Cobb, DeKalb, Fulton, and Gwinett) via a network of integrated environmental monitoring and public health data systems so that all sectors can take action to prevent and control environmentally related health effects. The HELIX-Atlanta Network is a tool to access interoperable information systems with optional information technology linkage functionality driven by scientific rationale. HELIX-Atlanta is a collaborative effort with local, state, federal, and academic partners, including the NASA Marshall Space Flight Center. The HELIX-Atlanta Partners identified the following HELIX-Atlanta initial focus areas: childhood lead poisoning, short-latency cancers, developmental disabilities, birth defects, vital records, respiratory health, age of housing, remote sensing data, and environmental monitoring, HELIX-Atlanta Partners identified and evaluated information systems containing information on the above focus areas. The information system evaluations resulted in recommendations for what resources would be needed to interoperate selected information systems in compliance with the CDC Public Health Information Network (PHIN). This presentation will discuss the collaborative process of building a network that links health and environment data for information exchange, including NASA remote sensing data, for use in HELIX-Atlanta.

  8. Heart rate and core temperature responses of elite pit crews during automobile races.

    PubMed

    Ferguson, David P; Bowen, Robert S; Lightfoot, J Timothy

    2011-08-01

    There is limited information regarding the physiological and psychological demands of the racing environment, and the subsequent effect on the performance of pit crew athletes. The purpose of this study was to evaluate heart rates (HRs) and core body temperatures (CTs) of pit crew athletes in the race environment. The HR and CT of pit crew athletes (n = 7) and control subjects were measured during 6 National Association for Stock Car Automobile Racing Sprint Cup races using ingestible sensors (HQ Inc, Palmetto, FL, USA). The HR and CT were measured before each race, at 15-minute intervals during the race, and upon completion of each pit stop. Compared to the control subject at each race, the pit crew athletes had significantly (p = 0.014) lower core temperatures (CTs). The pit crew athletes displayed higher HRs on the asphalt tracks than on concrete tracks (p = 0.011), and HR responses of the crew members were significantly (p = 0.012) different between pit crew positions, with the tire changers and jackman exhibiting higher HRs than the tire carriers. Unexpectedly, the CTs of the pit crew athletes were not elevated in the race environment, despite high ambient temperatures and the extensive fire-protection equipment (e.g., helmet, suit, gloves) each pit crew athlete wore. The lack of CT change is possibly the result of the increased HR more efficiently shunting blood to the skin and dissipating heat as a consequence of the athletes' extensive training regimen and ensuing heat acclimation. Additionally, it is possible that psychological stress unique to several of the tracks provided an additive effect resulting in increased heart rates.

  9. Bit of History and Some Lessons Learned in Using NASA Remote Sensing Data in Public Health Applications

    NASA Technical Reports Server (NTRS)

    Quattrochi, Dale A.; Estes, Sue

    2011-01-01

    The NASA Applied Sciences Program's public health initiative began in 2004 to illustratethe potential benefits for using remote sensing in public health applications. Objectives/Purpose: The CDC initiated a st udy with NASA through the National Center for Environmental Health (NCEH) to establish a pilot effort to use remote sensing data as part of its Environmental Public Health Tracking Network (EPHTN). As a consequence, the NCEH and NASA developed a project called HELIX-Atlanta (Health and Environment Linkage for Information Exchange) to demonstrate a process for developing a local environmental public health tracking and surveillance network that integrates non-infectious health and environment systems for the Atlanta metropolitan area. Methods: As an ongo ing, systematic integration, analysis and interpretation of data, an EPHTN focuses on: 1 -- environmental hazards; 2 -- human exposure to environmental hazards; and 3 -- health effects potentially related to exposure to environmental hazards. To satisfy the definition of a surveillance system the data must be disseminated to plan, implement, and evaluate environmental public health action. Results: A close working r elationship developed with NCEH where information was exchanged to assist in the development of an EPHTN that incorporated NASA remote sensing data into a surveillance network for disseminating public health tracking information to users. This project?s success provided NASA with the opportunity to work with other public health entities such as the University of Mississippi Medical Center, the University of New Mexico and the University of Arizona. Conclusions: HELIX-Atlanta became a functioning part of the national EPHTN for tracking environmental hazards and exposure, particularly as related to air quality over Atlanta. Learning Objectives: 1 -- remote sensing data can be integral to an EPHTN; 2 -- public tracking objectives can be enhanced through remote sensing data; 3 -- NASA's involvement in public health applications can have wider benefits in the future.

  10. Evaluation of kinesthetic-tactual displays using a critical tracking task

    NASA Technical Reports Server (NTRS)

    Jagacinski, R. J.; Miller, D. P.; Gilson, R. D.; Ault, R. T.

    1977-01-01

    The study sought to investigate the feasibility of applying the critical tracking task paradigm to the evaluation of kinesthetic-tactual displays. Four subjects attempted to control a first-order unstable system with a continuously decreasing time constant by using either visual or tactual unidimensional displays. Display aiding was introduced in both modalities in the form of velocity quickening. Visual tracking performance was better than tactual tracking, and velocity aiding improved the critical tracking scores for visual and tactual tracking about equally. The results suggest that the critical task methodology holds considerable promise for evaluating kinesthetic-tactual displays.

  11. Tracking microbial contamination in retail environments using fluorescent powder--a retail delicatessen environment example.

    PubMed

    Sirsat, Sujata A; Kim, Kawon; Gibson, Kristen E; Crandall, Phillip G; Ricke, Steven C; Neal, Jack A

    2014-03-05

    Cross contamination of foodborne pathogens in the retail environment is a significant public health issue contributing to an increased risk for foodborne illness. Ready-to-eat (RTE) processed foods such as deli meats, cheese, and in some cases fresh produce, have been involved in foodborne disease outbreaks due to contamination with pathogens such as Listeria monocytogenes. With respect to L. monocytogenes, deli slicers are often the main source of cross contamination. The goal of this study was to use a fluorescent compound to simulate bacterial contamination and track this contamination in a retail setting. A mock deli kitchen was designed to simulate the retail environment. Deli meat was inoculated with the fluorescent compound and volunteers were recruited to complete a set of tasks similar to those expected of a food retail employee. The volunteers were instructed to slice, package, and store the meat in a deli refrigerator. The potential cross contamination was tracked in the mock retail environment by swabbing specific areas and measuring the optical density of the swabbed area with a spectrophotometer. The results indicated that the refrigerator (i.e. deli case) grip and various areas on the slicer had the highest risk for cross contamination. The results of this study may be used to develop more focused training material for retail employees. In addition, similar methodologies could also be used to track microbial contamination in food production environments (e.g. small farms), hospitals, nursing homes, cruise ships, and hotels.

  12. Adaptive Tracking Control for Robots With an Interneural Computing Scheme.

    PubMed

    Tsai, Feng-Sheng; Hsu, Sheng-Yi; Shih, Mau-Hsiang

    2018-04-01

    Adaptive tracking control of mobile robots requires the ability to follow a trajectory generated by a moving target. The conventional analysis of adaptive tracking uses energy minimization to study the convergence and robustness of the tracking error when the mobile robot follows a desired trajectory. However, in the case that the moving target generates trajectories with uncertainties, a common Lyapunov-like function for energy minimization may be extremely difficult to determine. Here, to solve the adaptive tracking problem with uncertainties, we wish to implement an interneural computing scheme in the design of a mobile robot for behavior-based navigation. The behavior-based navigation adopts an adaptive plan of behavior patterns learning from the uncertainties of the environment. The characteristic feature of the interneural computing scheme is the use of neural path pruning with rewards and punishment interacting with the environment. On this basis, the mobile robot can be exploited to change its coupling weights in paths of neural connections systematically, which can then inhibit or enhance the effect of flow elimination in the dynamics of the evolutionary neural network. Such dynamical flow translation ultimately leads to robust sensory-to-motor transformations adapting to the uncertainties of the environment. A simulation result shows that the mobile robot with the interneural computing scheme can perform fault-tolerant behavior of tracking by maintaining suitable behavior patterns at high frequency levels.

  13. SU-G-JeP1-12: Head-To-Head Performance Characterization of Two Multileaf Collimator Tracking Algorithms for Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caillet, V; Colvill, E; Royal North Shore Hospital, St Leonards, Sydney

    2016-06-15

    Purpose: Multi-leaf collimator (MLC) tracking is being clinically pioneered to continuously compensate for thoracic and abdominal motion during radiotherapy. The purpose of this work is to characterize the performance of two MLC tracking algorithms for cancer radiotherapy, based on a direct optimization and a piecewise leaf fitting approach respectively. Methods: To test the algorithms, both physical and in silico experiments were performed. Previously published high and low modulation VMAT plans for lung and prostate cancer cases were used along with eight patient-measured organ-specific trajectories. For both MLC tracking algorithm, the plans were run with their corresponding patient trajectories. The physicalmore » experiments were performed on a Trilogy Varian linac and a programmable phantom (HexaMotion platform). For each MLC tracking algorithm, plan and patient trajectory, the tracking accuracy was quantified as the difference in aperture area between ideal and fitted MLC. To compare algorithms, the average cumulative tracking error area for each experiment was calculated. The two-sample Kolmogorov-Smirnov (KS) test was used to evaluate the cumulative tracking errors between algorithms. Results: Comparison of tracking errors for the physical and in silico experiments showed minor differences between the two algorithms. The KS D-statistics for the physical experiments were below 0.05 denoting no significant differences between the two distributions pattern and the average error area (direct optimization/piecewise leaf-fitting) were comparable (66.64 cm2/65.65 cm2). For the in silico experiments, the KS D-statistics were below 0.05 and the average errors area were also equivalent (49.38 cm2/48.98 cm2). Conclusion: The comparison between the two leaf fittings algorithms demonstrated no significant differences in tracking errors, neither in a clinically realistic environment nor in silico. The similarities in the two independent algorithms give confidence in the use of either algorithm for clinical implementation.« less

  14. A software system for evaluation and training of spatial reasoning and neuroanatomical knowledge in a virtual environment.

    PubMed

    Armstrong, Ryan; de Ribaupierre, Sandrine; Eagleson, Roy

    2014-04-01

    This paper describes the design and development of a software tool for the evaluation and training of surgical residents using an interactive, immersive, virtual environment. Our objective was to develop a tool to evaluate user spatial reasoning skills and knowledge in a neuroanatomical context, as well as to augment their performance through interactivity. In the visualization, manually segmented anatomical surface images of MRI scans of the brain were rendered using a stereo display to improve depth cues. A magnetically tracked wand was used as a 3D input device for localization tasks within the brain. The movement of the wand was made to correspond to movement of a spherical cursor within the rendered scene, providing a reference for localization. Users can be tested on their ability to localize structures within the 3D scene, and their ability to place anatomical features at the appropriate locations within the rendering. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  15. A decade of environmental public health tracking (2002-2012): progress and challenges.

    PubMed

    Kearney, Gregory D; Namulanda, Gonza; Qualters, Judith R; Talbott, Evelyn O

    2015-01-01

    The creation of the Centers for Disease Control and Prevention Environmental Public Health Tracking Program spawned an invigorating and challenging approach toward implementing the nation's first population-based, environmental disease tracking surveillance system. More than 10 years have passed since its creation and an abundance of peer-reviewed articles have been published spanning a broad variety of public health topics related primarily to the goal of reducing diseases of environmental origin. To evaluate peer-reviewed literature related to Environmental Public Health Tracking during 2002-2012, recognize major milestones and challenges, and offer recommendations. A narrative overview was conducted using titles and abstracts of peer-reviewed articles, key word searches, and science-based search engine databases. Eighty published articles related to "health tracking" were identified and categorized according to 4 crossed-central themes. The Science and Research theme accounted for the majority of published articles, followed by Policy and Practice, Collaborations Among Health and Environmental Programs, and Network Development. Overall, progress was reported in the areas of data linkage, data sharing, surveillance methods, and network development. Ongoing challenges included formulating better ways to establish the connections between health and the environment, such as using biomonitoring, public water systems, and private well water data. Recommendations for future efforts include use of data to inform policy and practice and use of electronic health records data for environmental health surveillance.

  16. Human performance evaluation in dual-axis critical task tracking

    NASA Technical Reports Server (NTRS)

    Ritchie, M. L.; Nataraj, N. S.

    1975-01-01

    A dual axis tracking using a multiloop critical task was set up to evaluate human performance. The effects of control stick variation and display formats are evaluated. A secondary loading was used to measure the degradation in tracking performance.

  17. IntelliTable: Inclusively-Designed Furniture with Robotic Capabilities.

    PubMed

    Prescott, Tony J; Conran, Sebastian; Mitchinson, Ben; Cudd, Peter

    2017-01-01

    IntelliTable is a new proof-of-principle assistive technology system with robotic capabilities in the form of an elegant universal cantilever table able to move around by itself, or under user control. We describe the design and current capabilities of the table and the human-centered design methodology used in its development and initial evaluation. The IntelliTable study has delivered robotic platform programmed by a smartphone that can navigate around a typical home or care environment, avoiding obstacles, and positioning itself at the user's command. It can also be configured to navigate itself to pre-ordained places positions within an environment using ceiling tracking, responsive optical guidance and object-based sonar navigation.

  18. NASA's Hybrid Reality Lab: One Giant Leap for Full Dive

    NASA Technical Reports Server (NTRS)

    Delgado, Francisco J.; Noyes, Matthew

    2017-01-01

    This presentation demonstrates how NASA is using consumer VR headsets, game engine technology and NVIDIA's GPUs to create highly immersive future training systems augmented with extremely realistic haptic feedback, sound, additional sensory information, and how these can be used to improve the engineering workflow. Include in this presentation is an environment simulation of the ISS, where users can interact with virtual objects, handrails, and tracked physical objects while inside VR, integration of consumer VR headsets with the Active Response Gravity Offload System, and a space habitat architectural evaluation tool. Attendees will learn how the best elements of real and virtual worlds can be combined into a hybrid reality environment with tangible engineering and scientific applications.

  19. A novel framework for intelligent surveillance system based on abnormal human activity detection in academic environments.

    PubMed

    Al-Nawashi, Malek; Al-Hazaimeh, Obaida M; Saraee, Mohamad

    2017-01-01

    Abnormal activity detection plays a crucial role in surveillance applications, and a surveillance system that can perform robustly in an academic environment has become an urgent need. In this paper, we propose a novel framework for an automatic real-time video-based surveillance system which can simultaneously perform the tracking, semantic scene learning, and abnormality detection in an academic environment. To develop our system, we have divided the work into three phases: preprocessing phase, abnormal human activity detection phase, and content-based image retrieval phase. For motion object detection, we used the temporal-differencing algorithm and then located the motions region using the Gaussian function. Furthermore, the shape model based on OMEGA equation was used as a filter for the detected objects (i.e., human and non-human). For object activities analysis, we evaluated and analyzed the human activities of the detected objects. We classified the human activities into two groups: normal activities and abnormal activities based on the support vector machine. The machine then provides an automatic warning in case of abnormal human activities. It also embeds a method to retrieve the detected object from the database for object recognition and identification using content-based image retrieval. Finally, a software-based simulation using MATLAB was performed and the results of the conducted experiments showed an excellent surveillance system that can simultaneously perform the tracking, semantic scene learning, and abnormality detection in an academic environment with no human intervention.

  20. Application of Hybrid Along-Track Interferometry/Displaced Phase Center Antenna Method for Moving Human Target Detection in Forest Environments

    DTIC Science & Technology

    2016-10-01

    ARL-TR-7846 ● OCT 2016 US Army Research Laboratory Application of Hybrid Along-Track Interferometry/ Displaced Phase Center...Research Laboratory Application of Hybrid Along-Track Interferometry/ Displaced Phase Center Antenna Method for Moving Human Target Detection...TYPE Technical Report 3. DATES COVERED (From - To) 2015–2016 4. TITLE AND SUBTITLE Application of Hybrid Along-Track Interferometry/ Displaced

  1. Assessing Activity and Location of Individual Laying Hens in Large Groups Using Modern Technology

    PubMed Central

    Siegford, Janice M.; Berezowski, John; Biswas, Subir K.; Daigle, Courtney L.; Gebhardt-Henrich, Sabine G.; Hernandez, Carlos E.; Thurner, Stefan; Toscano, Michael J.

    2016-01-01

    Simple Summary Tracking of individual animals within large groups is increasingly possible offering an exciting opportunity to researchers. Whereas previously only relatively indistinguishable groups of individual animals could be observed and combined into pen level data, we can now focus on individual actors and track their activities across time and space with minimal intervention and disturbance. We describe several tracking systems that are currently in use for laying hens and review each, highlighting their strengths and weaknesses, as well as environments or conditions for which they may be most suited, and relevant issues to fit the best technology for the intended purpose. Abstract Tracking individual animals within large groups is increasingly possible, offering an exciting opportunity to researchers. Whereas previously only relatively indistinguishable groups of individual animals could be observed and combined into pen level data, we can now focus on individual actors within these large groups and track their activities across time and space with minimal intervention and disturbance. The development is particularly relevant to the poultry industry as, due to a shift away from battery cages, flock sizes are increasingly becoming larger and environments more complex. Many efforts have been made to track individual bird behavior and activity in large groups using a variety of methodologies with variable success. Of the technologies in use, each has associated benefits and detriments, which can make the approach more or less suitable for certain environments and experiments. Within this article, we have divided several tracking systems that are currently available into two major categories (radio frequency identification and radio signal strength) and review the strengths and weaknesses of each, as well as environments or conditions for which they may be most suitable. We also describe related topics including types of analysis for the data and concerns with selecting focal birds. PMID:26848693

  2. Results of nDOSE and HiDOSE Experiments for Dosimetric Evaluation During STS-134 Mission

    NASA Astrophysics Data System (ADS)

    Pugliese, M.; Loffredo, F.; Quarto, M.; Roca, V.; Mattone, C.; Borla, O.; Zanini, A.

    2014-07-01

    HiDOSE (Heavy ion DOSimetry Experiment) and nDOSE (neutron DOSimetry Experiment) experiments conducted as a part of BIOKIS (Biokon in Space) payload were designed to measure the dose equivalent due to charged particles and to neutron field, on the entire energy range, during STS-134 mission. Given the complexity of the radiation field in space environment, dose measurements should be considered an asset of any space mission, and for this reason HiDOSE and nDOSE experiments represent an important contribution to the radiation environment assessment during this mission, a short duration flight. The results of these experiments, obtained using Thermo Luminescence Dosimeters (TLDs) to evaluate the charged particles dosimetry and neutron bubbles dosimeters and stack bismuth track dosimeters for neutron dosimetry, indicate that the dose equivalent rate due to space radiation exposure during the STS-134 mission is in accordance with the results obtained from long duration flights.

  3. Evaluation of ambiguous associations in the amygdala by learning the structure of the environment.

    PubMed

    Madarasz, Tamas J; Diaz-Mataix, Lorenzo; Akhand, Omar; Ycu, Edgar A; LeDoux, Joseph E; Johansen, Joshua P

    2016-07-01

    Recognizing predictive relationships is critical for survival, but an understanding of the underlying neural mechanisms remains elusive. In particular, it is unclear how the brain distinguishes predictive relationships from spurious ones when evidence about a relationship is ambiguous, or how it computes predictions given such uncertainty. To better understand this process, we introduced ambiguity into an associative learning task by presenting aversive outcomes both in the presence and in the absence of a predictive cue. Electrophysiological and optogenetic approaches revealed that amygdala neurons directly regulated and tracked the effects of ambiguity on learning. Contrary to established accounts of associative learning, however, interference from competing associations was not required to assess an ambiguous cue-outcome contingency. Instead, animals' behavior was explained by a normative account that evaluates different models of the environment's statistical structure. These findings suggest an alternative view of amygdala circuits in resolving ambiguity during aversive learning.

  4. Sequence design and software environment for real-time navigation of a wireless ferromagnetic device using MRI system and single echo 3D tracking.

    PubMed

    Chanu, A; Aboussouan, E; Tamaz, S; Martel, S

    2006-01-01

    Software architecture for the navigation of a ferromagnetic untethered device in a 1D and 2D phantom environment is briefly described. Navigation is achieved using the real-time capabilities of a Siemens 1.5 T Avanto MRI system coupled with a dedicated software environment and a specially developed 3D tracking pulse sequence. Real-time control of the magnetic core is executed through the implementation of a simple PID controller. 1D and 2D experimental results are presented.

  5. Robust visual tracking via multiscale deep sparse networks

    NASA Astrophysics Data System (ADS)

    Wang, Xin; Hou, Zhiqiang; Yu, Wangsheng; Xue, Yang; Jin, Zefenfen; Dai, Bo

    2017-04-01

    In visual tracking, deep learning with offline pretraining can extract more intrinsic and robust features. It has significant success solving the tracking drift in a complicated environment. However, offline pretraining requires numerous auxiliary training datasets and is considerably time-consuming for tracking tasks. To solve these problems, a multiscale sparse networks-based tracker (MSNT) under the particle filter framework is proposed. Based on the stacked sparse autoencoders and rectifier linear unit, the tracker has a flexible and adjustable architecture without the offline pretraining process and exploits the robust and powerful features effectively only through online training of limited labeled data. Meanwhile, the tracker builds four deep sparse networks of different scales, according to the target's profile type. During tracking, the tracker selects the matched tracking network adaptively in accordance with the initial target's profile type. It preserves the inherent structural information more efficiently than the single-scale networks. Additionally, a corresponding update strategy is proposed to improve the robustness of the tracker. Extensive experimental results on a large scale benchmark dataset show that the proposed method performs favorably against state-of-the-art methods in challenging environments.

  6. Performance Technology Program (PTP-S II), Volume IX. Evaluation of Reentry Vehicle Nosetip Transition and Heat Transfer in the AEDC Hyperballistics Track G

    DTIC Science & Technology

    1981-01-01

    8217qround test programs, has shown that nosetip related effects markedly influence reentry vehicle performance. In clear air environments e’:he twc major...free flight configuration, extraneous shock layer radia- tion and surface chemiluminescence which may influence the sur- face temperature measurements...in the postf light model may result from range debris or thermal stress in the graphite from the large tem- perature gradients, their influence on

  7. Horizontal Estimation and Information Fusion in Multitarget and Multisensor Environments

    DTIC Science & Technology

    1987-09-01

    provided needed inspirations. Special thanks are due to Distinguished Professor G . J. Thaler, Professor R . Panholzer, Professor N. F. Schneidewind, and...Guidance McGraw Hill, pp. 338-340, 1964. 31. Battin, R . H., and Levine, G . M., A22lication of Kalman Filtering Techniaues in The Aoollo Program, in Theory...FL.. pp. 171 -175, Dec. 197 1. 43. Singer, R . A., Sea R . G ., and Housewright K. B., Derivation and Evaluation of Imoroved Tracking Filters for Use in

  8. Performance of the ATLAS track reconstruction algorithms in dense environments in LHC Run 2.

    PubMed

    Aaboud, M; Aad, G; Abbott, B; Abdallah, J; Abdinov, O; Abeloos, B; Abidi, S H; AbouZeid, O S; Abraham, N L; Abramowicz, H; Abreu, H; Abreu, R; Abulaiti, Y; Acharya, B S; Adachi, S; Adamczyk, L; Adelman, J; Adersberger, M; Adye, T; Affolder, A A; Agatonovic-Jovin, T; Agheorghiesei, C; Aguilar-Saavedra, J A; Ahlen, S P; Ahmadov, F; Aielli, G; Akatsuka, S; Akerstedt, H; Åkesson, T P A; Akimov, A V; Alberghi, G L; Albert, J; Albicocco, P; Alconada Verzini, M J; Aleksa, M; Aleksandrov, I N; Alexa, C; Alexander, G; Alexopoulos, T; Alhroob, M; Ali, B; Aliev, M; Alimonti, G; Alison, J; Alkire, S P; Allbrooke, B M M; Allen, B W; Allport, P P; Aloisio, A; Alonso, A; Alonso, F; Alpigiani, C; Alshehri, A A; Alstaty, M; Alvarez Gonzalez, B; Álvarez Piqueras, D; Alviggi, M G; Amadio, B T; Amaral Coutinho, Y; Amelung, C; Amidei, D; Santos, S P Amor Dos; Amorim, A; Amoroso, S; Amundsen, G; Anastopoulos, C; Ancu, L S; Andari, N; Andeen, T; Anders, C F; Anders, J K; Anderson, K J; Andreazza, A; Andrei, V; Angelidakis, S; Angelozzi, I; Angerami, A; Anisenkov, A V; Anjos, N; Annovi, A; Antel, C; Antonelli, M; Antonov, A; Antrim, D J; Anulli, F; Aoki, M; Aperio Bella, L; Arabidze, G; Arai, Y; Araque, J P; Araujo Ferraz, V; Arce, A T H; Ardell, R E; Arduh, F A; Arguin, J-F; Argyropoulos, S; Arik, M; Armbruster, A J; Armitage, L J; Arnaez, O; Arnold, H; Arratia, M; Arslan, O; Artamonov, A; Artoni, G; Artz, S; Asai, S; Asbah, N; Ashkenazi, A; Asquith, L; Assamagan, K; Astalos, R; Atkinson, M; Atlay, N B; Augsten, K; Avolio, G; Axen, B; Ayoub, M K; Azuelos, G; Baas, A E; Baca, M J; Bachacou, H; Bachas, K; Backes, M; Backhaus, M; Bagnaia, P; Bahrasemani, H; Baines, J T; Bajic, M; Baker, O K; Baldin, E M; Balek, P; Balli, F; Balunas, W K; Banas, E; Banerjee, Sw; Bannoura, A A E; Barak, L; Barberio, E L; Barberis, D; Barbero, M; Barillari, T; Barisits, M-S; Barklow, T; Barlow, N; Barnes, S L; Barnett, B M; Barnett, R M; Barnovska-Blenessy, Z; Baroncelli, A; Barone, G; Barr, A J; Barranco Navarro, L; Barreiro, F; Barreiro Guimarães da Costa, J; Bartoldus, R; Barton, A E; Bartos, P; Basalaev, A; Bassalat, A; Bates, R L; Batista, S J; Batley, J R; Battaglia, M; Bauce, M; Bauer, F; Bawa, H S; Beacham, J B; Beattie, M D; Beau, T; Beauchemin, P H; Bechtle, P; Beck, H P; Becker, K; Becker, M; Beckingham, M; Becot, C; Beddall, A J; Beddall, A; Bednyakov, V A; Bedognetti, M; Bee, C P; Beermann, T A; Begalli, M; Begel, M; Behr, J K; Bell, A S; Bella, G; Bellagamba, L; Bellerive, A; Bellomo, M; Belotskiy, K; Beltramello, O; Belyaev, N L; Benary, O; Benchekroun, D; Bender, M; Bendtz, K; Benekos, N; Benhammou, Y; Benhar Noccioli, E; Benitez, J; Benjamin, D P; Benoit, M; Bensinger, J R; Bentvelsen, S; Beresford, L; Beretta, M; Berge, D; Bergeaas Kuutmann, E; Berger, N; Beringer, J; Berlendis, S; Bernard, N R; Bernardi, G; Bernius, C; Bernlochner, F U; Berry, T; Berta, P; Bertella, C; Bertoli, G; Bertolucci, F; Bertram, I A; Bertsche, C; Bertsche, D; Besjes, G J; Bessidskaia Bylund, O; Bessner, M; Besson, N; Betancourt, C; Bethani, A; Bethke, S; Bevan, A J; Beyer, J; Bianchi, R M; Biebel, O; Biedermann, D; Bielski, R; Biesuz, N V; Biglietti, M; Billoud, T R V; Bilokon, H; Bindi, M; Bingul, A; Bini, C; Biondi, S; Bisanz, T; Bittrich, C; Bjergaard, D M; Black, C W; Black, J E; Black, K M; Blair, R E; Blazek, T; Bloch, I; Blocker, C; Blue, A; Blum, W; Blumenschein, U; Blunier, S; Bobbink, G J; Bobrovnikov, V S; Bocchetta, S S; Bocci, A; Bock, C; Boehler, M; Boerner, D; Bogavac, D; Bogdanchikov, A G; Bohm, C; Boisvert, V; Bokan, P; Bold, T; Boldyrev, A S; Bolz, A E; Bomben, M; Bona, M; Boonekamp, M; Borisov, A; Borissov, G; Bortfeldt, J; Bortoletto, D; Bortolotto, V; Boscherini, D; Bosman, M; Bossio Sola, J D; Boudreau, J; Bouffard, J; Bouhova-Thacker, E V; Boumediene, D; Bourdarios, C; Boutle, S K; Boveia, A; Boyd, J; Boyko, I R; Bracinik, J; Brandt, A; Brandt, G; Brandt, O; Bratzler, U; Brau, B; Brau, J E; Breaden Madden, W D; Brendlinger, K; Brennan, A J; Brenner, L; Brenner, R; Bressler, S; Briglin, D L; Bristow, T M; Britton, D; Britzger, D; Brochu, F M; Brock, I; Brock, R; Brooijmans, G; Brooks, T; Brooks, W K; Brosamer, J; Brost, E; Broughton, J H; de Renstrom, P A Bruckman; Bruncko, D; Bruni, A; Bruni, G; Bruni, L S; Brunt, B H; Bruschi, M; Bruscino, N; Bryant, P; Bryngemark, L; Buanes, T; Buat, Q; Buchholz, P; Buckley, A G; Budagov, I A; Buehrer, F; Bugge, M K; Bulekov, O; Bullock, D; Burch, T J; Burckhart, H; Burdin, S; Burgard, C D; Burger, A M; Burghgrave, B; Burka, K; Burke, S; Burmeister, I; Burr, J T P; Busato, E; Büscher, D; Büscher, V; Bussey, P; Butler, J M; Buttar, C M; Butterworth, J M; Butti, P; Buttinger, W; Buzatu, A; Buzykaev, A R; Cabrera Urbán, S; Caforio, D; Cairo, V M; Cakir, O; Calace, N; Calafiura, P; Calandri, A; Calderini, G; Calfayan, P; Callea, G; Caloba, L P; Calvente Lopez, S; Calvet, D; Calvet, S; Calvet, T P; Camacho Toro, R; Camarda, S; Camarri, P; Cameron, D; Caminal Armadans, R; Camincher, C; Campana, S; Campanelli, M; Camplani, A; Campoverde, A; Canale, V; Cano Bret, M; Cantero, J; Cao, T; Capeans Garrido, M D M; Caprini, I; Caprini, M; Capua, M; Carbone, R M; Cardarelli, R; Cardillo, F; Carli, I; Carli, T; Carlino, G; Carlson, B T; Carminati, L; Carney, R M D; Caron, S; Carquin, E; Carrá, S; Carrillo-Montoya, G D; Carvalho, J; Casadei, D; Casado, M P; Casolino, M; Casper, D W; Castelijn, R; Castillo Gimenez, V; Castro, N F; Catinaccio, A; Catmore, J R; Cattai, A; Caudron, J; Cavaliere, V; Cavallaro, E; Cavalli, D; Cavalli-Sforza, M; Cavasinni, V; Celebi, E; Ceradini, F; Cerda Alberich, L; Cerqueira, A S; Cerri, A; Cerrito, L; Cerutti, F; Cervelli, A; Cetin, S A; Chafaq, A; Chakraborty, D; Chan, S K; Chan, W S; Chan, Y L; Chang, P; Chapman, J D; Charlton, D G; Chau, C C; Chavez Barajas, C A; Che, S; Cheatham, S; Chegwidden, A; Chekanov, S; Chekulaev, S V; Chelkov, G A; Chelstowska, M A; Chen, C; Chen, H; Chen, S; Chen, S; Chen, X; Chen, Y; Cheng, H C; Cheng, H J; Cheplakov, A; Cheremushkina, E; Cherkaoui El Moursli, R; Chernyatin, V; Cheu, E; Chevalier, L; Chiarella, V; Chiarelli, G; Chiodini, G; Chisholm, A S; Chitan, A; Chiu, Y H; Chizhov, M V; Choi, K; Chomont, A R; Chouridou, S; Christodoulou, V; Chromek-Burckhart, D; Chu, M C; Chudoba, J; Chuinard, A J; Chwastowski, J J; Chytka, L; Ciftci, A K; Cinca, D; Cindro, V; Cioara, I A; Ciocca, C; Ciocio, A; Cirotto, F; Citron, Z H; Citterio, M; Ciubancan, M; Clark, A; Clark, B L; Clark, M R; Clark, P J; Clarke, R N; Clement, C; Coadou, Y; Cobal, M; Coccaro, A; Cochran, J; Colasurdo, L; Cole, B; Colijn, A P; Collot, J; Colombo, T; Conde Muiño, P; Coniavitis, E; Connell, S H; Connelly, I A; Constantinescu, S; Conti, G; Conventi, F; Cooke, M; Cooper-Sarkar, A M; Cormier, F; Cormier, K J R; Corradi, M; Corriveau, F; Cortes-Gonzalez, A; Cortiana, G; Costa, G; Costa, M J; Costanzo, D; Cottin, G; Cowan, G; Cox, B E; Cranmer, K; Crawley, S J; Creager, R A; Cree, G; Crépé-Renaudin, S; Crescioli, F; Cribbs, W A; Cristinziani, M; Croft, V; Crosetti, G; Cueto, A; Cuhadar Donszelmann, T; Cukierman, A R; Cummings, J; Curatolo, M; Cúth, J; Czirr, H; Czodrowski, P; D'amen, G; D'Auria, S; D'eramo, L; D'Onofrio, M; Da Cunha Sargedas De Sousa, M J; Via, C Da; Dabrowski, W; Dado, T; Dai, T; Dale, O; Dallaire, F; Dallapiccola, C; Dam, M; Dandoy, J R; Daneri, M F; Dang, N P; Daniells, A C; Dann, N S; Danninger, M; Hoffmann, M Dano; Dao, V; Darbo, G; Darmora, S; Dassoulas, J; Dattagupta, A; Daubney, T; Davey, W; David, C; Davidek, T; Davies, M; Davis, D R; Davison, P; Dawe, E; Dawson, I; De, K; de Asmundis, R; De Benedetti, A; De Castro, S; De Cecco, S; De Groot, N; de Jong, P; De la Torre, H; De Lorenzi, F; De Maria, A; De Pedis, D; De Salvo, A; De Sanctis, U; De Santo, A; De Vasconcelos Corga, K; De Vivie De Regie, J B; Dearnaley, W J; Debbe, R; Debenedetti, C; Dedovich, D V; Dehghanian, N; Deigaard, I; Del Gaudio, M; Del Peso, J; Prete, T Del; Delgove, D; Deliot, F; Delitzsch, C M; Dell'Acqua, A; Dell'Asta, L; Dell'Orso, M; Della Pietra, M; Della Volpe, D; Delmastro, M; Delporte, C; Delsart, P A; DeMarco, D A; Demers, S; Demichev, M; Demilly, A; Denisov, S P; Denysiuk, D; Derendarz, D; Derkaoui, J E; Derue, F; Dervan, P; Desch, K; Deterre, C; Dette, K; Devesa, M R; Deviveiros, P O; Dewhurst, A; Dhaliwal, S; Di Bello, F A; Di Ciaccio, A; Di Ciaccio, L; Di Clemente, W K; Di Donato, C; Di Girolamo, A; Di Girolamo, B; Di Micco, B; Di Nardo, R; Di Petrillo, K F; Di Simone, A; Di Sipio, R; Di Valentino, D; Diaconu, C; Diamond, M; Dias, F A; Diaz, M A; Diehl, E B; Dietrich, J; Díez Cornell, S; Dimitrievska, A; Dingfelder, J; Dita, P; Dita, S; Dittus, F; Djama, F; Djobava, T; Djuvsland, J I; do Vale, M A B; Dobos, D; Dobre, M; Doglioni, C; Dolejsi, J; Dolezal, Z; Donadelli, M; Donati, S; Dondero, P; Donini, J; Dopke, J; Doria, A; Dova, M T; Doyle, A T; Drechsler, E; Dris, M; Du, Y; Duarte-Campderros, J; Dubreuil, A; Duchovni, E; Duckeck, G; Ducourthial, A; Ducu, O A; Duda, D; Dudarev, A; Dudder, A Chr; Duffield, E M; Duflot, L; Dührssen, M; Dumancic, M; Dumitriu, A E; Duncan, A K; Dunford, M; Duran Yildiz, H; Düren, M; Durglishvili, A; Duschinger, D; Dutta, B; Dyndal, M; Eckardt, C; Ecker, K M; Edgar, R C; Eifert, T; Eigen, G; Einsweiler, K; Ekelof, T; Kacimi, M El; Kosseifi, R El; Ellajosyula, V; Ellert, M; Elles, S; Ellinghaus, F; Elliot, A A; Ellis, N; Elmsheuser, J; Elsing, M; Emeliyanov, D; Enari, Y; Endner, O C; Ennis, J S; Erdmann, J; Ereditato, A; Ernis, G; Ernst, M; Errede, S; Escalier, M; Escobar, C; Esposito, B; Estrada Pastor, O; Etienvre, A I; Etzion, E; Evans, H; Ezhilov, A; Ezzi, M; Fabbri, F; Fabbri, L; Facini, G; Fakhrutdinov, R M; Falciano, S; Falla, R J; Faltova, J; Fang, Y; Fanti, M; Farbin, A; Farilla, A; Farina, C; Farina, E M; Farooque, T; Farrell, S; Farrington, S M; Farthouat, P; Fassi, F; Fassnacht, P; Fassouliotis, D; Faucci Giannelli, M; Favareto, A; Fawcett, W J; Fayard, L; Fedin, O L; Fedorko, W; Feigl, S; Feligioni, L; Feng, C; Feng, E J; Feng, H; Fenton, M J; Fenyuk, A B; Feremenga, L; Fernandez Martinez, P; Fernandez Perez, S; Ferrando, J; Ferrari, A; Ferrari, P; Ferrari, R; Ferreira de Lima, D E; Ferrer, A; Ferrere, D; Ferretti, C; Fiedler, F; Filipčič, A; Filipuzzi, M; Filthaut, F; Fincke-Keeler, M; Finelli, K D; Fiolhais, M C N; Fiorini, L; Fischer, A; Fischer, C; Fischer, J; Fisher, W C; Flaschel, N; Fleck, I; Fleischmann, P; Fletcher, R R M; Flick, T; Flierl, B M; Flores Castillo, L R; Flowerdew, M J; Forcolin, G T; Formica, A; Förster, F A; Forti, A; Foster, A G; Fournier, D; Fox, H; Fracchia, S; Francavilla, P; Franchini, M; Franchino, S; Francis, D; Franconi, L; Franklin, M; Frate, M; Fraternali, M; Freeborn, D; Fressard-Batraneanu, S M; Freund, B; Froidevaux, D; Frost, J A; Fukunaga, C; Fusayasu, T; Fuster, J; Gabaldon, C; Gabizon, O; Gabrielli, A; Gabrielli, A; Gach, G P; Gadatsch, S; Gadomski, S; Gagliardi, G; Gagnon, L G; Galea, C; Galhardo, B; Gallas, E J; Gallop, B J; Gallus, P; Galster, G; Gan, K K; Ganguly, S; Gao, Y; Gao, Y S; Garay Walls, F M; García, C; García Navarro, J E; Garcia-Sciveres, M; Gardner, R W; Garelli, N; Garonne, V; Gascon Bravo, A; Gasnikova, K; Gatti, C; Gaudiello, A; Gaudio, G; Gavrilenko, I L; Gay, C; Gaycken, G; Gazis, E N; Gee, C N P; Geisen, J; Geisen, M; Geisler, M P; Gellerstedt, K; Gemme, C; Genest, M H; Geng, C; Gentile, S; Gentsos, C; George, S; Gerbaudo, D; Gershon, A; Geßner, G; Ghasemi, S; Ghneimat, M; Giacobbe, B; Giagu, S; Giannetti, P; Gibson, S M; Gignac, M; Gilchriese, M; Gillberg, D; Gilles, G; Gingrich, D M; Giokaris, N; Giordani, M P; Giorgi, F M; Giraud, P F; Giromini, P; Giugni, D; Giuli, F; Giuliani, C; Giulini, M; Gjelsten, B K; Gkaitatzis, S; Gkialas, I; Gkougkousis, E L; Gkountoumis, P; Gladilin, L K; Glasman, C; Glatzer, J; Glaysher, P C F; Glazov, A; Goblirsch-Kolb, M; Godlewski, J; Goldfarb, S; Golling, T; Golubkov, D; Gomes, A; Gonçalo, R; Goncalves Gama, R; Goncalves Pinto Firmino Da Costa, J; Gonella, G; Gonella, L; Gongadze, A; González de la Hoz, S; Gonzalez-Sevilla, S; Goossens, L; Gorbounov, P A; Gordon, H A; Gorelov, I; Gorini, B; Gorini, E; Gorišek, A; Goshaw, A T; Gössling, C; Gostkin, M I; Gottardo, C A; Goudet, C R; Goujdami, D; Goussiou, A G; Govender, N; Gozani, E; Graber, L; Grabowska-Bold, I; Gradin, P O J; Gramling, J; Gramstad, E; Grancagnolo, S; Gratchev, V; Gravila, P M; Gray, C; Gray, H M; Greenwood, Z D; Grefe, C; Gregersen, K; Gregor, I M; Grenier, P; Grevtsov, K; Griffiths, J; Grillo, A A; Grimm, K; Grinstein, S; Gris, Ph; Grivaz, J-F; Groh, S; Gross, E; Grosse-Knetter, J; Grossi, G C; Grout, Z J; Grummer, A; Guan, L; Guan, W; Guenther, J; Guescini, F; Guest, D; Gueta, O; Gui, B; Guido, E; Guillemin, T; Guindon, S; Gul, U; Gumpert, C; Guo, J; Guo, W; Guo, Y; Gupta, R; Gupta, S; Gustavino, G; Gutierrez, P; Gutierrez Ortiz, N G; Gutschow, C; Guyot, C; Guzik, M P; Gwenlan, C; Gwilliam, C B; Haas, A; Haber, C; Hadavand, H K; Haddad, N; Hadef, A; Hageböck, S; Hagihara, M; Hakobyan, H; Haleem, M; Haley, J; Halladjian, G; Hallewell, G D; Hamacher, K; Hamal, P; Hamano, K; Hamilton, A; Hamity, G N; Hamnett, P G; Han, L; Han, S; Hanagaki, K; Hanawa, K; Hance, M; Haney, B; Hanke, P; Hansen, J B; Hansen, J D; Hansen, M C; Hansen, P H; Hara, K; Hard, A S; Harenberg, T; Hariri, F; Harkusha, S; Harrington, R D; Harrison, P F; Hartmann, N M; Hasegawa, M; Hasegawa, Y; Hasib, A; Hassani, S; Haug, S; Hauser, R; Hauswald, L; Havener, L B; Havranek, M; Hawkes, C M; Hawkings, R J; Hayakawa, D; Hayden, D; Hays, C P; Hays, J M; Hayward, H S; Haywood, S J; Head, S J; Heck, T; Hedberg, V; Heelan, L; Heidegger, K K; Heim, S; Heim, T; Heinemann, B; Heinrich, J J; Heinrich, L; Heinz, C; Hejbal, J; Helary, L; Held, A; Hellman, S; Helsens, C; Henderson, R C W; Heng, Y; Henkelmann, S; Henriques Correia, A M; Henrot-Versille, S; Herbert, G H; Herde, H; Herget, V; Hernández Jiménez, Y; Herr, H; Herten, G; Hertenberger, R; Hervas, L; Herwig, T C; Hesketh, G G; Hessey, N P; Hetherly, J W; Higashino, S; Higón-Rodriguez, E; Hill, E; Hill, J C; Hiller, K H; Hillier, S J; Hils, M; Hinchliffe, I; Hirose, M; Hirschbuehl, D; Hiti, B; Hladik, O; Hoad, X; Hobbs, J; Hod, N; Hodgkinson, M C; Hodgson, P; Hoecker, A; Hoeferkamp, M R; Hoenig, F; Hohn, D; Holmes, T R; Homann, M; Honda, S; Honda, T; Hong, T M; Hooberman, B H; Hopkins, W H; Horii, Y; Horton, A J; Hostachy, J-Y; Hou, S; Hoummada, A; Howarth, J; Hoya, J; Hrabovsky, M; Hrdinka, J; Hristova, I; Hrivnac, J; Hryn'ova, T; Hrynevich, A; Hsu, P J; Hsu, S-C; Hu, Q; Hu, S; Huang, Y; Hubacek, Z; Hubaut, F; Huegging, F; Huffman, T B; Hughes, E W; Hughes, G; Huhtinen, M; Huo, P; Huseynov, N; Huston, J; Huth, J; Iacobucci, G; Iakovidis, G; Ibragimov, I; Iconomidou-Fayard, L; Idrissi, Z; Iengo, P; Igonkina, O; Iizawa, T; Ikegami, Y; Ikeno, M; Ilchenko, Y; Iliadis, D; Ilic, N; Introzzi, G; Ioannou, P; Iodice, M; Iordanidou, K; Ippolito, V; Isacson, M F; Ishijima, N; Ishino, M; Ishitsuka, M; Issever, C; Istin, S; Ito, F; Iturbe Ponce, J M; Iuppa, R; Iwasaki, H; Izen, J M; Izzo, V; Jabbar, S; Jackson, P; Jacobs, R M; Jain, V; Jakobi, K B; Jakobs, K; Jakobsen, S; Jakoubek, T; Jamin, D O; Jana, D K; Jansky, R; Janssen, J; Janus, M; Janus, P A; Jarlskog, G; Javadov, N; Javůrek, T; Javurkova, M; Jeanneau, F; Jeanty, L; Jejelava, J; Jelinskas, A; Jenni, P; Jeske, C; Jézéquel, S; Ji, H; Jia, J; Jiang, H; Jiang, Y; Jiang, Z; Jiggins, S; Jimenez Pena, J; Jin, S; Jinaru, A; Jinnouchi, O; Jivan, H; Johansson, P; Johns, K A; Johnson, C A; Johnson, W J; Jon-And, K; Jones, R W L; Jones, S D; Jones, S; Jones, T J; Jongmanns, J; Jorge, P M; Jovicevic, J; Ju, X; Rozas, A Juste; Köhler, M K; Kaczmarska, A; Kado, M; Kagan, H; Kagan, M; Kahn, S J; Kaji, T; Kajomovitz, E; Kalderon, C W; Kaluza, A; Kama, S; Kamenshchikov, A; Kanaya, N; Kanjir, L; Kantserov, V A; Kanzaki, J; Kaplan, B; Kaplan, L S; Kar, D; Karakostas, K; Karastathis, N; Kareem, M J; Karentzos, E; Karpov, S N; Karpova, Z M; Karthik, K; Kartvelishvili, V; Karyukhin, A N; Kasahara, K; Kashif, L; Kass, R D; Kastanas, A; Kataoka, Y; Kato, C; Katre, A; Katzy, J; Kawade, K; Kawagoe, K; Kawamoto, T; Kawamura, G; Kay, E F; Kazanin, V F; Keeler, R; Kehoe, R; Keller, J S; Kempster, J J; Kendrick, J; Keoshkerian, H; Kepka, O; Kerševan, B P; Kersten, S; Keyes, R A; Khader, M; Khalil-Zada, F; Khanov, A; Kharlamov, A G; Kharlamova, T; Khodinov, A; Khoo, T J; Khovanskiy, V; Khramov, E; Khubua, J; Kido, S; Kilby, C R; Kim, H Y; Kim, S H; Kim, Y K; Kimura, N; Kind, O M; King, B T; Kirchmeier, D; Kirk, J; Kiryunin, A E; Kishimoto, T; Kisielewska, D; Kitali, V; Kiuchi, K; Kivernyk, O; Kladiva, E; Klapdor-Kleingrothaus, T; Klein, M H; Klein, M; Klein, U; Kleinknecht, K; Klimek, P; Klimentov, A; Klingenberg, R; Klingl, T; Klioutchnikova, T; Kluge, E-E; Kluit, P; Kluth, S; Kneringer, E; Knoops, E B F G; Knue, A; Kobayashi, A; Kobayashi, D; Kobayashi, T; Kobel, M; Kocian, M; Kodys, P; Koffas, T; Koffeman, E; Köhler, N M; Koi, T; Kolb, M; Koletsou, I; Komar, A A; Komori, Y; Kondo, T; Kondrashova, N; Köneke, K; König, A C; Kono, T; Konoplich, R; Konstantinidis, N; Kopeliansky, R; Koperny, S; Kopp, A K; Korcyl, K; Kordas, K; Korn, A; Korol, A A; Korolkov, I; Korolkova, E V; Kortner, O; Kortner, S; Kosek, T; Kostyukhin, V V; Kotwal, A; Koulouris, A; Kourkoumeli-Charalampidi, A; Kourkoumelis, C; Kourlitis, E; Kouskoura, V; Kowalewska, A B; Kowalewski, R; Kowalski, T Z; Kozakai, C; Kozanecki, W; Kozhin, A S; Kramarenko, V A; Kramberger, G; Krasnopevtsev, D; Krasny, M W; Krasznahorkay, A; Krauss, D; Kremer, J A; Kretzschmar, J; Kreutzfeldt, K; Krieger, P; Krizka, K; Kroeninger, K; Kroha, H; Kroll, J; Kroll, J; Kroseberg, J; Krstic, J; Kruchonak, U; Krüger, H; Krumnack, N; Kruse, M C; Kubota, T; Kucuk, H; Kuday, S; Kuechler, J T; Kuehn, S; Kugel, A; Kuger, F; Kuhl, T; Kukhtin, V; Kukla, R; Kulchitsky, Y; Kuleshov, S; Kulinich, Y P; Kuna, M; Kunigo, T; Kupco, A; Kupfer, T; Kuprash, O; Kurashige, H; Kurchaninov, L L; Kurochkin, Y A; Kurth, M G; Kus, V; Kuwertz, E S; Kuze, M; Kvita, J; Kwan, T; Kyriazopoulos, D; La Rosa, A; La Rosa Navarro, J L; La Rotonda, L; Lacasta, C; Lacava, F; Lacey, J; Lacker, H; Lacour, D; Ladygin, E; Lafaye, R; Laforge, B; Lagouri, T; Lai, S; Lammers, S; Lampl, W; Lançon, E; Landgraf, U; Landon, M P J; Lanfermann, M C; Lang, V S; Lange, J C; Langenberg, R J; Lankford, A J; Lanni, F; Lantzsch, K; Lanza, A; Lapertosa, A; Laplace, S; Laporte, J F; Lari, T; Manghi, F Lasagni; Lassnig, M; Laurelli, P; Lavrijsen, W; Law, A T; Laycock, P; Lazovich, T; Lazzaroni, M; Le, B; Le Dortz, O; Le Guirriec, E; Le Quilleuc, E P; LeBlanc, M; LeCompte, T; Ledroit-Guillon, F; Lee, C A; Lee, G R; Lee, S C; Lee, L; Lefebvre, B; Lefebvre, G; Lefebvre, M; Legger, F; Leggett, C; Lehan, A; Lehmann Miotto, G; Lei, X; Leight, W A; Leite, M A L; Leitner, R; Lellouch, D; Lemmer, B; Leney, K J C; Lenz, T; Lenzi, B; Leone, R; Leone, S; Leonidopoulos, C; Lerner, G; Leroy, C; Lesage, A A J; Lester, C G; Levchenko, M; Levêque, J; Levin, D; Levinson, L J; Levy, M; Lewis, D; Li, B; Li, H; Li, L; Li, Q; Li, S; Li, X; Li, Y; Liang, Z; Liberti, B; Liblong, A; Lie, K; Liebal, J; Liebig, W; Limosani, A; Lin, S C; Lin, T H; Lindquist, B E; Lionti, A E; Lipeles, E; Lipniacka, A; Lisovyi, M; Liss, T M; Lister, A; Litke, A M; Liu, B; Liu, H; Liu, H; Liu, J K K; Liu, J; Liu, J B; Liu, K; Liu, L; Liu, M; Liu, Y L; Liu, Y; Livan, M; Lleres, A; Llorente Merino, J; Lloyd, S L; Lo, C Y; Sterzo, F Lo; Lobodzinska, E M; Loch, P; Loebinger, F K; Loesle, A; Loew, K M; Loginov, A; Lohse, T; Lohwasser, K; Lokajicek, M; Long, B A; Long, J D; Long, R E; Longo, L; Looper, K A; Lopez, J A; Lopez Mateos, D; Lopez Paz, I; Solis, A Lopez; Lorenz, J; Lorenzo Martinez, N; Losada, M; Lösel, P J; Lou, X; Lounis, A; Love, J; Love, P A; Lu, H; Lu, N; Lu, Y J; Lubatti, H J; Luci, C; Lucotte, A; Luedtke, C; Luehring, F; Lukas, W; Luminari, L; Lundberg, O; Lund-Jensen, B; Luzi, P M; Lynn, D; Lysak, R; Lytken, E; Lyubushkin, V; Ma, H; Ma, L L; Ma, Y; Maccarrone, G; Macchiolo, A; Macdonald, C M; Maček, B; Machado Miguens, J; Madaffari, D; Madar, R; Mader, W F; Madsen, A; Maeda, J; Maeland, S; Maeno, T; Maevskiy, A S; Magerl, V; Mahlstedt, J; Maiani, C; Maidantchik, C; Maier, A A; Maier, T; Maio, A; Majersky, O; Majewski, S; Makida, Y; Makovec, N; Malaescu, B; Malecki, Pa; Maleev, V P; Malek, F; Mallik, U; Malon, D; Malone, C; Maltezos, S; Malyukov, S; Mamuzic, J; Mancini, G; Mandelli, L; Mandić, I; Maneira, J; Manhaes de Andrade Filho, L; Manjarres Ramos, J; Mann, A; Manousos, A; Mansoulie, B; Mansour, J D; Mantifel, R; Mantoani, M; Manzoni, S; Mapelli, L; Marceca, G; March, L; Marchese, L; Marchiori, G; Marcisovsky, M; Marjanovic, M; Marley, D E; Marroquim, F; Marsden, S P; Marshall, Z; Martensson, M U F; Marti-Garcia, S; Martin, C B; Martin, T A; Martin, V J; Martin Dit Latour, B; Martinez, M; Martinez Outschoorn, V I; Martin-Haugh, S; Martoiu, V S; Martyniuk, A C; Marzin, A; Masetti, L; Mashimo, T; Mashinistov, R; Masik, J; Maslennikov, A L; Massa, L; Mastrandrea, P; Mastroberardino, A; Masubuchi, T; Mättig, P; Maurer, J; Maxfield, S J; Maximov, D A; Mazini, R; Maznas, I; Mazza, S M; Mc Fadden, N C; Goldrick, G Mc; Mc Kee, S P; McCarn, A; McCarthy, R L; McCarthy, T G; McClymont, L I; McDonald, E F; Mcfayden, J A; Mchedlidze, G; McMahon, S J; McNamara, P C; McPherson, R A; Meehan, S; Megy, T J; Mehlhase, S; Mehta, A; Meideck, T; Meier, K; Meirose, B; Melini, D; Mellado Garcia, B R; Mellenthin, J D; Melo, M; Meloni, F; Menary, S B; Meng, L; Meng, X T; Mengarelli, A; Menke, S; Meoni, E; Mergelmeyer, S; Mermod, P; Merola, L; Meroni, C; Merritt, F S; Messina, A; Metcalfe, J; Mete, A S; Meyer, C; Meyer, J-P; Meyer, J; Meyer Zu Theenhausen, H; Miano, F; Middleton, R P; Miglioranzi, S; Mijović, L; Mikenberg, G; Mikestikova, M; Mikuž, M; Milesi, M; Milic, A; Miller, D W; Mills, C; Milov, A; Milstead, D A; Minaenko, A A; Minami, Y; Minashvili, I A; Mincer, A I; Mindur, B; Mineev, M; Minegishi, Y; Ming, Y; Mir, L M; Mistry, K P; Mitani, T; Mitrevski, J; Mitsou, V A; Miucci, A; Miyagawa, P S; Mizukami, A; Mjörnmark, J U; Mkrtchyan, T; Mlynarikova, M; Moa, T; Mochizuki, K; Mogg, P; Mohapatra, S; Molander, S; Moles-Valls, R; Monden, R; Mondragon, M C; Mönig, K; Monk, J; Monnier, E; Montalbano, A; Montejo Berlingen, J; Monticelli, F; Monzani, S; Moore, R W; Morange, N; Moreno, D; Moreno Llácer, M; Morettini, P; Morgenstern, S; Mori, D; Mori, T; Morii, M; Morinaga, M; Morisbak, V; Morley, A K; Mornacchi, G; Morris, J D; Morvaj, L; Moschovakos, P; Mosidze, M; Moss, H J; Moss, J; Motohashi, K; Mount, R; Mountricha, E; Moyse, E J W; Muanza, S; Mudd, R D; Mueller, F; Mueller, J; Mueller, R S P; Muenstermann, D; Mullen, P; Mullier, G A; Munoz Sanchez, F J; Murray, W J; Musheghyan, H; Muškinja, M; Myagkov, A G; Myska, M; Nachman, B P; Nackenhorst, O; Nagai, K; Nagai, R; Nagano, K; Nagasaka, Y; Nagata, K; Nagel, M; Nagy, E; Nairz, A M; Nakahama, Y; Nakamura, K; Nakamura, T; Nakano, I; Naranjo Garcia, R F; Narayan, R; Narrias Villar, D I; Naryshkin, I; Naumann, T; Navarro, G; Nayyar, R; Neal, H A; Nechaeva, P Yu; Neep, T J; Negri, A; Negrini, M; Nektarijevic, S; Nellist, C; Nelson, A; Nelson, M E; Nemecek, S; Nemethy, P; Nessi, M; Neubauer, M S; Neumann, M; Newman, P R; Ng, T Y; Nguyen Manh, T; Nickerson, R B; Nicolaidou, R; Nielsen, J; Nikolaenko, V; Nikolic-Audit, I; Nikolopoulos, K; Nilsen, J K; Nilsson, P; Ninomiya, Y; Nisati, A; Nishu, N; Nisius, R; Nitsche, I; Nobe, T; Noguchi, Y; Nomachi, M; Nomidis, I; Nomura, M A; Nooney, T; Nordberg, M; Norjoharuddeen, N; Novgorodova, O; Nowak, S; Nozaki, M; Nozka, L; Ntekas, K; Nurse, E; Nuti, F; O'connor, K; O'Neil, D C; O'Rourke, A A; O'Shea, V; Oakham, F G; Oberlack, H; Obermann, T; Ocariz, J; Ochi, A; Ochoa, I; Ochoa-Ricoux, J P; Oda, S; Odaka, S; Ogren, H; Oh, A; Oh, S H; Ohm, C C; Ohman, H; Oide, H; Okawa, H; Okumura, Y; Okuyama, T; Olariu, A; Oleiro Seabra, L F; Olivares Pino, S A; Oliveira Damazio, D; Olszewski, A; Olszowska, J; Onofre, A; Onogi, K; Onyisi, P U E; Oppen, H; Oreglia, M J; Oren, Y; Orestano, D; Orlando, N; Orr, R S; Osculati, B; Ospanov, R; Otero Y Garzon, G; Otono, H; Ouchrif, M; Ould-Saada, F; Ouraou, A; Oussoren, K P; Ouyang, Q; Owen, M; Owen, R E; Ozcan, V E; Ozturk, N; Pachal, K; Pacheco Pages, A; Pacheco Rodriguez, L; Padilla Aranda, C; Pagan Griso, S; Paganini, M; Paige, F; Palacino, G; Palazzo, S; Palestini, S; Palka, M; Pallin, D; Panagiotopoulou, E St; Panagoulias, I; Pandini, C E; Panduro Vazquez, J G; Pani, P; Panitkin, S; Pantea, D; Paolozzi, L; Papadopoulou, Th D; Papageorgiou, K; Paramonov, A; Paredes Hernandez, D; Parker, A J; Parker, M A; Parker, K A; Parodi, F; Parsons, J A; Parzefall, U; Pascuzzi, V R; Pasner, J M; Pasqualucci, E; Passaggio, S; Pastore, Fr; Pataraia, S; Pater, J R; Pauly, T; Pearson, B; Pedraza Lopez, S; Pedro, R; Peleganchuk, S V; Penc, O; Peng, C; Peng, H; Penwell, J; Peralva, B S; Perego, M M; Perepelitsa, D V; Perini, L; Pernegger, H; Perrella, S; Peschke, R; Peshekhonov, V D; Peters, K; Peters, R F Y; Petersen, B A; Petersen, T C; Petit, E; Petridis, A; Petridou, C; Petroff, P; Petrolo, E; Petrov, M; Petrucci, F; Pettersson, N E; Peyaud, A; Pezoa, R; Phillips, F H; Phillips, P W; Piacquadio, G; Pianori, E; Picazio, A; Piccaro, E; Pickering, M A; Piegaia, R; Pilcher, J E; Pilkington, A D; Pin, A W J; Pinamonti, M; Pinfold, J L; Pirumov, H; Pitt, M; Plazak, L; Pleier, M-A; Pleskot, V; Plotnikova, E; Pluth, D; Podberezko, P; Poettgen, R; Poggi, R; Poggioli, L; Pohl, D; Polesello, G; Poley, A; Policicchio, A; Polifka, R; Polini, A; Pollard, C S; Polychronakos, V; Pommès, K; Ponomarenko, D; Pontecorvo, L; Pope, B G; Popeneciu, G A; Poppleton, A; Pospisil, S; Potamianos, K; Potrap, I N; Potter, C J; Poulard, G; Poulsen, T; Poveda, J; Pozo Astigarraga, M E; Pralavorio, P; Pranko, A; Prell, S; Price, D; Price, L E; Primavera, M; Prince, S; Proklova, N; Prokofiev, K; Prokoshin, F; Protopopescu, S; Proudfoot, J; Przybycien, M; Puri, A; Puzo, P; Qian, J; Qin, G; Qin, Y; Quadt, A; Queitsch-Maitland, M; Quilty, D; Raddum, S; Radeka, V; Radescu, V; Radhakrishnan, S K; Radloff, P; Rados, P; Ragusa, F; Rahal, G; Raine, J A; Rajagopalan, S; Rangel-Smith, C; Rashid, T; Raspopov, S; Ratti, M G; Rauch, D M; Rauscher, F; Rave, S; Ravinovich, I; Rawling, J H; Raymond, M; Read, A L; Readioff, N P; Reale, M; Rebuzzi, D M; Redelbach, A; Redlinger, G; Reece, R; Reed, R G; Reeves, K; Rehnisch, L; Reichert, J; Reiss, A; Rembser, C; Ren, H; Rescigno, M; Resconi, S; Resseguie, E D; Rettie, S; Reynolds, E; Rezanova, O L; Reznicek, P; Rezvani, R; Richter, R; Richter, S; Richter-Was, E; Ricken, O; Ridel, M; Rieck, P; Riegel, C J; Rieger, J; Rifki, O; Rijssenbeek, M; Rimoldi, A; Rimoldi, M; Rinaldi, L; Ripellino, G; Ristić, B; Ritsch, E; Riu, I; Rizatdinova, F; Rizvi, E; Rizzi, C; Roberts, R T; Robertson, S H; Robichaud-Veronneau, A; Robinson, D; Robinson, J E M; Robson, A; Rocco, E; Roda, C; Rodina, Y; Rodriguez Bosca, S; Rodriguez Perez, A; Rodriguez Rodriguez, D; Roe, S; Rogan, C S; Røhne, O; Roloff, J; Romaniouk, A; Romano, M; Romano Saez, S M; Romero Adam, E; Rompotis, N; Ronzani, M; Roos, L; Rosati, S; Rosbach, K; Rose, P; Rosien, N-A; Rossi, E; Rossi, L P; Rosten, J H N; Rosten, R; Rotaru, M; Roth, I; Rothberg, J; Rousseau, D; Rozanov, A; Rozen, Y; Ruan, X; Rubbo, F; Rühr, F; Ruiz-Martinez, A; Rurikova, Z; Rusakovich, N A; Russell, H L; Rutherfoord, J P; Ruthmann, N; Ryabov, Y F; Rybar, M; Rybkin, G; Ryu, S; Ryzhov, A; Rzehorz, G F; Saavedra, A F; Sabato, G; Sacerdoti, S; Sadrozinski, H F-W; Sadykov, R; Safai Tehrani, F; Saha, P; Sahinsoy, M; Saimpert, M; Saito, M; Saito, T; Sakamoto, H; Sakurai, Y; Salamanna, G; Salazar Loyola, J E; Salek, D; De Bruin, P H Sales; Salihagic, D; Salnikov, A; Salt, J; Salvatore, D; Salvatore, F; Salvucci, A; Salzburger, A; Sammel, D; Sampsonidis, D; Sampsonidou, D; Sánchez, J; Sanchez Martinez, V; Sanchez Pineda, A; Sandaker, H; Sandbach, R L; Sander, C O; Sandhoff, M; Sandoval, C; Sankey, D P C; Sannino, M; Sansoni, A; Santoni, C; Santonico, R; Santos, H; Santoyo Castillo, I; Sapronov, A; Saraiva, J G; Sarrazin, B; Sasaki, O; Sato, K; Sauvan, E; Savage, G; Savard, P; Savic, N; Sawyer, C; Sawyer, L; Saxon, J; Sbarra, C; Sbrizzi, A; Scanlon, T; Scannicchio, D A; Scarcella, M; Scarfone, V; Schaarschmidt, J; Schacht, P; Schachtner, B M; Schaefer, D; Schaefer, L; Schaefer, R; Schaeffer, J; Schaepe, S; Schaetzel, S; Schäfer, U; Schaffer, A C; Schaile, D; Schamberger, R D; Scharf, V; Schegelsky, V A; Scheirich, D; Schernau, M; Schiavi, C; Schier, S; Schildgen, L K; Schillo, C; Schioppa, M; Schlenker, S; Schmidt-Sommerfeld, K R; Schmieden, K; Schmitt, C; Schmitt, S; Schmitz, S; Schnoor, U; Schoeffel, L; Schoening, A; Schoenrock, B D; Schopf, E; Schott, M; Schouwenberg, J F P; Schovancova, J; Schramm, S; Schuh, N; Schulte, A; Schultens, M J; Schultz-Coulon, H-C; Schulz, H; Schumacher, M; Schumm, B A; Schune, Ph; Schwartzman, A; Schwarz, T A; Schweiger, H; Schwemling, Ph; Schwienhorst, R; Schwindling, J; Sciandra, A; Sciolla, G; Scuri, F; Scutti, F; Searcy, J; Seema, P; Seidel, S C; Seiden, A; Seixas, J M; Sekhniaidze, G; Sekhon, K; Sekula, S J; Semprini-Cesari, N; Senkin, S; Serfon, C; Serin, L; Serkin, L; Sessa, M; Seuster, R; Severini, H; Sfiligoj, T; Sforza, F; Sfyrla, A; Shabalina, E; Shaikh, N W; Shan, L Y; Shang, R; Shank, J T; Shapiro, M; Shatalov, P B; Shaw, K; Shaw, S M; Shcherbakova, A; Shehu, C Y; Shen, Y; Sherafati, N; Sherwood, P; Shi, L; Shimizu, S; Shimmin, C O; Shimojima, M; Shipsey, I P J; Shirabe, S; Shiyakova, M; Shlomi, J; Shmeleva, A; Shoaleh Saadi, D; Shochet, M J; Shojaii, S; Shope, D R; Shrestha, S; Shulga, E; Shupe, M A; Sicho, P; Sickles, A M; Sidebo, P E; Sideras Haddad, E; Sidiropoulou, O; Sidoti, A; Siegert, F; Sijacki, Dj; Silva, J; Silverstein, S B; Simak, V; Simic, Lj; Simion, S; Simioni, E; Simmons, B; Simon, M; Sinervo, P; Sinev, N B; Sioli, M; Siragusa, G; Siral, I; Sivoklokov, S Yu; Sjölin, J; Skinner, M B; Skubic, P; Slater, M; Slavicek, T; Slawinska, M; Sliwa, K; Slovak, R; Smakhtin, V; Smart, B H; Smiesko, J; Smirnov, N; Smirnov, S Yu; Smirnov, Y; Smirnova, L N; Smirnova, O; Smith, J W; Smith, M N K; Smith, R W; Smizanska, M; Smolek, K; Snesarev, A A; Snyder, I M; Snyder, S; Sobie, R; Socher, F; Soffer, A; Søgaard, A; Soh, D A; Sokhrannyi, G; Solans Sanchez, C A; Solar, M; Soldatov, E Yu; Soldevila, U; Solodkov, A A; Soloshenko, A; Solovyanov, O V; Solovyev, V; Sommer, P; Son, H; Sopczak, A; Sosa, D; Sotiropoulou, C L; Soualah, R; Soukharev, A M; South, D; Sowden, B C; Spagnolo, S; Spalla, M; Spangenberg, M; Spanò, F; Sperlich, D; Spettel, F; Spieker, T M; Spighi, R; Spigo, G; Spiller, L A; Spousta, M; St Denis, R D; Stabile, A; Stamen, R; Stamm, S; Stanecka, E; Stanek, R W; Stanescu, C; Stanitzki, M M; Stapf, B S; Stapnes, S; Starchenko, E A; Stark, G H; Stark, J; Stark, S H; Staroba, P; Starovoitov, P; Stärz, S; Staszewski, R; Steinberg, P; Stelzer, B; Stelzer, H J; Stelzer-Chilton, O; Stenzel, H; Stewart, G A; Stockton, M C; Stoebe, M; Stoicea, G; Stolte, P; Stonjek, S; Stradling, A R; Straessner, A; Stramaglia, M E; Strandberg, J; Strandberg, S; Strauss, M; Strizenec, P; Ströhmer, R; Strom, D M; Stroynowski, R; Strubig, A; Stucci, S A; Stugu, B; Styles, N A; Su, D; Su, J; Suchek, S; Sugaya, Y; Suk, M; Sulin, V V; Sultan, Dms; Sultansoy, S; Sumida, T; Sun, S; Sun, X; Suruliz, K; Suster, C J E; Sutton, M R; Suzuki, S; Svatos, M; Swiatlowski, M; Swift, S P; Sykora, I; Sykora, T; Ta, D; Tackmann, K; Taenzer, J; Taffard, A; Tafirout, R; Tahirovic, E; Taiblum, N; Takai, H; Takashima, R; Takasugi, E H; Takeshita, T; Takubo, Y; Talby, M; Talyshev, A A; Tanaka, J; Tanaka, M; Tanaka, R; Tanaka, S; Tanioka, R; Tannenwald, B B; Tapia Araya, S; Tapprogge, S; Tarem, S; Tartarelli, G F; Tas, P; Tasevsky, M; Tashiro, T; Tassi, E; Tavares Delgado, A; Tayalati, Y; Taylor, A C; Taylor, G N; Taylor, P T E; Taylor, W; Teixeira-Dias, P; Temple, D; Ten Kate, H; Teng, P K; Teoh, J J; Tepel, F; Terada, S; Terashi, K; Terron, J; Terzo, S; Testa, M; Teuscher, R J; Theveneaux-Pelzer, T; Thomas, J P; Thomas-Wilsker, J; Thompson, P D; Thompson, A S; Thomsen, L A; Thomson, E; Tibbetts, M J; Ticse Torres, R E; Tikhomirov, V O; Tikhonov, Yu A; Timoshenko, S; Tipton, P; Tisserant, S; Todome, K; Todorova-Nova, S; Tojo, J; Tokár, S; Tokushuku, K; Tolley, E; Tomlinson, L; Tomoto, M; Tompkins, L; Toms, K; Tong, B; Tornambe, P; Torrence, E; Torres, H; Torró Pastor, E; Toth, J; Touchard, F; Tovey, D R; Treado, C J; Trefzger, T; Tresoldi, F; Tricoli, A; Trigger, I M; Trincaz-Duvoid, S; Tripiana, M F; Trischuk, W; Trocmé, B; Trofymov, A; Troncon, C; Trottier-McDonald, M; Trovatelli, M; Truong, L; Trzebinski, M; Trzupek, A; Tsang, K W; Tseng, J C-L; Tsiareshka, P V; Tsipolitis, G; Tsirintanis, N; Tsiskaridze, S; Tsiskaridze, V; Tskhadadze, E G; Tsui, K M; Tsukerman, I I; Tsulaia, V; Tsuno, S; Tsybychev, D; Tu, Y; Tudorache, A; Tudorache, V; Tulbure, T T; Tuna, A N; Tupputi, S A; Turchikhin, S; Turgeman, D; Turk Cakir, I; Turra, R; Tuts, P M; Ucchielli, G; Ueda, I; Ughetto, M; Ukegawa, F; Unal, G; Undrus, A; Unel, G; Ungaro, F C; Unno, Y; Unverdorben, C; Urban, J; Urquijo, P; Urrejola, P; Usai, G; Usui, J; Vacavant, L; Vacek, V; Vachon, B; Vadla, K O H; Vaidya, A; Valderanis, C; Valdes Santurio, E; Valente, M; Valentinetti, S; Valero, A; Valéry, L; Valkar, S; Vallier, A; Valls Ferrer, J A; Van Den Wollenberg, W; van der Graaf, H; van Gemmeren, P; Van Nieuwkoop, J; van Vulpen, I; van Woerden, M C; Vanadia, M; Vandelli, W; Vaniachine, A; Vankov, P; Vardanyan, G; Vari, R; Varnes, E W; Varni, C; Varol, T; Varouchas, D; Vartapetian, A; Varvell, K E; Vasquez, J G; Vasquez, G A; Vazeille, F; Vazquez Schroeder, T; Veatch, J; Veeraraghavan, V; Veloce, L M; Veloso, F; Veneziano, S; Ventura, A; Venturi, M; Venturi, N; Venturini, A; Vercesi, V; Verducci, M; Verkerke, W; Vermeulen, A T; Vermeulen, J C; Vetterli, M C; Viaux Maira, N; Viazlo, O; Vichou, I; Vickey, T; Vickey Boeriu, O E; Viehhauser, G H A; Viel, S; Vigani, L; Villa, M; Villaplana Perez, M; Vilucchi, E; Vincter, M G; Vinogradov, V B; Vishwakarma, A; Vittori, C; Vivarelli, I; Vlachos, S; Vlasak, M; Vogel, M; Vokac, P; Volpi, G; von der Schmitt, H; von Toerne, E; Vorobel, V; Vorobev, K; Vos, M; Voss, R; Vossebeld, J H; Vranjes, N; Vranjes Milosavljevic, M; Vrba, V; Vreeswijk, M; Vuillermet, R; Vukotic, I; Wagner, P; Wagner, W; Wagner-Kuhr, J; Wahlberg, H; Wahrmund, S; Wakabayashi, J; Walder, J; Walker, R; Walkowiak, W; Wallangen, V; Wang, C; Wang, C; Wang, F; Wang, H; Wang, H; Wang, J; Wang, J; Wang, Q; Wang, R; Wang, S M; Wang, T; Wang, W; Wang, W; Wang, Z; Wanotayaroj, C; Warburton, A; Ward, C P; Wardrope, D R; Washbrook, A; Watkins, P M; Watson, A T; Watson, M F; Watts, G; Watts, S; Waugh, B M; Webb, A F; Webb, S; Weber, M S; Weber, S W; Weber, S A; Webster, J S; Weidberg, A R; Weinert, B; Weingarten, J; Weirich, M; Weiser, C; Weits, H; Wells, P S; Wenaus, T; Wengler, T; Wenig, S; Wermes, N; Werner, M D; Werner, P; Wessels, M; Weston, T D; Whalen, K; Whallon, N L; Wharton, A M; White, A S; White, A; White, M J; White, R; Whiteson, D; Whitmore, B W; Wickens, F J; Wiedenmann, W; Wielers, M; Wiglesworth, C; Wiik-Fuchs, L A M; Wildauer, A; Wilk, F; Wilkens, H G; Williams, H H; Williams, S; Willis, C; Willocq, S; Wilson, J A; Wingerter-Seez, I; Winkels, E; Winklmeier, F; Winston, O J; Winter, B T; Wittgen, M; Wobisch, M; Wolf, T M H; Wolff, R; Wolter, M W; Wolters, H; Wong, V W S; Worm, S D; Wosiek, B K; Wotschack, J; Wozniak, K W; Wu, M; Wu, S L; Wu, X; Wu, Y; Wyatt, T R; Wynne, B M; Xella, S; Xi, Z; Xia, L; Xu, D; Xu, L; Yabsley, B; Yacoob, S; Yamaguchi, D; Yamaguchi, Y; Yamamoto, A; Yamamoto, S; Yamanaka, T; Yamatani, M; Yamauchi, K; Yamazaki, Y; Yan, Z; Yang, H; Yang, H; Yang, Y; Yang, Z; Yao, W-M; Yap, Y C; Yasu, Y; Yatsenko, E; Yau Wong, K H; Ye, J; Ye, S; Yeletskikh, I; Yigitbasi, E; Yildirim, E; Yorita, K; Yoshihara, K; Young, C; Young, C J S; Yu, J; Yu, J; Yuen, S P Y; Yusuff, I; Zabinski, B; Zacharis, G; Zaidan, R; Zaitsev, A M; Zakharchuk, N; Zalieckas, J; Zaman, A; Zambito, S; Zanzi, D; Zeitnitz, C; Zemaityte, G; Zemla, A; Zeng, J C; Zeng, Q; Zenin, O; Ženiš, T; Zerwas, D; Zhang, D; Zhang, F; Zhang, G; Zhang, H; Zhang, J; Zhang, L; Zhang, L; Zhang, M; Zhang, P; Zhang, R; Zhang, R; Zhang, X; Zhang, Y; Zhang, Z; Zhao, X; Zhao, Y; Zhao, Z; Zhemchugov, A; Zhou, B; Zhou, C; Zhou, L; Zhou, M; Zhou, M; Zhou, N; Zhu, C G; Zhu, H; Zhu, J; Zhu, Y; Zhuang, X; Zhukov, K; Zibell, A; Zieminska, D; Zimine, N I; Zimmermann, C; Zimmermann, S; Zinonos, Z; Zinser, M; Ziolkowski, M; Živković, L; Zobernig, G; Zoccoli, A; Zou, R; Zur Nedden, M; Zwalinski, L

    2017-01-01

    With the increase in energy of the Large Hadron Collider to a centre-of-mass energy of 13 [Formula: see text] for Run 2, events with dense environments, such as in the cores of high-energy jets, became a focus for new physics searches as well as measurements of the Standard Model. These environments are characterized by charged-particle separations of the order of the tracking detectors sensor granularity. Basic track quantities are compared between 3.2 fb[Formula: see text] of data collected by the ATLAS experiment and simulation of proton-proton collisions producing high-transverse-momentum jets at a centre-of-mass energy of 13 [Formula: see text]. The impact of charged-particle separations and multiplicities on the track reconstruction performance is discussed. The track reconstruction efficiency in the cores of jets with transverse momenta between 200 and 1600 [Formula: see text] is quantified using a novel, data-driven, method. The method uses the energy loss, [Formula: see text], to identify pixel clusters originating from two charged particles. Of the charged particles creating these clusters, the measured fraction that fail to be reconstructed is [Formula: see text] and [Formula: see text] for jet transverse momenta of 200-400 [Formula: see text] and 1400-1600 [Formula: see text], respectively.

  9. Passive Infrared (PIR)-Based Indoor Position Tracking for Smart Homes Using Accessibility Maps and A-Star Algorithm.

    PubMed

    Yang, Dan; Xu, Bin; Rao, Kaiyou; Sheng, Weihua

    2018-01-24

    Indoor occupants' positions are significant for smart home service systems, which usually consist of robot service(s), appliance control and other intelligent applications. In this paper, an innovative localization method is proposed for tracking humans' position in indoor environments based on passive infrared (PIR) sensors using an accessibility map and an A-star algorithm, aiming at providing intelligent services. First the accessibility map reflecting the visiting habits of the occupants is established through the integral training with indoor environments and other prior knowledge. Then the PIR sensors, which placement depends on the training results in the accessibility map, get the rough location information. For more precise positioning, the A-start algorithm is used to refine the localization, fused with the accessibility map and the PIR sensor data. Experiments were conducted in a mock apartment testbed. The ground truth data was obtained from an Opti-track system. The results demonstrate that the proposed method is able to track persons in a smart home environment and provide a solution for home robot localization.

  10. Passive Infrared (PIR)-Based Indoor Position Tracking for Smart Homes Using Accessibility Maps and A-Star Algorithm

    PubMed Central

    Yang, Dan; Xu, Bin; Rao, Kaiyou; Sheng, Weihua

    2018-01-01

    Indoor occupants’ positions are significant for smart home service systems, which usually consist of robot service(s), appliance control and other intelligent applications. In this paper, an innovative localization method is proposed for tracking humans’ position in indoor environments based on passive infrared (PIR) sensors using an accessibility map and an A-star algorithm, aiming at providing intelligent services. First the accessibility map reflecting the visiting habits of the occupants is established through the integral training with indoor environments and other prior knowledge. Then the PIR sensors, which placement depends on the training results in the accessibility map, get the rough location information. For more precise positioning, the A-start algorithm is used to refine the localization, fused with the accessibility map and the PIR sensor data. Experiments were conducted in a mock apartment testbed. The ground truth data was obtained from an Opti-track system. The results demonstrate that the proposed method is able to track persons in a smart home environment and provide a solution for home robot localization. PMID:29364188

  11. Extracting More Information from Passive Optical Tracking Observations for Reliable Orbit Element Generation

    NASA Astrophysics Data System (ADS)

    Bennett, J.; Gehly, S.

    2016-09-01

    This paper presents results from a preliminary method for extracting more orbital information from low rate passive optical tracking data. An improvement in the accuracy of the observation data yields more accurate and reliable orbital elements. A comparison between the orbit propagations from the orbital element generated using the new data processing method is compared with the one generated from the raw observation data for several objects. Optical tracking data collected by EOS Space Systems, located on Mount Stromlo, Australia, is fitted to provide a new orbital element. The element accuracy is determined from a comparison between the predicted orbit and subsequent tracking data or reference orbit if available. The new method is shown to result in a better orbit prediction which has important implications in conjunction assessments and the Space Environment Research Centre space object catalogue. The focus is on obtaining reliable orbital solutions from sparse data. This work forms part of the collaborative effort of the Space Environment Management Cooperative Research Centre which is developing new technologies and strategies to preserve the space environment (www.serc.org.au).

  12. Restoration in Its Natural Context: How Ecological Momentary Assessment Can Advance Restoration Research

    PubMed Central

    Beute, Femke; de Kort, Yvonne; IJsselsteijn, Wijnand

    2016-01-01

    More and more people use self-tracking technologies to track their psychological states, physiology, and behaviors to gain a better understanding of themselves or to achieve a certain goal. Ecological Momentary Assessment (EMA) also offers an excellent opportunity for restorative environments research, which examines how our physical environment (especially nature) can positively influence health and wellbeing. It enables investigating restorative health effects in everyday life, providing not only high ecological validity but also opportunities to study in more detail the dynamic processes playing out over time on recovery, thereby bridging the gap between laboratory (i.e., short-term effects) and epidemiological (long-term effects) research. We have identified four main areas in which self-tracking could help advance restoration research: (1) capturing a rich set of environment types and restorative characteristics; (2) distinguishing intra-individual from inter-individual effects; (3) bridging the gap between laboratory and epidemiological research; and (4) advancing theoretical insights by measuring a more broad range of effects in everyday life. This paper briefly introduces restorative environments research, then reviews the state of the art of self-tracking technologies and methodologies, discusses how these can be implemented to advance restoration research, and presents some examples of pioneering work in this area. PMID:27089352

  13. SET: a pupil detection method using sinusoidal approximation

    PubMed Central

    Javadi, Amir-Homayoun; Hakimi, Zahra; Barati, Morteza; Walsh, Vincent; Tcheang, Lili

    2015-01-01

    Mobile eye-tracking in external environments remains challenging, despite recent advances in eye-tracking software and hardware engineering. Many current methods fail to deal with the vast range of outdoor lighting conditions and the speed at which these can change. This confines experiments to artificial environments where conditions must be tightly controlled. Additionally, the emergence of low-cost eye tracking devices calls for the development of analysis tools that enable non-technical researchers to process the output of their images. We have developed a fast and accurate method (known as “SET”) that is suitable even for natural environments with uncontrolled, dynamic and even extreme lighting conditions. We compared the performance of SET with that of two open-source alternatives by processing two collections of eye images: images of natural outdoor scenes with extreme lighting variations (“Natural”); and images of less challenging indoor scenes (“CASIA-Iris-Thousand”). We show that SET excelled in outdoor conditions and was faster, without significant loss of accuracy, indoors. SET offers a low cost eye-tracking solution, delivering high performance even in challenging outdoor environments. It is offered through an open-source MATLAB toolkit as well as a dynamic-link library (“DLL”), which can be imported into many programming languages including C# and Visual Basic in Windows OS (www.eyegoeyetracker.co.uk). PMID:25914641

  14. Trajectory planning and optimal tracking for an industrial mobile robot

    NASA Astrophysics Data System (ADS)

    Hu, Huosheng; Brady, J. Michael; Probert, Penelope J.

    1994-02-01

    This paper introduces a unified approach to trajectory planning and tracking for an industrial mobile robot subject to non-holonomic constraints. We show (1) how a smooth trajectory is generated that takes into account the constraints from the dynamic environment and the robot kinematics; and (2) how a general predictive controller works to provide optimal tracking capability for nonlinear systems. The tracking performance of the proposed guidance system is analyzed by simulation.

  15. PMHT Approach for Multi-Target Multi-Sensor Sonar Tracking in Clutter.

    PubMed

    Li, Xiaohua; Li, Yaan; Yu, Jing; Chen, Xiao; Dai, Miao

    2015-11-06

    Multi-sensor sonar tracking has many advantages, such as the potential to reduce the overall measurement uncertainty and the possibility to hide the receiver. However, the use of multi-target multi-sensor sonar tracking is challenging because of the complexity of the underwater environment, especially the low target detection probability and extremely large number of false alarms caused by reverberation. In this work, to solve the problem of multi-target multi-sensor sonar tracking in the presence of clutter, a novel probabilistic multi-hypothesis tracker (PMHT) approach based on the extended Kalman filter (EKF) and unscented Kalman filter (UKF) is proposed. The PMHT can efficiently handle the unknown measurements-to-targets and measurements-to-transmitters data association ambiguity. The EKF and UKF are used to deal with the high degree of nonlinearity in the measurement model. The simulation results show that the proposed algorithm can improve the target tracking performance in a cluttered environment greatly, and its computational load is low.

  16. Indoor Pedestrian Navigation Using Foot-Mounted IMU and Portable Ultrasound Range Sensors

    PubMed Central

    Girard, Gabriel; Côté, Stéphane; Zlatanova, Sisi; Barette, Yannick; St-Pierre, Johanne; van Oosterom, Peter

    2011-01-01

    Many solutions have been proposed for indoor pedestrian navigation. Some rely on pre-installed sensor networks, which offer good accuracy but are limited to areas that have been prepared for that purpose, thus requiring an expensive and possibly time-consuming process. Such methods are therefore inappropriate for navigation in emergency situations since the power supply may be disturbed. Other types of solutions track the user without requiring a prepared environment. However, they may have low accuracy. Offline tracking has been proposed to increase accuracy, however this prevents users from knowing their position in real time. This paper describes a real time indoor navigation system that does not require prepared building environments and provides tracking accuracy superior to previously described tracking methods. The system uses a combination of four techniques: foot-mounted IMU (Inertial Motion Unit), ultrasonic ranging, particle filtering and model-based navigation. The very purpose of the project is to combine these four well-known techniques in a novel way to provide better indoor tracking results for pedestrians. PMID:22164034

  17. Discovering Activities to Recognize and Track in a Smart Environment

    PubMed Central

    Rashidi, Parisa; Cook, Diane J.; Holder, Lawrence B.; Schmitter-Edgecombe, Maureen

    2011-01-01

    The machine learning and pervasive sensing technologies found in smart homes offer unprecedented opportunities for providing health monitoring and assistance to individuals experiencing difficulties living independently at home. In order to monitor the functional health of smart home residents, we need to design technologies that recognize and track activities that people normally perform as part of their daily routines. Although approaches do exist for recognizing activities, the approaches are applied to activities that have been pre-selected and for which labeled training data is available. In contrast, we introduce an automated approach to activity tracking that identifies frequent activities that naturally occur in an individual’s routine. With this capability we can then track the occurrence of regular activities to monitor functional health and to detect changes in an individual’s patterns and lifestyle. In this paper we describe our activity mining and tracking approach and validate our algorithms on data collected in physical smart environments. PMID:21617742

  18. Phylogenetic ctDNA analysis depicts early-stage lung cancer evolution.

    PubMed

    Abbosh, Christopher; Birkbak, Nicolai J; Wilson, Gareth A; Jamal-Hanjani, Mariam; Constantin, Tudor; Salari, Raheleh; Le Quesne, John; Moore, David A; Veeriah, Selvaraju; Rosenthal, Rachel; Marafioti, Teresa; Kirkizlar, Eser; Watkins, Thomas B K; McGranahan, Nicholas; Ward, Sophia; Martinson, Luke; Riley, Joan; Fraioli, Francesco; Al Bakir, Maise; Grönroos, Eva; Zambrana, Francisco; Endozo, Raymondo; Bi, Wenya Linda; Fennessy, Fiona M; Sponer, Nicole; Johnson, Diana; Laycock, Joanne; Shafi, Seema; Czyzewska-Khan, Justyna; Rowan, Andrew; Chambers, Tim; Matthews, Nik; Turajlic, Samra; Hiley, Crispin; Lee, Siow Ming; Forster, Martin D; Ahmad, Tanya; Falzon, Mary; Borg, Elaine; Lawrence, David; Hayward, Martin; Kolvekar, Shyam; Panagiotopoulos, Nikolaos; Janes, Sam M; Thakrar, Ricky; Ahmed, Asia; Blackhall, Fiona; Summers, Yvonne; Hafez, Dina; Naik, Ashwini; Ganguly, Apratim; Kareht, Stephanie; Shah, Rajesh; Joseph, Leena; Marie Quinn, Anne; Crosbie, Phil A; Naidu, Babu; Middleton, Gary; Langman, Gerald; Trotter, Simon; Nicolson, Marianne; Remmen, Hardy; Kerr, Keith; Chetty, Mahendran; Gomersall, Lesley; Fennell, Dean A; Nakas, Apostolos; Rathinam, Sridhar; Anand, Girija; Khan, Sajid; Russell, Peter; Ezhil, Veni; Ismail, Babikir; Irvin-Sellers, Melanie; Prakash, Vineet; Lester, Jason F; Kornaszewska, Malgorzata; Attanoos, Richard; Adams, Haydn; Davies, Helen; Oukrif, Dahmane; Akarca, Ayse U; Hartley, John A; Lowe, Helen L; Lock, Sara; Iles, Natasha; Bell, Harriet; Ngai, Yenting; Elgar, Greg; Szallasi, Zoltan; Schwarz, Roland F; Herrero, Javier; Stewart, Aengus; Quezada, Sergio A; Peggs, Karl S; Van Loo, Peter; Dive, Caroline; Lin, C Jimmy; Rabinowitz, Matthew; Aerts, Hugo J W L; Hackshaw, Allan; Shaw, Jacqui A; Zimmermann, Bernhard G; Swanton, Charles

    2017-04-26

    The early detection of relapse following primary surgery for non-small-cell lung cancer and the characterization of emerging subclones, which seed metastatic sites, might offer new therapeutic approaches for limiting tumour recurrence. The ability to track the evolutionary dynamics of early-stage lung cancer non-invasively in circulating tumour DNA (ctDNA) has not yet been demonstrated. Here we use a tumour-specific phylogenetic approach to profile the ctDNA of the first 100 TRACERx (Tracking Non-Small-Cell Lung Cancer Evolution Through Therapy (Rx)) study participants, including one patient who was also recruited to the PEACE (Posthumous Evaluation of Advanced Cancer Environment) post-mortem study. We identify independent predictors of ctDNA release and analyse the tumour-volume detection limit. Through blinded profiling of postoperative plasma, we observe evidence of adjuvant chemotherapy resistance and identify patients who are very likely to experience recurrence of their lung cancer. Finally, we show that phylogenetic ctDNA profiling tracks the subclonal nature of lung cancer relapse and metastasis, providing a new approach for ctDNA-driven therapeutic studies.

  19. Dust Storm Feature Identification and Tracking from 4D Simulation Data

    NASA Astrophysics Data System (ADS)

    Yu, M.; Yang, C. P.

    2016-12-01

    Dust storms cause significant damage to health, property and the environment worldwide every year. To help mitigate the damage, dust forecasting models simulate and predict upcoming dust events, providing valuable information to scientists, decision makers, and the public. Normally, the model simulations are conducted in four-dimensions (i.e., latitude, longitude, elevation and time) and represent three-dimensional (3D), spatial heterogeneous features of the storm and its evolution over space and time. This research investigates and proposes an automatic multi-threshold, region-growing based identification algorithm to identify critical dust storm features, and track the evolution process of dust storm events through space and time. In addition, a spatiotemporal data model is proposed, which can support the characterization and representation of dust storm events and their dynamic patterns. Quantitative and qualitative evaluations for the algorithm are conducted to test the sensitivity, and capability of identify and track dust storm events. This study has the potential to assist a better early warning system for decision-makers and the public, thus making hazard mitigation plans more effective.

  20. An Overview of the Orbital Debris and Meteoroid Environments, Their Effects on Spacecraft, and What Can We Do About It?

    NASA Technical Reports Server (NTRS)

    Matney, Mark

    2017-01-01

    Because of the high speeds needed for orbital space flight, hypervelocity impacts with objects in space are a constant risk to spacecraft. This includes natural debris - meteoroids - and the debris remnants of our own activities in space. A number of space surveillance assets are used to measure and track spacecraft, used upper stages, and breakup debris. However, much of the debris and meteoroids encountered by spacecraft in Earth orbit is not easily measured or tracked. For every man-made object that we can track, there are hundreds of small debris that are too small to be tracked but still large enough to damage spacecraft. In addition, even if we knew today's environment with perfect knowledge, the debris environment is dynamic and would change tomorrow. This means that much of the risk from both meteoroids and anthropogenic debris is statistical in nature. NASA uses and maintains a number of instruments to statistically monitor the meteoroid and orbital debris environments, and uses this information to compute statistical models for use by spacecraft designers and operators. Because orbital debris is a result of human activities, NASA has led the US government in formulating national and international strategies that space users can employ to limit the growth of debris in the future. This talk will summarize the history and current state of meteoroid and space debris measurements and modeling, how the environment influences spacecraft design and operations, how we are designing the experiments of tomorrow to improve our knowledge, and how we are working internationally to preserve the space environment for the future.

  1. Automated, contour-based tracking and analysis of cell behaviour over long time scales in environments of varying complexity and cell density.

    PubMed

    Baker, Richard M; Brasch, Megan E; Manning, M Lisa; Henderson, James H

    2014-08-06

    Understanding single and collective cell motility in model environments is foundational to many current research efforts in biology and bioengineering. To elucidate subtle differences in cell behaviour despite cell-to-cell variability, we introduce an algorithm for tracking large numbers of cells for long time periods and present a set of physics-based metrics that quantify differences in cell trajectories. Our algorithm, termed automated contour-based tracking for in vitro environments (ACTIVE), was designed for adherent cell populations subject to nuclear staining or transfection. ACTIVE is distinct from existing tracking software because it accommodates both variability in image intensity and multi-cell interactions, such as divisions and occlusions. When applied to low-contrast images from live-cell experiments, ACTIVE reduced error in analysing cell occlusion events by as much as 43% compared with a benchmark-tracking program while simultaneously tracking cell divisions and resulting daughter-daughter cell relationships. The large dataset generated by ACTIVE allowed us to develop metrics that capture subtle differences between cell trajectories on different substrates. We present cell motility data for thousands of cells studied at varying densities on shape-memory-polymer-based nanotopographies and identify several quantitative differences, including an unanticipated difference between two 'control' substrates. We expect that ACTIVE will be immediately useful to researchers who require accurate, long-time-scale motility data for many cells. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  2. Semantic shape similarity-based contour tracking evaluation

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoqin; Luo, Wenhan; Zhao, Li; Li, Wei; Hu, Weiming

    2011-10-01

    One major problem of contour-based tracking is how to evaluate the accuracy of tracking results due to nonrigid and deformative properties of contours. We propose a shape context-based evaluation measure that considers the semantic shape similarity between the tracked contour and ground-truth contour. In addition, a pyramid match kernel is introduced for shape histogram matching, which can effectively deal with the contours with different scales. Experimental results demonstrate, compared to two start-of-art evaluation measures, our measure effectively captures the local shape information and thus is more consistent with human vision.

  3. Tracking data in the office environment.

    PubMed

    Erickson, Ty B

    2010-09-01

    Data tracking in the office setting focuses on a narrow spectrum of the entire patient safety arena; however, when properly executed, data tracking increases staff members' awareness of the importance of patient safety. Data tracking is also a high-volume event and thereby continues to loop back on the consciousness of providers in all aspects of their practice. Improvement in date tracking will improve the collateral areas of patient safety such as proper medication usage, legibility of written communication, effective delegation of patient safety initiatives, and a collegial effort at developing teams for safety design processes.

  4. Photometer Tracks The Sun

    NASA Technical Reports Server (NTRS)

    Matsumoto, Tak; Mina, Cesar; Russell, Philip; Van Ark, William

    1988-01-01

    Airborne Sun-tracking photometer enables observations of Sun during much greater portion of flights than previously possible, without special maneuvers of airplane. Instrument occupies dome atop airplane. Fiberglass dome protects photometer and rotates to aim photometer in azimuth and elevation to track Sun. Provides controlled environment for instrument, including mechanical and electronic parts. Instrument calibrated without removing it from airplane.

  5. Apparatus for obstacle traversion

    DOEpatents

    Borenstein, Johann

    2004-08-10

    An apparatus for traversing obstacles having an elongated, round, flexible body that includes a plurality of drive track assemblies. The plurality of drive track assemblies cooperate to provide forward propulsion wherever a propulsion member is in contact with any feature of the environment, regardless of how many or which ones of the plurality of drive track assemblies make contact with such environmental feature.

  6. Results from the First Beam-Induced Reconstructed Tracks in the LHCb Vertex Locator

    NASA Astrophysics Data System (ADS)

    Rodrigues, E.

    2010-04-01

    LHCb is a dedicated experiment at the LHC to study CP violation and rare b decays. The vertex locator (VELO) is a silicon strip detector designed to measure precisely the production and decay vertices of B-mesons. The detector is positioned at 8 mm of the LHC beams and will operate in an extremely harsh radiation environment. The VELO consists of two retractable detector halves with 21 silicon micro-strip tracking modules each. A module is composed of two n+-on-n 300 μm thick half disc sensors with R and Φ micro-strip geometry. The detectors are operated in vacuum and a bi-phase CO2 cooling system is used. The full system has been operated since June 2008 and its commissioning experience will be reported. During the LHC synchronization tests in August and September 2008, and June 2009 the LHCb detectors measured secondary particles produced by the interaction of the LHC primary beam on a beam dump. About 50,000 tracks were reconstructed in the VELO and they were used to derive the relative timing alignment between the sensors and for the first evaluation of the spatial alignment. Using this track sample the VELO has been aligned to an accuracy of 5 μm. A single hit resolution of 10 μm was obtained at the smallest pitch for tracks of perpendicular incidence. The design and the main components of the detector system are introduced. The commissioning of the detector is reported and the talk will focus on the results obtained using the first beam-induced reconstructed tracks.

  7. Modelling how drivers respond to a bicyclist crossing their path at an intersection: How do test track and driving simulator compare?

    PubMed

    Boda, Christian-Nils; Dozza, Marco; Bohman, Katarina; Thalya, Prateek; Larsson, Annika; Lubbe, Nils

    2018-02-01

    Bicyclist fatalities are a great concern in the European Union. Most of them are due to crashes between motorized vehicles and bicyclists at unsignalised intersections. Different countermeasures are currently being developed and implemented in order to save lives. One type of countermeasure, active safety systems, requires a deep understanding of driver behaviour to be effective without being annoying. The current study provides new knowledge about driver behaviour which can inform assessment programmes for active safety systems such as Euro NCAP. This study investigated how drivers responded to bicyclists crossing their path at an intersection. The influences of car speed and cyclist speed on the driver response process were assessed for three different crossing configurations. The same experimental protocol was tested in a fixed-base driving simulator and on a test track. A virtual model of the test track was used in the driving simulator to keep the protocol as consistent as possible across testing environments. Results show that neither car speed nor bicycle speed directly influenced the response process. The crossing configuration did not directly influence the braking response process either, but it did influence the strategy chosen by the drivers to approach the intersection. The point in time when the bicycle became visible (which depended on the car speed, the bicycle speed, and the crossing configuration) and the crossing configuration alone had the largest effects on the driver response process. Dissimilarities between test-track and driving-simulator studies were found; however, there were also interesting similarities, especially in relation to the driver braking behaviour. Drivers followed the same strategy to initiate braking, independent of the test environment. On the other hand, the test environment affected participants' strategies for releasing the gas pedal and regulating deceleration. Finally, a mathematical model, based on both experiments, is proposed to characterize driver braking behaviour in response to bicyclists crossing at intersections. This model has direct implications on what variables an in-vehicle safety system should consider and how tests in evaluation programs should be designed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Self-motion impairs multiple-object tracking.

    PubMed

    Thomas, Laura E; Seiffert, Adriane E

    2010-10-01

    Investigations of multiple-object tracking aim to further our understanding of how people perform common activities such as driving in traffic. However, tracking tasks in the laboratory have overlooked a crucial component of much real-world object tracking: self-motion. We investigated the hypothesis that keeping track of one's own movement impairs the ability to keep track of other moving objects. Participants attempted to track multiple targets while either moving around the tracking area or remaining in a fixed location. Participants' tracking performance was impaired when they moved to a new location during tracking, even when they were passively moved and when they did not see a shift in viewpoint. Self-motion impaired multiple-object tracking in both an immersive virtual environment and a real-world analog, but did not interfere with a difficult non-spatial tracking task. These results suggest that people use a common mechanism to track changes both to the location of moving objects around them and to keep track of their own location. Copyright 2010 Elsevier B.V. All rights reserved.

  9. Risk analysis based CWR track buckling safety evaluations

    DOT National Transportation Integrated Search

    2001-01-01

    As part of the Federal Railroad Administrations (FRA) track systems research program, the US DOTS Volpe Center is conducting analytic and experimental investigations to evaluate track lateral strength and stability limits for improved safety an...

  10. Exploring responses to art in adolescence: a behavioral and eye-tracking study.

    PubMed

    Savazzi, Federica; Massaro, Davide; Di Dio, Cinzia; Gallese, Vittorio; Gilli, Gabriella; Marchetti, Antonella

    2014-01-01

    Adolescence is a peculiar age mainly characterized by physical and psychological changes that may affect the perception of one's own and others' body. This perceptual peculiarity may influence the way in which bottom-up and top-down processes interact and, consequently, the perception and evaluation of art. This study is aimed at investigating, by means of the eye-tracking technique, the visual explorative behavior of adolescents while looking at paintings. Sixteen color paintings, categorized as dynamic and static, were presented to twenty adolescents; half of the images represented natural environments and half human individuals; all stimuli were displayed under aesthetic and movement judgment tasks. Participants' ratings revealed that, generally, nature images are explicitly evaluated as more appealing than human images. Eye movement data, on the other hand, showed that the human body exerts a strong power in orienting and attracting visual attention and that, in adolescence, it plays a fundamental role during aesthetic experience. In particular, adolescents seem to approach human-content images by giving priority to elements calling forth movement and action, supporting the embodiment theory of aesthetic perception.

  11. Exploring Responses to Art in Adolescence: A Behavioral and Eye-Tracking Study

    PubMed Central

    Savazzi, Federica; Massaro, Davide; Di Dio, Cinzia; Gallese, Vittorio; Gilli, Gabriella; Marchetti, Antonella

    2014-01-01

    Adolescence is a peculiar age mainly characterized by physical and psychological changes that may affect the perception of one's own and others' body. This perceptual peculiarity may influence the way in which bottom-up and top-down processes interact and, consequently, the perception and evaluation of art. This study is aimed at investigating, by means of the eye-tracking technique, the visual explorative behavior of adolescents while looking at paintings. Sixteen color paintings, categorized as dynamic and static, were presented to twenty adolescents; half of the images represented natural environments and half human individuals; all stimuli were displayed under aesthetic and movement judgment tasks. Participants' ratings revealed that, generally, nature images are explicitly evaluated as more appealing than human images. Eye movement data, on the other hand, showed that the human body exerts a strong power in orienting and attracting visual attention and that, in adolescence, it plays a fundamental role during aesthetic experience. In particular, adolescents seem to approach human-content images by giving priority to elements calling forth movement and action, supporting the embodiment theory of aesthetic perception. PMID:25048813

  12. Multichannel/Multisensor Signal Processing In Uncertain Environments With Application To Multitarget Tracking.

    DTIC Science & Technology

    1998-05-22

    NUMBER PR-98-1 T. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) Office of Naval Research Ballston Center Tower One One North Quincy...unlimited. 12 b. DISTRIBUTION CODE 19980601 082 13. ABSTRACT (Maximum 200 words) This research project is concerned with two distinct aspects of analysis...Environments With Application To Multitarget Tracking This research project is concerned with two distinct aspects of analysis and processing of sig

  13. Method and apparatus for acquisition and tracking of light sources in a transient event rich environment

    NASA Technical Reports Server (NTRS)

    Bolin, Kenneth (Inventor); Flynn, David (Inventor); Fowski, Walter (Inventor); Miklus, Kenneth (Inventor); Kissh, Frank (Inventor); Abreu, Rene (Inventor)

    1993-01-01

    A method and apparatus for tracking a light source in a transient event rich environment locks on to a light source incident on a field-of-view 1 of a charge-coupled-device (CCD) array 6, validates the permanence of said light source and transmits data relating to the brilliance and location of said light source if said light source is determined to be permanent.

  14. Non-RF wireless helmet-mounted display and two-way audio connectivity using covert free-space optical communications

    NASA Astrophysics Data System (ADS)

    Strauss, M.; Volfson, L.

    2011-06-01

    Providing the warfighter with Head or Helmet Mounted Displays (HMDs) while in tracked vehicles provides a means to visually maintain access to systems information while in a high vibration environment. The high vibration and unique environment of military tracked and turreted vehicles impact the ability to distinctly see certain information on an HMD, especially small font size or graphics and information that requires long fixation (staring), rather than a brief or peripheral glance. The military and commercial use of HMDs was compiled from market research, market trends, and user feedback. Lessons learned from previous military and commercial use of HMD products were derived to determine the feasibility of HMDs use in the high vibration and the unique environments of tracked vehicles. The results are summarized into factors that determine HMD features which must be specified for successful implementation.

  15. A tracking and verification system implemented in a clinical environment for partial HIPAA compliance

    NASA Astrophysics Data System (ADS)

    Guo, Bing; Documet, Jorge; Liu, Brent; King, Nelson; Shrestha, Rasu; Wang, Kevin; Huang, H. K.; Grant, Edward G.

    2006-03-01

    The paper describes the methodology for the clinical design and implementation of a Location Tracking and Verification System (LTVS) that has distinct benefits for the Imaging Department at the Healthcare Consultation Center II (HCCII), an outpatient imaging facility located on the USC Health Science Campus. A novel system for tracking and verification of patients and staff in a clinical environment using wireless and facial biometric technology to monitor and automatically identify patients and staff was developed in order to streamline patient workflow, protect against erroneous examinations and create a security zone to prevent and audit unauthorized access to patient healthcare data under the HIPAA mandate. This paper describes the system design and integration methodology based on initial clinical workflow studies within a clinical environment. An outpatient center was chosen as an initial first step for the development and implementation of this system.

  16. Nearly automatic motion capture system for tracking octopus arm movements in 3D space.

    PubMed

    Zelman, Ido; Galun, Meirav; Akselrod-Ballin, Ayelet; Yekutieli, Yoram; Hochner, Binyamin; Flash, Tamar

    2009-08-30

    Tracking animal movements in 3D space is an essential part of many biomechanical studies. The most popular technique for human motion capture uses markers placed on the skin which are tracked by a dedicated system. However, this technique may be inadequate for tracking animal movements, especially when it is impossible to attach markers to the animal's body either because of its size or shape or because of the environment in which the animal performs its movements. Attaching markers to an animal's body may also alter its behavior. Here we present a nearly automatic markerless motion capture system that overcomes these problems and successfully tracks octopus arm movements in 3D space. The system is based on three successive tracking and processing stages. The first stage uses a recently presented segmentation algorithm to detect the movement in a pair of video sequences recorded by two calibrated cameras. In the second stage, the results of the first stage are processed to produce 2D skeletal representations of the moving arm. Finally, the 2D skeletons are used to reconstruct the octopus arm movement as a sequence of 3D curves varying in time. Motion tracking, segmentation and reconstruction are especially difficult problems in the case of octopus arm movements because of the deformable, non-rigid structure of the octopus arm and the underwater environment in which it moves. Our successful results suggest that the motion-tracking system presented here may be used for tracking other elongated objects.

  17. Risk analysis based CWR track buckling safety evaluations

    DOT National Transportation Integrated Search

    1999-12-01

    As part of the Federal Railroad Administration's (FRA) track systems research program, the US DOT'S Volpe Center is conducting analytic and experimental investigations to evaluate track lateral strength and stability limits for improved safety and pe...

  18. Teacher's Resource Book for Animal Evidence/Tracks. Grade 4. Revised. Anchorage School District Elementary Science Program.

    ERIC Educational Resources Information Center

    Anchorage School District, AK.

    This resource book introduces fourth-grade children to nature around them by studying animal tracks and other animal evidence. The lessons and concepts covered in this unit are designed to develop an awareness and appreciation of animals in our environment. Ten lessons are provided including: (1) identifying holes, tracks, and scratches; (2)…

  19. Kalman filter-based tracking of moving objects using linear ultrasonic sensor array for road vehicles

    NASA Astrophysics Data System (ADS)

    Li, Shengbo Eben; Li, Guofa; Yu, Jiaying; Liu, Chang; Cheng, Bo; Wang, Jianqiang; Li, Keqiang

    2018-01-01

    Detection and tracking of objects in the side-near-field has attracted much attention for the development of advanced driver assistance systems. This paper presents a cost-effective approach to track moving objects around vehicles using linearly arrayed ultrasonic sensors. To understand the detection characteristics of a single sensor, an empirical detection model was developed considering the shapes and surface materials of various detected objects. Eight sensors were arrayed linearly to expand the detection range for further application in traffic environment recognition. Two types of tracking algorithms, including an Extended Kalman filter (EKF) and an Unscented Kalman filter (UKF), for the sensor array were designed for dynamic object tracking. The ultrasonic sensor array was designed to have two types of fire sequences: mutual firing or serial firing. The effectiveness of the designed algorithms were verified in two typical driving scenarios: passing intersections with traffic sign poles or street lights, and overtaking another vehicle. Experimental results showed that both EKF and UKF had more precise tracking position and smaller RMSE (root mean square error) than a traditional triangular positioning method. The effectiveness also encourages the application of cost-effective ultrasonic sensors in the near-field environment perception in autonomous driving systems.

  20. Advanced active health monitoring system of liquid rocket engines

    NASA Astrophysics Data System (ADS)

    Qing, Xinlin P.; Wu, Zhanjun; Beard, Shawn; Chang, Fu-Kuo

    2008-11-01

    An advanced SMART TAPE system has been developed for real-time in-situ monitoring and long term tracking of structural integrity of pressure vessels in liquid rocket engines. The practical implementation of the structural health monitoring (SHM) system including distributed sensor network, portable diagnostic hardware and dedicated data analysis software is addressed based on the harsh operating environment. Extensive tests were conducted on a simulated large booster LOX-H2 engine propellant duct to evaluate the survivability and functionality of the system under the operating conditions of typical liquid rocket engines such as cryogenic temperature, vibration loads. The test results demonstrated that the developed SHM system could survive the combined cryogenic temperature and vibration environments and effectively detect cracks as small as 2 mm.

  1. L1 track triggers for ATLAS in the HL-LHC

    DOE PAGES

    Lipeles, E.

    2012-01-01

    The HL-LHC, the planned high luminosity upgrade for the LHC, will increase the collision rate in the ATLAS detector approximately a factor of 5 beyond the luminosity for which the detectors were designed, while also increasing the number of pile-up collisions in each event by a similar factor. This means that the level-1 trigger must achieve a higher rejection factor in a more difficult environment. This presentation discusses the challenges that arise in this environment and strategies being considered by ATLAS to include information from the tracking systems in the level-1 decision. The main challenges involve reducing the data volumemore » exported from the tracking system for which two options are under consideration: a region of interest based system and an intelligent sensor method which filters on hits likely to come from higher transverse momentum tracks.« less

  2. Tracking multiple objects is limited only by object spacing, not by speed, time, or capacity.

    PubMed

    Franconeri, S L; Jonathan, S V; Scimeca, J M

    2010-07-01

    In dealing with a dynamic world, people have the ability to maintain selective attention on a subset of moving objects in the environment. Performance in such multiple-object tracking is limited by three primary factors-the number of objects that one can track, the speed at which one can track them, and how close together they can be. We argue that this last limit, of object spacing, is the root cause of all performance constraints in multiple-object tracking. In two experiments, we found that as long as the distribution of object spacing is held constant, tracking performance is unaffected by large changes in object speed and tracking time. These results suggest that barring object-spacing constraints, people could reliably track an unlimited number of objects as fast as they could track a single object.

  3. Performance of the ATLAS track reconstruction algorithms in dense environments in LHC Run 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aaboud, M.; Aad, G.; Abbott, B.

    With the increase in energy of the Large Hadron Collider to a centre-of-mass energy of 13 TeV for Run 2, events with dense environments, such as in the cores of high-energy jets, became a focus for new physics searches as well as measurements of the Standard Model. These environments are characterized by charged-particle separations of the order of the tracking detectors sensor granularity. Basic track quantities are compared between 3.2 fb -1 of data collected by the ATLAS experiment and simulation of proton–proton collisions producing high-transverse-momentum jets at a centre-of-mass energy of 13 TeV. The impact of charged-particle separations andmore » multiplicities on the track reconstruction performance is discussed. The track reconstruction efficiency in the cores of jets with transverse momenta between 200 and 1600 GeV is quantified using a novel, data-driven, method. The method uses the energy loss, dE/dx, to identify pixel clusters originating from two charged particles. Of the charged particles creating these clusters, the measured fraction that fail to be reconstructed is 0.061±0.006 (stat.)±0.014 (syst.) and 0.093±0.017 (stat.)±0.021 (syst.) for jet transverse momenta of 200–400 GeV and 1400–1600 GeV, respectively.« less

  4. Performance of the ATLAS track reconstruction algorithms in dense environments in LHC Run 2

    DOE PAGES

    Aaboud, M.; Aad, G.; Abbott, B.; ...

    2017-10-11

    With the increase in energy of the Large Hadron Collider to a centre-of-mass energy of 13 TeV for Run 2, events with dense environments, such as in the cores of high-energy jets, became a focus for new physics searches as well as measurements of the Standard Model. These environments are characterized by charged-particle separations of the order of the tracking detectors sensor granularity. Basic track quantities are compared between 3.2 fb -1 of data collected by the ATLAS experiment and simulation of proton–proton collisions producing high-transverse-momentum jets at a centre-of-mass energy of 13 TeV. The impact of charged-particle separations andmore » multiplicities on the track reconstruction performance is discussed. The track reconstruction efficiency in the cores of jets with transverse momenta between 200 and 1600 GeV is quantified using a novel, data-driven, method. The method uses the energy loss, dE/dx, to identify pixel clusters originating from two charged particles. Of the charged particles creating these clusters, the measured fraction that fail to be reconstructed is 0.061±0.006 (stat.)±0.014 (syst.) and 0.093±0.017 (stat.)±0.021 (syst.) for jet transverse momenta of 200–400 GeV and 1400–1600 GeV, respectively.« less

  5. Three dimensional tracking with misalignment between display and control axes

    NASA Technical Reports Server (NTRS)

    Ellis, Stephen R.; Tyler, Mitchell; Kim, Won S.; Stark, Lawrence

    1992-01-01

    Human operators confronted with misaligned display and control frames of reference performed three dimensional, pursuit tracking in virtual environment and virtual space simulations. Analysis of the components of the tracking errors in the perspective displays presenting virtual space showed that components of the error due to visual motor misalignment may be linearly separated from those associated with the mismatch between display and control coordinate systems. Tracking performance improved with several hours practice despite previous reports that such improvement did not take place.

  6. 2005 8th Annual Systems Engineering Conference Volume 3 - Wednesday presentations

    DTIC Science & Technology

    2005-10-24

    phasi s on s ystem s eng ineeri ng Imple menta tion o f SE P lans Requires PEO chief engineer Conduct of technical reviews SE Policy Addendum Signed by...in a Performance Based Logistics Environment, Denise Duncan, LMI Track 5 - Best Practices & Standardization: CMMI for Services, Mr. Juan Ceva...CMMI for Services Mr. Juan Ceva, Raytheon RIS TRACK 5 Logistics Session 3C5 TRACK 4 Net Centric Operations Session 3C4 TRACK 6 Modeling & Simulation

  7. A data set for evaluating the performance of multi-class multi-object video tracking

    NASA Astrophysics Data System (ADS)

    Chakraborty, Avishek; Stamatescu, Victor; Wong, Sebastien C.; Wigley, Grant; Kearney, David

    2017-05-01

    One of the challenges in evaluating multi-object video detection, tracking and classification systems is having publically available data sets with which to compare different systems. However, the measures of performance for tracking and classification are different. Data sets that are suitable for evaluating tracking systems may not be appropriate for classification. Tracking video data sets typically only have ground truth track IDs, while classification video data sets only have ground truth class-label IDs. The former identifies the same object over multiple frames, while the latter identifies the type of object in individual frames. This paper describes an advancement of the ground truth meta-data for the DARPA Neovision2 Tower data set to allow both the evaluation of tracking and classification. The ground truth data sets presented in this paper contain unique object IDs across 5 different classes of object (Car, Bus, Truck, Person, Cyclist) for 24 videos of 871 image frames each. In addition to the object IDs and class labels, the ground truth data also contains the original bounding box coordinates together with new bounding boxes in instances where un-annotated objects were present. The unique IDs are maintained during occlusions between multiple objects or when objects re-enter the field of view. This will provide: a solid foundation for evaluating the performance of multi-object tracking of different types of objects, a straightforward comparison of tracking system performance using the standard Multi Object Tracking (MOT) framework, and classification performance using the Neovision2 metrics. These data have been hosted publically.

  8. A Biocompatible Near-Infrared 3D Tracking System*

    PubMed Central

    Decker, Ryan S.; Shademan, Azad; Opfermann, Justin D.; Leonard, Simon; Kim, Peter C. W.; Krieger, Axel

    2017-01-01

    A fundamental challenge in soft-tissue surgery is that target tissue moves and deforms, becomes occluded by blood or other tissue, and is difficult to differentiate from surrounding tissue. We developed small biocompatible near-infrared fluorescent (NIRF) markers with a novel fused plenoptic and NIR camera tracking system, enabling 3D tracking of tools and target tissue while overcoming blood and tissue occlusion in the uncontrolled, rapidly changing surgical environment. In this work, we present the tracking system and marker design and compare tracking accuracies to standard optical tracking methods using robotic experiments. At speeds of 1 mm/s, we observe tracking accuracies of 1.61 mm, degrading only to 1.71 mm when the markers are covered in blood and tissue. PMID:28129145

  9. Biocompatible Near-Infrared Three-Dimensional Tracking System.

    PubMed

    Decker, Ryan S; Shademan, Azad; Opfermann, Justin D; Leonard, Simon; Kim, Peter C W; Krieger, Axel

    2017-03-01

    A fundamental challenge in soft-tissue surgery is that target tissue moves and deforms, becomes occluded by blood or other tissue, and is difficult to differentiate from surrounding tissue. We developed small biocompatible near-infrared fluorescent (NIRF) markers with a novel fused plenoptic and NIR camera tracking system, enabling three-dimensional tracking of tools and target tissue while overcoming blood and tissue occlusion in the uncontrolled, rapidly changing surgical environment. In this work, we present the tracking system and marker design and compare tracking accuracies to standard optical tracking methods using robotic experiments. At speeds of 1 mm/s, we observe tracking accuracies of 1.61 mm, degrading only to 1.71 mm when the markers are covered in blood and tissue.

  10. Tracking Small Artists

    NASA Astrophysics Data System (ADS)

    Russell, James C.; Klette, Reinhard; Chen, Chia-Yen

    Tracks of small animals are important in environmental surveillance, where pattern recognition algorithms allow species identification of the individuals creating tracks. These individuals can also be seen as artists, presented in their natural environments with a canvas upon which they can make prints. We present tracks of small mammals and reptiles which have been collected for identification purposes, and re-interpret them from an esthetic point of view. We re-classify these tracks not by their geometric qualities as pattern recognition algorithms would, but through interpreting the 'artist', their brush strokes and intensity. We describe the algorithms used to enhance and present the work of the 'artists'.

  11. Sliding mode controller for a photovoltaic pumping system

    NASA Astrophysics Data System (ADS)

    ElOugli, A.; Miqoi, S.; Boutouba, M.; Tidhaf, B.

    2017-03-01

    In this paper, a sliding mode control scheme (SMC) for maximum power point tracking controller for a photovoltaic pumping system, is proposed. The main goal is to maximize the flow rate for a water pump, by forcing the photovoltaic system to operate in its MPP, to obtain the maximum power that a PV system can deliver.And this, through the intermediary of a sliding mode controller to track and control the MPP by overcoming the power oscillation around the operating point, which appears in most implemented MPPT techniques. The sliding mode control approach is recognized as one of the efficient and powerful tools for nonlinear systems under uncertainty conditions.The proposed controller with photovoltaic pumping system is designed and simulated using MATLAB/SIMULINK environment. In addition, to evaluate its performances, a classical MPPT algorithm using perturb and observe (P&O) has been used for the same system to compare to our controller. Simulation results are shown.

  12. Robust lane detection and tracking using multiple visual cues under stochastic lane shape conditions

    NASA Astrophysics Data System (ADS)

    Huang, Zhi; Fan, Baozheng; Song, Xiaolin

    2018-03-01

    As one of the essential components of environment perception techniques for an intelligent vehicle, lane detection is confronted with challenges including robustness against the complicated disturbance and illumination, also adaptability to stochastic lane shapes. To overcome these issues, we proposed a robust lane detection method named classification-generation-growth-based (CGG) operator to the detected lines, whereby the linear lane markings are identified by synergizing multiple visual cues with the a priori knowledge and spatial-temporal information. According to the quality of linear lane fitting, the linear and linear-parabolic models are dynamically switched to describe the actual lane. The Kalman filter with adaptive noise covariance and the region of interests (ROI) tracking are applied to improve the robustness and efficiency. Experiments were conducted with images covering various challenging scenarios. The experimental results evaluate the effectiveness of the presented method for complicated disturbances, illumination, and stochastic lane shapes.

  13. MASCAL: RFID Tracking of Patients, Staff and Equipment to Enhance Hospital Response to Mass Casualty Events

    PubMed Central

    Fry, Emory A.; Lenert, Leslie A.

    2005-01-01

    Most medical facilities practice managing the large numbers of seriously injured patients expected during catastrophic events. As the demands on the healthcare team increase, however, the challenges faced by managers escalate, workflow bottlenecks develop and system capacity decreases. This paper describes MASCAL, an integrated software–hardware system designed to enhance management of resources at a hospital during a mass casualty situation. MASCAL uses active 802.11b asset tags to track patients, equipment and staff during the response to a disaster. The system integrates tag position information with data from personnel databases, medical information systems, registration applications and the US Navy’s TACMEDCS triage application in a custom visual disaster management environment. MASCAL includes interfaces for a hospital command center, local area managers (emergency room, operating suites, radiology, etc.) and registration personnel. MASCAL is an operational system undergoing functional evaluation at the Naval Medical Center, San Diego, CA. PMID:16779042

  14. Near-Infrared Fluorescent Nanoprobes for Revealing the Role of Dopamine in Drug Addiction.

    PubMed

    Feng, Peijian; Chen, Yulei; Zhang, Lei; Qian, Cheng-Gen; Xiao, Xuanzhong; Han, Xu; Shen, Qun-Dong

    2018-02-07

    Brain imaging techniques enable visualizing the activity of central nervous system without invasive neurosurgery. Dopamine is an important neurotransmitter. Its fluctuation in brain leads to a wide range of diseases and disorders, like drug addiction, depression, and Parkinson's disease. We designed near-infrared fluorescence dopamine-responsive nanoprobes (DRNs) for brain activity imaging during drug abuse and addiction process. On the basis of light-induced electron transfer between DRNs and dopamine and molecular wire effect of the DRNs, we can track the dynamical change of the neurotransmitter level in the physiological environment and the releasing of the neurotransmitter in living dopaminergic neurons in response to nicotine stimulation. The functional near-infrared fluorescence imaging can dynamically track the dopamine level in the mice midbrain under normal or drug-activated condition and evaluate the long-term effect of addictive substances to the brain. This strategy has the potential for studying neural activity under physiological condition.

  15. Unsteady flow challenges tracking performance at vortex shedding frequencies without disrupting lift mechanisms

    NASA Astrophysics Data System (ADS)

    Matthews, Megan; Sponberg, Simon

    2017-11-01

    Birds, insects, and many animals use unsteady aerodynamic mechanisms to achieve stable hovering flight. Natural environments are often characterized by unsteady flows causing animals to dynamically respond to perturbations while performing complex tasks, such as foraging. Little is known about how unsteady flow around an animal interacts with already unsteady flow in the environment or how this impacts performance. We study how the environment impacts maneuverability to reveal any coupling between body dynamics and aerodynamics for hawkmoths, Manduca sexta,tracking a 3D-printed robotic flower in a wind tunnel. We also observe the leading-edge vortex (LEV), a known lift-generating mechanism for insect flight with smoke visualization. Moths in still and unsteady air exhibit near perfect tracking at low frequencies, but tracking in the flower wake results in larger overshoot at mid-range. Smoke visualization of the flower wake shows that the dominant vortex shedding corresponds to the same frequency band as the increased overshoot. Despite the large effect on flight dynamics, the LEV remains bound to the wing and thorax throughout the wingstroke. In general, unsteady wind seems to decrease maneuverability, but LEV stability seems decoupled from changes in flight dynamics.

  16. Transit track worker safety protection demonstration project.

    DOT National Transportation Integrated Search

    2013-04-01

    This report describes the demonstration of an innovative system to reduce the hazards of working in the track environment. It describes : the deployment of the system, provides a summary of developments to further enhance the system for transit agenc...

  17. A novel Gravity-FREAK feature extraction and Gravity-KLT tracking registration algorithm based on iPhone MEMS mobile sensor in mobile environment

    PubMed Central

    Lin, Fan; Xiao, Bin

    2017-01-01

    Based on the traditional Fast Retina Keypoint (FREAK) feature description algorithm, this paper proposed a Gravity-FREAK feature description algorithm based on Micro-electromechanical Systems (MEMS) sensor to overcome the limited computing performance and memory resources of mobile devices and further improve the reality interaction experience of clients through digital information added to the real world by augmented reality technology. The algorithm takes the gravity projection vector corresponding to the feature point as its feature orientation, which saved the time of calculating the neighborhood gray gradient of each feature point, reduced the cost of calculation and improved the accuracy of feature extraction. In the case of registration method of matching and tracking natural features, the adaptive and generic corner detection based on the Gravity-FREAK matching purification algorithm was used to eliminate abnormal matches, and Gravity Kaneda-Lucas Tracking (KLT) algorithm based on MEMS sensor can be used for the tracking registration of the targets and robustness improvement of tracking registration algorithm under mobile environment. PMID:29088228

  18. A novel Gravity-FREAK feature extraction and Gravity-KLT tracking registration algorithm based on iPhone MEMS mobile sensor in mobile environment.

    PubMed

    Hong, Zhiling; Lin, Fan; Xiao, Bin

    2017-01-01

    Based on the traditional Fast Retina Keypoint (FREAK) feature description algorithm, this paper proposed a Gravity-FREAK feature description algorithm based on Micro-electromechanical Systems (MEMS) sensor to overcome the limited computing performance and memory resources of mobile devices and further improve the reality interaction experience of clients through digital information added to the real world by augmented reality technology. The algorithm takes the gravity projection vector corresponding to the feature point as its feature orientation, which saved the time of calculating the neighborhood gray gradient of each feature point, reduced the cost of calculation and improved the accuracy of feature extraction. In the case of registration method of matching and tracking natural features, the adaptive and generic corner detection based on the Gravity-FREAK matching purification algorithm was used to eliminate abnormal matches, and Gravity Kaneda-Lucas Tracking (KLT) algorithm based on MEMS sensor can be used for the tracking registration of the targets and robustness improvement of tracking registration algorithm under mobile environment.

  19. The Design and Evaluation of a Large-Scale Real-Walking Locomotion Interface

    PubMed Central

    Peck, Tabitha C.; Fuchs, Henry; Whitton, Mary C.

    2014-01-01

    Redirected Free Exploration with Distractors (RFED) is a large-scale real-walking locomotion interface developed to enable people to walk freely in virtual environments that are larger than the tracked space in their facility. This paper describes the RFED system in detail and reports on a user study that evaluated RFED by comparing it to walking-in-place and joystick interfaces. The RFED system is composed of two major components, redirection and distractors. This paper discusses design challenges, implementation details, and lessons learned during the development of two working RFED systems. The evaluation study examined the effect of the locomotion interface on users’ cognitive performance on navigation and wayfinding measures. The results suggest that participants using RFED were significantly better at navigating and wayfinding through virtual mazes than participants using walking-in-place and joystick interfaces. Participants traveled shorter distances, made fewer wrong turns, pointed to hidden targets more accurately and more quickly, and were able to place and label targets on maps more accurately, and more accurately estimate the virtual environment size. PMID:22184262

  20. Autonomous & Adaptive Oceanographic Feature Tracking on Board Autonomous Underwater Vehicles

    DTIC Science & Technology

    2015-02-01

    44 3.6 Tracking the Marine ermocline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 3.6.1 ermocline Definition ...intelligent autonomy algorithms to adapt the vehicle’s motion to changes in the environment, effectively seeking out and tracking an oceanographic...interface, H is the mean water depth, and f is the Coriolis parameter (twice the earth’s angular velocity about its vertical axis) [38]. at is, the

  1. Particle Tracking Model (PTM) with Coastal Modeling System (CMS)

    DTIC Science & Technology

    2015-11-04

    Coastal Inlets Research Program Particle Tracking Model (PTM) with Coastal Modeling System ( CMS ) The Particle Tracking Model (PTM) is a Lagrangian...currents and waves. The Coastal Inlets Research Program (CIRP) supports the PTM with the Coastal Modeling System ( CMS ), which provides coupled wave...and current forcing for PTM simulations. CMS -PTM is implemented in the Surface-water Modeling System, a GUI environment for input development

  2. Assessing the Potential Use of Eye-Tracking Triangulation for Evaluating the Usability of an Online Diabetes Exercise System.

    PubMed

    Schaarup, Clara; Hartvigsen, Gunnar; Larsen, Lars Bo; Tan, Zheng-Hua; Årsand, Eirik; Hejlesen, Ole Kristian

    2015-01-01

    The Online Diabetes Exercise System was developed to motivate people with Type 2 diabetes to do a 25 minutes low-volume high-intensity interval training program. In a previous multi-method evaluation of the system, several usability issues were identified and corrected. Despite the thorough testing, it was unclear whether all usability problems had been identified using the multi-method evaluation. Our hypothesis was that adding the eye-tracking triangulation to the multi-method evaluation would increase the accuracy and completeness when testing the usability of the system. The study design was an Eye-tracking Triangulation; conventional eye-tracking with predefined tasks followed by The Post-Experience Eye-Tracked Protocol (PEEP). Six Areas of Interests were the basis for the PEEP-session. The eye-tracking triangulation gave objective and subjective results, which are believed to be highly relevant for designing, implementing, evaluating and optimizing systems in the field of health informatics. Future work should include testing the method on a larger and more representative group of users and apply the method on different system types.

  3. Laser-based pedestrian tracking in outdoor environments by multiple mobile robots.

    PubMed

    Ozaki, Masataka; Kakimuma, Kei; Hashimoto, Masafumi; Takahashi, Kazuhiko

    2012-10-29

    This paper presents an outdoors laser-based pedestrian tracking system using a group of mobile robots located near each other. Each robot detects pedestrians from its own laser scan image using an occupancy-grid-based method, and the robot tracks the detected pedestrians via Kalman filtering and global-nearest-neighbor (GNN)-based data association. The tracking data is broadcast to multiple robots through intercommunication and is combined using the covariance intersection (CI) method. For pedestrian tracking, each robot identifies its own posture using real-time-kinematic GPS (RTK-GPS) and laser scan matching. Using our cooperative tracking method, all the robots share the tracking data with each other; hence, individual robots can always recognize pedestrians that are invisible to any other robot. The simulation and experimental results show that cooperating tracking provides the tracking performance better than conventional individual tracking does. Our tracking system functions in a decentralized manner without any central server, and therefore, this provides a degree of scalability and robustness that cannot be achieved by conventional centralized architectures.

  4. Virtual target tracking (VTT) as applied to mobile satellite communication networks

    NASA Astrophysics Data System (ADS)

    Amoozegar, Farid

    1999-08-01

    Traditionally, target tracking has been used for aerospace applications, such as, tracking highly maneuvering targets in a cluttered environment for missile-to-target intercept scenarios. Although the speed and maneuvering capability of current aerospace targets demand more efficient algorithms, many complex techniques have already been proposed in the literature, which primarily cover the defense applications of tracking methods. On the other hand, the rapid growth of Global Communication Systems, Global Information Systems (GIS), and Global Positioning Systems (GPS) is creating new and more diverse challenges for multi-target tracking applications. Mobile communication and computing can very well appreciate a huge market for Cellular Communication and Tracking Devices (CCTD), which will be tracking networked devices at the cellular level. The objective of this paper is to introduce a new concept, i.e., Virtual Target Tracking (VTT) for commercial applications of multi-target tracking algorithms and techniques as applied to mobile satellite communication networks. It would be discussed how Virtual Target Tracking would bring more diversity to target tracking research.

  5. The Initial Development of Object Knowledge by a Learning Robot

    PubMed Central

    Modayil, Joseph; Kuipers, Benjamin

    2008-01-01

    We describe how a robot can develop knowledge of the objects in its environment directly from unsupervised sensorimotor experience. The object knowledge consists of multiple integrated representations: trackers that form spatio-temporal clusters of sensory experience, percepts that represent properties for the tracked objects, classes that support efficient generalization from past experience, and actions that reliably change object percepts. We evaluate how well this intrinsically acquired object knowledge can be used to solve externally specified tasks including object recognition and achieving goals that require both planning and continuous control. PMID:19953188

  6. Final Evaluation of Rain Erosion Sled Test Results at Mach 3.7 to 5.0 for Slip-Cast Fused Silica Radome Structures

    DTIC Science & Technology

    1979-03-06

    capable of testing radome materials in multiple impact simulated rain at Mach 5 is the monorail sled facility at the Holloman Air Force Base, New Mexico...existing 9-in. monorail sled at the Holloman test track, to be structurally adequate for the environment, and to carry samples of the desired shape...direction over a total length of 15,480 m(50,788 ft). For Mach 5 rain erosion tests, the sled operates on a monorail . Braking for these monorail

  7. A Three-Dimensional Virtual Simulator for Aircraft Flyover Presentation

    NASA Technical Reports Server (NTRS)

    Rizzi, Stephen A.; Sullivan, Brenda M.; Sandridge, Christopher A.

    2003-01-01

    This paper presents a system developed at NASA Langley Research Center to render aircraft flyovers in a virtual reality environment. The present system uses monaural recordings of actual aircraft flyover noise and presents these binaurally using head tracking information. The three-dimensional audio is simultaneously rendered with a visual presentation using a head-mounted display (HMD). The final system will use flyover noise synthesized using data from various analytical and empirical modeling systems. This will permit presentation of flyover noise from candidate low-noise flight operations to subjects for psychoacoustical evaluation.

  8. Optimal Configuration of Human Motion Tracking Systems: A Systems Engineering Approach

    NASA Technical Reports Server (NTRS)

    Henderson, Steve

    2005-01-01

    Human motion tracking systems represent a crucial technology in the area of modeling and simulation. These systems, which allow engineers to capture human motion for study or replication in virtual environments, have broad applications in several research disciplines including human engineering, robotics, and psychology. These systems are based on several sensing paradigms, including electro-magnetic, infrared, and visual recognition. Each of these paradigms requires specialized environments and hardware configurations to optimize performance of the human motion tracking system. Ideally, these systems are used in a laboratory or other facility that was designed to accommodate the particular sensing technology. For example, electromagnetic systems are highly vulnerable to interference from metallic objects, and should be used in a specialized lab free of metal components.

  9. Usability of a real-time tracked augmented reality display system in musculoskeletal injections

    NASA Astrophysics Data System (ADS)

    Baum, Zachary; Ungi, Tamas; Lasso, Andras; Fichtinger, Gabor

    2017-03-01

    PURPOSE: Image-guided needle interventions are seldom performed with augmented reality guidance in clinical practice due to many workspace and usability restrictions. We propose a real-time optically tracked image overlay system to make image-guided musculoskeletal injections more efficient and assess its usability in a bed-side clinical environment. METHODS: An image overlay system consisting of an optically tracked viewbox, tablet computer, and semitransparent mirror allows users to navigate scanned patient volumetric images in real-time using software built on the open-source 3D Slicer application platform. A series of experiments were conducted to evaluate the latency and screen refresh rate of the system using different image resolutions. To assess the usability of the system and software, five medical professionals were asked to navigate patient images while using the overlay and completed a questionnaire to assess the system. RESULTS: In assessing the latency of the system with scanned images of varying size, screen refresh rates were approximately 5 FPS. The study showed that participants found using the image overlay system easy, and found the table-mounted system was significantly more usable and effective than the handheld system. CONCLUSION: It was determined that the system performs comparably with scanned images of varying size when assessing the latency of the system. During our usability study, participants preferred the table-mounted system over the handheld. The participants also felt that the system itself was simple to use and understand. With these results, the image overlay system shows promise for use in a clinical environment.

  10. Human performance evaluation of a pathway HMD

    NASA Astrophysics Data System (ADS)

    Lorenz, Bernd; Tobben, Helmut; Schmerwitz, Sven

    2005-05-01

    Head-up displays (HUD) and helmet (or head)-mounted displays (HMD) aim at reducing the pilot's visual scanning cost in support of concurrent monitoring of both instrument information (near domain) and the outside environment (far domain). An HMD used in combination with a head tracker enables the assessment of the pilot"s head direction in real time allowing symbologies to remain spatially linked to elements of the outside environment. The paper examines the potential added benefits of improved flight path tracking to be expected by displaying symbologies of a virtual 3D perspective pathway plus predictor information on an HMD. Results of a high-fidelity flight-simulation experiment are reported that involved a series of curved approaches supported with such a pathway HMD. The study used a monocular retinal-scanning HMD and involved 18 pilots. Dependent human performance data were derived from flight path tracking measures, subjective measures of mental workload and situation awareness and pilot reactions in response to an unexpected rare event in the outside scene (intruding aircraft on the active runway for the intended landing). Comparison with a standard head-down ILS baseline condition revealed a mix of performance costs and benefits, which is consistent with most of the human factors literature on the general use of HUDs and of HUDs used in combination with pathway guidance: The pathway HMD promoted substantially better flight path tracking but caused also a delayed response to the unexpected event. This effect points to some disadvantages of HUDs referred to as 'attention capture', which may become exaggerated by the additional use of pathway guidance symbology.

  11. Track-based event recognition in a realistic crowded environment

    NASA Astrophysics Data System (ADS)

    van Huis, Jasper R.; Bouma, Henri; Baan, Jan; Burghouts, Gertjan J.; Eendebak, Pieter T.; den Hollander, Richard J. M.; Dijk, Judith; van Rest, Jeroen H.

    2014-10-01

    Automatic detection of abnormal behavior in CCTV cameras is important to improve the security in crowded environments, such as shopping malls, airports and railway stations. This behavior can be characterized at different time scales, e.g., by small-scale subtle and obvious actions or by large-scale walking patterns and interactions between people. For example, pickpocketing can be recognized by the actual snatch (small scale), when he follows the victim, or when he interacts with an accomplice before and after the incident (longer time scale). This paper focusses on event recognition by detecting large-scale track-based patterns. Our event recognition method consists of several steps: pedestrian detection, object tracking, track-based feature computation and rule-based event classification. In the experiment, we focused on single track actions (walk, run, loiter, stop, turn) and track interactions (pass, meet, merge, split). The experiment includes a controlled setup, where 10 actors perform these actions. The method is also applied to all tracks that are generated in a crowded shopping mall in a selected time frame. The results show that most of the actions can be detected reliably (on average 90%) at a low false positive rate (1.1%), and that the interactions obtain lower detection rates (70% at 0.3% FP). This method may become one of the components that assists operators to find threatening behavior and enrich the selection of videos that are to be observed.

  12. Management of three-dimensional intrafraction motion through real-time DMLC tracking.

    PubMed

    Sawant, Amit; Venkat, Raghu; Srivastava, Vikram; Carlson, David; Povzner, Sergey; Cattell, Herb; Keall, Paul

    2008-05-01

    Tumor tracking using a dynamic multileaf collimator (DMLC) represents a promising approach for intrafraction motion management in thoracic and abdominal cancer radiotherapy. In this work, we develop, empirically demonstrate, and characterize a novel 3D tracking algorithm for real-time, conformal, intensity modulated radiotherapy (IMRT) and volumetric modulated arc therapy (VMAT)-based radiation delivery to targets moving in three dimensions. The algorithm obtains real-time information of target location from an independent position monitoring system and dynamically calculates MLC leaf positions to account for changes in target position. Initial studies were performed to evaluate the geometric accuracy of DMLC tracking of 3D target motion. In addition, dosimetric studies were performed on a clinical linac to evaluate the impact of real-time DMLC tracking for conformal, step-and-shoot (S-IMRT), dynamic (D-IMRT), and VMAT deliveries to a moving target. The efficiency of conformal and IMRT delivery in the presence of tracking was determined. Results show that submillimeter geometric accuracy in all three dimensions is achievable with DMLC tracking. Significant dosimetric improvements were observed in the presence of tracking for conformal and IMRT deliveries to moving targets. A gamma index evaluation with a 3%-3 mm criterion showed that deliveries without DMLC tracking exhibit between 1.7 (S-IMRT) and 4.8 (D-IMRT) times more dose points that fail the evaluation compared to corresponding deliveries with tracking. The efficiency of IMRT delivery, as measured in the lab, was observed to be significantly lower in case of tracking target motion perpendicular to MLC leaf travel compared to motion parallel to leaf travel. Nevertheless, these early results indicate that accurate, real-time DMLC tracking of 3D tumor motion is feasible and can potentially result in significant geometric and dosimetric advantages leading to more effective management of intrafraction motion.

  13. Acute exercise and periodized training in different environments affect histone deacetylase activity and interleukin-10 levels in peripheral blood of patients with type 2 diabetes.

    PubMed

    Korb, Arthiese; Bertoldi, Karine; Agustini Lovatel, Gisele; Sudatti Dellevatti, Rodrigo; Rostirola Elsner, Viviane; Carolina Ferreira Meireles, Louisiana; Fernando Martins Kruel, Luiz; Rodrigues Siqueira, Ionara

    2018-05-02

    Our purpose was to investigate the effects of aerobic periodized training in aquatic and land environments on plasma histone deacetylase (HDAC) activity and cytokines levels in peripheral blood of diabetes mellitus type 2 (T2DM) patients. The patients underwent 12 weeks of periodized training programs that including walking or running in a swimming pool (aquatic group) or in a track (dry land group). Blood samples were collected immediately before and after both first and last sessions. Plasma cytokine levels and HDAC activity in peripheral blood mononuclear cell (PBMC) was measured. The exercise performed in both environments similarly modulated the evaluated acetylation mark, global HDAC activity. However, a differential profile depending on the evaluated moments was detected, since exercise increased acutely HDAC activity in sedentary and after 12 weeks of training period, while a reduced HDAC activity was observed following periodized training (samples collected before the last session). Additionally, the 12 weeks of periodized exercise in both environments increased IL-10 levels. Our data support the hypothesis that the modulation of HDAC activity and inflammatory status might be at least partially related to the effects of exercise effects on T2DM. The periodized training performed in both aquatic and land environments impacts similarly epigenetic and inflammatory status. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Experiences from the anatomy track in the ontology alignment evaluation initiative.

    PubMed

    Dragisic, Zlatan; Ivanova, Valentina; Li, Huanyu; Lambrix, Patrick

    2017-12-04

    One of the longest running tracks in the Ontology Alignment Evaluation Initiative is the Anatomy track which focuses on aligning two anatomy ontologies. The Anatomy track was started in 2005. In 2005 and 2006 the task in this track was to align the Foundational Model of Anatomy and the OpenGalen Anatomy Model. Since 2007 the ontologies used in the track are the Adult Mouse Anatomy and a part of the NCI Thesaurus. Since 2015 the data in the Anatomy track is also used in the Interactive track of the Ontology Alignment Evaluation Initiative. In this paper we focus on the Anatomy track in the years 2007-2016 and the Anatomy part of the Interactive track in 2015-2016. We describe the data set and the changes it went through during the years as well as the challenges it poses for ontology alignment systems. Further, we give an overview of all systems that participated in the track and the techniques they have used. We discuss the performance results of the systems and summarize the general trends. About 50 systems have participated in the Anatomy track. Many different techniques were used. The most popular matching techniques are string-based strategies and structure-based techniques. Many systems also use auxiliary information. The quality of the alignment has increased for the best performing systems since the beginning of the track and more and more systems check the coherence of the proposed alignment and implement a repair strategy. Further, interacting with an oracle is beneficial.

  15. The effects of a shared, Intranet science learning environment on the academic behaviors of problem-solving and metacognitive reflection

    NASA Astrophysics Data System (ADS)

    Parker, Mary Jo

    This study investigated the effects of a shared, Intranet science environment on the academic behaviors of problem-solving and metacognitive reflection. Seventy-eight subjects included 9th and 10th grade male and female biology students. A quasi-experimental design with pre- and post-test data collection and randomization occurring through assignment of biology classes to traditional or shared, Intranet learning groups was employed. Pilot, web-based distance education software (CourseInfo) created the Intranet learning environment. A modified ecology curriculum provided contextualization and content for traditional and shared learning environments. The effect of this environment on problem-solving, was measured using the standardized Watson-Glaser Critical Thinking Appraisal test. Metacognitive reflection, was measured in three ways: (a) number of concepts used, (b) number of concept links noted, and (c) number of concept nodes noted. Visual learning software, Inspiration, generated concept maps. Secondary research questions evaluated the pilot CourseInfo software for (a) tracked user movement, (b) discussion forum findings, and (c) difficulties experienced using CourseInfo software. Analysis of problem-solving group means reached no levels of significance resulting from the shared, Intranet environment. Paired t-Test of individual differences in problem-solving reached levels of significance. Analysis of metacognitive reflection by number of concepts reached levels of significance. Metacognitive reflection by number of concept links noted also reach significance. No significance was found for metacognitive reflection by number of concept nodes. No gender differences in problem-solving ability and metacognitive reflection emerged. Lack of gender differences in the shared, Intranet environment strongly suggests an equalizing effect due to the cooperative, collaborative nature of Intranet environments. Such environments appeal to, and rank high with, the female gender. Tracking learner movements in web-based, science environments has metacognitive and problem-solving learner implications. CourseInfo software offers one method of informing instruction within web-based learning environments focusing on academic behaviors. A shared, technology-supported learning environment may pose one model which science classrooms can use to create equitable scientific study across gender. The lack of significant differences resulting from this environment presents one model for improvement of individual problem-solving ability and metacognitive reflection across gender.

  16. Tracking through laser-induced clutter for air-to-ground directed energy system

    NASA Astrophysics Data System (ADS)

    Belen'kii, Mikhail; Brinkley, Timothy; Hughes, Kevin; Tannenbaum, Allen

    2003-09-01

    The agility and speed with which directed energy can be retargeted and delivered to the target makes a laser weapon highly desirable in tactical battlefield environments. A directed energy system can effectively damage and possibly destroy relatively soft targets on the ground. In order to accurately point a high-energy beam at the target, the directed energy system must be able to acquire and track targets of interest in highly cluttered environments, under different weather, smoke, and camouflage conditions and in the presence of turbulence and thermal blooming. To meet these requirements, we proposed a concept of a multi spectral tracker, which integrates three sensors: SAR radar, a passive MWIR optical tracker, and a range-gated laser illuminated tracker. In this paper we evaluated the feasibility of the integrated optical tracker and arrived to the following conclusions: a) the contrast enhancement by mapping the original pixel distribution to the desired one enhances the target identification capability, b) a reduction of the divergence of the illuminating beam reduces rms pointing error of a laser tracker, c) a clutter removal algorithm based on active contours is capable of capturing targets in highly cluttered environments, d) the daytime rms pointing error caused by anisoplanatism of the track point to the aim point is comparable to the diffraction-limited beam spot size, f) the peak intensity shift from the optical axis caused by thermal blooming at 5 km range for the air-to-ground engagement scenario is on the order of 8 μrad, and it is 10 μrad at 10 km range, and e) the thermal blooming reduces the peak average power in a 2 cm bucket at 5 km range by a factor of 8, and it reduces the peak average power in the bucket at 10 km range by a factor of 22.

  17. Tracking Honey Bees Using LIDAR (Light Detection and Ranging) Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BENDER, SUSAN FAE ANN; RODACY, PHILIP J.; SCHMITT, RANDAL L.

    The Defense Advanced Research Projects Agency (DARPA) has recognized that biological and chemical toxins are a real and growing threat to troops, civilians, and the ecosystem. The Explosives Components Facility at Sandia National Laboratories (SNL) has been working with the University of Montana, the Southwest Research Institute, and other agencies to evaluate the feasibility of directing honeybees to specific targets, and for environmental sampling of biological and chemical ''agents of harm''. Recent work has focused on finding and locating buried landmines and unexploded ordnance (UXO). Tests have demonstrated that honeybees can be trained to efficiently and accurately locate explosive signaturesmore » in the environment. However, it is difficult to visually track the bees and determine precisely where the targets are located. Video equipment is not practical due to its limited resolution and range. In addition, it is often unsafe to install such equipment in a field. A technology is needed to provide investigators with the standoff capability to track bees and accurately map the location of the suspected targets. This report documents Light Detection and Ranging (LIDAR) tests that were performed by SNL. These tests have shown that a LIDAR system can be used to track honeybees. The LIDAR system can provide both the range and coordinates of the target so that the location of buried munitions can be accurately mapped for subsequent removal.« less

  18. An RFID-based luggage and passenger tracking system for airport security control applications

    NASA Astrophysics Data System (ADS)

    Vastianos, George E.; Kyriazanos, Dimitris M.; Kountouriotis, Vassilios I.; Thomopoulos, Stelios C. A.

    2014-06-01

    Market analysis studies of recent years have shown a steady and significant increase in the usage of RFID technology. Key factors for this growth were the decreased costs of passive RFIDs and their improved performance compared to the other identification technologies. Besides the benefits of RFID technologies into the supply chains, warehousing, traditional inventory and asset management applications, RFID has proven itself worth exploiting on experimental, as well as on commercial level in other sectors, such as healthcare, transport and security. In security sector, airport security is one of the biggest challenges. Airports are extremely busy public places and thus prime targets for terrorism, with aircraft, passengers, crew and airport infrastructure all subject to terrorist attacks. Inside this labyrinth of security challenges, the long range detection capability of the UHF passive RFID technology can be turned into a very important tracking tool that may outperform all the limitations of the barcode tracking inside the current airport security control chain. The Integrated Systems Lab of NCSR Demokritos has developed an RFID based Luggage and Passenger tracking system within the TASS (FP7-SEC-2010-241905) EU research project. This paper describes application scenarios of the system categorized according to the structured nature of the environment, the system architecture and presents evaluation results extracted from measurements with a group of different massive production GEN2 UHF RFID tags that are widely available in the world market.

  19. Robust perception algorithms for road and track autonomous following

    NASA Astrophysics Data System (ADS)

    Marion, Vincent; Lecointe, Olivier; Lewandowski, Cecile; Morillon, Joel G.; Aufrere, Romuald; Marcotegui, Beatrix; Chapuis, Roland; Beucher, Serge

    2004-09-01

    The French Military Robotic Study Program (introduced in Aerosense 2003), sponsored by the French Defense Procurement Agency and managed by Thales Airborne Systems as the prime contractor, focuses on about 15 robotic themes, which can provide an immediate "operational add-on value." The paper details the "road and track following" theme (named AUT2), which main purpose was to develop a vision based sub-system to automatically detect roadsides of an extended range of roads and tracks suitable to military missions. To achieve the goal, efforts focused on three main areas: (1) Improvement of images quality at algorithms inputs, thanks to the selection of adapted video cameras, and the development of a THALES patented algorithm: it removes in real time most of the disturbing shadows in images taken in natural environments, enhances contrast and lowers reflection effect due to films of water. (2) Selection and improvement of two complementary algorithms (one is segment oriented, the other region based) (3) Development of a fusion process between both algorithms, which feeds in real time a road model with the best available data. Each previous step has been developed so that the global perception process is reliable and safe: as an example, the process continuously evaluates itself and outputs confidence criteria qualifying roadside detection. The paper presents the processes in details, and the results got from passed military acceptance tests, which trigger the next step: autonomous track following (named AUT3).

  20. Effects of Target Fragmentation on Evaluation of LET Spectra From Space Radiation in Low-Earth Orbit (LEO) Environment: Impact on SEU Predictions

    NASA Technical Reports Server (NTRS)

    Shinn, J. L.; Cucinotta, F. A.; Badhwar, G. D.; ONeill, P. M.; Badavi, F. F.

    1995-01-01

    Recent improvements in the radiation transport code HZETRN/BRYNTRN and galactic cosmic ray environmental model have provided an opportunity to investigate the effects of target fragmentation on estimates of single event upset (SEU) rates for spacecraft memory devices. Since target fragments are mostly of very low energy, an SEU prediction model has been derived in terms of particle energy rather than linear energy transfer (LET) to account for nonlinear relationship between range and energy. Predictions are made for SEU rates observed on two Shuttle flights, each at low and high inclination orbit. Corrections due to track structure effects are made for both high energy ions with track structure larger than device sensitive volume and for low energy ions with dense track where charge recombination is important. Results indicate contributions from target fragments are relatively important at large shield depths (or any thick structure material) and at low inclination orbit. Consequently, a more consistent set of predictions for upset rates observed in these two flights is reached when compared to an earlier analysis with CREME model. It is also observed that the errors produced by assuming linear relationship in range and energy in the earlier analysis have fortuitously canceled out the errors for not considering target fragmentation and track structure effects.

  1. Report on the international conference : environmentally sustainable transport : is rail on track?

    DOT National Transportation Integrated Search

    2002-10-22

    This conference "Is Rail on Track?" was organised by the OECD Environment Directorate and the International Union of Railways (UIC) and hosted by the Swedish National Railway Administration, Banverket (BV). It sought to address barriers to the implem...

  2. Some effects of sleep deprivation on tracking performance in static and dynamic environments.

    DOT National Transportation Integrated Search

    1976-01-01

    The influence of approximately 34 and 55 h of sleep deprivation on performance scores derived from manually tracking the localizer needle on an aircraft instrument was assessed under both static (no motion) and dynamic (whole-body angular acceleratio...

  3. Biocybernetic Control of Vigilance Task Parameters

    NASA Technical Reports Server (NTRS)

    Freeman, Frederick G.

    2000-01-01

    The major focus of the present proposal was to examine psychophysiological variables that are related to hazardous states of awareness induced by monitoring automated systems. With the increased use of automation in today's work environment, people's roles in the work place are being redefined from that of active participant to one of passive monitor. Although the introduction of automated systems has a number of benefits, there are also a number of disadvantages regarding the worker performance. Byrne and Parasuraman (1996) have argued for the use of psychophysiological measures in both the development and the implementation of adaptive automation. While both performance based and model based adaptive automation have been studied, the use of psychophysiological measures, especially EEG, offers the advantage of real time evaluation of the state of the subject. Previous investigations of the closed-loop adaptive automation system in our laboratory, supported by NASA, have employed a compensatory tracking task which involved the use of a joystick to maintain the position of a cursor in the middle of a video screen. This research demonstrated that, in an adaptive automation, closed-loop environment, subjects perform a tracking task better under a negative, compared to a positive, feedback condition. While tracking is comparable to some aspects of flying an airplane, it does not simulate the environment found in the cockpit of modern commercial airplanes. Since a large part of the flying responsibilities in commercial airplanes is automated, the primary responsibility of pilots is to monitor the automation and to respond when the automation fails. Because failures are relatively rare, pilots often suffer from hazardous states of awareness induced by long term vigilance of the automated system. Consequently, the aim of the current study was to investigate the ability of the closed-loop, adaptive automation system in a vigilance paradigm. It is also important to note that tracking involves a continuous, though low level, motor response. Since it is not clear how such activity might affect performance of the adaptive automation system, it was thought to be important to evaluate how the system functioned when there was minimal motor output by the subjects. The current study used the closed-loop system, developed at NASA-Langley Research Center, to control the state of awareness of subjects while they performed a vigilance task. Several experiments were conducted to examine the use of EEG feedback to control a target dimension used in the task. Changes in a subject's arousal, as defined by specific EEG indexes, produced stimulus changes known to affect task performance. In addition, different electrode sites, compared to previous research, were sampled to determine the optimum configuration with regard to the following criteria: (1) task performance and (2) EEG index.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rao, Nageswara S.; Liu, Qiang

    We consider tracking of a target with elliptical nonlinear constraints on its motion dynamics. The state estimates are generated by sensors and sent over long-haul links to a remote fusion center for fusion. We show that the constraints can be projected onto the known ellipse and hence incorporated into the estimation and fusion process. In particular, two methods based on (i) direct connection to the center, and (ii) shortest distance to the ellipse are discussed. A tracking example is used to illustrate the tracking performance using projection-based methods with various fusers in the lossy long-haul tracking environment.

  5. An Exploration of Cognitive Agility as Quantified by Attention Allocation in a Complex Environment

    DTIC Science & Technology

    2017-03-01

    quantified by eye-tracking data collected while subjects played a military-relevant cognitive agility computer game (Make Goal), to determine whether...subjects played a military-relevant cognitive agility computer game (Make Goal), to determine whether certain patterns are associated with effective...Group and Control Group on Eye Tracking and Game Performance .....................36 3. Comparison between High and Low Performers on Eye tracking and

  6. Research on conflict detection algorithm in 3D visualization environment of urban rail transit line

    NASA Astrophysics Data System (ADS)

    Wang, Li; Xiong, Jing; You, Kuokuo

    2017-03-01

    In this paper, a method of collision detection is introduced, and the theory of three-dimensional modeling of underground buildings and urban rail lines is realized by rapidly extracting the buildings that are in conflict with the track area in the 3D visualization environment. According to the characteristics of the buildings, CSG and B-rep are used to model the buildings based on CSG and B-rep. On the basis of studying the modeling characteristics, this paper proposes to use the AABB level bounding volume method to detect the first conflict and improve the detection efficiency, and then use the triangular rapid intersection detection algorithm to detect the conflict, and finally determine whether the building collides with the track area. Through the algorithm of this paper, we can quickly extract buildings colliding with the influence area of the track line, so as to help the line design, choose the best route and calculate the cost of land acquisition in the three-dimensional visualization environment.

  7. Tracking a head-mounted display in a room-sized environment with head-mounted cameras

    NASA Astrophysics Data System (ADS)

    Wang, Jih-Fang; Azuma, Ronald T.; Bishop, Gary; Chi, Vernon; Eyles, John; Fuchs, Henry

    1990-10-01

    This paper presents our efforts to accurately track a Head-Mounted Display (HMD) in a large environment. We review our current benchtop prototype (introduced in {WCF9O]), then describe our plans for building the full-scale system. Both systems use an inside-oui optical tracking scheme, where lateraleffect photodiodes mounted on the user's helmet view flashing infrared beacons placed in the environment. Church's method uses the measured 2D image positions and the known 3D beacon locations to recover the 3D position and orientation of the helmet in real-time. We discuss the implementation and performance of the benchtop prototype. The full-scale system design includes ceiling panels that hold the infrared beacons and a new sensor arrangement of two photodiodes with holographic lenses. In the full-scale system, the user can walk almost anywhere under the grid of ceiling panels, making the working volume nearly as large as the room.

  8. Image-based tracking and sensor resource management for UAVs in an urban environment

    NASA Astrophysics Data System (ADS)

    Samant, Ashwin; Chang, K. C.

    2010-04-01

    Coordination and deployment of multiple unmanned air vehicles (UAVs) requires a lot of human resources in order to carry out a successful mission. The complexity of such a surveillance mission is significantly increased in the case of an urban environment where targets can easily escape from the UAV's field of view (FOV) due to intervening building and line-of-sight obstruction. In the proposed methodology, we focus on the control and coordination of multiple UAVs having gimbaled video sensor onboard for tracking multiple targets in an urban environment. We developed optimal path planning algorithms with emphasis on dynamic target prioritizations and persistent target updates. The command center is responsible for target prioritization and autonomous control of multiple UAVs, enabling a single operator to monitor and control a team of UAVs from a remote location. The results are obtained using extensive 3D simulations in Google Earth using Tangent plus Lyapunov vector field guidance for target tracking.

  9. Performance Improvement of Receivers Based on Ultra-Tight Integration in GNSS-Challenged Environments

    PubMed Central

    Qin, Feng; Zhan, Xingqun; Du, Gang

    2013-01-01

    Ultra-tight integration was first proposed by Abbott in 2003 with the purpose of integrating a global navigation satellite system (GNSS) and an inertial navigation system (INS). This technology can improve the tracking performances of a receiver by reconfiguring the tracking loops in GNSS-challenged environments. In this paper, the models of all error sources known to date in the phase lock loops (PLLs) of a standard receiver and an ultra-tightly integrated GNSS/INS receiver are built, respectively. Based on these models, the tracking performances of the two receivers are compared to verify the improvement due to the ultra-tight integration. Meanwhile, the PLL error distributions of the two receivers are also depicted to analyze the error changes of the tracking loops. These results show that the tracking error is significantly reduced in the ultra-tightly integrated GNSS/INS receiver since the receiver's dynamics are estimated and compensated by an INS. Moreover, the mathematical relationship between the tracking performances of the ultra-tightly integrated GNSS/INS receiver and the quality of the selected inertial measurement unit (IMU) is derived from the error models and proved by the error comparisons of four ultra-tightly integrated GNSS/INS receivers aided by different grade IMUs.

  10. A proto-type design of a real-tissue phantom for the validation of deformation algorithms and 4D dose calculations

    NASA Astrophysics Data System (ADS)

    Szegedi, M.; Rassiah-Szegedi, P.; Fullerton, G.; Wang, B.; Salter, B.

    2010-07-01

    The purpose of this study is to design a real-tissue phantom for use in the validation of deformation algorithms. A phantom motion controller that runs sinusoidal and non-regular patient-based breathing pattern, via a piston, was applied to porcine liver tissue. It was regulated to simulate movement ranges similar to recorded implanted liver markers from patients. 4D CT was applied to analyze deformation. The suitability of various markers in the liver and the position reproducibility of markers and of reference points were studied. The similarity of marker motion pattern in the liver phantom and in real patients was evaluated. The viability of the phantom over time and its use with electro-magnetic tracking devices were also assessed. High contrast markers, such as carbon markers, implanted in the porcine liver produced less image artifacts on CT and were well visualized compared to metallic ones. The repositionability of markers was within a measurement accuracy of ±2 mm. Similar anatomical patient motions were reproducible up to elongations of 3 cm for a time period of at least 90 min. The phantom is compatible with electro-magnetic tracking devices and 4D CT. The phantom motion is reproducible and simulates realistic patient motion and deformation. The ability to carry out voxel-based tracking allows for the evaluation of deformation algorithms in a controlled environment with recorded patient traces. The phantom is compatible with all therapy devices clinically encountered in our department.

  11. Promoting Active Urban Aging: A Measurement Approach to Neighborhood Walkability for Older Adults

    PubMed Central

    Weiss, Rachael L.; Maantay, Juliana A.; Fahs, Marianne

    2011-01-01

    Understanding the role of the built environment on physical activity behavior among older adults is an important public health goal, but evaluating these relationships remains complicated due to the difficulty of measuring specific attributes of the environment. As a result, there is conflicting evidence regarding the association between perceived and objectively measured walkability and physical activity among urban-dwelling older adults. This suggests that both actual environmental features and perceptions of these attributes influence walking behavior. The purpose of this pilot project is to create an Objective Walkability Index (OWI) by census block using a Geographic Information System (GIS) and supplement the results with resident perceptions thus more accurately characterizing the context of walkability. Computerized Neighborhood Environment Tracking (ComNET) was used to systematically assess environmental risks impacting activity patterns of older adults in two New York City neighborhoods. In addition, the Senior Center Evaluation of the Neighborhood Environment (SCENE) survey was administered to older adults attending two senior centers located within the target neighborhoods. The results indicate that there is substantial variation in OWI score both between and within the neighborhoods suggesting that residence in some communities may increase the risk of inactivity among older adults. Also, low walkability census blocks were clustered within each neighborhood providing an opportunity for targeted investigation into localized threats to walkability. A lack of consensus regarding the association between the built environment and physical activity among older adults is a consequence of the problems inherent in measuring these determinants. Further empirical evidence evaluating the complex relationships between the built environment and physical activity is an essential step towards creating active communities. PMID:21874149

  12. Dynamic virtual fixture on the Euclidean group for admittance-type manipulator in deforming environments.

    PubMed

    Zhang, Dongwen; Zhu, Qingsong; Xiong, Jing; Wang, Lei

    2014-04-27

    In a deforming anatomic environment, the motion of an instrument suffers from complex geometrical and dynamic constraints, robot assisted minimally invasive surgery therefore requires more sophisticated skills for surgeons. This paper proposes a novel dynamic virtual fixture (DVF) to enhance the surgical operation accuracy of admittance-type medical robotics in the deforming environment. A framework for DVF on the Euclidean Group SE(3) is presented, which unites rotation and translation in a compact form. First, we constructed the holonomic/non-holonomic constraints, and then searched for the corresponded reference to make a distinction between preferred and non-preferred directions. Second, different control strategies are employed to deal with the tasks along the distinguished directions. The desired spatial compliance matrix is synthesized from an allowable motion screw set to filter out the task unrelated components from manual input, the operator has complete control over the preferred directions; while the relative motion between the surgical instrument and the anatomy structures is actively tracked and cancelled, the deviation relative to the reference is compensated jointly by the operator and DVF controllers. The operator, haptic device, admittance-type proxy and virtual deforming environment are involved in a hardware-in-the-loop experiment, human-robot cooperation with the assistance of DVF controller is carried out on a deforming sphere to simulate beating heart surgery, performance of the proposed DVF on admittance-type proxy is evaluated, and both human factors and control parameters are analyzed. The DVF can improve the dynamic properties of human-robot cooperation in a low-frequency (0 ~ 40 rad/sec) deforming environment, and maintain synergy of orientation and translation during the operation. Statistical analysis reveals that the operator has intuitive control over the preferred directions, human and the DVF controller jointly control the motion along the non-preferred directions, the target deformation is tracked actively. The proposed DVF for an admittance-type manipulator is capable of assisting the operator to deal with skilled operations in a deforming environment.

  13. Enhancement of tracking performance in electro-optical system based on servo control algorithm

    NASA Astrophysics Data System (ADS)

    Choi, WooJin; Kim, SungSu; Jung, DaeYoon; Seo, HyoungKyu

    2017-10-01

    Modern electro-optical surveillance and reconnaissance systems require tracking capability to get exact images of target or to accurately direct the line of sight to target which is moving or still. This leads to the tracking system composed of image based tracking algorithm and servo control algorithm. In this study, we focus on the servo control function to minimize the overshoot in the tracking motion and do not miss the target. The scheme is to limit acceleration and velocity parameters in the tracking controller, depending on the target state information in the image. We implement the proposed techniques by creating a system model of DIRCM and simulate the same environment, validate the performance on the actual equipment.

  14. Java Architecture for Detect and Avoid Extensibility and Modeling

    NASA Technical Reports Server (NTRS)

    Santiago, Confesor; Mueller, Eric Richard; Johnson, Marcus A.; Abramson, Michael; Snow, James William

    2015-01-01

    Unmanned aircraft will equip with a detect-and-avoid (DAA) system that enables them to comply with the requirement to "see and avoid" other aircraft, an important layer in the overall set of procedural, strategic and tactical separation methods designed to prevent mid-air collisions. This paper describes a capability called Java Architecture for Detect and Avoid Extensibility and Modeling (JADEM), developed to prototype and help evaluate various DAA technological requirements by providing a flexible and extensible software platform that models all major detect-and-avoid functions. Figure 1 illustrates JADEM's architecture. The surveillance module can be actual equipment on the unmanned aircraft or simulators that model the process by which sensors on-board detect other aircraft and provide track data to the traffic display. The track evaluation function evaluates each detected aircraft and decides whether to provide an alert to the pilot and its severity. Guidance is a combination of intruder track information, alerting, and avoidance/advisory algorithms behind the tools shown on the traffic display to aid the pilot in determining a maneuver to avoid a loss of well clear. All these functions are designed with a common interface and configurable implementation, which is critical in exploring DAA requirements. To date, JADEM has been utilized in three computer simulations of the National Airspace System, three pilot-in-the-loop experiments using a total of 37 professional UAS pilots, and two flight tests using NASA's Predator-B unmanned aircraft, named Ikhana. The data collected has directly informed the quantitative separation standard for "well clear", safety case, requirements development, and the operational environment for the DAA minimum operational performance standards. This work was performed by the Separation Assurance/Sense and Avoid Interoperability team under NASA's UAS Integration in the NAS project.

  15. Track lateral shift : fundamentals and state-of-the-art review

    DOT National Transportation Integrated Search

    1996-02-01

    This report presents a review of the state of the art of track lateral shift analysis, with improved concepts for safety evaluation of high speed trains generating track shift forces. The mechanics of track shift and the resulting track failure modes...

  16. Supporting Collaborative Health Tracking in the Hospital: Patients’ Perspectives

    PubMed Central

    Mishra, Sonali R.; Miller, Andrew D.; Haldar, Shefali; Khelifi, Maher; Eschler, Jordan; Elera, Rashmi G.; Pollack, Ari H; Pratt, Wanda

    2018-01-01

    The hospital setting creates a high-stakes environment where patients’ lives depend on accurate tracking of health data. Despite recent work emphasizing the importance of patients’ engagement in their own health care, less is known about how patients track their health and care in the hospital. Through interviews and design probes, we investigated hospitalized patients’ tracking activity and analyzed our results using the stage-based personal informatics model. We used this model to understand how to support the tracking needs of hospitalized patients at each stage. In this paper, we discuss hospitalized patients’ needs for collaboratively tracking their health with their care team. We suggest future extensions of the stage-based model to accommodate collaborative tracking situations, such as hospitals, where data is collected, analyzed, and acted on by multiple people. Our findings uncover new directions for HCI research and highlight ways to support patients in tracking their care and improving patient safety. PMID:29721554

  17. Survey of Motion Tracking Methods Based on Inertial Sensors: A Focus on Upper Limb Human Motion

    PubMed Central

    Filippeschi, Alessandro; Schmitz, Norbert; Miezal, Markus; Bleser, Gabriele; Ruffaldi, Emanuele; Stricker, Didier

    2017-01-01

    Motion tracking based on commercial inertial measurements units (IMUs) has been widely studied in the latter years as it is a cost-effective enabling technology for those applications in which motion tracking based on optical technologies is unsuitable. This measurement method has a high impact in human performance assessment and human-robot interaction. IMU motion tracking systems are indeed self-contained and wearable, allowing for long-lasting tracking of the user motion in situated environments. After a survey on IMU-based human tracking, five techniques for motion reconstruction were selected and compared to reconstruct a human arm motion. IMU based estimation was matched against motion tracking based on the Vicon marker-based motion tracking system considered as ground truth. Results show that all but one of the selected models perform similarly (about 35 mm average position estimation error). PMID:28587178

  18. Towards an IMU Evaluation Framework for Human Body Tracking.

    PubMed

    Venek, Verena; Kremser, Wolfgang; Schneider, Cornelia

    2018-01-01

    Existing full-body tracking systems, which use Inertial Measurement Units (IMUs) as sensing unit, require expert knowledge for setup and data collection. Thus, the daily application for human body tracking is difficult. In particular, in the field of active and assisted living (AAL), tracking human movements would enable novel insights not only into the quantity but also into the quality of human movement, for example by monitoring functional training. While the current market offers a wide range of products with vastly different properties, literature lacks guidelines for choosing IMUs for body tracking applications. Therefore, this paper introduces developments towards an IMU evaluation framework for human body tracking which compares IMUs against five requirement areas that consider device features and data quality. The data quality is assessed by conducting a static and a dynamic error analysis. In a first application to four IMUs of different component consumption, the IMU evaluation framework convinced as promising tool for IMU selection.

  19. MRI-guided tumor tracking in lung cancer radiotherapy

    NASA Astrophysics Data System (ADS)

    Cerviño, Laura I.; Du, Jiang; Jiang, Steve B.

    2011-07-01

    Precise tracking of lung tumor motion during treatment delivery still represents a challenge in radiation therapy. Prototypes of MRI-linac hybrid systems are being created which have the potential of ionization-free real-time imaging of the tumor. This study evaluates the performance of lung tumor tracking algorithms in cine-MRI sagittal images from five healthy volunteers. Visible vascular structures were used as targets. Volunteers performed several series of regular and irregular breathing. Two tracking algorithms were implemented and evaluated: a template matching (TM) algorithm in combination with surrogate tracking using the diaphragm (surrogate was used when the maximum correlation between the template and the image in the search window was less than specified), and an artificial neural network (ANN) model based on the principal components of a region of interest that encompasses the target motion. The mean tracking error ē and the error at 95% confidence level e95 were evaluated for each model. The ANN model led to ē = 1.5 mm and e95 = 4.2 mm, while TM led to ē = 0.6 mm and e95 = 1.0 mm. An extra series was considered separately to evaluate the benefit of using surrogate tracking in combination with TM when target out-of-plane motion occurs. For this series, the mean error was 7.2 mm using only TM and 1.7 mm when the surrogate was used in combination with TM. Results show that, as opposed to tracking with other imaging modalities, ANN does not perform well in MR-guided tracking. TM, however, leads to highly accurate tracking. Out-of-plane motion could be addressed by surrogate tracking using the diaphragm, which can be easily identified in the images.

  20. Matching Real and Synthetic Panoramic Images Using a Variant of Geometric Hashing

    NASA Astrophysics Data System (ADS)

    Li-Chee-Ming, J.; Armenakis, C.

    2017-05-01

    This work demonstrates an approach to automatically initialize a visual model-based tracker, and recover from lost tracking, without prior camera pose information. These approaches are commonly referred to as tracking-by-detection. Previous tracking-by-detection techniques used either fiducials (i.e. landmarks or markers) or the object's texture. The main contribution of this work is the development of a tracking-by-detection algorithm that is based solely on natural geometric features. A variant of geometric hashing, a model-to-image registration algorithm, is proposed that searches for a matching panoramic image from a database of synthetic panoramic images captured in a 3D virtual environment. The approach identifies corresponding features between the matched panoramic images. The corresponding features are to be used in a photogrammetric space resection to estimate the camera pose. The experiments apply this algorithm to initialize a model-based tracker in an indoor environment using the 3D CAD model of the building.

  1. Role of quality of service metrics in visual target acquisition and tracking in resource constrained environments

    NASA Astrophysics Data System (ADS)

    Anderson, Monica; David, Phillip

    2007-04-01

    Implementation of an intelligent, automated target acquisition and tracking systems alleviates the need for operators to monitor video continuously. This system could identify situations that fatigued operators could easily miss. If an automated acquisition and tracking system plans motions to maximize a coverage metric, how does the performance of that system change when the user intervenes and manually moves the camera? How can the operator give input to the system about what is important and understand how that relates to the overall task balance between surveillance and coverage? In this paper, we address these issues by introducing a new formulation of the average linear uncovered length (ALUL) metric, specially designed for use in surveilling urban environments. This metric coordinates the often competing goals of acquiring new targets and tracking existing targets. In addition, it provides current system performance feedback to system users in terms of the system's theoretical maximum and minimum performance. We show the successful integration of the algorithm via simulation.

  2. Sedimentation patterns caused by scallop dredging in a physically dynamic environment.

    PubMed

    Dale, A C; Boulcott, P; Sherwin, T J

    2011-11-01

    Scallop dredging grounds in the Firth of Lorn, western Scotland, are juxtaposed with rocky reef habitats raising concerns that reef communities may be impacted by sediment disturbed by nearby scallop dredging. A particle-tracking model of sediment transport and settling is applied at two scales. In the near-field, a suspension of typical sand/gravel-dominated bed sediment is subjected to a steady current across the dredge track. In the far-field, silt particles, which may persist in suspension for multiple tidal cycles, are tracked in the context of a regional model of tidally-driven flow. The principal sedimentary risk to reef habitats is predicted to come from settling sand particles when dredge tracks approach within tens of metres of a reef. The cumulative effect of dredging at the relatively low intensities recorded in this region is not expected to have a significant long-term impact on suspended silt concentrations and settlement in this highly dispersive environment. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. An extended Kalman filter for mouse tracking.

    PubMed

    Choi, Hongjun; Kim, Mingi; Lee, Onseok

    2018-05-19

    Animal tracking is an important tool for observing behavior, which is useful in various research areas. Animal specimens can be tracked using dynamic models and observation models that require several types of data. Tracking mouse has several barriers due to the physical characteristics of the mouse, their unpredictable movement, and cluttered environments. Therefore, we propose a reliable method that uses a detection stage and a tracking stage to successfully track mouse. The detection stage detects the surface area of the mouse skin, and the tracking stage implements an extended Kalman filter to estimate the state variables of a nonlinear model. The changes in the overall shape of the mouse are tracked using an oval-shaped tracking model to estimate the parameters for the ellipse. An experiment is conducted to demonstrate the performance of the proposed tracking algorithm using six video images showing various types of movement, and the ground truth values for synthetic images are compared to the values generated by the tracking algorithm. A conventional manual tracking method is also applied to compare across eight experimenters. Furthermore, the effectiveness of the proposed tracking method is also demonstrated by applying the tracking algorithm with actual images of mouse. Graphical abstract.

  4. Using GPS-enabled cell phones to track the travel patterns of adolescents.

    PubMed

    Wiehe, Sarah E; Carroll, Aaron E; Liu, Gilbert C; Haberkorn, Kelly L; Hoch, Shawn C; Wilson, Jeffery S; Fortenberry, J Dennis

    2008-05-21

    Few tools exist to directly measure the microsocial and physical environments of adolescents in circumstances where participatory observation is not practical or ethical. Yet measuring these environments is important as they are significantly associated with adolescent health-risk. For example, health-related behaviors such as cigarette smoking often occur in specific places where smoking may be relatively surreptitious. We assessed the feasibility of using GPS-enabled cell phones to track adolescent travel patterns and gather daily diary data. We enrolled 15 adolescent women from a clinic-based setting and asked them to carry the phones for 1 week. We found that these phones can accurately and reliably track participant locations, as well as record diary information on adolescent behaviors. Participants had variable paths extending beyond their immediate neighborhoods, and denied that GPS-tracking influenced their activity. GPS-enabled cell phones offer a feasible and, in many ways, ideal modality of monitoring the location and travel patterns of adolescents. In addition, cell phones allow space- and time-specific interaction, probing, and intervention which significantly extends both research and health promotion beyond a clinical setting. Future studies can employ GPS-enabled cell phones to better understand adolescent environments, how they are associated with health-risk behaviors, and perhaps intervene to change health behavior.

  5. Using GPS-enabled cell phones to track the travel patterns of adolescents

    PubMed Central

    Wiehe, Sarah E; Carroll, Aaron E; Liu, Gilbert C; Haberkorn, Kelly L; Hoch, Shawn C; Wilson, Jeffery S; Fortenberry, J Dennis

    2008-01-01

    Background Few tools exist to directly measure the microsocial and physical environments of adolescents in circumstances where participatory observation is not practical or ethical. Yet measuring these environments is important as they are significantly associated with adolescent health-risk. For example, health-related behaviors such as cigarette smoking often occur in specific places where smoking may be relatively surreptitious. Results We assessed the feasibility of using GPS-enabled cell phones to track adolescent travel patterns and gather daily diary data. We enrolled 15 adolescent women from a clinic-based setting and asked them to carry the phones for 1 week. We found that these phones can accurately and reliably track participant locations, as well as record diary information on adolescent behaviors. Participants had variable paths extending beyond their immediate neighborhoods, and denied that GPS-tracking influenced their activity. Conclusion GPS-enabled cell phones offer a feasible and, in many ways, ideal modality of monitoring the location and travel patterns of adolescents. In addition, cell phones allow space- and time-specific interaction, probing, and intervention which significantly extends both research and health promotion beyond a clinical setting. Future studies can employ GPS-enabled cell phones to better understand adolescent environments, how they are associated with health-risk behaviors, and perhaps intervene to change health behavior. PMID:18495025

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chiu, T; Kearney, V; Liu, H

    Purpose: Dynamic tumor tracking or motion compensation techniques have proposed to modify beam delivery following lung tumor motion on the flight. Conventional treatment plan QA could be performed in advance since every delivery may be different. Markerless lung tumor tracking using beams eye view EPID images provides a best treatment evaluation mechanism. The purpose of this study is to improve the accuracy of the online markerless lung tumor motion tracking method. Methods: The lung tumor could be located on every frame of MV images during radiation therapy treatment by comparing with corresponding digitally reconstructed radiograph (DRR). A kV-MV CT correspondingmore » curve is applied on planning kV CT to generate MV CT images for patients in order to enhance the similarity between DRRs and MV treatment images. This kV-MV CT corresponding curve was obtained by scanning a same CT electron density phantom by a kV CT scanner and MV scanner (Tomotherapy) or MV CBCT. Two sets of MV DRRs were then generated for tumor and anatomy without tumor as the references to tracking the tumor on beams eye view EPID images. Results: Phantom studies were performed on a Varian TrueBeam linac. MV treatment images were acquired continuously during each treatment beam delivery at 12 gantry angles by iTools. Markerless tumor tracking was applied with DRRs generated from simulated MVCT. Tumors were tracked on every frame of images and compared with expected positions based on programed phantom motion. It was found that the average tracking error were 2.3 mm. Conclusion: This algorithm is capable of detecting lung tumors at complicated environment without implanting markers. It should be noted that the CT data has a slice thickness of 3 mm. This shows the statistical accuracy is better than the spatial accuracy. This project has been supported by a Varian Research Grant.« less

  7. Robust decoding of selective auditory attention from MEG in a competing-speaker environment via state-space modeling✩

    PubMed Central

    Akram, Sahar; Presacco, Alessandro; Simon, Jonathan Z.; Shamma, Shihab A.; Babadi, Behtash

    2015-01-01

    The underlying mechanism of how the human brain solves the cocktail party problem is largely unknown. Recent neuroimaging studies, however, suggest salient temporal correlations between the auditory neural response and the attended auditory object. Using magnetoencephalography (MEG) recordings of the neural responses of human subjects, we propose a decoding approach for tracking the attentional state while subjects are selectively listening to one of the two speech streams embedded in a competing-speaker environment. We develop a biophysically-inspired state-space model to account for the modulation of the neural response with respect to the attentional state of the listener. The constructed decoder is based on a maximum a posteriori (MAP) estimate of the state parameters via the Expectation Maximization (EM) algorithm. Using only the envelope of the two speech streams as covariates, the proposed decoder enables us to track the attentional state of the listener with a temporal resolution of the order of seconds, together with statistical confidence intervals. We evaluate the performance of the proposed model using numerical simulations and experimentally measured evoked MEG responses from the human brain. Our analysis reveals considerable performance gains provided by the state-space model in terms of temporal resolution, computational complexity and decoding accuracy. PMID:26436490

  8. Design and Evaluation of an Interactive Exercise Coaching System for Older Adults: Lessons Learned

    PubMed Central

    Ofli, Ferda; Kurillo, Gregorij; Obdržálek, Štěpán; Bajcsy, Ruzena; Jimison, Holly; Pavel, Misha

    2016-01-01

    Although the positive effects of exercise on the well-being and quality of independent living for older adults are well-accepted, many elderly individuals lack access to exercise facilities, or the skills and motivation to perform exercise at home. To provide a more engaging environment that promotes physical activity, various fitness applications have been proposed. Many of the available products, however, are geared toward a younger population and are not appropriate or engaging for an older population. To address these issues, we developed an automated interactive exercise coaching system using the Microsoft Kinect. The coaching system guides users through a series of video exercises, tracks and measures their movements, provides real-time feedback, and records their performance over time. Our system consists of exercises to improve balance, flexibility, strength, and endurance, with the aim of reducing fall risk and improving performance of daily activities. In this paper, we report on the development of the exercise system, discuss the results of our recent field pilot study with six independently-living elderly individuals, and highlight the lessons learned relating to the in-home system setup, user tracking, feedback, and exercise performance evaluation. PMID:25594988

  9. Real-time video analysis for retail stores

    NASA Astrophysics Data System (ADS)

    Hassan, Ehtesham; Maurya, Avinash K.

    2015-03-01

    With the advancement in video processing technologies, we can capture subtle human responses in a retail store environment which play decisive role in the store management. In this paper, we present a novel surveillance video based analytic system for retail stores targeting localized and global traffic estimate. Development of an intelligent system for human traffic estimation in real-life poses a challenging problem because of the variation and noise involved. In this direction, we begin with a novel human tracking system by an intelligent combination of motion based and image level object detection. We demonstrate the initial evaluation of this approach on available standard dataset yielding promising result. Exact traffic estimate in a retail store require correct separation of customers from service providers. We present a role based human classification framework using Gaussian mixture model for this task. A novel feature descriptor named graded colour histogram is defined for object representation. Using, our role based human classification and tracking system, we have defined a novel computationally efficient framework for two types of analytics generation i.e., region specific people count and dwell-time estimation. This system has been extensively evaluated and tested on four hours of real-life video captured from a retail store.

  10. Modeling the effects of high-G stress on pilots in a tracking task

    NASA Technical Reports Server (NTRS)

    Korn, J.; Kleinman, D. L.

    1978-01-01

    Air-to-air tracking experiments were conducted at the Aerospace Medical Research Laboratories using both fixed and moving base dynamic environment simulators. The obtained data, which includes longitudinal error of a simulated air-to-air tracking task as well as other auxiliary variables, was analyzed using an ensemble averaging method. In conjunction with these experiments, the optimal control model is applied to model a human operator under high-G stress.

  11. Inertial Motion Tracking for Inserting Humans into a Networked Synthetic Environment

    DTIC Science & Technology

    2007-08-31

    tracking methods. One method requires markers on the tracked buman body, and other method does not use nmkers. OPTOTRAK from Northem Digital Inc. is a...of using multicasting protocols. Unfortunately, most routers on the Internet are not configured for multicasting. A technique called tunneling is...used to overcome this problem. Tunneling is a software solution that m s on the end point routerslcomputers and allows multicast packets to traverse

  12. Piloted Evaluation of an Integrated Methodology for Propulsion and Airframe Control Design

    NASA Technical Reports Server (NTRS)

    Bright, Michelle M.; Simon, Donald L.; Garg, Sanjay; Mattern, Duane L.; Ranaudo, Richard J.; Odonoghue, Dennis P.

    1994-01-01

    An integrated methodology for propulsion and airframe control has been developed and evaluated for a Short Take-Off Vertical Landing (STOVL) aircraft using a fixed base flight simulator at NASA Lewis Research Center. For this evaluation the flight simulator is configured for transition flight using a STOVL aircraft model, a full nonlinear turbofan engine model, simulated cockpit and displays, and pilot effectors. The paper provides a brief description of the simulation models, the flight simulation environment, the displays and symbology, the integrated control design, and the piloted tasks used for control design evaluation. In the simulation, the pilots successfully completed typical transition phase tasks such as combined constant deceleration with flight path tracking, and constant acceleration wave-off maneuvers. The pilot comments of the integrated system performance and the display symbology are discussed and analyzed to identify potential areas of improvement.

  13. Evaluation of the Sustainable Development Graduation Track at Delft University of Technology

    ERIC Educational Resources Information Center

    De Werk, G.; Kamp, L. M.

    2008-01-01

    This paper evaluates the sustainable development graduation track at TU Delft. This track can be followed by all students of TU Delft. It consists of an interdisciplinary colloquium "Technology in Sustainable Development", 300 h of self-chosen courses on sustainable development and a graduation project in which sustainable development is…

  14. Visual Contrast Sensitivity Functions Obtained from Untrained Observers Using Tracking and Staircase Procedures. Final Report.

    ERIC Educational Resources Information Center

    Geri, George A.; Hubbard, David C.

    Two adaptive psychophysical procedures (tracking and "yes-no" staircase) for obtaining human visual contrast sensitivity functions (CSF) were evaluated. The procedures were chosen based on their proven validity and the desire to evaluate the practical effects of stimulus transients, since tracking procedures traditionally employ gradual…

  15. Emulation of Physician Tasks in Eye-Tracked Virtual Reality for Remote Diagnosis of Neurodegenerative Disease.

    PubMed

    Orlosky, Jason; Itoh, Yuta; Ranchet, Maud; Kiyokawa, Kiyoshi; Morgan, John; Devos, Hannes

    2017-04-01

    For neurodegenerative conditions like Parkinson's disease, early and accurate diagnosis is still a difficult task. Evaluations can be time consuming, patients must often travel to metropolitan areas or different cities to see experts, and misdiagnosis can result in improper treatment. To date, only a handful of assistive or remote methods exist to help physicians evaluate patients with suspected neurological disease in a convenient and consistent way. In this paper, we present a low-cost VR interface designed to support evaluation and diagnosis of neurodegenerative disease and test its use in a clinical setting. Using a commercially available VR display with an infrared camera integrated into the lens, we have constructed a 3D virtual environment designed to emulate common tasks used to evaluate patients, such as fixating on a point, conducting smooth pursuit of an object, or executing saccades. These virtual tasks are designed to elicit eye movements commonly associated with neurodegenerative disease, such as abnormal saccades, square wave jerks, and ocular tremor. Next, we conducted experiments with 9 patients with a diagnosis of Parkinson's disease and 7 healthy controls to test the system's potential to emulate tasks for clinical diagnosis. We then applied eye tracking algorithms and image enhancement to the eye recordings taken during the experiment and conducted a short follow-up study with two physicians for evaluation. Results showed that our VR interface was able to elicit five common types of movements usable for evaluation, physicians were able to confirm three out of four abnormalities, and visualizations were rated as potentially useful for diagnosis.

  16. Laser-Based Pedestrian Tracking in Outdoor Environments by Multiple Mobile Robots

    PubMed Central

    Ozaki, Masataka; Kakimuma, Kei; Hashimoto, Masafumi; Takahashi, Kazuhiko

    2012-01-01

    This paper presents an outdoors laser-based pedestrian tracking system using a group of mobile robots located near each other. Each robot detects pedestrians from its own laser scan image using an occupancy-grid-based method, and the robot tracks the detected pedestrians via Kalman filtering and global-nearest-neighbor (GNN)-based data association. The tracking data is broadcast to multiple robots through intercommunication and is combined using the covariance intersection (CI) method. For pedestrian tracking, each robot identifies its own posture using real-time-kinematic GPS (RTK-GPS) and laser scan matching. Using our cooperative tracking method, all the robots share the tracking data with each other; hence, individual robots can always recognize pedestrians that are invisible to any other robot. The simulation and experimental results show that cooperating tracking provides the tracking performance better than conventional individual tracking does. Our tracking system functions in a decentralized manner without any central server, and therefore, this provides a degree of scalability and robustness that cannot be achieved by conventional centralized architectures. PMID:23202171

  17. Measurement Plan for the Characterization of the Load Environment for Cross Ties and Fasteners

    DOT National Transportation Integrated Search

    1977-04-01

    This report was prepared as a part of the Improved Track Structures Research Program sponsored by the Office of Rail Safety Research of the Federal Railroad Administration. The report is a planning document for a track measurement program to obtain d...

  18. 40 CFR 273.62 - Tracking universal waste shipments.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... of each type of universal waste received (e.g., batteries, pesticides, thermostats); (3) The date of... 40 Protection of Environment 27 2014-07-01 2014-07-01 false Tracking universal waste shipments... WASTES (CONTINUED) STANDARDS FOR UNIVERSAL WASTE MANAGEMENT Standards for Destination Facilities § 273.62...

  19. 40 CFR 273.62 - Tracking universal waste shipments.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... of each type of universal waste received (e.g., batteries, pesticides, thermostats); (3) The date of... 40 Protection of Environment 27 2011-07-01 2011-07-01 false Tracking universal waste shipments... WASTES (CONTINUED) STANDARDS FOR UNIVERSAL WASTE MANAGEMENT Standards for Destination Facilities § 273.62...

  20. 40 CFR 273.62 - Tracking universal waste shipments.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... of each type of universal waste received (e.g., batteries, pesticides, thermostats); (3) The date of... 40 Protection of Environment 26 2010-07-01 2010-07-01 false Tracking universal waste shipments... WASTES (CONTINUED) STANDARDS FOR UNIVERSAL WASTE MANAGEMENT Standards for Destination Facilities § 273.62...

  1. 40 CFR 273.62 - Tracking universal waste shipments.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... of each type of universal waste received (e.g., batteries, pesticides, thermostats); (3) The date of... 40 Protection of Environment 28 2012-07-01 2012-07-01 false Tracking universal waste shipments... WASTES (CONTINUED) STANDARDS FOR UNIVERSAL WASTE MANAGEMENT Standards for Destination Facilities § 273.62...

  2. 40 CFR 273.62 - Tracking universal waste shipments.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... of each type of universal waste received (e.g., batteries, pesticides, thermostats); (3) The date of... 40 Protection of Environment 28 2013-07-01 2013-07-01 false Tracking universal waste shipments... WASTES (CONTINUED) STANDARDS FOR UNIVERSAL WASTE MANAGEMENT Standards for Destination Facilities § 273.62...

  3. Fabrication of T142 Tank Track Pads for Evaluation of a Rubber-Kevlar Composite Compound

    DTIC Science & Technology

    1982-06-01

    fully developed with highly saturated rubbers such as butyl or ROYALENE® ( EPDM ) A-3 ...PERIOD COVERED Fabrication of T142 Tank Track Pads for Evaluation of a Rubber -Kevlar Composite FINAL Compound S. PERFORMING ORG. REPORT NUMBER 7. AUTHOR...developed for evaluation in T142 tank track pads. Bonding of the rubber to the fiber was achieved by addition of bonding agents to the compound. 175, T142

  4. Optimization of MLS receivers for multipath environments

    NASA Technical Reports Server (NTRS)

    Mcalpine, G. A.; Highfill, J. H., III

    1976-01-01

    The design of a microwave landing system (MLS) aircraft receiver, capable of optimal performance in multipath environments found in air terminal areas, is reported. Special attention was given to the angle tracking problem of the receiver and includes tracking system design considerations, study and application of locally optimum estimation involving multipath adaptive reception and then envelope processing, and microcomputer system design. Results show processing is competitive in this application with i-f signal processing performance-wise and is much more simple and cheaper. A summary of the signal model is given.

  5. Underwater Acoustic Target Tracking: A Review

    PubMed Central

    Han, Ying; Fan, Liying

    2018-01-01

    Advances in acoustic technology and instrumentation now make it possible to explore marine resources. As a significant component of ocean exploration, underwater acoustic target tracking has aroused wide attention both in military and civil fields. Due to the complexity of the marine environment, numerous techniques have been proposed to obtain better tracking performance. In this paper, we survey over 100 papers ranging from innovative papers to the state-of-the-art in this field to present underwater tracking technologies. Not only the related knowledge of acoustic tracking instrument and tracking progress is clarified in detail, but also a novel taxonomy method is proposed. In this paper, algorithms for underwater acoustic target tracking are classified based on the methods used as: (1) instrument-assisted methods; (2) mode-based methods; (3) tracking optimization methods. These algorithms are compared and analyzed in the aspect of dimensions, numbers, and maneuvering of the tracking target, which is different from other survey papers. Meanwhile, challenges, countermeasures, and lessons learned are illustrated in this paper. PMID:29301318

  6. Flight evaluation of two segment approaches for jet transport noise abatement

    NASA Technical Reports Server (NTRS)

    Rogers, R. A.; Wohl, B.; Gale, C. M.

    1973-01-01

    A 75 flight-hour operational evaluation was conducted with a representative four-engine fan-jet transport in a representative airport environment. The flight instrument systems were modified to automatically provide pilots with smooth and continuous pitch steering command information during two-segment approaches. Considering adverse weather, minimum ceiling and flight crew experience criteria, a transition initiation altitude of approximately 800 feet AFL would have broadest acceptance for initiating two-segment approach procedures in scheduled service. The profile defined by the system gave an upper glidepath of approximately 6 1/2 degrees. This was 1/2 degree greater than inserted into the area navigation system. The glidepath error is apparently due to an erroneous along-track, distance-to-altitude profile.

  7. Design and control of the precise tracking bed based on complex electromechanical design theory

    NASA Astrophysics Data System (ADS)

    Ren, Changzhi; Liu, Zhao; Wu, Liao; Chen, Ken

    2010-05-01

    The precise tracking technology is wide used in astronomical instruments, satellite tracking and aeronautic test bed. However, the precise ultra low speed tracking drive system is one high integrated electromechanical system, which one complexly electromechanical design method is adopted to improve the efficiency, reliability and quality of the system during the design and manufacture circle. The precise Tracking Bed is one ultra-exact, ultra-low speed, high precision and huge inertial instrument, which some kind of mechanism and environment of the ultra low speed is different from general technology. This paper explores the design process based on complex electromechanical optimizing design theory, one non-PID with a CMAC forward feedback control method is used in the servo system of the precise tracking bed and some simulation results are discussed.

  8. Computer modeling of tank track elastomers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lesuer, D.R.; Goldberg, A.; Patt, J.

    Computer models of the T142, T156 and the British Chieftain tank tracks have been studied as part of a program to examine the tank-track-pad failure problem. The modeling is based on the finite element method with two different models being used to evaluate the thermal and mechanical response of the tracks. Modeling has enabled us to evaluate the influence of track design, elastomer formulation and operating scenario on the response of the track. the results of these analyses have been evaluated with experimental tests that quantify the extent of damage development in elastomers and thus indicate the likelihood of padmore » failure due to ''cutting and chunking.'' The primary characteristics influencing the temperatures achieved in the track are the heat-generation rate and the track geometry. The heat-generation rate is related to the viscoelastic material properties of the elastomer, track design and loading/operating scenario. For all designs and materials studied, stresses produced during contact with a flat roadway surface were not considered large enough to damage the pad. Operating scenarios were studied in which the track pad contacts rigid bars representing idealized obstacles in cross country terrain. A highly localized obstacle showed the possibility for subsurface mechanical damage to the track pad due to obstacle contact. Contact with a flat rigid bar produced higher tensile stresses that were near the damage thresholds for this material and thus capable of producing cutting and chunking failures.« less

  9. Transesophageal Speckle-Tracking Echocardiography Improves Right Ventricular Systolic Function Assessment in the Perioperative Setting.

    PubMed

    Markin, Nicholas W; Chamsi-Pasha, Mohammed; Luo, Jiangtao; Thomas, Walker R; Brakke, Tara R; Porter, Thomas R; Shillcutt, Sasha K

    2017-02-01

    Perioperative evaluation of right ventricular (RV) systolic function is important to follow intraoperative changes, but it is often not possible to assess with transthoracic echocardiographic (TTE) imaging, because of surgical field constraints. Echocardiographic RV quantification is most commonly performed using tricuspid annular plane systolic excursion (TAPSE), but it is not clear whether this method works with transesophageal echocardiographic (TEE) imaging. This study was performed to evaluate the relationship between TTE and TEE TAPSE distances measured with M-mode imaging and in comparison with speckle-tracking TTE and TEE measurements. Prospective observational TTE and TEE imaging was performed during elective cardiac surgical procedures in 100 subjects. Speckle-tracking echocardiographic TAPSE distances were determined and compared with the TTE M-mode TAPSE standard. Both an experienced and an inexperienced user of the speckle-tracking echocardiographic software evaluated the images, to enable interobserver assessment in 84 subjects. The comparison between TTE M-mode TAPSE and TEE M-mode TAPSE demonstrated significant variability, with a Spearman correlation of 0.5 and a mean variance in measurement of 6.5 mm. There was equivalence within data pairs and correlations between TTE M-mode TAPSE and both speckle-tracking TTE and speckle-tracking TEE TAPSE, with Spearman correlations of 0.65 and 0.65, respectively. The average variance in measurement was 0.6 mm for speckle-tracking TTE TAPSE and 1.5 mm for speckle-tracking TEE TAPSE. Using TTE M-mode TAPSE as a control, TEE M-mode TAPSE results are not accurate and should not be used clinically to evaluate RV systolic function. The relationship between speckle-tracking echocardiographic TAPSE and TTE M-mode TAPSE suggests that in the perioperative setting, speckle-tracking TEE TAPSE might be used to quantitatively evaluate RV systolic function in the absence of TTE imaging. Copyright © 2016 American Society of Echocardiography. Published by Elsevier Inc. All rights reserved.

  10. Satellite and ground radiotracking of elk

    NASA Technical Reports Server (NTRS)

    Craighead, F. C., Jr.; Craighead, J. J.; Cote, C. E.; Buechner, H. K.

    1972-01-01

    Radiotracking and monitoring of free-living animals in natural environments is providing an effective new technique for acquiring information on biological processes, including animal orientation and navigation. To test the practicability of extending the technique by using satellite systems for tracking animals, a female elk was instrumented with an electronic collar. It contained both the Interrogation Recording Location System (IRLS) transponder and a Craighead-Varney ground-tracking transmitter. The elk was successfully tracked and monitored by satellite during month of April 1970. This was the first time an animal had been tracked by satellite on the surface of the earth.

  11. Vision-based body tracking: turning Kinect into a clinical tool.

    PubMed

    Morrison, Cecily; Culmer, Peter; Mentis, Helena; Pincus, Tamar

    2016-08-01

    Vision-based body tracking technologies, originally developed for the consumer gaming market, are being repurposed to form the core of a range of innovative healthcare applications in the clinical assessment and rehabilitation of movement ability. Vision-based body tracking has substantial potential, but there are technical limitations. We use our "stories from the field" to articulate the challenges and offer examples of how these can be overcome. We illustrate that: (i) substantial effort is needed to determine the measures and feedback vision-based body tracking should provide, accounting for the practicalities of the technology (e.g. range) as well as new environments (e.g. home). (ii) Practical considerations are important when planning data capture so that data is analysable, whether finding ways to support a patient or ensuring everyone does the exercise in the same manner. (iii) Home is a place of opportunity for vision-based body tracking, but what we do now in the clinic (e.g. balance tests) or in the home (e.g. play games) will require modifications to achieve capturable, clinically relevant measures. This article articulates how vision-based body tracking works and when it does not to continue to inspire our clinical colleagues to imagine new applications. Implications for Rehabilitation Vision-based body tracking has quickly been repurposed to form the core of innovative healthcare applications in clinical assessment and rehabilitation, but there are clinical as well as practical challenges to make such systems a reality. Substantial effort needs to go into determining what types of measures and feedback vision-based body tracking should provide. This needs to account for the practicalities of the technology (e.g. range) as well as the opportunities of new environments (e.g. the home). Practical considerations need to be accounted for when planning capture in a particular environment so that data is analysable, whether it be finding a chair substitute, ways to support a patient or ensuring everyone does the exercise in the same manner. The home is a place of opportunity with vision-based body tracking, but it would be naïve to think that we can do what we do now in the clinic (e.g. balance tests) or in the home (e.g. play games), without appropriate modifications to what constitutes a practically capturable, clinically relevant measure.

  12. An automated method for the evaluation of the pointing accuracy of Sun-tracking devices

    NASA Astrophysics Data System (ADS)

    Baumgartner, Dietmar J.; Pötzi, Werner; Freislich, Heinrich; Strutzmann, Heinz; Veronig, Astrid M.; Rieder, Harald E.

    2017-03-01

    The accuracy of solar radiation measurements, for direct (DIR) and diffuse (DIF) radiation, depends significantly on the precision of the operational Sun-tracking device. Thus, rigid targets for instrument performance and operation have been specified for international monitoring networks, e.g., the Baseline Surface Radiation Network (BSRN) operating under the auspices of the World Climate Research Program (WCRP). Sun-tracking devices that fulfill these accuracy requirements are available from various instrument manufacturers; however, none of the commercially available systems comprise an automatic accuracy control system allowing platform operators to independently validate the pointing accuracy of Sun-tracking sensors during operation. Here we present KSO-STREAMS (KSO-SunTRackEr Accuracy Monitoring System), a fully automated, system-independent, and cost-effective system for evaluating the pointing accuracy of Sun-tracking devices. We detail the monitoring system setup, its design and specifications, and the results from its application to the Sun-tracking system operated at the Kanzelhöhe Observatory (KSO) Austrian radiation monitoring network (ARAD) site. The results from an evaluation campaign from March to June 2015 show that the tracking accuracy of the device operated at KSO lies within BSRN specifications (i.e., 0.1° tracking accuracy) for the vast majority of observations (99.8 %). The evaluation of manufacturer-specified active-tracking accuracies (0.02°), during periods with direct solar radiation exceeding 300 W m-2, shows that these are satisfied in 72.9 % of observations. Tracking accuracies are highest during clear-sky conditions and on days where prevailing clear-sky conditions are interrupted by frontal movement; in these cases, we obtain the complete fulfillment of BSRN requirements and 76.4 % of observations within manufacturer-specified active-tracking accuracies. Limitations to tracking surveillance arise during overcast conditions and periods of partial solar-limb coverage by clouds. On days with variable cloud cover, 78.1 % (99.9 %) of observations meet active-tracking (BSRN) accuracy requirements while for days with prevailing overcast conditions these numbers reduce to 64.3 % (99.5 %).

  13. Evaluation of Real-Time Hand Motion Tracking Using a Range Camera and the Mean-Shift Algorithm

    NASA Astrophysics Data System (ADS)

    Lahamy, H.; Lichti, D.

    2011-09-01

    Several sensors have been tested for improving the interaction between humans and machines including traditional web cameras, special gloves, haptic devices, cameras providing stereo pairs of images and range cameras. Meanwhile, several methods are described in the literature for tracking hand motion: the Kalman filter, the mean-shift algorithm and the condensation algorithm. In this research, the combination of a range camera and the simple version of the mean-shift algorithm has been evaluated for its capability for hand motion tracking. The evaluation was assessed in terms of position accuracy of the tracking trajectory in x, y and z directions in the camera space and the time difference between image acquisition and image display. Three parameters have been analyzed regarding their influence on the tracking process: the speed of the hand movement, the distance between the camera and the hand and finally the integration time of the camera. Prior to the evaluation, the required warm-up time of the camera has been measured. This study has demonstrated the suitability of the range camera used in combination with the mean-shift algorithm for real-time hand motion tracking but for very high speed hand movement in the traverse plane with respect to the camera, the tracking accuracy is low and requires improvement.

  14. How to Integrate Bilingual Education without Tracking.

    ERIC Educational Resources Information Center

    Glenn, Charles L.

    1990-01-01

    Integrated schools that stress learning among students in two languages are called two-way schools. They provide a singularly rich educational environment and avoid the negative effects of educational segregation by tracking. A Chelsea, Massachusetts, bilingual elementary school focused on team building to use existing resources more effectively.…

  15. Identifying Roads and Trains Under Canopy Using Lidar

    DTIC Science & Technology

    2007-09-01

    OVERVIEW...................................................................................................17 B. DATA SET LOCATIONS ...imaging systems to detect, track and locate operations in these dense canopy environments is severely limited. One possibility for “seeing through...in detecting, tracking and locating illicit operations previously undetectable. The purpose of this thesis is to determine if roads and trails2 are

  16. Homogeneous v. Heterogeneous: Is Tracking a Barrier to Equity?

    ERIC Educational Resources Information Center

    Polansky, Harvey B.

    1995-01-01

    Tracking has contributed considerably to the basic inequality of funding among American schools. To move to a heterogenous environment, districts must understand the concept of resource and program equity, commit to a planning process that allocates time and resources, provide ongoing inservice, downplay standardized test results, and phase-in…

  17. Information Technology: Making It All Fit. Track III: Financial Impact and Considerations.

    ERIC Educational Resources Information Center

    CAUSE, Boulder, CO.

    Seven papers from the 1988 CAUSE conference's Track III, Financial Impact and Considerations, are presented. They include: "Providing Applications Development Services in a Competitive Environment" (Donald E. Heller and Mary Ellen Bushnell); "The Cost of Not Staying Current" (Jack T. Tinsley and Betty R. Nyer); "Project…

  18. Multi-track financing.

    PubMed

    Kennedy, Steven W; Randolph, John; Taddey, Anthony J

    2012-05-01

    In today's uncertain economic environment, when seeking to finance a capital project, healthcare borrowers should adopt a multi-tracked funding strategy that permits them to change capital-funding routes quickly in response to changing circumstances. The multi-tracking process requires two stages prior to securing a commitment and beginning the closing process: due diligence and indication of interest. This process should present no material additional cost during these two stages, giving healthcare borrowers the flexibility to explore a variety of financing options.

  19. Validation of a method for real time foot position and orientation tracking with Microsoft Kinect technology for use in virtual reality and treadmill based gait training programs.

    PubMed

    Paolini, Gabriele; Peruzzi, Agnese; Mirelman, Anat; Cereatti, Andrea; Gaukrodger, Stephen; Hausdorff, Jeffrey M; Della Croce, Ugo

    2014-09-01

    The use of virtual reality for the provision of motor-cognitive gait training has been shown to be effective for a variety of patient populations. The interaction between the user and the virtual environment is achieved by tracking the motion of the body parts and replicating it in the virtual environment in real time. In this paper, we present the validation of a novel method for tracking foot position and orientation in real time, based on the Microsoft Kinect technology, to be used for gait training combined with virtual reality. The validation of the motion tracking method was performed by comparing the tracking performance of the new system against a stereo-photogrammetric system used as gold standard. Foot position errors were in the order of a few millimeters (average RMSD from 4.9 to 12.1 mm in the medio-lateral and vertical directions, from 19.4 to 26.5 mm in the anterior-posterior direction); the foot orientation errors were also small (average %RMSD from 5.6% to 8.8% in the medio-lateral and vertical directions, from 15.5% to 18.6% in the anterior-posterior direction). The results suggest that the proposed method can be effectively used to track feet motion in virtual reality and treadmill-based gait training programs.

  20. Air Traffic Complexity Measurement Environment (ACME): Software User's Guide

    NASA Technical Reports Server (NTRS)

    1996-01-01

    A user's guide for the Air Traffic Complexity Measurement Environment (ACME) software is presented. The ACME consists of two major components, a complexity analysis tool and user interface. The Complexity Analysis Tool (CAT) analyzes complexity off-line, producing data files which may be examined interactively via the Complexity Data Analysis Tool (CDAT). The Complexity Analysis Tool is composed of three independently executing processes that communicate via PVM (Parallel Virtual Machine) and Unix sockets. The Runtime Data Management and Control process (RUNDMC) extracts flight plan and track information from a SAR input file, and sends the information to GARP (Generate Aircraft Routes Process) and CAT (Complexity Analysis Task). GARP in turn generates aircraft trajectories, which are utilized by CAT to calculate sector complexity. CAT writes flight plan, track and complexity data to an output file, which can be examined interactively. The Complexity Data Analysis Tool (CDAT) provides an interactive graphic environment for examining the complexity data produced by the Complexity Analysis Tool (CAT). CDAT can also play back track data extracted from System Analysis Recording (SAR) tapes. The CDAT user interface consists of a primary window, a controls window, and miscellaneous pop-ups. Aircraft track and position data is displayed in the main viewing area of the primary window. The controls window contains miscellaneous control and display items. Complexity data is displayed in pop-up windows. CDAT plays back sector complexity and aircraft track and position data as a function of time. Controls are provided to start and stop playback, adjust the playback rate, and reposition the display to a specified time.

  1. National evaluation of the New Mexico client referral, ridership, and financial tracking (CRRAFT) system

    DOT National Transportation Integrated Search

    2005-07-29

    This final report describes the national evaluation of the New Mexico Client Referral, Ridership, and Financial Tracking (CRRAFT) System. The evaluation methodology assessed twelve hypotheses related to the expected outcomes of CRRAFT. To assess the ...

  2. Using Eye Trackers for Usability Evaluation of Health Information Technology: A Systematic Literature Review

    PubMed Central

    Yang, Yushi

    2015-01-01

    Background Eye-tracking technology has been used to measure human cognitive processes and has the potential to improve the usability of health information technology (HIT). However, it is still unclear how the eye-tracking method can be integrated with other traditional usability methodologies to achieve its full potential. Objective The objective of this study was to report on HIT evaluation studies that have used eye-tracker technology, and to envision the potential use of eye-tracking technology in future research. Methods We used four reference databases to initially identify 5248 related papers, which resulted in only 9 articles that met our inclusion criteria. Results Eye-tracking technology was useful in finding usability problems in many ways, but is still in its infancy for HIT usability evaluation. Limited types of HITs have been evaluated by eye trackers, and there has been a lack of evaluation research in natural settings. Conclusions More research should be done in natural settings to discover the real contextual-based usability problems of clinical and mobile HITs using eye-tracking technology with more standardized methodologies and guidance. PMID:27026079

  3. OpenCV and TYZX : video surveillance for tracking.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Jim; Spencer, Andrew; Chu, Eric

    2008-08-01

    As part of the National Security Engineering Institute (NSEI) project, several sensors were developed in conjunction with an assessment algorithm. A camera system was developed in-house to track the locations of personnel within a secure room. In addition, a commercial, off-the-shelf (COTS) tracking system developed by TYZX was examined. TYZX is a Bay Area start-up that has developed its own tracking hardware and software which we use as COTS support for robust tracking. This report discusses the pros and cons of each camera system, how they work, a proposed data fusion method, and some visual results. Distributed, embedded image processingmore » solutions show the most promise in their ability to track multiple targets in complex environments and in real-time. Future work on the camera system may include three-dimensional volumetric tracking by using multiple simple cameras, Kalman or particle filtering, automated camera calibration and registration, and gesture or path recognition.« less

  4. Uncertainty Footprint: Visualization of Nonuniform Behavior of Iterative Algorithms Applied to 4D Cell Tracking

    PubMed Central

    Wan, Y.; Hansen, C.

    2018-01-01

    Research on microscopy data from developing biological samples usually requires tracking individual cells over time. When cells are three-dimensionally and densely packed in a time-dependent scan of volumes, tracking results can become unreliable and uncertain. Not only are cell segmentation results often inaccurate to start with, but it also lacks a simple method to evaluate the tracking outcome. Previous cell tracking methods have been validated against benchmark data from real scans or artificial data, whose ground truth results are established by manual work or simulation. However, the wide variety of real-world data makes an exhaustive validation impossible. Established cell tracking tools often fail on new data, whose issues are also difficult to diagnose with only manual examinations. Therefore, data-independent tracking evaluation methods are desired for an explosion of microscopy data with increasing scale and resolution. In this paper, we propose the uncertainty footprint, an uncertainty quantification and visualization technique that examines nonuniformity at local convergence for an iterative evaluation process on a spatial domain supported by partially overlapping bases. We demonstrate that the patterns revealed by the uncertainty footprint indicate data processing quality in two algorithms from a typical cell tracking workflow – cell identification and association. A detailed analysis of the patterns further allows us to diagnose issues and design methods for improvements. A 4D cell tracking workflow equipped with the uncertainty footprint is capable of self diagnosis and correction for a higher accuracy than previous methods whose evaluation is limited by manual examinations. PMID:29456279

  5. How Many Objects are You Worth? Quantification of the Self-Motion Load on Multiple Object Tracking

    PubMed Central

    Thomas, Laura E.; Seiffert, Adriane E.

    2011-01-01

    Perhaps walking and chewing gum is effortless, but walking and tracking moving objects is not. Multiple object tracking is impaired by walking from one location to another, suggesting that updating location of the self puts demands on object tracking processes. Here, we quantified the cost of self-motion in terms of the tracking load. Participants in a virtual environment tracked a variable number of targets (1–5) among distractors while either staying in one place or moving along a path that was similar to the objects’ motion. At the end of each trial, participants decided whether a probed dot was a target or distractor. As in our previous work, self-motion significantly impaired performance in tracking multiple targets. Quantifying tracking capacity for each individual under move versus stay conditions further revealed that self-motion during tracking produced a cost to capacity of about 0.8 (±0.2) objects. Tracking your own motion is worth about one object, suggesting that updating the location of the self is similar, but perhaps slightly easier, than updating locations of objects. PMID:21991259

  6. Evaluation of the clinical efficacy of the PeTrack motion tracking system for respiratory gating in cardiac PET imaging

    NASA Astrophysics Data System (ADS)

    Manwell, Spencer; Chamberland, Marc J. P.; Klein, Ran; Xu, Tong; deKemp, Robert

    2017-03-01

    Respiratory gating is a common technique used to compensate for patient breathing motion and decrease the prevalence of image artifacts that can impact diagnoses. In this study a new data-driven respiratory gating method (PeTrack) was compared with a conventional optical tracking system. The performance of respiratory gating of the two systems was evaluated by comparing the number of respiratory triggers, patient breathing intervals and gross heart motion as measured in the respiratory-gated image reconstructions of rubidium-82 cardiac PET scans in test and control groups consisting of 15 and 8 scans, respectively. We found evidence suggesting that PeTrack is a robust patient motion tracking system that can be used to retrospectively assess patient motion in the event of failure of the conventional optical tracking system.

  7. Mobility and Active Ageing in Suburban Environments: Findings from In-Depth Interviews and Person-Based GPS Tracking

    PubMed Central

    Zeitler, Elisabeth; Buys, Laurie; Aird, Rosemary; Miller, Evonne

    2012-01-01

    Background. Governments face a significant challenge to ensure that community environments meet the mobility needs of an ageing population. Therefore, it is critical to investigate the effect of suburban environments on the choice of transportation and its relation to participation and active ageing. Objective. This research explores if and how suburban environments impact older people's mobility and their use of different modes of transport. Methods. Data derived from GPS tracking, travel diaries, brief questionnaires, and semistructured interviews were gathered from thirteen people aged from 56 to 87 years, living in low-density suburban environments in Brisbane, Australia. Results. The suburban environment influenced the choice of transportation and out-of-home mobility. Both walkability and public transportation (access and usability) impact older people's transportation choices. Impracticality of active and public transportation within suburban environments creates car dependency in older age. Conclusion. Suburban environments often create barriers to mobility, which impedes older people's engagement in their wider community and ability to actively age in place. Further research is needed to develop approaches towards age-friendly suburban environments which will encourage older people to remain active and engaged in older age. PMID:23346108

  8. Retrodiction for Bayesian multiple-hypothesis/multiple-target tracking in densely cluttered environment

    NASA Astrophysics Data System (ADS)

    Koch, Wolfgang

    1996-05-01

    Sensor data processing in a dense target/dense clutter environment is inevitably confronted with data association conflicts which correspond with the multiple hypothesis character of many modern approaches (MHT: multiple hypothesis tracking). In this paper we analyze the efficiency of retrodictive techniques that generalize standard fixed interval smoothing to MHT applications. 'Delayed estimation' based on retrodiction provides uniquely interpretable and accurate trajectories from ambiguous MHT output if a certain time delay is tolerated. In a Bayesian framework the theoretical background of retrodiction and its intimate relation to Bayesian MHT is sketched. By a simulated example with two closely-spaced targets, relatively low detection probabilities, and rather high false return densities, we demonstrate the benefits of retrodiction and quantitatively discuss the achievable track accuracies and the time delays involved for typical radar parameters.

  9. Design and test of a system for tracking referrals.

    PubMed

    Bauman, K E; Coulter, M

    1976-01-01

    Many health and welfare programs are based on a model in which services needed by consumers are identified by one agency with referral to others for provision of services. The referring agency often does not know whether the services recommended are received, yet it is assumed that receipt of those services by their clients is essential to achievement of program goals. A procedure was devised for tracking families evaluated by North Carolina's State-supported developmental evaluation centers (DECs), agencies that reflect this model. The multidisciplinary evaluation teams of these centers serve children and their families of all income levels. The developmental evaluation family tracking system is a method for determining if recommended services are received, the reasons why they are not, and whether the family desires additional help from the center or othersources. The system was piloted in the Greensboro DEC with a selected group of 67 families. Parents were contacted, mostly by telephone, at 6 months and 18 months following evaluation. Tracking forms were completed for 61 families. Professional staff spent only 2.7% of their working hours during a 3-month period on direct tracking activities and other tasks in behalf of the consumers contacted. The cost was $7.15 per case for immediate tracking and $14.49 if additional activities generated by the tracking contact were included. The system, which provides the information necessary for achieving program goals, was implemented for all 11 DECs in North Carolina in 1976.

  10. Comparison of path visualizations and cognitive measures relative to travel technique in a virtual environment.

    PubMed

    Zanbaka, Catherine A; Lok, Benjamin C; Babu, Sabarish V; Ulinski, Amy C; Hodges, Larry F

    2005-01-01

    We describe a between-subjects experiment that compared four different methods of travel and their effect on cognition and paths taken in an immersive virtual environment (IVE). Participants answered a set of questions based on Crook's condensation of Bloom's taxonomy that assessed their cognition of the IVE with respect to knowledge, understanding and application, and higher mental processes. Participants also drew a sketch map of the IVE and the objects within it. The users' sense of presence was measured using the Steed-Usoh-Slater Presence Questionnaire. The participants' position and head orientation were automatically logged during their exposure to the virtual environment. These logs were later used to create visualizations of the paths taken. Path analysis, such as exploring the overlaid path visualizations and dwell data information, revealed further differences among the travel techniques. Our results suggest that, for applications where problem solving and evaluation of information is important or where opportunity to train is minimal, then having a large tracked space so that the participant can walk around the virtual environment provides benefits over common virtual travel techniques.

  11. An automated dose tracking system for adaptive radiation therapy.

    PubMed

    Liu, Chang; Kim, Jinkoo; Kumarasiri, Akila; Mayyas, Essa; Brown, Stephen L; Wen, Ning; Siddiqui, Farzan; Chetty, Indrin J

    2018-02-01

    The implementation of adaptive radiation therapy (ART) into routine clinical practice is technically challenging and requires significant resources to perform and validate each process step. The objective of this report is to identify the key components of ART, to illustrate how a specific automated procedure improves efficiency, and to facilitate the routine clinical application of ART. Data was used from patient images, exported from a clinical database and converted to an intermediate format for point-wise dose tracking and accumulation. The process was automated using in-house developed software containing three modularized components: an ART engine, user interactive tools, and integration tools. The ART engine conducts computing tasks using the following modules: data importing, image pre-processing, dose mapping, dose accumulation, and reporting. In addition, custom graphical user interfaces (GUIs) were developed to allow user interaction with select processes such as deformable image registration (DIR). A commercial scripting application programming interface was used to incorporate automated dose calculation for application in routine treatment planning. Each module was considered an independent program, written in C++or C#, running in a distributed Windows environment, scheduled and monitored by integration tools. The automated tracking system was retrospectively evaluated for 20 patients with prostate cancer and 96 patients with head and neck cancer, under institutional review board (IRB) approval. In addition, the system was evaluated prospectively using 4 patients with head and neck cancer. Altogether 780 prostate dose fractions and 2586 head and neck cancer dose fractions went processed, including DIR and dose mapping. On average, daily cumulative dose was computed in 3 h and the manual work was limited to 13 min per case with approximately 10% of cases requiring an additional 10 min for image registration refinement. An efficient and convenient dose tracking system for ART in the clinical setting is presented. The software and automated processes were rigorously evaluated and validated using patient image datasets. Automation of the various procedures has improved efficiency significantly, allowing for the routine clinical application of ART for improving radiation therapy effectiveness. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. The use of a battery of tracking tests in the quantitative evaluation of neurological function

    NASA Technical Reports Server (NTRS)

    Repa, B. S.; Albers, J. W.; Potvin, A. R.; Tourtellotte, W. W.

    1972-01-01

    A tracking test battery has been applied in a drug trail designed to compare the efficacy of L-DOPA and amantadine to that of L-DOPA and placebo in the treatment of 28 patients with Parkinson's disease. The drug trial provided an ideal opportunity for objectively evaluating the usefulness of tracking tests in assessing changes in neurologic function. Evaluating changes in patient performance resulting from disease progression and controlled clinical trials is of great importance in establishing effective treatment programs.

  13. Nanometer-scale anatomy of entire Stardust tracks

    NASA Astrophysics Data System (ADS)

    Nakamura-Messenger, Keiko; Keller, Lindsay P.; Clemett, Simon J.; Messenger, Scott; Ito, Motoo

    2011-07-01

    We have developed new sample preparation and analytical techniques tailored for entire aerogel tracks of Wild 2 sample analyses both on "carrot" and "bulbous" tracks. We have successfully ultramicrotomed an entire track along its axis while preserving its original shape. This innovation allowed us to examine the distribution of fragments along the entire track from the entrance hole all the way to the terminal particle. The crystalline silicates we measured have Mg-rich compositions and O isotopic compositions in the range of meteoritic materials, implying that they originated in the inner solar system. The terminal particle of the carrot track is a 16O-rich forsteritic grain that may have formed in a similar environment as Ca-, Al-rich inclusions and amoeboid olivine aggregates in primitive carbonaceous chondrites. The track also contains submicron-sized diamond grains likely formed in the solar system. Complex aromatic hydrocarbons distributed along aerogel tracks and in terminal particles. These organics are likely cometary but affected by shock heating.

  14. An Adaptive Neural Mechanism for Acoustic Motion Perception with Varying Sparsity

    PubMed Central

    Shaikh, Danish; Manoonpong, Poramate

    2017-01-01

    Biological motion-sensitive neural circuits are quite adept in perceiving the relative motion of a relevant stimulus. Motion perception is a fundamental ability in neural sensory processing and crucial in target tracking tasks. Tracking a stimulus entails the ability to perceive its motion, i.e., extracting information about its direction and velocity. Here we focus on auditory motion perception of sound stimuli, which is poorly understood as compared to its visual counterpart. In earlier work we have developed a bio-inspired neural learning mechanism for acoustic motion perception. The mechanism extracts directional information via a model of the peripheral auditory system of lizards. The mechanism uses only this directional information obtained via specific motor behaviour to learn the angular velocity of unoccluded sound stimuli in motion. In nature however the stimulus being tracked may be occluded by artefacts in the environment, such as an escaping prey momentarily disappearing behind a cover of trees. This article extends the earlier work by presenting a comparative investigation of auditory motion perception for unoccluded and occluded tonal sound stimuli with a frequency of 2.2 kHz in both simulation and practice. Three instances of each stimulus are employed, differing in their movement velocities–0.5°/time step, 1.0°/time step and 1.5°/time step. To validate the approach in practice, we implement the proposed neural mechanism on a wheeled mobile robot and evaluate its performance in auditory tracking. PMID:28337137

  15. Creating a Realistic Weather Environment for Motion-Based Piloted Flight Simulation

    NASA Technical Reports Server (NTRS)

    Daniels, Taumi S.; Schaffner, Philip R.; Evans, Emory T.; Neece, Robert T.; Young, Steve D.

    2012-01-01

    A flight simulation environment is being enhanced to facilitate experiments that evaluate research prototypes of advanced onboard weather radar, hazard/integrity monitoring (HIM), and integrated alerting and notification (IAN) concepts in adverse weather conditions. The simulation environment uses weather data based on real weather events to support operational scenarios in a terminal area. A simulated atmospheric environment was realized by using numerical weather data sets. These were produced from the High-Resolution Rapid Refresh (HRRR) model hosted and run by the National Oceanic and Atmospheric Administration (NOAA). To align with the planned flight simulation experiment requirements, several HRRR data sets were acquired courtesy of NOAA. These data sets coincided with severe weather events at the Memphis International Airport (MEM) in Memphis, TN. In addition, representative flight tracks for approaches and departures at MEM were generated and used to develop and test simulations of (1) what onboard sensors such as the weather radar would observe; (2) what datalinks of weather information would provide; and (3) what atmospheric conditions the aircraft would experience (e.g. turbulence, winds, and icing). The simulation includes a weather radar display that provides weather and turbulence modes, derived from the modeled weather along the flight track. The radar capabilities and the pilots controls simulate current-generation commercial weather radar systems. Appropriate data-linked weather advisories (e.g., SIGMET) were derived from the HRRR weather models and provided to the pilot consistent with NextGen concepts of use for Aeronautical Information Service (AIS) and Meteorological (MET) data link products. The net result of this simulation development was the creation of an environment that supports investigations of new flight deck information systems, methods for incorporation of better weather information, and pilot interface and operational improvements for better aviation safety. This research is part of a larger effort at NASA to study the impact of the growing complexity of operations, information, and systems on crew decision-making and response effectiveness; and then to recommend methods for improving future designs.

  16. Contextual influence on evaluation capacity building in a rapidly changing environment under new governmental policies.

    PubMed

    Chen, Karen Hui-Jung

    2017-12-01

    Evaluation capacity building (ECB) is a context-dependent process. Contextual factors affecting ECB implementation have been explored theoretically and practically, but their influence within a changing environment has seldom been discussed. This study examined essential context-sensitive parameters, particularly those involved in implementing new governmental policies regarding higher education. Taiwan was used as a case study for exploring the effect of contextual change on ECB attributes from the perspectives of training receivers and providers. Surveys and interviews were used for data collection and importance-performance analysis was applied for data analysis. Four prominent features were identified. First, the ECB attributes perceived as important by receivers were performed adequately, whereas those perceived as less important were performed less well. Second, under new policies, training provider designed training covering a wide range of ECB, whereas receivers focused on those can be directly applied in evaluation process. Third, in a small education system such as Taiwan's, the complexity of peer review is high and ethical issues become important. Fourth, because the evaluation structure has been changed from single- to dual-track, receivers expect more training for institution staff, whereas providers insist on hierarchical training. Aligning ECB supply and needs is paramount for adaptation to new policies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Dynamic Trajectory Extraction from Stereo Vision Using Fuzzy Clustering

    NASA Astrophysics Data System (ADS)

    Onishi, Masaki; Yoda, Ikushi

    In recent years, many human tracking researches have been proposed in order to analyze human dynamic trajectory. These researches are general technology applicable to various fields, such as customer purchase analysis in a shopping environment and safety control in a (railroad) crossing. In this paper, we present a new approach for tracking human positions by stereo image. We use the framework of two-stepped clustering with k-means method and fuzzy clustering to detect human regions. In the initial clustering, k-means method makes middle clusters from objective features extracted by stereo vision at high speed. In the last clustering, c-means fuzzy method cluster middle clusters based on attributes into human regions. Our proposed method can be correctly clustered by expressing ambiguity using fuzzy clustering, even when many people are close to each other. The validity of our technique was evaluated with the experiment of trajectories extraction of doctors and nurses in an emergency room of a hospital.

  18. Real-time tracking using stereo and motion: Visual perception for space robotics

    NASA Technical Reports Server (NTRS)

    Nishihara, H. Keith; Thomas, Hans; Huber, Eric; Reid, C. Ann

    1994-01-01

    The state-of-the-art in computing technology is rapidly attaining the performance necessary to implement many early vision algorithms at real-time rates. This new capability is helping to accelerate progress in vision research by improving our ability to evaluate the performance of algorithms in dynamic environments. In particular, we are becoming much more aware of the relative stability of various visual measurements in the presence of camera motion and system noise. This new processing speed is also allowing us to raise our sights toward accomplishing much higher-level processing tasks, such as figure-ground separation and active object tracking, in real-time. This paper describes a methodology for using early visual measurements to accomplish higher-level tasks; it then presents an overview of the high-speed accelerators developed at Teleos to support early visual measurements. The final section describes the successful deployment of a real-time vision system to provide visual perception for the Extravehicular Activity Helper/Retriever robotic system in tests aboard NASA's KC135 reduced gravity aircraft.

  19. Person detection and tracking with a 360° lidar system

    NASA Astrophysics Data System (ADS)

    Hammer, Marcus; Hebel, Marcus; Arens, Michael

    2017-10-01

    Today it is easily possible to generate dense point clouds of the sensor environment using 360° LiDAR (Light Detection and Ranging) sensors which are available since a number of years. The interpretation of these data is much more challenging. For the automated data evaluation the detection and classification of objects is a fundamental task. Especially in urban scenarios moving objects like persons or vehicles are of particular interest, for instance in automatic collision avoidance, for mobile sensor platforms or surveillance tasks. In literature there are several approaches for automated person detection in point clouds. While most techniques show acceptable results in object detection, the computation time is often crucial. The runtime can be problematic, especially due to the amount of data in the panoramic 360° point clouds. On the other hand, for most applications an object detection and classification in real time is needed. The paper presents a proposal for a fast, real-time capable algorithm for person detection, classification and tracking in panoramic point clouds.

  20. Evaluation of 2 cognitive abilities tests in a dual-task environment

    NASA Technical Reports Server (NTRS)

    Vidulich, M. A.; Tsang, P. S.

    1986-01-01

    Most real world operators are required to perform multiple tasks simultaneously. In some cases, such as flying a high performance aircraft or trouble shooting a failing nuclear power plant, the operator's ability to time share or process in parallel" can be driven to extremes. This has created interest in selection tests of cognitive abilities. Two tests that have been suggested are the Dichotic Listening Task and the Cognitive Failures Questionnaire. Correlations between these test results and time sharing performance were obtained and the validity of these tests were examined. The primary task was a tracking task with dynamically varying bandwidth. This was performed either alone or concurrently with either another tracking task or a spatial transformation task. The results were: (1) An unexpected negative correlation was detected between the two tests; (2) The lack of correlation between either test and task performance made the predictive utility of the tests scores appear questionable; (3) Pilots made more errors on the Dichotic Listening Task than college students.

  1. Dynamics and control of quadcopter using linear model predictive control approach

    NASA Astrophysics Data System (ADS)

    Islam, M.; Okasha, M.; Idres, M. M.

    2017-12-01

    This paper investigates the dynamics and control of a quadcopter using the Model Predictive Control (MPC) approach. The dynamic model is of high fidelity and nonlinear, with six degrees of freedom that include disturbances and model uncertainties. The control approach is developed based on MPC to track different reference trajectories ranging from simple ones such as circular to complex helical trajectories. In this control technique, a linearized model is derived and the receding horizon method is applied to generate the optimal control sequence. Although MPC is computer expensive, it is highly effective to deal with the different types of nonlinearities and constraints such as actuators’ saturation and model uncertainties. The MPC parameters (control and prediction horizons) are selected by trial-and-error approach. Several simulation scenarios are performed to examine and evaluate the performance of the proposed control approach using MATLAB and Simulink environment. Simulation results show that this control approach is highly effective to track a given reference trajectory.

  2. Influence of Cryogenic Treatments on the Wear Behavior of AISI 420 Martensitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Prieto, G.; Tuckart, W. R.

    2017-11-01

    The objective of the present work is to characterize the wear behavior of a cryogenically treated low-carbon AISI 420 martensitic stainless steel, by means of ball-on-disk tribological tests. Wear tests were performed under a range of applied normal loads and in two different environments, namely a petrolatum bath and an argon atmosphere. Wear tracks were analyzed by both optical and scanning electron microscopy and Raman spectroscopy to evaluate wear volume, track geometry, surface features and the tribolayers generated after testing. This paper is an extension of the work originally reported in the VIII Iberian Conference of Tribology (Prieto and Tuckart, in: Ballest Jiménez, Rodríguez Espinosa, Serrano Saurín, Pardilla Arias, Olivares Bermúdez (eds) VIII Iberian conference of tribology, Cartagena, 2015). In this study, it has been experimentally demonstrated that cryogenically treated specimens showed a wear resistance improvement ranging from 35 to 90% compared to conventionally treated ones.

  3. Permanent magnet synchronous motor servo system control based on μC/OS

    NASA Astrophysics Data System (ADS)

    Shi, Chongyang; Chen, Kele; Chen, Xinglong

    2015-10-01

    When Opto-Electronic Tracking system operates in complex environments, every subsystem must operate efficiently and stably. As a important part of Opto-Electronic Tracking system, the performance of PMSM(Permanent Magnet Synchronous Motor) servo system affects the Opto-Electronic Tracking system's accuracy and speed greatly[1][2]. This paper applied embedded real-time operating system μC/OS to the control of PMSM servo system, implemented SVPWM(Space Vector Pulse Width Modulation) algorithm in PMSM servo system, optimized the stability of PMSM servo system. Pointing on the characteristics of the Opto-Electronic Tracking system, this paper expanded μC/OS with software redundancy processes, remote debugging and upgrading. As a result, the Opto- Electronic Tracking system performs efficiently and stably.

  4. Compressed multi-block local binary pattern for object tracking

    NASA Astrophysics Data System (ADS)

    Li, Tianwen; Gao, Yun; Zhao, Lei; Zhou, Hao

    2018-04-01

    Both robustness and real-time are very important for the application of object tracking under a real environment. The focused trackers based on deep learning are difficult to satisfy with the real-time of tracking. Compressive sensing provided a technical support for real-time tracking. In this paper, an object can be tracked via a multi-block local binary pattern feature. The feature vector was extracted based on the multi-block local binary pattern feature, which was compressed via a sparse random Gaussian matrix as the measurement matrix. The experiments showed that the proposed tracker ran in real-time and outperformed the existed compressive trackers based on Haar-like feature on many challenging video sequences in terms of accuracy and robustness.

  5. Evaluation of a video-based head motion tracking system for dedicated brain PET

    NASA Astrophysics Data System (ADS)

    Anishchenko, S.; Beylin, D.; Stepanov, P.; Stepanov, A.; Weinberg, I. N.; Schaeffer, S.; Zavarzin, V.; Shaposhnikov, D.; Smith, M. F.

    2015-03-01

    Unintentional head motion during Positron Emission Tomography (PET) data acquisition can degrade PET image quality and lead to artifacts. Poor patient compliance, head tremor, and coughing are examples of movement sources. Head motion due to patient non-compliance can be an issue with the rise of amyloid brain PET in dementia patients. To preserve PET image resolution and quantitative accuracy, head motion can be tracked and corrected in the image reconstruction algorithm. While fiducial markers can be used, a contactless approach is preferable. A video-based head motion tracking system for a dedicated portable brain PET scanner was developed. Four wide-angle cameras organized in two stereo pairs are used for capturing video of the patient's head during the PET data acquisition. Facial points are automatically tracked and used to determine the six degree of freedom head pose as a function of time. The presented work evaluated the newly designed tracking system using a head phantom and a moving American College of Radiology (ACR) phantom. The mean video-tracking error was 0.99±0.90 mm relative to the magnetic tracking device used as ground truth. Qualitative evaluation with the ACR phantom shows the advantage of the motion tracking application. The developed system is able to perform tracking with accuracy close to millimeter and can help to preserve resolution of brain PET images in presence of movements.

  6. Robust tracking of a virtual electrode on a coronary sinus catheter for atrial fibrillation ablation procedures

    NASA Astrophysics Data System (ADS)

    Wu, Wen; Chen, Terrence; Strobel, Norbert; Comaniciu, Dorin

    2012-02-01

    Catheter tracking in X-ray fluoroscopic images has become more important in interventional applications for atrial fibrillation (AF) ablation procedures. It provides real-time guidance for the physicians and can be used as reference for motion compensation applications. In this paper, we propose a novel approach to track a virtual electrode (VE), which is a non-existing electrode on the coronary sinus (CS) catheter at a more proximal location than any real electrodes. Successful tracking of the VE can provide more accurate motion information than tracking of real electrodes. To achieve VE tracking, we first model the CS catheter as a set of electrodes which are detected by our previously published learning-based approach.1 The tracked electrodes are then used to generate the hypotheses for tracking the VE. Model-based hypotheses are fused and evaluated by a Bayesian framework. Evaluation has been conducted on a database of clinical AF ablation data including challenging scenarios such as low signal-to-noise ratio (SNR), occlusion and nonrigid deformation. Our approach obtains 0.54mm median error and 90% of evaluated data have errors less than 1.67mm. The speed of our tracking algorithm reaches 6 frames-per-second on most data. Our study on motion compensation shows that using the VE as reference provides a good point to detect non-physiological catheter motion during the AF ablation procedures.2

  7. Timing matters: sonar call groups facilitate target localization in bats.

    PubMed

    Kothari, Ninad B; Wohlgemuth, Melville J; Hulgard, Katrine; Surlykke, Annemarie; Moss, Cynthia F

    2014-01-01

    To successfully negotiate a cluttered environment, an echolocating bat must control the timing of motor behaviors in response to dynamic sensory information. Here we detail the big brown bat's adaptive temporal control over sonar call production for tracking prey, moving predictably or unpredictably, under different experimental conditions. We studied the adaptive control of vocal-motor behaviors in free-flying big brown bats, Eptesicus fuscus, as they captured tethered and free-flying insects, in open and cluttered environments. We also studied adaptive sonar behavior in bats trained to track moving targets from a resting position. In each of these experiments, bats adjusted the features of their calls to separate target and clutter. Under many task conditions, flying bats produced prominent sonar sound groups identified as clusters of echolocation pulses with relatively stable intervals, surrounded by longer pulse intervals. In experiments where bats tracked approaching targets from a resting position, bats also produced sonar sound groups, and the prevalence of these sonar sound groups increased when motion of the target was unpredictable. We hypothesize that sonar sound groups produced during flight, and the sonar call doublets produced by a bat tracking a target from a resting position, help the animal resolve dynamic target location and represent the echo scene in greater detail. Collectively, our data reveal adaptive temporal control over sonar call production that allows the bat to negotiate a complex and dynamic environment.

  8. Timing matters: sonar call groups facilitate target localization in bats

    PubMed Central

    Kothari, Ninad B.; Wohlgemuth, Melville J.; Hulgard, Katrine; Surlykke, Annemarie; Moss, Cynthia F.

    2014-01-01

    To successfully negotiate a cluttered environment, an echolocating bat must control the timing of motor behaviors in response to dynamic sensory information. Here we detail the big brown bat's adaptive temporal control over sonar call production for tracking prey, moving predictably or unpredictably, under different experimental conditions. We studied the adaptive control of vocal-motor behaviors in free-flying big brown bats, Eptesicus fuscus, as they captured tethered and free-flying insects, in open and cluttered environments. We also studied adaptive sonar behavior in bats trained to track moving targets from a resting position. In each of these experiments, bats adjusted the features of their calls to separate target and clutter. Under many task conditions, flying bats produced prominent sonar sound groups identified as clusters of echolocation pulses with relatively stable intervals, surrounded by longer pulse intervals. In experiments where bats tracked approaching targets from a resting position, bats also produced sonar sound groups, and the prevalence of these sonar sound groups increased when motion of the target was unpredictable. We hypothesize that sonar sound groups produced during flight, and the sonar call doublets produced by a bat tracking a target from a resting position, help the animal resolve dynamic target location and represent the echo scene in greater detail. Collectively, our data reveal adaptive temporal control over sonar call production that allows the bat to negotiate a complex and dynamic environment. PMID:24860509

  9. MotorSense: Using Motion Tracking Technology to Support the Identification and Treatment of Gross-Motor Dysfunction.

    PubMed

    Arnedillo-Sánchez, Inmaculada; Boyle, Bryan; Bossavit, Benoît

    2017-01-01

    MotorSense is a motion detection and tracking technology that can be implemented across a range of environments to assist in detecting delays in gross-motor skills development. The system utilises the motion tracking functionality of Microsoft's Kinect™. It features games that require children to perform graded gross-motor tasks matched with their chronological and developmental ages. This paper describes the rationale for MotorSense, provides an overview of the functionality of the system and illustrates sample activities.

  10. Trajectory tracking control for a nonholonomic mobile robot under ROS

    NASA Astrophysics Data System (ADS)

    Lakhdar Besseghieur, Khadir; Trębiński, Radosław; Kaczmarek, Wojciech; Panasiuk, Jarosław

    2018-05-01

    In this paper, the implementation of the trajectory tracking control strategy on a ROS-based mobile robot is considered. Our test-bench is the nonholonomic mobile robot ‘TURTLEBOT’. ROS facilitates considerably setting-up a suitable environment to test the designed controller. Our aim is to develop a framework using ROS concepts so that a trajectory tracking controller can be implemented on any ROS-enabled mobile robot. Practical experiments with ‘TURTLEBOT’ are conducted to assess the framework reliability.

  11. Position and Orientation Tracking in a Ubiquitous Monitoring System for Parkinson Disease Patients With Freezing of Gait Symptom

    PubMed Central

    Català, Andreu; Rodríguez Martín, Daniel; van der Aa, Nico; Chen, Wei; Rauterberg, Matthias

    2013-01-01

    Background Freezing of gait (FoG) is one of the most disturbing and least understood symptoms in Parkinson disease (PD). Although the majority of existing assistive systems assume accurate detections of FoG episodes, the detection itself is still an open problem. The specificity of FoG is its dependency on the context of a patient, such as the current location or activity. Knowing the patient's context might improve FoG detection. One of the main technical challenges that needs to be solved in order to start using contextual information for FoG detection is accurate estimation of the patient's position and orientation toward key elements of his or her indoor environment. Objective The objectives of this paper are to (1) present the concept of the monitoring system, based on wearable and ambient sensors, which is designed to detect FoG using the spatial context of the user, (2) establish a set of requirements for the application of position and orientation tracking in FoG detection, (3) evaluate the accuracy of the position estimation for the tracking system, and (4) evaluate two different methods for human orientation estimation. Methods We developed a prototype system to localize humans and track their orientation, as an important prerequisite for a context-based FoG monitoring system. To setup the system for experiments with real PD patients, the accuracy of the position and orientation tracking was assessed under laboratory conditions in 12 participants. To collect the data, the participants were asked to wear a smartphone, with and without known orientation around the waist, while walking over a predefined path in the marked area captured by two Kinect cameras with non-overlapping fields of view. Results We used the root mean square error (RMSE) as the main performance measure. The vision based position tracking algorithm achieved RMSE = 0.16 m in position estimation for upright standing people. The experimental results for the proposed human orientation estimation methods demonstrated the adaptivity and robustness to changes in the smartphone attachment position, when the fusion of both vision and inertial information was used. Conclusions The system achieves satisfactory accuracy on indoor position tracking for the use in the FoG detection application with spatial context. The combination of inertial and vision information has the potential for correct patient heading estimation even when the inertial wearable sensor device is put into an a priori unknown position. PMID:25098265

  12. Position and orientation tracking in a ubiquitous monitoring system for Parkinson disease patients with freezing of gait symptom.

    PubMed

    Takač, Boris; Català, Andreu; Rodríguez Martín, Daniel; van der Aa, Nico; Chen, Wei; Rauterberg, Matthias

    2013-07-15

    Freezing of gait (FoG) is one of the most disturbing and least understood symptoms in Parkinson disease (PD). Although the majority of existing assistive systems assume accurate detections of FoG episodes, the detection itself is still an open problem. The specificity of FoG is its dependency on the context of a patient, such as the current location or activity. Knowing the patient's context might improve FoG detection. One of the main technical challenges that needs to be solved in order to start using contextual information for FoG detection is accurate estimation of the patient's position and orientation toward key elements of his or her indoor environment. The objectives of this paper are to (1) present the concept of the monitoring system, based on wearable and ambient sensors, which is designed to detect FoG using the spatial context of the user, (2) establish a set of requirements for the application of position and orientation tracking in FoG detection, (3) evaluate the accuracy of the position estimation for the tracking system, and (4) evaluate two different methods for human orientation estimation. We developed a prototype system to localize humans and track their orientation, as an important prerequisite for a context-based FoG monitoring system. To setup the system for experiments with real PD patients, the accuracy of the position and orientation tracking was assessed under laboratory conditions in 12 participants. To collect the data, the participants were asked to wear a smartphone, with and without known orientation around the waist, while walking over a predefined path in the marked area captured by two Kinect cameras with non-overlapping fields of view. We used the root mean square error (RMSE) as the main performance measure. The vision based position tracking algorithm achieved RMSE = 0.16 m in position estimation for upright standing people. The experimental results for the proposed human orientation estimation methods demonstrated the adaptivity and robustness to changes in the smartphone attachment position, when the fusion of both vision and inertial information was used. The system achieves satisfactory accuracy on indoor position tracking for the use in the FoG detection application with spatial context. The combination of inertial and vision information has the potential for correct patient heading estimation even when the inertial wearable sensor device is put into an a priori unknown position.

  13. Measurements by A LEAP-Based Virtual Glove for the Hand Rehabilitation

    PubMed Central

    Cinque, Luigi; Polsinelli, Matteo; Spezialetti, Matteo

    2018-01-01

    Hand rehabilitation is fundamental after stroke or surgery. Traditional rehabilitation requires a therapist and implies high costs, stress for the patient, and subjective evaluation of the therapy effectiveness. Alternative approaches, based on mechanical and tracking-based gloves, can be really effective when used in virtual reality (VR) environments. Mechanical devices are often expensive, cumbersome, patient specific and hand specific, while tracking-based devices are not affected by these limitations but, especially if based on a single tracking sensor, could suffer from occlusions. In this paper, the implementation of a multi-sensors approach, the Virtual Glove (VG), based on the simultaneous use of two orthogonal LEAP motion controllers, is described. The VG is calibrated and static positioning measurements are compared with those collected with an accurate spatial positioning system. The positioning error is lower than 6 mm in a cylindrical region of interest of radius 10 cm and height 21 cm. Real-time hand tracking measurements are also performed, analysed and reported. Hand tracking measurements show that VG operated in real-time (60 fps), reduced occlusions, and managed two LEAP sensors correctly, without any temporal and spatial discontinuity when skipping from one sensor to the other. A video demonstrating the good performance of VG is also collected and presented in the Supplementary Materials. Results are promising but further work must be done to allow the calculation of the forces exerted by each finger when constrained by mechanical tools (e.g., peg-boards) and for reducing occlusions when grasping these tools. Although the VG is proposed for rehabilitation purposes, it could also be used for tele-operation of tools and robots, and for other VR applications. PMID:29534448

  14. Measurements by A LEAP-Based Virtual Glove for the Hand Rehabilitation.

    PubMed

    Placidi, Giuseppe; Cinque, Luigi; Polsinelli, Matteo; Spezialetti, Matteo

    2018-03-10

    Hand rehabilitation is fundamental after stroke or surgery. Traditional rehabilitation requires a therapist and implies high costs, stress for the patient, and subjective evaluation of the therapy effectiveness. Alternative approaches, based on mechanical and tracking-based gloves, can be really effective when used in virtual reality (VR) environments. Mechanical devices are often expensive, cumbersome, patient specific and hand specific, while tracking-based devices are not affected by these limitations but, especially if based on a single tracking sensor, could suffer from occlusions. In this paper, the implementation of a multi-sensors approach, the Virtual Glove (VG), based on the simultaneous use of two orthogonal LEAP motion controllers, is described. The VG is calibrated and static positioning measurements are compared with those collected with an accurate spatial positioning system. The positioning error is lower than 6 mm in a cylindrical region of interest of radius 10 cm and height 21 cm. Real-time hand tracking measurements are also performed, analysed and reported. Hand tracking measurements show that VG operated in real-time (60 fps), reduced occlusions, and managed two LEAP sensors correctly, without any temporal and spatial discontinuity when skipping from one sensor to the other. A video demonstrating the good performance of VG is also collected and presented in the Supplementary Materials. Results are promising but further work must be done to allow the calculation of the forces exerted by each finger when constrained by mechanical tools (e.g., peg-boards) and for reducing occlusions when grasping these tools. Although the VG is proposed for rehabilitation purposes, it could also be used for tele-operation of tools and robots, and for other VR applications.

  15. Evaluation of the U.S. Army Alcohol and Drug Abuse Prevention and Control Program. Phase 2

    DTIC Science & Technology

    1994-06-13

    24 Alcohol Last Use and Frequency of Use by Track ................ 26 ! Cannabis and Cocaine Last Use By Track...Outcome ...................................... 69 Alcohol Track II Probability Results ........................... 70 Cannabis Track I1 Probability...81 Time By Treatment Modality for Alcohol By Track ................. 82 Time By Treatment Modality for Cannabis and Cocaine ............. 84

  16. Challenges and Opportunities of Information Technology in the 90s. Track VII: Managing Applications and Technology.

    ERIC Educational Resources Information Center

    CAUSE, Boulder, CO.

    Seven papers from the 1990 CAUSE Conference Track VII: Managing Applications and Technology are presented. Authors describe how colleges and universities are incorporating emerging technologies into their campus environments: hardware; software; and procedural techniques. Papers and their authors are as follows: "The Iowa Student Information…

  17. Source Tracking of Nitrous Oxide using A Quantum Cascade Laser System in the Field and Laboratory Environments

    EPA Science Inventory

    Nitrous oxide is an important greenhouse gas and ozone depleting substance. Nitrification and denitrification are two major biological pathways that are responsible for soil emissions of N2O. However, source tracking of in-situ or laboratory N2O production is still challenging to...

  18. Tracking a Head-Mounted Display in a Room-Sized Environment with Head-Mounted Cameras

    DTIC Science & Technology

    1990-04-01

    poor resolution and a very limited working volume [Wan90]. 4 OPTOTRAK [Nor88] uses one camera with two dual-axis CCD infrared position sensors. Each...Nor88] Northern Digital. Trade literature on Optotrak - Northern Digital’s Three Dimensional Optical Motion Tracking and Analysis System. Northern Digital

  19. The Influence of Ability Grouping on Math Achievement in a Rural Middle School

    ERIC Educational Resources Information Center

    Pritchard, Robert R.

    2012-01-01

    The researcher examined the academic performance of low-tracked students (n = 156) using standardized math test scores to determine whether there is a statistically significant difference in achievement depending on academic environment, tracked or nontracked. An analysis of variance (ANOVA) was calculated, using a paired samples t-test for a…

  20. Non-Tenure-Track Faculty Job Satisfaction and Organizational Sense of Belonging

    ERIC Educational Resources Information Center

    Hudson, Barbara Krall

    2013-01-01

    Non-tenure-track (NTT) faculty are playing an increasingly larger role in the instruction of students in higher education. They provide a flexible workforce with specialized expertise, often prefer to work part-time and frequently teach large introductory courses. Concerns about their treatment and the environment in which they work are often…

  1. Learning to Rapidly Re-Contact the Lost Plume in Chemical Plume Tracing

    PubMed Central

    Cao, Meng-Li; Meng, Qing-Hao; Wang, Jia-Ying; Luo, Bing; Jing, Ya-Qi; Ma, Shu-Gen

    2015-01-01

    Maintaining contact between the robot and plume is significant in chemical plume tracing (CPT). In the time immediately following the loss of chemical detection during the process of CPT, Track-Out activities bias the robot heading relative to the upwind direction, expecting to rapidly re-contact the plume. To determine the bias angle used in the Track-Out activity, we propose an online instance-based reinforcement learning method, namely virtual trail following (VTF). In VTF, action-value is generalized from recently stored instances of successful Track-Out activities. We also propose a collaborative VTF (cVTF) method, in which multiple robots store their own instances, and learn from the stored instances, in the same database. The proposed VTF and cVTF methods are compared with biased upwind surge (BUS) method, in which all Track-Out activities utilize an offline optimized universal bias angle, in an indoor environment with three different airflow fields. With respect to our experimental conditions, VTF and cVTF show stronger adaptability to different airflow environments than BUS, and furthermore, cVTF yields higher success rates and time-efficiencies than VTF. PMID:25825974

  2. Multisensor-based human detection and tracking for mobile service robots.

    PubMed

    Bellotto, Nicola; Hu, Huosheng

    2009-02-01

    One of fundamental issues for service robots is human-robot interaction. In order to perform such a task and provide the desired services, these robots need to detect and track people in the surroundings. In this paper, we propose a solution for human tracking with a mobile robot that implements multisensor data fusion techniques. The system utilizes a new algorithm for laser-based leg detection using the onboard laser range finder (LRF). The approach is based on the recognition of typical leg patterns extracted from laser scans, which are shown to also be very discriminative in cluttered environments. These patterns can be used to localize both static and walking persons, even when the robot moves. Furthermore, faces are detected using the robot's camera, and the information is fused to the legs' position using a sequential implementation of unscented Kalman filter. The proposed solution is feasible for service robots with a similar device configuration and has been successfully implemented on two different mobile platforms. Several experiments illustrate the effectiveness of our approach, showing that robust human tracking can be performed within complex indoor environments.

  3. Measuring vigilance decrement using computer vision assisted eye tracking in dynamic naturalistic environments.

    PubMed

    Bodala, Indu P; Abbasi, Nida I; Yu Sun; Bezerianos, Anastasios; Al-Nashash, Hasan; Thakor, Nitish V

    2017-07-01

    Eye tracking offers a practical solution for monitoring cognitive performance in real world tasks. However, eye tracking in dynamic environments is difficult due to high spatial and temporal variation of stimuli, needing further and thorough investigation. In this paper, we study the possibility of developing a novel computer vision assisted eye tracking analysis by using fixations. Eye movement data is obtained from a long duration naturalistic driving experiment. Source invariant feature transform (SIFT) algorithm was implemented using VLFeat toolbox to identify multiple areas of interest (AOIs). A new measure called `fixation score' was defined to understand the dynamics of fixation position between the target AOI and the non target AOIs. Fixation score is maximum when the subjects focus on the target AOI and diminishes when they gaze at the non-target AOIs. Statistically significant negative correlation was found between fixation score and reaction time data (r =-0.2253 and p<;0.05). This implies that with vigilance decrement, the fixation score decreases due to visual attention shifting away from the target objects resulting in an increase in the reaction time.

  4. 40 CFR 73.32 - [Reserved

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 16 2011-07-01 2011-07-01 false [Reserved] 73.32 Section 73.32 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) SULFUR DIOXIDE ALLOWANCE SYSTEM Allowance Tracking System § 73.32 [Reserved] ...

  5. 40 CFR 73.32 - [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false [Reserved] 73.32 Section 73.32 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) SULFUR DIOXIDE ALLOWANCE SYSTEM Allowance Tracking System § 73.32 [Reserved] ...

  6. Efficient integration of spectral features for vehicle tracking utilizing an adaptive sensor

    NASA Astrophysics Data System (ADS)

    Uzkent, Burak; Hoffman, Matthew J.; Vodacek, Anthony

    2015-03-01

    Object tracking in urban environments is an important and challenging problem that is traditionally tackled using visible and near infrared wavelengths. By inserting extended data such as spectral features of the objects one can improve the reliability of the identification process. However, huge increase in data created by hyperspectral imaging is usually prohibitive. To overcome the complexity problem, we propose a persistent air-to-ground target tracking system inspired by a state-of-the-art, adaptive, multi-modal sensor. The adaptive sensor is capable of providing panchromatic images as well as the spectra of desired pixels. This addresses the data challenge of hyperspectral tracking by only recording spectral data as needed. Spectral likelihoods are integrated into a data association algorithm in a Bayesian fashion to minimize the likelihood of misidentification. A framework for controlling spectral data collection is developed by incorporating motion segmentation information and prior information from a Gaussian Sum filter (GSF) movement predictions from a multi-model forecasting set. An intersection mask of the surveillance area is extracted from OpenStreetMap source and incorporated into the tracking algorithm to perform online refinement of multiple model set. The proposed system is tested using challenging and realistic scenarios generated in an adverse environment.

  7. PSO Algorithm Particle Filters for Improving the Performance of Lane Detection and Tracking Systems in Difficult Roads

    PubMed Central

    Cheng, Wen-Chang

    2012-01-01

    In this paper we propose a robust lane detection and tracking method by combining particle filters with the particle swarm optimization method. This method mainly uses the particle filters to detect and track the local optimum of the lane model in the input image and then seeks the global optimal solution of the lane model by a particle swarm optimization method. The particle filter can effectively complete lane detection and tracking in complicated or variable lane environments. However, the result obtained is usually a local optimal system status rather than the global optimal system status. Thus, the particle swarm optimization method is used to further refine the global optimal system status in all system statuses. Since the particle swarm optimization method is a global optimization algorithm based on iterative computing, it can find the global optimal lane model by simulating the food finding way of fish school or insects under the mutual cooperation of all particles. In verification testing, the test environments included highways and ordinary roads as well as straight and curved lanes, uphill and downhill lanes, lane changes, etc. Our proposed method can complete the lane detection and tracking more accurately and effectively then existing options. PMID:23235453

  8. A binary link tracker for the BaBar level 1 trigger system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berenyi, A.; Chen, H.K.; Dao, K.

    1999-08-01

    The BaBar detector at PEP-II will operate in a high-luminosity e{sup +}e{sup {minus}} collider environment near the {Upsilon}(4S) resonance with the primary goal of studying CP violation in the B meson system. In this environment, typical physics events of interest involve multiple charged particles. These events are identified by counting these tracks in a fast first level (Level 1) trigger system, by reconstructing the tracks in real time. For this purpose, a Binary Link Tracker Module (BLTM) was designed and fabricated for the BaBar Level 1 Drift Chamber trigger system. The BLTM is responsible for linking track segments, constructed bymore » the Track Segment Finder Modules (TSFM), into complete tracks. A single BLTM module processes a 360 MBytes/s stream of segment hit data, corresponding to information from the entire Drift Chamber, and implements a fast and robust algorithm that tolerates high hit occupancies as well as local inefficiencies of the Drift Chamber. The algorithms and the necessary control logic of the BLTM were implemented in Field Programmable Gate Arrays (FPGAs), using the VHDL hardware description language. The finished 9U x 400 mm Euro-format board contains roughly 75,000 gates of programmable logic or about 10,000 lines of VHDL code synthesized into five FPGAs.« less

  9. Workshop summary: connecting social and environmental factors to measure and track environmental health disparities.

    PubMed

    Payne-Sturges, Devon; Gee, Gilbert C; Crowder, Kirstin; Hurley, Bradford J; Lee, Charles; Morello-Frosch, Rachel; Rosenbaum, Arlene; Schulz, Amy; Wells, Charles; Woodruff, Tracey; Zenick, Hal

    2006-10-01

    On May 24-25, 2005 in Ann Arbor, Michigan, the US Environmental Protection Agency, the National Institute of Environmental Health Sciences, and the University of Michigan sponsored a technical workshop on the topic of connecting social and environmental factors to measure and track environmental health disparities. The workshop was designed to develop a transdisciplinary scientific foundation for exploring the conceptual issues, data needs, and policy applications associated with social and environmental factors used to measure and track racial, ethnic, and class disparities in environmental health. Papers, presentations, and discussions focused on the use of multilevel analysis to study environmental health disparities, the development of an organizing framework for evaluating health disparities, the development of indicators, and the generation of community-based participatory approaches for indicator development and use. Group exercises were conducted to identify preliminary lists of priority health outcomes and potential indicators and to discuss policy implications and next steps. Three critical issues that stem from the workshop were: (a) stronger funding support is needed for community-based participatory research in environmental health disparities, (b) race/ethnicity and socioeconomic position need to be included in environmental health surveillance and research, and (c) models to elucidate the interrelations between social, physical, and built environments should continue to be developed and empirically tested.

  10. Fault Tolerance Analysis of L1 Adaptive Control System for Unmanned Aerial Vehicles

    NASA Astrophysics Data System (ADS)

    Krishnamoorthy, Kiruthika

    Trajectory tracking is a critical element for the better functionality of autonomous vehicles. The main objective of this research study was to implement and analyze L1 adaptive control laws for autonomous flight under normal and upset flight conditions. The West Virginia University (WVU) Unmanned Aerial Vehicle flight simulation environment was used for this purpose. A comparison study between the L1 adaptive controller and a baseline conventional controller, which relies on position, proportional, and integral compensation, has been performed for a reduced size jet aircraft, the WVU YF-22. Special attention was given to the performance of the proposed control laws in the presence of abnormal conditions. The abnormal conditions considered are locked actuators (stabilator, aileron, and rudder) and excessive turbulence. Several levels of abnormal condition severity have been considered. The performance of the control laws was assessed over different-shape commanded trajectories. A set of comprehensive evaluation metrics was defined and used to analyze the performance of autonomous flight control laws in terms of control activity and trajectory tracking errors. The developed L1 adaptive control laws are supported by theoretical stability guarantees. The simulation results show that L1 adaptive output feedback controller achieves better trajectory tracking with lower level of control actuation as compared to the baseline linear controller under nominal and abnormal conditions.

  11. Update on US EPA's Revision to the 1985 Guidelines for ...

    EPA Pesticide Factsheets

    National Water Quality Criteria for the Protection of Aquatic Organisms and Their Uses (Stephan et al. 1985), to reflect the current state-of-the-science for aquatic effects assessments. Following a 2015 public meeting soliciting early input from the scientific community, EPA decided to undertake two overarching parallel tracks for this revision: 1) updating and refining methods for deriving state-of-the-science criteria through comprehensive analyses, and 2) developing criteria more rapidly for the broader protection of aquatic life from the potential adverse effects of the large number of chemicals released into the aquatic environment. The first track reflects that for a smaller group of chemicals, criteria development may be scientifically complex, and deriving robust criteria for these chemicals may require detailed investigation. The second track reflects the recognition that extensive testing of all chemicals is infeasible and there is a need to efficiently derive criteria using approaches that estimate safe environmental concentrations with limited empirical data. Based on these objectives, EPA will develop two criteria documents for this revision: 1) a Comprehensive Guidelines Document, intended to directly update and expand upon approaches presented in the 1985 Guidelines, and that will describe methods that provide criteria for chemicals requiring a more detailed level of evaluation, and 2) an Expedited Guidelines Document, which will focus on criteri

  12. Automatic detection of suspicious behavior of pickpockets with track-based features in a shopping mall

    NASA Astrophysics Data System (ADS)

    Bouma, Henri; Baan, Jan; Burghouts, Gertjan J.; Eendebak, Pieter T.; van Huis, Jasper R.; Dijk, Judith; van Rest, Jeroen H. C.

    2014-10-01

    Proactive detection of incidents is required to decrease the cost of security incidents. This paper focusses on the automatic early detection of suspicious behavior of pickpockets with track-based features in a crowded shopping mall. Our method consists of several steps: pedestrian tracking, feature computation and pickpocket recognition. This is challenging because the environment is crowded, people move freely through areas which cannot be covered by a single camera, because the actual snatch is a subtle action, and because collaboration is complex social behavior. We carried out an experiment with more than 20 validated pickpocket incidents. We used a top-down approach to translate expert knowledge in features and rules, and a bottom-up approach to learn discriminating patterns with a classifier. The classifier was used to separate the pickpockets from normal passers-by who are shopping in the mall. We performed a cross validation to train and evaluate our system. In this paper, we describe our method, identify the most valuable features, and analyze the results that were obtained in the experiment. We estimate the quality of these features and the performance of automatic detection of (collaborating) pickpockets. The results show that many of the pickpockets can be detected at a low false alarm rate.

  13. Development and testing of a magnetic position sensor system for automotive and avionics applications

    NASA Astrophysics Data System (ADS)

    Jacobs, Bryan C.; Nelson, Carl V.

    2001-08-01

    A magnetic sensor system has been developed to measure the 3-D location and orientation of a rigid body relative to an array of magnetic dipole transmitters. A generalized solution to the measurement problem has been formulated, allowing the transmitter and receiver parameters (position, orientation, number, etc.) to be optimized for various applications. Additionally, the method of images has been used to mitigate the impact of metallic materials in close proximity to the sensor. The resulting system allows precise tracking of high-speed motion in confined metal environments. The sensor system was recently configured and tested as an abdomen displacement sensor for an automobile crash-test dummy. The test results indicate a positional accuracy of approximately 1 mm rms during 20 m/s motions. The dynamic test results also confirmed earlier covariance model predictions, which were used to optimize the sensor geometry. A covariance analysis was performed to evaluate the applicability of this magnetic position system for tracking a pilot's head motion inside an aircraft cockpit. Realistic design parameters indicate that a robust tracking system, consisting of lightweight pickup coils mounted on a pilot's helmet, and an array of transmitter coils distributed throughout a cockpit, is feasible. Recent test and covariance results are presented.

  14. Tracking and Monitoring Oil Slicks Using remote Sensing

    NASA Astrophysics Data System (ADS)

    Klemas, V. V.

    2011-12-01

    Tracking and Monitoring Oil Slicks Using Remote Sensing Victor Klemas, Ph.D. , College of Earth, Ocean and Environment, University of Delaware, Newark, DE 19716 Abstract Oil spills can harm marine life in the ocean, estuaries and wetlands. To limit the damage by a spill and facilitate cleanup efforts, emergency managers need information on spill location, size and extent, direction and speed of oil movement, wind, current, and wave information for predicting oil drift and dispersion. The main operational data requirements are fast turn-around time and frequent imaging to monitor the dynamics of the spill. Radar and multispectral remote sensors on satellites and aircraft meet most of these requirements by tracking the spilled oil at various resolutions, over wide areas and at frequent intervals. They also provide key inputs to drift prediction models and facilitate targeting of skimming and booming efforts. Satellite data are frequently supplemented by information provided by aircraft, ships and remotely controlled underwater robots. The Sea Princess tanker grounding off the coast of Wales and the explosion on the Deepwater Horizon rig in the Gulf of Mexico provide two representative, yet different, scenarios for evaluating the effectiveness of remote sensors during oil spill emergencies. Session NH17: Remote Sensing of Natural Hazards Session Chair: Ramesh P. Singh Sponsor: Natural Hazards (NH)

  15. Novel Approaches to Improve Iris Recognition System Performance Based on Local Quality Evaluation and Feature Fusion

    PubMed Central

    2014-01-01

    For building a new iris template, this paper proposes a strategy to fuse different portions of iris based on machine learning method to evaluate local quality of iris. There are three novelties compared to previous work. Firstly, the normalized segmented iris is divided into multitracks and then each track is estimated individually to analyze the recognition accuracy rate (RAR). Secondly, six local quality evaluation parameters are adopted to analyze texture information of each track. Besides, particle swarm optimization (PSO) is employed to get the weights of these evaluation parameters and corresponding weighted coefficients of different tracks. Finally, all tracks' information is fused according to the weights of different tracks. The experimental results based on subsets of three public and one private iris image databases demonstrate three contributions of this paper. (1) Our experimental results prove that partial iris image cannot completely replace the entire iris image for iris recognition system in several ways. (2) The proposed quality evaluation algorithm is a self-adaptive algorithm, and it can automatically optimize the parameters according to iris image samples' own characteristics. (3) Our feature information fusion strategy can effectively improve the performance of iris recognition system. PMID:24693243

  16. Novel approaches to improve iris recognition system performance based on local quality evaluation and feature fusion.

    PubMed

    Chen, Ying; Liu, Yuanning; Zhu, Xiaodong; Chen, Huiling; He, Fei; Pang, Yutong

    2014-01-01

    For building a new iris template, this paper proposes a strategy to fuse different portions of iris based on machine learning method to evaluate local quality of iris. There are three novelties compared to previous work. Firstly, the normalized segmented iris is divided into multitracks and then each track is estimated individually to analyze the recognition accuracy rate (RAR). Secondly, six local quality evaluation parameters are adopted to analyze texture information of each track. Besides, particle swarm optimization (PSO) is employed to get the weights of these evaluation parameters and corresponding weighted coefficients of different tracks. Finally, all tracks' information is fused according to the weights of different tracks. The experimental results based on subsets of three public and one private iris image databases demonstrate three contributions of this paper. (1) Our experimental results prove that partial iris image cannot completely replace the entire iris image for iris recognition system in several ways. (2) The proposed quality evaluation algorithm is a self-adaptive algorithm, and it can automatically optimize the parameters according to iris image samples' own characteristics. (3) Our feature information fusion strategy can effectively improve the performance of iris recognition system.

  17. A Framework for Applying Point Clouds Grabbed by Multi-Beam LIDAR in Perceiving the Driving Environment

    PubMed Central

    Liu, Jian; Liang, Huawei; Wang, Zhiling; Chen, Xiangcheng

    2015-01-01

    The quick and accurate understanding of the ambient environment, which is composed of road curbs, vehicles, pedestrians, etc., is critical for developing intelligent vehicles. The road elements included in this work are road curbs and dynamic road obstacles that directly affect the drivable area. A framework for the online modeling of the driving environment using a multi-beam LIDAR, i.e., a Velodyne HDL-64E LIDAR, which describes the 3D environment in the form of a point cloud, is reported in this article. First, ground segmentation is performed via multi-feature extraction of the raw data grabbed by the Velodyne LIDAR to satisfy the requirement of online environment modeling. Curbs and dynamic road obstacles are detected and tracked in different manners. Curves are fitted for curb points, and points are clustered into bundles whose form and kinematics parameters are calculated. The Kalman filter is used to track dynamic obstacles, whereas the snake model is employed for curbs. Results indicate that the proposed framework is robust under various environments and satisfies the requirements for online processing. PMID:26404290

  18. Degradation of Zr-based bulk metallic glasses used in load-bearing implants: A tribocorrosion appraisal.

    PubMed

    Zhao, Guo-Hua; Aune, Ragnhild E; Mao, Huahai; Espallargas, Nuria

    2016-07-01

    Owing to the amorphous structure, Bulk Metallic Glasses (BMGs) have been demonstrating attractive properties for potential biomedical applications. In the present work, the degradation mechanisms of Zr-based BMGs with nominal compositions Zr55Cu30Ni5Al10 and Zr65Cu18Ni7Al10 as potential load-bearing implant material were investigated in a tribocorrosion environment. The composition-dependent micro-mechanical and tribological properties of the two BMGs were evaluated prior to the tribocorrosion tests. The sample Zr65-BMG with a higher Zr content exhibited increased plasticity but relatively reduced wear resistance during the ball-on-disc tests. Both BMGs experienced abrasive wear after the dry wear test under the load of 2N. The cross-sectional subsurface structure of the wear track was examined by Focused Ion Beam (FIB). The electrochemical properties of the BMGs in simulated body fluid were evaluated by means of potentiodynamic polarization and X-ray Photoelectron Spectroscopy (XPS). The spontaneous passivation of Zr-based BMGs in Phosphate Buffer Saline solution was mainly attributed to the highly concentrated zirconium cation (Zr(4+)) in the passive film. The tribocorrosion performance of the BMGs was investigated using a reciprocating tribometer equipped with an electrochemical cell. The more passive nature of the Zr65-BMG had consequently a negative influence on its tribocorrosion resistance, which induced the wear-accelerated corrosion and eventually speeded-up the degradation process. It has been revealed the galvanic coupling was established between the depassivated wear track and the surrounding passive area, which is the main degradation mechanism for the passive Zr65-BMG subjected to the tribocorrosion environment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Real-time tracking of objects for a KC-135 microgravity experiment

    NASA Technical Reports Server (NTRS)

    Littlefield, Mark L.

    1994-01-01

    The design of a visual tracking system for use on the Extra-Vehicular Activity Helper/Retriever (EVAHR) is discussed. EVAHR is an autonomous robot designed to perform numerous tasks in an orbital microgravity environment. Since the ability to grasp a freely translating and rotating object is vital to the robot's mission, the EVAHR must analyze range image generated by the primary sensor. This allows EVAHR to locate and focus its sensors so that an accurate set of object poses can be determined and a grasp strategy planned. To test the visual tracking system being developed, a mathematical simulation was used to model the space station environment and maintain dynamics on the EVAHR and any other free floating objects. A second phase of the investigation consists of a series of experiments carried out aboard a KC-135 aircraft flying a parabolic trajectory to simulate microgravity.

  20. Predictive Compensator Optimization for Head Tracking Lag in Virtual Environments

    NASA Technical Reports Server (NTRS)

    Adelstein, Barnard D.; Jung, Jae Y.; Ellis, Stephen R.

    2001-01-01

    We examined the perceptual impact of plant noise parameterization for Kalman Filter predictive compensation of time delays intrinsic to head tracked virtual environments (VEs). Subjects were tested in their ability to discriminate between the VE system's minimum latency and conditions in which artificially added latency was then predictively compensated back to the system minimum. Two head tracking predictors were parameterized off-line according to cost functions that minimized prediction errors in (1) rotation, and (2) rotation projected into translational displacement with emphasis on higher frequency human operator noise. These predictors were compared with a parameterization obtained from the VE literature for cost function (1). Results from 12 subjects showed that both parameterization type and amount of compensated latency affected discrimination. Analysis of the head motion used in the parameterizations and the subsequent discriminability results suggest that higher frequency predictor artifacts are contributory cues for discriminating the presence of predictive compensation.

  1. Vehicle tracking for an evasive manoeuvres assistant using low-cost ultrasonic sensors.

    PubMed

    Jiménez, Felipe; Naranjo, José E; Gómez, Oscar; Anaya, José J

    2014-11-28

    Many driver assistance systems require knowledge of the vehicle environment. As these systems are increasing in complexity and performance, this knowledge of the environment needs to be more complete and reliable, so sensor fusion combining long, medium and short range sensors is now being used. This paper analyzes the feasibility of using ultrasonic sensors for low cost vehicle-positioning and tracking in the lane adjacent to the host vehicle in order to identify free areas around the vehicle and provide information to an automatic avoidance collision system that can perform autonomous braking and lane change manoeuvres. A laser scanner is used for the early detection of obstacles in the direction of travel while two ultrasonic sensors monitor the blind spot of the host vehicle. The results of tests on a test track demonstrate the ability of these sensors to accurately determine the kinematic variables of the obstacles encountered, despite a clear limitation in range.

  2. Innovative molecular-based fluorescent nanoparticles for multicolor single particle tracking in cells

    NASA Astrophysics Data System (ADS)

    Daniel, Jonathan; Godin, Antoine G.; Palayret, Matthieu; Lounis, Brahim; Cognet, Laurent; Blanchard-Desce, Mireille

    2016-03-01

    Based on an original molecular-based design, we present bright and photostable fluorescent organic nanoparticles (FONs) showing excellent colloidal stability in various aqueous environments. Complementary near-infrared emitting and green emitting FONs were prepared using a simple, fast and robust protocol. Both types of FONs could be simultaneously imaged at the single-particle level in solution as well as in biological environments using a monochromatic excitation and a dual-color fluorescence microscope. No evidence of acute cytotoxicity was found upon incubation of live cells with mixed solutions of FONs, and both types of nanoparticles were found internalized in the cells where their motion could be simultaneously tracked at video-rate up to minutes. These fluorescent organic nanoparticles open a novel non-toxic alternative to existing nanoparticles for imaging biological structures, compatible with live-cell experiments and specially fitted for multicolor single particle tracking.

  3. Capturing system level activities and impacts of mental health consumer-run organizations.

    PubMed

    Janzen, Rich; Nelson, Geoffrey; Hausfather, Nadia; Ochocka, Joanna

    2007-06-01

    Since the 1970s mental health consumer-run organizations have come to offer not only mutual support, but they have also adopted agendas for broader social change. Despite an awareness of the need for system level efforts that create supportive environments for their members, there has been limited research demonstrating how their system level activities can be documented or their impacts evaluated. The purpose of this paper is to feature a method of evaluating systems change activities and impacts. The paper is based on a longitudinal study evaluating four mental health consumer-run organizations in Ontario, Canada. The study tracked system level activities and impacts using both qualitative and quantitative methodologies. The article begins by describing the development and implementation of these methods. Next it offers a critical analysis of the methods used. It concludes by reflecting on three lessons learned about capturing system level activities and impacts of mental health consumer-run organizations.

  4. JAMSTEC E-library of Deep-sea Images (J-EDI) Realizes a Virtual Journey to the Earth's Unexplored Deep Ocean

    NASA Astrophysics Data System (ADS)

    Sasaki, T.; Azuma, S.; Matsuda, S.; Nagayama, A.; Ogido, M.; Saito, H.; Hanafusa, Y.

    2016-12-01

    The Japan Agency for Marine-Earth Science and Technology (JAMSTEC) archives a large amount of deep-sea research videos and photos obtained by JAMSTEC's research submersibles and vehicles with cameras. The web site "JAMSTEC E-library of Deep-sea Images : J-EDI" (http://www.godac.jamstec.go.jp/jedi/e/) has made videos and photos available to the public via the Internet since 2011. Users can search for target videos and photos by keywords, easy-to-understand icons, and dive information at J-EDI because operating staffs classify videos and photos as to contents, e.g. living organism and geological environment, and add comments to them.Dive survey data including videos and photos are not only valiant academically but also helpful for education and outreach activities. With the aim of the improvement of visibility for broader communities, we added new functions of 3-dimensional display synchronized various dive survey data with videos in this year.New Functions Users can search for dive survey data by 3D maps with plotted dive points using the WebGL virtual map engine "Cesium". By selecting a dive point, users can watch deep-sea videos and photos and associated environmental data, e.g. water temperature, salinity, rock and biological sample photos, obtained by the dive survey. Users can browse a dive track visualized in 3D virtual spaces using the WebGL JavaScript library. By synchronizing this virtual dive track with videos, users can watch deep-sea videos recorded at a point on a dive track. Users can play an animation which a submersible-shaped polygon automatically traces a 3D virtual dive track and displays of dive survey data are synchronized with tracing a dive track. Users can directly refer to additional information of other JAMSTEC data sites such as marine biodiversity database, marine biological sample database, rock sample database, and cruise and dive information database, on each page which a 3D virtual dive track is displayed. A 3D visualization of a dive track makes users experience a virtual dive survey. In addition, by synchronizing a virtual dive track with videos, it is easy to understand living organisms and geological environments of a dive point. Therefore, these functions will visually support understanding of deep-sea environments in lectures and educational activities.

  5. Tracking marine mammals using passive acoustics

    NASA Astrophysics Data System (ADS)

    Nosal, Eva-Marie

    2007-12-01

    It is difficult to study the behavior and physiology of marine mammals or to understand and mitigate human impact on them because much of their lives are spent underwater. Since sound propagates for long distances in the ocean and since many cetaceans are vocal, passive acoustics is a valuable tool for studying and monitoring their behavior. After a brief introduction to and review of passive acoustic tracking methods, this dissertation develops and applies two new methods. Both methods use widely-spaced (tens of kilometers) bottom-mounted hydrophone arrays, as well as propagation models that account for depth-dependent sound speed profiles. The first passive acoustic tracking method relies on arrival times of direct and surface-reflected paths. It is used to track a sperm whale using 5 at the Atlantic Undersea Test and Evaluation Center (AUTEC) and gives position estimates that are accurate to within 10 meters. With such accuracy, the whale's pitch and yaw are estimated by assuming that its main axis (which points from the tail to the rostrum) is parallel to its velocity. Roll is found by fitting the details of the pulses within each sperm whale click to the so-called bent horn model of sperm whale sound production. Finally, given the position and orientation of the whale, its beam pattern is reconstructed and found to be highly directional with an intense forward directed component. Pair-wise spectrogram (PWS) processing is the second passive acoustic tracking method developed in this dissertation. Although it is computationally more intensive, PWS has several advantages over arrival-time tracking methods, especially in shallow water environments, for long duration calls, and for multiple-animal datasets, as is the case for humpback whales on Hawaiian breeding grounds. Results of simulations with realistic noise conditions and environmental mismatch are given and compared to other passive localization techniques. When applied to the AUTEC sperm whale dataset, PWS position estimates are within meters of those obtained using the time-of-arrival method.

  6. Evaluation of tracking accuracy of the CyberKnife system using a webcam and printed calibrated grid.

    PubMed

    Sumida, Iori; Shiomi, Hiroya; Higashinaka, Naokazu; Murashima, Yoshikazu; Miyamoto, Youichi; Yamazaki, Hideya; Mabuchi, Nobuhisa; Tsuda, Eimei; Ogawa, Kazuhiko

    2016-03-08

    Tracking accuracy for the CyberKnife's Synchrony system is commonly evaluated using a film-based verification method. We have evaluated a verification system that uses a webcam and a printed calibrated grid to verify tracking accuracy over three different motion patterns. A box with an attached printed calibrated grid and four fiducial markers was attached to the motion phantom. A target marker was positioned at the grid's center. The box was set up using the other three markers. Target tracking accuracy was evaluated under three conditions: 1) stationary; 2) sinusoidal motion with different amplitudes of 5, 10, 15, and 20 mm for the same cycle of 4 s and different cycles of 2, 4, 6, and 8 s with the same amplitude of 15 mm; and 3) irregular breathing patterns in six human volunteers breathing normally. Infrared markers were placed on the volunteers' abdomens, and their trajectories were used to simulate the target motion. All tests were performed with one-dimensional motion in craniocaudal direction. The webcam captured the grid's motion and a laser beam was used to simulate the CyberKnife's beam. Tracking error was defined as the difference between the grid's center and the laser beam. With a stationary target, mean tracking error was measured at 0.4 mm. For sinusoidal motion, tracking error was less than 2 mm for any amplitude and breathing cycle. For the volunteers' breathing patterns, the mean tracking error range was 0.78-1.67 mm. Therefore, accurate lesion targeting requires individual quality assurance for each patient.

  7. Space Shuttle/TDRSS communication and tracking systems analysis

    NASA Astrophysics Data System (ADS)

    Lindsey, W. C.; Chie, C. M.; Cideciyan, R.; Dessouky, K.; Su, Y. T.; Tsang, C. S.

    1986-04-01

    In order to evaluate the technical and operational problem areas and provide a recommendation, the enhancements to the Tracking and Data Delay Satellite System (TDRSS) and Shuttle must be evaluated through simulation and analysis. These enhancement techniques must first be characterized, then modeled mathematically, and finally updated into LinCsim (analytical simulation package). The LinCsim package can then be used as an evaluation tool. Three areas of potential enhancements were identified: shuttle payload accommodations, TDRSS SSA and KSA services, and shuttle tracking system and navigation sensors. Recommendations for each area were discussed.

  8. Space Shuttle/TDRSS communication and tracking systems analysis

    NASA Technical Reports Server (NTRS)

    Lindsey, W. C.; Chie, C. M.; Cideciyan, R.; Dessouky, K.; Su, Y. T.; Tsang, C. S.

    1986-01-01

    In order to evaluate the technical and operational problem areas and provide a recommendation, the enhancements to the Tracking and Data Delay Satellite System (TDRSS) and Shuttle must be evaluated through simulation and analysis. These enhancement techniques must first be characterized, then modeled mathematically, and finally updated into LinCsim (analytical simulation package). The LinCsim package can then be used as an evaluation tool. Three areas of potential enhancements were identified: shuttle payload accommodations, TDRSS SSA and KSA services, and shuttle tracking system and navigation sensors. Recommendations for each area were discussed.

  9. A novel traveling wave piezoelectric actuated tracked mobile robot utilizing friction effect

    NASA Astrophysics Data System (ADS)

    Wang, Liang; Shu, Chengyou; Jin, Jiamei; Zhang, Jianhui

    2017-03-01

    A novel traveling wave piezoelectric-actuated tracked mobile robot with potential application to robotic rovers was proposed and investigated in this study. The proposed tracked mobile robot is composed of a parallelogram-frame-structure piezoelectric transducer with four rings and a metal track. Utilizing the converse piezoelectric and friction effects, traveling waves were propagated in the rings and then the metal track was actuated by the piezoelectric transducer. Compared with traditional tracked mechanisms, the proposed tracked mobile robot has a simpler and more compact structure without lubricant, which eliminates the problem of lubricant volatilization and deflation, thus, it could be operated in the vacuum environment. Dynamic characteristics were simulated and measured to reveal the mechanism of actuating track of the piezoelectric transducer. Experimental investigations of the traveling wave piezoelectric-actuated tracked mobile robot were then carried out, and the results indicated that the robot prototype with a pair of exciting voltages of 460 Vpp is able to achieve a maximum velocity of 57 mm s-1 moving on the foam plate and possesses the obstacle crossing capability with a maximum height of 27 mm. The proposed tracked mobile robot exhibits potential to be the driving system of robotic rovers.

  10. Mouse Social Interaction Test (MoST): a quantitative computer automated analysis of behavior.

    PubMed

    Thanos, Panayotis K; Restif, Christophe; O'Rourke, Joseph R; Lam, Chiu Yin; Metaxas, Dimitris

    2017-01-01

    Rodents are the most commonly used preclinical model of human disease assessing the mechanism(s) involved as well as the role of genetics, epigenetics, and pharmacotherapy on this disease as well as identifying vulnerability factors and risk assessment for disease critical in the development of improved treatment strategies. Unfortunately, the majority of rodent preclinical studies utilize single housed approaches where animals are either entirely housed and tested in solitary environments or group housed but tested in solitary environments. This approach, however, ignores the important contribution of social interaction and social behavior. Social interaction in rodents is found to be a major criterion for the ethological validity of rodent species-specific behavioral characteristics (Zurn et al. 2007; Analysis 2011). It is also well established that there is significant and growing number of reports, which illustrates the important role of social environment and social interaction in all diseases, with particularly significance in all neuropsychiatric diseases. Thus, it is imperative that research studies be able to add large-scale evaluations of social interaction and behavior in mice and benefit from automated tracking of behaviors and measurements by removing user bias and by quantifying aspects of behaviors that cannot be assessed by a human observer. Single mouse setups have been used routinely, but cannot be easily extended to multiple-animal studies where social behavior is key, e.g., autism, depression, anxiety, substance and non-substance addictive disorders, aggression, sexual behavior, or parenting. While recent efforts are focusing on multiple-animal tracking alone, a significant limitation remains the lack of insightful measures of social interactions. We present a novel, non-invasive single camera-based automated tracking method described as Mouse Social Test (MoST) and set of measures designed for estimating the interactions of multiple mice at the same time in the same environment interacting freely. Our results show measurement of social interactions and designed to be adaptable and applicable to most existing home cage systems used in research, and provide a greater level of detailed analysis of social behavior than previously possible. The present study describes social behaviors assessed in a home cage environment setup containing six mice that interact freely over long periods of time, and we illustrate how these measures can be interpreted and combined to classify rodent social behaviors. In addition, we illustrate how these measures can be interpreted and combined to classify and analyze comprehensively rodent behaviors involved in several neuropsychiatric diseases as well as provide opportunity for the basic research of rodent behavior previously not possible.

  11. Eye tracking, strategies, and sex differences in virtual navigation.

    PubMed

    Andersen, Nicolas E; Dahmani, Louisa; Konishi, Kyoko; Bohbot, Véronique D

    2012-01-01

    Reports of sex differences in wayfinding have typically used paradigms sensitive to the female advantage (navigation by landmarks) or sensitive to the male advantage (navigation by cardinal directions, Euclidian coordinates, environmental geometry, and absolute distances). The current virtual navigation paradigm allowed both men and women an equal advantage. We studied sex differences by systematically varying the number of landmarks. Eye tracking was used to quantify sex differences in landmark utilisation as participants solved an eight-arm radial maze task within different virtual environments. To solve the task, participants were required to remember the locations of target objects within environments containing 0, 2, 4, 6, or 8 landmarks. We found that, as the number of landmarks available in the environment increases, the proportion of time men and women spend looking at landmarks and the number of landmarks they use to find their way increases. Eye tracking confirmed that women rely more on landmarks to navigate, although landmark fixations were also associated with an increase in task completion time. Sex differences in navigational behaviour occurred only in environments devoid of landmarks and disappeared in environments containing multiple landmarks. Moreover, women showed sustained landmark-oriented gaze, while men's decreased over time. Finally, we found that men and women use spatial and response strategies to the same extent. Together, these results shed new light on the discrepancy in landmark utilisation between men and women and help explain the differences in navigational behaviour previously reported. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. Real and virtual explorations of the environment and interactive tracking of movable objects for the blind on the basis of tactile-acoustical maps and 3D environment models.

    PubMed

    Hub, Andreas; Hartter, Tim; Kombrink, Stefan; Ertl, Thomas

    2008-01-01

    PURPOSE.: This study describes the development of a multi-functional assistant system for the blind which combines localisation, real and virtual navigation within modelled environments and the identification and tracking of fixed and movable objects. The approximate position of buildings is determined with a global positioning sensor (GPS), then the user establishes exact position at a specific landmark, like a door. This location initialises indoor navigation, based on an inertial sensor, a step recognition algorithm and map. Tracking of movable objects is provided by another inertial sensor and a head-mounted stereo camera, combined with 3D environmental models. This study developed an algorithm based on shape and colour to identify objects and used a common face detection algorithm to inform the user of the presence and position of others. The system allows blind people to determine their position with approximately 1 metre accuracy. Virtual exploration of the environment can be accomplished by moving one's finger on a touch screen of a small portable tablet PC. The name of rooms, building features and hazards, modelled objects and their positions are presented acoustically or in Braille. Given adequate environmental models, this system offers blind people the opportunity to navigate independently and safely, even within unknown environments. Additionally, the system facilitates education and rehabilitation by providing, in several languages, object names, features and relative positions.

  13. Technical and Economic Feasibility Study of At-Grade Concrete Slab Track for Urban Rail Transit Systems

    DOT National Transportation Integrated Search

    1981-08-01

    The report presents work conducted to evaluate the technical and economic feasibility of using concrete slab track systems for at-grade transit track. The functions of a rail transit track system are to guide railway vehicles and provide a safe and a...

  14. Comparison of cap lamp and laser illumination for detecting visual escape cues in smoke

    PubMed Central

    Lutz, T.J.; Sammarco, J.J.; Srednicki, J.R.; Gallagher, S.

    2015-01-01

    The Illuminating Engineering Society of North America reports that an underground mine is the most difficult environment to illuminate (Rea, 2000). Researchers at the U.S. National Institute for Occupational Safety and Health (NIOSH) Office of Mine Safety and Health Research (OMSHR) are conducting ongoing studies designed to explore different lighting technologies for improving mine safety. Underground miners use different visual cues to escape from a smoke-filled environment. Primary and secondary escapeways are marked with reflective ceiling tags of various colors. Miners also look for mine rail tracks. The main objective of this paper is to compare different lighting types and ceiling tag colors to differentiate what works best in a smoke-filled environment. Various cap lamps (LED and incandescent) and lasers (red, blue, green) were compared to see which options resulted in the longest detection distances for red, green and blue reflective markers and a section of mine rail track. All targets advanced toward the human subject inside of a smoke-filled room to simulate the subject walking in a mine environment. Detection distances were recorded and analyzed to find the best cap lamp, laser color and target color in a smoke environment. Results show that cap lamp, laser color and target color do make a difference in detection distances and are perceived differently based on subject age. Cap lamps were superior to lasers in all circumstances of ceiling tag detection, with the exception of the green laser. The incandescent cap lamp worked best in the simulated smoke compared to the LED cap lamps. The green laser was the best color for detecting the tags and track compared to the red and blue lasers. The green tags were the easiest color to detect on the ceiling. On average, the track was easier for the subjects to detect than the ceiling tags. PMID:26236146

  15. Comparison of cap lamp and laser illumination for detecting visual escape cues in smoke.

    PubMed

    Lutz, T J; Sammarco, J J; Srednicki, J R; Gallagher, S

    The Illuminating Engineering Society of North America reports that an underground mine is the most difficult environment to illuminate (Rea, 2000). Researchers at the U.S. National Institute for Occupational Safety and Health (NIOSH) Office of Mine Safety and Health Research (OMSHR) are conducting ongoing studies designed to explore different lighting technologies for improving mine safety. Underground miners use different visual cues to escape from a smoke-filled environment. Primary and secondary escapeways are marked with reflective ceiling tags of various colors. Miners also look for mine rail tracks. The main objective of this paper is to compare different lighting types and ceiling tag colors to differentiate what works best in a smoke-filled environment. Various cap lamps (LED and incandescent) and lasers (red, blue, green) were compared to see which options resulted in the longest detection distances for red, green and blue reflective markers and a section of mine rail track. All targets advanced toward the human subject inside of a smoke-filled room to simulate the subject walking in a mine environment. Detection distances were recorded and analyzed to find the best cap lamp, laser color and target color in a smoke environment. Results show that cap lamp, laser color and target color do make a difference in detection distances and are perceived differently based on subject age. Cap lamps were superior to lasers in all circumstances of ceiling tag detection, with the exception of the green laser. The incandescent cap lamp worked best in the simulated smoke compared to the LED cap lamps. The green laser was the best color for detecting the tags and track compared to the red and blue lasers. The green tags were the easiest color to detect on the ceiling. On average, the track was easier for the subjects to detect than the ceiling tags.

  16. Context-specific selection of algorithms for recursive feature tracking in endoscopic image using a new methodology.

    PubMed

    Selka, F; Nicolau, S; Agnus, V; Bessaid, A; Marescaux, J; Soler, L

    2015-03-01

    In minimally invasive surgery, the tracking of deformable tissue is a critical component for image-guided applications. Deformation of the tissue can be recovered by tracking features using tissue surface information (texture, color,...). Recent work in this field has shown success in acquiring tissue motion. However, the performance evaluation of detection and tracking algorithms on such images are still difficult and are not standardized. This is mainly due to the lack of ground truth data on real data. Moreover, in order to avoid supplementary techniques to remove outliers, no quantitative work has been undertaken to evaluate the benefit of a pre-process based on image filtering, which can improve feature tracking robustness. In this paper, we propose a methodology to validate detection and feature tracking algorithms, using a trick based on forward-backward tracking that provides an artificial ground truth data. We describe a clear and complete methodology to evaluate and compare different detection and tracking algorithms. In addition, we extend our framework to propose a strategy to identify the best combinations from a set of detector, tracker and pre-process algorithms, according to the live intra-operative data. Experimental results have been performed on in vivo datasets and show that pre-process can have a strong influence on tracking performance and that our strategy to find the best combinations is relevant for a reasonable computation cost. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Handheld lasers allow efficient detection of fluorescent marked organisms in the field.

    PubMed

    Rice, Kevin B; Fleischer, Shelby J; De Moraes, Consuelo M; Mescher, Mark C; Tooker, John F; Gish, Moshe

    2015-01-01

    Marking organisms with fluorescent dyes and powders is a common technique used in ecological field studies that monitor movement of organisms to examine life history traits, behaviors, and population dynamics. External fluorescent marking is relatively inexpensive and can be readily employed to quickly mark large numbers of individuals; however, the ability to detect marked organisms in the field at night has been hampered by the limited detection distances provided by portable fluorescent ultraviolet lamps. In recent years, significant advances in LED lamp and laser technology have led to development of powerful, low-cost ultraviolet light sources. In this study, we evaluate the potential of these new technologies to improve detection of fluorescent-marked organisms in the field and to create new possibilities for tracking marked organisms in visually challenging environments such as tree canopies and aquatic habitats. Using handheld lasers, we document a method that provides a fivefold increase in detection distance over previously available technologies. This method allows easy scouting of tree canopies (from the ground), as well as shallow aquatic systems. This novel detection method for fluorescent-marked organisms thus promises to significantly enhance the use of fluorescent marking as a non-destructive technique for tracking organisms in natural environments, facilitating field studies that aim to document otherwise inaccessible aspects of the movement, behavior, and population dynamics of study organisms, including species with significant economic impacts or relevance for ecology and human health.

  18. Commercial associative memory performance for applications in track-based triggers at the Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Webster, Jordan

    2017-01-01

    Dense track environments in pp collisions at the Large Hadron Collider (LHC) motivate the use of triggers with dedicated hardware for fast track reconstruction. The ATLAS Collaboration is in the process of implementing a Fast Tracker (FTK) trigger upgrade, in which Content Addressable Memories (CAMs) will be used to rapidly match hit patterns with large banks of simulated tracks. The FTK CAMs are produced primarily at the University of Pisa. However, commercial CAM technology is rapidly developing due to applications in computer networking devices. This poster presents new studies comparing FTK CAMs to cutting-edge ternary CAMs developed by Cavium. The comparison is intended to guide the design of future track-based trigger systems for the next Phase at the LHC.

  19. Angular resolution of the gaseous micro-pixel detector Gossip

    NASA Astrophysics Data System (ADS)

    Bilevych, Y.; Blanco Carballo, V.; van Dijk, M.; Fransen, M.; van der Graaf, H.; Hartjes, F.; Hessey, N.; Koppert, W.; Nauta, S.; Rogers, M.; Romaniouk, A.; Veenhof, R.

    2011-06-01

    Gossip is a gaseous micro-pixel detector with a very thin drift gap intended for a high rate environment like at the pixel layers of ATLAS at the sLHC. The detector outputs not only the crossing point of a traversing MIP, but also the angle of the track, thus greatly simplifying track reconstruction. In this paper we describe a testbeam experiment to examine the angular resolution of the reconstructed track segments in Gossip. We used here the low diffusion gas mixture DME/CO 2 50/50. An angular resolution of 20 mrad for perpendicular tracks could be obtained from a 1.5 mm thin drift volume. However, for the prototype detector used at the testbeam experiment, the resolution of slanting tracks was worsened by poor time resolution of the pixel chip used.

  20. Observing Ocean Ecosystems with Sonar

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matzner, Shari; Maxwell, Adam R.; Ham, Kenneth D.

    2016-12-01

    We present a real-time processing system for sonar to detect and track animals, and to extract water column biomass statistics in order to facilitate continuous monitoring of an underwater environment. The Nekton Interaction Monitoring System (NIMS) is built to connect to an instrumentation network, where it consumes a real-time stream of sonar data and archives tracking and biomass data.

  1. A laser tracking dynamic robot metrology instrument

    NASA Technical Reports Server (NTRS)

    Parker, G. A.; Mayer, J. R. R.

    1989-01-01

    Research work over several years has resulted in the development of a laser tracking instrument capable of dynamic 3-D measurements of robot end-effector trajectories. The instrument characteristics and experiments to measure the static and dynamic performance of a robot in an industrial manufacturing environment are described. The use of this technology for space applications is examined.

  2. Building a Strong Foundation: Mentoring Programs for Novice Tenure-Track Librarians in Academic Libraries

    ERIC Educational Resources Information Center

    Goodsett, Mandi; Walsh, Andrew

    2015-01-01

    Increasingly, new librarians graduate to face a world of changing technology and new ways of interacting with information. The anxiety of this shifting environment is compounded for tenure-track librarians who must also meet scholarship and instruction requirements that may be unfamiliar to them. One way that librarians can navigate the transition…

  3. Spatial and rotational quality assurance of 6DOF patient tracking systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belcher, Andrew H.; Liu, Xinmin; Grelewicz, Zachary

    Purpose: External tracking systems used for patient positioning and motion monitoring during radiotherapy are now capable of detecting both translations and rotations. In this work, the authors develop a novel technique to evaluate the 6 degree of freedom 6(DOF) (translations and rotations) performance of external motion tracking systems. The authors apply this methodology to an infrared marker tracking system and two 3D optical surface mapping systems in a common tumor 6DOF workspace. Methods: An in-house designed and built 6DOF parallel kinematics robotic motion phantom was used to perform motions with sub-millimeter and subdegree accuracy in a 6DOF workspace. An infraredmore » marker tracking system was first used to validate a calibration algorithm which associates the motion phantom coordinate frame to the camera frame. The 6DOF positions of the mobile robotic system in this space were then tracked and recorded independently by an optical surface tracking system after a cranial phantom was rigidly fixed to the moveable platform of the robotic stage. The calibration methodology was first employed, followed by a comprehensive 6DOF trajectory evaluation, which spanned a full range of positions and orientations in a 20 × 20 × 16 mm and 5° × 5° × 5° workspace. The intended input motions were compared to the calibrated 6DOF measured points. Results: The technique found the accuracy of the infrared (IR) marker tracking system to have maximal root-mean square error (RMSE) values of 0.18, 0.25, 0.07 mm, 0.05°, 0.05°, and 0.09° in left–right (LR), superior–inferior (SI), anterior–posterior (AP), pitch, roll, and yaw, respectively, comparing the intended 6DOF position and the measured position by the IR camera. Similarly, the 6DOF RSME discrepancy for the HD optical surface tracker yielded maximal values of 0.46, 0.60, 0.54 mm, 0.06°, 0.11°, and 0.08° in LR, SI, AP, pitch, roll, and yaw, respectively, over the same 6DOF evaluative workspace. An earlier generation 3D optical surface tracking unit was observed to have worse tracking capabilities than both the IR camera unit and the newer 3D surface tracking system with maximal RMSE of 0.69, 0.74, 0.47 mm, 0.28°, 0.19°, and 0.18°, in LR, SI, AP, pitch, roll, and yaw, respectively, in the same 6DOF evaluation space. Conclusions: The proposed technique was found to be effective at evaluating the performance of 6DOF patient tracking systems. All observed optical tracking systems were found to exhibit tracking capabilities at the sub-millimeter and subdegree level within a 6DOF workspace.« less

  4. Adaptive particle filter for robust visual tracking

    NASA Astrophysics Data System (ADS)

    Dai, Jianghua; Yu, Shengsheng; Sun, Weiping; Chen, Xiaoping; Xiang, Jinhai

    2009-10-01

    Object tracking plays a key role in the field of computer vision. Particle filter has been widely used for visual tracking under nonlinear and/or non-Gaussian circumstances. In particle filter, the state transition model for predicting the next location of tracked object assumes the object motion is invariable, which cannot well approximate the varying dynamics of the motion changes. In addition, the state estimate calculated by the mean of all the weighted particles is coarse or inaccurate due to various noise disturbances. Both these two factors may degrade tracking performance greatly. In this work, an adaptive particle filter (APF) with a velocity-updating based transition model (VTM) and an adaptive state estimate approach (ASEA) is proposed to improve object tracking. In APF, the motion velocity embedded into the state transition model is updated continuously by a recursive equation, and the state estimate is obtained adaptively according to the state posterior distribution. The experiment results show that the APF can increase the tracking accuracy and efficiency in complex environments.

  5. Development And Evaluation Of Stable Isotope And Fluorescent Labeling And Detection Methodologies For Tracking Injected Bacteria During In Situ Bioremediation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mark E. Fuller; Tullis C. Onstott

    2003-12-17

    This report summarizes the results of a research project conducted to develop new methods to label bacterial cells so that they could be tracked and enumerated as they move in the subsurface after they are introduced into the groundwater (i.e., during bioaugmentation). Labeling methods based on stable isotopes of carbon (13C) and vital fluorescent stains were developed. Both approaches proved successful with regards to the ability to effectively label bacterial cells. Several methods for enumeration of fluorescently-labeled cells were developed and validated, including near-real time microplate spectrofluorometry that could be performed in the field. However, the development of a novelmore » enumeration method for the 13C-enriched cells, chemical reaction interface/mass spectrometry (CRIMS), was not successful due to difficulties with the proposed instrumentation. Both labeling methodologies were successfully evaluated and validated during laboratory- and field-scale bacterial transport experiments. The methods developed during this research should be useful for future bacterial transport work as well as other microbial ecology research in a variety of environments. A full bibliography of research articles and meeting presentations related to this project is included (including web links to abstracts and full text reprints).« less

  6. 1. ENVIRONMENT, FROM NORTHWEST, SHOWING B&P INTERLOCKING TOWER AND POWER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. ENVIRONMENT, FROM NORTHWEST, SHOWING B&P INTERLOCKING TOWER AND POWER SUBSTATIONS - Baltimore & Potomac Interlocking Tower, Adjacent to AMTRAK railroad tracks in block bounded by Howard Street, Jones Falls Expressway, Maryland Avenue & Falls Road, Baltimore, Independent City, MD

  7. Evaluation of pyrolysis and arc tracking on candidate wire insulation designs for space applications

    NASA Technical Reports Server (NTRS)

    Stueber, Thomas J.; Hrovat, Kenneth

    1994-01-01

    The ability of wire insulation materials and constructions to resist arc tracking was determined and the damage caused by initial arcing and restrike events was assessed. Results of arc tracking tests on various insulation constructions are presented in view-graph format. Arc tracking tests conducted on Champlain, Filotex, and Teledyne Thermatics indicate the Filotex is least likely to arc track. Arc tracking occurs more readily in air than it does in vacuum.

  8. New platform for evaluating ultrasound-guided interventional technologies

    NASA Astrophysics Data System (ADS)

    Kim, Younsu; Guo, Xiaoyu; Boctor, Emad M.

    2016-04-01

    Ultrasound-guided needle tracking systems are frequently used in surgical procedures. Various needle tracking technologies have been developed using ultrasound, electromagnetic sensors, and optical sensors. To evaluate these new needle tracking technologies, 3D volume information is often acquired to compute the actual distance from the needle tip to the target object. The image-guidance conditions for comparison are often inconsistent due to the ultrasound beam-thickness. Since 3D volumes are necessary, there is often some time delay between the surgical procedure and the evaluation. These evaluation methods will generally only measure the final needle location because they interrupt the surgical procedure. The main contribution of this work is a new platform for evaluating needle tracking systems in real-time, resolving the problems stated above. We developed new tools to evaluate the precise distance between the needle tip and the target object. A PZT element transmitting unit is designed as needle introducer shape so that it can be inserted in the needle. We have collected time of flight and amplitude information in real-time. We propose two systems to collect ultrasound signals. We demonstrate this platform on an ultrasound DAQ system and a cost-effective FPGA board. The results of a chicken breast experiment show the feasibility of tracking a time series of needle tip distances. We performed validation experiments with a plastisol phantom and have shown that the preliminary data fits a linear regression model with a RMSE of less than 0.6mm. Our platform can be applied to more general needle tracking methods using other forms of guidance.

  9. Detection and tracking of drones using advanced acoustic cameras

    NASA Astrophysics Data System (ADS)

    Busset, Joël.; Perrodin, Florian; Wellig, Peter; Ott, Beat; Heutschi, Kurt; Rühl, Torben; Nussbaumer, Thomas

    2015-10-01

    Recent events of drones flying over city centers, official buildings and nuclear installations stressed the growing threat of uncontrolled drone proliferation and the lack of real countermeasure. Indeed, detecting and tracking them can be difficult with traditional techniques. A system to acoustically detect and track small moving objects, such as drones or ground robots, using acoustic cameras is presented. The described sensor, is completely passive, and composed of a 120-element microphone array and a video camera. The acoustic imaging algorithm determines in real-time the sound power level coming from all directions, using the phase of the sound signals. A tracking algorithm is then able to follow the sound sources. Additionally, a beamforming algorithm selectively extracts the sound coming from each tracked sound source. This extracted sound signal can be used to identify sound signatures and determine the type of object. The described techniques can detect and track any object that produces noise (engines, propellers, tires, etc). It is a good complementary approach to more traditional techniques such as (i) optical and infrared cameras, for which the object may only represent few pixels and may be hidden by the blooming of a bright background, and (ii) radar or other echo-localization techniques, suffering from the weakness of the echo signal coming back to the sensor. The distance of detection depends on the type (frequency range) and volume of the noise emitted by the object, and on the background noise of the environment. Detection range and resilience to background noise were tested in both, laboratory environments and outdoor conditions. It was determined that drones can be tracked up to 160 to 250 meters, depending on their type. Speech extraction was also experimentally investigated: the speech signal of a person being 80 to 100 meters away can be captured with acceptable speech intelligibility.

  10. RATT: RFID Assisted Tracking Tile. Preliminary results.

    PubMed

    Quinones, Dario R; Cuevas, Aaron; Cambra, Javier; Canals, Santiago; Moratal, David

    2017-07-01

    Behavior is one of the most important aspects of animal life. This behavior depends on the link between animals, their nervous systems and their environment. In order to study the behavior of laboratory animals several tools are needed, but a tracking tool is essential to perform a thorough behavioral study. Currently, several visual tracking tools are available. However, they have some drawbacks. For instance, when an animal is inside a cave, or is close to other animals, the tracking cameras cannot always detect the location or movement of this animal. This paper presents RFID Assisted Tracking Tile (RATT), a tracking system based on passive Radio Frequency Identification (RFID) technology in high frequency band according to ISO/IEC 15693. The RATT system is composed of electronic tiles that have nine active RFID antennas attached; in addition, it contains several overlapping passive coils to improve the magnetic field characteristics. Using several tiles, a large surface can be built on which the animals can move, allowing identification and tracking of their movements. This system, that could also be combined with a visual tracking system, paves the way for complete behavioral studies.

  11. Robust leader-follower formation tracking control of multiple underactuated surface vessels

    NASA Astrophysics Data System (ADS)

    Peng, Zhou-hua; Wang, Dan; Lan, Wei-yao; Sun, Gang

    2012-09-01

    This paper is concerned with the formation control problem of multiple underactuated surface vessels moving in a leader-follower formation. The formation is achieved by the follower to track a virtual target defined relative to the leader. A robust adaptive target tracking law is proposed by using neural network and backstepping techniques. The advantage of the proposed control scheme is that the uncertain nonlinear dynamics caused by Coriolis/centripetal forces, nonlinear damping, unmodeled hydrodynamics and disturbances from the environment can be compensated by on line learning. Based on Lyapunov analysis, the proposed controller guarantees the tracking errors converge to a small neighborhood of the origin. Simulation results demonstrate the effectiveness of the control strategy.

  12. Game theory-based visual tracking approach focusing on color and texture features.

    PubMed

    Jin, Zefenfen; Hou, Zhiqiang; Yu, Wangsheng; Chen, Chuanhua; Wang, Xin

    2017-07-20

    It is difficult for a single-feature tracking algorithm to achieve strong robustness under a complex environment. To solve this problem, we proposed a multifeature fusion tracking algorithm that is based on game theory. By focusing on color and texture features as two gamers, this algorithm accomplishes tracking by using a mean shift iterative formula to search for the Nash equilibrium of the game. The contribution of different features is always keeping the state of optical balance, so that the algorithm can fully take advantage of feature fusion. According to the experiment results, this algorithm proves to possess good performance, especially under the condition of scene variation, target occlusion, and similar interference.

  13. Detecting multiple moving objects in crowded environments with coherent motion regions

    DOEpatents

    Cheriyadat, Anil M.; Radke, Richard J.

    2013-06-11

    Coherent motion regions extend in time as well as space, enforcing consistency in detected objects over long time periods and making the algorithm robust to noisy or short point tracks. As a result of enforcing the constraint that selected coherent motion regions contain disjoint sets of tracks defined in a three-dimensional space including a time dimension. An algorithm operates directly on raw, unconditioned low-level feature point tracks, and minimizes a global measure of the coherent motion regions. At least one discrete moving object is identified in a time series of video images based on the trajectory similarity factors, which is a measure of a maximum distance between a pair of feature point tracks.

  14. TH-AB-202-11: Spatial and Rotational Quality Assurance of 6DOF Patient Tracking Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belcher, AH; Liu, X; Grelewicz, Z

    2016-06-15

    Purpose: External tracking systems used for patient positioning and motion monitoring during radiotherapy are now capable of detecting both translations and rotations (6DOF). In this work, we develop a novel technique to evaluate the 6DOF performance of external motion tracking systems. We apply this methodology to an infrared (IR) marker tracking system and two 3D optical surface mapping systems in a common tumor 6DOF workspace. Methods: An in-house designed and built 6DOF parallel kinematics robotic motion phantom was used to follow input trajectories with sub-millimeter and sub-degree accuracy. The 6DOF positions of the robotic system were then tracked and recordedmore » independently by three optical camera systems. A calibration methodology which associates the motion phantom and camera coordinate frames was first employed, followed by a comprehensive 6DOF trajectory evaluation, which spanned a full range of positions and orientations in a 20×20×16 mm and 5×5×5 degree workspace. The intended input motions were compared to the calibrated 6DOF measured points. Results: The technique found the accuracy of the IR marker tracking system to have maximal root mean square error (RMSE) values of 0.25 mm translationally and 0.09 degrees rotationally, in any one axis, comparing intended 6DOF positions to positions measured by the IR camera. The 6DOF RSME discrepancy for the first 3D optical surface tracking unit yielded maximal values of 0.60 mm and 0.11 degrees over the same 6DOF volume. An earlier generation 3D optical surface tracker was observed to have worse tracking capabilities than both the IR camera unit and the newer 3D surface tracking system with maximal RMSE of 0.74 mm and 0.28 degrees within the same 6DOF evaluation space. Conclusion: The proposed technique was effective at evaluating the performance of 6DOF patient tracking systems. All systems examined exhibited tracking capabilities at the sub-millimeter and sub-degree level within a 6DOF workspace.« less

  15. Combining Unsupervised and Supervised Classification to Build User Models for Exploratory Learning Environments

    ERIC Educational Resources Information Center

    Amershi, Saleema; Conati, Cristina

    2009-01-01

    In this paper, we present a data-based user modeling framework that uses both unsupervised and supervised classification to build student models for exploratory learning environments. We apply the framework to build student models for two different learning environments and using two different data sources (logged interface and eye-tracking data).…

  16. Lost in Search: (Mal-)Adaptation to Probabilistic Decision Environments in Children and Adults

    ERIC Educational Resources Information Center

    Betsch, Tilmann; Lehmann, Anne; Lindow, Stefanie; Lang, Anna; Schoemann, Martin

    2016-01-01

    Adaptive decision making in probabilistic environments requires individuals to use probabilities as weights in predecisional information searches and/or when making subsequent choices. Within a child-friendly computerized environment (Mousekids), we tracked 205 children's (105 children 5-6 years of age and 100 children 9-10 years of age) and 103…

  17. Goldstone radio spectrum signal identification, March 1980 - March 1982

    NASA Technical Reports Server (NTRS)

    Gaudian, B. A.

    1982-01-01

    The signal identification process is described. The Goldstone radio spectrum environment contains signals that are a potential source of electromagnetic interference to the Goldstone tracking receivers. The identification of these signals is accomplished by the use of signal parameters and environment parameters. Statistical data on the Goldstone radio spectrum environment from 2285 to 2305 MHz are provided.

  18. Extrapolating target tracks

    NASA Astrophysics Data System (ADS)

    Van Zandt, James R.

    2012-05-01

    Steady-state performance of a tracking filter is traditionally evaluated immediately after a track update. However, there is commonly a further delay (e.g., processing and communications latency) before the tracks can actually be used. We analyze the accuracy of extrapolated target tracks for four tracking filters: Kalman filter with the Singer maneuver model and worst-case correlation time, with piecewise constant white acceleration, and with continuous white acceleration, and the reduced state filter proposed by Mookerjee and Reifler.1, 2 Performance evaluation of a tracking filter is significantly simplified by appropriate normalization. For the Kalman filter with the Singer maneuver model, the steady-state RMS error immediately after an update depends on only two dimensionless parameters.3 By assuming a worst case value of target acceleration correlation time, we reduce this to a single parameter without significantly changing the filter performance (within a few percent for air tracking).4 With this simplification, we find for all four filters that the RMS errors for the extrapolated state are functions of only two dimensionless parameters. We provide simple analytic approximations in each case.

  19. Scholte wave generation during single tracking location shear wave elasticity imaging of engineered tissues.

    PubMed

    Mercado, Karla P; Langdon, Jonathan; Helguera, María; McAleavey, Stephen A; Hocking, Denise C; Dalecki, Diane

    2015-08-01

    The physical environment of engineered tissues can influence cellular functions that are important for tissue regeneration. Thus, there is a critical need for noninvasive technologies capable of monitoring mechanical properties of engineered tissues during fabrication and development. This work investigates the feasibility of using single tracking location shear wave elasticity imaging (STL-SWEI) for quantifying the shear moduli of tissue-mimicking phantoms and engineered tissues in tissue engineering environments. Scholte surface waves were observed when STL-SWEI was performed through a fluid standoff, and confounded shear moduli estimates leading to an underestimation of moduli in regions near the fluid-tissue interface.

  20. Mapping the space radiation environment in LEO orbit by the SATRAM Timepix payload on board the Proba-V satellite

    NASA Astrophysics Data System (ADS)

    Granja, Carlos; Polansky, Stepan

    2016-07-01

    Detailed spatial- and time-correlated maps of the space radiation environment in Low Earth Orbit (LEO) are produced by the spacecraft payload SATRAM operating in open space on board the Proba-V satellite from the European Space Agency (ESA). Equipped with the hybrid semiconductor pixel detector Timepix, the compact radiation monitor payload provides the composition and spectral characterization of the mixed radiation field with quantum-counting and imaging dosimetry sensitivity, energetic charged particle tracking, directionality and energy loss response in wide dynamic range in terms of particle types, dose rates and particle fluxes. With a polar orbit (sun synchronous, 98° inclination) at the altitude of 820 km the payload samples the space radiation field at LEO covering basically the whole planet. First results of long-period data evaluation in the form of time-and spatially-correlated maps of total dose rate (all particles) are given.

  1. Procedural training and assessment of competency utilizing simulation.

    PubMed

    Sawyer, Taylor; Gray, Megan M

    2016-11-01

    This review examines the current environment of neonatal procedural learning, describes an updated model of skills training, defines the role of simulation in assessing competency, and discusses potential future directions for simulation-based competency assessment. In order to maximize impact, simulation-based procedural training programs should follow a standardized and evidence-based approach to designing and evaluating educational activities. Simulation can be used to facilitate the evaluation of competency, but must incorporate validated assessment tools to ensure quality and consistency. True competency evaluation cannot be accomplished with simulation alone: competency assessment must also include evaluations of procedural skill during actual clinical care. Future work in this area is needed to measure and track clinically meaningful patient outcomes resulting from simulation-based training, examine the use of simulation to assist physicians undergoing re-entry to practice, and to examine the use of procedural skills simulation as part of a maintenance of competency and life-long learning. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Homographic Patch Feature Transform: A Robustness Registration for Gastroscopic Surgery.

    PubMed

    Hu, Weiling; Zhang, Xu; Wang, Bin; Liu, Jiquan; Duan, Huilong; Dai, Ning; Si, Jianmin

    2016-01-01

    Image registration is a key component of computer assistance in image guided surgery, and it is a challenging topic in endoscopic environments. In this study, we present a method for image registration named Homographic Patch Feature Transform (HPFT) to match gastroscopic images. HPFT can be used for tracking lesions and augmenting reality applications during gastroscopy. Furthermore, an overall evaluation scheme is proposed to validate the precision, robustness and uniformity of the registration results, which provides a standard for rejection of false matching pairs from corresponding results. Finally, HPFT is applied for processing in vivo gastroscopic data. The experimental results show that HPFT has stable performance in gastroscopic applications.

  3. Quantitative flow and velocity measurements of pulsatile blood flow with 4D-DSA

    NASA Astrophysics Data System (ADS)

    Shaughnessy, Gabe; Hoffman, Carson; Schafer, Sebastian; Mistretta, Charles A.; Strother, Charles M.

    2017-03-01

    Time resolved 3D angiographic data from 4D DSA provides a unique environment to explore physical properties of blood flow. Utilizing the pulsatility of the contrast waveform, the Fourier components can be used to track the waveform motion through vessels. Areas of strong pulsatility are determined through the FFT power spectrum. Using this method, we find an accuracy from 4D-DSA flow measurements within 7.6% and 6.8% RMSE of ICA PCVIPR and phantom flow probe validation measurements, respectively. The availability of velocity and flow information with fast acquisition could provide a more quantitative approach to treatment planning and evaluation in interventional radiology.

  4. Evaluation of a joint Bioinformatics and Medical Informatics international course in Peru

    PubMed Central

    Curioso, Walter H; Hansen, Jacquelyn R; Centurion-Lara, Arturo; Garcia, Patricia J; Wolf, Fredric M; Fuller, Sherrilynne; Holmes, King K; Kimball, Ann Marie

    2008-01-01

    Background New technologies that emerge at the interface of computational and biomedical science could drive new advances in global health, therefore more training in technology is needed among health care workers. To assess the potential for informatics training using an approach designed to foster interaction at this interface, the University of Washington and the Universidad Peruana Cayetano Heredia developed and assessed a one-week course that included a new Bioinformatics (BIO) track along with an established Medical/Public Health Informatics track (MI) for participants in Peru. Methods We assessed the background of the participants, and measured the knowledge gained by track-specific (MI or BIO) 30-minute pre- and post-tests. Participants' attitudes were evaluated both by daily evaluations and by an end-course evaluation. Results Forty-three participants enrolled in the course – 20 in the MI track and 23 in the BIO track. Of 20 questions, the mean % score for the MI track increased from 49.7 pre-test (standard deviation or SD = 17.0) to 59.7 (SD = 15.2) for the post-test (P = 0.002, n = 18). The BIO track mean score increased from 33.6 pre-test to 51.2 post-test (P < 0.001, n = 21). Most comments (76%) about any aspect of the course were positive. The main perceived strength of the course was the quality of the speakers, and the main perceived weakness was the short duration of the course. Overall, the course acceptability was very good to excellent with a rating of 4.1 (scale 1–5), and the usefulness of the course was rated as very good. Most participants (62.9%) expressed a positive opinion about having had the BIO and MI tracks come together for some of the lectures. Conclusion Pre- and post-test results and the positive evaluations by the participants indicate that this first joint Bioinformatics and Medical/Public Health Informatics (MI and BIO) course was a success. PMID:18194533

  5. Evaluation of a joint Bioinformatics and Medical Informatics international course in Peru.

    PubMed

    Curioso, Walter H; Hansen, Jacquelyn R; Centurion-Lara, Arturo; Garcia, Patricia J; Wolf, Fredric M; Fuller, Sherrilynne; Holmes, King K; Kimball, Ann Marie

    2008-01-14

    New technologies that emerge at the interface of computational and biomedical science could drive new advances in global health, therefore more training in technology is needed among health care workers. To assess the potential for informatics training using an approach designed to foster interaction at this interface, the University of Washington and the Universidad Peruana Cayetano Heredia developed and assessed a one-week course that included a new Bioinformatics (BIO) track along with an established Medical/Public Health Informatics track (MI) for participants in Peru. We assessed the background of the participants, and measured the knowledge gained by track-specific (MI or BIO) 30-minute pre- and post-tests. Participants' attitudes were evaluated both by daily evaluations and by an end-course evaluation. Forty-three participants enrolled in the course - 20 in the MI track and 23 in the BIO track. Of 20 questions, the mean % score for the MI track increased from 49.7 pre-test (standard deviation or SD = 17.0) to 59.7 (SD = 15.2) for the post-test (P = 0.002, n = 18). The BIO track mean score increased from 33.6 pre-test to 51.2 post-test (P < 0.001, n = 21). Most comments (76%) about any aspect of the course were positive. The main perceived strength of the course was the quality of the speakers, and the main perceived weakness was the short duration of the course. Overall, the course acceptability was very good to excellent with a rating of 4.1 (scale 1-5), and the usefulness of the course was rated as very good. Most participants (62.9%) expressed a positive opinion about having had the BIO and MI tracks come together for some of the lectures. Pre- and post-test results and the positive evaluations by the participants indicate that this first joint Bioinformatics and Medical/Public Health Informatics (MI and BIO) course was a success.

  6. Evaluation of tracking accuracy of the CyberKnife system using a webcam and printed calibrated grid

    PubMed Central

    Shiomi, Hiroya; Higashinaka, Naokazu; Murashima, Yoshikazu; Miyamoto, Youichi; Yamazaki, Hideya; Mabuchi, Nobuhisa; Tsuda, Eimei; Ogawa, Kazuhiko

    2016-01-01

    Tracking accuracy for the CyberKnife's Synchrony system is commonly evaluated using a film‐based verification method. We have evaluated a verification system that uses a webcam and a printed calibrated grid to verify tracking accuracy over three different motion patterns. A box with an attached printed calibrated grid and four fiducial markers was attached to the motion phantom. A target marker was positioned at the grid's center. The box was set up using the other three markers. Target tracking accuracy was evaluated under three conditions: 1) stationary; 2) sinusoidal motion with different amplitudes of 5, 10, 15, and 20 mm for the same cycle of 4 s and different cycles of 2, 4, 6, and 8 s with the same amplitude of 15 mm; and 3) irregular breathing patterns in six human volunteers breathing normally. Infrared markers were placed on the volunteers’ abdomens, and their trajectories were used to simulate the target motion. All tests were performed with one‐dimensional motion in craniocaudal direction. The webcam captured the grid's motion and a laser beam was used to simulate the CyberKnife's beam. Tracking error was defined as the difference between the grid's center and the laser beam. With a stationary target, mean tracking error was measured at 0.4 mm. For sinusoidal motion, tracking error was less than 2 mm for any amplitude and breathing cycle. For the volunteers’ breathing patterns, the mean tracking error range was 0.78‐1.67 mm. Therefore, accurate lesion targeting requires individual quality assurance for each patient. PACS number(s): 87.55.D‐, 87.55.km, 87.55.Qr, 87.56.Fc PMID:27074474

  7. An experimental comparison of online object-tracking algorithms

    NASA Astrophysics Data System (ADS)

    Wang, Qing; Chen, Feng; Xu, Wenli; Yang, Ming-Hsuan

    2011-09-01

    This paper reviews and evaluates several state-of-the-art online object tracking algorithms. Notwithstanding decades of efforts, object tracking remains a challenging problem due to factors such as illumination, pose, scale, deformation, motion blur, noise, and occlusion. To account for appearance change, most recent tracking algorithms focus on robust object representations and effective state prediction. In this paper, we analyze the components of each tracking method and identify their key roles in dealing with specific challenges, thereby shedding light on how to choose and design algorithms for different situations. We compare state-of-the-art online tracking methods including the IVT,1 VRT,2 FragT,3 BoostT,4 SemiT,5 BeSemiT,6 L1T,7 MILT,8 VTD9 and TLD10 algorithms on numerous challenging sequences, and evaluate them with different performance metrics. The qualitative and quantitative comparative results demonstrate the strength and weakness of these algorithms.

  8. Individual fiber anatomy of the subthalamic region revealed with diffusion tensor imaging: a concept to identify the deep brain stimulation target for tremor suppression.

    PubMed

    Coenen, Volker A; Mädler, Burkhard; Schiffbauer, Hagen; Urbach, Horst; Allert, Niels

    2011-04-01

    Deep brain stimulation (DBS) has been proven to alleviate tremor of various origins. Distinct regions have been targeted. One explanation for good clinical tremor control might be the involvement of the dentatorubrothalamic tract (DRT) as has been suggested in superficial (thalamic) and inferior (posterior subthalamic) target regions. Beyond a correlation with atlas data and the postmortem evaluation of patients treated with lesion surgery, proof for the involvement of DRT in tremor reduction in the living, the scope of this work, is elusive. To report a case of unilateral refractory tremor in tremor-dominant Parkinson disease treated with thalamic DBS. Preoperative diffusion tensor imaging (DTI) was performed. Correlation with individual DBS electrode contact locations was obtained through postoperative fusion of helical computed tomography (CT) data with DTI fiber tracking. Tremor was alleviated effectively. An evaluation of the active electrode contact position revealed clear involvement of the DRT in tremor control. A closer evaluation of clinical effects and side effects revealed a highly detailed individual fiber map of the subthalamic region with DTI fiber tracking. This is the first time the involvement of the DRT in tremor reduction through DBS has been shown in the living. The combination of DTI with postoperative CT and the evaluation of the electrophysiological environment of distinct electrode contacts led to an individual detailed fiber map and might be extrapolated to refined DTI-based targeting strategies in the future. Data acquisition for a larger study group is the topic of our ongoing research.

  9. Synthesis of Railroad Design Methods, Track Response Models, and Evaluation Methods for Military Railroads.

    DTIC Science & Technology

    1985-03-01

    economically justified. For main lines, access tracks, heavy traffic tracks, and tracks where the de- sign train speed is greater than 40 mph, TM 5... analysis 35. The beam-on-elastic-foundation model is the key to the AREA design procedure. Kerr in "Problems and Needs in Track Structure Design and... Analysis " (Kerr 1977) presents an outline of the development of this model for analysis of track structures. The fundamental differential equation which

  10. UWB Two-Cluster AOA Tracking Prototype System Design

    NASA Technical Reports Server (NTRS)

    Ngo, Phong H.; Arndt, D.; Phan, C.; Gross, J.; Jianjun; Rafford, Melinda

    2006-01-01

    This presentation discusses a design effort for a prototype ultra-wideband (UWB) tracking system that is currently under development at NASA Johnson Space Center (JSC). The system is being studied for use in tracking of lunar/Mars rovers during early exploration missions when satellite navigation systems are not available. The UWB technology is exploited to implement the tracking system due to its properties such as fine time resolution, low power spectral density and multipath immunity. A two cluster prototype design using commercially available UWB radios is employed to implement the Angle of Arrival (AOA) tracking methodology in this design effort. In order to increase the tracking range, low noise amplifiers (LNA) and high gain horns are used at the receiving sides. Field tests were conducted jointly with the Science and Crew Operation Utility Testbed (SCOUT) vehicle near the Meteor Crater in Arizona to test the tracking capability for a moving target in an operational environment. These tests demonstrate that the UWB tracking system can co-exist with other on-board radio frequency (RF) communication systems (such as Global Positioning System (GPS), video, voice and telemetry systems), and that a tracking resolution less than 1% of the range can be achieved.

  11. A complete system for head tracking using motion-based particle filter and randomly perturbed active contour

    NASA Astrophysics Data System (ADS)

    Bouaynaya, N.; Schonfeld, Dan

    2005-03-01

    Many real world applications in computer and multimedia such as augmented reality and environmental imaging require an elastic accurate contour around a tracked object. In the first part of the paper we introduce a novel tracking algorithm that combines a motion estimation technique with the Bayesian Importance Sampling framework. We use Adaptive Block Matching (ABM) as the motion estimation technique. We construct the proposal density from the estimated motion vector. The resulting algorithm requires a small number of particles for efficient tracking. The tracking is adaptive to different categories of motion even with a poor a priori knowledge of the system dynamics. Particulary off-line learning is not needed. A parametric representation of the object is used for tracking purposes. In the second part of the paper, we refine the tracking output from a parametric sample to an elastic contour around the object. We use a 1D active contour model based on a dynamic programming scheme to refine the output of the tracker. To improve the convergence of the active contour, we perform the optimization over a set of randomly perturbed initial conditions. Our experiments are applied to head tracking. We report promising tracking results in complex environments.

  12. The performance of matched-field track-before-detect methods using shallow-water Pacific data.

    PubMed

    Tantum, Stacy L; Nolte, Loren W; Krolik, Jeffrey L; Harmanci, Kerem

    2002-07-01

    Matched-field track-before-detect processing, which extends the concept of matched-field processing to include modeling of the source dynamics, has recently emerged as a promising approach for maintaining the track of a moving source. In this paper, optimal Bayesian and minimum variance beamforming track-before-detect algorithms which incorporate a priori knowledge of the source dynamics in addition to the underlying uncertainties in the ocean environment are presented. A Markov model is utilized for the source motion as a means of capturing the stochastic nature of the source dynamics without assuming uniform motion. In addition, the relationship between optimal Bayesian track-before-detect processing and minimum variance track-before-detect beamforming is examined, revealing how an optimal tracking philosophy may be used to guide the modification of existing beamforming techniques to incorporate track-before-detect capabilities. Further, the benefits of implementing an optimal approach over conventional methods are illustrated through application of these methods to shallow-water Pacific data collected as part of the SWellEX-1 experiment. The results show that incorporating Markovian dynamics for the source motion provides marked improvement in the ability to maintain target track without the use of a uniform velocity hypothesis.

  13. Evaluation of bias in the Hamburg wheel tracking device.

    DOT National Transportation Integrated Search

    2013-09-01

    As the list of states adopting the Hamburg Wheel Tracking Device (HWTD) continues to grow, there is a need to evaluate how results are utilized. American Association of State Highway and Transportation Officials T 324 does not standardize the analysi...

  14. Estimating Track Capacity Based on Rail Stresses and Metal Fatigue.

    DOT National Transportation Integrated Search

    2011-09-21

    This paper describes a framework to evaluate the structural capacity of railroad track to train-induced loads. The framework is applied to estimate structural performance in terms of allowable limits for crosstie spacing. Evaluation of the load-carry...

  15. The effect of haptic guidance and visual feedback on learning a complex tennis task.

    PubMed

    Marchal-Crespo, Laura; van Raai, Mark; Rauter, Georg; Wolf, Peter; Riener, Robert

    2013-11-01

    While haptic guidance can improve ongoing performance of a motor task, several studies have found that it ultimately impairs motor learning. However, some recent studies suggest that the haptic demonstration of optimal timing, rather than movement magnitude, enhances learning in subjects trained with haptic guidance. Timing of an action plays a crucial role in the proper accomplishment of many motor skills, such as hitting a moving object (discrete timing task) or learning a velocity profile (time-critical tracking task). The aim of the present study is to evaluate which feedback conditions-visual or haptic guidance-optimize learning of the discrete and continuous elements of a timing task. The experiment consisted in performing a fast tennis forehand stroke in a virtual environment. A tendon-based parallel robot connected to the end of a racket was used to apply haptic guidance during training. In two different experiments, we evaluated which feedback condition was more adequate for learning: (1) a time-dependent discrete task-learning to start a tennis stroke and (2) a tracking task-learning to follow a velocity profile. The effect that the task difficulty and subject's initial skill level have on the selection of the optimal training condition was further evaluated. Results showed that the training condition that maximizes learning of the discrete time-dependent motor task depends on the subjects' initial skill level. Haptic guidance was especially suitable for less-skilled subjects and in especially difficult discrete tasks, while visual feedback seems to benefit more skilled subjects. Additionally, haptic guidance seemed to promote learning in a time-critical tracking task, while visual feedback tended to deteriorate the performance independently of the task difficulty and subjects' initial skill level. Haptic guidance outperformed visual feedback, although additional studies are needed to further analyze the effect of other types of feedback visualization on motor learning of time-critical tasks.

  16. Impacts of tracked vehicles on sediment from a desert soil

    Treesearch

    Erek H. Fuchs; Karl M. Wood; Tim L. Jones; Brent Racher

    2003-01-01

    Off-road military vehicle traffic is a major consideration in the management of military lands. The objective of this study was to determine the impacts of military tracked M1A1 heavy combat tank vehicles on sediment loss from runoff, surface plant cover, and surface microtopography in a desert military training environment. A randomized block design was used which had...

  17. 20th Annual Systems Engineering Conference. Volume 1, Monday-Tuesday

    DTIC Science & Technology

    2017-10-26

    Environment will follow Mr. Thompson’s presentation with a presentation focusing on how ESOH Risk Management is an integral part of the RIO Management...office successes and failures in implementing the DoDI 5000.02 acquisition ESOH policy. HUMAN SYSTEMS INTEGRATION (HSI) Track Chair: Matthew...practices, process improvements, applications and approaches to program integration . INTEROPERABILITY/NET - CENTRIC OPERATIONS Track Chairs

  18. Non-Tenure-Track Faculty's Social Construction of a Supportive Work Environment

    ERIC Educational Resources Information Center

    Kezar, Adrianna

    2013-01-01

    Background: The number of non-tenure-track faculty (NTTF), including both full-time (FT) and part-time (PT) positions, has risen to two-thirds of faculty positions across the academy. To date, most of the studies of NTTF have relied on secondary data or large-scale surveys. Few qualitative studies exist that examine the experience, working…

  19. An RF-based wearable sensor system for indoor tracking to facilitate efficient healthcare management.

    PubMed

    Yuzhe Ouyang; Shan, Kai; Bui, Francis Minhthang

    2016-08-01

    To understand the utilization of clinical resources and improve the efficiency of healthcare, it is often necessary to accurately locate patients and doctors in a healthcare facility. However, existing tracking methods, such as GPS, Wi-Fi and RFID, have technological drawbacks or impose significant costs, thus limiting their applications in many clinical environments, especially those with indoor enclosures. This paper proposes a low-cost and flexible tracking system that is well suited for operating in an indoor environment. Based on readily available RF transceivers and microcontrollers, our wearable sensor system can facilitate locating users (e.g., patients or doctors) or objects (e.g., medical devices) in a building. The strategic construction of the sensor system, along with a suitably designed tracking algorithm, together provide for reliability and dispatch in localization performance. For demonstration purposes, several simplified experiments, with different configurations of the system, are implemented in two testing rooms to assess the baseline performance. From the obtained results, our system exhibits immense promise in acquiring a user location and corresponding time-stamp, with high accuracy and rapid response. This capability is conducive to both short- and long-term data analytics, which are crucial for improving healthcare management.

  20. Transportable Manned and Robotic Digital Geophysical Mapping Tow Vehicle, Phase 1

    DTIC Science & Technology

    2007-08-01

    by using the UX PROCESS QC/QA tools to evaluate quality. Areas evaluated included induced noise, position and track accuracy, synchronization/latency... tools . To gain additional data on productivity and the effect of alternate direction of travel we mapped an unobstructed subset of the Grid 1-4 area...independently evaluated by using the UX PROCESS QC/QA tools to evaluate quality. Areas evaluated included induced noise, position and track

Top