Interplanetary Dust Observations by the Juno MAG Investigation
NASA Astrophysics Data System (ADS)
Jørgensen, John; Benn, Mathias; Denver, Troelz; Connerney, Jack; Jørgensen, Peter; Bolton, Scott; Brauer, Peter; Levin, Steven; Oliversen, Ronald
2017-04-01
The spin-stabilized and solar powered Juno spacecraft recently concluded a 5-year voyage through the solar system en route to Jupiter, arriving on July 4th, 2016. During the cruise phase from Earth to the Jovian system, the Magnetometer investigation (MAG) operated two magnetic field sensors and four co-located imaging systems designed to provide accurate attitude knowledge for the MAG sensors. One of these four imaging sensors - camera "D" of the Advanced Stellar Compass (ASC) - was operated in a mode designed to detect all luminous objects in its field of view, recording and characterizing those not found in the on-board star catalog. The capability to detect and track such objects ("non-stellar objects", or NSOs) provides a unique opportunity to sense and characterize interplanetary dust particles. The camera's detection threshold was set to MV9 to minimize false detections and discourage tracking of known objects. On-board filtering algorithms selected only those objects tracked through more than 5 consecutive images and moving with an apparent angular rate between 15"/s and 10,000"/s. The coordinates (RA, DEC), intensity, and apparent velocity of such objects were stored for eventual downlink. Direct detection of proximate dust particles is precluded by their large (10-30 km/s) relative velocity and extreme angular rates, but their presence may be inferred using the collecting area of Juno's large ( 55m2) solar arrays. Dust particles impact the spacecraft at high velocity, creating an expanding plasma cloud and ejecta with modest (few m/s) velocities. These excavated particles are revealed in reflected sunlight and tracked moving away from the spacecraft from the point of impact. Application of this novel detection method during Juno's traversal of the solar system provides new information on the distribution of interplanetary (µm-sized) dust.
NASA Astrophysics Data System (ADS)
Wofford, Aida; Charlot, Stéphane; Eldridge, John
2015-08-01
We compute libraries of stellar + nebular spectra of populations of coeval stars with ages of <100 Myr and metallicities of Z=0.001 to 0.040, using different sets of massive-star evolution tracks, i.e., new Padova tracks for single non-rotating stars, the Geneva tracks for single non-rotating and rotating stars, and the Auckland tracks for single non-rotating and binary stars. For the stellar component, we use population synthesis codes galaxev, starburst99, and BPASS, depending on the set of tracks. For the nebular component we use photoionization code cloudy. From these spectra, we obtain magnitudes in filters F275W, F336W, F438W, F547M, F555W, F657N, and F814W of the Hubble Space Telescope (HST) Wide Field Camera Three. We use i) our computed magnitudes, ii) new multi-band photometry of massive-star clusters in nearby (<11 Mpc) galaxies spanning the metallicity range 12+log(O/H)=7.2-9.2, observed as part of HST programs 13364 (PI Calzetti) and 13773 (PI Chandar), and iii) Bayesian inference to a) establish how well the different models are able to constrain the metallicities, extinctions, ages, and masses of the star clusters, b) quantify differences in the cluster properties obtained with the different models, and c) assess how properties of lower-mass clusters are affected by the stochastic sampling of the IMF. In our models, the stellar evolution tracks, stellar atmospheres, and nebulae have similar chemical compositions. Different metallicities are available with different sets of tracks and we compare results from models of similar metallicities. Our results have implications for studies of the formation and evolution of star clusters, the cluster age and mass functions, and the star formation histories of galaxies.
From protostellar to pre-main-sequence evolution
NASA Astrophysics Data System (ADS)
D'Antona, F.
I summarize the status of pre-main-sequence evolutionary tracks starting from the first steps dating back to the concept of Hayashi track. Understanding of the dynamical protostellar phase in the vision of Palla & Stahler, who introduced the concept of the deuterium burning thermostat and of stellar birthline, provided for a long time a link between the dynamical and hydrostatic evolution. Disk accretion however changed considerably the view, but re-introducing some ambiguities which must still be solved. The limitations and uncertainties in the mass and age determination from models for young stellar objects are summarized, but the burning of light elements is still a powerful observational signature.
NASA Astrophysics Data System (ADS)
Mokiem, M. R.; de Koter, A.; Evans, C. J.; Puls, J.; Smartt, S. J.; Crowther, P. A.; Herrero, A.; Langer, N.; Lennon, D. J.; Najarro, F.; Villamariz, M. R.; Vink, J. S.
2007-04-01
We have studied the optical spectra of a sample of 28 O- and early B-type stars in the Large Magellanic Cloud, 22 of which are associated with the young star forming region N11. Our observations sample the central associations of LH9 and LH10, and the surrounding regions. Stellar parameters are determined using an automated fitting method (Mokiem et al. 2005), which combines the stellar atmosphere code fastwind (Puls et al. 2005) with the genetic algorithm based optimisation routine pikaia (Charbonneau 1995). We derive an age of 7.0 ± 1.0 and 3.0 ± 1.0 Myr for LH9 and LH10, respectively. The age difference and relative distance of the associations are consistent with a sequential star formation scenario in which stellar activity in LH9 triggered the formation of LH10. Our sample contains four stars of spectral type O2. From helium and hydrogen line fitting we find the hottest three of these stars to be 49{-}54 kK (compared to 45{-}46 kK for O3 stars). Detailed determination of the helium mass fraction reveals that the masses of helium enriched dwarfs and giants derived in our spectroscopic analysis are systematically lower than those implied by non-rotating evolutionary tracks. We interpret this as evidence for efficient rotationally enhanced mixing leading to the surfacing of primary helium and to an increase of the stellar luminosity. This result is consistent with findings for SMC stars by Mokiem et al. (2006). For bright giants and supergiants no such mass discrepancy is found; these stars therefore appear to follow tracks of modestly or non-rotating objects. The set of programme stars was sufficiently large to establish the mass loss rates of OB stars in this Z ˜ 1/2 Z⊙ environment sufficiently accurate to allow for a quantitative comparison with similar objects in the Galaxy and the SMC. The mass loss properties are found to be intermediate to massive stars in the Galaxy and SMC. Comparing the derived modified wind momenta D_mom as a function of luminosity with predictions for LMC metallicities by Vink et al. (2001) yields good agreement in the entire luminosity range that was investigated, i.e. 5.0 < log L/L⊙< 6.1. Appendix A is only available in electronic form at http://www.aanda.org
OPTICAL PROPERTIES OF THE ULTRALUMINOUS X-RAY SOURCE HOLMBERG IX X-1 AND ITS STELLAR ENVIRONMENT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grise, F.; Kaaret, P.; Pakull, M. W.
2011-06-10
Holmberg IX X-1 is an archetypal ultraluminous X-ray source (ULX). Here we study the properties of the optical counterpart and of its stellar environment using optical data from SUBARU/Faint Object Camera and Spectrograph, GEMINI/GMOS-N and Hubble Space Telescope (HST)/Advanced Camera for Surveys, as well as simultaneous Chandra X-ray data. The V {approx} 22.6 spectroscopically identified optical counterpart is part of a loose cluster with an age {approx}< 20 Myr. Consequently, the mass upper limit on individual stars in the association is about 20 M{sub sun}. The counterpart is more luminous than the other stars of the association, suggesting a non-negligiblemore » optical contribution from the accretion disk. An observed UV excess also points to non-stellar light similar to X-ray active low-mass X-ray binaries. A broad He II {lambda}4686 emission line identified in the optical spectrum of the ULX further suggests optical light from X-ray reprocessing in the accretion disk. Using stellar evolutionary tracks, we have constrained the mass of the counterpart to be {approx}> 10 M{sub sun}, even if the accretion disk contributes significantly to the optical luminosity. Comparison of the photometric properties of the counterpart with binary models show that the donor may be more massive, {approx}> 25 M{sub sun}, with the ULX system likely undergoing case AB mass transfer. Finally, the counterpart exhibits photometric variability of 0.14 mag between two HST observations separated by 50 days which could be due to ellipsoidal variations and/or disk reprocessing of variable X-ray emission.« less
NASA Astrophysics Data System (ADS)
De Becker, Michaël
2018-04-01
Massive stars are extreme stellar objects whose properties allow for the study of some interesting physical processes, including particle acceleration up to relativistic velocities. In particular, the collisions of massive star winds in binary systems lead notably to acceleration of electrons involved in synchrotron emission, hence their identification as non-thermal radio emitters. This has been demonstrated for about 40 objects so far. The relativistic electrons are also expected to produce non-thermal high-energy radiation through inverse Compton scattering. This class of objects permits thus to investigate non-thermal physics through observations in the radio and high energy spectral domains. However, the binary nature of these sources introduces some stringent requirements to adequately interpret their behavior and model non-thermal processes. In particular, these objects are well-established variable stellar sources on the orbital time-scale. The stellar and orbital parameters need to be determined, and this is notably achieved through studies in the optical domain. The combination of observations in the visible domain (including e.g. 3.6-m DOT) with radio measurements using notably GMRT and X-ray observations constitutes thus a promising strategy to investigate particle-accelerating colliding-wind binaries in the forthcoming decade.
Mesa Isochrones and Stellar Tracks (MIST). I. Solar-scaled Models
NASA Astrophysics Data System (ADS)
Choi, Jieun; Dotter, Aaron; Conroy, Charlie; Cantiello, Matteo; Paxton, Bill; Johnson, Benjamin D.
2016-06-01
This is the first of a series of papers presenting the Modules for Experiments in Stellar Astrophysics (MESA) Isochrones and Stellar Tracks (MIST) project, a new comprehensive set of stellar evolutionary tracks and isochrones computed using MESA, a state-of-the-art open-source 1D stellar evolution package. In this work, we present models with solar-scaled abundance ratios covering a wide range of ages (5≤slant {log}({Age}) [{year}]≤slant 10.3), masses (0.1≤slant M/{M}⊙ ≤slant 300), and metallicities (-2.0≤slant [{{Z}}/{{H}}]≤slant 0.5). The models are self-consistently and continuously evolved from the pre-main sequence (PMS) to the end of hydrogen burning, the white dwarf cooling sequence, or the end of carbon burning, depending on the initial mass. We also provide a grid of models evolved from the PMS to the end of core helium burning for -4.0≤slant [{{Z}}/{{H}}]\\lt -2.0. We showcase extensive comparisons with observational constraints as well as with some of the most widely used existing models in the literature. The evolutionary tracks and isochrones can be downloaded from the project website at http://waps.cfa.harvard.edu/MIST/.
Group Delay Tracking with the Sydney University Stellar Interferometer
NASA Astrophysics Data System (ADS)
Lawson, Peter R.
1994-08-01
The Sydney University Stellar Interferometer (SUSI) is a long baseline optical interferometer, located at the Paul Wild Observatory near Narrabri, in northern New South Wales, Australia. It is designed to measure stellar angular diameters using light collected from a pair of siderostats, with 11 fixed siderostats giving separations between 5 and 640 m. Apertures smaller than Fried's coherence length, r_0, are used and active tilt-compensation is employed. This ensures that when the beams are combined in the pupil plane the wavefronts are parallel. Fringes are detected when the optical path-difference between the arriving wavefronts is less than tne coherence length of light used for the observation. While observing a star it is necessary to compensate for the changes in pathlength due to the earth's rotation. It is also highly desirable to compensate for path changes due to the effects of atmospheric turbulence. Tracking the path-difference permits an accurate calibration of the fringe visibility, allows larger bandwidths to be used, and therefore improves the sensitivity of the instrument. I describe a fringe tracking system which I developed for SUSI, based on group delay tracking with a PAPA (Precision Analog Photon Address) detector. The method uses short exposure images of fringes, 1-10 ms, detected in the dispersed spectra of the combined starlight. The number of fringes across a fixed bandwidth of channeled spectrum is directly proportional to the path-difference between the arriving wavefronts. A Fast Fourier Transform, implemented in hardware, is used to calculate the spatial power spectrum of the fringes, thereby locating the delay. The visibility loss due to a non-constant fringe spacing on the detector is investigated, and the improvements obtained from rebinning the photon data are shown. The low light level limitations of group delay tracking are determined theoretically with emphasis on the probability of tracking error, rather than the signal-to-noise ratio. Experimental results from both laboratory studies and stellar observations are presented. These show the first closed-loop operation of a fringe tracking system based on observations of group delay with a stellar interferometer. The Sydney University PAPA camera, a photon counting array detector developed for use in this work, is also described. The design principles of the PAPA camera are outlined and the potential sources of image artifacts are identified. The artifacts arise from the use of optical encoding with Gray coded masks, and teh new camera is distinguished by its mask-plate, which was designed to overcome artifacts due to vignetting. Nw lens mounts are also presented which permit a simplified optical alignment without the need for tilt-plates. The performance of the camera is described. (SECTION: Dissertation Summaries)
NASA Astrophysics Data System (ADS)
Katrien Els Decin, Leen
2015-08-01
Over much of the initial mass function, stars lose a significant fraction of their mass through a stellar wind during the late stages of their evolution when being a (super)giant star. As of today, we can not yet predict the mass-loss rate during the (super)giant phase for a given star with specific stellar parameters from first principles. This uncertainty directly impacts the accuracy of current stellar evolution and population synthesis models that predict the enrichment of the interstellar medium by these stellar winds. Efforts to establish the link between the initial physical and chemical conditions at stellar birth and the mass-loss rate during the (super)giant phase have proceeded on two separate tracks: (1) more detailed studies of the chemical and morpho-kinematical structure of the stellar winds of (super)giant stars in our own Milky Way by virtue of the proximity, and (2) large scale and statistical studies of a (large) sample of stars in other galaxies (such as the LMC and SMC) and globular clusters eliminating the uncertainty on the distance estimate and providing insight into the dependence of the mass-loss rate on the metallicity. In this review, I will present recent results of both tracks, will show how recent measurements confirm (some) theoretical predictions, but also how results from the first track admonish of common misconceptions inherent in the often more simplified analysis used to analyse the large samples from track 2.
Track-Before-Detect Algorithm for Faint Moving Objects based on Random Sampling and Consensus
NASA Astrophysics Data System (ADS)
Dao, P.; Rast, R.; Schlaegel, W.; Schmidt, V.; Dentamaro, A.
2014-09-01
There are many algorithms developed for tracking and detecting faint moving objects in congested backgrounds. One obvious application is detection of targets in images where each pixel corresponds to the received power in a particular location. In our application, a visible imager operated in stare mode observes geostationary objects as fixed, stars as moving and non-geostationary objects as drifting in the field of view. We would like to achieve high sensitivity detection of the drifters. The ability to improve SNR with track-before-detect (TBD) processing, where target information is collected and collated before the detection decision is made, allows respectable performance against dim moving objects. Generally, a TBD algorithm consists of a pre-processing stage that highlights potential targets and a temporal filtering stage. However, the algorithms that have been successfully demonstrated, e.g. Viterbi-based and Bayesian-based, demand formidable processing power and memory. We propose an algorithm that exploits the quasi constant velocity of objects, the predictability of the stellar clutter and the intrinsically low false alarm rate of detecting signature candidates in 3-D, based on an iterative method called "RANdom SAmple Consensus” and one that can run real-time on a typical PC. The technique is tailored for searching objects with small telescopes in stare mode. Our RANSAC-MT (Moving Target) algorithm estimates parameters of a mathematical model (e.g., linear motion) from a set of observed data which contains a significant number of outliers while identifying inliers. In the pre-processing phase, candidate blobs were selected based on morphology and an intensity threshold that would normally generate unacceptable level of false alarms. The RANSAC sampling rejects candidates that conform to the predictable motion of the stars. Data collected with a 17 inch telescope by AFRL/RH and a COTS lens/EM-CCD sensor by the AFRL/RD Satellite Assessment Center is used to assess the performance of the algorithm. In the second application, a visible imager operated in sidereal mode observes geostationary objects as moving, stars as fixed except for field rotation, and non-geostationary objects as drifting. RANSAC-MT is used to detect the drifter. In this set of data, the drifting space object was detected at a distance of 13800 km. The AFRL/RH set of data, collected in the stare mode, contained the signature of two geostationary satellites. The signature of a moving object was simulated and added to the sequence of frames to determine the sensitivity in magnitude. The performance compares well with the more intensive TBD algorithms reported in the literature.
NASA Technical Reports Server (NTRS)
Rodriguez, R. M.
1975-01-01
The Balloon-Borne Ultraviolet Stellar Spectrometer (BUSS) Science Data Docummutation Program (BAPS48) is a pulse code modulation docummutation program that will format the BUSS science data contained on a one inch PCM tracking tape into a seven track serial bit stream formatted digital tape.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poppenhaeger, K.; Wolk, S. J.; Hora, J. L.
2015-10-15
We present a time-variability study of young stellar objects (YSOs) in the cluster IRAS 20050+2720, performed at 3.6 and 4.5 μm with the Spitzer Space Telescope; this study is part of the Young Stellar Object VARiability (YSOVAR) project. We have collected light curves for 181 cluster members over 60 days. We find a high variability fraction among embedded cluster members of ca. 70%, whereas young stars without a detectable disk display variability less often (in ca. 50% of the cases) and with lower amplitudes. We detect periodic variability for 33 sources with periods primarily in the range of 2–6 days.more » Practically all embedded periodic sources display additional variability on top of their periodicity. Furthermore, we analyze the slopes of the tracks that our sources span in the color–magnitude diagram (CMD). We find that sources with long variability time scales tend to display CMD slopes that are at least partially influenced by accretion processes, while sources with short variability timescales tend to display extinction-dominated slopes. We find a tentative trend of X-ray detected cluster members to vary on longer timescales than the X-ray undetected members.« less
NASA Astrophysics Data System (ADS)
Tartakovsky, A.; Tong, M.; Brown, A. P.; Agh, C.
2013-09-01
We develop efficient spatiotemporal image processing algorithms for rejection of non-stationary clutter and tracking of multiple dim objects using non-linear track-before-detect methods. For clutter suppression, we include an innovative image alignment (registration) algorithm. The images are assumed to contain elements of the same scene, but taken at different angles, from different locations, and at different times, with substantial clutter non-stationarity. These challenges are typical for space-based and surface-based IR/EO moving sensors, e.g., highly elliptical orbit or low earth orbit scenarios. The algorithm assumes that the images are related via a planar homography, also known as the projective transformation. The parameters are estimated in an iterative manner, at each step adjusting the parameter vector so as to achieve improved alignment of the images. Operating in the parameter space rather than in the coordinate space is a new idea, which makes the algorithm more robust with respect to noise as well as to large inter-frame disturbances, while operating at real-time rates. For dim object tracking, we include new advancements to a particle non-linear filtering-based track-before-detect (TrbD) algorithm. The new TrbD algorithm includes both real-time full image search for resolved objects not yet in track and joint super-resolution and tracking of individual objects in closely spaced object (CSO) clusters. The real-time full image search provides near-optimal detection and tracking of multiple extremely dim, maneuvering objects/clusters. The super-resolution and tracking CSO TrbD algorithm provides efficient near-optimal estimation of the number of unresolved objects in a CSO cluster, as well as the locations, velocities, accelerations, and intensities of the individual objects. We demonstrate that the algorithm is able to accurately estimate the number of CSO objects and their locations when the initial uncertainty on the number of objects is large. We demonstrate performance of the TrbD algorithm both for satellite-based and surface-based EO/IR surveillance scenarios.
Research on the Application of Fast-steering Mirror in Stellar Interferometer
NASA Astrophysics Data System (ADS)
Mei, R.; Hu, Z. W.; Xu, T.; Sun, C. S.
2017-07-01
For a stellar interferometer, the fast-steering mirror (FSM) is widely utilized to correct wavefront tilt caused by atmospheric turbulence and internal instrumental vibration due to its high resolution and fast response frequency. In this study, the non-coplanar error between the FSM and actuator deflection axis introduced by manufacture, assembly, and adjustment is analyzed. Via a numerical method, the additional optical path difference (OPD) caused by above factors is studied, and its effects on tracking accuracy of stellar interferometer are also discussed. On the other hand, the starlight parallelism between the beams of two arms is one of the main factors of the loss of fringe visibility. By analyzing the influence of wavefront tilt caused by the atmospheric turbulence on fringe visibility, a simple and efficient real-time correction scheme of starlight parallelism is proposed based on a single array detector. The feasibility of this scheme is demonstrated by laboratory experiment. The results show that starlight parallelism meets the requirement of stellar interferometer in wavefront tilt preliminarily after the correction of fast-steering mirror.
NASA Astrophysics Data System (ADS)
McDermid, Richard M.; Alatalo, Katherine; Blitz, Leo; Bournaud, Frédéric; Bureau, Martin; Cappellari, Michele; Crocker, Alison F.; Davies, Roger L.; Davis, Timothy A.; de Zeeuw, P. T.; Duc, Pierre-Alain; Emsellem, Eric; Khochfar, Sadegh; Krajnović, Davor; Kuntschner, Harald; Morganti, Raffaella; Naab, Thorsten; Oosterloo, Tom; Sarzi, Marc; Scott, Nicholas; Serra, Paolo; Weijmans, Anne-Marie; Young, Lisa M.
2015-04-01
We present the stellar population content of early-type galaxies from the ATLAS3D survey. Using spectra integrated within apertures covering up to one effective radius, we apply two methods: one based on measuring line-strength indices and applying single stellar population (SSP) models to derive SSP-equivalent values of stellar age, metallicity, and alpha enhancement; and one based on spectral fitting to derive non-parametric star formation histories, mass-weighted average values of age, metallicity, and half-mass formation time-scales. Using homogeneously derived effective radii and dynamically determined galaxy masses, we present the distribution of stellar population parameters on the Mass Plane (MJAM, σe, R^maj_e), showing that at fixed mass, compact early-type galaxies are on average older, more metal-rich, and more alpha-enhanced than their larger counterparts. From non-parametric star formation histories, we find that the duration of star formation is systematically more extended in lower mass objects. Assuming that our sample represents most of the stellar content of today's local Universe, approximately 50 per cent of all stars formed within the first 2 Gyr following the big bang. Most of these stars reside today in the most massive galaxies (>1010.5 M⊙), which themselves formed 90 per cent of their stars by z ˜ 2. The lower mass objects, in contrast, have formed barely half their stars in this time interval. Stellar population properties are independent of environment over two orders of magnitude in local density, varying only with galaxy mass. In the highest density regions of our volume (dominated by the Virgo cluster), galaxies are older, alpha-enhanced, and have shorter star formation histories with respect to lower density regions.
Multiple objects tracking in fluorescence microscopy.
Kalaidzidis, Yannis
2009-01-01
Many processes in cell biology are connected to the movement of compact entities: intracellular vesicles and even single molecules. The tracking of individual objects is important for understanding cellular dynamics. Here we describe the tracking algorithms which have been developed in the non-biological fields and successfully applied to object detection and tracking in biological applications. The characteristics features of the different algorithms are compared.
Summary of spacecraft technology, systems reliability, and tracking data acquisition
NASA Technical Reports Server (NTRS)
1973-01-01
Goddard activities are reported for 1973. An eight-year flight schedule for projected space missions is presented. Data acquired by spacecraft in the following disciplines are described: stellar ultraviolet, stellar X-rays, stellar gamma rays, solar radiation, radio astronomy, particles/fields, magnetosphere, aurora, and the upper atmosphere.
Self-motion impairs multiple-object tracking.
Thomas, Laura E; Seiffert, Adriane E
2010-10-01
Investigations of multiple-object tracking aim to further our understanding of how people perform common activities such as driving in traffic. However, tracking tasks in the laboratory have overlooked a crucial component of much real-world object tracking: self-motion. We investigated the hypothesis that keeping track of one's own movement impairs the ability to keep track of other moving objects. Participants attempted to track multiple targets while either moving around the tracking area or remaining in a fixed location. Participants' tracking performance was impaired when they moved to a new location during tracking, even when they were passively moved and when they did not see a shift in viewpoint. Self-motion impaired multiple-object tracking in both an immersive virtual environment and a real-world analog, but did not interfere with a difficult non-spatial tracking task. These results suggest that people use a common mechanism to track changes both to the location of moving objects around them and to keep track of their own location. Copyright 2010 Elsevier B.V. All rights reserved.
The stellar population of the Lupus clouds
NASA Technical Reports Server (NTRS)
Hughes, Joanne; Hartigan, Patrick; Krautter, Joachim; Kelemen, Janos
1994-01-01
We present photometric and spectroscopic observations of the H alpha emission stars in the Lupus dark cloud complex. We estimate the effective temperatures of the stars from their spectral types and calculate the reddening towards each object from the (R-I) colors. From these data, we derive mass and age distributions for the Lupus stars using a new set of pre-main sequence evolutionar tracks. We compare the results for the Lupus stars with those for a similar population of young stellar objects in Taurus-Auriga and Chamaeleon and with the initial mass function for field stars in the solar neighborhood. From the H-R diagrams, Lupus appears to contain older stars than Taurus. The Lupus dark clouds form a greater proportion of low mass stars than the Taurus complex. Also, the proportion of low mass stars in Lupus is higher than that predicted by the Miller-Scalo initial mass function, and the lowest mass stars in Lupus are less active than similar T Tauri stars in other regions.
An international program to protect the earth from impact catastrophe - Initial steps
NASA Technical Reports Server (NTRS)
Morrison, David
1992-01-01
Risks posed by impacting objects of various sizes are analyzed using the Spaceguard Survey, the 1992 NASA report of International Near-Earth-Object (NEO) Detection workshop. The state-of-the-art technology makes it possible to discover and track nearly all earth-crossing asteroids and short-period comets large enough to threaten global catastrophe. To deal with this hazard a long-term telescopic search is required that reaches stellar magnitude 22 in order to achieve a nearly complete census of objects 1 km or larger. A program can be performed on the basis of an international network of six telescopes of 2-3 m aperture equipped with modern CCD detectors and automatic signal processing capability.
A standard stellar library for evolutionary synthesis. III. Metallicity calibration
NASA Astrophysics Data System (ADS)
Westera, P.; Lejeune, T.; Buser, R.; Cuisinier, F.; Bruzual, G.
2002-01-01
We extend the colour calibration of the widely used BaSeL standard stellar library (Lejeune et al. 1997, 1998) to non-solar metallicities, down to [Fe/H] ~ -2.0 dex. Surprisingly, we find that at the present epoch it is virtually impossible to establish a unique calibration of UBVRIJHKL colours in terms of stellar metallicity [Fe/H] which is consistent simultaneously with both colour-temperature relations and colour-absolute magnitude diagrams (CMDs) based on observed globular cluster photometry data and on published, currently popular standard stellar evolutionary tracks and isochrones. The problem appears to be related to the long-standing incompleteness in our understanding of convection in late-type stellar evolution, but is also due to a serious lack of relevant observational calibration data that would help resolve, or at least further significant progress towards resolving this issue. In view of the most important applications of the BaSeL library, we here propose two different metallicity calibration versions: (1) the ``WLBC 99'' library, which consistently matches empirical colour-temperature relations and which, therefore, should make an ideal tool for the study of individual stars; and (2), the ``PADOVA 2000'' library, which provides isochrones from the Padova 2000 grid (Girardi et al. \\cite{padova}) that successfully reproduce Galactic globular-cluster colour-absolute magnitude diagrams and which thus should prove particularly useful for studies of collective phenomena in stellar populations in clusters and galaxies.
NASA Astrophysics Data System (ADS)
Jensen, Sigurd S.; Haugbølle, Troels
2018-02-01
Hertzsprung-Russell diagrams of star-forming regions show a large luminosity spread. This is incompatible with well-defined isochrones based on classic non-accreting protostellar evolution models. Protostars do not evolve in isolation of their environment, but grow through accretion of gas. In addition, while an age can be defined for a star-forming region, the ages of individual stars in the region will vary. We show how the combined effect of a protostellar age spread, a consequence of sustained star formation in the molecular cloud, and time-varying protostellar accretion for individual protostars can explain the observed luminosity spread. We use a global magnetohydrodynamic simulation including a sub-scale sink particle model of a star-forming region to follow the accretion process of each star. The accretion profiles are used to compute stellar evolution models for each star, incorporating a model of how the accretion energy is distributed to the disc, radiated away at the accretion shock, or incorporated into the outer layers of the protostar. Using a modelled cluster age of 5 Myr, we naturally reproduce the luminosity spread and find good agreement with observations of the Collinder 69 cluster, and the Orion Nebular Cluster. It is shown how stars in binary and multiple systems can be externally forced creating recurrent episodic accretion events. We find that in a realistic global molecular cloud model massive stars build up mass over relatively long time-scales. This leads to an important conceptual change compared to the classic picture of non-accreting stellar evolution segmented into low-mass Hayashi tracks and high-mass Henyey tracks.
Stellar Gyroscope for Determining Attitude of a Spacecraft
NASA Technical Reports Server (NTRS)
Pain, Bedabrata; Hancock, Bruce; Liebe, Carl; Mellstrom, Jeffrey
2005-01-01
A paper introduces the concept of a stellar gyroscope, currently at an early stage of development, for determining the attitude or spin axis, and spin rate of a spacecraft. Like star trackers, which are commercially available, a stellar gyroscope would capture and process images of stars to determine the orientation of a spacecraft in celestial coordinates. Star trackers utilize chargecoupled devices as image detectors and are capable of tracking attitudes at spin rates of no more than a few degrees per second and update rates typically <5 Hz. In contrast, a stellar gyroscope would utilize an activepixel sensor as an image detector and would be capable of tracking attitude at a slew rate as high as 50 deg/s, with an update rate as high as 200 Hz. Moreover, a stellar gyroscope would be capable of measuring a slew rate up to 420 deg/s. Whereas a Sun sensor and a three-axis mechanical gyroscope are typically needed to complement a star tracker, a stellar gyroscope would function without them; consequently, the mass, power consumption, and mechanical complexity of an attitude-determination system could be reduced considerably.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leibler, C. N.; Berger, E.
2010-12-10
We present multi-band optical and near-infrared observations of 19 short {gamma}-ray burst (GRB) host galaxies, aimed at measuring their stellar masses and population ages. The goals of this study are to evaluate whether short GRBs track the stellar mass distribution of galaxies, to investigate the progenitor delay time distribution, and to explore any connection between long and short GRB progenitors. Using single stellar population models we infer masses of log(M{sub *}/M{sub sun}) {approx} 8.8-11.6, with a median of (log(M{sub *}/M{sub sun})) {approx} 10.1, and population ages of {tau}{sub *} {approx} 0.03-4.4 Gyr with a median of ({tau}{sub *}) {approx} 0.3more » Gyr. We further infer maximal masses of log(M{sub *}/M{sub sun}) {approx} 9.7-11.9 by assuming stellar population ages equal to the age of the universe at each host's redshift. Comparing the distribution of stellar masses to the general galaxy mass function, we find that short GRBs track the cosmic stellar mass distribution only if the late-type hosts generally have maximal masses. However, there is an apparent dearth of early-type hosts compared to the equal contribution of early- and late-type galaxies to the cosmic stellar mass budget. Similarly, the short GRB rate per unit old stellar mass appears to be elevated in the late-type hosts. These results suggest that stellar mass may not be the sole parameter controlling the short GRB rate, and raise the possibility of a two-component model with both mass and star formation playing a role (reminiscent of the case for Type Ia supernovae). If short GRBs in late-type galaxies indeed track the star formation activity, the resulting typical delay time is {approx}0.2 Gyr, while those in early-type hosts have a typical delay of {approx}3 Gyr. Using the same stellar population models, we fit the broadband photometry for 22 long GRB host galaxies in a similar redshift range and find that they have significantly lower masses and younger population ages, with (log(M{sub *}/M{sub sun})) {approx} 9.1 and ({tau}{sub *}) {approx} 0.06 Gyr, respectively; their maximal masses are similarly lower, (log(M{sub *}/M{sub sun})) {approx} 9.6, and as expected do not track the galaxy mass function. Most importantly, the two GRB host populations remain distinct even if we consider only the star-forming hosts of short GRBs, supporting our previous findings (based on star formation rates and metallicities) that the progenitors of long and short GRBs in late-type galaxies are distinct. Given the much younger stellar populations of long GRB hosts (and hence of long GRB progenitors), and the substantial differences in host properties, we caution against the use of Type I and II designations for GRBs since this may erroneously imply that all GRBs which track star formation activity share the same massive star progenitors.« less
VizieR Online Data Catalog: ATLAS3D Project. XXX (McDermid+, 2015)
NASA Astrophysics Data System (ADS)
McDermid, R. M.; Alatalo, K.; Blitz, L.; Bournaud, F.; Bureau, M.; Cappellari, M.; Crocker, A. F.; Davies, R. L.; Davis, T. A.; De Zeeuw, P. T.; Duc, P.-A.; Emsellem, E.; Khochfar, S.; Krajnovic, D.; Kuntschner, H.; Morganti, R.; Naab, T.; Oosterloo, T.; Sarzi, M.; Scott, N.; Serra, P.; Weijmans, A.-M.; Young, L. M.
2015-09-01
We present the stellar population content of early-type galaxies from the ATLAS3D survey. Using spectra integrated within apertures covering up to one effective radius, we apply two methods: one based on measuring line-strength indices and applying single stellar population (SSP) models to derive SSP-equivalent values of stellar age, metallicity, and alpha enhancement; and one based on spectral fitting to derive non-parametric star formation histories, mass-weighted average values of age, metallicity, and half-mass formation time-scales. Using homogeneously derived effective radii and dynamically determined galaxy masses, we present the distribution of stellar population parameters on the Mass Plane (MJAM, σe, Rmaje), showing that at fixed mass, compact early-type galaxies are on average older, more metal-rich, and more alpha-enhanced than their larger counterparts. From non-parametric star formation histories, we find that the duration of star formation is systematically more extended in lower mass objects. Assuming that our sample represents most of the stellar content of today's local Universe, approximately 50 percent of all stars formed within the first 2Gyr following the big bang. Most of these stars reside today in the most massive galaxies (>1010.5M⊙), which themselves formed 90 percent of their stars by z~2. The lower mass objects, in contrast, have formed barely half their stars in this time interval. Stellar population properties are independent of environment over two orders of magnitude in local density, varying only with galaxy mass. In the highest density regions of our volume (dominated by the Virgo cluster), galaxies are older, alpha-enhanced, and have shorter star formation histories with respect to lower density regions. (4 data files).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dzib, Sergio; Loinard, Laurent; Rodriguez, Luis F.
2010-08-01
Using the Very Long Base Array, we observed the young stellar object EC 95 in the Serpens cloud core at eight epochs from 2007 December to 2009 December. Two sources are detected in our field and are shown to form a tight binary system. The primary (EC 95a) is a 4-5 M {sub sun} proto-Herbig AeBe object (arguably the youngest such object known), whereas the secondary (EC 95b) is most likely a low-mass T Tauri star. Interestingly, both sources are non-thermal emitters. While T Tauri stars are expected to power a corona because they are convective while they go downmore » the Hayashi track, intermediate-mass stars approach the main sequence on radiative tracks. Thus, they are not expected to have strong superficial magnetic fields, and should not be magnetically active. We review several mechanisms that could produce the non-thermal emission of EC 95a and argue that the observed properties of EC 95a might be most readily interpreted if it possessed a corona powered by a rotation-driven convective layer. Using our observations, we show that the trigonometric parallax of EC 95 is {pi} = 2.41 {+-} 0.02 mas, corresponding to a distance of 414.9{sup +4.4} {sub -4.3} pc. We argue that this implies a distance to the Serpens core of 415 {+-} 5 pc and a mean distance to the Serpens cloud of 415 {+-} 25 pc. This value is significantly larger than previous estimates (d {approx} 260 pc) based on measurements of the extinction suffered by stars in the direction of Serpens. A possible explanation for this discrepancy is that these previous observations picked out foreground dust clouds associated with the Aquila Rift system rather than Serpens itself.« less
EXors and the stellar birthline
NASA Astrophysics Data System (ADS)
Moody, Mackenzie S. L.; Stahler, Steven W.
2017-04-01
We assess the evolutionary status of EXors. These low-mass, pre-main-sequence stars repeatedly undergo sharp luminosity increases, each a year or so in duration. We place into the HR diagram all EXors that have documented quiescent luminosities and effective temperatures, and thus determine their masses and ages. Two alternate sets of pre-main-sequence tracks are used, and yield similar results. Roughly half of EXors are embedded objects, I.e., they appear observationally as Class I or flat-spectrum infrared sources. We find that these are relatively young and are located close to the stellar birthline in the HR diagram. Optically visible EXors, on the other hand, are situated well below the birthline. They have ages of several Myr, typical of classical T Tauri stars. Judging from the limited data at hand, we find no evidence that binarity companions trigger EXor eruptions; this issue merits further investigation. We draw several general conclusions. First, repetitive luminosity outbursts do not occur in all pre-main-sequence stars, and are not in themselves a sign of extreme youth. They persist, along with other signs of activity, in a relatively small subset of these objects. Second, the very existence of embedded EXors demonstrates that at least some Class I infrared sources are not true protostars, but very young pre-main-sequence objects still enshrouded in dusty gas. Finally, we believe that the embedded pre-main-sequence phase is of observational and theoretical significance, and should be included in a more complete account of early stellar evolution.
NASA Astrophysics Data System (ADS)
Stern, S. A.
2002-09-01
Late in the Sun's evolution it, like all low and moderate mass stars, it will burn as a red giant, generating 1000s of solar luminosities for a few tens of millions of years. A dozen years ago this stage of stellar evolution was predicted to create observable sublimation signatures in systems where Kuiper Belts (KBs) are extant (Stern et al. 1990, Nature, 345, 305); recently, the SWAS spacecraft detected such systems (Melnick et al. 2001, 412, 160). During the red giant phase, the habitable zone of our solar system will lie in the region where Triton, Pluto-Charon, and KBOs orbit. Compared to the 1 AU habitable zone where Earth resided early in the solar system's history, this "delayed gratification habitable zone (DG-HZ)" will enjoy a far less biologically hazardous environment-- with far lower harmful UV radiation levels from the Sun, and a far quieter collisional environment. Objects like Triton, Pluto-Charon, and KBOs, which are known to be rich in both water and organics, will then become possible sites for biochemical and perhaps even biological evolution. The Sun's DG-HZ may only be of academic interest owing to its great separation from us in time. However, several 108 approximately solar-type Milky Way stars burn as luminous red giants today. Thus, if icy-organic objects are common in the 20-50 AU zones of these stars, as they are in our solar system (and as inferred in numerous main sequence stellar disk systems), then DG-HZs form a kind of niche habitable zone that is likely to be numerically common in the galaxy. I will show the calculated temporal evolution of DG-HZs around various stellar types using modern stellar evolution luminosity tracks, and then discuss various aspects of DG-HZs, including the effects of stellar pulsations and mass loss winds. This work was supported by NASA's Origins of Solar Systems Program.
Exploring the Solar System using stellar occultations
NASA Astrophysics Data System (ADS)
Sicardy, Bruno
2018-04-01
Stellar occultations by solar system objects allow kilometric accuracy, permit the detection of tenuous atmospheres (at nbar level), and the discovery of rings. The main limitation was the prediction accuracy, typically 40 mas, corresponding to about 1,000 km projected at the body. This lead to large time dedicated to astrometry, tedious logistical issues, and more often than not, mere miss of the event. The Gaia catalog, with sub-mas accuracy, hugely improves both the star positions, resulting in achievable accuracies of about 1 mas for the shadow track on Earth. This permits much more carefully planned campaigns, with success rate approaching 100%, weather permitting. Scientific perspectives are presented, e.g. central flashes caused by Plutos atmosphere revealing hazes and winds near its surface, grazing occultations showing topographic features, occultations by Chariklos rings unveiling dynamical features such as proper mode ``breathing''.
Yunnan-III models for evolutionary population synthesis
NASA Astrophysics Data System (ADS)
Zhang, F.; Li, L.; Han, Z.; Zhuang, Y.; Kang, X.
2013-02-01
We build the Yunnan-III evolutionary population synthesis (EPS) models by using the mesa stellar evolution code, BaSeL stellar spectra library and the initial mass functions (IMFs) of Kroupa and Salpeter, and present colours and integrated spectral energy distributions (ISEDs) of solar-metallicity stellar populations (SPs) in the range of 1 Myr to 15 Gyr. The main characteristic of the Yunnan-III EPS models is the usage of a set of self-consistent solar-metallicity stellar evolutionary tracks (the masses of stars are from 0.1 to 100 M⊙). This set of tracks is obtained by using the state-of-the-art mesa code. mesa code can evolve stellar models through thermally pulsing asymptotic giant branch (TP-AGB) phase for low- and intermediate-mass stars. By comparisons, we confirm that the inclusion of TP-AGB stars makes the V - K, V - J and V - R colours of SPs redder and the infrared flux larger at ages log(t/yr) ≳ 7.6 [the differences reach the maximum at log(t/yr) ˜ 8.6, ˜0.5-0.2 mag for colours, approximately two times for K-band flux]. We also find that the colour-evolution trends of Model with-TPAGB at intermediate and large ages are similar to those from the starburst99 code, which employs the Padova-AGB stellar library, BaSeL spectral library and the Kroupa IMF. At last, we compare the colours with the other EPS models comprising TP-AGB stars (such as CB07, M05, V10 and POPSTAR), and find that the B - V colour agrees with each other but the V-K colour shows a larger discrepancy among these EPS models [˜1 mag when 8 ≲ log(t/yr) ≲ 9]. The stellar evolutionary tracks, isochrones, colours and ISEDs can be obtained on request from the first author or from our website (http://www1.ynao.ac.cn/~zhangfh/). Using the isochrones, you can build your EPS models. Now the format of stellar evolutionary tracks is the same as that in the starburst99 code; you can put them into the starburst99 code and get the SP's results. Moreover, the colours involving other passbands or on other systems (e.g. HST F439W - F555W colour on AB system) can also be obtained on request.
Hidden Markov model tracking of continuous gravitational waves from young supernova remnants
NASA Astrophysics Data System (ADS)
Sun, L.; Melatos, A.; Suvorova, S.; Moran, W.; Evans, R. J.
2018-02-01
Searches for persistent gravitational radiation from nonpulsating neutron stars in young supernova remnants are computationally challenging because of rapid stellar braking. We describe a practical, efficient, semicoherent search based on a hidden Markov model tracking scheme, solved by the Viterbi algorithm, combined with a maximum likelihood matched filter, the F statistic. The scheme is well suited to analyzing data from advanced detectors like the Advanced Laser Interferometer Gravitational Wave Observatory (Advanced LIGO). It can track rapid phase evolution from secular stellar braking and stochastic timing noise torques simultaneously without searching second- and higher-order derivatives of the signal frequency, providing an economical alternative to stack-slide-based semicoherent algorithms. One implementation tracks the signal frequency alone. A second implementation tracks the signal frequency and its first time derivative. It improves the sensitivity by a factor of a few upon the first implementation, but the cost increases by 2 to 3 orders of magnitude.
POET: a SMEX mission for gamma ray burst polarimetry
NASA Astrophysics Data System (ADS)
McConnell, Mark L.; Baring, Matthew; Bloser, Peter; Dwyer, Joseph F.; Emslie, A. Gordon; Ertley, Camden D.; Greiner, Jochen; Harding, Alice K.; Hartmann, Dieter H.; Hill, Joanne E.; Kaaret, Philip; Kippen, R. M.; Mattingly, David; McBreen, Sheila; Pearce, Mark; Produit, Nicolas; Ryan, James M.; Ryde, Felix; Sakamoto, Takanori; Toma, Kenji; Vestrand, W. Thomas; Zhang, Bing
2014-07-01
Polarimeters for Energetic Transients (POET) is a mission concept designed to t within the envelope of a NASA Small Explorer (SMEX) mission. POET will use X-ray and gamma-ray polarimetry to uncover the energy release mechanism associated with the formation of stellar-mass black holes and investigate the physics of extreme magnetic ields in the vicinity of compact objects. Two wide-FoV, non-imaging polarimeters will provide polarization measurements over the broad energy range from about 2 keV up to about 500 keV. A Compton scatter polarimeter, using an array of independent scintillation detector elements, will be used to collect data from 50 keV up to 500 keV. At low energies (2{15 keV), data will be provided by a photoelectric polarimeter based on the use of a Time Projection Chamber for photoelectron tracking. During a two-year baseline mission, POET will be able to collect data that will allow us to distinguish between three basic models for the inner jet of gamma-ray bursts.
Photolysis Rate Coefficient Calculations in Support of SOLVE Campaign
NASA Technical Reports Server (NTRS)
Lloyd, Steven A.; Swartz, William H.
2001-01-01
The objectives for this SOLVE project were 3-fold. First, we sought to calculate a complete set of photolysis rate coefficients (j-values) for the campaign along the ER-2 and DC-8 flight tracks. En route to this goal, it would be necessary to develop a comprehensive set of input geophysical conditions (e.g., ozone profiles), derived from various climatological, aircraft, and remotely sensed datasets, in order to model the radiative transfer of the atmosphere accurately. These j-values would then need validation by comparison with flux-derived j-value measurements. The second objective was to analyze chemistry along back trajectories using the NASA/Goddard chemistry trajectory model initialized with measurements of trace atmospheric constituents. This modeling effort would provide insight into the completeness of current measurements and the chemistry of Arctic wintertime ozone loss. Finally, we sought to coordinate stellar occultation measurements of ozone (and thus ozone loss) during SOLVE using the MSX/UVISI satellite instrument. Such measurements would determine ozone loss during the Arctic polar night and represent the first significant science application of space-based stellar occultation in the Earth's atmosphere.
NASA Technical Reports Server (NTRS)
Porter, D. W.; Lefler, R. M.
1979-01-01
A generalized hypothesis testing approach is applied to the problem of tracking several objects where several different associations of data with objects are possible. Such problems occur, for instance, when attempting to distinctly track several aircraft maneuvering near each other or when tracking ships at sea. Conceptually, the problem is solved by first, associating data with objects in a statistically reasonable fashion and then, tracking with a bank of Kalman filters. The objects are assumed to have motion characterized by a fixed but unknown deterministic portion plus a random process portion modeled by a shaping filter. For example, the object might be assumed to have a mean straight line path about which it maneuvers in a random manner. Several hypothesized associations of data with objects are possible because of ambiguity as to which object the data comes from, false alarm/detection errors, and possible uncertainty in the number of objects being tracked. The statistical likelihood function is computed for each possible hypothesized association of data with objects. Then the generalized likelihood is computed by maximizing the likelihood over parameters that define the deterministic motion of the object.
Optical veiling, disk accretion, and the evolution of T Tauri stars
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hartmann, L.W.; Kenyon, S.J.
1990-01-01
High-resolution spectra of 31 K7-M1 T Tauri stars (TTs) in the Taurus-Auriga molecular cloud demonstrate that most of these objects exhibit substantial excess emission at 5200 A. Extrapolations of these data consistent with low-resolution spectrophotometry indicate that the extra emission is comparable to the stellar luminosity in many cases. If this continuum emission arises in the boundary layers of accreting disks, more than about 30 percent of all TTs may be accreting material at a rate which is sufficiently rapid to alter their evolution from standard Hayashi tracks. It is estimated that roughly 10 percent of the final stellar massmore » is accreted in the TT phase. This amount of material is comparable to the minimum gravitationally unstable disk mass estimated by Larson and it is speculated that the TT phase represents the final stages of disk accretion driven by gravitational instabilities. 40 refs.« less
The AMBRE Project: Stellar parameterisation of the ESO:UVES archived spectra
NASA Astrophysics Data System (ADS)
Worley, C. C.; de Laverny, P.; Recio-Blanco, A.; Hill, V.; Bijaoui, A.
2016-06-01
Context. The AMBRE Project is a collaboration between the European Southern Observatory (ESO) and the Observatoire de la Côte d'Azur (OCA) that has been established to determine the stellar atmospheric parameters for the archived spectra of four ESO spectrographs. Aims: The analysis of the UVES archived spectra for their stellar parameters was completed in the third phase of the AMBRE Project. From the complete ESO:UVES archive dataset that was received covering the period 2000 to 2010, 51 921 spectra for the six standard setups were analysed. These correspond to approximately 8014 distinct targets (that comprise stellar and non-stellar objects) by radial coordinate search. Methods: The AMBRE analysis pipeline integrates spectral normalisation, cleaning and radial velocity correction procedures in order that the UVES spectra can then be analysed automatically with the stellar parameterisation algorithm MATISSE to obtain the stellar atmospheric parameters. The synthetic grid against which the MATISSE analysis is carried out is currently constrained to parameters of FGKM stars only. Results: Stellar atmospheric parameters are reported for 12 403 of the 51 921 UVES archived spectra analysed in AMBRE:UVES. This equates to ~23.9% of the sample and ~3708 stars. Effective temperature, surface gravity, metallicity, and alpha element to iron ratio abundances are provided for 10 212 spectra (~19.7%), while effective temperature at least is provided for the remaining 2191 spectra. Radial velocities are reported for 36 881 (~71.0%) of the analysed archive spectra. While parameters were determined for 32 306 (62.2%) spectra these parameters were not considered reliable (and thus not reported to ESO) for reasons such as very low S/N, too poor radial velocity determination, spectral features too broad for analysis, and technical issues from the reduction. Similarly the parameters of a further 7212 spectra (13.9%) were also not reported to ESO based on quality criteria and error analysis which were determined within the automated parameterisation process. Those tests lead us to expect that multi-component stellar systems will return high errors in radial velocity and fitting to the synthetic spectra and therefore will not have parameters reported to ESO. Typical external errors of σTeff ~ 110 dex, σlog g ~ 0.18 dex, σ[ M/H ] ~ 0.13 dex, and σ[ α/ Fe ] ~ 0.05 dex with some variation between giants and dwarfs and between setups are reported. Conclusions: UVES is used to observe an extensive collection of stellar and non-stellar objects all of which have been included in the archived dataset provided to OCA by ESO. The AMBRE analysis extracts those objects that lie within the FGKM parameter space of the AMBRE slow-rotating synthetic spectra grid. Thus by homogeneous blind analysis AMBRE has successfully extracted and parameterised the targeted FGK stars (23.9% of the analysed sample) from within the ESO:UVES archive.
The Relationship Between Stellar Populations and Lyα Emission in Lyman Break Galaxies
NASA Astrophysics Data System (ADS)
Kornei, Katherine; Shapley, A. E.; Erb, D. K.; Steidel, C. C.; Reddy, N. A.; Pettini, M.; Bogosavljevic, M.
2010-01-01
We present the results of a photometric and spectroscopic survey of 321 Lyman break galaxies (LBGs) at z ˜ 3 to investigate systematically the relationship between Lyα emission and stellar populations. Lyα equivalent widths (EWs) were calculated from rest-frame UV spectroscopy and optical/near-infrared/Spitzer photometry was used in population synthesis modeling to derive the key properties of age, dust extinction, star formation rate (SFR), and stellar mass. We directly compare the stellar populations of LBGs with and without strong Lyα emission, where we designate the former group (EW ≥ 20 angstroms) as Lyα-emitters (LAEs) and the latter group (EW < 20 angstroms) as non-LAEs. This controlled method of comparing objects from the same UV luminosity distribution represents an improvement over previous studies in which the stellar populations of LBGs and narrowband-selected LAEs were contrasted, where the latter were often intrinsically fainter in broadband filters by an order of magnitude simply due to different selection criteria. Using a variety of statistical tests, we find that Lyα equivalent width and age, SFR, and dust extinction, respectively, are significantly correlated in the sense that objects with strong Lyα emission also tend to be older, lower in star formation rate, and less dusty than objects with weak Lyα emission, or the line in absorption. We accordingly conclude that, within the LBG sample, objects with strong Lyα emission represent a later stage of galaxy evolution in which supernovae-induced outflows have reduced the dust covering fraction. We also examined the hypothesis that the attenuation of Lyα photons is lower than that of the continuum, as proposed by some, but found no evidence to support this picture.
Massive stars in advanced evolutionary stages, and the progenitor of GW150914
NASA Astrophysics Data System (ADS)
Hamann, Wolf-Rainer; Oskinova, Lidia; Todt, Helge; Sander, Andreas; Hainich, Rainer; Shenar, Tomer; Ramachandran, Varsha
2017-11-01
The recent discovery of a gravitational wave from the merging of two black holes of about 30 solar masses each challenges our incomplete understanding of massive stars and their evolution. Critical ingredients comprise mass-loss, rotation, magnetic fields, internal mixing, and mass transfer in close binary systems. The imperfect knowledge of these factors implies large uncertainties for models of stellar populations and their feedback. In this contribution we summarize our empirical studies of Wolf-Rayet populations at different metallicities by means of modern non-LTE stellar atmosphere models, and confront these results with the predictions of stellar evolution models. At the metallicity of our Galaxy, stellar winds are probably too strong to leave remnant masses as high as ~30 M⊙, but given the still poor agreement between evolutionary tracks and observation even this conclusion is debatable. At the low metallicity of the Small Magellanic Cloud, all WN stars which are (at least now) single are consistent with evolving quasi-homogeneously. O and B-type stars, in contrast, seem to comply with standard evolutionary models without strong internal mixing. Close binaries which avoided early merging could evolve quasi-homogeneously and lead to close compact remnants of relatively high masses that merge within a Hubble time.
Scalable Conjunction Processing using Spatiotemporally Indexed Ephemeris Data
NASA Astrophysics Data System (ADS)
Budianto-Ho, I.; Johnson, S.; Sivilli, R.; Alberty, C.; Scarberry, R.
2014-09-01
The collision warnings produced by the Joint Space Operations Center (JSpOC) are of critical importance in protecting U.S. and allied spacecraft against destructive collisions and protecting the lives of astronauts during space flight. As the Space Surveillance Network (SSN) improves its sensor capabilities for tracking small and dim space objects, the number of tracked objects increases from thousands to hundreds of thousands of objects, while the number of potential conjunctions increases with the square of the number of tracked objects. Classical filtering techniques such as apogee and perigee filters have proven insufficient. Novel and orders of magnitude faster conjunction analysis algorithms are required to find conjunctions in a timely manner. Stellar Science has developed innovative filtering techniques for satellite conjunction processing using spatiotemporally indexed ephemeris data that efficiently and accurately reduces the number of objects requiring high-fidelity and computationally-intensive conjunction analysis. Two such algorithms, one based on the k-d Tree pioneered in robotics applications and the other based on Spatial Hash Tables used in computer gaming and animation, use, at worst, an initial O(N log N) preprocessing pass (where N is the number of tracked objects) to build large O(N) spatial data structures that substantially reduce the required number of O(N^2) computations, substituting linear memory usage for quadratic processing time. The filters have been implemented as Open Services Gateway initiative (OSGi) plug-ins for the Continuous Anomalous Orbital Situation Discriminator (CAOS-D) conjunction analysis architecture. We have demonstrated the effectiveness, efficiency, and scalability of the techniques using a catalog of 100,000 objects, an analysis window of one day, on a 64-core computer with 1TB shared memory. Each algorithm can process the full catalog in 6 minutes or less, almost a twenty-fold performance improvement over the baseline implementation running on the same machine. We will present an overview of the algorithms and results that demonstrate the scalability of our concepts.
NASA Astrophysics Data System (ADS)
Mowlavi, N.; Eggenberger, P.; Meynet, G.; Ekström, S.; Georgy, C.; Maeder, A.; Charbonnel, C.; Eyer, L.
2012-05-01
Aims: We present dense grids of stellar models suitable for comparison with observable quantities measured with great precision, such as those derived from binary systems or planet-hosting stars. Methods: We computed new Geneva models without rotation at metallicities Z = 0.006, 0.01, 0.014, 0.02, 0.03, and 0.04 (i.e. [Fe/H] from -0.33 to +0.54) and with mass in small steps from 0.5 to 3.5 M⊙. Great care was taken in the procedure for interpolating between tracks in order to compute isochrones. Results: Several properties of our grids are presented as a function of stellar mass and metallicity. Those include surface properties in the Hertzsprung-Russell diagram, internal properties including mean stellar density, sizes of the convective cores, and global asteroseismic properties. Conclusions: We checked our interpolation procedure and compared interpolated tracks with computed tracks. The deviations are less than 1% in radius and effective temperatures for most of the cases considered. We also checked that the present isochrones provide nice fits to four couples of observed detached binaries and to the observed sequences of the open clusters NGC 3532 and M 67. Including atomic diffusion in our models with M < 1.1 M⊙ leads to variations in the surface abundances that should be taken into account when comparing with observational data of stars with measured metallicities. For that purpose, iso-Zsurf lines are computed. These can be requested for download from a dedicated web page, together with tracks at masses and metallicities within the limits covered by the grids. The validity of the relations linking Z and [Fe/H] is also re-assessed in light of the surface abundance variations in low-mass stars. Table D.1 for the basic tracks is available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/541/A41, and on our web site http://obswww.unige.ch/Recherche/evol/-Database-. Tables for interpolated tracks, iso-Zsurf lines and isochrones can be computed, on demand, from our web site.Appendices are available in electronic form at http://www.aanda.org
NASA Astrophysics Data System (ADS)
Tottle, Jonathan; Mohanty, Subhanjoy
2013-07-01
Our ability to accurately derive stellar properties from spectral energy distributions (SEDs) depends on how well they can be fit with atmospheric models. The AMES-Dusty synthetic spectra (Allard et al., 2001), which incorporate dust grains suspended in the stellar atmosphere, are commonly used to fit SEDs of very low mass stars (VLMS) and brown dwarfs (BDs). Recently, the same group has produced an updated model named BT-Settl (Allard et al., 2012) that allow these grains to gradually settle out of the atmosphere at cooler temperatures. Using these models it is now possible to produce the NIR colours across the main sequence from spectral types M to T. However, one significant area in which these Dusty and Settl models have not been thoroughly tested is in PMS VLMS/BDs. We use empirical IR colours of PMS M-dwarfs to show that both of these models show significant discrepancies with observations. We find that the synthetic spectra imply a temperature up to 500K cooler than expected for these objects from the theoretical evolutionary tracks for their estimated ages. We postulate that the problem lies mainly with the spectra; and if so, we conjecture that an incorrect H2O opacity may be to blame, aided by additional dust effects.
KINEMATICS OF STELLAR POPULATIONS IN POSTSTARBURST GALAXIES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hiner, Kyle D.; Canalizo, Gabriela, E-mail: gabriela.canalizo@ucr.edu, E-mail: khiner@astro-udec.cl
2015-01-20
Poststarburst galaxies host a population of early-type stars (A or F) but simultaneously lack indicators of ongoing star formation such as [O II] emission. Two distinct stellar populations have been identified in these systems: a young poststarburst population superimposed on an older host population. We present a study of nine poststarburst galaxies with the following objectives: (1) to investigate whether and how kinematical differences between the young and old populations of stars can be measured, and (2) to gain insight into the formation mechanism of the young population in these systems. We fit high signal-to-noise spectra with two independent populationsmore » in distinct spectral regions: the Balmer region, the Mg IB region, and the Ca triplet when available. We show that the kinematics of the two populations largely track one another if measured in the Balmer region with high signal-to-noise data. Results from examining the Faber-Jackson relation and the fundamental plane indicate that these objects are not kinematically disturbed relative to more evolved spheroids. A case study of the internal kinematics of one object in our sample shows it to be pressure supported and not rotationally dominated. Overall our results are consistent with merger-induced starburst scenarios where the young population is observed during the later stages of the merger.« less
A hot compact dust disk around a massive young stellar object.
Kraus, Stefan; Hofmann, Karl-Heinz; Menten, Karl M; Schertl, Dieter; Weigelt, Gerd; Wyrowski, Friedrich; Meilland, Anthony; Perraut, Karine; Petrov, Romain; Robbe-Dubois, Sylvie; Schilke, Peter; Testi, Leonardo
2010-07-15
Circumstellar disks are an essential ingredient of the formation of low-mass stars. It is unclear, however, whether the accretion-disk paradigm can also account for the formation of stars more massive than about 10 solar masses, in which strong radiation pressure might halt mass infall. Massive stars may form by stellar merging, although more recent theoretical investigations suggest that the radiative-pressure limit may be overcome by considering more complex, non-spherical infall geometries. Clear observational evidence, such as the detection of compact dusty disks around massive young stellar objects, is needed to identify unambiguously the formation mode of the most massive stars. Here we report near-infrared interferometric observations that spatially resolve the astronomical-unit-scale distribution of hot material around a high-mass ( approximately 20 solar masses) young stellar object. The image shows an elongated structure with a size of approximately 13 x 19 astronomical units, consistent with a disk seen at an inclination angle of approximately 45 degrees . Using geometric and detailed physical models, we found a radial temperature gradient in the disk, with a dust-free region less than 9.5 astronomical units from the star, qualitatively and quantitatively similar to the disks observed in low-mass star formation. Perpendicular to the disk plane we observed a molecular outflow and two bow shocks, indicating that a bipolar outflow emanates from the inner regions of the system.
NASA Astrophysics Data System (ADS)
Leitzinger, M.; Odert, P.; Zaqarashvili, T. V.; Greimel, R.; Hanslmeier, A.; Lammer, H.
2016-11-01
We present the analysis of six nights of spectroscopic monitoring of two young and fast rotating late-type stars, namely the dMe star HK Aqr and the dG/dK star PZ Tel. On both stars, we detect absorption features reminiscent of signatures of corotating cool clouds or prominences visible in Hα. Several prominences on HK Aqr show periodic variability in the prominence tracks which follow a sinusoidal motion (indication of prominence oscillations). On PZ Tel, we could not find any periodic variability in the prominence tracks. By fitting sinusoidal functions to the prominence tracks, we derive amplitudes and periods which are similar to those of large-amplitude oscillations seen in solar prominences. In one specific event, we also derive a periodic variation of the prominence track in the Hβ spectral line which shows an anti-phase variation with the one derived for the Hα spectral line. Using these parameters and estimated mass density of a prominence on HK Aqr, we derive a minimum magnetic field strength of ˜2 G. The relatively low strength of the magnetic field is explained by the large height of this stellar prominence (≥ 0.67 stellar radii above the surface).
The SILCC project - III. Regulation of star formation and outflows by stellar winds and supernovae
NASA Astrophysics Data System (ADS)
Gatto, Andrea; Walch, Stefanie; Naab, Thorsten; Girichidis, Philipp; Wünsch, Richard; Glover, Simon C. O.; Klessen, Ralf S.; Clark, Paul C.; Peters, Thomas; Derigs, Dominik; Baczynski, Christian; Puls, Joachim
2017-04-01
We study the impact of stellar winds and supernovae on the multiphase interstellar medium using three-dimensional hydrodynamical simulations carried out with FLASH. The selected galactic disc region has a size of (500 pc)2 × ±5 kpc and a gas surface density of 10 M⊙ pc-2. The simulations include an external stellar potential and gas self-gravity, radiative cooling and diffuse heating, sink particles representing star clusters, stellar winds from these clusters that combine the winds from individual massive stars by following their evolution tracks, and subsequent supernova explosions. Dust and gas (self-) shielding is followed to compute the chemical state of the gas with a chemical network. We find that stellar winds can regulate star (cluster) formation. Since the winds suppress the accretion of fresh gas soon after the cluster has formed, they lead to clusters that have lower average masses (102-104.3 M⊙) and form on shorter time-scales (10-3-10 Myr). In particular, we find an anticorrelation of cluster mass and accretion time-scale. Without winds, the star clusters easily grow to larger masses for ˜5 Myr until the first supernova explodes. Overall, the most massive stars provide the most wind energy input, while objects beginning their evolution as B-type stars contribute most of the supernova energy input. A significant outflow from the disc (mass loading ≳1 at 1 kpc) can be launched by thermal gas pressure if more than 50 per cent of the volume near the disc mid-plane can be heated to T > 3 × 105 K. Stellar winds alone cannot create a hot volume-filling phase. The models that are in best agreement with observed star formation rates drive either no outflows or weak outflows.
A stellar tracking reference system
NASA Technical Reports Server (NTRS)
Klestadt, B.
1971-01-01
A stellar attitude reference system concept for satellites was studied which promises to permit continuous precision pointing of payloads with accuracies of 0.001 degree without the use of gyroscopes. It is accomplished with the use of a single, clustered star tracker assembly mounted on a non-orthogonal, two gimbal mechanism, driven so as to unwind satellite orbital and orbit precession rates. A set of eight stars was found which assures the presence of an adequate inertial reference on a continuous basis in an arbitrary orbit. Acquisition and operational considerations were investigated and inherent reference redundancy/reliability was established. Preliminary designs for the gimbal mechanism, its servo drive, and the star tracker cluster with its associated signal processing were developed for a baseline sun-synchronous, noon-midnight orbit. The functions required of the onboard computer were determined and the equations to be solved were found. In addition detailed error analyses were carried out, based on structural, thermal and other operational considerations.
Measuring Fundamental Parameters of Substellar Objects. I. Surface Gravities
NASA Astrophysics Data System (ADS)
Mohanty, Subhanjoy; Basri, Gibor; Jayawardhana, Ray; Allard, France; Hauschildt, Peter; Ardila, David
2004-07-01
We present an analysis of high-resolution optical spectra for a sample of very young, mid- to late-M, low-mass stellar and substellar objects: 11 in the Upper Scorpius association, and two (GG Tau Ba and Bb) in the Taurus star-forming region. Effective temperatures and surface gravities are derived from a multiple-feature spectral analysis using TiO, Na I, and K I, through comparison with the latest synthetic spectra. We show that these spectral diagnostics complement each other, removing degeneracies with temperature and gravity in the behavior of each. In combination, they allow us to determine temperature to within 50 K and gravity to within 0.25 dex, in very cool young objects. Our high-resolution spectral analysis does not require extinction estimates. Moreover, it yields temperatures and gravities independent of theoretical evolutionary models (although our estimates do depend on the synthetic spectral modeling). We find that our gravities for most of the sample agree remarkably well with the isochrone predictions for the likely cluster ages. However, discrepancies appear in our coolest targets: these appear to have significantly lower gravity (by up to 0.75 dex) than our hotter objects, even though our entire sample covers a relatively narrow range in effective temperature (~300 K). This drop in gravity is also implied by intercomparisons of the data alone, without recourse to synthetic spectra. We consider, and argue against, dust opacity, cool stellar spots, or metallicity differences leading to the observed spectral effects; a real decline in gravity is strongly indicated. Such gravity variations are contrary to the predictions of the evolutionary tracks, causing improbably low ages to be inferred from the tracks for our coolest targets. Through a simple consideration of contraction timescales, we quantify the age errors introduced into the tracks through the particular choice of initial conditions and demonstrate that they can be significant for low-mass objects that are only a few megayears old. However, we also find that these errors appear insufficient to explain the magnitude of the age offsets in our lowest gravity targets. We venture that this apparent age offset may arise from evolutionary model uncertainties related to accretion, deuterium burning and/or convection effects. Finally, when combined with photometry and distance information, our technique for deriving surface gravities and effective temperatures provides a way of obtaining masses and radii for substellar objects independent of evolutionary models; radius and mass determinations are presented in Paper II.
DuOCam: A Two-Channel Camera for Simultaneous Photometric Observations of Stellar Clusters
NASA Astrophysics Data System (ADS)
Maier, Erin R.; Witt, Emily; Depoy, Darren L.; Schmidt, Luke M.
2017-01-01
We have designed the Dual Observation Camera (DuOCam), which uses commercial, off-the-shelf optics to perform simultaneous photometric observations of astronomical objects at red and blue wavelengths. Collected light enters DuOCam’s optical assembly, where it is collimated by a negative doublet lens. It is then separated by a 45 degree blue dichroic filter (transmission bandpass: 530 - 800 nm, reflection bandpass: 400 - 475 nm). Finally, the separated light is focused by two identical positive doublet lenses onto two independent charge-coupled devices (CCDs), the SBIG ST-8300M and the SBIG STF-8300M. This optical assembly converts the observing telescope to an f/11 system, which balances maximum field of view with optimum focus. DuOCam was commissioned on the McDonald Observatory 0.9m, f/13.5 telescope from July 21st - 24th, 2016. Observations of three globular and three open stellar clusters were carried out. The resulting data were used to construct R vs. B-R color magnitude diagrams for a selection of the observed clusters. The diagrams display the characteristic evolutionary track for a stellar cluster, including the main sequence and main sequence turn-off.
A MODEL FOR (QUASI-)PERIODIC MULTIWAVELENGTH PHOTOMETRIC VARIABILITY IN YOUNG STELLAR OBJECTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kesseli, Aurora Y.; Petkova, Maya A.; Wood, Kenneth
We present radiation transfer models of rotating young stellar objects (YSOs) with hot spots in their atmospheres, inner disk warps, and other three-dimensional effects in the nearby circumstellar environment. Our models are based on the geometry expected from magneto-accretion theory, where material moving inward in the disk flows along magnetic field lines to the star and creates stellar hot spots upon impact. Due to rotation of the star and magnetosphere, the disk is variably illuminated. We compare our model light curves to data from the Spitzer YSOVAR project to determine if these processes can explain the variability observed at opticalmore » and mid-infrared wavelengths in young stars. We focus on those variables exhibiting “dipper” behavior that may be periodic, quasi-periodic, or aperiodic. We find that the stellar hot-spot size and temperature affects the optical and near-infrared light curves, while the shape and vertical extent of the inner disk warp affects the mid-IR light curve variations. Clumpy disk distributions with non-uniform fractal density structure produce more stochastic light curves. We conclude that magneto-accretion theory is consistent with certain aspects of the multiwavelength photometric variability exhibited by low-mass YSOs. More detailed modeling of individual sources can be used to better determine the stellar hot-spot and inner disk geometries of particular sources.« less
Interferometry in the Era of Very Large Telescopes
NASA Technical Reports Server (NTRS)
Barry, Richard K.
2010-01-01
Research in modern stellar interferometry has focused primarily on ground-based observatories, with very long baselines or large apertures, that have benefited from recent advances in fringe tracking, phase reconstruction, adaptive optics, guided optics, and modern detectors. As one example, a great deal of effort has been put into development of ground-based nulling interferometers. The nulling technique is the sparse aperture equivalent of conventional coronography used in filled aperture telescopes. In this mode the stellar light itself is suppressed by a destructive fringe, effectively enhancing the contrast of the circumstellar material located near the star. Nulling interferometry has helped to advance our understanding of the astrophysics of many distant objects by providing the spatial resolution necessary to localize the various faint emission sources near bright objects. We illustrate the current capabilities of this technique by describing the first scientific results from the Keck Interferometer Nuller that combines the light from the two largest optical telescopes in the world including new, unpublished measurements of exozodiacal dust disks. We discuss prospects in the near future for interferometry in general, the capabilities of secondary masking interferometry on very large telescopes, and of nulling interferometry using outriggers on very large telescopes. We discuss future development of a simplified space-borne NIR nulling architecture, the Fourier-Kelvin Stellar Interferometer, capable of detecting and characterizing an Earth twin in the near future and how such a mission would benefit from the optical wavelength coverage offered by large, ground-based instruments.
Radiation-driven winds of hot stars. V - Wind models for central stars of planetary nebulae
NASA Technical Reports Server (NTRS)
Pauldrach, A.; Puls, J.; Kudritzki, R. P.; Mendez, R. H.; Heap, S. R.
1988-01-01
Wind models using the recent improvements of radiation driven wind theory by Pauldrach et al. (1986) and Pauldrach (1987) are presented for central stars of planetary nebulae. The models are computed along evolutionary tracks evolving with different stellar mass from the Asymptotic Giant Branch. We show that the calculated terminal wind velocities are in agreement with the observations and allow in principle an independent determination of stellar masses and radii. The computed mass-loss rates are in qualitative agreement with the occurrence of spectroscopic stellar wind features as a function of stellar effective temperature and gravity.
POLARIZED LINE FORMATION IN NON-MONOTONIC VELOCITY FIELDS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sampoorna, M.; Nagendra, K. N., E-mail: sampoorna@iiap.res.in, E-mail: knn@iiap.res.in
2016-12-10
For a correct interpretation of the observed spectro-polarimetric data from astrophysical objects such as the Sun, it is necessary to solve the polarized line transfer problems taking into account a realistic temperature structure, the dynamical state of the atmosphere, a realistic scattering mechanism (namely, the partial frequency redistribution—PRD), and the magnetic fields. In a recent paper, we studied the effects of monotonic vertical velocity fields on linearly polarized line profiles formed in isothermal atmospheres with and without magnetic fields. However, in general the velocity fields that prevail in dynamical atmospheres of astrophysical objects are non-monotonic. Stellar atmospheres with shocks, multi-componentmore » supernova atmospheres, and various kinds of wave motions in solar and stellar atmospheres are examples of non-monotonic velocity fields. Here we present studies on the effect of non-relativistic non-monotonic vertical velocity fields on the linearly polarized line profiles formed in semi-empirical atmospheres. We consider a two-level atom model and PRD scattering mechanism. We solve the polarized transfer equation in the comoving frame (CMF) of the fluid using a polarized accelerated lambda iteration method that has been appropriately modified for the problem at hand. We present numerical tests to validate the CMF method and also discuss the accuracy and numerical instabilities associated with it.« less
Photolysis Rate Coefficient Calculations in Support of SOLVE Campaign
NASA Technical Reports Server (NTRS)
Lloyd, Steven A.; Swartz, William H.
2001-01-01
The objectives for this SOLVE project were 3-fold. First, we sought to calculate a complete set of photolysis rate coefficients (j-values) for the campaign along the ER-2 and DC-8 flight tracks. En route to this goal, it would be necessary to develop a comprehensive set of input geophysical conditions (e.g., ozone profiles), derived from various climatological, aircraft, and remotely sensed datasets, in order to model the radiative transfer of the atmosphere accurately. These j-values would then need validation by comparison with flux-derived j-value measurements. The second objective was to analyze chemistry along back trajectories using the NASA/Goddard chemistry trajectory model initialized with measurements of trace atmospheric constituents. This modeling effort would provide insight into the completeness of current measurements and the chemistry of Arctic wintertime ozone loss. Finally, we sought to coordinate stellar occultation measurements of ozone (and thus ozone loss) during SOLVE using the Midcourse Space Experiment(MSX)/Ultraviolet and Visible Imagers and Spectrographic Imagers (UVISI) satellite instrument. Such measurements would determine ozone loss during the Arctic polar night and represent the first significant science application of space-based stellar occultation in the Earth's atmosphere.
NASA Astrophysics Data System (ADS)
Millan-Gabet, R.; Monnier, J. D.; Berger, J.-P.; Traub, W. A.; Schloerb, F. P.; Pedretti, E.; Benisty, M.; Carleton, N. P.; Haguenauer, P.; Kern, P.; Labeye, P.; Lacasse, M. G.; Malbet, F.; Perraut, K.; Pearlman, M.; Thureau, N.
2006-07-01
We report on the detection of localized off-center emission at 1-4 AU in the circumstellar environment of the young stellar object AB Aurigae. We used closure-phase measurements in the near-infrared that were made at the long-baseline interferometer IOTA, the first obtained on a young stellar object using this technique. When probing sub-AU scales, all closure phases are close to zero degrees, as expected given the previously determined size of the AB Aurigae inner-dust disk. However, a clear closure-phase signal of -3.5d +/- 0.5d is detected on one triangle containing relatively short baselines, requiring a high degree of non-point symmetry from emission at larger (AU-sized) scales in the disk. We have not identified any alternative explanation for these closure-phase results, and we demonstrate that a ``disk hot spot'' model can fit our data. We speculate that such detected asymmetric near-infrared emission might arise as a result of localized viscous heating due to a gravitational instability in the AB Aurigae disk, or to the presence of a close stellar companion or accreting substellar object.
Central stars of planetary nebulae in the Galactic bulge
NASA Astrophysics Data System (ADS)
Hultzsch, P. J. N.; Puls, J.; Méndez, R. H.; Pauldrach, A. W. A.; Kudritzki, R.-P.; Hoffmann, T. L.; McCarthy, J. K.
2007-06-01
Context: Optical high-resolution spectra of five central stars of planetary nebulae (CSPN) in the Galactic bulge have been obtained with Keck/HIRES in order to derive their parameters. Since the distance of the objects is quite well known, such a method has the advantage that stellar luminosities and masses can in principle be determined without relying on theoretical relations between both quantities. Aims: By alternatively combining the results of our spectroscopic investigation with evolutionary tracks, we obtain so-called spectroscopic distances, which can be compared with the known (average) distance of the bulge-CSPN. This offers the possibility to test the validity of model atmospheres and present date post-AGB evolution. Methods: We analyze optical H/He profiles of five Galactic bulge CSPN (plus one comparison object) by means of profile fitting based on state of the art non-LTE modeling tools, to constrain their basic atmospheric parameters (Teff, log g, helium abundance and wind strength). Masses and other stellar radius dependent quantities are obtained from both the known distances and from evolutionary tracks, and the results from both approaches are compared. Results: The major result of the present investigation is that the derived spectroscopic distances depend crucially on the applied reddening law. Assuming either standard reddening or values based on radio-Hβ extinctions, we find a mean distance of 9.0±1.6 kpc and 12.2±2.1 kpc, respectively. An “average extinction law” leads to a distance of 10.7±1.2 kpc, which is still considerably larger than the Galactic center distance of 8 kpc. In all cases, however, we find a remarkable internal agreement of the individual spectroscopic distances of our sample objects, within ±10% to ±15% for the different reddening laws. Conclusions: Due to the uncertain reddening correction, the analysis presented here cannot yet be regarded as a consistency check for our method, and a rigorous test of the CSPN evolution theory becomes only possible if this problem has been solved. The data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation. Appendix A is only available in electronic form at http://www.aanda.org
Attention Modulates Spatial Precision in Multiple-Object Tracking.
Srivastava, Nisheeth; Vul, Ed
2016-01-01
We present a computational model of multiple-object tracking that makes trial-level predictions about the allocation of visual attention and the effect of this allocation on observers' ability to track multiple objects simultaneously. This model follows the intuition that increased attention to a location increases the spatial resolution of its internal representation. Using a combination of empirical and computational experiments, we demonstrate the existence of a tight coupling between cognitive and perceptual resources in this task: Low-level tracking of objects generates bottom-up predictions of error likelihood, and high-level attention allocation selectively reduces error probabilities in attended locations while increasing it at non-attended locations. Whereas earlier models of multiple-object tracking have predicted the big picture relationship between stimulus complexity and response accuracy, our approach makes accurate predictions of both the macro-scale effect of target number and velocity on tracking difficulty and micro-scale variations in difficulty across individual trials and targets arising from the idiosyncratic within-trial interactions of targets and distractors. Copyright © 2016 Cognitive Science Society, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baraffe, I.; Chabrier, G.; Gallardo, J.
2009-09-01
We present evolutionary models for young low-mass stars and brown dwarfs taking into account episodic phases of accretion at early stages of the evolution, a scenario supported by recent large surveys of embedded protostars. An evolution including short episodes of vigorous accretion followed by longer quiescent phases can explain the observed luminosity spread in H-R diagrams of star-forming regions at ages of a few Myr, for objects ranging from a few Jupiter masses to a few tenths of a solar mass. The gravitational contraction of these accreting objects strongly departs from the standard Hayashi track at constant T{sub eff}. Themore » best agreement with the observed luminosity scatter is obtained if most of the accretion shock energy is radiated away. The obtained luminosity spread at 1 Myr in the H-R diagram is equivalent to what can be misinterpreted as an {approx}10 Myr age spread for non-accreting objects. We also predict a significant spread in radius at a given T{sub eff}, as suggested by recent observations. These calculations bear important consequences for our understanding of star formation and early stages of evolution and on the determination of the initial mass function for young ({<=} a few Myr) clusters. Our results also show that the concept of a stellar birthline for low-mass objects has no valid support.« less
ERIC Educational Resources Information Center
Mahajan, Neha; Barnes, Jennifer L.; Blanco, Marissa; Santos, Laurie R.
2009-01-01
Both human infants and adult non-human primates share the capacity to track small numbers of objects across time and occlusion. The question now facing developmental and comparative psychologists is whether similar mechanisms give rise to this capacity across the two populations. Here, we explore whether non-human primates' object tracking…
NASA Astrophysics Data System (ADS)
Torrey, Paul; Vogelsberger, Mark; Hernquist, Lars; McKinnon, Ryan; Marinacci, Federico; Simcoe, Robert A.; Springel, Volker; Pillepich, Annalisa; Naiman, Jill; Pakmor, Rüdiger; Weinberger, Rainer; Nelson, Dylan; Genel, Shy
2018-06-01
The fundamental metallicity relation (FMR) is a postulated correlation between galaxy stellar mass, star formation rate (SFR), and gas-phase metallicity. At its core, this relation posits that offsets from the mass-metallicity relation (MZR) at a fixed stellar mass are correlated with galactic SFR. In this Letter, we use hydrodynamical simulations to quantify the time-scales over which populations of galaxies oscillate about the average SFR and metallicity values at fixed stellar mass. We find that Illustris and IllustrisTNG predict that galaxy offsets from the star formation main sequence and MZR oscillate over similar time-scales, are often anticorrelated in their evolution, evolve with the halo dynamical time, and produce a pronounced FMR. Our models indicate that galaxies oscillate about equilibrium SFR and metallicity values - set by the galaxy's stellar mass - and that SFR and metallicity offsets evolve in an anticorrelated fashion. This anticorrelated variability of the metallicity and SFR offsets drives the existence of the FMR in our models. In contrast to Illustris and IllustrisTNG, we speculate that the SFR and metallicity evolution tracks may become decoupled in galaxy formation models dominated by feedback-driven globally bursty SFR histories, which could weaken the FMR residual correlation strength. This opens the possibility of discriminating between bursty and non-bursty feedback models based on the strength and persistence of the FMR - especially at high redshift.
Adaptive particle filter for robust visual tracking
NASA Astrophysics Data System (ADS)
Dai, Jianghua; Yu, Shengsheng; Sun, Weiping; Chen, Xiaoping; Xiang, Jinhai
2009-10-01
Object tracking plays a key role in the field of computer vision. Particle filter has been widely used for visual tracking under nonlinear and/or non-Gaussian circumstances. In particle filter, the state transition model for predicting the next location of tracked object assumes the object motion is invariable, which cannot well approximate the varying dynamics of the motion changes. In addition, the state estimate calculated by the mean of all the weighted particles is coarse or inaccurate due to various noise disturbances. Both these two factors may degrade tracking performance greatly. In this work, an adaptive particle filter (APF) with a velocity-updating based transition model (VTM) and an adaptive state estimate approach (ASEA) is proposed to improve object tracking. In APF, the motion velocity embedded into the state transition model is updated continuously by a recursive equation, and the state estimate is obtained adaptively according to the state posterior distribution. The experiment results show that the APF can increase the tracking accuracy and efficiency in complex environments.
NASA Astrophysics Data System (ADS)
Fu, Xiaoting; Bressan, Alessandro; Marigo, Paola; Girardi, Léo; Montalbán, Josefina; Chen, Yang; Nanni, Ambra
2018-05-01
Precise studies on the Galactic bulge, globular cluster, Galactic halo, and Galactic thick disc require stellar models with α enhancement and various values of helium content. These models are also important for extra-Galactic population synthesis studies. For this purpose, we complement the existing PARSEC models, which are based on the solar partition of heavy elements, with α-enhanced partitions. We collect detailed measurements on the metal mixture and helium abundance for the two populations of 47 Tuc (NGC 104) from the literature, and calculate stellar tracks and isochrones with these α-enhanced compositions. By fitting the precise colour-magnitude diagram with HST ACS/WFC data, from low main sequence till horizontal branch (HB), we calibrate some free parameters that are important for the evolution of low mass stars like the mixing at the bottom of the convective envelope. This new calibration significantly improves the prediction of the red giant branch bump (RGBB) brightness. Comparison with the observed RGB and HB luminosity functions also shows that the evolutionary lifetimes are correctly predicted. As a further result of this calibration process, we derive the age, distance modulus, reddening, and the RGB mass-loss for 47 Tuc. We apply the new calibration and α-enhanced mixtures of the two 47 Tuc populations ([α/Fe] ˜ 0.4 and 0.2) to other metallicities. The new models reproduce the RGB bump observations much better than previous models. This new PARSEC data base, with the newly updated α-enhanced stellar evolutionary tracks and isochrones, will also be a part of the new stellar products for Gaia.
NASA Astrophysics Data System (ADS)
Truitt, Amanda R.
2017-08-01
I present a catalog of 1,794 stellar evolution models for solar-type and low-mass stars, which is intended to help characterize real host-stars of interest during the ongoing search for potentially habitable exoplanets. The main grid is composed of 904 tracks, for 0.5-1.2 M solar masses at scaled metallicity values of 0.1-1.5 Z solar masses and specific elemental abundance ratio values of 0.44-2.28 O/Fe solar masses, 0.58-1.72 C/Fe solar masses, 0.54-1.84 Mg/Fe solar masses, and 0.5-2.0 Ne/Fe solar masses. The catalog includes a small grid of late stage evolutionary tracks (25 models), as well as a grid of M-dwarf stars for 0.1-0.45 M solar masses (856 models). The time-dependent habitable zone evolution is calculated for each track, and is strongly dependent on stellar mass, effective temperature, and luminosity parameterizations. I have also developed a subroutine for the stellar evolution code TYCHO that implements a minimalist coupled model for estimating changes in the stellar X-ray luminosity, mass loss, rotational velocity, and magnetic activity over time; to test the utility of the updated code, I created a small grid (9 models) for solar-mass stars, with variations in rotational velocity and scaled metallicity. Including this kind of information in the catalog will ultimately allow for a more robust consideration of the long-term conditions that orbiting planets may experience. In order to gauge the true habitability potential of a given planetary system, it is extremely important to characterize the host-star's mass, specific chemical composition, and thus the timescale over which the star will evolve. It is also necessary to assess the likelihood that a planet found in the "instantaneous" habitable zone has actually had sufficient time to become "detectably" habitable. This catalog provides accurate stellar evolution predictions for a large collection of theoretical host-stars; the models are of particular utility in that they represent the real variation in stellar parameters that have been observed in nearby stars.
Dynamic Projection Mapping onto Deforming Non-Rigid Surface Using Deformable Dot Cluster Marker.
Narita, Gaku; Watanabe, Yoshihiro; Ishikawa, Masatoshi
2017-03-01
Dynamic projection mapping for moving objects has attracted much attention in recent years. However, conventional approaches have faced some issues, such as the target objects being limited to rigid objects, and the limited moving speed of the targets. In this paper, we focus on dynamic projection mapping onto rapidly deforming non-rigid surfaces with a speed sufficiently high that a human does not perceive any misalignment between the target object and the projected images. In order to achieve such projection mapping, we need a high-speed technique for tracking non-rigid surfaces, which is still a challenging problem in the field of computer vision. We propose the Deformable Dot Cluster Marker (DDCM), a novel fiducial marker for high-speed tracking of non-rigid surfaces using a high-frame-rate camera. The DDCM has three performance advantages. First, it can be detected even when it is strongly deformed. Second, it realizes robust tracking even in the presence of external and self occlusions. Third, it allows millisecond-order computational speed. Using DDCM and a high-speed projector, we realized dynamic projection mapping onto a deformed sheet of paper and a T-shirt with a speed sufficiently high that the projected images appeared to be printed on the objects.
On the Formation of Ultra-Difuse Galaxies as Tidally-Stripped Systems
NASA Astrophysics Data System (ADS)
Carleton, Timothy; Cooper, Michael; Kaplinghat, Manoj; Errani, Raphael; Penarrubia, Jorge
2018-01-01
The recent identification of a large population of so-called 'Ultra-Diffuse' Galaxies (UDGs), with stellar masses ~108 M⊙, but half light radii over 1.5 kpc, has challenged our understanding of galaxy evolution. Motivated by the environmental dependence of UDG properties and abundance, I present a model for the formation of UDGs through tidal-stripping of dwarf galaxies in cored dark matter halos. To test this scenario, I utilize results from simulations of tidal stripping, which demonstrate that changes in the stellar profile of a tidally stripped galaxy can be written as a function of the amount of tidal stripping experienced by the halo (tidal tracks). These tracks, however, are different for cored and cuspy halos. Additional simulations show how the halo responds to tidal interactions given the halo orbit within a cluster.In particular, dwarf elliptical galaxies, born in 1010-10.5 M⊙ halos, expand significantly as a result of tidal stripping and produce UDGs. Applying these models to the population of halos in the Bolshoi simulation, I am able to follow the effects of tidal stripping on the dwarf galaxy population in clusters. Using tidal tracks for cuspy halos does not reproduce the observed properties of UDGs. However, using the tidal tracks for cored halos, I reproduce the distribution of sizes, stellar masses, and abundance of UDGs in clusters remarkably well.
ERIC Educational Resources Information Center
Ormel, Johan; Oldehinkel, Albertine J.; Sijtsema, Jelle; van Oort, Floor; Raven, Dennis; Veenstra, Rene; Vollebergh, Wilma A. M.; Verhulst, Frank C.
2012-01-01
Objectives: The objectives of this study were as follows: to present a concise overview of the sample, outcomes, determinants, non-response and attrition of the ongoing TRacking Adolescents' Individual Lives Survey (TRAILS), which started in 2001; to summarize a selection of recent findings on continuity, discontinuity, risk, and protective…
NASA Astrophysics Data System (ADS)
Dettwiller, L.; Lépine, T.
2017-12-01
A general and pure wave theory of image formation for all types of stellar interferometers, including hypertelescopes, is developed in the frame of Fresnel's paraxial approximations of diffraction. For a hypertelescope, we show that the severe lack of translation invariance leads to multiple and strong spatial frequency heterodyning, which codes the very high frequencies detected by the hypertelescope into medium spatial frequencies and introduces a moiré-type ambiguity for extended objects. This explains mathematically the disappointing appearance of poor resolution observed in some image simulations for hypertelescopes.
Neutron tori around Kerr black holes
NASA Technical Reports Server (NTRS)
Witt, H. J.; Jaroszynski, M.; Haensel, P.; Paczynski, B.; Wambsganss, J.
1994-01-01
Models of stationary, axisymmetric, non-self-gravitating tori around stellar mass Kerr black holes are calculated. Such objects may form as a result of a merger between two neutron stars, a neutron star and a stellar mass black hole, or a 'failed supernova' collapse of a single rapidly rotating star. We explore a large range of parameters: the black hole mass and angular momentum, the torus mass, angular momentum and entropy. Physical conditions within the tori are similar to those in young and hot neutron stars, but their topology is different, and the range of masses and energies is much larger.
Testing the Formation Mechanism of Sub-Stellar Objects in Lupus (A SOLA Team Study)
NASA Astrophysics Data System (ADS)
De Gregorio-Monsalvo, Itziar; Lopez, C.; Takahashi, S.; Santamaria-Miranda
2017-06-01
The international SOLA team (Soul of Lupus with ALMA) has identified a set of pre- and proto-stellar candidates in Lupus 1 and 3 of substellar nature using 1.1mm ASTE/AzTEC maps and our optical to submillimeter database. We have observed with ALMA the most promising pre- and proto-brown dwarfs candidates. Our aims are to provide insights on how substellar objects form and evolve, from the equivalent to the pre-stellar cores to the Class II stage in the low mass regime of star formation. Our sample comprises 33 pre-stellar objects, 7 Class 0 and I objects, and 22 Class II objects.
CONCAM's Fuzzy-Logic All-Sky Star Recognition Algorithm
NASA Astrophysics Data System (ADS)
Shamir, L.; Nemiroff, R. J.
2004-05-01
One of the purposes of the global Night Sky Live (NSL) network of fisheye CONtinuous CAMeras (CONCAMs) is to monitor and archive the entire bright night sky, track stellar variability, and search for transients. The high quality of raw CONCAM data allows automation of stellar object recognition, although distortions of the fisheye lens and frequent slight shifts in CONCAM orientations can make even this seemingly simple task formidable. To meet this challenge, a fuzzy logic based algorithm has been developed that transforms (x,y) image coordinates in the CCD frame into fuzzy right ascension and declination coordinates for use in matching with star catalogs. Using a training set of reference stars, the algorithm statically builds the fuzzy logic model. At runtime, the algorithm searches for peaks, and then applies the fuzzy logic model to perform the coordinate transformation before choosing the optimal star catalog match. The present fuzzy-logic algorithm works much better than our first generation, straightforward coordinate transformation formula. Following this essential step, algorithms dealing with the higher level data products can then provide a stream of photometry for a few hundred stellar objects visible in the night sky. Accurate photometry further enables the computation of all-sky maps of skyglow and opacity, as well as a search for uncataloged transients. All information is stored in XML-like tagged ASCII files that are instantly copied to the public domain and available at http://NightSkyLive.net. Currently, the NSL software detects stars and creates all-sky image files from eight different locations around the globe every 3 minutes and 56 seconds.
Stellar Populations in BL Lac type Objects
NASA Astrophysics Data System (ADS)
Serote Roos, Margarida
The relationship between an Active Galactic Nucleus (AGN) and its host galaxy is a crucial question in the study of galaxy evolution. We present an estimate of the stellar contribution in a sample of low luminosity BL Lac type objects. We have performed stellar population synthesis for a sample of 19 objects selected from Marchã et al. (1996, MNRAS 281, 425). The stellar content is quantified using the equivalent widths of all absorption features available throughout the spectrum. The synthesis is done by a variant of the GPG method (Pelat: 1997, MNRAS 284, 365).
Runaways and weathervanes: The shape of stellar bow shocks
NASA Astrophysics Data System (ADS)
Henney, W. J.; Tarango-Yong, J. A.
2017-11-01
Stellar bow shocks are the result of the supersonic interaction between a stellar wind and its environment. Some of these are "runaways": high-velocity stars that have been ejected from a star cluster. Others are "weather vanes", where it is the local interstellar medium itself that is moving, perhaps as the result of a champagne flow of ionized gas from a nearby HII region. We propose a new two-dimensional classification scheme for bow shapes, which is based on dimensionless geometric ratios that can be estimated from observational images. The two ratios are related to the flatness of the bow’s apex, which we term "planitude" and the openness of its wings, which we term "alatude". We calculate the inclination-dependent tracks on the planitude-alatude plane that are predicted by simple models for the bow shock shape. We also measure the shapes of bow shocks from three different observational datasets: mid-infrared arcs around hot main-sequence stars, far-infrared arcs around luminous cool stars, and emission-line arcs around proplyds and other young stars in the Orion Nebula. Clear differences are found between the different datasets in their distributions on the planitude-alatude plane, which can be used to constrain the physics of the bow shock interaction and emission mechanisms in the different classes of object.
Particle tagging and its implications for stellar population dynamics
NASA Astrophysics Data System (ADS)
Le Bret, Theo; Pontzen, Andrew; Cooper, Andrew P.; Frenk, Carlos; Zolotov, Adi; Brooks, Alyson M.; Governato, Fabio; Parry, Owen H.
2017-07-01
We establish a controlled comparison between the properties of galactic stellar haloes obtained with hydrodynamical simulations and with 'particle tagging'. Tagging is a fast way to obtain stellar population dynamics: instead of tracking gas and star formation, it 'paints' stars directly on to a suitably defined subset of dark matter particles in a collisionless, dark-matter-only simulation. Our study shows that 'live' particle tagging schemes, where stellar masses are painted on to the dark matter particles dynamically throughout the simulation, can generate good fits to the hydrodynamical stellar density profiles of a central Milky Way-like galaxy and its most prominent substructure. Energy diffusion processes are crucial to reshaping the distribution of stars in infalling spheroidal systems and hence the final stellar halo. We conclude that the success of any particular tagging scheme hinges on this diffusion being taken into account, and discuss the role of different subgrid feedback prescriptions in driving this diffusion.
Circumstellar disc lifetimes in numerous galactic young stellar clusters
NASA Astrophysics Data System (ADS)
Richert, A. J. W.; Getman, K. V.; Feigelson, E. D.; Kuhn, M. A.; Broos, P. S.; Povich, M. S.; Bate, M. R.; Garmire, G. P.
2018-07-01
Photometric detections of dust circumstellar discs around pre-main sequence (PMS) stars, coupled with estimates of stellar ages, provide constraints on the time available for planet formation. Most previous studies on disc longevity, starting with Haisch, Lada & Lada, use star samples from PMS clusters but do not consider data sets with homogeneous photometric sensitivities and/or ages placed on a uniform time-scale. Here we conduct the largest study to date of the longevity of inner dust discs using X-ray and 1-8 µm infrared photometry from the MYStIX and SFiNCs projects for 69 young clusters in 32 nearby star-forming regions with ages t ≤ 5 Myr. Cluster ages are derived by combining the empirical AgeJX method with PMS evolutionary models, which treat dynamo-generated magnetic fields in different ways. Leveraging X-ray data to identify disc-free objects, we impose similar stellar mass sensitivity limits for disc-bearing and disc-free young stellar objects while extending the analysis to stellar masses as low as M ˜ 0.1 M⊙. We find that the disc longevity estimates are strongly affected by the choice of PMS evolutionary model. Assuming a disc fraction of 100 per cent at zero age, the inferred disc half-life changes significantly, from t1/2 ˜ 1.3-2 Myr to t1/2 ˜ 3.5 Myr when switching from non-magnetic to magnetic PMS models. In addition, we find no statistically significant evidence that disc fraction varies with stellar mass within the first few Myr of life for stars with masses <2 M⊙, but our samples may not be complete for more massive stars. The effects of initial disc fraction and star-forming environment are also explored.
The Updated BaSTI Stellar Evolution Models and Isochrones. I. Solar-scaled Calculations
NASA Astrophysics Data System (ADS)
Hidalgo, Sebastian L.; Pietrinferni, Adriano; Cassisi, Santi; Salaris, Maurizio; Mucciarelli, Alessio; Savino, Alessandro; Aparicio, Antonio; Silva Aguirre, Victor; Verma, Kuldeep
2018-04-01
We present an updated release of the BaSTI (a Bag of Stellar Tracks and Isochrones) stellar model and isochrone library for a solar-scaled heavy element distribution. The main input physics that have been changed from the previous BaSTI release include the solar metal mixture, electron conduction opacities, a few nuclear reaction rates, bolometric corrections, and the treatment of the overshooting efficiency for shrinking convective cores. The new model calculations cover a mass range between 0.1 and 15 M ⊙, 22 initial chemical compositions between [Fe/H] = ‑3.20 and +0.45, with helium to metal enrichment ratio dY/dZ = 1.31. The isochrones cover an age range between 20 Myr and 14.5 Gyr, consistently take into account the pre-main-sequence phase, and have been translated to a large number of popular photometric systems. Asteroseismic properties of the theoretical models have also been calculated. We compare our isochrones with results from independent databases and with several sets of observations to test the accuracy of the calculations. All stellar evolution tracks, asteroseismic properties, and isochrones are made available through a dedicated web site.
Feature point based 3D tracking of multiple fish from multi-view images
Qian, Zhi-Ming
2017-01-01
A feature point based method is proposed for tracking multiple fish in 3D space. First, a simplified representation of the object is realized through construction of two feature point models based on its appearance characteristics. After feature points are classified into occluded and non-occluded types, matching and association are performed, respectively. Finally, the object's motion trajectory in 3D space is obtained through integrating multi-view tracking results. Experimental results show that the proposed method can simultaneously track 3D motion trajectories for up to 10 fish accurately and robustly. PMID:28665966
Feature point based 3D tracking of multiple fish from multi-view images.
Qian, Zhi-Ming; Chen, Yan Qiu
2017-01-01
A feature point based method is proposed for tracking multiple fish in 3D space. First, a simplified representation of the object is realized through construction of two feature point models based on its appearance characteristics. After feature points are classified into occluded and non-occluded types, matching and association are performed, respectively. Finally, the object's motion trajectory in 3D space is obtained through integrating multi-view tracking results. Experimental results show that the proposed method can simultaneously track 3D motion trajectories for up to 10 fish accurately and robustly.
Inferring probabilistic stellar rotation periods using Gaussian processes
NASA Astrophysics Data System (ADS)
Angus, Ruth; Morton, Timothy; Aigrain, Suzanne; Foreman-Mackey, Daniel; Rajpaul, Vinesh
2018-02-01
Variability in the light curves of spotted, rotating stars is often non-sinusoidal and quasi-periodic - spots move on the stellar surface and have finite lifetimes, causing stellar flux variations to slowly shift in phase. A strictly periodic sinusoid therefore cannot accurately model a rotationally modulated stellar light curve. Physical models of stellar surfaces have many drawbacks preventing effective inference, such as highly degenerate or high-dimensional parameter spaces. In this work, we test an appropriate effective model: a Gaussian Process with a quasi-periodic covariance kernel function. This highly flexible model allows sampling of the posterior probability density function of the periodic parameter, marginalizing over the other kernel hyperparameters using a Markov Chain Monte Carlo approach. To test the effectiveness of this method, we infer rotation periods from 333 simulated stellar light curves, demonstrating that the Gaussian process method produces periods that are more accurate than both a sine-fitting periodogram and an autocorrelation function method. We also demonstrate that it works well on real data, by inferring rotation periods for 275 Kepler stars with previously measured periods. We provide a table of rotation periods for these and many more, altogether 1102 Kepler objects of interest, and their posterior probability density function samples. Because this method delivers posterior probability density functions, it will enable hierarchical studies involving stellar rotation, particularly those involving population modelling, such as inferring stellar ages, obliquities in exoplanet systems, or characterizing star-planet interactions. The code used to implement this method is available online.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-18
... DEPARTMENT OF STATE [Public Notice 7850] Culturally Significant Object Imported for Exhibition Determinations: ``African Cosmos: Stellar Arts'' SUMMARY: Notice is hereby given of the following determinations... the exhibition ``African Cosmos: Stellar Arts,'' imported from abroad for temporary exhibition within...
Catalog of Non-Stellar Objects
1977-09-12
multiplication with the matrix S", /l 0 " 0 V S" =10 cose -sine , (la) \\0 sine cose/ where e is the 1950.0 obliquity of the ecliptic , viz...helicocentric rectangular ecliptic coordinates. Let these be (x’", y"’, zŕ) = r;1". Then heliocentric rectangular equatorial coordinates are obtained by
Multi-Sensory Approach to Search for Young Stellar Objects in CG4
NASA Astrophysics Data System (ADS)
Hoette, Vivian L.; Rebull, L. M.; McCarron, K.; Johnson, C. H.; Gartner, C.; VanDerMolen, J.; Gamble, L.; Matche, L.; McCartney, A.; Doering, M.; Crump, R.; Laorr, A.; Mork, K.; Steinbergs, E.; Wigley, E.; Caruso, S.; Killingstad, N.; McCanna, T.
2011-01-01
Individuals with disabilities - specifically individuals who are deaf or hard of hearing (DHH) and/or blind and visually-impaired (BVI) - have traditionally been underrepresented in the fields of Science, Technology, Engineering, and Math (STEM). The low incidence rate of these populations, coupled with geographic isolation, creates limited opportunities for students to work with and receive mentoring by professionals who not only have specialty knowledge in disability areas but also work in STEM fields. Yerkes Observatory scientists, along with educators from the Wisconsin School for the Deaf, the Wisconsin Center for the Blind and Visually Impaired, Breck School, and Oak Park and River Forest High School, are engaged in active research with a Spitzer Science Center (SSC) scientist. Our ultimate goals are threefold; to engage DHH and BVI students with equal success as their sighted and hearing peers, to share our techniques to make astronomy more accessible to DHH and BVI youth, and to generate a life-long interest which will lead our students to STEM careers. This poster tracks our work with an SSC scientist during the spring, summer, and fall of 2010. The group coauthored another AAS poster on finding Young Stellar Objects (YSO) in the CG4 Nebula in Puppis. During the project, the students, scientists and teachers developed a number of techniques for learning the necessary science as well as doing the required data acquisition and analysis. Collaborations were formed between students with disabilities and their non-disabled peers to create multi-media projects. Ultimately, the projects created for our work with NITARP will be disseminated through our professional connections in order to ignite a passion for astronomy in all students - with and without disabilities. This research was made possible through the NASA/IPAC Teacher Archive Research Project (NITARP) and was funded by NASA Astrophysics Data Program and Archive Outreach funds.
Stellar Models of Rotating, PMS Stars with Magnetic Fields
NASA Astrophysics Data System (ADS)
Mendes, L. T. S.; Landin, N. R.; Vaz, L. P. R.
2014-10-01
We report our ongoing studies of the magnetic field effects on the structure and evolution of low-mass stars, using a method first proposed by Lydon & Sofia (1995, ApJS 101, 357) which treats the magnetic field as a perturbation on the stellar structure equations. The ATON 2.3 stellar evolution code (Ventura et al. 1998, A&A 334, 953) now includes, via this method, the effects of an imposed, parametric magnetic field whose surface strength scales throughout the stellar interior according to one of the three following laws: (a) the ratio between the magnetic and gas energy densities, β_{mg}, is kept at its surface value across the stellar interior, (b) β_{mg} has a shallower decrease in deeper layers, or (c) β_{mg} decays as [m(r)/M_{*}]^{2/3}. We then computed rotating stellar models, starting at the pre-main sequence phase, of 0.4, 0.6, 0.8 and 1.0 M_{odot} with solar chemical composition, mixing-length convection treatment with &alpha=λ/H_{P}=1.5 and surface magnetic field strength of 50 G. Summarizing our main findings: (1) we confirm that the magnetic field inhibits convection and so reduces the convective envelope; (2) the magnetic perturbation effect dominates over that of rotation for 0.8 and 1.0 M_{odot} masses, but their relative impact shows a reversal during the Hayashi tracks at lower masses (0.4 and 0.6 M_{odot}); in any case, the magnetic perturbation makes the tracks cooler; and (3) the magnetic field contributes to higher surface lithium abundances.
Young Stellar Objects from Soft to Hard X-rays
NASA Astrophysics Data System (ADS)
Güdel, Manuel
2009-05-01
Magnetically active stars are the sites of efficient particle acceleration and plasma heating, processes that have been studied in detail in the solar corona. Investigation of such processes in young stellar objects is much more challenging due to various absorption processes. There is, however, evidence for violent magnetic energy release in very young stellar objects. The impact on young stellar environments (e.g., circumstellar disk heating and ionization, operation of chemical networks, photoevaporation) may be substantial. Hard X-ray devices like those carried on Simbol-X will establish a basis for detailed studies of these processes.
Single-camera three-dimensional tracking of natural particulate and zooplankton
NASA Astrophysics Data System (ADS)
Troutman, Valerie A.; Dabiri, John O.
2018-07-01
We develop and characterize an image processing algorithm to adapt single-camera defocusing digital particle image velocimetry (DDPIV) for three-dimensional (3D) particle tracking velocimetry (PTV) of natural particulates, such as those present in the ocean. The conventional DDPIV technique is extended to facilitate tracking of non-uniform, non-spherical particles within a volume depth an order of magnitude larger than current single-camera applications (i.e. 10 cm × 10 cm × 24 cm depth) by a dynamic template matching method. This 2D cross-correlation method does not rely on precise determination of the centroid of the tracked objects. To accommodate the broad range of particle number densities found in natural marine environments, the performance of the measurement technique at higher particle densities has been improved by utilizing the time-history of tracked objects to inform 3D reconstruction. The developed processing algorithms were analyzed using synthetically generated images of flow induced by Hill’s spherical vortex, and the capabilities of the measurement technique were demonstrated empirically through volumetric reconstructions of the 3D trajectories of particles and highly non-spherical, 5 mm zooplankton.
Evolutionary synthesis of simple stellar populations. Colours and indices
NASA Astrophysics Data System (ADS)
Kurth, O. M.; Fritze-v. Alvensleben, U.; Fricke, K. J.
1999-07-01
We construct evolutionary synthesis models for simple stellar populations using the evolutionary tracks from the Padova group (1993, 1994), theoretical colour calibrations from \\cite[Lejeune et al. (1997, 1998)]{lejeune} and fit functions for stellar atmospheric indices from \\cite[Worthey et al. (1994)]{worthey}. A Monte-Carlo technique allows us to obtain a smooth time evolution of both broad band colours in UBVRIK and a series of stellar absorption features for Single Burst Stellar Populations (SSPs). We present colours and indices for SSPs with ages from 1 \\ 10(9) yrs to 1.6 \\ 10(10) yrs and metallicities [M/H]=-2.3, -1.7, -0.7, -0.4, 0.0 and 0.4. Model colours and indices at an age of about a Hubble time are in good agreement with observed colours and indices of the Galactic and M 31 GCs.
A complex approach to the blue-loop problem
NASA Astrophysics Data System (ADS)
Ostrowski, Jakub; Daszynska-Daszkiewicz, Jadwiga
2015-08-01
The problem of the blue loops during the core helium burning, outstanding for almost fifty years, is one of the most difficult and poorly understood problems in stellar astrophysics. Most of the work focused on the blue loops done so far has been performed with old stellar evolution codes and with limited computational resources. In the end the obtained conclusions were based on a small sample of models and could not have taken into account more advanced effects and interactions between them.The emergence of the blue loops depends on many details of the evolution calculations, in particular on chemical composition, opacity, mixing processes etc. The non-linear interactions between these factors contribute to the statement that in most cases it is hard to predict without a precise stellar modeling whether a loop will emerge or not. The high sensitivity of the blue loops to even small changes of the internal structure of a star yields one more issue: a sensitivity to numerical problems, which are common in calculations of stellar models on advanced stages of the evolution.To tackle this problem we used a modern stellar evolution code MESA. We calculated a large grid of evolutionary tracks (about 8000 models) with masses in the range of 3.0 - 25.0 solar masses from the zero age main sequence to the depletion of helium in the core. In order to make a comparative analysis, we varied metallicity, helium abundance and different mixing parameters resulting from convective overshooting, rotation etc.The better understanding of the properties of the blue loops is crucial for our knowledge of the population of blue supergiants or pulsating variables such as Cepheids, α-Cygni or Slowly Pulsating B-type supergiants. In case of more massive models it is also of great importance for studies of the progenitors of supernovae.
N-body simulations of star clusters
NASA Astrophysics Data System (ADS)
Engle, Kimberly Anne
1999-10-01
We investigate the structure and evolution of underfilling (i.e. non-Roche-lobe-filling) King model globular star clusters using N-body simulations. We model clusters with various underfilling factors and mass distributions to determine their evolutionary tracks and lifetimes. These models include a self-consistent galactic tidal field, mass loss due to stellar evolution, ejection, and evaporation, and binary evolution. We find that a star cluster that initially does not fill its Roche lobe can live many times longer than one that does initially fill its Roche lobe. After a few relaxation times, the cluster expands to fill its Roche lobe. We also find that the choice of initial mass function significantly affects the lifetime of the cluster. These simulations were performed on the GRAPE-4 (GRAvity PipE) special-purpose hardware with the stellar dynamics package ``Starlab.'' The GRAPE-4 system is a massively-parallel computer designed to calculate the force (and its first time derivative) due to N particles. Starlab's integrator ``kira'' employs a 4th- order Hermite scheme with hierarchical (block) time steps to evolve the stellar system. We discuss, in some detail, the design of the GRAPE-4 system and the manner in which the Hermite integration scheme with block time steps is implemented in the hardware.
Galactic Starburst NGC 3603 from X-Rays to Radio
NASA Technical Reports Server (NTRS)
Moffat, A. F. J.; Corcoran, M. F.; Stevens, I. R.; Skalkowski, G.; Marchenko, S. V.; Muecke, A.; Ptak, A.; Koribalski, B. S.; Brenneman, L.; Mushotzky, R.;
2002-01-01
NGC 3603 is the most massive and luminous visible starburst region in the Galaxy. We present the first Chandra/ACIS-I X-ray image and spectra of this dense, exotic object, accompanied by deep cm-wavelength ATCA radio image at similar or less than 1 inch spatial resolution, and HST/ground-based optical data. At the S/N greater than 3 level, Chandra detects several hundred X-ray point sources (compared to the 3 distinct sources seen by ROSAT). At least 40 of these sources are definitely associated with optically identified cluster O and WR type members, but most are not. A diffuse X-ray component is also seen out to approximately 2 feet (4 pc) form the center, probably arising mainly from the large number of merging/colliding hot stellar winds and/or numerous faint cluster sources. The point-source X-ray fluxes generally increase with increasing bolometric brightnesses of the member O/WR stars, but with very large scatter. Some exceptionally bright stellar X-ray sources may be colliding wind binaries. The radio image shows (1) two resolved sources, one definitely non-thermal, in the cluster core near where the X-ray/optically brightest stars with the strongest stellar winds are located, (2) emission from all three known proplyd-like objects (with thermal and non-thermal components, and (3) many thermal sources in the peripheral regions of triggered star-formation. Overall, NGC 3603 appears to be a somewhat younger and hotter, scaled-down version of typical starbursts found in other galaxies.
Tracking Algorithm of Multiple Pedestrians Based on Particle Filters in Video Sequences
Liu, Yun; Wang, Chuanxu; Zhang, Shujun; Cui, Xuehong
2016-01-01
Pedestrian tracking is a critical problem in the field of computer vision. Particle filters have been proven to be very useful in pedestrian tracking for nonlinear and non-Gaussian estimation problems. However, pedestrian tracking in complex environment is still facing many problems due to changes of pedestrian postures and scale, moving background, mutual occlusion, and presence of pedestrian. To surmount these difficulties, this paper presents tracking algorithm of multiple pedestrians based on particle filters in video sequences. The algorithm acquires confidence value of the object and the background through extracting a priori knowledge thus to achieve multipedestrian detection; it adopts color and texture features into particle filter to get better observation results and then automatically adjusts weight value of each feature according to current tracking environment. During the process of tracking, the algorithm processes severe occlusion condition to prevent drift and loss phenomena caused by object occlusion and associates detection results with particle state to propose discriminated method for object disappearance and emergence thus to achieve robust tracking of multiple pedestrians. Experimental verification and analysis in video sequences demonstrate that proposed algorithm improves the tracking performance and has better tracking results. PMID:27847514
Encoding of Others' Beliefs without Overt Instruction
ERIC Educational Resources Information Center
Cohen, Adam S.; German, Tamsin C.
2009-01-01
Under what conditions do people automatically encode and track the mental states of others? A recent investigation showed that when subjects are instructed to track the location of an object but are not instructed to track a belief about that location in a non-verbal false-belief task, they respond more slowly to questions about an agent's belief,…
On the expected γ-ray emission from nearby flaring stars
NASA Astrophysics Data System (ADS)
Ohm, S.; Hoischen, C.
2018-02-01
Stellar flares have been extensively studied in soft X-rays (SXRs) by basically every X-ray mission. Hard X-ray (HXR) emission from stellar superflares, however, have only been detected from a handful of objects over the past years. One very extreme event was the superflare from the young M-dwarf DG CVn binary star system, which triggered Swift/BAT as if it was a γ-ray burst. In this work, we estimate the expected γ-ray emission from DG CVn and the most extreme stellar flares by extrapolating from solar flares based on measured solar energetic particles (SEPs), as well as thermal and non-thermal emission properties. We find that ions are plausibly accelerated in stellar superflares to 100 GeV energies, and possibly up to TeV energies in the associated coronal mass ejections. The corresponding π0-decay γ-ray emission could be detectable from stellar superflares with ground-based γ-ray telescopes. On the other hand, the detection of γ-ray emission implies particle densities high enough that ions suffer significant losses due to inelastic proton-proton scattering. The next-generation Cherenkov Telescope Array (CTA) should be able to probe superflares from M dwarfs in the solar neighbourhood and constrain the energy in interacting cosmic rays and/or their maximum energy. The detection of γ-ray emission from stellar flares would open a new window for the study of stellar physics, the underlying physical processes in flares and their impact on habitability of planetary systems.
Stellar Evolution and Modelling Stars
NASA Astrophysics Data System (ADS)
Silva Aguirre, Víctor
In this chapter I give an overall description of the structure and evolution of stars of different masses, and review the main ingredients included in state-of-the-art calculations aiming at reproducing observational features. I give particular emphasis to processes where large uncertainties still exist as they have strong impact on stellar properties derived from large compilations of tracks and isochrones, and are therefore of fundamental importance in many fields of astrophysics.
A direct imaging search for close stellar and sub-stellar companions to young nearby stars
NASA Astrophysics Data System (ADS)
Vogt, N.; Mugrauer, M.; Neuhäuser, R.; Schmidt, T. O. B.; Contreras-Quijada, A.; Schmidt, J. G.
2015-01-01
A total of 28 young nearby stars (ages {≤ 60} Myr) have been observed in the K_s-band with the adaptive optics imager Naos-Conica of the Very Large Telescope at the Paranal Observatory in Chile. Among the targets are ten visual binaries and one triple system at distances between 10 and 130 pc, all previously known. During a first observing epoch a total of 20 faint stellar or sub-stellar companion-candidates were detected around seven of the targets. These fields, as well as most of the stellar binaries, were re-observed with the same instrument during a second epoch, about one year later. We present the astrometric observations of all binaries. Their analysis revealed that all stellar binaries are co-moving. In two cases (HD 119022 AB and FG Aqr B/C) indications for significant orbital motions were found. However, all sub-stellar companion candidates turned out to be non-moving background objects except PZ Tel which is part of this project but whose results were published elsewhere. Detection limits were determined for all targets, and limiting masses were derived adopting three different age values; they turn out to be less than 10 Jupiter masses in most cases, well below the brown dwarf mass range. The fraction of stellar multiplicity and of the sub-stellar companion occurrence in the star forming regions in Chamaeleon are compared to the statistics of our search, and possible reasons for the observed differences are discussed. Based on observations made with ESO telescopes at Paranal Observatory under programme IDs 083.C-0150(B), 084.C-0364(A), 084.C-0364(B), 084.C-0364(C), 086.C-0600(A) and 086.C-0600(B).
Haffner 16 Redux: Revisiting a Young Cluster in the Outer Galaxy
NASA Astrophysics Data System (ADS)
Davidge, T. J.
2017-08-01
Images and spectra recorded with the Gemini Multi-Object Spectrograph on Gemini South are used to investigate the stellar content of the open cluster Haffner 16. The (I\\prime ,g\\prime -I\\prime ) color-magnitude diagram (CMD) constructed from these data extends over 10 mag in I\\prime , sampling the cluster main sequence (MS) and 5 mag of the pre-MS (PMS). The fraction of unresolved equal mass binaries among PMS stars is estimated to be 0.6 ± 0.1. The isochrones do not track the PMS on the CMD, in the sense that the PMS has a shallower slope on the CMD than predicted by the models. Still, a dip in star counts, which is associated with the relaxation of PMS stars onto the MS, is identified near I\\prime =17. The depth and brightness of this feature—as well as the morphology of the cluster MS on the CMD—are matched by models with a slightly sub-solar metallicity that have an age of ˜20 Myr and a distance modulus of 12.3 ± 0.2. A light profile of Haffner 16 is constructed in the W1 filter ({λ }{cen}=3.4 μ {{m}}), which suggests that the cluster is surrounded by a diffuse stellar halo. Spectra of candidate cluster MS and PMS stars selected according to location on the CMD are presented. The spectra show characteristics that are suggestive of a sub-solar metallicity. Hα emission is common among objects on the PMS locus on the CMD near I\\prime =18. It is suggested that the location of the Haffner 16 PMS on the CMD is affected by large-scale cool spot activity, likely induced by rapid stellar rotation.
The Relationship between Stellar Populations and Lyα Emission in Lyman Break Galaxies
NASA Astrophysics Data System (ADS)
Kornei, Katherine A.; Shapley, Alice E.; Erb, Dawn K.; Steidel, Charles C.; Reddy, Naveen A.; Pettini, Max; Bogosavljević, Milan
2010-03-01
We present the results of a photometric and spectroscopic survey of 321 Lyman break galaxies (LBGs) at z~ 3 to investigate systematically the relationship between Lyα emission and stellar populations. Lyα equivalent widths (W Lyα) were calculated from rest-frame UV spectroscopy and optical/near-infrared/Spitzer photometry was used in population synthesis modeling to derive the key properties of age, dust extinction, star formation rate (SFR), and stellar mass. We directly compare the stellar populations of LBGs with and without strong Lyα emission, where we designate the former group (W Lyα>= 20 Å) as Lyα emitters (LAEs) and the latter group (W Lyα< 20 Å) as non-LAEs. This controlled method of comparing objects from the same UV luminosity distribution represents an improvement over previous studies in which the stellar populations of LBGs and narrowband-selected LAEs were contrasted, where the latter were often intrinsically fainter in broadband filters by an order of magnitude simply due to different selection criteria. Using a variety of statistical tests, we find that Lyα equivalent width and age, SFR, and dust extinction, respectively, are significantly correlated in the sense that objects with strong Lyα emission also tend to be older, lower in SFR, and less dusty than objects with weak Lyα emission, or the line in absorption. We accordingly conclude that, within the LBG sample, objects with strong Lyα emission represent a later stage of galaxy evolution in which supernovae-induced outflows have reduced the dust covering fraction. We also examined the hypothesis that the attenuation of Lyα photons is lower than that of the continuum, as proposed by some, but found no evidence to support this picture. Based, in part, on data obtained at the W.M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and NASA, and was made possible by the generous financial support of the W.M. Keck Foundation.
Inflow, Outflow, Yields, and Stellar Population Mixing in Chemical Evolution Models
NASA Astrophysics Data System (ADS)
Andrews, Brett H.; Weinberg, David H.; Schönrich, Ralph; Johnson, Jennifer A.
2017-02-01
Chemical evolution models are powerful tools for interpreting stellar abundance surveys and understanding galaxy evolution. However, their predictions depend heavily on the treatment of inflow, outflow, star formation efficiency (SFE), the stellar initial mass function, the SN Ia delay time distribution, stellar yields, and stellar population mixing. Using flexCE, a flexible one-zone chemical evolution code, we investigate the effects of and trade-offs between parameters. Two critical parameters are SFE and the outflow mass-loading parameter, which shift the knee in [O/Fe]-[Fe/H] and the equilibrium abundances that the simulations asymptotically approach, respectively. One-zone models with simple star formation histories follow narrow tracks in [O/Fe]-[Fe/H] unlike the observed bimodality (separate high-α and low-α sequences) in this plane. A mix of one-zone models with inflow timescale and outflow mass-loading parameter variations, motivated by the inside-out galaxy formation scenario with radial mixing, reproduces the two sequences better than a one-zone model with two infall epochs. We present [X/Fe]-[Fe/H] tracks for 20 elements assuming three different supernova yield models and find some significant discrepancies with solar neighborhood observations, especially for elements with strongly metallicity-dependent yields. We apply principal component abundance analysis to the simulations and existing data to reveal the main correlations among abundances and quantify their contributions to variation in abundance space. For the stellar population mixing scenario, the abundances of α-elements and elements with metallicity-dependent yields dominate the first and second principal components, respectively, and collectively explain 99% of the variance in the model. flexCE is a python package available at https://github.com/bretthandrews/flexCE.
NASA Astrophysics Data System (ADS)
Bastian, T. S.; Bárta, M.; Brajša, R.; Chen, B.; Pontieu, B. D.; Gary, D. E.; Fleishman, G. D.; Hales, A. S.; Iwai, K.; Hudson, H.; Kim, S.; Kobelski, A.; Loukitcheva, M.; Shimojo, M.; Skokić, I.; Wedemeyer, S.; White, S. M.; Yan, Y.
2018-03-01
The Atacama Large Millimeter/submillimeter Array (ALMA) Observatory opens a new window onto the Universe. The ability to perform continuum imaging and spectroscopy of astrophysical phenomena at millimetre and submillimetre wavelengths with unprecedented sensitivity opens up new avenues for the study of cosmology and the evolution of galaxies, the formation of stars and planets, and astrochemistry. ALMA also allows fundamentally new observations to be made of objects much closer to home, including the Sun. The Sun has long served as a touchstone for our understanding of astrophysical processes, from the nature of stellar interiors, to magnetic dynamos, non-radiative heating, stellar mass loss, and energetic phenomena such as solar flares. ALMA offers new insights into all of these processes.
Design, fabrication, and delivery of a charge injection device as a stellar tracking device
NASA Technical Reports Server (NTRS)
Burke, H. K.; Michon, G. J.; Tomlinson, H. W.; Vogelsong, T. L.; Grafinger, A.; Wilson, R.
1979-01-01
Six 128 x 128 CID imagers fabricated on bulk silicon and with thin polysilicon upper-level electrodes were tested in a star tracking mode. Noise and spectral response were measured as a function of temperature over the range of +25 C to -40 C. Noise at 0 C and below was less than 40 rms carriers/pixel for all devices at an effective noise bandwidth of 150 Hz. Quantum yield for all devices averaged 40% from 0.4 to 1.0 microns with no measurable temperature dependence. Extrapolating from these performance parameters to those of a large (400 x 400) array and accounting for design and processing improvements, indicates that the larger array would show a further improvement in noise performance -- on the order of 25 carriers. A preliminary evaluation of the projected performance of the 400 x 400 array and a representative set of star sensor requirements indicates that the CID has excellent potential as a stellar tracking device.
Perrault, Evan K; Inderstrodt-Stephens, Jill; Hintz, Elizabeth A
2018-06-01
With funding for public health initiatives declining, creating measurable objectives that are focused on tracking and changing population outcomes (i.e., knowledge, attitudes, or behaviors), instead of those that are focused on health agencies' own outputs (e.g., promoting services, developing communication messages) have seen a renewed focus. This study analyzed 4094 objectives from the Community Health Improvement Plans (CHIPs) of 280 local PHAB-accredited and non-accredited public health agencies across the United States. Results revealed that accredited agencies were no more successful at creating outcomes-focused objectives (35% of those coded) compared to non-accredited agencies (33% of those coded; Z = 1.35, p = .18). The majority of objectives were focused on outputs (accredited: 61.2%; non-accredited: 63.3%; Z = 0.72, p = .47). Outcomes-focused objectives primarily sought to change behaviors (accredited: 85.43%; non-accredited: 80.6%), followed by changes in knowledge (accredited: 9.75%; non-accredited: 10.8%) and attitudes (accredited: 1.6%; non-accredited: 5.1%). Non-accredited agencies had more double-barreled objectives (49.9%) compared to accredited agencies (32%; Z = 11.43, p < .001). The authors recommend that accreditation procedures place a renewed focus on ensuring that public health agencies strive to achieve outcomes. It is also advocated that public health agencies work with interdisciplinary teams of Health Communicators who can help them develop procedures to effectively and efficiently measure outcomes of knowledge and attitudes that are influential drivers of behavioral changes.
Robust visual object tracking with interleaved segmentation
NASA Astrophysics Data System (ADS)
Abel, Peter; Kieritz, Hilke; Becker, Stefan; Arens, Michael
2017-10-01
In this paper we present a new approach for tracking non-rigid, deformable objects by means of merging an on-line boosting-based tracker and a fast foreground background segmentation. We extend an on-line boosting- based tracker, which uses axes-aligned bounding boxes with fixed aspect-ratio as tracking states. By constructing a confidence map from the on-line boosting-based tracker and unifying this map with a confidence map, which is obtained from a foreground background segmentation algorithm, we build a superior confidence map. For constructing a rough confidence map of a new frame based on on-line boosting, we employ the responses of the strong classifier as well as the single weak classifier responses that were built before during the updating step. This confidence map provides a rough estimation of the object's position and dimension. In order to refine this confidence map, we build a fine, pixel-wisely segmented confidence map and merge both maps together. Our segmentation method is color-histogram-based and provides a fine and fast image segmentation. By means of back-projection and the Bayes' rule, we obtain a confidence value for every pixel. The rough and the fine confidence maps are merged together by building an adaptively weighted sum of both maps. The weights are obtained by utilizing the variances of both confidence maps. Further, we apply morphological operators in the merged confidence map in order to reduce the noise. In the resulting map we estimate the object localization and dimension via continuous adaptive mean shift. Our approach provides a rotated rectangle as tracking states, which enables a more precise description of non-rigid, deformable objects than axes-aligned bounding boxes. We evaluate our tracker on the visual object tracking (VOT) benchmark dataset 2016.
A circumstellar disk associated with a massive protostellar object.
Jiang, Zhibo; Tamura, Motohide; Fukagawa, Misato; Hough, Jim; Lucas, Phil; Suto, Hiroshi; Ishii, Miki; Yang, Ji
2005-09-01
The formation process for stars with masses several times that of the Sun is still unclear. The two main theories are mergers of several low-mass young stellar objects, which requires a high stellar density, or mass accretion from circumstellar disks in the same way as low-mass stars are formed, accompanied by outflows during the process of gravitational infall. Although a number of disks have been discovered around low- and intermediate-mass young stellar objects, the presence of disks around massive young stellar objects is still uncertain and the mass of the disk system detected around one such object, M17, is disputed. Here we report near-infrared imaging polarimetry that reveals an outflow/disk system around the Becklin-Neugebauer protostellar object, which has a mass of at least seven solar masses (M(o)). This strongly supports the theory that stars with masses of at least 7M(o) form in the same way as lower mass stars.
Testing stellar evolution models with detached eclipsing binaries
NASA Astrophysics Data System (ADS)
Higl, J.; Weiss, A.
2017-12-01
Stellar evolution codes, as all other numerical tools, need to be verified. One of the standard stellar objects that allow stringent tests of stellar evolution theory and models, are detached eclipsing binaries. We have used 19 such objects to test our stellar evolution code, in order to see whether standard methods and assumptions suffice to reproduce the observed global properties. In this paper we concentrate on three effects that contain a specific uncertainty: atomic diffusion as used for standard solar model calculations, overshooting from convective regions, and a simple model for the effect of stellar spots on stellar radius, which is one of the possible solutions for the radius problem of M dwarfs. We find that in general old systems need diffusion to allow for, or at least improve, an acceptable fit, and that systems with convective cores indeed need overshooting. Only one system (AI Phe) requires the absence of it for a successful fit. To match stellar radii for very low-mass stars, the spot model proved to be an effective approach, but depending on model details, requires a high percentage of the surface being covered by spots. We briefly discuss improvements needed to further reduce the freedom in modelling and to allow an even more restrictive test by using these objects.
Young Stellar Objects observed by MOST
NASA Astrophysics Data System (ADS)
Siwak, Michal
2013-07-01
In the recent years the MOST satellite gathered dozens of high quality light curves of Young Stellar Objects (YSO). We present the most interesting results obtained from the data collected between 2009-2013.
On the Formation of Massive Stars
NASA Technical Reports Server (NTRS)
Yorke, Harold W.; Sonnhalter, Cordula
2002-01-01
We calculate numerically the collapse of slowly rotating, nonmagnetic, massive molecular clumps of masses 30,60, and 120 Stellar Mass, which conceivably could lead to the formation of massive stars. Because radiative acceleration on dust grains plays a critical role in the clump's dynamical evolution, we have improved the module for continuum radiation transfer in an existing two-dimensional (axial symmetry assumed) radiation hydrodynamic code. In particular, rather than using "gray" dust opacities and "gray" radiation transfer, we calculate the dust's wavelength-dependent absorption and emission simultaneously with the radiation density at each wavelength and the equilibrium temperatures of three grain components: amorphous carbon particles. silicates, and " dirty ice " -coated silicates. Because our simulations cannot spatially resolve the innermost regions of the molecular clump, however, we cannot distinguish between the formation of a dense central cluster or a single massive object. Furthermore, we cannot exclude significant mass loss from the central object(s) that may interact with the inflow into the central grid cell. Thus, with our basic assumption that all material in the innermost grid cell accretes onto a single object. we are able to provide only an upper limit to the mass of stars that could possibly be formed. We introduce a semianalytical scheme for augmenting existing evolutionary tracks of pre-main-sequence protostars by including the effects of accretion. By considering an open outermost boundary, an arbitrary amount of material could, in principal, be accreted onto this central star. However, for the three cases considered (30, 60, and 120 Stellar Mass originally within the computation grid), radiation acceleration limited the final masses to 3 1.6, 33.6, and 42.9 Stellar Mass, respectively, for wavelength-dependent radiation transfer and to 19.1, 20.1, and 22.9 Stellar Mass. for the corresponding simulations with gray radiation transfer. Our calculations demonstrate that massive stars can in principle be formed via accretion through a disk. The accretion rate onto the central source increases rapidly after one initial free-fall time and decreases monotonically afterward. By enhancing the nonisotropic character of the radiation field, the accretion disk reduces the effects of radiative acceleration in the radial direction - a process we call the "flashlight effect." The flashlight effect is further amplified in our case by including the effects of frequency-dependent radiation transfer. We conclude with the warning that a careful treatment of radiation transfer is a mandatory requirement for realistic simulations of the formation of massive stars.
A simple physical model for X-ray burst sources
NASA Technical Reports Server (NTRS)
Joss, P. C.; Rappaport, S.
1977-01-01
In connection with information considered by Illarianov and Sunyaev (1975) and van den Heuvel (1975), a simple physical model for an X-ray burst source in the galactic disk is proposed. The model includes an unevolved OB star with a relatively weak stellar wind and a compact object in a close binary system. For some reason, the stellar wind from the OB star is unable to accrete steadily on to the compact object. When the stellar wind is sufficiently weak, the compact object accretes irregularly, leading to X-ray bursts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sonnenfeld, Alessandro; Treu, Tommaso; Marshall, Philip J.
Here, we investigate the cosmic evolution of the internal structure of massive early-type galaxies over half of the age of the universe. We also perform a joint lensing and stellar dynamics analysis of a sample of 81 strong lenses from the Strong Lensing Legacy Survey and Sloan ACS Lens Survey and combine the results with a hierarchical Bayesian inference method to measure the distribution of dark matter mass and stellar initial mass function (IMF) across the population of massive early-type galaxies. Lensing selection effects are taken into account. Furthermore, we found that the dark matter mass projected within the innermore » 5 kpc increases for increasing redshift, decreases for increasing stellar mass density, but is roughly constant along the evolutionary tracks of early-type galaxies. The average dark matter slope is consistent with that of a Navarro-Frenk-White profile, but is not well constrained. The stellar IMF normalization is close to a Salpeter IMF at log M * = 11.5 and scales strongly with increasing stellar mass. No dependence of the IMF on redshift or stellar mass density is detected. The anti-correlation between dark matter mass and stellar mass density supports the idea of mergers being more frequent in more massive dark matter halos.« less
The influence of radiative core growth on coronal X-ray emission from pre-main-sequence stars
NASA Astrophysics Data System (ADS)
Gregory, Scott G.; Adams, Fred C.; Davies, Claire L.
2016-04-01
Pre-main-sequence (PMS) stars of mass ≳0.35 M⊙ transition from hosting fully convective interiors to configurations with a radiative core and outer convective envelope during their gravitational contraction. This stellar structure change influences the external magnetic field topology and, as we demonstrate herein, affects the coronal X-ray emission as a stellar analogue of the solar tachocline develops. We have combined archival X-ray, spectroscopic, and photometric data for ˜1000 PMS stars from five of the best studied star-forming regions: the Orion Nebula Cluster, NGC 2264, IC 348, NGC 2362, and NGC 6530. Using a modern, PMS calibrated, spectral type-to-effective temperature and intrinsic colour scale, we de-redden the photometry using colours appropriate for each spectral type, and determine the stellar mass, age, and internal structure consistently for the entire sample. We find that PMS stars on Henyey tracks have, on average, lower fractional X-ray luminosities (LX/L*) than those on Hayashi tracks, where this effect is driven by changes in LX. X-ray emission decays faster with age for higher mass PMS stars. There is a strong correlation between L* and LX for Hayashi track stars but no correlation for Henyey track stars. There is no correlation between LX and radiative core mass or radius. However, the longer stars have spent with radiative cores, the less X-ray luminous they become. The decay of coronal X-ray emission from young early K to late G-type PMS stars, the progenitors of main-sequence A-type stars, is consistent with the dearth of X-ray detections of the latter.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghezzi, Luan; Johnson, John Asher, E-mail: lghezzi@cfa.harvard.edu
2015-10-20
Characterizing the physical properties of exoplanets and understanding their formation and orbital evolution requires precise and accurate knowledge of their host stars. Accurately measuring stellar masses is particularly important because they likely influence planet occurrence and the architectures of planetary systems. Single main-sequence stars typically have masses estimated from evolutionary tracks, which generally provide accurate results due to their extensive empirical calibration. However, the validity of this method for subgiants and giants has been called into question by recent studies, with suggestions that the masses of these evolved stars could have been overestimated. We investigate these concerns using a samplemore » of 59 benchmark evolved stars with model-independent masses (from binary systems or asteroseismology) obtained from the literature. We find very good agreement between these benchmark masses and the ones estimated using evolutionary tracks. The average fractional difference in the mass interval ∼0.7–4.5 M{sub ⊙} is consistent with zero (−1.30 ± 2.42%), with no significant trends in the residuals relative to the input parameters. A good agreement between model-dependent and -independent radii (−4.81 ± 1.32%) and surface gravities (0.71 ± 0.51%) is also found. The consistency between independently determined ages for members of binary systems adds further support for the accuracy of the method employed to derive the stellar masses. Taken together, our results indicate that determination of masses of evolved stars using grids of evolutionary tracks is not significantly affected by systematic errors, and is thus valid for estimating the masses of isolated stars beyond the main sequence.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan Haojing; Finkelstein, Steven L.; Huang, Kuang-Han
One key goal of the Hubble Space Telescope Cosmic Assembly Near-Infrared Deep Extragalactic Legacy Survey is to track galaxy evolution back to z Almost-Equal-To 8. Its two-tiered ''wide and deep'' strategy bridges significant gaps in existing near-infrared surveys. Here we report on z Almost-Equal-To 8 galaxy candidates selected as F105W-band dropouts in one of its deep fields, which covers 50.1 arcmin{sup 2} to 4 ks depth in each of three near-infrared bands in the Great Observatories Origins Deep Survey southern field. Two of our candidates have J < 26.2 mag, and are >1 mag brighter than any previously known F105W-dropouts.more » We derive constraints on the bright end of the rest-frame ultraviolet luminosity function of galaxies at z Almost-Equal-To 8, and show that the number density of such very bright objects is higher than expected from the previous Schechter luminosity function estimates at this redshift. Another two candidates are securely detected in Spitzer Infrared Array Camera images, which are the first such individual detections at z Almost-Equal-To 8. Their derived stellar masses are on the order of a few Multiplication-Sign 10{sup 9} M{sub Sun }, from which we obtain the first measurement of the high-mass end of the galaxy stellar mass function at z Almost-Equal-To 8. The high number density of very luminous and very massive galaxies at z Almost-Equal-To 8, if real, could imply a large stellar-to-halo mass ratio and an efficient conversion of baryons to stars at such an early time.« less
Near infrared photographic sky survey. 1: Catalog of red stellar objects
NASA Technical Reports Server (NTRS)
Craine, E. R.; Duerr, R. E.; Horner, V. M.; Imhoff, C. L.; Routsis, D. E.; Swihart, D. L.; Turnshek, D. A.
1979-01-01
Red stellar objects for which V-1 was greater than a value of about 2 (supm). 5 were extracted from photographs of 23 program fields. Tabular data for each field show the object name; the 1950 epoch right ascension, declination, galactic longitude, galactic latitude; radial distance from field venter in decimal degrees; color classes; and objects ordered by redness.
Gemini/GNIRS infrared spectroscopy of the Wolf-Rayet stellar wind in Cygnus X-3
NASA Astrophysics Data System (ADS)
Koljonen, K. I. I.; Maccarone, T. J.
2017-12-01
The microquasar Cygnus X-3 was observed several times with the Gemini North Infrared Spectrograph while the source was in the hard X-ray state. We describe the observed 1.0-2.4 μm spectra as arising from the stellar wind of the companion star and suggest its classification as a WN 4-6 Wolf-Rayet star. We attribute the orbital variations of the emission line profiles to the variations in the ionization structure of the stellar wind caused by the intense X-ray emission from the compact object. The strong variability observed in the line profiles will affect the mass function determination. We are unable to reproduce earlier results, from which the mass function for the Wolf-Rayet star was derived. Instead, we suggest that the system parameters are difficult to obtain from the infrared spectra. We find that the near-infrared continuum and the line spectra can be represented with non-LTE Wolf-Rayet atmosphere models if taking into account the effects arising from the peculiar ionization structure of the stellar wind in an approximative manner. From the representative models we infer the properties of the Wolf-Rayet star and discuss possible mass ranges for the binary components.
Multi-wavelength Observations of Accreting Compact Objects
NASA Astrophysics Data System (ADS)
Hernandez Santisteban, Juan Venancio
2016-11-01
The study of compact binaries invokes core astrophysical concepts ranging from stellar and sub-stellar atmospheres and interiors, stellar and binary evolution to physics of accretion. All of these systems are hosts to a compact object a white dwarf, neutron star or black hole ???? which produces a wide variety of exotic and energetic phenomena across the full electromagnetic spectrum. In this thesis, I will make use of multi-wavelength observations ranging from far-ultraviolet to nearinfrared in order to investigate two main topics: a) the late evolution of cataclysmic variables, and b) the accreting state of transitional millisecond pulsars. Firstly, I analyse the Very Large Telescope X-Shooter time-resolved spectroscopy of the short orbital period cataclysmic variable, SDSS J1433+1011, in Chapter 2. The wide wavelength coverage allowed me to perform a detailed characterisation of the system, as well as a direct mass measurement of the brown dwarf companion. I show that the donor in SDSS J1433+1011 successfully transitioned from the stellar to sub-stellar regime, as predicted by evolutionary models. Further light-curve modelling allowed me to show that a low albedo as well as a low heat circulation efficiency is present in the atmosphere of the sub-stellar donor. In Chapter 3, I analyse data from large synoptic surveys, such as SDSS and PTF, to search for the predicted population of dead cataclysmic variables. Following the non-detection of dead CVs, I was able to estimate the space density (?0 < 2?10????5 pc????3) of this hidden population via a Monte Carlo simulation of the Galactic CV population. In Chapter 4, I present Hubble Space Telescope ultraviolet observations of the transitional millisecond pulsar PSR J1023+0038, during its latest accretion state. In combination with optical and near-infrared data, I show that a standard accretion disc does not reach the magnetosphere of the neutron star. Instead, the overall spectrum is consistent with a truncated disc at ? 2:3 ? 109 cm away from the compact object. Furthermore, the ultraviolet data shares remarkable similarities with the only accreting white dwarf in a propeller regime, AE Aqr. Finally, I summarise my results in Chapter 5 and provide future lines of research in accreting compact binaries based on this work.
Summary of tracking and identification methods
NASA Astrophysics Data System (ADS)
Blasch, Erik; Yang, Chun; Kadar, Ivan
2014-06-01
Over the last two decades, many solutions have arisen to combine target tracking estimation with classification methods. Target tracking includes developments from linear to non-linear and Gaussian to non-Gaussian processing. Pattern recognition includes detection, classification, recognition, and identification methods. Integrating tracking and pattern recognition has resulted in numerous approaches and this paper seeks to organize the various approaches. We discuss the terminology so as to have a common framework for various standards such as the NATO STANAG 4162 - Identification Data Combining Process. In a use case, we provide a comparative example highlighting that location information (as an example) with additional mission objectives from geographical, human, social, cultural, and behavioral modeling is needed to determine identification as classification alone does not allow determining identification or intent.
NASA Astrophysics Data System (ADS)
Guérou, Adrien; Emsellem, Eric; McDermid, Richard M.; Côté, Patrick; Ferrarese, Laura; Blakeslee, John P.; Durrell, Patrick R.; MacArthur, Lauren A.; Peng, Eric W.; Cuillandre, Jean-Charles; Gwyn, Stephen
2015-05-01
We present Gemini Multi Object Spectrograph integral-field unit (GMOS-IFU) data of eight compact, low-mass early-type galaxies (ETGs) in the Virgo cluster. We analyze their stellar kinematics and stellar population and present two-dimensional maps of these properties covering the central 5″ × 7″ region. We find a large variety of kinematics, from nonrotating to highly rotating objects, often associated with underlying disky isophotes revealed by deep images from the Next Generation Virgo Cluster Survey. In half of our objects, we find a centrally concentrated younger and more metal-rich stellar population. We analyze the specific stellar angular momentum through the λR parameter and find six fast rotators and two slow rotators, one having a thin counterrotating disk. We compare the local galaxy density and stellar populations of our objects with those of 39 more extended low-mass Virgo ETGs from the SMAKCED survey and 260 massive (M > 1010 {{M}⊙ }) ETGs from the ATLAS3D sample. The compact low-mass ETGs in our sample are located in high-density regions, often close to a massive galaxy, and have, on average, older and more metal-rich stellar populations than less compact low-mass galaxies. We find that the stellar population parameters follow lines of constant velocity dispersion in the mass-size plane, smoothly extending the comparable trends found for massive ETGs. Our study supports a scenario where low-mass compact ETGs have experienced long-lived interactions with their environment, including ram-pressure stripping and gravitational tidal forces, that may be responsible for their compact nature.
Photogrammetric calibration of the NASA-Wallops Island image intensifier system
NASA Technical Reports Server (NTRS)
Harp, B. F.
1972-01-01
An image intensifier was designed for use as one of the primary tracking systems for the barium cloud experiment at Wallops Island. Two computer programs, a definitive stellar camara calibration program and a geodetic stellar camara orientation program, were originally developed at Wallops on a GE 625 computer. A mathematical procedure for determining the image intensifier distortions is outlined, and the implementation of the model in the Wallops computer programs is described. The analytical calibration of metric cameras is also discussed.
FlyCap: Markerless Motion Capture Using Multiple Autonomous Flying Cameras.
Xu, Lan; Liu, Yebin; Cheng, Wei; Guo, Kaiwen; Zhou, Guyue; Dai, Qionghai; Fang, Lu
2017-07-18
Aiming at automatic, convenient and non-instrusive motion capture, this paper presents a new generation markerless motion capture technique, the FlyCap system, to capture surface motions of moving characters using multiple autonomous flying cameras (autonomous unmanned aerial vehicles(UAVs) each integrated with an RGBD video camera). During data capture, three cooperative flying cameras automatically track and follow the moving target who performs large-scale motions in a wide space. We propose a novel non-rigid surface registration method to track and fuse the depth of the three flying cameras for surface motion tracking of the moving target, and simultaneously calculate the pose of each flying camera. We leverage the using of visual-odometry information provided by the UAV platform, and formulate the surface tracking problem in a non-linear objective function that can be linearized and effectively minimized through a Gaussian-Newton method. Quantitative and qualitative experimental results demonstrate the plausible surface and motion reconstruction results.
Improved charge injection device and a focal plane interface electronics board for stellar tracking
NASA Technical Reports Server (NTRS)
Michon, G. J.; Burke, H. K.
1984-01-01
An improved Charge Injection Device (CID) stellar tracking sensor and an operating sensor in a control/readout electronics board were developed. The sensor consists of a shift register scanned, 256x256 CID array organized for readout of 4x4 subarrays. The 4x4 subarrays can be positioned anywhere within the 256x256 array with a 2 pixel resolution. This allows continuous tracking of a number of stars simultaneously since nine pixels (3x3) centered on any star can always be read out. Organization and operation of this sensor and the improvements in design and semiconductor processing are described. A hermetic package incorporating an internal thermoelectric cooler assembled using low temperature solders was developed. The electronics board, which contains the sensor drivers, amplifiers, sample hold circuits, multiplexer, analog to digital converter, and the sensor temperature control circuits, is also described. Packaged sensors were evaluated for readout efficiency, spectral quantum efficiency, temporal noise, fixed pattern noise, and dark current. Eight sensors along with two tracker electronics boards were completed, evaluated, and delivered.
NASA Astrophysics Data System (ADS)
Rembold, Sandro B.; Shimoia, Jáderson S.; Storchi-Bergmann, Thaisa; Riffel, Rogério; Riffel, Rogemar A.; Mallmann, Nícolas D.; do Nascimento, Janaína C.; Moreira, Thales N.; Ilha, Gabriele S.; Machado, Alice D.; Cirolini, Rafael; da Costa, Luiz N.; Maia, Marcio A. G.; Santiago, Basílio X.; Schneider, Donald P.; Wylezalek, Dominika; Bizyaev, Dmitry; Pan, Kaike; Müller-Sánchez, Francisco
2017-12-01
We report the characterization of the first 62 Mapping Nearby Galaxies at the Apache Point Observatory active galactic nuclei (AGNs) hosts and the definition of a control sample of non-active galaxies. This control sample was selected in order to match the AGN hosts in terms of stellar mass, redshift, visual morphology and inclination. The stellar masses are in the range 9.4
Determination of Fundamental Properties of an M31 Globular Cluster from Main-Sequence Photometry
NASA Astrophysics Data System (ADS)
Ma, Jun; Wu, Zhenyu; Wang, Song; Fan, Zhou; Zhou, Xu; Wu, Jianghua; Jiang, Zhaoji; Chen, Jiansheng
2010-10-01
M31 globular cluster B379 is the first extragalactic cluster whose age was determined by main-sequence photometry. In the main-sequence photometric method, the age of a cluster is obtained by fitting its color-magnitude diagram (CMD) with stellar evolutionary models. However, different stellar evolutionary models use different parameters of stellar evolution, such as range of stellar masses, different opacities and equations of state, and different recipes, and so on. So, it is interesting to check whether different stellar evolutionary models can give consistent results for the same cluster. Brown et al. constrained the age of B379 by comparing its CMD with isochrones of the 2006 VandenBerg models. Using SSP models of Bruzual & Charlot and its multiphotometry, ZMa et al. independently determined the age of B379, which is in good agreement with the determination of Brown et al. The models of Bruzual & Charlot are calculated based on the Padova evolutionary tracks. It is necessary to check whether the age of B379 as determined based on the Padova evolutionary tracks is in agreement with the determination of Brown et al.. In this article, we redetermine the age of B379 using isochrones of the Padova stellar evolutionary models. In addition, the metal abundance, the distance modulus, and the reddening value for B379 are reported. The results obtained are consistent with the previous determinations, which include the age obtained by Brown et al. This article thus confirms the consistency of the age scale of B379 between the Padova isochrones and the 2006 VandenBerg isochrones; i.e., the comparison between the results of Brown et al. and Ma et al. is meaningful. The results reported in this article of values found for B379 are: metallicity [M/H] = log(Z/Z ⊙) = -0.325, age τ = 11.0 ± 1.5 Gyr, reddening E(B - V) = 0.08, and distance modulus (m - M)0 = 24.44 ± 0.10.
Finite-time tracking control for multiple non-holonomic mobile robots based on visual servoing
NASA Astrophysics Data System (ADS)
Ou, Meiying; Li, Shihua; Wang, Chaoli
2013-12-01
This paper investigates finite-time tracking control problem of multiple non-holonomic mobile robots via visual servoing. It is assumed that the pinhole camera is fixed to the ceiling, and camera parameters are unknown. The desired reference trajectory is represented by a virtual leader whose states are available to only a subset of the followers, and the followers have only interaction. First, the camera-objective visual kinematic model is introduced by utilising the pinhole camera model for each mobile robot. Second, a unified tracking error system between camera-objective visual servoing model and desired reference trajectory is introduced. Third, based on the neighbour rule and by using finite-time control method, continuous distributed cooperative finite-time tracking control laws are designed for each mobile robot with unknown camera parameters, where the communication topology among the multiple mobile robots is assumed to be a directed graph. Rigorous proof shows that the group of mobile robots converges to the desired reference trajectory in finite time. Simulation example illustrates the effectiveness of our method.
Recent advances in non-LTE stellar atmosphere models
NASA Astrophysics Data System (ADS)
Sander, Andreas A. C.
2017-11-01
In the last decades, stellar atmosphere models have become a key tool in understanding massive stars. Applied for spectroscopic analysis, these models provide quantitative information on stellar wind properties as well as fundamental stellar parameters. The intricate non-LTE conditions in stellar winds dictate the development of adequate sophisticated model atmosphere codes. The increase in both, the computational power and our understanding of physical processes in stellar atmospheres, led to an increasing complexity in the models. As a result, codes emerged that can tackle a wide range of stellar and wind parameters. After a brief address of the fundamentals of stellar atmosphere modeling, the current stage of clumped and line-blanketed model atmospheres will be discussed. Finally, the path for the next generation of stellar atmosphere models will be outlined. Apart from discussing multi-dimensional approaches, I will emphasize on the coupling of hydrodynamics with a sophisticated treatment of the radiative transfer. This next generation of models will be able to predict wind parameters from first principles, which could open new doors for our understanding of the various facets of massive star physics, evolution, and death.
NASA Technical Reports Server (NTRS)
Kimura, Yuki; Nuth, Joseph A., III
2005-01-01
We will demonstrate that CaO and Ca(OH)2 are excellent candidates to explain the 6.8 microns feature, which is one of the most obscure features in young stellar objects. We discuss the condensation of CaO grains and the potential formation of a Ca(OH)2 surface layer. The infrared spectra of these grains are compared with the spectra of fifteen young stellar objects. We note that CaO-rich grains are seen in all meteoritic CAIs (calcium-aluminum-rich inclusions) and the 6.8 micron feature has only been observed in young stellar objects. Therefore, we consider CaO grains to be a plausible candidate to explain the 6.8 microns feature and hypothesize that they are produced in the hot interiors of young stellar environments.
The physical properties of Lyα emitting galaxies: not just primeval galaxies?
NASA Astrophysics Data System (ADS)
Pentericci, L.; Grazian, A.; Fontana, A.; Castellano, M.; Giallongo, E.; Salimbeni, S.; Santini, P.
2009-02-01
Aims: We have analyzed a sample of Lyman break galaxies from z ~ 3.5 to z ~ 6 selected from the GOODS-S field as B, V, and i-dropouts, and with spectroscopic observations showing that they have the Lyα line in emission. Our main aim is to investigate their physical properties and their dependence on the emission line characteristic and to shed light on the relation between galaxies with Lyα emission and the general LBG population. Methods: The objects were selected from their optical continuum colors and then spectroscopically confirmed by the GOODS collaboration and other campaigns. From the public spectra we derived the main properties of the Lyα emission such as total flux and rest frame EW. We then used complete photometry, from U band to mid-infrared from the GOODS-MUSIC database, and through standard spectro-photometric techniques we derived the physical properties of the galaxies, such as total stellar mass, stellar ages, star formation rates, and dust content. Finally we investigated the relation between emission line and physical properties. Results: Although most galaxies are fit by young stellar populations, a small but non negligible fraction has SEDs that cannot be represented well by young models and require considerably older stellar component, up to ~1 Gyr. There is no apparent relation between age and EW: some of the oldest galaxies have high line EW, and should be also selected in narrow-band surveys. Therefore not all Lyα emitting galaxies are primeval galaxies in the very early stages of formation, as is commonly assumed. We also find a range of stellar populations, with masses from 5 × 108 M_⊙ to 5 × 1010 M_⊙ and SFR from few to 60 M_⊙ yr-1. Although there is no net correlation between mass and EW, we find a significant lack of massive galaxies with high EW, which could be explained if the most massive galaxies were either dustier and/or if they contained more neutral gas than less massive objects. Finally we find that more than half of the galaxies contain small but non negligible amounts of dust: the mean E(B-V) derived from the SED fit and the EW are well-correlated, although with a large scatter, as already found at lower redshift.
Vigorous star formation in a bulge-dominated extremely red object at z= 1.34
NASA Astrophysics Data System (ADS)
Cotter, Garret; Simpson, Chris; Bolton, Rosemary C.
2005-06-01
We present near-infrared (near-IR) spectroscopy of three extremely red objects (EROs) using the OHS/CISCO spectrograph at the Subaru Telescope. One target exhibits a strong emission line, which we identify as Hα at z= 1.34. Using new and existing ground-based optical and near-IR imaging, and archival Hubble Space Telescope imaging, we argue that this target is essentially an elliptical galaxy, with an old stellar population of around 4 × 1011Msolar, but having a dust-enshrouded star-forming component with a star formation rate (SFR) of some 50-100Msolar yr-1. There is no evidence that the galaxy contains an active galactic nucleus. Analysis of a further two targets, which do not exhibit any features in our near-IR spectra, suggests that one is a quiescent galaxy in the redshift range 1.2 < z < 1.6, but that the other cannot be conclusively categorized as either star-forming or quiescent. Even though our first target has many of the properties of an old elliptical, the ongoing star formation means that it cannot have formed all of its stellar population at high redshift. While we cannot infer any robust values for the SFR in ellipticals at z > 1 from this one object, we argue that the presence of an object with such a high SFR in such a small sample suggests that a non-negligible fraction of the elliptical galaxy population may have formed a component of their stellar population at redshifts z~ 1-2. We suggest that this is evidence for ongoing star formation in the history of elliptical galaxies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sonnenfeld, Alessandro; Treu, Tommaso; Marshall, Philip J.
2015-02-20
We investigate the cosmic evolution of the internal structure of massive early-type galaxies over half of the age of the universe. We perform a joint lensing and stellar dynamics analysis of a sample of 81 strong lenses from the Strong Lensing Legacy Survey and Sloan ACS Lens Survey and combine the results with a hierarchical Bayesian inference method to measure the distribution of dark matter mass and stellar initial mass function (IMF) across the population of massive early-type galaxies. Lensing selection effects are taken into account. We find that the dark matter mass projected within the inner 5 kpc increasesmore » for increasing redshift, decreases for increasing stellar mass density, but is roughly constant along the evolutionary tracks of early-type galaxies. The average dark matter slope is consistent with that of a Navarro-Frenk-White profile, but is not well constrained. The stellar IMF normalization is close to a Salpeter IMF at log M {sub *} = 11.5 and scales strongly with increasing stellar mass. No dependence of the IMF on redshift or stellar mass density is detected. The anti-correlation between dark matter mass and stellar mass density supports the idea of mergers being more frequent in more massive dark matter halos.« less
Sonnenfeld, Alessandro; Treu, Tommaso; Marshall, Philip J.; ...
2015-02-17
Here, we investigate the cosmic evolution of the internal structure of massive early-type galaxies over half of the age of the universe. We also perform a joint lensing and stellar dynamics analysis of a sample of 81 strong lenses from the Strong Lensing Legacy Survey and Sloan ACS Lens Survey and combine the results with a hierarchical Bayesian inference method to measure the distribution of dark matter mass and stellar initial mass function (IMF) across the population of massive early-type galaxies. Lensing selection effects are taken into account. Furthermore, we found that the dark matter mass projected within the innermore » 5 kpc increases for increasing redshift, decreases for increasing stellar mass density, but is roughly constant along the evolutionary tracks of early-type galaxies. The average dark matter slope is consistent with that of a Navarro-Frenk-White profile, but is not well constrained. The stellar IMF normalization is close to a Salpeter IMF at log M * = 11.5 and scales strongly with increasing stellar mass. No dependence of the IMF on redshift or stellar mass density is detected. The anti-correlation between dark matter mass and stellar mass density supports the idea of mergers being more frequent in more massive dark matter halos.« less
Accretion-induced variability links young stellar objects, white dwarfs, and black holes.
Scaringi, Simone; Maccarone, Thomas J; Körding, Elmar; Knigge, Christian; Vaughan, Simon; Marsh, Thomas R; Aranzana, Ester; Dhillon, Vikram S; Barros, Susana C C
2015-10-01
The central engines of disc-accreting stellar-mass black holes appear to be scaled down versions of the supermassive black holes that power active galactic nuclei. However, if the physics of accretion is universal, it should also be possible to extend this scaling to other types of accreting systems, irrespective of accretor mass, size, or type. We examine new observations, obtained with Kepler/K2 and ULTRACAM, regarding accreting white dwarfs and young stellar objects. Every object in the sample displays the same linear correlation between the brightness of the source and its amplitude of variability (rms-flux relation) and obeys the same quantitative scaling relation as stellar-mass black holes and active galactic nuclei. We also show that the most important parameter in this scaling relation is the physical size of the accreting object. This establishes the universality of accretion physics from proto-stars still in the star-forming process to the supermassive black holes at the centers of galaxies.
Accretion-induced variability links young stellar objects, white dwarfs, and black holes
Scaringi, Simone; Maccarone, Thomas J.; Körding, Elmar; Knigge, Christian; Vaughan, Simon; Marsh, Thomas R.; Aranzana, Ester; Dhillon, Vikram S.; Barros, Susana C. C.
2015-01-01
The central engines of disc-accreting stellar-mass black holes appear to be scaled down versions of the supermassive black holes that power active galactic nuclei. However, if the physics of accretion is universal, it should also be possible to extend this scaling to other types of accreting systems, irrespective of accretor mass, size, or type. We examine new observations, obtained with Kepler/K2 and ULTRACAM, regarding accreting white dwarfs and young stellar objects. Every object in the sample displays the same linear correlation between the brightness of the source and its amplitude of variability (rms-flux relation) and obeys the same quantitative scaling relation as stellar-mass black holes and active galactic nuclei. We also show that the most important parameter in this scaling relation is the physical size of the accreting object. This establishes the universality of accretion physics from proto-stars still in the star-forming process to the supermassive black holes at the centers of galaxies. PMID:26601307
A relation between the characteristic stellar ages of galaxies and their intrinsic shapes
NASA Astrophysics Data System (ADS)
van de Sande, Jesse; Scott, Nicholas; Bland-Hawthorn, Joss; Brough, Sarah; Bryant, Julia J.; Colless, Matthew; Cortese, Luca; Croom, Scott M.; d'Eugenio, Francesco; Foster, Caroline; Goodwin, Michael; Konstantopoulos, Iraklis S.; Lawrence, Jon S.; McDermid, Richard M.; Medling, Anne M.; Owers, Matt S.; Richards, Samuel N.; Sharp, Rob
2018-06-01
Stellar population and stellar kinematic studies provide unique but complementary insights into how galaxies build-up their stellar mass and angular momentum1-3. A galaxy's mean stellar age reveals when stars were formed, but provides little constraint on how the galaxy's mass was assembled. Resolved stellar dynamics4 trace the change in angular momentum due to mergers, but major mergers tend to obscure the effect of earlier interactions5. With the rise of large multi-object integral field spectroscopic surveys, such as SAMI6 and MaNGA7, and single-object integral field spectroscopic surveys (for example, ATLAS3D (ref. 8), CALIFA9, MASSIVE10), it is now feasible to connect a galaxy's star formation and merger history on the same resolved physical scales, over a large range in galaxy mass, morphology and environment4,11,12. Using the SAMI Galaxy Survey, here we present a combined study of spatially resolved stellar kinematics and global stellar populations. We find a strong correlation of stellar population age with location in the (V/σ, ɛe) diagram that links the ratio of ordered rotation to random motions in a galaxy to its observed ellipticity. For the large majority of galaxies that are oblate rotating spheroids, we find that characteristic stellar age follows the intrinsic ellipticity of galaxies remarkably well.
A relation between the characteristic stellar ages of galaxies and their intrinsic shapes
NASA Astrophysics Data System (ADS)
van de Sande, Jesse; Scott, Nicholas; Bland-Hawthorn, Joss; Brough, Sarah; Bryant, Julia J.; Colless, Matthew; Cortese, Luca; Croom, Scott M.; d'Eugenio, Francesco; Foster, Caroline; Goodwin, Michael; Konstantopoulos, Iraklis S.; Lawrence, Jon S.; McDermid, Richard M.; Medling, Anne M.; Owers, Matt S.; Richards, Samuel N.; Sharp, Rob
2018-04-01
Stellar population and stellar kinematic studies provide unique but complementary insights into how galaxies build-up their stellar mass and angular momentum1-3. A galaxy's mean stellar age reveals when stars were formed, but provides little constraint on how the galaxy's mass was assembled. Resolved stellar dynamics4 trace the change in angular momentum due to mergers, but major mergers tend to obscure the effect of earlier interactions5. With the rise of large multi-object integral field spectroscopic surveys, such as SAMI6 and MaNGA7, and single-object integral field spectroscopic surveys (for example, ATLAS3D (ref. 8), CALIFA9, MASSIVE10), it is now feasible to connect a galaxy's star formation and merger history on the same resolved physical scales, over a large range in galaxy mass, morphology and environment4,11,12. Using the SAMI Galaxy Survey, here we present a combined study of spatially resolved stellar kinematics and global stellar populations. We find a strong correlation of stellar population age with location in the (V/σ, ɛe) diagram that links the ratio of ordered rotation to random motions in a galaxy to its observed ellipticity. For the large majority of galaxies that are oblate rotating spheroids, we find that characteristic stellar age follows the intrinsic ellipticity of galaxies remarkably well.
Nebula Models of Non-Equilibrium Mineralogy: Wark-Lovering Rims
NASA Technical Reports Server (NTRS)
Cuzzi, J. N.; Petaev, M.; Krot, A. N.
2005-01-01
Introduction: The meteorite record contains several examples of minerals that would not persist if allowed to come to equilibrium with a cooling gas of solar composition. This includes all minerals in CAIs and AOAs. Their survival is generally ascribed to physical removal of the object from the gas (isolation into a large parent object, or ejection by a stellar wind), but could also result from outward radial diffusion into cooler regions, which we discuss here. Accretion of CAIs into planetesimals has also been relied on to preserve them against loss into the sun. However, this suggestion faces several objections. Simple outward diffusion in turbulence has recently been modeled in some detail, and can preserve CAIs against loss into the sun [2]. Naturally, outward radial diffusion in turbulence is slower than immediate ejection by a stellar wind, which occurs on an orbital timescale. Here we ask whether these different transport mechanisms can be distinguished by nonequilibrium mineralogy, which provides a sort of clock. Our application here is to one aspect of CAI mineralogy - the Wark-Lovering rims (WLR); even more specifically, to alteration of one layer in the WLR sequence from melilite (Mel) to anorthite (An).
NASA Astrophysics Data System (ADS)
MacLeod, Morgan Elowe
This thesis uses computational modeling to study of phases of dramatic interaction that intersperse stellar lifetimes. In galactic centers stars trace dangerously wandering orbits dictated by the combined gravitational force of a central, supermassive black hole and all of the surrounding stars. In binary systems, stars' evolution -- which causes their radii to increase substantially -- can bring initially non-interacting systems into contact. Moments of strong stellar interaction transform stars, their subsequent evolution, and the stellar environments they inhabit. In tidal disruption events, a star is partially or completely destroyed as tidal forces from a supermassive black hole overwhelm the star's self gravity. A portion of the stellar debris falls back to the black hole powering a luminous flare as it accretes. This thesis studies the relative event rates and properties of tidal disruption events for stars across the stellar evolutionary spectrum. Tidal disruptions of giant stars occur with high specific frequency; these objects' extended envelopes make them vulnerable to disruption. More-compact white dwarf stars are tidally disrupted relatively rarely. Their transients are also of very different duration and luminosity. Giant star disruptions power accretion flares with timescales of tens to hundreds of years; white dwarf disruption flares take hours to days. White dwarf tidal interactions can additionally trigger thermonuclear burning and lead to transients with signatures similar to type I supernovae. In binary star systems, a phase of hydrodynamic interaction called a common envelope episode occurs when one star evolves to swallow its companion. Dragged by the surrounding gas, the companion star spirals through the envelope to tighter orbits. This thesis studies accretion and flow morphologies during this phase. Density gradients across the gravitationally-focussed material lead to a strong angular momentum barrier to accretion during common envelope. Typical accretion efficiencies are in the range of 1 percent the Hoyle-Lyttleton accretion rate. This implies that compact objects embedded in common envelopes do not grow significantly during this phase, increasing their mass by at most a few percent. This thesis models the properties of a recent stellar-merger powered transient to derive constraints on this long-uncertain phase of binary star evolution.
The Cannon: A data-driven approach to Stellar Label Determination
NASA Astrophysics Data System (ADS)
Ness, M.; Hogg, David W.; Rix, H.-W.; Ho, Anna. Y. Q.; Zasowski, G.
2015-07-01
New spectroscopic surveys offer the promise of stellar parameters and abundances (“stellar labels”) for hundreds of thousands of stars; this poses a formidable spectral modeling challenge. In many cases, there is a subset of reference objects for which the stellar labels are known with high(er) fidelity. We take advantage of this with The Cannon, a new data-driven approach for determining stellar labels from spectroscopic data. The Cannon learns from the “known” labels of reference stars how the continuum-normalized spectra depend on these labels by fitting a flexible model at each wavelength; then, The Cannon uses this model to derive labels for the remaining survey stars. We illustrate The Cannon by training the model on only 542 stars in 19 clusters as reference objects, with {T}{eff}, {log} g, and [{Fe}/{{H}}] as the labels, and then applying it to the spectra of 55,000 stars from APOGEE DR10. The Cannon is very accurate. Its stellar labels compare well to the stars for which APOGEE pipeline (ASPCAP) labels are provided in DR10, with rms differences that are basically identical to the stated ASPCAP uncertainties. Beyond the reference labels, The Cannon makes no use of stellar models nor any line-list, but needs a set of reference objects that span label-space. The Cannon performs well at lower signal-to-noise, as it delivers comparably good labels even at one-ninth the APOGEE observing time. We discuss the limitations of The Cannon and its future potential, particularly, to bring different spectroscopic surveys onto a consistent scale of stellar labels.
A plausible energy source and structure for quasi-stellar objects
NASA Technical Reports Server (NTRS)
Daltabuit, E.; Cox, D.
1972-01-01
If a collision of two large, massive, fast gas clouds occurs, their kinetic energy is converted to radiation in a pair of shock fronts at their interface. The resulting structure is described, and the relevance of this as a radiation source for quasi-stellar objects is considered.
NASA Astrophysics Data System (ADS)
Valsecchi, Francesca
Binary star systems hosting black holes, neutron stars, and white dwarfs are unique laboratories for investigating both extreme physical conditions, and stellar and binary evolution. Black holes and neutron stars are observed in X-ray binaries, where mass accretion from a stellar companion renders them X-ray bright. Although instruments like Chandra have revolutionized the field of X-ray binaries, our theoretical understanding of their origin and formation lags behind. Progress can be made by unravelling the evolutionary history of observed systems. As part of my thesis work, I have developed an analysis method that uses detailed stellar models and all the observational constraints of a system to reconstruct its evolutionary path. This analysis models the orbital evolution from compact-object formation to the present time, the binary orbital dynamics due to explosive mass loss and a possible kick at core collapse, and the evolution from the progenitor's Zero Age Main Sequence to compact-object formation. This method led to a theoretical model for M33 X-7, one of the most massive X-ray binaries known and originally marked as an evolutionary challenge. Compact objects are also expected gravitational wave (GW) sources. In particular, double white dwarfs are both guaranteed GW sources and observed electromagnetically. Although known systems show evidence of tidal deformation and a successful GW astronomy requires realistic models of the sources, detached double white dwarfs are generally approximated to point masses. For the first time, I used realistic models to study tidally-driven periastron precession in eccentric binaries. I demonstrated that its imprint on the GW signal yields constrains on the components' masses and that the source would be misclassified if tides are neglected. Beyond this adiabatic precession, tidal dissipation creates a sink of orbital angular momentum. Its efficiency is strongest when tides are dynamic and excite the components' free oscillation modes. Accounting for this effect will determine whether our interpretation of current and future observations will constrain the sources' true physical properties. To investigate dynamic tides I have developed CAFein, a novel code that calculates forced non-adiabatic stellar oscillations using a highly stable and efficient numerical method.
A supermassive black hole in an ultra-compact dwarf galaxy.
Seth, Anil C; van den Bosch, Remco; Mieske, Steffen; Baumgardt, Holger; den Brok, Mark; Strader, Jay; Neumayer, Nadine; Chilingarian, Igor; Hilker, Michael; McDermid, Richard; Spitler, Lee; Brodie, Jean; Frank, Matthias J; Walsh, Jonelle L
2014-09-18
Ultra-compact dwarf galaxies are among the densest stellar systems in the Universe. These systems have masses of up to 2 × 10(8) solar masses, but half-light radii of just 3-50 parsecs. Dynamical mass estimates show that many such dwarfs are more massive than expected from their luminosity. It remains unclear whether these high dynamical mass estimates arise because of the presence of supermassive black holes or result from a non-standard stellar initial mass function that causes the average stellar mass to be higher than expected. Here we report adaptive optics kinematic data of the ultra-compact dwarf galaxy M60-UCD1 that show a central velocity dispersion peak exceeding 100 kilometres per second and modest rotation. Dynamical modelling of these data reveals the presence of a supermassive black hole with a mass of 2.1 × 10(7) solar masses. This is 15 per cent of the object's total mass. The high black hole mass and mass fraction suggest that M60-UCD1 is the stripped nucleus of a galaxy. Our analysis also shows that M60-UCD1's stellar mass is consistent with its luminosity, implying a large population of previously unrecognized supermassive black holes in other ultra-compact dwarf galaxies.
Liang, Zhibing; Liu, Fuxian; Gao, Jiale
2018-01-01
For non-ellipsoidal extended targets and group targets tracking (NETT and NGTT), using an ellipsoid to approximate the target extension may not be accurate enough because of the lack of shape and orientation information. In consideration of this, we model a non-ellipsoidal extended target or target group as a combination of multiple ellipsoidal sub-objects, each represented by a random matrix. Based on these models, an improved gamma Gaussian inverse Wishart probability hypothesis density (GGIW-PHD) filter is proposed to estimate the measurement rates, kinematic states, and extension states of the sub-objects for each extended target or target group. For maneuvering NETT and NGTT, a multi-model (MM) approach based GGIW-PHD (MM-GGIW-PHD) filter is proposed. The common and the individual dynamics of the sub-objects belonging to the same extended target or target group are described by means of the combination between the overall maneuver model and the sub-object models. For the merging of updating components, an improved merging criterion and a new merging method are derived. A specific implementation of prediction partition with pseudo-likelihood method is presented. Two scenarios for non-maneuvering and maneuvering NETT and NGTT are simulated. The results demonstrate the effectiveness of the proposed algorithms.
Liu, Fuxian; Gao, Jiale
2018-01-01
For non-ellipsoidal extended targets and group targets tracking (NETT and NGTT), using an ellipsoid to approximate the target extension may not be accurate enough because of the lack of shape and orientation information. In consideration of this, we model a non-ellipsoidal extended target or target group as a combination of multiple ellipsoidal sub-objects, each represented by a random matrix. Based on these models, an improved gamma Gaussian inverse Wishart probability hypothesis density (GGIW-PHD) filter is proposed to estimate the measurement rates, kinematic states, and extension states of the sub-objects for each extended target or target group. For maneuvering NETT and NGTT, a multi-model (MM) approach based GGIW-PHD (MM-GGIW-PHD) filter is proposed. The common and the individual dynamics of the sub-objects belonging to the same extended target or target group are described by means of the combination between the overall maneuver model and the sub-object models. For the merging of updating components, an improved merging criterion and a new merging method are derived. A specific implementation of prediction partition with pseudo-likelihood method is presented. Two scenarios for non-maneuvering and maneuvering NETT and NGTT are simulated. The results demonstrate the effectiveness of the proposed algorithms. PMID:29444144
High angular resolution and position determinations by infrared interferometry
NASA Technical Reports Server (NTRS)
1974-01-01
Interferometer systems are described in the form of publications and reports. 'Distance Meter Helps Track the Stars', 'Berkeley Heterodyne Interferometer', 'Infrared Heterodyne Spectroscopy of CO2 on Mars', and 'A 10 micron Heterodyne Stellar Interferometer' are papers reported.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jacoby, George H.; Marco, Orsola De; Davies, James
The globular cluster (GC) system of our Galaxy contains four planetary nebulae (PNe): K 648 (or Ps 1) in M15, IRAS 18333-2357 in M22, JaFu 1 in Pal 6, and JaFu 2 in NGC 6441. Because single-star evolution at the low stellar mass of present-epoch GCs was considered incapable of producing visible PNe, their origin presented a puzzle. We imaged the PN JaFu 1 with the Hubble Space Telescope (HST) to obtain photometry of its central star (CS) and high-resolution morphological information. We imaged IRAS 18333-2357 with better depth and resolution, and we analyzed its archival HST spectra to constrainmore » its CS temperature and luminosity. All PNe in Galactic GCs now have quality HST data, allowing us to improve CS mass estimates. We find reasonably consistent masses between 0.53 and 0.58 M {sub ⊙} for all four objects, though estimates vary when adopting different stellar evolutionary calculations. The CS mass of IRAS 18333-2357, though, depends strongly on its temperature, which remains elusive due to reddening uncertainties. For all four objects, we consider their CS and nebula masses, their morphologies, and other incongruities to assess the likelihood that these objects formed from binary stars. Although generally limited by uncertainties (∼0.02 M {sub ⊙}) in post-AGB tracks and core mass versus luminosity relations, the high-mass CS in K 648 indicates a binary origin. The CS of JaFu 1 exhibits compact, bright [O iii] and H α emission, like EGB 6, suggesting a binary companion or disk. Evidence is weaker for a binary origin of JaFu 2.« less
Merging black holes in non-spherical nuclear star clusters
NASA Astrophysics Data System (ADS)
Petrovich, Cristobal
2018-04-01
The Milky Way and a significant fraction of galaxies are observed to host a central Massive Black Hole (MBH) embedded in a non-spherical nuclear star cluster. I will discuss the orbital evolution of stellar binaries in these environments and argue that their merger rates are expected to be greatly enhanced when the effect from cluster potential is taken into account in the binary-MBH triple system. I will apply our results to compact-object binary mergers mediated by gravitational wave radiation and show that this merger channel can contribute significantly to the LIGO/Virgo detections.
The SAMI Galaxy Survey: spatially resolving the main sequence of star formation
NASA Astrophysics Data System (ADS)
Medling, Anne M.; Cortese, Luca; Croom, Scott M.; Green, Andrew W.; Groves, Brent; Hampton, Elise; Ho, I.-Ting; Davies, Luke J. M.; Kewley, Lisa J.; Moffett, Amanda J.; Schaefer, Adam L.; Taylor, Edward; Zafar, Tayyaba; Bekki, Kenji; Bland-Hawthorn, Joss; Bloom, Jessica V.; Brough, Sarah; Bryant, Julia J.; Catinella, Barbara; Cecil, Gerald; Colless, Matthew; Couch, Warrick J.; Drinkwater, Michael J.; Driver, Simon P.; Federrath, Christoph; Foster, Caroline; Goldstein, Gregory; Goodwin, Michael; Hopkins, Andrew; Lawrence, J. S.; Leslie, Sarah K.; Lewis, Geraint F.; Lorente, Nuria P. F.; Owers, Matt S.; McDermid, Richard; Richards, Samuel N.; Sharp, Robert; Scott, Nicholas; Sweet, Sarah M.; Taranu, Dan S.; Tescari, Edoardo; Tonini, Chiara; van de Sande, Jesse; Walcher, C. Jakob; Wright, Angus
2018-04-01
We present the ˜800 star formation rate maps for the Sydney-AAO Multi-object Integral field spectrograph (SAMI) Galaxy Survey based on H α emission maps, corrected for dust attenuation via the Balmer decrement, that are included in the SAMI Public Data Release 1. We mask out spaxels contaminated by non-stellar emission using the [O III]/H β, [N II]/H α, [S II]/H α, and [O I]/H α line ratios. Using these maps, we examine the global and resolved star-forming main sequences of SAMI galaxies as a function of morphology, environmental density, and stellar mass. Galaxies further below the star-forming main sequence are more likely to have flatter star formation profiles. Early-type galaxies split into two populations with similar stellar masses and central stellar mass surface densities. The main-sequence population has centrally concentrated star formation similar to late-type galaxies, while galaxies >3σ below the main sequence show significantly reduced star formation most strikingly in the nuclear regions. The split populations support a two-step quenching mechanism, wherein halo mass first cuts off the gas supply and remaining gas continues to form stars until the local stellar mass surface density can stabilize the reduced remaining fuel against further star formation. Across all morphologies, galaxies in denser environments show a decreased specific star formation rate from the outside in, supporting an environmental cause for quenching, such as ram-pressure stripping or galaxy interactions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bizyaev, D. V.; Kautsch, S. J.; Mosenkov, A. V.
We present a catalog of true edge-on disk galaxies automatically selected from the Seventh Data Release of the Sloan Digital Sky Survey (SDSS). A visual inspection of the g, r, and i images of about 15,000 galaxies allowed us to split the initial sample of edge-on galaxy candidates into 4768 (31.8% of the initial sample) genuine edge-on galaxies, 8350 (55.7%) non-edge-on galaxies, and 1865 (12.5%) edge-on galaxies not suitable for simple automatic analysis because these objects either show signs of interaction and warps, or nearby bright stars project on it. We added more candidate galaxies from RFGC, EFIGI, RC3, andmore » Galaxy Zoo catalogs found in the SDSS footprints. Our final sample consists of 5747 genuine edge-on galaxies. We estimate the structural parameters of the stellar disks (the stellar disk thickness, radial scale length, and central surface brightness) in the galaxies by analyzing photometric profiles in each of the g, r, and i images. We also perform simplified three-dimensional modeling of the light distribution in the stellar disks of edge-on galaxies from our sample. Our large sample is intended to be used for studying scaling relations in the stellar disks and bulges and for estimating parameters of the thick disks in different types of galaxies via the image stacking. In this paper, we present the sample selection procedure and general description of the sample.« less
NASA Astrophysics Data System (ADS)
Hadler, Joshua A.; van de Kop, Toni; Drake, Virginia A.; McClintock, William E.; Murphy, John; Rodgers, Paul
1998-10-01
The primary objective of the Earth Observing System (EOS) Solar Stellar Irradiance Comparison Experiment (SOLSTICE) is to accurately measure the absolute value of the solar UV irradiance at the top of the earth's atmosphere for a minimum mission lifetime of 5 years. To meet this objective, SOLSTICE employs a unique design to determine changes in instrument performance by routinely observing a series of early-type stars and comparing the irradiances directly with the solar value. Although the comparison techniques allows us to track instrument performance, the success of the SOLSTICE experiment depends upon photomultiplier detectors which have graceful degradation properties. Therefore, we have established a laboratory program to evaluate the characteristics of photomultiplier tubes which are exposed to long term fluxes similar to those we expected to encounter in flight. Three types of Hamamatsu photomultiplier tubes were tested as candidates for use in the EOS-SOLSTICE project. The results of these studies: pulse height distribution; quantum efficiency; surface maps,; and lifetime analysis are presented in this paper.
TRACING THE EVOLUTION OF HIGH-REDSHIFT GALAXIES USING STELLAR ABUNDANCES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crosby, Brian D.; O’Shea, Brian W.; Beers, Timothy C.
2016-03-20
This paper presents the first results from a model for chemical evolution that can be applied to N-body cosmological simulations and quantitatively compared to measured stellar abundances from large astronomical surveys. This model convolves the chemical yield sets from a range of stellar nucleosynthesis calculations (including asymptotic giant branch stars, Type Ia and II supernovae, and stellar wind models) with a user-specified stellar initial mass function (IMF) and metallicity to calculate the time-dependent chemical evolution model for a “simple stellar population” (SSP) of uniform metallicity and formation time. These SSP models are combined with a semianalytic model for galaxy formation andmore » evolution that uses merger trees from N-body cosmological simulations to track several α- and iron-peak elements for the stellar and multiphase interstellar medium components of several thousand galaxies in the early (z ≥ 6) universe. The simulated galaxy population is then quantitatively compared to two complementary data sets of abundances in the Milky Way stellar halo and is capable of reproducing many of the observed abundance trends. The observed abundance ratio distributions are best reproduced with a Chabrier IMF, a chemically enriched star formation efficiency of 0.2, and a redshift of reionization of 7. Many abundances are qualitatively well matched by our model, but our model consistently overpredicts the carbon-enhanced fraction of stars at low metallicities, likely owing to incomplete coverage of Population III stellar yields and supernova models and the lack of dust as a component of our model.« less
NASA Astrophysics Data System (ADS)
Balakin, B. V.; Adamsen, T. C. H.; Chang, Y.-F.; Kosinski, P.; Hoffmann, A. C.
2017-01-01
Positron emission particle tracking (PEPT) is a novel experimental technique for non-invasive inspection of industrial fluid/particle flows. The method is based on the dynamic positioning of a positron-emitting, flowing object (particle) performed through the sensing of annihilation events and subsequent numerical treatment to determine the particle position. The present paper shows an integrated overview of PEPT studies which were carried out using a new PET scanner in the Bergen University Hospital to study multiphase flows in different geometric configurations.
Stellar Structure Models of Deformed Neutron Stars
NASA Astrophysics Data System (ADS)
Zubairi, Omair; Wigley, David; Weber, Fridolin
Traditional stellar structure models of non-rotating neutron stars work under the assumption that these stars are perfect spheres. This assumption of perfect spherical symmetry is not correct if the matter inside neutron stars is described by an anisotropic model for the equation of state. Certain classes of neutron stars such as Magnetars and neutron stars which contain color-superconducting quark matter cores are expected to be deformed making them oblong spheroids. In this work, we investigate the stellar structure of these deformed neutron stars by deriving stellar structure equations in the framework of general relativity. Using a non-isotropic equation of state model, we solve these structure equations numerically in two dimensions. We calculate stellar properties such as masses and radii along with pressure profiles and investigate changes from standard spherical models.
Blue Stragglers in Clusters and Integrated Spectral Properties of Stellar Populations
NASA Astrophysics Data System (ADS)
Xin, Yu; Deng, Licai
Blue straggler stars are the most prominent bright objects in the colour-magnitude diagram of a star cluster that challenges the theory of stellar evolution. Star clusters are the closest counterparts of the theoretical concept of simple stellar populations (SSPs) in the Universe. SSPs are widely used as the basic building blocks to interpret stellar contents in galaxies. The concept of an SSP is a group of coeval stars which follows a given distribution in mass, and has the same chemical property and age. In practice, SSPs are more conveniently made by the latest stellar evolutionary models of single stars. In reality, however, stars can be more complicated than just single either at birth time or during the course of evolution in a typical environment. Observations of star clusters show that there are always exotic objects which do not follow the predictions of standard theory of stellar evolution. Blue straggler stars (BSSs), as discussed intensively in this book both observationally and theoretically, are very important in our context when considering the integrated spectral properties of a cluster, or a simple stellar population. In this chapter, we are going to describe how important the contribution of BSSs is to the total light of a cluster.
Kim, Young-Keun; Kim, Kyung-Soo
2014-10-01
Maritime transportation demands an accurate measurement system to track the motion of oscillating container boxes in real time. However, it is a challenge to design a sensor system that can provide both reliable and non-contact methods of 6-DOF motion measurements of a remote object for outdoor applications. In the paper, a sensor system based on two 2D laser scanners is proposed for detecting the relative 6-DOF motion of a crane load in real time. Even without implementing a camera, the proposed system can detect the motion of a remote object using four laser beam points. Because it is a laser-based sensor, the system is expected to be highly robust to sea weather conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Young-Keun, E-mail: ykkim@handong.edu; Kim, Kyung-Soo
Maritime transportation demands an accurate measurement system to track the motion of oscillating container boxes in real time. However, it is a challenge to design a sensor system that can provide both reliable and non-contact methods of 6-DOF motion measurements of a remote object for outdoor applications. In the paper, a sensor system based on two 2D laser scanners is proposed for detecting the relative 6-DOF motion of a crane load in real time. Even without implementing a camera, the proposed system can detect the motion of a remote object using four laser beam points. Because it is a laser-basedmore » sensor, the system is expected to be highly robust to sea weather conditions.« less
NASA Astrophysics Data System (ADS)
Kim, Young-Keun; Kim, Kyung-Soo
2014-10-01
Maritime transportation demands an accurate measurement system to track the motion of oscillating container boxes in real time. However, it is a challenge to design a sensor system that can provide both reliable and non-contact methods of 6-DOF motion measurements of a remote object for outdoor applications. In the paper, a sensor system based on two 2D laser scanners is proposed for detecting the relative 6-DOF motion of a crane load in real time. Even without implementing a camera, the proposed system can detect the motion of a remote object using four laser beam points. Because it is a laser-based sensor, the system is expected to be highly robust to sea weather conditions.
Non-LTE model atmospheres for supersoft X-ray sources
NASA Astrophysics Data System (ADS)
Rauch, T.; Werner, K.
2010-02-01
In the last decade, X-ray observations of hot stellar objects became available with unprecedented resolution and S/N ratio. For an adequate interpretation, fully metal-line blanketed Non-LTE model-atmospheres are necessary. The Tübingen Non-LTE Model Atmosphere Package (TMAP) can calculate such model atmospheres at a high level of sophistication. Although TMAP is not especially designed for the calculation of spectral energy distributions (SEDs) at extreme photospheric parameters, it can be employed for the spectral analysis of burst spectra of novae like V4743 Sgr or line identifications in observations of neutron stars with low magnetic fields in low-mass X-ray binaries (LMXBs) like EXO 0748-676.
The Close Stellar Companions to Intermediate-mass Black Holes
NASA Astrophysics Data System (ADS)
MacLeod, Morgan; Trenti, Michele; Ramirez-Ruiz, Enrico
2016-03-01
When embedded in dense cluster cores, intermediate-mass black holes (IMBHs) acquire close stellar or stellar-remnant companions. These companions are not only gravitationally bound, but also tend to hierarchically isolate from other cluster stars through series of multibody encounters. In this paper we study the demographics of IMBH companions in compact star clusters through direct N-body simulations. We study clusters initially composed of 105 or 2 × 105 stars with IMBHs of 75 and 150 solar masses, and we follow their evolution for 6-10 Gyr. A tight, innermost binary pair of IMBH and stellar object rapidly forms. The IMBH has a companion with an orbital semimajor axis at least three times tighter than the second-most-bound object over 90% of the time. These companionships have typical periods on the order of years and are subject to cycles of exchange and destruction. The most frequently observed, long-lived pairings persist for ˜107 years. The demographics of IMBH companions in clusters are diverse: they include both main-sequence, giant stars and stellar remnants. Companion objects may reveal the presence of an IMBH in a cluster in one of several ways. The most-bound companion stars routinely suffer grazing tidal interactions with the IMBH, offering a dynamical mechanism to produce repeated flaring episodes like those seen in the IMBH candidate HLX-1. The stellar winds of companion stars provide a minimum quiescent accretion rate for IMBHs, with implications for radio searches for IMBH accretion in globular clusters. Finally, gravitational wave inspirals of compact objects occur with promising frequency.
INTRODUCING CAFein, A NEW COMPUTATIONAL TOOL FOR STELLAR PULSATIONS AND DYNAMIC TIDES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Valsecchi, F.; Farr, W. M.; Willems, B.
2013-08-10
Here we present CAFein, a new computational tool for investigating radiative dissipation of dynamic tides in close binaries and of non-adiabatic, non-radial stellar oscillations in isolated stars in the linear regime. For the latter, CAFein computes the non-adiabatic eigenfrequencies and eigenfunctions of detailed stellar models. The code is based on the so-called Riccati method, a numerical algorithm that has been successfully applied to a variety of stellar pulsators, and which does not suffer from the major drawbacks of commonly used shooting and relaxation schemes. Here we present an extension of the Riccati method to investigate dynamic tides in close binaries.more » We demonstrate CAFein's capabilities as a stellar pulsation code both in the adiabatic and non-adiabatic regimes, by reproducing previously published eigenfrequencies of a polytrope, and by successfully identifying the unstable modes of a stellar model in the {beta} Cephei/SPB region of the Hertzsprung-Russell diagram. Finally, we verify CAFein's behavior in the dynamic tides regime by investigating the effects of dynamic tides on the eigenfunctions and orbital and spin evolution of massive main sequence stars in eccentric binaries, and of hot Jupiter host stars. The plethora of asteroseismic data provided by NASA's Kepler satellite, some of which include the direct detection of tidally excited stellar oscillations, make CAFein quite timely. Furthermore, the increasing number of observed short-period detached double white dwarfs (WDs) and the observed orbital decay in the tightest of such binaries open up a new possibility of investigating WD interiors through the effects of tides on their orbital evolution.« less
ABSENCE OF SIGNIFICANT COOL DISKS IN YOUNG STELLAR OBJECTS EXHIBITING REPETITIVE OPTICAL OUTBURSTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Hauyu Baobab; Hirano, Naomi; Takami, Michihiro
2016-01-10
We report Submillimeter Array 1.3 mm high angular resolution observations toward the four EXor-type outbursting young stellar objects VY Tau, V1118 Ori, V1143 Ori, and NY Ori. The data mostly show low dust masses M{sub dust} in the associated circumstellar disks. Among the sources, NY Ori possesses a relatively massive disk with M{sub dust} ∼ 9 × 10{sup −4}M{sub ⊙}. V1118 Ori has a marginal detection equivalent to M{sub dust} ∼ 6 × 10{sup −5}M{sub ⊙}. V1143 Ori has a non-detection also equivalent to M{sub dust} < 6 × 10{sup −5}M{sub ⊙}. For the nearest source, VY Tau, we get a surprising non-detection that provides a stringent upper limit M{sub dust} < 6 × 10{sup −6}M{sub ⊙}.more » We interpret our findings as suggesting that the gas and dust reservoirs that feed the short-duration, repetitive optical outbursts seen in some EXors may be limited to the small-scale, innermost region of their circumstellar disks. This hot dust may have escaped our detection limits. Follow-up, more sensitive millimeter observations are needed to improve our understanding of the triggering mechanisms of EXor-type outbursts.« less
Stellar Classification Online - Public Exploration
NASA Astrophysics Data System (ADS)
Castelaz, Michael W.; Bedell, W.; Barker, T.; Cline, J.; Owen, L.
2009-01-01
The Michigan Objective Prism Blue Survey (e.g. Sowell et al 2007, AJ, 134, 1089) photographic plates located in the Astronomical Photographic Data Archive at the Pisgah Astronomical Research Institute hold hundreds of thousands of stellar spectra, many of which have not been classified before. The public is invited to participate in a distributed computing online environment to classify the stars on the objective prism plates. The online environment is called Stellar Classification Online - Public Exploration (SCOPE). Through a website, SCOPE participants are given a tutorial on stellar spectra and their classification, and given the chance to practice their skills at classification. After practice, participants register, login, and select stars for classification from scans of the objective prism plates. Their classifications are recorded in a database where the accumulation of classifications of the same star by many users will be statistically analyzed. The project includes stars with known spectral types to help test the reliability of classifications. The SCOPE webpage and the use of results will be described.
Theoretical models for stellar X-ray polarization in compact objects
NASA Technical Reports Server (NTRS)
Meszaros, P.
1991-01-01
Degenerate stellar objects are expected to be strong sources of polarized X-ray emission. This is particularly true for strongly magnetized neutron stars, e.g. accretion or rotation powered pulsars, and gamma ray bursters. In these, linear polarization degrees well in excess of 30 percent are expected. Weaker magnetic field stellar sources, such as old neutron stars in low mass binary systems, white dwarfs and black holes are expected to have polarization degrees in the range 1-3 percent. A great interest attaches to the detection of polarization in these objects, since this would provide invaluable information concerning the geometry, radiation mechanism and magnetic field strength, necessary for testing and proving models of the structure and evolution of stars in their late stages. In this paper we review the theoretical models of the production of polarized radiation in compact stellar X-ray sources, and discuss the possibility of detecting these properties using currently planned detectors to be flown in space.
NASA Astrophysics Data System (ADS)
Herz, A.; Herz, E.; Center, K.; George, P.; Axelrad, P.; Mutschler, S.; Jones, B.
2016-09-01
The Space Surveillance Network (SSN) is tasked with the increasingly difficult mission of detecting, tracking, cataloging and identifying artificial objects orbiting the Earth, including active and inactive satellites, spent rocket bodies, and fragmented debris. Much of the architecture and operations of the SSN are limited and outdated. Efforts are underway to modernize some elements of the systems. Even so, the ability to maintain the best current Space Situational Awareness (SSA) picture and identify emerging events in a timely fashion could be significantly improved by leveraging non-traditional sensor sites. Orbit Logic, the University of Colorado and the University of Texas at Austin are developing an innovative architecture and operations concept to coordinate the tasking and observation information processing of non - traditional assets based on information-theoretic approaches. These confirmed tasking schedules and the resulting data can then be used to "inform" the SSN tasking process. The 'Heimdall Web' system is comprised of core tasking optimization components and accompanying Web interfaces within a secure, split architecture that will for the first time allow non-traditional sensors to support SSA and improve SSN tasking. Heimdall Web application components appropriately score/prioritize space catalog objects based on covariance, priority, observability, expected information gain, and probability of detect - then coordinate an efficient sensor observation schedule for non-SSN sensors contributing to the overall SSA picture maintained by the Joint Space Operations Center (JSpOC). The Heimdall Web Ops concept supports sensor participation levels of "Scheduled", "Tasked" and "Contributing". Scheduled and Tasked sensors are provided optimized observation schedules or object tracking lists from central algorithms, while Contributing sensors review and select from a list of "desired track objects". All sensors are "Web Enabled" for tasking and feedback, supplying observation schedules, confirmed observations and related data back to Heimdall Web to complete the feedback loop for the next scheduling iteration.
Mühlenbeck, Cordelia; Jacobsen, Thomas; Pritsch, Carla; Liebal, Katja
2017-01-01
Objects from the Middle Paleolithic period colored with ochre and marked with incisions represent the beginning of non-utilitarian object manipulation in different species of the Homo genus. To investigate the visual effects caused by these markings, we compared humans who have different cultural backgrounds (Namibian hunter–gatherers and German city dwellers) to one species of non-human great apes (orangutans) with respect to their perceptions of markings on objects. We used eye-tracking to analyze their fixation patterns and the durations of their fixations on marked and unmarked stones and sticks. In an additional test, humans evaluated the objects regarding their aesthetic preferences. Our hypotheses were that colorful markings help an individual to structure the surrounding world by making certain features of the environment salient, and that aesthetic appreciation should be associated with this structuring. Our results showed that humans fixated on the marked objects longer and used them in the structural processing of the objects and their background, but did not consistently report finding them more beautiful. Orangutans, in contrast, did not distinguish between object and background in their visual processing and did not clearly fixate longer on the markings. Our results suggest that marking behavior is characteristic for humans and evolved as an attention-directing rather than aesthetic benefit. PMID:28167923
The Intermediate Stellar Population in R136 Determined from Hubble Space Telescope Images
NASA Astrophysics Data System (ADS)
Hunter, D. A.; WFPC1 IDT; WFPC2 IDT
1994-12-01
We have analyzed Hubble Space Telescope (HST) images of the compact, luminous star cluster R136 in the LMC that were taken with the refurbished HST and new Wide Field/Planetary Camera. These images allow us to examine the stellar population in a region of unusually intense star formation at a scale of 0.01 pc. We have detected stars to 23.5 in F555W and have quantified the stellar population to an M_{555,o} of 0.9 or a mass of 2.8 cal Msolar . Comparisons of HR diagrams with isochrones that were constructed for the HST flight filter system from theoretical stellar evolutionary tracks reveal massive stars, a main sequence to at least 2.8 cal Msolar , and stars with M_{555,o}>=0.5 still on pre-main sequence tracks. The average stellar population is fit with a 3--4 Myr isochrone. Contrary to expectations from star formation models, however, the formation period for the massive stars and lower mass stars appear to largely overlap. We have measured the IMF for stars 2.8--15 cal Msolar in three annuli from 0.5--4.7 pc from the center of the cluster. The slopes of the IMF in all three annuli are the same within the uncertainties, thus, showing no evidence for mass segregation beyond 0.5 pc. Furthermore, the combined IMF slope, -1.2+/-0.1, is close to a normal Salpeter IMF. The lower mass limit must be lower than the limits of our measurements: <=2.8 cal Msolar beyond 0.5 pc and <=7 cal Msolar within 0.1 pc. This is contrary to some predictions that the lower mass limit could be as high as 10 cal Msolar in regions of intense massive star formation. Integrated properties of R136 are consistent with its being comparable to a rather small globular cluster when such clusters were the same age as R136.
Color Feature-Based Object Tracking through Particle Swarm Optimization with Improved Inertia Weight
Guo, Siqiu; Zhang, Tao; Song, Yulong
2018-01-01
This paper presents a particle swarm tracking algorithm with improved inertia weight based on color features. The weighted color histogram is used as the target feature to reduce the contribution of target edge pixels in the target feature, which makes the algorithm insensitive to the target non-rigid deformation, scale variation, and rotation. Meanwhile, the influence of partial obstruction on the description of target features is reduced. The particle swarm optimization algorithm can complete the multi-peak search, which can cope well with the object occlusion tracking problem. This means that the target is located precisely where the similarity function appears multi-peak. When the particle swarm optimization algorithm is applied to the object tracking, the inertia weight adjustment mechanism has some limitations. This paper presents an improved method. The concept of particle maturity is introduced to improve the inertia weight adjustment mechanism, which could adjust the inertia weight in time according to the different states of each particle in each generation. Experimental results show that our algorithm achieves state-of-the-art performance in a wide range of scenarios. PMID:29690610
Guo, Siqiu; Zhang, Tao; Song, Yulong; Qian, Feng
2018-04-23
This paper presents a particle swarm tracking algorithm with improved inertia weight based on color features. The weighted color histogram is used as the target feature to reduce the contribution of target edge pixels in the target feature, which makes the algorithm insensitive to the target non-rigid deformation, scale variation, and rotation. Meanwhile, the influence of partial obstruction on the description of target features is reduced. The particle swarm optimization algorithm can complete the multi-peak search, which can cope well with the object occlusion tracking problem. This means that the target is located precisely where the similarity function appears multi-peak. When the particle swarm optimization algorithm is applied to the object tracking, the inertia weight adjustment mechanism has some limitations. This paper presents an improved method. The concept of particle maturity is introduced to improve the inertia weight adjustment mechanism, which could adjust the inertia weight in time according to the different states of each particle in each generation. Experimental results show that our algorithm achieves state-of-the-art performance in a wide range of scenarios.
Predictions of stellar occultations by TNOs/Centaurs using Gaia
NASA Astrophysics Data System (ADS)
Desmars, Josselin; Camargo, Julio; Berard, Diane; Sicardy, Bruno; Leiva, Rodrigo; Vieira-Martins, Roberto; Braga-Ribas, Felipe; Assafin, Marcelo; Rossi, Gustavo; Chariklo occultations Team, Rio Group, Lucky Star Occultation Team, Granada Occultation Team
2017-10-01
Stellar occultations are the unique technique from the ground to access physical parameters of the distant solar system objects, such as the measure of the size and the shape at kilometric level, the detection of tenuous atmospheres (few nanobars), and the investigation of close vicinity (satellites, rings, jets).Predictions of stellar occultations require accurate positions of the star and the object.The Gaia DR1 catalog now allows to get stellar position to the milliarcsecond (mas) level. The main uncertainty in the prediction remains in the position of the object (tens to hundreds of mas).Now, we take advantage of the NIMA method for the orbit determination that uses the most recent observations reduced by the Gaia DR1 catalog and the astrometric positions derived from previous positive occultations.Up to now, we have detected nearly 50 positive occultations for about 20 objects that provide astrometric positions of the object at the time of the occultation. The uncertainty of these positions only depends on the uncertainty on the position of the occulted stars, which is a few mas with the Gaia DR1 catalog. The main limitation is now on the proper motion of the star which is only given for bright stars in the Tycho-Gaia Astrometric Solution. This limitation will be solved with the publicationof the Gaia DR2 expected on April 2018 giving proper motions and parallaxes for the Gaia stars. Until this date, we use hybrid stellar catalogs (UCAC5, HSOY) that provide proper motions derived from Gaia DR1 and another stellar catalog.Recently, the Gaia team presented a release of three preliminary Gaia DR2 stellar positions involved in the occultations by Chariklo (22 June and 23 July 2017) and by Triton (5 October 2017).Taking the case of Chariklo as an illustration, we will present a comparison between the proper motions of DR2 and the other catalogs and we will show how the Gaia DR2 will lead to a mas level precision in the orbit and in the prediction of stellar occultations.**Part of the research leading to these results has received funding from the European Research Council under theEuropean Community’s H2020 (2014-2020/ ERC Grant Agreement n 669416 ”LUCKY STAR”).
Narrow-angle Astrometry with SUSI
NASA Astrophysics Data System (ADS)
Kok, Y.; Ireland, M. J.; Robertson, J. G.; Tuthill, P. G.; Warrington, B. A.; Tango, W. J.
2014-09-01
SUSI (Sydney University Stellar Interferometer) is currently being fitted with a 2nd beam combiner, MUSCA (Micro-arcsecond University of Sydney Companion Astrometry), for the purpose of narrow-angle astrometry. With an aim to achieve ˜10 micro-arcseconds of angular resolution at its best, MUSCA allows SUSI to search for planets around bright binary stars, which are its primary targets. While the first beam combiner, PAVO (Precision Astronomical Visible Observations), is used to track stellar fringes during an observation, MUSCA will be used to measure separations of binary stars. MUSCA is a Michelson interferometer and its setup at SUSI will be described in this poster.
Modular Spectral Inference Framework Applied to Young Stars and Brown Dwarfs
NASA Technical Reports Server (NTRS)
Gully-Santiago, Michael A.; Marley, Mark S.
2017-01-01
In practice, synthetic spectral models are imperfect, causing inaccurate estimates of stellar parameters. Using forward modeling and statistical inference, we derive accurate stellar parameters for a given observed spectrum by emulating a grid of precomputed spectra to track uncertainties. Spectral inference as applied to brown dwarfs re: Synthetic spectral models (Marley et al 1996 and 2014) via the newest grid spans a massive multi-dimensional grid applied to IGRINS spectra, improving atmospheric models for JWST. When applied to young stars(10Myr) with large starpots, they can be measured spectroscopically, especially in the near-IR with IGRINS.
VizieR Online Data Catalog: The USNO-B1.0 Catalog (Monet+ 2003)
NASA Astrophysics Data System (ADS)
Monet, D. G.; Levine, S. E.; Casian, B.; et al.
2002-11-01
The USNO-B1.0 is a catalog that presents positions, proper motions, magnitudes in various optical passbands, and star/galaxy estimators for 1,045,913,669 objects derived from 3,648,832,040 separate observations. The data were taken from scans of 7,435 Schmidt plates taken from various sky surveys during the last 50 years. The catalog is expected to be complete down to V=21; the estimated accuracies are 0.2arcsec for the positions at J2000, 0.3mag in up to 5 colors, and 85% accuracy for distinguishing stars from non-stellar objects. (1 data file).
Binary Populations and Stellar Dynamics in Young Clusters
NASA Astrophysics Data System (ADS)
Vanbeveren, D.; Belkus, H.; Van Bever, J.; Mennekens, N.
2008-06-01
We first summarize work that has been done on the effects of binaries on theoretical population synthesis of stars and stellar phenomena. Next, we highlight the influence of stellar dynamics in young clusters by discussing a few candidate UFOs (unconventionally formed objects) like intermediate mass black holes, η Car, ζ Pup, γ2 Velorum and WR 140.
Probing the Dusty Stellar Populations of the Local Volume Galaxies with JWST/MIRI
NASA Astrophysics Data System (ADS)
Jones, Olivia C.; Meixner, Margaret; Justtanont, Kay; Glasse, Alistair
2017-05-01
The Mid-Infrared Instrument (MIRI) for the James Webb Space Telescope (JWST) will revolutionize our understanding of infrared stellar populations in the Local Volume. Using the rich Spitzer-IRS spectroscopic data set and spectral classifications from the Surveying the Agents of Galaxy Evolution (SAGE)-Spectroscopic survey of more than 1000 objects in the Magellanic Clouds, the Grid of Red Supergiant and Asymptotic Giant Branch Star Model (grams), and the grid of YSO models by Robitaille et al., we calculate the expected flux densities and colors in the MIRI broadband filters for prominent infrared stellar populations. We use these fluxes to explore the JWST/MIRI colors and magnitudes for composite stellar population studies of Local Volume galaxies. MIRI color classification schemes are presented; these diagrams provide a powerful means of identifying young stellar objects, evolved stars, and extragalactic background galaxies in Local Volume galaxies with a high degree of confidence. Finally, we examine which filter combinations are best for selecting populations of sources based on their JWST colors.
Disk Accretion and the Stellar Birthline
NASA Astrophysics Data System (ADS)
Hartmann, Lee; Cassen, Patrick; Kenyon, Scott J.
1997-02-01
We present a simplified analysis of some effects of disk accretion on the early evolution of fully convective, low-mass pre-main-sequence stars. Our analysis builds on the previous seminal work of Stahler, but it differs in that the accretion of material occurs over a small area of the stellar surface, such as through a disk or magnetospheric accretion column, so that most of the stellar photosphere is free to radiate to space. This boundary condition is similar to the limiting case considered by Palla & Stahler for intermediate-mass stars. We argue that for a wide variety of disk mass accretion rates, material will be added to the star with relatively small amounts of thermal energy. Protostellar evolution calculated assuming this ``low-temperature'' limit of accretion generally follows the results of Stahler because of the thermostatic nature of deuterium fusion, which prevents protostars from contracting below a ``birthline'' in the H-R diagram. Our calculated protostellar radii tend to fall below Stahler's at higher masses; the additional energy loss from the stellar photosphere in the case of disk accretion tends to make the protostar contract. The low-temperature disk accretion evolutionary tracks never fall below the deuterium-fusion birthline until the internal deuterium is depleted, but protostellar tracks can lie above the birthline in the H-R diagram if the initial radius of the protostellar core is large enough or if rapid disk accretion (such as might occur during FU Ori outbursts) adds significant amounts of thermal energy to the star. These possibilities cannot be ruled out by either theoretical arguments or observational constraints at present, so that individual protostars might evolve along a multiplicity of birthlines with a modest range of luminosity at a given mass. Our results indicate that there are large uncertainties in assigning ages for the youngest stars from H-R diagram positions, given the uncertainty in birthline positions. Our calculations also suggest that the relatively low disk accretion rates characteristic of T Tauri stars below the birthline cause low-mass stars to contract only slightly faster than normal Hayashi track evolution, so that ages for older pre-main-sequence stars estimated from H-R diagram positions are relatively secure.
A CCD Spectrometer for One Dollar
NASA Astrophysics Data System (ADS)
Beaver, J.; Robert, D.
2011-09-01
We describe preliminary tests on a very low-cost system for obtaining stellar spectra for instructional use in an introductory astronomy laboratory. CCD imaging with small telescopes is now commonplace and relatively inexpensive. Giving students direct experience taking stellar spectra, however, is much more difficult, and the equipment can easily be out of reach for smaller institutions, especially if one wants to give the experience to large numbers of students. We have performed preliminary tests on an extremely low-cost (about $1.00) objective grating that can be coupled with an existing CCD camera or commercial digital single-lens reflex (DSLR) camera and a small telescope typical of introductory astronomy labs. With this equipment we believe it is possible for introductory astronomy students to take stellar spectra that are of high enough quality to distinguish between many MK spectral classes, or to determine standard B and V magnitudes. We present observational tests of this objective grating used on an 8" Schmidt-Cassegrain with a low-end, consumer DSLR camera. Some low-cost strategies for reducing the raw data are compared, with an eye toward projects ranging from individual undergraduate research projects to use by many students in a non-majors introductory astronomy lab. Toward this end we compare various trade offs between complexity of the observing and data reduction processes and the usefulness of the final results. We also describe some undergraduate astronomy education projects that this system could potentially be used for. Some of these projects could involve data-sharing collaborations between students at different institutions.
GEO Optical Data Association with Concurrent Metric and Photometric Information
NASA Astrophysics Data System (ADS)
Dao, P.; Monet, D.
Data association in a congested area of the GEO belt with occasional visits by non-resident objects can be treated as a Multi-Target-Tracking (MTT) problem. For a stationary sensor surveilling the GEO belt, geosynchronous and near GEO objects are not completely motionless in the earth-fixed frame and can be observed as moving targets. In some clusters, metric or positional information is insufficiently accurate or up-to-date to associate the measurements. In the presence of measurements with uncertain origin, star tracks (residuals) and other sensor artifacts, heuristic techniques based on hard decision assignment do not perform adequately. In the MMT community, Bar-Shalom [2009 Bar-Shalom] was first in introducing the use of measurements to update the state of the target of interest in the tracking filter, e.g. Kalman filter. Following Bar-Shalom’s idea, we use the Probabilistic Data Association Filter (PDAF) but to make use of all information obtainable in the measurement of three-axis-stabilized GEO satellites, we combine photometric with metric measurements to update the filter. Therefore, our technique Concurrent Spatio- Temporal and Brightness (COSTB) has the stand-alone ability of associating a track with its identity –for resident objects. That is possible because the light curve of a stabilized GEO satellite changes minimally from night to night. We exercised COSTB on camera cadence data to associate measurements, correct mistags and detect non-residents in a simulated near real time cadence. Data on GEO clusters were used.
On the mass of dense star clusters in starburst galaxies from spectrophotometry
NASA Astrophysics Data System (ADS)
Fleck, J.-J.; Boily, C. M.; Lançon, A.; Deiters, S.
2006-07-01
The mass of unresolved young star clusters derived from spectrophotometric data may well be off by a factor of 2 or more once the migration of massive stars driven by mass segregation is accounted for. We quantify this effect for a large set of cluster parameters, including variations in the stellar initial mass function (IMF), the intrinsic cluster mass, and mean mass density. Gas-dynamical models coupled with the Cambridge stellar evolution tracks allow us to derive a scheme to recover the real cluster mass given measured half-light radius, one-dimensional velocity dispersion and age. We monitor the evolution with time of the ratio of real to apparent mass through the parameter η. When we compute η for rich star clusters, we find non-monotonic evolution in time when the IMF stretches beyond a critical cut-off mass of 25.5Msolar. We also monitor the rise of colour gradients between the inner and outer volume of clusters: we find trends in time of the stellar IMF power indices overlapping well with those derived for the Large Magellanic Cloud cluster NGC 1818 at an age of 30Myr. We argue that the core region of massive Antennae clusters should have suffered from much segregation despite their low ages. We apply these results to a cluster mass function, and find that the peak of the mass distribution would appear to observers shifted to lower masses by as much as 0.2dex. The star formation rate derived for the cluster population is then underestimated by from 20 to 50 per cent.
Testing stellar proper motions of TGAS stars using data from the HSOY, UCAC5 and PMA catalogues
NASA Astrophysics Data System (ADS)
Fedorov, P. N.; Akhmetov, V. S.; Velichko, A. B.
2018-05-01
We analyse the stellar proper motions from the Tycho-Gaia Astrometric Solution (TGAS) and those from the ground-based HSOY, UCAC5 and PMA catalogues derived by combining them with Gaia DR1 space data. Assuming that systematic differences in stellar proper motions of the two catalogues are caused by a mutual rigid-body rotation of the reference catalogue systems, we analyse components of the rotation vector between the systems. We found that the ωy component of the rotation vector is ˜1.5 mas yr-1 and it depends non-linearly on stellar magnitude for the objects of 9.5-11.5 mag used in all three comparisons of the catalogues HSOY, UCAC5 and PMA with respect to TGAS. We found that the Tycho-2 stars in TGAS appeared to have an inexplicable dependence of proper motion on stellar magnitude. We showed that the proper motions of the TGAS stars derived using AGIS differ from those obtained by the conventional (classical) method. Moreover, the application of both methods has not revealed such a difference between the proper motions of the Hipparcos and TGAS stars. An analysis of the systematic differences between the proper motions of the TGAS stars derived by the classical method and the proper motions of the HSOY, UCAC5 and PMA stars shows that the ωy component here does not depend on the magnitude. This indicates unambiguously that there is a magnitude error in the proper motions of the Tycho-2 stars derived with the AGIS.
A Practical Approach to Replication of Abstract Data Objects
1990-05-01
rigorous torture testing. Torture testing was done with the aid of a basher program that allows the user to configure an object and perform a specified...number of transactions, each containing a specified number of operations on the object. There are separate basher programs for RSMs and MRSMs. The...modify the object (Writes and Erases, for RSMs). The basher maintains a local, non- replicated table that tracks the RSM that is under test. Each
Model for quantum effects in stellar collapse
NASA Astrophysics Data System (ADS)
Arderucio-Costa, Bruno; Unruh, William G.
2018-01-01
We present a simple model for stellar collapse and evaluate the quantum mechanical stress-energy tensor to argue that quantum effects do not play an important role for the collapse of astrophysical objects.
The rotation of very low mass objects
NASA Astrophysics Data System (ADS)
Scholz, Alexander
2004-10-01
This dissertation contains an investigation of the rotation of very low mass objects, i.e. Brown Dwarfs and stars with masses <0.4 MS. Today, it is well-established that there are large populations of such VLM objects in open clusters and in the field, but our knowledge about their physical properties and evolution is still very limited. Contrary to their solar-mass siblings, VLM objects are fully convective throughout their evolution. Thus, they are not able to form a large-scale magnetic field like for example the sun. The magnetic field, in turn, is crucial for the regulation of rotation: Magnetic interaction between star and circumstellar disk ("disk-locking") and angular momentum losses through stellar winds have dominant influence on the rotational evolution. Thus, we can expect major differences in the rotational behaviour of VLM objects and solar-mass stars. The best method to investigate stellar rotation is to measure rotation periods. If a star exhibits surface features which are asymmetrically distributed, its brightness may be modulated with the rotation period. Thus, this dissertation is based on the analysis of photometric time series. Open clusters are an ideal environment for such a project, since they enable one to follow many objects at the same time. Additionally, they allow one to investigate the age and mass dependence of rotation, because distance and age of the clusters are known in good approximation. For this thesis, five open clusters were observed, which span an age range from 3 to 750 Myr. In three of them (SigmaOri, EpsilonOri, IC4665), VLM objects were identified by means of colour magnitude diagrams. The candidate lists for these three regions comprise at least 100 objects, for which photometry in at least three wavelength bands is available. About a fifth to a third of these candidates could be contaminating field stars in the fore- or background of the clusters. For the remaining two clusters (Pleiades and Praesepe), objects from the literature were selected as targets for the variability study. Masses for all these candidates were estimated by comparing the photometry with stellar evolutionary tracks. For each of the clusters, at least one photometric monitoring campaign was carried out; three of them were observed twice. Subsequently, the magnitudes of the VLM objects were measured relative to non-variable stars in the same fields. The difference image analysis procedure was used to improve the precision for two time series. That way, a photometric precision between 5 and 20 mmag was reached for the brightest stars. A comparison of several period search techniques showed that periodogram analysis delivers by far the best results for the available time series data. Beside the Scargle and CLEAN periodogram, the period search includes several independent and robust control procedures, to assure the reliability of the results. Additionally, a test to identify even non-periodic variability was implemented. For 87 candidates, a photometric rotation period was determined, 80 of these objects have masses <0.4 MS. Thus, this work increases the number of known VLM rotation periods in the age range between 3 and 750 Myr by a factor of 14. Altogether, about 30-50% of the candidates are variable. In the two youngest clusters, several objects show variability with very high amplitudes between 0.2 and 1.1 mag. Their lightcurves contain in the most cases a periodic component, but additionally irregular brightness variations. For two VLM stars, a flare event was detected. The origin of the periodic variability is surface features co-rotating with the objects. In most cases, these surface features are cool magnetically induced spots. From the lightcurves, it can be concluded that the spot properties change on timescales of at most two or three weeks. The amplitudes of the lightcurves are in the VLM regime by a factor of 2.4 smaller than for solar-mass stars, indicating a change of the spot properties with mass. The best explanation for this phenomenon is a more symmetric spot distribution on VLM objects. Additionally, it is probable that the contrast between spots and photospheric environment is smaller than for more massive stars. The lightcurves of the highly variable objects in the youngest clusters cannot be understood only with cool spots. This kind of variability resembles very much the photometric behaviour of classical T Tauri stars, i.e. stars which accrete matter from a circumstellar disk. Thus, it is likely that the highly variable VLM objects possess accretion disks as well. This interpretation is confirmed by near-infrared photometry and optical spectroscopy. For VLM objects in the SigmaOri cluster, a disk frequency of 6-14% was estimated. From this value and the age of SigmaOri it follows that VLM objects loose their disk on shorter timescales than solar-mass stars, which could be an indication for a formation through ejection from a multiple system. This result, however, needs confirmation, since the derived disk frequency should only be considered as a lower limit. The majority of the periodic variable objects rotate with periods <2 d. Slow rotators, with periods longer than 2d, are rare, in contrast to solar-mass stars. For M<0.3 MS, a tendency of faster rotation with decreasing object mass is observed. The origin of this tendency lies very probably in the earliest phases of the rotational evolution. The lower limit of the periods is, within the statistical uncertainties, nearly independent of age and ranges from three to six hours. On the other hand, the upper period limit clearly evolves with time. Between ages of 3 and 100 Myr, it declines from at least ten days to about two days. Afterwards, it increases again up to at least four days. To investigate this behaviour in more detail, simple models were constructed which simulate the basic mechanisms of angular momentum regulation. It turns out that the basic aspects of the rotational evolution can be understood if one takes into account the contraction of the objects and exponential rotational braking through stellar winds. On the contrary, for solar-mass stars the angular momentum losses through stellar winds can be described with the Skumanich law, which predicts a period increase proportional to the squareroot of time. This Skumanich law is not applicable in the VLM regime. Moreover, in the considered age range, the influence of "disk-locking" is negligible. Many of these results can be understood by taking into account the fact that VLM objects are fully convective and cannot possess a large-scale magnetic field. This basic physical property could be responsible for the fast rotation, the breakdown of the Skumanich law, the exponential braking of the rotation, and a more symmetric spot distribution. Thus, main results of this thesis can be ascribed to the internal structure of VLM objects.
X-rays across the galaxy population - I. Tracing the main sequence of star formation
NASA Astrophysics Data System (ADS)
Aird, J.; Coil, A. L.; Georgakakis, A.
2017-03-01
We use deep Chandra imaging to measure the distribution of X-ray luminosities (LX) for samples of star-forming galaxies as a function of stellar mass and redshift, using a Bayesian method to push below the nominal X-ray detection limits. Our luminosity distributions all show narrow peaks at LX ≲ 1042 erg s-1 that we associate with star formation, as opposed to AGN that are traced by a broad tail to higher LX. Tracking the luminosity of these peaks as a function of stellar mass reveals an 'X-ray main sequence' with a constant slope ≈0.63 ± 0.03 over 8.5 ≲ log {M}_{ast }/M_{⊙} ≲ 11.5 and 0.1 ≲ z ≲ 4, with a normalization that increases with redshift as (1 + z)3.79 ± 0.12. We also compare the peak X-ray luminosities with UV-to-IR tracers of star formation rates (SFRs) to calibrate the scaling between LX and SFR. We find that LX ∝ SFR0.83 × (1 + z)1.3, where the redshift evolution and non-linearity likely reflect changes in high-mass X-ray binary populations of star-forming galaxies. Using galaxies with a broader range of SFR, we also constrain a stellar-mass-dependent contribution to LX, likely related to low-mass X-ray binaries. Using this calibration, we convert our X-ray main sequence to SFRs and measure a star-forming main sequence with a constant slope ≈0.76 ± 0.06 and a normalization that evolves with redshift as (1 + z)2.95 ± 0.33. Based on the X-ray emission, there is no evidence for a break in the main sequence at high stellar masses, although we cannot rule out a turnover given the uncertainties in the scaling of LX to SFR.
Real-Time Utilization of STSS for Improved Collision Risk Management
NASA Astrophysics Data System (ADS)
Duncan, M.; Fero, R.; Smith, T.; Southworth, J.; Wysack, J.
2012-09-01
Space Situational Awareness (SSA) is defined as the knowledge and characterization of all aspects of space. SSA is now a fundamental and critical component of space operations. The increased dependence on our space assets has in turn led to a greater need for accurate, near real-time knowledge of all space activities. Key areas of SSA include improved tracking of smaller objects more frequently, determining the intent of non- corporative maneuvering spacecraft, identifying all potential high risk conjunction events, and leveraging non-traditional sensors in support of the SSA mission. As the size of the space object catalog grows, the demand for more tracking capacity increases. One solution is to exploit existing sensors that are primarily dedicated to other mission areas. This paper presents details regarding the utilization of the Missile Defense Agency's (MDA) space-based asset Space Tracking Surveillance System (STSS) for operational SSA. Shown are the steps and analysis items that were performed to prepare STSS for real-time utilization during high interest conjunction events. Included in our work is: 1. STSS debris tracking capability, 2. Orbit estimation/data fusion between STSS raw observations and JSpOC state data, and finally 3. Orbit geometry for MDA assets 4. Development of the STSS tasking ConOps Several operational examples are included.
Liquid filtration properties in gravel foundation of railroad tracks
NASA Astrophysics Data System (ADS)
Strelkov, A.; Teplykh, S.; Bukhman, N.
2016-08-01
Railway bed gravel foundation has a constant permanent impact on urban ecology and ground surface. It is only natural that larger objects, such as railway stations, make broader impact. Surface run-off waters polluted by harmful substances existing in railroad track body (ballast section) flow along railroad tracks and within macadam, go down into subterranean ground flow and then enter neighbouring rivers and water basins. This paper presents analytic calculations and characteristics of surface run-off liquid filtration which flows through gravel multiple layers (railroad track ballast section). The authors analyse liquids with various density and viscosity flowing in multi-layer porous medium. The paper also describes liquid stationary and non-stationary weepage into gravel foundation of railroad tracks.
Model Atmospheres for Novae in Outburst: Summary of Research
NASA Technical Reports Server (NTRS)
Hauschildt, Peter H.
1999-01-01
This paper presents a final report and summary of research on Model Atmospheres for Novae in Outburst. Some of the topics include: 1) Detailed NLTE (non-local thermodynamic equilibrium) Model Atmospheres for Novae during Outburst: II. Modeling optical and ultraviolet observations of Nova LMC 1988 #1; 2) A Non-LTE Line-Blanketed Stellar Atmosphere Model of the Early B Giant epsilon CMa; 3) Spectroscopy of Low Metallicity Stellar atmospheres; 4) Infrared Colors at the Stellar/Substellar Boundary; 5) On the abundance of Lithium in T CrB; 6) Numerical Solution of the Expanding Stellar Atmosphere Problem; and 7) The NextGen Model Atmosphere grid for 3000 less than or equal to T (sub eff) less than or equal to 10000K.
NASA Astrophysics Data System (ADS)
Mairs, Steve; Bell, Graham S.; Johnstone, Doug; Herczeg, Gregory J.; Bower, Geoffrey C.; Aikawa, Yuri; Lee, Jeong-Eun; Chen, Huei-Ru Vivien; Hatchell, Jennifer; Kang, Miju; Contreras Pena, Carlos; Scholz, Alexander; Naylor, Tim
2018-04-01
As part of our young stellar object (YSO) sub-mm monthly monitoring programme, the JCMT Transient Survey (Herczeg et al. 2017 ApJ, 849, 43; Johnstone et al. 2018 ApJ, 854, 31), we have uncovered a steady sixteen-month decline in the 850 micron peak brightness of YSO HOPS 358 (R.A.
Rapid rotators revisited: absolute dimensions of KOI-13
NASA Astrophysics Data System (ADS)
Howarth, Ian D.; Morello, Giuseppe
2017-09-01
We analyse Kepler light-curves of the exoplanet Kepler Object of Interest no. 13b (KOI-13b) transiting its moderately rapidly rotating (gravity-darkened) parent star. A physical model, with minimal ad hoc free parameters, reproduces the time-averaged light-curve at the ˜10 parts per million level. We demonstrate that this Roche-model solution allows the absolute dimensions of the system to be determined from the star's projected equatorial rotation speed, ve sin I*, without any additional assumptions; we find a planetary radius RP = (1.33 ± 0.05) R♃, stellar polar radius Rp★ = (1.55 ± 0.06) R⊙, combined mass M* + MP( ≃ M*) = (1.47 ± 0.17) M⊙ and distance d ≃ (370 ± 25) pc, where the errors are dominated by uncertainties in relative flux contribution of the visual-binary companion KOI-13B. The implied stellar rotation period is within ˜5 per cent of the non-orbital, 25.43-hr signal found in the Kepler photometry. We show that the model accurately reproduces independent tomographic observations, and yields an offset between orbital and stellar-rotation angular-momentum vectors of 60.25° ± 0.05°.
Stellar, remnant, planetary, and dark-object masses from astrometric microlensing
NASA Technical Reports Server (NTRS)
Boden, A.; Gould, A. P.; Bennett, D. P.; Depoy, D. L.; Gaudi, S. B.; Griest, K.; Han, C.; Paczynski, B.; Reid, I. N.
2002-01-01
With SIM, we will break the microlensing degeneracy, and allow detailed interpretation of individual microlensing events. We will thus develop a detailed census of the dark and luminous stellar population of the Galaxy.
Tracking multiple objects is limited only by object spacing, not by speed, time, or capacity.
Franconeri, S L; Jonathan, S V; Scimeca, J M
2010-07-01
In dealing with a dynamic world, people have the ability to maintain selective attention on a subset of moving objects in the environment. Performance in such multiple-object tracking is limited by three primary factors-the number of objects that one can track, the speed at which one can track them, and how close together they can be. We argue that this last limit, of object spacing, is the root cause of all performance constraints in multiple-object tracking. In two experiments, we found that as long as the distribution of object spacing is held constant, tracking performance is unaffected by large changes in object speed and tracking time. These results suggest that barring object-spacing constraints, people could reliably track an unlimited number of objects as fast as they could track a single object.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, John Asher; Cargile, Phillip A.; Sinukoff, Evan
We present stellar and planetary properties for 1305 Kepler Objects of Interest hosting 2025 planet candidates observed as part of the California- Kepler Survey. We combine spectroscopic constraints, presented in Paper I, with stellar interior modeling to estimate stellar masses, radii, and ages. Stellar radii are typically constrained to 11%, compared to 40% when only photometric constraints are used. Stellar masses are constrained to 4%, and ages are constrained to 30%. We verify the integrity of the stellar parameters through comparisons with asteroseismic studies and Gaia parallaxes. We also recompute planetary radii for 2025 planet candidates. Because knowledge of planetarymore » radii is often limited by uncertainties in stellar size, we improve the uncertainties in planet radii from typically 42% to 12%. We also leverage improved knowledge of stellar effective temperature to recompute incident stellar fluxes for the planets, now precise to 21%, compared to a factor of two when derived from photometry.« less
Helical axis stellarator with noninterlocking planar coils
Reiman, Allan; Boozer, Allen H.
1987-01-01
A helical axis stellarator using only noninterlocking planar, non-circular coils, generates magnetic fields having a magnetic well and large rotational transform with resultant large equilibrium beta.
ERIC Educational Resources Information Center
Sasson, Noah J.; Touchstone, Emily W.
2014-01-01
Eye tracking studies of young children with autism spectrum disorder (ASD) report a reduction in social attention and an increase in visual attention to non-social stimuli, including objects related to circumscribed interests (CI) (e.g., trains). In the current study, fifteen preschoolers with ASD and 15 typically developing controls matched on…
Remote gaze tracking system for 3D environments.
Congcong Liu; Herrup, Karl; Shi, Bertram E
2017-07-01
Eye tracking systems are typically divided into two categories: remote and mobile. Remote systems, where the eye tracker is located near the object being viewed by the subject, have the advantage of being less intrusive, but are typically used for tracking gaze points on fixed two dimensional (2D) computer screens. Mobile systems such as eye tracking glasses, where the eye tracker are attached to the subject, are more intrusive, but are better suited for cases where subjects are viewing objects in the three dimensional (3D) environment. In this paper, we describe how remote gaze tracking systems developed for 2D computer screens can be used to track gaze points in a 3D environment. The system is non-intrusive. It compensates for small head movements by the user, so that the head need not be stabilized by a chin rest or bite bar. The system maps the 3D gaze points of the user onto 2D images from a scene camera and is also located remotely from the subject. Measurement results from this system indicate that it is able to estimate gaze points in the scene camera to within one degree over a wide range of head positions.
A revised and updated catalog of quasi-stellar objects
NASA Technical Reports Server (NTRS)
Hewitt, A.; Burbidge, G.
1993-01-01
The paper contains a catalog of all known quasi-stellar objects (QSOs) with measured emission redshifts, and BL Lac objects, complete to 1992 December 31. The catalog contains 7315 objects, nearly all QSOs including about 90 BL Lac objects. The catalog and references contain extensive information on names, positions, magnitudes, colors, emission-line redshifts, absorption, variability, polarization, and X-ray, radio, and infrared data. A key in the form of subsidiary tables enables the reader to relate the name of a given object to its coordinate name, which is used throughout the compilation. Plots of the Hubble diagram, the apparent magnitude distribution, the emission redshift distribution, and the distribution of the QSOs on the sky are also given.
New theory of stellar convection without the mixing-length parameter: new stellar atmosphere model
NASA Astrophysics Data System (ADS)
Pasetto, Stefano; Chiosi, Cesare; Cropper, Mark; Grebel, Eva K.
2018-01-01
Stellar convection is usually described by the mixing-length theory, which makes use of the mixing-length scale factor to express the convective flux, velocity, and temperature gradients of the convective elements and stellar medium. The mixing-length scale is proportional to the local pressure scale height of the star, and the proportionality factor (i.e. mixing-length parameter) is determined by comparing the stellar models to some calibrator, i.e. the Sun. No strong arguments exist to suggest that the mixing-length parameter is the same in all stars and all evolutionary phases and because of this, all stellar models in the literature are hampered by this basic uncertainty. In a recent paper [1] we presented a new theory that does not require the mixing length parameter. Our self-consistent analytical formulation of stellar convection determines all the properties of stellar convection as a function of the physical behavior of the convective elements themselves and the surrounding medium. The new theory of stellar convection is formulated starting from a conventional solution of the Navier-Stokes/Euler equations expressed in a non-inertial reference frame co-moving with the convective elements. The motion of stellar convective cells inside convective-unstable layers is fully determined by a new system of equations for convection in a non-local and time-dependent formalism. The predictions of the new theory are compared with those from the standard mixing-length paradigm with positive results for atmosphere models of the Sun and all the stars in the Hertzsprung-Russell diagram.
Evolving Gravitationally Unstable Disks over Cosmic Time: Implications for Thick Disk Formation
NASA Astrophysics Data System (ADS)
Forbes, John; Krumholz, Mark; Burkert, Andreas
2012-07-01
Observations of disk galaxies at z ~ 2 have demonstrated that turbulence driven by gravitational instability can dominate the energetics of the disk. We present a one-dimensional simulation code, which we have made publicly available, that economically evolves these galaxies from z ~ 2 to z ~ 0 on a single CPU in a matter of minutes, tracking column density, metallicity, and velocity dispersions of gaseous and multiple stellar components. We include an H2-regulated star formation law and the effects of stellar heating by transient spiral structure. We use this code to demonstrate a possible explanation for the existence of a thin and thick disk stellar population and the age-velocity-dispersion correlation of stars in the solar neighborhood: the high velocity dispersion of gas in disks at z ~ 2 decreases along with the cosmological accretion rate, while at lower redshift the dynamically colder gas forms the low velocity dispersion stars of the thin disk.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dudek, L.; Chrzanowski, J.; Heitzenroeder, P.
The National Compact Stellarator Experiment (NCSX) has been under construction at the Princeton Plasma Physics Laboratory (PPPL) in partnership with the Oak Ridge National Laboratory (ORNL). The stellarator core is designed to produce a compact 3D plasma that combines stellarator and tokamak physics advantages. The complex geometry and tight fabrication tolerances of NCSX create some unique engineering and assembly challenges. The NCSX project was cancelled in May 2008; construction activities are presently being phased out in an orderly fashion. This paper will describe the progress of the fabrication and assembly activities of NCSX. Completion of the coil fabrication is onmore » track for the summer of 2008. All three of the vacuum vessel 120 degrees sections have been delivered. Assembly of vacuum vessel services began in May 2006 and is now complete. Assembly of the modular coils into 3-packs for safe storage is presently underway. (C) 2008 Elsevier B.V. All rights reserved.« less
Retool State-to-District Intervention for Better Outcomes
ERIC Educational Resources Information Center
Slotnik, William J.
2014-01-01
The national track record for state-to-district assistance is not stellar. It is tactics in the absence of strategy and activities in the absence of accomplishment. The problem is systemic: State departments need to transform their organizational structures to facilitate rather than hinder effective assistance strategies. The starting place is…
An X-shooter survey of star forming regions: Low-mass stars and sub-stellar objects
NASA Astrophysics Data System (ADS)
Alcalá, J. M.; Stelzer, B.; Covino, E.; Cupani, G.; Natta, A.; Randich, S.; Rigliaco, E.; Spezzi, L.; Testi, L.; Bacciotti, F.; Bonito, R.; Covino, S.; Flaccomio, E.; Frasca, A.; Gandolfi, D.; Leone, F.; Micela, G.; Nisini, B.; Whelan, E.
2011-03-01
We present preliminary results of our X-shooter survey in star forming regions. In this contribution we focus on sub-samples of young stellar and sub-stellar objects (YSOs) in the Lupus star forming region and in the TW Hya association. We show that the X-shooter spectra are suitable for conducting several parallel studies such as YSO + disk fundamental parameters, accretion and outflow activity in the very low-mass (VLM) and sub-stellar regimes, as well as magnetic activity in young VLM YSOs, and Li abundance determinations. The capabilities of X-shooter in terms of wide spectral coverage, resolution and limiting magnitudes, allow us to assess simultaneously the accretion/outflow, magnetic activity, and disk diagnostics, from the UV and optical to the near-IR, avoiding ambiguities due to possible YSO variability. Based on observations collected at the European Southern Observatory, Chile, under Programmes 084.C-0269 and 085.C-0238.
Instrument Pointing Control System for the Stellar Interferometry Mission - Planet Quest
NASA Technical Reports Server (NTRS)
Brugarolas, Paul B.; Kang, Bryan
2006-01-01
This paper describes the high precision Instrument Pointing Control System (PCS) for the Stellar Interferometry Mission (SIM) - Planet Quest. The PCS system provides front-end pointing, compensation for spacecraft motion, and feedforward stabilization, which are needed for proper interference. Optical interferometric measurements require very precise pointing (0.03 as, 1-(sigma) radial) for maximizing the interference pattern visibility. This requirement is achieved by fine pointing control of articulating pointing mirrors with feedback from angle tracking cameras. The overall pointing system design concept is presentcd. Functional requirements and an acquisition concept are given. Guide and Science pointing control loops are discussed. Simulation analyses demonstrate the feasibility of the design.
The Effects of Stellar Dynamics on the Evolution of Young, Dense Stellar Systems
NASA Astrophysics Data System (ADS)
Belkus, H.; van Bever, J.; Vanbeveren, D.
In this paper, we report on first results of a project in Brussels in which we study the effects of stellar dynamics on the evolution of young dense stellar systems using 3 decades of expertise in massive-star evolution and our population (number and spectral) synthesis code. We highlight an unconventionally formed object scenario (UFO-scenario) for Wolf Rayet binaries and study the effects of a luminous blue variable-type instability wind mass-loss formalism on the formation of intermediate-mass black holes.
'Land-marks of the universe': John Herschel against the background of positional astronomy.
Case, Stephen
2015-01-01
John Herschel (1792-1871) was the leading British natural philosopher of the nineteenth century, widely known and regarded for his work in philosophy, optics and chemistry as well as his important research and popular publications on astronomy. To date, however, there exists no extended treatment of his astronomical career. This paper, part of a larger study exploring Herschel's contributions to astronomy, examines his work in the context of positional astronomy, the dominant form of astronomical practice throughout his lifetime. Herschel, who did not himself practice positional astronomy and who was known for his non-meridional observations of specific stellar objects, was nonetheless a strong advocate for positional astronomy-but for very different reasons than the terrestrial applications to which it was most often put. For Herschel, the star catalogues of positional astronomy were the necessary observational foundation upon which information about the stars as physical objects could be constructed. Positional astronomy practiced in the great national observatories was not about navigation or timekeeping; it was a way to standardize stellar observations and make them useful data for constructing theories of the stars themselves. For Herschel, the seeds of the new astronomy emerged from the practices of the old.
Probing the Dusty Stellar Populations of the Local Volume Galaxies with JWST /MIRI
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, Olivia C.; Meixner, Margaret; Justtanont, Kay
The Mid-Infrared Instrument (MIRI) for the James Webb Space Telescope ( JWST ) will revolutionize our understanding of infrared stellar populations in the Local Volume. Using the rich Spitzer -IRS spectroscopic data set and spectral classifications from the Surveying the Agents of Galaxy Evolution (SAGE)–Spectroscopic survey of more than 1000 objects in the Magellanic Clouds, the Grid of Red Supergiant and Asymptotic Giant Branch Star Model (grams), and the grid of YSO models by Robitaille et al., we calculate the expected flux densities and colors in the MIRI broadband filters for prominent infrared stellar populations. We use these fluxes tomore » explore the JWST /MIRI colors and magnitudes for composite stellar population studies of Local Volume galaxies. MIRI color classification schemes are presented; these diagrams provide a powerful means of identifying young stellar objects, evolved stars, and extragalactic background galaxies in Local Volume galaxies with a high degree of confidence. Finally, we examine which filter combinations are best for selecting populations of sources based on their JWST colors.« less
Atlas of low-mass young stellar object disks from mid-infrared interferometry
NASA Astrophysics Data System (ADS)
Varga, J.; Ábrahám, P.; Ratzka, Th.; Menu, J.; Gabányi, K.; Kóspál, Á.; van Boekel, R.; Mosoni, L.; Henning, Th.
We present our approach of visibility modeling of disks around low-mass (< 2 M ⊙) young stellar objects (YSOs). We compiled an atlas based on mid-infrared interferometric observations from the MIDI instrument at the VLTI. We use three different models to fit the data. These models allow us to determine overall sizes (and the extent of the inner gaps) of the modeled circumstellar disks.
FUSE Observations of the Dwarf Seyfert Nucleus of NGC 4395
NASA Astrophysics Data System (ADS)
Kraemer, Steven B.
The Sd IV dwarf galaxy NGC 4395 is the nearest (d approx. 2.6 Mpc) and least luminous (L_bol < 1041 ergs s-1) example of a Seyfert 1 galaxy. This unique object possesses all of the classic Seyfert 1 properties in miniature, including broad and narrow emission lines, a non-stellar continuum, and highly variable X-ray emission, presumably powered by a small (105 M_sun) black hole. Furthermore, there is evidence for blue-shifted, intrinsic absorption lines in the UV (C IV lambda lambda 1548.2, 1550.8), while X-ray spectra show the presence of bound-free edges from O VII and O VIII and evidence for even more highly ionized gas. The UV absorption could arise within the X-ray absorbers or, alternatively, within the emission-line gas, which we have determined to have a high covering factor. The unique capabilities of FUSE provide the means with which to constrain the ionization state, column density, and covering factor of the absorbers and, hence, distinguish between these two possibilities. By extending our investigation of intrinsic absorption to the low luminosity extreme of the Seyfert population, we will obtain crucial insight into the effects of luminosity, global covering factor, and central black hole mass on the intrinsic absorbers. A second goal of this project is to constrain the spectral energy distribution of the non-stellar continuum radiation, which may be unique in this object as a consequence of its small black hole mass.
NASA Astrophysics Data System (ADS)
Ludwig, Bethany Ann; Cunningham, Nichol
2017-01-01
We present results from an investigation of class II 6.7GHz methanol masers towards four Massive Young Stellar Objects (MYSOs). The sources, selected from the Red MSX Source (RMS) Survey (Lumsden et al. 2013), were previously understood to be non-detections for class II methanol maser emission in the methanol multi-beam (MMB) Survey (Caswell et al. 2010.) Class II methanol masers are a well-known sign post of massive star forming regions and may be utilized to probe their relatively poorly understood formation. It is possible that these non-detections are simply weak masers that are potentially associated with a younger evolutionary phase of MYSOs as hypothesized by Olmi et al. (2014). The sources were chosen to sample various stages of evolution, having similar 21 to 8 micron flux ratios and bolometric luminosities as other MYSOs with previous class II methanol maser detections. We observed all 4 MYSOs with ATCA (~2" resolution) at 10 times deeper sensitivity than previously obtained with the MMB survey and have a spectral resolution of 0.087kms^-1 . The raw data is reduced using the program Miriad (Sault, R. J., et al., 1995) and deconvolutioned using the program CASA (McMullin, J. P., et al. 2007.) We determine one of the four observed MYSOs is harboring a weak class II methanol maser. We discuss the possibility of sensitivity limitations on the remaining sources as well as environmental and evolutionary differences between the sources.
Asteroseismology with FRESIP: A meter class space telescope
NASA Technical Reports Server (NTRS)
Milford, Peter
1994-01-01
The requirements for asteroseismology and searching for occulting inner planets are similar. The FRESIP mission will be suited to making asteroseismology measurements. Recommendation: Use 30-60 second integrations from one or more CCD's in the FRESIP mosaic, sampled continuously for the entire mission to measure stellar non-radial oscillations with amplitudes of parts per million and frequencies of 0.1 to 10 MHz. These measurements lead to determination of stellar interior helium abundances, rotation rates, depth of convection zones and measuring stellar cycle frequency changes for a variety of stellar types, enabling major advances in stellar structure and evolutionary theories.
NASA Astrophysics Data System (ADS)
Hanasaki, Itsuo; Ooi, Yuto
2018-06-01
We propose a technique to evaluate the field of diffusion coefficient for particle dispersion where the Brownian motion is heterogeneous in space and single particle tracking (SPT) analysis is hindered by high concentration of the particles and/or their small size. We realize this "particle image diffusometry" by the principle of the differential dynamic microscopy (DDM). We extend the DDM by introducing the automated objective decision of the scaling regime itself. Label-free evaluation of spatially non-uniform diffusion coefficients without SPT is useful in the diverse applications including crystal nucleation and glass transition where non-invasive observation is desired.
Runaway greenhouse effect on exomoons due to irradiation from hot, young giant planets
NASA Astrophysics Data System (ADS)
Heller, R.; Barnes, R.
2015-04-01
The Kepler space telescope has proven capable of detecting transits of objects almost as small as the Earth's Moon. Some studies suggest that moons as small as 0.2 Earth masses can be detected in the Kepler data by transit timing variations and transit duration variations of their host planets. If such massive moons exist around giant planets in the stellar habitable zone (HZ), then they could serve as habitats for extraterrestrial life. While earlier studies on exomoon habitability assumed the host planet to be in thermal equilibrium with the absorbed stellar flux, we here extend this concept by including the planetary luminosity from evolutionary shrinking. Our aim is to assess the danger of exomoons to be in a runaway greenhouse state due to extensive heating from the planet. We apply pre-computed evolution tracks for giant planets to calculate the incident planetary radiation on the moon as a function of time. Added to the stellar flux, the total illumination yields constraints on a moon's habitability. Ultimately, we include tidal heating to evaluate a moon's energy budget. We use a semi-analytical formula to parameterize the critical flux for the moon to experience a runaway greenhouse effect. Planetary illumination from a 13-Jupiter-mass planet onto an Earth-sized moon at a distance of ten Jupiter radii can drive a runaway greenhouse state on the moon for about 200 million years (Myr). When stellar illumination equivalent to that received by Earth from the Sun is added, then the runaway greenhouse holds for about 500 Myr. After 1000 Myr, the planet's habitable edge has moved inward to about six Jupiter radii. Exomoons in orbits with eccentricities of 0.1 experience strong tidal heating; they must orbit a 13-Jupiter-mass host beyond 29 or 18 Jupiter radii after 100 Myr (at the inner and outer boundaries of the stellar HZ, respectively), and beyond 13 Jupiter radii (in both cases) after 1000 Myr to be habitable. If a roughly Earth-sized, Earth-mass moon would be detected in orbit around a giant planet, and if the planet-moon duet would orbit in the stellar HZ, then it will be crucial to recover the orbital history of the moon. If, for example, such a moon around a 13-Jupiter-mass planet has been closer than 20 Jupiter radii to its host during the first few hundred million years at least, then it might have lost substantial amounts of its initial water reservoir and be uninhabitable today.
NASA Technical Reports Server (NTRS)
Hamaguchi, Kenji; Grosso, Nicolas; Kastner, Joel H.; Weintraub, David A.; Richmond, Michael
2009-01-01
The Suzaku X-ray satellite observed the young stellar object V1647 Ori on 2008 October 8 during the new mass accretion outburst reported in August 2008. During the 87 ksec observation with a net exposure of 40 ks, V1647 Ori showed a. high level of X-ray emission with a gradual decrease in flux by a factor of 5 and then displayed an abrupt flux increase by an order of magnitude. Such enhanced X-ray variability was also seen in XMM-Newton observations in 2004 and 2005 during the 2003-2005 outburst, but has rarely been observed for other young stellar objects. The spectrum clearly displays emission from Helium-like iron, which is a signature of hot plasma (kT approx.5 keV). It also shows a fluorescent iron Ka line with a remarkably large equivalent width of approx. 600 eV. Such a, large equivalent width indicates that a part of the incident X-ray emission that irradiates the circumstellar material and/or the stellar surface is hidden from our line of sight. XMM-Newton spectra during the 2003-2005 outburst did not show a strong fluorescent iron Ka line ; so that the structure of the circumstellar gas very close to the stellar core that absorbs and re-emits X-ray emission from the central object may have changed in between 2005 and 2008. This phenomenon may be related to changes in the infrared morphology of McNeil's nebula between 2004 and 2008.
DOE Office of Scientific and Technical Information (OSTI.GOV)
MacLeod, Morgan; Ramirez-Ruiz, Enrico; Trenti, Michele
When embedded in dense cluster cores, intermediate-mass black holes (IMBHs) acquire close stellar or stellar-remnant companions. These companions are not only gravitationally bound, but also tend to hierarchically isolate from other cluster stars through series of multibody encounters. In this paper we study the demographics of IMBH companions in compact star clusters through direct N-body simulations. We study clusters initially composed of 10{sup 5} or 2 × 10{sup 5} stars with IMBHs of 75 and 150 solar masses, and we follow their evolution for 6–10 Gyr. A tight, innermost binary pair of IMBH and stellar object rapidly forms. The IMBH has amore » companion with an orbital semimajor axis at least three times tighter than the second-most-bound object over 90% of the time. These companionships have typical periods on the order of years and are subject to cycles of exchange and destruction. The most frequently observed, long-lived pairings persist for ∼10{sup 7} years. The demographics of IMBH companions in clusters are diverse: they include both main-sequence, giant stars and stellar remnants. Companion objects may reveal the presence of an IMBH in a cluster in one of several ways. The most-bound companion stars routinely suffer grazing tidal interactions with the IMBH, offering a dynamical mechanism to produce repeated flaring episodes like those seen in the IMBH candidate HLX-1. The stellar winds of companion stars provide a minimum quiescent accretion rate for IMBHs, with implications for radio searches for IMBH accretion in globular clusters. Finally, gravitational wave inspirals of compact objects occur with promising frequency.« less
Radio stars observed in the LAMOST spectral survey
NASA Astrophysics Data System (ADS)
Zhang, Li-Yun; Yue, Qiang; Lu, Hong-Peng; Han, Xian-Ming L.; Zhang, Yong; Shi, Jian-Rong; Wang, Yue-Fei; Hou, Yong-Hui; Zi-Huang, Cao
2017-09-01
Radio stars have attracted astronomers’ attention for several decades. To better understand the physics behind stellar radio emissions, it is important to study their optical behaviors. The LAMOST survey provides a large database for researching stellar spectroscopic properties of radio stars. In this work, we concentrate on their spectroscopic properties and infer physical properties from their spectra, such as stellar activity and variability. We mined big data from the LAMOST spectral survey Data Release 2 (DR2), published on 2016 June 30, by cross-matching them with radio stars from FIRST and other surveys. We obtained 783 good stellar spectra with high signal to noise ratio for 659 stars. The criteria for selection were positional coincidence within 1.5‧‧ and LAMOST objects classified as stars. We calculated the equivalent widths (EWs) of the Ca ii H&K, Hδ, Hγ, Hβ, Hα and Ca ii IRT lines by integrating the line profiles. Using the EWs of the Hα line, we detected 147 active stellar spectra of 89 objects having emissions above the Hα continuum. There were also 36 objects with repeated spectra, 28 of which showed chromospheric activity variability. Furthermore, we found 14 radio stars emitting noticeably in the Ca ii IRT lines. The low value of the EW8542/EW8498 ratio for these 14 radio stars possibly alludes to chromospheric plage regions.
NASA Astrophysics Data System (ADS)
Przybilla, N.; Butler, K.
2001-12-01
A comprehensive model atom for non-LTE line formation calculations for neutral and singly-ionized nitrogen is presented. Highly accurate radiative and collisional atomic data are incorporated, recently determined for astrophysical and fusion research using the R-matrix method in the close-coupling approximation. As a test and first application of the model, nitrogen abundances are determined on the basis of line-blanketed LTE model atmospheres for five stars, the main sequence object Vega (A0 V) and the supergiants eta Leo (A0 Ib), HD 111613 (A2 Iabe), HD 92207 (A0 Iae) and beta Ori (B8 Iae), using high S/N and high-resolution spectra at visual and near-IR wavelengths. The computed non-LTE line profiles fit the observations excellently for a given nitrogen abundance in each object. Moreover, the ionization equilibrium of \\ion{N}{i/ii} proves to be a sensitive temperature indicator for late B-type and early A-type supergiants - even at low metallicities - due to the apparent nitrogen overabundance in these objects. All supergiants within our sample show an enrichment of nitrogen on the order of ~ 0.3-0.6 dex, indicating the mixing of CN-cycled material into atmospheric layers, with the sum of the CNO abundances staying close to solar. This finding is in accordance with recent stellar evolution models accounting for mass-loss and rotation. For Vega, an underabundance of nitrogen by 0.25 dex is found, in good agreement with the similar underabundance of other light elements. The dependence of the non-LTE effects on the atmospheric parameters is discussed with special emphasis on the supergiants where a strong radiation field at low particle densities favours deviations from LTE. Non-LTE effects systematically strengthen the \\ion{N}{i/ii} lines. For some N I lines in supergiants non-LTE abundance corrections in excess of 1 dex are found and they react sensitively to modifications of the collisional excitation data. The influence of microturbulence on the statistical-equilibrium calculations is also investigated: the line-strengths of the strong N I features show some sensitivity due to modifications of the line-formation depths and the departure coefficients, while the - in this parameter range - weak N Ii lines remain unaffected. Based on observations collected at the European Southern Observatory, Chile (ESO Ndeg 62.H-0176).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Conroy, Charlie; Graves, Genevieve J.; Van Dokkum, Pieter G.
2014-01-01
The stellar populations of galaxies hold vital clues to their formation histories. In this paper we present results based on modeling stacked spectra of early-type galaxies drawn from the Sloan Digital Sky Survey as a function of velocity dispersion, σ, from 90 km s{sup –1} to 300 km s{sup –1}. The spectra are of extremely high quality, with typical signal-to-noise ratio of 1000 Å{sup –1}, and a wavelength coverage of 4000 Å –8800 Å. Our population synthesis model includes variation in 16 elements from C to Ba, a two-component star formation history, the shift in effective temperature, Δ T {submore » eff}, of the stars with respect to a solar metallicity isochrone, and the stellar initial mass function, among other parameters. In our approach we fit the full optical spectra rather than a select number of spectral indices and are able to, for the first time, measure the abundances of the elements V, Cr, Mn, Co, and Ni from the integrated light of distant galaxies. Our main results are as follows: (1) light-weighted stellar ages range from 6-12 Gyr from low to high σ; (2) [Fe/H] varies by less than 0.1 dex across the entire sample; (3) Mg closely tracks O, and both increase from ≈0.0 at low σ to ∼0.25 at high σ; Si and Ti show a shallower rise with σ, and Ca tracks Fe rather than O; (4) the iron peak elements V, Cr, Mn, and Ni track Fe, while Co tracks O, suggesting that Co forms primarily in massive stars; (5) C and N track O over the full sample and [C/Fe] and [N/Fe] exceed 0.2 at high σ; and (6) the variation in Δ T {sub eff} with total metallicity closely follows theoretical predictions based on stellar evolution theory. This last result is significant because it implies that we are robustly solving not only for the detailed abundance patterns but also the detailed temperature distributions (i.e., isochrones) of the stars in these galaxies. A variety of tests reveal that the systematic uncertainties in our measurements are probably 0.05 dex or less. Our derived [Mg/Fe] and [O/Fe] abundance ratios are 0.05-0.1 dex lower than most previous determinations. Under the conventional interpretation that the variation in these ratios is due to star formation timescale variations, our results suggest longer star formation timescales for massive early-type galaxies than previous studies. Detailed chemical evolution models are necessary in order to translate the abundance ratio distributions of these galaxies into constraints on their formation histories. Alternatively, these data may provide useful constraints on the nucleosynthetic pathways for elements whose production is not well understood.« less
Circumstellar Disk Lifetimes In Numerous Galactic Young Stellar Clusters
NASA Astrophysics Data System (ADS)
Richert, A. J. W.; Getman, K. V.; Feigelson, E. D.; Kuhn, M. A.; Broos, P. S.; Povich, M. S.; Bate, M. R.; Garmire, G. P.
2018-04-01
Photometric detections of dust circumstellar disks around pre-main sequence (PMS) stars, coupled with estimates of stellar ages, provide constraints on the time available for planet formation. Most previous studies on disk longevity, starting with Haisch, Lada & Lada (2001), use star samples from PMS clusters but do not consider datasets with homogeneous photometric sensitivities and/or ages placed on a uniform timescale. Here we conduct the largest study to date of the longevity of inner dust disks using X-ray and 1-8 {μ m} infrared photometry from the MYStIX and SFiNCs projects for 69 young clusters in 32 nearby star-forming regions with ages t ≤ 5 Myr. Cluster ages are derived by combining the empirical AgeJX method with PMS evolutionary models, which treat dynamo-generated magnetic fields in different ways. Leveraging X-ray data to identify disk-free objects, we impose similar stellar mass sensitivity limits for disk-bearing and disk-free YSOs while extending the analysis to stellar masses as low as M ˜ 0.1 M⊙. We find that the disk longevity estimates are strongly affected by the choice of PMS evolutionary model. Assuming a disk fraction of 100% at zero age, the inferred disk half-life changes significantly, from t1/2 ˜ 1.3 - 2 Myr to t1/2 ˜ 3.5 Myr when switching from non-magnetic to magnetic PMS models. In addition, we find no statistically significant evidence that disk fraction varies with stellar mass within the first few Myr of life for stars with masses <2 M⊙, but our samples may not be complete for more massive stars. The effects of initial disk fraction and star-forming environment are also explored.
Non-radial pulsations and large-scale structure in stellar winds
NASA Astrophysics Data System (ADS)
Blomme, R.
2009-07-01
Almost all early-type stars show Discrete Absorption Components (DACs) in their ultraviolet spectral lines. These can be attributed to Co-rotating Interaction Regions (CIRs): large-scale spiral-shaped structures that sweep through the stellar wind. We used the Zeus hydrodynamical code to model the CIRs. In the model, the CIRs are caused by ``spots" on the stellar surface. Through the radiative acceleration these spots create fast streams in the stellar wind material. Where the fast and slow streams collide, a CIR is formed. By varying the parameters of the spots, we quantitatively fit the observed DACs in HD~64760. An important result from our work is that the spots do not rotate with the same velocity as the stellar surface. The fact that the cause of the CIRs is not fixed on the surface eliminates many potential explanations. The only remaining explanation is that the CIRs are due to the interference pattern of a number of non-radial pulsations.
Brandes, Susanne; Mokhtari, Zeinab; Essig, Fabian; Hünniger, Kerstin; Kurzai, Oliver; Figge, Marc Thilo
2015-02-01
Time-lapse microscopy is an important technique to study the dynamics of various biological processes. The labor-intensive manual analysis of microscopy videos is increasingly replaced by automated segmentation and tracking methods. These methods are often limited to certain cell morphologies and/or cell stainings. In this paper, we present an automated segmentation and tracking framework that does not have these restrictions. In particular, our framework handles highly variable cell shapes and does not rely on any cell stainings. Our segmentation approach is based on a combination of spatial and temporal image variations to detect moving cells in microscopy videos. This method yields a sensitivity of 99% and a precision of 95% in object detection. The tracking of cells consists of different steps, starting from single-cell tracking based on a nearest-neighbor-approach, detection of cell-cell interactions and splitting of cell clusters, and finally combining tracklets using methods from graph theory. The segmentation and tracking framework was applied to synthetic as well as experimental datasets with varying cell densities implying different numbers of cell-cell interactions. We established a validation framework to measure the performance of our tracking technique. The cell tracking accuracy was found to be >99% for all datasets indicating a high accuracy for connecting the detected cells between different time points. Copyright © 2014 Elsevier B.V. All rights reserved.
Revealing Companions to Nearby Stars with Astrometric Acceleration
2012-07-01
objects, such as stellar -mass black holes or failed supernova (Gould & Salim 2002). Table 4 includes a sample of some of the most interesting dis...knowledge of binary and multiple star statistics is needed for the study of star formation, for stellar population synthesis, for predicting the...frequency of supernovae, blue stragglers, X-ray binaries, etc. The statistical properties of binaries strongly depend on stellar mass. Only for nearby solar
Resolving polarized stellar features thanks to polarimetric interferometry
NASA Astrophysics Data System (ADS)
Rousselet-Perraut, Karine; Chesneau, Olivier; Vakili, Farrokh; Mourard, Denis; Janel, Sebastien; Lavaud, Laurent; Crocherie, Axel
2003-02-01
Polarimetry is a powerful means for detecting and constraining various physical phenomena, such as scattering processes or magnetic fields, occuring in a large panel of stellar objects: extended atmospheres of hot stars, CP stars, Young Stellar Objects, Active Galaxy Nuclei, ... However, the lack of angular resolution is generally a strong handicap to drastically constrain the physical parameters and the geometry of the polarizing phenomena because of the cancelling of the polarized signal. In fact, even if stellar features are strongly polarized, the (spectro-)polarimetric signal integrated over the stellar surface rarely exceeds few percents. Coupling polarimetric and interferometric devices allows to resolve these local polarized structures and thus to constrain complex patchy stellar surfaces and/or environments such as disk topology in T Tauri stars, hot stars radiative winds or oscillations in Be star envelopes. In this article, we explain how interfero-polarimetric observables, basically the contrast and the position of the interference fringe patterns versus polarization (and even versus wavelength) are powerful to address the above scientific drivers and we emphasize on the key point of instrumental and data calibrations: since interferometric measurements are differential ones between 2 or more beams, this strongly relaxes the calibration requirements for the fringe phase observable. Prospects induced by the operation of the optical aperture synthesis arrays are also discussed.
NASA Astrophysics Data System (ADS)
Eremeeva, A. J.
1995-05-01
Th. Wright, I. Kant and I. H. Lambert used well-known ideas about the structure and dynamics of the Solar system as a basis of their concepts of the stellar Universe. W. Herschel discovered the main features of the true, non-hierarchical large-scale structure of the Universe. He was also a pioneer of stellar dynamics with its new statistical laws and also of the theory of dynamical evolution in stellar systems at different scales.
The circumstellar disk response to the motion of the host star
NASA Astrophysics Data System (ADS)
Regály, Zs.; Vorobyov, E.
2017-05-01
Context. Grid-based hydrodynamics simulations of circumstellar disks are often performed in the curvilinear coordinate system, in which the center of the computational domain coincides with the motionless star. However, the center of mass may be shifted from the star due to the presence of any non-axisymmetric mass distribution. As a result, the system exerts a non-zero gravity force on the star, causing the star to move in response, which can in turn affect the evolution of the circumstellar disk. Aims: We aim at studying the effects of stellar motion on the evolution of protostellar and protoplanetary disks. In protostellar disks, a non-axisymmetric distribution of matter in the form of spiral arms and/or massive clumps can form due to gravitational instability. Protoplanetary disks can also feature non-axisymmetric structures caused by an embedded high-mass planet or a large-scale vortex formed at viscosity transitions. Methods: We use 2D grid-based numerical hydrodynamic simulations to explore the effect of stellar motion. We adopt a non-inertial polar coordinate system centered on the star, in which the stellar motion is taken into account by calculating the indirect potential caused by the non-axisymmetric disk, a high-mass planet, or a large-scale vortex. We compare the results of numerical simulations with and without stellar motion. Results: We found that the stellar motion has a moderate effect on the evolution history and the mass accretion rate in protostellar disks, reducing somewhat the disk size and mass, while having a profound effect on the collapsing envelope, changing its inner shape from an initially axisymmetric to a non-axisymmetric configuration. Protoplanetary disk simulations show that the stellar motion slightly reduces the width of the gap opened by a high-mass planet, decreases the planet migration rate, and strengthens the large-scale vortices formed at the viscosity transition. Conclusions: We conclude that the inclusion of the indirect potential is recommended in grid-based hydrodynamics simulations of circumstellar disks which use the curvilinear coordinate system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
El-Badry, Kareem; Quataert, Eliot; Wetzel, Andrew R.
In low-mass galaxies, stellar feedback can drive gas outflows that generate non-equilibrium fluctuations in the gravitational potential. Using cosmological zoom-in baryonic simulations from the Feedback in Realistic Environments project, we investigate how these fluctuations affect stellar kinematics and the reliability of Jeans dynamical modeling in low-mass galaxies. We find that stellar velocity dispersion and anisotropy profiles fluctuate significantly over the course of galaxies’ starburst cycles. We therefore predict an observable correlation between star formation rate and stellar kinematics: dwarf galaxies with higher recent star formation rates should have systemically higher stellar velocity dispersions. This prediction provides an observational test ofmore » the role of stellar feedback in regulating both stellar and dark-matter densities in dwarf galaxies. We find that Jeans modeling, which treats galaxies as virialized systems in dynamical equilibrium, overestimates a galaxy’s dynamical mass during periods of post-starburst gas outflow and underestimates it during periods of net inflow. Short-timescale potential fluctuations lead to typical errors of ∼20% in dynamical mass estimates, even if full three-dimensional stellar kinematics—including the orbital anisotropy—are known exactly. When orbital anisotropy is not known a priori, typical mass errors arising from non-equilibrium fluctuations in the potential are larger than those arising from the mass-anisotropy degeneracy. However, Jeans modeling alone cannot reliably constrain the orbital anisotropy, and problematically, it often favors anisotropy models that do not reflect the true profile. If galaxies completely lose their gas and cease forming stars, fluctuations in the potential subside, and Jeans modeling becomes much more reliable.« less
Pulsations and period variations of the δ Scuti star AN Lyncis in a possible three-body system
NASA Astrophysics Data System (ADS)
Li, Gang; Fu, Jianning; Su, Jie; Fox-Machado, Lester; Michel, Raul; Guo, Zhen; Liu, Jinzhong; Feng, Guojie
2018-01-01
Observations for the δ Scuti star AN Lyn have been made between 2008 and 2016 with the 85-cm telescope at Xinglong station of National Astronomical Observatories of China, the 84-cm telescope at SPM Observatory of Mexico and the Nanshan One metre Wide field Telescope of Xinjiang Observatory of China. Data in V in 50 nights and in R in 34 nights are obtained in total. The bi-site observations from both Xinglong Station and SPM Observatory in 2014 are analysed with Fourier Decomposition to detect pulsation frequencies. Two independent frequencies are resolved, including one non-radial mode. A number of stellar model tracks are constructed with the MESA code and the fit of frequencies leads to the best-fitting model with the stellar mass of M = 1.70 ± 0.05 M⊙, the metallicity abundance of Z = 0.020 ± 0.001, the age of 1.33 ± 0.01 billion years and the period change rate 1/P · dP/dt = 1.06 × 10-9 yr-1, locating the star at the evolutionary stage close to the terminal age main sequence. The O-C diagram provides the period change rate of (1/P)(dP/dt) = 4.5(8) × 10-7 yr-1. However, the period change rate calculated from the models is smaller in two orders than the one derived from the O-C diagram. Together with the sinusoidal function signature, the period variations are regarded to be dominated by the light-travel time effect of the orbital motion of a three-body system with two low-luminosity components, rather than the stellar evolutionary effect.
NASA Astrophysics Data System (ADS)
Johnstone, Doug; Mairs, Steve; Naylor, Tim; Contreras Pena, Carlos; Varricatt, Watson; Hodapp, Klaus; Herczeg, Gregory J.; Lee, Jeong-Eun; Yoo, Hyunju; Bell, Graham S.; Bower, Geoffrey C.; Aikawa, Yuri; Chen, Huei-Ru Vivien; Hatchell, Jennifer; Park, Sunkyung
2018-05-01
As part of our young stellar object (YSO) sub-mm monthly monitoring programme, the JCMT-Transient Survey (Herczeg et al. 2017 ApJ, 849, 43; Johnstone et al. 2018 ApJ, 854, 31), we are using SCUBA2 to monitor the 850 micron peak brightness of the YSO EC 53 (R.A.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lange, Johannes U.; Van Dokkum, Pieter G.; Momcheva, Ivelina G.
2016-03-01
We explore the presence of non-stellar rest-frame near-IR (2–5 μm) emission in galaxies at z ∼ 1. Previous studies identified this excess in relatively small samples and suggested that such non-stellar emission, which could be linked to the 3.3 μm polycyclic aromatic hydrocarbons feature or hot dust emission, is associated with an increased star formation rate (SFR). In this Letter, we confirm and quantify the presence of an IR excess in a significant fraction of galaxies in the 3D-HST GOODS catalogs. By constructing a matched sample of galaxies with and without strong non-stellar near-IR emission, we find that galaxies with such emissionmore » are predominantly star-forming galaxies. Moreover, star-forming galaxies with an excess show increased mid- and far-IR and Hα emission compared to other star-forming galaxies without. While galaxies with a near-IR excess show a larger fraction of individually detected X-ray active galactic nuclei (AGNs), an X-ray stacking analysis, together with the IR-colors and Hα profiles, shows that AGNs are unlikely to be the dominant source of excess in the majority of galaxies. Our results suggest that non-stellar near-IR emission is linked to increased SFRs and is ubiquitous among star-forming galaxies. As such, the near-IR emission might be a powerful tool to measure SFRs in the era of the James Webb Space Telescope.« less
Massive star formation by accretion. II. Rotation: how to circumvent the angular momentum barrier?
NASA Astrophysics Data System (ADS)
Haemmerlé, L.; Eggenberger, P.; Meynet, G.; Maeder, A.; Charbonnel, C.; Klessen, R. S.
2017-06-01
Context. Rotation plays a key role in the star-formation process, from pre-stellar cores to pre-main-sequence (PMS) objects. Understanding the formation of massive stars requires taking into account the accretion of angular momentum during their PMS phase. Aims: We study the PMS evolution of objects destined to become massive stars by accretion, focusing on the links between the physical conditions of the environment and the rotational properties of young stars. In particular, we look at the physical conditions that allow the production of massive stars by accretion. Methods: We present PMS models computed with a new version of the Geneva Stellar Evolution code self-consistently including accretion and rotation according to various accretion scenarios for mass and angular momentum. We describe the internal distribution of angular momentum in PMS stars accreting at high rates and we show how the various physical conditions impact their internal structures, evolutionary tracks, and rotation velocities during the PMS and the early main sequence. Results: We find that the smooth angular momentum accretion considered in previous studies leads to an angular momentum barrier and does not allow the formation of massive stars by accretion. A braking mechanism is needed in order to circumvent this angular momentum barrier. This mechanism has to be efficient enough to remove more than two thirds of the angular momentum from the inner accretion disc. Due to the weak efficiency of angular momentum transport by shear instability and meridional circulation during the accretion phase, the internal rotation profiles of accreting stars reflect essentially the angular momentum accretion history. As a consequence, careful choice of the angular momentum accretion history allows circumvention of any limitation in mass and velocity, and production of stars of any mass and velocity compatible with structure equations.
Spectroscopic Study of NGC 281 West
NASA Astrophysics Data System (ADS)
Hasan, Priya
2018-04-01
NGC 281 is a complex region of star formation at 2.8 kpc. This complex is situated 300 pc above the Galactic plane, and appears to be part of a 270 pc diameter ring of atomic and molecular clouds expanding at 22 km/s (Megeath et al. 2003). It appears that two modes of triggered star formation are at work here: an initial supernova to trigger the ring complex and the initial O stars and the subsequent triggering of low mass star formation by photoevaporation driven molecular core compression. To get a complete census of the young stellar population, we use observations from Chandra ACIS 100 ksec coupled with data from 2MASS and Spitzer. The Master X-ray catalog has 446 sources detected in different bandpasses. We present the spatial distribution of Class I, II and III sources to study the progress of star formation. We also determine the gas to dust ratio NH/AK to be 1.93 ± 0.47 ×1022 cm‑2 mag‑1 for this region. In this article, we present NGC 281 as a good target to study with the 3.6-m Devasthal Optical Telescope (DOT) in spectroscopy. With these spectra, we look for evidence for the pre-main-sequence (PMS) nature of the objects, study the properties of the detected emission lines as a function of evolutionary class, and obtain spectral types for the observed young stellar objects (YSOs). The temperatures implied by the spectral types can be combined with luminosities determined from the near-infrared (NIR) photometry to construct Hertzsprung–Russell (HR) diagrams for the clusters. By comparing the positions of the YSOs in the HR diagrams with the PMS tracks, we can determine the ages of the embedded sources and study the relative ages of the YSOs with and without optically thick circumstellar disks.
DOUBLE COMPACT OBJECTS. I. THE SIGNIFICANCE OF THE COMMON ENVELOPE ON MERGER RATES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dominik, Michal; Belczynski, Krzysztof; Bulik, Tomasz
2012-11-01
The last decade of observational and theoretical developments in stellar and binary evolution provides an opportunity to incorporate major improvements to the predictions from population synthesis models. We compute the Galactic merger rates for NS-NS, BH-NS, and BH-BH mergers with the StarTrack code. The most important revisions include updated wind mass-loss rates (allowing for stellar-mass black holes up to 80 M {sub Sun }), a realistic treatment of the common envelope phase (a process that can affect merger rates by 2-3 orders of magnitude), and a qualitatively new neutron star/black hole mass distribution (consistent with the observed {sup m}ass gap{supmore » )}. Our findings include the following. (1) The binding energy of the envelope plays a pivotal role in determining whether a binary merges within a Hubble time. (2) Our description of natal kicks from supernovae plays an important role, especially for the formation of BH-BH systems. (3) The masses of BH-BH systems can be substantially increased in the case of low metallicities or weak winds. (4) Certain combinations of parameters underpredict the Galactic NS-NS merger rate and can be ruled out. (5) Models incorporating delayed supernovae do not agree with the observed NS/BH 'mass gap', in accordance with our previous work. This is the first in a series of three papers. The second paper will study the merger rates of double compact objects as a function of redshift, star formation rate, and metallicity. In the third paper, we will present the detection rates for gravitational-wave observatories, using up-to-date signal waveforms and sensitivity curves.« less
Cameli, Matteo; Ciccone, Marco M; Maiello, Maria; Modesti, Pietro A; Muiesan, Maria L; Scicchitano, Pietro; Novo, Salvatore; Palmiero, Pasquale; Saba, Pier S; Pedrinelli, Roberto
2016-05-01
Speckle tracking echocardiography (STE) is an imaging technique applied to the analysis of left atrial function. STE provides a non-Doppler, angle-independent and objective quantification of left atrial myocardial deformation. Data regarding feasibility, accuracy and clinical applications of left atrial strain are rapidly gathering. This review describes the fundamental concepts of left atrial STE, illustrates its pathophysiological background and discusses its emerging role in systemic arterial hypertension.
Orbital State Uncertainty Realism
NASA Astrophysics Data System (ADS)
Horwood, J.; Poore, A. B.
2012-09-01
Fundamental to the success of the space situational awareness (SSA) mission is the rigorous inclusion of uncertainty in the space surveillance network. The *proper characterization of uncertainty* in the orbital state of a space object is a common requirement to many SSA functions including tracking and data association, resolution of uncorrelated tracks (UCTs), conjunction analysis and probability of collision, sensor resource management, and anomaly detection. While tracking environments, such as air and missile defense, make extensive use of Gaussian and local linearity assumptions within algorithms for uncertainty management, space surveillance is inherently different due to long time gaps between updates, high misdetection rates, nonlinear and non-conservative dynamics, and non-Gaussian phenomena. The latter implies that "covariance realism" is not always sufficient. SSA also requires "uncertainty realism"; the proper characterization of both the state and covariance and all non-zero higher-order cumulants. In other words, a proper characterization of a space object's full state *probability density function (PDF)* is required. In order to provide a more statistically rigorous treatment of uncertainty in the space surveillance tracking environment and to better support the aforementioned SSA functions, a new class of multivariate PDFs are formulated which more accurately characterize the uncertainty of a space object's state or orbit. The new distribution contains a parameter set controlling the higher-order cumulants which gives the level sets a distinctive "banana" or "boomerang" shape and degenerates to a Gaussian in a suitable limit. Using the new class of PDFs within the general Bayesian nonlinear filter, the resulting filter prediction step (i.e., uncertainty propagation) is shown to have the *same computational cost as the traditional unscented Kalman filter* with the former able to maintain a proper characterization of the uncertainty for up to *ten times as long* as the latter. The filter correction step also furnishes a statistically rigorous *prediction error* which appears in the likelihood ratios for scoring the association of one report or observation to another. Thus, the new filter can be used to support multi-target tracking within a general multiple hypothesis tracking framework. Additionally, the new distribution admits a distance metric which extends the classical Mahalanobis distance (chi^2 statistic). This metric provides a test for statistical significance and facilitates single-frame data association methods with the potential to easily extend the covariance-based track association algorithm of Hill, Sabol, and Alfriend. The filtering, data fusion, and association methods using the new class of orbital state PDFs are shown to be mathematically tractable and operationally viable.
Asteroseismic modelling of the solar-like star β Hydri
NASA Astrophysics Data System (ADS)
Doğan, G.; Brandão, I. M.; Bedding, T. R.; Christensen-Dalsgaard, J.; Cunha, M. S.; Kjeldsen, H.
2010-07-01
We present the results of modelling the subgiant star β Hydri using seismic observational constraints. We have computed several grids of stellar evolutionary tracks using the Aarhus STellar Evolution Code (ASTEC, Christensen-Dalsgaard in Astrophys. Space Sci. 316:13, 2008a), with and without helium diffusion and settling. For those models on each track that are located at the observationally determined position of β Hydri in the Hertzsprung-Russell (HR) diagram, we have calculated the oscillation frequencies using the Aarhus adiabatic pulsation package (ADIPLS, Christensen-Dalsgaard in Astrophys. Space Sci. 316:113, 2008b). Applying the near-surface corrections to the calculated frequencies using the empirical law presented by Kjeldsen et al. (Astrophys. J. 683:L175, 2008), we have compared the corrected model frequencies with the observed frequencies of the star. We show that after correcting the frequencies for the near-surface effects, we have a fairly good fit for both l=0 and l=2 frequencies. We also have good agreement between the observed and calculated l=1 mode frequencies, although there is room for improvement in order to fit all the observed mixed modes simultaneously.
Imaging Variable Stars with HST
NASA Astrophysics Data System (ADS)
Karovska, Margarita
2011-05-01
The Hubble Space Telescope (HST) observations of astronomical sources, ranging from objects in our solar system to objects in the early Universe, have revolutionized our knowledge of the Universe its origins and contents.I will highlight results from HST observations of variable stars obtained during the past twenty or so years. Multiwavelength observations of numerous variable stars and stellar systems were obtained using the superb HST imaging capabilities and its unprecedented angular resolution, especially in the UV and optical. The HST provided the first detailed images probing the structure of variable stars including their atmospheres and circumstellar environments. AAVSO observations and light curves have been critical for scheduling of many of these observations and provided important information and context for understanding of the imaging results of many variable sources. I will describe the scientific results from the imaging observations of variable stars including AGBs, Miras, Cepheids, semi-regular variables (including supergiants and giants), YSOs and interacting stellar systems with a variable stellar components. These results have led to an unprecedented understanding of the spatial and temporal characteristics of these objects and their place in the stellar evolutionary chains, and in the larger context of the dynamic evolving Universe.
Imaging Variable Stars with HST
NASA Astrophysics Data System (ADS)
Karovska, M.
2012-06-01
(Abstract only) The Hubble Space Telescope (HST) observations of astronomical sources, ranging from objects in our solar system to objects in the early Universe, have revolutionized our knowledge of the Universe its origins and contents. I highlight results from HST observations of variable stars obtained during the past twenty or so years. Multiwavelength observations of numerous variable stars and stellar systems were obtained using the superb HST imaging capabilities and its unprecedented angular resolution, especially in the UV and optical. The HST provided the first detailed images probing the structure of variable stars including their atmospheres and circumstellar environments. AAVSO observations and light curves have been critical for scheduling of many of these observations and provided important information and context for understanding of the imaging results of many variable sources. I describe the scientific results from the imaging observations of variable stars including AGBs, Miras, Cepheids, semiregular variables (including supergiants and giants), YSOs and interacting stellar systems with a variable stellar components. These results have led to an unprecedented understanding of the spatial and temporal characteristics of these objects and their place in the stellar evolutionary chains, and in the larger context of the dynamic evolving Universe.
NASA Astrophysics Data System (ADS)
Landin, N. R.; Mendes, L. T. S.; Vaz, L. P. R.; Alencar, S. H. P.
2016-02-01
Context. Rotational evolution in young stars is described by pre-main sequence evolutionary tracks including non-gray boundary conditions, rotation, conservation of angular momentum, and simulations of disk-locking. Aims: By assuming that disk-locking is the regulation mechanism for the stellar angular velocity during the early stages of pre-main sequence evolution, we use our rotating models and observational data to constrain disk lifetimes (Tdisk) of a representative sample of low-mass stars in two young clusters, the Orion Nebula cluster (ONC) and NGC 2264, and to better understand their rotational evolution. Methods: The period distributions of the ONC and NGC 2264 are known to be bimodal and to depend on the stellar mass. To follow the rotational evolution of these two clusters' stars, we generated sets of evolutionary tracks from a fully convective configuration with low central temperatures (before D- and Li-burning). We assumed that the evolution of fast rotators can be represented by models considering conservation of angular momentum during all stages and of moderate rotators by models considering conservation of angular velocity during the first stages of evolution. With these models we estimate a mass and an age for all stars. Results: The resulting mass distribution for the bulk of the cluster population is in the ranges of 0.2-0.4 M⊙ and 0.1-0.6 M⊙ for the ONC and NGC 2264, respectively. For the ONC, we assume that the secondary peak in the period distribution is due to high-mass objects still locked in their disks, with a locking period (Plock) of ~8 days. For NGC 2264 we make two hypotheses: (1) the stars in the secondary peak are still locked with Plock = 5 days, and (2) NGC 2264 is in a later stage in the rotational evolution. Hypothesis 2 implies in a disk-locking scenario with Plock = 8 days, a disk lifetime of 1 Myr and, after that, constant angular momentum evolution. We then simulated the period distribution of NGC 2264 when the mean age of the cluster was 1 Myr. Dichotomy and bimodality appear in the simulated distribution, presenting one peak at 2 days and another one at 5-7 days, indicating that the assumption of Plock = 8 days is plausible. Our hypotheses are compared with observational disk diagnoses available in the literature for the ONC and NGC 2264, such as near-infrared excess, Hα emission, and spectral energy distribution slope in the mid-infrared. Conclusions: Disk-locking models with Plock = 8 days and 0.2 Myr ≤ Tdisk ≤ 3 Myr are consistent with observed periods of moderate rotators of the ONC. For NGC 2264, the more promising explanation for the observed period distribution is an evolution with disk-locking (with Plock near 8 days) during the first 1 Myr, approximately, but after this, the evolution continued with constant angular momentum. Full Table 1 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/586/A96
The Far-Ultraviolet Spectra of Two Hot PG1159 Stars
NASA Technical Reports Server (NTRS)
Werner, K.; Rauch, T.; Kruk, J. W.
2016-01-01
PG 1159 stars are hot, hydrogen-deficient (pre-) white dwarfs with atmospheres mainly composed of helium, carbon, and oxygen. The unusual surface chemistry is the result of a late helium-shell flash. Observed element abundances enable us to test stellar evolution models quantitatively with respect to their nucleosynthesis products formed near the helium-burning shell of the progenitor asymptotic giant branch stars. Because of the high effective temperatures (T(sub eff)), abundance determinations require ultraviolet spectroscopy and non-local thermodynamic equilibrium model atmosphere analyses. Up to now, we have presented results for the prototype of this spectral class and two cooler members (T(sub eff) in the range 85,000-140,000 K). Here we report on the results for two even hotter stars (PG 1520+525 and PG 1144+005, both with T(sub eff) = 150,000 K) which are the only two objects in this temperature-gravity region for which useful far-ultraviolet spectra are available, and revisit the prototype star. Previous results on the abundances of some species are confirmed, while results on others (Si, P, S) are revised. In particular, a solar abundance of sulphur is measured in contrast to earlier claims of a strong S deficiency that contradicted stellar evolution models. For the first time, we assess the abundances of Na, Al, andCl with newly constructed non-LTE model atoms. Besides the main constituents (He, C, O), we determine the abundances (or upper limits) of N, F, Ne, Na, Al, Si, P, S, Cl, Ar, and Fe. Generally, good agreement with stellar models is found.
The far-ultraviolet spectra of two hot PG 1159 stars
NASA Astrophysics Data System (ADS)
Werner, K.; Rauch, T.; Kruk, J. W.
2016-09-01
PG 1159 stars are hot, hydrogen-deficient (pre-) white dwarfs with atmospheres mainly composed of helium, carbon, and oxygen. The unusual surface chemistry is the result of a late helium-shell flash. Observed element abundances enable us to test stellar evolution models quantitatively with respect to their nucleosynthesis products formed near the helium-burning shell of the progenitor asymptotic giant branch stars. Because of the high effective temperatures (Teff), abundance determinations require ultraviolet spectroscopy and non-local thermodynamic equilibrium model atmosphere analyses. Up to now, we have presented results for the prototype of this spectral class and two cooler members (Teff in the range 85 000-140 000 K). Here we report on the results for two even hotter stars (PG 1520+525 and PG 1144+005, both with Teff = 150 000 K) which are the only two objects in this temperature-gravity region for which useful far-ultraviolet spectra are available, and revisit the prototype star. Previous results on the abundances of some species are confirmed, while results on others (Si, P, S) are revised. In particular, a solar abundance of sulphur is measured in contrast to earlier claims of a strong S deficiency that contradicted stellar evolution models. For the first time, we assess the abundances of Na, Al, and Cl with newly constructed non-LTE model atoms. Besides the main constituents (He, C, O), we determine the abundances (or upper limits) of N, F, Ne, Na, Al, Si, P, S, Cl, Ar, and Fe. Generally, good agreement with stellar models is found.
NASA Astrophysics Data System (ADS)
Wu, T.; Li, Y.; Hekker, S.
2014-01-01
Stellar mass M, radius R, and gravity g are important basic parameters in stellar physics. Accurate values for these parameters can be obtained from the gravitational interaction between stars in multiple systems or from asteroseismology. Stars in a cluster are thought to be formed coevally from the same interstellar cloud of gas and dust. The cluster members are therefore expected to have some properties in common. These common properties strengthen our ability to constrain stellar models and asteroseismically derived M, R, and g when tested against an ensemble of cluster stars. Here we derive new scaling relations based on a relation for stars on the Hayashi track (\\sqrt{T_eff} \\sim g^pR^q) to determine the masses and metallicities of red giant branch stars in open clusters NGC 6791 and NGC 6819 from the global oscillation parameters Δν (the large frequency separation) and νmax (frequency of maximum oscillation power). The Δν and νmax values are derived from Kepler observations. From the analysis of these new relations we derive: (1) direct observational evidence that the masses of red giant branch stars in a cluster are the same within their uncertainties, (2) new methods to derive M and z of the cluster in a self-consistent way from Δν and νmax, with lower intrinsic uncertainties, and (3) the mass dependence in the Δν - νmax relation for red giant branch stars.
On the Stellar Population and Star-Forming History of the Orion Nebula Cluster
NASA Astrophysics Data System (ADS)
Hillenbrand, Lynne A.
1997-05-01
We report on the first phase of a study of the stellar population comprising the Orion Nebula Cluster (ONC). Approximately 50% of the ~ 3500 stars identified to date within ~ 2.5 pc of the namesake Trapezium stars are optically visible, and in this paper we focus on that sample with I < 17.5 mag. The large number and number density (npeak > 10(4) pc(-3) ) of stars, the wide range in stellar mass ( ~ 0.1-50 M_⊙), and the extreme youth (< 1-2 Myr) of the stellar population, make the ONC the best site for investigating: 1) the detailed shape of a truly ``initial'' mass spectrum; 2) the apparent age spread in a region thought to have undergone triggered star formation; 3) the time sequence of star formation as a function of stellar mass; and 4) trends of all of the above with cluster radius. Nearly 60% of the ~ 1600 optical stars have sufficient data (spectroscopy and photometry) for placement on a theoretical HR diagram; this subsample is unbiased with respect to apparent brightness or cluster radius, complete down to ~ 1 M_⊙, and representative of the total optical sample below ~ 1 M_⊙ for the age and extinction ranges characteristic of the cluster. Comparison of the derived HR diagram with traditional pre-main sequence evolutionary calculations shows a trend of increasing stellar age with increasing stellar mass. To avoid the implication of earlier characteristic formation times for higher-mass stars than for lower-mass stars, refinement of early evolutionary theory in a manner similar to the birthline hypothesis of Palla & Stahler (1993), is required. Subject to uncertainties in the tracks and isochrones, we can still investigate stellar mass and age distributions in the ONC. We find the ONC as a whole to be characterized by a mass spectrum which is not grossly inconsistent with ``standard'' stellar mass spectra. In particular, although there are structural differences between the detailed ONC mass spectrum and various models constructed from solar neighborhood data, the observed mass spectrum appears to a peak at ~ 0.2 M_⊙ and to fall off rapidly towards lower masses; several substellar objects are present. The abundance of low-mass stars relative to high-mass stars suggests that there is no bi-modal star formation mode; somewhat ironically, the ONC probably contains fractionally more low-mass stars than the solar neighborhood since the population not yet located on the HR diagram is dominated by sub-solar-mass stars. Nonetheless, the ONC mass spectrum is biased towards higher-mass stars within the innermost cluster radii (rprojected < 0.3 pc). We find the ONC as a whole to be characterized by a mean age of < 1 Myr and an age spread which is probably less than 2 Myr, but also by a bias towards younger stars at smaller projected cluster radii. Although the most massive stars and the youngest stars are found preferentially towards the center of the ONC it does not follow that the most massive stars are the youngest stars. A lower limit to the total cluster mass in stars is Mstars ~ 900 M_⊙ (probably a factor of < 2 underestimate). A lower limit to the recent star formation rate is ~ 10(-4) M_⊙ yr(-1) . All observational data in this study as well as stellar parameters derived from them are available in electronic format.
NASA Astrophysics Data System (ADS)
El-Nabulsi, Rami Ahmad
2018-03-01
Recently, the notion of non-standard Lagrangians was discussed widely in literature in an attempt to explore the inverse variational problem of nonlinear differential equations. Different forms of non-standard Lagrangians were introduced in literature and have revealed nice mathematical and physical properties. One interesting form related to the inverse variational problem is the logarithmic Lagrangian, which has a number of motivating features related to the Liénard-type and Emden nonlinear differential equations. Such types of Lagrangians lead to nonlinear dynamics based on non-standard Hamiltonians. In this communication, we show that some new dynamical properties are obtained in stellar dynamics if standard Lagrangians are replaced by Logarithmic Lagrangians and their corresponding non-standard Hamiltonians. One interesting consequence concerns the emergence of an extra pressure term, which is related to the gravitational field suggesting that gravitation may act as a pressure in a strong gravitational field. The case of the stellar halo of the Milky Way is considered.
Non-Equilibrium Chemistry of O-Rich AGB Stars as Revealed by ALMA
NASA Astrophysics Data System (ADS)
Wong, Ka Tat
2018-04-01
Chemical models suggest that pulsation driven shocks propagating from the stellar surfaces of oxygen-rich evolved stars to the dust formation zone trigger non-equilibrium chemistry in the shocked gas near the star, including the formation of carbon-bearing molecules in the stellar winds dominated by oxygen-rich chemistry. Recent long-baseline ALMA observations are able to give us a detailed view of the molecular line emission and absorption at an angular resolution of a few stellar radii. I am going to present the latest results from the ALMA observations of IK Tau and o Cet in late 2017, with a particular focus on HCN.
On the Origin and Evolution of Stellar Chromospheres, Coronae and Winds
NASA Technical Reports Server (NTRS)
Musielak, Z. E.
2000-01-01
This grant was awarded by NASA to The University of Alabama in Huntsville (UAH) to construct state-of-the-art, theoretical, two-component, chromospheric models for single stars of different spectral types and different evolutionary status. In our proposal, we suggested to use these models to predict the level of the "basal flux", the observed range of variation of chromospheric activity for a given spectral type, and the decrease of this activity with stellar age. In addition, for red giants and supergiants, we also proposed to construct self-consistent, purely theoretical wind models, and used these models to investigate the origin of "dividing lines" in the H-R diagram. In the following, we describe our completed work. We have accomplished the first main goal of our proposal by constructing first purely theoretical, time-dependent and two-component models of stellar chromospheres.1 The models require specifying only three basic stellar parameters, namely, the effective temperature, gravity and rotation rate, and they take into account non-magnetic and magnetic regions in stellar chromospheres. The non-magnetic regions are heated by acoustic waves generated by the turbulent convection in the stellar subphotospheric layers. The magnetic regions are identified with magnetic flux tubes uniformly distributed over the entire stellar surface and they are heated by longitudinal tube waves generated by turbulent motions in the subphotospheric and photospheric layers. The coverage of stellar surface by magnetic regions (the so-called filling factor) is estimated for a given rotation rate from an observational relationship. The constructed models are time-dependent and are based on the energy balance between the amount of mechanical energy supplied by waves and radiative losses in strong Ca II and Mg II emission lines. To calculate the amount of wave energy in the non-magnetic regions, we have used the Lighthill-Stein theory for sound generation.
Variable stars around selected open clusters in the VVV area: Young Stellar Objects
NASA Astrophysics Data System (ADS)
Medina, Nicolas; Borissova, Jura; Bayo, Amelia; Kurtev, Radostin; Lucas, Philip
2017-09-01
Time-varying phenomena are one of the most substantial sources of astrophysical information, and led to many fundamental discoveries in modern astronomy. We have developed an automated tool to search and analyze variable sources in the near infrared Ks band, using the data from the Vista Variables in the Vía Láctea (VVV) ESO Public Survey ([5, 8]). One of our main goals is to investigate the Young Stellar Objects (YSOs) in the Galactic star forming regions, looking for:
Here we present the newly discovered YSOs within some selected stellar clusters in our Galaxy.
Track Everything: Limiting Prior Knowledge in Online Multi-Object Recognition.
Wong, Sebastien C; Stamatescu, Victor; Gatt, Adam; Kearney, David; Lee, Ivan; McDonnell, Mark D
2017-10-01
This paper addresses the problem of online tracking and classification of multiple objects in an image sequence. Our proposed solution is to first track all objects in the scene without relying on object-specific prior knowledge, which in other systems can take the form of hand-crafted features or user-based track initialization. We then classify the tracked objects with a fast-learning image classifier, that is based on a shallow convolutional neural network architecture and demonstrate that object recognition improves when this is combined with object state information from the tracking algorithm. We argue that by transferring the use of prior knowledge from the detection and tracking stages to the classification stage, we can design a robust, general purpose object recognition system with the ability to detect and track a variety of object types. We describe our biologically inspired implementation, which adaptively learns the shape and motion of tracked objects, and apply it to the Neovision2 Tower benchmark data set, which contains multiple object types. An experimental evaluation demonstrates that our approach is competitive with the state-of-the-art video object recognition systems that do make use of object-specific prior knowledge in detection and tracking, while providing additional practical advantages by virtue of its generality.
Star Formation in the Orion Nebula Cluster
NASA Astrophysics Data System (ADS)
Palla, Francesco; Stahler, Steven W.
1999-11-01
We study the record of star formation activity within the dense cluster associated with the Orion Nebula. The bolometric luminosity function of 900 visible members is well matched by a simplified theoretical model for cluster formation. This model assumes that stars are produced at a constant rate and distributed according to the field-star initial mass function. Our best-fit age for the system, within this framework, is 2×106 yr. To undertake a more detailed analysis, we present a new set of theoretical pre-main-sequence tracks. These cover all masses from 0.1 to 6.0 Msolar, and start from a realistic stellar birthline. The tracks end along a zero-age main-sequence that is in excellent agreement with the empirical one. As a further aid to cluster studies, we offer an heuristic procedure for the correction of pre-main-sequence luminosities and ages to account for the effects of unresolved binary companions. The Orion Nebula stars fall neatly between our birthline and zero-age main-sequence in the H-R diagram. All those more massive than about 8 Msolar lie close to the main sequence, as also predicted by theory. After accounting for the finite sensitivity of the underlying observations, we confirm that the population between 0.4 and 6.0 Msolar roughly follows a standard initial mass function. We see no evidence for a turnover at lower masses. We next use our tracks to compile stellar ages, also between 0.4 and 6.0 Msolar. Our age histogram reveals that star formation began at a low level some 107 yr ago and has gradually accelerated to the present epoch. The period of most active formation is indeed confined to a few×106 yr, and has recently ended with gas dispersal from the Trapezium. We argue that the acceleration in stellar births, which extends over a wide range in mass, reflects the gravitational contraction of the parent cloud spawning this cluster.
The Role of Visual Working Memory in Attentive Tracking of Unique Objects
ERIC Educational Resources Information Center
Makovski, Tal; Jiang, Yuhong V.
2009-01-01
When tracking moving objects in space humans usually attend to the objects' spatial locations and update this information over time. To what extent do surface features assist attentive tracking? In this study we asked participants to track identical or uniquely colored objects. Tracking was enhanced when objects were unique in color. The benefit…
NASA Technical Reports Server (NTRS)
Cochran, William D.; Hatzes, Artie P.
1993-01-01
The McDonald Observatory Planetary Search program surveyed a sample of 33 nearby F, G, and K stars since September 1987 to search for substellar companion objects. Measurements of stellar radial velocity variations to a precision of better than 10 m/s were performed as routine observations to detect Jovian planets in orbit around solar type stars. Results confirm the detection of a companion object to HD114762.
The stellar and solar tracking system of the Geneva Observatory gondola
NASA Technical Reports Server (NTRS)
Huguenin, D.
1974-01-01
Sun and star trackers have been added to the latest version of the Geneva Observatory gondola. They perform an image motion compensation with an accuracy of plus or minus 1 minute of arc. The structure is held in the vertical position by gravity; the azimuth is controlled by a torque motor in the suspension bearing using solar or geomagnetic references. The image motion compensation is performed by a flat mirror, located in front of the telescope, controlled by pitch and yaw servo-loops. Offset pointing is possible within the solar disc and in a 3 degree by 3 degree stellar field. A T.V. camera facilitates the star identification and acquisition.
Proposals of observations with the space telescope in the domain of astrometry
NASA Astrophysics Data System (ADS)
Fresneau, A.
The use of the Hubble Space Telescope for astrometry is advertised at the same level as for photometry, spectroscopy, or polarimetry. The prime instrument to be used for that goal is one of the three fine guidance sensors. The interferometric design of the stellar sensor is adequate for stellar diameter measurements (>0.01 arcsec) close binaries separation determination (<0.1 arcsec) and differential astrometry on targets in a field of view of 60 square arcmin and in the visual magnitude range from 3 to 18. Moving targets brighter than 14 with an apparent motion slower than 150 arcsec per hour can be tracked at the same level of accuracy.
Visual attention is required for multiple object tracking.
Tran, Annie; Hoffman, James E
2016-12-01
In the multiple object tracking task, participants attempt to keep track of a moving set of target objects embedded in an identical set of moving distractors. Depending on several display parameters, observers are usually only able to accurately track 3 to 4 objects. Various proposals attribute this limit to a fixed number of discrete indexes (Pylyshyn, 1989), limits in visual attention (Cavanagh & Alvarez, 2005), or "architectural limits" in visual cortical areas (Franconeri, 2013). The present set of experiments examined the specific role of visual attention in tracking using a dual-task methodology in which participants tracked objects while identifying letter probes appearing on the tracked objects and distractors. As predicted by the visual attention model, probe identification was faster and/or more accurate when probes appeared on tracked objects. This was the case even when probes were more than twice as likely to appear on distractors suggesting that some minimum amount of attention is required to maintain accurate tracking performance. When the need to protect tracking accuracy was relaxed, participants were able to allocate more attention to distractors when probes were likely to appear there but only at the expense of large reductions in tracking accuracy. A final experiment showed that people attend to tracked objects even when letters appearing on them are task-irrelevant, suggesting that allocation of attention to tracked objects is an obligatory process. These results support the claim that visual attention is required for tracking objects. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
FORMALDEHYDE MASERS: EXCLUSIVE TRACERS OF HIGH-MASS STAR FORMATION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Araya, E. D.; Brown, J. E.; Olmi, L.
2015-11-15
The detection of four formaldehyde (H{sub 2}CO) maser regions toward young high-mass stellar objects in the last decade, in addition to the three previously known regions, calls for an investigation of whether H{sub 2}CO masers are an exclusive tracer of young high-mass stellar objects. We report the first survey specifically focused on the search for 6 cm H{sub 2}CO masers toward non high-mass star-forming regions (non HMSFRs). The observations were conducted with the 305 m Arecibo Telescope toward 25 low-mass star-forming regions, 15 planetary nebulae and post-AGB stars, and 31 late-type stars. We detected no H{sub 2}CO emission in ourmore » sample of non HMSFRs. To check for the association between high-mass star formation and H{sub 2}CO masers, we also conducted a survey toward 22 high-mass star-forming regions from a Hi-GAL (Herschel infrared Galactic Plane Survey) sample known to harbor 6.7 GHz CH{sub 3}OH masers. We detected a new 6 cm H{sub 2}CO emission line in G32.74−0.07. This work provides further evidence that supports an exclusive association between H{sub 2}CO masers and young regions of high-mass star formation. Furthermore, we detected H{sub 2}CO absorption toward all Hi-GAL sources, and toward 24 low-mass star-forming regions. We also conducted a simultaneous survey for OH (4660, 4750, 4765 MHz), H110α (4874 MHz), HCOOH (4916 MHz), CH{sub 3}OH (5005 MHz), and CH{sub 2}NH (5289 MHz) toward 68 of the sources in our sample of non HMSFRs. With the exception of the detection of a 4765 MHz OH line toward a pre-planetary nebula (IRAS 04395+3601), we detected no other spectral line to an upper limit of 15 mJy for most sources.« less
ERIC Educational Resources Information Center
Sampson, Russell D.
2013-01-01
A simple naked eye observational exercise is outlined that teaches non-major astronomy students basic observational and critical thinking skills but does not require complex equipment or extensive knowledge of the night sky. Students measure the relationship between stellar scintillation and the altitude of a set of stars. Successful observations…
Super-resolution imaging applied to moving object tracking
NASA Astrophysics Data System (ADS)
Swalaganata, Galandaru; Ratna Sulistyaningrum, Dwi; Setiyono, Budi
2017-10-01
Moving object tracking in a video is a method used to detect and analyze changes that occur in an object that being observed. Visual quality and the precision of the tracked target are highly wished in modern tracking system. The fact that the tracked object does not always seem clear causes the tracking result less precise. The reasons are low quality video, system noise, small object, and other factors. In order to improve the precision of the tracked object especially for small object, we propose a two step solution that integrates a super-resolution technique into tracking approach. First step is super-resolution imaging applied into frame sequences. This step was done by cropping the frame in several frame or all of frame. Second step is tracking the result of super-resolution images. Super-resolution image is a technique to obtain high-resolution images from low-resolution images. In this research single frame super-resolution technique is proposed for tracking approach. Single frame super-resolution was a kind of super-resolution that it has the advantage of fast computation time. The method used for tracking is Camshift. The advantages of Camshift was simple calculation based on HSV color that use its histogram for some condition and color of the object varies. The computational complexity and large memory requirements required for the implementation of super-resolution and tracking were reduced and the precision of the tracked target was good. Experiment showed that integrate a super-resolution imaging into tracking technique can track the object precisely with various background, shape changes of the object, and in a good light conditions.
Stellar Properties of Embedded Protostars: Progress and Prospects
NASA Technical Reports Server (NTRS)
Greene, Thomas
2006-01-01
Until now, high extinctions have prevented direct observation of the central objects of self-embedded, accreting protostars. However, sensitive high dispersion spectrographs on large aperture telescopes have allowed us to begin studying the stellar astrophysical properties of dozens of embedded low mass protostars in the nearest regions of star formation. These high dispersion spectra allow, for the first time, direct measurements of their stellar effective temperatures, surface gravities, rotation velocities, radial velocities (and spectroscopic binarity), mass accretion properties, and mass outflow indicators. Comparisons of the stellar properties with evolutionary models also allow us to estimate masses and constrain ages. We find that these objects have masses similar to those of older, more evolved T Tauri stars, but protostars have higher mean rotation velocities and angular momenta. Most protostars indicate high mass accretion or outflow, but some in Taurus-Auriga appear to be relatively quiescent. These new results are testing, expanding, and refining the standard star formation paradigm, and we explore how to expand this work further.
NASA Astrophysics Data System (ADS)
Jeřábková, T.; Kroupa, P.; Dabringhausen, J.; Hilker, M.; Bekki, K.
2017-12-01
The stellar initial mass function (IMF) has been described as being invariant, bottom-heavy, or top-heavy in extremely dense star-burst conditions. To provide usable observable diagnostics, we calculate redshift dependent spectral energy distributions of stellar populations in extreme star-burst clusters, which are likely to have been the precursors of present day massive globular clusters (GCs) and of ultra compact dwarf galaxies (UCDs). The retention fraction of stellar remnants is taken into account to assess the mass to light ratios of the ageing star-burst. Their redshift dependent photometric properties are calculated as predictions for James Webb Space Telescope (JWST) observations. While the present day GCs and UCDs are largely degenerate concerning bottom-heavy or top-heavy IMFs, a metallicity- and density-dependent top-heavy IMF implies the most massive UCDs, at ages < 100 Myr, to appear as objects with quasar-like luminosities with a 0.1-10% variability on a monthly timescale due to core collapse supernovae.
The peculiar ring galaxy HRG 54103 revisited
NASA Astrophysics Data System (ADS)
Freitas-Lemes, P.; Krabbe, A. C.; Faúndez-Abans, M.; da Rocha-Poppe, P.; Rodrigues, I.; de Oliveira-Abans, M.; Fernandes-Martin, V. A.
2017-07-01
We present an observational study of the galaxy HRG 54103, a peculiar galaxy with an asymmetric disc ring. The main goal of this work is to study the stellar population and oxygen abundances for the inner bulge region. The kinematics derived from long-slit spectroscopy suggest that the line of nodes of the gaseous component of HRG 54103 is nearly along the galaxy ring minor axis. The gaseous disc seems to be kinematically decoupled relative to the morphology of the stellar ring. A small, but non-negligible, fraction of young stars (5-10 per cent) is estimated to contribute. This object is mainly dominated by old and intermediate stellar populations. The emission-line spectrum shows low-ionization nuclear emission-line region (LINER) type characteristics. We determined oxygen abundances using calibrations between this parameter and the strong emission line ratios known as the indices O3N2 and N2. Our results suggest a relatively homogeneous O/H across the minor axis of the galaxy, with average values of 12 + log(O/H) = 8.4 dex and 12 + log(O/H) = 8.7 dex, using the O3N2 and N2 parameters, respectively. These values are compatible with the few estimations of oxygen abundance for peculiar ring galaxies published in the literature. Implications on the formation history of HRG 54103 were investigated.
Stellar Echo Imaging of Exoplanets
NASA Technical Reports Server (NTRS)
Mann, Chris; Lerch, Kieran; Lucente, Mark; Meza-Galvan, Jesus; Mitchell, Dan; Ruedin, Josh; Williams, Spencer; Zollars, Byron
2016-01-01
All stars exhibit intensity fluctuations over several timescales, from nanoseconds to years. These intensity fluctuations echo off bodies and structures in the star system. We posit that it is possible to take advantage of these echoes to detect, and possibly image, Earth-scale exoplanets. Unlike direct imaging techniques, temporal measurements do not require fringe tracking, maintaining an optically-perfect baseline, or utilizing ultra-contrast coronagraphs. Unlike transit or radial velocity techniques, stellar echo detection is not constrained to any specific orbital inclination. Current results suggest that existing and emerging technology can already enable stellar echo techniques at flare stars, such as Proxima Centauri, including detection, spectroscopic interrogation, and possibly even continent-level imaging of exoplanets in a variety of orbits. Detection of Earth-like planets around Sun-like stars appears to be extremely challenging, but cannot be fully quantified without additional data on micro- and millisecond-scale intensity fluctuations of the Sun. We consider survey missions in the mold of Kepler and place preliminary constraints on the feasibility of producing 3D tomographic maps of other structures in star systems, such as accretion disks. In this report we discuss the theory, limitations, models, and future opportunities for stellar echo imaging.
A Catalogue of Massive Young Stellar Objects
NASA Astrophysics Data System (ADS)
Chan, S. J.; Henning, Th.; Schreyer, K.
1994-12-01
We report on an ongoing project to compile a catalogue of massive young stellar objects (YSOs). Massive young stellar objects are compact and luminous infrared sources. The stellar core is still surrounded by optically thick dust shells (cf. Henning 1990, Fundamentals of Cosmic Physics, 14, 321). This catalogue, which contains about 250 objects, will provide comprehensive information such as infrared and radio flux densities, association with maser sources, and outflow phenomena. The objects were selected from the IRAS Point Source Catalogue based on the following criteria: (1) IRAS flux density qualities >= 2 in the 4 IRAS bands (12 microns, 25 microns, 60 microns and 100 microns). (2) Fnu(12microns) <= Fnu(25microns) <= Fnu(60microns) <= F_ν(100microns) Fnu(100microns) >= 1000 Jy (3) IRAS colors (including uncertainty 0.15) should be within the following color box: -0.15 >= R(12/25) >= 1.15, -0.15 >= R(25/60) >= 0.75, -0.35 >= R(60/100) >= 0.35, where R(i/j)=jF_nu (i)/iF_nu (j) (Henning et al. 1990, A&A, 227, 542) (4) IRAS idtype (type of objects)!= 1; objects are not associated with galaxies or late-type stars; ∣b∣ <= 10{(deg}) Our main goal is to collect the observational data of these sources as complete as possible. The flux densities from near-infrared to radio range are assembled (J, H, K bands, IRAS bands, 350 microns, 800 microns and 1.3 mm bands, 2 cm and 6 cm bands). The information on dust features (such as ice, silicate, PAH) comes from the IRAS Low Resolution Spectrometer Atlas and literature (cf. Volk & Cohen, 1989, AJ, 98, 931). The maser sources (H_2O, type I OH, CH_3OH) and NH_3, HCO(+) , and CS molecular line data towards these objects, which have been observed, are also reported. The CO outflow velocity will be given if the object is found to be associated with an outflow.
Boron Abundances in A and B-type Stars
NASA Technical Reports Server (NTRS)
Lambert, David L.
1997-01-01
Boron abundances in A- and B-type stars may be a successful way to track evolutionary effects in these hot stars. The light elements - Li, Be, and B - are tracers of exposure to temperatures more moderate than those in which the H-burning CN-cycle operates. Thus, any exposure of surface stellar layers to deeper layers will affect these light element abundances. Li and Be are used in this role in investigations of evolutionary processes in cool stars, but are not observable in hotter stars. An investigation of boron, however, is possible through the B II 1362 A resonance line. We have gathered high resolution spectra from the IUE database of A- and B-type stars near 10 solar mass for which nitrogen abundances have been determined. The B II 1362 A line is blended throughout; the temperature range of this program, requiring spectrum syntheses to recover the boron abundances. For no star could we synthesize the 1362 A region using the meteoritic/solar boron abundance of log e (B) = 2.88; a lower boron abundance was necessary which may reflect evolutionary effects (e.g., mass loss or mixing near the main-sequence), the natal composition of the star forming regions, or a systematic error in the analyses (e.g., non-LTE effects). Regardless of the initial boron abundance, and despite the possibility of non-LTE effects, it seems clear that boron is severely depleted in some stars. It may be that the nitrogen and boron abundances are anticorrelated, as would be expected from mixing between the H-burning and outer stellar layers. If, as we suspect, a residue of boron is present in the A-type supergiants, we may exclude a scenario in which mixing occurs continuously between the surface and the deep layers operating the CN-cycle. Further exploitation of the B II 1362 A line as an indicator of the evolutionary status of A- and B-type stars will require a larger stellar sample to be observed with higher signal-to-noise as attainable with the Hubble Space Telescope.
The Evolution of Massive Stars: a Selection of Facts and Questions
NASA Astrophysics Data System (ADS)
Vanbeveren, D.
In the present paper we discuss a selection of facts and questions related to observations and evolutionary calculations of massive single stars and massive stars in interacting binaries. We focus on the surface chemical abundances, the role of stellar winds, the early Be-stars, the high mass X-ray binaries and the effects of rotation on stellar evolution. Finally, we present an unconventionally formed object scenario (UFO-scenario) of WR binaries in dense stellar environments.
Object tracking with stereo vision
NASA Technical Reports Server (NTRS)
Huber, Eric
1994-01-01
A real-time active stereo vision system incorporating gaze control and task directed vision is described. Emphasis is placed on object tracking and object size and shape determination. Techniques include motion-centroid tracking, depth tracking, and contour tracking.
Nebular Continuum and Line Emission in Stellar Population Synthesis Models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Byler, Nell; Dalcanton, Julianne J.; Conroy, Charlie
Accounting for nebular emission when modeling galaxy spectral energy distributions (SEDs) is important, as both line and continuum emissions can contribute significantly to the total observed flux. In this work, we present a new nebular emission model integrated within the Flexible Stellar Population Synthesis code that computes the line and continuum emission for complex stellar populations using the photoionization code Cloudy. The self-consistent coupling of the nebular emission to the matched ionizing spectrum produces emission line intensities that correctly scale with the stellar population as a function of age and metallicity. This more complete model of galaxy SEDs will improvemore » estimates of global gas properties derived with diagnostic diagrams, star formation rates based on H α , and physical properties derived from broadband photometry. Our models agree well with results from other photoionization models and are able to reproduce observed emission from H ii regions and star-forming galaxies. Our models show improved agreement with the observed H ii regions in the Ne iii/O ii plane and show satisfactory agreement with He ii emission from z = 2 galaxies, when including rotating stellar models. Models including post-asymptotic giant branch stars are able to reproduce line ratios consistent with low-ionization emission regions. The models are integrated into current versions of FSPS and include self-consistent nebular emission predictions for MIST and Padova+Geneva evolutionary tracks.« less
LOITA: Lunar Optical/Infrared Telescope Array
NASA Technical Reports Server (NTRS)
1993-01-01
LOITA (Lunar Optical/Infrared Telescope Array) is a lunar-based interferometer composed of 18 alt-azimuth telescopes arranged in a circular geometry. This geometry results in excellent uv coverage and allows baselines up to 5 km long. The angular resolution will be 25 micro-arcsec at 500 nm and the main spectral range of the array will be 200 to 1100 nm. For infrared planet detection, the spectral range may be extended to nearly 10 mu m. The telescope mirrors have a Cassegrain configuration using a 1.75 m diameter primary mirror and a 0.24 m diameter secondary mirror. A three-stage (coarse, intermediate, and fine) optical delay system, controlled by laser metrology, is used to equalize path lengths from different telescopes to within a few wavelengths. All instruments and the fine delay system are located within the instrument room. Upon exiting the fine delay system, all beams enter the beam combiner and are then directed to the various scientific instruments and detectors. The array instrumentation will consist of CCD detectors optimized for both the visible and infrared as well as specially designed cameras and spectrographs. For direct planet detection, a beam combiner employing achromatic nulling interferometry will be used to reduce star light (by several orders of magnitude) while passing the planet light. A single telescope will be capable of autonomous operation. This telescope will be equipped with four instruments: wide field and planetary camera, faint object camera, high resolution spectrograph, and faint object spectrograph. These instruments will be housed beneath the telescope. The array pointing and control system is designed to meet the fine pointing requirement of one micro-arcsec stability and to allow precise tracking of celestial objects for up to 12 days. During the lunar night, the optics and the detectors will be passively cooled to 70-80 K temperature. To maintain a continuous communication with the earth a relay satellite placed at the L4 libration point will be used in conjunction with the Advanced Tracking and Data Relay Satellite System (ATDRSS). Electrical power of about 10 kW will be supplied by a nuclear reactor based on the SP-100 technology. LOITA will be constructed in three phases of six telescopes each. The total mass of the first operational phase is estimated at 58,820 kg. The cost of the fully operational first phase of the observatory is estimated at $8.9 billion. LOITA's primary objectives will be to detect and characterize planets around nearby stars (up to ten parsec away), study physics of collapsed stellar objects, solar/stellar surface features and the processes in nuclear regions of galaxies and quasars. An interferometric array such as LOITA will be capable of achieving resolutions three orders of magnitude greater than Hubble's design goal. LOITA will also be able to maintain higher signal to noise ratios than are currently attainable due to long observation times available on the moon.
Proof of Concept for a Simple Smartphone Sky Monitor
NASA Astrophysics Data System (ADS)
Kantamneni, Abhilash; Nemiroff, R. J.; Brisbois, C.
2013-01-01
We present a novel approach of obtaining a cloud and bright sky monitor by using a standard smartphone with a downloadable app. The addition of an inexpensive fisheye lens can extend the angular range to the entire sky visible above the device. A preliminary proof of concept image shows an optical limit of about visual magnitude 5 for a 70-second exposure. Support science objectives include cloud monitoring in a manner similar to the more expensive cloud monitors in use at most major astronomical observatories, making expensive observing time at these observatories more efficient. Primary science objectives include bright meteor tracking, bright comet tracking, and monitoring the variability of bright stars. Citizen science objectives include crowd sourcing of many networked sky monitoring smartphones typically in broader support of many of the primary science goals. The deployment of a citizen smartphone array in an active science mode could leverage the sky monitoring data infrastructure to track other non-visual science opportunities, including monitoring the Earth's magnetic field for the effects of solar flares and exhaustive surface coverage for strong seismic events.
Equilibrium β-limits in classical stellarators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loizu, Joaquim; Hudson, S. R.; Nuhrenberg, C.
Here, a numerical investigation is carried out to understand the equilibrium β-limit in a classical stellarator. The stepped-pressure equilibrium code is used in order to assess whether or not magnetic islands and stochastic field-lines can emerge at high β. Two modes of operation are considered: a zero-net-current stellarator and a fixed-iota stellarator. Despite the fact that relaxation is allowed, the former is shown to maintain good flux surfaces up to the equilibrium β-limit predicted by ideal-magnetohydrodynamics (MHD), above which a separatrix forms. The latter, which has no ideal equilibrium β-limit, is shown to develop regions of magnetic islands and chaosmore » at sufficiently high β, thereby providing a ‘non-ideal β-limit’. Perhaps surprisingly, however, the value of β at which the Shafranov shift of the axis reaches a fraction of the minor radius follows in all cases the scaling laws predicted by ideal-MHD. We compare our results to the High-Beta-Stellarator theory of Freidberg and derive a new prediction for the non-ideal equilibrium β-limit above which chaos emerges.« less
Equilibrium β-limits in classical stellarators
Loizu, Joaquim; Hudson, S. R.; Nuhrenberg, C.; ...
2017-11-17
Here, a numerical investigation is carried out to understand the equilibrium β-limit in a classical stellarator. The stepped-pressure equilibrium code is used in order to assess whether or not magnetic islands and stochastic field-lines can emerge at high β. Two modes of operation are considered: a zero-net-current stellarator and a fixed-iota stellarator. Despite the fact that relaxation is allowed, the former is shown to maintain good flux surfaces up to the equilibrium β-limit predicted by ideal-magnetohydrodynamics (MHD), above which a separatrix forms. The latter, which has no ideal equilibrium β-limit, is shown to develop regions of magnetic islands and chaosmore » at sufficiently high β, thereby providing a ‘non-ideal β-limit’. Perhaps surprisingly, however, the value of β at which the Shafranov shift of the axis reaches a fraction of the minor radius follows in all cases the scaling laws predicted by ideal-MHD. We compare our results to the High-Beta-Stellarator theory of Freidberg and derive a new prediction for the non-ideal equilibrium β-limit above which chaos emerges.« less
Assessing the Effect of Stellar Companions to Kepler Objects of Interest
NASA Astrophysics Data System (ADS)
Hirsch, Lea; Ciardi, David R.; Howard, Andrew
2017-01-01
Unknown stellar companions to Kepler planet host stars dilute the transit signal, causing the planetary radii to be underestimated. We report on the analysis of 165 stellar companions detected with high-resolution imaging to be within 2" of 159 KOI host stars. The majority of the planets and planet candidates in these systems have nominal radii smaller than 6 REarth. Using multi-filter photometry on each companion, we assess the likelihood that the companion is bound and estimate its stellar properties, including stellar radius and flux. We then recalculate the planet radii in these systems, determining how much each planet's size is underestimated if it is assumed to 1) orbit the primary star, 2) orbit the companion star, or 3) be equally likely to orbit either star in the system. We demonstrate the overall effect of unknown stellar companions on our understanding of Kepler planet sizes.
Adaptive DFT-based Interferometer Fringe Tracking
NASA Technical Reports Server (NTRS)
Wilson, Edward; Pedretti, Ettore; Bregman, Jesse; Mah, Robert W.; Traub, Wesley A.
2004-01-01
An automatic interferometer fringe tracking system has been developed, implemented, and tested at the Infrared Optical Telescope Array (IOTA) observatory at Mt. Hopkins, Arizona. The system can minimize the optical path differences (OPDs) for all three baselines of the Michelson stellar interferometer at IOTA. Based on sliding window discrete Fourier transform (DFT) calculations that were optimized for computational efficiency and robustness to atmospheric disturbances, the algorithm has also been tested extensively on off-line data. Implemented in ANSI C on the 266 MHz PowerPC processor running the VxWorks real-time operating system, the algorithm runs in approximately 2.0 milliseconds per scan (including all three interferograms), using the science camera and piezo scanners to measure and correct the OPDs. The adaptive DFT-based tracking algorithm should be applicable to other systems where there is a need to detect or track a signal with an approximately constant-frequency carrier pulse.
Adaptive object tracking via both positive and negative models matching
NASA Astrophysics Data System (ADS)
Li, Shaomei; Gao, Chao; Wang, Yawen
2015-03-01
To improve tracking drift which often occurs in adaptive tracking, an algorithm based on the fusion of tracking and detection is proposed in this paper. Firstly, object tracking is posed as abinary classification problem and is modeled by partial least squares (PLS) analysis. Secondly, tracking object frame by frame via particle filtering. Thirdly, validating the tracking reliability based on both positive and negative models matching. Finally, relocating the object based on SIFT features matching and voting when drift occurs. Object appearance model is updated at the same time. The algorithm can not only sense tracking drift but also relocate the object whenever needed. Experimental results demonstrate that this algorithm outperforms state-of-the-art algorithms on many challenging sequences.
The Gould's Belt Very Large Array Survey. II. The Serpens Region
NASA Astrophysics Data System (ADS)
Ortiz-León, Gisela N.; Loinard, Laurent; Mioduszewski, Amy J.; Dzib, Sergio A.; Rodríguez, Luis F.; Pech, Gerardo; Rivera, Juana L.; Torres, Rosa M.; Boden, Andrew F.; Hartmann, Lee; Evans, Neal J., II; Briceño, Cesar; Tobin, John; Kounkel, Marina A.; González-Lópezlira, Rosa A.
2015-05-01
We present deep (∼17 μJy) radio continuum observations of the Serpens molecular cloud, the Serpens south cluster, and the W40 region obtained using the Very Large Array in its A configuration. We detect a total of 146 sources, 29 of which are young stellar objects (YSOs), 2 of which are BV stars, and 5 more of which are associated with phenomena related to YSOs. Based on their radio variability and spectral index, we propose that about 16 of the remaining 110 unclassified sources are also YSOs. For approximately 65% of the known YSOs detected here as radio sources, the emission is most likely non-thermal and related to stellar coronal activity. As also recently observed in Ophiuchus, our sample of YSOs with X-ray counterparts lies below the fiducial Güdel & Benz relation. Finally, we analyze the proper motions of nine sources in the W40 region. This allows us to better constrain the membership of the radio sources in the region.
How Many Objects are You Worth? Quantification of the Self-Motion Load on Multiple Object Tracking
Thomas, Laura E.; Seiffert, Adriane E.
2011-01-01
Perhaps walking and chewing gum is effortless, but walking and tracking moving objects is not. Multiple object tracking is impaired by walking from one location to another, suggesting that updating location of the self puts demands on object tracking processes. Here, we quantified the cost of self-motion in terms of the tracking load. Participants in a virtual environment tracked a variable number of targets (1–5) among distractors while either staying in one place or moving along a path that was similar to the objects’ motion. At the end of each trial, participants decided whether a probed dot was a target or distractor. As in our previous work, self-motion significantly impaired performance in tracking multiple targets. Quantifying tracking capacity for each individual under move versus stay conditions further revealed that self-motion during tracking produced a cost to capacity of about 0.8 (±0.2) objects. Tracking your own motion is worth about one object, suggesting that updating the location of the self is similar, but perhaps slightly easier, than updating locations of objects. PMID:21991259
A search for embedded young stellar objects in and near the IC 1396 complex
NASA Technical Reports Server (NTRS)
Schwartz, Richard D.; Wilking, Bruce A.; Giulbudagian, Armen L.
1991-01-01
The IRAS data base is used to locate young stellar object candidates in and near the IC 1396 complex located in the Cepheus OB2 association. Co-added survey data are used to identify all sources with a flux density Snu(100) greater than 10 Jy and with Snu(100) greater than Snu(60). The 15 sources located at the positions of globules and dark clouds are further analyzed using the inscan slices to assess the source profiles.
LAMP: the long-term accretion monitoring programme of T Tauri stars in Chamaeleon I
NASA Astrophysics Data System (ADS)
Costigan, G.; Scholz, A.; Stelzer, B.; Ray, T.; Vink, J. S.; Mohanty, S.
2012-12-01
We present the results of a variability study of accreting young stellar objects in the Chameleon I star-forming region, based on ˜300 high-resolution optical spectra from the Fibre Large Area Multi-Element Spectrograph (FLAMES) at the European Southern Observatory (ESO) Very Large Telescope (VLT). 25 objects with spectral types from G2-M5.75 were observed 12 times over the course of 15 months. Using the emission lines Hα (6562.81 Å) and Ca II (8662.1 Å) as accretion indicators, we found 10 accreting and 15 non-accreting objects. We derived accretion rates for all accretors in the sample using the Hα equivalent width, Hα 10 per cent width and Ca II (8662.1 Å) equivalent width. We found that the Hα equivalent widths of accretors varied by ˜7-100 Å over the 15-month period. This corresponds to a mean amplitude of variations in the derived accretion rate of ˜0.37 dex. The amplitudes of variations in the derived accretion rate from Ca II equivalent width were ˜0.83 dex and those from Hα 10 per cent width were ˜1.11 dex. Based on the large amplitudes of variations in accretion rate derived from the Hα 10 per cent width with respect to the other diagnostics, we do not consider it to be a reliable accretion rate estimator. Assuming the variations in Hα and Ca II equivalent width accretion rates to be closer to the true value, these suggest that the spread that was found around the accretion rate to stellar-mass relation is not due to the variability of individual objects on time-scales of weeks to ˜1 year. From these variations, we can also infer that the accretion rates are stable within <0.37 dex over time-scales of less than 15 months. A major portion of the accretion variability was found to occur over periods shorter than the shortest time-scales in our observations, 8-25 days, which are comparable with the rotation periods of these young stellar objects. This could be an indication that what we are probing is spatial structure in the accretion flows and it also suggests that observations on time-scales of ˜a couple of weeks are sufficient to limit the total extent of accretion-rate variations in typical young stars. No episodic accretion was observed: all 10 accretors accreted continuously for the entire period of observations and, though they may have undetected low accretion rates, the non-accretors never showed any large changes in their emission that would imply a jump in accretion rate.
Lead poisoning and asthma among low-income and African American children in Saginaw, Michigan.
Pugh Smith, Pamela; Nriagu, Jerome O
2011-01-01
We sought to ascertain whether asthmatic children are more likely to have elevated blood lead levels (EBLLs), BLLs ≥ 10 μg/dL, than non-asthmatic children. Household risk factors associated with both lead and asthma were examined. We undertook a cross-sectional study involving children residing in mainly low-income and minority households in Michigan which were identified by the Statewide Systemic Tracking of Elevated Lead Levels and Remediation database (STELLAR) (n=356 children). Of the 356 index children, 19% had EBLLs and 15% were doctor-diagnosed asthmatic. After adjusting for confounders known to be related to lead poisoning and/or asthma, association remained between asthmatic children and EBLL children (AOR: 5.17; 95% CI (1.25-21.37)). The results of our study show that asthmatic children are over 5 times more likely to have EBLLs than non-asthmatics (AOR: 5.17; 95% CI (1.25-21.37)). Intervention strategies designed to address lead poisoning prevention may be effective in reducing incidence of asthma. Further study is required. Copyright © 2010 Elsevier Inc. All rights reserved.
Estimation of distances to stars with stellar parameters from LAMOST
Carlin, Jeffrey L.; Liu, Chao; Newberg, Heidi Jo; ...
2015-06-05
Here, we present a method to estimate distances to stars with spectroscopically derived stellar parameters. The technique is a Bayesian approach with likelihood estimated via comparison of measured parameters to a grid of stellar isochrones, and returns a posterior probability density function for each star's absolute magnitude. We tailor this technique specifically to data from the Large Sky Area Multi-object Fiber Spectroscopic Telescope (LAMOST) survey. Because LAMOST obtains roughly 3000 stellar spectra simultaneously within each ~5-degree diameter "plate" that is observed, we can use the stellar parameters of the observed stars to account for the stellar luminosity function and targetmore » selection effects. This removes biasing assumptions about the underlying populations, both due to predictions of the luminosity function from stellar evolution modeling, and from Galactic models of stellar populations along each line of sight. Using calibration data of stars with known distances and stellar parameters, we show that our method recovers distances for most stars within ~20%, but with some systematic overestimation of distances to halo giants. We apply our code to the LAMOST database, and show that the current precision of LAMOST stellar parameters permits measurements of distances with ~40% error bars. This precision should improve as the LAMOST data pipelines continue to be refined.« less
Estimation of distances to stars with stellar parameters from LAMOST
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carlin, Jeffrey L.; Liu, Chao; Newberg, Heidi Jo
Here, we present a method to estimate distances to stars with spectroscopically derived stellar parameters. The technique is a Bayesian approach with likelihood estimated via comparison of measured parameters to a grid of stellar isochrones, and returns a posterior probability density function for each star's absolute magnitude. We tailor this technique specifically to data from the Large Sky Area Multi-object Fiber Spectroscopic Telescope (LAMOST) survey. Because LAMOST obtains roughly 3000 stellar spectra simultaneously within each ~5-degree diameter "plate" that is observed, we can use the stellar parameters of the observed stars to account for the stellar luminosity function and targetmore » selection effects. This removes biasing assumptions about the underlying populations, both due to predictions of the luminosity function from stellar evolution modeling, and from Galactic models of stellar populations along each line of sight. Using calibration data of stars with known distances and stellar parameters, we show that our method recovers distances for most stars within ~20%, but with some systematic overestimation of distances to halo giants. We apply our code to the LAMOST database, and show that the current precision of LAMOST stellar parameters permits measurements of distances with ~40% error bars. This precision should improve as the LAMOST data pipelines continue to be refined.« less
The Birth of a Galaxy: Primordial Metal Enrichment and Stellar Populations
NASA Astrophysics Data System (ADS)
Wise, John H.; Turk, Matthew J.; Norman, Michael L.; Abel, Tom
2012-01-01
By definition, Population III stars are metal-free, and their protostellar collapse is driven by molecular hydrogen cooling in the gas phase, leading to large characteristic masses. Population II stars with lower characteristic masses form when the star-forming gas reaches a critical metallicity of 10-6-10-3.5 Z ⊙. We present an adaptive mesh refinement radiation hydrodynamics simulation that follows the transition from Population III to Population II star formation. The maximum spatial resolution of 1 comoving parsec allows for individual molecular clouds to be well resolved and their stellar associations to be studied in detail. We model stellar radiative feedback with adaptive ray tracing. A top-heavy initial mass function for the Population III stars is considered, resulting in a plausible distribution of pair-instability supernovae and associated metal enrichment. We find that the gas fraction recovers from 5% to nearly the cosmic fraction in halos with merger histories rich in halos above 107 M ⊙. A single pair-instability supernova is sufficient to enrich the host halo to a metallicity floor of 10-3 Z ⊙ and to transition to Population II star formation. This provides a natural explanation for the observed floor on damped Lyα systems metallicities reported in the literature, which is of this order. We find that stellar metallicities do not necessarily trace stellar ages, as mergers of halos with established stellar populations can create superpositions of t-Z evolutionary tracks. A bimodal metallicity distribution is created after a starburst occurs when the halo can cool efficiently through atomic line cooling.
Constraints on modified gravity models from white dwarfs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Banerjee, Srimanta; Singh, Tejinder P.; Shankar, Swapnil, E-mail: srimanta.banerjee@tifr.res.in, E-mail: swapnil.shankar@cbs.ac.in, E-mail: tpsingh@tifr.res.in
Modified gravity theories can introduce modifications to the Poisson equation in the Newtonian limit. As a result, we expect to see interesting features of these modifications inside stellar objects. White dwarf stars are one of the most well studied stars in stellar astrophysics. We explore the effect of modified gravity theories inside white dwarfs. We derive the modified stellar structure equations and solve them to study the mass-radius relationships for various modified gravity theories. We also constrain the parameter space of these theories from observations.
Color-Space Outliers in DPOSS: Quasars and Peculiar Objects
NASA Astrophysics Data System (ADS)
Djorgovski, S. G.; Gal, R. R.; Mahabal, A.; Brunner, R.; Castro, S. M.; Odewahn, S. C.; de Carvalho, R. R.; DPOSS Team
2000-12-01
The processing of DPOSS, a digital version of the POSS-II sky atlas, is now nearly complete. The resulting Palomar--Norris Sky Catalog (PNSC) is expected to contain > 5 x 107 galaxies and > 109 stars, including large numbers of quasars and other unresolved sources. For objects morphologically classified as stellar (i.e., PSF-like), colors and magnitudes provide the only additional source of discriminating information. We investigate the distribution of objects in the parameter space of (g-r) and (r-i) colors as a function of magnitude. Normal stars form a well-defined (temperature) sequence in this parameter space, and we explore the nature of the objects which deviate significantly from this stellar locus. The causes of the deviations include: non-thermal or peculiar spectra, interagalactic absorption (for high-z quasars), presence of strong emission lines in one or more of the bandpasses, or strong variability (because the plates are taken at widely separated epochs). In addition to minor contamination by misclassified compact galaxies, we find the following: (1) Quasars at z > 4; to date, ~ 100 of these objects have been found, and used for a variety of follow-up studies. They are made publicly available immediately after discovery, through http://astro.caltech.edu/ ~george/z4.qsos. (2) Type-2 quasars in the redshift interval z ~ 0.31 - 0.38. (3) Other quasars, starburst and emission-line galaxies, and emission-line stars. (4) Objects with highly peculiar spectra, some or all of which may be rare subtypes of BAL QSOs. (5) Highly variable stars and optical transients, some of which may be GRB ``orphan afterglows''. To date, systematic searches have been made only for (1) and (2); other types of objects were found serendipitously. However, we plan to explore systematically all of the statistically significant outliers in this parameter space. This illustrates the potential of large digital sky surveys for discovery of rare types of objects, both known (e.g., high-z quasars) and as yet unknown.
NASA Astrophysics Data System (ADS)
Windhorst, Rogier A.; Timmes, F. X.; Wyithe, J. Stuart B.; Alpaslan, Mehmet; Andrews, Stephen K.; Coe, Daniel; Diego, Jose M.; Dijkstra, Mark; Driver, Simon P.; Kelly, Patrick L.; Kim, Duho
2018-02-01
We summarize panchromatic Extragalactic Background Light data to place upper limits on the integrated near-infrared surface brightness (SB) that may come from Population III stars and possible accretion disks around their stellar-mass black holes (BHs) in the epoch of First Light, broadly taken from z ≃ 7–17. Theoretical predictions and recent near-infrared power spectra provide tighter constraints on their sky signal. We outline the physical properties of zero-metallicity Population III stars from MESA stellar evolution models through helium depletion and of BH accretion disks at z≳ 7. We assume that second-generation non-zero-metallicity stars can form at higher multiplicity, so that BH accretion disks may be fed by Roche-lobe overflow from lower-mass companions. We use these near-infrared SB constraints to calculate the number of caustic transits behind lensing clusters that the James Webb Space Telescope and the next-generation ground-based telescopes may observe for both Population III stars and their BH accretion disks. Typical caustic magnifications can be μ ≃ {10}4{--}{10}5, with rise times of hours and decline times of ≲ 1 year for cluster transverse velocities of {v}T≲ 1000 km s‑1. Microlensing by intracluster-medium objects can modify transit magnifications but lengthen visibility times. Depending on BH masses, accretion-disk radii, and feeding efficiencies, stellar-mass BH accretion-disk caustic transits could outnumber those from Population III stars. To observe Population III caustic transits directly may require monitoring 3–30 lensing clusters to {AB}≲ 29 mag over a decade.
Tracking planets and moons: mechanisms of object tracking revealed with a new paradigm.
Tombu, Michael; Seiffert, Adriane E
2011-04-01
People can attend to and track multiple moving objects over time. Cognitive theories of this ability emphasize location information and differ on the importance of motion information. Results from several experiments have shown that increasing object speed impairs performance, although speed was confounded with other properties such as proximity of objects to one another. Here, we introduce a new paradigm to study multiple object tracking in which object speed and object proximity were manipulated independently. Like the motion of a planet and moon, each target-distractor pair rotated about both a common local point as well as the center of the screen. Tracking performance was strongly affected by object speed even when proximity was controlled. Additional results suggest that two different mechanisms are used in object tracking--one sensitive to speed and proximity and the other sensitive to the number of distractors. These observations support models of object tracking that include information about object motion and reject models that use location alone.
Relativistic model for anisotropic strange stars
NASA Astrophysics Data System (ADS)
Deb, Debabrata; Chowdhury, Sourav Roy; Ray, Saibal; Rahaman, Farook; Guha, B. K.
2017-12-01
In this article, we attempt to find a singularity free solution of Einstein's field equations for compact stellar objects, precisely strange (quark) stars, considering Schwarzschild metric as the exterior spacetime. To this end, we consider that the stellar object is spherically symmetric, static and anisotropic in nature and follows the density profile given by Mak and Harko (2002) , which satisfies all the physical conditions. To investigate different properties of the ultra-dense strange stars we have employed the MIT bag model for the quark matter. Our investigation displays an interesting feature that the anisotropy of compact stars increases with the radial coordinate and attains its maximum value at the surface which seems an inherent property for the singularity free anisotropic compact stellar objects. In this connection we also perform several tests for physical features of the proposed model and show that these are reasonably acceptable within certain range. Further, we find that the model is consistent with the energy conditions and the compact stellar structure is stable with the validity of the TOV equation and Herrera cracking concept. For the masses below the maximum mass point in mass vs radius curve the typical behavior achieved within the framework of general relativity. We have calculated the maximum mass and radius of the strange stars for the three finite values of bag constant Bg.
A parsec-scale optical jet from a massive young star in the Large Magellanic Cloud
NASA Astrophysics Data System (ADS)
McLeod, Anna F.; Reiter, Megan; Kuiper, Rolf; Klaassen, Pamela D.; Evans, Christopher J.
2018-02-01
Highly collimated parsec-scale jets, which are generally linked to the presence of an accretion disk, are commonly observed in low-mass young stellar objects. In the past two decades, a few of these jets have been directly (or indirectly) observed from higher-mass (larger than eight solar masses) young stellar objects, adding to the growing evidence that disk-mediated accretion also occurs in high-mass stars, the formation mechanism of which is still poorly understood. Of the observed jets from massive young stars, none is in the optical regime (massive young stars are typically highly obscured by their natal material), and none is found outside of the Milky Way. Here we report observations of HH 1177, an optical ionized jet that originates from a massive young stellar object located in the Large Magellanic Cloud. The jet is highly collimated over its entire measured length of at least ten parsecs and has a bipolar geometry. The presence of a jet indicates ongoing, disk-mediated accretion and, together with the high degree of collimation, implies that this system is probably formed through a scaled-up version of the formation mechanism of low-mass stars. We conclude that the physics that govern jet launching and collimation is independent of stellar mass.
A parsec-scale optical jet from a massive young star in the Large Magellanic Cloud.
McLeod, Anna F; Reiter, Megan; Kuiper, Rolf; Klaassen, Pamela D; Evans, Christopher J
2018-02-15
Highly collimated parsec-scale jets, which are generally linked to the presence of an accretion disk, are commonly observed in low-mass young stellar objects. In the past two decades, a few of these jets have been directly (or indirectly) observed from higher-mass (larger than eight solar masses) young stellar objects, adding to the growing evidence that disk-mediated accretion also occurs in high-mass stars, the formation mechanism of which is still poorly understood. Of the observed jets from massive young stars, none is in the optical regime (massive young stars are typically highly obscured by their natal material), and none is found outside of the Milky Way. Here we report observations of HH 1177, an optical ionized jet that originates from a massive young stellar object located in the Large Magellanic Cloud. The jet is highly collimated over its entire measured length of at least ten parsecs and has a bipolar geometry. The presence of a jet indicates ongoing, disk-mediated accretion and, together with the high degree of collimation, implies that this system is probably formed through a scaled-up version of the formation mechanism of low-mass stars. We conclude that the physics that govern jet launching and collimation is independent of stellar mass.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tiscareno, Matthew S.; Burns, Joseph A.; Hedman, Matthew M.
2010-08-01
We report the discovery of several large 'propeller' moons in the outer part of Saturn's A ring, objects large enough to be followed over the 5 year duration of the Cassini mission. These are the first objects ever discovered that can be tracked as individual moons, but do not orbit in empty space. We infer sizes up to 1-2 km for the unseen moonlets at the center of the propeller-shaped structures, though many structural and photometric properties of propeller structures remain unclear. Finally, we demonstrate that some propellers undergo sustained non-Keplerian orbit motion.
Bodala, Indu P; Abbasi, Nida I; Yu Sun; Bezerianos, Anastasios; Al-Nashash, Hasan; Thakor, Nitish V
2017-07-01
Eye tracking offers a practical solution for monitoring cognitive performance in real world tasks. However, eye tracking in dynamic environments is difficult due to high spatial and temporal variation of stimuli, needing further and thorough investigation. In this paper, we study the possibility of developing a novel computer vision assisted eye tracking analysis by using fixations. Eye movement data is obtained from a long duration naturalistic driving experiment. Source invariant feature transform (SIFT) algorithm was implemented using VLFeat toolbox to identify multiple areas of interest (AOIs). A new measure called `fixation score' was defined to understand the dynamics of fixation position between the target AOI and the non target AOIs. Fixation score is maximum when the subjects focus on the target AOI and diminishes when they gaze at the non-target AOIs. Statistically significant negative correlation was found between fixation score and reaction time data (r =-0.2253 and p<;0.05). This implies that with vigilance decrement, the fixation score decreases due to visual attention shifting away from the target objects resulting in an increase in the reaction time.
An atlas of H-alpha-emitting regions in M33: A systematic search for SS433 star candidates
NASA Technical Reports Server (NTRS)
Calzetti, Daniela; Kinney, Anne L.; Ford, Holland; Doggett, Jesse; Long, Knox S.
1995-01-01
We report finding charts and accurate positions for 432 compact H-alpha emitting regions in the Local Group galaxy M 33 (NGC 598), in an effort to isolate candidates for an SS433-like stellar system. The objects were extracted from narrow band images, centered in the rest-frame H-alpha (lambda 6563 A) and in the red continuum at 6100 A. The atlas is complete down to V approximately equal to 20 and includes 279 compact HII regions and 153 line emitting point-like sources. The point-like sources undoubtedly include a variety of objects: very small HII regions, early type stars with intense stellar winds, and Wolf-Rayet stars, but should also contain objects with the characteristics of SS433. This extensive survey of compact H-alpha regions in M 33 is a first step towards the identification of peculiar stellar systems like SS433 in external galaxies.
The Non-Stellar Infrared Continuum of Seyfert Galaxies
NASA Technical Reports Server (NTRS)
Alonso-Herrero, Almudena; Quillen, Alice C.; Simpson, Chris; Efstathiou, Andreas; Ward, Martin J.
2000-01-01
JHKL'M (1 - 5 micrometers) imaging of a sample of Seyfert 2 galaxies is presented. We have performed an accurate estimate of the near-infrared non-stellar nuclear fluxes. We confirm that the near-infrared nuclear continuum between 1 and 2.2microns of some Seyfert 2s is dominated by stellar emission, whereas the continuum emission at longer wavelengths (lambda = 3 - 5 micrometers) is almost entirely non-stellar in origin. The non-stellar spectral energy distributions (SED) in the infrared (up to 15 micrometers) of Seyfert galaxies show a variety of shapes, and they are well reproduced with the tapered disk models of Efstathiou & Rowan-Robinson (1995). We have used two models, one including an optically thin cone component found to fit the SED of NGC 1068, and a coneless model. Although our modelling of the SEDs does not allow us to favor either model to account for all the observed SEDs, we find that the viewing angle towards the central source is well constrained by both models. The galaxies in our sample have fitted values of the viewing angle in the range Theta(sub V) = 0 deg - 64 deg, for the assumed model parameters. We have also investigated non-stellar color-color diagrams (L' - M vs. H - M and L' - M vs. H - L'). The colors of the Seyfert galaxies with viewing angles Theta(sub v) less than 30 deg are better reproduced with the cone model. These diagrams provide a good means to separate Seyfert 2s with moderate obscuration (A(sub V) approx. less than 20 mag from hard X-ray observations) from those with high obscuration. The ground-based 4.8 microns and ISO 9.6 microns luminosities are well correlated with the hard X-ray luminosities of Seyfert ls and 2s. These continuum emissions appear as a good indicator of the AGN luminosity, at least in the cases of hard X-ray Compton-thin Seyfert galaxies (N(sub H) less than or = 10(exp 24)/sq cm). We finally stress the finding that some Compton thick galaxies show bright non-stellar emission at 5 microns This suggests that the near-infrared emission in Seyfert galaxies is produced in an extended component illuminated by the central source, that is more visible from all viewing angles, providing a good explanation for the differing N(sub H)/A(sub V) ratios found in some Seyfert 2s. We discuss possible implications of mid-infrared surveys for the search of counterparts of highly obscured hard X-ray sources.
Lu, Shengfu; Xu, Jiying; Li, Mi; Xue, Jia; Lu, Xiaofeng; Feng, Lei; Fu, Bingbing; Wang, Gang; Zhong, Ning; Hu, Bin
2017-10-01
Objective To compare the attentional bias of depressed patients and non-depressed control subjects and examine the effects of age using eye-tracking technology in a free-viewing set of tasks. Methods Patients with major depressive disorder (MDD) and non-depressed control subjects completed an eye-tracking task to assess attention of processing negative, positive and neutral facial expressions. In this cross-sectional study, the tasks were separated in two types (neutral versus happy faces and neutral versus sad faces) and assessed in two age groups ('young' [18-30 years] and 'middle-aged' [31-55 years]). Results Compared with non-depressed control subjects ( n = 75), patients with MDD ( n = 90) had a significant reduced positive attentional bias and enhanced negative attentional bias irrespective of age. The positive attentional bias in 'middle-aged' patients with MDD was significantly lower than in 'young' patients, although there was no difference between the two age groups in negative attentional bias. Conclusions These results confirm that there are emotional attentional biases in patients with MDD and that positive attentional biases are influenced by age.
Electrical localization of weakly electric fish using neural networks
NASA Astrophysics Data System (ADS)
Kiar, Greg; Mamatjan, Yasin; Jun, James; Maler, Len; Adler, Andy
2013-04-01
Weakly Electric Fish (WEF) emit an Electric Organ Discharge (EOD), which travels through the surrounding water and enables WEF to locate nearby objects or to communicate between individuals. Previous tracking of WEF has been conducted using infrared (IR) cameras and subsequent image processing. The limitation of visual tracking is its relatively low frame-rate and lack of reliability when visually obstructed. Thus, there is a need for reliable monitoring of WEF location and behaviour. The objective of this study is to provide an alternative and non-invasive means of tracking WEF in real-time using neural networks (NN). This study was carried out in three stages. First stage was to recreate voltage distributions by simulating the WEF using EIDORS and finite element method (FEM) modelling. Second stage was to validate the model using phantom data acquired from an Electrical Impedance Tomography (EIT) based system, including a phantom fish and tank. In the third stage, the measurement data was acquired using a restrained WEF within a tank. We trained the NN based on the voltage distributions for different locations of the WEF. With networks trained on the acquired data, we tracked new locations of the WEF and observed the movement patterns. The results showed a strong correlation between expected and calculated values of WEF position in one dimension, yielding a high spatial resolution within 1 cm and 10 times higher temporal resolution than IR cameras. Thus, the developed approach could be used as a practical method to non-invasively monitor the WEF in real-time.
Upside-down: Perceived space affects object-based attention.
Papenmeier, Frank; Meyerhoff, Hauke S; Brockhoff, Alisa; Jahn, Georg; Huff, Markus
2017-07-01
Object-based attention influences the subjective metrics of surrounding space. However, does perceived space influence object-based attention, as well? We used an attentive tracking task that required sustained object-based attention while objects moved within a tracking space. We manipulated perceived space through the availability of depth cues and varied the orientation of the tracking space. When rich depth cues were available (appearance of a voluminous tracking space), the upside-down orientation of the tracking space (objects appeared to move high on a ceiling) caused a pronounced impairment of tracking performance compared with an upright orientation of the tracking space (objects appeared to move on a floor plane). In contrast, this was not the case when reduced depth cues were available (appearance of a flat tracking space). With a preregistered second experiment, we showed that those effects were driven by scene-based depth cues and not object-based depth cues. We conclude that perceived space affects object-based attention and that object-based attention and perceived space are closely interlinked. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Hu, Weiming; Li, Xi; Luo, Wenhan; Zhang, Xiaoqin; Maybank, Stephen; Zhang, Zhongfei
2012-12-01
Object appearance modeling is crucial for tracking objects, especially in videos captured by nonstationary cameras and for reasoning about occlusions between multiple moving objects. Based on the log-euclidean Riemannian metric on symmetric positive definite matrices, we propose an incremental log-euclidean Riemannian subspace learning algorithm in which covariance matrices of image features are mapped into a vector space with the log-euclidean Riemannian metric. Based on the subspace learning algorithm, we develop a log-euclidean block-division appearance model which captures both the global and local spatial layout information about object appearances. Single object tracking and multi-object tracking with occlusion reasoning are then achieved by particle filtering-based Bayesian state inference. During tracking, incremental updating of the log-euclidean block-division appearance model captures changes in object appearance. For multi-object tracking, the appearance models of the objects can be updated even in the presence of occlusions. Experimental results demonstrate that the proposed tracking algorithm obtains more accurate results than six state-of-the-art tracking algorithms.
NASA Astrophysics Data System (ADS)
Wang, Ji; Fischer, Debra A.; Horch, Elliott P.; Xie, Ji-Wei
2015-06-01
As hundreds of gas giant planets have been discovered, we study how these planets form and evolve in different stellar environments, specifically in multiple stellar systems. In such systems, stellar companions may have a profound influence on gas giant planet formation and evolution via several dynamical effects such as truncation and perturbation. We select 84 Kepler Objects of Interest (KOIs) with gas giant planet candidates. We obtain high-angular resolution images using telescopes with adaptive optics (AO) systems. Together with the AO data, we use archival radial velocity data and dynamical analysis to constrain the presence of stellar companions. We detect 59 stellar companions around 40 KOIs for which we develop methods of testing their physical association. These methods are based on color information and galactic stellar population statistics. We find evidence of suppressive planet formation within 20 AU by comparing stellar multiplicity. The stellar multiplicity rate (MR) for planet host stars is {0}-0+5% within 20 AU. In comparison, the stellar MR is 18% ± 2% for the control sample, i.e., field stars in the solar neighborhood. The stellar MR for planet host stars is 34% ± 8% for separations between 20 and 200 AU, which is higher than the control sample at 12% ± 2%. Beyond 200 AU, stellar MRs are comparable between planet host stars and the control sample. We discuss the implications of the results on gas giant planet formation and evolution.
Spectral dispersion and fringe detection in IOTA
NASA Technical Reports Server (NTRS)
Traub, W. A.; Lacasse, M. G.; Carleton, N. P.
1990-01-01
Pupil plane beam combination, spectral dispersion, detection, and fringe tracking are discussed for the IOTA interferometer. A new spectrometer design is presented in which the angular dispersion with respect to wavenumber is nearly constant. The dispersing element is a type of grism, a series combination of grating and prism, in which the constant parts of the dispersion add, but the slopes cancel. This grism is optimized for the display of channelled spectra. The dispersed fringes can be tracked by a matched-filter photon-counting correlator algorithm. This algorithm requires very few arithmetic operations per detected photon, making it well-suited for real-time fringe tracking. The algorithm is able to adapt to different stellar spectral types, intensity levels, and atmospheric time constants. The results of numerical experiments are reported.
THE TRIFID NEBULA: STELLAR SIBLING RIVALRY
NASA Technical Reports Server (NTRS)
2002-01-01
This NASA Hubble Space Telescope image of the Trifid Nebula reveals a stellar nursery being torn apart by radiation from a nearby, massive star. The picture also provides a peek at embryonic stars forming within an ill-fated cloud of dust and gas, which is destined to be eaten away by the glare from the massive neighbor. This stellar activity is a beautiful example of how the life cycles of stars like our Sun is intimately connected with their more powerful siblings. The Hubble image shows a small part of a dense cloud of dust and gas, a stellar nursery full of embryonic stars. This cloud is about 8 light-years away from the nebula's central star, which is beyond the top of this picture. Located about 9,000 light-years from Earth, the Trifid resides in the constellation Sagittarius. A stellar jet [the thin, wispy object pointing to the upper left] protrudes from the head of a dense cloud and extends three-quarters of a light-year into the nebula. The jet's source is a very young stellar object that lies buried within the cloud. Jets such as this are the exhaust gases of star formation. Radiation from the massive star at the center of the nebula is making the gas in the jet glow, just as it causes the rest of the nebula to glow. The jet in the Trifid is a 'ticker tape,' telling the history of one particular young stellar object that is continuing to grow as its gravity draws in gas from its surroundings. But this particular ticker tape will not run for much longer. Within the next 10,000 years the glare from the central, massive star will continue to erode the nebula, overrunning the forming star, and bringing its growth to an abrupt and possibly premature end. Another nearby star may have already faced this fate. The Hubble picture shows a 'stalk' [the finger-like object] pointing from the head of the dense cloud directly toward the star that powers the Trifid. This stalk is a prominent example of the evaporating gaseous globules, or 'EGGs,' that were seen previously in the Eagle Nebula, another star-forming region photographed by Hubble. The stalk has survived because at its tip there is a knot of gas that is dense enough to resist being eaten away by the powerful radiation. Reflected starlight at the tip of the EGG may be due to light from the Trifid's central star, or from a young stellar object buried within the EGG. Similarly, a tiny spike of emission pointing outward from the EGG looks like a small stellar jet. Hubble astronomers are tentatively interpreting this jet as the last gasp from a star that was cut off from its supply lines 100,000 years ago. The images were taken Sept. 8, 1997 through filters that isolate emission from hydrogen atoms, ionized sulfur atoms, and doubly ionized oxygen atoms. The images were combined in a single color composite picture. While the resulting picture is not true color, it is suggestive of what a human eye might see. Credits: NASA and Jeff Hester (Arizona State University)
Tracking a Non-Cooperative Target Using Real-Time Stereovision-Based Control: An Experimental Study.
Shtark, Tomer; Gurfil, Pini
2017-03-31
Tracking a non-cooperative target is a challenge, because in unfamiliar environments most targets are unknown and unspecified. Stereovision is suited to deal with this issue, because it allows to passively scan large areas and estimate the relative position, velocity and shape of objects. This research is an experimental effort aimed at developing, implementing and evaluating a real-time non-cooperative target tracking methods using stereovision measurements only. A computer-vision feature detection and matching algorithm was developed in order to identify and locate the target in the captured images. Three different filters were designed for estimating the relative position and velocity, and their performance was compared. A line-of-sight control algorithm was used for the purpose of keeping the target within the field-of-view. Extensive analytical and numerical investigations were conducted on the multi-view stereo projection equations and their solutions, which were used to initialize the different filters. This research shows, using an experimental and numerical evaluation, the benefits of using the unscented Kalman filter and the total least squares technique in the stereovision-based tracking problem. These findings offer a general and more accurate method for solving the static and dynamic stereovision triangulation problems and the concomitant line-of-sight control.
Tracking a Non-Cooperative Target Using Real-Time Stereovision-Based Control: An Experimental Study
Shtark, Tomer; Gurfil, Pini
2017-01-01
Tracking a non-cooperative target is a challenge, because in unfamiliar environments most targets are unknown and unspecified. Stereovision is suited to deal with this issue, because it allows to passively scan large areas and estimate the relative position, velocity and shape of objects. This research is an experimental effort aimed at developing, implementing and evaluating a real-time non-cooperative target tracking methods using stereovision measurements only. A computer-vision feature detection and matching algorithm was developed in order to identify and locate the target in the captured images. Three different filters were designed for estimating the relative position and velocity, and their performance was compared. A line-of-sight control algorithm was used for the purpose of keeping the target within the field-of-view. Extensive analytical and numerical investigations were conducted on the multi-view stereo projection equations and their solutions, which were used to initialize the different filters. This research shows, using an experimental and numerical evaluation, the benefits of using the unscented Kalman filter and the total least squares technique in the stereovision-based tracking problem. These findings offer a general and more accurate method for solving the static and dynamic stereovision triangulation problems and the concomitant line-of-sight control. PMID:28362338
Multi-Object Tracking with Correlation Filter for Autonomous Vehicle.
Zhao, Dawei; Fu, Hao; Xiao, Liang; Wu, Tao; Dai, Bin
2018-06-22
Multi-object tracking is a crucial problem for autonomous vehicle. Most state-of-the-art approaches adopt the tracking-by-detection strategy, which is a two-step procedure consisting of the detection module and the tracking module. In this paper, we improve both steps. We improve the detection module by incorporating the temporal information, which is beneficial for detecting small objects. For the tracking module, we propose a novel compressed deep Convolutional Neural Network (CNN) feature based Correlation Filter tracker. By carefully integrating these two modules, the proposed multi-object tracking approach has the ability of re-identification (ReID) once the tracked object gets lost. Extensive experiments were performed on the KITTI and MOT2015 tracking benchmarks. Results indicate that our approach outperforms most state-of-the-art tracking approaches.
NASA Technical Reports Server (NTRS)
Lewis, Steven J.; Palacios, David M.
2013-01-01
This software can track multiple moving objects within a video stream simultaneously, use visual features to aid in the tracking, and initiate tracks based on object detection in a subregion. A simple programmatic interface allows plugging into larger image chain modeling suites. It extracts unique visual features for aid in tracking and later analysis, and includes sub-functionality for extracting visual features about an object identified within an image frame. Tracker Toolkit utilizes a feature extraction algorithm to tag each object with metadata features about its size, shape, color, and movement. Its functionality is independent of the scale of objects within a scene. The only assumption made on the tracked objects is that they move. There are no constraints on size within the scene, shape, or type of movement. The Tracker Toolkit is also capable of following an arbitrary number of objects in the same scene, identifying and propagating the track of each object from frame to frame. Target objects may be specified for tracking beforehand, or may be dynamically discovered within a tripwire region. Initialization of the Tracker Toolkit algorithm includes two steps: Initializing the data structures for tracked target objects, including targets preselected for tracking; and initializing the tripwire region. If no tripwire region is desired, this step is skipped. The tripwire region is an area within the frames that is always checked for new objects, and all new objects discovered within the region will be tracked until lost (by leaving the frame, stopping, or blending in to the background).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, T.; Li, Y.; Hekker, S., E-mail: wutao@ynao.ac.cn, E-mail: ly@ynao.ac.cn, E-mail: hekker@mps.mpg.de
2014-01-20
Stellar mass M, radius R, and gravity g are important basic parameters in stellar physics. Accurate values for these parameters can be obtained from the gravitational interaction between stars in multiple systems or from asteroseismology. Stars in a cluster are thought to be formed coevally from the same interstellar cloud of gas and dust. The cluster members are therefore expected to have some properties in common. These common properties strengthen our ability to constrain stellar models and asteroseismically derived M, R, and g when tested against an ensemble of cluster stars. Here we derive new scaling relations based on amore » relation for stars on the Hayashi track (√(T{sub eff})∼g{sup p}R{sup q}) to determine the masses and metallicities of red giant branch stars in open clusters NGC 6791 and NGC 6819 from the global oscillation parameters Δν (the large frequency separation) and ν{sub max} (frequency of maximum oscillation power). The Δν and ν{sub max} values are derived from Kepler observations. From the analysis of these new relations we derive: (1) direct observational evidence that the masses of red giant branch stars in a cluster are the same within their uncertainties, (2) new methods to derive M and z of the cluster in a self-consistent way from Δν and ν{sub max}, with lower intrinsic uncertainties, and (3) the mass dependence in the Δν - ν{sub max} relation for red giant branch stars.« less
The nature of massive transition galaxies in CANDELS, GAMA and cosmological simulations
NASA Astrophysics Data System (ADS)
Pandya, Viraj; Brennan, Ryan; Somerville, Rachel S.; Choi, Ena; Barro, Guillermo; Wuyts, Stijn; Taylor, Edward N.; Behroozi, Peter; Kirkpatrick, Allison; Faber, Sandra M.; Primack, Joel; Koo, David C.; McIntosh, Daniel H.; Kocevski, Dale; Bell, Eric F.; Dekel, Avishai; Fang, Jerome J.; Ferguson, Henry C.; Grogin, Norman; Koekemoer, Anton M.; Lu, Yu; Mantha, Kameswara; Mobasher, Bahram; Newman, Jeffrey; Pacifici, Camilla; Papovich, Casey; van der Wel, Arjen; Yesuf, Hassen M.
2017-12-01
We explore observational and theoretical constraints on how galaxies might transition between the 'star-forming main sequence' (SFMS) and varying 'degrees of quiescence' out to z = 3. Our analysis is focused on galaxies with stellar mass M* > 1010 M⊙, and is enabled by GAMA and CANDELS observations, a semi-analytic model (SAM) of galaxy formation, and a cosmological hydrodynamical 'zoom in' simulation with momentum-driven AGN feedback. In both the observations and the SAM, transition galaxies tend to have intermediate Sérsic indices, half-light radii, and surface stellar mass densities compared to star-forming and quiescent galaxies out to z = 3. We place an observational upper limit on the average population transition time-scale as a function of redshift, finding that the average high-redshift galaxy is on a 'fast track' for quenching whereas the average low-redshift galaxy is on a 'slow track' for quenching. We qualitatively identify four physical origin scenarios for transition galaxies in the SAM: oscillations on the SFMS, slow quenching, fast quenching, and rejuvenation. Quenching time-scales in both the SAM and the hydrodynamical simulation are not fast enough to reproduce the quiescent population that we observe at z ∼ 3. In the SAM, we do not find a clear-cut morphological dependence of quenching time-scales, but we do predict that the mean stellar ages, cold gas fractions, SMBH (supermassive black hole) masses and halo masses of transition galaxies tend to be intermediate relative to those of star-forming and quiescent galaxies at z < 3.
DETECTING TRIAXIALITY IN THE GALACTIC DARK MATTER HALO THROUGH STELLAR KINEMATICS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rojas-Nino, Armando; Valenzuela, Octavio; Pichardo, Barbara
Assuming the dark matter halo of the Milky Way to be a non-spherical potential (i.e., triaxial, prolate, oblate), we show how the assembling process of the Milky Way halo may have left long-lasting stellar halo kinematic fossils due to the shape of the dark matter halo. In contrast with tidal streams, which are associated with recent satellite accretion events, these stellar kinematic groups will typically show inhomogeneous chemical and stellar population properties. However, they may be dominated by a single accretion event for certain mass assembling histories. If the detection of these peculiar kinematic stellar groups were confirmed, they wouldmore » be the smoking gun for the predicted triaxiality of dark halos in cosmological galaxy formation scenarios.« less
VizieR Online Data Catalog: Spectroscopic analysis of 348 red giants (Zielinski+, 2012)
NASA Astrophysics Data System (ADS)
Zielinski, P.; Niedzielski, A.; Wolszczan, A.; Adamow, M.; Nowak, G.
2012-10-01
The atmospheric parameters were derived using a strictly spectroscopic method based on the LTE analysis of equivalent widths of FeI and FeII lines. With existing photometric data and the Hipparcos parallaxes, we estimated stellar masses and ages via evolutionary tracks fitting. The stellar radii were calculated from either estimated masses and the spectroscopic logg or from the spectroscopic Teff and estimated luminosities. The absolute radial velocities were obtained by cross-correlating spectra with a numerical template. Our high-quality, high-resolution optical spectra have been collected since 2004 with the Hobby-Eberly Telescope (HET), located in the McDonald Observatory. The telescope was equipped with the High Resolution Spectrograph (HRS; R~60000 resolution). (2 data files).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, T. S.
Meeting the science goals for many current and future ground-based optical large-area sky surveys requires that the calibrated broadband photometry is stable in time and uniform over the sky to 1% precision or better. Past surveys have achieved photometric precision of 1-2% by calibrating the survey's stellar photometry with repeated measurements of a large number of stars observed in multiple epochs. The calibration techniques employed by these surveys only consider the relative frame-by-frame photometric zeropoint offset and the focal plane position-dependent illumination corrections, which are independent of the source color. However, variations in the wavelength dependence of the atmospheric transmissionmore » and the instrumental throughput induce source color-dependent systematic errors. These systematic errors must also be considered to achieve the most precise photometric measurements. In this paper, we examine such systematic chromatic errors using photometry from the Dark Energy Survey (DES) as an example. We define a natural magnitude system for DES and calculate the systematic errors on stellar magnitudes, when the atmospheric transmission and instrumental throughput deviate from the natural system. We conclude that the systematic chromatic errors caused by the change of airmass in each exposure, the change of the precipitable water vapor and aerosol in the atmosphere over time, and the non-uniformity of instrumental throughput over the focal plane, can be up to 2% in some bandpasses. We compare the calculated systematic chromatic errors with the observed DES data. For the test sample data, we correct these errors using measurements of the atmospheric transmission and instrumental throughput. The residual after correction is less than 0.3%. We also find that the errors for non-stellar objects are redshift-dependent and can be larger than those for stars at certain redshifts.« less
Human-like object tracking and gaze estimation with PKD android
Wijayasinghe, Indika B.; Miller, Haylie L.; Das, Sumit K; Bugnariu, Nicoleta L.; Popa, Dan O.
2018-01-01
As the use of robots increases for tasks that require human-robot interactions, it is vital that robots exhibit and understand human-like cues for effective communication. In this paper, we describe the implementation of object tracking capability on Philip K. Dick (PKD) android and a gaze tracking algorithm, both of which further robot capabilities with regard to human communication. PKD's ability to track objects with human-like head postures is achieved with visual feedback from a Kinect system and an eye camera. The goal of object tracking with human-like gestures is twofold : to facilitate better human-robot interactions and to enable PKD as a human gaze emulator for future studies. The gaze tracking system employs a mobile eye tracking system (ETG; SensoMotoric Instruments) and a motion capture system (Cortex; Motion Analysis Corp.) for tracking the head orientations. Objects to be tracked are displayed by a virtual reality system, the Computer Assisted Rehabilitation Environment (CAREN; MotekForce Link). The gaze tracking algorithm converts eye tracking data and head orientations to gaze information facilitating two objectives: to evaluate the performance of the object tracking system for PKD and to use the gaze information to predict the intentions of the user, enabling the robot to understand physical cues by humans. PMID:29416193
Human-like object tracking and gaze estimation with PKD android
NASA Astrophysics Data System (ADS)
Wijayasinghe, Indika B.; Miller, Haylie L.; Das, Sumit K.; Bugnariu, Nicoleta L.; Popa, Dan O.
2016-05-01
As the use of robots increases for tasks that require human-robot interactions, it is vital that robots exhibit and understand human-like cues for effective communication. In this paper, we describe the implementation of object tracking capability on Philip K. Dick (PKD) android and a gaze tracking algorithm, both of which further robot capabilities with regard to human communication. PKD's ability to track objects with human-like head postures is achieved with visual feedback from a Kinect system and an eye camera. The goal of object tracking with human-like gestures is twofold: to facilitate better human-robot interactions and to enable PKD as a human gaze emulator for future studies. The gaze tracking system employs a mobile eye tracking system (ETG; SensoMotoric Instruments) and a motion capture system (Cortex; Motion Analysis Corp.) for tracking the head orientations. Objects to be tracked are displayed by a virtual reality system, the Computer Assisted Rehabilitation Environment (CAREN; MotekForce Link). The gaze tracking algorithm converts eye tracking data and head orientations to gaze information facilitating two objectives: to evaluate the performance of the object tracking system for PKD and to use the gaze information to predict the intentions of the user, enabling the robot to understand physical cues by humans.
Suppression of fixed pattern noise for infrared image system
NASA Astrophysics Data System (ADS)
Park, Changhan; Han, Jungsoo; Bae, Kyung-Hoon
2008-04-01
In this paper, we propose suppression of fixed pattern noise (FPN) and compensation of soft defect for improvement of object tracking in cooled staring infrared focal plane array (IRFPA) imaging system. FPN appears an observable image which applies to non-uniformity compensation (NUC) by temperature. Soft defect appears glittering black and white point by characteristics of non-uniformity for IR detector by time. This problem is very important because it happen serious problem for object tracking as well as degradation for image quality. Signal processing architecture in cooled staring IRFPA imaging system consists of three tables: low, normal, high temperature for reference gain and offset values. Proposed method operates two offset tables for each table. This is method which operates six term of temperature on the whole. Proposed method of soft defect compensation consists of three stages: (1) separates sub-image for an image, (2) decides a motion distribution of object between each sub-image, (3) analyzes for statistical characteristic from each stationary fixed pixel. Based on experimental results, the proposed method shows an improved image which suppresses FPN by change of temperature distribution from an observational image in real-time.
Advances in high energy astronomy from space
NASA Technical Reports Server (NTRS)
Giacconi, R.
1972-01-01
Observational techniques, derived through space technology, and examples of what can be learned from X-ray observations of a few astronomical objects are given. Astronomical phenomena observed include the sun, stellar objects, and galactic objects.
Conjunction Assessment Late-Notice High-Interest Event Investigation: Space Weather Aspects
NASA Technical Reports Server (NTRS)
Pachura, D.; Hejduk, M. D.
2016-01-01
Late-notice events usually driven by large changes in primary (protected) object or secondary object state. Main parameter to represent size of state change is component position difference divided by associated standard deviation (epsilon divided by sigma) from covariance. Investigation determined actual frequency of large state changes, in both individual and combined states. Compared them to theoretically expected frequencies. Found that large changes ( (epsilon divided by sigma) is greater than 3) in individual object states occur much more frequently than theory dictates. Effect is less pronounced in radial components and in events with probability of collision (Pc) greater than 1 (sup -5) (1e-5). Found combined state matched much closer to theoretical expectation, especially for radial and cross-track. In-track is expected to be the most vulnerable to modeling errors, so not surprising that non-compliance largest in this component.
A data set for evaluating the performance of multi-class multi-object video tracking
NASA Astrophysics Data System (ADS)
Chakraborty, Avishek; Stamatescu, Victor; Wong, Sebastien C.; Wigley, Grant; Kearney, David
2017-05-01
One of the challenges in evaluating multi-object video detection, tracking and classification systems is having publically available data sets with which to compare different systems. However, the measures of performance for tracking and classification are different. Data sets that are suitable for evaluating tracking systems may not be appropriate for classification. Tracking video data sets typically only have ground truth track IDs, while classification video data sets only have ground truth class-label IDs. The former identifies the same object over multiple frames, while the latter identifies the type of object in individual frames. This paper describes an advancement of the ground truth meta-data for the DARPA Neovision2 Tower data set to allow both the evaluation of tracking and classification. The ground truth data sets presented in this paper contain unique object IDs across 5 different classes of object (Car, Bus, Truck, Person, Cyclist) for 24 videos of 871 image frames each. In addition to the object IDs and class labels, the ground truth data also contains the original bounding box coordinates together with new bounding boxes in instances where un-annotated objects were present. The unique IDs are maintained during occlusions between multiple objects or when objects re-enter the field of view. This will provide: a solid foundation for evaluating the performance of multi-object tracking of different types of objects, a straightforward comparison of tracking system performance using the standard Multi Object Tracking (MOT) framework, and classification performance using the Neovision2 metrics. These data have been hosted publically.
Zhang, Kaihua; Zhang, Lei; Yang, Ming-Hsuan
2014-10-01
It is a challenging task to develop effective and efficient appearance models for robust object tracking due to factors such as pose variation, illumination change, occlusion, and motion blur. Existing online tracking algorithms often update models with samples from observations in recent frames. Despite much success has been demonstrated, numerous issues remain to be addressed. First, while these adaptive appearance models are data-dependent, there does not exist sufficient amount of data for online algorithms to learn at the outset. Second, online tracking algorithms often encounter the drift problems. As a result of self-taught learning, misaligned samples are likely to be added and degrade the appearance models. In this paper, we propose a simple yet effective and efficient tracking algorithm with an appearance model based on features extracted from a multiscale image feature space with data-independent basis. The proposed appearance model employs non-adaptive random projections that preserve the structure of the image feature space of objects. A very sparse measurement matrix is constructed to efficiently extract the features for the appearance model. We compress sample images of the foreground target and the background using the same sparse measurement matrix. The tracking task is formulated as a binary classification via a naive Bayes classifier with online update in the compressed domain. A coarse-to-fine search strategy is adopted to further reduce the computational complexity in the detection procedure. The proposed compressive tracking algorithm runs in real-time and performs favorably against state-of-the-art methods on challenging sequences in terms of efficiency, accuracy and robustness.
Real-time object detection, tracking and occlusion reasoning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Divakaran, Ajay; Yu, Qian; Tamrakar, Amir
A system for object detection and tracking includes technologies to, among other things, detect and track moving objects, such as pedestrians and/or vehicles, in a real-world environment, handle static and dynamic occlusions, and continue tracking moving objects across the fields of view of multiple different cameras.
Self-Motion Impairs Multiple-Object Tracking
ERIC Educational Resources Information Center
Thomas, Laura E.; Seiffert, Adriane E.
2010-01-01
Investigations of multiple-object tracking aim to further our understanding of how people perform common activities such as driving in traffic. However, tracking tasks in the laboratory have overlooked a crucial component of much real-world object tracking: self-motion. We investigated the hypothesis that keeping track of one's own movement…
Visual object recognition and tracking
NASA Technical Reports Server (NTRS)
Chang, Chu-Yin (Inventor); English, James D. (Inventor); Tardella, Neil M. (Inventor)
2010-01-01
This invention describes a method for identifying and tracking an object from two-dimensional data pictorially representing said object by an object-tracking system through processing said two-dimensional data using at least one tracker-identifier belonging to the object-tracking system for providing an output signal containing: a) a type of the object, and/or b) a position or an orientation of the object in three-dimensions, and/or c) an articulation or a shape change of said object in said three dimensions.
Structure preserving clustering-object tracking via subgroup motion pattern segmentation
NASA Astrophysics Data System (ADS)
Fan, Zheyi; Zhu, Yixuan; Jiang, Jiao; Weng, Shuqin; Liu, Zhiwen
2018-01-01
Tracking clustering objects with similar appearances simultaneously in collective scenes is a challenging task in the field of collective motion analysis. Recent work on clustering-object tracking often suffers from poor tracking accuracy and terrible real-time performance due to the neglect or the misjudgment of the motion differences among objects. To address this problem, we propose a subgroup motion pattern segmentation framework based on a multilayer clustering structure and establish spatial constraints only among objects in the same subgroup, which entails having consistent motion direction and close spatial position. In addition, the subgroup segmentation results are updated dynamically because crowd motion patterns are changeable and affected by objects' destinations and scene structures. The spatial structure information combined with the appearance similarity information is used in the structure preserving object tracking framework to track objects. Extensive experiments conducted on several datasets containing multiple real-world crowd scenes validate the accuracy and the robustness of the presented algorithm for tracking objects in collective scenes.
Using Wide-Field Meteor Cameras to Actively Engage Students in Science
NASA Astrophysics Data System (ADS)
Kuehn, D. M.; Scales, J. N.
2012-08-01
Astronomy has always afforded teachers an excellent topic to develop students' interest in science. New technology allows the opportunity to inexpensively outfit local school districts with sensitive, wide-field video cameras that can detect and track brighter meteors and other objects. While the data-collection and analysis process can be mostly automated by software, there is substantial human involvement that is necessary in the rejection of spurious detections, in performing dynamics and orbital calculations, and the rare recovery and analysis of fallen meteorites. The continuous monitoring allowed by dedicated wide-field surveillance cameras can provide students with a better understanding of the behavior of the night sky including meteors and meteor showers, stellar motion, the motion of the Sun, Moon, and planets, phases of the Moon, meteorological phenomena, etc. Additionally, some students intrigued by the possibility of UFOs and "alien visitors" may find that actual monitoring data can help them develop methods for identifying "unknown" objects. We currently have two ultra-low light-level surveillance cameras coupled to fish-eye lenses that are actively obtaining data. We have developed curricula suitable for middle or high school students in astronomy and earth science courses and are in the process of testing and revising our materials.
NASA Astrophysics Data System (ADS)
Manara, C. F.; Testi, L.; Herczeg, G. J.; Pascucci, I.; Alcalá, J. M.; Natta, A.; Antoniucci, S.; Fedele, D.; Mulders, G. D.; Henning, T.; Mohanty, S.; Prusti, T.; Rigliaco, E.
2017-08-01
The dependence of the mass accretion rate on the stellar properties is a key constraint for star formation and disk evolution studies. Here we present a study of a sample of stars in the Chamaeleon I star-forming region carried out using spectra taken with the ESO VLT/X-shooter spectrograph. The sample is nearly complete down to stellar masses (M⋆) 0.1 M⊙ for the young stars still harboring a disk in this region. We derive the stellar and accretion parameters using a self-consistent method to fit the broadband flux-calibrated medium resolution spectrum. The correlation between accretion luminosity to stellar luminosity, and of mass accretion rate to stellar mass in the logarithmic plane yields slopes of 1.9 ± 0.1 and 2.3 ± 0.3, respectively. These slopes and the accretion rates are consistent with previous results in various star-forming regions and with different theoretical frameworks. However, we find that a broken power-law fit, with a steeper slope for stellar luminosity lower than 0.45 L⊙ and for stellar masses lower than 0.3 M⊙ is slightly preferred according to different statistical tests, but the single power-law model is not excluded. The steeper relation for lower mass stars can be interpreted as a faster evolution in the past for accretion in disks around these objects, or as different accretion regimes in different stellar mass ranges. Finally, we find two regions on the mass accretion versus stellar mass plane that are empty of objects: one region at high mass accretion rates and low stellar masses, which is related to the steeper dependence of the two parameters we derived. The second region is located just above the observational limits imposed by chromospheric emission, at M⋆ 0.3 - 0.4 M⊙. These are typical masses where photoevaporation is known to be effective. The mass accretion rates of this region are 10-10M⊙/yr, which is compatible with the value expected for photoevaporation to rapidly dissipate the inner disk. This work is based on observations made with ESO Telescopes at the Paranal Observatory under programme ID 090.C-0253 and 095.C-0378.
NASA Astrophysics Data System (ADS)
Camargo, J. I. B.; Desmars, J.; Braga-Ribas, F.; Vieira-Martins, R.; Assafin, M.; Sicardy, B.; Bérard, D.; Benedetti-Rossi, G.
2018-05-01
Distant objects in the solar system are crucial to better understand the history and evolution of its outskirts. The stellar occultation technique allows the determination of their sizes and shapes with kilometric accuracy, a detailed investigation of their immediate vicinities, as well as the detection of tenuous atmospheres. The prediction of such events is a key point in this study, and yet accurate enough predictions are available to a handful of objects only. In this work, we briefly discuss the dramatic impact that both the astrometry from the Gaia space mission and the deep sky surveys - the Large Synoptic Survey Telescope in particular - will have on the prediction of stellar occultations and how they may influence the future of the study of distant small solar system bodies through this technique.
The inner-disk and stellar properties of the young stellar object WL 16
NASA Technical Reports Server (NTRS)
Carr, John S.; Tokunaga, Alan T.; Najita, Joan; Shu, Frank H.; Glassgold, Alfred E.
1993-01-01
We present kinematic evidence for a rapidly rotating circumstellar disk around the young stellar object WL 16, based on new high-velocity-resolution data of the v = 2-0 CO bandhead emission. A Keplerian disk provides an excellent fit to the observed profile and requires a projected velocity for the CO-emitting region of roughly 250 km/s at the inner radius and 140 km/s at the outer radius, giving a ratio of the inner to the outer radius of about 0.3. We show that satisfying the constraints imposed by the gas kinematics, the observed CO flux, and the total source luminosity requires the mass of WL 16 to lie between 1.4 and 2.5 solar mass. The inner disk radius for the CO emission must be less than 8 solar radii.
Equilibrium 𝛽-limits in classical stellarators
NASA Astrophysics Data System (ADS)
Loizu, J.; Hudson, S. R.; Nührenberg, C.; Geiger, J.; Helander, P.
2017-12-01
A numerical investigation is carried out to understand the equilibrium -limit in a classical stellarator. The stepped-pressure equilibrium code (Hudson et al., Phys. Plasmas, vol. 19 (11), 2012) is used in order to assess whether or not magnetic islands and stochastic field-lines can emerge at high . Two modes of operation are considered: a zero-net-current stellarator and a fixed-iota stellarator. Despite the fact that relaxation is allowed (Taylor, Rev. Mod. Phys., vol. 58 (3), 1986, pp. 741-763), the former is shown to maintain good flux surfaces up to the equilibrium -limit predicted by ideal-magnetohydrodynamics (MHD), above which a separatrix forms. The latter, which has no ideal equilibrium -limit, is shown to develop regions of magnetic islands and chaos at sufficiently high , thereby providing a `non-ideal -limit'. Perhaps surprisingly, however, the value of at which the Shafranov shift of the axis reaches a fraction of the minor radius follows in all cases the scaling laws predicted by ideal-MHD. We compare our results to the High-Beta-Stellarator theory of Freidberg (Ideal MHD, 2014, Cambridge University Press) and derive a new prediction for the non-ideal equilibrium -limit above which chaos emerges.
Quantitative spectroscopy of Deneb
NASA Astrophysics Data System (ADS)
Schiller, F.; Przybilla, N.
2008-03-01
Context: Quantitative spectroscopy of luminous BA-type supergiants offers a high potential for modern astrophysics. Detailed studies allow the evolution of massive stars, galactochemical evolution, and the cosmic distance scale to be constrained observationally. Aims: A detailed and comprehensive understanding of the atmospheres of BA-type supergiants is required in order to use this potential properly. The degree to which we can rely on quantitative studies of this class of stars as a whole depends on the quality of the analyses for benchmark objects. We constrain the basic atmospheric parameters and fundamental stellar parameters, as well as chemical abundances of the prototype A-type supergiant Deneb to unprecedented accuracy by applying a sophisticated analysis methodology, which has recently been developed and tested. Methods: The analysis is based on high-S/N and high-resolution spectra in the visual and near-IR. Stellar parameters and abundances for numerous astrophysically interesting elements are derived from synthesis of the photospheric spectrum using a hybrid non-LTE technique, i.e. line-blanketed LTE model atmospheres and non-LTE line formation. Multiple metal ionisation equilibria and numerous hydrogen lines from the Balmer, Paschen, Brackett, and Pfund series are utilised simultaneously for the stellar parameter determination. The stellar wind properties are derived from Hα line-profile fitting using line-blanketed hydrodynamic non-LTE models. Further constraints come from matching the photospheric spectral energy distribution from the UV to the near-IR L band. Results: The atmospheric parameters of Deneb are tightly constrained: effective temperature T_eff = 8525±75 K, surface gravity log g = 1.10±0.05, microturbulence ξ = 8±1 km s-1, macroturbulence, and projected rotational velocity v sin i are both 20 ± 2 km s-1. The abundance analysis gives helium enrichment by 0.10 dex relative to solar and an N/C ratio of 4.44 ± 0.84 (mass fraction), implying strong mixing with CN-processed matter. The heavier elements are consistently underabundant by 0.20 dex compared to solar. Peculiar abundance patterns, which were suggested in previous analyses cannot be confirmed. Accounting for non-LTE effects is essential for removing systematic trends in the abundance determination, for minimising statistical 1σ-uncertainties to ⪉10-20% and for establishing all ionisation equilibria at the same time. Conclusions: A luminosity of (1.96 ± 0.32)×105 L⊙, a radius of 203 ± 17 R_⊙, and a current mass of 19 ± 4 M⊙ are derived. Comparison with stellar evolution predictions suggests that Deneb started as a fast-rotating late O-type star with M^ZAMS≃ 23 M_⊙ on the main sequence and is currently evolving to the red supergiant stage. Based on observations collected at the Centro Astronómico Hispano Alemán (CAHA) at Calar Alto, operated jointly by the Max-Planck Institut für Astronomie and the Instituto de Astrofisica de Andalucia (CSIC). Appendix A is only available in electronic form at http://www.aanda.org
[A comparison of leak compensation in six acute care ventilators during non-invasive ventilation].
Hu, X S; Wang, Y; Wang, Z T; Yan, P; Zhang, X G; Zhao, S F; Xie, F; Gu, H J; Xie, L X
2017-02-12
Objective: To compare the ability of leak compensation in 6 medical ventilators during non-invasive ventilation. Methods: Six medical ventilators were selected, including 3 non-invasive ventilators (V60, Flexo and Stellar150), and 3 invasive ventilators(Avea, Servo I and BellaVist). Using a lung simulator, the ability of leak compensation was evaluated during triggering and cycling in 2 respiratory mechanics conditions (high airway resistance condition and high elastance resistance condition), and each condition was performed under 2 PEEP levels (4, and 8 cmH(2)O, 1 mmHg=0.098 kPa) at 4 air leak level conditions (L0: 2-3 L/min, L1: 8-10 L/min, L2: 22-27 L/min, L3: 35-40 L/min). Results: In the high elastance resistance condition (L2, L3)with different leak levels, the number of auto-triggering and miss-triggering of the non-invasive ventilator Flexo was significantly less than those of the others (L2: 1, 1; L3: 1.67, 1.33, P <0.01), and had better synchronization (L2: 2.33, 2.33; L3: 3.33, 3.33, P <0.01). In the high airway resistance condition with PEEP 4 cmH(2)O, V60 had less number of auto-triggering than other ventilators ( P <0.01), while in the high airway resistance condition with PEEP 8 cmH(2)O, Stellar150 had less number of miss-triggering than other ventilators (1, 0.67, 0, P <0.01). Flexo had a shorter trigger delay time than other ventilators in both high airway resistance and high elastance resistance conditions with L0 and L1 leak levels and PEEP levels [ARDS, PEEP=4: (109.8±1.8) ms, (112.0±0.6) ms; ARDS, PEEP=8: (103.1±0.7) ms, (109.7±0.7) ms; COPD, PEEP=4: (207.3±1.1) ms, (220.8±1.1) ms; COPD, PEEP=8: (195.6±6.7) ms, (200.0±1.2) ms , P <0.01]. Stellar150 had the shortest trigger delay time in high airway resistance condition with PEEP 4 cmH(2)O and high leak level L3[(262.8±0.8) ms , P <0.01]. V60 had a good performance on trigger delay time in high elastance resistance condition with PEEP 4 and 8 cmH(2)O, and also was most stable in increasing leak levels. Conclusion: In high airway resistance and high elastance resistance conditions with different PEEP levels and leak levels, V60, Stellar150, Flexo and BellaVista ventilators could be synchronized, among which V60, Stellar150 and Flexo presented a good performance features in specific conditions.
A Spectroscopic Study of Young Stellar Objects in the Serpens Cloud Core and NGC 1333
NASA Astrophysics Data System (ADS)
Winston, E.; Megeath, S. T.; Wolk, S. J.; Hernandez, J.; Gutermuth, R.; Muzerolle, J.; Hora, J. L.; Covey, K.; Allen, L. E.; Spitzbart, B.; Peterson, D.; Myers, P.; Fazio, G. G.
2009-06-01
We present spectral observations of 130 young stellar objects (YSOs) in the Serpens Cloud Core and NGC 1333 embedded clusters. The observations consist of near-IR spectra in the H and K bands from SpeX on the IRTF and far-red spectra (6000-9000 Å) from Hectospec on the Multi-Mirror Telescope. These YSOs were identified in previous Spitzer and Chandra observations, and the evolutionary classes of the YSOs were determined from the Spitzer mid-IR photometry. With these spectra we search for corroborating evidence for the pre-main-sequence nature of the objects, study the properties of the detected emission lines as a function of evolutionary class, and obtain spectral types for the observed YSOs. The temperatures implied by the spectral types are combined with luminosities determined from the near-IR photometry to construct Hertzsprung-Russell (H-R) diagrams for the clusters. By comparing the positions of the YSOs in the H-R diagrams with the pre-main-sequence tracks of Baraffe (1998), we determine the ages of the embedded sources and study the relative ages of the YSOs with and without optically thick circumstellar disks. The apparent isochronal ages of the YSOs in both clusters range from less than 1 Myr to 10 Myr, with most objects below 3 Myr. The observed distributions of ages for the Class II and Class III objects are statistically indistinguishable. We examine the spatial distribution and extinction of the YSOs as a function of their isochronal ages. We find the sources <3 Myr to be concentrated in the molecular cloud gas, while the older sources are spatially dispersed and are not deeply embedded. Nonetheless, the sources with isochronal ages >3 Myr show all the characteristics of YSOs in their spectra, their IR spectral energy distributions, and their X-ray emission; we find no evidence that they are contaminating background giants or foreground dwarfs. However, we find no corresponding decrease in the fraction of sources with infrared excess with isochronal age; this suggests that the older isochronal ages may not measure the true age of the >3 Myr YSOs. Thus, the nature of the apparently older sources and their implications for cluster formation remain unresolved.
Thomas-Fermi model for a bulk self-gravitating stellar object in two dimensions
NASA Astrophysics Data System (ADS)
De, Sanchari; Chakrabarty, Somenath
2015-09-01
In this article we have solved a hypothetical problem related to the stability and gross properties of two-dimensional self-gravitating stellar objects using the Thomas-Fermi model. The formalism presented here is an extension of the standard three-dimensional problem discussed in the book on statistical physics, Part I by Landau and Lifshitz. Further, the formalism presented in this article may be considered a class problem for post-graduate-level students of physics or may be assigned as a part of their dissertation project.
Classifying and Finding Nearby Compact Stellar Systems
NASA Astrophysics Data System (ADS)
Colebaugh, Alexander; Cunningham, Devin; Dixon, Christopher; Romanowsky, Aaron; Striegel, Stephanie
2018-01-01
Compact stellar systems (CSSs) such as compact ellipticals (cEs) and ultracompact dwarfs (UCDs) are relatively rare and poorly understood types of galaxies. To build a more complete picture of these objects, we create search queries using the Sloan Digital Sky Survey, to inventory CSSs in the nearby universe and to explore their properties. We develop an objective set of criteria for classifying cEs, and use these to construct a large, novel catalog of cEs both during and after formation. We also investigate the numbers of cEs and UCDs around nearby giant galaxies.
IPS guidestar selection for stellar mode (ASTRO)
NASA Technical Reports Server (NTRS)
Mullins, Larry; Wooten, Lewis
1988-01-01
This report describes how guide stars are selected for the Optical Sensor Package (OSP) for the Instrument Pointing System (IPS) when it is operating in the stellar mode on the ASTRO missions. It also describes how the objective loads are written and how the various roll angles are related; i.e., the celestial roll or position angle, the objective load roll angles, and the IPS gimbal angles. There is a brief description of how the IPS operates and its various modes of operation; i.e., IDOP, IDIN, and OSPCAL.
NASA Astrophysics Data System (ADS)
Akeson, Rachel
Young stellar objects have been one of the favorite targets of infrared interferometers for many years. In this contribution I will briefly review some of the first results and their contributions to the field and then describe some of the recent results from the Keck Interferometer (KI), the Palomar Testbed Interferometer (PTI) and the Infrared-Optical Telescope Array (IOTA). This conference also saw many exciting new results from the VLTI at both near and mid-infrared wavelengths that are covered by other contributions.
NASA Astrophysics Data System (ADS)
Barrera-Ballesteros, J. K.; García-Lorenzo, B.; Falcón-Barroso, J.; van de Ven, G.; Lyubenova, M.; Wild, V.; Méndez-Abreu, J.; Sánchez, S. F.; Marquez, I.; Masegosa, J.; Monreal-Ibero, A.; Ziegler, B.; del Olmo, A.; Verdes-Montenegro, L.; García-Benito, R.; Husemann, B.; Mast, D.; Kehrig, C.; Iglesias-Paramo, J.; Marino, R. A.; Aguerri, J. A. L.; Walcher, C. J.; Vílchez, J. M.; Bomans, D. J.; Cortijo-Ferrero, C.; González Delgado, R. M.; Bland-Hawthorn, J.; McIntosh, D. H.; Bekeraitė, S.
2015-10-01
We present spatially resolved stellar and/or ionized gas kinematic properties for a sample of 103 interacting galaxies, tracing all merger stages: close companions, pairs with morphological signatures of interaction, and coalesced merger remnants. In order to distinguish kinematic properties caused by a merger event from those driven by internal processes, we compare our galaxies with a control sample of 80 non-interacting galaxies. We measure for both the stellar and the ionized gas components the major (projected) kinematic position angles (PAkin, approaching and receding) directly from the velocity distributions with no assumptions on the internal motions. This method also allow us to derive the deviations of the kinematic PAs from a straight line (δPAkin). We find that around half of the interacting objects show morpho-kinematic PA misalignments that cannot be found in the control sample. In particular, we observe those misalignments in galaxies with morphological signatures of interaction. On the other hand, thelevel of alignment between the approaching and receding sides for both samples is similar, with most of the galaxies displaying small misalignments. Radial deviations of the kinematic PA orientation from a straight line in the stellar component measured by δPAkin are large for both samples. However, for a large fraction of interacting galaxies the ionized gas δPAkin is larger than the typical values derived from isolated galaxies (48%), indicating that this parameter is a good indicator to trace the impact of interaction and mergers in the internal motions of galaxies. By comparing the stellar and ionized gas kinematic PA, we find that 42% (28/66) of the interacting galaxies have misalignments larger than 16°, compared to 10% from the control sample. Our results show the impact of interactions in the motion of stellar and ionized gas as well as the wide the variety of their spatially resolved kinematic distributions. This study also provides a local Universe benchmark for kinematic studies in merging galaxies at high redshift. Appendices are available in electronic form at http://www.aanda.org
NASA Astrophysics Data System (ADS)
Tremmel, M.; Governato, F.; Volonteri, M.; Quinn, T. R.; Pontzen, A.
2018-04-01
We present the first self-consistent prediction for the distribution of formation time-scales for close supermassive black hole (SMBH) pairs following galaxy mergers. Using ROMULUS25, the first large-scale cosmological simulation to accurately track the orbital evolution of SMBHs within their host galaxies down to sub-kpc scales, we predict an average formation rate density of close SMBH pairs of 0.013 cMpc-3 Gyr-1. We find that it is relatively rare for galaxy mergers to result in the formation of close SMBH pairs with sub-kpc separation and those that do form are often the result of Gyr of orbital evolution following the galaxy merger. The likelihood and time-scale to form a close SMBH pair depends strongly on the mass ratio of the merging galaxies, as well as the presence of dense stellar cores. Low stellar mass ratio mergers with galaxies that lack a dense stellar core are more likely to become tidally disrupted and deposit their SMBH at large radii without any stellar core to aid in their orbital decay, resulting in a population of long-lived `wandering' SMBHs. Conversely, SMBHs in galaxies that remain embedded within a stellar core form close pairs in much shorter time-scales on average. This time-scale is a crucial, though often ignored or very simplified, ingredient to models predicting SMBH mergers rates and the connection between SMBH and star formation activity.
Feedback Driven Chemical Evolution in Simulations of Low Mass Dwarf Galaxies
NASA Astrophysics Data System (ADS)
Emerick, Andrew; Bryan, Greg; Mac Low, Mordecai-Mark
2018-06-01
Galaxy chemical properties place some of the best constraints on models of galaxy evolution. Both gas and stellar metal abundances in galaxies depend upon the integrated star formation history of the galaxy, gas accretion, outflows, and the effectiveness of metal mixing within the interstellar medium (ISM). Capturing the physics that governs these processes in detail, however, is challenging, in part due to the difficulty in self-consistently modelling stellar feedback physics that impacts each of these processes. Using high resolution hydrodynamics simulations of isolated dwarf galaxies where we follow stars as individual star particles, we examine the role of feedback in driving dwarf galaxy chemical evolution. This star-by-star method allows us to directly follow feedback from stellar winds from massive and AGB stars, stellar ionizing radiation and photoelectric heating, and supernovae. Additionally, we track 15 individual metal species yields from these stars as they pollute the ISM and enrich new stellar populations. I will present initial results from these simulations in the context of observational constraints on the retention/ejection of metals from Local Group dwarf galaxies. In addition, I will discuss the variations with which individual elements evolve in the various phases of the ISM, as they progress from hot, ionized gas down to cold, star forming regions. I will conclude by outlining the implications of these results on interpretations of observed chemical abundances in dwarf galaxies and on standard assumptions made in semi-analytic chemical evolution models of these galaxies.
NASA Astrophysics Data System (ADS)
Sybilski, P.; Pawłaszek, R. K.; Sybilska, A.; Konacki, M.; Hełminiak, K. G.; Kozłowski, S. K.; Ratajczak, M.
2018-07-01
We have obtained high-resolution spectra of four eclipsing binary systems (FM Leo, NN Del, V963 Cen and AI Phe) with the view to gaining an insight into the relative orientations of their stellar spin axes and orbital axes. The so-called Rossiter-McLaughlin (RM) effect, i.e. the fact that the broadening and the amount of blue or redshift in the spectra during an eclipse depends on the tilt of the spin axis of the background star, has the potential of reconciling observations and theoretical models if such a tilt is found. We analyse the RM effect by disentangling the spectra, removing the front component and measuring the remaining, distorted lines with a broadening function (BF) obtained from single-value decomposition (SVD), weighting by the intensity centre of the BF in the eclipse. All but one of our objects show no significant misalignment, suggesting that aligned systems are dominant. We provide stellar as well as orbital parameters for our systems. With five measured spin-orbit angles, we increase significantly (from 9 to 14) the number of stars for which it has been measured. The spin-orbit angle β calculated for AI Phe's secondary component shows a misalignment of 87±17°. NN Del, with a large separation of components and a long dynamical time-scale for circularization and synchronization, is an example of a close to primordial spin-orbit angle measurement.
Extending the capability of GYRE to calculate tidally forced stellar oscillations
NASA Astrophysics Data System (ADS)
Guo, Zhao; Gies, Douglas R.
2016-01-01
Tidally forced oscillations have been observed in many eccentric binary systems, such as KOI-54 and many other 'heart beat stars'. The tidal response of the star can be calculated by solving a revised stellar oscillations equations.The open-source stellar oscillation code GYRE (Townsend & Teitler 2013) can be used to solve the free stellar oscillation equations in both adiabatic and non-adiabatic cases. It uses a novel matrix exponential method which avoids many difficulties of the classical shooting and relaxation method. The new version also includes the effect of rotation in traditional approximation.After showing the code flow of GYRE, we revise its subroutines and extend its capability to calculate tidallyforced oscillations in both adiabatic and non-adiabatic cases following the procedure in the CAFein code (Valsecchi et al. 2013). In the end, we compare the tidal eigenfunctions with those calculated from CAFein.More details of the revision and a simple version of the code in MATLAB can be obtained upon request.
Non-LTE analysis of the Ofpe/WN9 star HDE 269227 (R84)
NASA Technical Reports Server (NTRS)
Schmutz, Werner; Leitherer, Claus; Hubeny, Ivan; Vogel, Manfred; Hamann, Wolf-Rainer
1991-01-01
The paper presents the results of a spectral analysis of the Ofpe/WN9 star HD 269227 (R84), which assumes a spherically expanding atmosphere to find solutions for equations of radiative transfer. The spectra of hydrogen and helium were predicted with a non-LTE model. Six stellar parameters were determined for R84. The shape of the velocity law is empirically found, since it can be probed from the terminal velocity of the wind. The six stellar parameters are further employed in a hydrodynamic model where stellar wind is assumed to be directed by radiation pressure, duplicating the mass-loss rate and the terminal wind velocity. The velocity laws found by computation and analysis are found to agree, supporting the theory of radiation-driven stellar wind. R84 is surmised to be a post-red supergiant which lost half of its initial mass, possibly during the red-supergiant phase. This mass loss is also suggested by its spectroscopic similarity to S Doradus.
NASA Technical Reports Server (NTRS)
Liu, Wilson M.; Padgett, Deborah L.; Terebey, Susan; Angione, John; Rebull, Luisa M.; McCollum, Bruce; Fajardo-Acosta, Sergio; Leisawitz, David
2015-01-01
The Wide-Field Infrared Survey Explorer (WISE) has uncovered a striking cluster of young stellar object (YSO) candidates associated with the L1509 dark cloud in Auriga. The WISE observations, at 3.4, 4.6, 12, and 22 microns, show a number of objects with colors consistent with YSOs, and their spectral energy distributions suggest the presence of circumstellar dust emission, including numerous Class I, flat spectrum, and Class II objects. In general, the YSOs in L1509 are much more tightly clustered than YSOs in other dark clouds in the Taurus-Auriga star forming region, with Class I and flat spectrum objects confined to the densest aggregates, and Class II objects more sparsely distributed. We estimate a most probable distance of 485-700 pc, and possibly as far as the previously estimated distance of 2 kpc.
NASA Astrophysics Data System (ADS)
Cattaneo, A.; Blaizot, J.; Devriendt, J. E. G.; Mamon, G. A.; Tollet, E.; Dekel, A.; Guiderdoni, B.; Kucukbas, M.; Thob, A. C. R.
2017-10-01
GalICS 2.0 is a new semi-analytic code to model the formation and evolution of galaxies in a cosmological context. N-body simulations based on a Planck cosmology are used to construct halo merger trees, track subhaloes, compute spins and measure concentrations. The accretion of gas on to galaxies and the morphological evolution of galaxies are modelled with prescriptions derived from hydrodynamic simulations. Star formation and stellar feedback are described with phenomenological models (as in other semi-analytic codes). GalICS 2.0 computes rotation speeds from the gravitational potential of the dark matter, the disc and the central bulge. As the rotation speed depends not only on the virial velocity but also on the ratio of baryons to dark matter within a galaxy, our calculation predicts a different Tully-Fisher relation from models in which vrot ∝ vvir. This is why, GalICS 2.0 is able to reproduce the galaxy stellar mass function and the Tully-Fisher relation simultaneously. Our results are also in agreement with halo masses from weak lensing and satellite kinematics, gas fractions, the relation between star formation rate (SFR) and stellar mass, the evolution of the cosmic SFR density, bulge-to-disc ratios, disc sizes and the Faber-Jackson relation.
Mourard, Denis; Bério, Philippe; Perraut, Karine; Clausse, Jean-Michel; Creevey, Orlagh; Martinod, Marc-Antoine; Meilland, Anthony; Millour, Florentin; Nardetto, Nicolas
2017-05-01
High angular resolution studies of stars in the optical domain have highly progressed in recent years. After the results obtained with the visible instrument Visible spEctroGraph and polArimeter (VEGA) on the Center for High Angular Resolution Astronomy (CHARA) array and the recent developments on adaptive optics and fibered interferometry, we have started the design and study of a new six-telescope visible combiner with single-mode fibers. It is designed as a low spectral resolution instrument for the measurement of the angular diameter of stars to make a major step forward in terms of magnitude and precision with respect to the present situation. For a large sample of bright stars, a medium spectral resolution mode will allow unprecedented spectral imaging of stellar surfaces and environments for higher accuracy on stellar/planetary parameters. To reach the ultimate performance of the instrument in terms of limiting magnitude (Rmag≃8 for diameter measurements and Rmag≃4 to 5 for imaging), Stellar Parameters and Images with a Cophased Array (SPICA) includes the development of a dedicated fringe tracking system in the H band to reach "long" (200 ms to 30 s) exposures of the fringe signal in the visible.
Finding new sub-stellar co-moving companion candidates - the case of CT Cha
NASA Astrophysics Data System (ADS)
Schmidt, Tobias; Neuhäuser, Ralph
2008-05-01
We have searched for close and faint companions around T Tauri stars in the Chamaeleon star forming region. Two epochs of direct imaging data were taken with the VLT Adaptive Optics instrument NaCo in February 2006 and March 2007 in Ks band for the classical T Tauri star CT Cha together with a Hipparcos binary for astrometric calibration. Moreover a J band image was taken in March 2007 to get color information. We found CT Cha to have a very faint companion (Ks0=14.6 mag) of 2.67” separation corresponding to 440AU. We show that CT Cha A and the faint object form a common proper motion pair and that the companion is not a non-moving background object (with 4σ significance).
A sudden brightness decrease of the young pre-MS object GM Cep
NASA Astrophysics Data System (ADS)
Munari, U.; Castellani, F.; Giannini, T.; Antoniucci, S.; Lorenzetti, D.
2017-11-01
In the framework of our EXor monitoring programme dubbed EXORCISM (EXOR OptiCal and Infrared Systematic Monitoring - Antoniucci et al. 2013 PPVI, Lorenzetti et al. 2007 ApJ 665, 1182; Lorenzetti et al. 2009 ApJ 693, 1056), we observed a new fading of the optical brightness of the Young Stellar Object (YSO) GM Cep (d=870 pc). This is a well studied variable (Semkov & Peneva 2012 APSS,338,95; Ibryamov et al. 2015 PASA,32,11; Xiao, Kroll, & Henden 2010 AJ, 139, 1527; Sicilia-Aguilar et al. 2008 ApJ,673,382-3) whose light-curve is dominated by recurrent brightness dims, interpreted as non-periodical eclipse events due to orbiting dust structures that move along the line of sight (UXor-type variability - Grinin 1988).
Interaction effects on galaxy pairs with Gemini/GMOS- III: stellar population synthesis
NASA Astrophysics Data System (ADS)
Krabbe, A. C.; Rosa, D. A.; Pastoriza, M. G.; Hägele, G. F.; Cardaci, M. V.; Dors, O. L., Jr.; Winge, C.
2017-05-01
We present an observational study of the impacts of interactions on the stellar population in a sample of galaxy pairs. Long-slit spectra in the wavelength range 3440-7300 Å obtained with the Gemini Multi-Object Spectrograph (GMOS) at Gemini South for 15 galaxies in nine close pairs were used. The spatial distributions of the stellar population contributions were obtained using the stellar population synthesis code starlight. Taking into account the different contributions to the emitted light, we found that most of the galaxies in our sample are dominated by young/intermediate stellar populations. This result differs from the one derived for isolated galaxies, where the old stellar population dominates the disc surface brightness. We interpreted such different behaviour as being due to the effect of gas inflows along the discs of interacting galaxies on the star formation over a time-scale of the order of about 2 Gyr. We also found that, in general, the secondary galaxy of a pair has a higher contribution from the young stellar population than the primary one. We compared the estimated values of stellar and nebular extinction derived from the synthesis method and the Hα/Hβ emission-line ratio, finding that nebular extinctions are systematically higher than stellar ones by about a factor of 2. We did not find any correlation between nebular and stellar metallicities. Neither did we find a correlation between stellar metallicities and ages, while a positive correlation between nebular metallicities and stellar ages was obtained, with older regions being the most metal-rich.
NASA Astrophysics Data System (ADS)
Garcés, A.; Catalán, S.; Ribas, I.
2011-07-01
Context. Stellar ages are extremely difficult to determine and often subject to large uncertainties, especially for field low-mass stars. We plan to carry out a calibration of the decrease in high-energy emissions of low-mass GKM stars with time, and therefore precise age determination is a key ingredient. The overall goal of our research is to study the time evolution of these high-energy emissions as an essential input to studying exoplanetary atmospheres. Aims: We propose to determine stellar ages with a methodology based on wide binaries. We are interested in systems composed of a low-mass star and a white dwarf (WD), where the latter serves as a stellar chronometer for the system. We aim at obtaining reliable ages for a sample of late-type stars older than 1 Gyr. Methods: We selected a sample of wide binaries composed by a DA type WD and a GKM companion. High signal-to-noise, low-resolution spectroscopic observations were obtained for most of the WD members of the sample. Atmospheric parameters were determined by fitting the spectroscopic data to appropiate WD models. The total ages of the systems were derived by using cooling sequences, an initial-final mass relationship and evolutionary tracks, to account for the progenitor life. Results: The spectroscopic observations have allowed us to determine ages for the binary systems using WDs as cosmochronometers. We obtained reliable ages for 27 stars between 1 and 5 Gyr, which is a range where age determination becomes difficult for field objects. Roughly half of these systems have cooling ages that contribute at least 30% the total age. We select those for further study since their age estimate should be less prone to systematic errors coming from the initial-final mass relationship. Conclusions: We have determined robust ages for a sizeable sample of GKM stars that can be subsequently used to study the time evolution of their emissions associated to stellar magnetic activity. Based on observations collected at the Centro Astronómico Hispano Alemán (CAHA) at Calar Alto, operated jointly by the Max-Planck Institut für Astronomie and the Instituto de Astrofísica de Andalucía (CSIC).Based on observations made with the WHT (William Herschel Telescope) operated on the island of La Palma by the Isaac Newton Group in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias.
NASA Astrophysics Data System (ADS)
Venuti, L.; Bouvier, J.; Flaccomio, E.; Alencar, S. H. P.; Irwin, J.; Stauffer, J. R.; Cody, A. M.; Teixeira, P. S.; Sousa, A. P.; Micela, G.; Cuillandre, J.-C.; Peres, G.
2014-10-01
Context. The accretion process has a central role in the formation of stars and planets. Aims: We aim at characterizing the accretion properties of several hundred members of the star-forming cluster NGC 2264 (3 Myr). Methods: We performed a deep ugri mapping as well as a simultaneous u-band+r-band monitoring of the star-forming region with CFHT/MegaCam in order to directly probe the accretion process onto the star from UV excess measurements. Photometric properties and stellar parameters are determined homogeneously for about 750 monitored young objects, spanning the mass range ~0.1-2 M⊙. About 40% of the sample are classical (accreting) T Tauri stars, based on various diagnostics (Hα, UV and IR excesses). The remaining non-accreting members define the (photospheric + chromospheric) reference UV emission level over which flux excess is detected and measured. Results: We revise the membership status of cluster members based on UV accretion signatures, and report a new population of 50 classical T Tauri star (CTTS) candidates. A large range of UV excess is measured for the CTTS population, varying from a few times 0.1 to ~3 mag. We convert these values to accretion luminosities and accretion rates, via a phenomenological description of the accretion shock emission. We thus obtain mass accretion rates ranging from a few 10-10 to ~10-7 M⊙/yr. Taking into account a mass-dependent detection threshold for weakly accreting objects, we find a >6σ correlation between mass accretion rate and stellar mass. A power-law fit, properly accounting for censored data (upper limits), yields Ṁacc ∝ M*1.4±0.3. At any given stellar mass, we find a large spread of accretion rates, extending over about 2 orders of magnitude. The monitoring of the UV excess on a timescale of a couple of weeks indicates that its variability typically amounts to 0.5 dex, i.e., much smaller than the observed spread in accretion rates. We suggest that a non-negligible age spread across the star-forming region may effectively contribute to the observed spread in accretion rates at a given mass. In addition, different accretion mechanisms (like, e.g., short-lived accretion bursts vs. more stable funnel-flow accretion) may be associated to different Ṁacc regimes. Conclusions: A huge variety of accretion properties is observed for young stellar objects in the NGC 2264 cluster. While a definite correlation seems to hold between mass accretion rate and stellar mass over the mass range probed here, the origin of the large intrinsic spread observed in mass accretion rates at any given mass remains to be explored. Based on observations obtained with MegaPrime/MegaCam, a joint project of CFHT and CEA/DAPNIA, at the Canada-France-Hawaii Telescope (CFHT) which is operated by the National Research Council (NRC) of Canada, the Institut National des Sciences de l'Univers of the Centre National de la Recherche Scientifique (CNRS) of France, and the University of Hawaii.Full Tables 2-4 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/570/A82
NASA Astrophysics Data System (ADS)
Romano, D.; Matteucci, F.; Zhang, Z.-Y.; Papadopoulos, P. P.; Ivison, R. J.
2017-09-01
We use state-of-the-art chemical models to track the cosmic evolution of the CNO isotopes in the interstellar medium of galaxies, yielding powerful constraints on their stellar initial mass function (IMF). We re-assess the relative roles of massive stars, asymptotic giant branch (AGB) stars and novae in the production of rare isotopes such as 13C, 15N, 17O and 18O, along with 12C, 14N and 16O. The CNO isotope yields of super-AGB stars, novae and fast-rotating massive stars are included. Having reproduced the available isotope enrichment data in the solar neighbourhood, and across the Galaxy, and having assessed the sensitivity of our models to the remaining uncertainties, e.g. nova yields and star formation history, we show that we can meaningfully constrain the stellar IMF in galaxies using C, O and N isotope abundance ratios. In starburst galaxies, where data for multiple isotopologue lines are available, we find compelling new evidence for a top-heavy stellar IMF, with profound implications for their star formation rates and efficiencies, perhaps also their stellar masses. Neither chemical fractionation nor selective photodissociation can significantly perturb globally averaged isotopologue abundance ratios away from the corresponding isotope ones, as both these processes will typically affect only small mass fractions of molecular clouds in galaxies. Thus, the Atacama Large Millimeter Array now stands ready to probe the stellar IMF, and even the ages of specific starburst events in star-forming galaxies across cosmic time unaffected by the dust obscuration effects that plague optical/near-infrared studies.
Inflow, Outflow, Yields, and Stellar Population Mixing in Chemical Evolution Models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andrews, Brett H.; Weinberg, David H.; Schönrich, Ralph
Chemical evolution models are powerful tools for interpreting stellar abundance surveys and understanding galaxy evolution. However, their predictions depend heavily on the treatment of inflow, outflow, star formation efficiency (SFE), the stellar initial mass function, the SN Ia delay time distribution, stellar yields, and stellar population mixing. Using flexCE, a flexible one-zone chemical evolution code, we investigate the effects of and trade-offs between parameters. Two critical parameters are SFE and the outflow mass-loading parameter, which shift the knee in [O/Fe]–[Fe/H] and the equilibrium abundances that the simulations asymptotically approach, respectively. One-zone models with simple star formation histories follow narrow tracksmore » in [O/Fe]–[Fe/H] unlike the observed bimodality (separate high- α and low- α sequences) in this plane. A mix of one-zone models with inflow timescale and outflow mass-loading parameter variations, motivated by the inside-out galaxy formation scenario with radial mixing, reproduces the two sequences better than a one-zone model with two infall epochs. We present [X/Fe]–[Fe/H] tracks for 20 elements assuming three different supernova yield models and find some significant discrepancies with solar neighborhood observations, especially for elements with strongly metallicity-dependent yields. We apply principal component abundance analysis to the simulations and existing data to reveal the main correlations among abundances and quantify their contributions to variation in abundance space. For the stellar population mixing scenario, the abundances of α -elements and elements with metallicity-dependent yields dominate the first and second principal components, respectively, and collectively explain 99% of the variance in the model. flexCE is a python package available at https://github.com/bretthandrews/flexCE.« less
Tidal features of classical Milky Way satellites in a Λ cold dark matter universe
NASA Astrophysics Data System (ADS)
Wang, M.-Y.; Fattahi, Azadeh; Cooper, Andrew P.; Sawala, Till; Strigari, Louis E.; Frenk, Carlos S.; Navarro, Julio F.; Oman, Kyle; Schaller, Matthieu
2017-07-01
We use the APOSTLE (A Project Of Simulating The Local Environment) cosmological hydrodynamic simulations to examine the effects of tidal stripping on cold dark matter subhaloes that host three of the most luminous Milky Way dwarf satellite galaxies: Fornax, Sculptor and Leo I. We identify simulated satellites that match the observed spatial and kinematic distributions of stars in these galaxies, and track their evolution after infall. We find ˜30 per cent of subhaloes hosting satellites with present-day stellar mass 106-108 M⊙ experience >20 per cent stellar mass-loss after infall. Fornax analogues have earlier infall times compared to Sculptor and Leo I analogues. Star formation in Fornax analogues continues for ˜3-6 Gyr after infall, whereas Sculptor and Leo I analogues stop forming stars <2-3 Gyr after infall. Fornax analogues typically show more significant stellar mass-loss and exhibit stellar tidal tails, whereas Sculptor and Leo I analogues, which are more deeply embedded in their host dark matter haloes at infall, do not show substantial mass-loss due to tides. When additionally comparing the orbital motion of the host subaloes to the measured proper motion of Fornax, we find the matching more difficult; host subhaloes tend to have pericentres smaller than that measured for Fornax itself. From the kinematic and orbital data, we estimate that Fornax has lost 10-20 per cent of its infall stellar mass. Our best estimate for the surface brightness of a stellar tidal stream associated with Fornax is Σ ˜ 32.6 mag arcsec-2, which may be detectable with deep imaging surveys such as DES and LSST.
Tracking of multiple targets using online learning for reference model adaptation.
Pernkopf, Franz
2008-12-01
Recently, much work has been done in multiple object tracking on the one hand and on reference model adaptation for a single-object tracker on the other side. In this paper, we do both tracking of multiple objects (faces of people) in a meeting scenario and online learning to incrementally update the models of the tracked objects to account for appearance changes during tracking. Additionally, we automatically initialize and terminate tracking of individual objects based on low-level features, i.e., face color, face size, and object movement. Many methods unlike our approach assume that the target region has been initialized by hand in the first frame. For tracking, a particle filter is incorporated to propagate sample distributions over time. We discuss the close relationship between our implemented tracker based on particle filters and genetic algorithms. Numerous experiments on meeting data demonstrate the capabilities of our tracking approach. Additionally, we provide an empirical verification of the reference model learning during tracking of indoor and outdoor scenes which supports a more robust tracking. Therefore, we report the average of the standard deviation of the trajectories over numerous tracking runs depending on the learning rate.
Spectral Classification of the 30 Doradus Stellar Populations
NASA Astrophysics Data System (ADS)
Walborn, Nolan R.; Blades, J. Chris
1997-10-01
An optical spectral classification study of 106 OB stars within the 30 Doradus Nebula has sharpened the description of the spatial and temporal structures among the associated clusters. Five distinct stellar groups are recognized: (1) the central early-O (Carina phase) concentration, which includes Radcliffe 136 (R136); (2) a younger (Orion phase) population to the north and west of R136, containing heavily embedded early-O dwarfs and IR sources, the formation of which was likely triggered by the central concentration; (3) an older population of late-O and early-B supergiants (Scorpius OB1 phase) throughout the central field, whose structural relationship, if any, to the younger groups is unclear; (4) a previously known, even older compact cluster 3' northwest of R136, containing A- and M-type supergiants (h and χ Persei phase), which has evidently affected the nebular dynamics substantially; and (5) a newly recognized Sco OB1-phase association, surrounding the recently discovered luminous blue variable (LBV) R143, in the southern part of the Nebula. The intricacy of this region and the implications for the interpretation of more distant starbursts are emphasized. The evidence indicates that the formation of the 30 Dor stellar content was neither instantaneous nor continuous, but rather that the stars formed in discrete events at different epochs. The average difference between the derived and calibration absolute visual magnitudes of the stars is 0.05, indicating that the classification, calibration, and adopted distance modulus (V0 - MV = 18.6) are accurate. For 70 of the stars, either the absolute value of that difference is <=0.6 mag, or they are subluminous dwarfs or superluminous supergiants. Many astrophysically interesting objects have been isolated for further investigation. Surprisingly, in view of the presence of several O3 supergiants, the mid-Of star R139 is identified as the most massive object in this sample; it is located well along the 120 M⊙ track, very near the Humphreys-Davidson limit, and it is probably an immediate LBV precursor. This work can and should be extended in three ways: (1) higher resolution and higher S/N observations of many of the stars with larger ground-based telescopes for quantitative analysis, (2) ground-based spectral classification of the numerous additional accessible stars in the field, and (3) spatially resolved spectral classification of compact multiple systems with the Hubble Space Telescope.
Tracking planets and moons: mechanisms of object tracking revealed with a new paradigm
Tombu, Michael
2014-01-01
People can attend to and track multiple moving objects over time. Cognitive theories of this ability emphasize location information and differ on the importance of motion information. Results from several experiments have shown that increasing object speed impairs performance, although speed was confounded with other properties such as proximity of objects to one another. Here, we introduce a new paradigm to study multiple object tracking in which object speed and object proximity were manipulated independently. Like the motion of a planet and moon, each target–distractor pair rotated about both a common local point as well as the center of the screen. Tracking performance was strongly affected by object speed even when proximity was controlled. Additional results suggest that two different mechanisms are used in object tracking—one sensitive to speed and proximity and the other sensitive to the number of distractors. These observations support models of object tracking that include information about object motion and reject models that use location alone. PMID:21264704
NASA Astrophysics Data System (ADS)
Povich, Matthew S.; Smith, Nathan; Majewski, Steven R.; Getman, Konstantin V.; Townsley, Leisa K.; Babler, Brian L.; Broos, Patrick S.; Indebetouw, Rémy; Meade, Marilyn R.; Robitaille, Thomas P.; Stassun, Keivan G.; Whitney, Barbara A.; Yonekura, Yoshinori; Fukui, Yasuo
2011-05-01
We present a catalog of 1439 young stellar objects (YSOs) spanning the 1.42 deg2 field surveyed by the Chandra Carina Complex Project (CCCP), which includes the major ionizing clusters and the most active sites of ongoing star formation within the Great Nebula in Carina. Candidate YSOs were identified via infrared (IR) excess emission from dusty circumstellar disks and envelopes, using data from the Spitzer Space Telescope (the Vela-Carina survey) and the Two-Micron All Sky Survey. We model the 1-24 μm IR spectral energy distributions of the YSOs to constrain physical properties. Our Pan-Carina YSO Catalog (PCYC) is dominated by intermediate-mass (2 M sun < m <~ 10 M sun) objects with disks, including Herbig Ae/Be stars and their less evolved progenitors. The PCYC provides a valuable complementary data set to the CCCP X-ray source catalogs, identifying 1029 YSOs in Carina with no X-ray detection. We also catalog 410 YSOs with X-ray counterparts, including 62 candidate protostars. Candidate protostars with X-ray detections tend to be more evolved than those without. In most cases, X-ray emission apparently originating from intermediate-mass, disk-dominated YSOs is consistent with the presence of low-mass companions, but we also find that X-ray emission correlates with cooler stellar photospheres and higher disk masses. We suggest that intermediate-mass YSOs produce X-rays during their early pre-main-sequence evolution, perhaps driven by magnetic dynamo activity during the convective atmosphere phase, but this emission dies off as the stars approach the main sequence. Extrapolating over the stellar initial mass function scaled to the PCYC population, we predict a total population of >2 × 104 YSOs and a present-day star formation rate (SFR) of >0.008 M sun yr-1. The global SFR in the Carina Nebula, averaged over the past ~5 Myr, has been approximately constant.
NASA Astrophysics Data System (ADS)
Urich, Linda; Lisker, Thorsten; Janz, Joachim; van de Ven, Glenn; Leaman, Ryan; Boselli, Alessandro; Paudel, Sanjaya; Sybilska, Agnieszka; Peletier, Reynier F.; den Brok, Mark; Hensler, Gerhard; Toloba, Elisa; Falcón-Barroso, Jesús; Niemi, Sami-Matias
2017-10-01
Early-type dwarf galaxies are not simply featureless, old objects, but were found to be much more diverse, hosting substructures and a variety of stellar population properties. To explore the stellar content of faint early-type galaxies, and to investigate in particular those with recent central star formation, we study colours and colour gradients within one effective radius in optical (g - r) and near-infrared (I - H) bands for 120 Virgo cluster early-type galaxies with - 19 mag
Employing Machine-Learning Methods to Study Young Stellar Objects
NASA Astrophysics Data System (ADS)
Moore, Nicholas
2018-01-01
Vast amounts of data exist in the astronomical data archives, and yet a large number of sources remain unclassified. We developed a multi-wavelength pipeline to classify infrared sources. The pipeline uses supervised machine learning methods to classify objects into the appropriate categories. The program is fed data that is already classified to train it, and is then applied to unknown catalogues. The primary use for such a pipeline is the rapid classification and cataloging of data that would take a much longer time to classify otherwise. While our primary goal is to study young stellar objects (YSOs), the applications extend beyond the scope of this project. We present preliminary results from our analysis and discuss future applications.
Romero, Veronica; Amaral, Joseph; Fitzpatrick, Paula; Schmidt, R C; Duncan, Amie W; Richardson, Michael J
2017-04-01
Functionally stable and robust interpersonal motor coordination has been found to play an integral role in the effectiveness of social interactions. However, the motion-tracking equipment required to record and objectively measure the dynamic limb and body movements during social interaction has been very costly, cumbersome, and impractical within a non-clinical or non-laboratory setting. Here we examined whether three low-cost motion-tracking options (Microsoft Kinect skeletal tracking of either one limb or whole body and a video-based pixel change method) can be employed to investigate social motor coordination. Of particular interest was the degree to which these low-cost methods of motion tracking could be used to capture and index the coordination dynamics that occurred between a child and an experimenter for three simple social motor coordination tasks in comparison to a more expensive, laboratory-grade motion-tracking system (i.e., a Polhemus Latus system). Overall, the results demonstrated that these low-cost systems cannot substitute the Polhemus system in some tasks. However, the lower-cost Microsoft Kinect skeletal tracking and video pixel change methods were successfully able to index differences in social motor coordination in tasks that involved larger-scale, naturalistic whole body movements, which can be cumbersome and expensive to record with a Polhemus. However, we found the Kinect to be particularly vulnerable to occlusion and the pixel change method to movements that cross the video frame midline. Therefore, particular care needs to be taken in choosing the motion-tracking system that is best suited for the particular research.
Computer-aided target tracking in motion analysis studies
NASA Astrophysics Data System (ADS)
Burdick, Dominic C.; Marcuse, M. L.; Mislan, J. D.
1990-08-01
Motion analysis studies require the precise tracking of reference objects in sequential scenes. In a typical situation, events of interest are captured at high frame rates using special cameras, and selected objects or targets are tracked on a frame by frame basis to provide necessary data for motion reconstruction. Tracking is usually done using manual methods which are slow and prone to error. A computer based image analysis system has been developed that performs tracking automatically. The objective of this work was to eliminate the bottleneck due to manual methods in high volume tracking applications such as the analysis of crash test films for the automotive industry. The system has proven to be successful in tracking standard fiducial targets and other objects in crash test scenes. Over 95 percent of target positions which could be located using manual methods can be tracked by the system, with a significant improvement in throughput over manual methods. Future work will focus on the tracking of clusters of targets and on tracking deformable objects such as airbags.
Prediction of stellar occultations by distant solar system bodies in the Gaia era
NASA Astrophysics Data System (ADS)
Desmars, Josselin; Camargo, Julio; Sicardy, Bruno; Braga-Ribas, Felipe; Vieira-Martins, Roberto; Assafin, Marcelo; Bérard, Diane; Benedetti-Rossi, Gustavo
2018-04-01
Stellar occultations are a unique technique to access physical characteristics of distant solar system objects from the ground. They allow the measure of the size and the shape at kilometric level, the detection of tenuous atmospheres (few nanobars), and the investigation of close vicinity (satellites, rings) of Transneptunian objects and Centaurs. This technique is made successful thanks to accurate predictions of occultations. Accuracy of the predictions depends on the uncertainty in the position of the occulted star and the object's orbit. The Gaia stellar catalogue (Gaia Collaboration (2017)) now allows to get accurate astrometric stellar positions (to the mas level). The main uncertainty remains on the orbit. In this context, we now take advantage of the NIMA method (Desmars et al.(2015)) for the orbit determination and of the Gaia DR1 catalogue for the astrometry. In this document, we show how the orbit determination is improved by reducing current and some past observations with Gaia DR1. Moreover, we also use more than 45 past positive occultations observed in the 2009-2017 period to derive very accurate astrometric positions only depending on the position of the occulted stars (about few mas with Gaia DR1). We use the case of (10199) Chariklo as an illustration. The main limitation lies in the imprecision of the proper motions which is going to be solved by the Gaia DR2 release.
On the Nature of Ultra-faint Dwarf Galaxy Candidates. II. The Case of Cetus II
NASA Astrophysics Data System (ADS)
Conn, Blair C.; Jerjen, Helmut; Kim, Dongwon; Schirmer, Mischa
2018-04-01
We obtained deep Gemini GMOS-S g, r photometry of the ultra-faint dwarf galaxy candidate Cetus II with the aim of providing stronger constraints on its size, luminosity, and stellar population. Cetus II is an important object in the size–luminosity plane, as it occupies the transition zone between dwarf galaxies and star clusters. All known objects smaller than Cetus II (r h ∼ 20 pc) are reported to be star clusters, while most larger objects are likely dwarf galaxies. We found a prominent excess of main-sequence stars in the color–magnitude diagram of Cetus II, best described by a single stellar population with an age of 11.2 Gyr, metallicity of [Fe/H] = ‑1.28 dex, an [α/Fe] = 0.0 dex at a heliocentric distance of 26.3 ± 1.2 kpc. As well as being spatially located within the Sagittarius dwarf tidal stream, these properties are well matched to the Sagittarius galaxy’s Population B stars. Interestingly, like our recent findings on the ultra-faint dwarf galaxy candidate Tucana V, the stellar field in the direction of Cetus II shows no evidence of a concentrated overdensity despite tracing the main sequence for over six magnitudes. These results strongly support the picture that Cetus II is not an ultra-faint stellar system in the Milky Way halo, but made up of stars from the Sagittarius tidal stream.
Stellar, Remnant, Planetary, and Dark-Object Masses from Astrometric Microlensing
NASA Technical Reports Server (NTRS)
Gould, Andrew P.; Bennett, David P.; Boden, Andrew; Depoy, Darren L.; Gaudi, Scott B.; Griest, Kim; Han, Cheongho; Paczynski, Bohdan; Reid, I. Neill
2004-01-01
The primary goal of our project is to make a complete census of the stellar population of the Galaxy. We are broadening the term stellar here to include both ordinary stars and dark stars. Ordinary stars, burning their nuclear fuel and shining, can perhaps best be studied with traditional astronomical techniques, but dark stars, by which we include old brown dwarfs, black holes, old white dwarfs, neutron stars, and perhaps exotic objects such as mirror matter stars or primordial black holes, can only be studied by their gravitational effects. Traditionally, these objects have been probed in binaries, and thus selected in a way that may or may not be representative of their respective field populations. The only way to examine the field population of these stars is through microlensing, the deflection of light from a visible star in the background by an object (dark or not) in the foreground. When lensed, there are two images of the background star. Although these images cannot be resolved when the lens has a stellar mass, the lensing effect can be detected in two ways: photometrically, i.e. by measuring the magnification of the source by the lens, and astrometrically, i.e. by measuring the shift in the centroid of the two images. Photometric microlensing experiments have detected hundreds of microlensing events over the past decade. Despite its successes, photometric microlensing has so far been somewhat frustrating because these events are difficult to interpret. Almost nothing is known about the masses of individual lenses and very little is known about the statistical properties of the lenses treated as a whole, such as their average mass. Although probably over 100 of the lenses are in fact dark objects, we can't determine which they are, let alone investigate finer details such as what their masses are, and where they are in the Galaxy. With SIM, we will break the microlensing degeneracy, and allow detailed interpretation of individual microlensing events. We will thus develop a detailed census of the dark and luminous stellar population of the Galaxy.
Multiple-object tracking while driving: the multiple-vehicle tracking task.
Lochner, Martin J; Trick, Lana M
2014-11-01
Many contend that driving an automobile involves multiple-object tracking. At this point, no one has tested this idea, and it is unclear how multiple-object tracking would coordinate with the other activities involved in driving. To address some of the initial and most basic questions about multiple-object tracking while driving, we modified the tracking task for use in a driving simulator, creating the multiple-vehicle tracking task. In Experiment 1, we employed a dual-task methodology to determine whether there was interference between tracking and driving. Findings suggest that although it is possible to track multiple vehicles while driving, driving reduces tracking performance, and tracking compromises headway and lane position maintenance while driving. Modified change-detection paradigms were used to assess whether there were change localization advantages for tracked targets in multiple-vehicle tracking. When changes occurred during a blanking interval, drivers were more accurate (Experiment 2a) and ~250 ms faster (Experiment 2b) at locating the vehicle that changed when it was a target rather than a distractor in tracking. In a more realistic driving task where drivers had to brake in response to the sudden onset of brake lights in one of the lead vehicles, drivers were more accurate at localizing the vehicle that braked if it was a tracking target, although there was no advantage in terms of braking response time. Overall, results suggest that multiple-object tracking is possible while driving and perhaps even advantageous in some situations, but further research is required to determine whether multiple-object tracking is actually used in day-to-day driving.
Formation Flying Satellite Control Around the L2 Sun-Earth Libration Point
NASA Technical Reports Server (NTRS)
Hamilton, Nicholas H.; Folta, David; Carpenter, Russell; Bauer, Frank (Technical Monitor)
2002-01-01
This paper discusses the development of a linear control algorithm for formations in the vicinity of the L2 sun-Earth libration point. The development of a simplified extended Kalman filter is included as well. Simulations are created for the analysis of the stationkeeping and various formation maneuvers of the Stellar Imager mission. The simulations provide tracking error, estimation error, and control effort results. For formation maneuvering, the formation spacecraft track to within 4 meters of their desired position and within 1.5 millimeters per second of their desired zero velocity. The filter, with few exceptions, keeps the estimation errors within their three-sigma values. Without noise, the controller performs extremely well, with the formation spacecraft tracking to within several micrometers. Each spacecraft uses around 1 to 2 grams of propellant per maneuver, depending on the circumstances.
NASA Astrophysics Data System (ADS)
Sarbadhicary, Sumit; Badenes, Carles; Chomiuk, Laura; Maldonado, Jessica; Caprioli, Damiano; Heger, Mairead; Huizenga, Daniel
2018-01-01
Our understanding of the progenitors of many stellar species, such as supernovae, massive and low-mass He-burning stars, is limited because of many poorly constrained aspects of stellar evolution theory. For my dissertation, I have focused on using Local Group galaxy surveys to constrain stellar evolution scenarios by measuring delay-time distributions (DTD). The DTD is the hypothetical occurrence rate of a stellar object per elapsed time after a brief burst of star formation. It is the measured distribution of timescales on which stars evolve, and therefore serves as a powerful observational constraint on theoretical progenitor models. The DTD can be measured from a survey of stellar objects and a set of star-formation histories of the host galaxy, and is particularly effective in the Local Group, where high-quality star-formation histories are available from resolved stellar populations. I am currently calculating a SN DTD with supernova remnants (SNRs) in order to provide the strongest constraints on the progenitors of thermonuclear and core-collapse supernovae. However, most SNRs do not have reliable age measurements and their evolution depends on the ambient environment. For this reason, I wrote a radio light curve model of an SNR population to extract the visibility times and rates of supernovae - crucial ingredients for the DTD - from an SNR survey. The model uses observational constraints on the local environments from multi-wavelength surveys, accounts for missing SNRs and employs the latest models of shock-driven particle acceleration. The final calculation of the SN DTD in the Local Group is awaiting completion of a systematic SNR catalog from deep radio-continuum images, now in preparation by a group led by Dr. Laura Chomiuk. I have also calculated DTDs for the LMC population of RR Lyrae and Cepheid variables, which serve as important distance calibrators and stellar population tracers. We find that Cepheids can have delay-times between 10 Myrs - 1 Gyr, while RR Lyrae can have delay-times < 10 Gyrs. These observations cannot be explained by models using mass and metallicity alone. In future projects, I will apply the DTD technique to constrain the supergiant and pre-supernova evolutionary models.
nIFTY galaxy cluster simulations - III. The similarity and diversity of galaxies and subhaloes
NASA Astrophysics Data System (ADS)
Elahi, Pascal J.; Knebe, Alexander; Pearce, Frazer R.; Power, Chris; Yepes, Gustavo; Cui, Weiguang; Cunnama, Daniel; Kay, Scott T.; Sembolini, Federico; Beck, Alexander M.; Davé, Romeel; February, Sean; Huang, Shuiyao; Katz, Neal; McCarthy, Ian G.; Murante, Giuseppe; Perret, Valentin; Puchwein, Ewald; Saro, Alexandro; Teyssier, Romain
2016-05-01
We examine subhaloes and galaxies residing in a simulated Λ cold dark matter galaxy cluster (M^crit_{200}=1.1× 10^{15} h^{-1} M_{⊙}) produced by hydrodynamical codes ranging from classic smooth particle hydrodynamics (SPH), newer SPH codes, adaptive and moving mesh codes. These codes use subgrid models to capture galaxy formation physics. We compare how well these codes reproduce the same subhaloes/galaxies in gravity-only, non-radiative hydrodynamics and full feedback physics runs by looking at the overall subhalo/galaxy distribution and on an individual object basis. We find that the subhalo population is reproduced to within ≲10 per cent for both dark matter only and non-radiative runs, with individual objects showing code-to-code scatter of ≲0.1 dex, although the gas in non-radiative simulations shows significant scatter. Including feedback physics significantly increases the diversity. Subhalo mass and Vmax distributions vary by ≈20 per cent. The galaxy populations also show striking code-to-code variations. Although the Tully-Fisher relation is similar in almost all codes, the number of galaxies with 109 h- 1 M⊙ ≲ M* ≲ 1012 h- 1 M⊙ can differ by a factor of 4. Individual galaxies show code-to-code scatter of ˜0.5 dex in stellar mass. Moreover, systematic differences exist, with some codes producing galaxies 70 per cent smaller than others. The diversity partially arises from the inclusion/absence of active galactic nucleus feedback. Our results combined with our companion papers demonstrate that subgrid physics is not just subject to fine-tuning, but the complexity of building galaxies in all environments remains a challenge. We argue that even basic galaxy properties, such as stellar mass to halo mass, should be treated with errors bars of ˜0.2-0.4 dex.
NASA Technical Reports Server (NTRS)
Hubbard, R.
1974-01-01
The radially-streaming particle model for broad quasar and Seyfert galaxy emission features is modified to include sources of time dependence. The results are suggestive of reported observations of multiple components, variability, and transient features in the wings of Seyfert and quasi-stellar emission lines.
The Spitzer Atlas of Stellar Spectra (SASS)
NASA Astrophysics Data System (ADS)
Ardila, D. R.; van Dyk, S. D., Makowiecki, W.; Stauffer, J.; Song, I.; Ro, J.; Fajardo-Acosta, S.; Hoard, D. W.; Wachter, S.
2011-11-01
We present the Spitzer Atlas of Stellar Spectra (SASS), which includes 159 stellar spectra (5 to 32 micron; R about 100) taken with the Infrared Spectrograph on the Spitzer Space Telescope. This Atlas gathers representative spectra of a broad section of the Hertzsprung-Russell diagram, intended to serve as a general stellar spectral reference in the mid-infrared. It includes stars from all luminosity classes, as well as Wolf-Rayet (WR) objects. Furthermore, it includes some objects of intrinsic interest, like blue stragglers and certain pulsating variables. All the spectra have been uniformly reduced, and all are available online. For dwarfs and giants, the spectra of early-type objects are relatively featureless, dominated by Hydrogen lines around A spectral types. Besides these, the most noticeable photospheric features correspond to water vapor and silicon monoxide in late-type objects and methane and ammonia features at the latest spectral types. Most supergiant spectra in the Atlas present evidence of circumstellar gas. The sample includes five M supergiant spectra, which show strong dust excesses and in some cases PAH features. Sequences of WR stars present the well-known pattern of lines of He I and He II, as well as forbidden lines of ionized metals. The characteristic flat-top shape of the [Ne III] line is evident even at these low spectral resolutions. Several Luminous Blue Variables and other transition stars are present in the Atlas and show very diverse spectra, dominated by circumstellar gas and dust features. We show that the [8]-[24] Spitzer colors (IRAC and MIPS) are poor predictors of spectral type for most luminosity classes.
VizieR Online Data Catalog: California-Kepler Survey (CKS). III. Planet radii (Fulton+, 2017)
NASA Astrophysics Data System (ADS)
Fulton, B. J.; Petigura, E. A.; Howard, A. W.; Isaacson, H.; Marcy, G. W.; Cargile, P. A.; Hebb, L.; Weiss, L. M.; Johnson, J. A.; Morton, T. D.; Sinukoff, E.; Crossfield, I. J. M.; Hirsch, L. A.
2017-11-01
We adopt the stellar sample and the measured stellar parameters from the California-Kepler Survey (CKS) program (Petigura et al. 2017, Cat. J/AJ/154/107; Paper I). The measured values of Teff, logg, and [Fe/H] are based on a detailed spectroscopic characterization of Kepler Object of Interest (KOI) host stars using observations from Keck/HIRES. In Johnson et al. 2017 (Cat J/AJ/154/108; Paper II), we associated those stellar parameters from Paper I to Dartmouth isochrones (Dotter et al. 2008ApJS..178...89D) to derive improved stellar radii and masses, allowing us to recalculate planetary radii using the light-curve parameters from Mullally et al. 2015 (Cat. J/ApJS/217/31). (1 data file).
Learned filters for object detection in multi-object visual tracking
NASA Astrophysics Data System (ADS)
Stamatescu, Victor; Wong, Sebastien; McDonnell, Mark D.; Kearney, David
2016-05-01
We investigate the application of learned convolutional filters in multi-object visual tracking. The filters were learned in both a supervised and unsupervised manner from image data using artificial neural networks. This work follows recent results in the field of machine learning that demonstrate the use learned filters for enhanced object detection and classification. Here we employ a track-before-detect approach to multi-object tracking, where tracking guides the detection process. The object detection provides a probabilistic input image calculated by selecting from features obtained using banks of generative or discriminative learned filters. We present a systematic evaluation of these convolutional filters using a real-world data set that examines their performance as generic object detectors.
Characterization of Omega-WINGS galaxy clusters. I. Stellar light and mass profiles
NASA Astrophysics Data System (ADS)
Cariddi, S.; D'Onofrio, M.; Fasano, G.; Poggianti, B. M.; Moretti, A.; Gullieuszik, M.; Bettoni, D.; Sciarratta, M.
2018-02-01
Context. Galaxy clusters are the largest virialized structures in the observable Universe. Knowledge of their properties provides many useful astrophysical and cosmological information. Aims: Our aim is to derive the luminosity and stellar mass profiles of the nearby galaxy clusters of the Omega-WINGS survey and to study the main scaling relations valid for such systems. Methods: We merged data from the WINGS and Omega-WINGS databases, sorted the sources according to the distance from the brightest cluster galaxy (BCG), and calculated the integrated luminosity profiles in the B and V bands, taking into account extinction, photometric and spatial completeness, K correction, and background contribution. Then, by exploiting the spectroscopic sample we derived the stellar mass profiles of the clusters. Results: We obtained the luminosity profiles of 46 galaxy clusters, reaching r200 in 30 cases, and the stellar mass profiles of 42 of our objects. We successfully fitted all the integrated luminosity growth profiles with one or two embedded Sérsic components, deriving the main clusters parameters. Finally, we checked the main scaling relation among the clusters parameters in comparison with those obtained for a selected sample of early-type galaxies (ETGs) of the same clusters. Conclusions: We found that the nearby galaxy clusters are non-homologous structures such as ETGs and exhibit a color-magnitude (CM) red-sequence relation very similar to that observed for galaxies in clusters. These properties are not expected in the current cluster formation scenarios. In particular the existence of a CM relation for clusters, shown here for the first time, suggests that the baryonic structures grow and evolve in a similar way at all scales.
S201 catalog of far-ultraviolet objects
NASA Technical Reports Server (NTRS)
Page, T.; Carruthers, G. K.; Hill, R. E.
1978-01-01
A catalog of star images was compiled from images obtained by an NRL Far-Ultraviolet Camera/Spectrograph operated from 21 to 23 April 1972 on the lunar surface during the Apollo-16 mission. These images were scanned on a microdensitometer, and the output recorded on magnetic tapes. The catalog is divided into 11 parts, covering ten fields in the sky (the Sagittarius field being covered by two parts), and each part is headed by a constellation name and the field center coordinates. The errors in position of the detected images are less than about 3 arc-min. Correlations are given with star numbers in the Smithsonian Astrophysical Observatory catalog. Values are given of the peak density and the density volume. The text includes a discussion of the photometry, corrections thereto due to threshold and saturation effects, and its comparison with theoretical expectation, stellar model atmospheres, and a generalized far-ultraviolet interstellar extinction law. The S201 catalog is also available on a single reel of seven-track magnetic tape.
NASA Astrophysics Data System (ADS)
Hirsch, Lea A.; Ciardi, David R.; Howard, Andrew W.; Everett, Mark E.; Furlan, Elise; Saylors, Mindy; Horch, Elliott P.; Howell, Steve B.; Teske, Johanna; Marcy, Geoffrey W.
2017-03-01
We report on 176 close (<2″) stellar companions detected with high-resolution imaging near 170 hosts of Kepler Objects of Interest (KOIs). These Kepler targets were prioritized for imaging follow-up based on the presence of small planets, so most of the KOIs in these systems (176 out of 204) have nominal radii <6 {R}\\oplus . Each KOI in our sample was observed in at least two filters with adaptive optics, speckle imaging, lucky imaging, or the Hubble Space Telescope. Multi-filter photometry provides color information on the companions, allowing us to constrain their stellar properties and assess the probability that the companions are physically bound. We find that 60%-80% of companions within 1″ are bound, and the bound fraction is >90% for companions within 0.″5 the bound fraction decreases with increasing angular separation. This picture is consistent with simulations of the binary and background stellar populations in the Kepler field. We also reassess the planet radii in these systems, converting the observed differential magnitudes to a contamination in the Kepler bandpass and calculating the planet radius correction factor, X R = R p (true)/R p (single). Under the assumption that planets in bound binaries are equally likely to orbit the primary or secondary, we find a mean radius correction factor for planets in stellar multiples of X R = 1.65. If stellar multiplicity in the Kepler field is similar to the solar neighborhood, then nearly half of all Kepler planets may have radii underestimated by an average of 65%, unless vetted using high-resolution imaging or spectroscopy.
Confronting Models of Massive Star Evolution and Explosions with Remnant Mass Measurements
NASA Astrophysics Data System (ADS)
Raithel, Carolyn A.; Sukhbold, Tuguldur; Özel, Feryal
2018-03-01
The mass distribution of compact objects provides a fossil record that can be studied to uncover information on the late stages of massive star evolution, the supernova explosion mechanism, and the dense matter equation of state. Observations of neutron star masses indicate a bimodal Gaussian distribution, while the observed black hole mass distribution decays exponentially for stellar-mass black holes. We use these observed distributions to directly confront the predictions of stellar evolution models and the neutrino-driven supernova simulations of Sukhbold et al. We find strong agreement between the black hole and low-mass neutron star distributions created by these simulations and the observations. We show that a large fraction of the stellar envelope must be ejected, either during the formation of stellar-mass black holes or prior to the implosion through tidal stripping due to a binary companion, in order to reproduce the observed black hole mass distribution. We also determine the origins of the bimodal peaks of the neutron star mass distribution, finding that the low-mass peak (centered at ∼1.4 M ⊙) originates from progenitors with M ZAMS ≈ 9–18 M ⊙. The simulations fail to reproduce the observed peak of high-mass neutron stars (centered at ∼1.8 M ⊙) and we explore several possible explanations. We argue that the close agreement between the observed and predicted black hole and low-mass neutron star mass distributions provides new, promising evidence that these stellar evolution and explosion models capture the majority of relevant stellar, nuclear, and explosion physics involved in the formation of compact objects.
Balmer Absorption Lines in FeLoBALs
NASA Astrophysics Data System (ADS)
Aoki, K.; Iwata, I.; Ohta, K.; Tamura, N.; Ando, M.; Akiyama, M.; Kiuchi, G.; Nakanishi, K.
2007-10-01
We discovered non-stellar Balmer absorption lines in two many-narrow-trough FeLoBALs (mntBALs) by the near-infrared spectroscopy with Subaru/CISCO. Presence of the non-stellar Balmer absorption lines is known to date only in the Seyfert galaxy NGC 4151; thus our discovery is the first cases for quasars. Since all known active galactic nuclei with Balmer absorption lines share similar characteristics, it is suggested that there is a population of BAL quasars which have unique structures at their nuclei or unique evolutionary phase.
Discovery of the Most Ultra-Luminous QSO Using GAIA, SkyMapper, and WISE
NASA Astrophysics Data System (ADS)
Wolf, Christian; Bian, Fuyan; Onken, Christopher A.; Schmidt, Brian P.; Tisserand, Patrick; Alonzi, Noura; Hon, Wei Jeat; Tonry, John L.
2018-06-01
We report the discovery of the ultra-luminous quasi-stellar object SMSS J215728.21-360215.1 with magnitude z = 16.9 and W4 = 7.42 at redshift 4.75. Given absolute magnitudes of M145, AB = -29.3, M300, AB = -30.12, and logLbol/Lbol, ⊙ = 14.84, it is the quasi-stellar object with the highest unlensed UV-optical luminosity currently known in the Universe. It was found by combining proper-motion data from Gaia DR2 with photometry from SkyMapper DR1 and the Wide-field Infrared Survey Explorer. In the GAIA database, it is an isolated single source and thus unlikely to be strongly gravitationally lensed. It is also unlikely to be a beamed source as it is not discovered in the radio domain by either NRAO-VLA Sky Survey or Sydney University Molonglo Southern Survey. It is classed as a weak-emission-line quasi-stellar object and possesses broad absorption line features. A lightcurve from ATLAS spanning the time from 2015 October to 2017 December shows little sign of variability.
Optical Monitoring of Young Stellar Objects
NASA Astrophysics Data System (ADS)
Kar, Aman; Jang-Condell, Hannah; Kasper, David; Findlay, Joseph; Kobulnicky, Henry A.
2018-06-01
Observing Young Stellar Objects (YSOs) for variability in different wavelengths enables us to understand the evolution and structure of the protoplanetary disks around stars. The stars observed in this project are known YSOs that show variability in the Infrared. Targets were selected from the Spitzer Space Telescope Young Stellar Object Variability (YSOVAR) Program, which monitored star-forming regions in the mid-infrared. The goal of our project is to investigate any correlation between the variability in the infrared versus the optical. Infrared variability of YSOs is associated with the heating of the protoplanetary disk while accretion signatures are observed in the H-alpha region. We used the University of Wyoming’s Red Buttes Observatory to monitor these stars for signs of accretion using an H-alpha narrowband filter and the Johnson-Cousins filter set, over the Summer of 2017. We perform relative photometry and inspect for an image-to-image variation by observing these targets for a period of four months every two to three nights. The study helps us better understand the link between accretion and H-alpha activity and establish a disk-star connection.
The SEEDS High-Contrast Imaging Survey of Exoplanets Around Young Stellar Objects
NASA Astrophysics Data System (ADS)
Uyama, Taichi; Hashimoto, Jun; Kuzuhara, Masayuki; Mayama, Satoshi; Akiyama, Eiji; Currie, Thayne; Livingston, John; Kudo, Tomoyuki; Kusakabe, Nobuhiko; Abe, Lyu; Brandner, Wolfgang; Brandt, Timothy D.; Carson, Joseph C.; Egner, Sebastian; Feldt, Markus; Goto, Miwa; Grady, Carol A.; Guyon, Olivier; Hayano, Yutaka; Hayashi, Masahiko; Hayashi, Saeko S.; Henning, Thomas; Hodapp, Klaus W.; Ishii, Miki; Iye, Masanori; Janson, Markus; Kandori, Ryo; Knapp, Gillian R.; Kwon, Jungmi; Matsuo, Taro; Mcelwain, Michael W.; Miyama, Shoken; Morino, Jun-Ichi; Moro-Martin, Amaya; Nishimura, Tetsuo; Pyo, Tae-Soo; Serabyn, Eugene; Suenaga, Takuya; Suto, Hiroshi; Suzuki, Ryuji; Takahashi, Yasuhiro H.; Takami, Michihiro; Takato, Naruhisa; Terada, Hiroshi; Thalmann, Christian; Turner, Edwin L.; Watanabe, Makoto; Wisniewski, John; Yamada, Toru; Takami, Hideki; Usuda, Tomonori; Tamura, Motohide
2017-03-01
We present high-contrast observations of 68 young stellar objects (YSOs) that have been explored as part of the Strategic Exploration of Exoplanets and Disks with Subaru (SEEDS) survey on the Subaru telescope. Our targets are very young (<10 Myr) stars, which often harbor protoplanetary disks where planets may be forming. We achieve a typical contrast of ˜10-4-10-5.5 at an angular distance of 1″ from the central star, corresponding to typical mass sensitivities (assuming hot-start evolutionary models) of ˜10 M J at 70 au and ˜6 M J at 140 au. We detected a new stellar companion to HIP 79462 and confirmed the substellar objects GQ Lup b and ROXs 42B b. An additional six companion candidates await follow-up observations to check for common proper motion. Our SEEDS YSO observations probe the population of planets and brown dwarfs at the very youngest ages; these may be compared to the results of surveys targeting somewhat older stars. Our sample and the associated observational results will help enable detailed statistical analyses of giant planet formation.
A black hole in a globular cluster.
Maccarone, Thomas J; Kundu, Arunav; Zepf, Stephen E; Rhode, Katherine L
2007-01-11
Globular star clusters contain thousands to millions of old stars packed within a region only tens of light years across. Their high stellar densities make it very probable that their member stars will interact or collide. There has accordingly been considerable debate about whether black holes should exist in these star clusters. Some theoretical work suggests that dynamical processes in the densest inner regions of globular clusters may lead to the formation of black holes of approximately 1,000 solar masses. Other numerical simulations instead predict that stellar interactions will eject most or all of the black holes that form in globular clusters. Here we report the X-ray signature of an accreting black hole in a globular cluster associated with the giant elliptical galaxy NGC 4472 (in the Virgo cluster). This object has an X-ray luminosity of about 4 x 10(39) erg s(-1), which rules out any object other than a black hole in such an old stellar population. The X-ray luminosity varies by a factor of seven in a few hours, which excludes the possibility that the object is several neutron stars superposed.
NASA Astrophysics Data System (ADS)
Randriamampandry, S. M.; Crawford, S. M.; Bershady, M. A.; Wirth, G. D.; Cress, C. M.
2017-10-01
We investigate the stellar masses of the class of star-forming objects known as luminous compact blue galaxies (LCBGs) by studying a sample of galaxies in the distant cluster MS 0451.6-0305 at z ≈ 0.54 with ground-based multicolour imaging and spectroscopy. For a sample of 16 spectroscopically confirmed cluster LCBGs (colour B - V < 0.5, surface brightness μB < 21 mag arcsec-2 and magnitude MB < -18.5), we measure stellar masses by fitting spectral energy distribution (SED) models to multiband photometry, and compare with dynamical masses [determined from velocity dispersion in the range 10 < σv(km s- 1) < 80] we previously obtained from their emission-line spectra. We compare two different stellar population models that measure stellar mass in star-bursting galaxies, indicating correlations between the stellar age, extinction and stellar mass derived from the two different SED models. The stellar masses of cluster LCBGs are distributed similarly to those of field LCBGs, but the cluster LCBGs show lower dynamical-to-stellar mass ratios (Mdyn/M⋆ = 2.6) than their field LCBG counterparts (Mdyn/M⋆ = 4.8), echoing trends noted previously in low-redshift dwarf elliptical galaxies. Within this limited sample, the specific star formation rate declines steeply with increasing mass, suggesting that these cluster LCBGs have undergone vigorous star formation.
The what-where trade-off in multiple-identity tracking.
Cohen, Michael A; Pinto, Yair; Howe, Piers D L; Horowitz, Todd S
2011-07-01
Observers are poor at reporting the identities of objects that they have successfully tracked (Pylyshyn, Visual Cognition, 11, 801-822, 2004; Scholl & Pylyshyn, Cognitive Psychology, 38, 259-290, 1999). Consequently, it has been claimed that objects are tracked in a manner that does not encode their identities (Pylyshyn, 2004). Here, we present evidence that disputes this claim. In a series of experiments, we show that attempting to track the identities of objects can decrease an observer's ability to track the objects' locations. This indicates that the mechanisms that track, respectively, the locations and identities of objects draw upon a common resource. Furthermore, we show that this common resource can be voluntarily distributed between the two mechanisms. This is clear evidence that the location- and identity-tracking mechanisms are not entirely dissociable.
Stellar population in star formation regions of galaxies
NASA Astrophysics Data System (ADS)
Gusev, Alexander S.; Shimanovskaya, Elena V.; Shatsky, Nikolai I.; Sakhibov, Firouz; Piskunov, Anatoly E.; Kharchenko, Nina V.
2018-05-01
We developed techniques for searching young unresolved star groupings (clusters, associations, and their complexes) and of estimating their physical parameters. Our study is based on spectroscopic, spectrophotometric, and UBVRI photometric observations of 19 spiral galaxies. In the studied galaxies, we found 1510 objects younger than 10 Myr and present their catalogue. Having combined photometric and spectroscopic data, we derived extinctions, chemical abundances, sizes, ages, and masses of these groupings. We discuss separately the specific cases, when the gas extinction does not agree with the interstellar one. We assume that this is due to spatial offset of Hii clouds with respect to the related stellar population.We developed a method to estimate age of stellar population of the studied complexes using their morphology and the relation with associated H emission region. In result we obtained the estimates of chemical abundances for 80, masses for 63, and ages for 57 young objects observed in seven galaxies.
SED Modeling of 20 Massive Young Stellar Objects
NASA Astrophysics Data System (ADS)
Tanti, Kamal Kumar
In this paper, we present the spectral energy distributions (SEDs) modeling of twenty massive young stellar objects (MYSOs) and subsequently estimated different physical and structural/geometrical parameters for each of the twenty central YSO outflow candidates, along with their associated circumstellar disks and infalling envelopes. The SEDs for each of the MYSOs been reconstructed by using 2MASS, MSX, IRAS, IRAC & MIPS, SCUBA, WISE, SPIRE and IRAM data, with the help of a SED Fitting Tool, that uses a grid of 2D radiative transfer models. Using the detailed analysis of SEDs and subsequent estimation of physical and geometrical parameters for the central YSO sources along with its circumstellar disks and envelopes, the cumulative distribution of the stellar, disk and envelope parameters can be analyzed. This leads to a better understanding of massive star formation processes in their respective star forming regions in different molecular clouds.
NASA Astrophysics Data System (ADS)
Joyce, M.; Chaboyer, B.
2018-03-01
Theoretical stellar evolution models are constructed and tailored to the best known, observationally derived characteristics of metal-poor ([Fe/H] ∼ ‑2.3) stars representing a range of evolutionary phases: subgiant HD 140283, globular cluster M92, and four single, main sequence stars with well-determined parallaxes: HIP 46120, HIP 54639, HIP 106924, and WOLF 1137. It is found that the use of a solar-calibrated value of the mixing length parameter α MLT in models of these objects is ineffective at reproducing their observed properties. Empirically calibrated values of α MLT are presented for each object, accounting for uncertainties in the input physics employed in the models. It is advocated that the implementation of an adaptive mixing length is necessary in order for stellar evolution models to maintain fidelity in the era of high-precision observations.
Track-to-track association for object matching in an inter-vehicle communication system
NASA Astrophysics Data System (ADS)
Yuan, Ting; Roth, Tobias; Chen, Qi; Breu, Jakob; Bogdanovic, Miro; Weiss, Christian A.
2015-09-01
Autonomous driving poses unique challenges for vehicle environment perception due to the complex driving environment the autonomous vehicle finds itself in and differentiates from remote vehicles. Due to inherent uncertainty of the traffic environments and incomplete knowledge due to sensor limitation, an autonomous driving system using only local onboard sensor information is generally not sufficiently enough for conducting a reliable intelligent driving with guaranteed safety. In order to overcome limitations of the local (host) vehicle sensing system and to increase the likelihood of correct detections and classifications, collaborative information from cooperative remote vehicles could substantially facilitate effectiveness of vehicle decision making process. Dedicated Short Range Communication (DSRC) system provides a powerful inter-vehicle wireless communication channel to enhance host vehicle environment perceiving capability with the aid of transmitted information from remote vehicles. However, there is a major challenge before one can fuse the DSRC-transmitted remote information and host vehicle Radar-observed information (in the present case): the remote DRSC data must be correctly associated with the corresponding onboard Radar data; namely, an object matching problem. Direct raw data association (i.e., measurement-to-measurement association - M2MA) is straightforward but error-prone, due to inherent uncertain nature of the observation data. The uncertainties could lead to serious difficulty in matching decision, especially, using non-stationary data. In this study, we present an object matching algorithm based on track-to-track association (T2TA) and evaluate the proposed approach with prototype vehicles in real traffic scenarios. To fully exploit potential of the DSRC system, only GPS position data from remote vehicle are used in fusion center (at host vehicle), i.e., we try to get what we need from the least amount of information; additional feature information can help the data association but are not currently considered. Comparing to M2MA, benefits of the T2TA object matching approach are: i) tracks taking into account important statistical information can provide more reliable inference results; ii) the track-formed smoothed trajectories can be used for an easier shape matching; iii) each local vehicle can design its own tracker and sends only tracks to fusion center to alleviate communication constraints. A real traffic study with different driving environments, based on a statistical hypothesis test, shows promising object matching results of significant practical implications.
Detection of an Optical Counterpart to the ALFALFA Ultra-compact High-velocity Cloud AGC 249525
NASA Astrophysics Data System (ADS)
Janesh, William; Rhode, Katherine L.; Salzer, John J.; Janowiecki, Steven; Adams, Elizabeth A. K.; Haynes, Martha P.; Giovanelli, Riccardo; Cannon, John M.
2017-03-01
We report on the detection at >98% confidence of an optical counterpart to AGC 249525, an ultra-compact high-velocity cloud (UCHVC) discovered by the Arecibo Legacy Fast ALFA survey blind neutral hydrogen survey. UCHVCs are compact, isolated H I clouds with properties consistent with their being nearby low-mass galaxies, but without identified counterparts in extant optical surveys. Analysis of the resolved stellar sources in deep g- and I-band imaging from the WIYN pODI camera reveals a clustering of possible red giant branch stars associated with AGC 249525 at a distance of 1.64 ± 0.45 Mpc. Matching our optical detection with the H I synthesis map of AGC 249525 from Adams et al. shows that the stellar overdensity is exactly coincident with the highest-density H I contour from that study. Combining our optical photometry and the H I properties of this object yields an absolute magnitude of -7.1≤slant {M}V≤slant -4.5, a stellar mass between 2.2+/- 0.6× {10}4 {M}⊙ and 3.6+/- 1.0× {10}5 {M}⊙ , and an H I to stellar mass ratio between 9 and 144. This object has stellar properties within the observed range of gas-poor ultra-faint dwarfs in the Local Group, but is gas-dominated.
Paving the way for the JWST: witnessing globular cluster formation at z > 3
NASA Astrophysics Data System (ADS)
Vanzella, E.; Calura, F.; Meneghetti, M.; Mercurio, A.; Castellano, M.; Caminha, G. B.; Balestra, I.; Rosati, P.; Tozzi, P.; De Barros, S.; Grazian, A.; D'Ercole, A.; Ciotti, L.; Caputi, K.; Grillo, C.; Merlin, E.; Pentericci, L.; Fontana, A.; Cristiani, S.; Coe, D.
2017-06-01
We report on five compact, extremely young (<10 Myr) and blue (βUV < -2.5, Fλ = λβ) objects observed with VLT/Multi Unit Spectroscopic Explorer at redshifts 3.1169 and 3.235, in addition to three objects at z = 6.145. These sources are strongly magnified (3-40 times) by the Hubble Frontier Field galaxy clusters MACS J0416 and AS1063. Their delensed half-light radii (Re) are between 16 and 140 pc, the stellar masses are ≃1-20 × 106 M⊙, the magnitudes are mUV = 28.8-31.4 (-17 < MUV < -15) and specific star formation rates can be as large as ˜800 Gyr-1. Remarkably, the inferred physical properties of two objects are similar to those expected in some globular cluster formation scenarios, representing the best candidate proto-GCs discovered so far. Rest-frame optical high-dispersion spectroscopy of one of them at z = 3.1169 yields a velocity dispersion σv ≃ 20 km s-1, implying a dynamical mass dominated by the stellar mass. Another object at z = 6.145, with delensed MUV ≃ -15.3 (mUV ≃ 31.4), shows a stellar mass and a star formation rate surface density consistent with the values expected from popular GC formation scenarios. An additional star-forming region at z = 6.145, with delensed mUV ≃ 32, a stellar mass of 0.5 × 106 M⊙ and a star formation rate of 0.06 M⊙ yr-1 is also identified. These objects currently represent the faintest spectroscopically confirmed star-forming systems at z > 3, elusive even in the deepest blank fields. We discuss how proto-GCs might contribute to the ionization budget of the Universe and augment Lyα visibility during reionization. This work underlines the crucial role of JWST in characterizing the rest-frame optical and near-infrared properties of such low-luminosity high-z objects.
NASA Astrophysics Data System (ADS)
Warmer, F.; Beidler, C. D.; Dinklage, A.; Wolf, R.; The W7-X Team
2016-07-01
As a starting point for a more in-depth discussion of a research strategy leading from Wendelstein 7-X to a HELIAS power plant, the respective steps in physics and engineering are considered from different vantage points. The first approach discusses the direct extrapolation of selected physics and engineering parameters. This is followed by an examination of advancing the understanding of stellarator optimisation. Finally, combining a dimensionless parameter approach with an empirical energy confinement time scaling, the necessary development steps are highlighted. From this analysis it is concluded that an intermediate-step burning-plasma stellarator is the most prudent approach to bridge the gap between W7-X and a HELIAS power plant. Using a systems code approach in combination with transport simulations, a range of possible conceptual designs is analysed. This range is exemplified by two bounding cases, a fast-track, cost-efficient device with low magnetic field and without a blanket and a device similar to a demonstration power plant with blanket and net electricity power production.
NASA Astrophysics Data System (ADS)
Leto, P.; Trigilio, C.; Oskinova, L. M.; Ignace, R.; Buemi, C. S.; Umana, G.; Ingallinera, A.; Leone, F.; Phillips, N. M.; Agliozzo, C.; Todt, H.; Cerrigone, L.
2018-05-01
We present new radio/millimeter measurements of the hot magnetic star HR 5907 obtained with the VLA and ALMA interferometers. We find that HR 5907 is the most radio luminous early type star in the cm-mm band among those presently known. Its multi-wavelength radio light curves are strongly variable with an amplitude that increases with radio frequency. The radio emission can be explained by the populations of the non-thermal electrons accelerated in the current sheets on the outer border of the magnetosphere of this fast-rotating magnetic star. We classify HR 5907 as another member of the growing class of strongly magnetic fast-rotating hot stars where the gyro-synchrotron emission mechanism efficiently operates in their magnetospheres. The new radio observations of HR 5907 are combined with archival X-ray data to study the physical condition of its magnetosphere. The X-ray spectra of HR 5907 show tentative evidence for the presence of non-thermal spectral component. We suggest that non-thermal X-rays originate a stellar X-ray aurora due to streams of non-thermal electrons impacting on the stellar surface. Taking advantage of the relation between the spectral indices of the X-ray power-law spectrum and the non-thermal electron energy distributions, we perform 3-D modelling of the radio emission for HR 5907. The wavelength-dependent radio light curves probe magnetospheric layers at different heights above the stellar surface. A detailed comparison between simulated and observed radio light curves leads us to conclude that the stellar magnetic field of HR 5907 is likely non-dipolar, providing further indirect evidence of the complex magnetic field topology of HR 5907.
Horowitz, Todd S.; Kuzmova, Yoana
2011-01-01
The evidence is mixed as to whether the visual system treats objects and holes differently. We used a multiple object tracking task to test the hypothesis that figural objects are easier to track than holes. Observers tracked four of eight items (holes or objects). We used an adaptive algorithm to estimate the speed allowing 75% tracking accuracy. In Experiments 1–5, the distinction between holes and figures was accomplished by pictorial cues, while red-cyan anaglyphs were used to provide the illusion of depth in Experiment 6. We variously used Gaussian pixel noise, photographic scenes, or synthetic textures as backgrounds. Tracking was more difficult when a complex background was visible, as opposed to a blank background. Tracking was easier when disks carried fixed, unique markings. When these factors were controlled for, tracking holes was no more difficult than tracking figures, suggesting that they are equivalent stimuli for tracking purposes. PMID:21334361
Cortical Circuit for Binding Object Identity and Location During Multiple-Object Tracking
Nummenmaa, Lauri; Oksama, Lauri; Glerean, Erico; Hyönä, Jukka
2017-01-01
Abstract Sustained multifocal attention for moving targets requires binding object identities with their locations. The brain mechanisms of identity-location binding during attentive tracking have remained unresolved. In 2 functional magnetic resonance imaging experiments, we measured participants’ hemodynamic activity during attentive tracking of multiple objects with equivalent (multiple-object tracking) versus distinct (multiple identity tracking, MIT) identities. Task load was manipulated parametrically. Both tasks activated large frontoparietal circuits. MIT led to significantly increased activity in frontoparietal and temporal systems subserving object recognition and working memory. These effects were replicated when eye movements were prohibited. MIT was associated with significantly increased functional connectivity between lateral temporal and frontal and parietal regions. We propose that coordinated activity of this network subserves identity-location binding during attentive tracking. PMID:27913430
Long-term scale adaptive tracking with kernel correlation filters
NASA Astrophysics Data System (ADS)
Wang, Yueren; Zhang, Hong; Zhang, Lei; Yang, Yifan; Sun, Mingui
2018-04-01
Object tracking in video sequences has broad applications in both military and civilian domains. However, as the length of input video sequence increases, a number of problems arise, such as severe object occlusion, object appearance variation, and object out-of-view (some portion or the entire object leaves the image space). To deal with these problems and identify the object being tracked from cluttered background, we present a robust appearance model using Speeded Up Robust Features (SURF) and advanced integrated features consisting of the Felzenszwalb's Histogram of Oriented Gradients (FHOG) and color attributes. Since re-detection is essential in long-term tracking, we develop an effective object re-detection strategy based on moving area detection. We employ the popular kernel correlation filters in our algorithm design, which facilitates high-speed object tracking. Our evaluation using the CVPR2013 Object Tracking Benchmark (OTB2013) dataset illustrates that the proposed algorithm outperforms reference state-of-the-art trackers in various challenging scenarios.
NASA Astrophysics Data System (ADS)
Gargiulo, A.; Bolzonella, M.; Scodeggio, M.; Krywult, J.; De Lucia, G.; Guzzo, L.; Garilli, B.; Granett, B. R.; de la Torre, S.; Abbas, U.; Adami, C.; Arnouts, S.; Bottini, D.; Cappi, A.; Cucciati, O.; Davidzon, I.; Franzetti, P.; Fritz, A.; Haines, C.; Hawken, A. J.; Iovino, A.; Le Brun, V.; Le Fèvre, O.; Maccagni, D.; Małek, K.; Marulli, F.; Moutard, T.; Polletta, M.; Pollo, A.; Tasca, L. A. M.; Tojeiro, R.; Vergani, D.; Zanichelli, A.; Zamorani, G.; Bel, J.; Branchini, E.; Coupon, J.; Ilbert, O.; Moscardini, L.; Peacock, J. A.
2017-10-01
We have used the final data from the VIPERS redshift survey to extract an unparalleled sample of more than 2000 massive ℳ≥1011 M⊙ passive galaxies (MPGs) at redshift 0.5≤z≤1.0, based on their NUVrK colours. This has enabled us to investigate how the population of these objects was built up over cosmic time. We find that the evolution of the number density depends on the galaxy mean surface stellar mass density, Σ. In particular, dense (Σ≥2000 M⊙ pc-2) MPGs show a constant comoving number density over this redshift range, whilst this increases by a factor of approximately four for the least dense objects, defined as having Σ < 1000 M⊙ pc-2. We estimated stellar ages for the MPG population both fitting the spectral energy distribution (SED) and through the D4000n index, obtaining results in good agreement. Our findings are consistent with passive ageing of the stellar content of dense MPGs. We show that at any redshift the less dense MPGs are younger than dense ones and that their stellar populations evolve at a slower rate than predicted by passive evolution. This points to a scenario in which the overall population of MPGs was built up over the cosmic time by continuous addition of less dense galaxies: on top of an initial population of dense objects that passively evolves, new, larger, and younger MPGs continuously join the population at later epochs. Finally, we demonstrate that the observed increase in the number density of MPGs is totally accounted for by the observed decrease in the number density of correspondingly massive star forming galaxies (I.e. all the non-passive ℳ≥1011 M⊙ objects). Such systems observed at z ≃ 1 in VIPERS, therefore, represent the most plausible progenitors of the subsequent emerging class of larger MPGs. Based on observations collected at the European Southern Observatory, Cerro Paranal, Chile, using the Very Large Telescope under programs 182.A-0886 and partly 070.A-9007. Also based on observations obtained with MegaPrime/MegaCam, a joint project of CFHT and CEA/DAPNIA, at the Canada-France-Hawaii Telescope (CFHT), which is operated by the National Research Council (NRC) of Canada, the Institut National des Sciences de l'Univers of the Centre National de la Recherche Scientifique (CNRS) of France, and the University of Hawaii. This work is based in part on data products produced at TERAPIX and the Canadian Astronomy Data Centre as part of the Canada-France-Hawaii Telescope Legacy Survey, a collaborative project of NRC and CNRS. The VIPERS web site is http://www.vipers.inaf.it/
A non-local mixing-length theory able to compute core overshooting
NASA Astrophysics Data System (ADS)
Gabriel, M.; Belkacem, K.
2018-04-01
Turbulent convection is certainly one of the most important and thorny issues in stellar physics. Our deficient knowledge of this crucial physical process introduces a fairly large uncertainty concerning the internal structure and evolution of stars. A striking example is overshoot at the edge of convective cores. Indeed, nearly all stellar evolutionary codes treat the overshooting zones in a very approximative way that considers both its extent and the profile of the temperature gradient as free parameters. There are only a few sophisticated theories of stellar convection such as Reynolds stress approaches, but they also require the adjustment of a non-negligible number of free parameters. We present here a theory, based on the plume theory as well as on the mean-field equations, but without relying on the usual Taylor's closure hypothesis. It leads us to a set of eight differential equations plus a few algebraic ones. Our theory is essentially a non-mixing length theory. It enables us to compute the temperature gradient in a shrinking convective core and its overshooting zone. The case of an expanding convective core is also discussed, though more briefly. Numerical simulations have quickly improved during recent years and enabling us to foresee that they will probably soon provide a model of convection adapted to the computation of 1D stellar models.
STELLAR ENCOUNTER RATE IN GALACTIC GLOBULAR CLUSTERS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bahramian, Arash; Heinke, Craig O.; Sivakoff, Gregory R.
2013-04-01
The high stellar densities in the cores of globular clusters cause significant stellar interactions. These stellar interactions can produce close binary mass-transferring systems involving compact objects and their progeny, such as X-ray binaries and radio millisecond pulsars. Comparing the numbers of these systems and interaction rates in different clusters drives our understanding of how cluster parameters affect the production of close binaries. In this paper we estimate stellar encounter rates ({Gamma}) for 124 Galactic globular clusters based on observational data as opposed to the methods previously employed, which assumed 'King-model' profiles for all clusters. By deprojecting cluster surface brightness profilesmore » to estimate luminosity density profiles, we treat 'King-model' and 'core-collapsed' clusters in the same way. In addition, we use Monte Carlo simulations to investigate the effects of uncertainties in various observational parameters (distance, reddening, surface brightness) on {Gamma}, producing the first catalog of globular cluster stellar encounter rates with estimated errors. Comparing our results with published observations of likely products of stellar interactions (numbers of X-ray binaries, numbers of radio millisecond pulsars, and {gamma}-ray luminosity) we find both clear correlations and some differences with published results.« less
Utku, Semih; Özcanhan, Mehmet Hilal; Unluturk, Mehmet Suleyman
2016-04-01
Patient delivery time is no longer considered as the only critical factor, in ambulatory services. Presently, five clinical performance indicators are used to decide patient satisfaction. Unfortunately, the emergency ambulance services in rapidly growing metropolitan areas do not meet current satisfaction expectations; because of human errors in the management of the objects onboard the ambulances. But, human involvement in the information management of emergency interventions can be reduced by electronic tracking of personnel, assets, consumables and drugs (PACD) carried in the ambulances. Electronic tracking needs the support of automation software, which should be integrated to the overall hospital information system. Our work presents a complete solution based on a centralized database supported by radio frequency identification (RFID) and bluetooth low energy (BLE) identification and tracking technologies. Each object in an ambulance is identified and tracked by the best suited technology. The automated identification and tracking reduces manual paper documentation and frees the personnel to better focus on medical activities. The presence and amounts of the PACD are automatically monitored, warning about their depletion, non-presence or maintenance dates. The computerized two way hospital-ambulance communication link provides information sharing and instantaneous feedback for better and faster diagnosis decisions. A fully implemented system is presented, with detailed hardware and software descriptions. The benefits and the clinical outcomes of the proposed system are discussed, which lead to improved personnel efficiency and more effective interventions. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Division G Commission 35: Stellar Constitution
NASA Astrophysics Data System (ADS)
Limongi, Marco; Lattanzio, John C.; Charbonnel, Corinne; Dominguez, Inma; Isern, Jordi; Karakas, Amanda; Leitherer, Claus; Marconi, Marcella; Shaviv, Giora; van Loon, Jacco
2016-04-01
Commission 35 (C35), ``Stellar Constitution'', consists of members of the International Astronomical Union whose research spans many aspects of theoretical and observational stellar physics and it is mainly focused on the comprehension of the properties of stars, stellar populations and galaxies. The number of members of C35 increased progressively over the last ten years and currently C35 comprises about 400 members. C35 was part of Division IV (Stars) until 2014 and then became part of Division G (Stars and Stellar Physics), after the main IAU reorganisation in 2015. Four Working Groups have been created over the years under Division IV, initially, and Division G later: WG on Active B Stars, WG on Massive Stars, WG on Abundances in Red Giant and WG on Chemically Peculiar and Related Stars. In the last decade the Commission had 4 presidents, Wojciech Dziembowski (2003-2006), Francesca D'Antona (2006-2009), Corinne Charbonnel (2009-2012) and Marco Limongi (2012-2015), who were assisted by an Organizing Committee (OC), usually composed of about 10 members, all of them elected by the C35 members and holding their positions for three years. The C35 webpage (http://iau-c35.stsci.edu) has been designed and continuously maintained by Claus Leitherer from the Space Telescope Institute, who deserves our special thanks. In addition to the various general information on the Commission structure and activities, it contains links to various resources, of interest for the members, such as stellar models, evolutionary tracks and isochrones, synthetic stellar populations, stellar yields and input physics (equation of state, nuclear cross sections, opacity tables), provided by various groups. The main activity of the C35 OC is that of evaluating, ranking and eventually supporting the proposals for IAU sponsored meetings. In the last decade the Commission has supported several meetings focused on topics more or less relevant to C35. Since the primary aim of this document is to present the main activity of C35 over the last ten years, in the following we present some scientific highlights that emerged from the most relevant IAU Symposia and meetings supported and organized by C35 in the last decade.
Real-Time Occlusion Handling in Augmented Reality Based on an Object Tracking Approach
Tian, Yuan; Guan, Tao; Wang, Cheng
2010-01-01
To produce a realistic augmentation in Augmented Reality, the correct relative positions of real objects and virtual objects are very important. In this paper, we propose a novel real-time occlusion handling method based on an object tracking approach. Our method is divided into three steps: selection of the occluding object, object tracking and occlusion handling. The user selects the occluding object using an interactive segmentation method. The contour of the selected object is then tracked in the subsequent frames in real-time. In the occlusion handling step, all the pixels on the tracked object are redrawn on the unprocessed augmented image to produce a new synthesized image in which the relative position between the real and virtual object is correct. The proposed method has several advantages. First, it is robust and stable, since it remains effective when the camera is moved through large changes of viewing angles and volumes or when the object and the background have similar colors. Second, it is fast, since the real object can be tracked in real-time. Last, a smoothing technique provides seamless merging between the augmented and virtual object. Several experiments are provided to validate the performance of the proposed method. PMID:22319278
The SOLA Team: A Star Formation Project To Study the Soul of Lupus with ALMA
NASA Astrophysics Data System (ADS)
De Gregorio-Monsalvo, Itziar; Saito, M.; Rodon, J.; Takahashi, S.
2017-06-01
The SOLA team is a multi-national and multi-wavelength collaboration composed by scientists with technical expertise in ALMA and in infrared and optical techniques. The aim of the team is to establish a low-mass star formation scenario based on the Lupus molecular clouds. In this talk I will present our unique catalog of pre-stellar and proto-stellar cores toward Lupus molecular clouds, the results on our latest studies in protoplanetary disks, as well as our ALMA Cycle 3 data aiming at testing the formation mechanism of sub-stellar objects in Lupus molecular clouds.
Detecting the Disruption of Dark-Matter Halos with Stellar Streams.
Bovy, Jo
2016-03-25
Narrow stellar streams in the Milky Way halo are uniquely sensitive to dark-matter subhalos, but many of these subhalos may be tidally disrupted. I calculate the interaction between stellar and dark-matter streams using analytical and N-body calculations, showing that disrupting objects can be detected as low-concentration subhalos. Through this effect, we can constrain the lumpiness of the halo as well as the orbit and present position of individual dark-matter streams. This will have profound implications for the formation of halos and for direct- and indirect-detection dark-matter searches.
NASA Astrophysics Data System (ADS)
Kwok, S.; Murdin, P.
2000-11-01
Protoplanetary nebulae (or pre-planetary nebulae, PPNs) are defined as objects that are in transition between the asymptotic giant branch (AGB) and planetary nebula phases of STELLAR EVOLUTION. Stars on the AGB lose mass at a high rate ((10-7-10-4)M⊙ yr-1) in the form of a stellar wind. Such mass loss eventually depletes the hydrogen envelope of the star and exposes the electron-degenerate carbon...
NASA Astrophysics Data System (ADS)
Ireland, Lewis G.; Browning, Matthew K.
2018-04-01
Some low-mass stars appear to have larger radii than predicted by standard 1D structure models; prior work has suggested that inefficient convective heat transport, due to rotation and/or magnetism, may ultimately be responsible. We examine this issue using 1D stellar models constructed using Modules for Experiments in Stellar Astrophysics (MESA). First, we consider standard models that do not explicitly include rotational/magnetic effects, with convective inhibition modeled by decreasing a depth-independent mixing length theory (MLT) parameter α MLT. We provide formulae linking changes in α MLT to changes in the interior specific entropy, and hence to the stellar radius. Next, we modify the MLT formulation in MESA to mimic explicitly the influence of rotation and magnetism, using formulations suggested by Stevenson and MacDonald & Mullan, respectively. We find rapid rotation in these models has a negligible impact on stellar structure, primarily because a star’s adiabat, and hence its radius, is predominantly affected by layers near the surface; convection is rapid and largely uninfluenced by rotation there. Magnetic fields, if they influenced convective transport in the manner described by MacDonald & Mullan, could lead to more noticeable radius inflation. Finally, we show that these non-standard effects on stellar structure can be fabricated using a depth-dependent α MLT: a non-magnetic, non-rotating model can be produced that is virtually indistinguishable from one that explicitly parameterizes rotation and/or magnetism using the two formulations above. We provide formulae linking the radially variable α MLT to these putative MLT reformulations.
NASA Astrophysics Data System (ADS)
Carlson, Lynn R.
2010-01-01
I discuss newly discovered Young Stellar Objects (YSOs) in several star-forming regions in the Magellanic Clouds. I exploit the synergy between infrared photometry from the Spitzer SAGE (Surveying the Agents of Galaxy Evolution) legacy programs, near-infrared and optical photometry from ground-based surveys, and HST imaging to characterize young stellar populations. This reveals a variety of Main Sequence Stars and Proto-Stars over a wide range of evolutionary stages. Through SED fitting, I characterize the youngest, embedded, infrared-bright YSOs. Complementary color-Magnitude analysis and isochrone fitting of optical data allows a statistical description of more evolved, unembedded stellar and protostellar populations within these same regions. I examine the early evolution of Magellanic star clusters, including propagating and triggered star formation, and take a step toward characterizing evolutionary timescales for YSOs. In this talk, I present an overview of the project and exemplify the analysis by focusing on NGC 602 in the SMC and Henize 206 in the LMC as examples. The SAGE Project is supported by NASA/Spitzer grant 1275598 and NASA NAG5-12595.
Implications of Stellar Feedback for Dynamical Modeling of the Milky Way and Dwarf Galaxies
NASA Astrophysics Data System (ADS)
Wetzel, Andrew
2018-04-01
I will present recent results on dynamical modeling of stellar populations from the FIRE cosmological zoom-in baryonic simulations of Milky Way-like and dwarf galaxies. First, I will discuss the dynamical formation of the Milky Way, including the origin of thin+thick stellar disk morphology. I also will discuss the curious origin of metal-rich stars on halo-like orbits near the Sun, as recently measured by Gaia, with new insights from FIRE simulations on stellar radial migration/heating. Next, I will discuss role of stellar feedback in generating non-equilibrium fluctuations of the gravitational potential in low-mass 'dwarf' galaxies, which can explain the origin of cores in their dark-matter density profiles. In particular, we predict significant observable effects on stellar dynamics, including radial migration, size fluctuations, and population gradients, which can provide observational tests of feedback-driven core formation. Finally, this scenario can explain the formation of newly discovered 'ultra-diffuse' galaxies.
Research at the Institute of Astronomy and Astrophysics of the Université Libre de Bruxelles
NASA Astrophysics Data System (ADS)
Karinkuzhi, Drisya; Chamel, Nicolas; Goriely, Stéphane; Jorissen, Alain; Pourbaix, Dimitri; Siess, Lionel; Van Eck, Sophie
2018-04-01
Over the years, a coherent research strategy has developed in the field of stellar physics at the Institute of Astronomy and Astrophysics (IAA). It involves observational studies (chemical composition of giant stars, binary properties, tomography of stellar atmospheres) that make use of the large ESO telescopes as well as of other major instruments. The presence of a high-resolution spectrograph on the 3.6-m Devasthal Optical Telescope (DOT) would therefore be highly beneficial to IAA research. These observations are complemented and supported by theoretical studies of mass transfer in binary systems, of standard and non-standard stellar evolution (including the modelling of stellar hydrodynamical nuclear burning for application to certain thermonuclear supernovae) and of nuclear astrophysics (a field in which IAA has been recognized for a long time as an international centre of excellence), including the theory of nucleosynthesis. IAA also addresses the end-points of stellar evolution as it is carrying out research on the compact remnants of stellar evolution of massive stars: neutron stars.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Asplund, Martin
2014-11-20
The chemical composition of stars contain vital clues not only about the stars themselves but also about the conditions prevailing before their births. As such, stellar spectroscopy plays a key role in contemporary astrophysics and cosmology by probing cosmic, galactic, stellar and planetary evolution. In this review I will describe the theoretical foundations of quantitative stellar spectroscopy: stellar atmosphere models and spectral line formation. I will focus mainly on more recent advances in the field, in particular the advent of realistic time-dependent, 3D, (magneto-)hydrodynamical simulations of stellar surface convection and atmospheres and non-LTE radiative transfer relevant for stars like themore » Sun. I will also discuss some particular applications of this type of modelling which have resulted in some exciting break-throughs in our understanding and with wider implications: the solar chemical composition, the chemical signatures of planet formation imprinted in stellar abundances, the cosmological Li problem(s) and where the first stars may be residing today.« less
The VLT-FLAMES survey of massive stars: mass loss and rotation of early-type stars in the SMC
NASA Astrophysics Data System (ADS)
Mokiem, M. R.; de Koter, A.; Evans, C. J.; Puls, J.; Smartt, S. J.; Crowther, P. A.; Herrero, A.; Langer, N.; Lennon, D. J.; Najarro, F.; Villamariz, M. R.; Yoon, S.-C.
2006-09-01
We have studied the optical spectra of a sample of 31 O-and early B-type stars in the Small Magellanic Cloud, 21 of which are associated with the young massive cluster NGC 346. Stellar parameters are determined using an automated fitting method (Mokiem et al. 2005, A&A, 441, 711), which combines the stellar atmosphere code FASTWIND (Puls et al. 2005, A&A, 435, 669) with the genetic algorithm based optimisation routine PIKAIA (Charbonneau 1995, ApJS, 101, 309). Comparison with predictions of stellar evolution that account for stellar rotation does not result in a unique age, though most stars are best represented by an age of 1-3 Myr. The automated method allows for a detailed determination of the projected rotational velocities. The present day v_r sin i distribution of the 21 dwarf stars in our sample is consistent with an underlying rotational velocity (v_r) distribution that can be characterised by a mean velocity of about 160 - 190 km s-1 and an effective half width of 100 - 150 km s-1. The vr distribution must include a small percentage of slowly rotating stars. If predictions of the time evolution of the equatorial velocity for massive stars within the environment of the SMC are correct (Maeder & Meynet 2001, A&A, 373, 555), the young age of the cluster implies that this underlying distribution is representative for the initial rotational velocity distribution. The location in the Hertzsprung-Russell diagram of the stars showing helium enrichment is in qualitative agreement with evolutionary tracks accounting for rotation, but not for those ignoring v_r. The mass loss rates of the SMC objects having luminosities of log L*/L⊙ ≳ 5.4 are in excellent agreement with predictions by Vink et al. (2001, A&A, 369, 574). However, for lower luminosity stars the winds are too weak to determine dot{M} accurately from the optical spectrum. Three targets were classifiedas Vz stars, two of which are located close to the theoretical zero-age main sequence. Three lower luminosity targets that were not classified as Vz stars are also found to lie near the ZAMS. We argue that this is related to a temperature effect inhibiting cooler from displaying the spectral features required for the Vz luminosity class.
Studying visual attention using the multiple object tracking paradigm: A tutorial review.
Meyerhoff, Hauke S; Papenmeier, Frank; Huff, Markus
2017-07-01
Human observers are capable of tracking multiple objects among identical distractors based only on their spatiotemporal information. Since the first report of this ability in the seminal work of Pylyshyn and Storm (1988, Spatial Vision, 3, 179-197), multiple object tracking has attracted many researchers. A reason for this is that it is commonly argued that the attentional processes studied with the multiple object paradigm apparently match the attentional processing during real-world tasks such as driving or team sports. We argue that multiple object tracking provides a good mean to study the broader topic of continuous and dynamic visual attention. Indeed, several (partially contradicting) theories of attentive tracking have been proposed within the almost 30 years since its first report, and a large body of research has been conducted to test these theories. With regard to the richness and diversity of this literature, the aim of this tutorial review is to provide researchers who are new in the field of multiple object tracking with an overview over the multiple object tracking paradigm, its basic manipulations, as well as links to other paradigms investigating visual attention and working memory. Further, we aim at reviewing current theories of tracking as well as their empirical evidence. Finally, we review the state of the art in the most prominent research fields of multiple object tracking and how this research has helped to understand visual attention in dynamic settings.
Object tracking using plenoptic image sequences
NASA Astrophysics Data System (ADS)
Kim, Jae Woo; Bae, Seong-Joon; Park, Seongjin; Kim, Do Hyung
2017-05-01
Object tracking is a very important problem in computer vision research. Among the difficulties of object tracking, partial occlusion problem is one of the most serious and challenging problems. To address the problem, we proposed novel approaches to object tracking on plenoptic image sequences. Our approaches take advantage of the refocusing capability that plenoptic images provide. Our approaches input the sequences of focal stacks constructed from plenoptic image sequences. The proposed image selection algorithms select the sequence of optimal images that can maximize the tracking accuracy from the sequence of focal stacks. Focus measure approach and confidence measure approach were proposed for image selection and both of the approaches were validated by the experiments using thirteen plenoptic image sequences that include heavily occluded target objects. The experimental results showed that the proposed approaches were satisfactory comparing to the conventional 2D object tracking algorithms.
A novel framework for objective detection and tracking of TC center from noisy satellite imagery
NASA Astrophysics Data System (ADS)
Johnson, Bibin; Thomas, Sachin; Rani, J. Sheeba
2018-07-01
This paper proposes a novel framework for automatically determining and tracking the center of a tropical cyclone (TC) during its entire life-cycle from the Thermal infrared (TIR) channel data of the geostationary satellite. The proposed method handles meteorological images with noise, missing or partial information due to the seasonal variability and lack of significant spatial or vortex features. To retrieve the cyclone center from these circumstances, a synergistic approach based on objective measures and Numerical Weather Prediction (NWP) model is being proposed. This method employs a spatial gradient scheme to process missing and noisy frames or a spatio-temporal gradient scheme for image sequences that are continuous and contain less noise. The initial estimate of the TC center from the missing imagery is corrected by exploiting a NWP model based post-processing scheme. The validity of the framework is tested on Infrared images of different cyclones obtained from various Geostationary satellites such as the Meteosat-7, INSAT- 3 D , Kalpana-1 etc. The computed track is compared with the actual track data obtained from Joint Typhoon Warning Center (JTWC), and it shows a reduction of mean track error by 11 % as compared to the other state of the art methods in the presence of missing and noisy frames. The proposed method is also successfully tested for simultaneous retrieval of the TC center from images containing multiple non-overlapping cyclones.
Oculomotor Behavior Metrics Change According to Circadian Phase and Time Awake
NASA Technical Reports Server (NTRS)
Flynn-Evans, Erin E.; Tyson, Terence L.; Cravalho, Patrick; Feick, Nathan; Stone, Leland S.
2017-01-01
There is a need for non-invasive, objective measures to forecast performance impairment arising from sleep loss and circadian misalignment, particularly in safety-sensitive occupations. Eye-tracking devices have been used in some operational scenarios, but such devices typically focus on eyelid closures and slow rolling eye movements and are susceptible to the intrusion of head movement artifacts. We hypothesized that an expanded suite of oculomotor behavior metrics, collected during a visual tracking task, would change according to circadian phase and time awake, and could be used as a marker of performance impairment.
ERIC Educational Resources Information Center
Rattanarungrot, Sasithorn; White, Martin; Newbury, Paul
2014-01-01
This paper describes the design of our service-oriented architecture to support mobile multiple object tracking augmented reality applications applied to education and learning scenarios. The architecture is composed of a mobile multiple object tracking augmented reality client, a web service framework, and dynamic content providers. Tracking of…
Bae, Seung-Hwan; Yoon, Kuk-Jin
2018-03-01
Online multi-object tracking aims at estimating the tracks of multiple objects instantly with each incoming frame and the information provided up to the moment. It still remains a difficult problem in complex scenes, because of the large ambiguity in associating multiple objects in consecutive frames and the low discriminability between objects appearances. In this paper, we propose a robust online multi-object tracking method that can handle these difficulties effectively. We first define the tracklet confidence using the detectability and continuity of a tracklet, and decompose a multi-object tracking problem into small subproblems based on the tracklet confidence. We then solve the online multi-object tracking problem by associating tracklets and detections in different ways according to their confidence values. Based on this strategy, tracklets sequentially grow with online-provided detections, and fragmented tracklets are linked up with others without any iterative and expensive association steps. For more reliable association between tracklets and detections, we also propose a deep appearance learning method to learn a discriminative appearance model from large training datasets, since the conventional appearance learning methods do not provide rich representation that can distinguish multiple objects with large appearance variations. In addition, we combine online transfer learning for improving appearance discriminability by adapting the pre-trained deep model during online tracking. Experiments with challenging public datasets show distinct performance improvement over other state-of-the-arts batch and online tracking methods, and prove the effect and usefulness of the proposed methods for online multi-object tracking.
Helical axis stellarator with noninterlocking planar coils
Reiman, A.; Boozer, A.H.
1984-03-06
The present invention generates stellarator fields having favorable properties (magnetic well and large rotational transform) by a simple coil system consisting only of unlinked planar non-circular coils. At large rotational transform toroidal effects on magnetic well and rotational transform are small and can be ignored. We do so herein, specializing in straight helical systems.
Non-resonant divertors for stellarators
NASA Astrophysics Data System (ADS)
Boozer, Allen; Punjabi, Alkesh
2017-10-01
The outermost confining magnetic surface in optimized stellarators has sharp edges, which resemble tokamak X-points. The plasma cross section has an even number of edges at the beginning but an odd number half way through the period. Magnetic field lines cannot cross sharp edges, but stellarator edges have a finite length and do not determine the rotational transform on the outermost confining surface. Just outside the last confining surface, surfaces formed by magnetic field lines have splits containing two adjacent magnetic flux tubes: one with entering and the other with an equal existing flux to the walls. The splits become wider with distance outside the outermost confining surface. These flux tubes form natural non-resonant stellarator divertors, which we are studying using maps. This work is supported by the US DOE Grants DE-FG02-95ER54333 to Columbia University and DE-FG02-01ER54624 and DE-FG02-04ER54793 to Hampton University and used resources of the NERSC, supported by the Office of Science, US DOE, under Contract No. DE-AC02-.
The stellar content of 30 Doradus
NASA Technical Reports Server (NTRS)
Walborn, N. R.
1984-01-01
The components of the supergiant H II region Tarantula are surveyed, noting that 30 Doradus is really only the most active section of the Large Magellanic Cloud. The region contains at least 40 WR stars and numerous non-H II region late spectral type supergiants. Most of the stars are centrally located and presumably feed on the nebulosity. The closeness of the population will require fine spectroscopic scans of all the members to achieve accurate typing. Although the population is mixed, the ionizing radiation emitted by the region is consistent with its classification as part of the H II region. Finally, the brightest objects within Tarantula are suspected of being multiple systems.
NASA Astrophysics Data System (ADS)
Watson, C.; Devine, Kathryn; Quintanar, N.; Candelaria, T.
2016-02-01
We survey 44 young stellar objects located near the edges of mid-IR-identified bubbles in CS (1-0) using the Green Bank Telescope. We detect emission in 18 sources, indicating young protostars that are good candidates for being triggered by the expansion of the bubble. We calculate CS column densities and abundances. Three sources show evidence of infall through non-Gaussian line-shapes. Two of these sources are associated with dark clouds and are promising candidates for further exploration of potential triggered star formation. We obtained on-the-fly maps in CS (1-0) of three sources, showing evidence of significant interactions between the sources and the surrounding environment.
The Bayesian Cramér-Rao lower bound in Astrometry
NASA Astrophysics Data System (ADS)
Mendez, R. A.; Echeverria, A.; Silva, J.; Orchard, M.
2018-01-01
A determination of the highest precision that can be achieved in the measurement of the location of a stellar-like object has been a topic of permanent interest by the astrometric community. The so-called (parametric, or non-Bayesian) Cramér-Rao (CR hereafter) bound provides a lower bound for the variance with which one could estimate the position of a point source. This has been studied recently by Mendez et al. (2013, 2014, 2015). In this work we present a different approach to the same problem (Echeverria et al. 2016), using a Bayesian CR setting which has a number of advantages over the parametric scenario.
The Bayesian Cramér-Rao lower bound in Astrometry
NASA Astrophysics Data System (ADS)
Mendez, R. A.; Echeverria, A.; Silva, J.; Orchard, M.
2017-07-01
A determination of the highest precision that can be achieved in the measurement of the location of a stellar-like object has been a topic of permanent interest by the astrometric community. The so-called (parametric, or non-Bayesian) Cramér-Rao (CR hereafter) bound provides a lower bound for the variance with which one could estimate the position of a point source. This has been studied recently by Mendez and collaborators (2014, 2015). In this work we present a different approach to the same problem (Echeverria et al. 2016), using a Bayesian CR setting which has a number of advantages over the parametric scenario.
Polarimetry - Scope on the 3.6-m Devasthal Optical Telescope
NASA Astrophysics Data System (ADS)
Joshi, Umesh Chandra; Ganesh, Shashikiran; Baliyan, Kiran Singh
2018-04-01
Polarization measurements are very helpful to understand the nature of some of the stellar and extra-galactic sources. Light from astronomical objects is in general polarized to some degree and its measurement gives additional information related to the magnetic field, the distribution of scattering material, the non-thermal nature of light, etc. Since the degree of polarization in the majority of astronomical sources is 1-5%, and polarimetry requires additional optics with respect to classical imaging, these measurements require much more photons to achieve a good signal-to-noise ratio for which the 3.6-m Devasthal Optical Telescope (DOT) facility is suitable.
NASA Astrophysics Data System (ADS)
Schirrmacher, V.; Woitke, P.; Sedlmayr, E.
Stars on the Asymptotic Giant Branch (AGB) are pulsating objects in a late evolutionary stage. The stellar pulsation creates sound waves which steepen up to shock waves in the upper atmosphere and lead to a time dependent levitation of the outer atmosphere. Thereby, the stellar pulsation triggers and facilitates the formation of dust close to the star. The dust is accelerated by radiation pressure and drags the gas outwards due to frictional forces which is identified to provide the basic mass loss mechanism. A longstanding problem concerning the modelling of these physical processes is the influence of the propagating shock waves on the temperature structure of the wind, which strongly influences the dust formation. We have therefore improved our numerical models of AGB-star envelopes by including (i) a detailed calculation of non-LTE radiative heating and cooling rates, predominantly arising from atomic and molecular lines and (ii) atomic and molecular exitation aswell as ionisation and dissociation in the equation of state. First results, presented here, show that the cooling time scales behind the shock waves are usually rather short, but the binding energies of molecular hydrogen provide an important energy buffer capable to delay the radiative heating or cooling. Thus considerable deviations from radiative equilibrium may occur in the important inner dust forming layers.
Multiple Hypothesis Tracking (MHT) for Space Surveillance: Results and Simulation Studies
NASA Astrophysics Data System (ADS)
Singh, N.; Poore, A.; Sheaff, C.; Aristoff, J.; Jah, M.
2013-09-01
With the anticipated installation of more accurate sensors and the increased probability of future collisions between space objects, the potential number of observable space objects is likely to increase by an order of magnitude within the next decade, thereby placing an ever-increasing burden on current operational systems. Moreover, the need to track closely-spaced objects due, for example, to breakups as illustrated by the recent Chinese ASAT test or the Iridium-Kosmos collision, requires new, robust, and autonomous methods for space surveillance to enable the development and maintenance of the present and future space catalog and to support the overall space surveillance mission. The problem of correctly associating a stream of uncorrelated tracks (UCTs) and uncorrelated optical observations (UCOs) into common objects is critical to mitigating the number of UCTs and is a prerequisite to subsequent space catalog maintenance. Presently, such association operations are mainly performed using non-statistical simple fixed-gate association logic. In this paper, we report on the salient features and the performance of a newly-developed statistically-robust system-level multiple hypothesis tracking (MHT) system for advanced space surveillance. The multiple-frame assignment (MFA) formulation of MHT, together with supporting astrodynamics algorithms, provides a new joint capability for space catalog maintenance, UCT/UCO resolution, and initial orbit determination. The MFA-MHT framework incorporates multiple hypotheses for report to system track data association and uses a multi-arc construction to accommodate recently developed algorithms for multiple hypothesis filtering (e.g., AEGIS, CAR-MHF, UMAP, and MMAE). This MHT framework allows us to evaluate the benefits of many different algorithms ranging from single- and multiple-frame data association to filtering and uncertainty quantification. In this paper, it will be shown that the MHT system can provide superior tracking performance compared to existing methods at a lower computational cost, especially for closely-spaced objects, in realistic multi-sensor multi-object tracking scenarios over multiple regimes of space. Specifically, we demonstrate that the prototype MHT system can accurately and efficiently process tens of thousands of UCTs and angles-only UCOs emanating from thousands of objects in LEO, GEO, MEO and HELO, many of which are closely-spaced, in real-time on a single laptop computer, thereby making it well-suited for large-scale breakup and tracking scenarios. This is possible in part because complexity reduction techniques are used to control the runtime of MHT without sacrificing accuracy. We assess the performance of MHT in relation to other tracking methods in multi-target, multi-sensor scenarios ranging from easy to difficult (i.e., widely-spaced objects to closely-spaced objects), using realistic physics and probabilities of detection less than one. In LEO, it is shown that the MHT system is able to address the challenges of processing breakups by analyzing multiple frames of data simultaneously in order to improve association decisions, reduce cross-tagging, and reduce unassociated UCTs. As a result, the multi-frame MHT system can establish orbits up to ten times faster than single-frame methods. Finally, it is shown that in GEO, MEO and HELO, the MHT system is able to address the challenges of processing angles-only optical observations by providing a unified multi-frame framework.
The Dragonfly Nearby Galaxies Survey. IV. A Giant Stellar Disk in NGC 2841
NASA Astrophysics Data System (ADS)
Zhang, Jielai; Abraham, Roberto; van Dokkum, Pieter; Merritt, Allison; Janssens, Steven
2018-03-01
Neutral gas is commonly believed to dominate over stars in the outskirts of galaxies, and investigations of the disk-halo interface are generally considered to be in the domain of radio astronomy. This may simply be a consequence of the fact that deep H I observations typically probe to a lower-mass surface density than visible wavelength data. This paper presents low-surface-brightness, optimized visible wavelength observations of the extreme outskirts of the nearby spiral galaxy NGC 2841. We report the discovery of an enormous low-surface brightness stellar disk in this object. When azimuthally averaged, the stellar disk can be traced out to a radius of ∼70 kpc (5 R 25 or 23 inner disk scale lengths). The structure in the stellar disk traces the morphology of H I emission and extended UV emission. Contrary to expectations, the stellar mass surface density does not fall below that of the gas mass surface density at any radius. In fact, at all radii greater than ∼20 kpc, the ratio of the stellar mass to gas mass surface density is a constant 3:1. Beyond ∼30 kpc, the low-surface-brightness stellar disk begins to warp, which may be an indication of a physical connection between the outskirts of the galaxy and infall from the circumgalactic medium. A combination of stellar migration, accretion, and in situ star formation might be responsible for building up the outer stellar disk, but whatever mechanisms formed the outer disk must also explain the constant ratio between stellar and gas mass in the outskirts of this galaxy.
Relaxational effects in radiating stellar collapse
NASA Astrophysics Data System (ADS)
Govender, Megan; Maartens, Roy; Maharaj, Sunil D.
1999-12-01
Relaxational effects in stellar heat transport can in many cases be significant. Relativistic Fourier-Eckart theory is inherently quasi-stationary, and cannot incorporate these effects. The effects are naturally accounted for in causal relativistic thermodynamics, which provides an improved approximation to kinetic theory. Recent results, based on perturbations of a static star, show that relaxation effects can produce a significant increase in the central temperature and temperature gradient for a given luminosity. We use a simple stellar model that allows for non-perturbative deviations from staticity, and confirms qualitatively the predictions of the perturbative models.
SPITZER OBSERVATIONS OF LONG-TERM INFRARED VARIABILITY AMONG YOUNG STELLAR OBJECTS IN CHAMAELEON I
DOE Office of Scientific and Technical Information (OSTI.GOV)
Flaherty, Kevin M.; Herbst, William; DeMarchi, Lindsay
Infrared variability is common among young stellar objects, with surveys finding daily to weekly fluctuations of a few tenths of a magnitude. Space-based observations can produce highly sampled infrared light curves, but are often limited to total baselines of about 1 month due to the orientation of the spacecraft. Here we present observations of the Chameleon I cluster, whose low declination makes it observable by the Spitzer Space Telescope over a 200-day period. We observe 30 young stellar objects with a daily cadence to better sample variability on timescales of months. We find that such variability is common, occurring inmore » ∼80% of the detected cluster members. The change in [3.6]–[4.5] color over 200 days for many of the sources falls between that expected for extinction and fluctuations in disk emission. With our high cadence and long baseline we can derive power spectral density curves covering two orders of magnitude in frequency and find significant power at low frequencies, up to the boundaries of our 200-day survey. Such long timescales are difficult to explain with variations driven by the interaction between the disk and stellar magnetic field, which has a dynamical timescale of days to weeks. The most likely explanation is either structural or temperature fluctuations spread throughout the inner ∼0.5 au of the disk, suggesting that the intrinsic dust structure is highly dynamic.« less
THE SPITZER ATLAS OF STELLAR SPECTRA (SASS)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ardila, David R.; Van Dyk, Schuyler D.; Makowiecki, Wojciech
2010-12-15
We present the Spitzer Atlas of Stellar Spectra, which includes 159 stellar spectra (5-32 {mu}m; R {approx} 100) taken with the Infrared Spectrograph on the Spitzer Space Telescope. This Atlas gathers representative spectra of a broad section of the Hertzsprung-Russell diagram, intended to serve as a general stellar spectral reference in the mid-infrared. It includes stars from all luminosity classes, as well as Wolf-Rayet (WR) objects. Furthermore, it includes some objects of intrinsic interest, such as blue stragglers and certain pulsating variables. All of the spectra have been uniformly reduced, and all are available online. For dwarfs and giants, themore » spectra of early-type objects are relatively featureless, characterized by the presence of hydrogen lines in A spectral types. Besides these, the most noticeable photospheric features correspond to water vapor and silicon monoxide in late-type objects and methane and ammonia features at the latest spectral types. Most supergiant spectra in the Atlas present evidence of circumstellar gas and/or dust. The sample includes five M supergiant spectra, which show strong dust excesses and in some cases polycyclic aromatic hydrocarbon features. Sequences of WR stars present the well-known pattern of lines of He I and He II, as well as forbidden lines of ionized metals. The characteristic flat-top shape of the [Ne III] line is evident even at these low spectral resolutions. Several Luminous Blue Variables and other transition stars are present in the Atlas and show very diverse spectra, dominated by circumstellar gas and dust features. We show that the [8]-[24] Spitzer colors (IRAC and MIPS) are poor predictors of spectral type for most luminosity classes.« less
The Spitzer Atlas of Stellar Spectra (SASS)
NASA Astrophysics Data System (ADS)
Ardila, David R.; Van Dyk, Schuyler D.; Makowiecki, Wojciech; Stauffer, John; Song, Inseok; Rho, Jeonghee; Fajardo-Acosta, Sergio; Hoard, D. W.; Wachter, Stefanie
2010-12-01
We present the Spitzer Atlas of Stellar Spectra, which includes 159 stellar spectra (5-32 μm R ~ 100) taken with the Infrared Spectrograph on the Spitzer Space Telescope. This Atlas gathers representative spectra of a broad section of the Hertzsprung-Russell diagram, intended to serve as a general stellar spectral reference in the mid-infrared. It includes stars from all luminosity classes, as well as Wolf-Rayet (WR) objects. Furthermore, it includes some objects of intrinsic interest, such as blue stragglers and certain pulsating variables. All of the spectra have been uniformly reduced, and all are available online. For dwarfs and giants, the spectra of early-type objects are relatively featureless, characterized by the presence of hydrogen lines in A spectral types. Besides these, the most noticeable photospheric features correspond to water vapor and silicon monoxide in late-type objects and methane and ammonia features at the latest spectral types. Most supergiant spectra in the Atlas present evidence of circumstellar gas and/or dust. The sample includes five M supergiant spectra, which show strong dust excesses and in some cases polycyclic aromatic hydrocarbon features. Sequences of WR stars present the well-known pattern of lines of He I and He II, as well as forbidden lines of ionized metals. The characteristic flat-top shape of the [Ne III] line is evident even at these low spectral resolutions. Several Luminous Blue Variables and other transition stars are present in the Atlas and show very diverse spectra, dominated by circumstellar gas and dust features. We show that the [8]-[24] Spitzer colors (IRAC and MIPS) are poor predictors of spectral type for most luminosity classes.
U.S. Government Funding for Science and Technology Cooperation with Russia
2002-01-01
and Vietnamese scientists to study and understand the origin of cosmic rays , and "* collaboration among U.S., Russian, Ukrainian, and Lithuanian...International Space Station; for solar terrestrial surface radiation over the Arctic basin; and to index and track Russian biomedical articles and...experimentation on an electric propulsion thruster for small, low-power satellites "• calibrating data analysis from the Stellar X- Ray Polarimeter of
SPIN EVOLUTION OF ACCRETING YOUNG STARS. II. EFFECT OF ACCRETION-POWERED STELLAR WINDS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matt, Sean P.; Pinzon, Giovanni; Greene, Thomas P.
2012-01-20
We present a model for the rotational evolution of a young, solar-mass star interacting magnetically with an accretion disk. As in a previous paper (Paper I), the model includes changes in the star's mass and radius as it descends the Hayashi track, a decreasing accretion rate, and a prescription for the angular momentum transfer between the star and disk. Paper I concluded that, for the relatively strong magnetic coupling expected in real systems, additional processes are necessary to explain the existence of slowly rotating pre-main-sequence stars. In the present paper, we extend the stellar spin model to include the effectmore » of a spin-down torque that arises from an accretion-powered stellar wind (APSW). For a range of magnetic field strengths, accretion rates, initial spin rates, and mass outflow rates, the modeled stars exhibit rotation periods within the range of 1-10 days in the age range of 1-3 Myr. This range coincides with the bulk of the observed rotation periods, with the slow rotators corresponding to stars with the lowest accretion rates, strongest magnetic fields, and/or highest stellar wind mass outflow rates. We also make a direct, quantitative comparison between the APSW scenario and the two types of disk-locking models (namely, the X-wind and Ghosh and Lamb type models) and identify some remaining theoretical issues for understanding young star spins.« less
Spin Evolution of Accreting Young Stars. II. Effect of Accretion-powered Stellar Winds
NASA Astrophysics Data System (ADS)
Matt, Sean P.; Pinzón, Giovanni; Greene, Thomas P.; Pudritz, Ralph E.
2012-01-01
We present a model for the rotational evolution of a young, solar-mass star interacting magnetically with an accretion disk. As in a previous paper (Paper I), the model includes changes in the star's mass and radius as it descends the Hayashi track, a decreasing accretion rate, and a prescription for the angular momentum transfer between the star and disk. Paper I concluded that, for the relatively strong magnetic coupling expected in real systems, additional processes are necessary to explain the existence of slowly rotating pre-main-sequence stars. In the present paper, we extend the stellar spin model to include the effect of a spin-down torque that arises from an accretion-powered stellar wind (APSW). For a range of magnetic field strengths, accretion rates, initial spin rates, and mass outflow rates, the modeled stars exhibit rotation periods within the range of 1-10 days in the age range of 1-3 Myr. This range coincides with the bulk of the observed rotation periods, with the slow rotators corresponding to stars with the lowest accretion rates, strongest magnetic fields, and/or highest stellar wind mass outflow rates. We also make a direct, quantitative comparison between the APSW scenario and the two types of disk-locking models (namely, the X-wind and Ghosh & Lamb type models) and identify some remaining theoretical issues for understanding young star spins.
First light - II. Emission line extinction, population III stars, and X-ray binaries
NASA Astrophysics Data System (ADS)
Barrow, Kirk S. S.; Wise, John H.; Aykutalp, Aycin; O'Shea, Brian W.; Norman, Michael L.; Xu, Hao
2018-02-01
We produce synthetic spectra and observations for metal-free stellar populations and high-mass X-ray binaries in the Renaissance Simulations at a redshift of 15. We extend our methodology from the first paper in the series by modelling the production and extinction of emission lines throughout a dusty and metal-enriched interstellar and circum-galactic media extracted from the simulation, using a Monte Carlo calculation. To capture the impact of high-energy photons, we include all frequencies from hard X-ray to far-infrared with enough frequency resolution to discern line emission and absorption profiles. The most common lines in our sample in order of their rate of occurrence are Ly α, the C IV λλ1548, 1551 doublet, H α, and the Ca II λλλ8498, 8542, 8662 triplet. The best scenario for a direct observation of a metal-free stellar population is a merger between two Population III Galaxies. In mergers between metal-enriched and metal-free stellar populations, some characteristics may be inferred indirectly. Single Population III galaxies are too dim to be observed photometrically at z = 15. Ly α emission is discernible by JWST as an increase in J200w - J277w colour off the intrinsic stellar tracks. Observations of metal-free stars will be difficult, though not impossible, with the next generation of space telescopes.
First Light II: Emission Line Extinction, Population III Stars, and X-ray Binaries
Barrow, Kirk S. S.; Wise, John H.; Aykutalp, Aycin; ...
2017-11-17
Here, we produce synthetic spectra and observations for metal-free stellar populations and high-mass X-ray binaries in the Renaissance Simulations at a redshift of 15. We extend our methodology from the first paper in the series by modelling the production and extinction of emission lines throughout a dusty and metal-enriched interstellar and circum-galactic media extracted from the simulation, using a Monte Carlo calculation. To capture the impact of high-energy photons, we include all frequencies from hard X-ray to far-infrared with enough frequency resolution to discern line emission and absorption profiles. The most common lines in our sample in order of theirmore » rate of occurrence are Ly α, the C iv λλ1548, 1551 doublet, H α, and the Ca ii λλλ8498, 8542, 8662 triplet. The best scenario for a direct observation of a metal-free stellar population is a merger between two Population III Galaxies. In mergers between metal-enriched and metal-free stellar populations, some characteristics may be inferred indirectly. Single Population III galaxies are too dim to be observed photometrically at z = 15. Ly α emission is discernible by JWST as an increase in J200w – J277w colour off the intrinsic stellar tracks. Observations of metal-free stars will be difficult, though not impossible, with the next generation of space telescopes.« less
First Light II: Emission Line Extinction, Population III Stars, and X-ray Binaries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barrow, Kirk S. S.; Wise, John H.; Aykutalp, Aycin
Here, we produce synthetic spectra and observations for metal-free stellar populations and high-mass X-ray binaries in the Renaissance Simulations at a redshift of 15. We extend our methodology from the first paper in the series by modelling the production and extinction of emission lines throughout a dusty and metal-enriched interstellar and circum-galactic media extracted from the simulation, using a Monte Carlo calculation. To capture the impact of high-energy photons, we include all frequencies from hard X-ray to far-infrared with enough frequency resolution to discern line emission and absorption profiles. The most common lines in our sample in order of theirmore » rate of occurrence are Ly α, the C iv λλ1548, 1551 doublet, H α, and the Ca ii λλλ8498, 8542, 8662 triplet. The best scenario for a direct observation of a metal-free stellar population is a merger between two Population III Galaxies. In mergers between metal-enriched and metal-free stellar populations, some characteristics may be inferred indirectly. Single Population III galaxies are too dim to be observed photometrically at z = 15. Ly α emission is discernible by JWST as an increase in J200w – J277w colour off the intrinsic stellar tracks. Observations of metal-free stars will be difficult, though not impossible, with the next generation of space telescopes.« less
Mass and metallicity scaling relations of high-redshift star-forming galaxies selected by GRBs
NASA Astrophysics Data System (ADS)
Arabsalmani, M.; Møller, P.; Perley, D. A.; Freudling, W.; Fynbo, J. P. U.; Le Floc'h, E.; Zwaan, M. A.; Schulze, S.; Tanvir, N. R.; Christensen, L.; Levan, A. J.; Jakobsson, P.; Malesani, D.; Cano, Z.; Covino, S.; D'Elia, V.; Goldoni, P.; Gomboc, A.; Heintz, K. E.; Sparre, M.; de Ugarte Postigo, A.; Vergani, S. D.
2018-01-01
We present a comprehensive study of the relations between gas kinematics, metallicity and stellar mass in a sample of 82 gamma-ray burst (GRB)-selected galaxies using absorption and emission methods. We find the velocity widths of both emission and absorption profiles to be a proxy of stellar mass. We also investigate the velocity-metallicity correlation and its evolution with redshift. Using 33 GRB hosts with measured stellar mass and metallicity, we study the mass-metallicity relation for GRB host galaxies in a stellar mass range of 108.2-1011.1 M⊙ and a redshift range of z ∼ 0.3-3.4. The GRB-selected galaxies appear to track the mass-metallicity relation of star-forming galaxies but with an offset of 0.15 towards lower metallicities. This offset is comparable with the average error bar on the metallicity measurements of the GRB sample and also the scatter on the mass-metallicity relation of the general population. It is hard to decide whether this relatively small offset is due to systematic effects or the intrinsic nature of GRB hosts. We also investigate the possibility of using absorption-line metallicity measurements of GRB hosts to study the mass-metallicity relation at high redshifts. Our analysis shows that the metallicity measurements from absorption methods can significantly differ from emission metallicities and assuming identical measurements from the two methods may result in erroneous conclusions.
GAMA/H-ATLAS: The Dust Opacity-Stellar Mass Surface Density Relation for Spiral Galaxies
NASA Astrophysics Data System (ADS)
Grootes, M. W.; Tuffs, R. J.; Popescu, C. C.; Pastrav, B.; Andrae, E.; Gunawardhana, M.; Kelvin, L. S.; Liske, J.; Seibert, M.; Taylor, E. N.; Graham, Alister W.; Baes, M.; Baldry, I. K.; Bourne, N.; Brough, S.; Cooray, A.; Dariush, A.; De Zotti, G.; Driver, S. P.; Dunne, L.; Gomez, H.; Hopkins, A. M.; Hopwood, R.; Jarvis, M.; Loveday, J.; Maddox, S.; Madore, B. F.; Michałowski, M. J.; Norberg, P.; Parkinson, H. R.; Prescott, M.; Robotham, A. S. G.; Smith, D. J. B.; Thomas, D.; Valiante, E.
2013-03-01
We report the discovery of a well-defined correlation between B-band face-on central optical depth due to dust, τ ^f_B, and the stellar mass surface density, μ*, of nearby (z <= 0.13) spiral galaxies: {log}(τ ^{f}_{B}) = 1.12(+/- 0.11) \\cdot {log}({μ _{*}}/{{M}_{⊙ } {kpc}^{-2}}) - 8.6(+/- 0.8). This relation was derived from a sample of spiral galaxies taken from the Galaxy and Mass Assembly (GAMA) survey, which were detected in the FIR/submillimeter (submm) in the Herschel-ATLAS science demonstration phase field. Using a quantitative analysis of the NUV attenuation-inclination relation for complete samples of GAMA spirals categorized according to stellar mass surface density, we demonstrate that this correlation can be used to statistically correct for dust attenuation purely on the basis of optical photometry and Sérsic-profile morphological fits. Considered together with previously established empirical relationships of stellar mass to metallicity and gas mass, the near linearity and high constant of proportionality of the τ ^f_B - μ_{*} relation disfavors a stellar origin for the bulk of refractory grains in spiral galaxies, instead being consistent with the existence of a ubiquitous and very rapid mechanism for the growth of dust in the interstellar medium. We use the τ ^f_B - μ_{*} relation in conjunction with the radiation transfer model for spiral galaxies of Popescu & Tuffs to derive intrinsic scaling relations between specific star formation rate (SFR), stellar mass, and stellar surface density, in which attenuation of the UV light used for the measurement of SFR is corrected on an object-to-object basis. A marked reduction in scatter in these relations is achieved which we demonstrate is due to correction of both the inclination-dependent and face-on components of attenuation. Our results are consistent with a general picture of spiral galaxies in which most of the submm emission originates from grains residing in translucent structures, exposed to UV in the diffuse interstellar radiation field.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prodan, Snezana; Antonini, Fabio; Perets, Hagai B., E-mail: sprodan@cita.utoronto.ca, E-mail: antonini@cita.utoronto.ca
2015-02-01
Here we discuss the evolution of binaries around massive black holes (MBHs) in nuclear stellar clusters. We focus on their secular evolution due to the perturbation by the MBHs, while simplistically accounting for their collisional evolution. Binaries with highly inclined orbits with respect to their orbits around MBHs are strongly affected by secular processes, which periodically change their eccentricities and inclinations (e.g., Kozai-Lidov cycles). During periapsis approach, dissipative processes such as tidal friction may become highly efficient, and may lead to shrinkage of a binary orbit and even to its merger. Binaries in this environment can therefore significantly change theirmore » orbital evolution due to the MBH third-body perturbative effects. Such orbital evolution may impinge on their later stellar evolution. Here we follow the secular dynamics of such binaries and its coupling to tidal evolution, as well as the stellar evolution of such binaries on longer timescales. We find that stellar binaries in the central parts of nuclear stellar clusters (NSCs) are highly likely to evolve into eccentric and/or short-period binaries, and become strongly interacting binaries either on the main sequence (at which point they may even merge), or through their later binary stellar evolution. The central parts of NSCs therefore catalyze the formation and evolution of strongly interacting binaries, and lead to the enhanced formation of blue stragglers, X-ray binaries, gravitational wave sources, and possible supernova progenitors. Induced mergers/collisions may also lead to the formation of G2-like cloud-like objects such as the one recently observed in the Galactic center.« less
Stellar Occultations by TNOs and Centaurs: first results in the “Gaia era”
NASA Astrophysics Data System (ADS)
Rossi, Gustavo; Vieira-Martins, Roberto; Sicardy, Bruno; Ortiz, Jose Luis; Rio Group, Lucky Star Occultation Team, Granada Occultation Team
2017-10-01
After the first release of the GAIA catalog (in September/2016), stellar positions are now known with unprecedented accuracy, reaching values of the order of milliarcseconds. This improvement reflected into a stunning accuracy on the astrometry of moving objects, such as TNOs. Unfortunately, Gaia stars proper motions will be only available on the second data release (DR2) next year, so there is still a need to use hybrid stellar catalogs for occultation predictions until then. Despite that, stellar occultations predictions are now much more accurate, and the biggest uncertainties comes mainly from the object ephemerides. This issue will be overcome by large surveys such as the LSST, which will provide positions for the known TNOs and it is expected to increase the number of known TNOs by nearly 40,000, with an unprecedent amount of acquired information.This huge amount of data also poses a new era in stellar occultations: predictions will be very accurate and the participation of professional astronomers, laboratories, and the amateur community will be crucial to observe the predicted events; observation campaigns will need to be selected according to a specific scientific purpose such as the probability to detect rings or archs around a body, the presence of atmosphere or even the detection of topographic features; the development of softwares capable of reducing the data more efficiently and an easier method to coordinate observation campaigns are needed.Here we present some impressive results obtained from predictions and observed occultations in 2017 (among them we have Pluto, Chariklo and Haumea), the problems we are starting to face in the beginning of the “Gaia era” and the future challenges of stellar occultation.
Spectral fitting of SDSS passive galaxies with α-enhanced single stellar populations
NASA Astrophysics Data System (ADS)
Gomes, Jean Michel; Coelho, Paula
2012-08-01
The power of population synthesis as a mean to estimate the star-formation and chemical histories of galaxies has been well established in the last decade. The major developments were due to a huge avalanche of methods, codes and high-quality galaxy data sets, such as the 2dF, 6dF and SDSS surveys. Semi-empirical spectral synthesis allows for the decomposition of a galaxy spectrum in terms of linear combinations of base elements, i.e. Single Stellar Populations (SSPs) of different ages and metallicities, which are computed from evolutionary synthesis codes (BPASS, GALEV, GALAXEV, MILES, PÉGASE, etc. . .), containing distinct ingredients like: stellar library, evolutionary tracks, metallicities and Initial Mass Function. In general, they have solar-scaled relative abundances, but this is about to change with the unfolding of new α-enhanced SSP models (Coelho et al. 2007). However, passive galaxies have some spectral features corresponding to ``enhanced-ratios'' ([E/Fe]), like O, Ne, Si, S, Mg, Na, C and N over Fe that are not well modeled using solar-scaled SSPs (Trager et al. 2000), leading to residuals between observed and modeled spectra, which also correlate with the velocity dispersion (σ*) and stellar mass (M *): Massive galaxies exhibit a larger [E/Fe] discrepancy than less massive ones. This result can be interpreted as a signature of distinct previous star-formation efficiencies in passive galaxies, leading to distinctive ratios of type Ia and II SNe. We have applied the starlight spectral synthesis code (Cid Fernandes et al. 2005) to a sample of ~ 1000 passive galaxies from the SDSS DR7 with a S/N at the continuum >= 20 to investigate possible enhancements in the derived [E/Fe] ratios. Three sets of SSPs based on Coelho et al. (2007) theoretical models and Walcher et al. (2009) prescriptions were computed for [α/Fe]=0.0, [α/Fe]=0.2 and [α/Fe]=0.4. Our aim is to determine: (1) the quality of the fits, (2) the mean stellar age and metallicity distributions, and (3) the star-formation history of passive galaxies. Using [α/Fe]=0.0 SSPs, we have identified the strongest residuals in the CN (4142.125-4177.125 Å), Na D (5876.875-5909.375 Å) and Mg (5069.125-5196.625 Å) bands. On the other hand, [α/Fe]=0.2 and [α/Fe]=0.4 SSP models tend to reproduce better the Mg band, as compared to solar-scaled SSPs ([α/Fe]=0.0). The residuals are decreased by 1.77 Å ([α/Fe]=0.2) and 2.92 Å ([α/Fe]=0.4). However, as expected, these α-enhanced models lead to worse fits for the CN and Na D bands. These residuals may even reach up to 2.08 Å (CN) and 4.20 Å (Na D), using [α/Fe]=0.2 SSPs and 2.28 Å (CN) and 7.94 Å (Na D), using [α/Fe]=0.4 SSPs. In terms of mean stellar ages and metallicities, we obtain non-negligible biases in both quantities when we compare the solar-scaled SSPs with α-enhanced ones, which tend to have mean stellar ages by 0.12 dex ([α/Fe]=0.2) and 0.14 dex ([α/Fe]=0.4) higher and mean stellar metallicities by 0.1 dex ([α/Fe]=0.2) and 0.2 dex ([α/Fe]=0.4) lower.
Colliding stellar winds in O-type close binary systems
NASA Technical Reports Server (NTRS)
Gies, Douglas R.
1991-01-01
A study of the stellar wind properties of O-type close binary systems is presented. The main objective of this program was to search for colliding winds in four systems, AO Cas, iota Ori, Plaskett's star, and 29 UW CMa, through an examination of high dispersion UV spectra from IUE and optical spectra of the H alpha and He I lambda 6678 emission lines.
The emergence of the galactic stellar mass function from a non-universal IMF in clusters
NASA Astrophysics Data System (ADS)
Dib, Sami; Basu, Shantanu
2018-06-01
We investigate the dependence of a single-generation galactic mass function (SGMF) on variations in the initial stellar mass functions (IMF) of stellar clusters. We show that cluster-to-cluster variations of the IMF lead to a multi-component SGMF where each component in a given mass range can be described by a distinct power-law function. We also show that a dispersion of ≈0.3 M⊙ in the characteristic mass of the IMF, as observed for young Galactic clusters, leads to a low-mass slope of the SGMF that matches the observed Galactic stellar mass function even when the IMFs in the low-mass end of individual clusters are much steeper.
Li, Yuankun; Xu, Tingfa; Deng, Honggao; Shi, Guokai; Guo, Jie
2018-02-23
Although correlation filter (CF)-based visual tracking algorithms have achieved appealing results, there are still some problems to be solved. When the target object goes through long-term occlusions or scale variation, the correlation model used in existing CF-based algorithms will inevitably learn some non-target information or partial-target information. In order to avoid model contamination and enhance the adaptability of model updating, we introduce the keypoints matching strategy and adjust the model learning rate dynamically according to the matching score. Moreover, the proposed approach extracts convolutional features from a deep convolutional neural network (DCNN) to accurately estimate the position and scale of the target. Experimental results demonstrate that the proposed tracker has achieved satisfactory performance in a wide range of challenging tracking scenarios.
NASA Astrophysics Data System (ADS)
Longair, Malcolm S.
2013-04-01
Part I. Stars and Stellar Evolution up to the Second World War: 1. The legacy of the nineteenth century; 2. The classification of stellar spectra; 3. Stellar structure and evolution; 4. The end points of stellar evolution; Part II. The Large-Scale Structure of the Universe, 1900-1939: 5. The Galaxy and the nature of spiral nebulae; 6. The origins of astrophysical cosmology; Part III. The Opening up of the Electromagnetic Spectrum: 7. The opening up of the electromagnetic spectrum and the new astronomies; Part IV. The Astrophysics of Stars and Galaxies since 1945: 8. Stars and stellar evolution; 9. The physics of the interstellar medium; 10. The physics of galaxies and clusters of galaxies; 11. High-energy astrophysics; Part V. Astrophysical Cosmology since 1945: 12. Astrophysical cosmology; 13. The determination of cosmological parameters; 14. The evolution of galaxies and active galaxies with cosmic epoch; 15. The origin of galaxies and the large-scale structure of the Universe; 16. The very early Universe; References; Name index; Object index; Subject index.
Adaptive learning compressive tracking based on Markov location prediction
NASA Astrophysics Data System (ADS)
Zhou, Xingyu; Fu, Dongmei; Yang, Tao; Shi, Yanan
2017-03-01
Object tracking is an interdisciplinary research topic in image processing, pattern recognition, and computer vision which has theoretical and practical application value in video surveillance, virtual reality, and automatic navigation. Compressive tracking (CT) has many advantages, such as efficiency and accuracy. However, when there are object occlusion, abrupt motion and blur, similar objects, and scale changing, the CT has the problem of tracking drift. We propose the Markov object location prediction to get the initial position of the object. Then CT is used to locate the object accurately, and the classifier parameter adaptive updating strategy is given based on the confidence map. At the same time according to the object location, extract the scale features, which is able to deal with object scale variations effectively. Experimental results show that the proposed algorithm has better tracking accuracy and robustness than current advanced algorithms and achieves real-time performance.
Understanding the Milky Way Halo through Large Surveys
NASA Astrophysics Data System (ADS)
Koposov, Sergey
This thesis presents an extensive study of stellar substructure in the outskirts of the Milky Way(MW), combining data mining of SDSS with theoretical modeling. Such substructure, either bound star clusters and satellite galaxies, or tidally disrupted objects forming stellar streams are powerful diagnostics of the Milky Way's dynamics and formation history. I have developed an algorithmic technique of searching for stellar overdensities in the MW halo, based on SDSS catalogs. This led to the discovery of unusual ultra-faint ~ (1000Lsun) globular clusters with very compact sizes and relaxation times << t_Hubble. The detailed analysis of a known stellar stream (GD-1), allowed me to make the first 6-D phase space map for such an object along 60 degrees on the sky. By modeling the stream's orbit I could place strong constraints on the Galactic potential, e.g. Vcirc(R0)= 224+/-13 km/s. The application of the algorithmic search for stellar overdensities to the SDSS dataset and to mock datasets allowed me to quantify SDSS's severe radial incompleteness in its search for ultra-faint dwarf galaxies and to determine the luminosity function of MW satellites down to luminosities of M_V ~ -3. I used the semi-analytical model in order to compare the CDM model predictions for the MW satellite population with the observations; this comparison has shown that the recently increased census of MW satellites, better understanding of the radial incompleteness and the suppression of star formation after the reionization can fully solve the "Missing satellite problem".
Enhancing cognition with video games: a multiple game training study.
Oei, Adam C; Patterson, Michael D
2013-01-01
Previous evidence points to a causal link between playing action video games and enhanced cognition and perception. However, benefits of playing other video games are under-investigated. We examined whether playing non-action games also improves cognition. Hence, we compared transfer effects of an action and other non-action types that required different cognitive demands. We instructed 5 groups of non-gamer participants to play one game each on a mobile device (iPhone/iPod Touch) for one hour a day/five days a week over four weeks (20 hours). Games included action, spatial memory, match-3, hidden- object, and an agent-based life simulation. Participants performed four behavioral tasks before and after video game training to assess for transfer effects. Tasks included an attentional blink task, a spatial memory and visual search dual task, a visual filter memory task to assess for multiple object tracking and cognitive control, as well as a complex verbal span task. Action game playing eliminated attentional blink and improved cognitive control and multiple-object tracking. Match-3, spatial memory and hidden object games improved visual search performance while the latter two also improved spatial working memory. Complex verbal span improved after match-3 and action game training. Cognitive improvements were not limited to action game training alone and different games enhanced different aspects of cognition. We conclude that training specific cognitive abilities frequently in a video game improves performance in tasks that share common underlying demands. Overall, these results suggest that many video game-related cognitive improvements may not be due to training of general broad cognitive systems such as executive attentional control, but instead due to frequent utilization of specific cognitive processes during game play. Thus, many video game training related improvements to cognition may be attributed to near-transfer effects.
An Unscented Kalman-Particle Hybrid Filter for Space Object Tracking
NASA Astrophysics Data System (ADS)
Raihan A. V, Dilshad; Chakravorty, Suman
2018-03-01
Optimal and consistent estimation of the state of space objects is pivotal to surveillance and tracking applications. However, probabilistic estimation of space objects is made difficult by the non-Gaussianity and nonlinearity associated with orbital mechanics. In this paper, we present an unscented Kalman-particle hybrid filtering framework for recursive Bayesian estimation of space objects. The hybrid filtering scheme is designed to provide accurate and consistent estimates when measurements are sparse without incurring a large computational cost. It employs an unscented Kalman filter (UKF) for estimation when measurements are available. When the target is outside the field of view (FOV) of the sensor, it updates the state probability density function (PDF) via a sequential Monte Carlo method. The hybrid filter addresses the problem of particle depletion through a suitably designed filter transition scheme. To assess the performance of the hybrid filtering approach, we consider two test cases of space objects that are assumed to undergo full three dimensional orbital motion under the effects of J 2 and atmospheric drag perturbations. It is demonstrated that the hybrid filters can furnish fast, accurate and consistent estimates outperforming standard UKF and particle filter (PF) implementations.
Non-radial oscillation modes with long lifetimes in giant stars.
De Ridder, Joris; Barban, Caroline; Baudin, Frédéric; Carrier, Fabien; Hatzes, Artie P; Hekker, Saskia; Kallinger, Thomas; Weiss, Werner W; Baglin, Annie; Auvergne, Michel; Samadi, Réza; Barge, Pierre; Deleuil, Magali
2009-05-21
Towards the end of their lives, stars like the Sun greatly expand to become red giant stars. Such evolved stars could provide stringent tests of stellar theory, as many uncertainties of the internal stellar structure accumulate with age. Important examples are convective overshooting and rotational mixing during the central hydrogen-burning phase, which determine the mass of the helium core, but which are not well understood. In principle, analysis of radial and non-radial stellar oscillations can be used to constrain the mass of the helium core. Although all giants are expected to oscillate, it has hitherto been unclear whether non-radial modes are observable at all in red giants, or whether the oscillation modes have a short or a long mode lifetime, which determines the observational precision of the frequencies. Here we report the presence of radial and non-radial oscillations in more than 300 giant stars. For at least some of the giants, the mode lifetimes are of the order of a month. We observe giant stars with equally spaced frequency peaks in the Fourier spectrum of the time series, as well as giants for which the spectrum seems to be more complex. No satisfactory theoretical explanation currently exists for our observations.
Khan, Zulfiqar Hasan; Gu, Irene Yu-Hua
2013-12-01
This paper proposes a novel Bayesian online learning and tracking scheme for video objects on Grassmann manifolds. Although manifold visual object tracking is promising, large and fast nonplanar (or out-of-plane) pose changes and long-term partial occlusions of deformable objects in video remain a challenge that limits the tracking performance. The proposed method tackles these problems with the main novelties on: 1) online estimation of object appearances on Grassmann manifolds; 2) optimal criterion-based occlusion handling for online updating of object appearances; 3) a nonlinear dynamic model for both the appearance basis matrix and its velocity; and 4) Bayesian formulations, separately for the tracking process and the online learning process, that are realized by employing two particle filters: one is on the manifold for generating appearance particles and another on the linear space for generating affine box particles. Tracking and online updating are performed in an alternating fashion to mitigate the tracking drift. Experiments using the proposed tracker on videos captured by a single dynamic/static camera have shown robust tracking performance, particularly for scenarios when target objects contain significant nonplanar pose changes and long-term partial occlusions. Comparisons with eight existing state-of-the-art/most relevant manifold/nonmanifold trackers with evaluations have provided further support to the proposed scheme.
Real-time reliability measure-driven multi-hypothesis tracking using 2D and 3D features
NASA Astrophysics Data System (ADS)
Zúñiga, Marcos D.; Brémond, François; Thonnat, Monique
2011-12-01
We propose a new multi-target tracking approach, which is able to reliably track multiple objects even with poor segmentation results due to noisy environments. The approach takes advantage of a new dual object model combining 2D and 3D features through reliability measures. In order to obtain these 3D features, a new classifier associates an object class label to each moving region (e.g. person, vehicle), a parallelepiped model and visual reliability measures of its attributes. These reliability measures allow to properly weight the contribution of noisy, erroneous or false data in order to better maintain the integrity of the object dynamics model. Then, a new multi-target tracking algorithm uses these object descriptions to generate tracking hypotheses about the objects moving in the scene. This tracking approach is able to manage many-to-many visual target correspondences. For achieving this characteristic, the algorithm takes advantage of 3D models for merging dissociated visual evidence (moving regions) potentially corresponding to the same real object, according to previously obtained information. The tracking approach has been validated using video surveillance benchmarks publicly accessible. The obtained performance is real time and the results are competitive compared with other tracking algorithms, with minimal (or null) reconfiguration effort between different videos.
NASA Astrophysics Data System (ADS)
Alcalá, J. M.; Manara, C. F.; Natta, A.; Frasca, A.; Testi, L.; Nisini, B.; Stelzer, B.; Williams, J. P.; Antoniucci, S.; Biazzo, K.; Covino, E.; Esposito, M.; Getman, F.; Rigliaco, E.
2017-04-01
The mass accretion rate, Ṁacc, is a key quantity for the understanding of the physical processes governing the evolution of accretion discs around young low-mass (M⋆ ≲ 2.0 M⊙) stars and substellar objects (YSOs). We present here the results of a study of the stellar and accretion properties of the (almost) complete sample of class II and transitional YSOs in the Lupus I, II, III and IV clouds, based on spectroscopic data acquired with the VLT/X-shooter spectrograph. Our study combines the dataset from our previous work with new observations of 55 additional objects. We have investigated 92 YSO candidates in total, 11 of which have been definitely identified with giant stars unrelated to Lupus. The stellar and accretion properties of the 81 bona fide YSOs, which represent more than 90% of the whole class II and transition disc YSO population in the aforementioned Lupus clouds, have been homogeneously and self-consistently derived, allowing for an unbiased study of accretion and its relationship with stellar parameters. The accretion luminosity, Lacc, increases with the stellar luminosity, L⋆, with an overall slope of 1.6, similar but with a smaller scatter than in previous studies. There is a significant lack of strong accretors below L⋆ ≈ 0.1 L⊙, where Lacc is always lower than 0.01 L⋆. We argue that the Lacc - L⋆ slope is not due to observational biases, but is a true property of the Lupus YSOs. The log Ṁacc - log M⋆ correlation shows a statistically significant evidence of a break, with a steeper relation for M⋆ ≲ 0.2 M⊙ and a flatter slope for higher masses. The bimodality of the Ṁacc - M⋆ relation is confirmed with four different evolutionary models used to derive the stellar mass. The bimodal behaviour of the observed relationship supports the importance of modelling self-gravity in the early evolution of the more massive discs, but other processes, such as photo-evaporation and planet formation during the YSO's lifetime, may also lead to disc dispersal on different timescales depending on the stellar mass. The sample studied here more than doubles the number of YSOs with homogeneously and simultaneously determined Lacc and luminosity, Lline, of many permitted emission lines. Hence, we also refined the empirical relationships between Lacc and Lline on a more solid statistical basis. Based on observations collected at the European Southern Observatory at Paranal, under programs 084.C-0269(A), 085.C-0238(A), 086.C-0173(A), 087.C-0244(A), 089.C-0143(A), 095.C-0134(A), 097.C-0349(A), and archive data of programmes 085.C-0764(A) and 093.C-0506(A).
Trackable life: Data, sequence, and organism in movement ecology.
Benson, Etienne S
2016-06-01
Over the past decade an increasing number of ecologists have begun to frame their work as a contribution to the emerging research field of movement ecology. This field's primary object of research is the movement track, which is usually operationalized as a series of discrete "steps and stops" that represent a portion of an animal's "lifetime track." Its practitioners understand their field as dependent on recent technical advances in tracking organisms and analyzing their movements. By making movement their primary object of research, rather than simply an expression of deeper biological phenomena, movement ecologists are able to generalize across the movement patterns of a wide variety of species and to draw on statistical techniques developed to model the movements of non-living things. Although it can trace its roots back to a long tradition of statistical models of movement, the field relies heavily on metaphors from genomics; in particular, movement tracks have been seen as similar to DNA sequences. Though this has helped movement ecology consolidate around a shared understanding of movement, the field may need to broaden its understanding of movement beyond the sequence if it is to realize its potential to address urgent concerns such as biodiversity loss. Copyright © 2016 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Ferrara, Katrina; Hoffman, James E.; O'Hearn, Kirsten; Landau, Barbara
2016-01-01
The ability to track moving objects is a crucial skill for performance in everyday spatial tasks. The tracking mechanism depends on representation of moving items as coherent entities, which follow the spatiotemporal constraints of objects in the world. In the present experiment, participants tracked 1 to 4 targets in a display of 8 identical…
Stellar mass distribution of S4G disk galaxies and signatures of bar-induced secular evolution
NASA Astrophysics Data System (ADS)
Díaz-García, S.; Salo, H.; Laurikainen, E.
2016-12-01
Context. Models of galaxy formation in a cosmological framework need to be tested against observational constraints, such as the average stellar density profiles (and their dispersion) as a function of fundamental galaxy properties (e.g. the total stellar mass). Simulation models predict that the torques produced by stellar bars efficiently redistribute the stellar and gaseous material inside the disk, pushing it outwards or inwards depending on whether it is beyond or inside the bar corotation resonance radius. Bars themselves are expected to evolve, getting longer and narrower as they trap particles from the disk and slow down their rotation speed. Aims: We use 3.6 μm photometry from the Spitzer Survey of Stellar Structure in Galaxies (S4G) to trace the stellar distribution in nearby disk galaxies (z ≈ 0) with total stellar masses 108.5 ≲ M∗/M⊙ ≲ 1011 and mid-IR Hubble types - 3 ≤ T ≤ 10. We characterize the stellar density profiles (Σ∗), the stellar contribution to the rotation curves (V3.6 μm), and the m = 2 Fourier amplitudes (A2) as a function of M∗ and T. We also describe the typical shapes and strengths of stellar bars in the S4G sample and link their properties to the total stellar mass and morphology of their host galaxy. Methods: For 1154 S4G galaxies with disk inclinations lower than 65°, we perform a Fourier decomposition and rescale their images to a common frame determined by the size in physical units, by their disk scalelength, and for 748 barred galaxies by both the length and orientation of their bars. We stack the resized density profiles and images to obtain statistically representative average stellar disks and bars in bins of M∗ and T. Based on the radial force profiles of individual galaxies we calculate the mean stellar contribution to the circular velocity. We also calculate average A2 profiles, where the radius is normalized to R25.5. Furthermore, we infer the gravitational potentials from the synthetic bars to obtain the tangential-to-radial force ratio (QT) and A2 profiles in the different bins. We also apply ellipse fitting to quantitatively characterize the shape of the bar stacks. Results: For M∗ ≥ 109M⊙, we find a significant difference in the stellar density profiles of barred and non-barred systems: (I) disks in barred galaxies show larger scalelengths (hR) and fainter extrapolated central surface brightnesses (Σ°); (II) the mean surface brightness profiles (Σ∗) of barred and non-barred galaxies intersect each other slightly beyond the mean bar length, most likely at the bar corotation; and (III) the central mass concentration of barred galaxies is higher (by almost a factor 2 when T ≤ 5) than in their non-barred counterparts. The averaged Σ∗ profiles follow an exponential slope down to at least 10 M⊙ pc-2, which is the typical depth beyond which the sample coverage in the radial direction starts to drop. Central mass concentrations in massive systems (≥1010M⊙) are substantially larger than in fainter galaxies, and their prominence scales with T. This segregation also manifests in the inner slope of the mean stellar component of the circular velocity: lenticular (S0) galaxies present the most sharply rising V3.6 μm. Based on the analysis of bar stacks, we show that early- and intermediate-type spirals (0 ≤ T< 5) have intrinsically narrower bars than later types and S0s, whose bars are oval-shaped. We show a clear agreement between galaxy family and quantitative estimates of bar strength. In early- and intermediate-type spirals, A2 is larger within and beyond the typical bar region among barred galaxies than in the non-barred subsample. Strongly barred systems also tend to have larger A2 amplitudes at all radii than their weakly barred counterparts. Conclusions: Using near-IR wavelengths (S4G 3.6 μm), we provide observational constraints that galaxy formation models can be checked against. In particular, we calculate the mean stellar density profiles, and the disk(+bulge) component of the rotation curve (and their dispersion) in bins of M∗ and T. We find evidence for bar-induced secular evolution of disk galaxies in terms of disk spreading and enhanced central mass concentration. We also obtain average bars (2D), and we show that bars hosted by early-type galaxies are more centrally concentrated and have larger density amplitudes than their late-type counterparts. The FITS files of the synthetic images and the tabulated radial profiles of the mean (and dispersion of) stellar mass density, 3.6 μm surface brightness, Fourier amplitudes, gravitational force, and the stellar contribution to the circular velocity are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/596/A84
VizieR Online Data Catalog: Stellar encounters with long-period comets (Feng+, 2015)
NASA Astrophysics Data System (ADS)
Feng, F.; Bailer-Jones, C. A. L.
2016-07-01
We have conducted simulations of the perturbation of the Oort cloud in order to estimate the significance of known encounters in generating long-period comets. We collected the data of stellar encounters from three sources: (Bailer-Jones, 2015, Cat. J/A+A/575/A35, hereafter BJ15), Dybczynski & Berski (2015MNRAS.449.2459D), and Mamajek et al. (2015ApJ...800L..17M). Following BJ15, we use the term 'object' to refer to each encountering star in our catalogue. A specific star may appear more than once but with different data, thus leading to a different object. (1 data file).
NASA Astrophysics Data System (ADS)
Gohatre, Umakant Bhaskar; Patil, Venkat P.
2018-04-01
In computer vision application, the multiple object detection and tracking, in real-time operation is one of the important research field, that have gained a lot of attentions, in last few years for finding non stationary entities in the field of image sequence. The detection of object is advance towards following the moving object in video and then representation of object is step to track. The multiple object recognition proof is one of the testing assignment from detection multiple objects from video sequence. The picture enrollment has been for quite some time utilized as a reason for the location the detection of moving multiple objects. The technique of registration to discover correspondence between back to back casing sets in view of picture appearance under inflexible and relative change. The picture enrollment is not appropriate to deal with event occasion that can be result in potential missed objects. In this paper, for address such problems, designs propose novel approach. The divided video outlines utilizing area adjancy diagram of visual appearance and geometric properties. Then it performed between graph sequences by using multi graph matching, then getting matching region labeling by a proposed graph coloring algorithms which assign foreground label to respective region. The plan design is robust to unknown transformation with significant improvement in overall existing work which is related to moving multiple objects detection in real time parameters.
Simulation of Telescope Detectivity for Geo Survey and Tracking
NASA Astrophysics Data System (ADS)
Richard, P.
2014-09-01
As the number of space debris on Earths Orbit increases steadily, the need to survey, track and catalogue them becomes of key importance. In this context, CNES has been using the TAROT Telescopes (Rapid Telescopes for Transient Objects owned and operated by CNRS) for several years to conduct studies about space surveillance and tracking. Today, two testbeds of services using the TAROT telescopes are running every night: one for GEO situational awareness and the second for debris tracking. Additionally to the CNES research activity on space surveillance and tracking domain, an operational collision avoidance service for LEO and GEO satellites is in place at CNES for several years. This service named CAESAR (Conjunction Analysis and Evaluation: Alerts and Recommendations) is used by CNES as well as by external customers. As the optical debris tracking testbed based on TAROT telescopes is the first step toward an operational provider of GEO measures that could be used by CAESAR, simulations have been done to help choosing the sites and types of telescopes that could be added in the GEO survey and debris tracking telescope network. One of the distinctive characteristics of the optical observation of space debris compared to traditional astronomic observation is the need to observe objects at low elevations. The two mains reasons for this are the need to observe the GEO belt from non-equatorial sites and the need to observe debris at longitudes far from the telescope longitude. This paper presents the results of simulations of the detectivity for GEO debris of various telescopes and sites, based on models of the GEO belt, the atmosphere and the instruments. One of the conclusions is that clever detection of faint streaks and spread sources by image processing is one of the major keys to improve the detection of debris on the GEO belt.
Edinger, Tracy; Cohen, Aaron M.; Bedrick, Steven; Ambert, Kyle; Hersh, William
2012-01-01
Objective: Secondary use of electronic health record (EHR) data relies on the ability to retrieve accurate and complete information about desired patient populations. The Text Retrieval Conference (TREC) 2011 Medical Records Track was a challenge evaluation allowing comparison of systems and algorithms to retrieve patients eligible for clinical studies from a corpus of de-identified medical records, grouped by patient visit. Participants retrieved cohorts of patients relevant to 35 different clinical topics, and visits were judged for relevance to each topic. This study identified the most common barriers to identifying specific clinic populations in the test collection. Methods: Using the runs from track participants and judged visits, we analyzed the five non-relevant visits most often retrieved and the five relevant visits most often overlooked. Categories were developed iteratively to group the reasons for incorrect retrieval for each of the 35 topics. Results: Reasons fell into nine categories for non-relevant visits and five categories for relevant visits. Non-relevant visits were most often retrieved because they contained a non-relevant reference to the topic terms. Relevant visits were most often infrequently retrieved because they used a synonym for a topic term. Conclusions: This failure analysis provides insight into areas for future improvement in EHR-based retrieval with techniques such as more widespread and complete use of standardized terminology in retrieval and data entry systems. PMID:23304287
NASA Astrophysics Data System (ADS)
Hunter, Deidre A.; Shaya, Edward J.; Holtzman, Jon A.; Light, Robert M.; O'Neil, Earl J., Jr.; Lynds, Roger
1995-07-01
We have analyzed Hubble Space Telescope (HST) images of the compact, luminous star cluster R136 in the LMC that were taken with the refurbished HST and new Wide Field/Planetary Camera. These images allow us to examine the stellar population in a region of unusually intense star formation at a scale of 0.01 pc. We have detected stars to 23.5 in F555W and have quantified the stellar population to an M555,0 of 0.9 or a mass of 2.8 Msun. Comparisons of HR diagrams with isochrones that were constructed for the HST flight filter system from theoretical stellar evolutionary tracks reveal massive stars, a main sequence to at least 2.8 Msun, and stars with M555,0 ≥ 0.5 still on pre-main sequence tracks. The average stellar population is fit with a 3-4 Myr isochrone. Contrary to expectations from star formation models, however, the formation period for the massive stars and lower mass stars appear to largely overlap. We have measured the IMF for stars 2.8-15 Msun in three annuli from 0.5-4.7 pc from the center of the cluster. The slopes of the IMF in all three annuli are the same within the uncertainties, thus, showing no evidence for mass segregation beyond 0.5 pc. Furthermore, the combined IMF slope, -122±006 is close to a normal Salpeter IMF. The lower mass limit must be lower than the limits of our measurements: ≤ 2.8 Msun beyond 0.5 pc and ≤ 7 Msun within 0.1 pc. This is contrary to some predictions that the lower mass limit could be as high as 10 Msun in regions of intense massive star formation. Integrated properties of R136 are consistent with its being comparable to a rather small globular cluster when such clusters were the same age as R136. From the surface brightness profile, an upper limit for the core radius of 0.02 pc is set. Within a radius of 0.4 pc we estimate that there have been roughly 20 crossing times and relaxation should be well along. Within 0.5 pc crowding prevents us from detecting the intermediate mass population, but there is a hint of an excess of stars brighter than M555,0 = -5 and of a deficit in the highest mass stars between 0.6 pc and 1.2 pc. This would be consistent with dynamical segregation.
The stellar wind of an O8.5 I(f) star in M 31
NASA Technical Reports Server (NTRS)
Haser, S. M.; Lennon, D. J.; Kudritzki, R.-P.; Puls, J.; Pauldrach, A. W. A.; Bianchi, L.; Hutchings, J. B.
1995-01-01
We rediscuss the UV spectrum of OB 78#231, an O8.5 I(f) star in the Andromeda galaxy M 31, which has been obtained with the Faint Object Spectrograph on the Hubble Space Telescope by Hutchings et al. (1992). The spectrum has been re-extracted with better knowledge of background, calibration, and scattered light. The empirical analysis of the stellar wind lines results in a terminal velocity and mass loss rate similar to those typically found in comparable galactic objects. Furthermore, a comparison with an FOS spectrum of an O7 supergiant in the Small Magellanic Cloud and IUE spectra of galactic objects implies a metallicity close to galactic counterparts. These results are confirmed quantitatively by spectrum synthesis calculations using a theoretical description of O-star winds.
Galaxy evolution. Isolated compact elliptical galaxies: stellar systems that ran away.
Chilingarian, Igor; Zolotukhin, Ivan
2015-04-24
Compact elliptical galaxies form a rare class of stellar system (~30 presently known) characterized by high stellar densities and small sizes and often harboring metal-rich stars. They were thought to form through tidal stripping of massive progenitors, until two isolated objects were discovered where massive galaxies performing the stripping could not be identified. By mining astronomical survey data, we have now found 195 compact elliptical galaxies in all types of environment. They all share similar dynamical and stellar population properties. Dynamical analysis for nonisolated galaxies demonstrates the feasibility of their ejection from host clusters and groups by three-body encounters, which is in agreement with numerical simulations. Hence, isolated compact elliptical and isolated quiescent dwarf galaxies are tidally stripped systems that ran away from their hosts. Copyright © 2015, American Association for the Advancement of Science.
NASA Astrophysics Data System (ADS)
Vidotto, A. A.; Jardine, M.; Morin, J.; Donati, J. F.; Opher, M.; Gombosi, T. I.
2014-02-01
We perform three-dimensional numerical simulations of stellar winds of early-M-dwarf stars. Our simulations incorporate observationally reconstructed large-scale surface magnetic maps, suggesting that the complexity of the magnetic field can play an important role in the angular momentum evolution of the star, possibly explaining the large distribution of periods in field dM stars, as reported in recent works. In spite of the diversity of the magnetic field topologies among the stars in our sample, we find that stellar wind flowing near the (rotational) equatorial plane carries most of the stellar angular momentum, but there is no preferred colatitude contributing to mass-loss, as the mass flux is maximum at different colatitudes for different stars. We find that more non-axisymmetric magnetic fields result in more asymmetric mass fluxes and wind total pressures ptot (defined as the sum of thermal, magnetic and ram pressures). Because planetary magnetospheric sizes are set by pressure equilibrium between the planet's magnetic field and ptot, variations of up to a factor of 3 in ptot (as found in the case of a planet orbiting at several stellar radii away from the star) lead to variations in magnetospheric radii of about 20 per cent along the planetary orbital path. In analogy to the flux of cosmic rays that impact the Earth, which is inversely modulated with the non-axisymmetric component of the total open solar magnetic flux, we conclude that planets orbiting M-dwarf stars like DT Vir, DS Leo and GJ 182, which have significant non-axisymmetric field components, should be the more efficiently shielded from galactic cosmic rays, even if the planets lack a protective thick atmosphere/large magnetosphere of their own.
The effects of the stellar wind and orbital motion on the jets of high-mass microquasars
NASA Astrophysics Data System (ADS)
Bosch-Ramon, V.; Barkov, M. V.
2016-05-01
Context. High-mass microquasar jets propagate under the effect of the wind from the companion star, and the orbital motion of the binary system. The stellar wind and the orbit may be dominant factors determining the jet properties beyond the binary scales. Aims: This is an analytical study, performed to characterise the effects of the stellar wind and the orbital motion on the jet properties. Methods: Accounting for the wind thrust transferred to the jet, we derive analytical estimates to characterise the jet evolution under the impact of the stellar wind. We include the Coriolis force effect, induced by orbital motion and enhanced by the wind's presence. Large-scale evolution of the jet is sketched, accounting for wind-to-jet thrust transfer, total energy conservation, and wind-jet flow mixing. Results: If the angle of the wind-induced jet bending is larger than its half-opening angle, the following is expected: (I) a strong recollimation shock; (II) bending against orbital motion, caused by Coriolis forces and enhanced by the wind presence; and (III) non-ballistic helical propagation further away. Even if disrupted, the jet can re-accelerate due to ambient pressure gradients, but wind entrainment can weaken this acceleration. On large scales, the opening angle of the helical structure is determined by the wind-jet thrust relation, and the wind-loaded jet flow can be rather slow. Conclusions: The impact of stellar winds on high-mass microquasar jets can yield non-ballistic helical jet trajectories, jet partial disruption and wind mixing, shocks, and possibly non-thermal emission. Among other observational diagnostics, such as radiation variability at any band, the radio morphology on milliarcsecond scales can be informative on the wind-jet interaction.
(F)UV Spectral Analysis of 15 Hot, Hydrogen-Rich Central Stars of PNe
NASA Astrophysics Data System (ADS)
Ziegler, Marc
2013-07-01
The aim of this thesis was the precise determination of basic stellar parameters and metal abundances for a sample of 15 ionizing stars of gaseous nebulae. Strategic lines of metals for the expected parameter range are located in the ultraviolet (UV) and far-ultraviolet (FUV) range. Thus high-resolution, high-S/N UV and FUV observations obtained with the Hubble Space Telescope (HST) and the Far Ultraviolet Spectroscopic Explorer (FUSE) were used for the analysis. For the calculation of the necessary spectral energy distributions the Tübingen NLTE Model-Atmosphere Package (TMAP) was used. The model atmospheres included most elements from H - Ni in order to account for line-blanketing effects. For each object a small grid of model atmospheres was calculated. As the interstellar medium (ISM) imprints its influence in the Space Telescope Imaging Spectrograph (STIS) and especially the FUSE range, the program OWENS was employed to calculate the interstellar absorption features. Both, the photospheric model spectral energy distribution (SED) as well as the ISM models were combined to enable the identification of most of the observed absorption lines. The analyzed sample covers a range of 70 kK < Teff < 136 kK, and surface gravities from log (g/cm/sec^2) = 5.4 - 7.4, thus representing different stages of stellar evolution. For a large number of elements, abundances were determined for the first time in these objects. Lines of C, N, O, F, Ne, Si, P, S, and Ar allowed to determine the corresponding abundances. For none of the objects lines of Ca, Sc, Ti, and V could be found. Only a few objects were rich in Cr, Mn, Fe, Co, and Ni lines. Most of the analyzed stars exhibited only lines of Fe (ionization stages V - VIII) from the iron-group elements. No signs for gravitational settling (the gravitational force exceeds the radiation pressure and elements begin to sink from the atmosphere into deeper layers) were found. This is expected as the values of the surface gravities of the sample are still too small to start gravitational settling. For the elements C, N, O, Si, P, and S we find increasing abundances with increasing log(Teff^4/g), while the abundances for Ar and Fe decrease. The latter is unexpected as the higher the Teff^4/g ratio, the more the radiative force dominates the gravitational force and, thus, the elements should be kept in the atmosphere. The determined abundances were compared with previous literature values, with abundances predicted from diusion calculations, with abundances from Asymptotic Giant Branch (AGB) nucleosynthesis calculations, and, if available, with abundances found for the corresponding nebulae. The agreement was of mixed quality. The derived Teff and log g values confirmed some literature values while others had to be revised (e.g. for LSS 1362 and NGC1360). However, most of them agree with the previous literature values within the error limits. No difference in Teff can be found for DAO and O(H)-type stars, but O(H)-type stars have a lower log g (5.4 - 6.0) compared to the DAOs (6.5 - 7.4). The exception is the O(H)-type central star of the planetary nebula (CSPN) of Lo 1 with log g = 7.0. A comparison of the positions of each object with stellar evolutionary tracks for post-AGB stars in the log Teff - log g diagram lead to the respective stellar masses. The derived mean mass of the analyzed sample (M = 0.536 ± 0.023 Msol) agrees within the error limits with the expected mean mass for these objects. In the literature M = 0.638 - 0.145 Msol can be found for DA-type white dwarfs, the immediate successors of DAO-type white dwarfs. For two objects (A 35, Sh 2-174) extremely low masses were found. For A35 the derived mass (M_A35 = 0.523 ± 0.05Msol) lies at the lower end of possible masses predicted for post-AGB stars. The very low mass of Sh 2-174 (M_Sh 2-174 = 0.395 ± 0.05Msol) points at Sh 2-174 being a post-extended horizontal branch (EHB) star and not a CSPN. If a stellar mass is too low, it is impossible for the star to reach the thermally pulsing AGB phase and, thus, to develope a planetary nebula (PN). Post-EHB stars evolve directly from the Horizontal Branch (HB) to the white dwarf (WD) cooling sequence. The low masses for A35 and Sh 2-174 support literature works that classify the two corresponding nebulae as ionized H II regions and not as PNe.
Qin, Lei; Snoussi, Hichem; Abdallah, Fahed
2014-01-01
We propose a novel approach for tracking an arbitrary object in video sequences for visual surveillance. The first contribution of this work is an automatic feature extraction method that is able to extract compact discriminative features from a feature pool before computing the region covariance descriptor. As the feature extraction method is adaptive to a specific object of interest, we refer to the region covariance descriptor computed using the extracted features as the adaptive covariance descriptor. The second contribution is to propose a weakly supervised method for updating the object appearance model during tracking. The method performs a mean-shift clustering procedure among the tracking result samples accumulated during a period of time and selects a group of reliable samples for updating the object appearance model. As such, the object appearance model is kept up-to-date and is prevented from contamination even in case of tracking mistakes. We conducted comparing experiments on real-world video sequences, which confirmed the effectiveness of the proposed approaches. The tracking system that integrates the adaptive covariance descriptor and the clustering-based model updating method accomplished stable object tracking on challenging video sequences. PMID:24865883
Masses and luminosities for 342 stars from the PennState-Toruń Centre for Astronomy Planet Search
NASA Astrophysics Data System (ADS)
Adamczyk, M.; Deka-Szymankiewicz, B.; Niedzielski, A.
2016-03-01
Aims: We present revised basic astrophysical stellar parameters: the masses, luminosities, ages, and radii for 342 stars from the PennState-Toruń Centre for Astronomy Planet Search. For 327 stars the atmospheric parameters were already available in the literature. For the other 15 objects we also present spectroscopic atmospheric parameters: the effective temperatures, surface gravities, and iron abundances. Methods: Spectroscopic atmospheric parameters were obtained with a standard spectroscopic analysis procedure, using ARES and MOOG, or TGVIT codes. To refine the stellar masses, ages, and luminosities, we applied a Bayesian method. Results: The revised stellar masses for 342 stars and their uncertainties are generally lower than previous estimates. Atmospheric parameters for 13 objects are determined here for the first time. Table 3 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/587/A119
Hardware accelerator design for tracking in smart camera
NASA Astrophysics Data System (ADS)
Singh, Sanjay; Dunga, Srinivasa Murali; Saini, Ravi; Mandal, A. S.; Shekhar, Chandra; Vohra, Anil
2011-10-01
Smart Cameras are important components in video analysis. For video analysis, smart cameras needs to detect interesting moving objects, track such objects from frame to frame, and perform analysis of object track in real time. Therefore, the use of real-time tracking is prominent in smart cameras. The software implementation of tracking algorithm on a general purpose processor (like PowerPC) could achieve low frame rate far from real-time requirements. This paper presents the SIMD approach based hardware accelerator designed for real-time tracking of objects in a scene. The system is designed and simulated using VHDL and implemented on Xilinx XUP Virtex-IIPro FPGA. Resulted frame rate is 30 frames per second for 250x200 resolution video in gray scale.
Evidence against a speed limit in multiple-object tracking.
Franconeri, S L; Lin, J Y; Pylyshyn, Z W; Fisher, B; Enns, J T
2008-08-01
Everyday tasks often require us to keep track of multiple objects in dynamic scenes. Past studies show that tracking becomes more difficult as objects move faster. In the present study, we show that this trade-off may not be due to increased speed itself but may, instead, be due to the increased crowding that usually accompanies increases in speed. Here, we isolate changes in speed from variations in crowding, by projecting a tracking display either onto a small area at the center of a hemispheric projection dome or onto the entire dome. Use of the larger display increased retinal image size and object speed by a factor of 4 but did not increase interobject crowding. Results showed that tracking accuracy was equally good in the large-display condition, even when the objects traveled far into the visual periphery. Accuracy was also not reduced when we tested object speeds that limited performance in the small-display condition. These results, along with a reinterpretation of past studies, suggest that we might be able to track multiple moving objects as fast as we can a single moving object, once the effect of object crowding is eliminated.
Aboriginal Astronomical traditions from Ooldea, South Australia, Part 2: Animals in the Ooldean Sky.
NASA Astrophysics Data System (ADS)
Leaman, Trevor M.; Hamacher, Duane W.; Carter, Mark T.
2016-04-01
Australian Indigenous astronomical traditions demonstrate a relationship between animals in the skyworld and the behaviour patterns of their terrestrial counterparts. In our continued study of Aboriginal astronomical traditions from the Great Victoria Desert, South Australia, we investigate the relationship between animal behaviour and stellar positions when these relationships are not explicitly described in the written records. We develop a methodology to test the hypothesis that the behaviour of these animals is predicted by the positions of their celestial counterparts at particular times of the day. Of the twelve animals identified in the Ooldean sky, the nine stellar (i.e. non-planet or non-galactic) associations were analysed and each demonstrated a close connection between animal behaviour and stellar positions. We suggest that this may be a recurring theme in Aboriginal astronomical traditions, requiring further development of the methodology.
The Intriguing Case of the (Almost) Dark Galaxy AGC 229385
NASA Astrophysics Data System (ADS)
Salzer, John
2015-10-01
The ALFALFA blind HI survey has catalogued tens of thousands of HI sources over 7000 square degrees of high Galactic latitude sky. While the vast majority of the sources in ALFALFA have optical counterparts in existing wide-field surveys like SDSS, a class of objects has been identified that have no obvious optical counterparts in existing catalogs. Dubbed almost dark galaxies, these objects represent an extreme in the continuum of galaxy properties, with the highest HI mass-to-optical light ratios ever measured. We propose to use HST to observe AGC 229385, an almost dark object found in deep WIYN imaging to have an ultra-low surface brightness stellar component with extremely blue colors. AGC 229385 falls well off of all galaxy scaling relationships, including the Baryonic Tully-Fisher relation. Ground-based optical and HI data have been able to identify this object as extreme, but are insufficient to constrain the properties of its stellar component or its distance - for this, we need HST. Our science goals are twofold: to better constrain the distance to AGC 229385, and to investigate the stellar population(s) in this mysterious object. The requested observations will not only provide crucial insight into the properties and evolution of this specific system but will also help us understand this important class of ultra low surface brightness, gas-rich galaxies. The proposed observations are designed to be exploratory, yet they promise to pay rich dividends for a modest investment in observing time.
Brain Activation during Spatial Updating and Attentive Tracking of Moving Targets
ERIC Educational Resources Information Center
Jahn, Georg; Wendt, Julia; Lotze, Martin; Papenmeier, Frank; Huff, Markus
2012-01-01
Keeping aware of the locations of objects while one is moving requires the updating of spatial representations. As long as the objects are visible, attentional tracking is sufficient, but knowing where objects out of view went in relation to one's own body involves an updating of spatial working memory. Here, multiple object tracking was employed…
A coarse-to-fine kernel matching approach for mean-shift based visual tracking
NASA Astrophysics Data System (ADS)
Liangfu, L.; Zuren, F.; Weidong, C.; Ming, J.
2009-03-01
Mean shift is an efficient pattern match algorithm. It is widely used in visual tracking fields since it need not perform whole search in the image space. It employs gradient optimization method to reduce the time of feature matching and realize rapid object localization, and uses Bhattacharyya coefficient as the similarity measure between object template and candidate template. This thesis presents a mean shift algorithm based on coarse-to-fine search for the best kernel matching. This paper researches for object tracking with large motion area based on mean shift. To realize efficient tracking of such an object, we present a kernel matching method from coarseness to fine. If the motion areas of the object between two frames are very large and they are not overlapped in image space, then the traditional mean shift method can only obtain local optimal value by iterative computing in the old object window area, so the real tracking position cannot be obtained and the object tracking will be disabled. Our proposed algorithm can efficiently use a similarity measure function to realize the rough location of motion object, then use mean shift method to obtain the accurate local optimal value by iterative computing, which successfully realizes object tracking with large motion. Experimental results show its good performance in accuracy and speed when compared with background-weighted histogram algorithm in the literature.
1961-2011: Fifty years of Hayashi tracks
NASA Astrophysics Data System (ADS)
Palla, Francesco
2012-09-01
Fifty years after the seminal paper by Prof. C. Hayashi, the field of pre-main sequence (PMS) evolution still plays a fundamental role in observational and theoretical astrophysics. In this contribution, I highlight the contribution made by Hayashi in establishing the theoretical foundation of early stellar evolution. Then, I discuss the changes of the classical theory introduced by the inclusion of protostellar evolution in PMS models and present selected results on young stars.
Breadboard stellar tracker system test report, volume 2
NASA Technical Reports Server (NTRS)
1981-01-01
Complete data from a test program designed to evaluate the performance of a star tracker, a breadboard tracker system, is presented in tabular form. All data presented was normalized to the pixel dimension of 20 micrometers. Data from determination of maximum spatial noise as it applies to the coarse and fine acquisition modes is presented. Pointing accuracy test data, raw pixel data for the track cycle, and data from equipment related tests is also presented.
Elliptically Framed Tip-Tilt Mirror Optimized for Stellar Tracking
2015-01-01
a rotating frame. We used the same materials as the existing tracker; however, light-weighted both the aluminum frame and Zerodur ® mirror . We...as the existing tracker; however, light-weighted both the aluminum frame and Zerodur mirror . We generated a computer-aided design model, converted it...components include an aluminum yoke and ring, glass Zerodur ®4 mirror , piezoelectric (PZT) actuators and stainless steel flexure pivot bearings5. Fig. 1
THE YOUNG STELLAR POPULATION OF LYNDS 1340. AN INFRARED VIEW
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kun, M.; Moór, A.; Wolf-Chase, G.
We present results of an infrared study of the molecular cloud Lynds 1340, forming three groups of low- and intermediate-mass stars. Our goals are to identify and characterize the young stellar population of the cloud, study the relationships between the properties of the cloud and the emergent stellar groups, and integrate L1340 into the picture of the star-forming activity of our Galactic environment. We selected candidate young stellar objects (YSOs) from the Spitzer and WISE databases using various published color criteria and classified them based on the slope of the spectral energy distribution (SED). We identified 170 Class II, 27more » flat SED, and 45 Class 0/I sources. High angular resolution near-infrared observations of the RNO 7 cluster, embedded in L1340, revealed eight new young stars of near-infrared excess. The surface density distribution of YSOs shows three groups, associated with the three major molecular clumps of L1340, each consisting of ≲100 members, including both pre-main-sequence stars and embedded protostars. New Herbig–Haro objects were identified in the Spitzer images. Our results demonstrate that L1340 is a prolific star-forming region of our Galactic environment in which several specific properties of the intermediate-mass mode of star formation can be studied in detail.« less
Gravitational microlensing by low-mass objects in the globular cluster M22.
Sahu, K C; Casertano, S; Livio, M; Gilliland, R L; Panagia, N; Albrow, M D; Potter, M
2001-06-28
Gravitational microlensing offers a means of determining directly the masses of objects ranging from planets to stars, provided that the distances and motions of the lenses and sources can be determined. A globular cluster observed against the dense stellar field of the Galactic bulge presents ideal conditions for such observations because the probability of lensing is high and the distances and kinematics of the lenses and sources are well constrained. The abundance of low-mass objects in a globular cluster is of particular interest, because it may be representative of the very early stages of star formation in the Universe, and therefore indicative of the amount of dark baryonic matter in such clusters. Here we report a microlensing event associated with the globular cluster M22. We determine the mass of the lens to be 0.13(+0.03)(-0.02) solar masses. We have also detected six events that are unresolved in time. If these are also microlensing events, they imply that a non-negligible fraction of the cluster mass resides in the form of free-floating planetary-mass objects.
Stellar Velocity Dispersion: Linking Quiescent Galaxies to Their Dark Matter Halos
NASA Astrophysics Data System (ADS)
Zahid, H. Jabran; Sohn, Jubee; Geller, Margaret J.
2018-06-01
We analyze the Illustris-1 hydrodynamical cosmological simulation to explore the stellar velocity dispersion of quiescent galaxies as an observational probe of dark matter halo velocity dispersion and mass. Stellar velocity dispersion is proportional to dark matter halo velocity dispersion for both central and satellite galaxies. The dark matter halos of central galaxies are in virial equilibrium and thus the stellar velocity dispersion is also proportional to dark matter halo mass. This proportionality holds even when a line-of-sight aperture dispersion is calculated in analogy to observations. In contrast, at a given stellar velocity dispersion, the dark matter halo mass of satellite galaxies is smaller than virial equilibrium expectations. This deviation from virial equilibrium probably results from tidal stripping of the outer dark matter halo. Stellar velocity dispersion appears insensitive to tidal effects and thus reflects the correlation between stellar velocity dispersion and dark matter halo mass prior to infall. There is a tight relation (≲0.2 dex scatter) between line-of-sight aperture stellar velocity dispersion and dark matter halo mass suggesting that the dark matter halo mass may be estimated from the measured stellar velocity dispersion for both central and satellite galaxies. We evaluate the impact of treating all objects as central galaxies if the relation we derive is applied to a statistical ensemble. A large fraction (≳2/3) of massive quiescent galaxies are central galaxies and systematic uncertainty in the inferred dark matter halo mass is ≲0.1 dex thus simplifying application of the simulation results to currently available observations.
Promotion Rates for Assistant and Associate Professors in Obstetrics and Gynecology
Rayburn, William F.; Schrader, Ronald M.; Fullilove, Anne M.; Rutledge, Teresa L.; Phelan, Sharon T.; Gener, Yolanda
2015-01-01
OBJECTIVE To estimate promotion rates of physician faculty members in obstetrics and gynecology during the past 30 years METHODS Data were collected annually by the Association of American Medical Colleges from every school between 1980 and 2009 for first-time assistant and associate professors to determine whether and when they were promoted. Data for full-time physician faculty were aggregated by decade (1980–1989, 1990–1999, 2000–2009). Faculty were included if they remained in academia for 10 years after beginning in rank. Data were analyzed by constructing estimated promotion curves and extracting 6-year and 10-year promotion rates. RESULTS The 10-year promotion rates (adjusted for attrition) declined significantly for assistant professors from 35% in 1980–89 to 32% in 1990–99 to 26% in 2000–09 (p < 0.001); and for associate professors from 37% to 32% to 26% respectively (p < 0.005). These declines likely resulted from changes in faculty composition. The most recent 15 years saw a steady rise in the proportion of entry-level faculty who were women (now 2:1) and primarily on the non-tenure track. The rising number of faculty in general obstetrics and gynecology had lower promotion probabilities than those in the subspecialties (OR = 0.16, p < 0.001). Female faculty on the non-tenure track had lower promotion rates than males in the non-tenure track, males in the tenure track, and females in the tenure track (ORs ≤ 0.8, p < 0.01). CONCLUSION A decline in promotion rates during the past 30 years may be attributable to changes in faculty composition. PMID:22525914
Constraining the Assembly History of Massive Elliptical Galaxies
NASA Astrophysics Data System (ADS)
Newman, Andrew
2013-01-01
Massive elliptical galaxies are interesting locations to test hierarchical galaxy formation models, because mergers are thought to play a very important role in their evolution. These systems continue their assembly long after their stellar populations are “dead.” Since z ~ 2, they have grown in mass by a factor of ~2 and in size by a factor of ~4. Dissipationless (“dry”) mergers involving low-mass systems are thought to drive much of this expansion. I have tracked the rate of size growth experienced by quiescent galaxies to z ~ 1.5 using dynamical mass measures, based on Keck spectroscopy, and to z ~ 2.5 using photometric mass and size estimates derived from WFC3/IR imaging in the CANDELS survey. I have also quantified the abundance of faint companion galaxies around the same sources, in order to compare the rate of size growth with the estimated frequency of mergers. While mergers with close companions may account for most of the size growth seen at z < 1, they appear to fall short of explaining the more rapid growth seen at higher redshifts. This suggests additional modes of growth may be required. A merger-rich assembly history will impact the distribution of stellar and dark mass within the galaxy. At the extreme end of the mass function, brightest cluster galaxies (BCGs) are interesting locations to study the effects of mergers, since their assembly is expected to be dominated by late, dry, minor stellar accretion. I will present measurements of the stellar and dark matter density profiles within 7 BCGs derived from resolved stellar kinematics and gravitational lensing. Remarkably, the stellar and dark components “conspire” to produce total density profiles remarkably close to those seen in simulations containing only collisionless cold dark matter. I will briefly describe how this intriguing result might be understood in the context of a merger-rich assembly.
Towards nonaxisymmetry; initial results using the Flux Coordinate Independent method in BOUT++
NASA Astrophysics Data System (ADS)
Shanahan, B. W.; Hill, P.; Dudson, B. D.
2016-11-01
Fluid simulation of stellarator edge transport is difficult due to the complexities of mesh generation; the stochastic edge and strong nonaxisymmetry inhibit the use of field aligned coordinate systems. The recent implementation of the Flux Coordinate Independent method for calculating parallel derivatives in BOUT++ has allowed for more complex geometries. Here we present initial results of nonaxisymmetric diffusion modelling as a step towards stellarator turbulence modelling. We then present initial (non-turbulent) transport modelling using the FCI method and compare the results with analytical calculations. The prospects for future stellarator transport and turbulence modelling are discussed.
Correlation and 3D-tracking of objects by pointing sensors
Griesmeyer, J. Michael
2017-04-04
A method and system for tracking at least one object using a plurality of pointing sensors and a tracking system are disclosed herein. In a general embodiment, the tracking system is configured to receive a series of observation data relative to the at least one object over a time base for each of the plurality of pointing sensors. The observation data may include sensor position data, pointing vector data and observation error data. The tracking system may further determine a triangulation point using a magnitude of a shortest line connecting a line of sight value from each of the series of observation data from each of the plurality of sensors to the at least one object, and perform correlation processing on the observation data and triangulation point to determine if at least two of the plurality of sensors are tracking the same object. Observation data may also be branched, associated and pruned using new incoming observation data.
A Study of the Stellar Population in Selected SO Galaxies
NASA Technical Reports Server (NTRS)
Perez, M.; Danks, A.
1997-01-01
The goal of this program was to observe at least two SO galaxies with abnormal colors in the blue and clear optical signatures of dust and gas. The galaxies NGC 2217 and NGC 1808 were observed at least in one of the IUE cameras (1200-200 and 2000-3200 A) during the 13th episode, using the 4 US1 shifts assigned to this program. The galaxy NGC 2217 had been found to be part of a subgroup of SO galaxies with external gas rotating in retrograde motion with respect to the stars. This galaxy is a face-on object with indications of large amount of gas, quite rare for a SO galaxy. We observed this object on three different occasions with IUE at different positions of the large aperture (spacecraft roll angle) with respect to the nuclear region. These exposures allowed us to take full advantage of the spatial resolution of IUE by mapping nuclear and bulge region of this galaxy. We found that the data point to a marginally earlier stellar population toward the central region. The UV light as a whole is dominated by a late-type stellar population of principally G and K stars. The almost face-on view of this galaxy appears optically thick to UV light. It is conceivable that in analogy to out own Galaxy, the stellar populations weakly detected in NGC 2217, are mostly halo and late-type stars in the center with an increasing contribution of dust and early stellar populations (so far undetected) as we move outward along the faint spiral arms. This result is contrary to our initial expectation, since the counterrotating gas does not appear to be enhancing star formation in this galaxy. Even more interesting were the observations of NGC 1808; galaxy which has been classified, with a handful of other objects, both as a starburst and Seyfert galaxy. Attachment: 'The White-Dwarf Companions of 56 Persei and HR 3643.'
Black holes in binary stellar systems and galactic nuclei
NASA Astrophysics Data System (ADS)
Cherepashchuk, A. M.
2014-04-01
In the last 40 years, following pioneering papers by Ya B Zeldovich and E E Salpeter, in which a powerful energy release from nonspherical accretion of matter onto a black hole (BH) was predicted, many observational studies of black holes in the Universe have been carried out. To date, the masses of several dozen stellar-mass black holes (M_BH = (4{-}20) M_\\odot) in X-ray binary systems and of several hundred supermassive black holes (M_BH = (10^{6}{-}10^{10}) M_\\odot) in galactic nuclei have been measured. The estimated radii of these massive and compact objects do not exceed several gravitational radii. For about ten stellar-mass black holes and several dozen supermassive black holes, the values of the dimensionless angular momentum a_* have been estimated, which, in agreement with theoretical predictions, do not exceed the limiting value a_* = 0.998. A new field of astrophysics, so-called black hole demography, which studies the birth and growth of black holes and their evolutionary connection to other objects in the Universe, namely stars, galaxies, etc., is rapidly developing. In addition to supermassive black holes, massive stellar clusters are observed in galactic nuclei, and their evolution is distinct from that of supermassive black holes. The evolutionary relations between supermassive black holes in galactic centers and spheroidal stellar components (bulges) of galaxies, as well as dark-matter galactic haloes are brought out. The launch into Earth's orbit of the space radio interferometer RadioAstron opened up the real possibility of finally proving that numerous discovered massive and highly compact objects with properties very similar to those of black holes make up real black holes in the sense of Albert Einstein's General Relativity. Similar proofs of the existence of black holes in the Universe can be obtained by intercontinental radio interferometry at short wavelengths \\lambda \\lesssim 1 mm (the international program, Event Horizon Telescope).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, T. S.; DePoy, D. L.; Marshall, J. L.
Here, we report that meeting the science goals for many current and future ground-based optical large-area sky surveys requires that the calibrated broadband photometry is both stable in time and uniform over the sky to 1% precision or better. Past and current surveys have achieved photometric precision of 1%–2% by calibrating the survey's stellar photometry with repeated measurements of a large number of stars observed in multiple epochs. The calibration techniques employed by these surveys only consider the relative frame-by-frame photometric zeropoint offset and the focal plane position-dependent illumination corrections, which are independent of the source color. However, variations inmore » the wavelength dependence of the atmospheric transmission and the instrumental throughput induce source color-dependent systematic errors. These systematic errors must also be considered to achieve the most precise photometric measurements. In this paper, we examine such systematic chromatic errors (SCEs) using photometry from the Dark Energy Survey (DES) as an example. We first define a natural magnitude system for DES and calculate the systematic errors on stellar magnitudes when the atmospheric transmission and instrumental throughput deviate from the natural system. We conclude that the SCEs caused by the change of airmass in each exposure, the change of the precipitable water vapor and aerosol in the atmosphere over time, and the non-uniformity of instrumental throughput over the focal plane can be up to 2% in some bandpasses. We then compare the calculated SCEs with the observed DES data. For the test sample data, we correct these errors using measurements of the atmospheric transmission and instrumental throughput from auxiliary calibration systems. In conclusion, the residual after correction is less than 0.3%. Moreover, we calculate such SCEs for Type Ia supernovae and elliptical galaxies and find that the chromatic errors for non-stellar objects are redshift-dependent and can be larger than those for stars at certain redshifts.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, T. S.; DePoy, D. L.; Marshall, J. L.
Meeting the science goals for many current and future ground-based optical large-area sky surveys requires that the calibrated broadband photometry is both stable in time and uniform over the sky to 1% precision or better. Past and current surveys have achieved photometric precision of 1%–2% by calibrating the survey’s stellar photometry with repeated measurements of a large number of stars observed in multiple epochs. The calibration techniques employed by these surveys only consider the relative frame-by-frame photometric zeropoint offset and the focal plane position-dependent illumination corrections, which are independent of the source color. However, variations in the wavelength dependence ofmore » the atmospheric transmission and the instrumental throughput induce source color-dependent systematic errors. These systematic errors must also be considered to achieve the most precise photometric measurements. In this paper, we examine such systematic chromatic errors (SCEs) using photometry from the Dark Energy Survey (DES) as an example. We first define a natural magnitude system for DES and calculate the systematic errors on stellar magnitudes when the atmospheric transmission and instrumental throughput deviate from the natural system. We conclude that the SCEs caused by the change of airmass in each exposure, the change of the precipitable water vapor and aerosol in the atmosphere over time, and the non-uniformity of instrumental throughput over the focal plane can be up to 2% in some bandpasses. We then compare the calculated SCEs with the observed DES data. For the test sample data, we correct these errors using measurements of the atmospheric transmission and instrumental throughput from auxiliary calibration systems. The residual after correction is less than 0.3%. Moreover, we calculate such SCEs for Type Ia supernovae and elliptical galaxies and find that the chromatic errors for non-stellar objects are redshift-dependent and can be larger than those for stars at certain redshifts.« less
Line-dependent veiling in very active classical T Tauri stars
NASA Astrophysics Data System (ADS)
Rei, A. C. S.; Petrov, P. P.; Gameiro, J. F.
2018-02-01
Context. The T Tauri stars with active accretion disks show veiled photospheric spectra. This is supposedly due to non-photospheric continuum radiated by hot spots beneath the accretion shocks at stellar surface and/or chromospheric emission lines radiated by the post-shocked gas. The amount of veiling is often considered as a measure of the mass-accretion rate. Aim. We analysed high-resolution photospheric spectra of accreting T Tauri stars LkHα 321, V1331 Cyg, and AS 353A with the aim of clarifying the nature of the line-dependent veiling. Each of these objects shows a strong emission line spectrum and powerful wind features indicating high rates of accretion and mass loss. Methods: Equivalent widths of hundreds of weak photospheric lines were measured in the observed spectra of high quality and compared with those in synthetic spectra of appropriate models of stellar atmospheres. Results: The photospheric spectra of the three T Tauri stars are highly veiled. We found that the veiling is strongly line-dependent: larger in stronger photospheric lines and weak or absent in the weakest ones. No dependence of veiling on excitation potential within 0 to 5 eV was found. Different physical processes responsible for these unusual veiling effects are discussed in the framework of the magnetospheric accretion model. Conclusions: The observed veiling has two origins: (1) an abnormal structure of stellar atmosphere heated up by the accreting matter, and (2) a non-photospheric continuum radiated by a hot spot with temperature lower than 10 000 K. The true level of the veiling continuum can be derived by measuring the weakest photospheric lines with equivalent widths down to ≈10 mÅ. A limited spectral resolution and/or low signal-to-noise ratio results in overestimation of the veiling continuum. In the three very active stars, the veiling continuum is a minor contributor to the observed veiling, while the major contribution comes from the line-dependent veiling.
Li, T. S.; DePoy, D. L.; Marshall, J. L.; ...
2016-06-01
Here, we report that meeting the science goals for many current and future ground-based optical large-area sky surveys requires that the calibrated broadband photometry is both stable in time and uniform over the sky to 1% precision or better. Past and current surveys have achieved photometric precision of 1%–2% by calibrating the survey's stellar photometry with repeated measurements of a large number of stars observed in multiple epochs. The calibration techniques employed by these surveys only consider the relative frame-by-frame photometric zeropoint offset and the focal plane position-dependent illumination corrections, which are independent of the source color. However, variations inmore » the wavelength dependence of the atmospheric transmission and the instrumental throughput induce source color-dependent systematic errors. These systematic errors must also be considered to achieve the most precise photometric measurements. In this paper, we examine such systematic chromatic errors (SCEs) using photometry from the Dark Energy Survey (DES) as an example. We first define a natural magnitude system for DES and calculate the systematic errors on stellar magnitudes when the atmospheric transmission and instrumental throughput deviate from the natural system. We conclude that the SCEs caused by the change of airmass in each exposure, the change of the precipitable water vapor and aerosol in the atmosphere over time, and the non-uniformity of instrumental throughput over the focal plane can be up to 2% in some bandpasses. We then compare the calculated SCEs with the observed DES data. For the test sample data, we correct these errors using measurements of the atmospheric transmission and instrumental throughput from auxiliary calibration systems. In conclusion, the residual after correction is less than 0.3%. Moreover, we calculate such SCEs for Type Ia supernovae and elliptical galaxies and find that the chromatic errors for non-stellar objects are redshift-dependent and can be larger than those for stars at certain redshifts.« less
Magnifying the Early Episodes of Star Formation: Super Star Clusters at Cosmological Distances
NASA Astrophysics Data System (ADS)
Vanzella, E.; Castellano, M.; Meneghetti, M.; Mercurio, A.; Caminha, G. B.; Cupani, G.; Calura, F.; Christensen, L.; Merlin, E.; Rosati, P.; Gronke, M.; Dijkstra, M.; Mignoli, M.; Gilli, R.; De Barros, S.; Caputi, K.; Grillo, C.; Balestra, I.; Cristiani, S.; Nonino, M.; Giallongo, E.; Grazian, A.; Pentericci, L.; Fontana, A.; Comastri, A.; Vignali, C.; Zamorani, G.; Brusa, M.; Bergamini, P.; Tozzi, P.
2017-06-01
We study the spectrophotometric properties of a highly magnified (μ ≃ 40{--}70) pair of stellar systems identified at z = 3.2222 behind the Hubble Frontier Field galaxy cluster MACS J0416. Five multiple images (out of six) have been spectroscopically confirmed by means of VLT/MUSE and VLT/X-Shooter observations. Each image includes two faint ({m}{UV}≃ 30.6), young (≲ 100 Myr), low-mass (< {10}7 {M}⊙ ), low-metallicity (12 + Log(O/H) ≃ 7.7, or 1/10 solar), and compact (30 pc effective radius) stellar systems separated by ≃ 300 pc after correcting for lensing amplification. We measured several rest-frame ultraviolet and optical narrow ({σ }v≲ 25 km s-1) high-ionization lines. These features may be the signature of very hot (T> {{50,000}} K) stars within dense stellar clusters, whose dynamical mass is likely dominated by the stellar component. Remarkably, the ultraviolet metal lines are not accompanied by Lyα emission (e.g., C IV/Lyα > 15), despite the fact that the Lyα line flux is expected to be 150 times brighter (inferred from the Hβ flux). A spatially offset, strongly magnified (μ > 50) Lyα emission with a spatial extent ≲ 7.6 kpc2 is instead identified 2 kpc away from the system. The origin of such a faint emission could be the result of fluorescent Lyα induced by a transverse leakage of ionizing radiation emerging from the stellar systems and/or may be associated with an underlying and barely detected object (with {m}{UV}> 34 de-lensed). This is the first confirmed metal-line emitter at such low-luminosity and redshift without Lyα emission—suggesting that, at least in some cases, a non-uniform covering factor of the neutral gas might hamper the Lyα detection. Based on observations collected at the European Southern Observatory for Astronomical research in the southern hemisphere, under ESO programmes P095.A-0840, P095.A-0653, and P186.A-0798.
NASA Astrophysics Data System (ADS)
Andreeva, T.; Bräuer, T.; Bykov, V.; Egorov, K.; Endler, M.; Fellinger, J.; Kißlinger, J.; Köppen, M.; Schauer, F.
2015-06-01
Wendelstein 7-X, currently under commissioning at the Max-Planck-Institut für Plasmaphysik in Greifswald, Germany, is a modular advanced stellarator, combining the modular coil concept with optimized properties of the plasma. Most of the envisaged magnetic configurations of the machine are rather sensitive to symmetry breaking perturbations which are the consequence of unavoidable manufacturing and assembly tolerances. This overview describes the successive tracking of the Wendelstein 7-X magnet system geometry starting from the manufacturing of the winding packs up to the modelling of the influence of operation loads. The deviations found were used to calculate the resulting error fields and to compare them with the compensation capacity of the trim coils.
Adaptive DFT-Based Interferometer Fringe Tracking
NASA Astrophysics Data System (ADS)
Wilson, Edward; Pedretti, Ettore; Bregman, Jesse; Mah, Robert W.; Traub, Wesley A.
An automatic interferometer fringe tracking system has been developed, implemented, and tested at the Infrared Optical Telescope Array (IOTA) Observatory at Mount Hopkins, Arizona. The system can minimize the optical path differences (OPDs) for all three baselines of the Michelson stellar interferometer at IOTA. Based on sliding window discrete Fourier-transform (DFT) calculations that were optimized for computational efficiency and robustness to atmospheric disturbances, the algorithm has also been tested extensively on offline data. Implemented in ANSI C on the 266 MHz PowerPC processor running the VxWorks real-time operating system, the algorithm runs in approximately 2.0 milliseconds per scan (including all three interferograms), using the science camera and piezo scanners to measure and correct the OPDs. The adaptive DFT-based tracking algorithm should be applicable to other systems where there is a need to detect or track a signal with an approximately constant-frequency carrier pulse. One example of such an application might be to the field of thin-film measurement by ellipsometry, using a broadband light source and a Fourier-transform spectrometer to detect the resulting fringe patterns.
Adaptive DFT-Based Interferometer Fringe Tracking
NASA Astrophysics Data System (ADS)
Wilson, Edward; Pedretti, Ettore; Bregman, Jesse; Mah, Robert W.; Traub, Wesley A.
2005-12-01
An automatic interferometer fringe tracking system has been developed, implemented, and tested at the Infrared Optical Telescope Array (IOTA) Observatory at Mount Hopkins, Arizona. The system can minimize the optical path differences (OPDs) for all three baselines of the Michelson stellar interferometer at IOTA. Based on sliding window discrete Fourier-transform (DFT) calculations that were optimized for computational efficiency and robustness to atmospheric disturbances, the algorithm has also been tested extensively on offline data. Implemented in ANSI C on the 266 MHz PowerPC processor running the VxWorks real-time operating system, the algorithm runs in approximately [InlineEquation not available: see fulltext.] milliseconds per scan (including all three interferograms), using the science camera and piezo scanners to measure and correct the OPDs. The adaptive DFT-based tracking algorithm should be applicable to other systems where there is a need to detect or track a signal with an approximately constant-frequency carrier pulse. One example of such an application might be to the field of thin-film measurement by ellipsometry, using a broadband light source and a Fourier-transform spectrometer to detect the resulting fringe patterns.
The Lyman-Continuum Fluxes and Stellar Parameters of O and Early B-Type Stars
NASA Technical Reports Server (NTRS)
Vacca, William D.; Garmany, Catherine D.; Shull, J. Michael
1996-01-01
Using the results of the most recent stellar atmosphere models applied to a sample of hot stars, we construct calibrations of effective temperature (T(sub eff)), and gravity (log(sub g)) with a spectral type and luminosity class for Galactic 0-type and early B-type stars. From the model results we also derive an empirical relation between the bolometric correction and T(sub eff) and log g. Using a sample of stars with known distances located in OB associations in the Galaxy and the Large Magellanic Cloud, we derive a new calibration of M(sub v) with spectral class. With these new calibrations and the stellar atmosphere models of Kurucz, we calculate the physical parameters and ionizing photon luminosities in the H(0) and He(0) continua for O and early B-type stars. We find substantial differences between our values of the Lyman- continuum luminosity and those reported in the literature. We also discuss the systematic discrepancy between O-type stellar masses derived from spectroscopic models and those derived from evolutionary tracks. Most likely, the cause of this 'mass discrepancy' lies primarily in the atmospheric models, which are plane parallel and hydrostatic and therefore do not account for an extended atmosphere and the velocity fields in a stellar wind. Finally, we present a new computation of the Lyman-continuum luminosity from 429 known O stars located within 2.5 kpc of the Sun. We find the total ionizing luminosity from this population ((Q(sub 0)(sup T(sub ot))) = 7.0 x 10(exp 51) photons/s) to be 47% larger than that determined using the Lyman continuum values tabulated by Panagia.
Origin and Evolution of Magnetic Field in PMS Stars: Influence of Rotation and Structural Changes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Emeriau-Viard, Constance; Brun, Allan Sacha, E-mail: constance.emeriau@cea.fr, E-mail: sacha.brun@cea.fr
During stellar evolution, especially in the pre-main-sequence phase, stellar structure and rotation evolve significantly, causing major changes in the dynamics and global flows of the star. We wish to assess the consequences of these changes on stellar dynamo, internal magnetic field topology, and activity level. To do so, we have performed a series of 3D HD and MHD simulations with the ASH code. We choose five different models characterized by the radius of their radiative zone following an evolutionary track computed by a 1D stellar evolution code. These models characterized stellar evolution from 1 to 50 Myr. By introducing amore » seed magnetic field in the fully convective model and spreading its evolved state through all four remaining cases, we observe systematic variations in the dynamical properties and magnetic field amplitude and topology of the models. The five MHD simulations develop a strong dynamo field that can reach an equipartition state between the kinetic and magnetic energies and even superequipartition levels in the faster-rotating cases. We find that the magnetic field amplitude increases as it evolves toward the zero-age main sequence. Moreover, the magnetic field topology becomes more complex, with a decreasing axisymmetric component and a nonaxisymmetric one becoming predominant. The dipolar components decrease as the rotation rate and the size of the radiative core increase. The magnetic fields possess a mixed poloidal-toroidal topology with no obvious dominant component. Moreover, the relaxation of the vestige dynamo magnetic field within the radiative core is found to satisfy MHD stability criteria. Hence, it does not experience a global reconfiguration but slowly relaxes by retaining its mixed stable poloidal-toroidal topology.« less
A NEW GENERATION OF PARSEC-COLIBRI STELLAR ISOCHRONES INCLUDING THE TP-AGB PHASE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marigo, Paola; Aringer, Bernhard; Chen, Yang
2017-01-20
We introduce a new generation of PARSEC–COLIBRI stellar isochrones that includes a detailed treatment of the thermally pulsing asymptotic giant branch (TP-AGB) phase, covering a wide range of initial metallicities (0.0001 < Z {sub i} < 0.06). Compared to previous releases, the main novelties and improvements are use of new TP-AGB tracks and related atmosphere models and spectra for M and C-type stars; inclusion of the surface H+He+CNO abundances in the isochrone tables, accounting for the effects of diffusion, dredge-up episodes and hot-bottom burning; inclusion of complete thermal pulse cycles, with a complete description of the in-cycle changes in themore » stellar parameters; new pulsation models to describe the long-period variability in the fundamental and first-overtone modes; and new dust models that follow the growth of the grains during the AGB evolution, in combination with radiative transfer calculations for the reprocessing of the photospheric emission. Overall, these improvements are expected to lead to a more consistent and detailed description of properties of TP-AGB stars expected in resolved stellar populations, especially in regard to their mean photometric properties from optical to mid-infrared wavelengths. We illustrate the expected numbers of TP-AGB stars of different types in stellar populations covering a wide range of ages and initial metallicities, providing further details on the “C-star island” that appears at intermediate values of age and metallicity, and about the AGB-boosting effect that occurs at ages close to 1.6-Gyr for populations of all metallicities. The isochrones are available through a new dedicated web server.« less
The mysterious age invariance of the planetary nebula luminosity function bright cut-off
NASA Astrophysics Data System (ADS)
Gesicki, K.; Zijlstra, A. A.; Miller Bertolami, M. M.
2018-05-01
Planetary nebulae mark the end of the active life of 90% of all stars. They trace the transition from a red giant to a degenerate white dwarf. Stellar models1,2 predicted that only stars above approximately twice the solar mass could form a bright nebula. But the ubiquitous presence of bright planetary nebulae in old stellar populations, such as elliptical galaxies, contradicts this: such high-mass stars are not present in old systems. The planetary nebula luminosity function, and especially its bright cut-off, is almost invariant between young spiral galaxies, with high-mass stars, and old elliptical galaxies, with only low-mass stars. Here, we show that new evolutionary tracks of low-mass stars are capable of explaining in a simple manner this decades-old mystery. The agreement between the observed luminosity function and computed stellar evolution validates the latest theoretical modelling. With these models, the planetary nebula luminosity function provides a powerful diagnostic to derive star formation histories of intermediate-age stars. The new models predict that the Sun at the end of its life will also form a planetary nebula, but it will be faint.
Cooperative multisensor system for real-time face detection and tracking in uncontrolled conditions
NASA Astrophysics Data System (ADS)
Marchesotti, Luca; Piva, Stefano; Turolla, Andrea; Minetti, Deborah; Regazzoni, Carlo S.
2005-03-01
The presented work describes an innovative architecture for multi-sensor distributed video surveillance applications. The aim of the system is to track moving objects in outdoor environments with a cooperative strategy exploiting two video cameras. The system also exhibits the capacity of focusing its attention on the faces of detected pedestrians collecting snapshot frames of face images, by segmenting and tracking them over time at different resolution. The system is designed to employ two video cameras in a cooperative client/server structure: the first camera monitors the entire area of interest and detects the moving objects using change detection techniques. The detected objects are tracked over time and their position is indicated on a map representing the monitored area. The objects" coordinates are sent to the server sensor in order to point its zooming optics towards the moving object. The second camera tracks the objects at high resolution. As well as the client camera, this sensor is calibrated and the position of the object detected on the image plane reference system is translated in its coordinates referred to the same area map. In the map common reference system, data fusion techniques are applied to achieve a more precise and robust estimation of the objects" track and to perform face detection and tracking. The work novelties and strength reside in the cooperative multi-sensor approach, in the high resolution long distance tracking and in the automatic collection of biometric data such as a person face clip for recognition purposes.
Neural plasticity associated with recently versus often heard objects.
Bourquin, Nathalie M-P; Spierer, Lucas; Murray, Micah M; Clarke, Stephanie
2012-09-01
In natural settings the same sound source is often heard repeatedly, with variations in spectro-temporal and spatial characteristics. We investigated how such repetitions influence sound representations and in particular how auditory cortices keep track of recently vs. often heard objects. A set of 40 environmental sounds was presented twice, i.e. as prime and as repeat, while subjects categorized the corresponding sound sources as living vs. non-living. Electrical neuroimaging analyses were applied to auditory evoked potentials (AEPs) comparing primes vs. repeats (effect of presentation) and the four experimental sections. Dynamic analysis of distributed source estimations revealed i) a significant main effect of presentation within the left temporal convexity at 164-215 ms post-stimulus onset; and ii) a significant main effect of section in the right temporo-parietal junction at 166-213 ms. A 3-way repeated measures ANOVA (hemisphere×presentation×section) applied to neural activity of the above clusters during the common time window confirmed the specificity of the left hemisphere for the effect of presentation, but not that of the right hemisphere for the effect of section. In conclusion, spatio-temporal dynamics of neural activity encode the temporal history of exposure to sound objects. Rapidly occurring plastic changes within the semantic representations of the left hemisphere keep track of objects heard a few seconds before, independent of the more general sound exposure history. Progressively occurring and more long-lasting plastic changes occurring predominantly within right hemispheric networks, which are known to code for perceptual, semantic and spatial aspects of sound objects, keep track of multiple exposures. Copyright © 2012 Elsevier Inc. All rights reserved.
Lyman alpha initiated winds in late-type stars
NASA Technical Reports Server (NTRS)
Haisch, B. M.; Linsky, J. L.; Vanderhucht, K. A.
1979-01-01
The IUE survey of late-type stars revealed a sharp division in the HR diagram between stars with solar type spectra (chromosphere and transition region lines) and those with non-solar type spectra (only chromosphere lines). Models of both hot coronae and cool wind flows were calculated using stellar model chromospheres as starting points for stellar wind calculations in order to investigate the possibility of having a supersonic transition locus in the HR diagram dividing hot coronae from cool winds. From these models, it is concluded that the Lyman alpha flux may play an important role in determining the location of a stellar wind critical point. The interaction of Lyman alpha radiation pressure with Alfven waves in producing strong, low temperature stellar winds in the star Arcturus is examined.
Multi-Complementary Model for Long-Term Tracking
Zhang, Deng; Zhang, Junchang; Xia, Chenyang
2018-01-01
In recent years, video target tracking algorithms have been widely used. However, many tracking algorithms do not achieve satisfactory performance, especially when dealing with problems such as object occlusions, background clutters, motion blur, low illumination color images, and sudden illumination changes in real scenes. In this paper, we incorporate an object model based on contour information into a Staple tracker that combines the correlation filter model and color model to greatly improve the tracking robustness. Since each model is responsible for tracking specific features, the three complementary models combine for more robust tracking. In addition, we propose an efficient object detection model with contour and color histogram features, which has good detection performance and better detection efficiency compared to the traditional target detection algorithm. Finally, we optimize the traditional scale calculation, which greatly improves the tracking execution speed. We evaluate our tracker on the Object Tracking Benchmarks 2013 (OTB-13) and Object Tracking Benchmarks 2015 (OTB-15) benchmark datasets. With the OTB-13 benchmark datasets, our algorithm is improved by 4.8%, 9.6%, and 10.9% on the success plots of OPE, TRE and SRE, respectively, in contrast to another classic LCT (Long-term Correlation Tracking) algorithm. On the OTB-15 benchmark datasets, when compared with the LCT algorithm, our algorithm achieves 10.4%, 12.5%, and 16.1% improvement on the success plots of OPE, TRE, and SRE, respectively. At the same time, it needs to be emphasized that, due to the high computational efficiency of the color model and the object detection model using efficient data structures, and the speed advantage of the correlation filters, our tracking algorithm could still achieve good tracking speed. PMID:29425170
Identifying the location of a concealed object through unintentional eye movements
Neuman, Yair; Assaf, Dan; Israeli, Navot
2015-01-01
In some investigative and interrogative contexts, the investigator is seeking to identify the location of an object (e.g., implanted bomb) which is known to a given subject (e.g., a terrorist). In this paper, we present a non-intrusive methodology for uncovering the loci of a concealed object by analyzing the subject's eye movements. Using a combination of eye tracking, psychological manipulation and a search algorithm, we have performed two experiments. In the first experiment, we have gained 58% hit rate in identifying the location of the concealed object and in the second experiment 56% hit rate. The pros and cons of the methodology for forensic investigation are discussed. PMID:25904879
NASA Astrophysics Data System (ADS)
Long, Min; Sun, Wei; Niu, Shu; Zhou, Xin; Ji, Li
2017-08-01
We investigate the physical properties of stellar winds launched in super stellar clusters (SSCs). Chandra observations have detected the presence of diffuse X-ray emission caused by hot gas from such winds in SSCs, and provide the best probe for understanding interactions between the stellar winds and the complex nursery regions. However, the details of the origin of cluster winds, the mass and energy ejection, the formation of diffuse X-ray emission, the fraction of winds contribution to the distribution of diffuse X-ray emission still remain unclear. We developed a multiphysics hydrodynamic model including self-gravity, head conduction and performed 3D simulations with an unprecedented grid resolution due to adaptive mesh refinement (AMR) capability in a case study of NGC 3603, as a supplement to the analysis of the archived 500 ks Chandra observations. The synthetic emission will be computed by assuming the gas in a non-equilibrium ionization (NEI) state indicated by Chandra observation, not coronal ionization equilibrium (CIE) that most works assumed, by using a customized NEI calculation module based on AtomDB. The results will be compared to the Chandra observations.
Multiple objects tracking with HOGs matching in circular windows
NASA Astrophysics Data System (ADS)
Miramontes-Jaramillo, Daniel; Kober, Vitaly; Díaz-Ramírez, Víctor H.
2014-09-01
In recent years tracking applications with development of new technologies like smart TVs, Kinect, Google Glass and Oculus Rift become very important. When tracking uses a matching algorithm, a good prediction algorithm is required to reduce the search area for each object to be tracked as well as processing time. In this work, we analyze the performance of different tracking algorithms based on prediction and matching for a real-time tracking multiple objects. The used matching algorithm utilizes histograms of oriented gradients. It carries out matching in circular windows, and possesses rotation invariance and tolerance to viewpoint and scale changes. The proposed algorithm is implemented in a personal computer with GPU, and its performance is analyzed in terms of processing time in real scenarios. Such implementation takes advantage of current technologies and helps to process video sequences in real-time for tracking several objects at the same time.
Enumeration versus multiple object tracking: the case of action video game players
Green, C.S.; Bavelier, D.
2010-01-01
Here, we demonstrate that action video game play enhances subjects’ ability in two tasks thought to indicate the number of items that can be apprehended. Using an enumeration task, in which participants have to determine the number of quickly flashed squares, accuracy measures showed a near ceiling performance for low numerosities and a sharp drop in performance once a critical number of squares was reached. Importantly, this critical number was higher by about two items in video game players (VGPs) than in non-video game players (NVGPs). A following control study indicated that this improvement was not due to an enhanced ability to instantly apprehend the numerosity of the display, a process known as subitizing, but rather due to an enhancement in the slower more serial process of counting. To confirm that video game play facilitates the processing of multiple objects at once, we compared VGPs and NVGPs on the multiple object tracking task (MOT), which requires the allocation of attention to several items over time. VGPs were able to successfully track approximately two more items than NVGPs. Furthermore, NVGPs trained on an action video game established the causal effect of game playing in the enhanced performance on the two tasks. Together, these studies confirm the view that playing action video games enhances the number of objects that can be apprehended and suggest that this enhancement is mediated by changes in visual short-term memory skills. PMID:16359652
Enumeration versus multiple object tracking: the case of action video game players.
Green, C S; Bavelier, D
2006-08-01
Here, we demonstrate that action video game play enhances subjects' ability in two tasks thought to indicate the number of items that can be apprehended. Using an enumeration task, in which participants have to determine the number of quickly flashed squares, accuracy measures showed a near ceiling performance for low numerosities and a sharp drop in performance once a critical number of squares was reached. Importantly, this critical number was higher by about two items in video game players (VGPs) than in non-video game players (NVGPs). A following control study indicated that this improvement was not due to an enhanced ability to instantly apprehend the numerosity of the display, a process known as subitizing, but rather due to an enhancement in the slower more serial process of counting. To confirm that video game play facilitates the processing of multiple objects at once, we compared VGPs and NVGPs on the multiple object tracking task (MOT), which requires the allocation of attention to several items over time. VGPs were able to successfully track approximately two more items than NVGPs. Furthermore, NVGPs trained on an action video game established the causal effect of game playing in the enhanced performance on the two tasks. Together, these studies confirm the view that playing action video games enhances the number of objects that can be apprehended and suggest that this enhancement is mediated by changes in visual short-term memory skills.
Multiple Object Tracking Reveals Object-Based Grouping Interference in Children with ASD
ERIC Educational Resources Information Center
Van der Hallen, Ruth; Evers, Kris; de-Wit, Lee; Steyaert, Jean; Noens, Ilse; Wagemans, Johan
2018-01-01
The multiple object tracking (MOT) paradigm has proven its value in targeting a number of aspects of visual cognition. This study used MOT to investigate the effect of object-based grouping, both in children with and without autism spectrum disorder (ASD). A modified MOT task was administered to both groups, who had to track and distinguish four…
Robust Arm and Hand Tracking by Unsupervised Context Learning
Spruyt, Vincent; Ledda, Alessandro; Philips, Wilfried
2014-01-01
Hand tracking in video is an increasingly popular research field due to the rise of novel human-computer interaction methods. However, robust and real-time hand tracking in unconstrained environments remains a challenging task due to the high number of degrees of freedom and the non-rigid character of the human hand. In this paper, we propose an unsupervised method to automatically learn the context in which a hand is embedded. This context includes the arm and any other object that coherently moves along with the hand. We introduce two novel methods to incorporate this context information into a probabilistic tracking framework, and introduce a simple yet effective solution to estimate the position of the arm. Finally, we show that our method greatly increases robustness against occlusion and cluttered background, without degrading tracking performance if no contextual information is available. The proposed real-time algorithm is shown to outperform the current state-of-the-art by evaluating it on three publicly available video datasets. Furthermore, a novel dataset is created and made publicly available for the research community. PMID:25004155
NASA Astrophysics Data System (ADS)
Deeg, H. J.; Ocaña, B.; Kozhevnikov, V. P.; Charbonneau, D.; O'Donovan, F. T.; Doyle, L. R.
2008-03-01
Aims:Our objective is to elucidate the physical process that causes the observed observed-minus-calculated (O-C) behavior in the M4.5/M4.5 binary CM Dra and to test for any evidence of a third body around the CM Dra system. Methods: New eclipse minimum timings of CM Dra were obtained between the years 2000 and 2007. The O-C times of the system are fitted against several functions, representing different physical origins of the timing variations. Results: Using our observational data in conjunction with published timings going back to 1977, a clear non-linearity in O-C times is apparent. An analysis using model-selection statistics gives about equal weight to a parabolic and to a sinusoidal fitting function. Attraction from a third body, either at large distance in a quasi-constant constellation across the years of observations or from a body on a shorter orbit generating periodicities in O-C times is the most likely source of the observed O-C times. The white dwarf GJ 630.1B, a proper motion companion of CM Dra, can however be rejected as the responsible third body. Also, no further evidence of the short-periodic planet candidate described by Deeg et al. (2000, A&A, 358, L5) is found, whereas other mechanisms, such as period changes from stellar winds or Applegate's mechanism can be rejected. Conclusions: A third body, being either a few-Jupiter-mass object with a period of 18.5 ± 4.5 years or an object in the mass range of 1.5 M_jup to 0.1 M⊙ with periods of hundreds to thousands of years is the most likely origin of the observed minimum timing behavior.
ERIC Educational Resources Information Center
Dvir, Assaf; Tabach, Michal
2017-01-01
High schools commonly use a differential approach to teach minima and maxima geometric problems. Although calculus serves as a systematic and powerful technique, this rigorous instrument might hinder students' ability to understand the behavior and constraints of the objective function. The proliferation of digital environments allowed us to adopt…
A New Spectroscopic and Interferometric Study of the Young Stellar Object V645 Cyg
NASA Technical Reports Server (NTRS)
Miroshinichenko, A. S.; Hofmann, K.-H.; Schertl, D.; Weigelt, G.; Kraus, S.; Manset, N.; Balega, Y. Y.; Klochkova, V. G.; Rudy, R. J.; Lynch, D. K.;
2009-01-01
Aims. We present the results of high-resolution optical spectroscopy, low-resolution near-IR spectroscopy and near-infrared speckle interferometry of the massive young stellar object candidate V645 Cyg that were taken in order to refine its fundamental parameters and properties of its circumstellar envelope. Methods. Speckle interferometry in the H- and K-bands and an optical spectrum in the range 5200-6680 A with a spectral resolving power of R = 60000 were obtained at the 6 m telescope of the Russian Academy of Sciences. Another optical spectrum in the range 4300-10500 A with R = 79000 was obtained at the 3.6m CFHT. A low-resolution spectrum in the ranges 0.46-1.4 and 1.4-2.5 microns with a R approx. 800 and approx. 700, respectively, were obtained at the 3m Shain telescope of the Lick Observatory. Results. Using a new kinematic method based on non-linear modeling of the neutral hydrogen density profile in the direction toward the object, we suggest a new a distance D = 4.2+/-0.2 kpc. We also suggest a new estimate for the star's effective temperature, T(sub eff) approx. 25000 K. We have resolved the object in both H- and K-bands. Using a two-component ring fit, we derived a compact component size of 18 mas and 15 mas in the H- and K-band, respectively, which correspond to 37 and 33 AU at the new distance. Analysis of our and previously published data shows a approx. 2 mag drop of the near-infrared brightness of V645 Cyg in the beginning of the 1980 s. At the same time, the cometary nebular condensation N1 seems to fade in this wavelength range with respect to the N0 object, which represent the star with a nearly pole-on optically-thick disk and an optically-thin envelope. Conclusions. We conclude that V645 Cyg is a young massive main-sequence star, which recently emerged from its cocoon. and already passed the protostellar accretion stage. The presence of accretion is not necessary to account for the high observed luminosity of (2.6) x 10(exp 4) Solar Mass/yr. The receding part of a strong, mostly uniform outflow with a terminal velocity of approx.800 km/s is only blocked from view far from the star, where forbidden lines form. The near-infrared size of the source is consistent with the dust sublimation distance near this hot and luminous star and is the largest among young stellar objects observed interferometrically to-date.
Patel, Mohak; Leggett, Susan E; Landauer, Alexander K; Wong, Ian Y; Franck, Christian
2018-04-03
Spatiotemporal tracking of tracer particles or objects of interest can reveal localized behaviors in biological and physical systems. However, existing tracking algorithms are most effective for relatively low numbers of particles that undergo displacements smaller than their typical interparticle separation distance. Here, we demonstrate a single particle tracking algorithm to reconstruct large complex motion fields with large particle numbers, orders of magnitude larger than previously tractably resolvable, thus opening the door for attaining very high Nyquist spatial frequency motion recovery in the images. Our key innovations are feature vectors that encode nearest neighbor positions, a rigorous outlier removal scheme, and an iterative deformation warping scheme. We test this technique for its accuracy and computational efficacy using synthetically and experimentally generated 3D particle images, including non-affine deformation fields in soft materials, complex fluid flows, and cell-generated deformations. We augment this algorithm with additional particle information (e.g., color, size, or shape) to further enhance tracking accuracy for high gradient and large displacement fields. These applications demonstrate that this versatile technique can rapidly track unprecedented numbers of particles to resolve large and complex motion fields in 2D and 3D images, particularly when spatial correlations exist.
Rodríguez-Canosa, Gonzalo; Giner, Jaime del Cerro; Barrientos, Antonio
2014-01-01
The detection and tracking of mobile objects (DATMO) is progressively gaining importance for security and surveillance applications. This article proposes a set of new algorithms and procedures for detecting and tracking mobile objects by robots that work collaboratively as part of a multirobot system. These surveillance algorithms are conceived of to work with data provided by long distance range sensors and are intended for highly reliable object detection in wide outdoor environments. Contrary to most common approaches, in which detection and tracking are done by an integrated procedure, the approach proposed here relies on a modular structure, in which detection and tracking are carried out independently, and the latter might accept input data from different detection algorithms. Two movement detection algorithms have been developed for the detection of dynamic objects by using both static and/or mobile robots. The solution to the overall problem is based on the use of a Kalman filter to predict the next state of each tracked object. Additionally, new tracking algorithms capable of combining dynamic objects lists coming from either one or various sources complete the solution. The complementary performance of the separated modular structure for detection and identification is evaluated and, finally, a selection of test examples discussed. PMID:24526305
Brockhoff, Alisa; Huff, Markus
2016-10-01
Multiple object tracking (MOT) plays a fundamental role in processing and interpreting dynamic environments. Regarding the type of information utilized by the observer, recent studies reported evidence for the use of object features in an automatic, low- level manner. By introducing a novel paradigm that allowed us to combine tracking with a noninterfering top-down task, we tested whether a voluntary component can regulate the deployment of attention to task-relevant features in a selective manner. In four experiments we found conclusive evidence for a task-driven selection mechanism that guides attention during tracking: The observers were able to ignore or prioritize distinct objects. They marked the distinct (cued) object (target/distractor) more or less often than other objects of the same type (targets /distractors)-but only when they had received an identification task that required them to actively process object features (cues) during tracking. These effects are discussed with regard to existing theoretical approaches to attentive tracking, gaze-cue usability as well as attentional readiness, a term that originally stems from research on attention capture and visual search. Our findings indicate that existing theories of MOT need to be adjusted to allow for flexible top-down, voluntary processing during tracking.
Observational constraints on the inter-binary stellar flare hypothesis for the gamma-ray bursts
NASA Astrophysics Data System (ADS)
Rao, A. R.; Vahia, M. N.
1994-01-01
The Gamma Ray Observatory/Burst and Transient Source Experiment (GRO/BATSE) results on the Gamma Ray Bursts (GRBs) have given an internally consistent set of observations of about 260 GRBs which have been released for analysis by the BATSE team. Using this database we investigate our earlier suggestion (Vahia and Rao, 1988) that GRBs are inter-binary stellar flares from a group of objects classified as Magnetically Active Stellar Systems (MASS) which includes flare stars, RS CVn binaries and cataclysmic variables. We show that there exists an observationally consistent parameter space for the number density, scale height and flare luminosity of MASS which explains the complete log(N) - log(P) distribution of GRBs as also the observed isotropic distribution. We further use this model to predict anisotropy in the GRB distribution at intermediate luminosities. We make definite predictions under the stellar flare hypothesis that can be tested in the near future.
NASA Technical Reports Server (NTRS)
Fanelli, Michael N.; O'Connell, Robert W.; Thuan, Trinh X.
1988-01-01
An initial attempt to apply optimizing spectral synthesis techniques to the far-UV spectra of blue compact galaxies (BCGs) is presented. The far-UV absorption-line spectra of the galaxies are clearly composite, with the signatures of the main-sequence types between O3 and mid-A. Most of the low-ionization absorption lines have a stellar origin. The Si IV and C IV features in several objects have P Cygni profiles. In Haro I the strength of Si IV indicates a significant blue supergiant population. The metal-poor blue compact dwarf Mrk 209 displays weak absorption lines, evidence that the stellar component has the same low metallicity as observed in the ionized gas. Good fits to the data are obtained the technique of optimizing population synthesis. The solutions yield stellar luminosity functions which display large discontinuities, indicative of discrete star formation episodes or bursts. The amount of UV extinction is low.