Joint JSC/GSFC two-TDRS navigation certification results for STS-29, STS-30, and STS-32
NASA Technical Reports Server (NTRS)
Schmidt, Thomas G.; Brown, Edward T.; Murdock, Valerie E.; Cappellari, James O., Jr.; Smith, Evan A.; Schmitt, Mark W.; Omalley, James W.; Lowes, Flora B.; Joyce, James B.
1990-01-01
The procedures used and the results obtained in the joint Johnson Space Center (JSC)/Goddard Space Flight Center (GSFC) navigation certification of the two-Tracking and Data Relay Satellite (TDRS) S-band tracking configuration for support of low- to medium-inclination (28.5 to 62 degrees) Shuttle missions (STS-29 and STS-30) and Shuttle rendezvous missions (STS-32) are described. The objective of this certification effort was to certify the two-TDRS configuration for nominal Space Transportation System (STS) on-orbit navigation support, thereby making it possible to significantly reduce the ground tracking support requirements for routine STS on-orbit navigation. JSC had the primary responsibility for certification of the two-TDRS configuration for STS support, and GSFC supported the effort by performing Ground Network (GN) and Space Network (SN) tracking data evaluation, parallel orbit solutions, and solution comparisons. In the certification process, two types of orbit determination solutions were generated by JSC and by GSFC for each tracking arc evaluated, one type using TDRS-East and TDRS-West tracking data combined with ground tracking data (the reference solutions) and one type using only TDRS-East and TDRS-West tracking data. The two types of solutions were then compared to determine the maximum position differences over the solution arcs and whether these differences satisfied the navigation certification criteria. The certification criteria were a function of the type of Shuttle activity in the tracking arc, i.e., quiet, moderate, or active. Quiet periods included no attitude maneuvers or ventings; moderate periods included one or two maneuvers or ventings; and active periods included more than two maneuvers or ventings. The results of the individual JSC and GSFC certification analyses for the STS-29, STS-30, and STS-32 missions and the joint JSC/GSFC conclusions regarding certification of the two-TDRS S-band configuration for STS support are presented.
The Silicon Tracking System of the CBM experiment at FAIR
NASA Astrophysics Data System (ADS)
Teklishyn, Maksym
2018-03-01
The Silicon Tracking System (STS) is the central detector in the Compressed Baryonic Matter (CBM) experiment at FAIR. Operating in the 1Tm dipole magnetic field, the STS will enable pile-up free detection and momentum measurement of the charged particles originating from beam-target nuclear interactions at rates up to 10 MHz. The STS consists of 8 tracking stations based on double-sided silicon micro-strip sensors equipped with fast, self-triggering read-out electronics. With about two million read-out channels, the STS will deliver a high-rate stream of time-stamped data that is transferred to a computing farm for on-line event determination and analysis. The functional building block is a detector module consisting of a sensor, micro-cables and two front-end electronics boards. In this contribution, the development status of the STS components and the system integration is discussed and an outlook on the detector construction is given.
Gavrielides, Mike; Furney, Simon J; Yates, Tim; Miller, Crispin J; Marais, Richard
2014-01-01
Whole genomes, whole exomes and transcriptomes of tumour samples are sequenced routinely to identify the drivers of cancer. The systematic sequencing and analysis of tumour samples, as well other oncogenomic experiments, necessitates the tracking of relevant sample information throughout the investigative process. These meta-data of the sequencing and analysis procedures include information about the samples and projects as well as the sequencing centres, platforms, data locations, results locations, alignments, analysis specifications and further information relevant to the experiments. The current work presents a sample tracking system for oncogenomic studies (Onco-STS) to store these data and make them easily accessible to the researchers who work with the samples. The system is a web application, which includes a database and a front-end web page that allows the remote access, submission and updating of the sample data in the database. The web application development programming framework Grails was used for the development and implementation of the system. The resulting Onco-STS solution is efficient, secure and easy to use and is intended to replace the manual data handling of text records. Onco-STS allows simultaneous remote access to the system making collaboration among researchers more effective. The system stores both information on the samples in oncogenomic studies and details of the analyses conducted on the resulting data. Onco-STS is based on open-source software, is easy to develop and can be modified according to a research group's needs. Hence it is suitable for laboratories that do not require a commercial system.
STS-29 tracking and data relay satellite (TDRS) in OV-103's payload bay (PLB)
1989-03-13
STS029-71-000AE (13-18 March 1989) --- STS-29 onboard view shows Space Shuttle Discovery's payload bay with tracking and data relay satellite D (TDRS-D) in stowed, pre-deployment position. In this head-on view, TDRS-D stowed components including single access #1 and #2, solar cell panels, SGL, S-Band omni antenna, and C-Band antenna are visible. TDRS-D rests in airborne support equipment (ASE) forward cradle and aft frame tilt actuator (AFTA). Discovery's aft bulkhead and orbital maneuvering system (OMS) pods are visible in the background.
Shuttle program. STS-7 feasibility assessment: IUS/TDRS-A
NASA Technical Reports Server (NTRS)
1979-01-01
This Space Transportation System 7 (STS-7) Flight Feasibility Assessment (FFA) provides a base from which the various design, operation, and integration elements associated with Tracking and Data Relay Satellite-A can perform mission planning and analysis. The STS-7 FFA identifies conflicts, issues, and concerns associated with the integrated flight design requirements and constraints.
2004-05-05
KENNEDY SPACE CENTER, FLA. -- With NASA Systems Engineer Robert Rokobauer (left), STS-114 Pilot James Kelly (center) and Mission Specialist Andrew Thomas (right) look at one of the tracks on a Crawler-Transporter. The 10-foot-high track, one of two, contains 278 “shoes,” weighing 2,200 pounds each. The crawlers are guided by four trucks, one on each corner. The crawlers had recent modifications to the cab and muffler system. The STS-114 mission is Logistics Flight 1, which is scheduled to deliver supplies and equipment plus the external stowage platform to the International Space Station.
1988-01-01
This artist's concept drawing depicts the Tracking and Data Relay Satellite-C (TDRS-C), which was the primary payload of the Space Shuttle Discovery on the STS-26 mission, launched on September 29, 1988. The TDRS system provides almost uninterrupted communications with Earth-orbiting Shuttles and satellites, and had replaced the intermittent coverage provided by globe-encircling ground tracking stations used during the early space program. The TDRS can transmit and receive data, and track a user spacecraft in a low Earth orbit. The deployment of TDRS-G on the STS-70 mission being the latest in the series, NASA has successfully launched six TDRSs.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. -- STS-114 Pilot James Kelly (left) and Mission Specialist Andrew Thomas (center), along with NASA Systems Engineer Robert Rokobauer (right), look closely at the shoes of one of the tracks used on a Crawler-Transporter. The 10- foot-high track on a crawler contains 278 shoes, weighing 2,200 pounds each. The crawlers are guided by four trucks, one on each corner. The crawlers had recent modifications to the cab and muffler system. The STS-114 mission is Logistics Flight 1, which is scheduled to deliver supplies and equipment plus the external stowage platform to the International Space Station.
2004-05-05
KENNEDY SPACE CENTER, FLA. -- STS-114 Pilot James Kelly (left) and Mission Specialist Andrew Thomas (center), along with NASA Systems Engineer Robert Rokobauer (right), look closely at the shoes of one of the tracks used on a Crawler-Transporter. The 10-foot-high track on a crawler contains 278 “shoes,” weighing 2,200 pounds each. The crawlers are guided by four trucks, one on each corner. The crawlers had recent modifications to the cab and muffler system. The STS-114 mission is Logistics Flight 1, which is scheduled to deliver supplies and equipment plus the external stowage platform to the International Space Station.
2004-05-05
KENNEDY SPACE CENTER, FLA. -- STS-114 Mission Specialist Andrew Thomas (center) and Pilot James Kelly (right), along with NASA Systems Engineer Robert Rokobauer (left), look closely at the shoes of one of the tracks used on a Crawler-Transporter. The 10-foot-high track on a crawler contains 278 “shoes,” weighing 2,200 pounds each. The crawlers are guided by four trucks, one on each corner. The crawlers had recent modifications to the cab and muffler system. The STS-114 mission is Logistics Flight 1, which is scheduled to deliver supplies and equipment plus the external stowage platform to the International Space Station.
INFLIGHT (MISSION CONTROL CENTER) - STS-2 - JSC
1981-11-13
S81-39494 (12 Nov. 1981) --- An overall view of activity in the mission operations control room (MOCR) in Houston?s Mission Control Center (MCC) as viewed from the second front row of consoles during the STS-2 mission. The remote manipulator system (RMS) console is in the immediate foreground. Note TV transmission on the Eidophor screen at front of MOCR and shuttle orbiter marker on tracking map at left indicating the vehicle?s location over the Hawaiian Islands. The downlink was through the Hawaii tracking station. Photo credit: NASA
1991-08-01
The free-flying Tracking and Data Relay Satellite-E (TDRS-E), still attached to an Inertial Upper Stage (IUS), was photographed by one of the crewmembers during the STS-43 mission. The TDRS-E was boosted by the IUS into geosynchronous orbit and positioned to remain stationary 22,400 miles above the Pacific Ocean southwest of Hawaii. The TDRS system provides almost uninterrupted communications with Earth-orbiting Shuttles and satellites, and had replaced the intermittent coverage provided by globe-encircling ground tracking stations used during the early space program. The TDRS can transmit and receive data, and track a user spacecraft in a low Earth orbit. The IUS is an unmarned transportation system designed to ferry payloads from low Earth orbit to higher orbits that are unattainable by the Shuttle. The Space Shuttle Orbiter Atlantis for the STS-43 mission was launched on August 2, 1991.
LET spectra measurements from the STS-35 CPDs
NASA Technical Reports Server (NTRS)
1995-01-01
Linear energy transfer (LET) spectra derived form automated track analysis system (ATAS) track parameter measurements for crew passive dosimeters (CPD's) flown with the astronauts on STS-35 are plotted. The spread between the seven individual spectra is typical of past manual measurements of sets of CPD's. This difference is probably due to the cumulative net shielding variations experienced by the CPD's as the astronauts carrying them went about their activities on the Space Shuttle. The STS-35 mission was launched on Dec. 2, 1990, at 28.5 degrees inclination and 352-km altitude. This is somewhat higher than the nominal 300-km flights and the orbit intersects more of the high intensity trapped proton region in the South Atlantic Anomaly (SAA). However, in comparison with APD spectra measured on earlier lower altitude missions (STS-26, -29, -30, -32), the flux spectra are all roughly comparable. This may be due to the fact that the STS-35 mission took place close to solar maximum (Feb. 1990), or perhaps to shielding differences. The corresponding dose and dose equivalent spectra for this mission are shown. The effect of statistical fluctuations at the higher LET values, where track densities are small, is very noticeable. This results in an increased spread within the dose rate and dose equivalent rate spectra, as compared to the flux spectra. The contribution to dose and dose equivalent per measured track is much greater in the high LET region and the differences, though numerically small, are heavily weighted in the integral spectra. The optimum measurement and characterization of the high LET tails of the spectra represent an important part of the research into plastic nuclear track detector (PNTD) response. The integral flux, dose rate, dose equivalent rate and mission dose equivalent for the seven astronauts are also given.
National Space Transportation Systems Program mission report
NASA Technical Reports Server (NTRS)
Collins, M. A., Jr.; Aldrich, A. D.; Lunney, G. S.
1984-01-01
The STS 41-C National Space Transportation Systems Program Mission Report contains a summary of the major activities and accomplishments of the eleventh Shuttle flight and fifth flight of the OV-099 vehicle, Challenger. Also summarized are the significant problems that occurred during STS 41-C, and a problem tracking list that is a complete list of all problems that occurred during the flight. The major objectives of flight STS 41-C were to successfully deploy the LDEF (long duration exposure facility) and retrieve, repair and redeploy the SMM (Solar Maximum Mission) spacecraft, and perform functions of IMAX and Cinema 360 cameras.
STS-6 - PREFLIGHT - PAYLOADS - SHUTTLE (TRACKING DATA & RELAY SATELLITE [TDRS]) - KSC
1982-12-09
S82-41171 (29 Nov. 1982) --- NASA?s tracking and data relay satellite (TDRS) is gently mated to its inertial upper stage (IUS), which will propel the satellite to a higher geosynchronous orbit after it is ejected from the Challenger?s cargo bay during STS-6. Another TDRS will be placed in orbit on a later shuttle mission. The two will provide communications between orbiting shuttle mission craft and the ground, resulting in increased real-time communication and eliminating the need for much of NASA?s extensive world-wide system of ground tracking stations. A more distant plan is to launch other TDRS to be used for commercial telecommunications and for handling peak loads. Photo credit: NASA
1991-08-01
The primary payload of the STS-43 mission, Tracking and Data Relay Satellite-E (TDRS-E) attached to an Inertial Upper Stage (IUS) was photographed at the moment of its release from the cargo bay of the Space Shuttle Orbiter Atlantis. The TDRS-E was boosted by the IUS into geosynchronous orbit and positioned to remain stationary 22,400 miles above the Pacific Ocean southwest of Hawaii. The TDRS system provides almost uninterrupted communications with Earth-orbiting Shuttles and satellites, and had replaced the intermittent coverage provided by globe-encircling ground tracking stations used during the early space program. The TDRS can transmit and receive data, and track a user spacecraft in a low Earth orbit. The IUS is an unmarned transportation system designed to ferry payloads from low Earth orbit to higher orbits that are unattainable by the Shuttle. The launch of STS-43 occurred on August 2, 1991.
A precision device needs precise simulation: Software description of the CBM Silicon Tracking System
NASA Astrophysics Data System (ADS)
Malygina, Hanna; Friese, Volker;
2017-10-01
Precise modelling of detectors in simulations is the key to the understanding of their performance, which, in turn, is a prerequisite for the proper design choice and, later, for the achievement of valid physics results. In this report, we describe the implementation of the Silicon Tracking System (STS), the main tracking device of the CBM experiment, in the CBM software environment. The STS makes uses of double-sided silicon micro-strip sensors with double metal layers. We present a description of transport and detector response simulation, including all relevant physical effects like charge creation and drift, charge collection, cross-talk and digitization. Of particular importance and novelty is the description of the time behaviour of the detector, since its readout will not be externally triggered but continuous. We also cover some aspects of local reconstruction, which in the CBM case has to be performed in real-time and thus requires high-speed algorithms.
Ahrens, Allison M; Ferguson, Lindsay M; Robinson, Terry E; Aldridge, J Wayne
2018-01-01
Some rats are especially prone to attribute incentive salience to a cue (conditioned stimulus, CS) paired with food reward (sign-trackers, STs), but the extent they do so varies as a function of the form of the CS. Other rats respond primarily to the predictive value of a cue (goal-trackers, GTs), regardless of its form. Sign-tracking is associated with greater cue-induced activation of mesolimbic structures than goal-tracking; however, it is unclear how the form of the CS itself influences activity in neural systems involved in incentive salience attribution. Thus, our goal was to determine how different cue modalities affect neural activity in the ventral pallidum (VP), which is known to encode incentive salience attribution, as rats performed a two-CS Pavlovian conditioned approach task in which both a lever-CS and a tone-CS predicted identical food reward. The lever-CS elicited sign-tracking in some rats (STs) and goal-tracking in others (GTs), whereas the tone-CS elicited only goal-tracking in all rats. The lever-CS elicited robust changes in neural activity (sustained tonic increases or decreases in firing) throughout the VP in STs, relative to GTs. These changes were not seen when STs were exposed to the tone-CS, and in GTs there were no differences in firing between the lever-CS and tone-CS. We conclude that neural activity throughout the VP encodes incentive signals and is especially responsive when a cue is of a form that promotes the attribution of incentive salience to it, especially in predisposed individuals.
Interface and protocol development for STS read-out ASIC in the CBM experiment at FAIR
NASA Astrophysics Data System (ADS)
Kasinski, Krzysztof; Zabolotny, Wojciech; Szczygiel, Robert
2014-11-01
This paper presents a proposal of a protocol for communication between the read-out integrated circuit for the STS (Silicon Tracking System) and the Data Processing Board (DPB) at CBM (Compressed Baryonic Matter) experiment at FAIR, GSI (Helmholtzzentrum fuer Schwerionenforschung GmbH) in Germany. The application background, objectives and proposed solution is presented.
Preti, Antonio; Sheehan, David V; Coric, Vladimir; Distinto, Marco; Pitanti, Mirko; Vacca, Irene; Siddi, Alessandra; Masala, Carmelo; Petretto, Donatella Rita
2013-10-01
The Sheehan Suicidality Tracking Scale (S-STS) is a patient self-report or clinician-administered rating scale that tracks spontaneous and treatment-emergent suicidal ideation and behaviors. This study set out to evaluate the reliability, convergent and divergent validity of the S-STS in a sample of college students, a population with a high risk of completed and attempted suicide. Cross-sectional, survey design. Participants (303 undergraduate students; males: 42%) completed several measures assessing psychological distress (General Health Questionnaire; GHQ); self-esteem (Rosenberg Self Esteem Scale; RSES); social support (Modified Social Support Survey; MOSSS); and suicidal behavior, including ideation and attempts (S-STS). Both internal consistency and test-retest stability were excellent for the S-STS-global score. The S-STS subscale on suicide ideation also showed good reliability, while the subscale on suicidal behavior showed some inconsistency at retest. Convergent and divergent validity of S-STS was confirmed. All S-STS items loaded on a single factor, which had an excellent fit for the unidimensional model, thus justifying the use of the S-STS as a screening tool. In a mediation model, self-esteem and social support explained 45% of the effects of psychological distress on suicide ideation and behavior as measured by the S-STS-global score. This study provided promising evidence on the convergent, divergent, internal consistency and test-retest stability of the Sheehan Suicidality Tracking Scale. The cross-sectional design and lack of measures of hopelessness and helplessness prevent any conclusion about the links of suicidal behavior with self-esteem and social support. Copyright © 2013 Elsevier Inc. All rights reserved.
Second Shuttle Join NASA's STS Fleet: Challenger Launches First New Tracking Satellite
NASA Technical Reports Server (NTRS)
1983-01-01
NASA made a major stride in readying a second delivery vehicle for its Space Transportation System (STS) fleet with the perfect landing of Shuttle Orbiter Challenger at Edwards Air Force Base, California, April 9, 1983. Besides being the first flight test of Challenger's performance, the mission marked the orbiting of the first spacecraft in NASA's new Tracking and Data Relay Satellite System (TDRSS). The new family of orbiting space communications platforms is essential to serve future Shuttle missions. Although the Inertial Upper Stage (IUS) second stage engine firing failed to place TDRS in its final 35,888 kilometer (22,300 mile) geosynchronous orbit, its release from the orbiter cargo bay went as planned. Launch officials were confident they can achieve its planned orbit in a matter of weeks.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. -- STS-114 Mission Specialist Andrew Thomas stands next to the 10-foot-high track on a Crawler- Transporter. He and Pilot James Kelly toured the crawler storage area during a visit to KSC. The crawlers had recent modifications to the cab and muffler system. The STS-114 mission is Logistics Flight 1, which is scheduled to deliver supplies and equipment plus the external stowage platform to the International Space Station.
2004-05-05
KENNEDY SPACE CENTER, FLA. -- STS-114 Mission Specialist Andrew Thomas stands next to the 10-foot-high track on a Crawler-Transporter. He and Pilot James Kelly toured the crawler storage area during a visit to KSC. The crawlers had recent modifications to the cab and muffler system. The STS-114 mission is Logistics Flight 1, which is scheduled to deliver supplies and equipment plus the external stowage platform to the International Space Station.
Test systems of the STS-XYTER2 ASIC: from wafer-level to in-system verification
NASA Astrophysics Data System (ADS)
Kasinski, Krzysztof; Zubrzycka, Weronika
2016-09-01
The STS/MUCH-XYTER2 ASIC is a full-size prototype chip for the Silicon Tracking System (STS) and Muon Chamber (MUCH) detectors in the new fixed-target experiment Compressed Baryonic Matter (CBM) at FAIR-center, Darmstadt, Germany. The STS assembly includes more than 14000 ASICs. The complicated, time-consuming, multi-step assembly process of the detector building blocks and tight quality assurance requirements impose several intermediate testing to be performed for verifying crucial assembly steps (e.g. custom microcable tab-bonding before wire-bonding to the PCB) and - if necessary - identifying channels or modules for rework. The chip supports the multi-level testing with different probing / contact methods (wafer probe-card, pogo-probes, in-system tests). A huge number of ASICs to be tested restricts the number and kind of tests possible to be performed within a reasonable time. The proposed architectures of test stand equipment and a brief summary of methodologies are presented in this paper.
NASA Astrophysics Data System (ADS)
1995-09-01
The highlights of the STS-70 mission are presented in this video. The flight crew consisted of Cmdr. John Hendricks, Pilot Kevin Kregel, Flight Engineer Nancy Curie, and Mission Specialists Dr. Don Thomas and Dr. Mary Ellen Weber. The mission's primary objective was the deployment of the 7th Tracking Data and Relay Satellite (TDRS), which will provide a communication, tracking, telemetry, data acquisition, and command services space-based network system essential to low Earth orbital spacecraft. Secondary mission objectives included activating and studying the Physiological and Anatomical Rodent Experiment/National Institutes of Health-Rodents (PARE/NIH-R), The Bioreactor Demonstration System (BDS), the Commercial Protein Crystal Growth (CPCG) studies, the Space Tissue Loss/National Institutes of Health-Cells (STL/NIH-C) experiment, the Biological Research in Canisters (BRIC) experiment, Shuttle Amateur Radio Experiment-2 (SAREX-2), the Visual Function Tester-4 (VFT-4), the Hand-Held, Earth Oriented, Real-Time, Cooperative, User-Friendly, Location-Targeting and Environmental System (HERCULES), the Microcapsules in Space-B (MIS-B) experiment, the Windows Experiment (WINDEX), the Radiation Monitoring Equipment-3 (RME-3), and the Military Applications of Ship Tracks (MAST) experiment. There was an in-orbit dedication ceremony by the spacecrew and the newly Integrated Mission Control Center to commemorate the Center's integration. The STS-70 mission was the first mission monitored by this new control center. Earth views included the Earth's atmosphere, a sunrise over the Earth's horizon, several views of various land masses, some B/W lightning shots, some cloud cover, and a tropical storm.
Sonic boom measurement test plan for Space Shuttle STS-3 reentry
NASA Technical Reports Server (NTRS)
Henderson, H. R.
1982-01-01
The lateral area from the reentry ground track affected by sonic boom overpressure levels is determined. Four data acquisition stations are deployed laterally to the STS-3 reentry flight track. These stations provide six intermediate band FM channels of sonic boom data, universal time synchronization, and voice annotation. All measurements are correlated with the vehicle reentry flight track information along with atmospheric and vehicle operation conditions.
Ambitious STS-7 mission to feature first landing at Kennedy
NASA Technical Reports Server (NTRS)
Garrett, D.; Hess, M.; White, T.; Taylor, J.
1982-01-01
The STS-7 press briefing schedule, NASA select television schedule; launch preparations, countdown and liftoff; major countdown milestones; launch window; STS-7 flight sequence of events, landing timeline; STS-7 flight timeline; landing and post landing operations; flight objectives; Telesat's ANIK-C 2; PALAPA-B; STS-7 experiments; and spacecraft tracking and data network are presented.
Artist concept of the STS-43 Tracking and Data Relay Satellite E (TDRS-E)
1990-06-22
Artist concept shows the Tracking and Data Relay Satellite E (TDRS-E) augmenting a sophisticated TDRS system (TDRSS) communications network after deployment during STS-43 from Atlantis, Orbiter Vehicle (OV) 104. TDRS, built by TRW, will be placed in a geosynchronous orbit and after onorbit testing, which requires several weeks, will be designated TDRS-5. The communications satellite will replace TDRS-3 at 174 degrees West longitude. The backbone of NASA's space-to-ground communications, the TDRSs have increased NASA's ability to send and receive data to spacecraft in low-earth orbit to more than 85 percent of the time. Before TDRS, NASA relied solely on a system of ground stations that permitted communications only 15 percent of the time. Increased coverage has allowed onorbit repairs, live television broadcast from space and continuous dialogues between astronaut crews and ground control during critical periods such as Space Shuttle landings.
2004-05-05
KENNEDY SPACE CENTER, FLA. -- STS-114 Mission Specialist Andrew Thomas (left) talks to NASA Systems Engineer Robert Rokobauer (right) about the Crawler-Transporters. At center is Pilot James Kelly. Behind them is one of the 5.5-million-pound crawlers. The 10-foot-high track, one of two, contains 278 “shoes,” weighing 2,200 pounds each. The crawlers are guided by four trucks, one on each corner. The crawlers had recent modifications to the cab and muffler system. The STS-114 mission is Logistics Flight 1, which is scheduled to deliver supplies and equipment plus the external stowage platform to the International Space Station.
Analog front-end design of the STS/MUCH-XYTER2—full size prototype ASIC for the CBM experiment
NASA Astrophysics Data System (ADS)
Kleczek, Rafal
2017-01-01
The design of the analog front-end of the STS/MUCH-XYTER2 ASIC, a full-size prototype chip for the Silicon Tracking System (STS, based on double-sided silicon strip sensors) and Muon Chamber (MUCH, based on gas sensors) detectors is presented. The ASIC contains 128 charge processing channels, each built of a charge sensitive amplifier, a polarity selection circuit and two pulse shaping amplifiers forming two parallel signal paths. The first path is used for timing measurement with a fast discriminator. The second path allows low-noise amplitude measurement with a 5-bit continuous-time flash ADC. Different operating conditions and constraints posed by two target detectors' applications require front-end electronics flexibility to meet extended system-wise requirements. The presented circuit implements switchable shaper peaking time, gain switching and trimming, input amplifier pulsed reset circuit, fail-safe measures. The power consumption is scalable (for the STS and the MUCH modes), but limited to 10 mW/channel.
NASA Technical Reports Server (NTRS)
Wilkinson, John; Johnson, Earl
1991-01-01
The work flow assistant (WFA) is an advanced technology project under the shuttle processing data management system (SPDMS) at Kennedy Space Center (KSC). It will be utilized for short range scheduling, controlling work flow on the floor, and providing near real-time status for all major space transportation systems (STS) work centers at KSC. It will increase personnel and STS safety and improve productivity through deeper active scheduling that includes tracking and correlation of STS and ground support equipment (GSE) configuration and work. It will also provide greater accessibility to this data. WFA defines a standards concept for scheduling data which permits both commercial off-the-shelf (COTS) scheduling tools and WFA developed applications to be reused. WFA will utilize industry standard languages and workstations to achieve a scalable, adaptable, and portable architecture which may be used at other sites.
NASA Technical Reports Server (NTRS)
1981-01-01
The Space Transportation System (STS) is discussed, including the launch processing system, the thermal protection subsystem, meteorological research, sound supression water system, rotating service structure, improved hypergol or removal systems, fiber optics research, precision positioning, remote controlled solid rocket booster nozzle plugs, ground operations for Centaur orbital transfer vehicle, parachute drying, STS hazardous waste disposal and recycle, toxic waste technology and control concepts, fast analytical densitometry study, shuttle inventory management system, operational intercommunications system improvement, and protective garment ensemble. Terrestrial applications are also covered, including LANDSAT applications to water resources, satellite freeze forecast system, application of ground penetrating radar to soil survey, turtle tracking, evaluating computer drawn ground cover maps, sparkless load pulsar, and coupling a microcomputer and computing integrator with a gas chromatograph.
NASA Astrophysics Data System (ADS)
Kasiński, Krzysztof; Szczygieł, Robert; Gryboś, Paweł
2011-10-01
This paper presents the prototype detector readout electronics for the STS (Silicon Tracking System) at CBM (Compressed Baryonic Matter) experiment at FAIR, GSI (Helmholtzzentrum fuer Schwerionenforschung GmbH) in Germany. The emphasis has been put on the strip detector readout chip and its interconnectivity with detector. Paper discusses the impact of the silicon strip detector and interconnection cable construction on the overall noise of the system and architecture of the TOT02 readout ASIC. The idea and problems of the double-sided silicon detector usage are also presented.
2004-05-05
KENNEDY SPACE CENTER, FLA. -- STS-114 (left) Pilot James Kelly and Mission Specialist Andrew Thomas (right) are given a tour of the Crawler-Transporter storage area by NASA Systems Engineer Robert Rokobauer. Behind them is one of the 5.5-million-pound crawlers. The 10-foot-high track, one of two, contains 278 “shoes,” weighing 2,200 pounds each. The crawlers are guided by four trucks, one on each corner. The crawlers had recent modifications to the cab and muffler system. The STS-114 mission is Logistics Flight 1, which is scheduled to deliver supplies and equipment plus the external stowage platform to the International Space Station.
TDRS-A - The pioneering payload
NASA Technical Reports Server (NTRS)
Browning, R. K.
1983-01-01
The first launch of a Tracking Data Relay Satellite (TDRS-A) on board the Shuttle Orbiter 'Challenger' of the Space Transportation System (STS) provided many pioneering events as a payload/user. The TDRS-A was launched as a payload of the STS as well as a payload of the Inertial Upper Stage (IUS) on April 4, 1983. This paper traces the payload processing flow of the TDRS-A from its arrival at the Kennedy Space Center (KSC), through its launch on Challenger and its trans-orbit flight on the IUS to geosynchronous orbit. The TDRS-A, as a customer/user of these launch systems, is examined and reviewed and lessons learned are noted.
A Compilation of Space Shuttle Sonic Boom Measurements
NASA Technical Reports Server (NTRS)
Maglieri, Domenic J.; Henderson, Herbert R.; Massey, Steven J.; Stansbery, Eugene G.
2011-01-01
Sonic boom measurements have been obtained on 26 flights of the Space Shuttle system beginning with the launch of STS-1 on April 12, 1981, to the reentry-descent of STS-41 into EAFB on Oct. 10, 1990. A total of 23 boom measurements were acquired within the focus region off the Florida coast during 3 STS launch-ascents and 113 boom measurements were acquired during 23 STS reentry-descent to landing into Florida and California. Sonic boom measurements were made under, and lateral to, the vehicle ground track and cover the Mach-altitude range of about 1.3 to 23 and 54,000 feet to 243,000 feet, respectively. Vehicle operational data, flight profiles and weather data were also gathered during the flights. This STS boom database is contained in 26 documents, some are formal and referenceable but most internal documents. Another 38 documents, also non-referenceable, contain predicted sonic boom footprints for reentry-descent flights on which no measurements were made. The purpose of this report is to provide an overview of the STS sonic boom database and summarize the main findings.
Optimization of the microcable and detector parameters towards low noise in the STS readout system
NASA Astrophysics Data System (ADS)
Kasinski, Krzysztof; Kleczek, Rafal; Schmidt, Christian J.
2015-09-01
Successful operation of the Silicon Tracking System requires charge measurement of each hit with equivalent noise charge lower than 1000 e- rms. Detector channels will not be identical, they will be constructed accordingly to the estimated occupancy, therefore for the readout electronics, detector system will exhibit various parameters. This paper presents the simulation-based study on the required microcable (trace width, dielectric material), detector (aluminum strip resistance) and external passives' (decoupling capacitors) parameters in the Silicon Tracking System. Studies will be performed using a front-end electronics (charge sensitive amplifier with shaper) designed for the power budget of 10 mA/channel.
STS-26 Post-Flight Crew Press Conference
NASA Technical Reports Server (NTRS)
1988-01-01
This video tape contains footage selected and narrated by the STS-26 crew including launch, TDRS-C/IUS (Tracking and Data Relay Satellite C / Inertial Upper Stage) deployment, onboard activities, and landing.
National Space Transportation Systems Program mission report
NASA Technical Reports Server (NTRS)
Collins, M. A., Jr.; Aldrich, A. D.; Lunney, G. S.
1984-01-01
The 515-41B National Space Transportation Systems Program Mission Report contains a summary of the major activities and accomplishments of the sixth operational Shuttle flight and fourth flight of the OV-099 vehicle, Challenger. Since this flight was the first to land at Kennedy Space Center, the vehicle was towed directly to the OPF (Orbiter Processing Facility) where preparations for flight STS-41C, scheduled for early April 1984, began immediately. The significant problems that occurred during STS-41B are summarized and a problem tracking list that is a complete list of all problems that occurred during the flight is given. None of the problems will affect the STS 41C flight. The major objectives of flight STS-41B were to successfully deploy the Westar satellite and the Indonesian Communications Satellite-B2 (PALAPA-B2); to evaluate the MMU (Manned Maneuvering Unit) support for EVA (Extravehicular Activities); to exercise the MFR (Manipulator Foot Restraint); to demonstrate a closed loop rendezvous; and to operate the M.R (Monodisperse Latex Reactor), the ACES (Acoustic Containerless Experiment System) and the IEF (Isoelectric Focusing) in cabin experiments; and to obtain photographs with the Cinema 360 Cameras.
STS-49 Endeavour, Orbiter Vehicle (OV) 105, Planning Team in MCC Bldg 30 FCR
NASA Technical Reports Server (NTRS)
1992-01-01
STS-49 Endeavour, Orbiter Vehicle (OV) 105, Planning Team with Flight Director (FD) James M. Heflin, Jr (front right next to ship model) poses in JSC's Mission Control Center (MCC) Bldg 30 Flight Control Room (FCR). The group stands in front of visual displays projecting STS-49 data and ground track map.
Beer, Anton L.; Plank, Tina; Meyer, Georg; Greenlee, Mark W.
2013-01-01
Functional magnetic resonance imaging (MRI) showed that the superior temporal and occipital cortex are involved in multisensory integration. Probabilistic fiber tracking based on diffusion-weighted MRI suggests that multisensory processing is supported by white matter connections between auditory cortex and the temporal and occipital lobe. Here, we present a combined functional MRI and probabilistic fiber tracking study that reveals multisensory processing mechanisms that remained undetected by either technique alone. Ten healthy participants passively observed visually presented lip or body movements, heard speech or body action sounds, or were exposed to a combination of both. Bimodal stimulation engaged a temporal-occipital brain network including the multisensory superior temporal sulcus (msSTS), the lateral superior temporal gyrus (lSTG), and the extrastriate body area (EBA). A region-of-interest (ROI) analysis showed multisensory interactions (e.g., subadditive responses to bimodal compared to unimodal stimuli) in the msSTS, the lSTG, and the EBA region. Moreover, sounds elicited responses in the medial occipital cortex. Probabilistic tracking revealed white matter tracts between the auditory cortex and the medial occipital cortex, the inferior occipital cortex (IOC), and the superior temporal sulcus (STS). However, STS terminations of auditory cortex tracts showed limited overlap with the msSTS region. Instead, msSTS was connected to primary sensory regions via intermediate nodes in the temporal and occipital cortex. Similarly, the lSTG and EBA regions showed limited direct white matter connections but instead were connected via intermediate nodes. Our results suggest that multisensory processing in the STS is mediated by separate brain areas that form a distinct network in the lateral temporal and inferior occipital cortex. PMID:23407860
GPS Navigation Results from the Low Power Transceiver CANDOS Experiment on STS-107
NASA Technical Reports Server (NTRS)
Haas, Lin; Massey, Chris; Baraban, Dmitri; Kelbel, David; Lee, Taesul; Long, Anne; Carpenter, J. Russell
2003-01-01
This paper presents the Global Positioning System (GPS) navigation results from the Communications and Savigation Demonstration on Shuttle (CANDOS) experiment flown on STS- 107. The CAkDOS experiment consisted of the Low Power Transceiver (LPT) that hosted the GPS Enhanced Orbit Determination Experiment (GEODE) orbit determination software. All CANDOS test data were recovered during the mission using the LPT's Tracking and Data Relay Satellite System (TDRSS) uplinh'downlink communications capabilit! . An overview of the LPT's navigation software and the GPS experiment timeline is presented. In addition. this paper discusses GEODE performance results. including comparisons ibith the Best Estimate of Trajectory (BET). N.ASA Johnson Space Center (JSC) real-time ground navigation vectors. and post-processed solutions using the Goddard Trajectory Determination System (GTDS).
View of STS-129 MS3 Foreman during EVA2
2009-11-21
S129-E-007789 (21 Nov. 2009) --- Astronaut Mike Foreman, STS-129 mission specialist, participates in the mission's second session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the six-hour, eight-minute spacewalk, Foreman and astronaut Randy Bresnik (out of frame), mission specialist, installed a Grappling Adaptor to On-Orbit Railing Assembly, or GATOR, on the Columbus laboratory. GATOR contains a ship-tracking antenna system and a HAM radio antenna. They relocated a floating potential measurement unit that gauges electric charges that build up on the station, deployed a Payload Attach System on the space-facing side of the Starboard 3 truss segment and installed a wireless video system that allows spacewalkers to transmit video to the station and relay it to Earth.
Summary of LET spectra and dose measurements on ten STS missions
NASA Technical Reports Server (NTRS)
1995-01-01
A comparison of linear energy transfer (LET) spectra measurements made with plastic nuclear track detectors (PNTD's) from area passive dosimeters (APD's), was made for ten different STS missions under similar shielding. The results show that integral flux, dose rate and equivalent dose rate values follow a general increase with respect to increasing orbital inclination and altitude but that there are large variations from a simple relationship. This is to be expected since it has been shown that Shuttle attitude variations, combined with the anisotropic particle flux at the South Atlantic Anomaly (SAA), can result in differences of a factor of 2 in dose rate inside the Shuttle (Badhwar et al., 1995). Solar cycle and shielding differences also result in variations in radiation dose between STS missions. Spaceflight dosimeters from the STS missions are also being used in the development of a method for increasing LET spectra measurement accuracy by extending LET measurements to particle tracks of ranges 10-80 microns. Refinements in processing and measurement techniques for the flight PNTD's have yielded increased detection efficiencies for the short tracks when LET spectra determined by using the standard and refined methods were intercompared.
Direct Visualization of Shock Waves in Supersonic Space Shuttle Flight
NASA Technical Reports Server (NTRS)
OFarrell, J. M.; Rieckhoff, T. J.
2011-01-01
Direct observation of shock boundaries is rare. This Technical Memorandum describes direct observation of shock waves produced by the space shuttle vehicle during STS-114 and STS-110 in imagery provided by NASA s tracking cameras.
CETA truck and EVA restraint system
NASA Technical Reports Server (NTRS)
Beals, David C.; Merson, Wayne R.
1991-01-01
The Crew Equipment Translation Aid (CETA) experiment is an extravehicular activity (EVA) Space Transportation System (STS) based flight experiment which will explore various modes of transporting astronauts and light equipment for Space Station Freedom (SSF). The basic elements of CETA are: (1) two 25 foot long sections of monorail, which will be EVA assembled in the STS cargo bay to become a single 50 ft. rail called the track; (2) a wheeled baseplate called the truck which rolls along the track and can accept three cart concepts; and (3) the three carts which are designated manual, electric, and mechanical. The three carts serve as the astronaut restraint and locomotive interfaces with the track. The manual cart is powered by the astronaut grasping the track's handrail and pulling himself along. The electric cart is operated by an astronaut turning a generator which powers the electric motor and drives the cart. The mechanical cart is driven by a Bendix type transmission and is similar in concept to a man-propelled railroad cart. During launch and landing, the truck is attached to the deployable track by means of EVA removable restraint bolts and held in position by a system of retractable shims. These shims are positioned on the exterior of the rail for launch and landing and rotate out of the way for the duration of the experiment. The shims are held in position by strips of Velcro nap, which rub against the sides of the shim and exert a tailored force. The amount of force required to rotate the shims was a major EVA concern, along with operational repeatability and extreme temperature effects. The restraint system was tested in a thermal-vac and vibration environment and was shown to meet all of the initial design requirements. Using design inputs from the astronauts who will perform the EVA, CETA evolved through an iterative design process and represented a cooperative effort.
STS-26 Tracking and Data Relay Satellite C (TDRS-C) artist concept drawing
NASA Technical Reports Server (NTRS)
1988-01-01
ANOTHER EYE IN THE SKY -- This artist's concept drawing depicts the Tracking and Data Relay Satellite C (TDRS-C) orbiting the Earth at 171 degrees west longitude. TDRS-C will be the primary payload for STS-26 and Discovery, Orbiter Vehicle (OV) 103. Built by TRW, Redondo Beach, California, and managed by Goddard Space Flight Center (GSFC), Greenbelt, Maryland, the TDRS-C -- once deployed into its geosynchronous operational orbit 22,300 miles (35,800 km) from Earth -- will be designated TDRS-3.
Yegla, Brittney; Valuskova, Paulina; Gurnani, Sarika; Lindsley, Craig W.
2017-01-01
Some rats [sign-trackers (STs)] are prone to attribute incentive salience to reward cues, which can manifest as a propensity to approach and contact pavlovian cues, and for addiction-like behavior. STs also exhibit poor attentional performance, relative to goal-trackers (GTs), which is associated with attenuated acetylcholine (ACh) levels in prefrontal cortex (Paolone et al., 2013). Here, we demonstrate a cellular mechanism, linked to ACh synthesis, that accounts for attenuated cholinergic capacity in STs. First, we found that electrical stimulation of the basal forebrain increased cortical choline transporter (CHT)-mediated choline transport in GTs, paralleled by a redistribution of CHTs to the synaptic plasma membrane. Neither increases in choline uptake nor translocation of CHTs occurred in STs. Second, and consistent with uptake/translocation alterations, STs demonstrated a reduced ability to support cortical ACh release in vivo compared with GTs after reverse-dialysis to elevate extracellular potassium levels. Third, rats were significantly more likely to develop sign-tracking behavior if treated systemically before pavlovian conditioned approach training with the CHT inhibitor VU6001221. Consistent with its proposed mechanisms, administration of VU6001221 attenuated potassium-evoked ACh levels in prefrontal cortex measured with in vivo microdialysis. We propose that loss of CHT-dependent activation of cortical cholinergic activity in STs degrades top-down executive control over behavior, producing a bias for bottom-up or stimulus-driven attention. Such an attentional bias contributes to nonadaptive reward processing and thus identifies a novel mechanism that can support psychopathology, including addiction. SIGNIFICANCE STATEMENT The vulnerability for addiction-like behavior has been associated with psychological traits, such as the propensity to attribute incentive salience to reward cues that is modeled in rats by sign-tracking behavior. Sign-trackers tend to approach and contact cues associated with reward, whereas their counterparts, the goal-trackers, have a preference for approaching the location of the reward. Here, we show that the capacity of presynaptic cholinergic synapses to respond to stimulation by elevating presynaptic choline uptake and releasing acetylcholine is attenuated in sign-trackers. Furthermore, pharmacological inhibition of choline transport induced sign-tracking behavior. Our findings suggest that reduced levels of cholinergic neuromodulation can mediate an attentional bias toward reward-related cues, thereby allowing such cues to exert relatively greater control over behavior. PMID:28193693
NASA Technical Reports Server (NTRS)
1983-01-01
Press information on the STS-9/SPACELAB 1 mission is provided. Launch preparations, launch window, flight objectives, experiments, life sciences baseline data collection, SPACELAB 1 payload operations and control crew and specialists, and tracking and data management are among the topics explained.
STS-26 Discovery, Orbiter Vehicle (OV) 103, IUS / TDRS-C deployment
1988-09-29
During STS-26, inertial upper stage (IUS) with the tracking and data relay satellite C (TDRS-C) located in the payload bay (PLB) of Discovery, Orbiter Vehicle (OV) 103, is raised into deployment attitude (an angle of 50 degrees) by the airborne support equipment (ASE). ASE aft frame tilt actuator (AFTA) table supports the IUS as it is positioned in the PLB and the ASE umbilical boom drifts away from IUS toward ASE forward cradle. TDRS-C solar array panels (in stowed configuration) are visible on top of the IUS. In the background are the orbital maneuvering system (OMS) pods and the Earth's limb.
STS-54 DSO 802, Educational activities 'Physics of Toys', equipment
NASA Technical Reports Server (NTRS)
1993-01-01
Toys for STS-54 Detailed Supplementary Objective (DSO) 802, Educational activities 'Physics of Toys', are displayed on a table top. Part of the educational activities onboard Endeavour, Orbiter Vehicle (OV) 105, will include several experiments with these toys. DSO 802 will allow the crewmembers to experiment with the various types of toys in a microgravity environment while talking to pupils who will be able to monitor (via classroom television (TV) sets) the onboard activities at their schools. Among the toys seen here are a friction car and loop track, paper eagle, and a balloon helicopter. NOTE: also labeled the Application Specific Preprogrammed Experiment Culture System Physics of Toys (ASPEC).
Earth observations taken during STS-136
1995-07-04
STS071-745-006 (27 June-7 July 1995) --- This view shows a ship track, probably in the northern Pacific Ocean, where a ship has caused clouds to form more thickly directly above the path of this ship. This track is therefore visible even though the ship itself is not. Ship tracks are thought to be caused by particles thrown up into the air by the ship, from smokestack emissions and from water particles generated by the ship moving through the sea. Under favorable weather conditions, water condenses around these particles to form clouds, in this case thicker "popcorn" clouds than already exists in the area. Ongoing studies are attempting to understand this phenomenon better.
Geary, Phillip; Lucas, Steven
2018-02-03
Aquaculture in many coastal estuaries is threatened by diffuse sources of runoff from different land use activities. The poor performance of septic tank systems (STS), as well as runoff from agriculture, may contribute to the movement of contaminants through ground and surface waters to estuaries resulting in oyster contamination, and following their consumption, impacts to human health. In monitoring individual STS in sensitive locations, it is possible to show that nutrients and faecal contaminants are transported through the subsurface in sandy soils off-site with little attenuation. At the catchment scale however, there are always difficulties in discerning direct linkages between failing STS and water contamination due to processes such as effluent dilution, adsorption, precipitation and vegetative uptake. There is often substantial complexity in detecting and tracing effluent pathways from diffuse sources to water bodies in field studies. While source tracking as well as monitoring using tracers may assist in identifying potential pathways from STS to surface waters and estuaries, there are difficulties in scaling up from monitored individual systems to identify their contribution to the cumulative impact which may be apparent at the catchment scale. The processes which may be obvious through monitoring and dominate at the individual scale may be masked and not readily discernible at the catchment scale due to impacts from other land use activities.
MS Mastracchio uses the hand-held laser rangefinder during STS-106
2000-09-18
STS106-320-014 (10 September 2000) --- Astronaut Richard A. Mastracchio, mission specialist, uses a handheld laser device on the aft flight deck of the Space Shuttle Atlantis to track the range of the International Space Station during rendezvous operations.
View of STS-129 MS2 Bresnik during EVA2
2009-11-21
S129-E-007227 (21 Nov. 2009) --- Astronaut Randy Bresnik (near the Columbus laboratory), STS-129 mission specialist, participates in the mission's second session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the six-hour, eight-minute spacewalk, Bresnik and astronaut Mike Foreman (out of frame), mission specialist, installed a Grappling Adaptor to On-Orbit Railing Assembly, or GATOR, on the Columbus laboratory. GATOR contains a ship-tracking antenna system and a HAM radio antenna. They relocated a floating potential measurement unit that gauges electric charges that build up on the station, deployed a Payload Attach System on the space-facing side of the Starboard 3 truss segment and installed a wireless video system that allows spacewalkers to transmit video to the station and relay it to Earth.
View of STS-129 MS2 Bresnik during EVA2
2009-11-21
S129-E-007762 (21 Nov. 2009) --- Astronaut Randy Bresnik (near the Columbus laboratory), STS-129 mission specialist, participates in the mission's second session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the six-hour, eight-minute spacewalk, Bresnik and astronaut Mike Foreman (out of frame), mission specialist, installed a Grappling Adaptor to On-Orbit Railing Assembly, or GATOR, on the Columbus laboratory. GATOR contains a ship-tracking antenna system and a HAM radio antenna. They relocated a floating potential measurement unit that gauges electric charges that build up on the station, deployed a Payload Attach System on the space-facing side of the Starboard 3 truss segment and installed a wireless video system that allows spacewalkers to transmit video to the station and relay it to Earth.
View of STS-129 MS2 Bresnik during EVA2
2009-11-21
S129-E-007756 (21 Nov. 2009) --- Astronaut Randy Bresnik (near the Columbus laboratory), STS-129 mission specialist, participates in the mission's second session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the six-hour, eight-minute spacewalk, Bresnik and astronaut Mike Foreman (out of frame), mission specialist, installed a Grappling Adaptor to On-Orbit Railing Assembly, or GATOR, on the Columbus laboratory. GATOR contains a ship-tracking antenna system and a HAM radio antenna. They relocated a floating potential measurement unit that gauges electric charges that build up on the station, deployed a Payload Attach System on the space-facing side of the Starboard 3 truss segment and installed a wireless video system that allows spacewalkers to transmit video to the station and relay it to Earth.
STS-43 TDRS-E & IUS over the Pacific Ocean after deployment from OV-104's PLB
1991-08-02
STS043-601-033 (2 Aug 1991) --- The Tracking and Data Relay Satellite (TDRS-E), is seen almost as a silhouette in this 70mm image. The TDRS spacecraft was captured on film as it moved away from the earth-orbiting Atlantis a mere six hours after the shuttle was launched from Pad 39A at Kennedy Space Center, Florida. TDRS, built by TRW, will be placed in a geosynchronous orbit and after on-orbit testing, which requires several weeks, will be designated TDRS-5. The communications satellite will replace TDRS-3 at 174 degrees west longitude. The backbone of NASA's space-to-ground communications, the Tracking and Data Relay Satellites have increased NASA's ability to send and receive data to spacecraft in low-earth orbit to more than 85 percent of the time. Before TDRS, NASA relied solely on a system of ground stations that permitted communications only 15 percent of the time. Increased coverage has allowed on-orbit repairs, live television broadcast from space and continuous dialogues between astronaut crews and ground control during critical periods such as space shuttle landings. The five astronauts of the STS-43 are John E. Blaha, mission commander, Michael a. Baker, pilot, and mission specialists Shannon W. Lucid, G. David Low and James C. Adamson.
STS-49 Endeavour, Orbiter Vehicle (OV) 105, Planning Team in MCC Bldg 30 FCR
1992-05-15
S92-36606 (20 May 1992) --- STS-49 Endeavour, Orbiter Vehicle (OV) 105, Planning Team with Flight Director (FD) James M. Heflin, Jr. (front right next to ship model) poses in Johnson Space Center?s (JSC) Mission Control Center (MCC) Bldg 30 Flight Control Room (FCR). The group stands in front of visual displays projecting STS-49 data and ground track map.
Engineer pedals STS-37 CETA electrical cart along track in JSC MAIL Bldg 9A
NASA Technical Reports Server (NTRS)
1990-01-01
McDonnell Douglas engineer Gary Peters operates crew and equipment translation aid (CETA) electrical hand pedal cart in JSC's Mockup and Integration Laboratory (MAIL) Bldg 9A. Peters, wearing extravehicular mobility unit (EMU) boots and positioned in portable foot restraint (PFR), is suspended above CETA cart and track via harness to simulate weightlessness. The electrical cart is moved by electricity generated from turning hand pedals. CETA will be tested in orbit in the payload bay of Atlantis, Orbiter Vehicle (OV) 104, during STS-37.
STS-26 Discovery, Orbiter Vehicle (OV) 103, IUS / TDRS-C deployment
1988-09-29
During STS-26, inertial upper stage (IUS) with tracking and data relay satellite C (TDRS-C) located in the payload bay (PLB) of Discovery, Orbiter Vehicle (OV) 103, is positioned into its proper deployment attitude (an angle of 50 degrees) by the airborne support equipment (ASE). In the foreground, the ASE forward cradle is visible. The IUS is mounted in the ASE aft frame tilt actuator (AFTA) table. TDRS-C components in stowed configuration include solar array panels, TDRS single access #1 and #2, TDRS SGL, and S-Band omni antenna. In the background are the orbital maneuvering system (OMS) pods, the Earth's cloud-covered surface, and the Earth's limb.
Frazier, Thomas W; Krishna, Jyoti; Klingemier, Eric; Beukemann, Mary; Nawabit, Rawan; Ibrahim, Sally
2017-01-15
This preliminary study investigated the tolerability and efficacy of a novel mattress technology-the Sound-To-Sleep (STS) system-in the treatment of sleep problems in children with autism. After screening, 45 children, ages 2.5 to 12.9 years, were randomized to order of mattress technology use (On-Off vs. Off-On). Treatment conditions (On vs. Off) lasted two weeks with immediate crossover. Tolerability, including study discontinuation and parent-report of mattress tolerance and ease of use, was tracked throughout the study. Efficacy assessments were obtained at baseline, prior to crossover, and end of study and included measures of autism traits, other psychopathology symptoms, sensory abnormalities, communication difficulties, quality of life, sleep diary parameters, and single-blinded actigraphy-derived sleep parameters. Statistical analyses evaluated differences in tolerability and efficacy when the STS system was on versus off. STS system use was well tolerated (n = 2, 4.4% dropout) and resulted in parent-reported sleep quality improvements (STS off mean = 4.3, 95% CI = 4.05-4.54 vs. on mean = 4.9, 95%CI = 4.67-5.14). The technology was described by parents as very easy to use and child tolerance was rated as good. Parent-diary outcomes indicated improvements in falling asleep and reduced daytime challenging behavior. Actigraphy-derived sleep parameters indicated improved sleep duration and sleep efficiency. Improvements in child and family quality of life were identified on parent questionnaires. A future large sample phase 2 trial of the STS system is warranted and would benefit from extended study duration, an objective primary efficacy outcome, and careful attention to methodological issues that promote compliance with the intervention and study procedures. © 2017 American Academy of Sleep Medicine
Katz model prediction of Caenorhabditis elegans mutagenesis on STS-42
NASA Technical Reports Server (NTRS)
Cucinotta, Francis A.; Wilson, John W.; Katz, Robert; Badhwar, Gautam D.
1992-01-01
Response parameters that describe the production of recessive lethal mutations in C. elegans from ionizing radiation are obtained with the Katz track structure model. The authors used models of the space radiation environment and radiation transport to predict and discuss mutation rates for C. elegans on the IML-1 experiment aboard STS-42.
STS-6 sixth Space Shuttle mission. First flight of the Challenger
NASA Technical Reports Server (NTRS)
1983-01-01
A prelaunch summary of the sixth Space Shuttle mission is provided. The Challenger orbiter; launching; uprated engines; lighter weight boosters; lightweight tank; external tank reduction; landing; the tracking and data relay satellite system (TDRSS), TDRS-1 deployment; the inertial upper stage (IUS), the spacewalk;electrophoresis, monodisperse latex reactor, night time/day time optical survey of lightning, and getaway special experiments are described.
1997-01-17
KENNEDY SPACE CENTER, FLA. - The rising sun and some scattered clouds provide a picturesque backdrop for the Space Shuttle Discovery as it travels along the crawlerway toward Launch Pad 39A in preparation for the STS-82 mission. The Shuttle is on a Mobile Launcher Platform, and the entire assemblage is being carried by a large, tracked vehicle called the crawler transporter. A seven-member crew will perform the second servicing of the orbiting Hubble Space Telescope (HST) during the 10-day STS-82 flight, whcih is targeted for a Feb. 11 liftoff.
STS-78 Space Shuttle Mission Report
NASA Technical Reports Server (NTRS)
Fricke, Robert W., Jr.
1996-01-01
The STS-78 Space Shuttle Program Mission Report summarizes the Payload activities as well as the Orbiter, External Tank (ET), Solid Rocket Booster (SRB), Reusable Solid Rocket Motor (RSRM), and the Space Shuttle main engine (SSME) systems performance during the seventy-eighth flight of the Space Shuttle Program, the fifty-third flight since the return-to-flight, and the twentieth flight of the Orbiter Columbia (OV-102). In addition to the Orbiter, the flight vehicle consisted of an ET that was designated ET-79; three SSME's that were designated as serial numbers 2041, 2039, and 2036 in positions 1, 2, and 3, respectively; and two SRB's that were designated BI-081. The RSRM's, designated RSRM-55, were installed in each SRB and the individual RSRM's were designated as 360L055A for the left SRB, and 360L055B for the right SRB. The STS-78 Space Shuttle Program Mission Report fulfills the Space Shuttle Program requirement as documented in NSTS 07700, Volume 7, Appendix E. The requirement stated in that document is that each organizational element supporting the Program will report the results of their hardware (and software) evaluation and mission performance plus identify all related in-flight anomalies. The primary objective of this flight was to successfully perform the planned operations of the Life and Microgravity Spacelab experiments. The secondary objectives of this flight were to complete the operations of the Orbital Acceleration Research Experiment (OARE), Biological Research in Canister Unit-Block II (BRIC), and the Shuttle Amateur Radio Experiment II-Configuration C (SAREX-II). The STS-78 mission was planned as a 16-day, plus one day flight plus two contingency days, which were available for weather avoidance or Orbiter contingency operations. The sequence of events for the STS-78 mission is shown in Table 1, and the Space Shuttle Vehicle Management Office Problem Tracking List is shown in Table 2. The Government Furnished Equipment/Flight Crew Equipment (GFE/FCE) Problem Tracking List is shown in Table 3. The Marshall Space Flight Center (MSFC) Problem Tracking List is shown in Table 4. Appendix A lists the sources of data, both formal and informal, that were used to prepare this report. Appendix B provides the definition of acronyms and abbreviations used throughout the report. All times during the flight are given in Greenwich mean time (G.m.t.) and mission elapsed time (MET).
STS-92 Mission Specialist Chiao drives the M-113
NASA Technical Reports Server (NTRS)
2000-01-01
With other crew members in the back, STS-92 Mission Specialist Leroy Chiao races the M-113 along the track through the scrub. Driving the M-113 is part of emergency egress training during Terminal Countdown Demonstration Test (TCDT) activities. The tracked vehicle could be used by the crew in the event of an emergency at the pad during which the crew must make a quick exit from the area. The TCDT also provides simulated countdown exercises and opportunities to inspect the mission payloads in the orbiter's payload bay. STS-92 is scheduled to launch Oct. 5 at 9:30 p.m. EDT on the fifth flight to the International Space Station. It will carry two elements of the Space Station, the Integrated Truss Structure Z1 and the third Pressurized Mating Adapter. The mission is also the 100th flight in the Shuttle program.
NASA Technical Reports Server (NTRS)
Findlay, J. T.; Kelly, G. M.; Heck, M. L.; Mcconnell, J. G.; Henry, M. W.
1984-01-01
The final products generated for the STS-9, which landed on December 8, 1983 are reported. The trajectory reconstruction utilized an anchor epoch of GMT corresponding to an initial altitude of h 356 kft, selected in view of the limited tracking coverage available. The final state utilized IMU2 measurements and was based on processing radar tracking from six C-bands and a single S-band station, plus six photo-theodolite cameras in the vicinity of Runway 17 at Edwards Air Force Base. The final atmosphere (FLAIR9/UN=581199C) was based on a composite of the remote measured data and the 1978 Air Force Reference Atmosphere model. The Extended BET is available as STS9BET/UN=274885C. The AEROBET and MMLE input files created are discussed. Plots of the more relevant parameters from the AEROBET (reel number NL0624) are included. Input parameters, final residual plots, a trajectory listing, and data archival information are defined.
STS-54 MS1 Runco uses DSO 802 and Physics of Toys racetrack on OV-105's middeck
NASA Technical Reports Server (NTRS)
1993-01-01
STS-54 Mission Specialist 1 (MS1) Mario Runco, Jr watches as a toy friction car navigates a loop track on the middeck of the Earth-orbiting Endeavour, Orbiter Vehicle (OV) 105. The demonstration was part of Application Specific Preprogrammed Experiment Culture System Physics of Toys (ASPEC) and Detailed Supplementary Objective (DSO) 802, Educational activities. Through telephone and television (TV) downlinks, students at Sacred Heart School (notice banner in the background) in Bronx, New York -- Runco's birthplace -- asked him questions about the several toys he demonstrated. The entire collection of toys will be videotaped for an educational program to be distributed to schools in the autumn. This scene was downlinked at 17:37:03:12 GMT.
Flight data file: STS-4 crew activity plan
NASA Technical Reports Server (NTRS)
Pippert, E. B., Jr.
1982-01-01
The STS-4 Crew Activity Plan contains the on-orbit timeline, which is a flight data file article. Various time scales such as Mission Elapsed Time (MET), Greenwich Mean Time (GMT), and time until deorbit ignition as well as crew activities, day/night, orbit position, ground tracking, communication coverage, attitude, and maneuvers are presented in chart form.
STS-26 Discovery, OV-103, artwork showing TDRS-C deployment
1987-11-16
STS-26 Discovery, Orbiter Vehicle (OV) 103, artwork depicts tracking and data relay satellite C (TDRS-C) deployment. OV-103 orbits above Earth in bottom-to-sun attitude, moments after TDRS-C's release into space. TDRS-C is seen just below open payload bay (PLB). Artwork was done by Pat Rawlings of Eagle Engineering.
Space shuttle launch era spacecraft injection errors and DSN initial acquisition
NASA Technical Reports Server (NTRS)
Khatib, A. R.; Berman, A. L.; Wackley, J. A.
1981-01-01
The initial acquisition of a spacecraft by the Deep Space Network (DSN) is a critical mission event. This results from the importance of rapidly evaluating the health and trajectory of a spacecraft in the event that immediate corrective action might be required. Further, the DSN initial acquisition is always complicated by the most extreme tracking rates of the mission. The DSN initial acquisition characteristics will change considerably in the upcoming space shuttle launch era. How given injection errors at spacecraft separation from the upper stage launch vehicle (carried into orbit by the space shuttle) impact the DSN initial acquisition, and how this information can be factored into injection accuracy requirements to be levied on the Space Transportation System (STS) is addressed. The approach developed begins with the DSN initial acquisition parameters, generates a covariance matrix, and maps this covariance matrix backward to the spacecraft injection, thereby greatly simplifying the task of levying accuracy requirements on the STS, by providing such requirements in a format both familiar and convenient to STS.
1995-03-13
The STS-70 crew patch depicts the Space Shuttle Discovery orbiting Earth in the vast blackness of space. The primary mission of deploying a NASA Tracking and Data Relay Satellite (TDRS) is depicted by three gold stars. They represent the triad composed of spacecraft transmitting data to Earth through the TDRS system. The stylized red, white, and blue ribbon represents the American goal of linking space exploration to the advancement of all humankind.
Astronaut James Newman works with computers and GPS
1993-09-20
STS051-16-028 (12-22 Sept 1993) --- On Discovery's middeck, astronaut James H. Newman, mission specialist, works with an array of computers, including one devoted to Global Positioning System (GPS) operations, a general portable onboard computer displaying a tracking map, a portable audio data modem and another payload and general support computer. Newman was joined by four other NASA astronauts for almost ten full days in space.
Singer, Bryan F.; Guptaroy, Bipasha; Austin, Curtis J.; Wohl, Isabella; Lovic, Vedran; Seiler, Jillian L; Vaughan, Roxanne A.; Gnegy, Margaret E.; Robinson, Terry E.; Aragona, Brandon J.
2015-01-01
Cues (conditioned stimuli; CSs) associated with rewards can come to motivate behavior, but there is considerable individual variation in their ability to do so. For example, a lever-CS that predicts food reward becomes attractive, wanted, and elicits reward-seeking behavior to a greater extent in some rats (“sign-trackers”; STs), than others (“goal-trackers”; GTs). Variation in dopamine (DA) neurotransmission in the nucleus accumbens (NAc) core is thought to contribute to such individual variation. Given that the DA transporter (DAT) exerts powerful regulation over DA signaling, we characterized the expression and function of the DAT in the accumbens of STs and GTs. STs showed greater DAT surface expression in ventral striatal synaptosomes than GTs, and ex vivo fast-scan cyclic voltammetry recordings of electrically-evoked DA release confirmed enhanced DAT function in STs, as indicated by faster DA uptake, specifically in the NAc core. Consistent with this, systemic amphetamine (AMPH) produced greater inhibition of DA uptake in STs than in GTs. Furthermore, injection of AMPH directly into the NAc core enhanced lever-directed approach in STs, presumably by amplifying the incentive value of the CS, but had no effect on goal tracking behavior. On the other hand, there were no differences between STs and GTs in electrically-evoked DA release in slices, or in total ventral striatal DA content. We conclude that greater DAT surface expression may facilitate the attribution of incentive salience to discrete reward cues. Investigating this variability in animal sub-populations may help explain why some people abuse drugs, while others do not. PMID:26613374
STS-109 Mission Highlights Resource Tape
NASA Astrophysics Data System (ADS)
2002-05-01
This video, Part 1 of 4, shows the activities of the STS-109 crew (Scott Altman, Commander; Duane Carey, Pilot; John Grunsfeld, Payload Commander; Nancy Currie, James Newman, Richard Linnehan, Michael Massimino, Mission Specialists) during flight days 1 through 3. The activities from other flight days can be seen on 'STS 109 Mission Highlights Resource Tape' Part 2 of 4 (internal ID 2002137664), 'STS 109 Mission Highlights Resource Tape' Part 3 of 4 (internal ID 2002139471), and 'STS-109 Mission Highlights Resource Tape' Part 4 of 4 (internal ID 2002137577). The main activity recorded during flight day 1 is the liftoff of Columbia. Attention is given to suit-up, boarding, and pre-flight procedures. The pre-launch crew meal has no sound. The crew members often wave to the camera before liftoff. The jettisoning of the solid rocket boosters is shown, and the External Tank is seen as it falls to Earth, moving over African dunes in the background. There are liftoff replays, including one from inside the cockpit. The opening of the payload bay doors is seen from the rear of the shuttle's cockpit. The footage from flight day 2 shows the Flight Support System for bearthing the HST (Hubble Space Telescope). Crew preparations for the bearthing are shown. Flight day 3 shows the tracking of and approach to the HST by Columbia, including orbital maneuvers, the capture of the HST, and its lowering onto the Flight Support System. Many views of the HST are shown, including one which reveals an ocean and cloud background as the HST retracts a solar array.
STS-43 Atlantis, Orbiter Vehicle (OV) 104, crew insignia
1999-11-09
STS043-S-001 (6 Feb. 1991) --- Designed by the astronauts assigned to fly on the mission, the STS-43 patch portrays the evolution and continuity of the United States of America's space program by highlighting 30 years of American manned space flight experience - from Mercury to the space shuttle. The emergence of the space shuttle Atlantis from the outlined configuration of the Mercury space capsule commemorates this special relationship. The energy and momentum of launch are conveyed by the gradations of blue which mark the space shuttle's ascent from Earth to space. Once in Earth orbit, Atlantis' cargo bay opens to reveal the Tracking and Data Relay Satellite (TDRS) which appears in gold emphasis against the white wings of the space shuttle Atlantis and the stark blackness of space. A primary mission objective, the Tracking and Data Relay Satellite System (TDRSS) will enable almost continuous communication from Earth to space for future space shuttle missions. The stars on the patch are arranged to suggest this mission's numerical designation, with four stars left of Atlantis and three to the right. The NASA insignia design for space shuttle flights is reserved for use by the astronauts and for other official use as the NASA Administrator may authorize. Public availability has been approved only in the forms of illustrations by the various news media. When and if there is any change in this policy, which is not anticipated, the change will be publicly announced. Photo credit: NASA
STS-52 CANEX-2 Canadian Target Assembly (CTA) held by RMS over OV-102's PLB
1992-11-01
STS052-71-057 (22 Oct-1 Nov 1992) --- This 70mm frame, photographed with a handheld Hasselblad camera aimed through Columbia's aft flight deck windows, captures the operation of the Space Vision System (SVS) experiment above the cargo bay. Target dots have been placed on the Canadian Target Assembly (CTA), a small satellite, in the grasp of the Canadian-built remote manipulator system (RMS) arm. SVS utilized a Shuttle TV camera to monitor the dots strategically arranged on the satellite, to be tracked. As the satellite moved via the arm, the SVS computer measured the changing position of the dots and provided real-time television display of the location and orientation of the CTA. This type of displayed information is expected to help an operator guide the RMS or the Mobile Servicing System (MSS) of the future when berthing or deploying satellites. Also visible in the frame is the U.S. Microgravity Payload (USMP-01).
Multilocus sequence type profiles of Bacillus cereus isolates from infant formula in China.
Yang, Yong; Yu, Xiaofeng; Zhan, Li; Chen, Jiancai; Zhang, Yunyi; Zhang, Junyan; Chen, Honghu; Zhang, Zheng; Zhang, Yanjun; Lu, Yiyu; Mei, Lingling
2017-04-01
Bacillus cereus sensu stricto is an opportunistic foodborne pathogen. The multilocus sequence type (MLST) of 74 B. cereus isolated from 513 non-random infant formula in China was analyzed. Of 64 sequence types (STs) detected, 50 STs and 6 alleles were newly found in PubMLST database. All isolates except for one singleton (ST-1049), were classified into 7 clonal complexes (CC) by BURST (n-4), in which CC1 with core ancestral clone ST-26 was the largest group including 86% isolates, and CC2, 3, 9, 10 and 13 were first reported in China. MLST profiles of the isolates from 8 infant formula brands were compared. It was found the brands might be potentially tracked by the variety of STs, such as ST-1049 of singleton and ST-1062 of isolate from goat milk source, though they could not be easily tracked just by clonal complex types of the isolates. Copyright © 2016 Elsevier Ltd. All rights reserved.
Singer, Bryan F; Guptaroy, Bipasha; Austin, Curtis J; Wohl, Isabella; Lovic, Vedran; Seiler, Jillian L; Vaughan, Roxanne A; Gnegy, Margaret E; Robinson, Terry E; Aragona, Brandon J
2016-03-01
Cues (conditioned stimuli; CSs) associated with rewards can come to motivate behavior, but there is considerable individual variation in their ability to do so. For example, a lever-CS that predicts food reward becomes attractive and wanted, and elicits reward-seeking behavior, to a greater extent in some rats ('sign-trackers'; STs) than others ('goal-trackers'; GTs). Variation in dopamine (DA) neurotransmission in the nucleus accumbens (NAc) core is thought to contribute to such individual variation. Given that the DA transporter (DAT) exerts powerful regulation over DA signaling, we characterized the expression and function of the DAT in the accumbens of STs and GTs. STs showed greater DAT surface expression in ventral striatal synaptosomes than GTs, and ex vivo fast-scan cyclic voltammetry recordings of electrically evoked DA release confirmed enhanced DAT function in STs, as indicated by faster DA uptake, specifically in the NAc core. Consistent with this, systemic amphetamine (AMPH) produced greater inhibition of DA uptake in STs than in GTs. Furthermore, injection of AMPH directly into the NAc core enhanced lever-directed approach in STs, presumably by amplifying the incentive value of the CS, but had no effect on goal-tracking behavior. On the other hand, there were no differences between STs and GTs in electrically-evoked DA release in slices, or in total ventral striatal DA content. We conclude that greater DAT surface expression may facilitate the attribution of incentive salience to discrete reward cues. Investigating this variability in animal sub-populations may help explain why some people abuse drugs while others do not. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
STS-42 Payload Specialist Bondar in single person life raft at JSC's WETF
NASA Technical Reports Server (NTRS)
1991-01-01
STS-42 Discovery, Orbiter Vehicle (OV) 103, Payload Specialist Roberta L. Bondar, wearing launch and entry suit (LES) and launch and entry helmet (LEH), floats in single person life raft during launch emergency egress exercises held in the Weightless Environment Training Facility (WETF) Bldg 29 pool. Bondar holds the Space Shuttle Search and Rescue Satellite Aided Tracking (SARSAT) portable locating beacon (PLB). The STS-42 crewmembers rehearsed procedures for launch emergency egress and a water landing. Bondar is representing Canada during the International Microgravity Laboratory 1 (IML-1) mission aboard OV-103.
STS-55 MS2 Precourt in life raft during egress exercises at JSC's WETF
NASA Technical Reports Server (NTRS)
1992-01-01
Using a small single person life raft, STS-55 Mission Specialist 2 (MS2) Charles J. Precourt floats in the pool located in JSC's Weightless Environment Training Facility (WETF) Bldg 29. Precourt, wearing a launch and entry suit (LES) and launch and entry helmet (LEH), operates the Space Shuttle Search and Rescue Satellite Aided Tracking (SARSAT) portable locating beacon (PLC) as SCUBA-equipped diver looks on. Precourt, along with other crewmembers, practiced launch emergency egress (bailout). STS-55 with the Spacelab Deutsche 2 (SL-D2) payload will fly aboard Columbia, Orbiter Vehicle (OV) 102, in 1993.
Reflected view of the TDRS in the STS-6 Challengers payload bay
1983-04-04
STS006-38-844 (4 April 1983) --- The stowed tracking and data relay satellite (TDRS) and its inertial upper stage (IUS) are seen in duplicate in this 70mm frame taken by the STS-6 crew aboard the Earth-orbiting space shuttle Challenger on its first day in space. A reflection in the aft window of the flight deck resulted in the mirage effect of the “second” TDRS. The three canisters in the aft foreground contain experiments of participants in NASA’s STS getaway special (GAS) program. Onboard the second reusable shuttle for this five-day flight were astronauts Paul J. Weitz, Karol J. Bobko, Dr. F. Story Musgrave and Donald H. Peterson. Photo credit: NASA
Zhang, Jinpeng; Liu, Weihua; Lu, Yuqing; Liu, Qunxing; Yang, Xinming; Li, Xiuquan; Li, Lihui
2017-09-20
Agropyron cristatum is a wild grass of the tribe Triticeae and serves as a gene donor for wheat improvement. However, very few markers can be used to monitor A. cristatum chromatin introgressions in wheat. Here, we reported a resource of large-scale molecular markers for tracking alien introgressions in wheat based on transcriptome sequences. By aligning A. cristatum unigenes with the Chinese Spring reference genome sequences, we designed 9602 A. cristatum expressed sequence tag-sequence-tagged site (EST-STS) markers for PCR amplification and experimental screening. As a result, 6063 polymorphic EST-STS markers were specific for the A. cristatum P genome in the single-receipt wheat background. A total of 4956 randomly selected polymorphic EST-STS markers were further tested in eight wheat variety backgrounds, and 3070 markers displaying stable and polymorphic amplification were validated. These markers covered more than 98% of the A. cristatum genome, and the marker distribution density was approximately 1.28 cM. An application case of all EST-STS markers was validated on the A. cristatum 6 P chromosome. These markers were successfully applied in the tracking of alien A. cristatum chromatin. Altogether, this study provided a universal method of large-scale molecular marker development to monitor wild relative chromatin in wheat.
STS-26 crewmembers participate in contingency EVA exercise in JSC's WETF
NASA Technical Reports Server (NTRS)
1988-01-01
STS-26 Discovery, Orbiter Vehicle (OV) 103, mission specialists George D. Nelson and John M. Lounge, wearing extravehicular mobility units (EMUs), participate in contingency extravehicular activity (EVA) exercise in JSC's Weightless Environment Training Facility (WETF) Bldg 29. Overall view of WETF underwater activity shows Nelson (foreground) working with EVA wrench as Lounge looks on and SCUBA-equipped divers monitor procedures. A mockup of the tracking and data relay satellite C (TDRS-C) appears behind astronauts in payload bay (PLB). In the event of in-cabin remote control failure, the procedure Nelson is conducting would upright the tracking and data relay satellite C (TDRS-C) from its stowed position to its deployment position. Photograph was taken by Keith Meyers of the NEW YORK TIMES.
Final STS-35 Columbia descent BET products and results for LaRC OEX investigations
NASA Technical Reports Server (NTRS)
Oakes, Kevin F.; Findlay, John T.; Jasinski, Rachel A.; Wood, James S.
1991-01-01
Final STS-35 'Columbia' descent Best Estimate Trajectory (BET) products have been developed for Langley Research Center (LaRC) Orbiter Experiments (OEX) investigations. Included are the reconstructed inertial trajectory profile; the Extended BET, which combines the inertial data and, in this instance, the National Weather Service atmospheric information obtained via Johnson Space Center; and the Aerodynamic BET. The inertial BET utilized Inertial Measurement Unit 1 (IMU1) dynamic measurements for deterministic propagation during the ENTREE estimation process. The final estimate was based on the considerable ground based C-band tracking coverage available as well as Tracking Data and Relay Satellite System (TDRSS) Doppler data, a unique use of the latter for endo-atmospheric flight determinations. The actual estimate required simultaneous solutions for the spacecraft position and velocity, spacecraft attitude, and six IMU parameters - three gyro biases and three accelerometer scale factor correction terms. The anchor epoch for this analysis was 19,200 Greenwich Mean Time (GMT) seconds which corresponds to an initial Shuttle altitude of approximately 513 kft. The atmospheric data incorporated were evaluated based on Shuttle derived considerations as well as comparisons with other models. The AEROBET was developed based on the Extended BET, the measured spacecraft configuration information, final mass properties, and the final Orbiter preoperation databook. The latter was updated based on aerodynamic consensus incrementals derived by the latest published FAD. The rectified predictions were compared versus the flight computed values and the resultant differences were correlated versus ensemble results for twenty-two previous STS entry flights.
STS-41 Space Shuttle mission report
NASA Technical Reports Server (NTRS)
Camp, David W.; Germany, D. M.; Nicholson, Leonard S.
1990-01-01
The STS-41 Space Shuttle Program Mission Report contains a summary of the vehicle subsystem activities on this thirty-sixth flight of the Space Shuttle and the eleventh flight of the Orbiter vehicle, Discovery (OV-103). In addition to the Discovery vehicle, the flight vehicle consisted of an External Tank (ET) (designated as ET-39/LWT-32), three Space Shuttle main engines (SSME's) (serial numbers 2011, 2031, and 2107), and two Solid Rocket Boosters (SRB's), designated as BI-040. The primary objective of the STS-41 mission was to successfully deploy the Ulysses/inertial upper stage (IUS)/payload assist module (PAM-S) spacecraft. The secondary objectives were to perform all operations necessary to support the requirements of the Shuttle Backscatter Ultraviolet (SSBUV) Spectrometer, Solid Surface Combustion Experiment (SSCE), Space Life Sciences Training Program Chromosome and Plant Cell Division in Space (CHROMEX), Voice Command System (VCS), Physiological Systems Experiment (PSE), Radiation Monitoring Experiment - 3 (RME-3), Investigations into Polymer Membrane Processing (IPMP), Air Force Maui Optical Calibration Test (AMOS), and Intelsat Solar Array Coupon (ISAC) payloads. The sequence of events for this mission is shown in tabular form. Summarized are the significant problems that occurred in the Orbiter subsystems during the mission. The official problem tracking list is presented. In addition, each Orbiter problem is cited in the subsystem discussion.
2001-04-08
STS-100 Commander Kent V. Rominger is ready to take the wheel on the M-113 armored carrier that could be used by the crew in the event of an emergency at the pad during which the crew must make a quick exit from the area. Driving the tracked vehicle is part of Terminal Countdown Demonstration Test activities, which include emergency escape training, payload walkdown and a simulated launch countdown. The primary payload on mission STS-100 comprises the Canadian robotic arm, SSRMS, and Multi-Purpose Logistics Module, Raffaello. Launch of Space Shuttle Endeavour on mission STS-100 is targeted for April 19 at 2:41 p.m. EDT from Launch Pad 39A
2001-04-08
STS-100 Mission Specialist Chris A. Hadfield is ready to take the wheel on the M-113 armored carrier that could be used by the crew in the event of an emergency at the pad during which the crew must make a quick exit from the area. Driving the tracked vehicle is part of Terminal Countdown Demonstration Test activities, which include emergency escape training, payload walkdown and a simulated launch countdown. The primary payload on mission STS-100 comprises the Canadian robotic arm, SSRMS, and Multi-Purpose Logistics Module, Raffaello. Launch of Space Shuttle Endeavour on mission STS-100 is targeted for April 19 at 2:41 p.m. EDT from Launch Pad 39A
2017-12-08
Goddard's Ritsko Wins 2011 SAVE Award The winner of the 2011 SAVE Award is Matthew Ritsko, a Goddard financial manager. His tool lending library would track and enable sharing of expensive space-flight tools and hardware after projects no longer need them. This set of images represents the types of tools used at NASA. To read more go to: www.nasa.gov/topics/people/features/ritsko-save.html Exploration Systems Project Manager Mike Weiss speaks about a Hubble Servicing Mission hand tool, developed at Goddard. Credit: NASA/GSFC/Debbie McCallum
NASA Astrophysics Data System (ADS)
Kharlamov, Petr; Dementev, Dmitrii; Shitenkov, Mikhail
2017-10-01
High-energy heavy-ion collision experiments provide the unique possibility to create and investigate extreme states of strongly-interacted matter and address the fundamental aspects of QCD. The experimental investigation the QCD phase diagram would be a major breakthrough in our understanding of the properties of nuclear matter. The reconstruction of the charged particles created in the nuclear collisions, including the determination of their momenta, is the central detection task in high-energy heavy-ion experiments. It is taken up by the Silicon Tracking System in CBM@FAIR and by Inner Tracker in MPD@NICA currently under development. These experiments requires very fast and radiation hard detectors, a novel data read-out and analysis concept including free streaming front-end electronics. Thermal and beam tests of prototype detector modules for these tracking systems showed the stability of sensors and readout electronics operation.
STS-27 Atlantis, OV-104, terminal countdown demonstration test (TCDT) at KSC
NASA Technical Reports Server (NTRS)
1988-01-01
STS-27 Atlantis, Orbiter Vehicle (OV) 104, crewmembers participate in the terminal countdown demonstration test (TCDT) at the Kennedy Space Center (KSC). Standing in front of the M113 tracked rescue vehicle (armored personnel carrier (APC)) are left to right Mission Specialist (MS) William M. Shepherd, Pilot Guy S. Gardner, Commander Robert L. Gibson, MS Richard M. Mullane, and MS Jerry L. Ross. Crewmembers are wearing orange partial pressure or launch and entry suits (LESs).
STS-42 Commander Grabe in single person life raft during JSC egress exercises
NASA Technical Reports Server (NTRS)
1991-01-01
STS-42 Discovery, Orbiter Vehicle (OV) 103, Commander Ronald J. Grabe, wearing launch and entry suit (LES) and launch and entry helmet (LEH), floats in single person life raft during launch emergency egress (bailout) exercises conducted in JSC's Weightless Environment Training Facility (WETF) Bldg 29 pool. The Space Shuttle Search and Rescue Satellite Aided Tracking (SARSAT) portable locating beacon (PLB) antenna is extended through the life raft cover. SCUBA-equipped divers monitor egress exercises.
KSC technicians inspect TDRS-C, an STS-26 payload, in VPF clean room
NASA Technical Reports Server (NTRS)
1988-01-01
Kennedy Space Center (KSC) clean-suited technicians inspect tracking and data relay satellite C (TDRS-C) in KSC's Vertical Processing Facility (VPF) clean room. TDRS-C is the primary satellite payload aboard STS-26 Discovery, Orbiter Vehicle (OV) 103. TDRS-C will relay data from low Earth orbiting spacecraft, and air-to-ground voice communications and television from Space Shuttle orbiters when operational. View provided by KSC with alternate number KSC-88PC-363.
STS-107 Payload Specialist Ilan Ramon at SPACEHAB during training
NASA Technical Reports Server (NTRS)
2002-01-01
KENNEDY SPACE CENTER, FLA. - STS-107 Payload Specialist Ilan Ramon, from Israel, trains on equipment at SPACEHAB, Cape Canaveral, Fla. STS-107 is a research mission. The primary payload is the first flight of the SHI Research Double Module (SHI/RDM). The experiments range from material sciences to life sciences (many rats). Also part of the payload is the Fast Reaction Experiments Enabling Science, Technology, Applications and Research (FREESTAR) that incorporates eight high priority secondary attached shuttle experiments: Mediterranean Israeli Dust Experiment (MEIDEX), Shuttle Ozone Limb Sounding Experiment (SOLSE-2), Student Tracked Atmospheric Research Satellite for Heuristic International Networking Experiment (STARSHINE), Critical Viscosity of Xenon-2 (CVX-2), Solar Constant Experiment-3 (SOLOCON-3), Prototype Synchrotron Radiation Detector (PSRD), Low Power Transceiver (LPT), and Collisions Into Dust Experiment -2 (COLLIDE-2). STS-107 is scheduled to launch in July 2002
STS-107 Mission Specialist Kalpana Chawla at SPACEHAB during training
NASA Technical Reports Server (NTRS)
2002-01-01
KENNEDY SPACE CENTER, FLA. - STS-107 Mission Specialist Kalpana Chawla looks over equipment at SPACEHAB, Cape Canaveral, Fla., during crew training. STS-107 is a research mission. The primary payload is the first flight of the SHI Research Double Module (SHI/RDM). The experiments range from material sciences to life sciences (many rats). Also part of the payload is the Fast Reaction Experiments Enabling Science, Technology, Applications and Research (FREESTAR) that incorporates eight high priority secondary attached shuttle experiments: Mediterranean Israeli Dust Experiment (MEIDEX), Shuttle Ozone Limb Sounding Experiment (SOLSE-2), Student Tracked Atmospheric Research Satellite for Heuristic International Networking Experiment (STARSHINE), Critical Viscosity of Xenon-2 (CVX-2), Solar Constant Experiment-3 (SOLOCON-3), Prototype Synchrotron Radiation Detector (PSRD), Low Power Transceiver (LPT), and Collisions Into Dust Experiment -2 (COLLIDE-2). STS-107 is scheduled to launch in July 2002
STS-70 Space Shuttle Mission Report - September 1995
NASA Technical Reports Server (NTRS)
Fricke, Robert W., Jr.
1995-01-01
The STS-70 Space Shuttle Program Mission Report summarizes the Payload activities as well as the Orbiter, External Tank (ET), Solid Rocket Booster (SRB), Reusable Solid Rocket Motor (RSRM), and the Space Shuttle main engine (SSME) systems performance during the seventieth flight of the Space Shuttle Program, the forty-fifth flight since the return-to-flight, and the twenty-first flight of the Orbiter Discovery (OV-103). In addition to the Orbiter, the flight vehicle consisted of an ET that was designated ET-71; three SSMEs that were designated as serial numbers 2036, 2019, and 2017 in positions 1, 2, and 3, respectively; and two SRBs that were designated 81-073. The RSRMs, designated RSRM-44, were installed in each SRB and were designated as 36OL044A for the left SRB, and 36OL044B for the right SRB. The primary objective of this flight was to deploy the Tracking and Data Relay Satellite-G/Inertial Upper Stage (TDRS-G/IUS). The secondary objectives were to fulfill the requirements of the Physiological and Anatomical Rodent Experiment/National Institutes of Health-Rodents (PARE/NIH-R); Bioreactor Demonstration System (BDS); Commercial Protein Crystal Growth (CPCG) experiment; Space Tissue Loss/National Institutes of Health - Cells (STL/NIH-C) experiment; Biological Research in Canisters (BRIC) experiment; Shuttle Amateur Radio Experiment-2 (SAREX-2); Visual Function Tester-4 (VFT-4); Hand-Held, Earth-Oriented, Real-Time, Cooperative, User-Friendly Location-Targeting and Environmental System (HERCULES); Microencapsulation in Space-B (MIS-B) experiment; Window Experiment (WINDEX); Radiation Monitoring Equipment-3 (RME-3); and the Military Applications of Ship Tracks (MAST) payload.
Local gravity disturbance estimation from multiple-high-single-low satellite-to-satellite tracking
NASA Technical Reports Server (NTRS)
Jekeli, Christopher
1989-01-01
The idea of satellite-to-satellite tracking in the high-low mode has received renewed attention in light of the uncertain future of NASA's proposed low-low mission, Geopotential Research Mission (GRM). The principal disadvantage with a high-low system is the increased time interval required to obtain global coverage since the intersatellite visibility is often obscured by Earth. The U.S. Air Force has begun to investigate high-low satellite-to-satellite tracking between the Global Positioning System (GPS) of satellites (high component) and NASA's Space Transportation System (STS), the shuttle (low component). Because the GPS satellites form, or will form, a constellation enabling continuous three-dimensional tracking of a low-altitude orbiter, there will be no data gaps due to lack of intervisibility. Furthermore, all three components of the gravitation vector are estimable at altitude, a given grid of which gives a stronger estimate of gravity on Earth's surface than a similar grid of line-of-sight gravitation components. The proposed Air Force mission is STAGE (Shuttle-GPS Tracking for Anomalous Gravitation Estimation) and is designed for local gravity field determinations since the shuttle will likely not achieve polar orbits. The motivation for STAGE was the feasibility to obtain reasonable accuracies with absolutely minimal cost. Instead of simulating drag-free orbits, STAGE uses direct measurements of the nongravitational forces obtained by an inertial package onboard the shuttle. The sort of accuracies that would be achievable from STAGE vis-a-vis other satellite tracking missions such as GRM and European Space Agency's POPSAT-GRM are analyzed.
2001-04-08
Ready to take the wheel on the M-113 armored carrier is STS-100 Mission Specialist Umberto Guidoni. He and the rest of the crew are taking part in Terminal Countdown Demonstration Test activities, which include emergency escape training, payload walkdown and a simulated launch countdown. The tracked vehicle could be used by the crew in the event of an emergency at the pad during which the crew must make a quick exit from the area. The primary payload on mission STS-100 comprises the Canadian robotic arm, SSRMS, and Multi-Purpose Logistics Module, Raffaello. Launch of Space Shuttle Endeavour on mission STS-100 is targeted for April 19 at 2:41 p.m. EDT from Launch Pad 39A
2001-04-08
Ready to take the wheel on the M-113 armored carrier is STS-100 Mission Specialist John L. Phillips. He and the rest of the crew are taking part in Terminal Countdown Demonstration Test activities, which include emergency escape training, payload walkdown and a simulated launch countdown. The tracked vehicle could be used by the crew in the event of an emergency at the pad during which the crew must make a quick exit from the area. The primary payload on mission STS-100 comprises the Canadian robotic arm, SSRMS, and Multi-Purpose Logistics Module, Raffaello. Launch of Space Shuttle Endeavour on mission STS-100 is targeted for April 19 at 2:41 p.m. EDT from Launch Pad 39A
Nuclear particle detection using a track-recording solid
NASA Technical Reports Server (NTRS)
Weber, M.; Weber, D.
1984-01-01
The design of the nuclear particle detector located in Purdue University's Get Away Special package which was flown aboard STS-7 is detailed. The experiment consisted of a stack of particle-detecting polymer sheets. The sheets show positive results of tracks throughout the block. A slide of each sheet was made for further analysis. Recommendations for similar experiments performed in the future are discussed.
Back-end and interface implementation of the STS-XYTER2 prototype ASIC for the CBM experiment
NASA Astrophysics Data System (ADS)
Kasinski, K.; Szczygiel, R.; Zabolotny, W.
2016-11-01
Each front-end readout ASIC for the High-Energy Physics experiments requires robust and effective hit data streaming and control mechanism. A new STS-XYTER2 full-size prototype chip for the Silicon Tracking System and Muon Chamber detectors in the Compressed Baryonic Matter experiment at Facility for Antiproton and Ion Research (FAIR, Germany) is a 128-channel time and amplitude measuring solution for silicon microstrip and gas detectors. It operates at 250 kHit/s/channel hit rate, each hit producing 27 bits of information (5-bit amplitude, 14-bit timestamp, position and diagnostics data). The chip back-end implements fast front-end channel read-out, timestamp-wise hit sorting, and data streaming via a scalable interface implementing the dedicated protocol (STS-HCTSP) for chip control and hit transfer with data bandwidth from 9.7 MHit/s up to 47 MHit/s. It also includes multiple options for link diagnostics, failure detection, and throttling features. The back-end is designed to operate with the data acquisition architecture based on the CERN GBTx transceivers. This paper presents the details of the back-end and interface design and its implementation in the UMC 180 nm CMOS process.
STS-27 Atlantis, OV-104, terminal countdown demonstration test (TCDT) at KSC
1988-11-14
S88-53086 (17 Nov 1988) --- STS-27 Atlantis, Orbiter Vehicle (OV) 104, crewmembers participate in the terminal countdown demonstration test (TCDT) at the Kennedy Space Center (KSC). Standing in front of the M113 tracked rescue vehicle (armored personnel carrier (APC)) are left to right Mission Specialist (MS) William M. Shepherd, Pilot Guy S. Gardner, Commander Robert L. Gibson, MS Richard M. Mullane, and MS Jerry L. Ross. Crewmembers are wearing orange partial pressure or launch and entry suits (LES).
STS-47 Payload Specialist Mohri conducts visual stability experiment in SLJ
1992-09-20
STS047-204-006 (12 - 20 Sept 1992) --- Dr. Mamoru Mohri, payload specialist representing Japan's National Space Development Agency (NASDA), participates in an experiment designed to learn more about Space Adaptation Syndrome (SAS). The experiment is titled, "Comparative Measurement of Visual Stability in Earth and Cosmic Space." During the experiment, Dr. Mohri tracked a flickering light target while eye movements and neck muscle tension were measured. This 45-degree angle position was one of four studied during the eight-day Spacelab-J mission.
Launching of the Shuttle Discovery and the STS 51-G mission
1985-06-17
51G-S-100 (17 June 1985) --- A low-angle 35mm tracking view of the Space Shuttle Discovery, its external tank and two solid rocket boosters speeding from the KSC launch facility to begin NASA STS 51-G. The camera has captured the diamond shock effect associated with the launch phase or orbiter vehicles. Inside the Discovery are seven crewmembers and a variety of payloads representing international interests. Liftoff for 51-G occurred at 7:33:043 a.m. (EDT), June 17, 1985.
Tracking Camera Captures Flames of Space Shuttle Engines
NASA Technical Reports Server (NTRS)
2002-01-01
A tracking camera on Launch Pad 39B of the Kennedy Space Center in Florida captures the flames of Space Shuttle Atlantis' three main engines as the Orbiter hurdles into space on mission STS-112. Liftoff occurred at 3:46 pm EDT, October 7, 2002. Atlantis carried the Starboard-1 (S1) Integrated Truss Structure and the Crew and Equipment Translation Aid (CETA) Cart A. The S1 was the second truss structure installed on the International Space Station (ISS). It was attached to the S0 truss which was previously installed by the STS-110 mission. The CETA is the first of two human-powered carts that ride along the ISS railway, providing mobile work platforms for future space walking astronauts. The 11 day mission performed three space walks to attach the S1 truss.
2000-09-13
With other crew members in the back, STS-92 Mission Specialist Leroy Chiao races the M-113 along the track through the scrub. Driving the M-113 is part of emergency egress training during Terminal Countdown Demonstration Test (TCDT) activities. The tracked vehicle could be used by the crew in the event of an emergency at the pad during which the crew must make a quick exit from the area. The TCDT also provides simulated countdown exercises and opportunities to inspect the mission payloads in the orbiter’s payload bay. STS-92 is scheduled to launch Oct. 5 at 9:30 p.m. EDT on the fifth flight to the International Space Station. It will carry two elements of the Space Station, the Integrated Truss Structure Z1 and the third Pressurized Mating Adapter. The mission is also the 100th flight in the Shuttle program
STS-107 Mission Specialist Kalpana Chawla at SPACEHAB during training
NASA Technical Reports Server (NTRS)
2002-01-01
KENNEDY SPACE CENTER, FLA. -- STS-107 Mission Specialist Kalpana Chawla scans paperwork for equipment at SPACEHAB, Cape Canaveral, Fla., during crew training. STS-107 is a research mission. The primary payload is the first flight of the SHI Research Double Module (SHI/RDM). The experiments range from material sciences to life sciences (many rats). Also part of the payload is the Fast Reaction Experiments Enabling Science, Technology, Applications and Research (FREESTAR) that incorporates eight high priority secondary attached shuttle experiments: Mediterranean Israeli Dust Experiment (MEIDEX), Shuttle Ozone Limb Sounding Experiment (SOLSE-2), Student Tracked Atmospheric Research Satellite for Heuristic International Networking Experiment (STARSHINE), Critical Viscosity of Xenon-2 (CVX-2), Solar Constant Experiment-3 (SOLOCON-3), Prototype Synchrotron Radiation Detector (PSRD), Low Power Transceiver (LPT), and Collisions Into Dust Experiment -2 (COLLIDE-2). STS-107 is scheduled to launch in July 2002
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. Joe Mounts, with Boeing, monitors the Payload Test and Checkout System for the Human Research Facility (HRF) Rack -2 payload. The HRF-2 is scheduled to fly on Return to Flight Space Shuttle mission STS-114. The HRF-2 will deliver additional biomedical instrumentation and research capability to the International Space Station. HRF Rack 1 contains an ultrasound unit and gas analyzer system and has been operational in the U.S. Lab since May 2001. HRF-2 will also be installed in the U. S. Lab and will provide structural, power, thermal, command and data handling, and communication and tracking interfaces between the HRF biomedical instrumentation and the U. S. Lab.
STS-5 Fifth Space shuttle mission, first operational flight: Press Kit
NASA Technical Reports Server (NTRS)
1982-01-01
Schedules for the fifth Space Shuttle flight are provided. Launching procedure, extravehicular activity, contingency plans, satellite deployment, and onboard experiments are discussed. Landing procedures, tracking facilities, and crew data are provided.
Configural processing of biological motion in human superior temporal sulcus.
Thompson, James C; Clarke, Michele; Stewart, Tennille; Puce, Aina
2005-09-28
Observers recognize subtle changes in the movements of others with relative ease. However, tracking a walking human is computationally difficult, because the degree of articulation is high and scene changes can temporarily occlude parts of the moving figure. Here, we used functional magnetic resonance imaging to test the hypothesis that the superior temporal sulcus (STS) uses form cues to aid biological movement tracking. The same 10 healthy subjects detected human gait changes in a walking mannequin in two experiments. In experiment 1, we tested the effects of configural change and occlusion. The walking mannequin was presented intact or with the limbs and torso apart in visual space and either unoccluded or occluded by a set of vertical white bars. In experiment 2, the effects of inversion and occlusion were investigated, using an intact walking mannequin. Subjects reliably detected gait changes under all stimulus conditions. The intact walker produced significantly greater activation in the STS, inferior temporal sulcus (ITS), and inferior parietal cortex relative to the apart walker, regardless of occlusion. Interestingly, STS and ITS activation to the upright versus inverted walker was not significantly different. In contrast, superior parietal lobule and parieto-occipital cortex showed greater activation to the apart relative to intact walker. In the absence of an intact body configuration, parietal cortex activity increased to the independent movements of the limbs and torso. Our data suggest that the STS may use a body configuration-based model to process biological movement, thus forming a representation that survives partial occlusion.
Understanding communicative actions: a repetitive TMS study.
Stolk, Arjen; Noordzij, Matthijs L; Volman, Inge; Verhagen, Lennart; Overeem, Sebastiaan; van Elswijk, Gijs; Bloem, Bas; Hagoort, Peter; Toni, Ivan
2014-02-01
Despite the ambiguity inherent in human communication, people are remarkably efficient in establishing mutual understanding. Studying how people communicate in novel settings provides a window into the mechanisms supporting the human competence to rapidly generate and understand novel shared symbols, a fundamental property of human communication. Previous work indicates that the right posterior superior temporal sulcus (pSTS) is involved when people understand the intended meaning of novel communicative actions. Here, we set out to test whether normal functioning of this cerebral structure is required for understanding novel communicative actions using inhibitory low-frequency repetitive transcranial magnetic stimulation (rTMS). A factorial experimental design contrasted two tightly matched stimulation sites (right pSTS vs left MT+, i.e., a contiguous homotopic task-relevant region) and tasks (a communicative task vs a visual tracking task that used the same sequences of stimuli). Overall task performance was not affected by rTMS, whereas changes in task performance over time were disrupted according to TMS site and task combinations. Namely, rTMS over pSTS led to a diminished ability to improve action understanding on the basis of recent communicative history, while rTMS over MT+ perturbed improvement in visual tracking over trials. These findings qualify the contributions of the right pSTS to human communicative abilities, showing that this region might be necessary for incorporating previous knowledge, accumulated during interactions with a communicative partner, to constrain the inferential process that leads to action understanding. Copyright © 2013 Elsevier Ltd. All rights reserved.
2001-04-08
Ready to take the wheel on the M-113 armored carrier is STS-100 Mission Specialist Yuri V. Lonchakov, who is with the Russian Space and Aviation Agency. He and the rest of the crew are taking part in Terminal Countdown Demonstration Test activities, which include emergency escape training, payload walkdown and a simulated launch countdown. The tracked vehicle could be used by the crew in the event of an emergency at the pad during which the crew must make a quick exit from the area. The primary payload on mission STS-100 comprises the Canadian robotic arm, SSRMS, and Multi-Purpose Logistics Module, Raffaello. Launch of Space Shuttle Endeavour on mission STS-100 is targeted for April 19 at 2:41 p.m. EDT from Launch Pad 39A
STS-29 Landing Approach at Edwards
1989-03-18
The STS-29 Space Shuttle Discovery mission approaches for a landing at NASA's then Ames-Dryden Flight Research Facility, Edwards AFB, California, early Saturday morning, 18 March 1989. Touchdown was at 6:35:49 a.m. PST and wheel stop was at 6:36:40 a.m. on runway 22. Controllers chose the concrete runway for the landing in order to make tests of braking and nosewheel steering. The STS-29 mission was very successful, completing the launch a Tracking and Data Relay communications satellite, as well as a range of scientific experiments. Discovery's five man crew was led by Commander Michael L. Coats, and included pilot John E. Blaha and mission specialists James P. Bagian, Robert C. Springer, and James F. Buchli.
STS-26 crewmembers in Hawaiian shirts and sunglasses pose for group portrait
1988-10-02
STS026-09-008 (3 Oct 1988) --- STS-26 crewmembers wear Hawaiian attire (brightly colored shirts with bold prints) and sunglasses while giving the "thumbs up" signal as they pay tribute to the Hawaii tracking station during an unscheduled television (TV) downlink. On Discovery's, Orbiter Vehicle (OV) 103's, middeck are (left to right) Mission Specialist (MS) John M. Lounge, holding onto open airlock hatch, MS David C. Hilmers, wearing red shirt, Commander Frederick H. Hauck, wearing white shirt and positioned in center of crew, MS George D. Nelson, and Pilot Richard O. Covey (lower right corner of the frame). The shirts were given to the crewmembers by the Kennedy Space Center (KSC) Loud and Proud Team.
International Space Station Payload Operations Integration
NASA Technical Reports Server (NTRS)
Fanske, Elizabeth Anne
2011-01-01
The Payload Operations Integrator (POINT) plays an integral part in the Certification of Flight Readiness process for the Mission Operations Laboratory and the Payload Operations Integration Function that supports International Space Station Payload operations. The POINTs operate in support of the POIF Payload Operations Manager to bring together and integrate the Certification of Flight Readiness inputs from various MOL teams through maintaining an open work tracking log. The POINTs create monthly metrics for current and future payloads that the Payload Operations Integration Function supports. With these tools, the POINTs assemble the Certification of Flight Readiness package before a given flight, stating that the Mission Operations Laboratory is prepared to support it. I have prepared metrics for Increment 29/30, maintained the Open Work Tracking Logs for Flights ULF6 (STS-134) and ULF7 (STS-135), and submitted the Mission Operations Laboratory Certification of Flight Readiness package for Flight 44P to the Mission Operations Directorate (MOD/OZ).
DOD Pico-Satellite known as ANDE released from the STS-116 shuttle payload bay
2006-12-21
S116-E-07837 (21 Dec. 2006) --- As seen through windows on the aft flight deck of Space Shuttle Discovery, a Department of Defense pico-satellite known as Atmospheric Neutral Density Experiment (ANDE) is released from the shuttle's payload bay by STS-116 crewmembers. ANDE consists of two micro-satellites which will measure the density and composition of the low Earth orbit (LEO) atmosphere while being tracked from the ground. The data will be used to better predict the movement of objects in orbit.
DOD Pico-Satellite known as ANDE released from the STS-116 shuttle payload bay
2006-12-21
S116-E-07831 (21 Dec. 2006) --- As seen through windows on the aft flight deck of Space Shuttle Discovery, a Department of Defense pico-satellite known as Atmospheric Neutral Density Experiment (ANDE) is released from the shuttle's payload bay by STS-116 crewmembers. ANDE consists of two micro-satellites which will measure the density and composition of the low Earth orbit (LEO) atmosphere while being tracked from the ground. The data will be used to better predict the movement of objects in orbit.
DOD Pico-Satellite known as ANDE released from the STS-116 shuttle payload bay
2006-12-21
S116-E-07838 (21 Dec. 2006) --- As seen through windows on the aft flight deck of Space Shuttle Discovery, a Department of Defense pico-satellite known as Atmospheric Neutral Density Experiment (ANDE) is released from the shuttle's payload bay by STS-116 crewmembers. ANDE consists of two micro-satellites which will measure the density and composition of the low Earth orbit (LEO) atmosphere while being tracked from the ground. The data will be used to better predict the movement of objects in orbit.
STS-54 toys in space experiment
1993-01-13
S93-25647 (6 Jan 1993) --- Part of the educational activities onboard the Space Shuttle Endeavour for STS-54 will include several experiments with various toys, some of which are depicted here. The detailed supplementary objective (DSO-802) will allow the Shuttle crewmembers to experiment with the various types of toys in a microgravity environment while talking to pupils who will be able to monitor (via classroom TV sets) the activities at a number of schools. Among toys seen here are a friction car and loop track, paper eagle, and a balloon helicopter.
STS-77 Space Shuttle Mission Report
NASA Technical Reports Server (NTRS)
Fricke, Robert W., Jr.
1996-01-01
The STS-77 Space Shuttle Program Mission Report summarizes the Payload activities as well as the: Orbiter, External Tank (ET), Solid Rocket Booster (SRB), Reusable Solid Rocket Motor (RSRM), and the Space Shuttle Main Engine (SSME) systems performance during the seventy-seventh flight of the Space Shuttle Program, the fifty-second flight since the return-to-flight, and the eleventh flight of the Orbiter Endeavour (OV-105). STS-77 was also the last flight of OV-105 prior to the vehicle being placed in the Orbiter Maintenance Down Period (OMDP). In addition to the Orbiter, the flight vehicle consisted of an ET that was designated ET-78; three SSME's that were designated as serial numbers 2037, 2040, and 2038 in positions 1, 2, and 3, respectively; and two SRB's that were designated BI-080. The RSRM's, designated RSRM-47, were installed in each SRB and the individual RSRM's were designated as 360TO47A for the left SRB, and 360TO47B for the right SRB. The STS-77 Space Shuttle Program Mission Report fulfills the Space Shuttle Program requirement as documented in NSTS 07700, Volume VII, Appendix E. The requirement stated in that document is that each organizational element supporting the Program will report the results of their hardware (and software) evaluation and mission performance plus identify all related in-flight anomalies. The primary objectives of this flight were to successfully perform the operations necessary to fulfill the requirements of Spacehab-4, the SPARTAN 207/inflatable Antenna Experiment (IAE), and the Technology Experiments Advancing Missions in Space (TEAMS) payload. Secondary objectives of this flight were to perform the experiments of the Aquatic Research Facility (ARF), Brilliant Eyes Ten-Kelvin Sorption Cryocooler Experiment (BETSCE), Biological Research in Canisters (BRIC), Get-Away-Special (GAS), and GAS Bridge Assembly (GBA). The STS-77 mission was planned as a 9-day flight plus 1 day, plus 2 contingency days, which were available for weather avoidance or Orbiter contingency operations. The sequence of events for the STS-77 mission is shown in Table 1, and the Space Shuttle Vehicle Management Office Problem Tracking List is shown in Table 11. The Government Fumished Equipment/Flight Crew Equipment (GFE/FCE) Problem Tracking List is shown in Table II. Appendix A lists the sources of data, both formal and informal, that were used to prepare this report. Appendix B provides the definition of acronyms and abbreviations used throughout the report. All times during the flight are given in Greenwich mean time (G.m.t.) and mission elapsed time (MET). The six-person crew for STS-77 consisted of John H. Casper, Col., U. S. Air Force, Commander; Curtis L. Brown, Jr., Lt. Col., U. S. Air Force, Pilot; Andrew S. W. Thomas, Civilian, Ph.D., Mission Specialist 1; Daniel W. Bursch, CDR., U. S. Navy, Mission Specialist 2; Mario Runco, Jr., Civilian, Mission Specialist 3; and Marc Gameau, Civilian, PhD, Mission Specialist 4.
Inflight views of the crew of STS-7
NASA Technical Reports Server (NTRS)
1983-01-01
Inflight views of the crew of STS-7. Views include Astronaut Sally K. Ride, misison specialist, using a screw driver to clean out an air filtering system in the middeck of the Challenger. Dr. Ride's constant wear garment bears a cartoon of 35 busy astronauts around a space shuttle and the acronym TFNG, below which is written, 'We deliver!'. TFNG stands for thirty five new guys, referring to the 1978 class of astronauts from which Dr. Ride and three of her crewmates hail (35768); Astronaut Robert L. Crippen, crew commander, chooses to remain in the commander's station to shave his face using an electric razor. Forward control panels (L1, L5, O5), and windows appear in this view (35769); On middeck, Dr. Norman E. Thagard, mission specialist, conducts Detailed Supplementary Objective (DSO) 404 - On Orbit Head and Eye Tracking Tasks. Seated in the mission specialists seat, Thagard, wearing unicorn cap (pantograph attached) and with electrodes on his face and forehead, monitors DC Ampere (A
NASA Technical Reports Server (NTRS)
James, John T.
2002-01-01
The toxicological assessment of grab sample canisters (GSCs) returned aboard STS-110 is reported. Analytical methods have not changed from earlier reports, and surrogate standard recoveries from the GSCs were 77-121%, with one exception. Pressure tracking indicated no leaks in the canisters. Recoveries from lab and trip controls for formaldehyde analyses ranged from 87 to 96%. The two general criteria used to assess air quality are the total-non-methane-volatile organic hydrocarbons (NMVOCs) and the total T-value (minus the CO2 and formaldehyde contributions). Because of the inertness of Freon 218 (octafluoropropane, OFP), its contribution to the NMVOC is subtracted and tabulated separately. Control of atmospheric alcohols is important to the water recovery system engineers, hence total alcohols are also shown for each sample. Because formaldehyde is quantified from sorbent badges, its concentration is listed separately. These five indices of air quality are summarized.
1999-04-27
During emergency egress training at Launch Pad 39B, members of the STS-96 crew ride inside a small armored personnel carrier. The tracked vehicle could be used by the crew in the event of an emergency at the pad during which the crew must make a quick exit from the area. From left are Pilot Rick Douglas Husband; Mission Specialists Daniel Barry (partly hidden), Tamara E. Jernigan, Julie Payette, and Valery Ivanovich Tokarev; and Commander Kent V. Rominger. Not shown is Mission Specialist Ellen Ochoa. The crew are at KSC for Terminal Countdown Demonstration Test (TCDT) activities, which also include simulated countdown exercises and opportunities to inspect the mission payloads in the orbiter's payload bay. Mission STS-96, which is scheduled for liftoff on May 20 at 9:32 a.m., is a logistics and resupply mission for the International Space Station, carrying such payloads as a Russian crane, the Strela; a U.S.-built crane; the Spacehab Oceaneering Space System Box (SHOSS), a logistics items carrier; and STARSHINE, a student-led experiment
Astronaut Story Musgrave during STS-6 EVA
1983-04-07
STS006-45-124 (7 April 1983) --- Astronaut F. Story Musgrave, STS-6 mission specialist, translates down the Earth-orbiting space shuttle Challenger’s payload bay door hinge line with a bag of latch tools. This photograph is among the first five still frames that recorded the April 7 extravehicular activity (EVA) of Dr. Musgrave and Donald H. Peterson, the flight’s other mission specialist. It was photographed with a handheld 70mm camera from inside the cabin by one of two crew members who remained on the flight deck during the EVA. Dr. Musgrave’s task here was to evaluate the techniques required to move along the payload bay’s edge with tools. In the lower left foreground are three canisters containing three getaway special (GAS) experiments. Part of the starboard wind and orbital maneuvering system (OMS) pod are seen back dropped against the blackness of space. The gold-foil protected object partially out of frame on the right is the airborne support equipment for the now vacated inertial upper stage (IUS) which aided the deployment of the tracking and data relay satellite on the flight’s first day. Astronauts Paul J. Weitz, command and Karol J. Bobko, pilot, remained inside the Challenger during the EVA. Photo credit: NASA
STS-70 landing just before main gear touchdown
NASA Technical Reports Server (NTRS)
1995-01-01
The Space Shuttle orbiter Discovery touches down on KSC's Runway 33, marking a successful conclusion to the STS-70 mission. Discovery landed on orbit 143, during the second opportunity of the day. Main gear touchdown was unofficially listed at 8:02 a.m. EDT on July 22, 1995. The orbiter traveled some 3.7 million statute miles during the nearly nine-day flight, which included a one-day extension because of fog and low visibility conditions at the KSC Shuttle Landing Facility. STS-70 was the 24th landing at KSC and the 70th Space Shuttle mission. The five-member crew deployed a Tracking and Data Relay Satellite-G (TDRS-G). Crew members were Commander Terence 'Tom' Henricks, Pilot Kevin R. Kregel, and Mission Specialists Nancy Jane Currie, Donald A. Thomas and Mary Ellen Weber. STS-70 also was the maiden flight of the new Block I orbiter main engine, which flew in the number one position. The other two engines were of the existing Phase II design.
STS-70 landing main gear touchdown (side view)
NASA Technical Reports Server (NTRS)
1995-01-01
The Space Shuttle orbiter Discovery touches down on KSC's Runway 33, marking a successful conclusion to the STS-70 mission. Discovery landed on orbit 143, during the second opportunity of the day. Main gear touchdown was unofficially listed at 8:02 a.m. EDT on July 22, 1995. The orbiter traveled some 3.7 million statute miles during the nearly nine-day flight, which included a one-day extension because of fog and low visibility conditions at the KSC Shuttle Landing Facility. STS-70 was the 24th landing at KSC and the 70th Space Shuttle mission. The five-member crew deployed a Tracking and Data Relay Satellite-G (TDRS-G). Crew members were Commander Terence 'Tom' Henricks, Pilot Kevin R. Kregel, and Mission Specialists Nancy Jane Currie, Donald A. Thomas and Mary Ellen Weber. STS-70 also was the maiden flight of the new Block I orbiter main engine, which flew in the number one position. The other two engines were of the existing Phase II design.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. Nancy Lowry (left) and Mikiko Ujihara, with Boeing, monitor the Payload Test and Checkout System for the Human Research Facility (HRF) Rack -2 payload. The HRF-2 is scheduled to fly on Return to Flight Space Shuttle mission STS- 114. The HRF-2 will deliver additional biomedical instrumentation and research capability to the International Space Station. HRF Rack 1 contains an ultrasound unit and gas analyzer system and has been operational in the U.S. Lab since May 2001. HRF-2 will also be installed in the U. S. Lab and will provide structural, power, thermal, command and data handling, and communication and tracking interfaces between the HRF biomedical instrumentation and the U. S. Lab.
NASA Technical Reports Server (NTRS)
1981-01-01
Some of the pogo related data from STS-1 are documented. The measurements and data reduction are described. In the data analysis reference is made to FRF and single engine test results. The measurements are classified under major project elements of the space shuttle main engine, the external tank, and the orbiter. The subsystems are structural dynamics and main propulsion. Data were recorded onboard the orbiter with a minimum response rate of 1.5 to 50 Hz. The wideband, 14 track recorder was used, and the data required demultiplexing before reduction. The flight phase of interest was from liftoff through main engine cutoff.
Engineers test STS-37 CETA electrical hand pedal cart in JSC MAIL Bldg 9A
NASA Technical Reports Server (NTRS)
1990-01-01
McDonnell Douglas engineers Noland Talley (left) and Gary Peters (center) and ILC-Dover engineer Richard Richard Smallcombe prepare test setup for the evaluation of the crew and equipment translation aid (CETA) electrical hand pedal cart in JSC's Mockup and Integration Laboratory (MAIL) Bldg 9A. Peters, wearing extravehicular mobility unit (EMU) boots and positioned in portable foot restraint (PFR), is suspended above CETA cart and track via harness to simulate weightlessness. CETA will be tested in orbit in the payload bay of Atlantis, Orbiter Vehicle (OV) 104, during STS-37.
President Clinton's Arrival at CCAS and Visit to KSC for Launch of STS-95
NASA Technical Reports Server (NTRS)
1998-01-01
Live footage shows President Bill Clinton and First Lady Hillary Rodham Clinton arriving in Airforce 1 on the Skid Strip, viewing the launch, and tracking the plume of Space Shuttle Discovery, on mission STS-95. The viewing takes place on the roof of the Launch Control Center (LCC). Also present on the roof to watch this event are Astronaut Robert Cabana and Eileen Collins (both in flight suit), and the NASA Administrator Daniel Goldin. The President is shown giving a speech to the Launch Team and shaking hands with employees in the LCC.
STS-56 MS1 Foale, in LES/LEH, floats during bailout exercises in JSC WETF
NASA Technical Reports Server (NTRS)
1993-01-01
STS-56 Discovery, Orbiter Vehicle (OV) 103, Mission Specialist 1 (MS1) Michael Foale, wearing launch and entry suit (LES) and launch and entry helmet (LEH), floats in a single person life raft during launch emergency egress (bailout) exercises in JSC's Weightless Environment Training Facility (WETF) Bldg 29 pool. Foale's body is covered with the life raft tarp. His head and the space shuttle search and rescue satellite aided tracking (SARSAT) antenna protrude above the tarp. This simulation prepares the astronauts for the event of an emergency egress and subsequent water landing during launch.
Deployment of the TDRS by STS-6 Challenger
1983-04-04
STS006-38-894 (4 April 1983) --- The tracking and data relay satellite (TDRS) leaves the 18-meter (60-ft) long cargo bay of the Earth-orbiting space shuttle Challenger about ten hours following launch of NASA’s second reusable space vehicle. The inertial upper stage (IUS) which gives power necessary to place the TDRS in its desired orbit is clearly seen in this view, photographed with a 70mm camera aimed through the aft flight deck windows of the Challenger. The cylindrical canisters in the left foreground contain scientific experiments from subscribers to NASA’s getaway special (GAS) program. Photo credit: NASA
Launch view of the STS-70 space shuttle Discovery
1995-07-13
STS070-S-003 (13 JULY 1995) --- Framed by Florida foliage, the Space Shuttle Discovery begins its 21st Spaceflight. Five NASA astronauts and a Tracking and Data Relay Satellite (TDRS) were aboard for the liftoff, which occurred at 9:41:55 a.m. (EDT), July 13, 1995 from Launch Pad 39B. Onboard were astronauts Terence T. (Tom) Henricks, Kevin R. Kregel, Nancy J. Curie, Donald A. Thomas and Mary Ellen Weber. This mission also marks the maiden flight of the new Block I Space Shuttle Main Engine configuration designed to increase engine performance as well as safety and reliability.
NASA Technical Reports Server (NTRS)
James, John T.
2001-01-01
The toxicological assessment of air samples returned at the end of the STS-105 (7 A.1) flight to the ISS is reported. ISS air samples were taken in August 2001 from the Service Module, FGB, and U.S. Laboratory using grab sample canisters (GSCs) and/or formaldehyde badges. Preflight and end-of-mission samples were obtained from Discovery using GSCs. Analytical methods have not changed from earlier reports, and surrogate standard recoveries were 64-115%. Pressure tracking indicated no leaks in the canisters.
Hayashi, T; Doke, T; Kikuchi, J; Sakaguchi, T; Takeuchi, R; Takashima, T; Kobayashi, M; Terasawa, K; Takahashi, K; Watanabe, A; Kyan, A; Hasebe, N; Kashiwagi, T; Ogura, K; Nagaoka, S; Kato, M; Nakano, T; Takahashi, S; Yamanaka, H; Yamaguchi, K; Badhwar, G D
1997-12-01
Space radiation dosimetry measurements have been made onboard the Space Shuttle STS-65 in the Second International Microgravity Laboratory (IML-2: 28.5 degrees x 300 km: 14.68 days) and the STS-79 in the 4th Shuttle MIR mission (S/MM#4: 51.6 degrees x 300-400km: 10.2 days). In these measurements, three kinds of detectors were used; one is a newly developed active detector telescope called "Real-time Radiation Monitoring Device (RRMD-I for IML-2 and RRMD-II with improved triggering system for S/MM#4)" utilizing silicon semi-conductor detectors and the other detectors are conventional passive detectors of thermoluminescence dosimeters (TLDs) and CR-39 plastic track detectors. The main contribution to dose equivalent for particles with LET > 5.0 keV/micrometer (IML-2) and LET > 3.5 keV/micrometer (S/MM#4) is seen to be due to galactic cosmic rays (GCRs) and the contribution of the South Atlantic Anomaly (SAA) is less than 5% (IML-2: 28.5 degrees x 300 km) and 15% (S/MM#4: 51.6 degrees x 400 km) in the above RRMD LET detection conditions. For the whole LET range (> 0.2 kev/micrometer) obtained by TLDs and CR-39 in these two typical orbits (a small inclination x low altitude and a large inclination x high altitude), absorbed dose rates range from 94 to 114 microGy/day, dose equivalent rates from 186 to 207 microSv/day and average quality factors from 1.82 to 2.00 depending on the locations and directions of detectors inside the Spacelab at the highly protected IML-2 orbit (28.5 degrees x 300 km), and also, absorbed dose rates range from 290 to 367 microGy/day, dose equivalent rates from 582 to 651 microSv/day and average quality factors from 1.78 to 2.01 depending on the dosimeter packages around the RRMD-II "Detector Unit" at the S/MM#4 orbit (5l.6 degrees x 400km). In general, it is seen that absorbed doses depend on the orbit altitude (SAA trapped particles contribution dominant) and dose equivalents on the orbit inclination (GCR contribution dominant). The LET distributions obtained by two different types of active and passive detectors, RRMDs and CR-39, are in good agreement for LET of 15 - 200 kev/micrometer and difference of these distributions in the regions of LET < 15 kev/micrometer and LET > 200 kev/micrometer can be explained by considering characteristics of CR-39 etched track formation especially for the low LET tracks and chemical etching conditions.
NASA Technical Reports Server (NTRS)
Hayashi, T.; Doke, T.; Kikuchi, J.; Sakaguchi, T.; Takeuchi, R.; Takashima, T.; Kobayashi, M.; Terasawa, K.; Takahashi, K.; Watanabe, A.;
1997-01-01
Space radiation dosimetry measurements have been made onboard the Space Shuttle STS-65 in the Second International Microgravity Laboratory (IML-2: 28.5 degrees x 300 km: 14.68 days) and the STS-79 in the 4th Shuttle MIR mission (S/MM#4: 51.6 degrees x 300-400km: 10.2 days). In these measurements, three kinds of detectors were used; one is a newly developed active detector telescope called "Real-time Radiation Monitoring Device (RRMD-I for IML-2 and RRMD-II with improved triggering system for S/MM#4)" utilizing silicon semi-conductor detectors and the other detectors are conventional passive detectors of thermoluminescence dosimeters (TLDs) and CR-39 plastic track detectors. The main contribution to dose equivalent for particles with LET > 5.0 keV/micrometer (IML-2) and LET > 3.5 keV/micrometer (S/MM#4) is seen to be due to galactic cosmic rays (GCRs) and the contribution of the South Atlantic Anomaly (SAA) is less than 5% (IML-2: 28.5 degrees x 300 km) and 15% (S/MM#4: 51.6 degrees x 400 km) in the above RRMD LET detection conditions. For the whole LET range (> 0.2 kev/micrometer) obtained by TLDs and CR-39 in these two typical orbits (a small inclination x low altitude and a large inclination x high altitude), absorbed dose rates range from 94 to 114 microGy/day, dose equivalent rates from 186 to 207 microSv/day and average quality factors from 1.82 to 2.00 depending on the locations and directions of detectors inside the Spacelab at the highly protected IML-2 orbit (28.5 degrees x 300 km), and also, absorbed dose rates range from 290 to 367 microGy/day, dose equivalent rates from 582 to 651 microSv/day and average quality factors from 1.78 to 2.01 depending on the dosimeter packages around the RRMD-II "Detector Unit" at the S/MM#4 orbit (5l.6 degrees x 400km). In general, it is seen that absorbed doses depend on the orbit altitude (SAA trapped particles contribution dominant) and dose equivalents on the orbit inclination (GCR contribution dominant). The LET distributions obtained by two different types of active and passive detectors, RRMDs and CR-39, are in good agreement for LET of 15 - 200 kev/micrometer and difference of these distributions in the regions of LET < 15 kev/micrometer and LET > 200 kev/micrometer can be explained by considering characteristics of CR-39 etched track formation especially for the low LET tracks and chemical etching conditions.
STS-42 Commander Grabe works with MWPE at IML-1 Rack 8 aboard OV-103
NASA Technical Reports Server (NTRS)
1992-01-01
STS-42 Commander Ronald J. Grabe works with the Mental Workload and Performance Evaluation Experiment (MWPE) (portable laptop computer, keyboard cursor keys, a two-axis joystick, and a track ball) at Rack 8 in the International Microgravity Laboratory 1 (IML-1) module. The test was designed as a result of difficulty experienced by crewmembers working at a computer station on a previous Space Shuttle mission. The problem was due to the workstation's design being based on Earth-bound conditions with the operator in a typical one-G standing position. For STS-42, the workstation was redesigned to evaluate the effects of microgravity on the ability of crewmembers to interact with a computer workstation. Information gained from this experiment will be used to design workstations for future Spacelab missions and Space Station Freedom (SSF).
STS-92 Mission Specialist Lopez-Alegria is ready to drive the M- 113
NASA Technical Reports Server (NTRS)
2000-01-01
Waiting his turn to drive the M-113 is STS-92 Mission Specialist Michael Lopez-Alegria. Part of emergency egress training during Terminal Countdown Demonstration Test (TCDT) activities, the tracked vehicle could be used by the crew in the event of an emergency at the pad during which the crew must make a quick exit from the area. The TCDT also provides simulated countdown exercises and opportunities to inspect the mission payloads in the orbiter's payload bay. STS-92 is scheduled to launch Oct. 5 at 9:30 p.m. EDT on the fifth flight to the International Space Station. It will carry two elements of the Space Station, the Integrated Truss Structure Z1 and the third Pressurized Mating Adapter. The mission is also the 100th flight in the Shuttle program.
STS-43 Space Shuttle mission report
NASA Technical Reports Server (NTRS)
Fricke, Robert W.
1991-01-01
The STS-43 Space Shuttle Program Mission Report contains a summary of the vehicle subsystem operations during the forty-second flight of the Space Shuttle Program and the ninth flight of the Orbiter Vehicle Atlantis (OV-104). In addition to the Atlantis vehicle, the flight vehicle consisted of the following: an External Tank (ET) designated as ET-47 (LWT-40); three Space Shuttle main engines (SSME's) (serial numbers 2024, 2012, and 2028 in positions 1, 2, and 3, respectively); and two Solid Rocket Boosters (SRB's) designated as BI-045. The primary objective of the STS-43 mission was to successfully deploy the Tracking and Data Relay Satellite-E/Inertial Upper Stage (TDRS-E/IUS) satellite and to perform all operations necessary to support the requirements of the Shuttle Solar Backscatter Ultraviolet (SSBUV) payload and the Space Station Heat Pipe Advanced Radiator Element (SHARE-2).
2001-12-19
KENNEDY SPACE CENTER, FLA. -- STS-107 Commander Rick Husband and Mission Specialist Laurel Clark learn to work with mission-related equipment at SPACEHAB, Cape Canaveral, Fla. STS-107 is a research mission. The primary payload is the first flight of the SHI Research Double Module (SHI/RDM). The experiments range from material sciences to life sciences (many rats). Also part of the payload is the Fast Reaction Experiments Enabling Science, Technology, Applications and Research (FREESTAR) that incorporates eight high priority secondary attached shuttle experiments: Mediterranean Israeli Dust Experiment (MEIDEX), Shuttle Ozone Limb Sounding Experiment (SOLSE-2), Student Tracked Atmospheric Research Satellite for Heuristic International Networking Experiment (STARSHINE), Critical Viscosity of Xenon-2 (CVX-2), Solar Constant Experiment-3 (SOLOCON-3), Prototype Synchrotron Radiation Detector (PSRD), Low Power Transceiver (LPT), and Collisions Into Dust Experiment -2 (COLLIDE-2). STS-107 is scheduled to launch in July 2002
2002-01-10
KENNEDY SPACE CENTER, FLA. - STS-107 Payload Specialist Ilan Ramon, from Israel, trains on equipment at SPACEHAB, Cape Canaveral, Fla. STS-107 is a research mission. The primary payload is the first flight of the SHI Research Double Module (SHI/RDM). The experiments range from material sciences to life sciences (many rats). Also part of the payload is the Fast Reaction Experiments Enabling Science, Technology, Applications and Research (FREESTAR) that incorporates eight high priority secondary attached shuttle experiments: Mediterranean Israeli Dust Experiment (MEIDEX), Shuttle Ozone Limb Sounding Experiment (SOLSE-2), Student Tracked Atmospheric Research Satellite for Heuristic International Networking Experiment (STARSHINE), Critical Viscosity of Xenon-2 (CVX-2), Solar Constant Experiment-3 (SOLOCON-3), Prototype Synchrotron Radiation Detector (PSRD), Low Power Transceiver (LPT), and Collisions Into Dust Experiment -2 (COLLIDE-2). STS-107 is scheduled to launch in July 2002
2002-01-10
KENNEDY SPACE CENTER, FLA. -- STS-107 Mission Specialist Kalpana Chawla scans paperwork for equipment at SPACEHAB, Cape Canaveral, Fla., during crew training. STS-107 is a research mission. The primary payload is the first flight of the SHI Research Double Module (SHI/RDM). The experiments range from material sciences to life sciences (many rats). Also part of the payload is the Fast Reaction Experiments Enabling Science, Technology, Applications and Research (FREESTAR) that incorporates eight high priority secondary attached shuttle experiments: Mediterranean Israeli Dust Experiment (MEIDEX), Shuttle Ozone Limb Sounding Experiment (SOLSE-2), Student Tracked Atmospheric Research Satellite for Heuristic International Networking Experiment (STARSHINE), Critical Viscosity of Xenon-2 (CVX-2), Solar Constant Experiment-3 (SOLOCON-3), Prototype Synchrotron Radiation Detector (PSRD), Low Power Transceiver (LPT), and Collisions Into Dust Experiment -2 (COLLIDE-2). STS-107 is scheduled to launch in July 2002
STS-43 Space Shuttle mission report
NASA Astrophysics Data System (ADS)
Fricke, Robert W.
1991-09-01
The STS-43 Space Shuttle Program Mission Report contains a summary of the vehicle subsystem operations during the forty-second flight of the Space Shuttle Program and the ninth flight of the Orbiter Vehicle Atlantis (OV-104). In addition to the Atlantis vehicle, the flight vehicle consisted of the following: an External Tank (ET) designated as ET-47 (LWT-40); three Space Shuttle main engines (SSME's) (serial numbers 2024, 2012, and 2028 in positions 1, 2, and 3, respectively); and two Solid Rocket Boosters (SRB's) designated as BI-045. The primary objective of the STS-43 mission was to successfully deploy the Tracking and Data Relay Satellite-E/Inertial Upper Stage (TDRS-E/IUS) satellite and to perform all operations necessary to support the requirements of the Shuttle Solar Backscatter Ultraviolet (SSBUV) payload and the Space Station Heat Pipe Advanced Radiator Element (SHARE-2).
NASA Technical Reports Server (NTRS)
1998-01-01
On this forth day of the STS-90 mission, the flight crew, Cmdr. Richard A. Searfoss, Pilot Scott D. Altman, and Mission Specialists Richard M. Linnehan, Dafydd Rhys Williams and Kathryn P. Hire, and Payload Specialists Jay C. Buckey and James A. Pawelczyk continue work with the Escher Staircase Behavior Testing of Adult Rats experiment. This is the first of two behavior testing sessions with the adult rats being used for this experiment. The rats will have a 'hyper drive' unit placed on their head which has recording electrodes made of microscopic wires that are positioned in the brain to record activity in the hippocampus. The hippocampus is that portion of the brain used to develop spatial maps to help us navigate from one place to the other. With the 'hyper drive' units in place, the rats will then be put through a maze or on a track. While the rat is maneuvering on the maze or track, the cell activity of the hippocampus will be measured and recorded.
2004-01-30
KENNEDY SPACE CENTER, FLA. - Workers ride the rails along with a container enclosing a segment of a solid rocket booster being moved to the main track. Several segments are being returned to Utah for testing. The segments were part of the STS-114 stack. It is the first time actual flight segments that had been stacked for flight in the VAB are being returned for testing. They will undergo firing, which will enable inspectors to check the viability of the solid and verify the life expectancy for stacked segments.
2004-01-30
KENNEDY SPACE CENTER, FLA. - The red NASA engine backs up with its cargo of containers in order to change tracks. The containers enclose segments of a solid rocket booster being returned to Utah for testing. The segments were part of the STS-114 stack. It is the first time actual flight segments that had been stacked for flight in the VAB are being returned for testing. They will undergo firing, which will enable inspectors to check the viability of the solid and verify the life expectancy for stacked segments.
Post-flight BET products for the 2nd discovery entry, STS-19 (51-A)
NASA Technical Reports Server (NTRS)
Kelly, G. M.; Mcconnell, J. G.; Heck, M. L.; Troutman, P. A.; Waters, L. A.; Findlay, J. T.
1985-01-01
The post-flight products for the second Discovery flight, STS-19 (51-A), are summarized. The inertial best estimate trajectory (BET), BT19D19/UN=169750N, was developed using spacecraft dynamic measurements from Inertial Measurement Unit 2 (IMU2) in conjunction with the best tracking coverage available for any of the earlier Shuttle entries. As a consequence of the latter, an anchor epoch was selected which conforms to an initial altitude of greater than a million feet. The Extended BET, ST19BET/UN=274885C, incorporated the previously mentioned inertial reconstructed state information and the Langley Atmospheric Information Retrieval System (LAIRS) atmosphere, ST19MET/UN=712662N, with some minor exceptions. Primary and back-up AEROBET reels are NK0165 and NK0201, respectively. This product was only developed over the lowermost 360 kft altitude range due to atmosphere problems but this relates to altitudes well above meaningful signal in the IMUs. Summary results generated from the AEROBET for this flight are presented with meaningful configuration and statistical comparisons from the previous thirteen flights. Modified maximum likelihood estimation (MMLE) files were generated based on IMU2 and the Rate Gyro Assembly/Accelerometer Assembly (RGA/AA), respectively. Appendices attached define spacecraft and physical constants utilized, show plots of the final tracking data residuals from the post-flight fit, list relevant parameters from the BET at a two second spacing, and retain for archival purpose all relevant input and output tapes and files generated.
A study of the radiation environment on board the space shuttle flight STS-57
NASA Technical Reports Server (NTRS)
Badhwar, G. D.; Atwell, W.; Benton, E. V.; Frank, A. L.; Keegan, R. P.; Dudkin, V. E.; Karpov, O. N.; Potapov, V.; Akopova, A. B.; Magradze, N. V.
1995-01-01
A joint NASA-Russian study of the radiation environment inside a SPACEHAB 2 locker on space shuttle flight STS-57 was conducted. The shuttle flew in a nearly circular orbit of 28.5 deg inclination and 462 km altitude. The locker carried a charged particle spectrometer, a tissue equivalent proportional counter (TEPC), and two area passive detectors consisting of combined NASA plastic nuclear track detectors (PNTD's) and thermoluminescent detectors (TLD's), and Russian nuclear emulsions, PNTD's, and TLD's. All the detector systems were shielded by the same shuttle mass distribution. This makes possible a direct comparison of the various dose measurement techniques. In addition, measurements of the neutron energy spectrum were made using the proton recoil technique. The results show good agreement between the integral LET spectrum of the combined galactic and trapped particles using the tissue equivalent proportional counter and track detectors between about 15 keV/micron and 200 keV/micron. The LET spectrum determined from nuclear emulsions was systematically lower by about 50%, possibly due to emulsion fading. The results show that the TEPC measured an absorbed dose 20% higher than TLD's, due primarily to an increased TEPC response to neutrons and a low sensitivity of TLD's to high LET particles under normal processing techniques. There is a significant flux of high energy neutrons that is currently not taken into consideration in dose equivalent calculations. The results of the analysis of the spectrometer data will be reported separately.
14 CFR 1215.109 - Scheduling user service.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Scheduling user service. 1215.109 Section 1215.109 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION TRACKING AND DATA RELAY... highest priority: (i) Launch, reentry, landing of the STS Shuttle, or other NASA launches. (ii) NASA...
14 CFR 1215.109 - Scheduling user service.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 5 2012-01-01 2012-01-01 false Scheduling user service. 1215.109 Section 1215.109 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION TRACKING AND DATA RELAY... highest priority: (i) Launch, reentry, landing of the STS Shuttle, or other NASA launches. (ii) NASA...
14 CFR 1215.109 - Scheduling user service.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Scheduling user service. 1215.109 Section 1215.109 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION TRACKING AND DATA RELAY... highest priority: (i) Launch, reentry, landing of the STS Shuttle, or other NASA launches. (ii) NASA...
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. In the Space Station Processing Facility, Gaschen Geissen and Elton Witt, with Lockheed Martin, monitor the Payload Test and Checkout System for the Human Research Facility (HRF) Rack -2 payload. The HRF-2 is scheduled to fly on Return to Flight Space Shuttle mission STS-114. The HRF-2 will deliver additional biomedical instrumentation and research capability to the International Space Station. HRF Rack 1 contains an ultrasound unit and gas analyzer system and has been operational in the U.S. Lab since May 2001. HRF-2 will also be installed in the U. S. Lab and will provide structural, power, thermal, command and data handling, and communication and tracking interfaces between the HRF biomedical instrumentation and the U. S. Lab.
STS-92 Mission Specialist Chiao is ready to drive the M-113
NASA Technical Reports Server (NTRS)
2000-01-01
STS-92 Mission Specialist Leroy Chiao gets into the driver's side for his turn to drive the M-113, part of emergency egress training during Terminal Countdown Demonstration Test (TCDT) activities. Behind him are Pilot Pam Melroy (left) and Mission Specialist Michael Lopez-Alegria. The tracked vehicle could be used by the crew in the event of an emergency at the pad during which the crew must make a quick exit from the area. The TCDT also provides simulated countdown exercises and opportunities to inspect the mission payloads in the orbiter's payload bay. STS-92 is scheduled to launch Oct. 5 at 9:30 p.m. EDT on the fifth flight to the International Space Station. It will carry two elements of the Space Station, the Integrated Truss Structure Z1 and the third Pressurized Mating Adapter. The mission is also the 100th flight in the Shuttle program.
STS-92 Mission Specialist Wisoff is ready to drive the M-113
NASA Technical Reports Server (NTRS)
2000-01-01
STS-92 Mission Specialist Jeff Wisoff happily anticipates his chance to drive the M-113 he is in. Behind him are Commander Brian Duffy (left) and Mission Specialist Leroy Chiao, along with other crew members. Part of emergency egress training during Terminal Countdown Demonstration Test (TCDT) activities, the tracked vehicle could be used by the crew in the event of an emergency at the pad during which the crew must make a quick exit from the area. The TCDT also provides simulated countdown exercises and opportunities to inspect the mission payloads in the orbiter's payload bay. STS-92 is scheduled to launch Oct. 5 at 9:30 p.m. EDT on the fifth flight to the International Space Station. It will carry two elements of the Space Station, the Integrated Truss Structure Z1 and the third Pressurized Mating Adapter. The mission is also the 100th flight in the Shuttle program.
STS-38 Space Shuttle mission report
NASA Technical Reports Server (NTRS)
Camp, David W.; Germany, D. M.; Nicholson, Leonard S.
1991-01-01
The STS-38 Space Shuttle Program Mission Report contains a summary of the vehicle subsystem activities on this thirty-seventh flight of the Space Shuttle and the seventh flight of the Orbiter vehicle Atlantis (OV-104). In addition to the Atlantis vehicle, the flight vehicle consisted of an External Tank (ET) (designated as ET-40/LWT-33), three Space Shuttle main engines (SSME's) (serial numbers 2019, 2022, 2027), and two Solid Rocket Boosters (SRB's), designated as BI-039. The STS-38 mission was a classified Department of Defense mission, and as much, the classified portions of the mission are not presented in this report. The sequence of events for this mission is shown. The significant problems that occurred in the Space Shuttle Orbiter subsystem during the mission are summarized and the official problem tracking list is presented. In addition, each Space Shuttle Orbiter problem is cited in the subsystem discussion.
Results of nDOSE and HiDOSE Experiments for Dosimetric Evaluation During STS-134 Mission
NASA Astrophysics Data System (ADS)
Pugliese, M.; Loffredo, F.; Quarto, M.; Roca, V.; Mattone, C.; Borla, O.; Zanini, A.
2014-07-01
HiDOSE (Heavy ion DOSimetry Experiment) and nDOSE (neutron DOSimetry Experiment) experiments conducted as a part of BIOKIS (Biokon in Space) payload were designed to measure the dose equivalent due to charged particles and to neutron field, on the entire energy range, during STS-134 mission. Given the complexity of the radiation field in space environment, dose measurements should be considered an asset of any space mission, and for this reason HiDOSE and nDOSE experiments represent an important contribution to the radiation environment assessment during this mission, a short duration flight. The results of these experiments, obtained using Thermo Luminescence Dosimeters (TLDs) to evaluate the charged particles dosimetry and neutron bubbles dosimeters and stack bismuth track dosimeters for neutron dosimetry, indicate that the dose equivalent rate due to space radiation exposure during the STS-134 mission is in accordance with the results obtained from long duration flights.
2001-12-19
KENNEDY SPACE CENTER, FLA. - STS-107 Payload Specialist Ilan Ramon, from Israel, pauses during an experiment at SPACEHAB, Cape Canaveral, Fla., to talk with Mission Specialist Laurel Clark. STS-107 is a research mission. The primary payload is the first flight of the SHI Research Double Module (SHI/RDM). The experiments range from material sciences to life sciences (many rats). Also part of the payload is the Fast Reaction Experiments Enabling Science, Technology, Applications and Research (FREESTAR) that incorporates eight high priority secondary attached shuttle experiments: Mediterranean Israeli Dust Experiment (MEIDEX), Shuttle Ozone Limb Sounding Experiment (SOLSE-2), Student Tracked Atmospheric Research Satellite for Heuristic International Networking Experiment (STARSHINE), Critical Viscosity of Xenon-2 (CVX-2), Solar Constant Experiment-3 (SOLOCON-3), Prototype Synchrotron Radiation Detector (PSRD), Low Power Transceiver (LPT), and Collisions Into Dust Experiment -2 (COLLIDE-2). STS-107 is scheduled to launch in July 2002.
2001-12-19
KENNEDY SPACE CENTER, FLA. - At SPACEHAB, Cape Canaveral, Fla., members of the STS-107 crew familiarize themselves with experiments and equipment for the mission. Pointing at a piece of equipment (center) is Mission Specialist Laurel Clark . At right is Mission Specialist Kalpana Chawla. STS-107 is a research mission. The primary payload is the first flight of the SHI Research Double Module (SHI/RDM). The experiments range from material sciences to life sciences (many rats). Also part of the payload is the Fast Reaction Experiments Enabling Science, Technology, Applications and Research (FREESTAR) that incorporates eight high priority secondary attached shuttle experiments: Mediterranean Israeli Dust Experiment (MEIDEX), Shuttle Ozone Limb Sounding Experiment (SOLSE-2), Student Tracked Atmospheric Research Satellite for Heuristic International Networking Experiment (STARSHINE), Critical Viscosity of Xenon-2 (CVX-2), Solar Constant Experiment-3 (SOLOCON-3), Prototype Synchrotron Radiation Detector (PSRD), Low Power Transceiver (LPT), and Collisions Into Dust Experiment -2 (COLLIDE-2). STS-107 is scheduled to launch in July 2002
2001-12-19
KENNEDY SPACE CENTER, FLA. - - STS-107 Payload Specialist Ilan Ramon, from Israel, works on an experiment at SPACEHAB, Cape Canaveral, Fla. With him is Mission Specialist Laurel Clark. STS-107 is a research mission. The primary payload is the first flight of the SHI Research Double Module (SHI/RDM). The experiments range from material sciences to life sciences (many rats). Also part of the payload is the Fast Reaction Experiments Enabling Science, Technology, Applications and Research (FREESTAR) that incorporates eight high priority secondary attached shuttle experiments: Mediterranean Israeli Dust Experiment (MEIDEX), Shuttle Ozone Limb Sounding Experiment (SOLSE-2), Student Tracked Atmospheric Research Satellite for Heuristic International Networking Experiment (STARSHINE), Critical Viscosity of Xenon-2 (CVX-2), Solar Constant Experiment-3 (SOLOCON-3), Prototype Synchrotron Radiation Detector (PSRD), Low Power Transceiver (LPT), and Collisions Into Dust Experiment -2 (COLLIDE-2). STS-107 is scheduled to launch in July 2002
STS-36 Space Shuttle mission report
NASA Technical Reports Server (NTRS)
Mechelay, Joseph E.; Germany, D. M.; Nicholson, Leonard S.
1990-01-01
The STS-36 Space Shuttle Program Mission Report contains a summary of the vehicle subsystem activities on this thirty-fourth flight of the Space Shuttle and the sixth flight of the OV-104 Orbiter vehicle, Atlantis. In addition to the Atlantis vehicle, the flight vehicle consisted of an External Tank (ET) (designated as ET-33/LWT-26), three Space Shuttle main engines (SSME's) (serial numbers 2019, 2030, and 2029), and two Solid Rocket Boosters (SRB's) (designated as BI-036). The STS-36 mission was a classified Department of Defense mission, and as such, the classified portions of the mission are not discussed. The unclassified sequence of events for this mission is shown in tabular form. Summarized are the significant problems that occurred in the Orbiter subsystems during the mission. The official problem tracking list is presented. In addition, each of the Orbiter problems is cited in the subsystem discussion.
Approaches to environmental verification of STS free-flier and pallet payloads
NASA Technical Reports Server (NTRS)
Keegan, W. B.
1982-01-01
This paper presents an overview of the environmental verification programs followed on an STS-launched free-flier payload, using the Tracking and Data Relay Satellite (TDRS) as an example, and a pallet payload, using the Office of Space Sciences-1 (OSS-1) as an example. Differences are assessed and rationale given as to why the differing programs were used on the two example payloads. It is concluded that the differences between the programs are due to inherent differences in the payload configuration, their respective mission performance objectives and their operational scenarios rather than to any generic distinctions that differentiate between a free-flier and a pallet payload.
Wide angle view of the Flight control room of Mission control center
1984-10-06
Wide angle view of the flight control room (FCR) of the Mission Control Center (MCC). Some of the STS 41-G crew can be seen on a large screen at the front of the MCC along with a map tracking the progress of the orbiter.
Rats that sign-track are resistant to Pavlovian but not instrumental extinction
Ahrens, Allison M.; Singer, Bryan F.; Fitzpatrick, Christopher J.; Morrow, Jonathan D.; Robinson, Terry E.
2015-01-01
Individuals vary in the extent to which they attribute incentive salience to a discrete cue (conditioned stimulus; CS) that predicts reward delivery (unconditioned stimulus; US), which results in some individuals approaching and interacting with the CS (sign-trackers; STs) more than others (goal-trackers; GTs). Here we asked how periods of non-reinforcement influence conditioned responding in STs vs. GTs, in both Pavlovian and instrumental tasks. After classifying rats as STs or GTs by pairing a retractable lever (the CS) with the delivery of a food pellet (US), we introduced periods of non-reinforcement, first by simply withholding the US (i.e., extinction training; experiment 1), then by signaling alternating periods of reward (R) and non-reward (NR) within the same session (experiments 2 and 3). We also examined how alternating R and NR periods influenced instrumental responding for food (experiment 4). STs and GTs did not differ in their ability to discriminate between R and NR periods in the instrumental task. However, in Pavlovian settings STs and GTs responded to periods of non-reward very differently. Relative to STs, GTs very rapidly modified their behavior in response to periods of non-reward, showing much faster extinction and better and faster discrimination between R and NR conditions. These results highlight differences between Pavlovian and instrumental extinction learning, and suggest that if a Pavlovian CS is strongly attributed with incentive salience, as in STs, it may continue to bias attention toward it, and to facilitate persistent and relatively inflexible responding, even when it is no longer followed by reward. PMID:26235331
1999-04-27
Capt. Steve Kelly, with Space Gateway Support, congratulates STS-96 Mission Specialist Ellen Ochoa (Ph.D.), who successfully completed training in the small armored personnel carrier that is part of emergency egress training during Terminal Countdown Demonstration Test (TCDT) activities. The tracked vehicle could be used by the crew in the event of an emergency at the pad during which the crew must make a quick exit from the area. Behind them (from left) are crew members Mission Specialist Valery Ivanovich Tokarev, Pilot Rick Douglas Husband and Mission Specialist Julie Payette. Holding the camera is Douglas Hamilton, a Canadian flight surgeon. Payette is with the Canadian Space Agency. Tokarev represents the Russian Space Agency. The TCDT also provides simulated countdown exercises and opportunities to inspect the mission payloads in the orbiter's payload bay. Mission STS-96, which is scheduled for liftoff on May 20 at 9:32 a.m., is a logistics and resupply mission for the International Space Station, carrying such payloads as a Russian crane, the Strela; a U.S.-built crane; the Spacehab Oceaneering Space System Box (SHOSS), a logistics items carrier; and STARSHINE, a student-led experiment
A CAD/CAE analysis of photographic and engineering data
NASA Technical Reports Server (NTRS)
Goza, S. Michael; Peterson, Wayne L.
1987-01-01
In the investigation of the STS 51L accident, NASA engineers were given the task of visual analysis of photographic data extracted from the tracking cameras located at the launch pad. An analysis of the rotations associated with the right Solid Rocket Booster (SRB) was also performed. The visual analysis involved pinpointing coordinates of specific areas on the photographs. The objective of the analysis on the right SRB was to duplicate the rotations provided by the SRB rate gyros and to determine the effects of the rotations on the launch configuration. To accomplish the objectives, computer aided design and engineering was employed. The solid modeler, GEOMOD, inside the Structural Dynamics Research Corp. I-DEAS package, proved invaluable. The problem areas that were encountered and the corresponding solutions that were obtained are discussed. A brief description detailing the construction of the computer generated solid model of the STS launch configuration is given. A discussion of the coordinate systems used in the analysis is provided for the purpose of positioning the model in coordinate space. The techniques and theory used in the model analysis are described.
NASA Technical Reports Server (NTRS)
Huth, John F.; Whiteley, James D.; Hawker, John E.
1993-01-01
A wide variety of secondary payloads have flown on the Space Transportation System (STS) since its first flight in the 1980's. These experiments have typically addressed specific issues unique to the zero-gravity environment. Additionally, the experiments use the experience and skills of the mission and payload specialist crew members to facilitate data collection and ensure successful completion. This paper presents the results of the Terra Scout experiment, which flew aboard STS-44 in November 1991. This unique Earth Observation experiment specifically required a career imagery analyst to operate the Spaceborne Direct-View Optical System (SpaDVOS), a folded optical path telescope system designed to mount inside the shuttle on the overhead aft flight deck windows. Binoculars and a small telescope were used as backup optics. Using his imagery background, coupled with extensive target and equipment training, the payload specialist was tasked with documenting the following: (1) the utility of the equipment; (2) his ability to acquire and track ground targets; (3) the level of detail he could discern; (4) the atmospheric conditions; and (5) other in-situ elements which contributed to or detracted from his ability to analyze targets. Special emphasis was placed on the utility of a manned platform for research and development of future spaceborne sensors. The results and lessons learned from Terra Scout will be addressed including human performance and equipment design issues.
2004-01-30
KENNEDY SPACE CENTER, FLA. - An engine pulls the container enclosing a segment of a solid rocket booster from the Rotation Processing and Surge Facility. The container will join others on the main track for a trip to Utah where the segments will undergo firing. The segments were part of the STS-114 stack. It is the first time actual flight segments that had been stacked for flight in the VAB are being returned for testing. They will undergo firing, which will enable inspectors to check the viability of the solid and verify the life expectancy for stacked segments.
2000-10-31
KENNEDY SPACE CENTER, FLA. -- Space Shuttle Endeavour and the Mobile Launcher Platform (MLP) start backing through the gate to Launch Pad 39B after a cracked cleat was discovered on the crawler-transporter. Workers near the pad (behind the crawler track) look at the cleats. The vehicle, which moves the MLP and Shuttle at about 1 mph, has a leveling system designed to keep the top of the Space Shuttle vertical while negotiating the 5 percent grade leading to the top of the pad. When the Shuttle-MLP are back on level ground, the crawler tracks will be inspected and the broken cleat repaired. Endeavour is scheduled to be launched Nov. 30 at 10:01 p.m. EST on mission STS-97, the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections
2000-10-31
KENNEDY SPACE CENTER, FLA. -- Space Shuttle Endeavour and the Mobile Launcher Platform (MLP) start backing through the gate to Launch Pad 39B after a cracked cleat was discovered on the crawler-transporter. Workers near the pad (behind the crawler track) look at the cleats. The vehicle, which moves the MLP and Shuttle at about 1 mph, has a leveling system designed to keep the top of the Space Shuttle vertical while negotiating the 5 percent grade leading to the top of the pad. When the Shuttle-MLP are back on level ground, the crawler tracks will be inspected and the broken cleat repaired. Endeavour is scheduled to be launched Nov. 30 at 10:01 p.m. EST on mission STS-97, the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections
Space Shuttle development update
NASA Technical Reports Server (NTRS)
Brand, V.
1984-01-01
The development efforts, since the STS-4 flight, in the Space Shuttle (SS) program are presented. The SS improvements introduced in the last two years include lower-weight loads, communication through the Tracking and Data Relay Satellite, expanded extravehicular activity capability, a maneuvering backpack and the manipulator foot restraint, the improvements in thermal projection system, the 'optional terminal area management targeting' guidance software, a rendezvous system with radar and star tracker sensors, and improved on-orbit living conditions. The flight demonstrations include advanced launch techniques (e.g., night launch and direct insertion to orbit); the on-orbit demonstrations; and added entry and launching capabilities. The entry aerodynamic analysis and entry flight control fine tuning are described. Reusability, improved ascent performance, intact abort and landing flexibility, rollout control, and 'smart speedbrakes' are among the many improvements planned for the future.
NASA Technical Reports Server (NTRS)
Haas, Lin; Massey, Christopher; Baraban, Dmitri
2003-01-01
This paper presents the Global Positioning System (GPS) navigation results from the Communications and Navigation Demonstration on Shuttle (CANDOS) experiment flown on STS-107. This experiment was the initial flight of a Low Power Transceiver (LPT) that featured high capacity space- space and space-ground communications and GPS- based navigation capabilities. The LPT also hosted the GPS Enhanced Orbit Determination Experiment (GEODE) orbit determination software. All CANDOS test data were recovered during the mission using LPT communications links via the Tracking and Data Relay Satellite System (TDRSS). An overview of the LPT s navigation software and the GPS experiment timeline is presented, along with comparisons of test results to the NASA Johnson Space Center (JSC) real-time ground navigation vectors and Best Estimate of Trajectory (BET).
Status of the National Space Transportation System
NASA Technical Reports Server (NTRS)
Abrahamson, J. A.
1984-01-01
The National Space Transportation System is a national resources serving the government, Department of Defense and commercial needs of the USA and others. Four orbital flight tests were completed July 4, 1982, and the first Operational Flight (STS-5) which placed two commercial communications into orbit was conducted November 11, 1982. February 1983 marked the first flight of the newest orbiter, Challenger. Planned firsts in 1983 include: use of higher performance main engines and solid rocket boosters, around-the-clock crew operations, a night landing, extra-vehicular activity, a dedicated DOD mission, and the first flight of a woman crew member. By the end of 1983, five commercial payloads and two tracking and data relay satellites should be deployed and thirty-seven crew members should have made flights aboard the space shuttle.
SIR-B image of Montreal from STS 41-G
NASA Technical Reports Server (NTRS)
1984-01-01
False-color image showing Montreal, Quebec, Canada, and was acquired by the Shuttle Imaging Radar-B (SIR-B) during STS 41-G. The St. lawrence River dominates the right portion of the photo. Several bridges cossing the river are visible. Pink and blue areas are generally buildings or pavement. Light green areas regions of natural vegetation; darker green areas are generally cultivated regions. A race track like structure is apparent at top left. The Riviere des Milles Illes and the Riviere des Prairies (left and right, respectively), join to form a U-shaped waterway at the center of the image. The large elliptical green-centered feature west of the St. Lawrence is Mt. Royal.
Dale, Julia; Price, Erin P; Hornstra, Heidie; Busch, Joseph D; Mayo, Mark; Godoy, Daniel; Wuthiekanun, Vanaporn; Baker, Anthony; Foster, Jeffrey T; Wagner, David M; Tuanyok, Apichai; Warner, Jeffrey; Spratt, Brian G; Peacock, Sharon J; Currie, Bart J; Keim, Paul; Pearson, Talima
2011-12-01
Rapid assignment of bacterial pathogens into predefined populations is an important first step for epidemiological tracking. For clonal species, a single allele can theoretically define a population. For non-clonal species such as Burkholderia pseudomallei, however, shared allelic states between distantly related isolates make it more difficult to identify population defining characteristics. Two distinct B. pseudomallei populations have been previously identified using multilocus sequence typing (MLST). These populations correlate with the major foci of endemicity (Australia and Southeast Asia). Here, we use multiple Bayesian approaches to evaluate the compositional robustness of these populations, and provide assignment results for MLST sequence types (STs). Our goal was to provide a reference for assigning STs to an established population without the need for further computational analyses. We also provide allele frequency results for each population to enable estimation of population assignment even when novel STs are discovered. The ability for humans and potentially contaminated goods to move rapidly across the globe complicates the task of identifying the source of an infection or outbreak. Population genetic dynamics of B. pseudomallei are particularly complicated relative to other bacterial pathogens, but the work here provides the ability for broad scale population assignment. As there is currently no independent empirical measure of successful population assignment, we provide comprehensive analytical details of our comparisons to enable the reader to evaluate the robustness of population designations and assignments as they pertain to individual research questions. Finer scale subdivision and verification of current population compositions will likely be possible with genotyping data that more comprehensively samples the genome. The approach used here may be valuable for other non-clonal pathogens that lack simple group-defining genetic characteristics and provides a rapid reference for epidemiologists wishing to track the origin of infection without the need to compile population data and learn population assignment algorithms.
STS-70 Crew in front of Discovery post landing
NASA Technical Reports Server (NTRS)
1995-01-01
STS-70 crew members give a 'thumbs up' to press representatives and others waiting to greet them on Runway 33 of KSC's Shuttle Landing Facility after the conclusion of their successful flight on the Space Shuttle Discovery. From left, are Commander Terence 'Tom' Henricks, Mission Specialists Mary Ellen Weber, Nancy Jane Currie and Donald A. Thomas, and Pilot Kevin R. Kregel. Discovery landed on orbit 143. Main gear touchdown was unofficially listed at 8:02 a.m. EDT on July 22, 1995. Both opportunities for a KSC touchdown on the scheduled landing date, July 21, were waived off because of fog and low visibility conditions at the Shuttle Landing Facility. The first opportunity on July 22 at KSC also was waived off. STS-70 was the 24th landing at KSC and the 70th Space Shuttle mission. During the eight-day, 22-hour flight, the crew deployed a Tracking and Data Relay Satellite-G (TDRS-G) and performed many experiments. STS-70 also was the maiden flight of the new Block I orbiter main engine, which flew in the number one position. The other two engines were of the existing Phase II design.
STS-103 M.S. Steven Smith during TCDT activities
NASA Technical Reports Server (NTRS)
1999-01-01
STS-103 Mission Specialist Steven L. Smith gets ready to practice driving a small armored personnel carrier that is part of emergency egress training during Terminal Countdown Demonstration Test (TCDT) activities. The tracked vehicle could be used by the crew in the event of an emergency at the pad during which the crew must make a quick exit from the area. The TCDT also provides simulated countdown exercises and opportunities to inspect the mission payloads in the orbiter's payload bay. STS-103 is a 'call-up' mission due to the need to replace and repair portions of the Hubble Space Telescope. Although Hubble is operating normally and conducting its scientific observations, only three of its six gyroscopes are working properly. Four EVA's are planned to make the necessary repairs and replacements on the telescope. The other STS-103 crew members are Commander Curtis L. Brown Jr., Pilot Scott J. Kelly, and Mission Specialists John M. Grunsfeld (Ph.D.), C. Michael Foale (Ph.D.), (Ph.D.), and Claude Nicollier of Switzerland and Jean-Frangois Clervoy of France, who are with the European Space Agency. The mission is targeted for launch Dec. 6 at 2:37 a.m. EST.
Hotier, S; Leroy, F; Boisgontier, J; Laidi, C; Mangin, J-F; Delorme, R; Bolognani, F; Czech, C; Bouquet, C; Toledano, E; Bouvard, M; Petit, J; Mishchenko, M; d'Albis, M-A; Gras, D; Gaman, A; Scheid, I; Leboyer, M; Zalla, T; Houenou, J
2017-11-01
The posterior superior temporal sulcus (pSTS) plays a critical role in the 'social brain'. Its neurodevelopment and relationship with the social impairment in autism spectrum disorders (ASD) are not well understood. We explored the relationship between social cognition and the neurodevelopment of the pSTS in ASD. We included 44 adults with high-functioning ASD and 36 controls. We assessed their performances on the 'Reading the mind in the eyes' test (for 34 of 44 subjects with ASD and 30 of 36 controls), their fixation time on the eyes with eye tracking (for 35 of 44 subjects with ASD and 30 of 36 controls) and the morphology of the caudal branches of the pSTS (length and depth), markers of the neurodevelopment, with structural MRI. The right anterior caudal ramus of the pSTS was significantly longer in patients with ASD compared with controls (52.6 mm vs. 38.3 mm; P = 1.4 × 10 -3 ; Cohen's d = 0.76). Its length negatively correlated with fixation time on the eyes (P = 0.03) in the ASD group and with the 'Reading the mind in the eyes' test scores in both groups (P = 0.03). Our findings suggest that the neurodevelopment of the pSTS is related to the ASD social impairments. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
NASA Technical Reports Server (NTRS)
2001-01-01
The Space Shuttle Atlantis, STS-110 mission, deployed this railcar, called the Mobile Transporter, and an initial 43-foot section of track, the S0 (S-zero) truss, preparing the International Space Station (ISS) for future spacewalks. The first railroad in space, the Mobile Transporter will allow the Station's robotic arm to travel up and down the finished truss for future assembly and maintenance. The 27,000-pound S0 truss is the first of 9 segments that will make up the Station's external framework that will eventually stretch 356 feet (109 meters), or approximately the length of a football field. The completed truss structure will hold solar arrays and radiators to provide power and cooling for additional international research laboratories from Japan and Europe that will be attached to the Station. The Space Shuttle Orbiter Atlantis, STS-110 mission, was launched April 8, 2002 and returned to Earth April 19, 2002. STS-110's Extravehicular Activity (EVA) marked the first use of the Station's robotic arm to maneuver spacewalkers around the Station.
STS-92 Mission Specialist McArthur is ready to take his turn driving the M-113
NASA Technical Reports Server (NTRS)
2000-01-01
STS-92 Mission Specialist Bill McArthur gets ready to take his turn at driving the M-113, part of emergency egress training during Terminal Countdown Demonstration Test (TCDT) activities. Behind him (left) is Mission Specialist Jeff Wisoff, waiting his turn to drive along with other unidentified crew members. The tracked vehicle could be used by the crew in the event of an emergency at the pad during which the crew must make a quick exit from the area. The TCDT also provides simulated countdown exercises and opportunities to inspect the mission payloads in the orbiter's payload bay. STS-92 is scheduled to launch Oct. 5 at 9:30 p.m. EDT on the fifth flight to the International Space Station. It will carry two elements of the Space Station, the Integrated Truss Structure Z1 and the third Pressurized Mating Adapter. The mission is also the 100th flight in the Shuttle program.
STS-92 Mission Specialist Wakata completes his turn driving the M-113
NASA Technical Reports Server (NTRS)
2000-01-01
STS-92 Mission Specialist Koichi Wakata of Japan signals a successful driving lesson on the M-113 he is in. Capt. George Hoggard, trainer with the KSC Fire Department, sits on top. Behind Wakata are Commander Brian Duffy (left) and Leroy Chiao (right), waiting their turns. The practice drive is part of emergency egress training during Terminal Countdown Demonstration Test (TCDT) activities. The tracked vehicle could be used by the crew in the event of an emergency at the pad during which the crew must make a quick exit from the area. The TCDT also provides simulated countdown exercises and opportunities to inspect the mission payloads in the orbiter's payload bay. STS-92 is scheduled to launch Oct. 5 at 9:30 p.m. EDT on the fifth flight to the International Space Station. It will carry two elements of the Space Station, the Integrated Truss Structure Z1 and the third Pressurized Mating Adapter. The mission is also the 100th flight in the Shuttle program.
Radiation Effects on Nematodes: Results from IML-1 Esperiments
NASA Technical Reports Server (NTRS)
Nelson, G. A.; Schubert, W. W.; Kazarians, G. A.; Righards, G. F.; Benton, E. V; Benton, E. R.; Henke, R.
1993-01-01
The nematode Caenorhabditis elegans was exposed to natural space radiation using the ESA Biorack facility aboard Spacelab on International Microgravity Laboratory 1, STS-42. For the major experimental objective dormant animals were suspended in buffer or on agar or immobilized next to CR-39 plactic nuclear track detectors to correlate fluence of HZE particles with genetic events.
Cast Glance Near Infrared Imaging Observations of the Space Shuttle During Hypersonic Re-Entry
NASA Technical Reports Server (NTRS)
Tack, Steve; Tomek, Deborah M.; Horvath, Thomas J.; Verstynen, Harry A.; Shea, Edward J.
2010-01-01
High resolution calibrated infrared imagery of the Space Shuttle was obtained during hypervelocity atmospheric entries of the STS-119, STS-125 and STS128 missions and has provided information on the distribution of surface temperature and the state of the airflow over the windward surface of the Orbiter during descent. This data collect was initiated by NASA s Hypersonic Thermodynamic Infrared Measurements (HYTHIRM) team and incorporated the use of air- and land-based optical assets to image the Shuttle during atmospheric re-entry. The HYTHIRM objective is to develop and implement a set of mission planning tools designed to establish confidence in the ability of an existing optical asset to reliably acquire, track and return global quantitative surface temperatures of the Shuttle during entry. On Space Shuttle Discovery s STS-119 mission, NASA flew a specially modified thermal protection system tile and instrumentation package to monitor heating effects from boundary layer transition during re-entry. On STS-119, the windward airflow on the port wing was deliberately disrupted by a four-inch wide and quarter-inch tall protuberance built into the modified tile. In coordination with this flight experiment, a US Navy NP-3D Orion aircraft was flown 28 nautical miles below Discovery and remotely monitored surface temperature of the Orbiter at Mach 8.4 using a long-range infrared optical package referred to as Cast Glance. Approximately two months later, the same Navy Cast Glance aircraft successfully monitored the surface temperatures of the Orbiter Atlantis traveling at approximately Mach 14.3 during its return from the successful Hubble repair mission. In contrast to Discovery, Atlantis was not part of the Boundary Layer Transition (BLT) flight experiment, thus the vehicle was not configured with a protuberance on the port wing. In September 2009, Cast Glance was again successful in capturing infrared imagery and monitoring the surface temperatures on Discovery s next flight, STS-128. Again, NASA flew a specially modified thermal protection system tile and instrumentation package to monitor heating effects from boundary layer transition during re-entry. During this mission, Cast Glance was able to image laminar and turbulent flow phenomenology optimizing data collection for Mach 14.7. The purpose of this paper is to describe key elements associated with STS-119/125/128 mission planning and execution from the perspective of the Cast Glance flight crew that obtained the imagery. The paper will emphasize a human element of experience, expertise and adaptability seamlessly coupled with Cast Glance system and sensor technology required to manually collect the required imagery. Specific topics will include a near infrared (NIR) camera upgrade that was implemented just prior to the missions, how pre-flight radiance modeling was utilized to optimize the IR sensor configuration, communications, the development of aircraft test support positions based upon Shuttle trajectory information, support to contingencies such as Shuttle one orbit wave-offs/west coast diversions and then the Cast Glance perspective during an actual Shuttle imaging mission.
STS-53 Space Shuttle mission report
NASA Technical Reports Server (NTRS)
Fricke, Robert W., Jr.
1993-01-01
The STS-53 Space Shuttle Program Mission Report provides a summary of the Orbiter, External Tank (ET), Solid Rocket Booster/Redesigned Solid Rocket Motor (SRB/RSRM), and the Space Shuttle Main Engine (SSME) subsystems performance during the fifty-second flight of the Space Shuttle Program, and the fifteenth flight of the Orbiter vehicle Discovery (OV-103). In addition to the Orbiter, the flight vehicle consisted of an ET, which was designated as ET-49/LWT-42; three SSME's, which were serial numbers 2024, 2012, and 2017 in positions 1, 2, and 3, respectively; and two SRB's, which were designated BI-055. The lightweight RSRM's that were installed in each SRB were designated 360L028A for the left SRB, and 360L028B for the right SRB. The primary objective of this flight was to successfully deploy the Department of Defense 1 (DOD-1) payload. The secondary objectives of this flight were to perform the operations required by the Glow Experiment/Cryogenic Heat Pipe Experiment Payload (GCP); the Hand-Held, Earth-Oriented, Real-Time, Cooperative, User-Friendly, Location-Targeting and Environmental System (HERCULES); the Space Tissue Loss (STL); the Battlefield Laser Acquisition Sensor Test (BLAST); the Radiation Monitoring Equipment-III (RME-III); the Microcapsules in Space-1 (MIS-1); the Visual Function Tester-2 (VFT-2); the Cosmic Radiation Effects and Activation Monitor (CREAM); the Clouds Logic to Optimize Use of Defense Systems-1A (CLOUDS-1A); the Fluids Acquisition and Resupply Experiment (FARE); and the Orbital Debris Radar Calibration Spheres (ODERACS). In addition to presenting a summary of subsystem performance, this report also discusses each Orbiter, ET, SSME, SRB, and RSRM in-flight anomaly in the applicable section of the report. Listed in the discussion of each anomaly is the officially assigned tracking number as published by each Project Office in their respective Problem Tracking List. All times given in this report are in Greenwich mean time (G.m.t.) as well as mission elapsed time (MET).
STS-53 Space Shuttle mission report
NASA Astrophysics Data System (ADS)
Fricke, Robert W., Jr.
1993-02-01
The STS-53 Space Shuttle Program Mission Report provides a summary of the Orbiter, External Tank (ET), Solid Rocket Booster/Redesigned Solid Rocket Motor (SRB/RSRM), and the Space Shuttle Main Engine (SSME) subsystems performance during the fifty-second flight of the Space Shuttle Program, and the fifteenth flight of the Orbiter vehicle Discovery (OV-103). In addition to the Orbiter, the flight vehicle consisted of an ET, which was designated as ET-49/LWT-42; three SSME's, which were serial numbers 2024, 2012, and 2017 in positions 1, 2, and 3, respectively; and two SRB's, which were designated BI-055. The lightweight RSRM's that were installed in each SRB were designated 360L028A for the left SRB, and 360L028B for the right SRB. The primary objective of this flight was to successfully deploy the Department of Defense 1 (DOD-1) payload. The secondary objectives of this flight were to perform the operations required by the Glow Experiment/Cryogenic Heat Pipe Experiment Payload (GCP); the Hand-Held, Earth-Oriented, Real-Time, Cooperative, User-Friendly, Location-Targeting and Environmental System (HERCULES); the Space Tissue Loss (STL); the Battlefield Laser Acquisition Sensor Test (BLAST); the Radiation Monitoring Equipment-III (RME-III); the Microcapsules in Space-1 (MIS-1); the Visual Function Tester-2 (VFT-2); the Cosmic Radiation Effects and Activation Monitor (CREAM); the Clouds Logic to Optimize Use of Defense Systems-1A (CLOUDS-1A); the Fluids Acquisition and Resupply Experiment (FARE); and the Orbital Debris Radar Calibration Spheres (ODERACS). In addition to presenting a summary of subsystem performance, this report also discusses each Orbiter, ET, SSME, SRB, and RSRM in-flight anomaly in the applicable section of the report. Listed in the discussion of each anomaly is the officially assigned tracking number as published by each Project Office in their respective Problem Tracking List. All times given in this report are in Greenwich mean time (G.m.t.) as well as mission elapsed time (MET).
NASA Technical Reports Server (NTRS)
Olson, L.; Sunkel, J. W.
1982-01-01
An overview of the ascent trajectory and GN&C (guidance, navigation, and control) system design is followed by a summary of flight test results for the ascent phase of STS-1. The most notable variance from nominal pre-flight predictions was the lofted trajectory observed in first stage due to an unanticipated shift in pitch aerodynamic characteristics from those predicted by wind tunnel tests. The GN&C systems performed as expected on STS-1 throughout powered flight. Following a discussion of the software constants changed for Flight 2 to provide adequate performance margin, a summary of test results from STS-2 and STS-3 is presented. Vehicle trajectory response and GN&C system behavior were very similar to STS-1. Ascent aerodynamic characteristics extracted from the first two test flights were included in the data base used to design the first stage steering and pitch trim profiles for STS-3.
STS-68 Space Shuttle mission report
NASA Technical Reports Server (NTRS)
Fricke, Robert W., Jr.
1995-01-01
The STS-68 Space Shuttle Program Mission Report summarizes the Payload activities as well as the Orbiter, External Tank (ET), Solid Rocket Booster (SRB), Redesigned Solid Rocket Motor (RSRM), and the Space Shuttle main engine (SSME) systems performance during the sixty-fifth flight of the Space Shuttle Program and the seventh flight of the Orbiter vehicle Endeavour (OV-105). In addition to the Orbiter, the flight vehicle consisted of an ET that was designated ET-65; three SSMEs that were designated as serial numbers 2028, 2033, and 2026 in positions 1, 2, and 3, respectively; and two SRBs that were designated BI-067. The RSRMs that were installed in each SRB were designated as 360W040A for the left SRB and 360W040B for the right SRB. The primary objective of this flight was to successfully perform the operations of the Space Radar Laboratory-2 (SRL-2). The secondary objectives of the flight were to perform the operations of the Chromosome and Plant Cell Division in Space (CHROMEX), the Commercial Protein Crystal Growth (CPCG), the Biological Research in Canisters (BRIC), the Cosmic Radiation Effects and Activation Monitor (CREAM), the Military Application of Ship Tracks (MAST), and five Get-Away Special (GAS) payloads.
1999-04-27
While Capt. Steve Kelly, with Space Gateway Support, keeps watch from the top of the vehicle, STS-96 Pilot Rick Douglas Husband practices driving the small armored personnel carrier that is part of emergency egress training during Terminal Countdown Demonstration Test (TCDT) activities. Behind them are (from left) Mission Specialist Daniel Barry (M.D., Ph.D.), Commander Kent V. Rominger and Mission Specialist Tamara E. Jernigan (Ph.D.). The tracked vehicle could be used by the crew in the event of an emergency at the pad during which the crew must make a quick exit from the area. The TCDT also provides simulated countdown exercises and opportunities to inspect the mission payloads in the orbiter's payload bay. Other crew members taking part in the TCDT are Mission Specialists Ellen Ochoa (Ph.D.), Julie Payette, with the Canadian Space Agency, and Valery Ivanovich Tokarev, with the Russian Space Agency. Mission STS-96, which is scheduled for liftoff on May 20 at 9:32 a.m., is a logistics and resupply mission for the International Space Station, carrying such payloads as a Russian crane, the Strela; a U.S.-built crane; the Spacehab Oceaneering Space System Box (SHOSS), a logistics items carrier; and STARSHINE, a student-led experiment
1999-04-27
STS-96 Mission Specialist Julie Payette (right) practices driving a small armored personnel carrier that is part of emergency egress training during Terminal Countdown Demonstration Test (TCDT) activities. The tracked vehicle could be used by the crew in the event of an emergency at the pad during which the crew must make a quick exit from the area. The TCDT also provides simulated countdown exercises and opportunities to inspect the mission payloads in the orbiter's payload bay. At left are Mission Specialist Valery Ivanovich Tokarev, with the Russian Space Agency, and Pilot Rick Douglas Husband. Payette is with the Canadian Space Agency. Riding on the front of the carrier is Capt. Steve Kelly, with Space Gateway Support, who is assisting the crew with their training. Other crew members are Commander Kent V. Rominger and Mission Specialists Ellen Ochoa (Ph.D.), Tamara E. Jernigan (Ph.D.), and Daniel Barry (M.D., Ph.D.). Mission STS-96 is a logistics and resupply mission for the International Space Station, carrying such payloads as a Russian crane, the Strela; a U.S.-built crane; the Spacehab Oceaneering Space System Box (SHOSS), a logistics items carrier; and STARSHINE, a student-led experiment
1999-04-27
Under the guidance of Capt. Steve Kelly (left), with Space Gateway Support, STS-96 Mission Specialist Daniel Barry (right) practices driving the small armored personnel carrier that is part of emergency egress training during Terminal Countdown Demonstration Test (TCDT) activities. At the rear of the carrier are Pilot Rick Douglas Husband and Mission Specialists Tamara E. Jernigan (Ph.D.) and Ellen Ochoa (Ph.D.). The tracked vehicle could be used by the crew in the event of an emergency at the pad during which the crew must make a quick exit from the area. The TCDT also provides simulated countdown exercises and opportunities to inspect the mission payloads in the orbiter's payload bay. Other crew members taking part in the TCDT are Commander Kent V. Rominger and Mission Specialists Julie Payette, with the Canadian Space Agency, and Valery Ivanovich Tokarev, with the Russian Space Agency. Mission STS-96, which is scheduled for liftoff on May 20 at 9:32 a.m., is a logistics and resupply mission for the International Space Station, carrying such payloads as a Russian crane, the Strela; a U.S.-built crane; the Spacehab Oceaneering Space System Box (SHOSS), a logistics items carrier; and STARSHINE, a student-led experiment
1999-04-27
Capt. Steve Kelly (left), with Space Gateway Support, explains to STS-96 Mission Specialist Valery Ivanovich Tokarev the use of the small armored personnel carrier that is part of emergency egress training during Terminal Countdown Demonstration Test (TCDT) activities. Behind him are Commander Kent V. Rominger and Mission Specialist Ellen Ochoa (Ph.D.). The tracked vehicle could be used by the crew in the event of an emergency at the pad during which the crew must make a quick exit from the area. The TCDT also provides simulated countdown exercises and opportunities to inspect the mission payloads in the orbiter's payload bay. Other crew members taking part in the TCDT are Pilot Rick Douglas Husband and Mission Specialists Tamara E. Jernigan (Ph.D.), Daniel Barry (M.D., Ph.D.), and Julie Payette, with the Canadian Space Agency. Tokarev is with the Russian Space Agency. Mission STS-96, which is scheduled for liftoff on May 20 at 9:32 a.m., is a logistics and resupply mission for the International Space Station, carrying such payloads as a Russian crane, the Strela; a U.S.-built crane; the Spacehab Oceaneering Space System Box (SHOSS), a logistics items carrier; and STARSHINE, a student-led experiment
STS-70 Discovery launch startling the birds
NASA Technical Reports Server (NTRS)
1995-01-01
Startled birds scatter as the stillness of a summer morning is broken by a giant's roar. The Space Shuttle Discovery thundered into space from launch Pad 39-B at 9:41:55:078 a.m. EDT. STS-70 is the 70th Shuttle flight overall, the 21st for Discovery (OV- 103), and the fourth Shuttle flight in 1995. On board for the nearly eight-day mission are a crew of five: Commander Terence 'Tom' Hendricks; Pilot Kevin R. Kregel; and Mission Specialists Nancy Jane Currie, Donald A. Thomas and Mary Ellen Weber. The crew's primary objective is to deploy the Tracking and Data Relay Satellite-G (TDRS-G), which will join a constellation of other TDRS spacecraft already on orbit.
STS-70 Discovery launch startled birds at ignition
NASA Technical Reports Server (NTRS)
1995-01-01
Startled birds scatter as the stillness of a summer morning is broken by a giant's roar. The Space Shuttle Discovery thundered into space from launch Pad 39-B at 9:41:55:078 a.m. EDT. STS-70 is the 70th Shuttle flight overall, the 21st for Discovery (OV- 103), and the fourth Shuttle flight in 1995. On board for the nearly eight-day mission are a crew of five: Commander Terence 'Tom' Hendricks; Pilot Kevin R. Kregel; and Mission Specialists Nancy Jane Currie, Donald A. Thomas and Mary Ellen Weber. The crew's primary objective is to deploy the Tracking and Data Relay Satellite-G (TDRS-G), which will join a constellation of other TDRS spacecraft already on orbit.
STS-114: Discovery Impromptu Briefing
NASA Technical Reports Server (NTRS)
2005-01-01
Dr. Griffin, NASA Administrator, is accompanied by members of The U.S. House of Representatives in this STS-114 Discovery Impromptu briefing. The U.S. House of Representatives present include: Sherwood Boehlert, House Science Committee Chairman, Senator Hutchinson, Sheila Jackson, 18th Congressional District Texas, Al Green, 9th Congressional District, Representative Jim Davis, Florida, and Gene Green, 29th District, Texas. Griffin talks about the problem that occurred with the external fuel tank sensor of the Space Shuttle Discovery and the effort NASA is pursuing to track the problem, and identify the root cause. He answers questions from the news media about the next steps for the Space Shuttle Discovery, time frame for the launch, and activities for the astronauts for the next few days.
Development of the Systems Thinking Scale for Adolescent Behavior Change.
Moore, Shirley M; Komton, Vilailert; Adegbite-Adeniyi, Clara; Dolansky, Mary A; Hardin, Heather K; Borawski, Elaine A
2018-03-01
This report describes the development and psychometric testing of the Systems Thinking Scale for Adolescent Behavior Change (STS-AB). Following item development, initial assessments of understandability and stability of the STS-AB were conducted in a sample of nine adolescents enrolled in a weight management program. Exploratory factor analysis of the 16-item STS-AB and internal consistency assessments were then done with 359 adolescents enrolled in a weight management program. Test-retest reliability of the STS-AB was .71, p = .03; internal consistency reliability was .87. Factor analysis of the 16-item STS-AB indicated a one-factor solution with good factor loadings, ranging from .40 to .67. Evidence of construct validity was supported by significant correlations with established measures of variables associated with health behavior change. We provide beginning evidence of the reliability and validity of the STS-AB to measure systems thinking for health behavior change in young adolescents.
Development of the Systems Thinking Scale for Adolescent Behavior Change
Moore, Shirley M.; Komton, Vilailert; Adegbite-Adeniyi, Clara; Dolansky, Mary A.; Hardin, Heather K.; Borawski, Elaine A.
2017-01-01
This report describes the development and psychometric testing of the Systems Thinking Scale for Adolescent Behavior Change (STS-AB). Following item development, initial assessments of understandability and stability of the STS-AB were conducted in a sample of nine adolescents enrolled in a weight management program. Exploratory factor analysis of the 16-item STS-AB and internal consistency assessments were then done with 359 adolescents enrolled in a weight management program. Test–retest reliability of the STS-AB was .71, p = .03; internal consistency reliability was .87. Factor analysis of the 16-item STS-AB indicated a one-factor solution with good factor loadings, ranging from .40 to .67. Evidence of construct validity was supported by significant correlations with established measures of variables associated with health behavior change. We provide beginning evidence of the reliability and validity of the STS-AB to measure systems thinking for health behavior change in young adolescents. PMID:28303755
STS-46 Space Shuttle mission report
NASA Astrophysics Data System (ADS)
Fricke, Robert W.
1992-10-01
The STS-46 Space Shuttle Program Mission Report contains a summary of the Orbiter, External Tank (ET), Solid Rocket Booster/Redesigned Solid Rocket Motor (SRB/RSRM), and the Space Shuttle main engine (SSME) subsystem performance during the forty-ninth flight of the Space Shuttle Program, and the twelfth flight of the Orbiter vehicle Atlantis (OV-104). In addition to the Atlantis vehicle, the flight vehicle consisted of the following: an ET, designated ET-48 (LWT-41); three SSME's, which were serial numbers 2032, 2033, and 2027 in positions 1, 2, and 3, respectively; and two SRB's which were designated BI-052. The lightweight/redesigned SRM's that were installed in each SRB were designated 360W025A for the left RSRM and 360L025B for the right RSRM. The primary objective of this flight was to successfully deploy the European Retrievable Carrier (EURECA) payload and perform the operations of the Tethered Satellite System-1 (TSS-1) and the Evaluation of Oxygen Interaction with Material 3/Thermal Energy Management Processes 2A-3 (EOIM-3/TEMP 2A-3). The secondary objectives of this flight were to perform the operations of the IMAX Cargo Bay Camera (ICBC), Consortium for Material Development in Space Complex Autonomous Payload-2 and 3 (CONCAP-2 and CONCAP-3), Limited Duration Space Environment Candidate Materials Exposure (LDCE), Pituitary Growth Hormone Cell Function (PHCF), and Ultraviolet Plume Instrumentation (UVPI). In addition to summarizing subsystem performance, this report also discusses each Orbiter, ET, SSME, SRB, and RSRM in-flight anomaly in the applicable section of the report. Also included in the discussion is a reference to the assigned tracking number as published on the Problem Tracking List. All times are given in Greenwich mean time (G.m.t.) as well as mission elapsed time (MET).
STS-46 Space Shuttle mission report
NASA Technical Reports Server (NTRS)
Fricke, Robert W.
1992-01-01
The STS-46 Space Shuttle Program Mission Report contains a summary of the Orbiter, External Tank (ET), Solid Rocket Booster/Redesigned Solid Rocket Motor (SRB/RSRM), and the Space Shuttle main engine (SSME) subsystem performance during the forty-ninth flight of the Space Shuttle Program, and the twelfth flight of the Orbiter vehicle Atlantis (OV-104). In addition to the Atlantis vehicle, the flight vehicle consisted of the following: an ET, designated ET-48 (LWT-41); three SSME's, which were serial numbers 2032, 2033, and 2027 in positions 1, 2, and 3, respectively; and two SRB's which were designated BI-052. The lightweight/redesigned SRM's that were installed in each SRB were designated 360W025A for the left RSRM and 360L025B for the right RSRM. The primary objective of this flight was to successfully deploy the European Retrievable Carrier (EURECA) payload and perform the operations of the Tethered Satellite System-1 (TSS-1) and the Evaluation of Oxygen Interaction with Material 3/Thermal Energy Management Processes 2A-3 (EOIM-3/TEMP 2A-3). The secondary objectives of this flight were to perform the operations of the IMAX Cargo Bay Camera (ICBC), Consortium for Material Development in Space Complex Autonomous Payload-2 and 3 (CONCAP-2 and CONCAP-3), Limited Duration Space Environment Candidate Materials Exposure (LDCE), Pituitary Growth Hormone Cell Function (PHCF), and Ultraviolet Plume Instrumentation (UVPI). In addition to summarizing subsystem performance, this report also discusses each Orbiter, ET, SSME, SRB, and RSRM in-flight anomaly in the applicable section of the report. Also included in the discussion is a reference to the assigned tracking number as published on the Problem Tracking List. All times are given in Greenwich mean time (G.m.t.) as well as mission elapsed time (MET).
STS-40 Exp. No. 192 urine monitoring system (UMS) on OV-102's middeck
1991-06-14
STS040-04-036 (5-14 June 1991) --- Closeup view of urine monitoring system and test samples, part of the busy schedule of life sciences testing on the nine-day STS-40/Spacelab Life Sciences (SLS-1) mission aboard the earth-orbiting Columbia.
STS-64 Space Shuttle mission report
NASA Technical Reports Server (NTRS)
Fricke, Robert W., Jr.
1995-01-01
The STS-64 Space Shuttle Program Mission Report summarizes the Payload activities as well as the Orbiter, External Tank (ET), Solid Rocket Booster (SRB), Redesigned Solid Rocket Motor (RSRM), and the Space Shuttle main engine (SSME) systems performance during the sixty-fourth flight of the Space Shuttle Program and the nineteenth flight of the Orbiter vehicle Discovery (OV-103). In addition to the Orbiter, the flight vehicle consisted of an ET that was designated ET-66; three SSMEs that were designated as serial numbers 2031, 2109, and 2029 in positions 1, 2, and 3, respectively; and two SRB's that were designated Bl-068. The RSRM's that were installed in each SRB were designated as 360L041 A for the left SRB, and 360L041 B for the right SRB. The primary objective of this flight was to successfully perform the planned operations of the Lidar In-Space Technology Experiment (LITE), and to deploy the Shuttle Pointed Autonomous Research Tool for Astronomy (SPARTAN) -201 payload. The secondary objectives were to perform the planned activities of the Robot Operated Materials Processing System (ROMPS), the Shuttle Amateur Radio Experiment - 2 (SAREX-2), the Solid Surface Combustion Experiment (SSCE), the Biological Research in Canisters (BRIC) experiment, the Radiation Monitoring Equipment-3 (RME-3) payload, the Military Application of Ship Tracks (MAST) experiment, and the Air Force Maui Optical Site Calibration Test (AMOS) payload.
View from the back of the Flight control room of Mission control center
1984-10-06
View from the back of the Mission Control Center (MCC). Visible are the Flight Directors console (left front), the CAPCOM console (right front) and the Payloads console. Some of the STS 41-G crew can be seen on a large screen at the front of the MCC along with a map tracking the progress of the orbiter.
Qatar's School Transportation System: Supporting Safety, Efficiency, and Service Quality. Monograph
ERIC Educational Resources Information Center
Henry, Keith; Younossi, Obaid; Al-Dafa, Maryah; Culbertson, Shelly; Mattock, Michael G.; Light, Thomas; Rohr, Charlene
2012-01-01
In consideration of the many challenges associated with Qatar's continued growth and demographic changes, the government of Qatar is interested in updating its school transportation system (STS). This volume assesses the perspectives of parents and school administrators on Qatar's STS, identifies a vision and goals for the STS, reviews…
Safety policy and requirements for payloads using the space transportation system
NASA Technical Reports Server (NTRS)
1989-01-01
The safety policy and requirements are established applicable to the Space Transportation System (STS) payloads and their ground support equipment (GSE). The requirements are intended to protect flight and ground personnel, the STS, other payloads, GSE, the general public, public-private property, and the environment from payload-related hazards. The technical and system safety requirements applicable to STS payloads (including payload-provided ground and flight supports systems) during ground and flight operations are contained.
TDRSS S-shuttle unique receiver equipment
NASA Astrophysics Data System (ADS)
Weinberg, A.; Schwartz, J. J.; Spearing, R.
1985-01-01
Beginning with STS-9, the Tracking and Date Relay Satellite system (TDRSS) will start providing S- and Ku-band communications and tracking support to the Space Shuttle and its payloads. The most significant element of this support takes place at the TDRSS White Sands Ground Terminal, which processes the Shuttle return link S- and Ku-band signals. While Ku-band hardware available to other TDRSS users is also applied to Ku-Shuttle, stringent S-Shuttle link margins have precluded the application of the standard TDRSS S-band processing equipment to S-Shuttle. It was therfore found necessary to develop a unique S-Shuttle Receiver that embodies state-of-the-art digital technology and processing techniques. This receiver, developed by Motorola, Inc., enhances link margins by 1.5 dB relative to the standard S-band equipment and its bit error rate performance is within a few tenths of a dB of theory. An overview description of the Space Shuttle Receiver Equipment (SSRE) is presented which includes the presentation of block diagrams and salient design features. Selected, measured performance results are also presented.
STS-99 Shuttle Radar Topography Mission Stability and Control
NASA Technical Reports Server (NTRS)
Hamelin, Jennifer L.; Jackson, Mark C.; Kirchwey, Christopher B.; Pileggi, Roberto A.
2001-01-01
The Shuttle Radar Topography Mission (SRTM) flew aboard Space Shuttle Endeavor February 2000 and used interferometry to map 80% of the Earth's landmass. SRTM employed a 200-foot deployable mast structure to extend a second antenna away from the main antenna located in the Shuttle payload bay. Mapping requirements demanded precision pointing and orbital trajectories from the Shuttle on-orbit Flight Control System (PCS). Mast structural dynamics interaction with the FCS impacted stability and performance of the autopilot for attitude maneuvers and pointing during mapping operations. A damper system added to ensure that mast tip motion remained with in the limits of the outboard antenna tracking system while mapping also helped to mitigate structural dynamic interaction with the FCS autopilot. Late changes made to the payload damper system, which actually failed on-orbit, required a redesign and verification of the FCS autopilot filtering schemes necessary to ensure rotational control stability. In-flight measurements using three sensors were used to validate models and gauge the accuracy and robustness of the pre-mission notch filter design.
1988-10-03
STS026-43-082 (29 Sept. - 3 Oct. 1988) --- This 70mm northerly oriented frame over the Pacific Ocean features the Hawaiian Islands chain. The islands perturb the prevailing northeasterly winds producing extensive cloud wakes in the lee of the islands. Photo experts feel that atmospheric haze in the Hawaii wake is probably a result of the continuing eruptions of Kilauea volcano on the southeast coast. From the lower right corner in a diagonal directed upward to the north are the islands of Nihau, Kauai, Oahu, Molokai, Lanai, Maui, Kahoolawe, and Hawaii. This photo was shown during the post-flight press conference on October 11, 1988 by the STS-26 astronauts, who at one time during the flight wore Hawaiian attire to pay tribute to the working staff of the Hawaii tracking station.
NASA Technical Reports Server (NTRS)
On, F. J.
1983-01-01
A comparative evaluation of the Space Transportation System (STS)-3 flight and acoustic test random vibration response of the Office of Space Science-1 (OSS-1) payload is presented. The results provide insight into the characteristics of vibroacoustic response of pallet payload components in the payload bay during STS flights.
STS/Spacelab payload utilization planning study: Executive summary
NASA Technical Reports Server (NTRS)
1976-01-01
The planning process recommended to meet the orbital flight requirements for the Space Transportation System and payload development, procurement, operations, and support leading to authorization and funding of STS and payload project activities is described. The rationale and rp primary products of STS utilization planning are summarized along with the implementation of the system. Major recommendations of the study are included.
STS-39 SPAS-II IBSS is grappled by remote manipulator system (RMS)
1991-05-06
STS039-19-015 (28 April- 6 May 1991) --- This STS-39 35mm scene shows the Strategic Defense Initiative Organization (SDIO) Shuttle Pallet Satellite (SPAS-II) on the end of the remote manipulator system (RMS) end effector. During the eight-day flight, SPAS collected data in both a free-flying mode and while attached to the RMS.
NASA Technical Reports Server (NTRS)
Matty, Christopher M.; Cover, John M.
2009-01-01
The International Space Station (ISS) represents a largely closed-system habitable volume which requires active control of atmospheric constituents, including removal of exhaled Carbon Dioxide (CO2). The ISS provides a unique opportunity to observe system requirements for (CO2) removal. CO2 removal is managed by the Carbon Dioxide Removal Assembly (CDRA) aboard the US segment of ISS and by Lithium Hydroxide (LiOH) aboard the Space Shuttle (STS). While the ISS and STS are docked, various methods are used to balance the CO2 levels between the two vehicles, including mechanical air handling and management of general crew locations. Over the course of ISS operation, several unexpected anomalies have occurred which have required troubleshooting, including possible compromised performance of the CDRA and LiOH systems, and possible imbalance in CO2 levels between the ISS and STS while docked. This paper will cover efforts to troubleshoot the CO2 removal systems aboard the ISS and docked STS.
Piazza, Nicolo; Wenaweser, Peter; van Gameren, Menno; Pilgrim, Thomas; Tzikas, Apostolos; Tsikas, Apostolos; Otten, Amber; Nuis, Rutger; Onuma, Yoshinobu; Cheng, Jin Ming; Kappetein, A Pieter; Boersma, Eric; Juni, Peter; de Jaegere, Peter; Windecker, Stephan; Serruys, Patrick W
2010-02-01
Surgical risk scores, such as the logistic EuroSCORE (LES) and Society of Thoracic Surgeons Predicted Risk of Mortality (STS) score, are commonly used to identify high-risk or "inoperable" patients for transcatheter aortic valve implantation (TAVI). In Europe, the LES plays an important role in selecting patients for implantation with the Medtronic CoreValve System. What is less clear, however, is the role of the STS score of these patients and the relationship between the LES and STS. The purpose of this study is to examine the correlation between LES and STS scores and their performance characteristics in high-risk surgical patients implanted with the Medtronic CoreValve System. All consecutive patients (n = 168) in whom a CoreValve bioprosthesis was implanted between November 2005 and June 2009 at 2 centers (Bern University Hospital, Bern, Switzerland, and Erasmus Medical Center, Rotterdam, The Netherlands) were included for analysis. Patient demographics were recorded in a prospective database. Logistic EuroSCORE and STS scores were calculated on a prospective and retrospective basis, respectively. Observed mortality was 11.1%. The mean LES was 3 times higher than the mean STS score (LES 20.2% +/- 13.9% vs STS 6.7% +/- 5.8%). Based on the various LES and STS cutoff values used in previous and ongoing TAVI trials, 53% of patients had an LES > or =15%, 16% had an STS > or =10%, and 40% had an LES > or =20% or STS > or =10%. Pearson correlation coefficient revealed a reasonable (moderate) linear relationship between the LES and STS scores, r = 0.58, P < .001. Although the STS score outperformed the LES, both models had suboptimal discriminatory power (c-statistic, 0.49 for LES and 0.69 for STS) and calibration. Clinical judgment and the Heart Team concept should play a key role in selecting patients for TAVI, whereas currently available surgical risk score algorithms should be used to guide clinical decision making. Copyright (c) 2010 Mosby, Inc. All rights reserved.
Sellers and Fossum on the end of the OBSS during EVA1 on STS-121 / Expedition 13 joint operations
2006-07-08
STS121-323-011 (8 July 2006) --- Astronauts Piers J. Sellers and Michael E. Fossum, STS-121 mission specialists, work in tandem on Space Shuttle Discovery's Remote Manipulator System/Orbiter Boom Sensor System (RMS/OBSS) during the mission's first scheduled session of extravehicular activity (EVA). Also visible on the OBSS are the Laser Dynamic Range Imager (LDRI), Intensified Television Camera (ITVC) and Laser Camera System (LCS).
2002-01-17
KENNEDY SPACE CENTER, FLA. -- Workers in the Vertical Processing Facility look over the Near Infrared Camera and Multi-Object Spectrometer (NICMOS) Cooling System, part of the payload on mission STS-109, the Hubble Servicing Telescope Mission. NICMOS is a new experimental cooling system consisting of a compressor and tiny turbines. With the experimental cryogenic system, NASA hopes to re-cool the infrared detectors to below -315 degrees F (-193 degrees Celsius). NICMOS II was previously tested aboard STS-95 in 1998. It could extend the life of the Hubble Space Telescope by several years. Astronauts aboard Columbia on mission STS-109 will be replacing the original NICMOS with the newer version. Launch of mission STS-109 is scheduled for Feb. 28, 2002
2002-01-17
KENNEDY SPACE CENTER, FLA. -- A closeup view of the Near Infrared Camera and Multi-Object Spectrometer (NICMOS) Cooling System, part of the payload on mission STS-109, the Hubble Servicing Telescope Mission. NICMOS II is a new experimental cooling system consisting of a compressor and tiny turbines. With the experimental cryogenic system, NASA hopes to re-cool the infrared detectors to below -315 degrees F (-193 degrees Celsius). NICMOS II was previously tested aboard STS-95 in 1998. It could extend the life of the Hubble Space Telescope by several years. Astronauts aboard Columbia on mission STS-109 will be replacing the original NICMOS with the newer version. Launch of mission STS-109 is scheduled for Feb. 28, 2002
Tanaka, Kazuhiro; Hasegawa, Tadashi; Nojima, Takayuki; Oda, Yoshinao; Mizusawa, Junki; Fukuda, Haruhiko; Iwamoto, Yukihide
2016-04-18
The correct clinical staging of soft tissue sarcomas (STS) is critical for the selection of treatments. The staging system consists of histological grade of the tumors and French Federation of Cancer Center (FNCLCC) system based on mitotic count is widely used for the grading. In this study, we compared the validity and usefulness of Ki-67 grading system with FNCLCC system in JCOG0304 trial which investigated the efficacy and safety of perioperative chemotherapy with doxorubicin and ifosfamide for STS. All 70 eligible patients with STS in the extremities treated by perioperative chemotherapy in JCOG0304 were analyzed. Univariate and multivariate Cox regression analyses were conducted to investigate an influence on overall survival. The reproducibility of Ki-67 grading system in the histological grading of STS was higher than FNCLCC system (κ = 0.54 [95 % CI 0.39-0.71], and 0.46 [0.32-0.62], respectively). Although FNCLCC grade was not associated with overall survival (OS) in univariate analysis (HR 2.80 [0.74-10.55], p = 0.13), Ki-67 grading system had a tendency to associate with OS in univariate analysis (HR 4.12 [0.89-19.09], p = 0.07) and multivariate analysis with backward elimination (HR 3.51 [0.75-16.36], p = 0.11). This is the first report demonstrating the efficacy of Ki-67 grading system for the patients with STS in the prospective trial. The results indicate that Ki-67 grading system might be useful for the evaluation of histological grade of STS.
2018-01-01
Partial body weight support or loading sit-to-stand (STS) rehabilitation can be useful for persons with lower limb dysfunction to achieve movement again based on the internal residual muscle force and external assistance. To explicate how the muscles contribute to the kinetics and kinematics of STS performance by non-invasive in vitro detection and to nondestructively estimate the muscle contributions to STS training with different loadings, a wearable sensor system was developed with ground reaction force (GRF) platforms, motion capture inertial sensors and electromyography (EMG) sensors. To estimate the internal moments of hip, knee and ankle joints and quantify the contributions of individual muscle and gravity to STS movement, the inverse dynamics analysis on a simplified STS biomechanical model with external loading is proposed. The functional roles of the lower limb individual muscles (rectus femoris (RF), gluteus maximus (GM), vastus lateralis (VL), tibialis anterior (TA) and gastrocnemius (GAST)) during STS motion and the mechanism of the muscles’ synergies to perform STS-specific subtasks were analyzed. The muscle contributions to the biomechanical STS subtasks of vertical propulsion, anteroposterior (AP) braking and propulsion for body balance in the sagittal plane were quantified by experimental studies with EMG, kinematic and kinetic data. PMID:29587391
Liu, Kun; Liu, Yong; Yan, Jianchao; Sun, Zhenyuan
2018-03-25
Partial body weight support or loading sit-to-stand (STS) rehabilitation can be useful for persons with lower limb dysfunction to achieve movement again based on the internal residual muscle force and external assistance. To explicate how the muscles contribute to the kinetics and kinematics of STS performance by non-invasive in vitro detection and to nondestructively estimate the muscle contributions to STS training with different loadings, a wearable sensor system was developed with ground reaction force (GRF) platforms, motion capture inertial sensors and electromyography (EMG) sensors. To estimate the internal moments of hip, knee and ankle joints and quantify the contributions of individual muscle and gravity to STS movement, the inverse dynamics analysis on a simplified STS biomechanical model with external loading is proposed. The functional roles of the lower limb individual muscles (rectus femoris (RF), gluteus maximus (GM), vastus lateralis (VL), tibialis anterior (TA) and gastrocnemius (GAST)) during STS motion and the mechanism of the muscles' synergies to perform STS-specific subtasks were analyzed. The muscle contributions to the biomechanical STS subtasks of vertical propulsion, anteroposterior (AP) braking and propulsion for body balance in the sagittal plane were quantified by experimental studies with EMG, kinematic and kinetic data.
2008-09-03
CAPE CANAVERAL, Fla. – Space shuttle Atlantis stands ready in the Vehicle Assembly Building at NASA’s Kennedy Space Center for the pending rollout to Launch Pad 39A. The Sept. 2 rollout date was postponed due to Tropical Storm Hanna’s shift to a northern track. Managers are closely following Hanna to determine when would be the best time this week to move space shuttle Atlantis to its launch pad. The tentative rollout time is 10 a.m. Sept. 4, depending on the track Hanna follows along the Florida coast. Atlantis is scheduled to launch on the STS-125 mission to service NASA’s Hubble Space Telescope. Launch is targeted for Oct. 8. Photo credit: NASA/Jack Pfaller
STS-97 and Expedition One Crews Pose for Onboard Photo
NASA Technical Reports Server (NTRS)
2000-01-01
In this image, the five STS-97 crew members pose with the 3 members of the Expedition One crew onboard the International Space Station (ISS) for the first ever traditional onboard portrait taken in the Zvezda Service Module. On the front row, left to right, are astronauts Brent W. Jett, Jr., STS-97 commander; William M. Shepherd, Expedition One mission commander; and Joseph R. Tarner, STS-97 mission specialist. On the second row, from the left are Cosmonaut Sergei K. Krikalev, Expedition One flight engineer; astronaut Carlos I. Noriega, STS-97 mission specialist; cosmonaut Yuri P. Gidzenko, Expedition One Soyuz commander; and Michael J. Bloomfield, STS-97 pilot. Behind them is astronaut Marc Garneau, STS-97 mission specialist representing the Canadian Space Agency (CSA). The primary objective of the STS-97 mission was the delivery, assembly, and activation of the U.S. electrical power system onboard the International Space Station (ISS). The electrical power system, which is built into a 73-meter (240-foot) long solar array structure consists of solar arrays, radiators, batteries, and electronics. The entire 15.4-metric ton (17-ton) package is called the P6 Integrated Truss Segment, and is the heaviest and largest element yet delivered to the station aboard a space shuttle. The electrical system will eventually provide the power necessary for the first ISS crews to live and work in the U.S. segment. The STS-97 crew of five launched aboard the Space Shuttle Orbiter Endeavor on November 30, 2000 for an 11 day mission.
1999-04-27
STS-96 Mission Specialist Valery Ivanovich Tokarev practices driving the small armored personnel carrier that is part of emergency egress training during Terminal Countdown Demonstration Test (TCDT) activities. Riding the front of the carrier is Capt. Steve Kelly (left), with Space Gateway Support, who is assisting with the training. Behind them are Pilot Rick Douglas Husband (waving), and Mission Specialists Daniel Barry (M.D., Ph.D.) and Tamara E. Jernigan (Ph.D.) (waving). The tracked vehicle could be used by the crew in the event of an emergency at the pad during which the crew must make a quick exit from the area. The TCDT also provides simulated countdown exercises and opportunities to inspect the mission payloads in the orbiter's payload bay. Other crew members taking part in the TCDT are Commander Kent V. Rominger and Mission Specialists Ellen Ochoa (Ph.D.) and Julie Payette, with the Canadian Space Agency. Tokarev is with the Russian Space Agency. Mission STS-96, which is scheduled for liftoff on May 20 at 9:32 a.m., is a logistics and resupply mission for the International Space Station, carrying such payloads as a Russian crane, the Strela; a U.S.-built crane; the Spacehab Oceaneering Space System Box (SHOSS), a logistics items carrier; and STARSHINE, a student-led experiment
1999-04-27
At right, STS-96 Mission Specialist Tamara E. Jernigan (Ph.D.) practices driving the small armored personnel carrier that is part of emergency egress training during Terminal Countdown Demonstration Test (TCDT) activities. At left is Capt. Steve Kelly, with Space Gateway Support, who is assisting with the training. At the rear of the carrier are (left) Mission Specialist Julie Payette, with the Canadian Space Agency, and Commander Kent V. Rominger (right). The tracked vehicle could be used by the crew in the event of an emergency at the pad during which the crew must make a quick exit from the area. The TCDT also provides simulated countdown exercises and opportunities to inspect the mission payloads in the orbiter's payload bay. Other crew members taking part in the TCDT are Pilot Rick Douglas Husband, and Mission Specialists Ellen Ochoa (Ph.D.), Daniel Barry (M.D., Ph.D.), and Valery Ivanovich Tokarev, who is with the Russian Space Agency. Mission STS-96, which is scheduled for liftoff on May 20 at 9:32 a.m., is a logistics and resupply mission for the International Space Station, carrying such payloads as a Russian crane, the Strela; a U.S.-built crane; the Spacehab Oceaneering Space System Box (SHOSS), a logistics items carrier; and STARSHINE, a student-led experiment
Postflight hardware evaluation 360T026 (RSRM-26, STS-47)
NASA Technical Reports Server (NTRS)
Nielson, Greg
1993-01-01
The final report for the Clearfield disassembly evaluation and a continuation of the KSC postflight assessment for the 360T026 (STS-47) Redesigned Solid Rocket Motor (RSRM) flight set is provided. All observed hardware conditions were documented on PFOR's and are included in Appendices A, B, and C. Appendices D and E contain the measurements and safety factor data for the nozzle and insulation components. This report, along with the KSC Ten-Day Postflight Hardware Evaluation Report (TWR-64203), represents a summary of the 360T026 hardware evaluation. The as-flown hardware configuration is documented in TWR-60472. Disassembly evaluation photograph numbers are logged in TWA-1987. The 360T026 flight set disassembly evaluations described were performed at the RSRM Refurbishment Facility in Clearfield, Utah. The final factory joint demate occurred on 12 April 1993. Detailed evaluations were performed in accordance with the Clearfield Postflight Engineering Evaluation Plan (PEEP), TWR-50051, Revision A. All observations were compared against limits that are also defined in the PEEP. These limits outline the criteria for categorizing the observations as acceptable, reportable, or critical. Hardware conditions that were unexpected and/or determined to be reportable or critical were evaluated by the applicable CPT and tracked through the PFAR system.
Artist concept of the Hubble Space Telescope (HST) after STS-31 deployment
1988-09-21
Artist concept shows the Hubble Space Telescope (HST) placed in orbit above the Earth's distorting layer of atmosphere by Discovery, Orbiter Vehicle (OV) 103, during mission STS-31. Tracking and data relay satellite (TDRS) is visible in the background and ground station is visible below on the Earth's surface. HST is the first of the great observatories to go into service and one of NASA's highest priority scientific spacecraft. Capable of observing in both visible and ultraviolet wavelengths, HST has been termed the most important scientific instrument ever designed for use on orbit. It will literally be able to look back in time, observing the universe as it existed early in its lifetime and providing information on how matter has evolved over the eons. The largest scientific payload ever built, the 12 1/2-ton, 43-foot HST was developed by Lockheed Missiles & Space Company, spacecraft prime contractor, and Perkin-Elmer Corporation, prime contractor for the optical assembly. The European Space Agency (ESA) furnished the power generating solar array and one of the system's five major instruments. Marshall Space Flight Center (MSFC) manages the HST project; Goddard Space Flight Center (GSFC) will be responsible, when the spacecraft is in orbit, for controlling the telescope and processing the images and instrument data returns.
STS-65 Space Shuttle mission report
NASA Technical Reports Server (NTRS)
Fricke, Robert W., Jr.
1994-01-01
The STS-65 Space Shuttle Program Mission Report summarizes the Payload activities as well as the Orbiter, External Tank (ET), Solid Rocket Booster (SRB), Redesigned Solid Rocket Motor (RSRM), and the Space Shuttle main engine (SSME) systems performance during the sixty-third flight of the Space Shuttle Program and the seventeenth flight of the Orbiter vehicle Columbia (OV-102). In addition to the Orbits the flight vehicle consisted of an ET that was designated ET-64; three SSME's that were designated as serial numbers 2019, 2030, and 2017 in positions 1, 2, and 3, respectively; and two SRB's that were designated Bl-066. The RSRM's that were installed in each SRB were designated as 360P039A for the left SRB, and 360W039 for the right SRB. The primary objective of this flight was to complete the operation of the second International Microgravity Laboratory (IML-2). The secondary objectives of this flight were to complete the operations of the Commercial Protein Crystal Growth (CPCG), Orbital Acceleration Research Experiment (OARE), and the Shuttle Amateur Radio Experiment (SAREX) II payloads. Additional secondary objectives were to meet the requirements of the Air Force Maui Optical Site (AMOS) and the Military Application Ship Tracks (MAST) payloads, which were manifested as payloads of opportunity.
NASA Technical Reports Server (NTRS)
Rice, James E.
1998-01-01
The report is organized into sections representing the phases of work performed in analyzing the STS-94 (MSL-IR) results. STS-94 (MSL1R) is a reflight of the STS-83 (MSL-1) mission which was terminated early because of a fuel cell problem. Section I briefly outlines the OARE system features, coordinates, and measurement parameters. Section 2 describes the results from STS-94. The mission description, data calibration, and representative data obtained on STS-94 are presented. Also, the anomalous performance of OARE on STS-94 is discussed. Finally, Section 3 presents a discussion of accuracy achieved and achievable with OARE. Appendix A discuss the calibration and data processing methodology in detail.
NASA Technical Reports Server (NTRS)
Rice, James E.
1996-01-01
The report is organized into sections representing the phases of work performed in analyzing the STS-73 (USML-2) results. Section 1 briefly outlines the Orbital Acceleration Research Experiment (OARE), system features, coordinates, and measurement parameters. Section 2 describes the results from STS-73. The mission description, data calibration, and representative data obtained on STS-73 are presented. Also, the anomalous performance of OARE on STS-73 is discussed. Finally, Section 3 presents a discussion of accuracy achieved and achievable with OARE.
OARE STS-75 (USMP-3) Final Report
NASA Technical Reports Server (NTRS)
Rice, James E.
1996-01-01
The report is organized into sections representing the phases of work performed in analyzing the STS-75 (USMP-3) results. Section 1 briefly outlines the Orbital Acceleration Research Experiment (OARE) system features, coordinates, and measurement parameters. Section 2 describes the results from STS-75. The mission description, data calibration, and representative data obtained on STS-75 are presented. Also, the anomalous performance of OARE on STS-75 is discussed. Finally, Section 3 presents a discussion of accuracy achieved and achievable with OARE.
Fisheye view from the back of the Flight control room of the MCC
1984-10-06
Fisheye view from the back of the Flight Control Room (FCR) of the Mission Control Center (MCC). Visible are the Flight Directors console (left front), the CAPCOM console (right front) and the Payloads console. Some of the STS 41-G crew can be seen on a large screen at the front of the MCC along with a map tracking the progress of the orbiter.
STARSHINE Released From Discovery Cargo Bay
NASA Technical Reports Server (NTRS)
1999-01-01
In this photo, the Student Tracked Atmospheric Research Satellite for Heuristic International Networking Experiment (STARSHINE) leaves the cargo bay of the Space Shuttle Discovery near the completion of the almost 10 day STS-96 mission. STARSHINE is a satellite that resembles a high-tech disco ball covered by hundreds of quarter-sized mirrors that reflect sunlight to observers on the ground to help students study the effects of solar activity on the Earth's atmosphere. Students, worldwide, helped grind and polish up to 1,500 mirrors for the STARSHINE satellite as a part of the STARSHINE project. The mirrors improve the sunlight flash rate and make the satellite more visible at twilight as it orbits the Earth. The SPACEHAB, stowed Canadian built Remote Manipulator System (RMS) arm, and the shuttle's docking mechanism are all visible in the foreground.
Utility of space transportation system to space communication community: Executive summary
NASA Technical Reports Server (NTRS)
Bronstein, L. M.
1975-01-01
The space transportation system (STS) offers the opportunity for maintaining, and perhaps accelerating, growth of the space communication community. This new launch vehicle service, however, must be obtained at a cost lower than the current expandable launch vehicles cost. A cost competitive STS is defined for geostationary payloads. It is concluded that the STS will be useful to the space communication community, as well as to other geostationary satellite system users, if the proposed recommendations are adapted.
Validity of a novel computerized screening test system for mild cognitive impairment.
Park, Jin-Hyuck; Jung, Minye; Kim, Jongbae; Park, Hae Yean; Kim, Jung-Ran; Park, Ji-Hyuk
2018-06-20
ABSTRACTBackground:The mobile screening test system for screening mild cognitive impairment (mSTS-MCI) was developed for clinical use. However, the clinical usefulness of mSTS-MCI to detect elderly with MCI from those who are cognitively healthy has yet to be validated. Moreover, the comparability between this system and traditional screening tests for MCI has not been evaluated. The purpose of this study was to examine the validity and reliability of the mSTS-MCI and confirm the cut-off scores to detect MCI. The data were collected from 107 healthy elderly people and 74 elderly people with MCI. Concurrent validity was examined using the Korean version of Montreal Cognitive Assessment (MoCA-K) as a gold standard test, and test-retest reliability was investigated using 30 of the study participants at four-week intervals. The sensitivity, specificity, positive predictive value, and negative predictive value (NPV) were confirmed through Receiver Operating Characteristic (ROC) analysis, and the cut-off scores for elderly people with MCI were identified. Concurrent validity showed statistically significant correlations between the mSTS-MCI and MoCA-K and test-rests reliability indicated high correlation. As a result of screening predictability, the mSTS-MCI had a higher NPV than the MoCA-K. The mSTS-MCI was identified as a system with a high degree of validity and reliability. In addition, the mSTS-MCI showed high screening predictability, indicating it can be used in the clinical field as a screening test system for mild cognitive impairment.
Space transportation system payload status and reimbursement policy
NASA Technical Reports Server (NTRS)
Yardley, J. F.
1977-01-01
The status of the Space Transportation System (STS) is reviewed. The management structure and project planning status are discussed, including considerations of STS utilization, payloads, cost assessments, and pricing policy.
Fast Track Lunar NTR Systems Assessment for NASA's First Lunar Outpost and Its Evolvability to Mars
NASA Technical Reports Server (NTRS)
Borowski, Stanley K.; Alexander, Stephen W.
1995-01-01
Integrated systems and missions studies are presented for an evolutionary lunar-to-Mars space transportation system (STS) based on nuclear thermal rocket (NTR) technology. A 'standardized' set of engine and stage components are identified and used in a 'building block' fashion to configure a variety of piloted and cargo, lunar and Mars vehicles. The reference NTR characteristics include a thrust of 50 thousand pounds force (klbf), specific impulse (I(sub sp)) of 900 seconds, and an engine thrust-to-weight ratio of 4. 3. For the National Aeronautics and Space Administrations (NASA) First Lunar Outpost (FLO) mission, and expendable NTR stage powered by two such engines can deliver approximately 96 metric tonnes (t) to trans-lunar injection (TLI) conditions for an initial mass in low Earth orbit (IMLEO) of approximately 198 t compared to 250 t for a cryogenic chemical system. The stage liquid hydrogen (LH2) tank has a diameter, length, and capacity of 10 m, 14.5 m and 66 t, respectively. By extending the stage length and LH2 capacity to approximately 20 m and 96 t, a single launch Mars cargo vehicle could deliver to an elliptical Mars parking orbit a 63 t Mars excursion vehicle (MEV) with a 45 t surface payload. Three 50 klbf engines and the two standardized LH2 tanks developed for the lunar and Mars cargo vehicles are used to configure the vehicles supporting piloted Mars missions as early as 2010. The 'modular' NTR vehicle approach forms the basis for an efficient STS able to handle the needs of a wide spectrum of lunar and Mars missions.
STS-66 Mission Highlights Resource Tape
NASA Technical Reports Server (NTRS)
1995-01-01
This video contains the mission highlights of the STS-66 Space Shuttle Atlantis Mission in November 1994. Astronauts included: Don McMonagle (Mission Commander), Kurt Brown, Ellen Ochoa (Payload Commander), Joe Tanner, Scott Parazynski, and Jean-Francois Clervoy (collaborating French astronaut). Footage includes: pre-launch suitup, entering Space Shuttle, countdown and launching of Shuttle, EVA activities (ATLAS-3, CRISTA/SPAS, SSBUV/A, ESCAPE-2), on-board experiments dealing with microgravity and its effects, protein crystal growth experiments, daily living and sleeping compartment footage, earthviews of various meteorological processes (dust storms, cloud cover, ocean storms), pre-landing and land footage (both from inside the Shuttle and from outside with long range cameras), and tracking and landing shots from inside Mission Control Center. Included is air-to-ground communication between Mission Control and the Shuttle. This Shuttle was the last launch of 1994.
STS-66 mission highlights resource tape
NASA Astrophysics Data System (ADS)
1995-04-01
This video contains the mission highlights of the STS-66 Space Shuttle Atlantis Mission in November 1994. Astronauts included: Don McMonagle (Mission Commander), Kurt Brown, Ellen Ochoa (Payload Commander), Joe Tanner, Scott Parazynski, and Jean-Francois Clervoy (collaborating French astronaut). Footage includes: pre-launch suitup, entering Space Shuttle, countdown and launching of Shuttle, EVA activities (ATLAS-3, CRISTA/SPAS, SSBUV/A, ESCAPE-2), on-board experiments dealing with microgravity and its effects, protein crystal growth experiments, daily living and sleeping compartment footage, earthviews of various meteorological processes (dust storms, cloud cover, ocean storms), pre-landing and land footage (both from inside the Shuttle and from outside with long range cameras), and tracking and landing shots from inside Mission Control Center. Included is air-to-ground communication between Mission Control and the Shuttle. This Shuttle was the last launch of 1994.
STS-70 Discovery launch before tower clear (fish eye view)
NASA Technical Reports Server (NTRS)
1995-01-01
The fourth Space Shuttle flight of 1995 is off to an all-but- perfect start, as the Shuttle Discovery surges skyward from Launch Pad 39B at 9:41:55.078 a.m. EDT, July 13, 1995. On board for Discovery's 21st spaceflight are a crew of five: Commander Terence 'Tom' Henricks; Pilot Kevin R. Kregel; and Mission Specialists Nancy Jane Currie, Donald A. Thomas and Mary Ellen Weber. Primary objective of Mission STS-70 is to assure the continued readiness of NASA's Tracking and Data Relay Satellite (TDRS) communications network which links Earth-orbiting spacecraft -- including the Shuttle -- with the ground. The 70th Shuttle flight overall also marks the maiden flight of the new Block I Space Shuttle Main Engine configuration designed to increase engine performance as well as safety and reliability.
2001-12-19
KENNEDY SPACE CENTER, FLA. -- At SPACEHAB, Cape Canaveral, Fla., Commander Rick Husband works with an experiment that will be part of the mission. STS-107 is a research mission. The primary payload is the first flight of the SHI Research Double Module (SHI/RDM). The experiments range from material sciences to life sciences (many rats). Also part of the payload is the Fast Reaction Experiments Enabling Science, Technology, Applications and Research (FREESTAR) that incorporates eight high priority secondary attached shuttle experiments: Mediterranean Israeli Dust Experiment (MEIDEX), Shuttle Ozone Limb Sounding Experiment (SOLSE-2), Student Tracked Atmospheric Research Satellite for Heuristic International Networking Experiment (STARSHINE), Critical Viscosity of Xenon-2 (CVX-2), Solar Constant Experiment-3 (SOLOCON-3), Prototype Synchrotron Radiation Detector (PSRD), Low Power Transceiver (LPT), and Collisions Into Dust Experiment -2 (COLLIDE-2). STS-107 is scheduled to launch in July 2002
International Space Station (ISS)
2000-12-07
In this image, the five STS-97 crew members pose with the 3 members of the Expedition One crew onboard the International Space Station (ISS) for the first ever traditional onboard portrait taken in the Zvezda Service Module. On the front row, left to right, are astronauts Brent W. Jett, Jr., STS-97 commander; William M. Shepherd, Expedition One mission commander; and Joseph R. Tarner, STS-97 mission specialist. On the second row, from the left are Cosmonaut Sergei K. Krikalev, Expedition One flight engineer; astronaut Carlos I. Noriega, STS-97 mission specialist; cosmonaut Yuri P. Gidzenko, Expedition One Soyuz commander; and Michael J. Bloomfield, STS-97 pilot. Behind them is astronaut Marc Garneau, STS-97 mission specialist representing the Canadian Space Agency (CSA). The primary objective of the STS-97 mission was the delivery, assembly, and activation of the U.S. electrical power system onboard the International Space Station (ISS). The electrical power system, which is built into a 73-meter (240-foot) long solar array structure consists of solar arrays, radiators, batteries, and electronics. The entire 15.4-metric ton (17-ton) package is called the P6 Integrated Truss Segment, and is the heaviest and largest element yet delivered to the station aboard a space shuttle. The electrical system will eventually provide the power necessary for the first ISS crews to live and work in the U.S. segment. The STS-97 crew of five launched aboard the Space Shuttle Orbiter Endeavor on November 30, 2000 for an 11 day mission.
2002-01-17
KENNEDY SPACE CENTER, FLA. -- Workers in the Vertical Processing Facility help guide the Near Infrared Camera and Multi-Object Spectrometer (NICMOS) Cooling System onto a payload carrier. NICMOS II is part of the payload on mission STS-109, the Hubble Servicing Telescope Mission. It is a new experimental cooling system consisting of a compressor and tiny turbines. With the experimental cryogenic system, NASA hopes to re-cool the infrared detectors to below -315 degrees F (-193 degrees Celsius). NICMOS II was previously tested aboard STS-95 in 1998. It could extend the life of the Hubble Space Telescope by several years. Astronauts aboard Columbia on mission STS-109 will be replacing the original NICMOS with the newer version. Launch of mission STS-109 is scheduled for Feb. 28, 2002
2002-01-17
KENNEDY SPACE CENTER, FLA. -- Workers in the Vertical Processing Facility test the Near Infrared Camera and Multi-Object Spectrometer (NICMOS) Cooling System, part of the payload on mission STS-109, the Hubble Servicing Telescope Mission. The worker at right is using a black light. NICMOS II is a new experimental cooling system consisting of a compressor and tiny turbines. With the experimental cryogenic system, NASA hopes to re-cool the infrared detectors to below -315 degrees F (-193 degrees Celsius). NICMOS II was previously tested aboard STS-95 in 1998. It could extend the life of the Hubble Space Telescope by several years. Astronauts aboard Columbia on mission STS-109 will be replacing the original NICMOS with the newer version. Launch of mission STS-109 is scheduled for Feb. 28, 2002
2002-01-17
KENNEDY SPACE CENTER, FLA. -- The Near Infrared Camera and Multi-Object Spectrometer (NICMOS) Cooling System rests inside a protective enclosure on a payload carrier. NICMOS II is part of the payload on mission STS-109, the Hubble Servicing Telescope Mission. It is a new experimental cooling system consisting of a compressor and tiny turbines. With the experimental cryogenic system, NASA hopes to re-cool the infrared detectors to below -315 degrees F (-193 degrees Celsius). NICMOS II was previously tested aboard STS-95 in 1998. It could extend the life of the Hubble Space Telescope by several years. Astronauts aboard Columbia on mission STS-109 will be replacing the original NICMOS with the newer version. Launch of mission STS-109 is scheduled for Feb. 28, 2002
2002-01-17
KENNEDY SPACE CENTER, FLA. -- Workers in the Vertical Processing Facility wheel a container with the NICMOS II across the floor. The Near Infrared Camera and Multi-Object Spectrometer (NICMOS) Cooling System is part of the payload on mission STS-109, the Hubble Servicing Telescope Mission. NICMOS is a new experimental cooling system consisting of a compressor and tiny turbines. With the experimental cryogenic system, NASA hopes to re-cool the infrared detectors to below -315 degrees F (-193 degrees Celsius). NICMOS II was previously tested aboard STS-95 in 1998. It could extend the life of the Hubble Space Telescope by several years. Astronauts aboard Columbia on mission STS-109 will be replacing the original NICMOS with the newer version. Launch of mission STS-109 is scheduled for Feb. 28, 2002
Overview of battery usage in NASA/GSFC LEO and GEO missions
NASA Technical Reports Server (NTRS)
Yi, Thomas
1989-01-01
In July, 1989, Cosmic Background Explorer (COBE) will be launched from a Delta rocket to study the big bang theory. The COBE, which is in a LEO/Polar orbit, will have two 20 Ah NiCd batteries, and 18 cells per battery, made by McDonnell Douglas Company. In December, 1989, National Oceanic and Atmospheric Administration (NOAA-D) will be launched from an Atlas rocket for weather observation purposes. NOAA-D, which is in a LEO/Polar morning orbit, will have two 26.5 Ah NiCd batteries, and 17 cells per battery, made by Ge-Astro East Windor. NOAA-I, which is scheduled for May, 1991 launch in a LEO/Polar afternoon orbit, will have three 26.5 Ah NiCd batteries, 17 cells per battery, made by GE-Astro East Windor. In April, 1990, Gamma Ray Observatory (GRO) will be launched from STS37 to study the gamma ray radiation phenomenon. GRO, which is in a LEO orbit, will have two modular power systems (MPS) made by McDonnell Douglas, each MPS consisting of three 50 Ah NiCd batteries, 22 cells per battery. In July, 1990, Geostationary Operational Environmental Satellite (GOES-I) will be launched from an Atlas I rocket for weather observation purposes. GOES-I, which is in a GEO orbit, will have two 12 Ah NiCd batteries, 28 cells per battery, made by Ford Aerospace and Communications Company. In December, 1990, Tracking and Data Relay Satellite (TDRS-E) will be launched from STS43 for communication purposes. TDRS-E, which is in a GEO orbit, will have three 40 Ah NiCd batteries, 24 cells per battery, made by TRW. In August, 1991, Extreme Ultraviolet Explorer (EUVE) will be launched from a Delta rocket. EUVE, which is in a LEO orbit, will have one modular power system (MPS) made by McDonnell Douglas. In December, 1991, Upper Atmosphere Research Satellite (UARS) will be launched from STS50 to study the Earth's ozone layer and other environmental concerns. UARS, which is in a 56 deg inclination LEO orbit, will have one modular power systems (MPS) made by McDonnell Douglas.
Perrin installs the MBS to the Mobile Transporter railcar during STS-111 UF-2 EVA 2
2002-06-12
STS111-E-5238 (11 June 2002) --- Astronaut Philippe Perrin, STS-111 mission specialist, works on the installation of the Mobile Remote Servicer Base System (MBS) on the International Space Stations (ISS) railcar, the Mobile Transporter, during the second scheduled session of extravehicular activity (EVA) for the STS-111 mission. Perrin represents CNES, the French Space Agency.
Perrin installs the MBS to the Mobile Transporter railcar during STS-111 UF-2 EVA 2
2002-06-12
STS111-E-5240 (11 June 2002) --- Astronaut Philippe Perrin, STS-111 mission specialist, works on the installation of the Mobile Remote Servicer Base System (MBS) on the International Space Stations (ISS) railcar, the Mobile Transporter, during the second scheduled session of extravehicular activity (EVA) for the STS-111 mission. Perrin represents CNES, the French Space Agency.
1998-02-26
Stacie Greene, an extravehicular activity trainer from Johnson Space Center, discusses the STS-90 Neurolab mission with Mission Specialist Richard Linnehan overlooking Columbia's payload bay. The crew of STS-90 participated in the Crew Equipment Interface Test (CEIT) in Kennedy Space Center's Orbiter Processing Facility Bay 3. The CEIT gives astronauts an opportunity to get a hands-on look at the payloads with which they will be working on-orbit. Investigations during the STS-90 Neurolab mission will focus on the effects of microgravity on the nervous system. Specifically, experiments will study the adaptation of the vestibular system, the central nervous system, and the pathways that control the ability to sense location in the absence of gravity, as well as the effect of microgravity on a developing nervous system. STS-90 is scheduled for launch on April 16 at 2:19 p.m. EDT
NASA Technical Reports Server (NTRS)
1980-01-01
The results of three nonlinear the Monte Carlo dispersion analyses for the Space Transportation System 1 Flight (STS-1) Orbiter Descent Operational Flight Profile, Cycle 3 are presented. Fifty randomly selected simulation for the end of mission (EOM) descent, the abort once around (AOA) descent targeted line are steep target line, and the AOA descent targeted to the shallow target line are analyzed. These analyses compare the flight environment with system and operational constraints on the flight environment and in some cases use simplified system models as an aid in assessing the STS-1 descent flight profile. In addition, descent flight envelops are provided as a data base for use by system specialists to determine the flight readiness for STS-1. The results of these dispersion analyses supersede results of the dispersion analysis previously documented.
Jovic, Jovana; Azevedo Coste, Christine; Fraisse, Philippe; Henkous, Sonia; Fattal, Charles
2015-12-01
The goal of this study is to minimize arm forces applied during sit-to-stand (STS) transfers in persons with spinal cord injury (SCI) by using functional electrical stimulation (FES) applied to lower limbs muscles. A new FES system has been used to automatically trigger muscle stimulation of the lower limbs, at the desired moment in regards to trunk motion. The objective was to decrease arm participation during STS motion of a person with complete paraplegia and low-level tetraplegia. Six participants with chronic SCI participated in the study. Participants with SCI were recruited to complete STS movement using a new system for FES-assisted STS transfer. All participants attended one muscle mapping session to test their muscles condition, two training sessions to become familiarized with the experimental setup, and two measurement sessions using the proposed system for FES-assisted STS movement. The applied arm forces during STS movement were recorded and analyzed for different stimulation onset values with respect to the maximal trunk acceleration signal using one-way ANOVA statistical test. Post-hoc analysis was performed using Tukey's method. The results of this study showed that the moment of the stimulation onset has an influence on the arm forces applied during the STS motion. The lowest values of arm forces were obtained for STS movements where the electrical stimulation was triggered before and around the time corresponding to the maximal value of the trunk acceleration signal. Lowest arm forces values were obtained for STS motions that were similar to those of healthy persons in terms of trunk movements and beginning of lower limb movements in regards to maximal trunk acceleration signal. The FES system was able to mimic the rising motion of a healthy individual by triggering the FES at the appropriate moment. This method could prove useful for pivot transfer, therapeutic or functional verticalization. © 2015 International Neuromodulation Society.
Shan, Lingtong; Ge, Wen; Pu, Yiwei; Cheng, Hong; Cang, Zhengqiang; Zhang, Xing; Li, Qifan; Xu, Anyang; Wang, Qi; Gu, Chang; Zhang, Yangyang
2018-01-01
To assess and compare the predictive ability of three risk evaluation systems (SinoSCORE, EuroSCORE II and the STS risk evaluation system) in patients aged ≥70, and who underwent coronary artery bypass grafting (CABG) in East China. Three risk evaluation systems were applied to 1,946 consecutive patients who underwent isolated CABG from January 2004 to September 2016 in two hospitals. Patients were divided into two subsets according to their age: elderly group (age ≥70) with a younger group (age <70) used for comparison. The outcome of interest in this study was in-hospital mortality. The entire cohort and subsets of patients were analyzed. The calibration and discrimination in total and in subsets were assessed by the Hosmer-Lemeshow and the C statistics respectively. Institutional overall mortality was 2.52%. The expected mortality rates of SinoSCORE, EuroSCORE II and the STS risk evaluation system were 0.78(0.64)%, 1.43(1.14)% and 0.78(0.77)%, respectively. SinoSCORE achieved the best discrimination (the area under the receiver operating characteristic curve (AUC) = 0.829), followed by the STS risk evaluation system (AUC = 0.790) and EuroSCORE II (AUC = 0.769) in the entire cohort. In the elderly group, the observed mortality rate was 4.82% while it was 1.38% in the younger group. SinoSCORE (AUC = .829) also achieved the best discrimination in the elderly group, followed by the STS risk evaluation system (AUC = .730) and EuroSCORE II (AUC = 0.640) while all three risk evaluation systems all had good performances in the younger group. SinoSCORE, EuroSCORE II and the STS risk evaluation system all achieved positive calibrations in the entire cohort and subsets. The performance of the three risk evaluation systems was not ideal in the entire cohort. In the elderly group, SinoSCORE appeared to achieve better predictive efficiency than EuroSCORE II and the STS risk evaluation system.
NASA Technical Reports Server (NTRS)
1989-01-01
Requirements are presented for shuttle system definition; performance and design characteristics; shuttle vehicle end item performance and design characteristics; ground operations complex performance and design characteristics; operability and system design and construction standards; and quality control.
OARE STS-78 (LMS-1) Final Report
NASA Technical Reports Server (NTRS)
Rice, James E.
1996-01-01
The report is organized into sections representing the phases of work performed in analyzing the STS-78 (LMS-1) results. Section 1 briefly outlines the Orbital Acceleration Research Experiment (OARE) system features, coordinates, and measurement parameters. Section 2 describes the results from STS-78. The mission description, data calibration, and representative data obtained on STS-78 are presented. Also, the anomalous performance of OARE on STS-78 is discussed. Finally, Section 3 presents a discussion of accuracy achieved and achievable with OARE. Appendix A discusses the data processing methodology in detail.
Shuttle Propulsion System Major Events and the Final 22 Flights
NASA Technical Reports Server (NTRS)
Owen, James W.
2011-01-01
Numerous lessons have been documented from the Space Shuttle Propulsion elements. Major events include loss of the Solid Rocket Boosters (SRB's) on STS-4 and shutdown of a Space Shuttle Main Engine (SSME) during ascent on STS-51F. On STS-112 only half the pyrotechnics fired during release of the vehicle from the launch pad, a testament for redundancy. STS-91 exhibited freezing of a main combustion chamber pressure measurement and on STS-93 nozzle tube ruptures necessitated a low liquid level oxygen cut off of the main engines. A number of on pad aborts were experienced during the early program resulting in delays. And the two accidents, STS-51L and STS-107, had unique heritage in history from early program decisions and vehicle configuration. Following STS-51L significant resources were invested in developing fundamental physical understanding of solid rocket motor environments and material system behavior. And following STS-107, the risk of ascent debris was better characterized and controlled. Situational awareness during all mission phases improved, and the management team instituted effective risk assessment practices. The last 22 flights of the Space Shuttle, following the Columbia accident, were characterized by remarkable improvement in safety and reliability. Numerous problems were solved in addition to reduction of the ascent debris hazard. The Shuttle system, though not as operable as envisioned in the 1970's, successfully assembled the International Space Station (ISS). By the end of the program, the remarkable Space Shuttle Propulsion system achieved very high performance, was largely reusable, exhibited high reliability, and was a heavy lift earth to orbit propulsion system. During the program a number of project management and engineering processes were implemented and improved. Technical performance, schedule accountability, cost control, and risk management were effectively managed and implemented. Award fee contracting was implemented to provide performance incentives. The Certification of Flight Readiness and Mission Management processes became very effective. A key to the success of the propulsion element projects was related to relationships between the MSFC project office and support organizations with their counterpart contractor organizations. The teams worked diligently to understand and satisfy requirements and achieve mission success.
Stanton, Neville A; Harvey, Catherine
2017-02-01
Risk assessments in Sociotechnical Systems (STS) tend to be based on error taxonomies, yet the term 'human error' does not sit easily with STS theories and concepts. A new break-link approach was proposed as an alternative risk assessment paradigm to reveal the effect of information communication failures between agents and tasks on the entire STS. A case study of the training of a Royal Navy crew detecting a low flying Hawk (simulating a sea-skimming missile) is presented using EAST to model the Hawk-Frigate STS in terms of social, information and task networks. By breaking 19 social links and 12 task links, 137 potential risks were identified. Discoveries included revealing the effect of risk moving around the system; reducing the risks to the Hawk increased the risks to the Frigate. Future research should examine the effects of compounded information communication failures on STS performance. Practitioner Summary: The paper presents a step-by-step walk-through of EAST to show how it can be used for risk assessment in sociotechnical systems. The 'broken-links' method takes a systemic, rather than taxonomic, approach to identify information communication failures in social and task networks.
Thermal environments for Space Shuttle payloads
NASA Technical Reports Server (NTRS)
Fu, J. H.; Graves, G. R.
1985-01-01
The thermal environment of the Space Shuttle payload bay during the on-orbit phase of the STS flights is presented. The STS Thermal Flight Instrumentation System and various substructures of the Orbiter and the payload are described, as well as the various on-orbit attitudes encountered in the STS flights (the tail to sun, nose to sun, payload bay to sun, etc.). Included are the temperature profiles obtained during the on-orbit STS 1-5 flights (with the payload bay door open), recorded in various substructures of the Orbiter's midsection at different flight attitudes, as well as schematic illustrations of the Space Shuttle system, a typical mission profile, and the Orbiter's substructures.
SHUTTLE - PAYLOADS (STS-41G) - KSC
1984-10-05
Payload canister transporter in Vertical Processing Facility Clean Room loaded with Earth Radiation Budget Experiment (ERBS), Large Format Camera (LFC), and Orbital Reservicing System (ORS) for STS-41G Mission. 1. STS-41G - EXPERIMENTS 2. CAMERAS - LFC KSC, FL Also available in 4x5 CN
Launch-Off-Need Shuttle Hubble Rescue Mission: Medical Issues
NASA Technical Reports Server (NTRS)
Hamilton, Douglas; Gillis, David; Ilcus, Linda; Perchonok, Michele; Polk, James; Brandt, Keith; Powers, Edward; Stepaniak, Phillip
2008-01-01
The Space Shuttle Hubble repair mission (STS-125) is unique in that a rescue mission (STS-400) has to be ready to launch before STS-125 life support runs out should the vehicle become stranded. The shuttle uses electrical power derived from fuel cells that use cryogenic oxygen and hydrogen (CRYO) to run all subsystems including the Environmental Control System. If the STS-125 crew cannot return to Earth due to failure of a critical subsystem, they must power down all nonessential systems and wait to be rescued by STS-400. This power down will cause the cabin temperature to be 60 F or less and freeze the rest of the vehicle, preventing it from attempting a reentry. After an emergency has been declared, STS-125 must wait at least 7 days to power down since that is the earliest that STS-400 can be launched. Problem The delayed power down of STS-125 causes CYRO to be consumed at high rates and limits the survival time after STS-400 launches to 10 days or less. CRYO will run out sooner every day that the STS-400 launch is delayed (weather at launch, technical issues etc.). To preserve CRYO and lithium hydroxide (LiOH - carbon dioxide removal) the crew will perform no exercise to reduce their metabolic rates, yet each deconditioned STS-125 crewmember must perform an EVA to rescue himself. The cabin may be cold for 10 days, which may cause shivering, increasing the metabolic rate of the STS-125 crew. Solution To preserve LiOH, the STS-125 manifest includes nutrition bars with low carbohydrate content to maintain crew respiratory quotient (RQ) below 0.85 as opposed to the usual shuttle galley food which is rich in carbohydrates and keeps the RQ at approximately 0.95. To keep the crew more comfortable in the cold vehicle warm clothing also has been included. However, with no exercise and limited diet, the deconditioned STS-125 crew returning on STS-400 may not be able to egress the vehicle autonomously requiring a supplemented crash-and-rescue capability.
NASA Technical Reports Server (NTRS)
Springer, William T.
1988-01-01
The Space Transportation System (STS) is a very complex and expensive flight system which is intended to carry payloads into low Earth orbit and return. A catastrophic failure of the STS (such as experienced in the 51-L incident) results in the loss of both human life as well as very expensive hardware. One impact of this incident was to reaffirm the need to do everything possible to insure the integrity and reliability of the STS is sufficient to produce a safe flight. One means of achieving this goal is to expand the number of inspection technologies available for use on the STS. The purpose was to begin to evaluate the possible use of assessing the structural integrity of STS components for which Marshall Space Flight Center (MSFC) has responsibility. This entailed reviewing the available literature and determining a low-level experimental program which could be performed by MSFC and would help establish the feasibility of using this technology for structural fault detection.
NASA Astrophysics Data System (ADS)
Leckebusch, G. C.; Befort, D. J.; Kruschke, T.
2016-12-01
Although only ca. 12% of the global insured losses of natural disasters occurred in Asia, there are two major reasons to be concerned about risks in Asia: a) The fraction of loss events was substantial higher with 39% of which 94% were due to atmospheric processes; b) Asia and especially China, is undergoing quick transitions and especially the insurance market is rapidly growing. In order to allow for the estimation of potential future (loss) impacts in East-Asia, in this study we further developed and applied a feature tracking system based on extreme wind speed occurrences to tropical cyclones, which was originally developed for extra-tropical cyclones (Leckebusch et al., 2008). In principle, wind fields will be identified and tracked once a coherent exceedance of local percentile thresholds is identified. The focus on severe wind impact will allow an objective link between the strength of a cyclone and its potential damages over land. The wind tracking is developed in such a way to be applicable also to course-gridded AOGCM simulation. In the presented configuration the wind tracking algorithm is applied to the Japanese reanalysis (JRA55) and TC Identification is based on 850hPa wind speeds (6h resolution) from 1979 to 2014 over the Western North Pacific region. For validation the IBTrACS Best Track archive version v03r8 is used. Out of all 904 observed tracks, about 62% can be matched to at least one windstorm event identified in JRA55. It is found that the relative amount of matched best tracks increases with the maximum intensity. Thus, a positive matching (hit rate) of above 98% for Violent Typhoons (VTY), above 90% for Very Strong Typhoons (VSTY), about 75% for Typhoons (TY), and still some 50% for less intense TCs (TD, TS, STS) is found. This result is extremely encouraging to apply this technique to AOGCM outputs and to derive information about affected regions and intensity-frequency distributions potentially changed under future climate conditions.
Shuttle Laser Altimeter (SLA): A pathfinder for space-based laser altimetry and lidar
NASA Technical Reports Server (NTRS)
Bufton, Jack; Blair, Bryan; Cavanaugh, John; Garvin, James
1995-01-01
The Shuttle Laser Altimeter (SLA) is a Hitchhiker experiment now being integrated for first flight on STS-72 in November 1995. Four Shuttle flights of the SLA are planned at a rate of about a flight every 18 months. They are aimed at the transition of the Goddard Space Flight Center airborne laser altimeter and lidar technology to low Earth orbit as a pathfinder for operational space-based laser remote sensing devices. Future alser altimeter sensors such as the Geoscience Laser Altimeter System (GLAS), an Earth Observing System facility instrument, and the Multi-Beam Laser Altimeter (MBLA), the land and vegetation laser altimeter for the NASA TOPSAT (Topography Satellite) Mission, will utilize systems and approaches being tested with SLA. The SLA Instrument measures the distance from the Space Shuttle to the Earth's surface by timing the two-way propagation of short (approximately 10 na noseconds) laser pulses. laser pulses at 1064 nm wavelength are generated in a laser transmitter and are detected by a telescope equipped with a silicon avalanche photodiode detector. The SLA data system makes the pulse time interval measurement to a precision of about 10 nsec and also records the temporal shape of the laser echo from the Earth's surface for interpretation of surface height distribution within the 100 m diam. sensor footprint. For example, tree height can be determined by measuring the characteristic double-pulse signature that results from a separation in time of laser backscatter from tree canopies and the underlying ground. This is accomplished with a pulse waveform digitizer that samples the detector output with an adjustable resolution of 2 nanoseconds or wider intervals in a 100 sample window centered on the return pulse echo. The digitizer makes the SLA into a high resolution surface lidar sensor. It can also be used for cloud and atmospheric aerosol lidar measurements by lengthening the sampling window and degrading the waveform resolution. Detailed test objectives for the STS-72 mission center on the acquisition of sample data sets for land topography and vegetation height, waveform digitizer performance, and verification of data acquisition algorithms. The operational concept of SLA is illustrated in Fig. 1 where a series of 100 m footprints stretch in a profile of Earth surface topography along the nadir track of the Space Shuttle. The location of SLA as a dual canister payload on the Hitchhiker Bridge Assembly in Bay 12 of the Space Shuttle Endeavor can also be noted in this figure. Full interpretation of the SLA range measurement data set requires a 1 m knowledge of the Orbiter trajectory and better than 0.1 deg knowledge of Orbiter pointing angle. These ancillary data sets will be acquired during the STS-72 mission with an on-board Global Positioning System (GPS) receiver, K-band range and range-rate tracking of the Orbiter through TDRSS, and use of on-board inertial measurement units and star trackers. Integration and interpretation of all these different data sets as a pathfinder investigation for accurate determination of Earth surface elevation is the overall science of the SLA investigation.
STS-3 Induced Environment Contamination Monitor (IECM): Quick-look report
NASA Technical Reports Server (NTRS)
Miller, E. R. (Editor); Fountain, J. A. (Editor)
1982-01-01
The STS-3/Induced Environment Contamination Monitor (IECM) mission is described. The IECM system performance is discussed, and IECM mission time events are briefly described. Quick look analyses are presented for each of the 10 instruments comprising the IECM on the flight of STS-3. Finally, a short summary is presented and plans are discussed for future IECM flights, and opportunities for direct mapping of Orbiter effluents using the Remote manipulator System.
NASA Technical Reports Server (NTRS)
Findlay, J. T.; Kelly, G. M.; Mcconnell, J. G.; Heck, M. L.
1984-01-01
Results from the STS-13 (41-C) Shuttle entry flight are presented. The entry trajectory was reconstructed from an altitude of 700 kft through rollout on Runway 17 at EAFB. The anchor epoch utilized was April 13, 1984 13(h)1(m)30.(s)0 (46890(s).0) GMT. The final reconstructed inertial trajectory for this flight is BT13M23 under user catalog 169750N. Trajectory reconstruction and Extended BET development are discussed in Section 1 and 2, respectively. The NOAA totem-pole atmosphere extracted from the JSC/TRW BET was adopted in the development of the LaRC Extended BET, namely ST13BET/UN=274885C. The Aerodynamic BET was generated on physical nine track reel NC0728 with a duplicate copy on NC0740 for back-up. Plots of the more relevant parameters from the AEROBET are presented in Section 3. Section 4 discusses the MMLE input files created for STS-13. Appendices are attached which present spacecraft and physical constants utilized (Appendix A), residuals by station and data type (Appendix B), a two second spaced listing of trajectory and air data parameters (Appendix C), and input and output source products for archival (Appendix D).
STS-92 crew get training on driving the M-113 armored vehicle
NASA Technical Reports Server (NTRS)
2000-01-01
As part of emergency egress training during Terminal Countdown Demonstration Test (TCDT) activities, members of the STS-92 crew get instructions about the M-113 they are seated in at Launch Pad 39A. Seen on the left are Pilot Pam Melroy and Mission Specialists Leroy Chaio and Koichi Wakata of Japan In the middle, giving the instructions, is Capt. George Hoggard, trainer with the KSC Fire Department. At right are Commander Brian Duffy (leaning back) and Mission Specialist Michael Lopez-Alegria. The other crew members (not seen) are Mission Specialists Jeff Wisoff and Bill McArthur. The tracked vehicle could be used by the crew in the event of an emergency at the pad during which the crew must make a quick exit from the area. The TCDT also provides simulated countdown exercises and opportunities to inspect the mission payloads in the orbiter's payload bay. STS-92 is scheduled to launch Oct. 5 at 9:30 p.m. EDT on the fifth flight to the International Space Station. It will carry two elements of the Space Station, the Integrated Truss Structure Z1 and the third Pressurized Mating Adapter. The mission is also the 100th flight in the Shuttle program.
The role of artificial intelligence and expert systems in increasing STS operations productivity
NASA Technical Reports Server (NTRS)
Culbert, C.
1985-01-01
Artificial Intelligence (AI) is discussed. A number of the computer technologies pioneered in the AI world can make significant contributions to increasing STS operations productivity. Application of expert systems, natural language, speech recognition, and other key technologies can reduce manpower while raising productivity. Many aspects of STS support lend themselves to this type of automation. The artificial intelligence section of the mission planning and analysis division has developed a number of functioning prototype systems which demonstrate the potential gains of applying AI technology.
1991-08-02
Launched aboard the Space Shuttle Atlantis on August 2, 1991, the STS-43 mission’s primary payload was the Tracking and Data Relay Satellite 5 (TDRS-5) attached to an Inertial Upper Stage (IUS), which became the 4th member of an orbiting TDRS cluster. The flight crew consisted of 5 astronauts: John E. Blaha, commander; Michael A. Baker, pilot; Shannon W. Lucid, mission specialist 1; James C. Adamson, mission specialist 2; and G. David Low, mission specialist 3.
1991-08-02
Launched aboard the Space Shuttle Atlantis on August 2, 1991, the STS-43 mission’s primary payload was the Tracking and Data Relay Satellite 5 (TDRS-5) attached to an Inertial Upper Stage (IUS), which became the 4th member of an orbiting TDRS cluster. The flight crew consisted of five astronauts: John E. Blaha, commander; Michael A. Baker, pilot; Shannon W. Lucid, mission specialist 1; James C. Adamson, mission specialist 2; and G. David Low, mission specialist 3.
NASA Astrophysics Data System (ADS)
Kasinski, K.; Koczon, P.; Ayet, S.; Löchner, S.; Schmidt, C. J.
2017-03-01
New fixed target experiments using high intensity beams with energy up to 10 AGeV from the SIS100 synchrotron presently being constructed at FAIR/GSI are under preparation. Most of the readout electronics and power supplies are expected to be exposed to a very high flux of nuclear reaction products and have to be radiation tolerant up to 3 MRad (TID) and sustain up to 1014/cm2 of 1 MeV neutron equivalent in their life time. Moreover, the mostly minimum ionising particles under investigation leave very little signal in the sensors. Therefore very low noise level amplitude measurements are required by the front-end electronics for effective tracking. Sensor and interconnecting micro-cable capacitance and series resistance in conjunction with intrinsic noise of the charge sensitive amplifier are dominant noise sources in the system. However, the single-ended architecture of the amplifiers employed for the charge processing channels implies a potential problem with noise contributions from power supply sources. Strict system-level constraints leave very little freedom in selecting a power supply structure optimal with respect to: power efficiency, cooling capabilities and power density on modules, but also noise injection to the front-end via the power supply lines. Design of the power supply and distribution system of the Silicon Tracking System in the CBM experiment together with details on the front-end ASICs (STS -XYTER2) and measurement results of power supply and conditioning electronics (selected DC/DC converter and LDO regulators) are presented.
2002-01-17
KENNEDY SPACE CENTER, FLA. -- In the Vertical Processing Facility, workers help guide the Near Infrared Camera and Multi-Object Spectrometer (NICMOS) Cooling System into an protective enclosure on a payload carrier. NICMOS II is part of the payload on mission STS-109, the Hubble Servicing Telescope Mission. It is a new experimental cooling system consisting of a compressor and tiny turbines. With the experimental cryogenic system, NASA hopes to re-cool the infrared detectors to below -315 degrees F (-193 degrees Celsius). NICMOS II was previously tested aboard STS-95 in 1998. It could extend the life of the Hubble Space Telescope by several years. Astronauts aboard Columbia on mission STS-109 will be replacing the original NICMOS with the newer version. Launch of mission STS-109 is scheduled for Feb. 28, 2002
Commander Wilcutt works at the commander's workstation during STS-106
2000-09-11
STS106-352-009 (8-20 September 2000) --- Astronaut Terrence W. Wilcutt, STS-106 mission commander, performs a firing of the reaction control system on the flight deck of the Space Shuttle Atlantis. Earths horizon is visible through the commanders window.
L-Area STS MTR/NRU/NRX Grapple Assembly Closure Mechanics Review
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huizenga, D. J.
2016-06-08
A review of the closure mechanics associated with the Shielded Transfer System (STS) MTR/NRU/NRX grapple assembly utilized at the Savannah River Site (SRS) was performed. This review was prompted by an operational event which occurred at the Canadian Nuclear Laboratories (CNL) utilizing a DTS-XL grapple assembly which is essentially identical to the STS MTR/NRU/NRX grapple assembly used at the SRS. The CNL operational event occurred when a NRU/NRX fuel basket containing spent nuclear fuel assemblies was inadvertently released by the DTS-XL grapple assembly during a transfer. The SM review of the STS MTR/NRU/NRX grapple assembly will examine the operational aspectsmore » of the STS and the engineered features of the STS which prevent such an event at the SRS. The design requirements for the STS NRU/NRX modifications and the overall layout of the STS are provided in other documents.« less
Orbiter Boom Sensor System extended
2005-07-27
STS114-E-5330 (28 July 2005) --- As seen from Discovery's cabin, STS-114 Remote Manipulator System (RMS) robot arm flexes above Earth. Crews of Space Station and Discovery will later use RMS and boom to study Shuttle's tiles.
APAS with petals extended after undocking
2002-10-16
STS112-E-05777 (16 Oct. 2002) --- Close-up view of the Orbiter Docking System (ODS) Androgynous Peripheral Attachment System (APAS) petals extended in the STS-112 orbiter Atlantis payload bay after undocking with the International Space Station.
1998-02-26
STS-90 Mission Specialist Kathryn (Kay) Hire enjoys the crawl between Columbia and the white room that allows access to the orbiter. The crew of STS-90 recently participated in the Crew Equipment Interface Test (CEIT) in Kennedy Space Center's Orbiter Processing Facility Bay 3. The CEIT gives astronauts an opportunity to get a hands-on look at the payloads with which they will be working on-orbit. Investigations during the STS-90 Neurolab mission will focus on the effects of microgravity on the nervous system. Specifically, experiments will study the adaptation of the vestibular system, the central nervous system, and the pathways that control the ability to sense location in the absence of gravity, as well as the effect of microgravity on a developing nervous system. STS-90, which will be Hire's first Shuttle flight, is scheduled for launch on April 16 at 2:19 p.m. EDT
NASA Technical Reports Server (NTRS)
Dennehy, Cornelius J.
2013-01-01
The NASA Engineering and Safety Center (NESC) received a request from the NASA Associate Administrator (AA) for Human Exploration and Operations Mission Directorate (HEOMD), to quantitatively evaluate the individual performance of three light detection and ranging (LIDAR) rendezvous sensors flown as orbiter's development test objective on Space Transportation System (STS)-127, STS-133, STS-134, and STS-135. This document contains the outcome of the NESC assessment.
NASA Technical Reports Server (NTRS)
Rice, James E.
1998-01-01
The report is organized into sections representing the phases of work performed in analyzing the STS-87 (USMP-4) results. Section 1 briefly outlines the OARE system features, coordinates, and measurement parameters. Section 2 describes the results from STS-87. The mission description, data calibration, and representative data obtained on STS-87 are presented. Finally, Section 3 presents a discussion of accuracy achieved and achievable with OARE. Appendix A discusses the calibration and data processing methodology in detail.
STS-89 tunnel adapter in OPF bay 1
NASA Technical Reports Server (NTRS)
1997-01-01
The tunnel adapter (left) which will be flown on the STS-89 mission is being installed in the Space Shuttle orbiter Endeavour's payload bay in Orbiter Processing Facility bay 1. To the right is the Orbiter Docking System (ODS), with its distinctive red Russian-built Androgynous Peripheral Docking System (APDS). STS-89 will be the eighth U.S. docking mission with the Russian Mir space station. The nine-day space flight is scheduled for launch in mid-January 1998.
DOD/NASA system impact analysis (study 2.1). Volume 2: Study results
NASA Technical Reports Server (NTRS)
1973-01-01
Results of the tug turnaround cost study and the space transportation system (STS) abort modes and effects study are presented for DOD/NASA system impact analysis. Cost estimates are given for tug turnabout; and vehicle description, abort assessment, and abort performance capability are given for the STS.
Properties of Refractory Concrete in Tension and Compression
NASA Technical Reports Server (NTRS)
Sampson, Jeffrey
2009-01-01
Refractory concrete on the LC-39A Flame Deflector has been damaged during multiple Space Shuttle launches (e.g. STS-124, STS-126, STS-119, and STS-125, STS-127). These events have prompted a better understanding of the system via an analytical model of the Flame Deflector assembly to include the Fondu Fyre refractory concrete. This model requires test data inputs of the refractory concrete's mechanical properties, which include stress versus strain curves in tension and compression, modulus of elasticity, and Poisson's ratio. Sections of Fondu Fyre refractory concrete removed from the LC-39A Flame Deflector were provided for this testing.
Mexico City, Mexico as seen from STS-62
1994-03-05
STS062-84-028 (4-18 March 1994) --- According to NASA scientists this image is the clearest photo of Mexico City taken from United States manned spacecraft. North is to the upper right. Mexico City sits in a basin surrounded by large volcanoes. The restricted atmospheric circulation in the basin, coupled with the inevitable air emissions produced by a city of 20 million people has created a critical air pollution problem for the city. In most photographs of the region, Mexico City is obscured by haze. Scientists feel the clear atmosphere in this photograph may be due, in part, to the stringent air emission restrictions now in place. The clarity of the photograph allows many key cultural features to be identified, including all of the major boulevards, the horse track (western part of the city), the university (south of the city), and the museum areas. Large, man-made ponds east of the city also stand out.
2000-11-07
Mission Specialist Carlos Noriega (front) gets ready to take the wheel of an M-113. In the rear can be seen Mission Specialists Marc Garneau (left) and Joe Tanner (right). Learning to drive the armored vehicle is part of emergency egress training during Terminal Countdown Demonstration Test (TCDT) activities. The tracked vehicle could be used by the crew in the event of an emergency at the pad during which the crew must make a quick exit from the area. The TCDT, also includes a simulated launch countdown and opportunities to inspect the mission payloads in the orbiter’s payload bay. Mission STS-97is the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections. STS-97 is scheduled to launch Nov. 30 at 10:05 p.m. EST
2000-08-16
STS-106 Mission Specialist Edward T. Lu grins over the chance for his turn to drive the M113 armored personnel carrier. The M113 is an armored personnel carrier that is part of emergency egress training during Terminal Countdown Demonstration Test (TCDT) activities. The tracked vehicle could be used by the crew in the event of an emergency at the pad during which the crew must make a quick exit from the area. The TCDT also provides simulated countdown exercises and opportunities to inspect the mission payloads in the orbiter’s payload bay. STS-106 is scheduled to launch Sept. 8, 2000, at 8:31 a.m. EDT from Launch Pad 39B. On the 11-day mission, the seven-member crew will perform support tasks on orbit, transfer supplies and prepare the living quarters in the newly arrived Zvezda Service Module. The first long-duration crew, dubbed “Expedition One,” is due to arrive at the Station in late fall
2000-08-16
Rising from the M113 armored personnel carrier, STS-106 Commander Terrence W. Wilcutt takes his turn at the helm of a small armored personnel carrier that is part of emergency egress training during Terminal Countdown Demonstration Test (TCDT) activities. The tracked vehicle could be used by the crew in the event of an emergency at the pad during which the crew must make a quick exit from the area. The TCDT also provides simulated countdown exercises and opportunities to inspect the mission payloads in the orbiter’s payload bay. STS-106 is scheduled to launch Sept. 8, 2000, at 8:31 a.m. EDT from Launch Pad 39B. On the 11-day mission, the seven-member crew will perform support tasks on orbit, transfer supplies and prepare the living quarters in the newly arrived Zvezda Service Module. The first long-duration crew, dubbed “Expedition One,” is due to arrive at the Station in late fall
STS-70 Mission Commander Henricks inspects tire
NASA Technical Reports Server (NTRS)
1995-01-01
STS-70 Mission Commander Terence 'Tom' Henricks inspects the nose wheel landing gear tires of the Space Shuttle Orbiter Discovery along with Mission Specialist Mary Ellen Weber after the spaceplane touched down on KSC's Runway 33 to successfully conclude the nearly nine-day space flight. Main gear touchdown was unofficially listed at 8:02 a.m. EDT on July 22, 1995 on the second landing attempt after the first opportunity was waved off. The orbiter was originally scheduled to land on the 21st, but fog and low visibility at the Shuttle Landing Facility led to the one-day extension. This was the 24th landing at KSC and the 70th Space Shuttle mission. During the space flight, the five-member crew deployed the NASA Tracking and Data Relay Satellite-G (TDRS- G). The other crew members were Pilot Kevin R. Kregel and Mission Specialists Nancy Jane Currie and Donald A. Thomas.
Earth observations taken during STS-98 mission
2001-02-07
STS098-819-038 (17 February 2001) --- Much of Metropolitan Houston appears in this nearly vertical image photographed with a handheld 70mm camera onboard the Earth-orbiting Space Shuttle Atlantis. Interstate 45 and Highways 146 and 6 can be traced from lower right in Galveston County as they head into different directions toward a wide range of points in the city and its suburbs. NASA's Johnson Space Center can be easily pin-pointed just above the center point in the frame. Other points of interest in the area can be located by tracking over the various U.S., state and interstate highways---10, 51, 610 loop, Beltway 8 and others. Downtown Houston is at left center, but the so-called Uptown area is just out of frame at left. Galveston Bay takes up most of the upper right quadrant. Lake Houston is at upper left. A small piece of the Gulf of Mexico is in lower right.
2000-09-13
STS-92 Mission Specialist Bill McArthur gets ready to take his turn at driving the M-113, part of emergency egress training during Terminal Countdown Demonstration Test (TCDT) activities. Behind him (left) is Mission Specialist Jeff Wisoff, waiting his turn to drive along with other unidentified crew members.; The tracked vehicle could be used by the crew in the event of an emergency at the pad during which the crew must make a quick exit from the area. The TCDT also provides simulated countdown exercises and opportunities to inspect the mission payloads in the orbiter’s payload bay. STS-92 is scheduled to launch Oct. 5 at 9:30 p.m. EDT on the fifth flight to the International Space Station. It will carry two elements of the Space Station, the Integrated Truss Structure Z1 and the third Pressurized Mating Adapter. The mission is also the 100th flight in the Shuttle program
STS-70 Post Flight Presentation
NASA Technical Reports Server (NTRS)
Peterson, Glen (Editor)
1995-01-01
In this post-flight overview, the flight crew of the STS-70 mission, Tom Henricks (Cmdr.), Kevin Kregel (Pilot), Major Nancy Currie (MS), Dr. Mary Ellen Weber (MS), and Dr. Don Thomas (MS), discuss their mission and accompanying experiments. Pre-flight, launch, and orbital footage is followed by the in-orbit deployment of the Tracking and Data Relay Satellite (TDRS) and a discussion of the following spaceborne experiments: a microgravity bioreactor experiment to grow 3D body-like tissue; pregnant rat muscular changes in microgravity; embryonic development in microgravity; Shuttle Amateur Radio Experiment (SAREX); terrain surface imagery using the HERCULES camera; and a range of other physiological tests, including an eye and vision test. Views of Earth include: tropical storm Chantal; the Nile River and Red Sea; lightning over Brazil. A three planet view (Earth, Mars, and Venus) was taken right before sunrise. The end footage shows shuttle pre-landing checkout, entry, and landing, along with a slide presentation of the flight.
STS-112 crew during Crew Equipment Interface Test
NASA Technical Reports Server (NTRS)
2002-01-01
KENNEDY SPACE CENTER, FLA. -- During a Crew Equipment Interface Test, STS-112 Commander Jeffrey Ashby checks out the windshield on Atlantis, the designated orbiter for the mission. STS-112 is the 15th assembly flight to the International Space Station and will be ferrying the S1 Integrated Truss Structure. The S1 truss is the first starboard (right-side) truss segment, whose main job is providing structural support for the radiator panels that cool the Space Station's complex power system. The S1 truss segment also will house communications systems, external experiment positions and other subsystems. The S1 truss will be attached to the S0 truss. STS-112 is currently scheduled for launch Aug. 22, 2002.
STS-112 crew during Crew Equipment Interface Test
NASA Technical Reports Server (NTRS)
2002-01-01
KENNEDY SPACE CENTER, FLA. -- During a Crew Equipment Interface Test, STS-112 Pilot Pamela Melroy checks out the windshield on Atlantis, the designated orbiter for the mission. STS-112 is the 15th assembly flight to the International Space Station and will be ferrying the S1 Integrated Truss Structure. The S1 truss is the first starboard (right-side) truss segment, whose main job is providing structural support for the radiator panels that cool the Space Station's complex power system. The S1 truss segment also will house communications systems, external experiment positions and other subsystems. The S1 truss will be attached to the S0 truss. STS-112 is currently scheduled for launch Aug. 22, 2002.
NASA Technical Reports Server (NTRS)
Kuebert, E. J.
1977-01-01
A Laser Altimeter and Mapping Camera System was included in the Apollo Lunar Orbital Experiment Missions. The backup system, never used in the Apollo Program, is available for use in the Lidar Test Experiments on the STS Orbital Flight Tests 2 and 4. Studies were performed to assess the problem associated with installation and operation of the Mapping Camera System in the STS. They were conducted on the photographic capabilities of the Mapping Camera System, its mechanical and electrical interface with the STS, documentation, operation and survivability in the expected environments, ground support equipment, test and field support.
Turbulent Transition in Electromagnetically Levitated Drops
NASA Technical Reports Server (NTRS)
Hyers, Robert W.; Trapaga, G.; Abedian, B.; Matson, D. M.; Rose, M. Franklin (Technical Monitor)
2000-01-01
Electromagnetic levitation (EML) is an important tool in materials research. Because a sample can be processed without contact with a container, experiments may be performed on high temperature, highly reactive, and undercooled liquid metals. Many of these experiments are affected by fluid flow in the sample, driven by the electromagnetic positioning force. Despite the importance of convection in these experiments, the transition to turbulence is not well understood in this system. However, we have observed a transition from laminar to turbulent flow in EML droplets in the course of microgravity experiments in TEMPUS on the Space Shuttle (STS-94). The transition occurs repeatably and over a narrow range of conditions. These experimental observations are compared with two competing theories about the transition to turbulence. Also, the results of a particle tracking study of the instabilities leading up to the transition to turbulence are presented.
NASA Technical Reports Server (NTRS)
Springer, William T.
1987-01-01
The Space Transportation System (STS) is a complex and expensive flight system intended to carry unique payloads into low Earth orbit and return. A catastrophic failure, such as STS 51-L, resulted in the loss of both human life as well as expensive and unique hardware. The impact of this incident reaffirms the need to do everything possible to ensure the integrity and reliability of STS. One means of achieving this goal is to expand the number of inspection technologies available. Reported here is the evaluation of the use of modal analysis and test techniques for the purpose of assessing the structural integrity of STS components for which Marshall Space Flight Center has responsibility. This entailed reviewing existing literature and developing a low-level experimental program determine the feasibility of using this technology for structural fault detection.
Saurin, Tarcisio Abreu; Gonzalez, Santiago Sosa
2013-09-01
Although the need for the management of complex socio-technical systems (STS) to be compatible with the nature of those systems is widely recognized, there are few guidelines on how to determine the actual extent of this compatibility. The purpose of this study is to assess how compatible the management of standardized procedures (SPs) is with the nature of a complex STS. To this end, a case study was made of a control room in an oil refinery, involving the following stages: (a) delimitation of the investigated STS; (b) description of the STS according to a set of characteristics of complex STS; (c) application of two types of questionnaires to thirty workers - one of them to assess their perceptions about the applicability of seven principles of SPs management in complex STS and the other to determine their perceptions about the actual use of these principles; and (d) a feedback meeting with workers to discuss the results of the assessment. The assessment is discussed in terms of its limitations, usefulness and ease of use of the data collection and analysis tools. Copyright © 2013 Elsevier Ltd and The Ergonomics Society. All rights reserved.
JSC MCC Bldg 30 Instrumentation and Communications Officer (INCO) RTDS
1988-06-02
Instrumentation and Communications Officer (INCO) John F. Muratore monitors conventional workstation displays during an STS-26 simulation in JSC Mission Control Center (MCC) Bldg 30 Flight Control Room (FCR). Next to Muratore an operator views the real time data system (RTDS), an expert system. During the STS-29 mission two conventional monochrome console display units will be removed and replaced with RTDS displays. View is for the STS-29 press kit from Office of Aeronautics and Space Technology (OAST) RTDS.
STS-37 Gamma Ray Observatory (GRO) grappled by RMS
1991-04-07
Backdropped against the Earth's surface, the Gamma Ray Observatory (GRO) with its solar array (SA) panels deployed is grappled by the remote manipulator system (RMS) during STS-37 systems checkout. GRO's four complement instruments are visible: the Energetic Gamma Ray Experiment Telescope (EGRET) (at the bottom); the Imaging Compton Telescope (COMPTEL) (center); the Oriented Scintillation Spectrometer Experiment (OSSE) (top); and Burst and Transient Source Experiment (BATSE) (on four corners). The view was taken by STS-37 crew through an aft flight deck overhead window.
STS-135 crew during Rendezvous Training session in Building 16 dome
2011-03-23
JSC2011-E-028126 (23 March 2011) --- NASA astronauts Chris Ferguson, STS-135 commander; Doug Hurley, pilot; and Sandy Magnus, mission specialist, are pictured during an STS-135 media day event in the Avionics Systems Laboratory at NASA's Johnson Space Center. Photo credit: NASA or National Aeronautics and Space Administration
STS-2 Induced Environment Contamination Monitor (IECM): Quick-Look Report
NASA Technical Reports Server (NTRS)
Miller, E. R. (Editor)
1982-01-01
The STS-2/induced environment contamination monitor (IECM) mission is described. The IECM system performance is discussed, and IECM mission time events are briefly described. Quick look analyses are presented for each of the 10 instruments comprising the IECM on the flight of STS-2. A short summary is presented.
2009-07-30
S127-E-012895 (30 July 2009) --- A Department of Defense pico-satellite known as Atmospheric Neutral Density Experiment 2 (ANDE-2) is photographed after its release from Space Shuttle Endeavour's payload bay by STS-127 crew members. ANDE-2 consists of two spherical micro-satellites which will measure the density and composition of the low-Earth orbit (LEO) atmosphere while being tracked from the ground. The data will be used to better predict the movement of objects in orbit.
President and Mrs. Clinton watch launch of Space Shuttle Discovery
NASA Technical Reports Server (NTRS)
1998-01-01
From the roof of the Launch Control Center, U.S. President Bill Clinton and First Lady Hillary Rodham Clinton track the plume and successful launch of Space Shuttle Discovery on mission STS-95. This was the first launch of a Space Shuttle to be viewed by President Clinton, or any President to date. They attended the launch to witness the return to space of American legend John H. Glenn Jr., payload specialist on the mission.
Neural dynamics of social tie formation in economic decision-making.
Bault, Nadège; Pelloux, Benjamin; Fahrenfort, Johannes J; Ridderinkhof, K Richard; van Winden, Frans
2015-06-01
The disposition for prosocial conduct, which contributes to cooperation as arising during social interaction, requires cortical network dynamics responsive to the development of social ties, or care about the interests of specific interaction partners. Here, we formulate a dynamic computational model that accurately predicted how tie formation, driven by the interaction history, influences decisions to contribute in a public good game. We used model-driven functional MRI to test the hypothesis that brain regions key to social interactions keep track of dynamics in tie strength. Activation in the medial prefrontal cortex (mPFC) and posterior cingulate cortex tracked the individual's public good contributions. Activation in the bilateral posterior superior temporal sulcus (pSTS), and temporo-parietal junction was modulated parametrically by the dynamically developing social tie-as estimated by our model-supporting a role of these regions in social tie formation. Activity in these two regions further reflected inter-individual differences in tie persistence and sensitivity to behavior of the interaction partner. Functional connectivity between pSTS and mPFC activations indicated that the representation of social ties is integrated in the decision process. These data reveal the brain mechanisms underlying the integration of interaction dynamics into a social tie representation which in turn influenced the individual's prosocial decisions. © The Author (2014). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.
NASA Technical Reports Server (NTRS)
Moskowitz, Milton E.; Hrovat, Kenneth; Tschen, Peter; McPherson, Kevin; Nati, Maurizio; Reckart, Timothy A.
1998-01-01
The microgravity environment of the Space Shuttle Columbia was measured during the STS-83 and STS-94 flights of the Microgravity Science Laboratory (MSL-1) mission using four different accelerometer systems: the Orbital Acceleration Research Experiment (OARE), the Space Acceleration Measurement System (SAMS), the Microgravity Measurement Assembly (MMA), and the Quasi-Steady Acceleration Measurement (QSAM) system. All four accelerometer systems provided investigators with acceleration measurements downlinked in near-real-time. Data from each system was recorded for post-mission analysis. The OARE measured the Shuttle's acceleration with high resolution in the quasi-steady frequency regime below about 0.1 Hz. The SAMS provided investigators with higher frequency acceleration measurements up to 25 Hz. The QSAM and MMA systems provided investigators with quasi-steady and higher frequency (up to 100 Hz) acceleration measurements, respectively. The microgravity environment related to various Orbiter maneuvers, crew activities, and experiment operations as measured by the OARE and MMA is presented and interpreted in section 8 of this report.
Spacecraft rendezvous operational considerations affecting vehicle systems design and configuration
NASA Astrophysics Data System (ADS)
Prust, Ellen E.
One lesson learned from Orbiting Maneuvering Vehicle (OMV) program experience is that Design Reference Missions must include an appropriate balance of operations and performance inputs to effectively drive vehicle systems design and configuration. Rendezvous trajectory design is based on vehicle characteristics (e.g., mass, propellant tank size, and mission duration capability) and operational requirements, which have evolved through the Gemini, Apollo, and STS programs. Operational constraints affecting the rendezvous final approach are summarized. The two major objectives of operational rendezvous design are vehicle/crew safety and mission success. Operational requirements on the final approach which support these objectives include: tracking/targeting/communications; trajectory dispersion and navigation uncertainty handling; contingency protection; favorable sunlight conditions; acceptable relative state for proximity operations handover; and compliance with target vehicle constraints. A discussion of the ways each of these requirements may constrain the rendezvous trajectory follows. Although the constraints discussed apply to all rendezvous, the trajectory presented in 'Cargo Transfer Vehicle Preliminary Reference Definition' (MSFC, May 1991) was used as the basis for the comments below.
2005-07-26
KENNEDY SPACE CENTER, FLA. -- A tracking camera on Launch Pad 39B captures a closeup of Space Shuttle Discovery moments after liftoff on the historic Return to Flight mission STS-114. The liftoff occurred at 10:39 a.m. EDT. On this mission to the International Space Station the crew will perform inspections on-orbit for the first time of all of the Reinforced Carbon-Carbon (RCC) panels on the leading edge of the wings and the Thermal Protection System tiles using the new Canadian-built Orbiter Boom Sensor System and the data from 176 impact and temperature sensors. Mission Specialists will also practice repair techniques on RCC and tile samples during a spacewalk in the payload bay. During two additional spacewalks, the crew will install the External Stowage Platform-2, equipped with spare part assemblies, and a replacement Control Moment Gyroscope contained in the Lightweight Multi-Purpose Experiment Support Structure. The 12-day mission is expected to end with touchdown at the Shuttle Landing Facility on Aug. 7.
Tethered Satellite System (TSS-1R)-Post Flight (STS-75) Engineering Performance Report
NASA Technical Reports Server (NTRS)
Lavoie, Anthony R.
1996-01-01
The first mission of the Tethered Satellite deployer was flown onboard Atlantis in 1992 during the Space Transportation System (STS) flight STS-46. Due to a mechanical interference with the level wind mechanism the satellite was only Deployed to 256 m rather than the planned 20,000 m. Other problems were also experienced during the STS-46 flight and several modifications were made to the Deployer and Satellite. STS-75 was a reflight of the Tethered Satellite System 1 (TSS-1) designated as Tethered Satellite System 1 Reflight (TSS-1 R) onboard Columbia. As on STS-46, the TSS payload consisted of the Deployer, the Satellite, 3 cargo bay mounted experiments: Shuttle Electrodynamic Tether System (SETS), Shuttle Potential and Return Electron Experiment (SPREE), Deployer Core Equipment (DCORE) 4 Satellite mounted experiments: Research on Electrodynamics Tether Effects (RETE), Research on Orbital Plasma Electrodynamics (ROPE), Satellite Core Instruments (SCORE), Tether Magnetic Field Experiment (TEMAG) and an aft flight deck camera: Tether Optical Phenomena Experiment (TOP). Following successful pre-launch, launch and pre-deployment orbital operations, the Deployer deployed the Tethered Satellite to 19,695 m at which point the tether broke within the Satellite Deployment Boom (SDB). The planned length for On-Station I (OST1) was 20,700 m The Satellite flew away from the Orbiter with the tether attached. The satellite was "safed" and placed in a limited power mode via the RF link. The Satellite was contacted periodically during overflights of ground stations. Cargo bay science activities continued for the period of time allocated to TSS-1 R operations.
Liu, Fenyun; Kariyawasam, Subhashinie; Jayarao, Bhushan M; Barrangou, Rodolphe; Gerner-Smidt, Peter; Ribot, Efrain M; Knabel, Stephen J; Dudley, Edward G
2011-07-01
Salmonella enterica subsp. enterica serovar Enteritidis is a major cause of food-borne salmonellosis in the United States. Two major food vehicles for S. Enteritidis are contaminated eggs and chicken meat. Improved subtyping methods are needed to accurately track specific strains of S. Enteritidis related to human salmonellosis throughout the chicken and egg food system. A sequence typing scheme based on virulence genes (fimH and sseL) and clustered regularly interspaced short palindromic repeats (CRISPRs)-CRISPR-including multi-virulence-locus sequence typing (designated CRISPR-MVLST)-was used to characterize 35 human clinical isolates, 46 chicken isolates, 24 egg isolates, and 63 hen house environment isolates of S. Enteritidis. A total of 27 sequence types (STs) were identified among the 167 isolates. CRISPR-MVLST identified three persistent and predominate STs circulating among U.S. human clinical isolates and chicken, egg, and hen house environmental isolates in Pennsylvania, and an ST that was found only in eggs and humans. It also identified a potential environment-specific sequence type. Moreover, cluster analysis based on fimH and sseL identified a number of clusters, of which several were found in more than one outbreak, as well as 11 singletons. Further research is needed to determine if CRISPR-MVLST might help identify the ecological origins of S. Enteritidis strains that contaminate chickens and eggs.
Final postflight hardware evaluation report RSRM-28 (STS-53)
NASA Technical Reports Server (NTRS)
Starrett, William David, Jr.
1993-01-01
The final report for the Clearfield disassembly evaluation and a continuation of the KSC postflight assessment for the RSRM-28 (STS-53) RSRM flight set is presented. All observed hardware conditions were documented on PFOR's and are included in Appendices A through C. Appendices D and E contain the measurements and safety factor data for the nozzle and insulation components. This report, along with the KSC Ten-Day Postflight Hardware Evaluation Report (TWR-64215), represents a summary of the RSRM-28 hardware evaluation. The as-flown hardware configuration is documented in TWR-63638. Disassembly evaluation photograph numbers are logged in TWA-1989. The RSRM-28 flight set disassembly evaluations described were performed at the RSRM Refurbishment Facility in Clearfield, Utah. The final factory joint demate occurred on July 15, 1993. Additional time was required to perform the evaluation of the stiffener rings per special issue 4.1.5.2 because of the washout schedule. The release of this report was after completion of all special issues per program management direction. Detailed evaluations were performed in accordance with the Clearfield PEEP, TWR-50051, Revision A. All observations were compared against limits that are also defined in the PEEP. These limits outline the criteria for categorizing the observations as acceptable, reportable, or critical. Hardware conditions that were unexpected and/or determined to be reportable or critical were evaluated by the applicable team and tracked through the PFAR system.
Perrin near the S0 (S-zero) Truss during STS-111 UF-2 EVA 2
2002-06-12
STS111-E-5241 (11 June 2002) --- Astronaut Philippe Perrin, STS-111 mission specialist, photographed near the S0 (S-Zero) Truss on the International Space Station (ISS), participates in the second scheduled session of extravehicular activity (EVA) for the STS-111 mission. During the 5-hour spacewalk, Perrin and Chang-Diaz completed installation of the Mobile Remote Servicer Base System (MBS) on the stations railcar, the Mobile Transporter. Perrin represents CNES, the French Space Agency.
2002-01-22
KENNEDY SPACE CENTER, FLA. -- Workers in the Vertical Processing Facility oversee the installation of the NICMOS radiator onto the MULE (Multi-Use Lightweight Equipment) carrier. Part of the payload on mission STS-109, the Near Infrared Camera and Multi-Object Spectrometer (NICMOS) is a new experimental cooling system consisting of a compressor and tiny turbines. With the experimental cryogenic system, NASA hopes to re-cool the infrared detectors to below -315 degrees F (-193 degrees Celsius). NICMOS II was previously tested aboard STS-95 in 1998. NICMOS could extend the life of the Hubble Space Telescope by several years. Astronauts aboard Columbia on mission STS-109 will be replacing the original NICMOS with the newer version. Launch of Columbia on mission STS-109 is scheduled Feb. 28, 2002
STS-112 crew during Crew Equipment Interface Test
NASA Technical Reports Server (NTRS)
2002-01-01
KENNEDY SPACE CENTER, FLA. -- During a Crew Equipment Interface Test, STS-112 Mission Specialist Fyodor Yurchikhin looks at Atlantis, the designated orbiter for the mission. Yurchikhin is with the Russian Space Agency. STS-112 is the 15th assembly flight to the International Space Station and will be ferrying the S1 Integrated Truss Structure. The S1 truss is the first starboard (right-side) truss segment, whose main job is providing structural support for the radiator panels that cool the Space Station's complex power system. The S1 truss segment also will house communications systems, external experiment positions and other subsystems. The S1 truss will be attached to the S0 truss. STS-112 is currently scheduled for launch Aug. 22, 2002.
MouseNet database: digital management of a large-scale mutagenesis project.
Pargent, W; Heffner, S; Schäble, K F; Soewarto, D; Fuchs, H; Hrabé de Angelis, M
2000-07-01
The Munich ENU Mouse Mutagenesis Screen is a large-scale mutant production, phenotyping, and mapping project. It encompasses two animal breeding facilities and a number of screening groups located in the general area of Munich. A central database is required to manage and process the immense amount of data generated by the mutagenesis project. This database, which we named MouseNet(c), runs on a Sybase platform and will finally store and process all data from the entire project. In addition, the system comprises a portfolio of functions needed to support the workflow management of the core facility and the screening groups. MouseNet(c) will make all of the data available to the participating screening groups, and later to the international scientific community. MouseNet(c) will consist of three major software components:* Animal Management System (AMS)* Sample Tracking System (STS)* Result Documentation System (RDS)MouseNet(c) provides the following major advantages:* being accessible from different client platforms via the Internet* being a full-featured multi-user system (including access restriction and data locking mechanisms)* relying on a professional RDBMS (relational database management system) which runs on a UNIX server platform* supplying workflow functions and a variety of plausibility checks.
STS-41 Voice Command System Flight Experiment Report
NASA Technical Reports Server (NTRS)
Salazar, George A.
1981-01-01
This report presents the results of the Voice Command System (VCS) flight experiment on the five-day STS-41 mission. Two mission specialists,Bill Shepherd and Bruce Melnick, used the speaker-dependent system to evaluate the operational effectiveness of using voice to control a spacecraft system. In addition, data was gathered to analyze the effects of microgravity on speech recognition performance.
Integrated orbital servicing study for low-cost payload programs. Volume 1: Executive summary
NASA Technical Reports Server (NTRS)
Derocher, W. L., Jr.
1975-01-01
Various operating methodologies to achieve low-cost space operations were investigated as part of the Space Transportation System (STS) planning. The emphasis was to show that the development investment, initial fleet costs, and supporting facilities for the STS could be effectively offset by exploiting the capabilities of the STS to satisfy mission requirements and reduce the cost of payload programs. The following major conclusions were reached: (1) the development of an on-orbit servicer maintenance system is compatible with many spacecraft programs and is recommended as the most cost-effective system, (2) spacecraft can be designed to be serviceable with acceptable design, weight, volume, and cost effects, (3) use of on-orbit servicing over a 12 year period results in savings ranging between four and nine billion dollars, (4) the pivoting arm on-orbit servicer was selected and a preliminary design was prepared, (5) orbital maintenance has no significant impact on the STS.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 5 2012-01-01 2012-01-01 false Background. 1214.302 Section 1214.302 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT Payload Specialists for Space Transportation System (STS) Missions § 1214.302 Background. (a) The Space Transportation System (STS) has been...
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Background. 1214.302 Section 1214.302 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT Payload Specialists for Space Transportation System (STS) Missions § 1214.302 Background. (a) The Space Transportation System (STS) has been...
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Background. 1214.302 Section 1214.302 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT Payload Specialists for Space Transportation System (STS) Missions § 1214.302 Background. (a) The Space Transportation System (STS) has been...
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 5 2013-01-01 2013-01-01 false Background. 1214.302 Section 1214.302 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT Payload Specialists for Space Transportation System (STS) Missions § 1214.302 Background. (a) The Space Transportation System (STS) has been...
STS-134 crew during PDRS PRF ADV (AMS) traiining
2011-03-23
JSC2011-E-028158 (23 March 2011) --- NASA astronaut Greg H. Johnson, STS-134 pilot, participates in an exercise in the systems engineering simulator in the Avionics Systems Laboratory at NASA's Johnson Space Center. Photo credit: NASA or National Aeronautics and Space Administration
INFLIGHT (EARTH VIEWS) - STS-2
1981-11-16
Onboard views by the STS-2 Crew of the Payload Bay with Office of Space and Terrestrial Applications (OSTA)-1 Payload, the Remote Manipulator System (RMS) and Earth views of: Korea, China and Columbia. Also available in 4x5 BW 1. REAGAN, RONALD PRESIDENT - MOCR (STS-2) JSC, HOUSTON, TX Also available in 4x5 BW, 35 CN, 35 BW
Richoz, Anne-Raphaëlle; Jack, Rachael E; Garrod, Oliver G B; Schyns, Philippe G; Caldara, Roberto
2015-04-01
The human face transmits a wealth of signals that readily provide crucial information for social interactions, such as facial identity and emotional expression. Yet, a fundamental question remains unresolved: does the face information for identity and emotional expression categorization tap into common or distinct representational systems? To address this question we tested PS, a pure case of acquired prosopagnosia with bilateral occipitotemporal lesions anatomically sparing the regions that are assumed to contribute to facial expression (de)coding (i.e., the amygdala, the insula and the posterior superior temporal sulcus--pSTS). We previously demonstrated that PS does not use information from the eye region to identify faces, but relies on the suboptimal mouth region. PS's abnormal information use for identity, coupled with her neural dissociation, provides a unique opportunity to probe the existence of a dichotomy in the face representational system. To reconstruct the mental models of the six basic facial expressions of emotion in PS and age-matched healthy observers, we used a novel reverse correlation technique tracking information use on dynamic faces. PS was comparable to controls, using all facial features to (de)code facial expressions with the exception of fear. PS's normal (de)coding of dynamic facial expressions suggests that the face system relies either on distinct representational systems for identity and expression, or dissociable cortical pathways to access them. Interestingly, PS showed a selective impairment for categorizing many static facial expressions, which could be accounted for by her lesion in the right inferior occipital gyrus. PS's advantage for dynamic facial expressions might instead relate to a functionally distinct and sufficient cortical pathway directly connecting the early visual cortex to the spared pSTS. Altogether, our data provide critical insights on the healthy and impaired face systems, question evidence of deficits obtained from patients by using static images of facial expressions, and offer novel routes for patient rehabilitation. Copyright © 2014 Elsevier Ltd. All rights reserved.
STS-32 OV-102 air revitalization system (ARS) humidity separator problem
1990-01-20
During STS-32, onboard Columbia, Orbiter Vehicle (OV) 102, a leakage problem at environmental control and life support system (ECLSS) air revitalization system (ARS) humidity separator A below the middeck is solved with a plastic bag and a towel. The towel inserted inside a plastic bag absorbed the water that had collected at the separator inlet.
STS-32 OV-102 air revitalization system (ARS) humidity separator problem
NASA Technical Reports Server (NTRS)
1990-01-01
During STS-32, onboard Columbia, Orbiter Vehicle (OV) 102, a leakage problem at environmental control and life support system (ECLSS) air revitalization system (ARS) humidity separator A below the middeck is solved with a plastic bag and a towel. The towel inserted inside a plastic bag absorbed the water that had collected at the separator inlet.
STS-98 and Expedition One crew with rack in U.S. Laboratory / Destiny module
2001-02-11
STS98-E-5159 (11 February 2001) --- Astronaut Mark L. Polansky, STS-98 pilot, works inside the newly attached Destiny laboratory onboard the International Space Station (ISS). After the Destiny hatch was opened early in the day, members of both the shuttle and station crews went to work quickly inside the new module, activating air systems, fire extinguishers, alarm systems, computers and internal communications. The crews also took some photos and continued equipment transfers from the shuttle to the station. The scene was taken with a digital still camera.
Mission Specialist (MS) Ride on middeck
1992-06-24
STS007-02-020 (21 June 1983) --- Astronaut Sally K. Ride, STS-7 mission specialist, STS-7 mission specialist, stands in the mid deck of the orbiting Space Shuttle Challenger near one of the experiment with which she has devoted a great deal of time. The continuous flow electrophoresis system (CFES) experiment, about the size of a household refrigerator, stands nearby. One of her fellow crewmembers moves partially out of frame in the background. The tube on her face is part of a communications system linking Dr. Ride to ground controllers in Houston.
Hu, Chaoyang; Ham, Byung-Kook; El-Shabrawi, Hattem M; Alexander, Danny; Zhang, Dabing; Ryals, John; Lucas, William J
2016-09-01
The plant vascular system, and specifically the phloem, plays a pivotal role in allocation of fixed carbon to developing sink organs. Although the processes involved in loading and unloading of sugars and amino acids are well characterized, little information is available regarding the nature of other metabolites in the sieve tube system (STS) at specific sites along the pathway. Here, we elucidate spatial features of metabolite composition mapped with phloem enzymes along the cucurbit STS. Phloem sap (PS) was collected from the loading (source), unloading (apical sink region) and shoot-root junction regions of cucumber, watermelon and pumpkin. Our PS analyses revealed significant differences in the metabolic and proteomic profiles both along the source-sink pathway and between the STSs of these three cucurbits. In addition, metabolite profiles established for PS and vascular tissue indicated the presence of distinct compositions, consistent with the operation of the STS as a unique symplasmic domain. In this regard, at various locations along the STS we could map metabolites and their related enzymes to specific metabolic pathways. These findings are discussed with regard to the function of the STS as a unique and highly complex metabolic space within the plant vascular system. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.
Studies of the vestibulo-ocular reflex on STS 4, 5 and 6
NASA Technical Reports Server (NTRS)
Thornton, William E.; Pool, Sam L.; Moore, Thomas P.; Uri, John J.
1988-01-01
The vestibulo-ocular reflex (VOR) may be altered by weightlessness. Since this reflex plays a large role in visual stabilization, it was important to document any changes caused by space flight. This is a report on findings on STS-4 through 6 and is part of a larger study of neurosensory adaptation done on STS-4 through 8. Voluntary horizontal head oscillations at 1/3 Hz with amplitude of 30 deg right and left of center were recorded by a potentiometer and compared to eye position recorded by electroculography under the following conditions: eyes open, head fixed, tracking horizontal targets switched 0, 15, and 30 degrees right and left (optokinetic reflex - OKR - and calibration); eyes open and fixed on static external target with oscillation, (vestibulo ocular reflex, eyes closed - VOR EC); eyes open and wearing opaque goggles with target fixed in imagination (vestibulo-ocular reflex, eyes shaded - VOR ES); and eyes open and fixed on a head synchronized target with head oscillation (VOR suppression). No significant changes were found in voluntary head oscillation frequency or amplitude in those with (n=5), and without (n=3), space motion sickness (SMS), with phase of flight or test condition. Variations in head oscillation were too small to have produced detectable changes in test results.
STS-99 crew practice driving an M-113 during TCDT
NASA Technical Reports Server (NTRS)
2000-01-01
STS-99 Mission Specialist Mamoru Mohri, who is with the National Space Development Agency (NASDA) of Japan, smiles during training on the M-113, an armored personnel carrier that is part of emergency egress training during Terminal Countdown Demonstration Test (TCDT) activities. The tracked vehicle could be used by the crew in the event of an emergency at the pad during which the crew must make a quick exit from the area. TCDT provides the crew with simulated countdown exercises, emergency egress training, and opportunities to inspect the mission payloads in the orbiter's payload bay. STS-99 is the Shuttle Radar Topography Mission, which will chart a new course, using two antennae and a 200-foot-long section of space station-derived mast protruding from the payload bay to produce unrivaled 3-D images of the Earth's surface. The result of the Shuttle Radar Topography Mission could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety. Launch of Endeavour on the 11-day mission is scheduled for Jan. 31 at 12:47 p.m. EST.
2009-07-30
S127-E-012919 (30 July 2009) --- Backdropped by a blue and white Earth, a Department of Defense pico-satellite known as Atmospheric Neutral Density Experiment 2 (ANDE-2) is photographed after its release from Space Shuttle Endeavour's payload bay by STS-127 crew members. ANDE-2 consists of two spherical micro-satellites which will measure the density and composition of the low-Earth orbit (LEO) atmosphere while being tracked from the ground. The data will be used to better predict the movement of objects in orbit.
View of ANDE release from orbiter Discovery payload bay
2006-12-21
S116-E-07828 (21 Dec. 2006) --- As seen through windows on the aft flight deck of Space Shuttle Discovery, a Department of Defense pico-satellite known as Atmospheric Neutral Density Experiment (ANDE) is released from the shuttle's payload bay by STS-116 crewmembers. ANDE consists of two micro-satellites which will measure the density and composition of the low Earth orbit (LEO) atmosphere while being tracked from the ground. The data will be used to better predict the movement of objects in orbit.
1997-09-08
The STS-86 flight was the seventh shuttle-Mir docking mission, symbolized by seven stars. The international crew includes astronauts from the United States, Russia, and France. The flags of these nations are incorporated in the rays of the astronaut logo. The rays of light streaking across the sky depict the orbital tracks of the two spacecraft as they prepare to dock. During the flight, an American astronaut and a Russian cosmonaut will perform an extravehicular activity (EVA). The mercator projection of Earth illustrates the global cooperative nature of the flight.
The Satellite Test Unit (STU), part of the Passive Aerodynamically Stabilized Magnetically Damped
NASA Technical Reports Server (NTRS)
1996-01-01
STS-77 ESC VIEW --- The Satellite Test Unit (STU), part of the Passive Aerodynamically Stabilized Magnetically Damped Satellite (PAMS) is seen moments after its ejection from the cargo bay of the Space Shuttle Endeavour. The scene was photographed with an Electronic Still Camera (ESC) onboard Endeavour's crew cabin during the deployment. The six-member crew will continue operations (tracking, rendezvousing and station-keeping) with PAMS-STU periodically throughout the remainder of the mission. GMT: 03:29:31.
The Satellite Test Unit (STU), part of the Passive Aerodynamically Stabilized Magnetically Damped
NASA Technical Reports Server (NTRS)
1996-01-01
STS-77 ESC VIEW --- The Satellite Test Unit (STU), part of the Passive Aerodynamically Stabilized Magnetically Damped Satellite (PAMS) is seen moments after its ejection from the cargo bay of the Space Shuttle Endeavour. The scene was photographed with an Electronic Still Camera (ESC) onboard Endeavour's crew cabin during the deployment. The six-member crew will continue operations (tracking, rendezvousing and station-keeping) with PAMS-STU periodically throughout the remainder of the mission. GMT: 03:29:43.
The Satellite Test Unit (STU), part of the Passive Aerodynamically Stabilized Magnetically Damped
NASA Technical Reports Server (NTRS)
1996-01-01
STS-77 ESC VIEW --- The Satellite Test Unit (STU), part of the Passive Aerodynamically Stabilized Magnetically Damped Satellite (PAMS) is seen moments after its ejection from the cargo bay of the Space Shuttle Endeavour. The scene was photographed with an Electronic Still Camera (ESC) onboard Endeavour's crew cabin during the deployment. The six-member crew will continue operations (tracking, rendezvousing and station-keeping) with PAMS-STU periodically throughout the remainder of the mission. GMT: 03:29:29.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. The red NASA engine backs up with its cargo of containers in order to change tracks. The containers enclose segments of a solid rocket booster being returned to Utah for testing. The segments were part of the STS-114 stack. It is the first time actual flight segments that had been stacked for flight in the VAB are being returned for testing. They will undergo firing, which will enable inspectors to check the viability of the solid and verify the life expectancy for stacked segments.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. Workers ride the rails along with a container enclosing a segment of a solid rocket booster being moved to the main track. Several segments are being returned to Utah for testing. The segments were part of the STS-114 stack. It is the first time actual flight segments that had been stacked for flight in the VAB are being returned for testing. They will undergo firing, which will enable inspectors to check the viability of the solid and verify the life expectancy for stacked segments.
2009-07-30
S127-E-012934 (30 July 2009) --- Backdropped by Earth’s horizon and the blackness of space, a Department of Defense pico-satellite known as Atmospheric Neutral Density Experiment 2 (ANDE-2) is photographed after its release from Space Shuttle Endeavour's payload bay by STS-127 crew members. ANDE-2 consists of two spherical micro-satellites which will measure the density and composition of the low-Earth orbit (LEO) atmosphere while being tracked from the ground. The data will be used to better predict the movement of objects in orbit.
Realization of a quantum Hamiltonian Boolean logic gate on the Si(001):H surface.
Kolmer, Marek; Zuzak, Rafal; Dridi, Ghassen; Godlewski, Szymon; Joachim, Christian; Szymonski, Marek
2015-08-07
The design and construction of the first prototypical QHC (Quantum Hamiltonian Computing) atomic scale Boolean logic gate is reported using scanning tunnelling microscope (STM) tip-induced atom manipulation on an Si(001):H surface. The NOR/OR gate truth table was confirmed by dI/dU STS (Scanning Tunnelling Spectroscopy) tracking how the surface states of the QHC quantum circuit on the Si(001):H surface are shifted according to the input logical status.
MS Lucid and Blaha with MGBX aboard the Mir space station Priroda module
1997-03-26
STS079-S-092 (16-26 Sept. 1996) --- Astronauts Shannon W. Lucid and John E. Blaha work at a microgravity glove box on the Priroda Module aboard Russia's Mir Space Station complex. Blaha, who flew into Earth-orbit with the STS-79 crew, and Lucid are the first participants in a series of ongoing exchanges of NASA astronauts serving time as cosmonaut guest researchers onboard Mir. Lucid went on to spend a total of 188 days in space before returning to Earth with the STS-79 crew. During the STS-79 mission, the crew used an IMAX camera to document activities aboard the Space Shuttle Atlantis and the various Mir modules, with the cooperation of the Russian Space Agency (RSA). A hand-held version of the 65mm camera system accompanied the STS-79 crew into space in Atlantis' crew cabin. NASA has flown IMAX camera systems on many Shuttle missions, including a special cargo bay camera's coverage of other recent Shuttle-Mir rendezvous and/or docking missions.
NASA Technical Reports Server (NTRS)
Milligan, J. E.; Swoboda, G. D.; Susko, M.
1985-01-01
The results of the field tests of two monitoring device techniques, electrets and plant fluorometers are analyzed in order to determine the environmental effects of launch by-products and the extent of these effects. The STS launches are used because the Shuttle emits 2 1/2 times more HCl than any previous systems, it produces a voluminous ground cloud and, most important, it produces near field HCl deposition and revolatilization, far-field acid washout/rainout, and gaseous HCl diffusion. Field evaluations of electrets at STS-5, STS-6, and STS-8 have shown that qualitative assessments can be made for areas lightly or moderately impacted by gaseous and aerosol HCl. Field evaluation of the plant productivity fluorometer at STS-8 has shown that this system is also useful for qualitative assessment in areas lightly, moderately, or heavily affected by gaseous and aerosol HCl. Quantitative prediction of HCl may be possible in lightly and moderately affected areas, given deposition rates correlation.
Pitchers, Kyle K; Phillips, Kyra B; Jones, Jonte L; Robinson, Terry E; Sarter, Martin
2017-07-26
Stimuli associated with taking drugs are notorious instigators of relapse. There is, however, considerable variation in the motivational properties of such stimuli, both as a function of the individual and the nature of the stimulus. The behavior of some individuals (sign trackers, STs) is especially influenced by cues paired with reward delivery, perhaps because they are prone to process information via dopamine-dependent, cue-driven, incentive salience systems. Other individuals (goal trackers, GTs) are better able to incorporate higher-order contextual information, perhaps because of better executive/attentional control over behavior, which requires frontal cortical cholinergic activity. We hypothesized, therefore, that a cue that "sets the occasion" for drug taking (a discriminative stimulus, DS) would reinstate cocaine seeking more readily in GTs than STs and that this would require intact cholinergic neurotransmission. To test this, male STs and GTs were trained to self-administer cocaine using an intermittent access schedule with periods of cocaine availability and unavailability signaled by a DS + and a DS - , respectively. Thereafter, half of the rats received an immunotoxic lesion that destroyed 40-50% of basal forebrain cholinergic neurons and later, after extinction training, were tested for the ability of noncontingent presentations of the DS + to reinstate cocaine seeking behavior. The DS + was much more effective in reinstating cocaine seeking in GTs than STs and this effect was abolished by cholinergic losses despite the fact that all rats continued to orient to the DS + We conclude that vulnerability to relapse involves interactions between individual cognitive-motivational biases and the form of the drug cue encountered. SIGNIFICANCE STATEMENT The most predictable outcome of a diagnosis of addiction is a high chance for relapse. When addicts encounter cues previously associated with drug, their attention may be unduly attracted to such cues and these cues can evoke motivational states that instigate and maintain drug-seeking behavior. Although sign-tracking rats were previously demonstrated to exhibit greater relapse vulnerability to Pavlovian drug cues paired with drug delivery, here, we demonstrate that their counterparts, the goal trackers, are more vulnerable if the drug cue acts to signal drug availability and that the forebrain cholinergic system mediates such vulnerability. Given the importance of contextual cues for triggering relapse and the human cognitive-cholinergic capacity for the processing of such cues, goal trackers model essential aspects of relapse vulnerability. Copyright © 2017 the authors 0270-6474/17/377198-11$15.00/0.
Flagel, Shelly B.; Watson, Stanley J.; Akil, Huda; Robinson, Terry E.
2008-01-01
When a discrete cue (a “sign”) is presented repeatedly in anticipation of a food reward the cue can become imbued with incentive salience, leading some animals to approach and engage it, a phenomenon known as “sign-tracking” (the animals are sign-trackers; STs). In contrast, other animals do not approach the cue, but upon cue presentation go to the location where food will be delivered (the goal). These animals are known as goal-trackers (GTs). It has been hypothesized that individuals who attribute excessive incentive salience to reward-related cues may be especially vulnerable to develop compulsive behavioral disorders, including addiction. We were interested, therefore, in whether individual differences in the propensity to sign-track are associated with differences in responsivity to cocaine. Using an autoshaping procedure in which lever (conditioned stimulus) presentation was immediately followed by the response-independent delivery of a food pellet (unconditioned stimulus), rats were first characterized as STs or GTs and subsequently studied for the acute psychomotor response to cocaine and the propensity for cocaine-induced psychomotor sensitization. We found that GTs were more sensitive than STs to the acute locomotor activating effects of cocaine, but STs showed a greater propensity for psychomotor sensitization upon repeated treatment. These data suggest that individual differences in the tendency to attribute incentive salience to a discrete reward-related cue, and to approach and engage it, are associated with susceptibility to a form of cocaine-induced plasticity that may contribute to the development of addiction. PMID:17719099
Kuhn, Brittany N; Klumpner, Marin S; Covelo, Ignacio R; Campus, Paolo; Flagel, Shelly B
2018-04-01
The paraventricular nucleus of the thalamus (PVT) has been shown to mediate cue-motivated behaviors, such as sign- and goal-tracking, as well as reinstatement of drug-seeking behavior. However, the role of the PVT in mediating individual variation in cue-induced drug-seeking behavior remains unknown. This study aimed to determine if inactivation of the PVT differentially mediates cue-induced drug-seeking behavior in sign-trackers and goal-trackers. Rats were characterized as sign-trackers (STs) or goal-trackers (GTs) based on their Pavlovian conditioned approach behavior. Rats were then exposed to 15 days of cocaine self-administration, followed by a 2-week forced abstinence period and then extinction training. Rats then underwent tests for cue-induced reinstatement and general locomotor activity, prior to which they received an infusion of either saline (control) or baclofen/muscimol (B/M) to inactivate the PVT. Relative to control animals of the same phenotype, GTs show a robust increase in cue-induced drug-seeking behavior following PVT inactivation, whereas the behavior of STs was not affected. PVT inactivation did not affect locomotor activity in either phenotype. In GTs, the PVT appears to inhibit the expression of drug-seeking, presumably by attenuating the incentive value of the drug cue. Thus, inactivation of the PVT releases this inhibition in GTs, resulting in an increase in cue-induced drug-seeking behavior. PVT inactivation did not affect cue-induced drug-seeking behavior in STs, suggesting that the role of the PVT in encoding the incentive motivational value of drug cues differs between STs and GTs.
1993-12-10
S93-50137 (December 1993) --- This small mobility-aiding back harness, complemented in extravehicular activity (EVA) with a hand controller unit and called the Simplified Aid for EVA Rescue (SAFER) system, will get extensive in-space evaluation and testing during the STS-64 mission. In this view the SAFER is open to reveal the gas supply and thrusters. SAFER is to fly on STS-76 as well.
Development of methodologies and procedures for identifying STS users and uses
NASA Technical Reports Server (NTRS)
Archer, J. L.; Beauchamp, N. A.; Macmichael, D. C.
1974-01-01
A study was conducted to identify new uses and users of the new Space Transporation System (STS) within the domestic government sector. The study develops a series of analytical techniques and well-defined functions structured as an integrated planning process to assure efficient and meaningful use of the STS. The purpose of the study is to provide NASA with the following functions: (1) to realize efficient and economic use of the STS and other NASA capabilities, (2) to identify new users and uses of the STS, (3) to contribute to organized planning activities for both current and future programs, and (4) to air in analyzing uses of NASA's overall capabilities.
2011-07-04
CAPE CANAVERAL, Fla. -- Jerry Ross, chief of the Vehicle Integration Test Office and former NASA astronaut, Shuttle Launch Director Mike Leinbach and James Branson with the Vehicle Integration Test Office await the arrival of the STS-135 crew members at the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida. The STS-135 astronauts arrived at Kennedy about 2:30 p.m. EDT on July 4 for final preparations for space shuttle Atlantis' STS-135 mission to the International Space Station. Atlantis is scheduled to lift off on July 8 to deliver the Raffaello multi-purpose logistics module packed with supplies and spare parts to the station. The STS-135 mission also will fly a system to investigate the potential for robotically refueling existing satellites and return a failed ammonia pump module to help NASA better understand the failure mechanism and improve pump designs for future systems. STS-135 will be the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information visit, www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Kim Shiflett
One Year Report for SAMS and OARE on STS-73/USML-2. Experiment 36
NASA Technical Reports Server (NTRS)
Hakimzadeh, Roshanak
1998-01-01
The Second United States Microgravity Laboratory (USML-2) payload flew on the orbiter Columbia on mission STS-73 from October 20 to November 5, 1995. The USML-2 payload on STS-73 was dedicated to microgravity experiments. Two accelerometer systems managed by the NASA Lewis Research Center (LeRC) flew to support these experiments, namely the Orbital Acceleration Research Experiment (OARE) and the Space Acceleration Measurements System (SAMS). OARE downlinked real-time quasi-steady acceleration data, which were provided to the investigators. The SAMS recorded higher frequency data onboard for post-mission analysis. The Principal Investigator Microgravity Services (PIMS) project at NASA LeRC supports principal investigators of microgravity experiments as they evaluate the effects of varying acceleration levels on their experiments. A summary report was prepared by PIMS to furnish interested experiment investigators with a guide to evaluate the acceleration environment during STS-73, and as a means of identifying areas which require further study. The summary report provides an overview of the STS-73 mission, describes the accelerometer systems flown on this mission, discusses some specific analyses of the accelerometer data in relation to the various activities which occurred during the mission, and presents plots resulting from these analyses as a snapshot of the environment during the mission. Numerous activities occurred during the STS-73 mission that are of interest to the low-gravity community. Specific activities of interest during this mission were crew exercise, payload bay door motion, Glovebox fan operations, water dumps, Ku band antenna activity, orbital maneuvering system, and primary reaction control system firings, and attitude changes. The low-gravity environment related to these activities is discussed in the summary report.
STS-112 crew during Crew Equipment Interface Test
NASA Technical Reports Server (NTRS)
2002-01-01
KENNEDY SPACE CENTER, FLA. -- Accompanied by a technician, STS-112 Pilot Pamela Melroy (left) and Mission Specialist David Wolf (right) look at the payload and equipment in the bay of Atlantis during a Crew Equipment Interface Test at KSC. STS-112 is the 15th assembly flight to the International Space Station and will be ferrying the S1 Integrated Truss Structure. The S1 truss is the first starboard (right-side) truss segment, whose main job is providing structural support for the radiator panels that cool the Space Station's complex power system. The S1 truss segment also will house communications systems, external experiment positions and other subsystems. The S1 truss will be attached to the S0 truss. STS-112 is currently scheduled for launch Aug. 22, 2002 .
STS-112 crew during Crew Equipment Interface Test
NASA Technical Reports Server (NTRS)
2002-01-01
KENNEDY SPACE CENTER, FLA. - During a Crew Equipment Interface Test, STS-112 Pilot Pamela Melroy (left) and Mission Specialist David Wolf (right) look at equipment pointed out by a technician in the payload bay of Atlantis. STS-112 is the 15th assembly flight to the International Space Station and will be ferrying the S1 Integrated Truss Structure. The S1 truss is the first starboard (right-side) truss segment, whose main job is providing structural support for the radiator panels that cool the Space Station's complex power system. The S1 truss segment also will house communications systems, external experiment positions and other subsystems. The S1 truss will be attached to the S0 truss. STS-112 is currently scheduled for launch Aug. 22, 2002 .
STS-112 crew during Crew Equipment Interface Test
NASA Technical Reports Server (NTRS)
2002-01-01
KENNEDY SPACE CENTER, FLA. -- During a Crew Equipment Interface Test, STS-112 Mission Specialist Piers Sellers (foreground) points to an engine line on Atlantis, the designated orbiter for the mission, while Commander Jeffrey Ashby (behind) looks on. STS-112 is the 15th assembly flight to the International Space Station and will be ferrying the S1 Integrated Truss Structure. The S1 truss is the first starboard (right-side) truss segment, whose main job is providing structural support for the radiator panels that cool the Space Station's complex power system. The S1 truss segment also will house communications systems, external experiment positions and other subsystems. The S1 truss will be attached to the S0 truss. STS-112 is currently scheduled for launch Aug. 22, 2002.
1997-01-22
KENNEDY SPACE CENTER, FLA. - STS-82 crew members examine part of the Flight Support System during the Crew Equipment Integration Test (CEIT) in KSC's Vertical Processing Facility. From left are Mission Specialists Steven L. Smith and Gregory J. Harbaugh and Payload Commander Mark C. Lee. Liftoff of STS-82, the second Hubble Space Telescope (HST) servicing mission, is scheduled Feb. 11 aboard Discovery with a crew of seven.
ECLSS ARS humidifier separator repair onboard Atlantis, OV-104, during STS-44
NASA Technical Reports Server (NTRS)
1991-01-01
During STS-44, the Environmental Control and Life Support System (ECLSS) Air Revitalization System (ARS) humidifier separator is repaired using a towel and a plastic bag underneath the middeck subfloor of Atlantis, Orbiter Vehicle (OV) 104. Problems with the humidifier separator began about midway through the mission.
14 CFR § 1214.302 - Background.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 5 2014-01-01 2014-01-01 false Background. § 1214.302 Section § 1214.302 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT Payload Specialists for Space Transportation System (STS) Missions § 1214.302 Background. (a) The Space Transportation System (STS) has been...
STS-135 crew during Rendezvous Training session in Building 16 dome
2011-03-23
JSC2011-E-028153 (23 March 2011) --- NASA astronauts Doug Hurley, STS-135 pilot; and Sandy Magnus (foreground), mission specialist, participate in an exercise in the systems engineering simulator in the Avionics Systems Laboratory at NASA's Johnson Space Center. Photo credit: NASA or National Aeronautics and Space Administration
STS-135 crew during Rendezvous Training session in Building 16 dome
2011-03-23
JSC2011-E-028151 (23 March 2011) --- NASA astronauts Doug Hurley, STS-135 pilot; and Sandy Magnus (foreground), mission specialist, participate in an exercise in the systems engineering simulator in the Avionics Systems Laboratory at NASA's Johnson Space Center. Photo credit: NASA or National Aeronautics and Space Administration
STS-135 crew during Rendezvous Training session in Building 16 dome
2011-03-23
JSC2011-E-028122 (23 March 2011) --- NASA astronauts Doug Hurley, STS-135 pilot; and Sandy Magnus (foreground), mission specialist, participate in an exercise in the systems engineering simulator in the Avionics Systems Laboratory at NASA's Johnson Space Center. Photo credit: NASA or National Aeronautics and Space Administration
STS-134 crew during PDRS PRF ADV (AMS) traiining
2011-03-23
JSC2011-E-028160 (23 March 2011) --- NASA astronauts Greg H. Johnson (right), STS-134 pilot; and Greg Chamitoff, mission specialist, are pictured during an exercise in the systems engineering simulator in the Avionics Systems Laboratory at NASA's Johnson Space Center. Photo credit: NASA or National Aeronautics and Space Administration
STS-135 crew during Rendezvous Training session in Building 16 dome
2011-03-23
JSC2011-E-028150 (23 March 2011) --- NASA astronauts Doug Hurley, STS-135 pilot; and Sandy Magnus (foreground), mission specialist, participate in an exercise in the systems engineering simulator in the Avionics Systems Laboratory at NASA's Johnson Space Center. Photo credit: NASA or National Aeronautics and Space Administration
STS-131 crew member and JAXA astronaut Naoko Yamazaki training SSRMS PROF
2010-01-15
JSC2010-E-009784 (15 Jan. 2010) --- Japan Aerospace Exploration Agency (JAXA) astronaut Naoko Yamazaki, STS-131 mission specialist, participates in a simulation exercise using the Space Station Remote Manipulator System (SSRMS) simulator in the Avionics Systems Laboratory at NASA?s Johnson Space Center.
STS-131 crew member and JAXA astronaut Naoko Yamazaki
2010-01-12
JSC2010-E-008557 (12 Jan. 2010) --- Japan Aerospace Exploration Agency (JAXA) astronaut Naoko Yamazaki, STS-131 mission specialist, participates in a Thermal Protection System (TPS) Orbiter Boom Sensor System (OBSS) training session in the Jake Garn Simulation and Training Facility at NASA?s Johnson Space Center.
STS-131 crew member and JAXA astronaut Naoko Yamazaki
2010-01-12
JSC2010-E-008556 (12 Jan. 2010) --- Japan Aerospace Exploration Agency (JAXA) astronaut Naoko Yamazaki, STS-131 mission specialist, participates in a Thermal Protection System (TPS) Orbiter Boom Sensor System (OBSS) training session in the Jake Garn Simulation and Training Facility at NASA?s Johnson Space Center.
STS-131 crew member and JAXA astronaut Naoko Yamazaki
2010-01-12
JSC2010-E-008553 (12 Jan. 2010) --- Japan Aerospace Exploration Agency (JAXA) astronaut Naoko Yamazaki, STS-131 mission specialist, participates in a Thermal Protection System (TPS) Orbiter Boom Sensor System (OBSS) training session in the Jake Garn Simulation and Training Facility at NASA?s Johnson Space Center.
Astronaut Andrew Allen monitors Columbia's systems from pilots station
1994-03-05
STS062-41-025 (18 March 1994) --- Astronaut Andrew M. Allen monitors Columbia's systems from the pilot's station during the entry phase of the STS-62 mission. The fast-speed 35mm film highlights the many controls and displays and the cathode ray tubes on the forward flight deck.
Perrin smiles through the visor of his EVA helmet while working beside the MBS during STS-111 EVA 2
2002-06-11
STS111-307-017 (11 June 2002) --- Astronaut Philippe Perrin, STS-111 mission specialist representing CNES, the French Space Agency, participates in the second scheduled session of extravehicular activity (EVA) for the STS-111 mission. During the spacewalk, Perrin and Chang-Diaz attached power, data and video cables from the International Space Station (ISS) to the Mobile Base System (MBS) and used a power wrench to complete the attachment of the MBS onto the Mobile Transporter (MT).
2001-03-11
STS102-312-004 (11 March 2001) --- Astronaut James S. Voss works while anchored to the remote manipulator system (RMS) robot arm on the Space Shuttle Discovery. This extravehicular activity (EVA), on which Voss was joined by astronaut Susan J. Helms (out of frame), was the first of two scheduled STS-102 space walks. The pair, destined to become members of the Expedition Two crew aboard the station later in the mission, rode aboard Discovery into orbit and at the time of this EVA were still regarded as STS-102 mission specialists.
NASA Technical Reports Server (NTRS)
1990-01-01
The potential of a common Liquid Rocket Booster (LRB) design was evaluated for use with both the Space Transportation System (STS) and the Advanced Launch System (ALS). A goal is to have a common Liquid Oxygen/Liquid Hydrogen (LO2/LH2) engine developed for both the ALS booster and the core stage. The LO2/LH2 option for the STS was evaluated to identify potential LRB program cost reductions. The objective was to identify the structural impacts to the external tank (ET), and to determine if any significant ET re-development costs are required as a result of the larger LO2/LH2 LRB. The potential ET impacts evaluated are presented.
Thermographic imaging of the space shuttle during re-entry using a near-infrared sensor
NASA Astrophysics Data System (ADS)
Zalameda, Joseph N.; Horvath, Thomas J.; Kerns, Robbie V.; Burke, Eric R.; Taylor, Jeff C.; Spisz, Tom; Gibson, David M.; Shea, Edward J.; Mercer, C. David; Schwartz, Richard J.; Tack, Steve; Bush, Brett C.; Dantowitz, Ronald F.; Kozubal, Marek J.
2012-06-01
High resolution calibrated near infrared (NIR) imagery of the Space Shuttle Orbiter was obtained during hypervelocity atmospheric re-entry of the STS-119, STS-125, STS-128, STS-131, STS-132, STS-133, and STS-134 missions. This data has provided information on the distribution of surface temperature and the state of the airflow over the windward surface of the Orbiter during descent. The thermal imagery complemented data collected with onboard surface thermocouple instrumentation. The spatially resolved global thermal measurements made during the Orbiter's hypersonic re-entry will provide critical flight data for reducing the uncertainty associated with present day ground-to-flight extrapolation techniques and current state-of-the-art empirical boundary-layer transition or turbulent heating prediction methods. Laminar and turbulent flight data is critical for the validation of physics-based, semi-empirical boundary-layer transition prediction methods as well as stimulating the validation of laminar numerical chemistry models and the development of turbulence models supporting NASA's next-generation spacecraft. In this paper we provide details of the NIR imaging system used on both air and land-based imaging assets. The paper will discuss calibrations performed on the NIR imaging systems that permitted conversion of captured radiant intensity (counts) to temperature values. Image processing techniques are presented to analyze the NIR data for vignetting distortion, best resolution, and image sharpness.
Low Earth Orbit satellite traffic simulator
NASA Technical Reports Server (NTRS)
Hoelzel, John
1995-01-01
This paper describes a significant tool for Low Earth Orbit (LEO) capacity analysis, needed to support marketing, economic, and design analysis, known as a Satellite Traffic Simulator (STS). LEO satellites typically use multiple beams to help achieve the desired communication capacity, but the traffic demand in these beams in usually not uniform. Simulations of dynamic, average, and peak expected demand per beam is a very critical part of the marketing, economic, and design analysis necessary to field a viable LEO system. An STS is described in this paper which can simulate voice, data and FAX traffic carried by LEO satellite beams and Earth Station Gateways. It is applicable world-wide for any LEO satellite constellations operating over any regions. For aeronautical applications to LEO satellites. the anticipates aeronautical traffic (Erlangs for each hour of the day to be simulated) is prepared for geographically defined 'area targets' (each major operational region for the respective aircraft), and used as input to the STS. The STS was designed by Constellations Communications Inc. (CCI) and E-Systems for usage in Brazil in accordance with an ESCA/INPE Statement Of Work, and developed by Analytical Graphics Inc. (AGI) to execute on top of its Satellite Tool Kit (STK) commercial software. The STS simulates constellations of LEO satellite orbits, with input of traffic intensity (Erlangs) for each hour of the day generated from area targets (such as Brazilian States). accumulated in custom LEO satellite beams, and then accumulated in Earth Station Gateways. The STS is a very general simulator which can accommodate: many forms of orbital element and Walker Constellation input; simple beams or any user defined custom beams; and any location of Gateways. The paper describes some of these features, including Manual Mode dynamic graphical display of communication links, to illustrate which Gateway links are accessible and which links are not, at each 'step' of the satellite orbit. In the two Performance Modes, either Channel capacity or Grade Of Service (GOS) for objects (Satellite beams, Gateways, and an entire satellite) are computed respectively by standard traffic table capacity lookup and blocking probability equations. GOS can be input, with number of channels calculated, or number of channels can be input, with GOS calculated. Also described are some of the STS Test Procedure approach and results. AGI plans to make the STS features available through their normal commercial STK products. E-Systems is a co-developer, tester, and user of the STS. The Test Procedure for the STS was prepared by E-Systems, as an independent tester for CCI, to support the CCI delivery of the STS to ESCA, for their customer INPE.
Data simulation for the Lightning Imaging Sensor (LIS)
NASA Technical Reports Server (NTRS)
Boeck, William L.
1991-01-01
This project aims to build a data analysis system that will utilize existing video tape scenes of lightning as viewed from space. The resultant data will be used for the design and development of the Lightning Imaging Sensor (LIS) software and algorithm analysis. The desire for statistically significant metrics implies that a large data set needs to be analyzed. Before 1990 the quality and quantity of video was insufficient to build a usable data set. At this point in time, there is usable data from missions STS-34, STS-32, STS-31, STS-41, STS-37, and STS-39. During the summer of 1990, a manual analysis system was developed to demonstrate that the video analysis is feasible and to identify techniques to deduce information that was not directly available. Because the closed circuit television system used on the space shuttle was intended for documentary TV, the current value of the camera focal length and pointing orientation, which are needed for photoanalysis, are not included in the system data. A large effort was needed to discover ancillary data sources as well as develop indirect methods to estimate the necessary parameters. Any data system coping with full motion video faces an enormous bottleneck produced by the large data production rate and the need to move and store the digitized images. The manual system bypassed the video digitizing bottleneck by using a genlock to superimpose pixel coordinates on full motion video. Because the data set had to be obtained point by point by a human operating a computer mouse, the data output rate was small. The loan and subsequent acquisition of a Abekas digital frame store with a real time digitizer moved the bottleneck from data acquisition to a problem of data transfer and storage. The semi-automated analysis procedure was developed using existing equipment and is described. A fully automated system is described in the hope that the components may come on the market at reasonable prices in the next few years.
STS-132 crew during their PDRS N-TSK MRM training in the building 16 cupola trainer.
2009-12-22
JSC2009-E-286961 (22 Dec. 2009) --- Astronaut Tony Antonelli, STS-132 pilot, uses a communication system during an exercise in the systems engineering simulator in the Avionics Systems Laboratory at NASA?s Johnson Space Center. The facility includes moving scenes of full-sized International Space Station components over a simulated Earth.
STS-132 crew during their PDRS N-TSK MRM training in the building 16 cupola trainer.
2009-12-22
JSC2009-E-286960 (22 Dec. 2009) --- Astronaut Tony Antonelli, STS-132 pilot, uses a communication system during an exercise in the systems engineering simulator in the Avionics Systems Laboratory at NASA?s Johnson Space Center. The facility includes moving scenes of full-sized International Space Station components over a simulated Earth.
Implementation Procedure for STS Payloads, System Safety Requirements
NASA Technical Reports Server (NTRS)
1979-01-01
Guidelines and instructions for the implementation of the SP&R system safety requirements applicable to STS payloads are provided. The initial contact meeting with the payload organization and the subsequent safety reviews necessary to comply with the system safety requirements of the SP&R document are described. Waiver instructions are included for the cases in which a safety requirement cannot be met.
STS propellant scavenging systems study. Part 2, volume 1: Executive summary and study results
NASA Technical Reports Server (NTRS)
Williams, Frank L.
1987-01-01
The major objective of the STS Propellant Scavenging Study is to define the hardware, operations, and life cycle costs for recovery of unused Space Transportation System propellants. Earlier phases were concerned exclusively with the recovery of cryogenic propellants from the main propulsion system of the manned STS. The phase of the study covered by this report (Part II Extension) modified the objectives to include cryogenic propellants delivered to orbit by the unmanned cargo vehicle. The Part II Extension had the following objectives: (1) predict OTV propellant requirements from 1995 to 2010; investigate scavenging/transport tank reuse; determine optimum tank sizing and arrangement; and develop hardware concepts for tanks.
2004-01-27
KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, astronaut Stephen Frick and STS-114 Mission Specialist Wendy Lawrence watch as crew members work with equipment that will be used on the mission. Frick is a tile specialist, who joined the STS-114 crew during equipment familiarization at KSC. STS-114 is classified as Logistics Flight 1 to the International Space Station, delivering new supplies and replacing one of the orbital outpost’s Control Moment Gyroscopes (CMGs). STS-114 will also carry a Raffaello Multi-Purpose Logistics Module and the External Stowage Platform-2. The crew is slated to conduct at least three spacewalks: They will demonstrate repair techniques of the Shuttle’s Thermal Protection System, replace the failed CMG with one delivered by the Shuttle, and install the External Stowage Platform.
STS-31: APU Controller Removal
NASA Technical Reports Server (NTRS)
1990-01-01
The launch April 10 of the STS-31 was scrubbed at T-4 minutes due to a faulty valve in auxiliary power unit (APU) number one. The auxiliary power unit is a hydrazine-fueled, turbine-driven power unit that generates mechanical shaft power to drive a hydraulic pump that produces pressure for the orbiter's hydraulic system. This video shows the removal of the STS-31's auxiliary power unit (APU).
Earth Observation during STS-113
2002-12-03
STS113-348-012 (3 December 2002) --- The STS-113 crewmembers used a 35mm still camera to record this image of a mid latitude storm system. The counter-clockwise swirl shows that this is a northern hemisphere storm. The storm was northeast of the Mediterranean Sea, covering the Balkans and western Turkey. The view was taken looking northwest in the early afternoon of Dec 3, 2002.
1983-06-27
Full views of "Challenger" in Space, taken by the Shuttle Pallet Satellite (SPAS), also views of Cargo Bay and Remote Manipulator System (RMS) extended. 1. SHUTTLE - RMS (STS-7) Also available in 4x5 CN
STS-114 Engine Cut-off Sensor Anomaly Technical Consultation Report
NASA Technical Reports Server (NTRS)
Wilson, Timmy R.; Kichak, Robert A.; Ungar, Eugene K.; Cherney, Robert; Rickman, Steve L.
2009-01-01
The NESC consultation team participated in real-time troubleshooting of the Main Propulsion System (MPS) Engine Cutoff (ECO) sensor system failures during STS-114 launch countdown. The team assisted with External Tank (ET) thermal and ECO Point Sensor Box (PSB) circuit analyses, and made real-time inputs to the Space Shuttle Program (SSP) problem resolution teams. Several long-term recommendations resulted. One recommendation was to conduct cryogenic tests of the ECO sensors to validate, or disprove, the theory that variations in circuit impedance due to cryogenic effects on swaged connections within the sensor were the root cause of STS-114 failures.
NASA Astrophysics Data System (ADS)
Porello, Daniele
The aim of this paper is to propose a methodology for evaluating the quality of collective decisions in sociotechnical systems (STS). We propose using a foundational ontology for conceptualizing the complex hierarchy of information involved in decisions in STS (e.g., normative, conceptual, factual, perceptual). Moreover, we introduce the concept of transparency of decisions as a necessary condition in order to assess the quality of decision-making in STS. We further view transparency as an entitlement of the agent affected by the decision: i.e., the collective decision should be justified.
STS-131 crew member and JAXA astronaut Naoko Yamazaki training SSRMS PROF
2010-01-15
JSC2010-E-009785 (15 Jan. 2010) --- Japan Aerospace Exploration Agency (JAXA) astronaut Naoko Yamazaki, STS-131 mission specialist, participates in a simulation exercise using the Space Station Remote Manipulator System (SSRMS) simulator in the Avionics Systems Laboratory at NASA?s Johnson Space Center. Crew instructor Joseph M. Nguyen assisted Yamazaki.
STS-133 crew members Mike Barratt and Nicole Stott in cupola
2010-06-08
JSC2010-E-090701 (8 June 2010) --- Several computer monitors are featured in this image photographed during an STS-133 exercise in the systems engineering simulator in the Avionics Systems Laboratory at NASA's Johnson Space Center. The facility includes moving scenes of full-sized International Space Station components over a simulated Earth.
STS-131 crew member and JAXA astronaut Naoko Yamazaki training SSRMS PROF
2010-01-15
JSC2010-E-009787 (15 Jan. 2010) --- Japan Aerospace Exploration Agency (JAXA) astronaut Naoko Yamazaki, STS-131 mission specialist, participates in a simulation exercise using the Space Station Remote Manipulator System (SSRMS) simulator in the Avionics Systems Laboratory at NASA?s Johnson Space Center. Crew instructor Joseph M. Nguyen assisted Yamazaki.
RME 1327 - Crew Medical Restraint System (CMRS)
1997-02-18
STS081-318-031 (12-22 Jan. 1997) --- Astronauts Brent W. Jett, Jr. (left), STS-81 pilot, and John E. Blaha in the Spacehab Double Module (DM) evaluate the Crew Medical Restraint System (CMRS) carrier, onboard the Space Shuttle Atlantis. The device is an emergency aid forerunner for hardware on the International Space Station (ISS).
Self-organizing map (SOM) of space acceleration measurement system (SAMS) data.
Sinha, A; Smith, A D
1999-01-01
In this paper, space acceleration measurement system (SAMS) data have been classified using self-organizing map (SOM) networks without any supervision; i.e., no a priori knowledge is assumed regarding input patterns belonging to a certain class. Input patterns are created on the basis of power spectral densities of SAMS data. Results for SAMS data from STS-50 and STS-57 missions are presented. Following issues are discussed in details: impact of number of neurons, global ordering of SOM weight vectors, effectiveness of a SOM in data classification, and effects of shifting time windows in the generation of input patterns. The concept of 'cascade of SOM networks' is also developed and tested. It has been found that a SOM network can successfully classify SAMS data obtained during STS-50 and STS-57 missions.
Self-organizing map (SOM) of space acceleration measurement system (SAMS) data
NASA Technical Reports Server (NTRS)
Sinha, A.; Smith, A. D.
1999-01-01
In this paper, space acceleration measurement system (SAMS) data have been classified using self-organizing map (SOM) networks without any supervision; i.e., no a priori knowledge is assumed regarding input patterns belonging to a certain class. Input patterns are created on the basis of power spectral densities of SAMS data. Results for SAMS data from STS-50 and STS-57 missions are presented. Following issues are discussed in details: impact of number of neurons, global ordering of SOM weight vectors, effectiveness of a SOM in data classification, and effects of shifting time windows in the generation of input patterns. The concept of 'cascade of SOM networks' is also developed and tested. It has been found that a SOM network can successfully classify SAMS data obtained during STS-50 and STS-57 missions.
STS-55 Pilot Henricks uses CTE equipment mounted on SL-D2 aft end cone
NASA Technical Reports Server (NTRS)
1993-01-01
STS-55 Pilot Terence T. Henricks, positioned in front of an adjustable workstation mounted on the Spacelab Deutsche 2 (SL-D2) science module aft end cone, conducts Crew Telesupport Experiment (CTE). The STS-55 crew portrait (STS055(S)002) appears on the screen of the Macintosh portable computer. CTE will demonstrate real-time communication between the shuttle crew and the ground via a computer-based multimedia documentation file that includes text, graphics, and photos. CTE is expected to improve the effectiveness of on-orbit payload operations, returns from scientific investigations, crew interaction with the ground, and contingency maintenance tasks for systems and payloads. Also in the view and attached to the end cone are a fire extinguisher, a checklist, and an STS-37 extravehicular activity (EVA) photo of Mission Specialist (MS1) and Payload Commander (PLC) Jerry L. Ross (STS037-18-032).
Effective dose equivalent on the ninth Shuttle--Mir mission (STS-91)
NASA Technical Reports Server (NTRS)
Yasuda, H.; Badhwar, G. D.; Komiyama, T.; Fujitaka, K.
2000-01-01
Organ and tissue doses and effective dose equivalent were measured using a life-size human phantom on the ninth Shuttle-Mir Mission (STS-91, June 1998), a 9.8-day spaceflight at low-Earth orbit (about 400 km in altitude and 51.65 degrees in inclination). The doses were measured at 59 positions using a combination of thermoluminescent dosimeters of Mg(2)SiO(4):Tb (TDMS) and plastic nuclear track detectors (PNTD). In correcting the change in efficiency of the TDMS, it was assumed that reduction of efficiency is attributed predominantly to HZE particles with energy greater than 100 MeV nucleon(-1). A conservative calibration curve was chosen for determining LET from the PNTD track-formation sensitivities. The organ and tissue absorbed doses during the mission ranged from 1.7 to 2.7 mGy and varied by a factor of 1.6. The dose equivalent ranged from 3.4 to 5.2 mSv and varied by a factor of 1.5 on the basis of the dependence of Q on LET in the 1990 recommendations of the ICRP. The effective quality factor (Q(e)) varied from 1.7 to 2.4. The dose equivalents for several radiation-sensitive organs, such as the stomach, lung, gonad and breast, were not significantly different from the skin dose equivalent (H(skin)). The effective dose equivalent was evaluated as 4.1 mSv, which was about 90% of the H(skin).
STS-40 Exp. No. 192 urine monitoring system (UMS) on OV-102's middeck
NASA Technical Reports Server (NTRS)
1991-01-01
STS-40 Experiment No. 192, Fluid-Electrolyte Regulation During Space Flight, urine monitoring system (UMS) is set up on the middeck of Columbia, Orbiter Vehicle (OV) 102, at the side hatch. The UMS is attached to OV-102's waste collection system (WCS). The urine specimen tray with sample tubes appears to the right of the UMS equipment.
ERIC Educational Resources Information Center
Iskandar
2017-01-01
Implementation of quality assurance systems in IAIN STS Jambi implemented in early 2012, through the build system of internal quality assurance based on ISO 9001: 2008, in the process of implementation required strong reasons behind not growing atmosphere of academic standards of accreditation of study programs and institutions that are reflected…
Chang-Diaz and Perrin work at the MBS on the S0 (S-zero) truss during STS-111 UF-2 EVA 2
2002-06-10
STS111-E-5164 (11 June 2002) --- Astronauts Franklin R. Chang-Diaz (left) and Philippe Perrin, both STS-111 mission specialists, work in tandem on the second scheduled session of extravehicular activity (EVA) for the STS-111 mission. During the spacewalk, Chang-Diaz and Perrin attached power, data and video cables from the International Space Station (ISS) to the Mobile Base System (MBS) and used a power wrench to complete the attachment of the MBS onto the Mobile Transporter (MT). Perrin represents CNES, the French Space Agency.
Chang-Diaz and Perrin work at the MBS on the S0 (S-zero) truss during STS-111 UF-2 EVA 2
2002-06-10
STS111-E-5162 (11 June 2002) --- Astronauts Franklin R. Chang-Diaz (center frame) and Philippe Perrin, both STS-111 mission specialists, work in tandem on the second scheduled session of extravehicular activity (EVA) for the STS-111 mission. During the spacewalk, Chang-Diaz and Perrin attached power, data and video cables from the International Space Station (ISS) to the Mobile Base System (MBS) and used a power wrench to complete the attachment of the MBS onto the Mobile Transporter (MT). Perrin represents CNES, the French Space Agency.
Chang-Diaz and Perrin work at the MBS on the S0 (S-zero) truss during STS-111 UF-2 EVA 2
2002-06-10
STS111-E-5165 (11 June 2002) --- Astronauts Franklin R. Chang-Diaz (left) and Philippe Perrin, both STS-111 mission specialists, work in tandem on the second scheduled session of extravehicular activity (EVA) for the STS-111 mission. During the spacewalk, Chang-Diaz and Perrin attached power, data and video cables from the International Space Station (ISS) to the Mobile Base System (MBS) and used a power wrench to complete the attachment of the MBS onto the Mobile Transporter (MT). Perrin represents CNES, the French Space Agency.
NASA Technical Reports Server (NTRS)
1989-01-01
Trade studies plans for a number of elements in the Liquid Rocket Booster (LRB) component of the Space Transportation System (STS) are given in viewgraph form. Some of the elements covered include: avionics/flight control; avionics architecture; thrust vector control studies; engine control electronics; liquid rocket propellants; propellant pressurization systems; recoverable spacecraft; cryogenic tanks; and spacecraft construction materials.
2011-03-10
CAPE CANAVERAL, Fla. -- This is a 3-D image of the crawler-transporter as it slowly hauls space shuttle Endeavour from the Vehicle Assembly Building to Launch Pad 39A at NASA’s Kennedy Space Center in Florida. The gigantic tracked mover weighs about 18 million pounds with the space shuttle, two solid rocket boosters, external fuel tank and mobile launcher platform attached. It takes six to eight hours to complete the 3.4-mile trip along crushed Alabama river rock at a speed of about 1 mph. To view this image, use green and magenta 3-D glasses. Endeavour and its six-member STS-134 crew will deliver the Express Logistics Carrier-3, Alpha Magnetic Spectrometer-2 (AMS), a high-pressure gas tank, additional spare parts for the Dextre robotic helper and micrometeoroid debris shields to the International Space Station. Endeavour's final launch is targeted for April 19 at 7:48 p.m. EDT. For more information visit, http://www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts134/index.html. Photo credit: NASA/Frankie Martin
2011-03-10
CAPE CANAVERAL, Fla. -- This is a 3-D image of the crawler-transporter as it slowly hauls space shuttle Endeavour from the Vehicle Assembly Building to Launch Pad 39A at NASA’s Kennedy Space Center in Florida. The gigantic tracked mover weighs about 18 million pounds with the space shuttle, two solid rocket boosters, external fuel tank and mobile launcher platform attached. It takes six to eight hours to complete the 3.4-mile trip along crushed Alabama river rock at a speed of about 1 mph. To view this image, use green and magenta 3-D glasses. Endeavour and its six-member STS-134 crew will deliver the Express Logistics Carrier-3, Alpha Magnetic Spectrometer-2 (AMS), a high-pressure gas tank, additional spare parts for the Dextre robotic helper and micrometeoroid debris shields to the International Space Station. Endeavour's final launch is targeted for April 19 at 7:48 p.m. EDT. For more information visit, http://www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts134/index.html. Photo credit: NASA/Frankie Martin
STS-92 Mission Specialist Wakata gets ready to drive the M-113
NASA Technical Reports Server (NTRS)
2000-01-01
Getting ready to take his turn at the wheel of the M-113 is Mission Specialist Koichi Wakata of Japan. Behind him can be seen Mission Specialists Bill McArthur (left) and Leroy Chiao (right), who wait their turns. Learning to drive the armored vehicle is part of emergency egress training during Terminal Countdown Demonstration Test (TCDT) activities. The tracked vehicle could be used by the crew in the event of an emergency at the pad during which the crew must make a quick exit from the area. The TCDT also provides simulated countdown exercises and opportunities to inspect the mission payloads in the orbiter's payload bay. STS-92 is scheduled to launch Oct. 5 at 9:30 p.m. EDT on the fifth flight to the International Space Station. It will carry two elements of the Space Station, the Integrated Truss Structure Z1 and the third Pressurized Mating Adapter. The mission is also the 100th flight in the Shuttle program.
STS-92 Mission Specialist Wakata takes his turn driving the M-113
NASA Technical Reports Server (NTRS)
2000-01-01
With Capt. George Hoggard, trainer with the KSC Fire Department, riding on top, Mission Specialist Koichi Wakata of Japan practices driving the M-113, part of emergency egress training during Terminal Countdown Demonstration Test (TCDT) activities. Riding in the back (on the left) are other crew members, waiting their turn to drive. The tracked vehicle could be used by the crew in the event of an emergency at the pad during which the crew must make a quick exit from the area. The TCDT also provides simulated countdown exercises and opportunities to inspect the mission payloads in the orbiter's payload bay. STS-92 is scheduled to launch Oct. 5 at 9:30 p.m. EDT on the fifth flight to the International Space Station. It will carry two elements of the Space Station, the Integrated Truss Structure Z1 and the third Pressurized Mating Adapter. The mission is also the 100th flight in the Shuttle program.
STS-35 Space Shuttle mission report
NASA Technical Reports Server (NTRS)
Camp, David W.; Germany, D. M.; Nicholson, Leonard S.
1991-01-01
The STS-35 Space Shuttle Program Mission Report contains a summary of the vehicle subsystem activities during this thirty-eighth flight of the Space Shuttle and the tenth flight of the Orbiter vehicle Columbia (OV-102). In addition to the Columbia vehicle, the flight vehicle consisted of an External Tank (ET) (designated as ET-35/LWT-28), three Space Shuttle main engines (SSME's) (serial numbers 2024, 2012, and 2028 in positions 1, 2, and 3, respectively), and two Solid Rocket Boosters (SRB's) designated as BI-038. The primary objectives of this flight were to successfully perform the planned operations of the Ultraviolet Astronomy (Astro-1) payload and the Broad-Band X-Ray Telescope (BBXRT) payload in a 190-nmi. circular orbit which had an inclination of 28.45 degrees. The sequence of events for this mission is shown in tablular form. Summarized are the significant problems that occurred in the Orbiter subsystems during the mission. The official problem tracking list is presented. In addition, each Orbiter subsystem problem is cited in the applicable subsystem discussion.
2000-09-13
STS-92 Mission Specialist Koichi Wakata of Japan signals a successful driving lesson on the M-113 he is in. Capt. George Hoggard, trainer with the KSC Fire Department, sits on top. Behind Wakata are Commander Brian Duffy (left) and Leroy Chiao (right), waiting their turns. The practice drive is part of emergency egress training during Terminal Countdown Demonstration Test (TCDT) activities. The tracked vehicle could be used by the crew in the event of an emergency at the pad during which the crew must make a quick exit from the area. The TCDT also provides simulated countdown exercises and opportunities to inspect the mission payloads in the orbiter’s payload bay. STS-92 is scheduled to launch Oct. 5 at 9:30 p.m. EDT on the fifth flight to the International Space Station. It will carry two elements of the Space Station, the Integrated Truss Structure Z1 and the third Pressurized Mating Adapter. The mission is also the 100th flight in the Shuttle program
STS-43 TDRS-E during preflight processing at KSC's VPF
NASA Technical Reports Server (NTRS)
1991-01-01
STS-43 Tracking and Data Relay Satellite E (TDRS-E) undergoes preflight processing in the Kennedy Space Center's (KSC's) Vertical Processing Facility (VPF) before being loaded into a payload canister for transfer to the launch pad and eventually into Atlantis', Orbiter Vehicle (OV) 104's, payload bay (PLB). This side of the TDRS-E will rest at the bottom of the PLB therefore the airborne support equipment (ASE) forward frame keel pin (at center of spacecraft) and the umbilical boom running between the two ASE frames are visible. The solar array panels are covered with protective TRW shields. Above the shields the stowed antenna and solar sail are visible. The inertial upper stage (IUS) booster is the white portion of the spacecraft and rests in the ASE forward frame and ASE aft frame tilt actuator (AFTA) frame (at the bottom of the IUS). The IUS booster nozzle extends beyond the AFTA frame. View provided by KSC with alternate number KSC-91PC-1079.
STS-335 crew training, EVA TPS Overview with instructor John Ray
2010-11-03
JSC2010-E-183521 (3 Nov. 2010) --- NASA astronaut Chris Ferguson, STS-135 commander, participates in an EVA Thermal Protection System (TPS) overview training session in the TPS/ Precision Air Bearing Facility in the Space Vehicle Mock-up Facility at NASA's Johnson Space Center. STS-135 is planned to be the final mission of the space shuttle program. Photo credit: NASA or National Aeronautics and Space Administration
2004-01-27
KENNEDY SPACE CENTER, FLA. - STS-114 Commander Eileen Collins and Mission Specialist Wendy Lawrence look over mission equipment in the Space Station Processing Facility. Crew members are at KSC for equipment familiarization. STS-114 is classified as Logistics Flight 1 to the International Space Station, delivering new supplies and replacing one of the orbital outpost’s Control Moment Gyroscopes (CMGs). STS-114 will also carry a Raffaello Multi-Purpose Logistics Module and the External Stowage Platform-2. The crew is slated to conduct at least three spacewalks: They will demonstrate repair techniques of the Shuttle’s Thermal Protection System, replace the failed CMG with one delivered by the Shuttle, and install the External Stowage Platform.
2004-01-27
KENNEDY SPACE CENTER, FLA. - STS-114 Mission Specialist Andrew Thomas works on equipment in the Space Station Processing Facility. He and other crew members are at KSC for equipment familiarization. STS-114 is classified as Logistics Flight 1 to the International Space Station, delivering new supplies and replacing one of the orbital outpost’s Control Moment Gyroscopes (CMGs). STS-114 will also carry a Raffaello Multi-Purpose Logistics Module and the External Stowage Platform-2. The crew is slated to conduct at least three spacewalks: They will demonstrate repair techniques of the Shuttle’s Thermal Protection System, replace the failed CMG with one delivered by the Shuttle, and install the External Stowage Platform.
STS users study (study 2.2). Volume 2: STS users plan (user data requirements) study
NASA Technical Reports Server (NTRS)
Pritchard, E. I.
1975-01-01
Pre-flight scheduling and pre-flight requirements of the space transportation system are discussed. Payload safety requirements, shuttle flight manifests, and interface specifications are studied in detail.
NASA Technical Reports Server (NTRS)
Wright, Willie
1992-01-01
The Shuttle Upper Atmosphere Mass Spectrometer (SUMS), a component experiment of the NASA Orbital Experiments Program (OEX), was flown aboard the shuttle Columbia (OV102) mounted at the forward end of the nose landing gear well with an atmospheric gas inlet system fitted to the lower fuselage (chin panel) surface. The SUMS was designed to provide atmospheric data in flow regimes inaccessible prior to the development of the Space Transportation System (STS). The experiment mission operation begins about 1 hour prior to shuttle de-orbit entry maneuver and continues until reaching 1.6 torr (about 86 km altitude). The SUMS flew a total of three missions, 61C, STS-35, STS-40. Between flights, the SUMS was maintained in flight ready status. The flight data has been analyzed by the NASA LaRC Aerothermodynamics Branch. Flight data spectrum plots and reports are presented in the Appendices to the Final Technical Report for NAS1-17399. This volume presents data from the reentry of flight STS-35 in tabular and graphical format.
STS-79 crew watches from aft flight deck during undocking from Mir
1997-03-26
STS079-S-097 (16-26 Sept. 1996) --- Left to right, Terrence W. (Terry) Wilcutt, pilot; Shannon W. Lucid, mission specialist; and William F. Readdy, mission commander, are pictured on the space shuttle Atlantis' aft flight deck during undocking operations with Russia's Mir Space Station. Mir had served as both work and home for Lucid for over six months before greeting her American colleagues upon docking of Mir and Atlantis last week. Following her lengthy stay aboard Mir and several days on Atlantis, Lucid went on to spend 188 consecutive days in space before returning to Earth with the STS-79 crew. During the STS-79 mission, the crew used an IMAX camera to document activities aboard the Space Shuttle Atlantis and the various Mir modules. A hand-held version of the 65mm camera system accompanied the STS-79 crew into space in Atlantis' crew cabin. NASA has flown IMAX camera systems on many Shuttle missions, including a special cargo bay camera's coverage of other recent Shuttle-Mir rendezvous and/or docking missions.
NASA Technical Reports Server (NTRS)
Wright, Willie
1992-01-01
The Shuttle Upper Atmosphere Mass Spectrometer (SUMS), a component experiment of the NASA Orbital Experiments Program (OEX), was flown aboard the shuttle Columbia (OV102) mounted at the forward end of the nose landing gear well with an atmospheric gas inlet system fitted to the lower fuselage (chin panel) surface. The SUMS was designed to provide atmospheric data in flow regimes inaccessible prior to the development of the Space Transportation System (STS). The experiment mission operation begins about 1 hour prior to shuttle de-orbit entry maneuver and continues until reaching 1.6 torr (about 86 km altitude). The SUMS flew a total of three missions, 61C, STS-35, STS-40. Between flights, the SUMS was maintained in flight ready status. The flight data has been analyzed by the NASA LaRC Aerothermodynamics Branch. Flight data spectrum plots and reports are presented in the Appendices to the Final Technical Report for NAS1-17399. This volume presents tabular and graphical spectral data of the reentry of flight STS-35.
STS-95 crew members Duque and Mukai check out slidewire basket
NASA Technical Reports Server (NTRS)
1998-01-01
At Launch Pad 39-B, STS-95 Mission Specialist Pedro Duque of Spain (left) and Payload Specialist Chiaki Mukai look over the gate for the slidewire basket, part of the emergency egress system on the pad. Mukai represents the National Space Development Agency of Japan (NASDA), and Duque the European Space Agency (ESA). The STS-95 crew are at KSC to participate in a Terminal Countdown Demonstration Test (TCDT) which includes mission familiarization activities, emergency egress training, and a simulated main engine cut-off exercise. Other STS-95 crew members are Mission Specialist Stephen K. Robinson, Mission Commander Curtis L. Brown, Pilot Steven W. Lindsey, Payload Specialists John H. Glenn Jr., senator from Ohio, and Mission Specialist Scott E. Parazynski. The STS-95 mission, targeted for liftoff on Oct. 29, includes research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process. Following the TCDT, the crew will be returning to Houston for final flight preparations.
International Space Station (ISS)
2002-06-05
Aboard the Space Shuttle Orbiter Endeavour, the STS-111 mission was launched on June 5, 2002 at 5:22 pm EDT from Kennedy's launch pad. On board were the STS-111 and Expedition Five crew members. Astronauts Kenneth D. Cockrell, commander; Paul S. Lockhart, pilot, and mission specialists Franklin R. Chang-Diaz and Philippe Perrin were the STS-111 crew members. Expedition Five crew members included Cosmonaut Valeri G. Korzun, commander, Astronaut Peggy A. Whitson and Cosmonaut Sergei Y. Treschev, flight engineers. Three space walks enabled the STS-111 crew to accomplish mission objectives: the delivery and installation of a new platform for the ISS robotic arm, the Mobile Base System (MBS) which is an important part of the Station's Mobile Servicing System allowing the robotic arm to travel the length of the Station; the replacement of a wrist roll joint on the Station's robotic arm; and unloading supplies and science experiments from the Leonardo Multi-Purpose Logistics Module, which made its third trip to the orbital outpost. Landing on June 19, 2002, the 14-day STS-111 mission was the 14th Shuttle mission to visit the ISS.
NASA Technical Reports Server (NTRS)
Wright, Willie
1992-01-01
The Shuttle Upper Atmosphere Mass Spectrometer (SUMS), a component experiment of the NASA Orbital Experiments Program (OEX), was flown aboard the shuttle Columbia (OV102) mounted at the forward end of the nose landing gear well with an atmospheric gas inlet system fitted to the lower fuselage (chin panel) surface. The SUMS was designed to provide atmospheric data in flow regimes inaccessible prior to the development of the Space Transportation System (STS). The experiment mission operation begins about 1 hour prior to shuttle de-orbit entry maneuver and continues until reaching 1.6 torr (about 86 km altitude). The SUMS flew a total of three missions, 61C, STS-35, and STS-40. Between flights, the SUMS was maintained in flight ready status. The flight data has been analyzed by the NASA LaRC Aerothermodynamics Branch. Flight data spectrum plots and reports are presented in the Appendices to the Final Technical Report for NAS1-17399. This volume presents flight data for flight STS-35 in graphical format.
A comparison of measured and theoretical predictions for STS ascent and entry sonic booms
NASA Technical Reports Server (NTRS)
Garcia, F., Jr.; Jones, J. H.; Henderson, H. R.
1983-01-01
Sonic boom measurements have been obtained during the flights of STS-1 through 5. During STS-1, 2, and 4, entry sonic boom measurements were obtained and ascent measurements were made on STS-5. The objectives of this measurement program were (1) to define the sonic boom characteristics of the Space Transportation System (STS), (2) provide a realistic assessment of the validity of xisting theoretical prediction techniques, and (3) establish a level of confidence for predicting future STS configuration sonic boom environments. Detail evaluation and reporting of the results of this program are in progress. This paper will address only the significant results, mainly those data obtained during the entry of STS-1 at Edwards Air Force Base (EAFB), and the ascent of STS-5 from Kennedy Space Center (KSC). The theoretical prediction technique employed in this analysis is the so called Thomas Program. This prediction technique is a semi-empirical method that required definition of the near field signatures, detailed trajectory characteristics, and the prevailing meteorological characteristics as an input. This analytical procedure then extrapolates the near field signatures from the flight altitude to an altitude consistent with each measurement location.
Recent experiences with iodine water disinfection in Shuttle
NASA Technical Reports Server (NTRS)
Gibbons, Randall E.; Flanagan, David T.; Schultz, John R.; Sauer, Richard L.; Slezak, Terry N.
1990-01-01
Microbial proliferation in the STS potable water system is prevented by maintaining a 2-5 ppm iodine residual. The iodine is added to fuel cell water by an iodinated ion exchange resin in the Microbial Check Valve (MCV). Crew comments indicated excessive iodine in the potable water. To better define the problem, a method of in-flight iodine analysis was developed. Inflight analysis during STS-30 and STS-28 indicated iodine residuals were generally in the 9-13 ppm range. It was determined that the high iodine residual was caused by MCV influent temperatures in excess of 120 F. This is well above the MCV operating range of 65-90 F. The solution to this problem was to develop a resin suitable for the higher temperatures. Since 8 months were required to formulate a MCV resin suitable for the higher temperatures, a temporary solution was necessary. Two additional MCV's were installed on the chilled and ambient water lines leading into the galley to remove the excess iodine. These reduced the iodine residual to 3-4 ppm during STS-33, STS-34, STS-36 and STS-32. A high-temperature resin was formulated and initially flown on STS-31.
Thermographic Imaging of the Space Shuttle During Re-Entry Using a Near Infrared Sensor
NASA Technical Reports Server (NTRS)
Zalameda, Joseph N.; Horvath, Thomas J.; Kerns, Robbie V.; Burke, Eric R.; Taylor, Jeff C.; Spisz, Tom; Gibson, David M.; Shea, Edward J.; Mercer, C. David; Schwartz, Richard J.;
2012-01-01
High resolution calibrated near infrared (NIR) imagery of the Space Shuttle Orbiter was obtained during hypervelocity atmospheric re-entry of the STS-119, STS-125, STS-128, STS-131, STS-132, STS-133, and STS-134 missions. This data has provided information on the distribution of surface temperature and the state of the airflow over the windward surface of the Orbiter during descent. The thermal imagery complemented data collected with onboard surface thermocouple instrumentation. The spatially resolved global thermal measurements made during the Orbiter s hypersonic re-entry will provide critical flight data for reducing the uncertainty associated with present day ground-to-flight extrapolation techniques and current state-of-the-art empirical boundary-layer transition or turbulent heating prediction methods. Laminar and turbulent flight data is critical for the validation of physics-based, semi-empirical boundary-layer transition prediction methods as well as stimulating the validation of laminar numerical chemistry models and the development of turbulence models supporting NASA s next-generation spacecraft. In this paper we provide details of the NIR imaging system used on both air and land-based imaging assets. The paper will discuss calibrations performed on the NIR imaging systems that permitted conversion of captured radiant intensity (counts) to temperature values. Image processing techniques are presented to analyze the NIR data for vignetting distortion, best resolution, and image sharpness. Keywords: HYTHIRM, Space Shuttle thermography, hypersonic imaging, near infrared imaging, histogram analysis, singular value decomposition, eigenvalue image sharpness
The liquid rocket booster as an element of the U.S. national space transportation system
NASA Astrophysics Data System (ADS)
Bialla, Paul H.; Simon, Michael C.
Liquid rocket boosters (LRBs) were first considered for the U.S. Space Transportation System (STS) during the early conceptual phases of the Space Shuttle program. However, solid rocket boosters (SRBs) were ultimately selected for the STS, primarily due to near-term economics. Liquid rocket boosters are once again being considered as a possible future upgrade to the Shuttle. This paper addresses the findings of these studies to date, with emphasis on the feasibility, benefits, and implementation strategy for a LRB program. The principal issue relating to LRB feasibility is their ability to be integrated into the STS with minimal vehicle and facility impacts. Booster size has been shown to have a significant influence on compatibility with the STS. The physical dimensions of the Orbiter and STS support facilities place an inherent limitation on the size of any booster to be used with this system. In addition, excessively large diameter boosters can cause increased airloads to be induced on the Orbiter wings, requiring modification of STS launch trajectory and possible performance losses. However, trajectory and performance analyses have indicated that LRBs can be designed within these sizing constraints and still have sufficient performance to meet Space Shuttle mission requirements. In fact, several configurations have been developed to meet a design goal of providing a 20,000 lb performance improvement to low Earth-orbit (LEO), as compared with current SRBs. Several major system trade studies have been performed to establish a baseline design which is most compatible with the existing Space Transportation System. These trades include propellant selection (storable, hydrogen-oxygen, hydrocarbon-oxygen, and advanced propellants); pump-fed vs pressure-fed propellant feed system design; engine selection (Space Shuttle Main Engine, Titan LR-87, and advanced new engines); number of engines per booster; and reusability vs expendability. In general, it was determined through these trade studies that several options exist for designing a LRB that can be integrated into the STS with manageable impacts on STS facilities and operational procedures. While LRBs offer a potential 40% improvement in Shuttle performance, their most significant benefit is the potential improvements they offer in the area of Shuttle safety. This begins during ground handling operations, where LRBs eliminate the need for large quantities of hazardous solid propellants to be emplaced in the Kennedy Space Center Vehicle Assembly Building. In the pre-launch phase, all LRB engines can be ignited on the launch pad and verified prior to release of the STS. During flight, LRB engines can be shut down on command should the need arise. Further, missions could be aborted safely during the boost phase—an option not available with SRBs. A related benefit of LRBs is their ability to accomplish a mission even if one engine fails, assuming the LRB is designed with sufficient performance margin. An implementation plan has been developed which indicates that LRBs can be operational by 1997. The attractive features of the LRB have prompted NASA to include this booster as a principal element of the agency's long range plan for enhancing STS capabilities through an evolutionary program of block changes. The implementation of LRBs offers an attractive option for developing a safer, more reliable, and better performing STS.
STS-133 crew members Mike Barratt and Nicole Stott in cupola
2010-06-08
JSC2010-E-090702 (8 June 2010) --- NASA astronauts Michael Barratt and Nicole Stott, both STS-133 mission specialists, participate in an exercise in the systems engineering simulator in the Avionics Systems Laboratory at NASA's Johnson Space Center. The facility includes moving scenes of full-sized International Space Station components over a simulated Earth.
STS-133 crew members Mike Barratt and Nicole Stott in cupola
2010-06-08
JSC2010-E-090698 (8 June 2010) --- NASA astronauts Michael Barratt and Nicole Stott, both STS-133 mission specialists, participate in an exercise in the systems engineering simulator in the Avionics Systems Laboratory at NASA's Johnson Space Center. The facility includes moving scenes of full-sized International Space Station components over a simulated Earth.
STS-133 crew members Mike Barratt and Nicole Stott in cupola
2010-06-08
JSC2010-E-090695 (8 June 2010) --- NASA astronauts Nicole Stott and Michael Barratt, both STS-133 mission specialists, participate in an exercise in the systems engineering simulator in the Avionics Systems Laboratory at NASA's Johnson Space Center. The facility includes moving scenes of full-sized International Space Station components over a simulated Earth.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. -- STS-114 Pilot James Kelly (left) talks with NASA Systems Engineer Robert Rokobauer inside one of the cabs on a Crawler-Transporter. The crawlers had recent modifications to the cab and muffler system. The STS-114 mission is Logistics Flight 1, which is scheduled to deliver supplies and equipment plus the external stowage platform to the International Space Station.
View of the Columbia's remote manipulator system (RMS)
1982-11-13
STS002-13-226 (13 Nov. 1981) --- Backdropped against Earth's horizon and the darkness of space, the space shuttle Columbia's remote manipulator system (RMS) gets its first workout in zero-gravity during the STS-2 mission. A television camera is mounted near the elbow and another is partially visible near the wrist of the RMS. Photo credit: NASA
STS-133 crew members Mike Barratt and Nicole Stott in cupola
2010-06-08
JSC2010-E-090700 (8 June 2010) --- NASA astronauts Michael Barratt and Nicole Stott, both STS-133 mission specialists, participate in an exercise in the systems engineering simulator in the Avionics Systems Laboratory at NASA's Johnson Space Center. The facility includes moving scenes of full-sized International Space Station components over a simulated Earth.
STS-133 crew members Mike Barratt and Nicole Stott in cupola
2010-06-08
JSC2010-E-090704 (8 June 2010) --- NASA astronauts Michael Barratt and Nicole Stott, both STS-133 mission specialists, participate in an exercise in the systems engineering simulator in the Avionics Systems Laboratory at NASA's Johnson Space Center. The facility includes moving scenes of full-sized International Space Station components over a simulated Earth.
Debris/Ice/TPS Assessment and Integrated Photographic Analysis of Shuttle Mission STS-80
NASA Technical Reports Server (NTRS)
Katnik, Gregory N.; Lin, Jill D.
1997-01-01
A debris/ice/thermal protection system (TPS) assessment and integrated photographic analysis was conducted for Shuttle mission STS-80. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer programs and infrared scanned data during cryogenic loading of the vehicle, followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. This report documents the ice/debris/thermal protection system conditions and integrated photographic analysis of Shuttle mission Space Transportation System (STS-80) and the resulting effect on the Space Shuttle Program.
Bounded parametric control of plane motions of space tethered system
NASA Astrophysics Data System (ADS)
Bezglasnyi, S. P.; Mukhametzyanova, A. A.
2018-05-01
This paper is focused on the problem of control of plane motions of a space tethered system (STS). The STS is modeled as a heavy rod with two point masses. Point masses are fixed on the rod. A third point mass can move along the rod. The control is realized as a continuous change of the distance from the centre of mass of the tethered system to the movable mass. New limited control laws processes of excitation and damping are built. Diametric reorientation and gravitational stabilization to the local vertical of an STS were obtained. The problem is solved by the method of Lyapunov's functions of the classical theory of stability. The theoretical results are confirmed by numerical calculations.
MS Parazynski transfers the DCSU during the second EVA of STS-100
2001-04-24
STS100-396-019 (24 April 2001) --- Astronaut Scott E. Parazynski, STS-100 mission specialist, totes a Direct Current Switching Unit while anchored on the end of the Canadian-built Remote Manipulator System (RMS) robotic arm. The RMS is in the process of moving Parazynski to the exterior of the Destiny laboratory (right foreground), where, assisted by astronaut Chris A. Hadfield (out of frame), he will secure the spare unit--a critical part for the station's electrical system--to the stowage platform for future crews in case it is needed. Also in the frame are the Italian-built Raffaello Multi-Purpose Logistics Module (center) and the new Canadarm2 (lower right) or Space Station Remote Manipulator System (SSRMS).
2002-01-22
KENNEDY SPACE CENTER, FLA. -- The NICMOS II radiator is ready for checkout in the Vertical Processing Facility. The Near Infrared Camera and Multi-Object Spectrometer (NICMOS) Cooling System is part of the payload on mission STS-109, the Hubble Servicing Telescope mission. NICMOS is a new experimental cooling system consisting of a compressor and tiny turbines. With the experimental cryogenic system, NASA hopes to re-cool the infrared detectors to below -315 degrees F (-193 degrees Celsius). NICMOS II was previously tested aboard STS-95 in 1998. NICMOS could extend the life of the Hubble Space Telescope by several years. Astronauts aboard Columbia on mission STS-109 will be replacing the original NICMOS with the newer version. Launch of Columbia is scheduled Feb. 28, 2002
Neural Correlates of Dynamically Evolving Interpersonal Ties Predict Prosocial Behavior
Fahrenfort, Johannes J.; van Winden, Frans; Pelloux, Benjamin; Stallen, Mirre; Ridderinkhof, K. Richard
2011-01-01
There is a growing interest for the determinants of human choice behavior in social settings. Upon initial contact, investment choices in social settings can be inherently risky, as the degree to which the other person will reciprocate is unknown. Nevertheless, people have been shown to exhibit prosocial behavior even in one-shot laboratory settings where all interaction has been taken away. A logical step has been to link such behavior to trait empathy-related neurobiological networks. However, as a social interaction unfolds, the degree of uncertainty with respect to the expected payoff of choice behavior may change as a function of the interaction. Here we attempt to capture this factor. We show that the interpersonal tie one develops with another person during interaction – rather than trait empathy – motivates investment in a public good that is shared with an anonymous interaction partner. We examined how individual differences in trait empathy and interpersonal ties modulate neural responses to imposed monetary sharing. After, but not before interaction in a public good game, sharing prompted activation of neural systems associated with reward (striatum), empathy (anterior insular cortex and anterior cingulate cortex) as well as altruism, and social significance [posterior superior temporal sulcus (pSTS)]. Although these activations could be linked to both empathy and interpersonal ties, only tie-related pSTS activation predicted prosocial behavior during subsequent interaction, suggesting a neural substrate for keeping track of social relevance. PMID:22403524
STS-80 Mission Highlights Resource Tape
NASA Technical Reports Server (NTRS)
1997-01-01
The flight crew of STS-80, Cmdr. Kenneth D. Cockrell, Pilot Kent V. Rominger, Mission Specialists, Tamara E. Jernigan, Thomas D. Jones, and F. Story Musgrave are seen performing pre-launch activities such as eating the traditional breakfast, being suited-up, and riding out to the launch pad. Also, included are various panoramic views of the shuttle on the pad. The crew is readied in the 'white room' for their mission. After the closing of the hatch and arm retraction, launch activities are shown including the countdown, engine ignition, launch, and the separation of the Solid Rocket Boosters (SRB) from the shuttle. The crew completes the first major objective of the mission with the deployment of the Orbiting Retrievable Far and Extreme Ultraviolet Spectrometer (ORFEUS) on the reusable Shuttle Pallet Satellite. The crew than begins final preparations for the release of Wake Shield. Jones powers up the shuttle's Canadian-built robot arm and grapples the satellite, while Jernigan powers up the Orbiter Space Vision System, which will be used to track precisely the Wake Shield's location. Cockrell places Columbia in a gravity gradient attitude to minimize disturbances during the release. Jones uses the robot arm to hold Wake Shield in position for a two-and-a-half hour cleansing by atomic oxygen molecules before moving the arm to the deploy position. The failure of the hatch to properly open causes the cancellation of all EVA's planned for this mission by Jernigan and Jones. The mission ends with the shuttle landing at the Kennedy Space Center.
Sheehan Suicidality Tracking Scale (Sheehan-STS)
2009-01-01
Objective: Accurate and prospective assessments of treatment-emergent suicidal thoughts and behaviors are essential to both clinical care and randomized clinical trials. The Sheehan Suicidality Tracking Scale is a prospective, patient self-report or clinician-administered rating scale that tracks both treatment-emergent suicidal ideation and behaviors. The Sheehan Suicidality Tracking Scale was incorporated into a multicenter, randomized, double-blind, placebo-controlled, and active comparator study examining the efficacy of an experimental corticotropin-releasing factor antagonist (BMS-562086) for the treatment of generalized anxiety disorder. Method: The Sheehan Suicidality Tracking Scale was administered to subjects at baseline, Week 2, Week 4, and Week 8 or early termination. Subjects completed theSheehan Suicidality Tracking Scale by self report. The Sheehan Suicidality Tracking Scale was designated as an exploratory outcome measure in the study protocol, and post-hoc analyses were performed to examine the performance of the Sheehan Suicidality Tracking Scale. Results: A total of 82 subjects completed the Sheehan Suicidality Tracking Scale during the course of the study. Altogether, these subjects provided 297 completed Sheehan Suicidality Tracking Scale ratings across the study time points. Sixty-one subjects (n=25 placebo, n=24 BMS-562086, and n=12 escitalopram) had a baseline and at least one post-baseline Sheehan Suicidality Tracking Scale measurement. The mean change from baseline at Week 8 in the Sheehan Suicidality Tracking Scale total score was -0.10, -0.02, and -0.06 for escitalopram, placebo, and BMS-562086 groups, respectively. The sensitivity of the Sheehan Suicidality Tracking Scale and HAM-D Item #3 (suicide) for identifying subjects with suicidal thoughts or behaviors was 100 percent and 63 percent, respectively. Conclusions: The Sheehan Suicidality Tracking Scale may be a sensitive psychometric tool to prospectively assess for treatment-emergent suicidal thoughts and behaviors. Despite the small sample size and low occurrence of suicidal ideation during the course of this clinical trial, the self-reported Sheehan Suicidality Tracking Scale demonstrated increased sensitivity over the rater administered HAM-D Item #3 in identifying suicide related ideations and behaviors. Further research in larger study samples as well as in other psychiatric disorders are needed. PMID:19724740
STS-57 Commander Grabe adjusts Thermal Enclosure System (TES) aboard OV-105
NASA Technical Reports Server (NTRS)
1993-01-01
STS-57 Commander Ronald J. Grabe adjusts a bolt on the Thermal Enclosure System (TES) with Crystal Observation System (COS) experiment installation located in an aft locker (MA16J) on the middeck of Endeavour, Orbiter Vehicle (OV) 105. Holding a camcorder in his right hand, Grabe prepares to monitor and record the crystal growth. The open airlock hatch is partially visible in the background.
STS-32 OV-102 air revitalization system (ARS) humidity separator problem
NASA Technical Reports Server (NTRS)
1990-01-01
During STS-32, onboard Columbia, Orbiter Vehicle (OV) 102, a leakage problem at environmental control and life support system (ECLSS) air revitalization system (ARS) humidity separator A below the middeck is documented in this closeup view. Note the many bubbles around the separator. The crew cleared out stowage bags, lithium hydroxide (LiOH) cannisters and other materials to get at the problem. It was eventually repaired.
Gandhi, Adarsh S.; Wohlfarth, Ariane; Zhu, Mingshe; Pang, Shaokun; Castaneto, Marisol; Scheidweiler, Karl B.; Huestis, Marilyn A.
2014-01-01
N-(Adamantan-1-yl)-1-(5-fluoropentyl)-1H-indole-3-carboxamide (STS-135) is a new synthetic cannabinoid in herbal incense products discussed on internet drug user forums and identified in police seizures. To date, there are no STS-135 clinical or in vitro studies identifying STS-135 metabolic profiles. However, characterizing STS-135 metabolism is critical because synthetic cannabinoid metabolites can possess pharmacological activity and parent compounds are rarely detectable in urine. To characterize the metabolite profile, human hepatocytes were incubated with 10 μmol/L STS-135 for up to 3 h. High-resolution mass spectrometry with software-assisted data mining identified 29 STS-135 metabolites. Less than 25% of STS-135 parent compound remained after 3 h incubation. Primary metabolites were generated by mono-, di- or trihydroxylation with and without ketone formation, dealkylation and oxidative defluorination of N-fluoropentyl side chain or possible oxidation to carboxylic acid, some of them further glucuronidated. Hydroxylations occurred mainly on the aliphatic adamantane ring and less commonly on the N-pentyl side chain. At 1 h phase I metabolites predominated, while at 3 h phase II metabolites were present in higher amounts. The major metabolites were monohydroxy STS-135 (M25) and dihydroxy STS-135 (M21), both hydroxylated on the adamantane system. Moreover, metabolic stability of STS-135 (1 μmol/L) was assessed in human liver microsomes experiments. The in vitro half-life of STS-135 was 7.2±0.6 min and intrinsic clearance (CLint) was 93.6 mL·min−1·kg−1. This is the first report characterizing STS-135 hepatic metabolic pathways. These data provide potential urinary targets to document STS-135 intake in clinical and forensic settings and potential candidates for pharmacological testing. PMID:24827428
The development of STS payload environmental engineering standards
NASA Technical Reports Server (NTRS)
Bangs, W. F.
1982-01-01
The presently reported effort to provide a single set of standards for the design, analysis and testing of Space Transportation System (STS) payloads throughout the NASA organization must be viewed as essentially experimental, since the concept of incorporating the diverse opinions and experiences of several separate field research centers may in retrospect be judged too ambitious or perhaps even naive. While each STS payload may have unique characteristics, and the project should formulate its own criteria for environmental design, testing and evaluation, a reference source document providing coordinated standards is expected to minimize the duplication of effort and limit random divergence of practices among the various NASA payload programs. These standards would provide useful information to all potential STS users, and offer a degree of standardization to STS users outside the NASA organization.
STS-95 crew members participate in a SPACEHAB familiarization
NASA Technical Reports Server (NTRS)
1998-01-01
STS-95 crew members look over the Osteoporosis Experiment in Orbit (OSTEO) during a SPACEHAB familiarization tour and briefing in the SPACEHAB Payload Processing Facility in Cape Canaveral. Seated from left are Mission Specialist Scott E. Parazynski, Payload Specialist Chiaki Mukai of the National Space Development Agency of Japan (NASDA), and Payload Specialist John H. Glenn Jr., who also is a senator from Ohio. Standing, from left, are STS-95 Commander Curtis L. Brown and Canadian Space Agency representative Duncan Burnside. STS-95 will feature a variety of research payloads, including the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Platform, the International Extreme Ultraviolet Hitchhiker, and experiments on space flight and the aging process. STS-95 is targeted for an Oct. 29 launch aboard the Space Shuttle Discovery.
Summary Report of mission acceleration measurements for STS-66. Launched November 3, 1994
NASA Technical Reports Server (NTRS)
Rogers, Melissa J. B.; Delombard, Richard
1995-01-01
Experiments flown in the middeck of Atlantis during the STS-66 mission were supported by the Space Acceleration Measurement System (SAMS). In particular, the three triaxial SAMS sensor heads collected data in support of protein crystal growth experiments. Data collected during STS-66 are reviewed in this report. The STS-66 SAMS data represent the microgravity environment in the 0.01 Hz to 10 Hz range. Variations in the environment related to differing levels of crew activity are discussed in the report. A comparison is made among times when the crew was quiet during a public affairs conference, working quietly, and exercising. These levels of activity are also compared to levels recorded by a SAMS unit in the Spacelab on Columbia during the STS-65 mission.
Measurement of LET distribution and dose equivalent on board the space shuttle STS-65
NASA Technical Reports Server (NTRS)
Hayashi, T.; Doke, T.; Kikuchi, J.; Takeuchi, R.; Hasebe, N.; Ogura, K.; Nagaoka, S.; Kato, M.; Badhwar, G. D.
1996-01-01
Space radiation dosimetry measurements have been made on board the Space Shuttle STS-65 in the Second International Microgravity Laboratory (IML-2). In these measurements, three kinds of detectors were used; one is a newly developed active detector telescope called "Real-time Radiation Monitoring Device (RRMD)" utilizing silicon semi-conductor detectors and others are conventional detectors of thermoluminescence dosimeters (TLDs) and CR-39 plastic track detectors. Using the RRMD detector, the first attempt of real-time monitoring of space radiation has been achieved successfully for a continuous period of 251.3 h, giving the temporal variations of LET distribution, particle count rates, and rates of absorbed dose and dose equivalent. The RRMD results indicate that a clear enhancement of the number of trapped particles is seen at the South Atlantic Anomaly (SAA) without clear enhancement of dose equivalent, while some daily periodic enhancements of dose equivalent due to high LET particles are seen at the lower geomagnetic cutoff regions for galactic cosmic ray particles (GCRs). Therefore, the main contribution to dose equivalent is seen to be due to GCRs in this low altitude mission (300 km). Also, the dose equivalent rates obtained by TLDs and CR-39 ranged from 146.9 to 165.2 microSv/day and the average quality factors from 1.45 to 1.57 depending on the locations and directions of detectors inside the Space-lab at this highly protected orbit for space radiation with a small inclination (28.5 degrees) and a low altitude (300 km). The LET distributions obtained by two different detectors, RRMD and CR-39, are in good agreement in the region of 15-200 keV/mm and difference of these distributions in the regions of LET < 15 keV/mm and LET > 200 keV/mm can be explained by considering characteristics of CR-39 etched track formation especially for the low LET tracks.
The Starshine Hitchhiker Mission on STS-96
NASA Technical Reports Server (NTRS)
Moore, Gil; Lui, Ben Y.
1999-01-01
A mirrored, spherical "Starshine" satellite was ejected by NASA into a circular low Earth orbit from a Hitchhiker canister in the cargo bay of Space Shuttle OV-103 Discovery at 07:21 Universal Time on June 5, 1999, near the end of Discovery's STS-96 mission to the International Space Station. Starshine's initial orbital altitude was 218 Nautical Miles (387 km), and its orbital inclination was 51.6 deg. The satellite is expected to orbit Earth until sometime in January 2000, when it will reenter the atmosphere and vaporize. Some 25,030 students in 700 schools around the world participated in the construction of this satellite by polishing 878 small, front-surface aluminum mirrors that stud its outer surface. A small fraction of those students is presently tracking the satellite and measuring its angular position at specific times. The Naval Research Laboratory is combining the students' measurements with Naval Space Command radar tracking data to compute the satellite's orbit on a daily basis. From the rate of decay of the orbit, the students are able to calculate the density of the atmosphere at the satellite's present altitude. The students are also accessing the project's web site to observe ground-based and space-based images of the sun and other indices of solar activity. They are then using these data to make correlations between the intensity of solar storms and fluctuations in the density of the earth's upper atmosphere. The number of students participating in the tracking phase of the project is expected to increase dramatically at the start of the fall school term in the northern hemisphere. At the conclusion of the Starshine mission, the student team will attempt to predict when and where the satellite will re-enter the atmosphere, so they can compete for a cash prize for the best photograph of the satellite's fiery demise.
Measurement of LET distribution and dose equivalent on board the space shuttle STS-65.
Hayashi, T; Doke, T; Kikuchi, J; Takeuchi, R; Hasebe, N; Ogura, K; Nagaoka, S; Kato, M; Badhwar, G D
1996-11-01
Space radiation dosimetry measurements have been made on board the Space Shuttle STS-65 in the Second International Microgravity Laboratory (IML-2). In these measurements, three kinds of detectors were used; one is a newly developed active detector telescope called "Real-time Radiation Monitoring Device (RRMD)" utilizing silicon semi-conductor detectors and others are conventional detectors of thermoluminescence dosimeters (TLDs) and CR-39 plastic track detectors. Using the RRMD detector, the first attempt of real-time monitoring of space radiation has been achieved successfully for a continuous period of 251.3 h, giving the temporal variations of LET distribution, particle count rates, and rates of absorbed dose and dose equivalent. The RRMD results indicate that a clear enhancement of the number of trapped particles is seen at the South Atlantic Anomaly (SAA) without clear enhancement of dose equivalent, while some daily periodic enhancements of dose equivalent due to high LET particles are seen at the lower geomagnetic cutoff regions for galactic cosmic ray particles (GCRs). Therefore, the main contribution to dose equivalent is seen to be due to GCRs in this low altitude mission (300 km). Also, the dose equivalent rates obtained by TLDs and CR-39 ranged from 146.9 to 165.2 microSv/day and the average quality factors from 1.45 to 1.57 depending on the locations and directions of detectors inside the Space-lab at this highly protected orbit for space radiation with a small inclination (28.5 degrees) and a low altitude (300 km). The LET distributions obtained by two different detectors, RRMD and CR-39, are in good agreement in the region of 15-200 keV/mm and difference of these distributions in the regions of LET < 15 keV/mm and LET > 200 keV/mm can be explained by considering characteristics of CR-39 etched track formation especially for the low LET tracks.
Nuñez, Illyce; Rodriguez Pino, Marbelys; Wiley, David J; Das, Maitreyi E; Chen, Chuan; Goshima, Tetsuya; Kume, Kazunori; Hirata, Dai; Toda, Takashi; Verde, Fulvia
2016-07-30
RNA-binding proteins contribute to the formation of ribonucleoprotein (RNP) granules by phase transition, but regulatory mechanisms are not fully understood. Conserved fission yeast NDR (Nuclear Dbf2-Related) kinase Orb6 governs cell morphogenesis in part by spatially controlling Cdc42 GTPase. Here we describe a novel, independent function for Orb6 kinase in negatively regulating the recruitment of RNA-binding protein Sts5 into RNPs to promote polarized cell growth. We find that Orb6 kinase inhibits Sts5 recruitment into granules, its association with processing (P) bodies, and degradation of Sts5-bound mRNAs by promoting Sts5 interaction with 14-3-3 protein Rad24. Many Sts5-bound mRNAs encode essential factors for polarized cell growth, and Orb6 kinase spatially and temporally controls the extent of Sts5 granule formation. Disruption of this control system affects cell morphology and alters the pattern of polarized cell growth, revealing a role for Orb6 kinase in the spatial control of translational repression that enables normal cell morphogenesis.
Commander Truly cleans ARS filters on middeck
1983-09-05
STS008-13-336 (5 Sept 1983) --- On middeck, Richard M. Truly, STS-8 commander, uses vacuum cleaner to remove debris from air revitalization system (ARS) filter assembly. Open panel on middeck floor is the ARS access panel.
STS-111 Onboard Photo of the International Space Station
NASA Technical Reports Server (NTRS)
2002-01-01
Backdropped against the blackness of space is the International Space Station (ISS), as viewed from the approching Space Shuttle Orbiter Endeavour, STS-111 mission, in June 2002. Expedition Five replaced Expedition Four crew after remaining a record-setting 196 days in space. Three spacewalks enabled the STS-111 crew to accomplish the delivery and installation of the Mobile Remote Servicer Base System (MBS), an important part of the Station's Mobile Servicing System that allows the robotic arm to travel the length of the Station, which is necessary for future construction tasks; the replacement of a wrist roll joint on the Station's robotic arm, and the task of unloading supplies and science experiments from the Leonardo Multi-Purpose Logistics Module, which made its third trip to the orbital outpost. The STS-111 mission, the 14th Shuttle mission to visit the ISS, was launched on June 5, 2002 and landed June 19, 2002.
2004-03-05
KENNEDY SPACE CENTER, FLA. - Members of the STS-114 crew spend time in the Orbiter Processing Facility becoming familiar with Shuttle and mission equipment. Mission Specialists Stephen Robinson (left) and Wendy Lawrence (right) look at an engine eyelet, which serves as part of the thermal protection system on an orbiter. The STS-114 mission is Logistics Flight 1, which is scheduled to deliver supplies and equipment and the external stowage platform to the International Space Station.
MS Lucid places samples in the TEHOF aboard the Spektr module
1997-03-26
STS079-S-082 (16-26 Sept. 1996) --- Cosmonaut guest researcher Shannon W. Lucid and Valeri G. Korzun, her Mir-22 commander, are pictured on the Spektr Module aboard Russia's Earth-orbiting Mir Space Station. Korzun was the third of four commanders that Lucid served with during her record-setting 188 consecutive days in space. Later, Lucid returned to Earth with her fourth commander-astronaut William F. Readdy-and five other NASA astronauts to complete the STS-79 mission. During the STS-79 mission, the crew used an IMAX camera to document activities aboard the space shuttle Atlantis and the various Mir modules. A hand-held version of the 65mm camera system accompanied the STS-79 crew into space in Atlantis' crew cabin. NASA has flown IMAX camera systems on many Shuttle missions, including a special cargo bay camera's coverage of other recent Shuttle-Mir rendezvous and/or docking missions.
International Space Station (ISS)
2002-06-01
Pictured here is the Space Shuttle Orbiter Endeavour, STS-111 mission insignia. The International Space Station (ISS) recieved a new crew, Expedition Five, replacing Expedition Four after a record-setting 196 days in space, when STS-111 visited in June 2002. Three spacewalks enabled the STS-111 crew to accomplish additional mission objectives: the delivery and installation of a new platform for the ISS robotic arm, the Mobile Base System (MBS) which is an important part of the Station's Mobile Servicing System allowing the robotic arm to travel the length of the Station; the replacement of a wrist roll joint on the Station's robotic arm; and unloading supplies and science experiments from the Leonardo Multi-Purpose Logistics Module, which made its third trip to the orbital outpost. The STS-111 mission, the 14th Shuttle mission to visit the ISS, was launched on June 5, 2002 and landed June 19, 2002.
Liquid rocket booster integration study. Volume 1: Executive summary
NASA Technical Reports Server (NTRS)
1988-01-01
The impacts of introducing liquid rocket booster engines (LRB) into the Space Transportation System (STS)/Kennedy Space Center (KSC) launch environment are identified and evaluated. Proposed ground systems configurations are presented along with a launch site requirements summary. Prelaunch processing scenarios are described and the required facility modifications and new facility requirements are analyzed. Flight vehicle design recommendations to enhance launch processing are discussed. Processing approaches to integrate LRB with existing STS launch operations are evaluated. The key features and significance of launch site transition to a new STS configuration in parallel with ongoing launch activities are enumerated. This volume is the executive summary of the five volume series.
Liquid rocket booster integration study. Volume 5, part 1: Appendices
NASA Technical Reports Server (NTRS)
1988-01-01
The impacts of introducing liquid rocket booster engines (LRB) into the Space Transportation System (STS)/Kennedy Space Center (KSC) launch environment are identified and evaluated. Proposed ground systems configurations are presented along with a launch site requirements summary. Prelaunch processing scenarios are described and the required facility modifications and new facility requirements are analyzed. Flight vehicle design recommendations to enhance launch processing are discussed. Processing approaches to integrate LRB with existing STS launch operations are evaluated. The key features and significance of launch site transition to a new STS configuration in parallel with ongoing launch activities are enumerated. This volume is the appendices of the five volume series.
Liquid Rocket Booster Integration Study. Volume 2: Study synopsis
NASA Technical Reports Server (NTRS)
1988-01-01
The impacts of introducing liquid rocket booster engines (LRB) into the Space Transportation System (STS)/Kennedy Space Center (KSC) launch environment are identified and evaluated. Proposed ground systems configurations are presented along with a launch site requirements summary. Prelaunch processing scenarios are described and the required facility modifications and new facility requirements are analyzed. Flight vehicle design recommendations to enhance launch processing are discussed. Processing approaches to integrate LRB with existing STS launch operations are evaluated. The key features and significance of launch site transition to a new STS configuration in parallel with ongoing launch activities are enumerated. This volume is the study summary of the five volume series.
Space transportation system biomedical operations support study
NASA Technical Reports Server (NTRS)
White, S. C.
1983-01-01
The shift of the Space Transportation System (STS) flight tests of the orbiter vehicle to the preparation and flight of the payloads is discussed. Part of this change is the transition of the medical and life sciences aspects of the STS flight operations to reflect the new state. The medical operations, the life sciences flight experiments support requirements and the intramural research program expected to be at KSC during the operational flight period of the STS and a future space station are analyzed. The adequacy of available facilities, plans, and resources against these future needs are compared; revisions and/or alternatives where appropriate are proposed.
STS-100 MPLM Raffaello is moved to the payload canister
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. - Suspended by the overhead crane, the Multi-Purpose Logistics Module Raffaello approaches the end of the payload canister. Part of the payload on mission STS-100 to the International Space Station, Raffaello carries six system racks and two storage racks for the U.S. Lab. Launch of STS-100 is scheduled for April 19, 2001 at 2:41 p.m. EDT from Launch Pad 39A.
MS Hadfield and MS Parazynski raise the SSRMS from the SLP during an EVA for STS-100
2001-04-22
STS100-714-015 (22 April 2001) --- Astronauts Scott E. Parazynski (center frame) and Chris A. Hadfield (partially obscured) prepare to unpack the new Space Station Remote Manipulator System (SSRMS) or Canadarm2 during the first of two STS-100 space walks. Hadfield represents the Canadian Space Agency (CSA). The image was exposed with a 70mm camera from inside the Space Shuttle Endeavour's crew cabin.
STS-335 crew training, EVA TPS Overview with instructor John Ray
2010-11-03
JSC2010-E-183519 (3 Nov. 2010) --- NASA astronauts Doug Hurley, STS-135 pilot; and Sandy Magnus, mission specialist, participate in an EVA Thermal Protection System (TPS) overview training session in the TPS/ Precision Air Bearing Facility in the Space Vehicle Mock-up Facility at NASA's Johnson Space Center. STS-135 is planned to be the final mission of the space shuttle program. Photo credit: NASA or National Aeronautics and Space Administration
STS-46 Pilot Allen uses cycle ergometer on OV-104's middeck
1992-08-08
STS046-24-025 (31 July-8 Aug. 1992) --- Astronaut Andrew M. Allen, STS-46 pilot, exercises on the bicycle ergometer device on the flight deck of the Space Shuttle Atlantis as it makes one of its 127 total orbits for the eight-day mission. Allen, equipped with sensors for monitoring his biological systems during the run, was joined by four other NASA astronauts and two European scientists on the mission.
NASA Technical Reports Server (NTRS)
Moore, W. F.; Forsythe, C.
1977-01-01
A preliminary draft policy for reimbursement for Space Shuttle flights has been developed by NASA in the form of pricing criteria for Space Transportation System (STS) users in domestic and foreign government and industry. The reimbursement policy, the transition from expendable launch vehicles to STS, the new user services, and the interaction of the economics of new user services and STS cost to fly are discussed in the present paper. Current efforts to develop new users are noted.
STS-31 Hubble Space Telescope (HST) (SA & HGA deployed) is grappled by RMS
1990-04-24
STS031-76-026 (25 April 1990) --- Most of the giant Hubble Space Telescope (HST) can be seen as it is suspended in space by Discovery's Remote Manipulator System (RMS) following the deployment of part of its solar panels and antennae. The photo was taken with a handheld Hasselblad camera. This was among the first photos NASA released on April 30, 1990, from the five-day STS 31 mission.
View of STS-100 orbiter Endeavour approaching for docking
2001-04-21
ISS002-E-5876 (21 April 2001) --- A distant view of the Space Shuttle Endeavour preparing to dock with the International Space Station (ISS) during the STS-100 mission. The STS-100 crewmembers are delivering the Canadarm2, Space Station Remote Manipulator System (SSRMS), and equipment stowed in the Multipurpose Logistics Module (MPLM) Raphaello to the ISS which are visible in Endeavour's payload bay. The image was taken with a digital still camera.
View of STS-100 orbiter Endeavour approaching for docking
2001-04-21
ISS002-E-5887 (21 April 2001) --- A view of the Space Shuttle Endeavour preparing to dock with the International Space Station (ISS) during the STS-100 mission. The STS-100 crewmembers are delivering the Canadarm2, Space Station Remote Manipulator System (SSRMS), and equipment stowed in the Multipurpose Logistics Module (MPLM) Raphaello to the ISS which are visible in Endeavour's payload bay. The image was taken with a digital still camera.
Deployment of DRAGONSAT from Space Shuttle Endeavours Payload Bay
2009-07-30
S127-E-012308 (30 July 2009) --- As seen through windows on the aft flight deck of Space Shuttle Endeavour, a Department of Defense pico-satellite known as Atmospheric Neutral Density Experiment 2 (ANDE-2) is released from the shuttle's payload bay by STS-127 crew members. ANDE-2 consists of two spherical micro-satellites which will measure the density and composition of the low-Earth orbit (LEO) atmosphere while being tracked from the ground. The data will be used to better predict the movement of objects in orbit.
Deployment of DRAGONSAT from Space Shuttle Endeavours Payload Bay
2009-07-30
S127-E-012322 (30 July 2009) --- As seen through windows on the aft flight deck of Space Shuttle Endeavour, a Department of Defense pico-satellite known as Atmospheric Neutral Density Experiment 2 (ANDE-2) is released from the shuttle's payload bay by STS-127 crew members. ANDE-2 consists of two spherical micro-satellites which will measure the density and composition of the low-Earth orbit (LEO) atmosphere while being tracked from the ground. The data will be used to better predict the movement of objects in orbit.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. An engine pulls the container enclosing a segment of a solid rocket booster from the Rotation Processing and Surge Facility. The container will join others on the main track for a trip to Utah where the segments will undergo firing. The segments were part of the STS-114 stack. It is the first time actual flight segments that had been stacked for flight in the VAB are being returned for testing. They will undergo firing, which will enable inspectors to check the viability of the solid and verify the life expectancy for stacked segments.
Chang-Diaz and Perrin work at the MBS on the S0 (S-zero) truss during STS-111 UF-2 EVA 2
2002-06-10
STS111-E-5163 (11 June 2002) --- Astronauts Franklin R. Chang-Diaz (center frame) and Philippe Perrin (partially obscured), both STS-111 mission specialists, work in tandem on the second scheduled session of extravehicular activity (EVA) for the STS-111 mission. During the spacewalk, Chang-Diaz and Perrin attached power, data and video cables from the International Space Station (ISS) to the Mobile Base System (MBS) and used a power wrench to complete the attachment of the MBS onto the Mobile Transporter (MT). Perrin represents CNES, the French Space Agency.
STS-113 TCDT emergency exit training at Launch Pad 39A
NASA Technical Reports Server (NTRS)
2002-01-01
KENNEDY SPACE CENTER, FLA. - STS-113 Mission Specialist John Herrington (left) and cosmonaut Nikolai Budarin (center) listen to instructions from a trainer on the emergency egress system on Launch Pad 39A. They are other crew members are taking part in Terminal Countdown Demonstration Test (TCDT) activities, which also include a simulated launch countdown. The 16th assembly flight to the International Space Station, STS-113 will carry the Port 1 (P1) truss aboard Space Shuttle Endeavour as well as the Expedition 6 crew, who will replace Expedition 5 on the Station. Mission STS-113 is scheduled to launch Nov. 10, 2002.
Pre-STS-3 press conference held at the JSC public affairs facility
NASA Technical Reports Server (NTRS)
1982-01-01
Astronauts Jack R. Lousma, center, and C. Gordon Fullerton, left, respond to a visual display of the Columbia and its remote manipulator system in space during a pre-STS-3 press conference. Dr. John Lawrence, public information specialist, is at the far right (25903); Astronaut Lousma, listens as a newsman directs a question his way. In the background is the STS-3 mission logo (25904); Astronaut Fullerton uses an electronic pointer to localize an area on a prjected visual of the OSS payload package to be carried in the cargo bay of the Columbia on STS-3. On far right is Dr. Lawrence (25905).
STS-71 astronauts before egress training
NASA Technical Reports Server (NTRS)
1994-01-01
Astronaut Robert L. Gibson (left), STS-71 mission commander, converses with two crew mates prior to emergency egress training in the Systems Integration Facility at JSC. Astronaut Bonnie J. Dunbar and Gregory J. Harbaugh are attired in training versions o
STS-71 astronauts and cosmonauts during egress training
NASA Technical Reports Server (NTRS)
1994-01-01
Astronaut Robert L. Gibson (arms folded, near center) STS-71 mission commander, joins several crew mates during a briefing preceding emergency egress training in the Systems Integration Facility at JSC. Astronauts Bonnie J. Dunbar and Gregory J. Harbaugh
Hwang, Jee-In; Park, Hyeoun-Ae
2017-12-01
Healthcare professionals' systems thinking is emphasized for patient safety. To report nurses' systems thinking competency, and its relationship with medical error reporting and the occurrence of adverse events. A cross-sectional survey using a previously validated Systems Thinking Scale (STS), was conducted. Nurses from two teaching hospitals were invited to participate in the survey. There were 407 (60.3%) completed surveys. The mean STS score was 54.5 (SD 7.3) out of 80. Nurses with higher STS scores were more likely to report medical errors (odds ratio (OR) = 1.05; 95% confidence interval (CI) = 1.02-1.08) and were less likely to be involved in the occurrence of adverse events (OR = 0.96; 95% CI = 0.93-0.98). Nurses showed moderate systems thinking competency. Systems thinking was a significant factor associated with patient safety. Impact Statement: The findings of this study highlight the importance of enhancing nurses' systems thinking capacity to promote patient safety.
STS-132 crew during their PDRS N-TSK MRM training in the building 16 cupola trainer.
2009-12-22
JSC2009-E-286971 (22 Dec. 2009) --- Astronauts Piers Sellers (left) and Garrett Reisman, both STS-132 mission specialists, participate in an exercise in the systems engineering simulator in the Avionics Systems Laboratory at NASA?s Johnson Space Center. The facility includes moving scenes of full-sized International Space Station components over a simulated Earth.
STS-132 crew during their PDRS N-TSK MRM training in the building 16 cupola trainer.
2009-12-22
JSC2009-E-286964 (22 Dec. 2009) --- Astronauts Ken Ham (foreground), STS-132 commander; and Mike Good, mission specialist, participate in an exercise in the systems engineering simulator in the Avionics Systems Laboratory at NASA?s Johnson Space Center. The facility includes moving scenes of full-sized International Space Station components over a simulated Earth.
Waterson, Patrick; Robertson, Michelle M; Cooke, Nancy J; Militello, Laura; Roth, Emilie; Stanton, Neville A
2015-01-01
An important part of the application of sociotechnical systems theory (STS) is the development of methods, tools and techniques to assess human factors and ergonomics workplace requirements. We focus in this paper on describing and evaluating current STS methods for workplace safety, as well as outlining a set of six case studies covering the application of these methods to a range of safety contexts. We also describe an evaluation of the methods in terms of ratings of their ability to address a set of theoretical and practical questions (e.g. the degree to which methods capture static/dynamic aspects of tasks and interactions between system levels). The outcomes from the evaluation highlight a set of gaps relating to the coverage and applicability of current methods for STS and safety (e.g. coverage of external influences on system functioning; method usability). The final sections of the paper describe a set of future challenges, as well as some practical suggestions for tackling these. We provide an up-to-date review of STS methods, a set of case studies illustrating their use and an evaluation of their strengths and weaknesses. The paper concludes with a 'roadmap' for future work.
STS-93 MS Hawley works with data associated with the OCA on the middeck
2013-11-18
STS093-327-004 (23-27 July 1999) --- Astronaut Steven A. Hawley works with data associated with the Orbital Communications Adapter (OCA) on the middeck of the Space Shuttle Columbia. Not far away from him is the window-mounted instrument which supports the Southwest Ultraviolet Imaging System (SWUIS). SWUIS is an innovative telescope/charge-coupled device camera system designed to image planets and other solar system bodies.
McDonnell Douglas Space Systems worker checks STS-46 TSS wiring at KSC O and C
NASA Technical Reports Server (NTRS)
1991-01-01
In the Kennedy Space Center (KSC) Operations and Checkout (O and C) Building, a McDonnell Douglas Space Systems technician Hugh Beins, wearing a clean suit, inspects a complex array of wiring for the Tethered Satellite System (TSS) scheduled to fly on STS-46 aboard Atlantis, Orbiter Vehicle (OV) 104. Other technicians work on the spacelab enhanced multiplexer/demultiplexer pallet (EMP) and support struts in the background.
DTO-675: Voice Control of the Closed Circuit Television System
NASA Technical Reports Server (NTRS)
Salazar, George; Gaston, Darilyn M.; Haynes, Dena S.
1996-01-01
This report presents the results of the Detail Test Object (DTO)-675 "Voice Control of the Closed Circuit Television (CCTV)" system. The DTO is a follow-on flight of the Voice Command System (VCS) that flew as a secondary payload on STS-41. Several design changes were made to the VCS for the STS-78 mission. This report discusses those design changes, the data collected during the mission, recognition problems encountered, and findings.
STS-1 environmental control and life support system. Consumables and thermal analysis
NASA Technical Reports Server (NTRS)
Steines, G.
1980-01-01
The Environmental Control and Life Support Systems (ECLSS)/thermal systems analysis for the Space Transportation System 1 Flight (STS-1) was performed using the shuttle environmental consumables usage requirements evaluation (SECURE) computer program. This program employs a nodal technique utilizing the Fortran Environmental Analysis Routines (FEAR). The output parameters evaluated were consumable quantities, fluid temperatures, heat transfer and rejection, and cabin atmospheric pressure. Analysis of these indicated that adequate margins exist for the nonpropulsive consumables and related thermal environment.
STS-95 crew members Glenn and Mukai learn about emergency egress system
NASA Technical Reports Server (NTRS)
1998-01-01
STS-95 Pilot Steven W. Lindsey, Payload Specialist John H. Glenn Jr., senator from Ohio, and Payload Specialist Chiaki Mukai, representing the National Space Development Agency of Japan (NASDA), listen to the Safety Egress trainer talk about the emergency egress system from the pad. The STS-95 crew are at KSC to participate in a Terminal Countdown Demonstration Test (TCDT) which includes mission familiarization activities, emergency egress training, and a simulated main engine cut-off exercise. Other crew members are Mission Specialist Scott E. Parazynski, Mission Specialist Pedro Duque of Spain, representing the European Space Agency (ESA), Mission Commander Curtis L. Brown, and Mission Specialist Stephen K. Robinson. The STS-95 mission, targeted for liftoff on Oct. 29, includes research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process. Following the TCDT, the crew will be returning to Houston for final flight preparations.
Six Month Report on Tissue Cultured Avian Skeletal Myofibers in the STL/A Module Aboard STS-77
NASA Technical Reports Server (NTRS)
Vandenburgh, Herman H.
1997-01-01
Space travel is know to effect skeletal muscle, causing rapid and pronounced atrophy in humans and animals, even when strenuous exercise is used as a countermeasure. The cellular and molecular bases of this atrophy are unknown. Space travel may cause muscle atrophy by a direct effect on the muscle fibers and/or indirectly by reducing circulating levels of growth factors such as growth hormone. The recent development of a tissue culture incubator system for Shuttle Middeck basic science experiments [Space Tissue Loss (STL) Module] by the Walter Reed Army Institute of Research (WRAIR) allows the study of the effects of space travel directly on isolated skeletal myofibers. Avian bioartificial skeletal muscle 'organoids' containing differentiated skeletal myofibers and connective tissue fibroblasts were flown aboard the Space Shuttle (Space Transportation System, STS) on Flight STS-77, a repeat of a similar experiment flown on STS-66. The results from these two flight experiments show for the first time that space travel has a direct effect on skeletal muscle cells separate from any systemic effects resulting from altered circulating growth factors.
A Double-Blind, Placebo-Controlled Study of Selegiline Transdermal System in Depressed Adolescents
Hochadel, Thomas J.; Portland, Kimberly Blanchard; Azzaro, Albert J.; Katic, Alain; Khan, Arif; Emslie, Graham
2014-01-01
Abstract Objective: A randomized, double-blind, placebo-controlled flexible-dose, parallel group trial was conducted at 26 clinical investigational sites in the United States to examine the safety and efficacy of the selegiline transdermal system (STS) (EMSAM®) in adolescents (ages 12–17 years) meeting American Psychiatric Association, Diagnostic and Statistical Manual of Mental Disorders, 4th ed. (DSM-IV) criteria for moderate to severe major depressive disorder (MDD) without psychotic features. Methods: Adolescents (n=308) with moderate to severe MDD were randomized to either STS (n=152) or placebo (n=156). Two hundred and fifteen (69.8%) subjects completed the study and 17 (5.5%) reported discontinuation because of adverse events (AEs). The primary efficacy outcome measure was the mean change from baseline to end of study (week 12 last observation carried forward [LOCF]) in the Children's Depression Rating Scale-Revised (CDRS-R) total score. Secondary outcome measures included end-point Clinical Global Impressions – Severity (CGI-S) and Clinical Global Impressions – Improvement (CGI-I). Results: Patients on STS or placebo had a significant decline from baseline (p<0.001) on their CDRS-R total score with mean reductions±SD as follows: STS 21.4±16.6; placebo 21.5±16.5. Both groups had similar response rates (58.6% vs. 59.3%) defined as CGI-I of 1 or 2 at study end. However, these between-group efficacy findings were without statistical significance. The overall incidence of reported AEs was 62.5% for STS-treated patients and 57.7% for placebo-treated patients. Most commonly reported AEs in STS or placebo groups were application site reactions (STS=24.3%; placebo=21.8%), headache (STS=17.1%; placebo=16.7%), and nausea (STS=7.2%; placebo=7.7%). Treatment groups did not differ on any laboratory parameters, vital signs, or electrocardiogram (ECG) findings. No suspected hypertensive crises were reported in the trial. Conclusions: These data demonstrated that the STS was safe and well tolerated in this adolescent sample. However, both STS-treated and placebo-treated subjects demonstrated a decline from baseline in depressive symptoms (CDRS-R total score) over the length of the study, without statistical superiority by either group. PMID:24955812
Assessment of constraints on space shuttle launch rates
NASA Technical Reports Server (NTRS)
1983-01-01
The range of number of annual STS flights with 4- and 5-orbiter fleets was estimated and an overview of capabilities needed to support annual rates of 24 and up with a survey of known constraints and emphasis on External Tank (ET) production requirements was provided. Facility capability estimates are provided for ground turnaround, cargo handling, flight training and flight operations. Emphasizing the complexity of the STS systems and the R&D nature of present flight experience, it is concluded that the most prominent constraints in the early growth of the STS as an operational system may manifest themselves not as shortages of investment items such as the ET or SRB, but as inability to provide timely repairs or replacement of flight system components needed to sustain launch rates.
2007-09-30
STS123-S-001 (Oct. 2007) --- STS-123 continues assembly of the International Space Station (ISS). The primary mission objectives include rotating an expedition crew member and installing both the first component of the Japanese Experimental Module (the Experimental Logistics Module - Pressurized Section (ELM-PS)) and the Canadian Special Purpose Dexterous Manipulator (SPDM). In addition, STS-123 will deliver various spare ISS components and leave behind the sensor boom used for inspecting the shuttle's thermal protection system. A follow-on mission to ISS will utilize and then return home with this sensor boom. A total of four spacewalks are planned to accomplish these tasks. The mission will also require the use of both the shuttle and ISS robotic arms. STS-123 will utilize the Station-Shuttle Power Transfer System to extend the docked portion of the mission to eleven days, with a total planned duration of 15 days. The crew patch depicts the space shuttle in orbit with the crew names trailing behind. STS-123's major additions to ISS (the ELM-PS installation with the shuttle robotic arm and the fully constructed SPDM) are both illustrated. The ISS is shown in the configuration that the STS-123 crew will encounter when they arrive. The NASA insignia design for space shuttle flights is reserved for use by the astronauts and for other official use as the NASA Administrator may authorize. Public availability has been approved only in the forms of illustrations by the various news media. When and if there is any change in this policy, which is not anticipated, the change will be publicly announced. Photo credit: NASA
MS Hadfield and MS Parazynski raise the SSRMS from the SLP during an EVA for STS-100
2001-04-22
STS100-714-027 (19 April-1 May 2001) --- Astronaut Chris A. Hadfield, mission specialist representing the Canadian Space Agency (CSA), stands on the portable foot restraint (PFR) connected to the Endeavour's remote manipulator system (RMS) robotic arm, during one of the two days of extravehicular activity (EVA) on the STS-100 mission. Astronaut Scott E. Parazynski, mission specialist, is seen at left near the Spacelab pallet.
STS-335 crew training, EVA TPS Overview with instructor John Ray
2010-11-03
JSC2010-E-183523 (3 Nov. 2010) --- NASA astronauts Rex Walheim (left), STS-135 mission specialist; and Doug Hurley, pilot, participate in an EVA Thermal Protection System (TPS) overview training session in the TPS/ Precision Air Bearing Facility in the Space Vehicle Mock-up Facility at NASA's Johnson Space Center. STS-135 is planned to be the final mission of the space shuttle program. Photo credit: NASA or National Aeronautics and Space Administration
STS-335 crew training, EVA TPS Overview with instructor John Ray
2010-11-03
JSC2010-E-183524 (3 Nov. 2010) --- NASA astronauts Rex Walheim (left), STS-135 mission specialist; and Doug Hurley, pilot, participate in an EVA Thermal Protection System (TPS) overview training session in the TPS/ Precision Air Bearing Facility in the Space Vehicle Mock-up Facility at NASA's Johnson Space Center. STS-135 is planned to be the final mission of the space shuttle program. Photo credit: NASA or National Aeronautics and Space Administration
NASA Technical Reports Server (NTRS)
Hammond, Ernest C., Jr.
1987-01-01
The results of these studies have implications for the utilization of the IIaO spectroscopic film on the future shuttle and space lab missions. These responses to standard photonic energy sources will have immediate application for the uneven responses of the film photographing a star field in a terrestrial or extraterrestrial environment with associated digital imaging equipment.
STS-104 Crew Training of Jim Reilly in EMU fit check
2001-04-09
JSC2001-E-11699 (9 April 2001) --- Astronaut James F. Reilly, STS-104 mission specialist, participates in an Extravehicular Mobility Unit (EMU) fit check in one of the chambers in the Crew Systems Laboratory at the Johnson Space Center (JSC). The STS-104 mission to the International Space Station (ISS) represents the Space Shuttle Atlantis' first flight using a new engine and is targeted for a liftoff no earlier than June 14, 2001.
STS-104 Crew Training of Jim Reilly in EMU fit check
2001-04-09
JSC2001-E-11702 (9 April 2001) --- Astronaut James F. Reilly, STS-104 mission specialist, participates in an Extravehicular Mobility Unit (EMU) fit check in one of the chambers in the Crew Systems Laboratory at the Johnson Space Center (JSC). The STS-104 mission to the International Space Station (ISS) represents the Space Shuttle Atlantis' first flight using a new engine and is targeted for a liftoff no earlier than June 14, 2001.
STS-104 Crew Training of Jim Reilly in EMU fit check
2001-04-09
JSC2001-E-11696 (9 April 2001) --- Astronaut James F. Reilly, STS-104 mission specialist, participates in an Extravehicular Mobility Unit (EMU) fit check in one of the chambers in the Crew Systems Laboratory at the Johnson Space Center (JSC). The STS-104 mission to the International Space Station (ISS) represents the Space Shuttle Atlantis' first flight using a new engine and is targeted for a liftoff no earlier than June 14, 2001.
STS-104 Crew Training of Jim Reilly in EMU fit check
2001-04-09
JSC2001-E-11697 (9 April 2001) --- Astronaut James F. Reilly, STS-104 mission specialist, participates in an Extravehicular Mobility Unit (EMU) fit check in one of the chambers in the Crew Systems Laboratory at the Johnson Space Center (JSC). The STS-104 mission to the International Space Station (ISS) represents the Space Shuttle Atlantis' first flight using a new engine and is targeted for a liftoff no earlier than June 14, 2001.
STS-104 Crew Training of Jim Reilly in EMU fit check
2001-04-09
JSC2001-E-11698 (9 April 2001) --- Astronaut James F. Reilly, STS-104 mission specialist, participates in an Extravehicular Mobility Unit (EMU) fit check in one of the chambers in the Crew Systems Laboratory at the Johnson Space Center (JSC). The STS-104 mission to the International Space Station (ISS) represents the Space Shuttle Atlantis' first flight using a new engine and is targeted for a liftoff no earlier than June 14, 2001.
STS-104 Crew Training of Jim Reilly in EMU fit check
2001-04-09
JSC2001-E-11703 (9 April 2001) --- Astronaut James F. Reilly, STS-104 mission specialist, participates in an Extravehicular Mobility Unit (EMU) fit check in one of the chambers in the Crew Systems Laboratory at the Johnson Space Center (JSC). The STS-104 mission to the International Space Station (ISS) represents the Space Shuttle Atlantis' first flight using a new engine and is targeted for a liftoff no earlier than June 14, 2001.
2004-01-27
KENNEDY SPACE CENTER, FLA. - STS-114 Mission Specialist Soichi Noguchi, with the Japanese Aerospace Exploration Agency (JAXA), handles equipment that will be used on the mission. He and other crew members are at KSC for equipment familiarization. STS-114 is classified as Logistics Flight 1 to the International Space Station, delivering new supplies and replacing one of the orbital outpost’s Control Moment Gyroscopes (CMGs). STS-114 will also carry a Raffaello Multi-Purpose Logistics Module and the External Stowage Platform-2. The crew is slated to conduct at least three spacewalks: They will demonstrate repair techniques of the Shuttle’s Thermal Protection System, replace the failed CMG with one delivered by the Shuttle, and install the External Stowage Platform.
2004-01-27
KENNEDY SPACE CENTER, FLA. - STS-114 Mission Specialist Charles Camarda (left) watches as Mission Specialist Andrew Thomas manipulates equipment that will be used on the mission. Crew members are at KSC for equipment familiarization. STS-114 is classified as Logistics Flight 1 to the International Space Station, delivering new supplies and replacing one of the orbital outpost’s Control Moment Gyroscopes (CMGs). STS-114 will also carry a Raffaello Multi-Purpose Logistics Module and the External Stowage Platform-2. The crew is slated to conduct at least three spacewalks: They will demonstrate repair techniques of the Shuttle’s Thermal Protection System, replace the failed CMG with one delivered by the Shuttle, and install the External Stowage Platform.
Space Shuttle Pad Exposure Period Meteorological Parameters STS-1 Through STS-107
NASA Technical Reports Server (NTRS)
Overbey, B. G.; Roberts, B. C.
2005-01-01
During the 113 missions of the Space Transportation System (STS) to date, the Space Shuttle fleet has been exposed to the elements on the launch pad for approx. 4,195 days. The Natural Environments Branch at Marshall Space Flight Center archives atmospheric environments to which the Space Shuttle vehicles are exposed. This Technical Memorandum (TM) provides a summary of the historical record of the meteorological conditions encountered by the Space Shuttle fleet during the pad exposure period. Parameters included in this TM are temperature, relative humidity, wind speed, wind direction, sea level pressure, and precipitation. Extremes for each of these parameters for each mission are also summarized. Sources for the data include meteorological towers and hourly surface observations. Data are provided from the first launch of the STS in 1981 through the launch of STS-107 in 2003.
Wilson at RWS for STS-131 EVA 3 SSRMS Support
2010-04-13
View of Stephanie Wilson as she works at the Robotics Workstation (RWS) in US Laboratory Destiny as she conducts a Space Station Remote Manipulator System (SSRMS) Ammonia Tank Assembly (ATA) retrieval in support of STS-131 EVA 3.
Astronaut Kenneth Reightler, STS-60 pilot, during egress training
1993-12-10
Astronaut Kenneth S. Reightler, pilot for the STS-60 mission, prepares to simulate egress from a troubled Space Shuttle using Crew Escape System (CES) pole. The action came during emergency egress training in JSC's Shuttle mockup and integration laboratory.
2000-10-31
KENNEDY SPACE CENTER, Fla. -- As the early morning sky lights up, Space Shuttle Endeavour inches its way to Launch Pad 39B (on the horizon) via the crawlerway that leads from the Vehicle Assembly Building. The Shuttle is atop the Mobile Launcher Platform (MLP). Visible beneath the MLP is the crawler-transporter, which moves on four double-tracked crawlers. Each shoe on the crawler track weighs a ton. Unloaded, the transporter weighs 6 million pounds and moves at 2 mph. The maximum speed of the loaded transporter is 1 mph. Endeavour is scheduled to be launched Nov. 30 at 10:01 p.m. EST on mission STS-97, the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections
2000-10-31
KENNEDY SPACE CENTER, Fla. -- As the early morning sky lights up, Space Shuttle Endeavour inches its way to Launch Pad 39B (on the horizon) via the crawlerway that leads from the Vehicle Assembly Building. The Shuttle is atop the Mobile Launcher Platform (MLP). Visible beneath the MLP is the crawler-transporter, which moves on four double-tracked crawlers. Each shoe on the crawler track weighs a ton. Unloaded, the transporter weighs 6 million pounds and moves at 2 mph. The maximum speed of the loaded transporter is 1 mph. Endeavour is scheduled to be launched Nov. 30 at 10:01 p.m. EST on mission STS-97, the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections
Radiation effects in nematodes: Results from IML-1 experiments
NASA Technical Reports Server (NTRS)
Nelson, G. A.; Schubert, W. W.; Kazarians, G. A.; Richards, G. F.; Benton, E. V.; Benton, E. R.; Henke, R.
1994-01-01
The nematode Caenorhabditis elegans was exposed to natural space radiation using the ESA biorack facility aboard Spacelab on International Microgravity Laboratory 1, STS-42. For the major experimental objective dormant animals were suspended in buffer or on agar or immobilized next to CR-39 plastic nuclear track detectors to correlate fluence of HZE particles with genetic events. This configuration was used to isolate mutations in a set of 350 essential genes as well as in the unc-22 structural gene. From flight samples 13 mutants in the unc-22 gene were isolated along with 53 lethal mutations from autosomal regions balanced by a translocation eT1(III;V). Preliminary analysis suggests that mutants from worms correlated with specific cosmic ray tracks may have a higher proportion of rearrangements than those isolated from tube cultures on a randomly sampled basis. Flight sample mutation rate was approximately 8-fold higher than ground controls which exhibited laboratory spontaneous frequencies.
1998-02-26
Members of the STS-90 crew participate in the Crew Equipment Interface Test (CEIT) in Kennedy Space Center's Orbiter Processing Facility Bay 3. The CEIT gives astronauts an opportunity to get a hands-on look at the payloads with which they will be working on-orbit. Investigations during the STS-90 Neurolab mission will focus on the effects of microgravity on the nervous system. Specifically, experiments will study the adaptation of the vestibular system, the central nervous system, and the pathways that control the ability to sense location in the absence of gravity, as well as the effect of microgravity on a developing nervous system. The crew of STS-90, slated for launch in April, are, left to right, Pilot Scott Altman; Payload Specialist James Pawelczyk, Ph.D.; Commander Richard Searfoss; Mission Specialists Dafydd (Dave) Williams, M.D., and Kathryn (Kay) Hire; Payload Specialist Jay Buckey, M.D.; and Mission Specialist Richard Linnehan
1998-02-26
Members of the STS-90 crew participate in the Crew Equipment Interface Test (CEIT) in Kennedy Space Center's Orbiter Processing Facility Bay 3. The CEIT gives astronauts an opportunity to get a hands-on look at the payloads with which they will be working on-orbit. Investigations during the STS-90 Neurolab mission will focus on the effects of microgravity on the nervous system. Specifically, experiments will study the adaptation of the vestibular system, the central nervous system, and the pathways that control the ability to sense location in the absence of gravity, as well as the effect of microgravity on a developing nervous system. The crew of STS-90, slated for launch in April, will include Commander Richard Searfoss, Pilot Scott Altman, Mission Specialists Richard Linnehan, Dafydd (Dave) Williams, M.D., and Kathryn (Kay) Hire, and Payload Specialists Jay Buckey, M.D., and James Pawelczyk, Ph.D
Parametric control of maneuver of a space tether system
NASA Astrophysics Data System (ADS)
Bezglasnyi, S. P.; Piyakina, E. E.
2015-07-01
Planar motion of a space tether system (STS) simulated by a massless rod with two masses fixed on its edges and a third mass moving along the rod is considered. An equation of the pendulum-controlled motion of the system in an elliptical orbit is obtained. Problems of parametric control that takes the STS from one stable radial equilibrium state to another and stabilizes it with respect to planar excitations of two diametrically opposite positions of the relative equilibrium of the STS in a circular orbit are investigated. The control is a continuous law of motion for a moving mass along the tether on the swing principle. The solution is obtained in a closed form based on the second method of the classical stability theory by the construction of the corresponding Lyapunov functions. Asymptotic convergence of solutions is confirmed by the results of numerical modeling of the system motion.
Debris/ice/tps Assessment and Integrated Photographic Analysis of Shuttle Mission STS-81
NASA Technical Reports Server (NTRS)
Katnik, Gregory N.; Lin, Jill D.
1997-01-01
A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle mission STS-81. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer programs and infrared scanned data during cryogenic loading of the vehicle, followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. This report documents the ice/debris/thermal protection system conditions and integrated photographic analysis of Shuttle mission STS-81 and the resulting effect on the Space Shuttle Program.
Debris/ice/tps Assessment and Integrated Photographic Analysis of Shuttle Mission STS-83
NASA Technical Reports Server (NTRS)
Lin, Jill D.; Katnik, Gregory N.
1997-01-01
A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle mission STS-83. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer programs and infrared scanned data during cryogenic loading of the vehicle, followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. This report documents the ice/debris/thermal protection system conditions and integrated photographic analysis of Shuttle mission STS-83 and the resulting effect on the Space Shuttle Program.
Debris/ice/TPS assessment and integrated photographic analysis of Shuttle Mission STS-71
NASA Technical Reports Server (NTRS)
Katnik, Gregory N.; Bowen, Barry C.; Davis, J. Bradley
1995-01-01
A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle mission STS-71. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer programs and infrared scanner data during cryogenic loading of the vehicle, followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in flight anomalies. This report documents the ice/debris/thermal protection system conditions and integrated photographic analysis of Shuttle mission STS-71 and the resulting effect on the Space Shuttle Program.
Debris/Ice/TPS Assessment and Integrated Photographic Analysis of Shuttle Mission STS-102
NASA Technical Reports Server (NTRS)
Rivera, Jorge E.; Kelly, J. David (Technical Monitor)
2001-01-01
A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle mission STS-102. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer programs and infrared scanned data during cryogenic loading of the vehicle, followed by on-pad visual inspection. High speed photography of the launch were analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or inflight anomalies. This report documents the debris/ice /thermal protection system conditions and integrated photographic analysis of Space Shuttle mission STS-102 and the resulting effect on the Space Shuttle Program.
Debris/Ice/TPS Assessment and Integrated Photographic Analysis of Shuttle Mission STS-94
NASA Technical Reports Server (NTRS)
Bowen, Barry C.; Lin, Jill D.
1997-01-01
A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle mission STS-94. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer programs and infrared scanned data during cryogenic loading of the vehicle, followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. This report documents the ice/debris/thermal protection system conditions and integrated photographic analysis of Shuttle mission STS-94 and the resulting effect on the Space Shuttle Program.
Debris/ice/tps Assessment and Integrated Photographic Analysis of Shuttle Mission STS-79
NASA Technical Reports Server (NTRS)
Katnik, Gregory N.; Lin, Jill D.
1996-01-01
A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle mission STS-79. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer programs and infrared scanned data during cryogenic loading of the vehicle, followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. This report documents the ice/debris/thermal protection system conditions and integrated photographic analysis of Shuttle mission STS-79 and the resulting effect on the Space Shuttle Program.
Debris/ice/TPS assessment and integrated photographic analysis of Shuttle mission STS-73
NASA Technical Reports Server (NTRS)
Katnik, Gregory N.; Bowen, Barry C.; Lin, Jill D.
1995-01-01
A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle mission STS-73. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer programs and infrared scanner data during cryogenic loading of the vehicle, followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in flight anomalies. This report documents the ice/debris/thermal protection system conditions and integrated photographic analysis of Shuttle Mission STS-73 and the resulting effect on the Space Shuttle Program.