Output Devices, Computation, and the Future of Mathematical Crafts.
ERIC Educational Resources Information Center
Eisenberg, Michael
2002-01-01
The advent of powerful, affordable output devices offers the potential for a vastly expanded landscape of computationally-enriched mathematical craft activities in education. Craft activities have both intellectual and emotional affordances that are relatively lacking in "traditional" computer-based education. Describes three software applications…
Adaptive Device Context Based Mobile Learning Systems
ERIC Educational Resources Information Center
Pu, Haitao; Lin, Jinjiao; Song, Yanwei; Liu, Fasheng
2011-01-01
Mobile learning is e-learning delivered through mobile computing devices, which represents the next stage of computer-aided, multi-media based learning. Therefore, mobile learning is transforming the way of traditional education. However, as most current e-learning systems and their contents are not suitable for mobile devices, an approach for…
Impact of office productivity cloud computing on energy consumption and greenhouse gas emissions.
Williams, Daniel R; Tang, Yinshan
2013-05-07
Cloud computing is usually regarded as being energy efficient and thus emitting less greenhouse gases (GHG) than traditional forms of computing. When the energy consumption of Microsoft's cloud computing Office 365 (O365) and traditional Office 2010 (O2010) software suites were tested and modeled, some cloud services were found to consume more energy than the traditional form. The developed model in this research took into consideration the energy consumption at the three main stages of data transmission; data center, network, and end user device. Comparable products from each suite were selected and activities were defined for each product to represent a different computing type. Microsoft provided highly confidential data for the data center stage, while the networking and user device stages were measured directly. A new measurement and software apportionment approach was defined and utilized allowing the power consumption of cloud services to be directly measured for the user device stage. Results indicated that cloud computing is more energy efficient for Excel and Outlook which consumed less energy and emitted less GHG than the standalone counterpart. The power consumption of the cloud based Outlook (8%) and Excel (17%) was lower than their traditional counterparts. However, the power consumption of the cloud version of Word was 17% higher than its traditional equivalent. A third mixed access method was also measured for Word which emitted 5% more GHG than the traditional version. It is evident that cloud computing may not provide a unified way forward to reduce energy consumption and GHG. Direct conversion from the standalone package into the cloud provision platform can now consider energy and GHG emissions at the software development and cloud service design stage using the methods described in this research.
Comparing the Effects of Mobile Computers and Traditional Approaches in Environmental Education
ERIC Educational Resources Information Center
Ruchter, Markus; Klar, Bernhard; Geiger, Werner
2010-01-01
Environmental education and computers? That was traditionally seen as an antagonism. But environmental educators who compete for attention and face new challenges in an age of mobile devices, have begun to explore the opportunities that mobile computers may offer in supporting environmental learning experiences. This study investigates the impact…
MindEdit: A P300-based text editor for mobile devices.
Elsawy, Amr S; Eldawlatly, Seif; Taher, Mohamed; Aly, Gamal M
2017-01-01
Practical application of Brain-Computer Interfaces (BCIs) requires that the whole BCI system be portable. The mobility of BCI systems involves two aspects: making the electroencephalography (EEG) recording devices portable, and developing software applications with low computational complexity to be able to run on low computational-power devices such as tablets and smartphones. This paper addresses the development of MindEdit; a P300-based text editor for Android-based devices. Given the limited resources of mobile devices and their limited computational power, a novel ensemble classifier is utilized that uses Principal Component Analysis (PCA) features to identify P300 evoked potentials from EEG recordings. PCA computations in the proposed method are channel-based as opposed to concatenating all channels as in traditional feature extraction methods; thus, this method has less computational complexity compared to traditional P300 detection methods. The performance of the method is demonstrated on data recorded from MindEdit on an Android tablet using the Emotiv wireless neuroheadset. Results demonstrate the capability of the introduced PCA ensemble classifier to classify P300 data with maximum average accuracy of 78.37±16.09% for cross-validation data and 77.5±19.69% for online test data using only 10 trials per symbol and a 33-character training dataset. Our analysis indicates that the introduced method outperforms traditional feature extraction methods. For a faster operation of MindEdit, a variable number of trials scheme is introduced that resulted in an online average accuracy of 64.17±19.6% and a maximum bitrate of 6.25bit/min. These results demonstrate the efficacy of using the developed BCI application with mobile devices. Copyright © 2016 Elsevier Ltd. All rights reserved.
High-performance computing for airborne applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quinn, Heather M; Manuzzato, Andrea; Fairbanks, Tom
2010-06-28
Recently, there has been attempts to move common satellite tasks to unmanned aerial vehicles (UAVs). UAVs are significantly cheaper to buy than satellites and easier to deploy on an as-needed basis. The more benign radiation environment also allows for an aggressive adoption of state-of-the-art commercial computational devices, which increases the amount of data that can be collected. There are a number of commercial computing devices currently available that are well-suited to high-performance computing. These devices range from specialized computational devices, such as field-programmable gate arrays (FPGAs) and digital signal processors (DSPs), to traditional computing platforms, such as microprocessors. Even thoughmore » the radiation environment is relatively benign, these devices could be susceptible to single-event effects. In this paper, we will present radiation data for high-performance computing devices in a accelerated neutron environment. These devices include a multi-core digital signal processor, two field-programmable gate arrays, and a microprocessor. From these results, we found that all of these devices are suitable for many airplane environments without reliability problems.« less
ERIC Educational Resources Information Center
Zhamanov, Azamat; Yoo, Seong-Moo; Sakhiyeva, Zhulduz; Zhaparov, Meirambek
2018-01-01
Students nowadays are hard to be motivated to study lessons with traditional teaching methods. Computers, smartphones, tablets and other smart devices disturb students' attentions. Nevertheless, those smart devices can be used as auxiliary tools of modern teaching methods. In this article, the authors review two popular modern teaching methods:…
Wearable computer technology for dismounted applications
NASA Astrophysics Data System (ADS)
Daniels, Reginald
2010-04-01
Small computing devices which rival the compact size of traditional personal digital assistants (PDA) have recently established a market niche. These computing devices are small enough to be considered unobtrusive for humans to wear. The computing devices are also powerful enough to run full multi-tasking general purpose operating systems. This paper will explore the wearable computer information system for dismounted applications recently fielded for ground-based US Air Force use. The environments that the information systems are used in will be reviewed, as well as a description of the net-centric, ground-based warrior. The paper will conclude with a discussion regarding the importance of intuitive, usable, and unobtrusive operator interfaces for dismounted operators.
Bruno Garza, J L; Young, J G
2015-01-01
Extended use of conventional computer input devices is associated with negative musculoskeletal outcomes. While many alternative designs have been proposed, it is unclear whether these devices reduce biomechanical loading and musculoskeletal outcomes. To review studies describing and evaluating the biomechanical loading and musculoskeletal outcomes associated with conventional and alternative input devices. Included studies evaluated biomechanical loading and/or musculoskeletal outcomes of users' distal or proximal upper extremity regions associated with the operation of alternative input devices (pointing devices, mice, other devices) that could be used in a desktop personal computing environment during typical office work. Some alternative pointing device designs (e.g. rollerbar) were consistently associated with decreased biomechanical loading while other designs had inconsistent results across studies. Most alternative keyboards evaluated in the literature reduce biomechanical loading and musculoskeletal outcomes. Studies of other input devices (e.g. touchscreen and gestural controls) were rare, however, those reported to date indicate that these devices are currently unsuitable as replacements for traditional devices. Alternative input devices that reduce biomechanical loading may make better choices for preventing or alleviating musculoskeletal outcomes during computer use, however, it is unclear whether many existing designs are effective.
Photonics: Technology project summary
NASA Technical Reports Server (NTRS)
Depaula, Ramon P.
1991-01-01
Photonics involves the use of light (photons) in conjunction with electronics for applications in communications, computing, control, and sensing. Components used in photonic systems include lasers, optical detectors, optical wave guide devices, fiber optics, and traditional electronic devices. The goal of this program is to develop hybrid optoelectronic devices and systems for sensing, information processing, communications, and control. It is hoped that these new devices will yield at least an order of magnitude improvement in performance over existing technology. The objective of the program is to conduct research and development in the following areas: (1) materials and devices; (2) networking and computing; (3) optical processing/advanced pattern recognition; and (4) sensing.
Day, Sarah Jane; Riley, Shaun Patrick
2018-02-01
The evolution of three-dimensional printing into prosthetics has opened conversations about the availability and cost of prostheses. This report will discuss how a prosthetic team incorporated additive manufacture techniques into the treatment of a patient with a partial hand amputation to create and test a unique assistive device which he could use to hold his French horn. Case description and methods: Using a process of shape capture, photogrammetry, computer-aided design and finite element analysis, a suitable assistive device was designed and tested. The design was fabricated using three-dimensional printing. Patient satisfaction was measured using a Pugh's Matrix™, and a cost comparison was made between the process used and traditional manufacturing. Findings and outcomes: Patient satisfaction was high. The three-dimensional printed devices were 56% cheaper to fabricate than a similar laminated device. Computer-aided design and three-dimensional printing proved to be an effective method for designing, testing and fabricating a unique assistive device. Clinical relevance CAD and 3D printing techniques can enable devices to be designed, tested and fabricated cheaper than when using traditional techniques. This may lead to improvements in quality and accessibility.
Non-Traditional Methods of Improving the Communication Skills of Disadvantaged Students
ERIC Educational Resources Information Center
Wilson, Brenda M.; Power, Marian E.
1978-01-01
Educators are encouraged to use some of the non-traditional student-centered methods for improving the communication skills of disadvantaged students, including technological aids such as books, tapes, cable T.V., video tapes, computers, etc., and devices such as role playing and dramatizations. (AM)
Adaptive Multimedia Content Delivery for Context-Aware U-Learning
ERIC Educational Resources Information Center
Zhao, Xinyou; Okamoto, Toshio
2011-01-01
Empowered by mobile computing, teachers and students can benefit from computing in more scenarios beyond the traditional computer classroom. But because of the much diversity of device specification, learning contents and mobile context existing today, the learners get a bad learning experience (e.g. rich contents cannot be displayed correctly)…
Incorporating a Human-Computer Interaction Course into Software Development Curriculums
ERIC Educational Resources Information Center
Janicki, Thomas N.; Cummings, Jeffrey; Healy, R. Joseph
2015-01-01
Individuals have increasing options on retrieving information related to hardware and software. Specific hardware devices include desktops, tablets and smart devices. Also, the number of software applications has significantly increased the user's capability to access data. Software applications include the traditional web site, smart device…
An automated device for provoking and capturing wildlife calls
Ausband, David E.; Skrivseth, Jesse; Mitchell, Michael S.
2011-01-01
Some animals exhibit call-and-response behaviors that can be exploited to facilitate detection. Traditionally, acoustic surveys that use call-and-respond techniques have required an observer's presence to perform the broadcast, record the response, or both events. This can be labor-intensive and may influence animal behavior and, thus, survey results. We developed an automated acoustic survey device using commercially available hardware (e.g., laptop computer, speaker, microphone) and an author-created (JS) software program ("HOOT") that can be used to survey for any animal that calls. We tested this device to determine 1) deployment longevity, 2) effective sampling area, and 3) ability to detect known packs of gray wolves (Canis lupus) in Idaho, USA. Our device was able to broadcast and record twice daily for 6–7 days using the internal computer battery and surveyed an area of 3.3–17.5 km2 in relatively open habitat depending on the hardware components used. We surveyed for wolves at 2 active rendezvous sites used by closely monitored, radiocollared wolf packs and obtained 4 responses across both packs over 3 days of sampling. We confirmed reproduction in these 2 packs by detecting pup howls aurally from the resulting device recordings. Our device can broadcast and record animal calls and the computer software is freely downloadable. This automated survey device can be used to collect reliable data while reducing the labor costs traditionally associated with acoustic surveys.
An automated device for provoking and capturing Wildlife calls
Ausband, D.E.; Skrivseth, J.; Mitchell, M.S.
2011-01-01
Some animals exhibit call-and-response behaviors that can be exploited to facilitate detection. Traditionally, acoustic surveys that use call-and-respond techniques have required an observer's presence to perform the broadcast, record the response, or both events. This can be labor-intensive and may influence animal behavior and, thus, survey results. We developed an automated acoustic survey device using commercially available hardware (e.g., laptop computer, speaker, microphone) and an author-created (JS) software program ("HOOT") that can be used to survey for any animal that calls. We tested this device to determine 1) deployment longevity, 2) effective sampling area, and 3) ability to detect known packs of gray wolves (Canis lupus) in Idaho, USA. Our device was able to broadcast and record twice daily for 6-7 days using the internal computer battery and surveyed an area of 3.3-17.5 km in relatively open habitat depending on the hardware components used. We surveyed for wolves at 2 active rendezvous sites used by closely monitored, radiocollared wolf packs and obtained 4 responses across both packs over 3 days of sampling. We confirmed reproduction in these 2 packs by detecting pup howls aurally from the resulting device recordings. Our device can broadcast and record animal calls and the computer software is freely downloadable. This automated survey device can be used to collect reliable data while reducing the labor costs traditionally associated with acoustic surveys. ?? 2011 The Wildlife Society.
Effects of portable computing devices on posture, muscle activation levels and efficiency.
Werth, Abigail; Babski-Reeves, Kari
2014-11-01
Very little research exists on ergonomic exposures when using portable computing devices. This study quantified muscle activity (forearm and neck), posture (wrist, forearm and neck), and performance (gross typing speed and error rates) differences across three portable computing devices (laptop, netbook, and slate computer) and two work settings (desk and computer) during data entry tasks. Twelve participants completed test sessions on a single computer using a test-rest-test protocol (30min of work at one work setting, 15min of rest, 30min of work at the other work setting). The slate computer resulted in significantly more non-neutral wrist, elbow and neck postures, particularly when working on the sofa. Performance on the slate computer was four times less than that of the other computers, though lower muscle activity levels were also found. Potential or injury or illness may be elevated when working on smaller, portable computers in non-traditional work settings. Copyright © 2014 Elsevier Ltd and The Ergonomics Society. All rights reserved.
Student Engagement in a Computer Rich Science Classroom
NASA Astrophysics Data System (ADS)
Hunter, Jeffrey C.
The purpose of this study was to examine the student lived experience when using computers in a rural science classroom. The overarching question the project sought to examine was: How do rural students relate to computers as a learning tool in comparison to a traditional science classroom? Participant data were collected using a pre-study survey, Experience Sampling during class and post-study interviews. Students want to use computers in their classrooms. Students shared that they overwhelmingly (75%) preferred a computer rich classroom to a traditional classroom (25%). Students reported a higher level of engagement in classes that use technology/computers (83%) versus those that do not use computers (17%). A computer rich classroom increased student control and motivation as reflected by a participant who shared; "by using computers I was more motivated to get the work done" (Maggie, April 25, 2014, survey). The researcher explored a rural school environment. Rural populations represent a large number of students and appear to be underrepresented in current research. The participants, tenth grade Biology students, were sampled in a traditional teacher led class without computers for one week followed by a week using computers daily. Data supported that there is a new gap that separates students, a device divide. This divide separates those who have access to devices that are robust enough to do high level class work from those who do not. Although cellular phones have reduced the number of students who cannot access the Internet, they may have created a false feeling that access to a computer is no longer necessary at home. As this study shows, although most students have Internet access, fewer have access to a device that enables them to complete rigorous class work at home. Participants received little or no training at school in proper, safe use of a computer and the Internet. It is clear that the majorities of students are self-taught or receive guidance from peers resulting in lower self-confidence or the development of misconceptions of their skill or ability.
High performance network and channel-based storage
NASA Technical Reports Server (NTRS)
Katz, Randy H.
1991-01-01
In the traditional mainframe-centered view of a computer system, storage devices are coupled to the system through complex hardware subsystems called input/output (I/O) channels. With the dramatic shift towards workstation-based computing, and its associated client/server model of computation, storage facilities are now found attached to file servers and distributed throughout the network. We discuss the underlying technology trends that are leading to high performance network-based storage, namely advances in networks, storage devices, and I/O controller and server architectures. We review several commercial systems and research prototypes that are leading to a new approach to high performance computing based on network-attached storage.
A DGS Gesture Dictionary for Modelling on Mobile Devices
ERIC Educational Resources Information Center
Isotani, Seiji; Reis, Helena M.; Alvares, Danilo; Brandão, Anarosa A. F.; Brandão, Leônidas O.
2018-01-01
Interactive or Dynamic Geometry System (DGS) is a tool that help to teach and learn geometry using a computer-based interactive environment. Traditionally, the interaction with DGS is based on keyboard and mouse events where the functionalities are accessed using a menu of icons. Nevertheless, recent findings suggest that such a traditional model…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Potok, Thomas; Schuman, Catherine; Patton, Robert
The White House and Department of Energy have been instrumental in driving the development of a neuromorphic computing program to help the United States continue its lead in basic research into (1) Beyond Exascale—high performance computing beyond Moore’s Law and von Neumann architectures, (2) Scientific Discovery—new paradigms for understanding increasingly large and complex scientific data, and (3) Emerging Architectures—assessing the potential of neuromorphic and quantum architectures. Neuromorphic computing spans a broad range of scientific disciplines from materials science to devices, to computer science, to neuroscience, all of which are required to solve the neuromorphic computing grand challenge. In our workshopmore » we focus on the computer science aspects, specifically from a neuromorphic device through an application. Neuromorphic devices present a very different paradigm to the computer science community from traditional von Neumann architectures, which raises six major questions about building a neuromorphic application from the device level. We used these fundamental questions to organize the workshop program and to direct the workshop panels and discussions. From the white papers, presentations, panels, and discussions, there emerged several recommendations on how to proceed.« less
Electronics from the Bottom up: Strategies for Teaching Nanoelectronics at the Undergraduate Level
ERIC Educational Resources Information Center
Vaidyanathan, M.
2011-01-01
Nanoelectronics is an emerging area of electrical and computer engineering that deals with the current-voltage behavior of atomic-scale electronic devices. As the trend toward ever smaller devices continues, there is a need to update traditional undergraduate curricula to introduce electrical engineers to the fundamentals of the field. These…
ERIC Educational Resources Information Center
Wilson, Thomas Royce
2017-01-01
Traditionally in higher education, online courses have been designed for computer users. However, the advent of mobile learning (m-learning) and the proliferation of smartphones have created two challenges for online students and instructional designers. First, instruction designed for a larger computer screen often loses its effectiveness when…
A Lightweight Protocol for Secure Video Streaming.
Venčkauskas, Algimantas; Morkevicius, Nerijus; Bagdonas, Kazimieras; Damaševičius, Robertas; Maskeliūnas, Rytis
2018-05-14
The Internet of Things (IoT) introduces many new challenges which cannot be solved using traditional cloud and host computing models. A new architecture known as fog computing is emerging to address these technological and security gaps. Traditional security paradigms focused on providing perimeter-based protections and client/server point to point protocols (e.g., Transport Layer Security (TLS)) are no longer the best choices for addressing new security challenges in fog computing end devices, where energy and computational resources are limited. In this paper, we present a lightweight secure streaming protocol for the fog computing "Fog Node-End Device" layer. This protocol is lightweight, connectionless, supports broadcast and multicast operations, and is able to provide data source authentication, data integrity, and confidentiality. The protocol is based on simple and energy efficient cryptographic methods, such as Hash Message Authentication Codes (HMAC) and symmetrical ciphers, and uses modified User Datagram Protocol (UDP) packets to embed authentication data into streaming data. Data redundancy could be added to improve reliability in lossy networks. The experimental results summarized in this paper confirm that the proposed method efficiently uses energy and computational resources and at the same time provides security properties on par with the Datagram TLS (DTLS) standard.
A Kinect-Based Assessment System for Smart Classroom
ERIC Educational Resources Information Center
Kumara, W. G. C. W.; Wattanachote, Kanoksak; Battulga, Batbaatar; Shih, Timothy K.; Hwang, Wu-Yuin
2015-01-01
With the advancements of the human computer interaction field, nowadays it is possible for the users to use their body motions, such as swiping, pushing and moving, to interact with the content of computers or smart phones without traditional input devices like mouse and keyboard. With the introduction of gesture-based interface Kinect from…
Determining Training Device Requirements in Army Aviation Systems
NASA Technical Reports Server (NTRS)
Poumade, M. L.
1984-01-01
A decision making methodology which applies the systems approach to the training problem is discussed. Training is viewed as a total system instead of a collection of individual devices and unrelated techniques. The core of the methodology is the use of optimization techniques such as the transportation algorithm and multiobjective goal programming with training task and training device specific data. The role of computers, especially automated data bases and computer simulation models, in the development of training programs is also discussed. The approach can provide significant training enhancement and cost savings over the more traditional, intuitive form of training development and device requirements process. While given from an aviation perspective, the methodology is equally applicable to other training development efforts.
Restricted Authentication and Encryption for Cyber-physical Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kirkpatrick, Michael S; Bertino, Elisa; Sheldon, Frederick T
2009-01-01
Cyber-physical systems (CPS) are characterized by the close linkage of computational resources and physical devices. These systems can be deployed in a number of critical infrastructure settings. As a result, the security requirements of CPS are different than traditional computing architectures. For example, critical functions must be identified and isolated from interference by other functions. Similarly, lightweight schemes may be required, as CPS can include devices with limited computing power. One approach that offers promise for CPS security is the use of lightweight, hardware-based authentication. Specifically, we consider the use of Physically Unclonable Functions (PUFs) to bind an access requestmore » to specific hardware with device-specific keys. PUFs are implemented in hardware, such as SRAM, and can be used to uniquely identify the device. This technology could be used in CPS to ensure location-based access control and encryption, both of which would be desirable for CPS implementations.« less
Computer vision camera with embedded FPGA processing
NASA Astrophysics Data System (ADS)
Lecerf, Antoine; Ouellet, Denis; Arias-Estrada, Miguel
2000-03-01
Traditional computer vision is based on a camera-computer system in which the image understanding algorithms are embedded in the computer. To circumvent the computational load of vision algorithms, low-level processing and imaging hardware can be integrated in a single compact module where a dedicated architecture is implemented. This paper presents a Computer Vision Camera based on an open architecture implemented in an FPGA. The system is targeted to real-time computer vision tasks where low level processing and feature extraction tasks can be implemented in the FPGA device. The camera integrates a CMOS image sensor, an FPGA device, two memory banks, and an embedded PC for communication and control tasks. The FPGA device is a medium size one equivalent to 25,000 logic gates. The device is connected to two high speed memory banks, an IS interface, and an imager interface. The camera can be accessed for architecture programming, data transfer, and control through an Ethernet link from a remote computer. A hardware architecture can be defined in a Hardware Description Language (like VHDL), simulated and synthesized into digital structures that can be programmed into the FPGA and tested on the camera. The architecture of a classical multi-scale edge detection algorithm based on a Laplacian of Gaussian convolution has been developed to show the capabilities of the system.
Kamp, I; Van Veen, S A T; Vink, P
2015-01-01
The use of mobile devices as an addition to or replacement of desktop computers for traditional office work results in more flexibility of workplaces. Consequently transportation time is used for office work and this asks for comfortable mobile offices. The aim of this review is providing a framework of the relevant elements for comfortable mobile offices and defining needs for future research. This literature review draws on 68 papers, theses, reviews and critiques. The framework is based on existing literature on traditional office ergonomics and comfort literature for different transportation modes like trains, buses, airplanes and cars. The main differences with traditional offices are the type of devices, dynamic versus static situation, the sole use of mobile devices and therefore the need for a good arm support to avoid an uncomfortable neck flexion, limited space, and the presence of strangers which influence the privacy perception. Important topics for future research are: the effect on the employee and the environment of the ability and demand of working anywhere, and the requirements for the physical aspects of mobile offices.
Optimized Laplacian image sharpening algorithm based on graphic processing unit
NASA Astrophysics Data System (ADS)
Ma, Tinghuai; Li, Lu; Ji, Sai; Wang, Xin; Tian, Yuan; Al-Dhelaan, Abdullah; Al-Rodhaan, Mznah
2014-12-01
In classical Laplacian image sharpening, all pixels are processed one by one, which leads to large amount of computation. Traditional Laplacian sharpening processed on CPU is considerably time-consuming especially for those large pictures. In this paper, we propose a parallel implementation of Laplacian sharpening based on Compute Unified Device Architecture (CUDA), which is a computing platform of Graphic Processing Units (GPU), and analyze the impact of picture size on performance and the relationship between the processing time of between data transfer time and parallel computing time. Further, according to different features of different memory, an improved scheme of our method is developed, which exploits shared memory in GPU instead of global memory and further increases the efficiency. Experimental results prove that two novel algorithms outperform traditional consequentially method based on OpenCV in the aspect of computing speed.
Metal oxide resistive random access memory based synaptic devices for brain-inspired computing
NASA Astrophysics Data System (ADS)
Gao, Bin; Kang, Jinfeng; Zhou, Zheng; Chen, Zhe; Huang, Peng; Liu, Lifeng; Liu, Xiaoyan
2016-04-01
The traditional Boolean computing paradigm based on the von Neumann architecture is facing great challenges for future information technology applications such as big data, the Internet of Things (IoT), and wearable devices, due to the limited processing capability issues such as binary data storage and computing, non-parallel data processing, and the buses requirement between memory units and logic units. The brain-inspired neuromorphic computing paradigm is believed to be one of the promising solutions for realizing more complex functions with a lower cost. To perform such brain-inspired computing with a low cost and low power consumption, novel devices for use as electronic synapses are needed. Metal oxide resistive random access memory (ReRAM) devices have emerged as the leading candidate for electronic synapses. This paper comprehensively addresses the recent work on the design and optimization of metal oxide ReRAM-based synaptic devices. A performance enhancement methodology and optimized operation scheme to achieve analog resistive switching and low-energy training behavior are provided. A three-dimensional vertical synapse network architecture is proposed for high-density integration and low-cost fabrication. The impacts of the ReRAM synaptic device features on the performances of neuromorphic systems are also discussed on the basis of a constructed neuromorphic visual system with a pattern recognition function. Possible solutions to achieve the high recognition accuracy and efficiency of neuromorphic systems are presented.
Developing a protocol for creating microfluidic devices with a 3D printer, PDMS, and glass
NASA Astrophysics Data System (ADS)
Collette, Robyn; Novak, Eric; Shirk, Kathryn
2015-03-01
Microfluidics research requires the design and fabrication of devices that have the ability to manipulate small volumes of fluid, typically ranging from microliters to picoliters. These devices are used for a wide range of applications including the assembly of materials and testing of biological samples. Many methods have been previously developed to create microfluidic devices, including traditional nanolithography techniques. However, these traditional techniques are cost-prohibitive for many small-scale laboratories. This research explores a relatively low-cost technique using a 3D printed master, which is used as a template for the fabrication of polydimethylsiloxane (PDMS) microfluidic devices. The masters are designed using computer aided design (CAD) software and can be printed and modified relatively quickly. We have developed a protocol for creating simple microfluidic devices using a 3D printer and PDMS adhered to glass. This relatively simple and lower-cost technique can now be scaled to more complicated device designs and applications. Funding provided by the Undergraduate Research Grant Program at Shippensburg University and the Student/Faculty Research Engagement Grants from the College of Arts and Sciences at Shippensburg University.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Underwood, Keith D; Ulmer, Craig D.; Thompson, David
Field programmable gate arrays (FPGAs) have been used as alternative computational de-vices for over a decade; however, they have not been used for traditional scientific com-puting due to their perceived lack of floating-point performance. In recent years, there hasbeen a surge of interest in alternatives to traditional microprocessors for high performancecomputing. Sandia National Labs began two projects to determine whether FPGAs wouldbe a suitable alternative to microprocessors for high performance scientific computing and,if so, how they should be integrated into the system. We present results that indicate thatFPGAs could have a significant impact on future systems. FPGAs have thepotentialtohave ordermore » of magnitude levels of performance wins on several key algorithms; however,there are serious questions as to whether the system integration challenge can be met. Fur-thermore, there remain challenges in FPGA programming and system level reliability whenusing FPGA devices.4 AcknowledgmentArun Rodrigues provided valuable support and assistance in the use of the Structural Sim-ulation Toolkit within an FPGA context. Curtis Janssen and Steve Plimpton provided valu-able insights into the workings of two Sandia applications (MPQC and LAMMPS, respec-tively).5« less
2012-01-01
A brain-computer interface (BCI) is a communication system that can help users interact with the outside environment by translating brain signals into machine commands. The use of electroencephalographic (EEG) signals has become the most common approach for a BCI because of their usability and strong reliability. Many EEG-based BCI devices have been developed with traditional wet- or micro-electro-mechanical-system (MEMS)-type EEG sensors. However, those traditional sensors have uncomfortable disadvantage and require conductive gel and skin preparation on the part of the user. Therefore, acquiring the EEG signals in a comfortable and convenient manner is an important factor that should be incorporated into a novel BCI device. In the present study, a wearable, wireless and portable EEG-based BCI device with dry foam-based EEG sensors was developed and was demonstrated using a gaming control application. The dry EEG sensors operated without conductive gel; however, they were able to provide good conductivity and were able to acquire EEG signals effectively by adapting to irregular skin surfaces and by maintaining proper skin-sensor impedance on the forehead site. We have also demonstrated a real-time cognitive stage detection application of gaming control using the proposed portable device. The results of the present study indicate that using this portable EEG-based BCI device to conveniently and effectively control the outside world provides an approach for researching rehabilitation engineering. PMID:22284235
Sweetening Android Lemon Markets: Measuring and Curbing Malware in Application Marketplaces
2012-06-08
the main software distribution mechanism for modern mobile devices but are also emerging as a viable alternative to brick -and- mortar stores for...mechanism for modern mobile devices but are also emerging as a viable alternative to brick -and- mortar stores for personal computers. While most...through the Apple App Store , thereby entirely forgoing the traditional distribution channel – packaged opti- cal media sold in brick -and- mortar
Wang, Chunfei; Zhang, Guang; Wu, Taihu; Zhan, Ningbo; Wang, Yaling
2016-03-01
High-quality cardiopulmonary resuscitation contributes to cardiac arrest survival. The traditional chest compression (CC) standard, which neglects individual differences, uses unified standards for compression depth and compression rate in practice. In this study, an effective and personalized CC method for automatic mechanical compression devices is provided. We rebuild Charles F. Babbs' human circulation model with a coronary perfusion pressure (CPP) simulation module and propose a closed-loop controller based on a fuzzy control algorithm for CCs, which adjusts the CC depth according to the CPP. Compared with a traditional proportion-integration-differentiation (PID) controller, the performance of the fuzzy controller is evaluated in computer simulation studies. The simulation results demonstrate that the fuzzy closed-loop controller results in shorter regulation time, fewer oscillations and smaller overshoot than traditional PID controllers and outperforms the traditional PID controller for CPP regulation and maintenance.
ERIC Educational Resources Information Center
Peled, Yehuda; Blau, Ina; Grinberg, Ronen
2015-01-01
Transforming a school from traditional teaching and learning to a one-to-one (1:1) classroom, in which a teacher and students have personal digital devices, inevitably requires changes in the way the teacher addresses her role. This study examined the implications of integrating 1:1 computing on teachers' pedagogical perceptions and the…
Mobile computing device as tools for college student education: a case on flashcards application
NASA Astrophysics Data System (ADS)
Kang, Congying
2012-04-01
Traditionally, college students always use flash cards as a tool to remember massive knowledge, such as nomenclature, structures, and reactions in chemistry. Educational and information technology have enabled flashcards viewed on computers, like Slides and PowerPoint, works as tunnels of drilling and feedback for the learners. The current generation of students is more capable of information technology and mobile computing devices. For example, they use their Mobile phones much more intensively everyday day. Trends of using Mobile phone as an educational tool is analyzed and a educational technology initiative is proposed, which use Mobile phone flash cards applications to help students learn biology and chemistry. Experiments show that users responded positively to these mobile flash cards.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Song
CFD (Computational Fluid Dynamics) is a widely used technique in engineering design field. It uses mathematical methods to simulate and predict flow characteristics in a certain physical space. Since the numerical result of CFD computation is very hard to understand, VR (virtual reality) and data visualization techniques are introduced into CFD post-processing to improve the understandability and functionality of CFD computation. In many cases CFD datasets are very large (multi-gigabytes), and more and more interactions between user and the datasets are required. For the traditional VR application, the limitation of computing power is a major factor to prevent visualizing largemore » dataset effectively. This thesis presents a new system designing to speed up the traditional VR application by using parallel computing and distributed computing, and the idea of using hand held device to enhance the interaction between a user and VR CFD application as well. Techniques in different research areas including scientific visualization, parallel computing, distributed computing and graphical user interface designing are used in the development of the final system. As the result, the new system can flexibly be built on heterogeneous computing environment, dramatically shorten the computation time.« less
A compact structured light based otoscope for three dimensional imaging of the tympanic membrane
NASA Astrophysics Data System (ADS)
Das, Anshuman J.; Estrada, Julio C.; Ge, Zhifei; Dolcetti, Sara; Chen, Deborah; Raskar, Ramesh
2015-02-01
Three dimensional (3D) imaging of the tympanic membrane (TM) has been carried out using a traditional otoscope equipped with a high-definition webcam, a portable projector and a telecentric optical system. The device allows us to project fringe patterns on the TM and the magnified image is processed using phase shifting algorithms to arrive at a 3D description of the TM. Obtaining a 3D image of the TM can aid in the diagnosis of ear infections such as otitis media with effusion, which is essentially fluid build-up in the middle ear. The high resolution of this device makes it possible examine a computer generated 3D profile for abnormalities in the shape of the eardrum. This adds an additional dimension to the image that can be obtained from a traditional otoscope by allowing visualization of the TM from different perspectives. In this paper, we present the design and construction of this device and details of the imaging processing for recovering the 3D profile of the subject under test. The design of the otoscope is similar to that of the traditional device making it ergonomically compatible and easy to adopt in clinical practice.
Review on open source operating systems for internet of things
NASA Astrophysics Data System (ADS)
Wang, Zhengmin; Li, Wei; Dong, Huiliang
2017-08-01
Internet of Things (IoT) is an environment in which everywhere and every device became smart in a smart world. Internet of Things is growing vastly; it is an integrated system of uniquely identifiable communicating devices which exchange information in a connected network to provide extensive services. IoT devices have very limited memory, computational power, and power supply. Traditional operating systems (OS) have no way to meet the needs of IoT systems. In this paper, we thus analyze the challenges of IoT OS and survey applicable open source OSs.
Multilayered analog optical differentiating device: performance analysis on structural parameters.
Wu, Wenhui; Jiang, Wei; Yang, Jiang; Gong, Shaoxiang; Ma, Yungui
2017-12-15
Analogy optical devices (AODs) able to do mathematical computations have recently gained strong research interest for their potential applications as accelerating hardware in traditional electronic computers. The performance of these wavefront-processing devices is primarily decided by the accuracy of the angular spectral engineering. In this Letter, we show that the multilayer technique could be a promising method to flexibly design AODs according to the input wavefront conditions. As examples, various Si-SiO 2 -based multilayer films are designed that can precisely perform the second-order differentiation for the input wavefronts of different Fourier spectrum widths. The minimum number and thickness uncertainty of sublayers for the device performance are discussed. A technique by rescaling the Fourier spectrum intensity has been proposed in order to further improve the practical feasibility. These results are thought to be instrumental for the development of AODs.
Bringing Legacy Visualization Software to Modern Computing Devices via Application Streaming
NASA Astrophysics Data System (ADS)
Fisher, Ward
2014-05-01
Planning software compatibility across forthcoming generations of computing platforms is a problem commonly encountered in software engineering and development. While this problem can affect any class of software, data analysis and visualization programs are particularly vulnerable. This is due in part to their inherent dependency on specialized hardware and computing environments. A number of strategies and tools have been designed to aid software engineers with this task. While generally embraced by developers at 'traditional' software companies, these methodologies are often dismissed by the scientific software community as unwieldy, inefficient and unnecessary. As a result, many important and storied scientific software packages can struggle to adapt to a new computing environment; for example, one in which much work is carried out on sub-laptop devices (such as tablets and smartphones). Rewriting these packages for a new platform often requires significant investment in terms of development time and developer expertise. In many cases, porting older software to modern devices is neither practical nor possible. As a result, replacement software must be developed from scratch, wasting resources better spent on other projects. Enabled largely by the rapid rise and adoption of cloud computing platforms, 'Application Streaming' technologies allow legacy visualization and analysis software to be operated wholly from a client device (be it laptop, tablet or smartphone) while retaining full functionality and interactivity. It mitigates much of the developer effort required by other more traditional methods while simultaneously reducing the time it takes to bring the software to a new platform. This work will provide an overview of Application Streaming and how it compares against other technologies which allow scientific visualization software to be executed from a remote computer. We will discuss the functionality and limitations of existing application streaming frameworks and how a developer might prepare their software for application streaming. We will also examine the secondary benefits realized by moving legacy software to the cloud. Finally, we will examine the process by which a legacy Java application, the Integrated Data Viewer (IDV), is to be adapted for tablet computing via Application Streaming.
ERIC Educational Resources Information Center
Hinduja, Sameer; Patchin, Justin W.
2011-01-01
Cyberbullying is a growing problem because increasing numbers of young people use computers, cell phones, and other interactive devices as their main form of social interaction. Cyberbullies use technology to harass, threaten, or humiliate their peers. Online aggression isn't just traditional bullying with new tools. It's widespread, devastating,…
A Simple Memristor Model for Circuit Simulations
NASA Astrophysics Data System (ADS)
Fullerton, Farrah-Amoy; Joe, Aaleyah; Gergel-Hackett, Nadine; Department of Chemistry; Physics Team
This work describes the development of a model for the memristor, a novel nanoelectronic technology. The model was designed to replicate the real-world electrical characteristics of previously fabricated memristor devices, but was constructed with basic circuit elements using a free widely available circuit simulator, LT Spice. The modeled memrsistors were then used to construct a circuit that performs material implication. Material implication is a digital logic that can be used to perform all of the same basic functions as traditional CMOS gates, but with fewer nanoelectronic devices. This memristor-based digital logic could enable memristors' use in new paradigms of computer architecture with advantages in size, speed, and power over traditional computing circuits. Additionally, the ability to model the real-world electrical characteristics of memristors in a free circuit simulator using its standard library of elements could enable not only the development of memristor material implication, but also the development of a virtually unlimited array of other memristor-based circuits.
A Low Complexity System Based on Multiple Weighted Decision Trees for Indoor Localization
Sánchez-Rodríguez, David; Hernández-Morera, Pablo; Quinteiro, José Ma.; Alonso-González, Itziar
2015-01-01
Indoor position estimation has become an attractive research topic due to growing interest in location-aware services. Nevertheless, satisfying solutions have not been found with the considerations of both accuracy and system complexity. From the perspective of lightweight mobile devices, they are extremely important characteristics, because both the processor power and energy availability are limited. Hence, an indoor localization system with high computational complexity can cause complete battery drain within a few hours. In our research, we use a data mining technique named boosting to develop a localization system based on multiple weighted decision trees to predict the device location, since it has high accuracy and low computational complexity. The localization system is built using a dataset from sensor fusion, which combines the strength of radio signals from different wireless local area network access points and device orientation information from a digital compass built-in mobile device, so that extra sensors are unnecessary. Experimental results indicate that the proposed system leads to substantial improvements on computational complexity over the widely-used traditional fingerprinting methods, and it has a better accuracy than they have. PMID:26110413
Interface Architecture for Testing in Foreign Language Education
ERIC Educational Resources Information Center
Laborda, Jesus Garcia
2009-01-01
The implications of new learning environments have been far-reaching and pervasive (Plass, 1998), at least in the field of interface design both in traditional computer and mobile devices (Fallahkhair, Pemberton, & Griffiths, 2007). Given the current status of efficient models, educators need the unproven unification of interfaces and working…
ERIC Educational Resources Information Center
Emery, Jill
2009-01-01
Twitter provides rapid information in a short form, and it is extremely easy to follow the updates of others because of myriad software applications with which it works on both mobile devices and traditional computing hardware. Currently, most academic librarians are using Twitter primarily as a tool at library conferences and seminars to capture…
Towards Integrating Distributed Energy Resources and Storage Devices in Smart Grid.
Xu, Guobin; Yu, Wei; Griffith, David; Golmie, Nada; Moulema, Paul
2017-02-01
Internet of Things (IoT) provides a generic infrastructure for different applications to integrate information communication techniques with physical components to achieve automatic data collection, transmission, exchange, and computation. The smart grid, as one of typical applications supported by IoT, denoted as a re-engineering and a modernization of the traditional power grid, aims to provide reliable, secure, and efficient energy transmission and distribution to consumers. How to effectively integrate distributed (renewable) energy resources and storage devices to satisfy the energy service requirements of users, while minimizing the power generation and transmission cost, remains a highly pressing challenge in the smart grid. To address this challenge and assess the effectiveness of integrating distributed energy resources and storage devices, in this paper we develop a theoretical framework to model and analyze three types of power grid systems: the power grid with only bulk energy generators, the power grid with distributed energy resources, and the power grid with both distributed energy resources and storage devices. Based on the metrics of the power cumulative cost and the service reliability to users, we formally model and analyze the impact of integrating distributed energy resources and storage devices in the power grid. We also use the concept of network calculus, which has been traditionally used for carrying out traffic engineering in computer networks, to derive the bounds of both power supply and user demand to achieve a high service reliability to users. Through an extensive performance evaluation, our data shows that integrating distributed energy resources conjointly with energy storage devices can reduce generation costs, smooth the curve of bulk power generation over time, reduce bulk power generation and power distribution losses, and provide a sustainable service reliability to users in the power grid.
Towards Integrating Distributed Energy Resources and Storage Devices in Smart Grid
Xu, Guobin; Yu, Wei; Griffith, David; Golmie, Nada; Moulema, Paul
2017-01-01
Internet of Things (IoT) provides a generic infrastructure for different applications to integrate information communication techniques with physical components to achieve automatic data collection, transmission, exchange, and computation. The smart grid, as one of typical applications supported by IoT, denoted as a re-engineering and a modernization of the traditional power grid, aims to provide reliable, secure, and efficient energy transmission and distribution to consumers. How to effectively integrate distributed (renewable) energy resources and storage devices to satisfy the energy service requirements of users, while minimizing the power generation and transmission cost, remains a highly pressing challenge in the smart grid. To address this challenge and assess the effectiveness of integrating distributed energy resources and storage devices, in this paper we develop a theoretical framework to model and analyze three types of power grid systems: the power grid with only bulk energy generators, the power grid with distributed energy resources, and the power grid with both distributed energy resources and storage devices. Based on the metrics of the power cumulative cost and the service reliability to users, we formally model and analyze the impact of integrating distributed energy resources and storage devices in the power grid. We also use the concept of network calculus, which has been traditionally used for carrying out traffic engineering in computer networks, to derive the bounds of both power supply and user demand to achieve a high service reliability to users. Through an extensive performance evaluation, our data shows that integrating distributed energy resources conjointly with energy storage devices can reduce generation costs, smooth the curve of bulk power generation over time, reduce bulk power generation and power distribution losses, and provide a sustainable service reliability to users in the power grid1. PMID:29354654
Algorithms Bridging Quantum Computation and Chemistry
NASA Astrophysics Data System (ADS)
McClean, Jarrod Ryan
The design of new materials and chemicals derived entirely from computation has long been a goal of computational chemistry, and the governing equation whose solution would permit this dream is known. Unfortunately, the exact solution to this equation has been far too expensive and clever approximations fail in critical situations. Quantum computers offer a novel solution to this problem. In this work, we develop not only new algorithms to use quantum computers to study hard problems in chemistry, but also explore how such algorithms can help us to better understand and improve our traditional approaches. In particular, we first introduce a new method, the variational quantum eigensolver, which is designed to maximally utilize the quantum resources available in a device to solve chemical problems. We apply this method in a real quantum photonic device in the lab to study the dissociation of the helium hydride (HeH+) molecule. We also enhance this methodology with architecture specific optimizations on ion trap computers and show how linear-scaling techniques from traditional quantum chemistry can be used to improve the outlook of similar algorithms on quantum computers. We then show how studying quantum algorithms such as these can be used to understand and enhance the development of classical algorithms. In particular we use a tool from adiabatic quantum computation, Feynman's Clock, to develop a new discrete time variational principle and further establish a connection between real-time quantum dynamics and ground state eigenvalue problems. We use these tools to develop two novel parallel-in-time quantum algorithms that outperform competitive algorithms as well as offer new insights into the connection between the fermion sign problem of ground states and the dynamical sign problem of quantum dynamics. Finally we use insights gained in the study of quantum circuits to explore a general notion of sparsity in many-body quantum systems. In particular we use developments from the field of compressed sensing to find compact representations of ground states. As an application we study electronic systems and find solutions dramatically more compact than traditional configuration interaction expansions, offering hope to extend this methodology to challenging systems in chemical and material design.
Collaborative Note-Taking: The Impact of Cloud Computing on Classroom Performance
ERIC Educational Resources Information Center
Orndorff, Harold N., III.
2015-01-01
This article presents the early findings of an experimental design to see if students perform better when taking collaborative notes in small groups as compared to students who use traditional notes. Students are increasingly bringing electronic devices into social science classrooms. Few instructors have attempted robustly and systematically to…
An Identity-Based Anti-Quantum Privacy-Preserving Blind Authentication in Wireless Sensor Networks.
Zhu, Hongfei; Tan, Yu-An; Zhu, Liehuang; Wang, Xianmin; Zhang, Quanxin; Li, Yuanzhang
2018-05-22
With the development of wireless sensor networks, IoT devices are crucial for the Smart City; these devices change people's lives such as e-payment and e-voting systems. However, in these two systems, the state-of-art authentication protocols based on traditional number theory cannot defeat a quantum computer attack. In order to protect user privacy and guarantee trustworthy of big data, we propose a new identity-based blind signature scheme based on number theorem research unit lattice, this scheme mainly uses a rejection sampling theorem instead of constructing a trapdoor. Meanwhile, this scheme does not depend on complex public key infrastructure and can resist quantum computer attack. Then we design an e-payment protocol using the proposed scheme. Furthermore, we prove our scheme is secure in the random oracle, and satisfies confidentiality, integrity, and non-repudiation. Finally, we demonstrate that the proposed scheme outperforms the other traditional existing identity-based blind signature schemes in signing speed and verification speed, outperforms the other lattice-based blind signature in signing speed, verification speed, and signing secret key size.
An Identity-Based Anti-Quantum Privacy-Preserving Blind Authentication in Wireless Sensor Networks
Zhu, Hongfei; Tan, Yu-an; Zhu, Liehuang; Wang, Xianmin; Zhang, Quanxin; Li, Yuanzhang
2018-01-01
With the development of wireless sensor networks, IoT devices are crucial for the Smart City; these devices change people’s lives such as e-payment and e-voting systems. However, in these two systems, the state-of-art authentication protocols based on traditional number theory cannot defeat a quantum computer attack. In order to protect user privacy and guarantee trustworthy of big data, we propose a new identity-based blind signature scheme based on number theorem research unit lattice, this scheme mainly uses a rejection sampling theorem instead of constructing a trapdoor. Meanwhile, this scheme does not depend on complex public key infrastructure and can resist quantum computer attack. Then we design an e-payment protocol using the proposed scheme. Furthermore, we prove our scheme is secure in the random oracle, and satisfies confidentiality, integrity, and non-repudiation. Finally, we demonstrate that the proposed scheme outperforms the other traditional existing identity-based blind signature schemes in signing speed and verification speed, outperforms the other lattice-based blind signature in signing speed, verification speed, and signing secret key size. PMID:29789475
Acquisition of ICU data: concepts and demands.
Imhoff, M
1992-12-01
As the issue of data overload is a problem in critical care today, it is of utmost importance to improve acquisition, storage, integration, and presentation of medical data, which appears only feasible with the help of bedside computers. The data originates from four major sources: (1) the bedside medical devices, (2) the local area network (LAN) of the ICU, (3) the hospital information system (HIS) and (4) manual input. All sources differ markedly in quality and quantity of data and in the demands of the interfaces between source of data and patient database. The demands for data acquisition from bedside medical devices, ICU-LAN and HIS concentrate on technical problems, such as computational power, storage capacity, real-time processing, interfacing with different devices and networks and the unmistakable assignment of data to the individual patient. The main problem of manual data acquisition is the definition and configuration of the user interface that must allow the inexperienced user to interact with the computer intuitively. Emphasis must be put on the construction of a pleasant, logical and easy-to-handle graphical user interface (GUI). Short response times will require high graphical processing capacity. Moreover, high computational resources are necessary in the future for additional interfacing devices such as speech recognition and 3D-GUI. Therefore, in an ICU environment the demands for computational power are enormous. These problems are complicated by the urgent need for friendly and easy-to-handle user interfaces. Both facts place ICU bedside computing at the vanguard of present and future workstation development leaving no room for solutions based on traditional concepts of personal computers.(ABSTRACT TRUNCATED AT 250 WORDS)
Public health practice course using Google Plus.
Wu, Ting-Ting; Sung, Tien-Wen
2014-03-01
In recent years, mobile device-assisted clinical education has become popular among nursing school students. The introduction of mobile devices saves manpower and reduces errors while enhancing nursing students' professional knowledge and skills. To respond to the demands of various learning strategies and to maintain existing systems of education, the concept of Cloud Learning is gradually being introduced to instructional environments. Cloud computing facilitates learning that is personalized, diverse, and virtual. This study involved assessing the advantages of mobile devices and Cloud Learning in a public health practice course, in which Google+ was used as the learning platform, integrating various application tools. Users could save and access data by using any wireless Internet device. The platform was student centered and based on resource sharing and collaborative learning. With the assistance of highly flexible and convenient technology, certain obstacles in traditional practice training can be resolved. Our findings showed that the students who adopted Google+ were learned more effectively compared with those who were limited to traditional learning systems. Most students and the nurse educator expressed a positive attitude toward and were satisfied with the innovative learning method.
Chang, Fong-Ching; Chiu, Chiung-Hui; Chen, Ping-Hung; Miao, Nae-Fang; Chiang, Jeng-Tung; Chuang, Hung-Yi
2018-03-01
This study assessed the computer/mobile device screen time and eye care behavior of children and examined the roles of risk perception and parental practices. Data were obtained from a sample of 2,454 child-parent dyads recruited from 30 primary schools in Taipei city and New Taipei city, Taiwan, in 2016. Self-administered questionnaires were collected from students and parents. Fifth-grade students spend more time on new media (computer/smartphone/tablet: 16 hours a week) than on traditional media (television: 10 hours a week). The average daily screen time (3.5 hours) for these children exceeded the American Academy of Pediatrics recommendations (≤2 hours). Multivariate analysis results showed that after controlling for demographic factors, the parents with higher levels of risk perception and parental efficacy were more likely to mediate their child's eye care behavior. Children who reported lower academic performance, who were from non-intact families, reported lower levels of risk perception of mobile device use, had parents who spent more time using computers and mobile devices, and had lower levels of parental mediation were more likely to spend more time using computers and mobile devices; whereas children who reported higher academic performance, higher levels of risk perception, and higher levels of parental mediation were more likely to engage in higher levels of eye care behavior. Risk perception by children and parental practices are associated with the amount of screen time that children regularly engage in and their level of eye care behavior.
Exploring the Early Universe on Mobile Devices
NASA Astrophysics Data System (ADS)
Kocevski, Dale; McGrath, E. J.; CANDELS Collaboration
2014-01-01
The widespread adoption of smart phones and tablet computers has the potential to revolutionize the way in which educational material is shared with the general public. As part of the outreach effort for the CANDELS survey, we have developed a free interactive astronomy education application named Hubble Universe for iPad and iPhone devices. The application focuses on extragalactic science topics related to the CANDELS legacy survey, which is documenting galaxy evolution in the early universe. I will provide an overview of the application, which contains a wide range of interactive content, including 3D models of astrophysical phenomenon, informative diagrams and computer simulations. I will discuss how the application can be used to enhance classroom learning both by providing a database of interactive media and by encouraging students to explore astronomical topics away from traditional settings like the classroom or the desktop computer.
Hardware Acceleration of Adaptive Neural Algorithms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
James, Conrad D.
As tradit ional numerical computing has faced challenges, researchers have turned towards alternative computing approaches to reduce power - per - computation metrics and improve algorithm performance. Here, we describe an approach towards non - conventional computing that strengthens the connection between machine learning and neuroscience concepts. The Hardware Acceleration of Adaptive Neural Algorithms (HAANA) project ha s develop ed neural machine learning algorithms and hardware for applications in image processing and cybersecurity. While machine learning methods are effective at extracting relevant features from many types of data, the effectiveness of these algorithms degrades when subjected to real - worldmore » conditions. Our team has generated novel neural - inspired approa ches to improve the resiliency and adaptability of machine learning algorithms. In addition, we have also designed and fabricated hardware architectures and microelectronic devices specifically tuned towards the training and inference operations of neural - inspired algorithms. Finally, our multi - scale simulation framework allows us to assess the impact of microelectronic device properties on algorithm performance.« less
Bone age maturity assessment using hand-held device
NASA Astrophysics Data System (ADS)
Ratib, Osman M.; Gilsanz, Vicente; Liu, Xiaodong; Boechat, M. I.
2004-04-01
Purpose: Assessment of bone maturity is traditionally performed through visual comparison of hand and wrist radiograph with existing reference images in textbooks. Our goal was to develop a digital index based on idealized hand Xray images that can be incorporated in a hand held computer and used for visual assessment of bone age for patients. Material and methods: Due to the large variability in bone maturation in normals, we generated a set of "ideal" images obtained by computer combinations of images from our normal reference data sets. Software for hand-held PDA devices was developed for easy navigation through the set of images and visual selection of matching images. A formula based on our statistical analysis provides the standard deviation from normal based on the chronological age of the patient. The accuracy of the program was compared to traditional interpretation by two radiologists in a double blind reading of 200 normal Caucasian children (100 boys, 100 girls). Results: Strong correlations were present between chronological age and bone age (r > 0.9) with no statistical difference between the digital and traditional assessment methods. Determinations of carpal bone maturity in adolescents was slightly more accurate using the digital system. The users did praise the convenience and effectiveness of the digital Palm Index in clinical practice. Conclusion: An idealized digital Palm Bone Age Index provides a convenient and effective alternative to conventional atlases for the assessment of skeletal maturity.
Implementation of interconnect simulation tools in spice
NASA Technical Reports Server (NTRS)
Satsangi, H.; Schutt-Aine, J. E.
1993-01-01
Accurate computer simulation of high speed digital computer circuits and communication circuits requires a multimode approach to simulate both the devices and the interconnects between devices. Classical circuit analysis algorithms (lumped parameter) are needed for circuit devices and the network formed by the interconnected devices. The interconnects, however, have to be modeled as transmission lines which incorporate electromagnetic field analysis. An approach to writing a multimode simulator is to take an existing software package which performs either lumped parameter analysis or field analysis and add the missing type of analysis routines to the package. In this work a traditionally lumped parameter simulator, SPICE, is modified so that it will perform lossy transmission line analysis using a different model approach. Modifying SPICE3E2 or any other large software package is not a trivial task. An understanding of the programming conventions used, simulation software, and simulation algorithms is required. This thesis was written to clarify the procedure for installing a device into SPICE3E2. The installation of three devices is documented and the installations of the first two provide a foundation for installation of the lossy line which is the third device. The details of discussions are specific to SPICE, but the concepts will be helpful when performing installations into other circuit analysis packages.
A rhythm-based authentication scheme for smart media devices.
Lee, Jae Dong; Jeong, Young-Sik; Park, Jong Hyuk
2014-01-01
In recent years, ubiquitous computing has been rapidly emerged in our lives and extensive studies have been conducted in a variety of areas related to smart devices, such as tablets, smartphones, smart TVs, smart refrigerators, and smart media devices, as a measure for realizing the ubiquitous computing. In particular, smartphones have significantly evolved from the traditional feature phones. Increasingly higher-end smartphone models that can perform a range of functions are now available. Smart devices have become widely popular since they provide high efficiency and great convenience for not only private daily activities but also business endeavors. Rapid advancements have been achieved in smart device technologies to improve the end users' convenience. Consequently, many people increasingly rely on smart devices to store their valuable and important data. With this increasing dependence, an important aspect that must be addressed is security issues. Leaking of private information or sensitive business data due to loss or theft of smart devices could result in exorbitant damage. To mitigate these security threats, basic embedded locking features are provided in smart devices. However, these locking features are vulnerable. In this paper, an original security-locking scheme using a rhythm-based locking system (RLS) is proposed to overcome the existing security problems of smart devices. RLS is a user-authenticated system that addresses vulnerability issues in the existing locking features and provides secure confidentiality in addition to convenience.
A Rhythm-Based Authentication Scheme for Smart Media Devices
Lee, Jae Dong; Park, Jong Hyuk
2014-01-01
In recent years, ubiquitous computing has been rapidly emerged in our lives and extensive studies have been conducted in a variety of areas related to smart devices, such as tablets, smartphones, smart TVs, smart refrigerators, and smart media devices, as a measure for realizing the ubiquitous computing. In particular, smartphones have significantly evolved from the traditional feature phones. Increasingly higher-end smartphone models that can perform a range of functions are now available. Smart devices have become widely popular since they provide high efficiency and great convenience for not only private daily activities but also business endeavors. Rapid advancements have been achieved in smart device technologies to improve the end users' convenience. Consequently, many people increasingly rely on smart devices to store their valuable and important data. With this increasing dependence, an important aspect that must be addressed is security issues. Leaking of private information or sensitive business data due to loss or theft of smart devices could result in exorbitant damage. To mitigate these security threats, basic embedded locking features are provided in smart devices. However, these locking features are vulnerable. In this paper, an original security-locking scheme using a rhythm-based locking system (RLS) is proposed to overcome the existing security problems of smart devices. RLS is a user-authenticated system that addresses vulnerability issues in the existing locking features and provides secure confidentiality in addition to convenience. PMID:25110743
A Lightweight Protocol for Secure Video Streaming
Morkevicius, Nerijus; Bagdonas, Kazimieras
2018-01-01
The Internet of Things (IoT) introduces many new challenges which cannot be solved using traditional cloud and host computing models. A new architecture known as fog computing is emerging to address these technological and security gaps. Traditional security paradigms focused on providing perimeter-based protections and client/server point to point protocols (e.g., Transport Layer Security (TLS)) are no longer the best choices for addressing new security challenges in fog computing end devices, where energy and computational resources are limited. In this paper, we present a lightweight secure streaming protocol for the fog computing “Fog Node-End Device” layer. This protocol is lightweight, connectionless, supports broadcast and multicast operations, and is able to provide data source authentication, data integrity, and confidentiality. The protocol is based on simple and energy efficient cryptographic methods, such as Hash Message Authentication Codes (HMAC) and symmetrical ciphers, and uses modified User Datagram Protocol (UDP) packets to embed authentication data into streaming data. Data redundancy could be added to improve reliability in lossy networks. The experimental results summarized in this paper confirm that the proposed method efficiently uses energy and computational resources and at the same time provides security properties on par with the Datagram TLS (DTLS) standard. PMID:29757988
ERIC Educational Resources Information Center
Lai, Ah-Fur; Lai, Horng-Yih; Chuang, Wei-Hsiang; Wu, Zih-Heng
2015-01-01
Traditional outdoor learning activities such as inquiry-based learning in nature science encounter many dilemmas. Due to prompt development of mobile computing and widespread of mobile devices, mobile learning becomes a big trend on education. The main purpose of this study is to develop a mobile-learning management system for overcoming the…
A device adaptive inflow boundary condition for Wigner equations of quantum transport
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Haiyan; Lu, Tiao; Cai, Wei, E-mail: wcai@uncc.edu
2014-02-01
In this paper, an improved inflow boundary condition is proposed for Wigner equations in simulating a resonant tunneling diode (RTD), which takes into consideration the band structure of the device. The original Frensley inflow boundary condition prescribes the Wigner distribution function at the device boundary to be the semi-classical Fermi–Dirac distribution for free electrons in the device contacts without considering the effect of the quantum interaction inside the quantum device. The proposed device adaptive inflow boundary condition includes this effect by assigning the Wigner distribution to the value obtained from the Wigner transform of wave functions inside the device atmore » zero external bias voltage, thus including the dominant effect on the electron distribution in the contacts due to the device internal band energy profile. Numerical results on computing the electron density inside the RTD under various incident waves and non-zero bias conditions show much improvement by the new boundary condition over the traditional Frensley inflow boundary condition.« less
Hardware realization of an SVM algorithm implemented in FPGAs
NASA Astrophysics Data System (ADS)
Wiśniewski, Remigiusz; Bazydło, Grzegorz; Szcześniak, Paweł
2017-08-01
The paper proposes a technique of hardware realization of a space vector modulation (SVM) of state function switching in matrix converter (MC), oriented on the implementation in a single field programmable gate array (FPGA). In MC the SVM method is based on the instantaneous space-vector representation of input currents and output voltages. The traditional computation algorithms usually involve digital signal processors (DSPs) which consumes the large number of power transistors (18 transistors and 18 independent PWM outputs) and "non-standard positions of control pulses" during the switching sequence. Recently, hardware implementations become popular since computed operations may be executed much faster and efficient due to nature of the digital devices (especially concurrency). In the paper, we propose a hardware algorithm of SVM computation. In opposite to the existing techniques, the presented solution applies COordinate Rotation DIgital Computer (CORDIC) method to solve the trigonometric operations. Furthermore, adequate arithmetic modules (that is, sub-devices) used for intermediate calculations, such as code converters or proper sectors selectors (for output voltages and input current) are presented in detail. The proposed technique has been implemented as a design described with the use of Verilog hardware description language. The preliminary results of logic implementation oriented on the Xilinx FPGA (particularly, low-cost device from Artix-7 family from Xilinx was used) are also presented.
NASA Astrophysics Data System (ADS)
Juhnke, Bethany; Berron, Monica; Philip, Adriana; Williams, Jordan; Holub, Joseph; Winer, Eliot
2013-03-01
Advancements in medical image visualization in recent years have enabled three-dimensional (3D) medical images to be volume-rendered from magnetic resonance imaging (MRI) and computed tomography (CT) scans. Medical data is crucial for patient diagnosis and medical education, and analyzing these three-dimensional models rather than two-dimensional (2D) slices would enable more efficient analysis by surgeons and physicians, especially non-radiologists. An interaction device that is intuitive, robust, and easily learned is necessary to integrate 3D modeling software into the medical community. The keyboard and mouse configuration does not readily manipulate 3D models because these traditional interface devices function within two degrees of freedom, not the six degrees of freedom presented in three dimensions. Using a familiar, commercial-off-the-shelf (COTS) device for interaction would minimize training time and enable maximum usability with 3D medical images. Multiple techniques are available to manipulate 3D medical images and provide doctors more innovative ways of visualizing patient data. One such example is windowing. Windowing is used to adjust the viewed tissue density of digital medical data. A software platform available at the Virtual Reality Applications Center (VRAC), named Isis, was used to visualize and interact with the 3D representations of medical data. In this paper, we present the methodology and results of a user study that examined the usability of windowing 3D medical imaging using a Kinect™ device compared to a traditional mouse.
A review of sensing technologies for small and large-scale touch panels
NASA Astrophysics Data System (ADS)
Akhtar, Humza; Kemao, Qian; Kakarala, Ramakrishna
2017-06-01
A touch panel is an input device for human computer interaction. It consists of a network of sensors, a sampling circuit and a micro controller for detecting and locating a touch input. Touch input can come from either finger or stylus depending upon the type of touch technology. These touch panels provide an intuitive and collaborative workspace so that people can perform various tasks with the use of their fingers instead of traditional input devices like keyboard and mouse. Touch sensing technology is not new. At the time of this writing, various technologies are available in the market and this paper reviews the most common ones. We review traditional designs and sensing algorithms for touch technology. We also observe that due to its various strengths, capacitive touch will dominate the large-scale touch panel industry in years to come. In the end, we discuss the motivation for doing academic research on large-scale panels.
NASA Astrophysics Data System (ADS)
Oukacha, Hassan
The rapid advancement of Complementary Metal Oxide Semiconductor (CMOS) technology has formed the backbone of the modern computing revolution enabling the development of computationally intensive electronic devices that are smaller, faster, less expensive, and consume less power. This well-established technology has transformed the mobile computing and communications industries by providing high levels of system integration on a single substrate, high reliability and low manufacturing cost. The driving force behind this computing revolution is the scaling of semiconductor devices to smaller geometries which has resulted in faster switching speeds and the promise of replacing traditional, bulky radio frequency (RF) components with miniaturized devices. Such devices play an important role in our society enabling ubiquitous computing and on-demand data access. This thesis presents the design and development of a magnetic circulator component in a standard 180 nm CMOS process. The design approach involves integration of nanoscale ferrite materials on a CMOS chip to avoid using bulky magnetic materials employed in conventional circulators. This device constitutes the next generation broadband millimeter-wave circulator integrated in CMOS using ferrite materials operating in the 60GHz frequency band. The unlicensed ultra-high frequency spectrum around 60GHz offers many benefits: very high immunity to interference, high security, and frequency re-use. Results of both simulations and measurements are presented in this thesis. The presented results show the benefits of this technique and the potential that it has in incorporating a complete system-on-chip (SoC) that includes low noise amplifier, power amplier, and antenna. This system-on-chip can be used in the same applications where the conventional circulator has been employed, including communication systems, radar systems, navigation and air traffic control, and military equipment. This set of applications of circulator shows how crucial this device is to many industries and the need for smaller, cost effective RF components.
Evaluating interactive computer-based scenarios designed for learning medical technology.
Persson, Johanna; Dalholm, Elisabeth Hornyánszky; Wallergård, Mattias; Johansson, Gerd
2014-11-01
The use of medical equipment is growing in healthcare, resulting in an increased need for resources to educate users in how to manage the various devices. Learning the practical operation of a device is one thing, but learning how to work with the device in the actual clinical context is more challenging. This paper presents a computer-based simulation prototype for learning medical technology in the context of critical care. Properties from simulation and computer games have been adopted to create a visualization-based, interactive and contextually bound tool for learning. A participatory design process, including three researchers and three practitioners from a clinic for infectious diseases, was adopted to adjust the form and content of the prototype to the needs of the clinical practice and to create a situated learning experience. An evaluation with 18 practitioners showed that practitioners were positive to this type of tool for learning and that it served as a good platform for eliciting and sharing knowledge. Our conclusion is that this type of tools can be a complement to traditional learning resources to situate the learning in a context without requiring advanced technology or being resource-demanding. Copyright © 2014 Elsevier Ltd. All rights reserved.
A memristor-based nonvolatile latch circuit
NASA Astrophysics Data System (ADS)
Robinett, Warren; Pickett, Matthew; Borghetti, Julien; Xia, Qiangfei; Snider, Gregory S.; Medeiros-Ribeiro, Gilberto; Williams, R. Stanley
2010-06-01
Memristive devices, which exhibit a dynamical conductance state that depends on the excitation history, can be used as nonvolatile memory elements by storing information as different conductance states. We describe the implementation of a nonvolatile synchronous flip-flop circuit that uses a nanoscale memristive device as the nonvolatile memory element. Controlled testing of the circuit demonstrated successful state storage and restoration, with an error rate of 0.1%, during 1000 power loss events. These results indicate that integration of digital logic devices and memristors could open the way for nonvolatile computation with applications in small platforms that rely on intermittent power sources. This demonstrated feasibility of tight integration of memristors with CMOS (complementary metal-oxide-semiconductor) circuitry challenges the traditional memory hierarchy, in which nonvolatile memory is only available as a large, slow, monolithic block at the bottom of the hierarchy. In contrast, the nonvolatile, memristor-based memory cell can be fast, fine-grained and small, and is compatible with conventional CMOS electronics. This threatens to upset the traditional memory hierarchy, and may open up new architectural possibilities beyond it.
A Fast lattice-based polynomial digital signature system for m-commerce
NASA Astrophysics Data System (ADS)
Wei, Xinzhou; Leung, Lin; Anshel, Michael
2003-01-01
The privacy and data integrity are not guaranteed in current wireless communications due to the security hole inside the Wireless Application Protocol (WAP) version 1.2 gateway. One of the remedies is to provide an end-to-end security in m-commerce by applying application level security on top of current WAP1.2. The traditional security technologies like RSA and ECC applied on enterprise's server are not practical for wireless devices because wireless devices have relatively weak computation power and limited memory compared with server. In this paper, we developed a lattice based polynomial digital signature system based on NTRU's Polynomial Authentication and Signature Scheme (PASS), which enabled the feasibility of applying high-level security on both server and wireless device sides.
The Lighter Side of Things: The Inevitable Convergence of the Internet of Things and Cybersecurity
NASA Technical Reports Server (NTRS)
Davis, Jerry
2017-01-01
By the year 2020 it is estimated that there will be more than 50 billion devices connected to the Internet. These devices not only include traditional electronics such as smartphones and other mobile compute devices, but also eEnabled technologies such as cars, airplanes and smartgrids. The IoT brings with it the promise of efficiency, greater remote management of industrial processes and further opens the doors to world of vehicle autonomy. However, IoT enabled technology will have to operate and contend in the contested domain of cyberspace. This discussion will touch on the impact that cybersecurity has on IoT and the people, processes and technology required to mitigate cyber risks.
Analysis of fluctuations in semiconductor devices
NASA Astrophysics Data System (ADS)
Andrei, Petru
The random nature of ion implantation and diffusion processes as well as inevitable tolerances in fabrication result in random fluctuations of doping concentrations and oxide thickness in semiconductor devices. These fluctuations are especially pronounced in ultrasmall (nanoscale) semiconductor devices when the spatial scale of doping and oxide thickness variations become comparable with the geometric dimensions of devices. In the dissertation, the effects of these fluctuations on device characteristics are analyzed by using a new technique for the analysis of random doping and oxide thickness induced fluctuations. This technique is universal in nature in the sense that it is applicable to any transport model (drift-diffusion, semiclassical transport, quantum transport etc.) and it can be naturally extended to take into account random fluctuations of the oxide (trapped) charges and channel length. The technique is based on linearization of the transport equations with respect to the fluctuating quantities. It is computationally much (a few orders of magnitude) more efficient than the traditional Monte-Carlo approach and it yields information on the sensitivity of fluctuations of parameters of interest (e.g. threshold voltage, small-signal parameters, cut-off frequencies, etc.) to the locations of doping and oxide thickness fluctuations. For this reason, it can be very instrumental in the design of fluctuation-resistant structures of semiconductor devices. Quantum mechanical effects are taken into account by using the density-gradient model as well as through self-consistent Poisson-Schrodinger computations. Special attention is paid to the presenting of the technique in a form that is suitable for implementation on commercial device simulators. The numerical implementation of the technique is discussed in detail and numerous computational results are presented and compared with those previously published in literature.
He, Ziyang; Zhang, Xiaoqing; Cao, Yangjie; Liu, Zhi; Zhang, Bo; Wang, Xiaoyan
2018-04-17
By running applications and services closer to the user, edge processing provides many advantages, such as short response time and reduced network traffic. Deep-learning based algorithms provide significantly better performances than traditional algorithms in many fields but demand more resources, such as higher computational power and more memory. Hence, designing deep learning algorithms that are more suitable for resource-constrained mobile devices is vital. In this paper, we build a lightweight neural network, termed LiteNet which uses a deep learning algorithm design to diagnose arrhythmias, as an example to show how we design deep learning schemes for resource-constrained mobile devices. Compare to other deep learning models with an equivalent accuracy, LiteNet has several advantages. It requires less memory, incurs lower computational cost, and is more feasible for deployment on resource-constrained mobile devices. It can be trained faster than other neural network algorithms and requires less communication across different processing units during distributed training. It uses filters of heterogeneous size in a convolutional layer, which contributes to the generation of various feature maps. The algorithm was tested using the MIT-BIH electrocardiogram (ECG) arrhythmia database; the results showed that LiteNet outperforms comparable schemes in diagnosing arrhythmias, and in its feasibility for use at the mobile devices.
Securing resource constraints embedded devices using elliptic curve cryptography
NASA Astrophysics Data System (ADS)
Tam, Tony; Alfasi, Mohamed; Mozumdar, Mohammad
2014-06-01
The use of smart embedded device has been growing rapidly in recent time because of miniaturization of sensors and platforms. Securing data from these embedded devices is now become one of the core challenges both in industry and research community. Being embedded, these devices have tight constraints on resources such as power, computation, memory, etc. Hence it is very difficult to implement traditional Public Key Cryptography (PKC) into these resource constrained embedded devices. Moreover, most of the public key security protocols requires both public and private key to be generated together. In contrast with this, Identity Based Encryption (IBE), a public key cryptography protocol, allows a public key to be generated from an arbitrary string and the corresponding private key to be generated later on demand. While IBE has been actively studied and widely applied in cryptography research, conventional IBE primitives are also computationally demanding and cannot be efficiently implemented on embedded system. Simplified version of the identity based encryption has proven its competence in being robust and also satisfies tight budget of the embedded platform. In this paper, we describe the choice of several parameters for implementing lightweight IBE in resource constrained embedded sensor nodes. Our implementation of IBE is built using elliptic curve cryptography (ECC).
LiteNet: Lightweight Neural Network for Detecting Arrhythmias at Resource-Constrained Mobile Devices
Zhang, Xiaoqing; Cao, Yangjie; Liu, Zhi; Zhang, Bo; Wang, Xiaoyan
2018-01-01
By running applications and services closer to the user, edge processing provides many advantages, such as short response time and reduced network traffic. Deep-learning based algorithms provide significantly better performances than traditional algorithms in many fields but demand more resources, such as higher computational power and more memory. Hence, designing deep learning algorithms that are more suitable for resource-constrained mobile devices is vital. In this paper, we build a lightweight neural network, termed LiteNet which uses a deep learning algorithm design to diagnose arrhythmias, as an example to show how we design deep learning schemes for resource-constrained mobile devices. Compare to other deep learning models with an equivalent accuracy, LiteNet has several advantages. It requires less memory, incurs lower computational cost, and is more feasible for deployment on resource-constrained mobile devices. It can be trained faster than other neural network algorithms and requires less communication across different processing units during distributed training. It uses filters of heterogeneous size in a convolutional layer, which contributes to the generation of various feature maps. The algorithm was tested using the MIT-BIH electrocardiogram (ECG) arrhythmia database; the results showed that LiteNet outperforms comparable schemes in diagnosing arrhythmias, and in its feasibility for use at the mobile devices. PMID:29673171
[Innovation of characteristic medicinal cupping devices].
Li, Jianping; Zhang, Hui; Yang, Jianmei; Xu, Xinchun; Niu, Yanxia; Cai, Jun
2015-08-01
To compare the differences in the characteristic medicinal cupping therapy between the traditional cupping device and the innovated cupping device. Fifty patients of neck and low back pain were selected. The self-comparison was adopted. The cupping therapy was applied to the acupoints located on the left or right side with the traditional cupping device and the innovated cupping device. The cupping sites were centered at bilateral Quyuan (SI 13) and Dachangshu (BL 25). The cups were retained for 10 min. The traditional cupping device was the glass with smooth border, 100mL. The innovated cupping device was the vacuum-sucking cup. The operative time, medicinal leakage, comfort and cupping marks were observed for the two different cupping devices. The operative time with the innovated medicinal cupping device was shorter obviously compared with the traditional one at Quyuan (SI 13) and Dachangshu (BL 25, both P<0. 05). The comfort with the innovated medicinal cupping device was remarkably improved as compared with the traditional one at the two acupoints (both P<0. 05). The medicinal leakage was similar between the two different devices during the cupping operation (both P>0. 05). The cupping marks with the innovated medicinal cupping device were much deeper than those with the traditional one after cupping therapy. The innovated cupping device is more convenent and comfortable in operation during the characteristic medicinal cupping therapy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maitra, Neepa
2016-07-14
This project investigates the accuracy of currently-used functionals in time-dependent density functional theory, which is today routinely used to predict and design materials and computationally model processes in solar energy conversion. The rigorously-based electron-ion dynamics method developed here sheds light on traditional methods and overcomes challenges those methods have. The fundamental research undertaken here is important for building reliable and practical methods for materials discovery. The ultimate goal is to use these tools for the computational design of new materials for solar cell devices of high efficiency.
Martinez-Espronceda, Miguel; Martinez, Ignacio; Serrano, Luis; Led, Santiago; Trigo, Jesús Daniel; Marzo, Asier; Escayola, Javier; Garcia, José
2011-05-01
Traditionally, e-Health solutions were located at the point of care (PoC), while the new ubiquitous user-centered paradigm draws on standard-based personal health devices (PHDs). Such devices place strict constraints on computation and battery efficiency that encouraged the International Organization for Standardization/IEEE11073 (X73) standard for medical devices to evolve from X73PoC to X73PHD. In this context, low-voltage low-power (LV-LP) technologies meet the restrictions of X73PHD-compliant devices. Since X73PHD does not approach the software architecture, the accomplishment of an efficient design falls directly on the software developer. Therefore, computational and battery performance of such LV-LP-constrained devices can even be outperformed through an efficient X73PHD implementation design. In this context, this paper proposes a new methodology to implement X73PHD into microcontroller-based platforms with LV-LP constraints. Such implementation methodology has been developed through a patterns-based approach and applied to a number of X73PHD-compliant agents (including weighing scale, blood pressure monitor, and thermometer specializations) and microprocessor architectures (8, 16, and 32 bits) as a proof of concept. As a reference, the results obtained in the weighing scale guarantee all features of X73PHD running over a microcontroller architecture based on ARM7TDMI requiring only 168 B of RAM and 2546 B of flash memory.
The Role of Sleep in the Health and Resiliency of Military Personnel
2011-04-01
enhancing biases, positive emotion, laughter, and repression of the trauma as a coping mechanism . Similar findings have been observed by others in...computers, phones, video games , and other electronic devices. Realistic or perceived threat to life or of injury The need for instant...Belenky & Balkin, 2006). 3.3 Resiliency in the Military Resiliency is traditionally a term used in mechanical engineering to describe the physical
ERIC Educational Resources Information Center
Campbell, Wendy
2017-01-01
The speed and availability of Internet-capable devices, such as computers, smartphones, gaming consoles, TVs, and tablets have made it possible for our society to be connected, and stay connected to the Internet 24 hours a day. The Internet of Things (IoT) describes a new environment where common objects are uniquely identifiable and accessible…
Lindsay, Joseph; McLean, J Allen; Bains, Amrita; Ying, Tom; Kuo, M H
2013-01-01
Computer devices using touch-enabled technology are becoming more prevalent today. The application of a touch screen high definition surgical monitor could allow not only high definition video from an endoscopic camera to be displayed, but also the display and interaction with relevant patient and health related data. However, this technology has not been quickly embraced by all health care organizations. Although traditional keyboard or mouse-based software programs may function flawlessly on a touch-based device, many are not practical due to the usage of small buttons, fonts and very complex menu systems. This paper describes an approach taken to overcome these problems. A real case study was used to demonstrate the novelty and efficiency of the proposed method.
Hybrid graphene/silicon integrated optical isolators with photonic spin–orbit interaction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, Jingwen; Sun, Xiankai, E-mail: xksun@cuhk.edu.hk; Shun Hing Institute of Advanced Engineering, The Chinese University of Hong Kong, Shatin, New Territories
2016-04-11
Optical isolators are an important building block in photonic computation and communication. In traditional optics, isolators are realized with magneto-optical garnets. However, it remains challenging to incorporate such materials on an integrated platform because of the difficulty in material growth and bulky device footprint. Here, we propose an ultracompact integrated isolator by exploiting graphene's magneto-optical property on a silicon-on-insulator platform. The photonic nonreciprocity is achieved because the cyclotrons in graphene experiencing different optical spins exhibit different responses to counterpropagating light. Taking advantage of cavity resonance effects, we have numerically optimized a device design, which shows excellent isolation performance with themore » extinction ratio over 45 dB and the insertion loss around 12 dB at a wavelength near 1.55 μm. Featuring graphene's CMOS compatibility and substantially reduced device footprint, our proposal sheds light on monolithic integration of nonreciprocal photonic devices.« less
In vitro corrosion resistance of porous NiTi intervertebral fusion devices
NASA Astrophysics Data System (ADS)
Schrooten, Jan; Assad, Michel; Van Humbeeck, Jan; Leroux, Michel A.
2007-02-01
Porous titanium-nickel (PTN) intervertebral fusion devices, produced by self-propagating high-temperature synthesis, represent an alternative to traditional long-term implants in the orthopaedic field. PTN promotes tissue ingrowth and has succeeded short-term and long-term biocompatibility in vivo testing. In this in vitro study, the PTN morphology was characterized using microfocus computer tomography (μCT) in order to calculate the active PTN surface. Potentiodynamic polarization testing was then performed to evaluate the in vitro corrosion resistance of PTN devices in Hanks' based salt solution. Direct coupling experiments of PTN with Ti6Al4V were also performed in order to establish the galvanic corrosion resistance of PTN intervertebral implants in the presence of potential Ti6Al4V supplemental fixation devices. Compared to the behaviour of other orthopaedic biomaterials and solid NiTi devices, PTN devices showed a level of corrosion resistance that is comparable to other NiTi devices and acceptable for the intended orthopaedic application. Further improvement of the corrosion resistance is still possible by specific electrochemical surface treatments.
ERIC Educational Resources Information Center
Dehinbo, Johnson
2010-01-01
The use of email utilizes the power of Web 1.0 to enable users to access their email from any computer and mobile devices that is connected to the Internet making email valuable in acquiring and transferring knowledge. But the advent of Web 2.0 and social networking seems to indicate certain limitations of email. The use of social networking seems…
Vaquerizo, Beatriz; Theriault-Lauzier, Pascal; Piazza, Nicolo
2015-12-01
Mitral regurgitation is the most prevalent valvular heart disease worldwide. Despite the widespread availability of curative surgical intervention, a considerable proportion of patients with severe mitral regurgitation are not referred for treatment, largely due to the presence of left ventricular dysfunction, advanced age, and comorbid illnesses. Transcatheter mitral valve replacement is a promising therapeutic alternative to traditional surgical valve replacement. The complex anatomical and pathophysiological nature of the mitral valvular complex, however, presents significant challenges to the successful design and implementation of novel transcatheter mitral replacement devices. Patient-specific 3-dimensional computer-based models enable accurate assessment of the mitral valve anatomy and preprocedural simulations for transcatheter therapies. Such information may help refine the design features of novel transcatheter mitral devices and enhance procedural planning. Herein, we describe a novel medical image-based processing tool that facilitates accurate, noninvasive assessment of the mitral valvular complex, by creating precise three-dimensional heart models. The 3-dimensional computer reconstructions are then converted to a physical model using 3-dimensional printing technology, thereby enabling patient-specific assessment of the interaction between device and patient. It may provide new opportunities for a better understanding of the mitral anatomy-pathophysiology-device interaction, which is of critical importance for the advancement of transcatheter mitral valve replacement. Copyright © 2015 Sociedad Española de Cardiología. Published by Elsevier España, S.L.U. All rights reserved.
Development of a Computer Writing System Based on EOG
López, Alberto; Ferrero, Francisco; Yangüela, David; Álvarez, Constantina; Postolache, Octavian
2017-01-01
The development of a novel computer writing system based on eye movements is introduced herein. A system of these characteristics requires the consideration of three subsystems: (1) A hardware device for the acquisition and transmission of the signals generated by eye movement to the computer; (2) A software application that allows, among other functions, data processing in order to minimize noise and classify signals; and (3) A graphical interface that allows the user to write text easily on the computer screen using eye movements only. This work analyzes these three subsystems and proposes innovative and low cost solutions for each one of them. This computer writing system was tested with 20 users and its efficiency was compared to a traditional virtual keyboard. The results have shown an important reduction in the time spent on writing, which can be very useful, especially for people with severe motor disorders. PMID:28672863
Development of a Computer Writing System Based on EOG.
López, Alberto; Ferrero, Francisco; Yangüela, David; Álvarez, Constantina; Postolache, Octavian
2017-06-26
The development of a novel computer writing system based on eye movements is introduced herein. A system of these characteristics requires the consideration of three subsystems: (1) A hardware device for the acquisition and transmission of the signals generated by eye movement to the computer; (2) A software application that allows, among other functions, data processing in order to minimize noise and classify signals; and (3) A graphical interface that allows the user to write text easily on the computer screen using eye movements only. This work analyzes these three subsystems and proposes innovative and low cost solutions for each one of them. This computer writing system was tested with 20 users and its efficiency was compared to a traditional virtual keyboard. The results have shown an important reduction in the time spent on writing, which can be very useful, especially for people with severe motor disorders.
Service-oriented Software Defined Optical Networks for Cloud Computing
NASA Astrophysics Data System (ADS)
Liu, Yuze; Li, Hui; Ji, Yuefeng
2017-10-01
With the development of big data and cloud computing technology, the traditional software-defined network is facing new challenges (e.g., ubiquitous accessibility, higher bandwidth, more flexible management and greater security). This paper proposes a new service-oriented software defined optical network architecture, including a resource layer, a service abstract layer, a control layer and an application layer. We then dwell on the corresponding service providing method. Different service ID is used to identify the service a device can offer. Finally, we experimentally evaluate that proposed service providing method can be applied to transmit different services based on the service ID in the service-oriented software defined optical network.
NASA Technical Reports Server (NTRS)
Brodnick, Jacob; Richardson, Brian; Ramachandran, Narayanan
2015-01-01
The Low Profile Diffuser (LPD) project originated as an award from the Marshall Space Flight Center (MSFC) Advanced Development (ADO) office to the Main Propulsion Systems Branch (ER22). The task was created to develop and test an LPD concept that could produce comparable performance to a larger, traditionally designed, ullage gas diffuser while occupying a smaller volume envelope. Historically, ullage gas diffusers have been large, bulky devices that occupy a significant portion of the propellant tank, decreasing the tank volume available for propellant. Ullage pressurization of spacecraft propellant tanks is required to prevent boil-off of cryogenic propellants and to provide a positive pressure for propellant extraction. To achieve this, ullage gas diffusers must slow hot, high-pressure gas entering a propellant tank from supersonic speeds to only a few meters per second. Decreasing the incoming gas velocity is typically accomplished through expansion to larger areas within the diffuser which has traditionally led to large diffuser lengths. The Fluid Dynamics Branch (ER42) developed and applied advanced Computational Fluid Dynamics (CFD) analysis methods in order to mature the LPD design from and initial concept to an optimized test prototype and to provide extremely accurate pre-test predictions of diffuser performance. Additionally, the diffuser concept for the Core Stage of the Space Launch System (SLS) was analyzed in a short amount of time to guide test data collection efforts of the qualification of the device. CFD analysis of the SLS diffuser design provided new insights into the functioning of the device and was qualitatively validated against hot wire anemometry of the exterior flow field. Rigorous data analysis of the measurements was performed on static and dynamic pressure data, data from two microphones, accelerometers and hot wire anemometry with automated traverse. Feasibility of the LPD concept and validation of the computational model were demonstrated by the test data.
Distributed geospatial model sharing based on open interoperability standards
Feng, Min; Liu, Shuguang; Euliss, Ned H.; Fang, Yin
2009-01-01
Numerous geospatial computational models have been developed based on sound principles and published in journals or presented in conferences. However modelers have made few advances in the development of computable modules that facilitate sharing during model development or utilization. Constraints hampering development of model sharing technology includes limitations on computing, storage, and connectivity; traditional stand-alone and closed network systems cannot fully support sharing and integrating geospatial models. To address this need, we have identified methods for sharing geospatial computational models using Service Oriented Architecture (SOA) techniques and open geospatial standards. The service-oriented model sharing service is accessible using any tools or systems compliant with open geospatial standards, making it possible to utilize vast scientific resources available from around the world to solve highly sophisticated application problems. The methods also allow model services to be empowered by diverse computational devices and technologies, such as portable devices and GRID computing infrastructures. Based on the generic and abstract operations and data structures required for Web Processing Service (WPS) standards, we developed an interactive interface for model sharing to help reduce interoperability problems for model use. Geospatial computational models are shared on model services, where the computational processes provided by models can be accessed through tools and systems compliant with WPS. We developed a platform to help modelers publish individual models in a simplified and efficient way. Finally, we illustrate our technique using wetland hydrological models we developed for the prairie pothole region of North America.
Quantum Heterogeneous Computing for Satellite Positioning Optimization
NASA Astrophysics Data System (ADS)
Bass, G.; Kumar, V.; Dulny, J., III
2016-12-01
Hard optimization problems occur in many fields of academic study and practical situations. We present results in which quantum heterogeneous computing is used to solve a real-world optimization problem: satellite positioning. Optimization problems like this can scale very rapidly with problem size, and become unsolvable with traditional brute-force methods. Typically, such problems have been approximately solved with heuristic approaches; however, these methods can take a long time to calculate and are not guaranteed to find optimal solutions. Quantum computing offers the possibility of producing significant speed-up and improved solution quality. There are now commercially available quantum annealing (QA) devices that are designed to solve difficult optimization problems. These devices have 1000+ quantum bits, but they have significant hardware size and connectivity limitations. We present a novel heterogeneous computing stack that combines QA and classical machine learning and allows the use of QA on problems larger than the quantum hardware could solve in isolation. We begin by analyzing the satellite positioning problem with a heuristic solver, the genetic algorithm. The classical computer's comparatively large available memory can explore the full problem space and converge to a solution relatively close to the true optimum. The QA device can then evolve directly to the optimal solution within this more limited space. Preliminary experiments, using the Quantum Monte Carlo (QMC) algorithm to simulate QA hardware, have produced promising results. Working with problem instances with known global minima, we find a solution within 8% in a matter of seconds, and within 5% in a few minutes. Future studies include replacing QMC with commercially available quantum hardware and exploring more problem sets and model parameters. Our results have important implications for how heterogeneous quantum computing can be used to solve difficult optimization problems in any field.
Development of a novel SCADA system for laboratory testing.
Patel, M; Cole, G R; Pryor, T L; Wilmot, N A
2004-07-01
This document summarizes the supervisory control and data acquisition (SCADA) system that allows communication with, and controlling the output of, various I/O devices in the renewable energy systems and components test facility RESLab. This SCADA system differs from traditional SCADA systems in that it supports a continuously changing operating environment depending on the test to be performed. The SCADA System is based on the concept of having one Master I/O Server and multiple client computer systems. This paper describes the main features and advantages of this dynamic SCADA system, the connections of various field devices to the master I/O server, the device servers, and numerous software features used in the system. The system is based on the graphical programming language "LabVIEW" and its "Datalogging and Supervisory Control" (DSC) module. The DSC module supports a real-time database called the "tag engine," which performs the I/O operations with all field devices attached to the master I/O server and communications with the other tag engines running on the client computers connected via a local area network. Generic and detailed communication block diagrams illustrating the hierarchical structure of this SCADA system are presented. The flow diagram outlining a complete test performed using this system in one of its standard configurations is described.
Snapshot spectral and polarimetric imaging; target identification with multispectral video
NASA Astrophysics Data System (ADS)
Bartlett, Brent D.; Rodriguez, Mikel D.
2013-05-01
As the number of pixels continue to grow in consumer and scientific imaging devices, it has become feasible to collect the incident light field. In this paper, an imaging device developed around light field imaging is used to collect multispectral and polarimetric imagery in a snapshot fashion. The sensor is described and a video data set is shown highlighting the advantage of snapshot spectral imaging. Several novel computer vision approaches are applied to the video cubes to perform scene characterization and target identification. It is shown how the addition of spectral and polarimetric data to the video stream allows for multi-target identification and tracking not possible with traditional RGB video collection.
A portable, inexpensive, wireless vital signs monitoring system.
Kaputa, David; Price, David; Enderle, John D
2010-01-01
The University of Connecticut, Department of Biomedical Engineering has developed a device to be used by patients to collect physiological data outside of a medical facility. This device facilitates modes of data collection that would be expensive, inconvenient, or impossible to obtain by traditional means within the medical facility. Data can be collected on specific days, at specific times, during specific activities, or while traveling. The device uses biosensors to obtain information such as pulse oximetry (SpO2), heart rate, electrocardiogram (ECG), non-invasive blood pressure (NIBP), and weight which are sent via Bluetooth to an interactive monitoring device. The data can then be downloaded to an electronic storage device or transmitted to a company server, physician's office, or hospital. The data collection software is usable on any computer device with Bluetooth capability, thereby removing the need for special hardware for the monitoring device and reducing the total cost of the system. The modular biosensors can be added or removed as needed without changing the monitoring device software. The user is prompted by easy-to-follow instructions written in non-technical language. Additional features, such as screens with large buttons and large text, allow for use by those with limited vision or limited motor skills.
Computational and design methods for advanced imaging
NASA Astrophysics Data System (ADS)
Birch, Gabriel C.
This dissertation merges the optical design and computational aspects of imaging systems to create novel devices that solve engineering problems in optical science and attempts to expand the solution space available to the optical designer. This dissertation is divided into two parts: the first discusses a new active illumination depth sensing modality, while the second part discusses a passive illumination system called plenoptic, or lightfield, imaging. The new depth sensing modality introduced in part one is called depth through controlled aberration. This technique illuminates a target with a known, aberrated projected pattern and takes an image using a traditional, unmodified imaging system. Knowing how the added aberration in the projected pattern changes as a function of depth, we are able to quantitatively determine depth of a series of points from the camera. A major advantage this method permits is the ability for illumination and imaging axes to be coincident. Plenoptic cameras capture both spatial and angular data simultaneously. This dissertation present a new set of parameters that permit the design and comparison of plenoptic devices outside the traditionally published plenoptic 1.0 and plenoptic 2.0 configurations. Additionally, a series of engineering advancements are presented, including full system raytraces of raw plenoptic images, Zernike compression techniques of raw image files, and non-uniform lenslet arrays to compensate for plenoptic system aberrations. Finally, a new snapshot imaging spectrometer is proposed based off the plenoptic configuration.
PCM-Based Durable Write Cache for Fast Disk I/O
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Zhuo; Wang, Bin; Carpenter, Patrick
2012-01-01
Flash based solid-state devices (FSSDs) have been adopted within the memory hierarchy to improve the performance of hard disk drive (HDD) based storage system. However, with the fast development of storage-class memories, new storage technologies with better performance and higher write endurance than FSSDs are emerging, e.g., phase-change memory (PCM). Understanding how to leverage these state-of-the-art storage technologies for modern computing systems is important to solve challenging data intensive computing problems. In this paper, we propose to leverage PCM for a hybrid PCM-HDD storage architecture. We identify the limitations of traditional LRU caching algorithms for PCM-based caches, and develop amore » novel hash-based write caching scheme called HALO to improve random write performance of hard disks. To address the limited durability of PCM devices and solve the degraded spatial locality in traditional wear-leveling techniques, we further propose novel PCM management algorithms that provide effective wear-leveling while maximizing access parallelism. We have evaluated this PCM-based hybrid storage architecture using applications with a diverse set of I/O access patterns. Our experimental results demonstrate that the HALO caching scheme leads to an average reduction of 36.8% in execution time compared to the LRU caching scheme, and that the SFC wear leveling extends the lifetime of PCM by a factor of 21.6.« less
NASA Astrophysics Data System (ADS)
Shamugam, Veeramani; Murray, I.; Leong, J. A.; Sidhu, Amandeep S.
2016-03-01
Cloud computing provides services on demand instantly, such as access to network infrastructure consisting of computing hardware, operating systems, network storage, database and applications. Network usage and demands are growing at a very fast rate and to meet the current requirements, there is a need for automatic infrastructure scaling. Traditional networks are difficult to automate because of the distributed nature of their decision making process for switching or routing which are collocated on the same device. Managing complex environments using traditional networks is time-consuming and expensive, especially in the case of generating virtual machines, migration and network configuration. To mitigate the challenges, network operations require efficient, flexible, agile and scalable software defined networks (SDN). This paper discuss various issues in SDN and suggests how to mitigate the network management related issues. A private cloud prototype test bed was setup to implement the SDN on the OpenStack platform to test and evaluate the various network performances provided by the various configurations.
New Perspectives on the Charging Mechanisms of Supercapacitors
2016-01-01
Supercapacitors (or electric double-layer capacitors) are high-power energy storage devices that store charge at the interface between porous carbon electrodes and an electrolyte solution. These devices are already employed in heavy electric vehicles and electronic devices, and can complement batteries in a more sustainable future. Their widespread application could be facilitated by the development of devices that can store more energy, without compromising their fast charging and discharging times. In situ characterization methods and computational modeling techniques have recently been developed to study the molecular mechanisms of charge storage, with the hope that better devices can be rationally designed. In this Perspective, we bring together recent findings from a range of experimental and computational studies to give a detailed picture of the charging mechanisms of supercapacitors. Nuclear magnetic resonance experiments and molecular dynamics simulations have revealed that the electrode pores contain a considerable number of ions in the absence of an applied charging potential. Experiments and computer simulations have shown that different charging mechanisms can then operate when a potential is applied, going beyond the traditional view of charging by counter-ion adsorption. It is shown that charging almost always involves ion exchange (swapping of co-ions for counter-ions), and rarely occurs by counter-ion adsorption alone. We introduce a charging mechanism parameter that quantifies the mechanism and allows comparisons between different systems. The mechanism is found to depend strongly on the polarization of the electrode, and the choice of the electrolyte and electrode materials. In light of these advances we identify new directions for supercapacitor research. Further experimental and computational work is needed to explain the factors that control supercapacitor charging mechanisms, and to establish the links between mechanisms and performance. Increased understanding and control of charging mechanisms should lead to new strategies for developing next-generation supercapacitors with improved performances. PMID:27031622
Towards ubiquitous access of computer-assisted surgery systems.
Liu, Hui; Lufei, Hanping; Shi, Weishong; Chaudhary, Vipin
2006-01-01
Traditional stand-alone computer-assisted surgery (CAS) systems impede the ubiquitous and simultaneous access by multiple users. With advances in computing and networking technologies, ubiquitous access to CAS systems becomes possible and promising. Based on our preliminary work, CASMIL, a stand-alone CAS server developed at Wayne State University, we propose a novel mobile CAS system, UbiCAS, which allows surgeons to retrieve, review and interpret multimodal medical images, and to perform some critical neurosurgical procedures on heterogeneous devices from anywhere at anytime. Furthermore, various optimization techniques, including caching, prefetching, pseudo-streaming-model, and compression, are used to guarantee the QoS of the UbiCAS system. UbiCAS enables doctors at remote locations to actively participate remote surgeries, share patient information in real time before, during, and after the surgery.
COMBAT: mobile-Cloud-based cOmpute/coMmunications infrastructure for BATtlefield applications
NASA Astrophysics Data System (ADS)
Soyata, Tolga; Muraleedharan, Rajani; Langdon, Jonathan; Funai, Colin; Ames, Scott; Kwon, Minseok; Heinzelman, Wendi
2012-05-01
The amount of data processed annually over the Internet has crossed the zetabyte boundary, yet this Big Data cannot be efficiently processed or stored using today's mobile devices. Parallel to this explosive growth in data, a substantial increase in mobile compute-capability and the advances in cloud computing have brought the state-of-the- art in mobile-cloud computing to an inflection point, where the right architecture may allow mobile devices to run applications utilizing Big Data and intensive computing. In this paper, we propose the MObile Cloud-based Hybrid Architecture (MOCHA), which formulates a solution to permit mobile-cloud computing applications such as object recognition in the battlefield by introducing a mid-stage compute- and storage-layer, called the cloudlet. MOCHA is built on the key observation that many mobile-cloud applications have the following characteristics: 1) they are compute-intensive, requiring the compute-power of a supercomputer, and 2) they use Big Data, requiring a communications link to cloud-based database sources in near-real-time. In this paper, we describe the operation of MOCHA in battlefield applications, by formulating the aforementioned mobile and cloudlet to be housed within a soldier's vest and inside a military vehicle, respectively, and enabling access to the cloud through high latency satellite links. We provide simulations using the traditional mobile-cloud approach as well as utilizing MOCHA with a mid-stage cloudlet to quantify the utility of this architecture. We show that the MOCHA platform for mobile-cloud computing promises a future for critical battlefield applications that access Big Data, which is currently not possible using existing technology.
Kobak, Mallory S; Lepp, Andrew; Rebold, Michael J; Faulkner, Hannah; Martin, Shannon; Barkley, Jacob E
2018-02-01
Mobile Internet-connected electronic devices provide access to activities that have traditionally been associated with sedentary behavior. Because they are portable, these devices can be utilized in any environment. Therefore, providing children with access to these devices in environments that typically promote physical activity may result in a reduction in physical activity behavior. To assess children's physical and sedentary (ie, sitting) activity with and without the presence of a mobile Internet-connected tablet computer. A total of 20 children [6.7 (1.9) y old] participated in 2 simulated recess conditions in a gymnasium on separate days. During each condition, children had free-choice access physical activity options and a table of sedentary activities for 40 minutes. During 1 session, the iPad was present, and in the other session, it was not. Physical activity was monitored via an accelerometer, and sedentary time was monitored via a stopwatch. Children significantly (P ≤ .03) reduced average physical activity intensity and increased their sedentary behavior with the iPad present [4.4 (4.0) metabolic equivalents/min and 20.9 (12.4) min sitting] versus the condition without the iPad present [5.3 (4.0) metabolic equivalents/min and 13.6 (13.2) min sitting]. Introducing an mobile Internet-connected tablet computer into a gymnasium reduced children's physical activity intensity by 17% and increased sedentary behavior by 54%.
Synchrotron Imaging Computations on the Grid without the Computing Element
NASA Astrophysics Data System (ADS)
Curri, A.; Pugliese, R.; Borghes, R.; Kourousias, G.
2011-12-01
Besides the heavy use of the Grid in the Synchrotron Radiation Facility (SRF) Elettra, additional special requirements from the beamlines had to be satisfied through a novel solution that we present in this work. In the traditional Grid Computing paradigm the computations are performed on the Worker Nodes of the grid element known as the Computing Element. A Grid middleware extension that our team has been working on, is that of the Instrument Element. In general it is used to Grid-enable instrumentation; and it can be seen as a neighbouring concept to that of the traditional Control Systems. As a further extension we demonstrate the Instrument Element as the steering mechanism for a series of computations. In our deployment it interfaces a Control System that manages a series of computational demanding Scientific Imaging tasks in an online manner. The instrument control in Elettra is done through a suitable Distributed Control System, a common approach in the SRF community. The applications that we present are for a beamline working in medical imaging. The solution resulted to a substantial improvement of a Computed Tomography workflow. The near-real-time requirements could not have been easily satisfied from our Grid's middleware (gLite) due to the various latencies often occurred during the job submission and queuing phases. Moreover the required deployment of a set of TANGO devices could not have been done in a standard gLite WN. Besides the avoidance of certain core Grid components, the Grid Security infrastructure has been utilised in the final solution.
Fog computing job scheduling optimization based on bees swarm
NASA Astrophysics Data System (ADS)
Bitam, Salim; Zeadally, Sherali; Mellouk, Abdelhamid
2018-04-01
Fog computing is a new computing architecture, composed of a set of near-user edge devices called fog nodes, which collaborate together in order to perform computational services such as running applications, storing an important amount of data, and transmitting messages. Fog computing extends cloud computing by deploying digital resources at the premise of mobile users. In this new paradigm, management and operating functions, such as job scheduling aim at providing high-performance, cost-effective services requested by mobile users and executed by fog nodes. We propose a new bio-inspired optimization approach called Bees Life Algorithm (BLA) aimed at addressing the job scheduling problem in the fog computing environment. Our proposed approach is based on the optimized distribution of a set of tasks among all the fog computing nodes. The objective is to find an optimal tradeoff between CPU execution time and allocated memory required by fog computing services established by mobile users. Our empirical performance evaluation results demonstrate that the proposal outperforms the traditional particle swarm optimization and genetic algorithm in terms of CPU execution time and allocated memory.
Quantification of uncertainties in the performance of smart composite structures
NASA Technical Reports Server (NTRS)
Shiao, Michael C.; Chamis, Christos C.
1993-01-01
A composite wing with spars, bulkheads, and built-in control devices is evaluated using a method for the probabilistic assessment of smart composite structures. Structural responses (such as change in angle of attack, vertical displacements, and stresses in regular plies with traditional materials and in control plies with mixed traditional and actuation materials) are probabilistically assessed to quantify their respective scatter. Probabilistic sensitivity factors are computed to identify those parameters that have a significant influence on a specific structural response. Results show that the uncertainties in the responses of smart composite structures can be quantified. Responses such as structural deformation, ply stresses, frequencies, and buckling loads in the presence of defects can be reliably controlled to satisfy specified design requirements.
Explosive component acceptance tester using laser interferometer technology
NASA Technical Reports Server (NTRS)
Wickstrom, Richard D.; Tarbell, William W.
1993-01-01
Acceptance testing of explosive components requires a reliable and simple to use testing method that can discern less than optimal performance. For hot-wire detonators, traditional techniques use dent blocks or photographic diagnostic methods. More complicated approaches are avoided because of their inherent problems with setup and maintenance. A recently developed tester is based on using a laser interferometer to measure the velocity of flying plates accelerated by explosively actuated detonators. Unlike ordinary interferometers that monitor displacement of the test article, this device measures velocity directly and is commonly used with non-spectral surfaces. Most often referred to as the VISAR technique (Velocity Interferometer System for Any Reflecting Surface), it has become the most widely-accepted choice for accurate measurement of velocity in the range greater than 1 mm/micro-s. Traditional VISAR devices require extensive setup and adjustment and therefore are unacceptable in a production-testing environment. This paper describes a new VISAR approach which requires virtually no adjustments, yet provides data with accuracy comparable to the more complicated systems. The device, termed the Fixed-Cavity VISAR, is currently being developed to serve as a product verification tool for hot-wire detonators and slappers. An extensive data acquisition and analysis computer code was also created to automate the manipulation of raw data into final results.
NASA Astrophysics Data System (ADS)
Ryu, Hoon; Jeong, Yosang; Kang, Ji-Hoon; Cho, Kyu Nam
2016-12-01
Modelling of multi-million atomic semiconductor structures is important as it not only predicts properties of physically realizable novel materials, but can accelerate advanced device designs. This work elaborates a new Technology-Computer-Aided-Design (TCAD) tool for nanoelectronics modelling, which uses a sp3d5s∗ tight-binding approach to describe multi-million atomic structures, and simulate electronic structures with high performance computing (HPC), including atomic effects such as alloy and dopant disorders. Being named as Quantum simulation tool for Advanced Nanoscale Devices (Q-AND), the tool shows nice scalability on traditional multi-core HPC clusters implying the strong capability of large-scale electronic structure simulations, particularly with remarkable performance enhancement on latest clusters of Intel Xeon PhiTM coprocessors. A review of the recent modelling study conducted to understand an experimental work of highly phosphorus-doped silicon nanowires, is presented to demonstrate the utility of Q-AND. Having been developed via Intel Parallel Computing Center project, Q-AND will be open to public to establish a sound framework of nanoelectronics modelling with advanced HPC clusters of a many-core base. With details of the development methodology and exemplary study of dopant electronics, this work will present a practical guideline for TCAD development to researchers in the field of computational nanoelectronics.
Fortuna, A O; Gurd, J R
1999-01-01
During certain medical procedures, it is important to continuously measure the respiratory flow of a patient, as lack of proper ventilation can cause brain damage and ultimately death. The monitoring of the ventilatory condition of a patient is usually performed with the aid of flowmeters. However, water and other secretions present in the expired air can build up and ultimately block a traditional, restriction-based flowmeter; by using an orifice plate flowmeter, such blockages are minimized. This paper describes the design of an orifice plate flowmetering system including, especially, a description of the numerical and computational techniques adopted in order to simulate human respiratory and sinusoidal air flow across various possible designs for the orifice plate flowmeter device. Parallel computation and multigrid techniques were employed in order to reduce execution time. The simulated orifice plate was later built and tested under unsteady sinusoidal flows. Experimental tests show reasonable agreement with the numerical simulation, thereby reinforcing the general hypothesis that computational exploration of the design space is sufficiently accurate to allow designers of such systems to use this in preference to the more traditional, mechanical prototyping techniques.
Trapped-Ion Quantum Logic with Global Radiation Fields.
Weidt, S; Randall, J; Webster, S C; Lake, K; Webb, A E; Cohen, I; Navickas, T; Lekitsch, B; Retzker, A; Hensinger, W K
2016-11-25
Trapped ions are a promising tool for building a large-scale quantum computer. However, the number of required radiation fields for the realization of quantum gates in any proposed ion-based architecture scales with the number of ions within the quantum computer, posing a major obstacle when imagining a device with millions of ions. Here, we present a fundamentally different approach for trapped-ion quantum computing where this detrimental scaling vanishes. The method is based on individually controlled voltages applied to each logic gate location to facilitate the actual gate operation analogous to a traditional transistor architecture within a classical computer processor. To demonstrate the key principle of this approach we implement a versatile quantum gate method based on long-wavelength radiation and use this method to generate a maximally entangled state of two quantum engineered clock qubits with fidelity 0.985(12). This quantum gate also constitutes a simple-to-implement tool for quantum metrology, sensing, and simulation.
A Foldable Lithium-Sulfur Battery.
Li, Lu; Wu, Zi Ping; Sun, Hao; Chen, Deming; Gao, Jian; Suresh, Shravan; Chow, Philippe; Singh, Chandra Veer; Koratkar, Nikhil
2015-11-24
The next generation of deformable and shape-conformable electronics devices will need to be powered by batteries that are not only flexible but also foldable. Here we report a foldable lithium-sulfur (Li-S) rechargeable battery, with the highest areal capacity (∼3 mAh cm(-2)) reported to date among all types of foldable energy-storage devices. The key to this result lies in the use of fully foldable and superelastic carbon nanotube current-collector films and impregnation of the active materials (S and Li) into the current-collectors in a checkerboard pattern, enabling the battery to be folded along two mutually orthogonal directions. The carbon nanotube films also serve as the sulfur entrapment layer in the Li-S battery. The foldable battery showed <12% loss in specific capacity over 100 continuous folding and unfolding cycles. Such shape-conformable Li-S batteries with significantly greater energy density than traditional lithium-ion batteries could power the flexible and foldable devices of the future including laptops, cell phones, tablet computers, surgical tools, and implantable biomedical devices.
OpenID connect as a security service in Cloud-based diagnostic imaging systems
NASA Astrophysics Data System (ADS)
Ma, Weina; Sartipi, Kamran; Sharghi, Hassan; Koff, David; Bak, Peter
2015-03-01
The evolution of cloud computing is driving the next generation of diagnostic imaging (DI) systems. Cloud-based DI systems are able to deliver better services to patients without constraining to their own physical facilities. However, privacy and security concerns have been consistently regarded as the major obstacle for adoption of cloud computing by healthcare domains. Furthermore, traditional computing models and interfaces employed by DI systems are not ready for accessing diagnostic images through mobile devices. RESTful is an ideal technology for provisioning both mobile services and cloud computing. OpenID Connect, combining OpenID and OAuth together, is an emerging REST-based federated identity solution. It is one of the most perspective open standards to potentially become the de-facto standard for securing cloud computing and mobile applications, which has ever been regarded as "Kerberos of Cloud". We introduce OpenID Connect as an identity and authentication service in cloud-based DI systems and propose enhancements that allow for incorporating this technology within distributed enterprise environment. The objective of this study is to offer solutions for secure radiology image sharing among DI-r (Diagnostic Imaging Repository) and heterogeneous PACS (Picture Archiving and Communication Systems) as well as mobile clients in the cloud ecosystem. Through using OpenID Connect as an open-source identity and authentication service, deploying DI-r and PACS to private or community clouds should obtain equivalent security level to traditional computing model.
An Internet of Things Approach to Electrical Power Monitoring and Outage Reporting
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koch, Daniel B
The so-called Internet of Things concept has captured much attention recently as ordinary devices are connected to the Internet for monitoring and control purposes. One enabling technology is the proliferation of low-cost, single board computers with built-in network interfaces. Some of these are capable of hosting full-fledged operating systems that provide rich programming environments. Taken together, these features enable inexpensive solutions for even traditional tasks such as the one presented here for electrical power monitoring and outage reporting.
Digitization of multistep organic synthesis in reactionware for on-demand pharmaceuticals.
Kitson, Philip J; Marie, Guillaume; Francoia, Jean-Patrick; Zalesskiy, Sergey S; Sigerson, Ralph C; Mathieson, Jennifer S; Cronin, Leroy
2018-01-19
Chemical manufacturing is often done at large facilities that require a sizable capital investment and then produce key compounds for a finite period. We present an approach to the manufacturing of fine chemicals and pharmaceuticals in a self-contained plastic reactionware device. The device was designed and constructed by using a chemical to computer-automated design (ChemCAD) approach that enables the translation of traditional bench-scale synthesis into a platform-independent digital code. This in turn guides production of a three-dimensional printed device that encloses the entire synthetic route internally via simple operations. We demonstrate the approach for the γ-aminobutyric acid receptor agonist, (±)-baclofen, establishing a concept that paves the way for the local manufacture of drugs outside of specialist facilities. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Materials challenges for repeatable RF wireless device reconfiguration with microfluidic channels
NASA Astrophysics Data System (ADS)
Griffin, Anthony S.; Sottos, Nancy R.; White, Scott R.
2018-03-01
Recently, adaptive wireless devices have utilized displacement of EGaIn within microchannels as an electrical switching mechanism to enable reconfigurable electronics. Device reconfiguration using EGaIn in microchannels overcomes many challenges encountered by more traditional reconfiguration mechanisms such as diodes and microelectromechanical systems (MEMS). Reconfiguration using EGaIn is severely limited by undesired permanent shorting due to retention of the liquid in microchannels caused by wetting and rapid oxide skin formation. Here, we investigate the conditions which prevent repeatable electrical switching using EGaIn in microchannels. Initial contact angle tests of EGaIn on epoxy surfaces demonstrate the wettability of EGaIn on flat surfaces. SEM cross-sections of microchannels reveal adhesion of EGaIn residue to channel walls. Micro-computed tomography (microCT) scans of provide volumetric measurements of EGaIn remaining inside channels after flow cycling. Non-wetting coatings are proposed as materials based strategy to overcome these issues in future work.
Krehl, Claudia; Sharples, Sarah
2012-01-01
The paper investigates the requirements for multimodal interaction on mobile devices in an end-to-end journey context. Traditional interfaces are deemed cumbersome and inefficient for exchanging information with the user. Multimodal interaction provides a different user-centred approach allowing for more natural and intuitive interaction between humans and computers. It is especially suitable for mobile interaction as it can overcome additional constraints including small screens, awkward keypads, and continuously changing settings - an inherent property of mobility. This paper is based on end-to-end journeys where users encounter several contexts during their journeys. Interviews and focus groups explore the requirements for multimodal interaction design for mobile devices by examining journey stages and identifying the users' information needs and sources. Findings suggest that multimodal communication is crucial when users multitask. Choosing suitable modalities depend on user context, characteristics and tasks.
Adding Pluggable and Personalized Natural Control Capabilities to Existing Applications
Lamberti, Fabrizio; Sanna, Andrea; Carlevaris, Gilles; Demartini, Claudio
2015-01-01
Advancements in input device and sensor technologies led to the evolution of the traditional human-machine interaction paradigm based on the mouse and keyboard. Touch-, gesture- and voice-based interfaces are integrated today in a variety of applications running on consumer devices (e.g., gaming consoles and smartphones). However, to allow existing applications running on desktop computers to utilize natural interaction, significant re-design and re-coding efforts may be required. In this paper, a framework designed to transparently add multi-modal interaction capabilities to applications to which users are accustomed is presented. Experimental observations confirmed the effectiveness of the proposed framework and led to a classification of those applications that could benefit more from the availability of natural interaction modalities. PMID:25635410
Adding pluggable and personalized natural control capabilities to existing applications.
Lamberti, Fabrizio; Sanna, Andrea; Carlevaris, Gilles; Demartini, Claudio
2015-01-28
Advancements in input device and sensor technologies led to the evolution of the traditional human-machine interaction paradigm based on the mouse and keyboard. Touch-, gesture- and voice-based interfaces are integrated today in a variety of applications running on consumer devices (e.g., gaming consoles and smartphones). However, to allow existing applications running on desktop computers to utilize natural interaction, significant re-design and re-coding efforts may be required. In this paper, a framework designed to transparently add multi-modal interaction capabilities to applications to which users are accustomed is presented. Experimental observations confirmed the effectiveness of the proposed framework and led to a classification of those applications that could benefit more from the availability of natural interaction modalities.
Internet-based versus traditional teaching and learning methods.
Guarino, Salvatore; Leopardi, Eleonora; Sorrenti, Salvatore; De Antoni, Enrico; Catania, Antonio; Alagaratnam, Swethan
2014-10-01
The rapid and dramatic incursion of the Internet and social networks in everyday life has revolutionised the methods of exchanging data. Web 2.0 represents the evolution of the Internet as we know it. Internet users are no longer passive receivers, and actively participate in the delivery of information. Medical education cannot evade this process. Increasingly, students are using tablets and smartphones to instantly retrieve medical information on the web or are exchanging materials on their Facebook pages. Medical educators cannot ignore this continuing revolution, and therefore the traditional academic schedules and didactic schemes should be questioned. Analysing opinions collected from medical students regarding old and new teaching methods and tools has become mandatory, with a view towards renovating the process of medical education. A cross-sectional online survey was created with Google® docs and administrated to all students of our medical school. Students were asked to express their opinion on their favourite teaching methods, learning tools, Internet websites and Internet delivery devices. Data analysis was performed using spss. The online survey was completed by 368 students. Although textbooks remain a cornerstone for training, students also identified Internet websites, multimedia non-online material, such as the Encyclopaedia on CD-ROM, and other non-online computer resources as being useful. The Internet represented an important aid to support students' learning needs, but textbooks are still their resource of choice. Among the websites noted, Google and Wikipedia significantly surpassed the peer-reviewed medical databases, and access to the Internet was primarily through personal computers in preference to other Internet access devices, such as mobile phones and tablet computers. Increasingly, students are using tablets and smartphones to instantly retrieve medical information. © 2014 John Wiley & Sons Ltd.
The Use of Computational Fluid Dynamics in the Development of Ventricular Assist Devices
Fraser, Katharine H.; Taskin, M. Ertan; Griffith, Bartley P.; Wu, Zhongjun J.
2010-01-01
Progress in the field of prosthetic cardiovascular devices has significantly contributed to the rapid advancements in cardiac therapy during the last four decades. The concept of mechanical circulatory assistance was established with the first successful clinical use of heart-lung machines for cardiopulmonary bypass. Since then a variety of devices have been developed to replace or assist diseased components of the cardiovascular system. Ventricular assist devices (VADs) are basically mechanical pumps designed to augment or replace the function of one or more chambers of the failing heart. Computational Fluid Dynamics (CFD) is an attractive tool in the development process of VADs, allowing numerous different designs to be characterized for their functional performance virtually, for a wide range of operating conditions, without the physical device being fabricated. However, VADs operate in a flow regime which is traditionally difficult to simulate; the transitional region at the boundary of laminar and turbulent flow. Hence different methods have been used and the best approach is debatable. In addition to these fundamental fluid dynamic issues, blood consists of biological cells. Device-induced biological complications are a serious consequence of VAD use. The complications include blood damage (haemolysis, blood cell activation), thrombosis and emboli. Patients are required to take anticoagulation medication constantly which may cause bleeding. Despite many efforts blood damage models have still not been implemented satisfactorily into numerical analysis of VADs, which severely undermines the full potential of CFD. This paper reviews the current state of the art CFD for analysis of blood pumps, including a practical critical review of the studies to date, which should help device designers choose the most appropriate methods; a summary of blood damage models and the difficulties in implementing them into CFD; and current gaps in knowledge and areas for future work. PMID:21075669
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-21
... Devices, Portable Music and Data Processing Devices, Computers, and Components Thereof; Institution of... communication devices, portable music and data processing devices, computers, and components thereof by reason... certain wireless communication devices, portable music and data processing devices, computers, and...
Authentication of Smartphone Users Based on Activity Recognition and Mobile Sensing.
Ehatisham-Ul-Haq, Muhammad; Azam, Muhammad Awais; Loo, Jonathan; Shuang, Kai; Islam, Syed; Naeem, Usman; Amin, Yasar
2017-09-06
Smartphones are context-aware devices that provide a compelling platform for ubiquitous computing and assist users in accomplishing many of their routine tasks anytime and anywhere, such as sending and receiving emails. The nature of tasks conducted with these devices has evolved with the exponential increase in the sensing and computing capabilities of a smartphone. Due to the ease of use and convenience, many users tend to store their private data, such as personal identifiers and bank account details, on their smartphone. However, this sensitive data can be vulnerable if the device gets stolen or lost. A traditional approach for protecting this type of data on mobile devices is to authenticate users with mechanisms such as PINs, passwords, and fingerprint recognition. However, these techniques are vulnerable to user compliance and a plethora of attacks, such as smudge attacks. The work in this paper addresses these challenges by proposing a novel authentication framework, which is based on recognizing the behavioral traits of smartphone users using the embedded sensors of smartphone, such as Accelerometer, Gyroscope and Magnetometer. The proposed framework also provides a platform for carrying out multi-class smart user authentication, which provides different levels of access to a wide range of smartphone users. This work has been validated with a series of experiments, which demonstrate the effectiveness of the proposed framework.
Authentication of Smartphone Users Based on Activity Recognition and Mobile Sensing
Ehatisham-ul-Haq, Muhammad; Azam, Muhammad Awais; Loo, Jonathan; Shuang, Kai; Islam, Syed; Naeem, Usman; Amin, Yasar
2017-01-01
Smartphones are context-aware devices that provide a compelling platform for ubiquitous computing and assist users in accomplishing many of their routine tasks anytime and anywhere, such as sending and receiving emails. The nature of tasks conducted with these devices has evolved with the exponential increase in the sensing and computing capabilities of a smartphone. Due to the ease of use and convenience, many users tend to store their private data, such as personal identifiers and bank account details, on their smartphone. However, this sensitive data can be vulnerable if the device gets stolen or lost. A traditional approach for protecting this type of data on mobile devices is to authenticate users with mechanisms such as PINs, passwords, and fingerprint recognition. However, these techniques are vulnerable to user compliance and a plethora of attacks, such as smudge attacks. The work in this paper addresses these challenges by proposing a novel authentication framework, which is based on recognizing the behavioral traits of smartphone users using the embedded sensors of smartphone, such as Accelerometer, Gyroscope and Magnetometer. The proposed framework also provides a platform for carrying out multi-class smart user authentication, which provides different levels of access to a wide range of smartphone users. This work has been validated with a series of experiments, which demonstrate the effectiveness of the proposed framework. PMID:28878177
Protano, C; Manigrasso, M; Avino, P; Sernia, S; Vitali, M
2016-01-01
Passive exposure profiles to submicronic particles (SMPs, 5.6-560 nm) of traditional cigarettes and new electronic commercial devices (e-cig and IQOS®, a new heat-not-burn smoking device) were compared. During smoking, SMPs released by traditional cigarettes resulted four-times higher than those released by electronic and heat-not-burn devices and remained high for at least one hour, while SMPs values returned immediately similar to background for electronic and heat-not-burn devices. In all experiments, approximately half of SMPs resulted so small to reach the alveolar region.
Computation of records of streamflow at control structures
Collins, Dannie L.
1977-01-01
Traditional methods of computing streamflow records on large, low-gradient streams require a continuous record of water-surface slope over a natural channel reach. This slope must be of sufficient magnitude to be accuratly measured with available stage measuring devices. On highly regulated streams, this slope approaches zero during periods of low flow and accurate measurement is difficult. Methods are described to calibrate multipurpose regulating control structures to more accurately compute streamflow records on highly-regulated streams. Hydraulic theory, assuming steady, uniform flow during a computational interval, is described for five different types of flow control. The controls are: Tainter gates, hydraulic turbines, fixed spillways, navigation locks, and crest gates. Detailed calibration procedures are described for the five different controls as well as for several flow regimes for some of the controls. The instrumentation package and computer programs necessary to collect and process the field data are discussed. Two typical calibration procedures and measurement data are presented to illustrate the accuracy of the methods. (Woodard-USGS)
NASA Astrophysics Data System (ADS)
Sivasubramaniam, Kiruba
This thesis makes advances in three dimensional finite element analysis of electrical machines and the quantification of their parameters and performance. The principal objectives of the thesis are: (1)the development of a stable and accurate method of nonlinear three-dimensional field computation and application to electrical machinery and devices; and (2)improvement in the accuracy of determination of performance parameters, particularly forces and torque computed from finite elements. Contributions are made in two general areas: a more efficient formulation for three dimensional finite element analysis which saves time and improves accuracy, and new post-processing techniques to calculate flux density values from a given finite element solution. A novel three-dimensional magnetostatic solution based on a modified scalar potential method is implemented. This method has significant advantages over the traditional total scalar, reduced scalar or vector potential methods. The new method is applied to a 3D geometry of an iron core inductor and a permanent magnet motor. The results obtained are compared with those obtained from traditional methods, in terms of accuracy and speed of computation. A technique which has been observed to improve force computation in two dimensional analysis using a local solution of Laplace's equation in the airgap of machines is investigated and a similar method is implemented in the three dimensional analysis of electromagnetic devices. A new integral formulation to improve force calculation from a smoother flux-density profile is also explored and implemented. Comparisons are made and conclusions drawn as to how much improvement is obtained and at what cost. This thesis also demonstrates the use of finite element analysis to analyze torque ripples due to rotor eccentricity in permanent magnet BLDC motors. A new method for analyzing torque harmonics based on data obtained from a time stepping finite element analysis of the machine is explored and implemented.
Wireless infrared computer control
NASA Astrophysics Data System (ADS)
Chen, George C.; He, Xiaofei
2004-04-01
Wireless mouse is not restricted by cable"s length and has advantage over its wired counterpart. However, all the mice available in the market have detection range less than 2 meters and angular coverage less than 180 degrees. Furthermore, commercial infrared mice are based on track ball and rollers to detect movements. This restricts them to be used in those occasions where users want to have dynamic movement, such as presentations and meetings etc. This paper presents our newly developed infrared wireless mouse, which has a detection range of 6 meters and angular coverage of 180 degrees. This new mouse uses buttons instead of traditional track ball and is developed to be a hand-held device like remote controller. It enables users to control cursor with a distance closed to computer and the mouse to be free from computer operation.
NASA Astrophysics Data System (ADS)
Agaian, Sos S.; Akopian, David; D'Souza, Sunil
2006-02-01
Modern mobile devices are some of the most technologically advanced devices that people use on a daily basis and the current trends in mobile phone technology indicate that tasks achievable by mobile devices will soon exceed our imagination. This paper undertakes a case study of the development and implementation of one of the first known steganography (data hiding) applications on a mobile device. Steganography is traditionally accomplished using the high processing speeds of desktop or notebook computers. With the introduction of mobile platform operating systems, there arises an opportunity for the users to develop and embed their own applications. We take advantage of this opportunity with the introduction of wireless steganographic algorithms. Thus we demonstrates that custom applications, popular with security establishments, can be developed also on mobile systems independent of both the mobile device manufacturer and mobile service provider. For example, this might be a very important feature if the communication is to be controlled exclusively by authorized personnel. The paper begins by reviewing the technological capabilities of modern mobile devices. Then we address a suitable development platform which is based on Symbian TM/Series60 TM architecture. Finally, two data hiding applications developed for Symbian TM/Series60 TM mobile phones are presented.
Reading disc-based bioassays with standard computer drives.
Yu, Hua-Zhong; Li, Yunchao; Ou, Lily M-L
2013-02-19
Traditional methods of disease diagnosis are both time-consuming and labor-intensive, and many tests require expensive instrumentation and trained professionals, which restricts their use to biomedical laboratories. Because patients can wait several days (even weeks) for the results, the consequences of delayed treatment could be disastrous. Therefore, affordable and simple point-of-care (POC) biosensor devices could fill a diagnostic niche in the clinic or even at home, as personal glucose meters do for diabetics. These devices would allow patients to check their own health conditions and enable physicians to make prompt treatment decisions, which could improve the chances for rapid recovery and cure. Compact discs (CDs) provide inexpensive substrate materials for the preparation of microarray biochips, and conventional computer drives/disc players can be adapted as precise optical reading devices for signal processing. Researchers can employ the polycarbonate (PC) base of a CD as an alternative substrate to glass slides or silicon wafers for the preparation of microanalytical devices. Using the characteristic optical phenomena occurring on the metal layer of a CD, researchers can develop biosensors based on advanced spectroscopic readout (interferometry or surface plasmon resonance). If researchers integrate microfluidic functions with CD mechanics, they can control fluid transfer through the spinning motion of the disc, leading to "lab-on-a-CD" devices. Over the last decade, our laboratory has focused on the construction of POC biosensor devices from off-the-shelf CDs or DVDs and standard computer drives. Besides the initial studies of the suitability of CDs for surface and materials chemistry research (fabrication of self-assembled monolayers and oxide nanostructures), we have demonstrated that an ordinary optical drive, without modification of either the hardware or the software driver, can function as the signal transducing element for reading disc-based bioassays quantitatively. In this Account, we first provide a brief introduction to CD-related materials chemistry and microfluidics research. Then we describe the mild chemistry developed in our laboratory for the preparation of computer-readable biomolecular screening assays: photochemical activation of the polycarbonate (PC) disc surface and immobilization and delivery of probe and target biomolecules. We thoroughly discuss the analysis of the molecular recognition events: researchers can "read" these devices quantitatively with an unmodified optical drive of any personal computer. Finally, and critically, we illustrate our digitized molecular diagnosis approach with three trial systems: DNA hybridization, antibody-antigen binding, and ultrasensitive lead detection with a DNAzyme assay. These examples demonstrate the broad potential of this new analytical/diagnostic tool for medical screening, on-site food/water safety testing, and remote environmental monitoring.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-08
... Wireless Communication Devices, Tablet Computers, Media Players, and Televisions, and Components Thereof... devices, including wireless communication devices, tablet computers, media players, and televisions, and... wireless communication devices, tablet computers, media players, and televisions, and components thereof...
Gold Nanoparticles for Neural Prosthetics Devices
Zhang, Huanan; Shih, Jimmy; Zhu, Jian; Kotov, Nicholas A.
2012-01-01
Treatments of neurological diseases and the realization of brain-computer interfaces require ultrasmall electrodes which are “invisible” to resident immune cells. Functional electrodes smaller than 50μm are impossible to produce with traditional materials due to high interfacial impedance at the characteristic frequency of neural activity and insufficient charge storage capacity. The problem can be resolved by using gold nanoparticle nanocomposites. Careful comparison indicates that layer-by-layer assembled films from Au NPs provide more than threefold improvement in interfacial impedance and one order of magnitude increase in charge storage capacity. Prototypes of microelectrodes could be made using traditional photolithography. Integration of unique nanocomposite materials with microfabrication techniques opens the door for practical realization of the ultrasmall implantable electrodes. Further improvement of electrical properties is expected when using special shapes of gold nanoparticles. PMID:22734673
Energy efficiency analysis and optimization for mobile platforms
NASA Astrophysics Data System (ADS)
Metri, Grace Camille
The introduction of mobile devices changed the landscape of computing. Gradually, these devices are replacing traditional personal computer (PCs) to become the devices of choice for entertainment, connectivity, and productivity. There are currently at least 45.5 million people in the United States who own a mobile device, and that number is expected to increase to 1.5 billion by 2015. Users of mobile devices expect and mandate that their mobile devices have maximized performance while consuming minimal possible power. However, due to the battery size constraints, the amount of energy stored in these devices is limited and is only growing by 5% annually. As a result, we focused in this dissertation on energy efficiency analysis and optimization for mobile platforms. We specifically developed SoftPowerMon, a tool that can power profile Android platforms in order to expose the power consumption behavior of the CPU. We also performed an extensive set of case studies in order to determine energy inefficiencies of mobile applications. Through our case studies, we were able to propose optimization techniques in order to increase the energy efficiency of mobile devices and proposed guidelines for energy-efficient application development. In addition, we developed BatteryExtender, an adaptive user-guided tool for power management of mobile devices. The tool enables users to extend battery life on demand for a specific duration until a particular task is completed. Moreover, we examined the power consumption of System-on-Chips (SoCs) and observed the impact on the energy efficiency in the event of offloading tasks from the CPU to the specialized custom engines. Based on our case studies, we were able to demonstrate that current software-based power profiling techniques for SoCs can have an error rate close to 12%, which needs to be addressed in order to be able to optimize the energy consumption of the SoC. Finally, we summarize our contributions and outline possible direction for future research in this field.
Proposal for Microwave Boson Sampling.
Peropadre, Borja; Guerreschi, Gian Giacomo; Huh, Joonsuk; Aspuru-Guzik, Alán
2016-09-30
Boson sampling, the task of sampling the probability distribution of photons at the output of a photonic network, is believed to be hard for any classical device. Unlike other models of quantum computation that require thousands of qubits to outperform classical computers, boson sampling requires only a handful of single photons. However, a scalable implementation of boson sampling is missing. Here, we show how superconducting circuits provide such platform. Our proposal differs radically from traditional quantum-optical implementations: rather than injecting photons in waveguides, making them pass through optical elements like phase shifters and beam splitters, and finally detecting their output mode, we prepare the required multiphoton input state in a superconducting resonator array, control its dynamics via tunable and dispersive interactions, and measure it with nondemolition techniques.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-24
... Music and Data Processing Devices, Computers, and Components Thereof; Notice of Receipt of Complaint... complaint entitled Wireless Communication Devices, Portable Music and Data Processing Devices, Computers..., portable music and data processing devices, computers, and components thereof. The complaint names as...
Jinadu, M K; Olusi, S O; Ajuwon, B
1997-03-01
This study was conducted among Yoruba women and traditional healers with the aim of identifying and describing the practice, preparation, and administration of traditional contraceptives. The data were obtained in 1990 from a random sample of 1,400 women of childbearing age and 42 traditional healers in Nigeria's Oranmiyan area, using questionnaires and in-depth interviews. Findings revealed that knowledge of the traditional contraceptives is nearly universal among the Yoruba population, and the traditional contraceptive prevalence rate is 7.1 percent. The use of traditional contraceptives was significantly more common among uneducated women and among women aged 20 to 29 years old. Findings also revealed the existence of four main varieties of traditional contraceptive devices, the methods of preparation of the traditional contraceptives, varieties of herbal and animal products used, methods of administration, and taboos against usage. The easy accessibility of traditional medical practitioners and the belief that traditional contraceptive devices are devoid of complications, especially among those experienced with modern contraceptive devices, were the main reasons women cited for patronizing the traditional practitioners. The paper concludes with policy implications for family planning programmers in Nigeria.
A Comparative Study of Measuring Devices Used During Space Shuttle Processing for Inside Diameters
NASA Technical Reports Server (NTRS)
Rodriguez, Antonio
2006-01-01
During Space Shuttle processing, discrepancies between vehicle dimensions and per print dimensions determine if a part should be refurbished, replaced or accepted "as-is." The engineer's job is to address each discrepancy by choosing the most accurate procedure and tool available, sometimes with up to ten thousands of an inch tolerance. Four methods of measurement are commonly used at the Kennedy Space Center: 1) caliper, 2) mold impressions, 3) optical comparator, 4) dial bore gage. During a problem report evaluation, uncertainty arose between methods after measuring diameters with variations of up to 0.0004" inches. The results showed that computer based measuring devices are extremely accurate, but when human factor is involved in determining points of reference, the results may vary widely compared to more traditional methods. iv
BarraCUDA - a fast short read sequence aligner using graphics processing units
2012-01-01
Background With the maturation of next-generation DNA sequencing (NGS) technologies, the throughput of DNA sequencing reads has soared to over 600 gigabases from a single instrument run. General purpose computing on graphics processing units (GPGPU), extracts the computing power from hundreds of parallel stream processors within graphics processing cores and provides a cost-effective and energy efficient alternative to traditional high-performance computing (HPC) clusters. In this article, we describe the implementation of BarraCUDA, a GPGPU sequence alignment software that is based on BWA, to accelerate the alignment of sequencing reads generated by these instruments to a reference DNA sequence. Findings Using the NVIDIA Compute Unified Device Architecture (CUDA) software development environment, we ported the most computational-intensive alignment component of BWA to GPU to take advantage of the massive parallelism. As a result, BarraCUDA offers a magnitude of performance boost in alignment throughput when compared to a CPU core while delivering the same level of alignment fidelity. The software is also capable of supporting multiple CUDA devices in parallel to further accelerate the alignment throughput. Conclusions BarraCUDA is designed to take advantage of the parallelism of GPU to accelerate the alignment of millions of sequencing reads generated by NGS instruments. By doing this, we could, at least in part streamline the current bioinformatics pipeline such that the wider scientific community could benefit from the sequencing technology. BarraCUDA is currently available from http://seqbarracuda.sf.net PMID:22244497
Use of mobile devices to answer online surveys: implications for research.
Cunningham, John A; Neighbors, Clayton; Bertholet, Nicolas; Hendershot, Christian S
2013-07-08
There is a growing use of mobile devices to access the Internet. We examined whether participants who used a mobile device to access a brief online survey were quicker to respond to the survey but also, less likely to complete it than participants using a traditional web browser. Using data from a recently completed online intervention trial, we found that participants using mobile devices were quicker to access the survey but less likely to complete it compared to participants using a traditional web browser. More concerning, mobile device users were also less likely to respond to a request to complete a six week follow-up survey compared to those using traditional web browsers. With roughly a third of participants using mobile devices to answer an online survey in this study, the impact of mobile device usage on survey completion rates is a concern. ClinicalTrials.gov: NCT01521078.
Novo, P; Chu, V; Conde, J P
2014-07-15
The miniaturization of biosensors using microfluidics has potential in enabling the development of point-of-care devices, with the added advantages of reduced time and cost of analysis with limits-of-detection comparable to those obtained through traditional laboratory techniques. Interfacing microfluidic devices with the external world can be difficult especially in aspects involving fluid handling and the need for simple sample insertion that avoids special equipment or trained personnel. In this work we present a point-of-care prototype system by integrating capillary microfluidics with a microfabricated photodiode array and electronic instrumentation into a hand-held unit. The capillary microfluidic device is capable of autonomous and sequential fluid flow, including control of the average fluid velocity at any given point of the analysis. To demonstrate the functionality of the prototype, a model chemiluminescence ELISA was performed. The performance of the integrated optical detection in the point-of-care prototype is equal to that obtained with traditional bench-top instrumentation. The photodiode signals were acquired, displayed and processed by a simple graphical user interface using a computer connected to the microcontroller through USB. The prototype performed integrated chemiluminescence ELISA detection in about 15 min with a limit-of-detection of ≈2 nM with an antibody-antigen affinity constant of ≈2×10(7) M(-1). Copyright © 2014 Elsevier B.V. All rights reserved.
Enabling Real-Time Volume Rendering of Functional Magnetic Resonance Imaging on an iOS Device.
Holub, Joseph; Winer, Eliot
2017-12-01
Powerful non-invasive imaging technologies like computed tomography (CT), ultrasound, and magnetic resonance imaging (MRI) are used daily by medical professionals to diagnose and treat patients. While 2D slice viewers have long been the standard, many tools allowing 3D representations of digital medical data are now available. The newest imaging advancement, functional MRI (fMRI) technology, has changed medical imaging from viewing static to dynamic physiology (4D) over time, particularly to study brain activity. Add this to the rapid adoption of mobile devices for everyday work and the need to visualize fMRI data on tablets or smartphones arises. However, there are few mobile tools available to visualize 3D MRI data, let alone 4D fMRI data. Building volume rendering tools on mobile devices to visualize 3D and 4D medical data is challenging given the limited computational power of the devices. This paper describes research that explored the feasibility of performing real-time 3D and 4D volume raycasting on a tablet device. The prototype application was tested on a 9.7" iPad Pro using two different fMRI datasets of brain activity. The results show that mobile raycasting is able to achieve between 20 and 40 frames per second for traditional 3D datasets, depending on the sampling interval, and up to 9 frames per second for 4D data. While the prototype application did not always achieve true real-time interaction, these results clearly demonstrated that visualizing 3D and 4D digital medical data is feasible with a properly constructed software framework.
NASA Astrophysics Data System (ADS)
Mathai, Pramod P.
This thesis focuses on applying and augmenting 'Reduced Order Modeling' (ROM) techniques to large scale problems. ROM refers to the set of mathematical techniques that are used to reduce the computational expense of conventional modeling techniques, like finite element and finite difference methods, while minimizing the loss of accuracy that typically accompanies such a reduction. The first problem that we address pertains to the prediction of the level of heat dissipation in electronic and MEMS devices. With the ever decreasing feature sizes in electronic devices, and the accompanied rise in Joule heating, the electronics industry has, since the 1990s, identified a clear need for computationally cheap heat transfer modeling techniques that can be incorporated along with the electronic design process. We demonstrate how one can create reduced order models for simulating heat conduction in individual components that constitute an idealized electronic device. The reduced order models are created using Krylov Subspace Techniques (KST). We introduce a novel 'plug and play' approach, based on the small gain theorem in control theory, to interconnect these component reduced order models (according to the device architecture) to reliably and cheaply replicate whole device behavior. The final aim is to have this technique available commercially as a computationally cheap and reliable option that enables a designer to optimize for heat dissipation among competing VLSI architectures. Another place where model reduction is crucial to better design is Isoelectric Focusing (IEF) - the second problem in this thesis - which is a popular technique that is used to separate minute amounts of proteins from the other constituents that are present in a typical biological tissue sample. Fundamental questions about how to design IEF experiments still remain because of the high dimensional and highly nonlinear nature of the differential equations that describe the IEF process as well as the uncertainty in the parameters of the differential equations. There is a clear need to design better experiments for IEF without the current overhead of expensive chemicals and labor. We show how with a simpler modeling of the underlying chemistry, we can still achieve the accuracy that has been achieved in existing literature for modeling small ranges of pH (hydrogen ion concentration) in IEF, but with far less computational time. We investigate a further reduction of time by modeling the IEF problem using the Proper Orthogonal Decomposition (POD) technique and show why POD may not be sufficient due to the underlying constraints. The final problem that we address in this thesis addresses a certain class of dynamics with high stiffness - in particular, differential algebraic equations. With the help of simple examples, we show how the traditional POD procedure will fail to model certain high stiffness problems due to a particular behavior of the vector field which we will denote as twist. We further show how a novel augmentation to the traditional POD algorithm can model-reduce problems with twist in a computationally cheap manner without any additional data requirements.
A portable eBook reader for the blind.
Velazquez, Ramiro; Hernandez, Hermes; Preza, Enrique
2010-01-01
This paper presents the design and first prototype of the TactoBook system, a novel concept of reading assistive device that aims to make eBooks accessible to the blind. The TactoBook consists of a computer-based software translator that converts fast and automatically any eBook into Braille. The Braille version of the eBook is then encrypted as a file and stored in a USB memory drive which is later inserted and reproduced in a compact, lightweight, and highly-portable tactile terminal. Braille readers can store multiple eBooks in the same USB and access/reproduce them in the tactile terminal without this being plugged to a computer. The first Braille terminal developed is a 10-cell prototype based on a piezoelectric ultrasonic actuation approach. Its overall performance is quite similar to the one obtained with traditional Braille terminals. However, unlike them, the full device is only 1 kg mass and its compact dimensions (20 × 15 × 10 cm) make it easily carried by the user. A technical overview of all subsystems is presented and discussed.
A Power Efficient Exaflop Computer Design for Global Cloud System Resolving Climate Models.
NASA Astrophysics Data System (ADS)
Wehner, M. F.; Oliker, L.; Shalf, J.
2008-12-01
Exascale computers would allow routine ensemble modeling of the global climate system at the cloud system resolving scale. Power and cost requirements of traditional architecture systems are likely to delay such capability for many years. We present an alternative route to the exascale using embedded processor technology to design a system optimized for ultra high resolution climate modeling. These power efficient processors, used in consumer electronic devices such as mobile phones, portable music players, cameras, etc., can be tailored to the specific needs of scientific computing. We project that a system capable of integrating a kilometer scale climate model a thousand times faster than real time could be designed and built in a five year time scale for US$75M with a power consumption of 3MW. This is cheaper, more power efficient and sooner than any other existing technology.
Dotette: Programmable, high-precision, plug-and-play droplet pipetting.
Fan, Jinzhen; Men, Yongfan; Hao Tseng, Kuo; Ding, Yi; Ding, Yunfeng; Villarreal, Fernando; Tan, Cheemeng; Li, Baoqing; Pan, Tingrui
2018-05-01
Manual micropipettes are the most heavily used liquid handling devices in biological and chemical laboratories; however, they suffer from low precision for volumes under 1 μ l and inevitable human errors. For a manual device, the human errors introduced pose potential risks of failed experiments, inaccurate results, and financial costs. Meanwhile, low precision under 1 μ l can cause severe quantification errors and high heterogeneity of outcomes, becoming a bottleneck of reaction miniaturization for quantitative research in biochemical labs. Here, we report Dotette, a programmable, plug-and-play microfluidic pipetting device based on nanoliter liquid printing. With automated control, protocols designed on computers can be directly downloaded into Dotette, enabling programmable operation processes. Utilizing continuous nanoliter droplet dispensing, the precision of the volume control has been successfully improved from traditional 20%-50% to less than 5% in the range of 100 nl to 1000 nl. Such a highly automated, plug-and-play add-on to existing pipetting devices not only improves precise quantification in low-volume liquid handling and reduces chemical consumptions but also facilitates and automates a variety of biochemical and biological operations.
Development of a Pressure Switched Microfluidic Cell Sorter
NASA Astrophysics Data System (ADS)
Ozbay, Baris; Jones, Alex; Gibson, Emily
2009-10-01
Lab on a chip technology allows for the replacement of traditional cell sorters with microfluidic devices which can be produced less expensively and are more compact. Additionally, the compact nature of microfluidic cell sorters may lead to the realization of their application in point-of-care medical devices. Though techniques have been demonstrated previously for sorting in microfluidic devices with optical or electro-osmotic switching, both of these techniques are expensive and more difficult to implement than pressure switching. This microfluidic cell sorter design also allows for easy integration with optical spectroscopy for identification of cell type. Our current microfluidic device was fabricated with polydimethylsiloxane (PDMS), a polymer that houses the channels, which is then chemically bonded to a glass slide. The flow of fluid through the device is controlled by pressure controllers, and the switching of the cells is accomplished with the use of a high performance pressure controller interfaced with a computer. The cells are fed through the channels with the use of hydrodynamic focusing techniques. Once the experimental setup is fully functional the objective will be to determine switching rates, explore techniques to optimize these rates, and experiment with sorting of other biomolecules including DNA.
Using the network to achieve energy efficiency
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giglio, M.
1995-12-01
Novell, the third largest software company in the world, has developed Netware Embedded Systems Technology (NEST). NEST will take the network deeper into non-traditional computing environments and will imbed networking into more intelligent devices. Ultimately, this will lead to energy efficiencies in the office. NEST can make point-of-sale terminals, alarm systems, televisions, traffic controls, printers, lights, fax machines, copiers, HVAC controls, PBX machines, etc., either intelligent or more intelligent than they are currently. The mission statement for this particular group is to integrate over 30 million new intelligent devices into the workplace and the home with Novell networks by 1997.more » Computing trends have progressed from mainframes in the 1960s to keys, security systems, and airplanes in the year 2000. In fact, the new Boeing 777 has NEST in it, and it also has network servers on board. NEST enables the embedded network with the ability to put intelligence into devices. This gives one more control of the devices from wherever one is. For example, the pharmaceutical industry could use NEST to coordinate what the consumer is buying, what is in the warehouse, what the manufacturing plant is tooled for, and so on. Through NEST technology, the pharmaceutical industry now uses a camera that takes pictures of the pills. It can see whether an {open_quotes}overdose{close_quotes} or {open_quotes}underdose{close_quotes} of a particular type of pill is being manufactured. The plant can be shut down and corrections made immediately.« less
Parsons, Thomas D; McMahan, Timothy; Kane, Robert
2018-01-01
Clinical neuropsychologists have long underutilized computer technologies for neuropsychological assessment. Given the rapid advances in technology (e.g. virtual reality; tablets; iPhones) and the increased accessibility in the past decade, there is an on-going need to identify optimal specifications for advanced technologies while minimizing potential sources of error. Herein, we discuss concerns raised by a joint American Academy of Clinical Neuropsychology/National Academy of Neuropsychology position paper. Moreover, we proffer parameters for the development and use of advanced technologies in neuropsychological assessments. We aim to first describe software and hardware configurations that can impact a computerized neuropsychological assessment. This is followed by a description of best practices for developers and practicing neuropsychologists to minimize error in neuropsychological assessments using advanced technologies. We also discuss the relevance of weighing potential computer error in light of possible errors associated with traditional testing. Throughout there is an emphasis on the need for developers to provide bench test results for their software's performance on various devices and minimum specifications (documented in manuals) for the hardware (e.g. computer, monitor, input devices) in the neuropsychologist's practice. Advances in computerized assessment platforms offer both opportunities and challenges. The challenges can appear daunting but are a manageable and require informed consumers who can appreciate the issues and ask pertinent questions in evaluating their options.
Computer Access. Tech Use Guide: Using Computer Technology.
ERIC Educational Resources Information Center
Council for Exceptional Children, Reston, VA. Center for Special Education Technology.
One of nine brief guides for special educators on using computer technology, this guide focuses on access including adaptations in input devices, output devices, and computer interfaces. Low technology devices include "no-technology" devices (usually modifications to existing devices), simple switches, and multiple switches. High technology input…
The rise of organic electrode materials for energy storage.
Schon, Tyler B; McAllister, Bryony T; Li, Peng-Fei; Seferos, Dwight S
2016-11-07
Organic electrode materials are very attractive for electrochemical energy storage devices because they can be flexible, lightweight, low cost, benign to the environment, and used in a variety of device architectures. They are not mere alternatives to more traditional energy storage materials, rather, they have the potential to lead to disruptive technologies. Although organic electrode materials for energy storage have progressed in recent years, there are still significant challenges to overcome before reaching large-scale commercialization. This review provides an overview of energy storage systems as a whole, the metrics that are used to quantify the performance of electrodes, recent strategies that have been investigated to overcome the challenges associated with organic electrode materials, and the use of computational chemistry to design and study new materials and their properties. Design strategies are examined to overcome issues with capacity/capacitance, device voltage, rate capability, and cycling stability in order to guide future work in the area. The use of low cost materials is highlighted as a direction towards commercial realization.
TOKEN: Trustable Keystroke-Based Authentication for Web-Based Applications on Smartphones
NASA Astrophysics Data System (ADS)
Nauman, Mohammad; Ali, Tamleek
Smartphones are increasingly being used to store personal information as well as to access sensitive data from the Internet and the cloud. Establishment of the identity of a user requesting information from smartphones is a prerequisite for secure systems in such scenarios. In the past, keystroke-based user identification has been successfully deployed on production-level mobile devices to mitigate the risks associated with naïve username/password based authentication. However, these approaches have two major limitations: they are not applicable to services where authentication occurs outside the domain of the mobile device - such as web-based services; and they often overly tax the limited computational capabilities of mobile devices. In this paper, we propose a protocol for keystroke dynamics analysis which allows web-based applications to make use of remote attestation and delegated keystroke analysis. The end result is an efficient keystroke-based user identification mechanism that strengthens traditional password protected services while mitigating the risks of user profiling by collaborating malicious web services.
Novel shadowless imaging for eyes-like diagnosis in vivo
NASA Astrophysics Data System (ADS)
Xue, Ning; Jiang, Kai; Li, Qi; Zhang, Lili; Ma, Li; Huang, Guoliang
2016-10-01
Eyes-like diagnosis was a traditional Chinese medicine method for many diseases, such as chronic gastritis, diabetes, hypertension etc. There was a close relationship between viscera and eyes-like. White-Eye was divided into fourteen sections, which corresponded to different viscera, so eyes-like was the reflection of status of viscera, in another words, it was an epitome of viscera health condition. In this paper, we developed a novel shadowless imaging technology and system for eyes-like diagnosis in vivo, which consisted of an optical shadowless imaging device for capturing and saving images of patients' eyes-like, and a computer linked to the device for image processing. A character matching algorithm was developed to extract the character of white-eye in corresponding sections of eyes-like images taken by the optical shadowless imaging device, according to the character of eyes-like, whether there were viscera diseases could be learned. A series of assays were carried out, and the results verified the feasibility of eyes-like diagnosis technique.
21 CFR 868.1730 - Oxygen uptake computer.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Oxygen uptake computer. 868.1730 Section 868.1730...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1730 Oxygen uptake computer. (a) Identification. An oxygen uptake computer is a device intended to compute the amount of oxygen consumed by a...
21 CFR 868.1730 - Oxygen uptake computer.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Oxygen uptake computer. 868.1730 Section 868.1730...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1730 Oxygen uptake computer. (a) Identification. An oxygen uptake computer is a device intended to compute the amount of oxygen consumed by a...
21 CFR 868.1730 - Oxygen uptake computer.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Oxygen uptake computer. 868.1730 Section 868.1730...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1730 Oxygen uptake computer. (a) Identification. An oxygen uptake computer is a device intended to compute the amount of oxygen consumed by a...
21 CFR 868.1730 - Oxygen uptake computer.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Oxygen uptake computer. 868.1730 Section 868.1730...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1730 Oxygen uptake computer. (a) Identification. An oxygen uptake computer is a device intended to compute the amount of oxygen consumed by a...
21 CFR 868.1730 - Oxygen uptake computer.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Oxygen uptake computer. 868.1730 Section 868.1730...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1730 Oxygen uptake computer. (a) Identification. An oxygen uptake computer is a device intended to compute the amount of oxygen consumed by a...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-02
... INTERNATIONAL TRADE COMMISSION [Inv. No. 337-TA-841] Certain Computers and Computer Peripheral... after importation of certain computers and computer peripheral devices and components thereof and... computers and computer peripheral devices and components thereof and products containing the same that...
Raffaelli, Marcela; Armstrong, Jessica; Tran, Steve P; Griffith, Aisha N; Walker, Kathrin; Gutierrez, Vanessa
2016-06-01
Computer-assisted data collection offers advantages over traditional paper and pencil measures; however, little guidance is available regarding the logistics of conducting computer-assisted data collection with adolescents in group settings. To address this gap, we draw on our experiences conducting a multi-site longitudinal study of adolescent development. Structured questionnaires programmed on laptop computers using Audio Computer Assisted Self-Interviewing (ACASI) were administered to groups of adolescents in community-based and afterschool programs. Although implementing ACASI required additional work before entering the field, we benefited from reduced data processing time, high data quality, and high levels of youth motivation. Preliminary findings from an ethnically diverse sample of 265 youth indicate favorable perceptions of using ACASI. Using our experiences as a case study, we provide recommendations on selecting an appropriate data collection device (including hardware and software), preparing and testing the ACASI, conducting data collection in the field, and managing data. Copyright © 2016 The Foundation for Professionals in Services for Adolescents. Published by Elsevier Ltd. All rights reserved.
Miao, Yipu; Merz, Kenneth M
2015-04-14
We present an efficient implementation of ab initio self-consistent field (SCF) energy and gradient calculations that run on Compute Unified Device Architecture (CUDA) enabled graphical processing units (GPUs) using recurrence relations. We first discuss the machine-generated code that calculates the electron-repulsion integrals (ERIs) for different ERI types. Next we describe the porting of the SCF gradient calculation to GPUs, which results in an acceleration of the computation of the first-order derivative of the ERIs. However, only s, p, and d ERIs and s and p derivatives could be executed simultaneously on GPUs using the current version of CUDA and generation of NVidia GPUs using a previously described algorithm [Miao and Merz J. Chem. Theory Comput. 2013, 9, 965-976.]. Hence, we developed an algorithm to compute f type ERIs and d type ERI derivatives on GPUs. Our benchmarks shows the performance GPU enable ERI and ERI derivative computation yielded speedups of 10-18 times relative to traditional CPU execution. An accuracy analysis using double-precision calculations demonstrates that the overall accuracy is satisfactory for most applications.
A GPU-paralleled implementation of an enhanced face recognition algorithm
NASA Astrophysics Data System (ADS)
Chen, Hao; Liu, Xiyang; Shao, Shuai; Zan, Jiguo
2013-03-01
Face recognition algorithm based on compressed sensing and sparse representation is hotly argued in these years. The scheme of this algorithm increases recognition rate as well as anti-noise capability. However, the computational cost is expensive and has become a main restricting factor for real world applications. In this paper, we introduce a GPU-accelerated hybrid variant of face recognition algorithm named parallel face recognition algorithm (pFRA). We describe here how to carry out parallel optimization design to take full advantage of many-core structure of a GPU. The pFRA is tested and compared with several other implementations under different data sample size. Finally, Our pFRA, implemented with NVIDIA GPU and Computer Unified Device Architecture (CUDA) programming model, achieves a significant speedup over the traditional CPU implementations.
Gladden, Matthew E.
2017-01-01
Previous works exploring the challenges of ensuring information security for neuroprosthetic devices and their users have typically built on the traditional InfoSec concept of the “CIA Triad” of confidentiality, integrity, and availability. However, we argue that the CIA Triad provides an increasingly inadequate foundation for envisioning information security for neuroprostheses, insofar as it presumes that (1) any computational systems to be secured are merely instruments for expressing their human users' agency, and (2) computing devices are conceptually and practically separable from their users. Drawing on contemporary philosophy of technology and philosophical and critical posthumanist analysis, we contend that futuristic neuroprostheses could conceivably violate these basic InfoSec presumptions, insofar as (1) they may alter or supplant their users' biological agency rather than simply supporting it, and (2) they may structurally and functionally fuse with their users to create qualitatively novel “posthumanized” human-machine systems that cannot be secured as though they were conventional computing devices. Simultaneously, it is noted that many of the goals that have been proposed for future neuroprostheses by InfoSec researchers (e.g., relating to aesthetics, human dignity, authenticity, free will, and cultural sensitivity) fall outside the scope of InfoSec as it has historically been understood and touch on a wide range of ethical, aesthetic, physical, metaphysical, psychological, economic, and social values. We suggest that the field of axiology can provide useful frameworks for more effectively identifying, analyzing, and prioritizing such diverse types of values and goods that can (and should) be pursued through InfoSec practices for futuristic neuroprostheses. PMID:29163010
Gladden, Matthew E
2017-01-01
Previous works exploring the challenges of ensuring information security for neuroprosthetic devices and their users have typically built on the traditional InfoSec concept of the "CIA Triad" of confidentiality, integrity, and availability. However, we argue that the CIA Triad provides an increasingly inadequate foundation for envisioning information security for neuroprostheses, insofar as it presumes that (1) any computational systems to be secured are merely instruments for expressing their human users' agency, and (2) computing devices are conceptually and practically separable from their users. Drawing on contemporary philosophy of technology and philosophical and critical posthumanist analysis, we contend that futuristic neuroprostheses could conceivably violate these basic InfoSec presumptions, insofar as (1) they may alter or supplant their users' biological agency rather than simply supporting it, and (2) they may structurally and functionally fuse with their users to create qualitatively novel "posthumanized" human-machine systems that cannot be secured as though they were conventional computing devices. Simultaneously, it is noted that many of the goals that have been proposed for future neuroprostheses by InfoSec researchers (e.g., relating to aesthetics, human dignity, authenticity, free will, and cultural sensitivity) fall outside the scope of InfoSec as it has historically been understood and touch on a wide range of ethical, aesthetic, physical, metaphysical, psychological, economic, and social values. We suggest that the field of axiology can provide useful frameworks for more effectively identifying, analyzing, and prioritizing such diverse types of values and goods that can (and should) be pursued through InfoSec practices for futuristic neuroprostheses.
A NANO enhancement to Moore's law
NASA Astrophysics Data System (ADS)
Wu, Jerry; Shen, Yin-Lin; Reinhardt, Kitt; Szu, Harold
2012-06-01
In the past 46 years, Intel Moore observed an exponential doubling in the number of transistors in every 18 months through the size reduction of individual transistor components since 1965. In this paper, we are exploring the nanotechnology impact upon the Law. Since we cannot break down the atomic size barrier, the fact implies a fundamental size limit at the atomic or Nanotechnology scale. This means, no more simple 18 month doubling as in Moore's Law, but other forms of transistor doubling may happen at a different slope in new directions. We are particularly interested in the Nano enhancement area. (i) 3-D: If the progress in shrinking the in-plane dimensions (2D) is to slow down, vertical integration (3D) can help increasing the areal device transistor density and keep us on the modified Moore's Law curve including the 3rd dimension. As the devices continue to shrink further into the 20 to 30 nm range, the consideration of thermal properties and transport in such nanoscale devices becomes increasingly important. (ii) Carbon Computing: Instead of traditional Transistors, the other types of transistors material are rapidly developed in Laboratories Worldwide, e.g. IBM Spintronics bandgap material and Samsung Nano-storage material, HD display Nanotechnology, which are modifying the classical Moore's Law. We shall consider the overall limitation of phonon engineering, fundamental information unit 'Qubyte' in quantum computing, Nano/Micro Electrical Mechanical System (NEMS), Carbon NanoTubes (CNTs), single layer Graphemes, single strip Nano-Ribbons, etc., and their variable degree of fabrication maturities for the computing and information processing applications.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-26
... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-745] Certain Wireless Communication Devices, Portable Music and Data Processing Devices, Computers and Components Thereof; Commission Decision... importation of certain wireless communication devices, portable music and data processing devices, computers...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-25
... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-745] Certain Wireless Communication Devices, Portable Music and Data Processing Devices, Computers and Components Thereof; Commission Decision... importation of certain wireless communication devices, portable music and data processing devices, computers...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-30
... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-745] Certain Wireless Communication Devices, Portable Music and Data Processing Devices, Computers and Components Thereof; Notice of... communication devices, portable music and data processing devices, computers and components thereof by reason of...
Pallavicini, Federica; Pedroli, Elisa; Serino, Silvia; Dell'Isola, Andrea; Cipresso, Pietro; Cisari, Carlo; Riva, Giuseppe
2015-01-01
Unilateral Spatial Neglect, or neglect, is a common behavioral syndrome in patients following unilateral brain damage, such as stroke. In recent years, new technologies, such as computer-based tools and virtual reality have been used in order to solve some limitations of the traditional neglect evaluation. Within this perspective, also mobile devices such as tablets seems to be promising tools, being able to support interactive virtual environments and, at the same time, allowing to easily reproduce traditional paper-and-pencil test. In this context, the aim of our study was to investigate the potentiality of a new mobile application (Neglect App) designed and developed for tablet (iPad) for screening neglect symptoms. To address this objective, we divided a sample of 16 right-damaged patients according to the presence or absence of neglect and we administered assessment test in their traditional and Neglect App version. Results showed that the cancellation tests developed within Neglect App were equally effective to traditional paper-and-pencil tests (Line cancellation test and Star Cancellation test) in detecting neglect symptoms. Secondly, according to our results, the Neglect App Card Dealing task was more sensitive in detecting neglect symptoms than traditional functional task. Globally, results gives preliminary evidences supporting the feasibility of Neglect App for the screening of USN symptoms.
21 CFR 870.1425 - Programmable diagnostic computer.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Programmable diagnostic computer. 870.1425 Section... (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Diagnostic Devices § 870.1425 Programmable diagnostic computer. (a) Identification. A programmable diagnostic computer is a device that can be...
21 CFR 870.1425 - Programmable diagnostic computer.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Programmable diagnostic computer. 870.1425 Section... (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Diagnostic Devices § 870.1425 Programmable diagnostic computer. (a) Identification. A programmable diagnostic computer is a device that can be...
21 CFR 870.1425 - Programmable diagnostic computer.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Programmable diagnostic computer. 870.1425 Section... (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Diagnostic Devices § 870.1425 Programmable diagnostic computer. (a) Identification. A programmable diagnostic computer is a device that can be...
21 CFR 870.1425 - Programmable diagnostic computer.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Programmable diagnostic computer. 870.1425 Section... (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Diagnostic Devices § 870.1425 Programmable diagnostic computer. (a) Identification. A programmable diagnostic computer is a device that can be...
21 CFR 870.1425 - Programmable diagnostic computer.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Programmable diagnostic computer. 870.1425 Section... (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Diagnostic Devices § 870.1425 Programmable diagnostic computer. (a) Identification. A programmable diagnostic computer is a device that can be...
Statistical fingerprinting for malware detection and classification
Prowell, Stacy J.; Rathgeb, Christopher T.
2015-09-15
A system detects malware in a computing architecture with an unknown pedigree. The system includes a first computing device having a known pedigree and operating free of malware. The first computing device executes a series of instrumented functions that, when executed, provide a statistical baseline that is representative of the time it takes the software application to run on a computing device having a known pedigree. A second computing device executes a second series of instrumented functions that, when executed, provides an actual time that is representative of the time the known software application runs on the second computing device. The system detects malware when there is a difference in execution times between the first and the second computing devices.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-03
...] Guidances for Industry and Food and Drug Administration Staff: Computer-Assisted Detection Devices Applied... Clinical Performance Assessment: Considerations for Computer-Assisted Detection Devices Applied to... guidance, entitled ``Computer-Assisted Detection Devices Applied to Radiology Images and Radiology Device...
Ludwig, Simone A; Kong, Jun
2017-12-01
Innovative methods and new technologies have significantly improved the quality of our daily life. However, disabled people, for example those that cannot use their arms and legs anymore, often cannot benefit from these developments, since they cannot use their hands to interact with traditional interaction methods (such as mouse or keyboard) to communicate with a computer system. A brain-computer interface (BCI) system allows such a disabled person to control an external device via brain waves. Past research mostly dealt with static interfaces, which limit users to a stationary location. However, since we are living in a world that is highly mobile, this paper evaluates a speller interface on a mobile phone used in a moving condition. The spelling experiments were conducted with 14 able-bodied subjects using visual flashes as the stimulus to spell 47 alphanumeric characters (38 letters and 9 numbers). This data was then used for the classification experiments. In par- ticular, two research directions are pursued. The first investigates the impact of different classification algorithms, and the second direction looks at the channel configuration, i.e., which channels are most beneficial in terms of achieving the highest classification accuracy. The evaluation results indicate that the Bayesian Linear Discriminant Analysis algorithm achieves the best accuracy. Also, the findings of the investigation on the channel configuration, which can potentially reduce the amount of data processing on a mobile device with limited computing capacity, is especially useful in mobile BCIs.
An Integrated Analysis-Test Approach
NASA Technical Reports Server (NTRS)
Kaufman, Daniel
2003-01-01
This viewgraph presentation provides an overview of a project to develop a computer program which integrates data analysis and test procedures. The software application aims to propose a new perspective to traditional mechanical analysis and test procedures and to integrate pre-test and test analysis calculation methods. The program also should also be able to be used in portable devices and allows for the 'quasi-real time' analysis of data sent by electronic means. Test methods reviewed during this presentation include: shaker swept sine and random tests, shaker shock mode tests, shaker base driven model survey tests and acoustic tests.
Three Traditions of Computing: What Educators Should Know
ERIC Educational Resources Information Center
Tedre, Matti; Sutinen, Erkki
2008-01-01
Educators in the computing fields are often familiar with the characterization of computing as a combination of theoretical, scientific, and engineering traditions. That distinction is often used to guide the work and disciplinary self-identity of computing professionals. But the distinction is, by no means, an easy one. The three traditions of…
Federal Register 2010, 2011, 2012, 2013, 2014
2010-02-24
... Communications and Computer Devices and Components Thereof; Notice of Investigation AGENCY: U.S. International... States after importation of certain mobile communications and computer devices and components thereof by... importation of certain mobile communications or computer devices or components thereof that infringe one or...
NASA Astrophysics Data System (ADS)
Wong, Erwin
2000-03-01
Traditional methods of linear based imaging limits the viewer to a single fixed-point perspective. By means of a single lens multiple perspective mirror system, a 360-degree representation of the area around the camera is reconstructed. This reconstruction is used overcome the limitations of a traditional camera by providing the viewer with many different perspectives. By constructing the mirror into a hemispherical surface with multiple focal lengths at various diameters on the mirror, and by placing a parabolic mirror overhead, a stereoscopic image can be extracted from the image captured by a high-resolution camera placed beneath the mirror. Image extraction and correction is made by computer processing of the image obtained by camera; the image present up to five distinguishable different viewpoints that a computer can extrapolate pseudo- perspective data from. Geometric and depth for field can be extrapolated via comparison and isolation of objects within a virtual scene post processed by the computer. Combining data with scene rendering software provides the viewer with the ability to choose a desired viewing position, multiple dynamic perspectives, and virtually constructed perspectives based on minimal existing data. An examination into the workings of the mirror relay system is provided, including possible image extrapolation and correctional methods. Generation of data and virtual interpolated and constructed data is also mentioned.
Achieving femoral artery hemostasis after cardiac catheterization: a comparison of methods.
Schickel, S I; Adkisson, P; Miracle, V; Cronin, S N
1999-11-01
Cardiac catheterization is a common procedure that involves the introduction of a small sheath (5F-8F) into the femoral artery for insertion of other diagnostic catheters. After cardiac catheterization, local compression of the femoral artery is required to prevent bleeding and to achieve hemostasis. Traditional methods of achieving hemostasis require significant time and close supervision by medical personnel and can contribute to patients' discomfort. VasoSeal is a recently developed device that delivers absorbable collagen into the supra-arterial space to promote hemostasis. To compare outcomes between patients receiving a collagen plug and patients in whom a traditional method of achieving hemostasis was used after diagnostic cardiac catheterization. An outcomes tracking tool was used to analyze the medical records of 95 patients in whom a traditional method was used (traditional group) and 81 patients in whom VasoSeal was used (device group) to achieve hemostasis. Complications at the femoral access site, patients' satisfaction, and times to hemostasis, ambulation, and discharge were compared. Hematomas of 6-cm diameter occurred in 5.3% of the traditional group; no complications occurred in the device group. The device group also achieved hemostasis faster and had earlier ambulation (P < .001). Patients in the device group were discharged a mean of 5 hours sooner than patients in the traditional group (P < .05). No significant differences were found in patients' satisfaction. VasoSeal is a safe and effective method of achieving hemostasis after cardiac catheterization that can hasten time to hemostasis, ambulation, and discharge.
2017-08-08
Usability Studies In Virtual And Traditional Computer Aided Design Environments For Fault Identification Dr. Syed Adeel Ahmed, Xavier University...virtual environment with wand interfaces compared directly with a workstation non-stereoscopic traditional CAD interface with keyboard and mouse. In...the differences in interaction when compared with traditional human computer interfaces. This paper provides analysis via usability study methods
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-14
... Communications and Computer Devices and Components Thereof; Notice of Commission Determination Not To Review an... in its entirety Inv. No. 337-TA-704, Certain Mobile Communications and Computer Devices and... importation of certain mobile communications and computer devices and components thereof by reason of...
Wijerathne, Buddhika; Rathnayake, Geetha
2013-01-01
Background Most universities currently practice traditional practical spot tests to evaluate students. However, traditional methods have several disadvantages. Computer-based examination techniques are becoming more popular among medical educators worldwide. Therefore incorporating the computer interface in practical spot testing is a novel concept that may minimize the shortcomings of traditional methods. Assessing students’ attitudes and perspectives is vital in understanding how students perceive the novel method. Methods One hundred and sixty medical students were randomly allocated to either a computer-based spot test (n=80) or a traditional spot test (n=80). The students rated their attitudes and perspectives regarding the spot test method soon after the test. The results were described comparatively. Results Students had higher positive attitudes towards the computer-based practical spot test compared to the traditional spot test. Their recommendations to introduce the novel practical spot test method for future exams and to other universities were statistically significantly higher. Conclusions The computer-based practical spot test is viewed as more acceptable to students than the traditional spot test. PMID:26451213
Usability of a Low-Cost Head Tracking Computer Access Method following Stroke.
Mah, Jasmine; Jutai, Jeffrey W; Finestone, Hillel; Mckee, Hilary; Carter, Melanie
2015-01-01
Assistive technology devices for computer access can facilitate social reintegration and promote independence for people who have had a stroke. This work describes the exploration of the usefulness and acceptability of a new computer access device called the Nouse™ (Nose-as-mouse). The device uses standard webcam and video recognition algorithms to map the movement of the user's nose to a computer cursor, thereby allowing hands-free computer operation. Ten participants receiving in- or outpatient stroke rehabilitation completed a series of standardized and everyday computer tasks using the Nouse™ and then completed a device usability questionnaire. Task completion rates were high (90%) for computer activities only in the absence of time constraints. Most of the participants were satisfied with ease of use (70%) and liked using the Nouse™ (60%), indicating they could resume most of their usual computer activities apart from word-processing using the device. The findings suggest that hands-free computer access devices like the Nouse™ may be an option for people who experience upper motor impairment caused by stroke and are highly motivated to resume personal computing. More research is necessary to further evaluate the effectiveness of this technology, especially in relation to other computer access assistive technology devices.
A Method for Rapid Measurement of Contrast Sensitivity on Mobile Touch-Screens
NASA Technical Reports Server (NTRS)
Mulligan, Jeffrey B.
2016-01-01
Touch-screen displays in cell phones and tablet computers are now pervasive, making them an attractive option for vision testing outside of the laboratory or clinic. Here we de- scribe a novel method in which subjects use a finger swipe to indicate the transition from visible to invisible on a grating which is swept in both contrast and frequency. Because a single image can be swiped in about a second, it is practical to use a series of images to zoom in on particular ranges of contrast or frequency, both to increase the accuracy of the measurements and to obtain an estimate of the reliability of the subject. Sensitivities to chromatic and spatio-temporal modulations are easily measured using the same method. A proto- type has been developed for Apple Computer's iPad/iPod/iPhone family of devices, implemented using an open-source scripting environment known as QuIP (QUick Image Processing, http://hsi.arc.nasa.gov/groups/scanpath/research.php). Preliminary data show good agreement with estimates obtained from traditional psychophysical methods as well as newer rapid estimation techniques. Issues relating to device calibration are also discussed.
Density-Functional Theory description of transport in the single-electron transistor
NASA Astrophysics Data System (ADS)
Zawadzki, Krissia; Oliveira, Luiz N.
The Kondo effect governs the low-temperature transport properties of the single electron transistor (SET), a quantum dot bridging two electron gases. In the weak coupling limit, for odd dot occupation, the gate-potential profile of the conductance approaches a step, known as the Kondo plateau. The plateau and other SET properties being well understood on the basis of the Anderson model, more realistic (i. e., DFT) descriptions of the device are now desired. This poses a challenge, since the SET is strongly correlated. DFT computations that reproduce the conductance plateau have been reported, e. g., by, which rely on the exact functional provided by the Bethe-Ansatz solution for the Anderson model. Here, sticking to DFT tradition, we employ a functional derived from a homogeneous system: the parametrization of the Lieb-Wu solution for the Hubbard model due to. Our computations reproduce the plateau and yield other results in accurate agreement with the exact diagonalization of the Anderson Hamiltonian. The prospects for extensions to realistic descriptions of two-dimensional nanostructured devices will be discussed. Luiz N. Oliveira thanks CNPq (312658/2013-3) and Krissia Zawadzki thanks CNPq (140703/2014-4) for financial support.
2012-01-01
Background The radiation field on most megavoltage radiation therapy units are shown by a light field projected through the collimator by a light source mounted inside the collimator. The light field is traditionally used for patient alignment. Hence it is imperative that the light field is congruent with the radiation field. Method A simple quality assurance tool has been designed for rapid and simple test of the light field and radiation field using electronic portal images device (EPID) or computed radiography (CR). We tested this QA tool using Varian PortalVision and Elekta iViewGT EPID systems and Kodak CR system. Results Both the single and double exposure techniques were evaluated, with double exposure technique providing a better visualization of the light-radiation field markers. The light and radiation congruency could be detected within 1 mm. This will satisfy the American Association of Physicists in Medicine task group report number 142 recommendation of 2 mm tolerance. Conclusion The QA tool can be used with either an EPID or CR to provide a simple and rapid method to verify light and radiation field congruence. PMID:22452821
Power throttling of collections of computing elements
Bellofatto, Ralph E [Ridgefield, CT; Coteus, Paul W [Yorktown Heights, NY; Crumley, Paul G [Yorktown Heights, NY; Gara, Alan G [Mount Kidsco, NY; Giampapa, Mark E [Irvington, NY; Gooding,; Thomas, M [Rochester, MN; Haring, Rudolf A [Cortlandt Manor, NY; Megerian, Mark G [Rochester, MN; Ohmacht, Martin [Yorktown Heights, NY; Reed, Don D [Mantorville, MN; Swetz, Richard A [Mahopac, NY; Takken, Todd [Brewster, NY
2011-08-16
An apparatus and method for controlling power usage in a computer includes a plurality of computers communicating with a local control device, and a power source supplying power to the local control device and the computer. A plurality of sensors communicate with the computer for ascertaining power usage of the computer, and a system control device communicates with the computer for controlling power usage of the computer.
Using SRAM Based FPGAs for Power-Aware High Performance Wireless Sensor Networks
Valverde, Juan; Otero, Andres; Lopez, Miguel; Portilla, Jorge; de la Torre, Eduardo; Riesgo, Teresa
2012-01-01
While for years traditional wireless sensor nodes have been based on ultra-low power microcontrollers with sufficient but limited computing power, the complexity and number of tasks of today’s applications are constantly increasing. Increasing the node duty cycle is not feasible in all cases, so in many cases more computing power is required. This extra computing power may be achieved by either more powerful microcontrollers, though more power consumption or, in general, any solution capable of accelerating task execution. At this point, the use of hardware based, and in particular FPGA solutions, might appear as a candidate technology, since though power use is higher compared with lower power devices, execution time is reduced, so energy could be reduced overall. In order to demonstrate this, an innovative WSN node architecture is proposed. This architecture is based on a high performance high capacity state-of-the-art FPGA, which combines the advantages of the intrinsic acceleration provided by the parallelism of hardware devices, the use of partial reconfiguration capabilities, as well as a careful power-aware management system, to show that energy savings for certain higher-end applications can be achieved. Finally, comprehensive tests have been done to validate the platform in terms of performance and power consumption, to proof that better energy efficiency compared to processor based solutions can be achieved, for instance, when encryption is imposed by the application requirements. PMID:22736971
Using SRAM based FPGAs for power-aware high performance wireless sensor networks.
Valverde, Juan; Otero, Andres; Lopez, Miguel; Portilla, Jorge; de la Torre, Eduardo; Riesgo, Teresa
2012-01-01
While for years traditional wireless sensor nodes have been based on ultra-low power microcontrollers with sufficient but limited computing power, the complexity and number of tasks of today's applications are constantly increasing. Increasing the node duty cycle is not feasible in all cases, so in many cases more computing power is required. This extra computing power may be achieved by either more powerful microcontrollers, though more power consumption or, in general, any solution capable of accelerating task execution. At this point, the use of hardware based, and in particular FPGA solutions, might appear as a candidate technology, since though power use is higher compared with lower power devices, execution time is reduced, so energy could be reduced overall. In order to demonstrate this, an innovative WSN node architecture is proposed. This architecture is based on a high performance high capacity state-of-the-art FPGA, which combines the advantages of the intrinsic acceleration provided by the parallelism of hardware devices, the use of partial reconfiguration capabilities, as well as a careful power-aware management system, to show that energy savings for certain higher-end applications can be achieved. Finally, comprehensive tests have been done to validate the platform in terms of performance and power consumption, to proof that better energy efficiency compared to processor based solutions can be achieved, for instance, when encryption is imposed by the application requirements.
Bipolar electrode selection for a motor imagery based brain computer interface
NASA Astrophysics Data System (ADS)
Lou, Bin; Hong, Bo; Gao, Xiaorong; Gao, Shangkai
2008-09-01
A motor imagery based brain-computer interface (BCI) provides a non-muscular communication channel that enables people with paralysis to control external devices using their motor imagination. Reducing the number of electrodes is critical to improving the portability and practicability of the BCI system. A novel method is proposed to reduce the number of electrodes to a total of four by finding the optimal positions of two bipolar electrodes. Independent component analysis (ICA) is applied to find the source components of mu and alpha rhythms, and optimal electrodes are chosen by comparing the projection weights of sources on each channel. The results of eight subjects demonstrate the better classification performance of the optimal layout compared with traditional layouts, and the stability of this optimal layout over a one week interval was further verified.
The future: biomarkers, biosensors, neuroinformatics, and e-neuropsychiatry.
Lowe, Christopher R
2011-01-01
The emergence of molecular biomarkers for psychological, psychiatric, and neurodegenerative disorders is beginning to change current diagnostic paradigms for this debilitating family of mental illnesses. The development of new genomic, proteomic, and metabolomic tools has created the prospect of sensitive and specific biochemical tests to replace traditional pen-and-paper questionnaires. In the future, the realization of biosensor technologies, point-of-care testing, and the fusion of clinical biomarker data, electroencephalogram, and MRI data with the patient's past medical history, biopatterns, and prognosis may create personalized bioprofiles or fingerprints for brain disorders. Further, the application of mobile communications technology and grid computing to support data-, computation- and knowledge-based tasks will assist disease prediction, diagnosis, prognosis, and compliance monitoring. It is anticipated that, ultimately, mobile devices could become the next generation of personalized pharmacies. Copyright © 2011 Elsevier Inc. All rights reserved.
Personal mobility and manipulation using robotics, artificial intelligence and advanced control.
Cooper, Rory A; Ding, Dan; Grindle, Garrett G; Wang, Hongwu
2007-01-01
Recent advancements of technologies, including computation, robotics, machine learning, communication, and miniaturization technologies, bring us closer to futuristic visions of compassionate intelligent devices. The missing element is a basic understanding of how to relate human functions (physiological, physical, and cognitive) to the design of intelligent devices and systems that aid and interact with people. Our stakeholder and clinician consultants identified a number of mobility barriers that have been intransigent to traditional approaches. The most important physical obstacles are stairs, steps, curbs, doorways (doors), rough/uneven surfaces, weather hazards (snow, ice), crowded/cluttered spaces, and confined spaces. Focus group participants suggested a number of ways to make interaction simpler, including natural language interfaces such as the ability to say "I want a drink", a library of high level commands (open a door, park the wheelchair, ...), and a touchscreen interface with images so the user could point and use other gestures.
Implementation of a low-cost mobile devices to support medical diagnosis.
García Sánchez, Carlos; Botella Juan, Guillermo; Ayuso Márquez, Fermín; González Rodríguez, Diego; Prieto-Matías, Manuel; Tirado Fernández, Francisco
2013-01-01
Medical imaging has become an absolutely essential diagnostic tool for clinical practices; at present, pathologies can be detected with an earliness never before known. Its use has not only been relegated to the field of radiology but also, increasingly, to computer-based imaging processes prior to surgery. Motion analysis, in particular, plays an important role in analyzing activities or behaviors of live objects in medicine. This short paper presents several low-cost hardware implementation approaches for the new generation of tablets and/or smartphones for estimating motion compensation and segmentation in medical images. These systems have been optimized for breast cancer diagnosis using magnetic resonance imaging technology with several advantages over traditional X-ray mammography, for example, obtaining patient information during a short period. This paper also addresses the challenge of offering a medical tool that runs on widespread portable devices, both on tablets and/or smartphones to aid in patient diagnostics.
An environment for representing and using medical checklists on mobile devices.
Losiouk, Eleonora; Lanzola, Giordano; Visetti, Enrico; Quaglini, Silvana
2015-01-01
Checklists have been recently introduced in the medical practice playing the role of summarized guidelines, streamlined for rapid consultations. However, there are still some barriers preventing their widespread diffusion. Those concern the representation, dissemination and update of their underlying knowledge, as well as the means currently adopted for their actual use, that is still mostly paper-based. In this paper we propose a new platform for the implementation and use of checklists. First, an editor supports domain experts in porting the checklist from the traditional paper-based format into an electronic one. Then, an application allows the distribution and usage of checklists on portable devices such as smartphones and tablets, exploiting their additional features in comparison with those made available by Personal Computers. The platform will be illustrated through some examples designed to support volunteers and paramedic staff in dealing with emergency situations.
Implementation of a Low-Cost Mobile Devices to Support Medical Diagnosis
García Sánchez, Carlos; Botella Juan, Guillermo; Ayuso Márquez, Fermín; González Rodríguez, Diego; Prieto-Matías, Manuel; Tirado Fernández, Francisco
2013-01-01
Medical imaging has become an absolutely essential diagnostic tool for clinical practices; at present, pathologies can be detected with an earliness never before known. Its use has not only been relegated to the field of radiology but also, increasingly, to computer-based imaging processes prior to surgery. Motion analysis, in particular, plays an important role in analyzing activities or behaviors of live objects in medicine. This short paper presents several low-cost hardware implementation approaches for the new generation of tablets and/or smartphones for estimating motion compensation and segmentation in medical images. These systems have been optimized for breast cancer diagnosis using magnetic resonance imaging technology with several advantages over traditional X-ray mammography, for example, obtaining patient information during a short period. This paper also addresses the challenge of offering a medical tool that runs on widespread portable devices, both on tablets and/or smartphones to aid in patient diagnostics. PMID:24489600
Tsai, Ming-Yen; Chen, Shih-Yu; Lin, Chung-Chun
2017-04-01
The Meridian Energy Analysis Device is currently a popular tool in the scientific research of meridian electrophysiology. In this field, it is generally believed that measuring the electrical conductivity of meridians provides information about the balance of bioenergy or Qi-blood in the body. PubMed database based on some original articles from 1956 to 2014 and the authoŕs clinical experience. In this short communication, we provide clinical examples of Meridian Energy Analysis Device application, especially in the field of traditional Chinese medicine, discuss the reliability of the measurements, and put the values obtained into context by considering items of considerable variability and by estimating sample size. The Meridian Energy Analysis Device is making a valuable contribution to the diagnosis of Qi-blood dysfunction. It can be assessed from short-term and long-term meridian bioenergy recordings. It is one of the few methods that allow outpatient traditional Chinese medicine diagnosis, monitoring the progress, therapeutic effect and evaluation of patient prognosis. The holistic approaches underlying the practice of traditional Chinese medicine and new trends in modern medicine toward the use of objective instruments require in-depth knowledge of the mechanisms of meridian energy, and the Meridian Energy Analysis Device can feasibly be used for understanding and interpreting traditional Chinese medicine theory, especially in view of its expansion in Western countries.
Kohno, R; Hotta, K; Nishioka, S; Matsubara, K; Tansho, R; Suzuki, T
2011-11-21
We implemented the simplified Monte Carlo (SMC) method on graphics processing unit (GPU) architecture under the computer-unified device architecture platform developed by NVIDIA. The GPU-based SMC was clinically applied for four patients with head and neck, lung, or prostate cancer. The results were compared to those obtained by a traditional CPU-based SMC with respect to the computation time and discrepancy. In the CPU- and GPU-based SMC calculations, the estimated mean statistical errors of the calculated doses in the planning target volume region were within 0.5% rms. The dose distributions calculated by the GPU- and CPU-based SMCs were similar, within statistical errors. The GPU-based SMC showed 12.30-16.00 times faster performance than the CPU-based SMC. The computation time per beam arrangement using the GPU-based SMC for the clinical cases ranged 9-67 s. The results demonstrate the successful application of the GPU-based SMC to a clinical proton treatment planning.
Computer Assisted REhabilitation (CARE) Lab: A novel approach towards Pediatric Rehabilitation 2.0.
Olivieri, Ivana; Meriggi, Paolo; Fedeli, Cristina; Brazzoli, Elena; Castagna, Anna; Roidi, Marina Luisa Rodocanachi; Angelini, Lucia
2018-01-01
Pediatric Rehabilitation therapists have always worked using a variety of off-the-shelf or custom-made objects and devices, more recently including computer based systems. These Information and Communication Technology (ICT) solutions vary widely in complexity, from easy-to-use interactive videogame consoles originally intended for entertainment purposes to sophisticated systems specifically developed for rehabilitation.This paper describes the principles underlying an innovative "Pediatric Rehabilitation 2.0" approach, based on the combination of suitable ICT solutions and traditional rehabilitation, which has been progressively refined while building up and using a computer-assisted rehabilitation laboratory. These principles are thus summarized in the acronym EPIQ, to account for the terms Ecological, Personalized, Interactive and Quantitative. The paper also presents the laboratory, which has been designed to meet the children's rehabilitation needs and to empower therapists in their work. The laboratory is equipped with commercial hardware and specially developed software called VITAMIN: a virtual reality platform for motor and cognitive rehabilitation.
CLINICAL SURFACES - Activity-Based Computing for Distributed Multi-Display Environments in Hospitals
NASA Astrophysics Data System (ADS)
Bardram, Jakob E.; Bunde-Pedersen, Jonathan; Doryab, Afsaneh; Sørensen, Steffen
A multi-display environment (MDE) is made up of co-located and networked personal and public devices that form an integrated workspace enabling co-located group work. Traditionally, MDEs have, however, mainly been designed to support a single “smart room”, and have had little sense of the tasks and activities that the MDE is being used for. This paper presents a novel approach to support activity-based computing in distributed MDEs, where displays are physically distributed across a large building. CLINICAL SURFACES was designed for clinical work in hospitals, and enables context-sensitive retrieval and browsing of patient data on public displays. We present the design and implementation of CLINICAL SURFACES, and report from an evaluation of the system at a large hospital. The evaluation shows that using distributed public displays to support activity-based computing inside a hospital is very useful for clinical work, and that the apparent contradiction between maintaining privacy of medical data in a public display environment can be mitigated by the use of CLINICAL SURFACES.
NASA Technical Reports Server (NTRS)
Watson, Clifford
2010-01-01
Traditional hazard analysis techniques utilize a two-dimensional representation of the results determined by relative likelihood and severity of the residual risk. These matrices present a quick-look at the Likelihood (Y-axis) and Severity (X-axis) of the probable outcome of a hazardous event. A three-dimensional method, described herein, utilizes the traditional X and Y axes, while adding a new, third dimension, shown as the Z-axis, and referred to as the Level of Control. The elements of the Z-axis are modifications of the Hazard Elimination and Control steps (also known as the Hazard Reduction Precedence Sequence). These steps are: 1. Eliminate risk through design. 2. Substitute less risky materials for more hazardous materials. 3. Install safety devices. 4. Install caution and warning devices. 5. Develop administrative controls (to include special procedures and training.) 6. Provide protective clothing and equipment. When added to the twodimensional models, the level of control adds a visual representation of the risk associated with the hazardous condition, creating a tall-pole for the least-well-controlled failure while establishing the relative likelihood and severity of all causes and effects for an identified hazard. Computer modeling of the analytical results, using spreadsheets and threedimensional charting gives a visual confirmation of the relationship between causes and their controls
NASA Technical Reports Server (NTRS)
Watson, Clifford C.
2011-01-01
Traditional hazard analysis techniques utilize a two-dimensional representation of the results determined by relative likelihood and severity of the residual risk. These matrices present a quick-look at the Likelihood (Y-axis) and Severity (X-axis) of the probable outcome of a hazardous event. A three-dimensional method, described herein, utilizes the traditional X and Y axes, while adding a new, third dimension, shown as the Z-axis, and referred to as the Level of Control. The elements of the Z-axis are modifications of the Hazard Elimination and Control steps (also known as the Hazard Reduction Precedence Sequence). These steps are: 1. Eliminate risk through design. 2. Substitute less risky materials for more hazardous materials. 3. Install safety devices. 4. Install caution and warning devices. 5. Develop administrative controls (to include special procedures and training.) 6. Provide protective clothing and equipment. When added to the two-dimensional models, the level of control adds a visual representation of the risk associated with the hazardous condition, creating a tall-pole for the least-well-controlled failure while establishing the relative likelihood and severity of all causes and effects for an identified hazard. Computer modeling of the analytical results, using spreadsheets and three-dimensional charting gives a visual confirmation of the relationship between causes and their controls.
Risk Presentation Using the Three Dimensions of Likelihood, Severity, and Level of Control
NASA Technical Reports Server (NTRS)
Watson, Clifford
2010-01-01
Traditional hazard analysis techniques utilize a two-dimensional representation of the results determined by relative likelihood and severity of the residual risk. These matrices present a quick-look at the Likelihood (Y-axis) and Severity (X-axis) of the probable outcome of a hazardous event. A three-dimensional method, described herein, utilizes the traditional X and Y axes, while adding a new, third dimension, shown as the Z-axis, and referred to as the Level of Control. The elements of the Z-axis are modifications of the Hazard Elimination and Control steps (also known as the Hazard Reduction Precedence Sequence). These steps are: 1. Eliminate risk through design. 2. Substitute less risky materials for more hazardous materials. 3. Install safety devices. 4. Install caution and warning devices. 5. Develop administrative controls (to include special procedures and training.) 6. Provide protective clothing and equipment. When added to the two-dimensional models, the level of control adds a visual representation of the risk associated with the hazardous condition, creating a tall-pole for the leastwell-controlled failure while establishing the relative likelihood and severity of all causes and effects for an identified hazard. Computer modeling of the analytical results, using spreadsheets and three-dimensional charting gives a visual confirmation of the relationship between causes and their controls.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-10
..., Including Wireless Communication Devices, Portable Music and Data Processing Devices, and Tablet Computers... importing wireless communication devices, portable music and data processing devices, and tablet computers... certain electronic devices, including wireless communication devices, portable music and data processing...
NASA Astrophysics Data System (ADS)
Salehi Fashami, Mohammad
Excessive energy dissipation in CMOS devices during switching is the primary threat to continued downscaling of computing devices in accordance with Moore's law. In the quest for alternatives to traditional transistor based electronics, nanomagnet-based computing [1, 2] is emerging as an attractive alternative since: (i) nanomagnets are intrinsically more energy-efficient than transistors due to the correlated switching of spins [3], and (ii) unlike transistors, magnets have no leakage and hence have no standby power dissipation. However, large energy dissipation in the clocking circuit appears to be a barrier to the realization of ultra low power logic devices with such nanomagnets. To alleviate this issue, we propose the use of a hybrid spintronics-straintronics or straintronic nanomagnetic logic (SML) paradigm. This uses a piezoelectric layer elastically coupled to an elliptically shaped magnetostrictive nanomagnetic layer for both logic [4-6] and memory [7-8] and other information processing [9-10] applications that could potentially be 2-3 orders of magnitude more energy efficient than current CMOS based devices. This dissertation focuses on studying the feasibility, performance and reliability of such nanomagnetic logic circuits by simulating the nanoscale magnetization dynamics of dipole coupled nanomagnets clocked by stress. Specifically, the topics addressed are: 1. Theoretical study of multiferroic nanomagnetic arrays laid out in specific geometric patterns to implement a "logic wire" for unidirectional information propagation and a universal logic gate [4-6]. 2. Monte Carlo simulations of the magnetization trajectories in a simple system of dipole coupled nanomagnets and NAND gate described by the Landau-Lifshitz-Gilbert (LLG) equations simulated in the presence of random thermal noise to understand the dynamics switching error [11, 12] in such devices. 3. Arriving at a lower bound for energy dissipation as a function of switching error [13] for a practical nanomagnetic logic scheme. 4. Clocking of nanomagnetic logic with surface acoustic waves (SAW) to drastically decrease the lithographic burden needed to contact each multiferroic nanomagnet while maintaining pipelined information processing. 5. Nanomagnets with four (or higher states) implemented with shape engineering. Two types of magnet that encode four states: (i) diamond, and (ii) concave nanomagnets are studied for coherence of the switching process.
NASA Technical Reports Server (NTRS)
Humphreys, Brad; Bellisario, Brian; Gallo, Christopher; Thompson, William K.; Lewandowski, Beth
2016-01-01
Long duration space travel to Mars or to an asteroid will expose astronauts to extended periods of reduced gravity. Since gravity is not present to aid loading, astronauts will use resistive and aerobic exercise regimes for the duration of the space flight to minimize the loss of bone density, muscle mass and aerobic capacity that occurs during exposure to a reduced gravity environment. Unlike the International Space Station (ISS), the area available for an exercise device in the next generation of spacecraft is limited. Therefore, compact resistance exercise device prototypes are being developed. The NASA Digital Astronaut Project (DAP) is supporting the Advanced Exercise Concepts (AEC) Project, Exercise Physiology and Countermeasures (ExPC) project and the National Space Biomedical Research Institute (NSBRI) funded researchers by developing computational models of exercising with these new advanced exercise device concepts. To perform validation of these models and to support the Advanced Exercise Concepts Project, several candidate devices have been flown onboard NASAs Reduced Gravity Aircraft. In terrestrial laboratories, researchers typically have available to them motion capture systems for the measurement of subject kinematics. Onboard the parabolic flight aircraft it is not practical to utilize the traditional motion capture systems due to the large working volume they require and their relatively high replacement cost if damaged. To support measuring kinematics on board parabolic aircraft, a motion capture system is being developed utilizing open source computer vision code with commercial off the shelf (COTS) video camera hardware. While the systems accuracy is lower than lab setups, it provides a means to produce quantitative comparison motion capture kinematic data. Additionally, data such as required exercise volume for small spaces such as the Orion capsule can be determined. METHODS: OpenCV is an open source computer vision library that provides the ability to perform multi-camera 3 dimensional reconstruction. Utilizing OpenCV, via the Python programming language, a set of tools has been developed to perform motion capture in confined spaces using commercial cameras. Four Sony Video Cameras were intrinsically calibrated prior to flight. Intrinsic calibration provides a set of camera specific parameters to remove geometric distortion of the lens and sensor (specific to each individual camera). A set of high contrast markers were placed on the exercising subject (safety also necessitated that they be soft in case they become detached during parabolic flight); small yarn balls were used. Extrinsic calibration, the determination of camera location and orientation parameters, is performed using fixed landmark markers shared by the camera scenes. Additionally a wand calibration, the sweeping of the camera scenes simultaneously, was also performed. Techniques have been developed to perform intrinsic calibration, extrinsic calibration, isolation of the markers in the scene, calculation of marker 2D centroids, and 3D reconstruction from multiple cameras. These methods have been tested in the laboratory side-by-side comparison to a traditional motion capture system and also on a parabolic flight.
Wu, Jonn; Waldron, John; Hood, Shaina; Kahnamelli, Adam; Khan, Mohamed; Barnett, Jeff; French, John; Slager, Stacey; Melhem, Shadi; Shabestari, Omid
2013-01-01
Prompt and efficient access to patient records is vital in providing optimal patient care. The Cancer Agency Information System (CAIS) is the primary patient record repository for the British Columbia Cancer Agency (BCCA) but is only accessible on traditional computer workstations. The BCCA clinics have significant space limitations resulting in multiple health care professionals sharing each workstation. Furthermore, workstations are not available in examination rooms. A novel and cost efficient solution is necessary to improve clinician access to CAIS. This prompted the BCCA and IMITS to embark on an innovative provincial collaboration to introduce and evaluate the impact of a mobile device to improve access to CAIS. The project consisted of 2 phases with over 50 participants from multiple clinical disciplines across BCCA sites. Phase I evaluated the adoptability, effectiveness and costs associated with providing access to CAIS using a generic viewer (Citrix). Phase II incorporated the feedback and findings from Phase I to make available a customized mobile device-specific application. Phase II also addressed privacy and security requirements.
Friction-reducing devices for lateral patient transfers: a clinical evaluation.
Baptiste, Andrea; Boda, Sruthi V; Nelson, Audrey L; Lloyd, John D; Lee, William E
2006-04-01
The purpose of this study was to assess the performance of lateral transfer devices compared with the traditional draw sheet method in acute care settings through subjective feedback of caregivers actually using the devices. Every 2 weeks, the eight participating acute care units each received one of the devices, which had been randomly selected. Data were collected through caregiver surveys, which rated comfort, ease of use, perceived injury risk, time efficiency, and patient safety. An overall performance rating was calculated as the sum of these five categories. Caregivers rated air-assisted devices significantly higher (p < .05) than other devices. Lateral transfer devices are recommended over the traditional draw sheet method for performing lateral patient transfers. These friction-reducing devices are a cost-effective solution to the load of lateral patient transfers and should be favorably considered when purchasing patient-handling technologies.
Using cloud models of heartbeats as the entity identifier to secure mobile devices.
Fu, Donglai; Liu, Yanhua
2017-01-01
Mobile devices are extensively used to store more private and often sensitive information. Therefore, it is important to protect them against unauthorised access. Authentication ensures that authorised users can use mobile devices. However, traditional authentication methods, such as numerical or graphic passwords, are vulnerable to passive attacks. For example, an adversary can steal the password by snooping from a shorter distance. To avoid these problems, this study presents a biometric approach that uses cloud models of heartbeats as the entity identifier to secure mobile devices. Here, it is identified that these concepts including cloud model or cloud have nothing to do with cloud computing. The cloud model appearing in the study is the cognitive model. In the proposed method, heartbeats are collected by two ECG electrodes that are connected to one mobile device. The backward normal cloud generator is used to generate ECG standard cloud models characterising the heartbeat template. When a user tries to have access to their mobile device, cloud models regenerated by fresh heartbeats will be compared with ECG standard cloud models to determine if the current user can use this mobile device. This authentication method was evaluated from three aspects including accuracy, authentication time and energy consumption. The proposed method gives 86.04% of true acceptance rate with 2.73% of false acceptance rate. One authentication can be done in 6s, and this processing consumes about 2000 mW of power.
Clinical Assessment of the Noise Immune Stethoscope aboard a U.S. Navy Carrier
2011-11-01
Participants rated their confidence in the use of this device to detect heart /lung sounds compared to a traditional stethoscope . A Wilcoxin rank...Figure 15. Median ratings of confidence in the use of the device to detect pathologic heart /lung sounds compared to a traditional stethoscope in...intubation versus heart /lung sounds; figure 16). To assess the ease of use compared to a traditional stethoscope , one-sample Wilcoxin signed rank tests
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-04
... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-794] Certain Electronic Devices, Including Wireless Commmunication Devices, Portable Music and Data Processing Devices, and Tablet Computers... communication devices, portable music and data processing devices, and tablet computers, imported by Apple Inc...
Sensor sentinel computing device
Damico, Joseph P.
2016-08-02
Technologies pertaining to authenticating data output by sensors in an industrial environment are described herein. A sensor sentinel computing device receives time-series data from a sensor by way of a wireline connection. The sensor sentinel computing device generates a validation signal that is a function of the time-series signal. The sensor sentinel computing device then transmits the validation signal to a programmable logic controller in the industrial environment.
Simple video format for mobile applications
NASA Astrophysics Data System (ADS)
Smith, John R.; Miao, Zhourong; Li, Chung-Sheng
2000-04-01
With the advent of pervasive computing, there is a growing demand for enabling multimedia applications on mobile devices. Large numbers of pervasive computing devices, such as personal digital assistants (PDAs), hand-held computer (HHC), smart phones, portable audio players, automotive computing devices, and wearable computers are gaining access to online information sources. However, the pervasive computing devices are often constrained along a number of dimensions, such as processing power, local storage, display size and depth, connectivity, and communication bandwidth, which makes it difficult to access rich image and video content. In this paper, we report on our initial efforts in designing a simple scalable video format with low-decoding and transcoding complexity for pervasive computing. The goal is to enable image and video access for mobile applications such as electronic catalog shopping, video conferencing, remote surveillance and video mail using pervasive computing devices.
NASA Astrophysics Data System (ADS)
Powless, Amy J.; Feekin, Lauren E.; Hutcheson, Joshua A.; Alapat, Daisy V.; Muldoon, Timothy J.
2016-03-01
Point-of-care approaches for 3-part leukocyte differentials (granulocyte, monocyte, and lymphocyte), traditionally performed using a hematology analyzer within a panel of tests called a complete blood count (CBC), are essential not only to reduce cost but to provide faster results in low resource areas. Recent developments in lab-on-a-chip devices have shown promise in reducing the size and reagents used, relating to a decrease in overall cost. Furthermore, smartphone diagnostic approaches have shown much promise in the area of point-of-care diagnostics, but the relatively high per-unit cost may limit their utility in some settings. We present here a method to reduce computing cost of a simple epi-fluorescence imaging system using a Raspberry Pi (single-board computer, <$40) to perform a 3-part leukocyte differential comparable to results from a hematology analyzer. This system uses a USB color camera in conjunction with a leukocyte-selective vital dye (acridine orange) in order to determine a leukocyte count and differential from a low volume (<20 microliters) of whole blood obtained via fingerstick. Additionally, the system utilizes a "cloud-based" approach to send image data from the Raspberry Pi to a main server and return results back to the user, exporting the bulk of the computational requirements. Six images were acquired per minute with up to 200 cells per field of view. Preliminary results showed that the differential count varied significantly in monocytes with a 1 minute time difference indicating the importance of time-gating to produce an accurate/consist differential.
Early Experiences Writing Performance Portable OpenMP 4 Codes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joubert, Wayne; Hernandez, Oscar R
In this paper, we evaluate the recently available directives in OpenMP 4 to parallelize a computational kernel using both the traditional shared memory approach and the newer accelerator targeting capabilities. In addition, we explore various transformations that attempt to increase application performance portability, and examine the expressiveness and performance implications of using these approaches. For example, we want to understand if the target map directives in OpenMP 4 improve data locality when mapped to a shared memory system, as opposed to the traditional first touch policy approach in traditional OpenMP. To that end, we use recent Cray and Intel compilersmore » to measure the performance variations of a simple application kernel when executed on the OLCF s Titan supercomputer with NVIDIA GPUs and the Beacon system with Intel Xeon Phi accelerators attached. To better understand these trade-offs, we compare our results from traditional OpenMP shared memory implementations to the newer accelerator programming model when it is used to target both the CPU and an attached heterogeneous device. We believe the results and lessons learned as presented in this paper will be useful to the larger user community by providing guidelines that can assist programmers in the development of performance portable code.« less
Interfacing External Quantum Devices to a Universal Quantum Computer
Lagana, Antonio A.; Lohe, Max A.; von Smekal, Lorenz
2011-01-01
We present a scheme to use external quantum devices using the universal quantum computer previously constructed. We thereby show how the universal quantum computer can utilize networked quantum information resources to carry out local computations. Such information may come from specialized quantum devices or even from remote universal quantum computers. We show how to accomplish this by devising universal quantum computer programs that implement well known oracle based quantum algorithms, namely the Deutsch, Deutsch-Jozsa, and the Grover algorithms using external black-box quantum oracle devices. In the process, we demonstrate a method to map existing quantum algorithms onto the universal quantum computer. PMID:22216276
Interfacing external quantum devices to a universal quantum computer.
Lagana, Antonio A; Lohe, Max A; von Smekal, Lorenz
2011-01-01
We present a scheme to use external quantum devices using the universal quantum computer previously constructed. We thereby show how the universal quantum computer can utilize networked quantum information resources to carry out local computations. Such information may come from specialized quantum devices or even from remote universal quantum computers. We show how to accomplish this by devising universal quantum computer programs that implement well known oracle based quantum algorithms, namely the Deutsch, Deutsch-Jozsa, and the Grover algorithms using external black-box quantum oracle devices. In the process, we demonstrate a method to map existing quantum algorithms onto the universal quantum computer. © 2011 Lagana et al.
Building Efficient Wireless Infrastructures for Pervasive Computing Environments
ERIC Educational Resources Information Center
Sheng, Bo
2010-01-01
Pervasive computing is an emerging concept that thoroughly brings computing devices and the consequent technology into people's daily life and activities. Most of these computing devices are very small, sometimes even "invisible", and often embedded into the objects surrounding people. In addition, these devices usually are not isolated, but…
Towards Scalable Graph Computation on Mobile Devices.
Chen, Yiqi; Lin, Zhiyuan; Pienta, Robert; Kahng, Minsuk; Chau, Duen Horng
2014-10-01
Mobile devices have become increasingly central to our everyday activities, due to their portability, multi-touch capabilities, and ever-improving computational power. Such attractive features have spurred research interest in leveraging mobile devices for computation. We explore a novel approach that aims to use a single mobile device to perform scalable graph computation on large graphs that do not fit in the device's limited main memory, opening up the possibility of performing on-device analysis of large datasets, without relying on the cloud. Based on the familiar memory mapping capability provided by today's mobile operating systems, our approach to scale up computation is powerful and intentionally kept simple to maximize its applicability across the iOS and Android platforms. Our experiments demonstrate that an iPad mini can perform fast computation on large real graphs with as many as 272 million edges (Google+ social graph), at a speed that is only a few times slower than a 13″ Macbook Pro. Through creating a real world iOS app with this technique, we demonstrate the strong potential application for scalable graph computation on a single mobile device using our approach.
Towards Scalable Graph Computation on Mobile Devices
Chen, Yiqi; Lin, Zhiyuan; Pienta, Robert; Kahng, Minsuk; Chau, Duen Horng
2015-01-01
Mobile devices have become increasingly central to our everyday activities, due to their portability, multi-touch capabilities, and ever-improving computational power. Such attractive features have spurred research interest in leveraging mobile devices for computation. We explore a novel approach that aims to use a single mobile device to perform scalable graph computation on large graphs that do not fit in the device's limited main memory, opening up the possibility of performing on-device analysis of large datasets, without relying on the cloud. Based on the familiar memory mapping capability provided by today's mobile operating systems, our approach to scale up computation is powerful and intentionally kept simple to maximize its applicability across the iOS and Android platforms. Our experiments demonstrate that an iPad mini can perform fast computation on large real graphs with as many as 272 million edges (Google+ social graph), at a speed that is only a few times slower than a 13″ Macbook Pro. Through creating a real world iOS app with this technique, we demonstrate the strong potential application for scalable graph computation on a single mobile device using our approach. PMID:25859564
Materials requirements for optical processing and computing devices
NASA Technical Reports Server (NTRS)
Tanguay, A. R., Jr.
1985-01-01
Devices for optical processing and computing systems are discussed, with emphasis on the materials requirements imposed by functional constraints. Generalized optical processing and computing systems are described in order to identify principal categories of requisite components for complete system implementation. Three principal device categories are selected for analysis in some detail: spatial light modulators, volume holographic optical elements, and bistable optical devices. The implications for optical processing and computing systems of the materials requirements identified for these device categories are described, and directions for future research are proposed.
Ortu, Eleonora; Pietropaoli, Davide; Adib, Fray; Masci, Chiara; Giannoni, Mario; Monaco, Annalisa
2017-11-16
Objective To compare the clinical efficacy of two techniques for fabricating a Bimler device by assessing the patient's surface electromyography (sEMG) activity at rest before treatment and six months after treatment. Methods Twenty-four patients undergoing orthodontic treatment were enrolled in the study; 12 formed the test group and wore a Bimler device fabricated with a Myoprint impression using neuromuscular orthodontic technique and 12 formed the control group and were treated by traditional orthodontic technique with a wax bite in protrusion. The "rest" sEMG of each patient was recorded prior to treatment and six months after treatment. Results The neuromuscular-designed Bimler device was more comfortable and provided better treatment results than the traditional Bimler device. Conclusion This study suggests that the patient group subjected to neuromuscular orthodontic treatment had a treatment outcome with more relaxed masticatory muscles and better function versus the traditional orthodontic treatment.
Burke, Daniel; Linder, Susan; Hirsch, Joshua; Dey, Tanujit; Kana, Daniel; Ringenbach, Shannon; Schindler, David; Alberts, Jay
2017-10-01
Information processing is typically evaluated using simple reaction time (SRT) and choice reaction time (CRT) paradigms in which a specific response is initiated following a given stimulus. The measurement of reaction time (RT) has evolved from monitoring the timing of mechanical switches to computerized paradigms. The proliferation of mobile devices with touch screens makes them a natural next technological approach to assess information processing. The aims of this study were to determine the validity and reliability of using of a mobile device (Apple iPad or iTouch) to accurately measure RT. Sixty healthy young adults completed SRT and CRT tasks using a traditional test platform and mobile platforms on two occasions. The SRT was similar across test modality: 300, 287, and 280 milliseconds (ms) for the traditional, iPad, and iTouch, respectively. The CRT was similar within mobile devices, though slightly faster on the traditional: 359, 408, and 384 ms for traditional, iPad, and iTouch, respectively. Intraclass correlation coefficients ranged from 0.79 to 0.85 for SRT and from 0.75 to 0.83 for CRT. The similarity and reliability of SRT across platforms and consistency of SRT and CRT across test conditions indicate that mobile devices provide the next generation of assessment platforms for information processing.
Challenges of developing an electro-optical system for measuring man's operational envelope
NASA Technical Reports Server (NTRS)
Woolford, B.
1985-01-01
In designing work stations and restraint systems, and in planning tasks to be performed in space, a knowledge of the capabilities of the operator is essential. Answers to such questions as whether a specific control or work surface can be reached from a given restraint and how much force can be applied are of particular interest. A computer-aided design system has been developed for designing and evaluating work stations, etc., and the Anthropometric Measurement Laboratory (AML) has been charged with obtaining the data to be used in design and modeling. Traditional methods of measuring reach and force are very labor intensive and require bulky equipment. The AML has developed a series of electro-optical devices for collecting reach data easily, in computer readable form, with portable systems. The systems developed, their use, and data collected with them are described.
40-Gb/s PAM4 with low-complexity equalizers for next-generation PON systems
NASA Astrophysics Data System (ADS)
Tang, Xizi; Zhou, Ji; Guo, Mengqi; Qi, Jia; Hu, Fan; Qiao, Yaojun; Lu, Yueming
2018-01-01
In this paper, we demonstrate 40-Gb/s four-level pulse amplitude modulation (PAM4) transmission with 10 GHz devices and low-complexity equalizers for next-generation passive optical network (PON) systems. Simple feed-forward equalizer (FFE) and decision feedback equalizer (DFE) enable 20 km fiber transmission while high-complexity Volterra algorithm in combination with FFE and DFE can extend the transmission distance to 40 km. A simplified Volterra algorithm is proposed for reducing computational complexity. Simulation results show that the simplified Volterra algorithm reduces up to ∼75% computational complexity at a relatively low cost of only 0.4 dB power budget. At a forward error correction (FEC) threshold of 10-3 , we achieve 31.2 dB and 30.8 dB power budget over 40 km fiber transmission using traditional FFE-DFE-Volterra and our simplified FFE-DFE-Volterra, respectively.
The Coverage Problem in Video-Based Wireless Sensor Networks: A Survey
Costa, Daniel G.; Guedes, Luiz Affonso
2010-01-01
Wireless sensor networks typically consist of a great number of tiny low-cost electronic devices with limited sensing and computing capabilities which cooperatively communicate to collect some kind of information from an area of interest. When wireless nodes of such networks are equipped with a low-power camera, visual data can be retrieved, facilitating a new set of novel applications. The nature of video-based wireless sensor networks demands new algorithms and solutions, since traditional wireless sensor networks approaches are not feasible or even efficient for that specialized communication scenario. The coverage problem is a crucial issue of wireless sensor networks, requiring specific solutions when video-based sensors are employed. In this paper, it is surveyed the state of the art of this particular issue, regarding strategies, algorithms and general computational solutions. Open research areas are also discussed, envisaging promising investigation considering coverage in video-based wireless sensor networks. PMID:22163651
Computer Applications in Health Science Education.
Juanes, Juan A; Ruisoto, Pablo
2015-09-01
In recent years, computer application development has experienced exponential growth, not only in the number of publications but also in the scope or contexts that have benefited from its use. In health science training, and medicine specifically, the gradual incorporation of technological developments has transformed the teaching and learning process, resulting in true "educational technology". The goal of this paper is to review the main features involved in these applications and highlight the main lines of research for the future. The results of peer reviewed literature published recently indicate the following features shared by the key technological developments in the field of health science education: first, development of simulation and visualization systems for a more complete and realistic representation of learning material over traditional paper format; second, portability and versatility of the applications, adapted for an increasing number of devices and operative systems; third, increasing focus on open source applications such as Massive Open Online Course (MOOC).
Computer vision research with new imaging technology
NASA Astrophysics Data System (ADS)
Hou, Guangqi; Liu, Fei; Sun, Zhenan
2015-12-01
Light field imaging is capable of capturing dense multi-view 2D images in one snapshot, which record both intensity values and directions of rays simultaneously. As an emerging 3D device, the light field camera has been widely used in digital refocusing, depth estimation, stereoscopic display, etc. Traditional multi-view stereo (MVS) methods only perform well on strongly texture surfaces, but the depth map contains numerous holes and large ambiguities on textureless or low-textured regions. In this paper, we exploit the light field imaging technology on 3D face modeling in computer vision. Based on a 3D morphable model, we estimate the pose parameters from facial feature points. Then the depth map is estimated through the epipolar plane images (EPIs) method. At last, the high quality 3D face model is exactly recovered via the fusing strategy. We evaluate the effectiveness and robustness on face images captured by a light field camera with different poses.
Neural-network quantum state tomography
NASA Astrophysics Data System (ADS)
Torlai, Giacomo; Mazzola, Guglielmo; Carrasquilla, Juan; Troyer, Matthias; Melko, Roger; Carleo, Giuseppe
2018-05-01
The experimental realization of increasingly complex synthetic quantum systems calls for the development of general theoretical methods to validate and fully exploit quantum resources. Quantum state tomography (QST) aims to reconstruct the full quantum state from simple measurements, and therefore provides a key tool to obtain reliable analytics1-3. However, exact brute-force approaches to QST place a high demand on computational resources, making them unfeasible for anything except small systems4,5. Here we show how machine learning techniques can be used to perform QST of highly entangled states with more than a hundred qubits, to a high degree of accuracy. We demonstrate that machine learning allows one to reconstruct traditionally challenging many-body quantities—such as the entanglement entropy—from simple, experimentally accessible measurements. This approach can benefit existing and future generations of devices ranging from quantum computers to ultracold-atom quantum simulators6-8.
Chi, Chia-Fen; Tseng, Li-Kai; Jang, Yuh
2012-07-01
Many disabled individuals lack extensive knowledge about assistive technology, which could help them use computers. In 1997, Denis Anson developed a decision tree of 49 evaluative questions designed to evaluate the functional capabilities of the disabled user and choose an appropriate combination of assistive devices, from a selection of 26, that enable the individual to use a computer. In general, occupational therapists guide the disabled users through this process. They often have to go over repetitive questions in order to find an appropriate device. A disabled user may require an alphanumeric entry device, a pointing device, an output device, a performance enhancement device, or some combination of these. Therefore, the current research eliminates redundant questions and divides Anson's decision tree into multiple independent subtrees to meet the actual demand of computer users with disabilities. The modified decision tree was tested by six disabled users to prove it can determine a complete set of assistive devices with a smaller number of evaluative questions. The means to insert new categories of computer-related assistive devices was included to ensure the decision tree can be expanded and updated. The current decision tree can help the disabled users and assistive technology practitioners to find appropriate computer-related assistive devices that meet with clients' individual needs in an efficient manner.
Mo, Yun; Zhang, Zhongzhao; Meng, Weixiao; Ma, Lin; Wang, Yao
2014-01-01
Indoor positioning systems based on the fingerprint method are widely used due to the large number of existing devices with a wide range of coverage. However, extensive positioning regions with a massive fingerprint database may cause high computational complexity and error margins, therefore clustering methods are widely applied as a solution. However, traditional clustering methods in positioning systems can only measure the similarity of the Received Signal Strength without being concerned with the continuity of physical coordinates. Besides, outage of access points could result in asymmetric matching problems which severely affect the fine positioning procedure. To solve these issues, in this paper we propose a positioning system based on the Spatial Division Clustering (SDC) method for clustering the fingerprint dataset subject to physical distance constraints. With the Genetic Algorithm and Support Vector Machine techniques, SDC can achieve higher coarse positioning accuracy than traditional clustering algorithms. In terms of fine localization, based on the Kernel Principal Component Analysis method, the proposed positioning system outperforms its counterparts based on other feature extraction methods in low dimensionality. Apart from balancing online matching computational burden, the new positioning system exhibits advantageous performance on radio map clustering, and also shows better robustness and adaptability in the asymmetric matching problem aspect. PMID:24451470
Klonoff, David C
2017-07-01
The Internet of Things (IoT) is generating an immense volume of data. With cloud computing, medical sensor and actuator data can be stored and analyzed remotely by distributed servers. The results can then be delivered via the Internet. The number of devices in IoT includes such wireless diabetes devices as blood glucose monitors, continuous glucose monitors, insulin pens, insulin pumps, and closed-loop systems. The cloud model for data storage and analysis is increasingly unable to process the data avalanche, and processing is being pushed out to the edge of the network closer to where the data-generating devices are. Fog computing and edge computing are two architectures for data handling that can offload data from the cloud, process it nearby the patient, and transmit information machine-to-machine or machine-to-human in milliseconds or seconds. Sensor data can be processed near the sensing and actuating devices with fog computing (with local nodes) and with edge computing (within the sensing devices). Compared to cloud computing, fog computing and edge computing offer five advantages: (1) greater data transmission speed, (2) less dependence on limited bandwidths, (3) greater privacy and security, (4) greater control over data generated in foreign countries where laws may limit use or permit unwanted governmental access, and (5) lower costs because more sensor-derived data are used locally and less data are transmitted remotely. Connected diabetes devices almost all use fog computing or edge computing because diabetes patients require a very rapid response to sensor input and cannot tolerate delays for cloud computing.
ERIC Educational Resources Information Center
Al Mosawi, Athraa; Wali, Esra Ahmed
2015-01-01
Mobile devices have integrated themselves in society where they are used naturally and invisibly by individuals. Despite the fact that these devices are available to teachers and learners, the traditional style of classes is still the dominant style. This research explores the utilization of mobile applications in traditional classroom settings,…
Latitude Hooks and Azimuth Kings: How To Build and Use 18 Traditional Navigational Tools.
ERIC Educational Resources Information Center
Fisher, Dennis
This book contains directions for building and using 18 different traditional navigational tools. Each of the devices discussed has at one time or another been used for the practical business of navigation. Devices featured in this book include the Latitude Hook, Kamal, Astrolabe, Quadrant, Astronomical Ring, Sundial, Nocturnal, Cross Staff,…
Goble, Daniel J; Khan, Ehran; Baweja, Harsimran S; O'Connor, Shawn M
2018-04-11
Changes in postural sway measured via force plate center of pressure have been associated with many aspects of human motor ability. A previous study validated the accuracy and precision of a relatively new, low-cost and portable force plate called the Balance Tracking System (BTrackS). This work compared a laboratory-grade force plate versus BTrackS during human-like dynamic sway conditions generated by an inverted pendulum device. The present study sought to extend previous validation attempts for BTrackS using a more traditional point of application (POA) approach. Computer numerical control (CNC) guided application of ∼155 N of force was applied five times to each of 21 points on five different BTrackS Balance Plate (BBP) devices with a hex-nose plunger. Results showed excellent agreement (ICC > 0.999) between the POAs and measured COP by the BBP devices, as well as high accuracy (<1% average percent error) and precision (<0.1 cm average standard deviation of residuals). The ICC between BBP devices was exceptionally high (ICC > 0.999) providing evidence of almost perfect inter-device reliability. Taken together, these results provide an important, static corollary to the previously obtained dynamic COP results from inverted pendulum testing of the BBP. Copyright © 2018 Elsevier Ltd. All rights reserved.
Pilot study of methods and equipment for in-home noise level measurements.
Neitzel, Richard L; Heikkinen, Maire S A; Williams, Christopher C; Viet, Susan Marie; Dellarco, Michael
2015-01-15
Knowledge of the auditory and non-auditory effects of noise has increased dramatically over the past decade, but indoor noise exposure measurement methods have not advanced appreciably, despite the introduction of applicable new technologies. This study evaluated various conventional and smart devices for exposure assessment in the National Children's Study. Three devices were tested: a sound level meter (SLM), a dosimeter, and a smart device with a noise measurement application installed. Instrument performance was evaluated in a series of semi-controlled tests in office environments over 96-hour periods, followed by measurements made continuously in two rooms (a child's bedroom and a most used room) in nine participating homes over a 7-day period with subsequent computation of a range of noise metrics. The SLMs and dosimeters yielded similar A-weighted average noise levels. Levels measured by the smart devices often differed substantially (showing both positive and negative bias, depending on the metric) from those measured via SLM and dosimeter, and demonstrated attenuation in some frequency bands in spectral analysis compared to SLM results. Virtually all measurements exceeded the Environmental Protection Agency's 45 dBA day-night limit for indoor residential exposures. The measurement protocol developed here can be employed in homes, demonstrates the possibility of measuring long-term noise exposures in homes with technologies beyond traditional SLMs, and highlights potential pitfalls associated with measurements made by smart devices.
Teaching and Learning with Mobile Computing Devices: Case Study in K-12 Classrooms
ERIC Educational Resources Information Center
Grant, Michael M.; Tamim, Suha; Brown, Dorian B.; Sweeney, Joseph P.; Ferguson, Fatima K.; Jones, Lakavious B.
2015-01-01
While ownership of mobile computing devices, such as cellphones, smartphones, and tablet computers, has been rapid, the adoption of these devices in K-12 classrooms has been measured. Some schools and individual teachers have integrated mobile devices to support teaching and learning. The purpose of this qualitative research was to describe the…
On Emulation of Flueric Devices in Excitable Chemical Medium
Adamatzky, Andrew
2016-01-01
Flueric devices are fluidic devices without moving parts. Fluidic devices use fluid as a medium for information transfer and computation. A Belousov-Zhabotinsky (BZ) medium is a thin-layer spatially extended excitable chemical medium which exhibits travelling excitation wave-fronts. The excitation wave-fronts transfer information. Flueric devices compute via jets interaction. BZ devices compute via excitation wave-fronts interaction. In numerical model of BZ medium we show that functions of key flueric devices are implemented in the excitable chemical system: signal generator, and, xor, not and nor Boolean gates, delay elements, diodes and sensors. Flueric devices have been widely used in industry since late 1960s and are still employed in automotive and aircraft technologies. Implementation of analog of the flueric devices in the excitable chemical systems opens doors to further applications of excitation wave-based unconventional computing in soft robotics, embedded organic electronics and living technologies. PMID:27997561
On Emulation of Flueric Devices in Excitable Chemical Medium.
Adamatzky, Andrew
2016-01-01
Flueric devices are fluidic devices without moving parts. Fluidic devices use fluid as a medium for information transfer and computation. A Belousov-Zhabotinsky (BZ) medium is a thin-layer spatially extended excitable chemical medium which exhibits travelling excitation wave-fronts. The excitation wave-fronts transfer information. Flueric devices compute via jets interaction. BZ devices compute via excitation wave-fronts interaction. In numerical model of BZ medium we show that functions of key flueric devices are implemented in the excitable chemical system: signal generator, and, xor, not and nor Boolean gates, delay elements, diodes and sensors. Flueric devices have been widely used in industry since late 1960s and are still employed in automotive and aircraft technologies. Implementation of analog of the flueric devices in the excitable chemical systems opens doors to further applications of excitation wave-based unconventional computing in soft robotics, embedded organic electronics and living technologies.
Neuroradiology Using Secure Mobile Device Review.
Randhawa, Privia A; Morrish, William; Lysack, John T; Hu, William; Goyal, Mayank; Hill, Michael D
2016-04-05
Image review on computer-based workstations has made film-based review outdated. Despite advances in technology, the lack of portability of digital workstations creates an inherent disadvantage. As such, we sought to determine if the quality of image review on a handheld device is adequate for routine clinical use. Six CT/CTA cases and six MR/MRA cases were independently reviewed by three neuroradiologists in varying environments: high and low ambient light using a handheld device and on a traditional imaging workstation in ideal conditions. On first review (using a handheld device in high ambient light), a preliminary diagnosis for each case was made. Upon changes in review conditions, neuroradiologists were asked if any additional features were seen that changed their initial diagnoses. Reviewers were also asked to comment on overall clinical quality and if the handheld display was of acceptable quality for image review. After the initial CT review in high ambient light, additional findings were reported in 2 of 18 instances on subsequent reviews. Similarly, additional findings were identified in 4 of 18 instances after the initial MR review in high ambient lighting. Only one of these six additional findings contributed to the diagnosis made on the initial preliminary review. Use of a handheld device for image review is of adequate diagnostic quality based on image contrast, sharpness of structures, visible artefacts and overall display quality. Although reviewers were comfortable with using this technology, a handheld device with a larger screen may be diagnostically superior.
A Review of Numerical Simulation and Analytical Modeling for Medical Devices Safety in MRI
Kabil, J.; Belguerras, L.; Trattnig, S.; Pasquier, C.; Missoffe, A.
2016-01-01
Summary Objectives To review past and present challenges and ongoing trends in numerical simulation for MRI (Magnetic Resonance Imaging) safety evaluation of medical devices. Methods A wide literature review on numerical and analytical simulation on simple or complex medical devices in MRI electromagnetic fields shows the evolutions through time and a growing concern for MRI safety over the years. Major issues and achievements are described, as well as current trends and perspectives in this research field. Results Numerical simulation of medical devices is constantly evolving, supported by calculation methods now well-established. Implants with simple geometry can often be simulated in a computational human model, but one issue remaining today is the experimental validation of these human models. A great concern is to assess RF heating on implants too complex to be traditionally simulated, like pacemaker leads. Thus, ongoing researches focus on alternative hybrids methods, both numerical and experimental, with for example a transfer function method. For the static field and gradient fields, analytical models can be used for dimensioning simple implants shapes, but limited for complex geometries that cannot be studied with simplifying assumptions. Conclusions Numerical simulation is an essential tool for MRI safety testing of medical devices. The main issues remain the accuracy of simulations compared to real life and the studies of complex devices; but as the research field is constantly evolving, some promising ideas are now under investigation to take up the challenges. PMID:27830244
Computational and experimental studies of LEBUs at high device Reynolds numbers
NASA Technical Reports Server (NTRS)
Bertelrud, Arild; Watson, R. D.
1988-01-01
The present paper summarizes computational and experimental studies for large-eddy breakup devices (LEBUs). LEBU optimization (using a computational approach considering compressibility, Reynolds number, and the unsteadiness of the flow) and experiments with LEBUs at high Reynolds numbers in flight are discussed. The measurements include streamwise as well as spanwise distributions of local skin friction. The unsteady flows around the LEBU devices and far downstream are characterized by strain-gage measurements on the devices and hot-wire readings downstream. Computations are made with available time-averaged and quasi-stationary techniques to find suitable device profiles with minimum drag.
NASA Technical Reports Server (NTRS)
Hall, William A. (Inventor)
1993-01-01
A bus programmable slave module card for use in a computer control system is disclosed which comprises a master computer and one or more slave computer modules interfacing by means of a bus. Each slave module includes its own microprocessor, memory, and control program for acting as a single loop controller. The slave card includes a plurality of memory means (S1, S2...) corresponding to a like plurality of memory devices (C1, C2...) in the master computer, for each slave memory means its own communication lines connectable through the bus with memory communication lines of an associated memory device in the master computer, and a one-way electronic door which is switchable to either a closed condition or a one-way open condition. With the door closed, communication lines between master computer memory (C1, C2...) and slave memory (S1, S2...) are blocked. In the one-way open condition invention, the memory communication lines or each slave memory means (S1, S2...) connect with the memory communication lines of its associated memory device (C1, C2...) in the master computer, and the memory devices (C1, C2...) of the master computer and slave card are electrically parallel such that information seen by the master's memory is also seen by the slave's memory. The slave card is also connectable to a switch for electronically removing the slave microprocessor from the system. With the master computer and the slave card in programming mode relationship, and the slave microprocessor electronically removed from the system, loading a program in the memory devices (C1, C2...) of the master accomplishes a parallel loading into the memory devices (S1, S2...) of the slave.
Shape-programmable magnetic soft matter
Lum, Guo Zhan; Ye, Zhou; Dong, Xiaoguang; Marvi, Hamid; Erin, Onder; Hu, Wenqi; Sitti, Metin
2016-01-01
Shape-programmable matter is a class of active materials whose geometry can be controlled to potentially achieve mechanical functionalities beyond those of traditional machines. Among these materials, magnetically actuated matter is particularly promising for achieving complex time-varying shapes at small scale (overall dimensions smaller than 1 cm). However, previous work can only program these materials for limited applications, as they rely solely on human intuition to approximate the required magnetization profile and actuating magnetic fields for their materials. Here, we propose a universal programming methodology that can automatically generate the required magnetization profile and actuating fields for soft matter to achieve new time-varying shapes. The universality of the proposed method can therefore inspire a vast number of miniature soft devices that are critical in robotics, smart engineering surfaces and materials, and biomedical devices. Our proposed method includes theoretical formulations, computational strategies, and fabrication procedures for programming magnetic soft matter. The presented theory and computational method are universal for programming 2D or 3D time-varying shapes, whereas the fabrication technique is generic only for creating planar beams. Based on the proposed programming method, we created a jellyfish-like robot, a spermatozoid-like undulating swimmer, and an artificial cilium that could mimic the complex beating patterns of its biological counterpart. PMID:27671658
Shape-programmable magnetic soft matter.
Lum, Guo Zhan; Ye, Zhou; Dong, Xiaoguang; Marvi, Hamid; Erin, Onder; Hu, Wenqi; Sitti, Metin
2016-10-11
Shape-programmable matter is a class of active materials whose geometry can be controlled to potentially achieve mechanical functionalities beyond those of traditional machines. Among these materials, magnetically actuated matter is particularly promising for achieving complex time-varying shapes at small scale (overall dimensions smaller than 1 cm). However, previous work can only program these materials for limited applications, as they rely solely on human intuition to approximate the required magnetization profile and actuating magnetic fields for their materials. Here, we propose a universal programming methodology that can automatically generate the required magnetization profile and actuating fields for soft matter to achieve new time-varying shapes. The universality of the proposed method can therefore inspire a vast number of miniature soft devices that are critical in robotics, smart engineering surfaces and materials, and biomedical devices. Our proposed method includes theoretical formulations, computational strategies, and fabrication procedures for programming magnetic soft matter. The presented theory and computational method are universal for programming 2D or 3D time-varying shapes, whereas the fabrication technique is generic only for creating planar beams. Based on the proposed programming method, we created a jellyfish-like robot, a spermatozoid-like undulating swimmer, and an artificial cilium that could mimic the complex beating patterns of its biological counterpart.
Shape-programmable magnetic soft matter
NASA Astrophysics Data System (ADS)
Zhan Lum, Guo; Ye, Zhou; Dong, Xiaoguang; Marvi, Hamid; Erin, Onder; Hu, Wenqi; Sitti, Metin
2016-10-01
Shape-programmable matter is a class of active materials whose geometry can be controlled to potentially achieve mechanical functionalities beyond those of traditional machines. Among these materials, magnetically actuated matter is particularly promising for achieving complex time-varying shapes at small scale (overall dimensions smaller than 1 cm). However, previous work can only program these materials for limited applications, as they rely solely on human intuition to approximate the required magnetization profile and actuating magnetic fields for their materials. Here, we propose a universal programming methodology that can automatically generate the required magnetization profile and actuating fields for soft matter to achieve new time-varying shapes. The universality of the proposed method can therefore inspire a vast number of miniature soft devices that are critical in robotics, smart engineering surfaces and materials, and biomedical devices. Our proposed method includes theoretical formulations, computational strategies, and fabrication procedures for programming magnetic soft matter. The presented theory and computational method are universal for programming 2D or 3D time-varying shapes, whereas the fabrication technique is generic only for creating planar beams. Based on the proposed programming method, we created a jellyfish-like robot, a spermatozoid-like undulating swimmer, and an artificial cilium that could mimic the complex beating patterns of its biological counterpart.
Yamaguchi, Takami; Ishikawa, Takuji; Imai, Y.; Matsuki, N.; Xenos, Mikhail; Deng, Yuefan; Bluestein, Danny
2010-01-01
A major computational challenge for a multiscale modeling is the coupling of disparate length and timescales between molecular mechanics and macroscopic transport, spanning the spatial and temporal scales characterizing the complex processes taking place in flow-induced blood clotting. Flow and pressure effects on a cell-like platelet can be well represented by a continuum mechanics model down to the order of the micrometer level. However, the molecular effects of adhesion/aggregation bonds are on the order of nanometer. A successful multiscale model of platelet response to flow stresses in devices and the ensuing clotting responses should be able to characterize the clotting reactions and their interactions with the flow. This paper attempts to describe a few of the computational methods that were developed in recent years and became available to researchers in the field. They differ from traditional approaches that dominate the field by expanding on prevailing continuum-based approaches, or by completely departing from them, yielding an expanding toolkit that may facilitate further elucidation of the underlying mechanisms of blood flow and the cellular response to it. We offer a paradigm shift by adopting a multidisciplinary approach with fluid dynamics simulations coupled to biophysical and biochemical transport. PMID:20336827
Manycore Performance-Portability: Kokkos Multidimensional Array Library
Edwards, H. Carter; Sunderland, Daniel; Porter, Vicki; ...
2012-01-01
Large, complex scientific and engineering application code have a significant investment in computational kernels to implement their mathematical models. Porting these computational kernels to the collection of modern manycore accelerator devices is a major challenge in that these devices have diverse programming models, application programming interfaces (APIs), and performance requirements. The Kokkos Array programming model provides library-based approach to implement computational kernels that are performance-portable to CPU-multicore and GPGPU accelerator devices. This programming model is based upon three fundamental concepts: (1) manycore compute devices each with its own memory space, (2) data parallel kernels and (3) multidimensional arrays. Kernel executionmore » performance is, especially for NVIDIA® devices, extremely dependent on data access patterns. Optimal data access pattern can be different for different manycore devices – potentially leading to different implementations of computational kernels specialized for different devices. The Kokkos Array programming model supports performance-portable kernels by (1) separating data access patterns from computational kernels through a multidimensional array API and (2) introduce device-specific data access mappings when a kernel is compiled. An implementation of Kokkos Array is available through Trilinos [Trilinos website, http://trilinos.sandia.gov/, August 2011].« less
Art and Technology: Computers in the Studio?
ERIC Educational Resources Information Center
Ruby-Baird, Janet
1997-01-01
Because the graphic industry demands graduates with computer skills, art students want college programs that include complex computer technologies. However, students can produce good computer art only if they have mastered traditional drawing and design skills. Discusses designing an art curriculum including both technology and traditional course…
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-04
... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-769] Certain Handheld Electronic Computing Devices, Related Software, and Components Thereof; Termination of the Investigation Based on... electronic computing devices, related software, and components thereof by reason of infringement of certain...
Chung, Philip; Heller, J Alex; Etemadi, Mozziyar; Ottoson, Paige E; Liu, Jonathan A; Rand, Larry; Roy, Shuvo
2014-06-27
Biologically inert elastomers such as silicone are favorable materials for medical device fabrication, but forming and curing these elastomers using traditional liquid injection molding processes can be an expensive process due to tooling and equipment costs. As a result, it has traditionally been impractical to use liquid injection molding for low-cost, rapid prototyping applications. We have devised a method for rapid and low-cost production of liquid elastomer injection molded devices that utilizes fused deposition modeling 3D printers for mold design and a modified desiccator as an injection system. Low costs and rapid turnaround time in this technique lower the barrier to iteratively designing and prototyping complex elastomer devices. Furthermore, CAD models developed in this process can be later adapted for metal mold tooling design, enabling an easy transition to a traditional injection molding process. We have used this technique to manufacture intravaginal probes involving complex geometries, as well as overmolding over metal parts, using tools commonly available within an academic research laboratory. However, this technique can be easily adapted to create liquid injection molded devices for many other applications.
Tablet computer enhanced training improves internal medicine exam performance.
Baumgart, Daniel C; Wende, Ilja; Grittner, Ulrike
2017-01-01
Traditional teaching concepts in medical education do not take full advantage of current information technology. We aimed to objectively determine the impact of Tablet PC enhanced training on learning experience and MKSAP® (medical knowledge self-assessment program) exam performance. In this single center, prospective, controlled study final year medical students and medical residents doing an inpatient service rotation were alternatingly assigned to either the active test (Tablet PC with custom multimedia education software package) or traditional education (control) group, respectively. All completed an extensive questionnaire to collect their socio-demographic data, evaluate educational status, computer affinity and skills, problem solving, eLearning knowledge and self-rated medical knowledge. Both groups were MKSAP® tested at the beginning and the end of their rotation. The MKSAP® score at the final exam was the primary endpoint. Data of 55 (tablet n = 24, controls n = 31) male 36.4%, median age 28 years, 65.5% students, were evaluable. The mean MKSAP® score improved in the tablet PC (score Δ + 8 SD: 11), but not the control group (score Δ- 7, SD: 11), respectively. After adjustment for baseline score and confounders the Tablet PC group showed on average 11% better MKSAP® test results compared to the control group (p<0.001). The most commonly used resources for medical problem solving were journal articles looked up on PubMed or Google®, and books. Our study provides evidence, that tablet computer based integrated training and clinical practice enhances medical education and exam performance. Larger, multicenter trials are required to independently validate our data. Residency and fellowship directors are encouraged to consider adding portable computer devices, multimedia content and introduce blended learning to their respective training programs.
Tablet computer enhanced training improves internal medicine exam performance
Wende, Ilja; Grittner, Ulrike
2017-01-01
Background Traditional teaching concepts in medical education do not take full advantage of current information technology. We aimed to objectively determine the impact of Tablet PC enhanced training on learning experience and MKSAP® (medical knowledge self-assessment program) exam performance. Methods In this single center, prospective, controlled study final year medical students and medical residents doing an inpatient service rotation were alternatingly assigned to either the active test (Tablet PC with custom multimedia education software package) or traditional education (control) group, respectively. All completed an extensive questionnaire to collect their socio-demographic data, evaluate educational status, computer affinity and skills, problem solving, eLearning knowledge and self-rated medical knowledge. Both groups were MKSAP® tested at the beginning and the end of their rotation. The MKSAP® score at the final exam was the primary endpoint. Results Data of 55 (tablet n = 24, controls n = 31) male 36.4%, median age 28 years, 65.5% students, were evaluable. The mean MKSAP® score improved in the tablet PC (score Δ + 8 SD: 11), but not the control group (score Δ- 7, SD: 11), respectively. After adjustment for baseline score and confounders the Tablet PC group showed on average 11% better MKSAP® test results compared to the control group (p<0.001). The most commonly used resources for medical problem solving were journal articles looked up on PubMed or Google®, and books. Conclusions Our study provides evidence, that tablet computer based integrated training and clinical practice enhances medical education and exam performance. Larger, multicenter trials are required to independently validate our data. Residency and fellowship directors are encouraged to consider adding portable computer devices, multimedia content and introduce blended learning to their respective training programs. PMID:28369063
NASA Astrophysics Data System (ADS)
Hui, L.; Behr, F.-J.; Schröder, D.
2006-10-01
The dissemination of digital geospatial data is available now on mobile devices such as PDAs (personal digital assistants) and smart-phones etc. The mobile devices which support J2ME (Java 2 Micro Edition) offer users and developers one open interface, which they can use to develop or download the software according their own demands. Currently WMS (Web Map Service) can afford not only traditional raster image, but also the vector image. SVGT (Scalable Vector Graphics Tiny) is one subset of SVG (Scalable Vector Graphics) and because of its precise vector information, original styling and small file size, SVGT format is fitting well for the geographic mapping purpose, especially for the mobile devices which has bandwidth net connection limitation. This paper describes the development of a cartographic client for the mobile devices, using SVGT and J2ME technology. Mobile device will be simulated on the desktop computer for a series of testing with WMS, for example, send request and get the responding data from WMS and then display both vector and raster format image. Analyzing and designing of System structure such as user interface and code structure are discussed, the limitation of mobile device should be taken into consideration for this applications. The parsing of XML document which is received from WMS after the GetCapabilities request and the visual realization of SVGT and PNG (Portable Network Graphics) image are important issues in codes' writing. At last the client was tested on Nokia S40/60 mobile phone successfully.
Energy efficient hybrid computing systems using spin devices
NASA Astrophysics Data System (ADS)
Sharad, Mrigank
Emerging spin-devices like magnetic tunnel junctions (MTJ's), spin-valves and domain wall magnets (DWM) have opened new avenues for spin-based logic design. This work explored potential computing applications which can exploit such devices for higher energy-efficiency and performance. The proposed applications involve hybrid design schemes, where charge-based devices supplement the spin-devices, to gain large benefits at the system level. As an example, lateral spin valves (LSV) involve switching of nanomagnets using spin-polarized current injection through a metallic channel such as Cu. Such spin-torque based devices possess several interesting properties that can be exploited for ultra-low power computation. Analog characteristic of spin current facilitate non-Boolean computation like majority evaluation that can be used to model a neuron. The magneto-metallic neurons can operate at ultra-low terminal voltage of ˜20mV, thereby resulting in small computation power. Moreover, since nano-magnets inherently act as memory elements, these devices can facilitate integration of logic and memory in interesting ways. The spin based neurons can be integrated with CMOS and other emerging devices leading to different classes of neuromorphic/non-Von-Neumann architectures. The spin-based designs involve `mixed-mode' processing and hence can provide very compact and ultra-low energy solutions for complex computation blocks, both digital as well as analog. Such low-power, hybrid designs can be suitable for various data processing applications like cognitive computing, associative memory, and currentmode on-chip global interconnects. Simulation results for these applications based on device-circuit co-simulation framework predict more than ˜100x improvement in computation energy as compared to state of the art CMOS design, for optimal spin-device parameters.
Stone, John E; Hallock, Michael J; Phillips, James C; Peterson, Joseph R; Luthey-Schulten, Zaida; Schulten, Klaus
2016-05-01
Many of the continuing scientific advances achieved through computational biology are predicated on the availability of ongoing increases in computational power required for detailed simulation and analysis of cellular processes on biologically-relevant timescales. A critical challenge facing the development of future exascale supercomputer systems is the development of new computing hardware and associated scientific applications that dramatically improve upon the energy efficiency of existing solutions, while providing increased simulation, analysis, and visualization performance. Mobile computing platforms have recently become powerful enough to support interactive molecular visualization tasks that were previously only possible on laptops and workstations, creating future opportunities for their convenient use for meetings, remote collaboration, and as head mounted displays for immersive stereoscopic viewing. We describe early experiences adapting several biomolecular simulation and analysis applications for emerging heterogeneous computing platforms that combine power-efficient system-on-chip multi-core CPUs with high-performance massively parallel GPUs. We present low-cost power monitoring instrumentation that provides sufficient temporal resolution to evaluate the power consumption of individual CPU algorithms and GPU kernels. We compare the performance and energy efficiency of scientific applications running on emerging platforms with results obtained on traditional platforms, identify hardware and algorithmic performance bottlenecks that affect the usability of these platforms, and describe avenues for improving both the hardware and applications in pursuit of the needs of molecular modeling tasks on mobile devices and future exascale computers.
Elsawy, Amr S; Eldawlatly, Seif; Taher, Mohamed; Aly, Gamal M
2014-01-01
The current trend to use Brain-Computer Interfaces (BCIs) with mobile devices mandates the development of efficient EEG data processing methods. In this paper, we demonstrate the performance of a Principal Component Analysis (PCA) ensemble classifier for P300-based spellers. We recorded EEG data from multiple subjects using the Emotiv neuroheadset in the context of a classical oddball P300 speller paradigm. We compare the performance of the proposed ensemble classifier to the performance of traditional feature extraction and classifier methods. Our results demonstrate the capability of the PCA ensemble classifier to classify P300 data recorded using the Emotiv neuroheadset with an average accuracy of 86.29% on cross-validation data. In addition, offline testing of the recorded data reveals an average classification accuracy of 73.3% that is significantly higher than that achieved using traditional methods. Finally, we demonstrate the effect of the parameters of the P300 speller paradigm on the performance of the method.
Computer-generated graphical presentations: use of multimedia to enhance communication.
Marks, L S; Penson, D F; Maller, J J; Nielsen, R T; deKernion, J B
1997-01-01
Personal computers may be used to create, store, and deliver graphical presentations. With computer-generated combinations of the five media (text, images, sound, video, and animation)--that is, multimedia presentations--the effectiveness of message delivery can be greatly increased. The basic tools are (1) a personal computer; (2) presentation software; and (3) a projector to enlarge the monitor images for audience viewing. Use of this new method has grown rapidly in the business-conference world, but has yet to gain widespread acceptance at medical meetings. We review herein the rationale for multimedia presentations in medicine (vis-à-vis traditional slide shows) as an improved means for increasing audience attention, comprehension, and retention. The evolution of multimedia is traced from earliest times to the present. The steps involved in making a multimedia presentation are summarized, emphasizing advances in technology that bring the new method within practical reach of busy physicians. Specific attention is given to software, digital image processing, storage devices, and delivery methods. Our development of a urology multimedia presentation--delivered May 4, 1996, before the Society for Urology and Engineering and now Internet-accessible at http://www.usrf.org--was the impetus for this work.
NMF-mGPU: non-negative matrix factorization on multi-GPU systems.
Mejía-Roa, Edgardo; Tabas-Madrid, Daniel; Setoain, Javier; García, Carlos; Tirado, Francisco; Pascual-Montano, Alberto
2015-02-13
In the last few years, the Non-negative Matrix Factorization ( NMF ) technique has gained a great interest among the Bioinformatics community, since it is able to extract interpretable parts from high-dimensional datasets. However, the computing time required to process large data matrices may become impractical, even for a parallel application running on a multiprocessors cluster. In this paper, we present NMF-mGPU, an efficient and easy-to-use implementation of the NMF algorithm that takes advantage of the high computing performance delivered by Graphics-Processing Units ( GPUs ). Driven by the ever-growing demands from the video-games industry, graphics cards usually provided in PCs and laptops have evolved from simple graphics-drawing platforms into high-performance programmable systems that can be used as coprocessors for linear-algebra operations. However, these devices may have a limited amount of on-board memory, which is not considered by other NMF implementations on GPU. NMF-mGPU is based on CUDA ( Compute Unified Device Architecture ), the NVIDIA's framework for GPU computing. On devices with low memory available, large input matrices are blockwise transferred from the system's main memory to the GPU's memory, and processed accordingly. In addition, NMF-mGPU has been explicitly optimized for the different CUDA architectures. Finally, platforms with multiple GPUs can be synchronized through MPI ( Message Passing Interface ). In a four-GPU system, this implementation is about 120 times faster than a single conventional processor, and more than four times faster than a single GPU device (i.e., a super-linear speedup). Applications of GPUs in Bioinformatics are getting more and more attention due to their outstanding performance when compared to traditional processors. In addition, their relatively low price represents a highly cost-effective alternative to conventional clusters. In life sciences, this results in an excellent opportunity to facilitate the daily work of bioinformaticians that are trying to extract biological meaning out of hundreds of gigabytes of experimental information. NMF-mGPU can be used "out of the box" by researchers with little or no expertise in GPU programming in a variety of platforms, such as PCs, laptops, or high-end GPU clusters. NMF-mGPU is freely available at https://github.com/bioinfo-cnb/bionmf-gpu .
Gschwind, Michael K
2013-04-16
Mechanisms for generating and executing programs for a floating point (FP) only single instruction multiple data (SIMD) instruction set architecture (ISA) are provided. A computer program product comprising a computer recordable medium having a computer readable program recorded thereon is provided. The computer readable program, when executed on a computing device, causes the computing device to receive one or more instructions and execute the one or more instructions using logic in an execution unit of the computing device. The logic implements a floating point (FP) only single instruction multiple data (SIMD) instruction set architecture (ISA), based on data stored in a vector register file of the computing device. The vector register file is configured to store both scalar and floating point values as vectors having a plurality of vector elements.
NASA Astrophysics Data System (ADS)
Rueda, Antonio J.; Noguera, José M.; Luque, Adrián
2016-02-01
In recent years GPU computing has gained wide acceptance as a simple low-cost solution for speeding up computationally expensive processing in many scientific and engineering applications. However, in most cases accelerating a traditional CPU implementation for a GPU is a non-trivial task that requires a thorough refactorization of the code and specific optimizations that depend on the architecture of the device. OpenACC is a promising technology that aims at reducing the effort required to accelerate C/C++/Fortran code on an attached multicore device. Virtually with this technology the CPU code only has to be augmented with a few compiler directives to identify the areas to be accelerated and the way in which data has to be moved between the CPU and GPU. Its potential benefits are multiple: better code readability, less development time, lower risk of errors and less dependency on the underlying architecture and future evolution of the GPU technology. Our aim with this work is to evaluate the pros and cons of using OpenACC against native GPU implementations in computationally expensive hydrological applications, using the classic D8 algorithm of O'Callaghan and Mark for river network extraction as case-study. We implemented the flow accumulation step of this algorithm in CPU, using OpenACC and two different CUDA versions, comparing the length and complexity of the code and its performance with different datasets. We advance that although OpenACC can not match the performance of a CUDA optimized implementation (×3.5 slower in average), it provides a significant performance improvement against a CPU implementation (×2-6) with by far a simpler code and less implementation effort.
Local rollback for fault-tolerance in parallel computing systems
Blumrich, Matthias A [Yorktown Heights, NY; Chen, Dong [Yorktown Heights, NY; Gara, Alan [Yorktown Heights, NY; Giampapa, Mark E [Yorktown Heights, NY; Heidelberger, Philip [Yorktown Heights, NY; Ohmacht, Martin [Yorktown Heights, NY; Steinmacher-Burow, Burkhard [Boeblingen, DE; Sugavanam, Krishnan [Yorktown Heights, NY
2012-01-24
A control logic device performs a local rollback in a parallel super computing system. The super computing system includes at least one cache memory device. The control logic device determines a local rollback interval. The control logic device runs at least one instruction in the local rollback interval. The control logic device evaluates whether an unrecoverable condition occurs while running the at least one instruction during the local rollback interval. The control logic device checks whether an error occurs during the local rollback. The control logic device restarts the local rollback interval if the error occurs and the unrecoverable condition does not occur during the local rollback interval.
Electromagnetic field computation at fractal dimensions
NASA Astrophysics Data System (ADS)
Zubair, M.; Ang, Y. S.; Ang, L. K.
According to Mandelbrot's work on fractals, many objects are in fractional dimensions that the traditional calculus or differential equations are not sufficient. Thus fractional models solving the relevant differential equations are critical to understand the physical dynamics of such objects. In this work, we develop computational electromagnetics or Maxwell equations in fractional dimensions. For a given degree of imperfection, impurity, roughness, anisotropy or inhomogeneity, we consider the complicated object can be formulated into a fractional dimensional continuous object characterized by an effective fractional dimension D, which can be calculated from a self-developed algorithm. With this non-integer value of D, we develop the computational methods to design and analyze the EM scattering problems involving rough surfaces or irregularities in an efficient framework. The fractional electromagnetic based model can be extended to other key differential equations such as Schrodinger or Dirac equations, which will be useful for design of novel 2D materials stacked up in complicated device configuration for applications in electronics and photonics. This work is supported by Singapore Temasek Laboratories (TL) Seed Grant (IGDS S16 02 05 1).
Thermal modeling of lesion growth with radiofrequency ablation devices
Chang, Isaac A; Nguyen, Uyen D
2004-01-01
Background Temperature is a frequently used parameter to describe the predicted size of lesions computed by computational models. In many cases, however, temperature correlates poorly with lesion size. Although many studies have been conducted to characterize the relationship between time-temperature exposure of tissue heating to cell damage, to date these relationships have not been employed in a finite element model. Methods We present an axisymmetric two-dimensional finite element model that calculates cell damage in tissues and compare lesion sizes using common tissue damage and iso-temperature contour definitions. The model accounts for both temperature-dependent changes in the electrical conductivity of tissue as well as tissue damage-dependent changes in local tissue perfusion. The data is validated using excised porcine liver tissues. Results The data demonstrate the size of thermal lesions is grossly overestimated when calculated using traditional temperature isocontours of 42°C and 47°C. The computational model results predicted lesion dimensions that were within 5% of the experimental measurements. Conclusion When modeling radiofrequency ablation problems, temperature isotherms may not be representative of actual tissue damage patterns. PMID:15298708
Using Multi-modal Sensing for Human Activity Modeling in the Real World
NASA Astrophysics Data System (ADS)
Harrison, Beverly L.; Consolvo, Sunny; Choudhury, Tanzeem
Traditionally smart environments have been understood to represent those (often physical) spaces where computation is embedded into the users' surrounding infrastructure, buildings, homes, and workplaces. Users of this "smartness" move in and out of these spaces. Ambient intelligence assumes that users are automatically and seamlessly provided with context-aware, adaptive information, applications and even sensing - though this remains a significant challenge even when limited to these specialized, instrumented locales. Since not all environments are "smart" the experience is not a pervasive one; rather, users move between these intelligent islands of computationally enhanced space while we still aspire to achieve a more ideal anytime, anywhere experience. Two key technological trends are helping to bridge the gap between these smart environments and make the associated experience more persistent and pervasive. Smaller and more computationally sophisticated mobile devices allow sensing, communication, and services to be more directly and continuously experienced by user. Improved infrastructure and the availability of uninterrupted data streams, for instance location-based data, enable new services and applications to persist across environments.
Cloud computing applications for biomedical science: A perspective.
Navale, Vivek; Bourne, Philip E
2018-06-01
Biomedical research has become a digital data-intensive endeavor, relying on secure and scalable computing, storage, and network infrastructure, which has traditionally been purchased, supported, and maintained locally. For certain types of biomedical applications, cloud computing has emerged as an alternative to locally maintained traditional computing approaches. Cloud computing offers users pay-as-you-go access to services such as hardware infrastructure, platforms, and software for solving common biomedical computational problems. Cloud computing services offer secure on-demand storage and analysis and are differentiated from traditional high-performance computing by their rapid availability and scalability of services. As such, cloud services are engineered to address big data problems and enhance the likelihood of data and analytics sharing, reproducibility, and reuse. Here, we provide an introductory perspective on cloud computing to help the reader determine its value to their own research.
Cloud computing applications for biomedical science: A perspective
2018-01-01
Biomedical research has become a digital data–intensive endeavor, relying on secure and scalable computing, storage, and network infrastructure, which has traditionally been purchased, supported, and maintained locally. For certain types of biomedical applications, cloud computing has emerged as an alternative to locally maintained traditional computing approaches. Cloud computing offers users pay-as-you-go access to services such as hardware infrastructure, platforms, and software for solving common biomedical computational problems. Cloud computing services offer secure on-demand storage and analysis and are differentiated from traditional high-performance computing by their rapid availability and scalability of services. As such, cloud services are engineered to address big data problems and enhance the likelihood of data and analytics sharing, reproducibility, and reuse. Here, we provide an introductory perspective on cloud computing to help the reader determine its value to their own research. PMID:29902176
Multi-threaded ATLAS simulation on Intel Knights Landing processors
NASA Astrophysics Data System (ADS)
Farrell, Steven; Calafiura, Paolo; Leggett, Charles; Tsulaia, Vakhtang; Dotti, Andrea; ATLAS Collaboration
2017-10-01
The Knights Landing (KNL) release of the Intel Many Integrated Core (MIC) Xeon Phi line of processors is a potential game changer for HEP computing. With 72 cores and deep vector registers, the KNL cards promise significant performance benefits for highly-parallel, compute-heavy applications. Cori, the newest supercomputer at the National Energy Research Scientific Computing Center (NERSC), was delivered to its users in two phases with the first phase online at the end of 2015 and the second phase now online at the end of 2016. Cori Phase 2 is based on the KNL architecture and contains over 9000 compute nodes with 96GB DDR4 memory. ATLAS simulation with the multithreaded Athena Framework (AthenaMT) is a good potential use-case for the KNL architecture and supercomputers like Cori. ATLAS simulation jobs have a high ratio of CPU computation to disk I/O and have been shown to scale well in multi-threading and across many nodes. In this paper we will give an overview of the ATLAS simulation application with details on its multi-threaded design. Then, we will present a performance analysis of the application on KNL devices and compare it to a traditional x86 platform to demonstrate the capabilities of the architecture and evaluate the benefits of utilizing KNL platforms like Cori for ATLAS production.
Fast parallel tandem mass spectral library searching using GPU hardware acceleration.
Baumgardner, Lydia Ashleigh; Shanmugam, Avinash Kumar; Lam, Henry; Eng, Jimmy K; Martin, Daniel B
2011-06-03
Mass spectrometry-based proteomics is a maturing discipline of biologic research that is experiencing substantial growth. Instrumentation has steadily improved over time with the advent of faster and more sensitive instruments collecting ever larger data files. Consequently, the computational process of matching a peptide fragmentation pattern to its sequence, traditionally accomplished by sequence database searching and more recently also by spectral library searching, has become a bottleneck in many mass spectrometry experiments. In both of these methods, the main rate-limiting step is the comparison of an acquired spectrum with all potential matches from a spectral library or sequence database. This is a highly parallelizable process because the core computational element can be represented as a simple but arithmetically intense multiplication of two vectors. In this paper, we present a proof of concept project taking advantage of the massively parallel computing available on graphics processing units (GPUs) to distribute and accelerate the process of spectral assignment using spectral library searching. This program, which we have named FastPaSS (for Fast Parallelized Spectral Searching), is implemented in CUDA (Compute Unified Device Architecture) from NVIDIA, which allows direct access to the processors in an NVIDIA GPU. Our efforts demonstrate the feasibility of GPU computing for spectral assignment, through implementation of the validated spectral searching algorithm SpectraST in the CUDA environment.
The Relative Effectiveness of Computer-Based and Traditional Resources for Education in Anatomy
ERIC Educational Resources Information Center
Khot, Zaid; Quinlan, Kaitlyn; Norman, Geoffrey R.; Wainman, Bruce
2013-01-01
There is increasing use of computer-based resources to teach anatomy, although no study has compared computer-based learning to traditional. In this study, we examine the effectiveness of three formats of anatomy learning: (1) a virtual reality (VR) computer-based module, (2) a static computer-based module providing Key Views (KV), (3) a plastic…
Tablet and Smartphone Accessibility Features in the Low Vision Rehabilitation
Irvine, Danielle; Zemke, Alex; Pusateri, Gregg; Gerlach, Leah; Chun, Rob; Jay, Walter M.
2014-01-01
Abstract Tablet and smartphone use is rapidly increasing in developed countries. With this upsurge in popularity, the devices themselves are becoming more user-friendly for all consumers, including the visually impaired. Traditionally, visually impaired patients have received optical rehabilitation in the forms of microscopes, stand magnifiers, handheld magnifiers, telemicroscopes, and electronic magnification such as closed circuit televisions (CCTVs). In addition to the optical and financial limitations of traditional devices, patients do not always view them as being socially acceptable. For this reason, devices are often underutilised by patients due to lack of use in public forums or when among peers. By incorporating smartphones and tablets into a patient’s low vision rehabilitation, in addition to traditional devices, one provides versatile and mainstream options, which may also be less expensive. This article explains exactly what the accessibility features of tablets and smartphones are for the blind and visually impaired, how to access them, and provides an introduction on usage of the features. PMID:27928274
NASA Astrophysics Data System (ADS)
Fulani, Olatunji T.
Development of electric drive systems for transportation and industrial applications is rapidly seeing the use of wide-bandgap (WBG) based power semiconductor devices. These devices, such as SiC MOSFETs, enable high switching frequencies and are becoming the preferred choice in inverters because of their lower switching losses and higher allowable operating temperatures. Due to the much shorter turn-on and turn-off times and correspondingly larger output voltage edge rates, traditional models and methods previously used to estimate inverter and motor power losses, based upon a triangular power loss waveform, are no longer justifiable from a physical perspective. In this thesis, more appropriate models and a power loss calculation approach are described with the goal of more accurately estimating the power losses in WBG-based electric drive systems. Sine-triangle modulation with third harmonic injection is used to control the switching of the inverter. The motor and inverter models are implemented using Simulink and computer studies are shown illustrating the application of the new approach.
NASA Astrophysics Data System (ADS)
Zhang, Xinyue; Zhang, Qisheng; Wang, Meng; Kong, Qiang; Zhang, Shengquan; He, Ruihao; Liu, Shenghui; Li, Shuhan; Yuan, Zhenzhong
2017-11-01
Due to the pressing demand for metallic ore exploration technology in China, several new technologies are being employed in the relevant exploration instruments. In addition to possessing the high resolution of the traditional transient electromagnetic method, high-efficiency measurements, and a short measurement time, the multichannel transient electromagnetic method (MTEM) technology can also sensitively determine the characteristics of a low-resistivity geologic body, without being affected by the terrain. Besides, the MTEM technology also solves the critical, existing interference problem in electrical exploration technology. This study develops a full-waveform voltage and current recording device for MTEM transmitters. After continuous acquisition and storage of the large, pseudo-random current signals emitted by the MTEM transmitter, these signals are then convoluted with the signals collected by the receiver to obtain the earth's impulse response. In this paper, the overall design of the full-waveform recording apparatus, including the hardware and upper-computer software designs, the software interface display, and the results of field test, is discussed in detail.
Enciso, R; Memon, A; Mah, J
2003-01-01
The research goal at the Craniofacial Virtual Reality Laboratory of the School of Dentistry in conjunction with the Integrated Media Systems Center, School of Engineering, University of Southern California, is to develop computer methods to accurately visualize patients in three dimensions using advanced imaging and data acquisition devices such as cone-beam computerized tomography (CT) and mandibular motion capture. Data from these devices were integrated for three-dimensional (3D) patient-specific visualization, modeling and animation. Generic methods are in development that can be used with common CT image format (DICOM), mesh format (STL) and motion data (3D position over time). This paper presents preliminary descriptive studies on: 1) segmentation of the lower and upper jaws with two types of CT data--(a) traditional whole head CT data and (b) the new dental Newtom CT; 2) manual integration of accurate 3D tooth crowns with the segmented lower jaw 3D model; 3) realistic patient-specific 3D animation of the lower jaw.
Design and Analysis of a Novel Centrifugal Braking Device for a Mechanical Antilock Braking System.
Yang, Cheng-Ping; Yang, Ming-Shien; Liu, Tyng
2015-06-01
A new concept for a mechanical antilock braking system (ABS) with a centrifugal braking device (CBD), termed a centrifugal ABS (C-ABS), is presented and developed in this paper. This new CBD functions as a brake in which the output braking torque adjusts itself depending on the speed of the output rotation. First, the structure and mechanical models of the entire braking system are introduced and established. Second, a numerical computer program for simulating the operation of the system is developed. The characteristics of the system can be easily identified and can be designed with better performance by using this program to studying the effects of different design parameters. Finally, the difference in the braking performance between the C-ABS and the braking system with or without a traditional ABS is discussed. The simulation results indicate that the C-ABS can prevent the wheel from locking even if excessive operating force is provided while still maintaining acceptable braking performance.
Mobile Videoconferencing Apps for Telemedicine
Liu, Wei-Li; Locatis, Craig; Ackerman, Michael
2016-01-01
Abstract Introduction: The quality and performance of several videoconferencing applications (apps) tested on iOS (Apple, Cupertino, CA) and Android™ (Google, Mountain View, CA) mobile platforms using Wi-Fi (802.11), third-generation (3G), and fourth-generation (4G) cellular networks are described. Materials and Methods: The tests were done to determine how well apps perform compared with videoconferencing software installed on computers or with more traditional videoconferencing using dedicated hardware. The rationale for app assessment and the testing methodology are described. Results: Findings are discussed in relation to operating system platform (iOS or Android) for which the apps were designed and the type of network (Wi-Fi, 3G, or 4G) used. The platform, network, and apps interact, and it is impossible to discuss videoconferencing experienced on mobile devices in relation to one of these factors without referencing the others. Conclusions: Apps for mobile devices can vary significantly from other videoconferencing software or hardware. App performance increased over the testing period due to improvements in network infrastructure and how apps manage bandwidth. PMID:26204322
Mercury in Retrograde: Shaking Up the Study of Orbital Motion with Kinesthetic Learning
NASA Astrophysics Data System (ADS)
DeStefano, Paul; Allen, Thomas; Widenhorn, Ralf
2018-06-01
We are investigating the use of kinesthetic activities to teach the orbital motion of planets at the introductory astronomy level. In addition to breaking the monotony of traditional classroom settings, kinesthetic activities can allow novel connections to form between the student and the material, as established in a recent study. In our example active learning activity, two students walk along predetermined paths in the classroom, simulating the dynamics of any two real or fictional bodies in orbital motion about a common object. Each student carries a short-range, local positioning device that records its 2D position, continuously. The position data from both devices are collected on a single computer. After acquisition, the data can be used to highlight interesting features of orbital dynamics. For example, we demonstrate a particular transformation of the data that shows apparent retrograde motion arising directly from the relative motion of two bodies orbiting a common object. This activity provides students with the opportunity to observe interesting orbital dynamics on a human scale.
Virtual target tracking (VTT) as applied to mobile satellite communication networks
NASA Astrophysics Data System (ADS)
Amoozegar, Farid
1999-08-01
Traditionally, target tracking has been used for aerospace applications, such as, tracking highly maneuvering targets in a cluttered environment for missile-to-target intercept scenarios. Although the speed and maneuvering capability of current aerospace targets demand more efficient algorithms, many complex techniques have already been proposed in the literature, which primarily cover the defense applications of tracking methods. On the other hand, the rapid growth of Global Communication Systems, Global Information Systems (GIS), and Global Positioning Systems (GPS) is creating new and more diverse challenges for multi-target tracking applications. Mobile communication and computing can very well appreciate a huge market for Cellular Communication and Tracking Devices (CCTD), which will be tracking networked devices at the cellular level. The objective of this paper is to introduce a new concept, i.e., Virtual Target Tracking (VTT) for commercial applications of multi-target tracking algorithms and techniques as applied to mobile satellite communication networks. It would be discussed how Virtual Target Tracking would bring more diversity to target tracking research.
Mobile Videoconferencing Apps for Telemedicine.
Zhang, Kai; Liu, Wei-Li; Locatis, Craig; Ackerman, Michael
2016-01-01
The quality and performance of several videoconferencing applications (apps) tested on iOS (Apple, Cupertino, CA) and Android (Google, Mountain View, CA) mobile platforms using Wi-Fi (802.11), third-generation (3G), and fourth-generation (4G) cellular networks are described. The tests were done to determine how well apps perform compared with videoconferencing software installed on computers or with more traditional videoconferencing using dedicated hardware. The rationale for app assessment and the testing methodology are described. Findings are discussed in relation to operating system platform (iOS or Android) for which the apps were designed and the type of network (Wi-Fi, 3G, or 4G) used. The platform, network, and apps interact, and it is impossible to discuss videoconferencing experienced on mobile devices in relation to one of these factors without referencing the others. Apps for mobile devices can vary significantly from other videoconferencing software or hardware. App performance increased over the testing period due to improvements in network infrastructure and how apps manage bandwidth.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-08
... Phones and Tablet Computers, and Components Thereof; Notice of Receipt of Complaint; Solicitation of... entitled Certain Electronic Devices, Including Mobile Phones and Tablet Computers, and Components Thereof... the United States after importation of certain electronic devices, including mobile phones and tablet...
Computation offloading for real-time health-monitoring devices.
Kalantarian, Haik; Sideris, Costas; Tuan Le; Hosseini, Anahita; Sarrafzadeh, Majid
2016-08-01
Among the major challenges in the development of real-time wearable health monitoring systems is to optimize battery life. One of the major techniques with which this objective can be achieved is computation offloading, in which portions of computation can be partitioned between the device and other resources such as a server or cloud. In this paper, we describe a novel dynamic computation offloading scheme for real-time wearable health monitoring devices that adjusts the partitioning of data between the wearable device and mobile application as a function of desired classification accuracy.
Design and optimization of color lookup tables on a simplex topology.
Monga, Vishal; Bala, Raja; Mo, Xuan
2012-04-01
An important computational problem in color imaging is the design of color transforms that map color between devices or from a device-dependent space (e.g., RGB/CMYK) to a device-independent space (e.g., CIELAB) and vice versa. Real-time processing constraints entail that such nonlinear color transforms be implemented using multidimensional lookup tables (LUTs). Furthermore, relatively sparse LUTs (with efficient interpolation) are employed in practice because of storage and memory constraints. This paper presents a principled design methodology rooted in constrained convex optimization to design color LUTs on a simplex topology. The use of n simplexes, i.e., simplexes in n dimensions, as opposed to traditional lattices, recently has been of great interest in color LUT design for simplex topologies that allow both more analytically tractable formulations and greater efficiency in the LUT. In this framework of n-simplex interpolation, our central contribution is to develop an elegant iterative algorithm that jointly optimizes the placement of nodes of the color LUT and the output values at those nodes to minimize interpolation error in an expected sense. This is in contrast to existing work, which exclusively designs either node locations or the output values. We also develop new analytical results for the problem of node location optimization, which reduces to constrained optimization of a large but sparse interpolation matrix in our framework. We evaluate our n -simplex color LUTs against the state-of-the-art lattice (e.g., International Color Consortium profiles) and simplex-based techniques for approximating two representative multidimensional color transforms that characterize a CMYK xerographic printer and an RGB scanner, respectively. The results show that color LUTs designed on simplexes offer very significant benefits over traditional lattice-based alternatives in improving color transform accuracy even with a much smaller number of nodes.
Carvajal, Gonzalo; Figueroa, Miguel
2014-07-01
Typical image recognition systems operate in two stages: feature extraction to reduce the dimensionality of the input space, and classification based on the extracted features. Analog Very Large Scale Integration (VLSI) is an attractive technology to achieve compact and low-power implementations of these computationally intensive tasks for portable embedded devices. However, device mismatch limits the resolution of the circuits fabricated with this technology. Traditional layout techniques to reduce the mismatch aim to increase the resolution at the transistor level, without considering the intended application. Relating mismatch parameters to specific effects in the application level would allow designers to apply focalized mismatch compensation techniques according to predefined performance/cost tradeoffs. This paper models, analyzes, and evaluates the effects of mismatched analog arithmetic in both feature extraction and classification circuits. For the feature extraction, we propose analog adaptive linear combiners with on-chip learning for both Least Mean Square (LMS) and Generalized Hebbian Algorithm (GHA). Using mathematical abstractions of analog circuits, we identify mismatch parameters that are naturally compensated during the learning process, and propose cost-effective guidelines to reduce the effect of the rest. For the classification, we derive analog models for the circuits necessary to implement Nearest Neighbor (NN) approach and Radial Basis Function (RBF) networks, and use them to emulate analog classifiers with standard databases of face and hand-writing digits. Formal analysis and experiments show how we can exploit adaptive structures and properties of the input space to compensate the effects of device mismatch at the application level, thus reducing the design overhead of traditional layout techniques. Results are also directly extensible to multiple application domains using linear subspace methods. Copyright © 2014 Elsevier Ltd. All rights reserved.
Wave Amplitude Dependent Engineering Model of Propellant Slosh in Spherical Tanks
NASA Technical Reports Server (NTRS)
Brodnick, Jacob; Westra, Douglas G.; Eberhart, Chad J.; Yang, Hong Q.; West, Jeffrey S.
2016-01-01
Liquid propellant slosh is often a concern for the controllability of flight vehicles. Anti-slosh devices are traditionally included in propellant tank designs to limit the amount of sloshing allowed during flight. These devices and any necessary supports can be quite heavy to meet various structural requirements. Some of the burden on anti-slosh devices can be relieved by exploiting the nonlinear behavior of slosh waves in bare smooth wall tanks. A nonlinear regime slosh model for bare spherical tanks was developed through a joint analytical and experimental effort by NASA/MSFC. The developed slosh model accounts for the large damping inherent in nonlinear slosh waves which is more accurate and drives conservatism from vehicle stability analyses that use traditional bare tank slosh models. A more accurate slosh model will result in more realistic predicted slosh forces during flight reducing or removing the need for active controls during a maneuver or baffles in the tank design. Lower control gains and smaller or fewer tank baffles can reduce cost and system complexity while increasing vehicle performance. Both Computational Fluid Dynamics (CFD) simulation and slosh testing of three different spherical tank geometries were performed to develop the proposed slosh model. Several important findings were made during this effort in addition to determining the parameters to the nonlinear regime slosh model. The linear regime slosh damping trend for spherical tanks reported in NASA SP-106 was shown to be inaccurate for certain regions of a tank. Additionally, transition to the nonlinear regime for spherical tanks was only found to occur at very large wave amplitudes in the lower hemisphere and was a strong function of the propellant fill level in the upper hemisphere. The nonlinear regime damping trend was also found to be a function of the propellant fill level.
Virtual rounds: simulation-based education in procedural medicine
NASA Astrophysics Data System (ADS)
Shaffer, David W.; Meglan, Dwight A.; Ferrell, Margaret; Dawson, Steven L.
1999-07-01
Computer-based simulation is a goal for training physicians in specialties where traditional training puts patients at risk. Intuitively, interactive simulation of anatomy, pathology, and therapeutic actions should lead to shortening of the learning curve for novice or inexperienced physicians. Effective transfer of knowledge acquired in simulators must be shown for such devices to be widely accepted in the medical community. We have developed an Interventional Cardiology Training Simulator which incorporates real-time graphic interactivity coupled with haptic response, and an embedded curriculum permitting rehearsal, hypertext links, personal archiving and instructor review and testing capabilities. This linking of purely technical simulation with educational content creates a more robust educational purpose for procedural simulators.
NASA Technical Reports Server (NTRS)
Wheeler, Kevin; Jorgensen, Charles
2000-01-01
This paper presents recent results in neuroelectric pattern recognition of electromyographic (EMG) signals used to control virtual computer input devices. The devices are designed to substitute for the functions of both a traditional joystick and keyboard entry method. We demonstrate recognition accuracy through neuroelectric control of a 757 class simulation aircraft landing at San Francisco International Airport using a virtual joystick as shown. This is accomplished by a pilot closing his fist in empty air and performing control movements that are captured by a dry electrode array on the arm which are then analyzed and routed through a flight director permitting full pilot outer loop control of the simulation. We then demonstrate finer grain motor pattern recognition through a virtual keyboard by having a typist tap his traders on a typical desk in a touch typist position. The EMG signals are then translated to keyboard presses and displayed. The paper describes the bioelectric pattern recognition methodology common to both examples. Figure 2 depicts raw EMG data from typing, the numeral '8' and the numeral '9'. These two gestures are very close in appearance and statistical properties yet are distinguishable by our hidden Kharkov model algorithms. Extensions of this work to NASA emissions and robotic control are considered.
NASA Astrophysics Data System (ADS)
Alias, M. S.; Rafie, A. S. Mohd; Marzuki, O. F.; Hamid, M. F. Abdul; Chia, C. C.
2017-12-01
Over the years, many studies have demonstrated the feasibility of the Magnus effect on spinning cylinder to improve lift production, which can be much higher than the traditional airfoil shape. With this characteristic, spinning cylinder might be used as a lifting device for short take-off distance aircraft or unmanned aerial vehicle (UAV). Nonetheless, there is still a gap in research to explain the use of spinning cylinder as a good lifting device. Computational method is used for this study to analyse the Magnus effect, in which two-dimensional finite element numerical analysis method is applied using ANSYS FLUENT software to examine the coefficients of lift and drag, and to investigate the flow field around the rotating cylinder surface body. Cylinder size of 30mm is chosen and several configurations in steady and concentrated air flows have been evaluated. All in all, it can be concluded that, with the right configuration of the concentrated air flow setup, the rotating cylinder can be used as a lifting device for very short take-off since it can produce very high coefficient of lift (2.5 times higher) compared with steady air flow configuration.
Design keys for paper-based concentration gradient generators.
Schaumburg, Federico; Urteaga, Raúl; Kler, Pablo A; Berli, Claudio L A
2018-08-03
The generation of concentration gradients is an essential operation for several analytical processes implemented on microfluidic paper-based analytical devices. The dynamic gradient formation is based on the transverse dispersion of chemical species across co-flowing streams. In paper channels, this transverse flux of molecules is dominated by mechanical dispersion, which is substantially different than molecular diffusion, which is the mechanism acting in conventional microchannels. Therefore, the design of gradient generators on paper requires strategies different from those used in traditional microfluidics. This work considers the foundations of transverse dispersion in porous substrates to investigate the optimal design of microfluidic paper-based concentration gradient generators (μPGGs) by computer simulations. A set of novel and versatile μPGGs were designed in the format of numerical prototypes, and virtual experiments were run to explore the ranges of operation and the overall performance of such devices. Then physical prototypes were fabricated and experimentally tested in our lab. Finally, some basic rules for the design of optimized μPGGs are proposed. Apart from improving the efficiency of mixers, diluters and μPGGs, the results of this investigation are relevant to attain highly controlled concentration fields on paper-based devices. Copyright © 2018 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Gonzalez, Michael
2014-01-01
The introduction of the Internet and its hyperlinked content made easily accessible with portable digital devices like smart phones and tablets, posed challenges to the traditional linear and print-oriented notions of what it means to read and write. Now that these traditional notions of read and write literacy have been breached by these…
Artificial intelligence in hematology.
Zini, Gina
2005-10-01
Artificial intelligence (AI) is a computer based science which aims to simulate human brain faculties using a computational system. A brief history of this new science goes from the creation of the first artificial neuron in 1943 to the first artificial neural network application to genetic algorithms. The potential for a similar technology in medicine has immediately been identified by scientists and researchers. The possibility to store and process all medical knowledge has made this technology very attractive to assist or even surpass clinicians in reaching a diagnosis. Applications of AI in medicine include devices applied to clinical diagnosis in neurology and cardiopulmonary diseases, as well as the use of expert or knowledge-based systems in routine clinical use for diagnosis, therapeutic management and for prognostic evaluation. Biological applications include genome sequencing or DNA gene expression microarrays, modeling gene networks, analysis and clustering of gene expression data, pattern recognition in DNA and proteins, protein structure prediction. In the field of hematology the first devices based on AI have been applied to the routine laboratory data management. New tools concern the differential diagnosis in specific diseases such as anemias, thalassemias and leukemias, based on neural networks trained with data from peripheral blood analysis. A revolution in cancer diagnosis, including the diagnosis of hematological malignancies, has been the introduction of the first microarray based and bioinformatic approach for molecular diagnosis: a systematic approach based on the monitoring of simultaneous expression of thousands of genes using DNA microarray, independently of previous biological knowledge, analysed using AI devices. Using gene profiling, the traditional diagnostic pathways move from clinical to molecular based diagnostic systems.
Physarum machines: encapsulating reaction-diffusion to compute spanning tree
NASA Astrophysics Data System (ADS)
Adamatzky, Andrew
2007-12-01
The Physarum machine is a biological computing device, which employs plasmodium of Physarum polycephalum as an unconventional computing substrate. A reaction-diffusion computer is a chemical computing device that computes by propagating diffusive or excitation wave fronts. Reaction-diffusion computers, despite being computationally universal machines, are unable to construct certain classes of proximity graphs without the assistance of an external computing device. I demonstrate that the problem can be solved if the reaction-diffusion system is enclosed in a membrane with few ‘growth points’, sites guiding the pattern propagation. Experimental approximation of spanning trees by P. polycephalum slime mold demonstrates the feasibility of the approach. Findings provided advance theory of reaction-diffusion computation by enriching it with ideas of slime mold computation.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-08
... Communication Devices, Portable Music and Data Processing Devices, Computers and Components Thereof; Notice of... within the United States after importation of certain wireless communication devices, portable music and... music and data processing devices, computers and components thereof that infringe one or more of claim...
Processing Device for High-Speed Execution of an Xrisc Computer Program
NASA Technical Reports Server (NTRS)
Ng, Tak-Kwong (Inventor); Mills, Carl S. (Inventor)
2016-01-01
A processing device for high-speed execution of a computer program is provided. A memory module may store one or more computer programs. A sequencer may select one of the computer programs and controls execution of the selected program. A register module may store intermediate values associated with a current calculation set, a set of output values associated with a previous calculation set, and a set of input values associated with a subsequent calculation set. An external interface may receive the set of input values from a computing device and provides the set of output values to the computing device. A computation interface may provide a set of operands for computation during processing of the current calculation set. The set of input values are loaded into the register and the set of output values are unloaded from the register in parallel with processing of the current calculation set.
Multi-input and binary reproducible, high bandwidth floating point adder in a collective network
Chen, Dong; Eisley, Noel A.; Heidelberger, Philip; Steinmacher-Burow, Burkhard
2016-11-15
To add floating point numbers in a parallel computing system, a collective logic device receives the floating point numbers from computing nodes. The collective logic devices converts the floating point numbers to integer numbers. The collective logic device adds the integer numbers and generating a summation of the integer numbers. The collective logic device converts the summation to a floating point number. The collective logic device performs the receiving, the converting the floating point numbers, the adding, the generating and the converting the summation in one pass. One pass indicates that the computing nodes send inputs only once to the collective logic device and receive outputs only once from the collective logic device.
Light weight portable operator control unit using an Android-enabled mobile phone
NASA Astrophysics Data System (ADS)
Fung, Nicholas
2011-05-01
There have been large gains in the field of robotics, both in hardware sophistication and technical capabilities. However, as more capable robots have been developed and introduced to battlefield environments, the problem of interfacing with human controllers has proven to be challenging. Particularly in the field of military applications, controller requirements can be stringent and can range from size and power consumption, to durability and cost. Traditional operator control units (OCUs) tend to resemble laptop personal computers (PCs), as these devices are mobile and have ample computing power. However, laptop PCs are bulky and have greater power requirements. To approach this problem, a light weight, inexpensive controller was created based on a mobile phone running the Android operating system. It was designed to control an iRobot Packbot through the Army Research Laboratory (ARL) in-house Agile Computing Infrastructure (ACI). The hardware capabilities of the mobile phone, such as Wi- Fi communications, touch screen interface, and the flexibility of the Android operating system, made it a compelling platform. The Android based OCU offers a more portable package and can be easily carried by a soldier along with normal gear requirements. In addition, the one hand operation of the Android OCU allows for the Soldier to keep an unoccupied hand for greater flexibility. To validate the Android OCU as a capable controller, experimental data was collected evaluating use of the controller and a traditional, tablet PC based OCU. Initial analysis suggests that the Android OCU performed positively in qualitative data collected from participants.
Creation and use of a survey instrument for comparing mobile computing devices.
Macri, Jennifer M; Lee, Paul P; Silvey, Garry M; Lobach, David F
2005-01-01
Both personal digital assistants (PDAs) and tablet computers have emerged to facilitate data collection at the point of care. However, little research has been reported comparing these mobile computing devices in specific care settings. In this study we present an approach for comparing functionally identical applications on a Palm operating system-based PDA and a Windows-based tablet computer for point-of-care documentation of clinical observations by eye care professionals when caring for patients with diabetes. Eye-care professionals compared the devices through focus group sessions and through validated usability surveys. This poster describes the development and use of the survey instrument used for comparing mobile computing devices.
Computational Hemodynamics Involving Artificial Devices
NASA Technical Reports Server (NTRS)
Kwak, Dochan; Kiris, Cetin; Feiereisen, William (Technical Monitor)
2001-01-01
This paper reports the progress being made towards developing complete blood flow simulation capability in human, especially, in the presence of artificial devices such as valves and ventricular assist devices. Devices modeling poses unique challenges different from computing the blood flow in natural hearts and arteries. There are many elements needed such as flow solvers, geometry modeling including flexible walls, moving boundary procedures and physiological characterization of blood. As a first step, computational technology developed for aerospace applications was extended in the recent past to the analysis and development of mechanical devices. The blood flow in these devices is practically incompressible and Newtonian, and thus various incompressible Navier-Stokes solution procedures can be selected depending on the choice of formulations, variables and numerical schemes. Two primitive variable formulations used are discussed as well as the overset grid approach to handle complex moving geometry. This procedure has been applied to several artificial devices. Among these, recent progress made in developing DeBakey axial flow blood pump will be presented from computational point of view. Computational and clinical issues will be discussed in detail as well as additional work needed.
Chung, Philip; Heller, J. Alex; Etemadi, Mozziyar; Ottoson, Paige E.; Liu, Jonathan A.; Rand, Larry; Roy, Shuvo
2014-01-01
Biologically inert elastomers such as silicone are favorable materials for medical device fabrication, but forming and curing these elastomers using traditional liquid injection molding processes can be an expensive process due to tooling and equipment costs. As a result, it has traditionally been impractical to use liquid injection molding for low-cost, rapid prototyping applications. We have devised a method for rapid and low-cost production of liquid elastomer injection molded devices that utilizes fused deposition modeling 3D printers for mold design and a modified desiccator as an injection system. Low costs and rapid turnaround time in this technique lower the barrier to iteratively designing and prototyping complex elastomer devices. Furthermore, CAD models developed in this process can be later adapted for metal mold tooling design, enabling an easy transition to a traditional injection molding process. We have used this technique to manufacture intravaginal probes involving complex geometries, as well as overmolding over metal parts, using tools commonly available within an academic research laboratory. However, this technique can be easily adapted to create liquid injection molded devices for many other applications. PMID:24998993
Boolean and brain-inspired computing using spin-transfer torque devices
NASA Astrophysics Data System (ADS)
Fan, Deliang
Several completely new approaches (such as spintronic, carbon nanotube, graphene, TFETs, etc.) to information processing and data storage technologies are emerging to address the time frame beyond current Complementary Metal-Oxide-Semiconductor (CMOS) roadmap. The high speed magnetization switching of a nano-magnet due to current induced spin-transfer torque (STT) have been demonstrated in recent experiments. Such STT devices can be explored in compact, low power memory and logic design. In order to truly leverage STT devices based computing, researchers require a re-think of circuit, architecture, and computing model, since the STT devices are unlikely to be drop-in replacements for CMOS. The potential of STT devices based computing will be best realized by considering new computing models that are inherently suited to the characteristics of STT devices, and new applications that are enabled by their unique capabilities, thereby attaining performance that CMOS cannot achieve. The goal of this research is to conduct synergistic exploration in architecture, circuit and device levels for Boolean and brain-inspired computing using nanoscale STT devices. Specifically, we first show that the non-volatile STT devices can be used in designing configurable Boolean logic blocks. We propose a spin-memristor threshold logic (SMTL) gate design, where memristive cross-bar array is used to perform current mode summation of binary inputs and the low power current mode spintronic threshold device carries out the energy efficient threshold operation. Next, for brain-inspired computing, we have exploited different spin-transfer torque device structures that can implement the hard-limiting and soft-limiting artificial neuron transfer functions respectively. We apply such STT based neuron (or 'spin-neuron') in various neural network architectures, such as hierarchical temporal memory and feed-forward neural network, for performing "human-like" cognitive computing, which show more than two orders of lower energy consumption compared to state of the art CMOS implementation. Finally, we show the dynamics of injection locked Spin Hall Effect Spin-Torque Oscillator (SHE-STO) cluster can be exploited as a robust multi-dimensional distance metric for associative computing, image/ video analysis, etc. Our simulation results show that the proposed system architecture with injection locked SHE-STOs and the associated CMOS interface circuits can be suitable for robust and energy efficient associative computing and pattern matching.
NASA Astrophysics Data System (ADS)
Tessier, Frederic
Microfluidic and nanofluidic technology is revolutionizing experimental practices in analytical chemistry, molecular biology and medicine. Indeed, the development of systems of small dimensions for the processing of fluids heralds the miniaturization of traditional, cumbersome laboratory equipment onto robust, portable and efficient microchip devices (similar to the electronic microchips found in computers). Moreover, the conjunction of scale between the smallest man-made device and the largest macromolecules evolved by Nature is fertile ground for the blooming of our knowledge about the key processes of life. In fact, the conjunction is threefold, because modern computational resources also allow us to contemplate a rather explicit modelling of physical systems between the nanoscale and the microscale. In the five articles comprising this thesis, we present the results of computer simulations that address specific questions concerning the operation of two different model systems relevant to the development of small-scale fluidic devices for the manipulation and analysis of biomolecules. First, we use a Bond-Fluctuation Monte Carlo approach to study the electrophoretic drift of macromolecules across an entropic trap array built for the length separation of long, double-stranded DNA molecules. We show that the motion of the molecules is consistent with a simple balance between electric and entropic forces, in terms of a single characteristic parameter. We also extract detailed information on polymer deformation during migration, predict the separation of topoisomers, and investigate innovative ratchet driving regimes. Secondly, we present theoretical derivations, numerical calculations and Molecular Dynamics simulation results for an electrolyte confined in a capillary of nanoscopic dimensions. In particular, we study the effectiveness of neutral grafted polymer chains in reducing the magnitude of electroosmotic flow (fluid flow induced by an external electric field). Our results constitute the first independent, quantitative verification of theoretical scaling predictions for the coupling between grafted macromolecules and electroosmotic flow. Such simulations will contribute to the rationalization of the existing empirical knowledge about flow control with polymer coatings.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-15
... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-745] Certain Wireless Communication Devices, Portable Music and Data Processing Devices, Computers and Components Thereof; Notice of Request for Statements on the Public Interest AGENCY: U.S. International Trade Commission. ACTION: Notice...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-29
... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-856] Certain Wireless Communication Devices, Portable Music and Data Processing Devices, Computers, and Components Thereof AGENCY: U.S. International Trade Commission. ACTION: Notice. SUMMARY: Notice is hereby given that the U.S. International...
Deflagration-to-detonation characteristics of a laser exploding bridge detonator
NASA Astrophysics Data System (ADS)
Welle, E. J.; Fleming, K. J.; Marley, S. K.
2006-08-01
Evaluation of laser initiated explosive trains has been an area of extreme interest due to the safety benefits of these systems relative to traditional electro-explosive devices. A particularly important difference is these devices are inherently less electro-static discharge (ESD) sensitive relative to traditional explosive devices due to the isolation of electrical power and associated materials from the explosive interface. This paper will report work conducted at Sandia National Laboratories' Explosive Components Facility, which evaluated the initiation and deflagration-to-detonation characteristics of a Laser Driven Exploding Bridgewire detonator. This paper will report and discuss characteristics of Laser Exploding Bridgewire devices loaded with hexanitrohexaazaisowurtzitane (CL-20) and tetraammine-cis-bis-(5-nitro-2H-tetrazolato-N2) cobalt (III) perchlorate (BNCP).
Computational fluid dynamics modelling in cardiovascular medicine
Morris, Paul D; Narracott, Andrew; von Tengg-Kobligk, Hendrik; Silva Soto, Daniel Alejandro; Hsiao, Sarah; Lungu, Angela; Evans, Paul; Bressloff, Neil W; Lawford, Patricia V; Hose, D Rodney; Gunn, Julian P
2016-01-01
This paper reviews the methods, benefits and challenges associated with the adoption and translation of computational fluid dynamics (CFD) modelling within cardiovascular medicine. CFD, a specialist area of mathematics and a branch of fluid mechanics, is used routinely in a diverse range of safety-critical engineering systems, which increasingly is being applied to the cardiovascular system. By facilitating rapid, economical, low-risk prototyping, CFD modelling has already revolutionised research and development of devices such as stents, valve prostheses, and ventricular assist devices. Combined with cardiovascular imaging, CFD simulation enables detailed characterisation of complex physiological pressure and flow fields and the computation of metrics which cannot be directly measured, for example, wall shear stress. CFD models are now being translated into clinical tools for physicians to use across the spectrum of coronary, valvular, congenital, myocardial and peripheral vascular diseases. CFD modelling is apposite for minimally-invasive patient assessment. Patient-specific (incorporating data unique to the individual) and multi-scale (combining models of different length- and time-scales) modelling enables individualised risk prediction and virtual treatment planning. This represents a significant departure from traditional dependence upon registry-based, population-averaged data. Model integration is progressively moving towards ‘digital patient’ or ‘virtual physiological human’ representations. When combined with population-scale numerical models, these models have the potential to reduce the cost, time and risk associated with clinical trials. The adoption of CFD modelling signals a new era in cardiovascular medicine. While potentially highly beneficial, a number of academic and commercial groups are addressing the associated methodological, regulatory, education- and service-related challenges. PMID:26512019
Eshraghian, Jason K; Baek, Seungbum; Kim, Jun-Ho; Iannella, Nicolangelo; Cho, Kyoungrok; Goo, Yong Sook; Iu, Herbert H C; Kang, Sung-Mo; Eshraghian, Kamran
2018-02-13
Existing computational models of the retina often compromise between the biophysical accuracy and a hardware-adaptable methodology of implementation. When compared to the current modes of vision restoration, algorithmic models often contain a greater correlation between stimuli and the affected neural network, but lack physical hardware practicality. Thus, if the present processing methods are adapted to complement very-large-scale circuit design techniques, it is anticipated that it will engender a more feasible approach to the physical construction of the artificial retina. The computational model presented in this research serves to provide a fast and accurate predictive model of the retina, a deeper understanding of neural responses to visual stimulation, and an architecture that can realistically be transformed into a hardware device. Traditionally, implicit (or semi-implicit) ordinary differential equations (OES) have been used for optimal speed and accuracy. We present a novel approach that requires the effective integration of different dynamical time scales within a unified framework of neural responses, where the rod, cone, amacrine, bipolar, and ganglion cells correspond to the implemented pathways. Furthermore, we show that adopting numerical integration can both accelerate retinal pathway simulations by more than 50% when compared with traditional ODE solvers in some cases, and prove to be a more realizable solution for the hardware implementation of predictive retinal models.
Multi-input and binary reproducible, high bandwidth floating point adder in a collective network
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Dong; Eisley, Noel A; Heidelberger, Philip
To add floating point numbers in a parallel computing system, a collective logic device receives the floating point numbers from computing nodes. The collective logic devices converts the floating point numbers to integer numbers. The collective logic device adds the integer numbers and generating a summation of the integer numbers. The collective logic device converts the summation to a floating point number. The collective logic device performs the receiving, the converting the floating point numbers, the adding, the generating and the converting the summation in one pass. One pass indicates that the computing nodes send inputs only once to themore » collective logic device and receive outputs only once from the collective logic device.« less
An Evaluation of Teaching Introductory Geomorphology Using Computer-based Tools.
ERIC Educational Resources Information Center
Wentz, Elizabeth A.; Vender, Joann C.; Brewer, Cynthia A.
1999-01-01
Compares student reactions to traditional teaching methods and an approach where computer-based tools (GEODe CD-ROM and GIS-based exercises) were either integrated with or replaced the traditional methods. Reveals that the students found both of these tools valuable forms of instruction when used in combination with the traditional methods. (CMK)
Qualification and Approval of Personal Computer-Based Aviation Training Devices
DOT National Transportation Integrated Search
1997-05-12
This Advisory Circular (AC) provides information and guidance to potential training device manufacturers and aviation training consumers concerning a means, acceptable to the Administrator, by which personal computer-based aviation training devices (...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-12
... Certain Wireless Communication Devices, Portable Music and Data Processing Devices, Computers and..., portable music and data processing devices, computers and components thereof. The complaint names as...
Bio-inspired optical rotation sensor
NASA Astrophysics Data System (ADS)
O'Carroll, David C.; Shoemaker, Patrick A.; Brinkworth, Russell S. A.
2007-01-01
Traditional approaches to calculating self-motion from visual information in artificial devices have generally relied on object identification and/or correlation of image sections between successive frames. Such calculations are computationally expensive and real-time digital implementation requires powerful processors. In contrast flies arrive at essentially the same outcome, the estimation of self-motion, in a much smaller package using vastly less power. Despite the potential advantages and a few notable successes, few neuromorphic analog VLSI devices based on biological vision have been employed in practical applications to date. This paper describes a hardware implementation in aVLSI of our recently developed adaptive model for motion detection. The chip integrates motion over a linear array of local motion processors to give a single voltage output. Although the device lacks on-chip photodetectors, it includes bias circuits to use currents from external photodiodes, and we have integrated it with a ring-array of 40 photodiodes to form a visual rotation sensor. The ring configuration reduces pattern noise and combined with the pixel-wise adaptive characteristic of the underlying circuitry, permits a robust output that is proportional to image rotational velocity over a large range of speeds, and is largely independent of either mean luminance or the spatial structure of the image viewed. In principle, such devices could be used as an element of a velocity-based servo to replace or augment inertial guidance systems in applications such as mUAVs.
Uncertain behaviours of integrated circuits improve computational performance.
Yoshimura, Chihiro; Yamaoka, Masanao; Hayashi, Masato; Okuyama, Takuya; Aoki, Hidetaka; Kawarabayashi, Ken-ichi; Mizuno, Hiroyuki
2015-11-20
Improvements to the performance of conventional computers have mainly been achieved through semiconductor scaling; however, scaling is reaching its limitations. Natural phenomena, such as quantum superposition and stochastic resonance, have been introduced into new computing paradigms to improve performance beyond these limitations. Here, we explain that the uncertain behaviours of devices due to semiconductor scaling can improve the performance of computers. We prototyped an integrated circuit by performing a ground-state search of the Ising model. The bit errors of memory cell devices holding the current state of search occur probabilistically by inserting fluctuations into dynamic device characteristics, which will be actualised in the future to the chip. As a result, we observed more improvements in solution accuracy than that without fluctuations. Although the uncertain behaviours of devices had been intended to be eliminated in conventional devices, we demonstrate that uncertain behaviours has become the key to improving computational performance.
Esche, Carol Ann; Warren, Joan I; Woods, Anne B; Jesada, Elizabeth C; Iliuta, Ruth
2015-01-01
The goal of the Nurse Professional Development specialist is to utilize the most effective educational strategies when educating staff nurses about pressure ulcer prevention. More information is needed about the effect of computer-based learning and traditional classroom learning on pressure ulcer education for the staff nurse. This study compares computer-based learning and traditional classroom learning on immediate and long-term knowledge while evaluating the impact of education on pressure ulcer risk assessment, staging, and documentation.
NASA Technical Reports Server (NTRS)
Warren, Gary
1988-01-01
The SOS code is used to compute the resonance modes (frequency-domain information) of sample devices and separately to compute the transient behavior of the same devices. A code, DOT, is created to compute appropriate dot products of the time-domain and frequency-domain results. The transient behavior of individual modes in the device is then plotted. Modes in a coupled-cavity traveling-wave tube (CCTWT) section excited beam in separate simulations are analyzed. Mode energy vs. time and mode phase vs. time are computed and it is determined whether the transient waves are forward or backward waves for each case. Finally, the hot-test mode frequencies of the CCTWT section are computed.
Traditional vs. Innovative Uses of Computers among Mathematics Pre-Service Teachers in Serbia
ERIC Educational Resources Information Center
Teo, Timothy; Milutinovic, Verica; Zhou, Mingming; Bankovic, Dragic
2017-01-01
This study examined pre-service teachers' intentions to use computers in traditional and innovative teaching practices in primary mathematics classrooms. It extended the technology acceptance model (TAM) by adding as external variables pre-service teachers' experience with computers and their technological pedagogical content knowledge (TPCK).…
The Use of Computer Graphics in the Design Process.
ERIC Educational Resources Information Center
Palazzi, Maria
This master's thesis examines applications of computer technology to the field of industrial design and ways in which technology can transform the traditional process. Following a statement of the problem, the history and applications of the fields of computer graphics and industrial design are reviewed. The traditional industrial design process…
Orthorectification by Using Gpgpu Method
NASA Astrophysics Data System (ADS)
Sahin, H.; Kulur, S.
2012-07-01
Thanks to the nature of the graphics processing, the newly released products offer highly parallel processing units with high-memory bandwidth and computational power of more than teraflops per second. The modern GPUs are not only powerful graphic engines but also they are high level parallel programmable processors with very fast computing capabilities and high-memory bandwidth speed compared to central processing units (CPU). Data-parallel computations can be shortly described as mapping data elements to parallel processing threads. The rapid development of GPUs programmability and capabilities attracted the attentions of researchers dealing with complex problems which need high level calculations. This interest has revealed the concepts of "General Purpose Computation on Graphics Processing Units (GPGPU)" and "stream processing". The graphic processors are powerful hardware which is really cheap and affordable. So the graphic processors became an alternative to computer processors. The graphic chips which were standard application hardware have been transformed into modern, powerful and programmable processors to meet the overall needs. Especially in recent years, the phenomenon of the usage of graphics processing units in general purpose computation has led the researchers and developers to this point. The biggest problem is that the graphics processing units use different programming models unlike current programming methods. Therefore, an efficient GPU programming requires re-coding of the current program algorithm by considering the limitations and the structure of the graphics hardware. Currently, multi-core processors can not be programmed by using traditional programming methods. Event procedure programming method can not be used for programming the multi-core processors. GPUs are especially effective in finding solution for repetition of the computing steps for many data elements when high accuracy is needed. Thus, it provides the computing process more quickly and accurately. Compared to the GPUs, CPUs which perform just one computing in a time according to the flow control are slower in performance. This structure can be evaluated for various applications of computer technology. In this study covers how general purpose parallel programming and computational power of the GPUs can be used in photogrammetric applications especially direct georeferencing. The direct georeferencing algorithm is coded by using GPGPU method and CUDA (Compute Unified Device Architecture) programming language. Results provided by this method were compared with the traditional CPU programming. In the other application the projective rectification is coded by using GPGPU method and CUDA programming language. Sample images of various sizes, as compared to the results of the program were evaluated. GPGPU method can be used especially in repetition of same computations on highly dense data, thus finding the solution quickly.
Stone, John E.; Hallock, Michael J.; Phillips, James C.; Peterson, Joseph R.; Luthey-Schulten, Zaida; Schulten, Klaus
2016-01-01
Many of the continuing scientific advances achieved through computational biology are predicated on the availability of ongoing increases in computational power required for detailed simulation and analysis of cellular processes on biologically-relevant timescales. A critical challenge facing the development of future exascale supercomputer systems is the development of new computing hardware and associated scientific applications that dramatically improve upon the energy efficiency of existing solutions, while providing increased simulation, analysis, and visualization performance. Mobile computing platforms have recently become powerful enough to support interactive molecular visualization tasks that were previously only possible on laptops and workstations, creating future opportunities for their convenient use for meetings, remote collaboration, and as head mounted displays for immersive stereoscopic viewing. We describe early experiences adapting several biomolecular simulation and analysis applications for emerging heterogeneous computing platforms that combine power-efficient system-on-chip multi-core CPUs with high-performance massively parallel GPUs. We present low-cost power monitoring instrumentation that provides sufficient temporal resolution to evaluate the power consumption of individual CPU algorithms and GPU kernels. We compare the performance and energy efficiency of scientific applications running on emerging platforms with results obtained on traditional platforms, identify hardware and algorithmic performance bottlenecks that affect the usability of these platforms, and describe avenues for improving both the hardware and applications in pursuit of the needs of molecular modeling tasks on mobile devices and future exascale computers. PMID:27516922
A Fog Computing and Cloudlet Based Augmented Reality System for the Industry 4.0 Shipyard.
Fernández-Caramés, Tiago M; Fraga-Lamas, Paula; Suárez-Albela, Manuel; Vilar-Montesinos, Miguel
2018-06-02
Augmented Reality (AR) is one of the key technologies pointed out by Industry 4.0 as a tool for enhancing the next generation of automated and computerized factories. AR can also help shipbuilding operators, since they usually need to interact with information (e.g., product datasheets, instructions, maintenance procedures, quality control forms) that could be handled easily and more efficiently through AR devices. This is the reason why Navantia, one of the 10 largest shipbuilders in the world, is studying the application of AR (among other technologies) in different shipyard environments in a project called "Shipyard 4.0". This article presents Navantia's industrial AR (IAR) architecture, which is based on cloudlets and on the fog computing paradigm. Both technologies are ideal for supporting physically-distributed, low-latency and QoS-aware applications that decrease the network traffic and the computational load of traditional cloud computing systems. The proposed IAR communications architecture is evaluated in real-world scenarios with payload sizes according to demanding Microsoft HoloLens applications and when using a cloud, a cloudlet and a fog computing system. The results show that, in terms of response delay, the fog computing system is the fastest when transferring small payloads (less than 128 KB), while for larger file sizes, the cloudlet solution is faster than the others. Moreover, under high loads (with many concurrent IAR clients), the cloudlet in some cases is more than four times faster than the fog computing system in terms of response delay.
Brain-controlled body movement assistance devices and methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leuthardt, Eric C.; Love, Lonnie J.; Coker, Rob
Methods, devices, systems, and apparatus, including computer programs encoded on a computer storage medium, for brain-controlled body movement assistance devices. In one aspect, a device includes a brain-controlled body movement assistance device with a brain-computer interface (BCI) component adapted to be mounted to a user, a body movement assistance component operably connected to the BCI component and adapted to be worn by the user, and a feedback mechanism provided in connection with at least one of the BCI component and the body movement assistance component, the feedback mechanism being configured to output information relating to a usage session of themore » brain-controlled body movement assistance device.« less
Ogawa, K
1992-01-01
This paper proposes a new evaluation and prediction method for computer usability. This method is based on our two previously proposed information transmission measures created from a human-to-computer information transmission model. The model has three information transmission levels: the device, software, and task content levels. Two measures, called the device independent information measure (DI) and the computer independent information measure (CI), defined on the software and task content levels respectively, are given as the amount of information transmitted. Two information transmission rates are defined as DI/T and CI/T, where T is the task completion time: the device independent information transmission rate (RDI), and the computer independent information transmission rate (RCI). The method utilizes the RDI and RCI rates to evaluate relatively the usability of software and device operations on different computer systems. Experiments using three different systems, in this case a graphical information input task, confirm that the method offers an efficient way of determining computer usability.
NASA's Participation in the National Computational Grid
NASA Technical Reports Server (NTRS)
Feiereisen, William J.; Zornetzer, Steve F. (Technical Monitor)
1998-01-01
Over the last several years it has become evident that the character of NASA's supercomputing needs has changed. One of the major missions of the agency is to support the design and manufacture of aero- and space-vehicles with technologies that will significantly reduce their cost. It is becoming clear that improvements in the process of aerospace design and manufacturing will require a high performance information infrastructure that allows geographically dispersed teams to draw upon resources that are broader than traditional supercomputing. A computational grid draws together our information resources into one system. We can foresee the time when a Grid will allow engineers and scientists to use the tools of supercomputers, databases and on line experimental devices in a virtual environment to collaborate with distant colleagues. The concept of a computational grid has been spoken of for many years, but several events in recent times are conspiring to allow us to actually build one. In late 1997 the National Science Foundation initiated the Partnerships for Advanced Computational Infrastructure (PACI) which is built around the idea of distributed high performance computing. The Alliance lead, by the National Computational Science Alliance (NCSA), and the National Partnership for Advanced Computational Infrastructure (NPACI), lead by the San Diego Supercomputing Center, have been instrumental in drawing together the "Grid Community" to identify the technology bottlenecks and propose a research agenda to address them. During the same period NASA has begun to reformulate parts of two major high performance computing research programs to concentrate on distributed high performance computing and has banded together with the PACI centers to address the research agenda in common.
Mobile Recommender Apps with Privacy Management for Accessible and Usable Technologies.
Hersh, Marion; Leporini, Barbara
2017-01-01
The paper presents the preliminary results of an ongoing survey of the use of computers and mobile devices, interest in recommender apps and knowledge and concerns about privacy issues amongst English and Italian speaking disabled people. Participants were found to be regular users of computers and mobile devices for a range of applications. They were interested in recommender apps for household items, computer software and apps that met their accessibility and other requirements. They showed greater concerns about controlling access to personal data of different types than this data being retained by the computer or mobile device. They were also willing to make tradeoffs to improve device performance.
NASA Astrophysics Data System (ADS)
Laracuente, Nicholas; Grossman, Carl
2013-03-01
We developed an algorithm and software to calculate autocorrelation functions from real-time photon-counting data using the fast, parallel capabilities of graphical processor units (GPUs). Recent developments in hardware and software have allowed for general purpose computing with inexpensive GPU hardware. These devices are more suited for emulating hardware autocorrelators than traditional CPU-based software applications by emphasizing parallel throughput over sequential speed. Incoming data are binned in a standard multi-tau scheme with configurable points-per-bin size and are mapped into a GPU memory pattern to reduce time-expensive memory access. Applications include dynamic light scattering (DLS) and fluorescence correlation spectroscopy (FCS) experiments. We ran the software on a 64-core graphics pci card in a 3.2 GHz Intel i5 CPU based computer running Linux. FCS measurements were made on Alexa-546 and Texas Red dyes in a standard buffer (PBS). Software correlations were compared to hardware correlator measurements on the same signals. Supported by HHMI and Swarthmore College
Barone, Sandro; Neri, Paolo; Paoli, Alessandro; Razionale, Armando Viviano
2018-01-01
Orthodontic treatments are usually performed using fixed brackets or removable oral appliances, which are traditionally made from alginate impressions and wax registrations. Among removable devices, eruption guidance appliances are used for early orthodontic treatments in order to intercept and prevent malocclusion problems. Commercially available eruption guidance appliances, however, are symmetric devices produced using a few standard sizes. For this reason, they are not able to meet all the specific patient's needs since the actual dental anatomies present various geometries and asymmetric conditions. In this article, a computer-aided design-based methodology for the design and manufacturing of a patient-specific eruption guidance appliances is presented. The proposed approach is based on the digitalization of several steps of the overall process: from the digital reconstruction of patients' anatomies to the manufacturing of customized appliances. A finite element model has been developed to evaluate the temporomandibular joint disks stress level caused by using symmetric eruption guidance appliances with different teeth misalignment conditions. The developed model can then be used to guide the design of a patient-specific appliance with the aim at reducing the patient discomfort. At this purpose, two different customization levels are proposed in order to face both arches and single tooth misalignment issues. A low-cost manufacturing process, based on an additive manufacturing technique, is finally presented and discussed.
Karim, Ahmad; Salleh, Rosli; Khan, Muhammad Khurram
2016-01-01
Botnet phenomenon in smartphones is evolving with the proliferation in mobile phone technologies after leaving imperative impact on personal computers. It refers to the network of computers, laptops, mobile devices or tablets which is remotely controlled by the cybercriminals to initiate various distributed coordinated attacks including spam emails, ad-click fraud, Bitcoin mining, Distributed Denial of Service (DDoS), disseminating other malwares and much more. Likewise traditional PC based botnet, Mobile botnets have the same operational impact except the target audience is particular to smartphone users. Therefore, it is import to uncover this security issue prior to its widespread adaptation. We propose SMARTbot, a novel dynamic analysis framework augmented with machine learning techniques to automatically detect botnet binaries from malicious corpus. SMARTbot is a component based off-device behavioral analysis framework which can generate mobile botnet learning model by inducing Artificial Neural Networks’ back-propagation method. Moreover, this framework can detect mobile botnet binaries with remarkable accuracy even in case of obfuscated program code. The results conclude that, a classifier model based on simple logistic regression outperform other machine learning classifier for botnet apps’ detection, i.e 99.49% accuracy is achieved. Further, from manual inspection of botnet dataset we have extracted interesting trends in those applications. As an outcome of this research, a mobile botnet dataset is devised which will become the benchmark for future studies. PMID:26978523
Yamaguchi, Takami; Ishikawa, Takuji; Imai, Y; Matsuki, N; Xenos, Mikhail; Deng, Yuefan; Bluestein, Danny
2010-03-01
A major computational challenge for a multiscale modeling is the coupling of disparate length and timescales between molecular mechanics and macroscopic transport, spanning the spatial and temporal scales characterizing the complex processes taking place in flow-induced blood clotting. Flow and pressure effects on a cell-like platelet can be well represented by a continuum mechanics model down to the order of the micrometer level. However, the molecular effects of adhesion/aggregation bonds are on the order of nanometer. A successful multiscale model of platelet response to flow stresses in devices and the ensuing clotting responses should be able to characterize the clotting reactions and their interactions with the flow. This paper attempts to describe a few of the computational methods that were developed in recent years and became available to researchers in the field. They differ from traditional approaches that dominate the field by expanding on prevailing continuum-based approaches, or by completely departing from them, yielding an expanding toolkit that may facilitate further elucidation of the underlying mechanisms of blood flow and the cellular response to it. We offer a paradigm shift by adopting a multidisciplinary approach with fluid dynamics simulations coupled to biophysical and biochemical transport.
Karim, Ahmad; Salleh, Rosli; Khan, Muhammad Khurram
2016-01-01
Botnet phenomenon in smartphones is evolving with the proliferation in mobile phone technologies after leaving imperative impact on personal computers. It refers to the network of computers, laptops, mobile devices or tablets which is remotely controlled by the cybercriminals to initiate various distributed coordinated attacks including spam emails, ad-click fraud, Bitcoin mining, Distributed Denial of Service (DDoS), disseminating other malwares and much more. Likewise traditional PC based botnet, Mobile botnets have the same operational impact except the target audience is particular to smartphone users. Therefore, it is import to uncover this security issue prior to its widespread adaptation. We propose SMARTbot, a novel dynamic analysis framework augmented with machine learning techniques to automatically detect botnet binaries from malicious corpus. SMARTbot is a component based off-device behavioral analysis framework which can generate mobile botnet learning model by inducing Artificial Neural Networks' back-propagation method. Moreover, this framework can detect mobile botnet binaries with remarkable accuracy even in case of obfuscated program code. The results conclude that, a classifier model based on simple logistic regression outperform other machine learning classifier for botnet apps' detection, i.e 99.49% accuracy is achieved. Further, from manual inspection of botnet dataset we have extracted interesting trends in those applications. As an outcome of this research, a mobile botnet dataset is devised which will become the benchmark for future studies.
A Computer Spreadsheet for Locating Assistive Devices.
ERIC Educational Resources Information Center
Palmer, Catherine V.; Garstecki, Dean C.
1988-01-01
The article presents a directory of assistive devices for persons with hearing impairments in a grid format by distributor and type of device (alerting devices, telephone, TV/radio/stereo, personal communication, group communication, and other). The product locator is also available in spreadsheet form for either the Macintosh or IBM-PC computers.…
Real-time interactive simulation: using touch panels, graphics tablets, and video-terminal keyboards
DOE Office of Scientific and Technical Information (OSTI.GOV)
Venhuizen, J.R.
1983-01-01
A Simulation Laboratory utilizing only digital computers for interactive computing must rely on CRT based graphics devices for output devices, and keyboards, graphics tablets, and touch panels, etc., for input devices. The devices all work well, with the combination of a CRT with a touch panel mounted on it as the most flexible combination of input/output devices for interactive simulation.
Mobile computing device configured to compute irradiance, glint, and glare of the sun
Gupta, Vipin P; Ho, Clifford K; Khalsa, Siri Sahib
2014-03-11
Described herein are technologies pertaining to computing the solar irradiance distribution on a surface of a receiver in a concentrating solar power system or glint/glare emitted from a reflective entity. A mobile computing device includes at least one camera that captures images of the Sun and the entity of interest, wherein the images have pluralities of pixels having respective pluralities of intensity values. Based upon the intensity values of the pixels in the respective images, the solar irradiance distribution on the surface of the entity or glint/glare corresponding to the entity is computed by the mobile computing device.
Modems and More: The Computer Branches Out.
ERIC Educational Resources Information Center
Dyrli, Odvard Egil
1986-01-01
Surveys new "peripherals," electronic devices that attach to computers. Devices such as videodisc players, desktop laser printers, large screen projectors, and input mechanisms that circumvent the keyboard dramatically expand the computer's instructional uses. (Author/LHW)
DOE Office of Scientific and Technical Information (OSTI.GOV)
1996-05-01
The Network Information System (NWIS) was initially implemented in May 1996 as a system in which computing devices could be recorded so that unique names could be generated for each device. Since then the system has grown to be an enterprise wide information system which is integrated with other systems to provide the seamless flow of data through the enterprise. The system Iracks data for two main entities: people and computing devices. The following are the type of functions performed by NWIS for these two entities: People Provides source information to the enterprise person data repository for select contractors andmore » visitors Generates and tracks unique usernames and Unix user IDs for every individual granted cyber access Tracks accounts for centrally managed computing resources, and monitors and controls the reauthorization of the accounts in accordance with the DOE mandated interval Computing Devices Generates unique names for all computing devices registered in the system Tracks the following information for each computing device: manufacturer, make, model, Sandia property number, vendor serial number, operating system and operating system version, owner, device location, amount of memory, amount of disk space, and level of support provided for the machine Tracks the hardware address for network cards Tracks the P address registered to computing devices along with the canonical and alias names for each address Updates the Dynamic Domain Name Service (DDNS) for canonical and alias names Creates the configuration files for DHCP to control the DHCP ranges and allow access to only properly registered computers Tracks and monitors classified security plans for stand-alone computers Tracks the configuration requirements used to setup the machine Tracks the roles people have on machines (system administrator, administrative access, user, etc...) Allows systems administrators to track changes made on the machine (both hardware and software) Generates an adjustment history of changes on selected fields« less
Programming the social computer.
Robertson, David; Giunchiglia, Fausto
2013-03-28
The aim of 'programming the global computer' was identified by Milner and others as one of the grand challenges of computing research. At the time this phrase was coined, it was natural to assume that this objective might be achieved primarily through extending programming and specification languages. The Internet, however, has brought with it a different style of computation that (although harnessing variants of traditional programming languages) operates in a style different to those with which we are familiar. The 'computer' on which we are running these computations is a social computer in the sense that many of the elementary functions of the computations it runs are performed by humans, and successful execution of a program often depends on properties of the human society over which the program operates. These sorts of programs are not programmed in a traditional way and may have to be understood in a way that is different from the traditional view of programming. This shift in perspective raises new challenges for the science of the Web and for computing in general.
1991-03-31
I AD-A232 768 I Annual Report Analysis of Polarizing Optical Systems for Digital Optical Computing with I ’ Symmetric Self Electrooptic Devices I To...TTU AND SuSiIU S. PUNDIN mUMBERS Polarizing Optical Systems for Digital Optical Computing with Symmetric Self Electrooptic Devices AFOSR-89-0542 C...UTION COO$ UNLIMITED 13. ABSTRACT (MAxnum00woUw Two architectural approaches have dominated the field of optical computing . The first appAch uses
Ye, Hongqiang; Li, Xinxin; Wang, Guanbo; Kang, Jing; Liu, Yushu; Sun, Yuchun; Zhou, Yongsheng
2018-02-15
To investigate a computer-aided design/computer-aided manufacturing (CAD/CAM) process for producing one-piece removable partial dentures (RPDs) and to evaluate their fits in vitro. A total of 15 one-piece RPDs were designed using dental CAD and reverse engineering software and then fabricated with polyetheretherketone (PEEK) using CAM. The gaps between RPDs and casts were measured and compared with traditional cast framework RPDs. Gaps were lower for one-piece PEEK RPDs compared to traditional RPDs. One-piece RPDs can be manufactured by CAD/CAM, and their fits were better than those of traditional RPDs.
System Control Applications of Low-Power Radio Frequency Devices
NASA Astrophysics Data System (ADS)
van Rensburg, Roger
2017-09-01
This paper conceptualizes a low-power wireless sensor network design for application employment to reduce theft of portable computer devices used in educational institutions today. The aim of this study is to design and develop a reliable and robust wireless network that can eradicate accessibility of a device’s human interface. An embedded system supplied by an energy harvesting source, installed on the portable computer device, may represent one of multiple slave nodes which request regular updates from a standalone master station. A portable computer device which is operated in an undesignated area or in a field perimeter where master to slave communication is restricted, indicating a possible theft scenario, will initiate a shutdown of its operating system and render the device unusable. Consequently, an algorithm in the device firmware may ensure the necessary steps are executed to track the device, irrespective whether the device is enabled. Design outcomes thus far indicate that a wireless network using low-power embedded hardware, is feasible for anti-theft applications. By incorporating one of the latest Bluetooth low-energy, ANT+, ZigBee or Thread wireless technologies, an anti-theft system may be implemented that has the potential to reduce major portable computer device theft in institutions of digitized learning.
Online Adaptation for Mobile Device Text Input Personalization
ERIC Educational Resources Information Center
Baldwin, Tyler
2012-01-01
As mobile devices have become more common, the need for efficient methods of mobile device text entry has grown. With this growth comes new challenges, as the constraints imposed by the size, processing power, and design of mobile devices impairs traditional text entry mechanisms in ways not seen in previous text entry tasks. To combat this,…
The effects of perceived USB-delay for sensor and embedded system development.
Du, J; Kade, D; Gerdtman, C; Ozcan, O; Linden, M
2016-08-01
Perceiving delay in computer input devices is a problem which gets even more eminent when being used in healthcare applications and/or in small, embedded systems. Therefore, the amount of delay found as acceptable when using computer input devices was investigated in this paper. A device was developed to perform a benchmark test for the perception of delay. The delay can be set from 0 to 999 milliseconds (ms) between a receiving computer and an available USB-device. The USB-device can be a mouse, a keyboard or some other type of USB-connected input device. Feedback from performed user tests with 36 people form the basis for the determination of time limitations for the USB data processing in microprocessors and embedded systems without users' noticing the delay. For this paper, tests were performed with a personal computer and a common computer mouse, testing the perception of delays between 0 and 500 ms. The results of our user tests show that perceived delays up to 150 ms were acceptable and delays larger than 300 ms were not acceptable at all.
Cong, Hailin; Xu, Xiaodan; Yu, Bing; Liu, Huwei
2016-01-01
A simple and effective universal serial bus (USB) flash disk type microfluidic chip electrophoresis (MCE) was developed by using poly(dimethylsiloxane) based soft lithography and dry film based printed circuit board etching techniques in this paper. The MCE had a microchannel diameter of 375 μm and an effective length of 25 mm. Equipped with a conventional online electrochemical detector, the device enabled effectively separation of bovine serum albumin, lysozyme, and cytochrome c in 80 s under the ultra low voltage from a computer USB interface. Compared with traditional capillary electrophoresis, the USB flash disk type MCE is not only portable and inexpensive but also fast with high separation efficiency. PMID:27042249
Liu, Wusheng; Stewart, C Neal
2015-05-01
Plant synthetic biology is an emerging field that combines engineering principles with plant biology toward the design and production of new devices. This emerging field should play an important role in future agriculture for traditional crop improvement, but also in enabling novel bioproduction in plants. In this review we discuss the design cycles of synthetic biology as well as key engineering principles, genetic parts, and computational tools that can be utilized in plant synthetic biology. Some pioneering examples are offered as a demonstration of how synthetic biology can be used to modify plants for specific purposes. These include synthetic sensors, synthetic metabolic pathways, and synthetic genomes. We also speculate about the future of synthetic biology of plants. Copyright © 2015 Elsevier Ltd. All rights reserved.
Kim, Dae-Hyeong; Lu, Nanshu; Ma, Rui; Kim, Yun-Soung; Kim, Rak-Hwan; Wang, Shuodao; Wu, Jian; Won, Sang Min; Tao, Hu; Islam, Ahmad; Yu, Ki Jun; Kim, Tae-il; Chowdhury, Raeed; Ying, Ming; Xu, Lizhi; Li, Ming; Chung, Hyun-Joong; Keum, Hohyun; McCormick, Martin; Liu, Ping; Zhang, Yong-Wei; Omenetto, Fiorenzo G; Huang, Yonggang; Coleman, Todd; Rogers, John A
2011-08-12
We report classes of electronic systems that achieve thicknesses, effective elastic moduli, bending stiffnesses, and areal mass densities matched to the epidermis. Unlike traditional wafer-based technologies, laminating such devices onto the skin leads to conformal contact and adequate adhesion based on van der Waals interactions alone, in a manner that is mechanically invisible to the user. We describe systems incorporating electrophysiological, temperature, and strain sensors, as well as transistors, light-emitting diodes, photodetectors, radio frequency inductors, capacitors, oscillators, and rectifying diodes. Solar cells and wireless coils provide options for power supply. We used this type of technology to measure electrical activity produced by the heart, brain, and skeletal muscles and show that the resulting data contain sufficient information for an unusual type of computer game controller.
Particle-in-cell numerical simulations of a cylindrical Hall thruster with permanent magnets
NASA Astrophysics Data System (ADS)
Miranda, Rodrigo A.; Martins, Alexandre A.; Ferreira, José L.
2017-10-01
The cylindrical Hall thruster (CHT) is a propulsion device that offers high propellant utilization and performance at smaller dimensions and lower power levels than traditional Hall thrusters. In this paper we present first results of a numerical model of a CHT. This model solves particle and field dynamics self-consistently using a particle-in-cell approach. We describe a number of techniques applied to reduce the execution time of the numerical simulations. The specific impulse and thrust computed from our simulations are in agreement with laboratory experiments. This simplified model will allow for a detailed analysis of different thruster operational parameters and obtain an optimal configuration to be implemented at the Plasma Physics Laboratory at the University of Brasília.
NASA Astrophysics Data System (ADS)
Kim, Dae-Hyeong; Lu, Nanshu; Ma, Rui; Kim, Yun-Soung; Kim, Rak-Hwan; Wang, Shuodao; Wu, Jian; Won, Sang Min; Tao, Hu; Islam, Ahmad; Yu, Ki Jun; Kim, Tae-il; Chowdhury, Raeed; Ying, Ming; Xu, Lizhi; Li, Ming; Chung, Hyun-Joong; Keum, Hohyun; McCormick, Martin; Liu, Ping; Zhang, Yong-Wei; Omenetto, Fiorenzo G.; Huang, Yonggang; Coleman, Todd; Rogers, John A.
2011-08-01
We report classes of electronic systems that achieve thicknesses, effective elastic moduli, bending stiffnesses, and areal mass densities matched to the epidermis. Unlike traditional wafer-based technologies, laminating such devices onto the skin leads to conformal contact and adequate adhesion based on van der Waals interactions alone, in a manner that is mechanically invisible to the user. We describe systems incorporating electrophysiological, temperature, and strain sensors, as well as transistors, light-emitting diodes, photodetectors, radio frequency inductors, capacitors, oscillators, and rectifying diodes. Solar cells and wireless coils provide options for power supply. We used this type of technology to measure electrical activity produced by the heart, brain, and skeletal muscles and show that the resulting data contain sufficient information for an unusual type of computer game controller.
Cane Toad or Computer Mouse? Real and Computer-Simulated Laboratory Exercises in Physiology Classes
ERIC Educational Resources Information Center
West, Jan; Veenstra, Anneke
2012-01-01
Traditional practical classes in many countries are being rationalised to reduce costs. The challenge for university educators is to provide students with the opportunity to reinforce theoretical concepts by running something other than a traditional practical program. One alternative is to replace wet labs with comparable computer simulations.…
Perspective: Stochastic magnetic devices for cognitive computing
NASA Astrophysics Data System (ADS)
Roy, Kaushik; Sengupta, Abhronil; Shim, Yong
2018-06-01
Stochastic switching of nanomagnets can potentially enable probabilistic cognitive hardware consisting of noisy neural and synaptic components. Furthermore, computational paradigms inspired from the Ising computing model require stochasticity for achieving near-optimality in solutions to various types of combinatorial optimization problems such as the Graph Coloring Problem or the Travelling Salesman Problem. Achieving optimal solutions in such problems are computationally exhaustive and requires natural annealing to arrive at the near-optimal solutions. Stochastic switching of devices also finds use in applications involving Deep Belief Networks and Bayesian Inference. In this article, we provide a multi-disciplinary perspective across the stack of devices, circuits, and algorithms to illustrate how the stochastic switching dynamics of spintronic devices in the presence of thermal noise can provide a direct mapping to the computational units of such probabilistic intelligent systems.
On the performances of computer vision algorithms on mobile platforms
NASA Astrophysics Data System (ADS)
Battiato, S.; Farinella, G. M.; Messina, E.; Puglisi, G.; Ravì, D.; Capra, A.; Tomaselli, V.
2012-01-01
Computer Vision enables mobile devices to extract the meaning of the observed scene from the information acquired with the onboard sensor cameras. Nowadays, there is a growing interest in Computer Vision algorithms able to work on mobile platform (e.g., phone camera, point-and-shot-camera, etc.). Indeed, bringing Computer Vision capabilities on mobile devices open new opportunities in different application contexts. The implementation of vision algorithms on mobile devices is still a challenging task since these devices have poor image sensors and optics as well as limited processing power. In this paper we have considered different algorithms covering classic Computer Vision tasks: keypoint extraction, face detection, image segmentation. Several tests have been done to compare the performances of the involved mobile platforms: Nokia N900, LG Optimus One, Samsung Galaxy SII.
Direct surgeon control of the computer in the operating room.
Onceanu, Dumitru; Stewart, A James
2011-01-01
This paper describes the design and evaluation of a joystick-like device that allows direct surgeon control of the computer in the operating room. The device contains no electronic parts, is easy to use, is unobtrusive, has no physical connection to the computer, and makes use of an existing surgical tool. The device was tested in comparison to a mouse and to verbal dictation.
ERIC Educational Resources Information Center
Mpofu, Bongeka
2016-01-01
This research was aimed at the investigation of mobile device and computer use at a higher learning institution. The goal was to determine the current use of computers and mobile devices for learning and the students' reading speed on different platforms. The research was contextualised in a sample of students at the University of South Africa.…
47 CFR 15.102 - CPU boards and power supplies used in personal computers.
Code of Federal Regulations, 2013 CFR
2013-10-01
... computers. 15.102 Section 15.102 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL RADIO FREQUENCY DEVICES Unintentional Radiators § 15.102 CPU boards and power supplies used in personal computers. (a... modifications that must be made to a personal computer, peripheral device, CPU board or power supply during...
47 CFR 15.102 - CPU boards and power supplies used in personal computers.
Code of Federal Regulations, 2011 CFR
2011-10-01
... computers. 15.102 Section 15.102 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL RADIO FREQUENCY DEVICES Unintentional Radiators § 15.102 CPU boards and power supplies used in personal computers. (a... modifications that must be made to a personal computer, peripheral device, CPU board or power supply during...
47 CFR 15.102 - CPU boards and power supplies used in personal computers.
Code of Federal Regulations, 2010 CFR
2010-10-01
... computers. 15.102 Section 15.102 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL RADIO FREQUENCY DEVICES Unintentional Radiators § 15.102 CPU boards and power supplies used in personal computers. (a... modifications that must be made to a personal computer, peripheral device, CPU board or power supply during...
47 CFR 15.102 - CPU boards and power supplies used in personal computers.
Code of Federal Regulations, 2014 CFR
2014-10-01
... computers. 15.102 Section 15.102 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL RADIO FREQUENCY DEVICES Unintentional Radiators § 15.102 CPU boards and power supplies used in personal computers. (a... modifications that must be made to a personal computer, peripheral device, CPU board or power supply during...
47 CFR 15.102 - CPU boards and power supplies used in personal computers.
Code of Federal Regulations, 2012 CFR
2012-10-01
... computers. 15.102 Section 15.102 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL RADIO FREQUENCY DEVICES Unintentional Radiators § 15.102 CPU boards and power supplies used in personal computers. (a... modifications that must be made to a personal computer, peripheral device, CPU board or power supply during...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-19
... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-841] Certain Computers and Computer Peripheral Devices and Components Thereof and Products Containing the Same Request for Statements on the Public Interest AGENCY: U.S. International Trade Commission. ACTION: Notice. SUMMARY: Notice is hereby...
Near real-time digital holographic microscope based on GPU parallel computing
NASA Astrophysics Data System (ADS)
Zhu, Gang; Zhao, Zhixiong; Wang, Huarui; Yang, Yan
2018-01-01
A transmission near real-time digital holographic microscope with in-line and off-axis light path is presented, in which the parallel computing technology based on compute unified device architecture (CUDA) and digital holographic microscopy are combined. Compared to other holographic microscopes, which have to implement reconstruction in multiple focal planes and are time-consuming the reconstruction speed of the near real-time digital holographic microscope can be greatly improved with the parallel computing technology based on CUDA, so it is especially suitable for measurements of particle field in micrometer and nanometer scale. Simulations and experiments show that the proposed transmission digital holographic microscope can accurately measure and display the velocity of particle field in micrometer scale, and the average velocity error is lower than 10%.With the graphic processing units(GPU), the computing time of the 100 reconstruction planes(512×512 grids) is lower than 120ms, while it is 4.9s using traditional reconstruction method by CPU. The reconstruction speed has been raised by 40 times. In other words, it can handle holograms at 8.3 frames per second and the near real-time measurement and display of particle velocity field are realized. The real-time three-dimensional reconstruction of particle velocity field is expected to achieve by further optimization of software and hardware. Keywords: digital holographic microscope,
Bang, Magnus; Timpka, Toomas
2007-06-01
Co-located teams often use material objects to communicate messages in collaboration. Modern desktop computing systems with abstract graphical user interface (GUIs) fail to support this material dimension of inter-personal communication. The aim of this study is to investigate how tangible user interfaces can be used in computer systems to better support collaborative routines among co-located clinical teams. The semiotics of physical objects used in team collaboration was analyzed from data collected during 1 month of observations at an emergency room. The resulting set of communication patterns was used as a framework when designing an experimental system. Following the principles of augmented reality, physical objects were mapped into a physical user interface with the goal of maintaining the symbolic value of those objects. NOSTOS is an experimental ubiquitous computing environment that takes advantage of interaction devices integrated into the traditional clinical environment, including digital pens, walk-up displays, and a digital desk. The design uses familiar workplace tools to function as user interfaces to the computer in order to exploit established cognitive and collaborative routines. Paper-based tangible user interfaces and digital desks are promising technologies for co-located clinical teams. A key issue that needs to be solved before employing such solutions in practice is associated with limited feedback from the passive paper interfaces.
Fast parallel tandem mass spectral library searching using GPU hardware acceleration
Baumgardner, Lydia Ashleigh; Shanmugam, Avinash Kumar; Lam, Henry; Eng, Jimmy K.; Martin, Daniel B.
2011-01-01
Mass spectrometry-based proteomics is a maturing discipline of biologic research that is experiencing substantial growth. Instrumentation has steadily improved over time with the advent of faster and more sensitive instruments collecting ever larger data files. Consequently, the computational process of matching a peptide fragmentation pattern to its sequence, traditionally accomplished by sequence database searching and more recently also by spectral library searching, has become a bottleneck in many mass spectrometry experiments. In both of these methods, the main rate limiting step is the comparison of an acquired spectrum with all potential matches from a spectral library or sequence database. This is a highly parallelizable process because the core computational element can be represented as a simple but arithmetically intense multiplication of two vectors. In this paper we present a proof of concept project taking advantage of the massively parallel computing available on graphics processing units (GPUs) to distribute and accelerate the process of spectral assignment using spectral library searching. This program, which we have named FastPaSS (for Fast Parallelized Spectral Searching) is implemented in CUDA (Compute Unified Device Architecture) from NVIDIA which allows direct access to the processors in an NVIDIA GPU. Our efforts demonstrate the feasibility of GPU computing for spectral assignment, through implementation of the validated spectral searching algorithm SpectraST in the CUDA environment. PMID:21545112
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-25
... Computing Devices, Related Software, and Components Thereof; Notice of Investigation AGENCY: U.S... devices, related software, and components thereof by reason of infringement of certain claims of U.S... devices, related software, and components thereof that infringe one or more of claims 1 and 5 of the '372...
Portable control device for networked mobile robots
Feddema, John T.; Byrne, Raymond H.; Bryan, Jon R.; Harrington, John J.; Gladwell, T. Scott
2002-01-01
A handheld control device provides a way for controlling one or multiple mobile robotic vehicles by incorporating a handheld computer with a radio board. The device and software use a personal data organizer as the handheld computer with an additional microprocessor and communication device on a radio board for use in controlling one robot or multiple networked robots.
Automated Extraction of Flow Features
NASA Technical Reports Server (NTRS)
Dorney, Suzanne (Technical Monitor); Haimes, Robert
2005-01-01
Computational Fluid Dynamics (CFD) simulations are routinely performed as part of the design process of most fluid handling devices. In order to efficiently and effectively use the results of a CFD simulation, visualization tools are often used. These tools are used in all stages of the CFD simulation including pre-processing, interim-processing, and post-processing, to interpret the results. Each of these stages requires visualization tools that allow one to examine the geometry of the device, as well as the partial or final results of the simulation. An engineer will typically generate a series of contour and vector plots to better understand the physics of how the fluid is interacting with the physical device. Of particular interest are detecting features such as shocks, re-circulation zones, and vortices (which will highlight areas of stress and loss). As the demand for CFD analyses continues to increase the need for automated feature extraction capabilities has become vital. In the past, feature extraction and identification were interesting concepts, but not required in understanding the physics of a steady flow field. This is because the results of the more traditional tools like; isc-surface, cuts and streamlines, were more interactive and easily abstracted so they could be represented to the investigator. These tools worked and properly conveyed the collected information at the expense of a great deal of interaction. For unsteady flow-fields, the investigator does not have the luxury of spending time scanning only one "snapshot" of the simulation. Automated assistance is required in pointing out areas of potential interest contained within the flow. This must not require a heavy compute burden (the visualization should not significantly slow down the solution procedure for co-processing environments). Methods must be developed to abstract the feature of interest and display it in a manner that physically makes sense.
Automated Extraction of Flow Features
NASA Technical Reports Server (NTRS)
Dorney, Suzanne (Technical Monitor); Haimes, Robert
2004-01-01
Computational Fluid Dynamics (CFD) simulations are routinely performed as part of the design process of most fluid handling devices. In order to efficiently and effectively use the results of a CFD simulation, visualization tools are often used. These tools are used in all stages of the CFD simulation including pre-processing, interim-processing, and post-processing, to interpret the results. Each of these stages requires visualization tools that allow one to examine the geometry of the device, as well as the partial or final results of the simulation. An engineer will typically generate a series of contour and vector plots to better understand the physics of how the fluid is interacting with the physical device. Of particular interest are detecting features such as shocks, recirculation zones, and vortices (which will highlight areas of stress and loss). As the demand for CFD analyses continues to increase the need for automated feature extraction capabilities has become vital. In the past, feature extraction and identification were interesting concepts, but not required in understanding the physics of a steady flow field. This is because the results of the more traditional tools like; iso-surface, cuts and streamlines, were more interactive and easily abstracted so they could be represented to the investigator. These tools worked and properly conveyed the collected information at the expense of a great deal of interaction. For unsteady flow-fields, the investigator does not have the luxury of spending time scanning only one "snapshot" of the simulation. Automated assistance is required in pointing out areas of potential interest contained within the flow. This must not require a heavy compute burden (the visualization should not significantly slow down the solution procedure for (co-processing environments). Methods must be developed to abstract the feature of interest and display it in a manner that physically makes sense.
Remote media vision-based computer input device
NASA Astrophysics Data System (ADS)
Arabnia, Hamid R.; Chen, Ching-Yi
1991-11-01
In this paper, we introduce a vision-based computer input device which has been built at the University of Georgia. The user of this system gives commands to the computer without touching any physical device. The system receives input through a CCD camera; it is PC- based and is built on top of the DOS operating system. The major components of the input device are: a monitor, an image capturing board, a CCD camera, and some software (developed by use). These are interfaced with a standard PC running under the DOS operating system.
Optimizing the Use of Storage Systems Provided by Cloud Computing Environments
NASA Astrophysics Data System (ADS)
Gallagher, J. H.; Potter, N.; Byrne, D. A.; Ogata, J.; Relph, J.
2013-12-01
Cloud computing systems present a set of features that include familiar computing resources (albeit augmented to support dynamic scaling of processing power) bundled with a mix of conventional and unconventional storage systems. The linux base on which many Cloud environments (e.g., Amazon) are based make it tempting to assume that any Unix software will run efficiently in this environment efficiently without change. OPeNDAP and NODC collaborated on a short project to explore how the S3 and Glacier storage systems provided by the Amazon Cloud Computing infrastructure could be used with a data server developed primarily to access data stored in a traditional Unix file system. Our work used the Amazon cloud system, but we strived for designs that could be adapted easily to other systems like OpenStack. Lastly, we evaluated different architectures from a computer security perspective. We found that there are considerable issues associated with treating S3 as if it is a traditional file system, even though doing so is conceptually simple. These issues include performance penalties because using a software tool that emulates a traditional file system to store data in S3 performs poorly when compared to a storing data directly in S3. We also found there are important benefits beyond performance to ensuring that data written to S3 can directly accessed without relying on a specific software tool. To provide a hierarchical organization to the data stored in S3, we wrote 'catalog' files, using XML. These catalog files map discrete files to S3 access keys. Like a traditional file system's directories, the catalogs can also contain references to other catalogs, providing a simple but effective hierarchy overlaid on top of S3's flat storage space. An added benefit to these catalogs is that they can be viewed in a web browser; our storage scheme provides both efficient access for the data server and access via a web browser. We also looked at the Glacier storage system and found that the system's response characteristics are very different from a traditional file system or database; it behaves like a near-line storage system. To be used by a traditional data server, the underlying access protocol must support asynchronous accesses. This is because the Glacier system takes a minimum of four hours to deliver any data object, so systems built with the expectation of instant access (i.e., most web systems) must be fundamentally changed to use Glacier. Part of a related project has been to develop an asynchronous access mode for OPeNDAP, and we have developed a design using that new addition to the DAP protocol with Glacier as a near-line mass store. In summary, we found that both S3 and Glacier require special treatment to be effectively used by a data server. It is important to add (new) interfaces to data servers that enable them to use these storage devices through their native interfaces. We also found that our designs could easily map to a cloud environment based on OpenStack. Lastly, we noted that while these designs invited more liberal use of remote references for data objects, that can expose software to new security risks.
Two-dimensional radiant energy array computers and computing devices
NASA Technical Reports Server (NTRS)
Schaefer, D. H.; Strong, J. P., III (Inventor)
1976-01-01
Two dimensional digital computers and computer devices operate in parallel on rectangular arrays of digital radiant energy optical signal elements which are arranged in ordered rows and columns. Logic gate devices receive two input arrays and provide an output array having digital states dependent only on the digital states of the signal elements of the two input arrays at corresponding row and column positions. The logic devices include an array of photoconductors responsive to at least one of the input arrays for either selectively accelerating electrons to a phosphor output surface, applying potentials to an electroluminescent output layer, exciting an array of discrete radiant energy sources, or exciting a liquid crystal to influence crystal transparency or reflectivity.
NASA Astrophysics Data System (ADS)
Jiang, Yuning; Kang, Jinfeng; Wang, Xinan
2017-03-01
Resistive switching memory (RRAM) is considered as one of the most promising devices for parallel computing solutions that may overcome the von Neumann bottleneck of today’s electronic systems. However, the existing RRAM-based parallel computing architectures suffer from practical problems such as device variations and extra computing circuits. In this work, we propose a novel parallel computing architecture for pattern recognition by implementing k-nearest neighbor classification on metal-oxide RRAM crossbar arrays. Metal-oxide RRAM with gradual RESET behaviors is chosen as both the storage and computing components. The proposed architecture is tested by the MNIST database. High speed (~100 ns per example) and high recognition accuracy (97.05%) are obtained. The influence of several non-ideal device properties is also discussed, and it turns out that the proposed architecture shows great tolerance to device variations. This work paves a new way to achieve RRAM-based parallel computing hardware systems with high performance.
ERIC Educational Resources Information Center
Herron, Sherry; Gandy, Rex; Ye, Ningjun; Syed, Nasser
2012-01-01
A unique aspect of the implementation of a computer algebra system (CAS) at a comprehensive university in the U.S. allowed us to compare the student success and failure rates to the traditional method of teaching college algebra. Due to space limitations, the university offered sections of both CAS and traditional simultaneously and, upon…
A Language Translator for a Computer Aided Rapid Prototyping System.
1988-03-01
PROBLEM ................... S B. THE TRADITIONAL "WATERFALL LIFE CYCLE" .. ............... 14 C. RAPID PROTOTYPING...feature of everyday life for almost the entire industrialized world. Few governments or businesses function without the aid of computer systems. Com...engineering. B. TIE TRADITIONAL "WATERFALL LIFE CYCLE" I. Characteristics The traditional method of software engineering is the "waterfall life cycle
Soft tissue deformation estimation by spatio-temporal Kalman filter finite element method.
Yarahmadian, Mehran; Zhong, Yongmin; Gu, Chengfan; Shin, Jaehyun
2018-01-01
Soft tissue modeling plays an important role in the development of surgical training simulators as well as in robot-assisted minimally invasive surgeries. It has been known that while the traditional Finite Element Method (FEM) promises the accurate modeling of soft tissue deformation, it still suffers from a slow computational process. This paper presents a Kalman filter finite element method to model soft tissue deformation in real time without sacrificing the traditional FEM accuracy. The proposed method employs the FEM equilibrium equation and formulates it as a filtering process to estimate soft tissue behavior using real-time measurement data. The model is temporally discretized using the Newmark method and further formulated as the system state equation. Simulation results demonstrate that the computational time of KF-FEM is approximately 10 times shorter than the traditional FEM and it is still as accurate as the traditional FEM. The normalized root-mean-square error of the proposed KF-FEM in reference to the traditional FEM is computed as 0.0116. It is concluded that the proposed method significantly improves the computational performance of the traditional FEM without sacrificing FEM accuracy. The proposed method also filters noises involved in system state and measurement data.
Pignolo, L; Riganello, F; Dolce, G; Sannita, W G
2013-04-01
Ambient Intelligence (AmI) provides extended but unobtrusive sensing and computing devices and ubiquitous networking for human/environment interaction. It is a new paradigm in information technology compliant with the international Integrating Healthcare Enterprise board (IHE) and eHealth HL7 technological standards in the functional integration of biomedical domotics and informatics in hospital and home care. AmI allows real-time automatic recording of biological/medical information and environmental data. It is extensively applicable to patient monitoring, medicine and neuroscience research, which require large biomedical data sets; for example, in the study of spontaneous or condition-dependent variability or chronobiology. In this respect, AML is equivalent to a traditional laboratory for data collection and processing, with minimal dedicated equipment, staff, and costs; it benefits from the integration of artificial intelligence technology with traditional/innovative sensors to monitor clinical or functional parameters. A prototype AmI platform (MIMERICA*) has been implemented and is operated in a semi-intensive unit for the vegetative and minimally conscious states, to investigate the spontaneous or environment-related fluctuations of physiological parameters in these conditions.
Skaug, Silje; Englund, Kjellrun T; Saksvik-Lehouillier, Ingvild; Lydersen, Stian; Wichstrøm, Lars
2018-04-01
Parent-child interactions are pivotal for children's socioemotional development, yet might suffer with increased attention to screen media, as research has suggested. In response, we hypothesized that parent-child play on a tablet computer, as representative of interactive media, would generate higher-quality parent-child interactions than toy play or watching TV. We examined the emotional availability of mothers and their 2-year-old child during the previous three contexts using a randomized crossover design (n = 22) in a laboratory room. Among other results, mothers were more sensitive and structuring during joint gaming on a tablet than when engaged in toy play or watching TV. In addition, mothers were more hostile toward their children during play with traditional toys than during joint tablet gaming and television co-viewing. Such findings provide new insights into the impact of new media on parent-child interactions, chiefly by demonstrating that interactive media devices such as tablets can afford growth-enhancing parent-child interactions. © 2017 Scandinavian Psychological Associations and John Wiley & Sons Ltd.
One-to-One Computing in Public Schools: Lessons from "Laptops for All" Programs
ERIC Educational Resources Information Center
Abell Foundation, 2008
2008-01-01
The basic tenet of one-to-one computing is that the student and teacher have Internet-connected, wireless computing devices in the classroom and optimally at home as well. Also known as "ubiquitous computing," this strategy assumes that every teacher and student has her own computing device and obviates the need for moving classes to…
Embedded systems for supporting computer accessibility.
Mulfari, Davide; Celesti, Antonio; Fazio, Maria; Villari, Massimo; Puliafito, Antonio
2015-01-01
Nowadays, customized AT software solutions allow their users to interact with various kinds of computer systems. Such tools are generally available on personal devices (e.g., smartphones, laptops and so on) commonly used by a person with a disability. In this paper, we investigate a way of using the aforementioned AT equipments in order to access many different devices without assistive preferences. The solution takes advantage of open source hardware and its core component consists of an affordable Linux embedded system: it grabs data coming from the assistive software, which runs on the user's personal device, then, after processing, it generates native keyboard and mouse HID commands for the target computing device controlled by the end user. This process supports any operating system available on the target machine and it requires no specialized software installation; therefore the user with a disability can rely on a single assistive tool to control a wide range of computing platforms, including conventional computers and many kinds of mobile devices, which receive input commands through the USB HID protocol.
Graphene as a platform for novel nanoelectronic devices
NASA Astrophysics Data System (ADS)
Standley, Brian
Graphene's superlative electrical and mechanical properties, combined with its compatibility with existing planar silicon-based technology, make it an attractive platform for novel nanoelectronic devices. The development of two such devices is reported--a nonvolatile memory element exploiting the nanoscale graphene edge and a field-effect transistor using graphene for both the conducting channel and, in oxidized form, the gate dielectric. These experiments were enabled by custom software written to fully utilize both instrument-based and computer-based data acquisition hardware and provide a simple measurement automation system. Graphene break junctions were studied and found to exhibit switching behavior in response to an electric field. This switching allows the devices to act as nonvolatile memory elements which have demonstrated thousands of writing cycles and long retention times. A model for device operation is proposed based on the formation and breaking of carbon-atom chains that bridge the junctions. Information storage was demonstrated using the concept of rank coding, in which information is stored in the relative conductance of multiple graphene switches in a memory cell. The high mobility and two dimensional nature of graphene make it an attractive material for field-effect transistors. Another ultrathin layered materialmd graphene's insulating analogue, graphite oxidemd was studied as an alternative to bulk gate dielectric materials such as Al2O3 or HfO 2. Transistors were fabricated comprising single or bilayer graphene channels, graphite oxide gate insulators, and metal top-gates. Electron transport measurements reveal minimal leakage through the graphite oxide at room temperature. Its breakdown electric field was found to be comparable to SiO2, typically ˜1-3 x 108 V/m, while its dielectric constant is slightly higher, kappa ≈ 4.3. As nanoelectronics experiments and their associated instrumentation continue to grow in complexity the need for powerful data acquisition software has only increased. This role has traditionally been filled by semiconductor parameter analyzers or desktop computers running LabVIEW. Mezurit 2 represents a hybrid approach, providing basic virtual instruments which can be controlled in concert through a comprehensive scripting interface. Each virtual instrument's model of operation is described and an architectural overview is provided.
Virtual microscopy and digital pathology in training and education.
Hamilton, Peter W; Wang, Yinhai; McCullough, Stephen J
2012-04-01
Traditionally, education and training in pathology has been delivered using textbooks, glass slides and conventional microscopy. Over the last two decades, the number of web-based pathology resources has expanded dramatically with centralized pathological resources being delivered to many students simultaneously. Recently, whole slide imaging technology allows glass slides to be scanned and viewed on a computer screen via dedicated software. This technology is referred to as virtual microscopy and has created enormous opportunities in pathological training and education. Students are able to learn key histopathological skills, e.g. to identify areas of diagnostic relevance from an entire slide, via a web-based computer environment. Students no longer need to be in the same room as the slides. New human-computer interfaces are also being developed using more natural touch technology to enhance the manipulation of digitized slides. Several major initiatives are also underway introducing online competency and diagnostic decision analysis using virtual microscopy and have important future roles in accreditation and recertification. Finally, researchers are investigating how pathological decision-making is achieved using virtual microscopy and modern eye-tracking devices. Virtual microscopy and digital pathology will continue to improve how pathology training and education is delivered. © 2012 The Authors APMIS © 2012 APMIS.
Getting started with Open-Hardware: Development and Control of Microfluidic Devices
da Costa, Eric Tavares; Mora, Maria F.; Willis, Peter A.; do Lago, Claudimir L.; Jiao, Hong; Garcia, Carlos D.
2014-01-01
Understanding basic concepts of electronics and computer programming allows researchers to get the most out of the equipment found in their laboratories. Although a number of platforms have been specifically designed for the general public and are supported by a vast array of on-line tutorials, this subject is not normally included in university chemistry curricula. Aiming to provide the basic concepts of hardware and software, this article is focused on the design and use of a simple module to control a series of PDMS-based valves. The module is based on a low-cost microprocessor (Teensy) and open-source software (Arduino). The microvalves were fabricated using thin sheets of PDMS and patterned using CO2 laser engraving, providing a simple and efficient way to fabricate devices without the traditional photolithographic process or facilities. Synchronization of valve control enabled the development of two simple devices to perform injection (1.6 ± 0.4 μL/stroke) and mixing of different solutions. Furthermore, a practical demonstration of the utility of this system for microscale chemical sample handling and analysis was achieved performing an on-chip acid-base titration, followed by conductivity detection with an open-source low-cost detection system. Overall, the system provided a very reproducible (98%) platform to perform fluid delivery at the microfluidic scale. PMID:24823494
Blind source computer device identification from recorded VoIP calls for forensic investigation.
Jahanirad, Mehdi; Anuar, Nor Badrul; Wahab, Ainuddin Wahid Abdul
2017-03-01
The VoIP services provide fertile ground for criminal activity, thus identifying the transmitting computer devices from recorded VoIP call may help the forensic investigator to reveal useful information. It also proves the authenticity of the call recording submitted to the court as evidence. This paper extended the previous study on the use of recorded VoIP call for blind source computer device identification. Although initial results were promising but theoretical reasoning for this is yet to be found. The study suggested computing entropy of mel-frequency cepstrum coefficients (entropy-MFCC) from near-silent segments as an intrinsic feature set that captures the device response function due to the tolerances in the electronic components of individual computer devices. By applying the supervised learning techniques of naïve Bayesian, linear logistic regression, neural networks and support vector machines to the entropy-MFCC features, state-of-the-art identification accuracy of near 99.9% has been achieved on different sets of computer devices for both call recording and microphone recording scenarios. Furthermore, unsupervised learning techniques, including simple k-means, expectation-maximization and density-based spatial clustering of applications with noise (DBSCAN) provided promising results for call recording dataset by assigning the majority of instances to their correct clusters. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.
ERIC Educational Resources Information Center
Soliman, Mamdouh M.; Hilal, Ahmed J.
2016-01-01
This study evaluates the effectiveness of Computer-Assisted Instruction (CAI) compared with traditional classroom instruction of mathematics of seventh graders in Kuwait's public schools. We aimed to compare students learning outcomes between two groups: the control group, taught traditionally without the use of computers, and the experimental…
Fundamental device design considerations in the development of disruptive nanoelectronics.
Singh, R; Poole, J O; Poole, K F; Vaidya, S D
2002-01-01
In the last quarter of a century silicon-based integrated circuits (ICs) have played a major role in the growth of the economy throughout the world. A number of new technologies, such as quantum computing, molecular computing, DNA molecules for computing, etc., are currently being explored to create a product to replace semiconductor transistor technology. We have examined all of the currently explored options and found that none of these options are suitable as silicon IC's replacements. In this paper we provide fundamental device criteria that must be satisfied for the successful operation of a manufacturable, not yet invented, device. The two fundamental limits are the removal of heat and reliability. The switching speed of any practical man-made computing device will be in the range of 10(-15) to 10(-3) s. Heisenberg's uncertainty principle and the computer architecture set the heat generation limit. The thermal conductivity of the materials used in the fabrication of a nanodimensional device sets the heat removal limit. In current electronic products, redundancy plays a significant part in improving the reliability of parts with macroscopic defects. In the future, microscopic and even nanoscopic defects will play a critical role in the reliability of disruptive nanoelectronics. The lattice vibrations will set the intrinsic reliability of future computing systems. The two critical limits discussed in this paper provide criteria for the selection of materials used in the fabrication of future devices. Our work shows that diamond contains the clue to providing computing devices that will surpass the performance of silicon-based nanoelectronics.
Synaptic electronics: materials, devices and applications.
Kuzum, Duygu; Yu, Shimeng; Wong, H-S Philip
2013-09-27
In this paper, the recent progress of synaptic electronics is reviewed. The basics of biological synaptic plasticity and learning are described. The material properties and electrical switching characteristics of a variety of synaptic devices are discussed, with a focus on the use of synaptic devices for neuromorphic or brain-inspired computing. Performance metrics desirable for large-scale implementations of synaptic devices are illustrated. A review of recent work on targeted computing applications with synaptic devices is presented.
Computing at DESY — current setup, trends and strategic directions
NASA Astrophysics Data System (ADS)
Ernst, Michael
1998-05-01
Since the HERA experiments H1 and ZEUS started data taking in '92, the computing environment at DESY has changed dramatically. Running a mainframe centred computing for more than 20 years, DESY switched to a heterogeneous, fully distributed computing environment within only about two years in almost every corner where computing has its applications. The computing strategy was highly influenced by the needs of the user community. The collaborations are usually limited by current technology and their ever increasing demands is the driving force for central computing to always move close to the technology edge. While DESY's central computing has a multidecade experience in running Central Data Recording/Central Data Processing for HEP experiments, the most challenging task today is to provide for clear and homogeneous concepts in the desktop area. Given that lowest level commodity hardware draws more and more attention, combined with the financial constraints we are facing already today, we quickly need concepts for integrated support of a versatile device which has the potential to move into basically any computing area in HEP. Though commercial solutions, especially addressing the PC management/support issues, are expected to come to market in the next 2-3 years, we need to provide for suitable solutions now. Buying PC's at DESY currently at a rate of about 30/month will otherwise absorb any available manpower in central computing and still will leave hundreds of unhappy people alone. Though certainly not the only region, the desktop issue is one of the most important one where we need HEP-wide collaboration to a large extent, and right now. Taking into account that there is traditionally no room for R&D at DESY, collaboration, meaning sharing experience and development resources within the HEP community, is a predominant factor for us.
Comparison of commonly used orthopaedic outcome measures using palm-top computers and paper surveys.
Saleh, Khaled J; Radosevich, David M; Kassim, Rida A; Moussa, Mohamed; Dykes, Darrell; Bottolfson, Helena; Gioe, Terence J; Robinson, Harry
2002-11-01
Measuring patient-perceived outcomes following orthopaedic procedures have become an important component of clinical research and patient care. General and disease-specific outcomes measures have been developed and applied in orthopaedics to assess the patients' perceived health status. Unfortunately, paper-based, self-administered instruments remain inefficient for collecting data because of: (a) missing data (b) respondent error, and (c) the costs to administer and enter data. To study the comparability of palm-top computer devices and paper-pencil self-administered questionnaires in the collection of health-related quality of life (HRQL) information from patients. The comparability of administering HRQL questionnaires using palm-top computer and traditional paper-based forms was tested in a sample of 96 patients with complaints of hip and/or knee pain. Each patient completed mailed versions of the Medical Outcomes Study (MOS), 36-item Health Survey (SF-36), and Western Ontario and McMasters University Arthritis Index (WOMAC) three weeks prior to presenting to clinic. At the clinic they were asked to complete the same outcomes measures using the palm-top computer or a paper-and-pencil version. In the analysis, scale distributions, floor and ceiling effects, internal consistency and retest reliability of scales were compared across the two data collection methods. Because the baseline characteristics of the groups were not strictly comparable according to age, the data were analyzed for the entire sample and stratified according to age. Few statistically significant differences were found for the means, variances and intra-class correlation coefficients between the methods of administration. While the scale distribution between the two methods was comparable, the internal consistency of the scales was dissimilar. Administration of HRQL questionnaires using portable palm-top computer devices has the potential advantage of decreased cost and convenience. These data lend some support for the comparability of palm-top computers and paper surveys for outcomes measures widely used in the field of orthopaedic surgery. The present study identified the lack of reliability across modes of administration that requires further study in a randomized comparability trial. These mode effects are important for orthopaedic surgeons to appreciate before implementing innovative data-capture technologies in their practices.
Development of qualification guidelines for personal computer-based aviation training devices.
DOT National Transportation Integrated Search
1995-02-01
Recent advances in the capabilities of personal computers have resulted in an increase in the number of flight simulation programs made available as Personal Computer-Based Aviation Training Devices (PCATDs).The potential benefits of PCATDs have been...
RSTensorFlow: GPU Enabled TensorFlow for Deep Learning on Commodity Android Devices
Alzantot, Moustafa; Wang, Yingnan; Ren, Zhengshuang; Srivastava, Mani B.
2018-01-01
Mobile devices have become an essential part of our daily lives. By virtue of both their increasing computing power and the recent progress made in AI, mobile devices evolved to act as intelligent assistants in many tasks rather than a mere way of making phone calls. However, popular and commonly used tools and frameworks for machine intelligence are still lacking the ability to make proper use of the available heterogeneous computing resources on mobile devices. In this paper, we study the benefits of utilizing the heterogeneous (CPU and GPU) computing resources available on commodity android devices while running deep learning models. We leveraged the heterogeneous computing framework RenderScript to accelerate the execution of deep learning models on commodity Android devices. Our system is implemented as an extension to the popular open-source framework TensorFlow. By integrating our acceleration framework tightly into TensorFlow, machine learning engineers can now easily make benefit of the heterogeneous computing resources on mobile devices without the need of any extra tools. We evaluate our system on different android phones models to study the trade-offs of running different neural network operations on the GPU. We also compare the performance of running different models architectures such as convolutional and recurrent neural networks on CPU only vs using heterogeneous computing resources. Our result shows that although GPUs on the phones are capable of offering substantial performance gain in matrix multiplication on mobile devices. Therefore, models that involve multiplication of large matrices can run much faster (approx. 3 times faster in our experiments) due to GPU support. PMID:29629431
RSTensorFlow: GPU Enabled TensorFlow for Deep Learning on Commodity Android Devices.
Alzantot, Moustafa; Wang, Yingnan; Ren, Zhengshuang; Srivastava, Mani B
2017-06-01
Mobile devices have become an essential part of our daily lives. By virtue of both their increasing computing power and the recent progress made in AI, mobile devices evolved to act as intelligent assistants in many tasks rather than a mere way of making phone calls. However, popular and commonly used tools and frameworks for machine intelligence are still lacking the ability to make proper use of the available heterogeneous computing resources on mobile devices. In this paper, we study the benefits of utilizing the heterogeneous (CPU and GPU) computing resources available on commodity android devices while running deep learning models. We leveraged the heterogeneous computing framework RenderScript to accelerate the execution of deep learning models on commodity Android devices. Our system is implemented as an extension to the popular open-source framework TensorFlow. By integrating our acceleration framework tightly into TensorFlow, machine learning engineers can now easily make benefit of the heterogeneous computing resources on mobile devices without the need of any extra tools. We evaluate our system on different android phones models to study the trade-offs of running different neural network operations on the GPU. We also compare the performance of running different models architectures such as convolutional and recurrent neural networks on CPU only vs using heterogeneous computing resources. Our result shows that although GPUs on the phones are capable of offering substantial performance gain in matrix multiplication on mobile devices. Therefore, models that involve multiplication of large matrices can run much faster (approx. 3 times faster in our experiments) due to GPU support.
Beyond Moore's law: towards competitive quantum devices
NASA Astrophysics Data System (ADS)
Troyer, Matthias
2015-05-01
A century after the invention of quantum theory and fifty years after Bell's inequality we see the first quantum devices emerge as products that aim to be competitive with the best classical computing devices. While a universal quantum computer of non-trivial size is still out of reach there exist a number commercial and experimental devices: quantum random number generators, quantum simulators and quantum annealers. In this colloquium I will present some of these devices and validation tests we performed on them. Quantum random number generators use the inherent randomness in quantum measurements to produce true random numbers, unlike classical pseudorandom number generators which are inherently deterministic. Optical lattice emulators use ultracold atomic gases in optical lattices to mimic typical models of condensed matter physics. In my talk I will focus especially on the devices built by Canadian company D-Wave systems, which are special purpose quantum simulators for solving hard classical optimization problems. I will review the controversy around the quantum nature of these devices and will compare them to state of the art classical algorithms. I will end with an outlook towards universal quantum computing and end with the question: which important problems that are intractable even for post-exa-scale classical computers could we expect to solve once we have a universal quantum computer?
An electrically reconfigurable logic gate intrinsically enabled by spin-orbit materials.
Kazemi, Mohammad
2017-11-10
The spin degree of freedom in magnetic devices has been discussed widely for computing, since it could significantly reduce energy dissipation, might enable beyond Von Neumann computing, and could have applications in quantum computing. For spin-based computing to become widespread, however, energy efficient logic gates comprising as few devices as possible are required. Considerable recent progress has been reported in this area. However, proposals for spin-based logic either require ancillary charge-based devices and circuits in each individual gate or adopt principals underlying charge-based computing by employing ancillary spin-based devices, which largely negates possible advantages. Here, we show that spin-orbit materials possess an intrinsic basis for the execution of logic operations. We present a spin-orbit logic gate that performs a universal logic operation utilizing the minimum possible number of devices, that is, the essential devices required for representing the logic operands. Also, whereas the previous proposals for spin-based logic require extra devices in each individual gate to provide reconfigurability, the proposed gate is 'electrically' reconfigurable at run-time simply by setting the amplitude of the clock pulse applied to the gate. We demonstrate, analytically and numerically with experimentally benchmarked models, that the gate performs logic operations and simultaneously stores the result, realizing the 'stateful' spin-based logic scalable to ultralow energy dissipation.
Protecting computer-based medical devices: defending against viruses and other threats.
2005-07-01
The increasing integration of computer hardware has exposed medical devices to greater risks than ever before. More and more devices rely on commercial off-the-shelf software and operating systems, which are vulnerable to the increasing proliferation of viruses and other malicious programs that target computers. Therefore, it is necessary for hospitals to take steps such as those outlined in this article to ensure that their computer-based devices are made safe and continue to remain safe in the future. Maintaining the security of medical devices requires planning, careful execution, and a commitment of resources. A team should be created to develop a process for surveying the security status of all computerized devices in the hospital and making sure that patches and other updates are applied as needed. These patches and updates should be approved by the medical system supplier before being implemented. The team should consider using virtual local area networks to isolate susceptible devices on the hospital's network. All security measures should be carefully documented, and the documentation should be kept up-to-date. Above all, care must be taken to ensure that medical device security involves a collaborative, supportive partnership between the hospital's information technology staff and biomedical engineering personnel.
21 CFR 870.1110 - Blood pressure computer.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Blood pressure computer. 870.1110 Section 870.1110 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Diagnostic Devices § 870.1110 Blood pressure...
A resource-sharing model based on a repeated game in fog computing.
Sun, Yan; Zhang, Nan
2017-03-01
With the rapid development of cloud computing techniques, the number of users is undergoing exponential growth. It is difficult for traditional data centers to perform many tasks in real time because of the limited bandwidth of resources. The concept of fog computing is proposed to support traditional cloud computing and to provide cloud services. In fog computing, the resource pool is composed of sporadic distributed resources that are more flexible and movable than a traditional data center. In this paper, we propose a fog computing structure and present a crowd-funding algorithm to integrate spare resources in the network. Furthermore, to encourage more resource owners to share their resources with the resource pool and to supervise the resource supporters as they actively perform their tasks, we propose an incentive mechanism in our algorithm. Simulation results show that our proposed incentive mechanism can effectively reduce the SLA violation rate and accelerate the completion of tasks.
Hamlet, Jason R; Bauer, Todd M; Pierson, Lyndon G
2014-09-30
Deterrence of device subversion by substitution may be achieved by including a cryptographic fingerprint unit within a computing device for authenticating a hardware platform of the computing device. The cryptographic fingerprint unit includes a physically unclonable function ("PUF") circuit disposed in or on the hardware platform. The PUF circuit is used to generate a PUF value. A key generator is coupled to generate a private key and a public key based on the PUF value while a decryptor is coupled to receive an authentication challenge posed to the computing device and encrypted with the public key and coupled to output a response to the authentication challenge decrypted with the private key.
2017-08-08
Usability Studies In Virtual And Traditional Computer Aided Design Environments For Spatial Awareness Dr. Syed Adeel Ahmed, Xavier University of...virtual environment with wand interfaces compared directly with a workstation non-stereoscopic traditional CAD interface with keyboard and mouse. In...navigate through a virtual environment. The wand interface provides a significantly improved means of interaction. This study quantitatively measures the
Self-consistent core-pedestal transport simulations with neural network accelerated models
Meneghini, Orso; Smith, Sterling P.; Snyder, Philip B.; ...
2017-07-12
Fusion whole device modeling simulations require comprehensive models that are simultaneously physically accurate, fast, robust, and predictive. In this paper we describe the development of two neural-network (NN) based models as a means to perform a snon-linear multivariate regression of theory-based models for the core turbulent transport fluxes, and the pedestal structure. Specifically, we find that a NN-based approach can be used to consistently reproduce the results of the TGLF and EPED1 theory-based models over a broad range of plasma regimes, and with a computational speedup of several orders of magnitudes. These models are then integrated into a predictive workflowmore » that allows prediction with self-consistent core-pedestal coupling of the kinetic profiles within the last closed flux surface of the plasma. Finally, the NN paradigm is capable of breaking the speed-accuracy trade-off that is expected of traditional numerical physics models, and can provide the missing link towards self-consistent coupled core-pedestal whole device modeling simulations that are physically accurate and yet take only seconds to run.« less
Using human extra-cortical local field potentials to control a switch
NASA Astrophysics Data System (ADS)
Kennedy, Philip; Andreasen, Dinal; Ehirim, Princewill; King, Brandon; Kirby, Todd; Mao, Hui; Moore, Melody
2004-06-01
Individuals with profound paralysis and mutism require a communication channel. Traditional assistive technology devices eventually fail, especially in the case of amyotrophic lateral sclerosis (ALS) subjects who gradually become totally locked-in. A direct brain-to-computer interface that provides switch functions can provide a direct communication channel to the external world. Electroencephalographic (EEG) signals recorded from scalp electrodes are significantly degraded due to skull and scalp attenuation and ambient noise. The present system using conductive skull screws allows more reliable access to cortical local field potentials (LFPs) without entering the brain itself. We describe an almost locked-in human subject with ALS who activated a switch using online time domain detection techniques. Frequency domain analysis of his LFP activity demonstrates this to be an alternative method of detecting switch activation intentions. With this brain communicator system it is reasonable to expect that locked-in, but cognitively intact, humans will always be able to communicate. Financial disclosure. Authors PK and DA may derive some financial gain from the sale of this device. A patent has been applied under US and international law: 10/675,703.
Self-consistent core-pedestal transport simulations with neural network accelerated models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meneghini, Orso; Smith, Sterling P.; Snyder, Philip B.
Fusion whole device modeling simulations require comprehensive models that are simultaneously physically accurate, fast, robust, and predictive. In this paper we describe the development of two neural-network (NN) based models as a means to perform a snon-linear multivariate regression of theory-based models for the core turbulent transport fluxes, and the pedestal structure. Specifically, we find that a NN-based approach can be used to consistently reproduce the results of the TGLF and EPED1 theory-based models over a broad range of plasma regimes, and with a computational speedup of several orders of magnitudes. These models are then integrated into a predictive workflowmore » that allows prediction with self-consistent core-pedestal coupling of the kinetic profiles within the last closed flux surface of the plasma. Finally, the NN paradigm is capable of breaking the speed-accuracy trade-off that is expected of traditional numerical physics models, and can provide the missing link towards self-consistent coupled core-pedestal whole device modeling simulations that are physically accurate and yet take only seconds to run.« less
Self-consistent core-pedestal transport simulations with neural network accelerated models
NASA Astrophysics Data System (ADS)
Meneghini, O.; Smith, S. P.; Snyder, P. B.; Staebler, G. M.; Candy, J.; Belli, E.; Lao, L.; Kostuk, M.; Luce, T.; Luda, T.; Park, J. M.; Poli, F.
2017-08-01
Fusion whole device modeling simulations require comprehensive models that are simultaneously physically accurate, fast, robust, and predictive. In this paper we describe the development of two neural-network (NN) based models as a means to perform a snon-linear multivariate regression of theory-based models for the core turbulent transport fluxes, and the pedestal structure. Specifically, we find that a NN-based approach can be used to consistently reproduce the results of the TGLF and EPED1 theory-based models over a broad range of plasma regimes, and with a computational speedup of several orders of magnitudes. These models are then integrated into a predictive workflow that allows prediction with self-consistent core-pedestal coupling of the kinetic profiles within the last closed flux surface of the plasma. The NN paradigm is capable of breaking the speed-accuracy trade-off that is expected of traditional numerical physics models, and can provide the missing link towards self-consistent coupled core-pedestal whole device modeling simulations that are physically accurate and yet take only seconds to run.
Andersen, Pia; Lindgaard, Anne-Mette; Prgomet, Mirela; Creswick, Nerida; Westbrook, Johanna I
2009-08-04
Selecting the right mix of stationary and mobile computing devices is a significant challenge for system planners and implementers. There is very limited research evidence upon which to base such decisions. We aimed to investigate the relationships between clinician role, clinical task, and selection of a computer hardware device in hospital wards. Twenty-seven nurses and eight doctors were observed for a total of 80 hours as they used a range of computing devices to access a computerized provider order entry system on two wards at a major Sydney teaching hospital. Observers used a checklist to record the clinical tasks completed, devices used, and location of the activities. Field notes were also documented during observations. Semi-structured interviews were conducted after observation sessions. Assessment of the physical attributes of three devices-stationary PCs, computers on wheels (COWs) and tablet PCs-was made. Two types of COWs were available on the wards: generic COWs (laptops mounted on trolleys) and ergonomic COWs (an integrated computer and cart device). Heuristic evaluation of the user interfaces was also carried out. The majority (93.1%) of observed nursing tasks were conducted using generic COWs. Most nursing tasks were performed in patients' rooms (57%) or in the corridors (36%), with a small percentage at a patient's bedside (5%). Most nursing tasks related to the preparation and administration of drugs. Doctors on ward rounds conducted 57.3% of observed clinical tasks on generic COWs and 35.9% on tablet PCs. On rounds, 56% of doctors' tasks were performed in the corridors, 29% in patients' rooms, and 3% at the bedside. Doctors not on a ward round conducted 93.6% of tasks using stationary PCs, most often within the doctors' office. Nurses and doctors were observed performing workarounds, such as transcribing medication orders from the computer to paper. The choice of device was related to clinical role, nature of the clinical task, degree of mobility required, including where task completion occurs, and device design. Nurses' work, and clinical tasks performed by doctors during ward rounds, require highly mobile computer devices. Nurses and doctors on ward rounds showed a strong preference for generic COWs over all other devices. Tablet PCs were selected by doctors for only a small proportion of clinical tasks. Even when using mobile devices clinicians completed a very low proportion of observed tasks at the bedside. The design of the devices and ward space configurations place limitations on how and where devices are used and on the mobility of clinical work. In such circumstances, clinicians will initiate workarounds to compensate. In selecting hardware devices, consideration should be given to who will be using the devices, the nature of their work, and the physical layout of the ward.
Secure data exchange between intelligent devices and computing centers
NASA Astrophysics Data System (ADS)
Naqvi, Syed; Riguidel, Michel
2005-03-01
The advent of reliable spontaneous networking technologies (commonly known as wireless ad-hoc networks) has ostensibly raised stakes for the conception of computing intensive environments using intelligent devices as their interface with the external world. These smart devices are used as data gateways for the computing units. These devices are employed in highly volatile environments where the secure exchange of data between these devices and their computing centers is of paramount importance. Moreover, their mission critical applications require dependable measures against the attacks like denial of service (DoS), eavesdropping, masquerading, etc. In this paper, we propose a mechanism to assure reliable data exchange between an intelligent environment composed of smart devices and distributed computing units collectively called 'computational grid'. The notion of infosphere is used to define a digital space made up of a persistent and a volatile asset in an often indefinite geographical space. We study different infospheres and present general evolutions and issues in the security of such technology-rich and intelligent environments. It is beyond any doubt that these environments will likely face a proliferation of users, applications, networked devices, and their interactions on a scale never experienced before. It would be better to build in the ability to uniformly deal with these systems. As a solution, we propose a concept of virtualization of security services. We try to solve the difficult problems of implementation and maintenance of trust on the one hand, and those of security management in heterogeneous infrastructure on the other hand.
CSP: A Multifaceted Hybrid Architecture for Space Computing
NASA Technical Reports Server (NTRS)
Rudolph, Dylan; Wilson, Christopher; Stewart, Jacob; Gauvin, Patrick; George, Alan; Lam, Herman; Crum, Gary Alex; Wirthlin, Mike; Wilson, Alex; Stoddard, Aaron
2014-01-01
Research on the CHREC Space Processor (CSP) takes a multifaceted hybrid approach to embedded space computing. Working closely with the NASA Goddard SpaceCube team, researchers at the National Science Foundation (NSF) Center for High-Performance Reconfigurable Computing (CHREC) at the University of Florida and Brigham Young University are developing hybrid space computers that feature an innovative combination of three technologies: commercial-off-the-shelf (COTS) devices, radiation-hardened (RadHard) devices, and fault-tolerant computing. Modern COTS processors provide the utmost in performance and energy-efficiency but are susceptible to ionizing radiation in space, whereas RadHard processors are virtually immune to this radiation but are more expensive, larger, less energy-efficient, and generations behind in speed and functionality. By featuring COTS devices to perform the critical data processing, supported by simpler RadHard devices that monitor and manage the COTS devices, and augmented with novel uses of fault-tolerant hardware, software, information, and networking within and between COTS devices, the resulting system can maximize performance and reliability while minimizing energy consumption and cost. NASA Goddard has adopted the CSP concept and technology with plans underway to feature flight-ready CSP boards on two upcoming space missions.
PLATO--AN AUTOMATED TEACHING DEVICE.
ERIC Educational Resources Information Center
BITZER, D.; AND OTHERS
PLATO (PROGRAMED LOGIC FOR AUTOMATIC TEACHING OPERATION) IS A DEVICE FOR TEACHING A NUMBER OF STUDENTS INDIVIDUALLY BY MEANS OF A SINGLE, CENTRAL PURPOSE, DIGITAL COMPUTER. THE GENERAL ORGANIZATION OF EQUIPMENT CONSISTS OF A KEYSET FOR STUDENT RESPONSES, THE COMPUTER, STORAGE DEVICE (ELECTRIC BLACKBOARD), SLIDE SELECTOR (ELECTRICAL BOOK), AND TV…
21 CFR 870.1435 - Single-function, preprogrammed diagnostic computer.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Single-function, preprogrammed diagnostic computer. 870.1435 Section 870.1435 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Diagnostic Devices § 870.1435...
Introduction to Semiconductor Devices
NASA Astrophysics Data System (ADS)
Brennan, Kevin F.
2005-03-01
This volume offers a solid foundation for understanding the most important devices used in the hottest areas of electronic engineering today, from semiconductor fundamentals to state-of-the-art semiconductor devices in the telecommunications and computing industries. Kevin Brennan describes future approaches to computing hardware and RF power amplifiers, and explains how emerging trends and system demands of computing and telecommunications systems influence the choice, design and operation of semiconductor devices. In addition, he covers MODFETs and MOSFETs, short channel effects, and the challenges faced by continuing miniaturization. His book is both an excellent senior/graduate text and a valuable reference for practicing engineers and researchers.
Detecting Nano-Scale Vibrations in Rotating Devices by Using Advanced Computational Methods
del Toro, Raúl M.; Haber, Rodolfo E.; Schmittdiel, Michael C.
2010-01-01
This paper presents a computational method for detecting vibrations related to eccentricity in ultra precision rotation devices used for nano-scale manufacturing. The vibration is indirectly measured via a frequency domain analysis of the signal from a piezoelectric sensor attached to the stationary component of the rotating device. The algorithm searches for particular harmonic sequences associated with the eccentricity of the device rotation axis. The detected sequence is quantified and serves as input to a regression model that estimates the eccentricity. A case study presents the application of the computational algorithm during precision manufacturing processes. PMID:22399918
Bridging FPGA and GPU technologies for AO real-time control
NASA Astrophysics Data System (ADS)
Perret, Denis; Lainé, Maxime; Bernard, Julien; Gratadour, Damien; Sevin, Arnaud
2016-07-01
Our team has developed a common environment for high performance simulations and real-time control of AO systems based on the use of Graphics Processors Units in the context of the COMPASS project. Such a solution, based on the ability of the real time core in the simulation to provide adequate computing performance, limits the cost of developing AO RTC systems and makes them more scalable. A code developed and validated in the context of the simulation may be injected directly into the system and tested on sky. Furthermore, the use of relatively low cost components also offers significant advantages for the system hardware platform. However, the use of GPUs in an AO loop comes with drawbacks: the traditional way of offloading computation from CPU to GPUs - involving multiple copies and unacceptable overhead in kernel launching - is not well suited in a real time context. This last application requires the implementation of a solution enabling direct memory access (DMA) to the GPU memory from a third party device, bypassing the operating system. This allows this device to communicate directly with the real-time core of the simulation feeding it with the WFS camera pixel stream. We show that DMA between a custom FPGA-based frame-grabber and a computation unit (GPU, FPGA, or Coprocessor such as Xeon-phi) across PCIe allows us to get latencies compatible with what will be needed on ELTs. As a fine-grained synchronization mechanism is not yet made available by GPU vendors, we propose the use of memory polling to avoid interrupts handling and involvement of a CPU. Network and Vision protocols are handled by the FPGA-based Network Interface Card (NIC). We present the results we obtained on a complete AO loop using camera and deformable mirror simulators.
Spencer, T J; Hidalgo-Bastida, L A; Cartmell, S H; Halliday, I; Care, C M
2013-04-01
Computer simulations can potentially be used to design, predict, and inform properties for tissue engineering perfusion bioreactors. In this work, we investigate the flow properties that result from a particular poly-L-lactide porous scaffold and a particular choice of perfusion bioreactor vessel design used in bone tissue engineering. We also propose a model to investigate the dynamic seeding properties such as the homogeneity (or lack of) of the cellular distribution within the scaffold of the perfusion bioreactor: a pre-requisite for the subsequent successful uniform growth of a viable bone tissue engineered construct. Flows inside geometrically complex scaffolds have been investigated previously and results shown at these pore scales. Here, it is our aim to show accurately that through the use of modern high performance computers that the bioreactor device scale that encloses a scaffold can affect the flows and stresses within the pores throughout the scaffold which has implications for bioreactor design, control, and use. Central to this work is that the boundary conditions are derived from micro computed tomography scans of both a device chamber and scaffold in order to avoid generalizations and uncertainties. Dynamic seeding methods have also been shown to provide certain advantages over static seeding methods. We propose here a novel coupled model for dynamic seeding accounting for flow, species mass transport and cell advection-diffusion-attachment tuned for bone tissue engineering. The model highlights the timescale differences between different species suggesting that traditional homogeneous porous flow models of transport must be applied with caution to perfusion bioreactors. Our in silico data illustrate the extent to which these experiments have the potential to contribute to future design and development of large-scale bioreactors. Copyright © 2012 Wiley Periodicals, Inc.
Image-based computational fluid dynamics in the lung: virtual reality or new clinical practice?
Burrowes, Kelly S; De Backer, Jan; Kumar, Haribalan
2017-11-01
The development and implementation of personalized medicine is paramount to improving the efficiency and efficacy of patient care. In the respiratory system, function is largely dictated by the choreographed movement of air and blood to the gas exchange surface. The passage of air begins in the upper airways, either via the mouth or nose, and terminates at the alveolar interface, while blood flows from the heart to the alveoli and back again. Computational fluid dynamics (CFD) is a well-established tool for predicting fluid flows and pressure distributions within complex systems. Traditionally CFD has been used to aid in the effective or improved design of a system or device; however, it has become increasingly exploited in biological and medical-based applications further broadening the scope of this computational technique. In this review, we discuss the advancement in application of CFD to the respiratory system and the contributions CFD is currently making toward improving precision medicine. The key areas CFD has been applied to in the pulmonary system are in predicting fluid transport and aerosol distribution within the airways. Here we focus our discussion on fluid flows and in particular on image-based clinically focused CFD in the ventilatory system. We discuss studies spanning from the paranasal sinuses through the conducting airways down to the level of the alveolar airways. The combination of imaging and CFD is enabling improved device design in aerosol transport, improved biomarkers of lung function in clinical trials, and improved predictions and assessment of surgical interventions in the nasal sinuses. WIREs Syst Biol Med 2017, 9:e1392. doi: 10.1002/wsbm.1392 For further resources related to this article, please visit the WIREs website. © 2017 Wiley Periodicals, Inc.
Computational fluid dynamics modelling in cardiovascular medicine.
Morris, Paul D; Narracott, Andrew; von Tengg-Kobligk, Hendrik; Silva Soto, Daniel Alejandro; Hsiao, Sarah; Lungu, Angela; Evans, Paul; Bressloff, Neil W; Lawford, Patricia V; Hose, D Rodney; Gunn, Julian P
2016-01-01
This paper reviews the methods, benefits and challenges associated with the adoption and translation of computational fluid dynamics (CFD) modelling within cardiovascular medicine. CFD, a specialist area of mathematics and a branch of fluid mechanics, is used routinely in a diverse range of safety-critical engineering systems, which increasingly is being applied to the cardiovascular system. By facilitating rapid, economical, low-risk prototyping, CFD modelling has already revolutionised research and development of devices such as stents, valve prostheses, and ventricular assist devices. Combined with cardiovascular imaging, CFD simulation enables detailed characterisation of complex physiological pressure and flow fields and the computation of metrics which cannot be directly measured, for example, wall shear stress. CFD models are now being translated into clinical tools for physicians to use across the spectrum of coronary, valvular, congenital, myocardial and peripheral vascular diseases. CFD modelling is apposite for minimally-invasive patient assessment. Patient-specific (incorporating data unique to the individual) and multi-scale (combining models of different length- and time-scales) modelling enables individualised risk prediction and virtual treatment planning. This represents a significant departure from traditional dependence upon registry-based, population-averaged data. Model integration is progressively moving towards 'digital patient' or 'virtual physiological human' representations. When combined with population-scale numerical models, these models have the potential to reduce the cost, time and risk associated with clinical trials. The adoption of CFD modelling signals a new era in cardiovascular medicine. While potentially highly beneficial, a number of academic and commercial groups are addressing the associated methodological, regulatory, education- and service-related challenges. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
Volunteered Cloud Computing for Disaster Management
NASA Astrophysics Data System (ADS)
Evans, J. D.; Hao, W.; Chettri, S. R.
2014-12-01
Disaster management relies increasingly on interpreting earth observations and running numerical models; which require significant computing capacity - usually on short notice and at irregular intervals. Peak computing demand during event detection, hazard assessment, or incident response may exceed agency budgets; however some of it can be met through volunteered computing, which distributes subtasks to participating computers via the Internet. This approach has enabled large projects in mathematics, basic science, and climate research to harness the slack computing capacity of thousands of desktop computers. This capacity is likely to diminish as desktops give way to battery-powered mobile devices (laptops, smartphones, tablets) in the consumer market; but as cloud computing becomes commonplace, it may offer significant slack capacity -- if its users are given an easy, trustworthy mechanism for participating. Such a "volunteered cloud computing" mechanism would also offer several advantages over traditional volunteered computing: tasks distributed within a cloud have fewer bandwidth limitations; granular billing mechanisms allow small slices of "interstitial" computing at no marginal cost; and virtual storage volumes allow in-depth, reversible machine reconfiguration. Volunteered cloud computing is especially suitable for "embarrassingly parallel" tasks, including ones requiring large data volumes: examples in disaster management include near-real-time image interpretation, pattern / trend detection, or large model ensembles. In the context of a major disaster, we estimate that cloud users (if suitably informed) might volunteer hundreds to thousands of CPU cores across a large provider such as Amazon Web Services. To explore this potential, we are building a volunteered cloud computing platform and targeting it to a disaster management context. Using a lightweight, fault-tolerant network protocol, this platform helps cloud users join parallel computing projects; automates reconfiguration of their virtual machines; ensures accountability for donated computing; and optimizes the use of "interstitial" computing. Initial applications include fire detection from multispectral satellite imagery and flood risk mapping through hydrological simulations.
Algorithms for Efficient Computation of Transfer Functions for Large Order Flexible Systems
NASA Technical Reports Server (NTRS)
Maghami, Peiman G.; Giesy, Daniel P.
1998-01-01
An efficient and robust computational scheme is given for the calculation of the frequency response function of a large order, flexible system implemented with a linear, time invariant control system. Advantage is taken of the highly structured sparsity of the system matrix of the plant based on a model of the structure using normal mode coordinates. The computational time per frequency point of the new computational scheme is a linear function of system size, a significant improvement over traditional, still-matrix techniques whose computational times per frequency point range from quadratic to cubic functions of system size. This permits the practical frequency domain analysis of systems of much larger order than by traditional, full-matrix techniques. Formulations are given for both open- and closed-loop systems. Numerical examples are presented showing the advantages of the present formulation over traditional approaches, both in speed and in accuracy. Using a model with 703 structural modes, the present method was up to two orders of magnitude faster than a traditional method. The present method generally showed good to excellent accuracy throughout the range of test frequencies, while traditional methods gave adequate accuracy for lower frequencies, but generally deteriorated in performance at higher frequencies with worst case errors being many orders of magnitude times the correct values.
Designing Agent Utilities for Coordinated, Scalable and Robust Multi-Agent Systems
NASA Technical Reports Server (NTRS)
Tumer, Kagan
2005-01-01
Coordinating the behavior of a large number of agents to achieve a system level goal poses unique design challenges. In particular, problems of scaling (number of agents in the thousands to tens of thousands), observability (agents have limited sensing capabilities), and robustness (the agents are unreliable) make it impossible to simply apply methods developed for small multi-agent systems composed of reliable agents. To address these problems, we present an approach based on deriving agent goals that are aligned with the overall system goal, and can be computed using information readily available to the agents. Then, each agent uses a simple reinforcement learning algorithm to pursue its own goals. Because of the way in which those goals are derived, there is no need to use difficult to scale external mechanisms to force collaboration or coordination among the agents, or to ensure that agents actively attempt to appropriate the tasks of agents that suffered failures. To present these results in a concrete setting, we focus on the problem of finding the sub-set of a set of imperfect devices that results in the best aggregate device. This is a large distributed agent coordination problem where each agent (e.g., device) needs to determine whether to be part of the aggregate device. Our results show that the approach proposed in this work provides improvements of over an order of magnitude over both traditional search methods and traditional multi-agent methods. Furthermore, the results show that even in extreme cases of agent failures (i.e., half the agents failed midway through the simulation) the system's performance degrades gracefully and still outperforms a failure-free and centralized search algorithm. The results also show that the gains increase as the size of the system (e.g., number of agents) increases. This latter result is particularly encouraging and suggests that this method is ideally suited for domains where the number of agents is currently in the thousands and will reach tens or hundreds of thousands in the near future.
A computational workflow for designing silicon donor qubits
Humble, Travis S.; Ericson, M. Nance; Jakowski, Jacek; ...
2016-09-19
Developing devices that can reliably and accurately demonstrate the principles of superposition and entanglement is an on-going challenge for the quantum computing community. Modeling and simulation offer attractive means of testing early device designs and establishing expectations for operational performance. However, the complex integrated material systems required by quantum device designs are not captured by any single existing computational modeling method. We examine the development and analysis of a multi-staged computational workflow that can be used to design and characterize silicon donor qubit systems with modeling and simulation. Our approach integrates quantum chemistry calculations with electrostatic field solvers to performmore » detailed simulations of a phosphorus dopant in silicon. We show how atomistic details can be synthesized into an operational model for the logical gates that define quantum computation in this particular technology. In conclusion, the resulting computational workflow realizes a design tool for silicon donor qubits that can help verify and validate current and near-term experimental devices.« less
A Computer Story: Complexity from Simplicity
ERIC Educational Resources Information Center
DeLeo, Gary; Weidenhammer, Amanda; Wecht, Kristen
2012-01-01
In this technological age, digital devices are conspicuous examples of extraordinary complexity. When a user clicks on computer icons or presses calculator buttons, these devices channel electricity through a complex system of decision-making circuits. Yet, in spite of this remarkable complexity, the hearts of these devices are components that…
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-08
... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-812] Certain Computing Devices With Associated Instruction Sets and Software; Notice of Commission Determination Not To Review an Initial... devices with associated instruction sets and software by reason of infringement of claims 1-4, 7-10, and...
Insight and analysis problem solving in microbes to machines.
Clark, Kevin B
2015-11-01
A key feature for obtaining solutions to difficult problems, insight is oftentimes vaguely regarded as a special discontinuous intellectual process and/or a cognitive restructuring of problem representation or goal approach. However, this nearly century-old state of art devised by the Gestalt tradition to explain the non-analytical or non-trial-and-error, goal-seeking aptitude of primate mentality tends to neglect problem-solving capabilities of lower animal phyla, Kingdoms other than Animalia, and advancing smart computational technologies built from biological, artificial, and composite media. Attempting to provide an inclusive, precise definition of insight, two major criteria of insight, discontinuous processing and problem restructuring, are here reframed using terminology and statistical mechanical properties of computational complexity classes. Discontinuous processing becomes abrupt state transitions in algorithmic/heuristic outcomes or in types of algorithms/heuristics executed by agents using classical and/or quantum computational models. And problem restructuring becomes combinatorial reorganization of resources, problem-type substitution, and/or exchange of computational models. With insight bounded by computational complexity, humans, ciliated protozoa, and complex technological networks, for example, show insight when restructuring time requirements, combinatorial complexity, and problem type to solve polynomial and nondeterministic polynomial decision problems. Similar effects are expected from other problem types, supporting the idea that insight might be an epiphenomenon of analytical problem solving and consequently a larger information processing framework. Thus, this computational complexity definition of insight improves the power, external and internal validity, and reliability of operational parameters with which to classify, investigate, and produce the phenomenon for computational agents ranging from microbes to man-made devices. Copyright © 2015 Elsevier Ltd. All rights reserved.
A self-fitting hearing aid: need and concept.
Convery, Elizabeth; Keidser, Gitte; Dillon, Harvey; Hartley, Lisa
2011-12-01
The need for reliable access to hearing health care services is growing globally, particularly in developing countries and in remotely located, underserved regions in many parts of the developed world. Individuals with hearing loss in these areas are at a significant disadvantage due to the scarcity of local hearing health care professionals and the high cost of hearing aids. Current approaches to making hearing rehabilitation services more readily available to underserved populations include teleaudiology and the provision of amplification devices outside of the traditional provider-client relationship. Both strategies require access to such resources as dedicated equipment and/or specially trained staff. Another possible strategy is a self-fitting hearing aid, a personal amplification device that is equipped with an onboard tone generator to enable user-controlled, automated, in situ audiometry; an onboard prescription to determine the initial hearing aid settings; and a trainable algorithm to enable user-controlled fine-tuning. The device is thus assembled, fitted, and managed by the user without the need for audiological or computer support. This article details the self-fitting concept and its potential application in both developing and developed countries. Potential advantages and disadvantages of such a device are discussed, and considerations for further investigations into the concept are presented. Overall, the concept is considered technologically viable with the main challenges anticipated to be development of clear, simple user instructions and a delivery model that ensures reliable supplies of instant-fit ear tips and batteries.
Toward efficient aeroelastic energy harvesting through limit cycle shaping
NASA Astrophysics Data System (ADS)
Kirschmeier, Benjamin; Bryant, Matthew
2016-04-01
Increasing demand to harvest energy from renewable resources has caused significant research interest in unsteady aerodynamic and hydrodynamic phenomena. Apart from the traditional horizontal axis wind turbines, there has been significant growth in the study of bio-inspired oscillating wings for energy harvesting. These systems are being built to harvest electricity for wireless devices, as well as for large scale mega-watt power generation. Such systems can be driven by aeroelastic flutter phenomena which, beyond a critical wind speed, will cause the system to enter into limitcycle oscillations. When the airfoil enters large amplitude, high frequency motion, leading and trailing edge vortices form and, when properly synchronized with the airfoil kinematics, enhance the energy extraction efficiency of the device. A reduced order dynamic stall model is employed on a nonlinear aeroelastic structural model to investigate whether the parameters of a fully passive aeroelastic device can be tuned to produce limit cycle oscillations at desired kinematics. This process is done through an optimization technique to find the necessary structural parameters to achieve desired structural forces and moments corresponding to a target limit cycle. Structural nonlinearities are explored to determine the essential nonlinearities such that the system's limit cycle closely matches the desired kinematic trajectory. The results from this process demonstrate that it is possible to tune system parameters such that a desired limit cycle trajectory can be achieved. The simulations also demonstrate that the high efficiencies predicted by previous computational aerodynamics studies can be achieved in fully passive aeroelastic devices.
Keidser, Gitte; Dillon, Harvey; Hartley, Lisa
2011-01-01
The need for reliable access to hearing health care services is growing globally, particularly in developing countries and in remotely located, underserved regions in many parts of the developed world. Individuals with hearing loss in these areas are at a significant disadvantage due to the scarcity of local hearing health care professionals and the high cost of hearing aids. Current approaches to making hearing rehabilitation services more readily available to underserved populations include teleaudiology and the provision of amplification devices outside of the traditional provider-client relationship. Both strategies require access to such resources as dedicated equipment and/or specially trained staff. Another possible strategy is a self-fitting hearing aid, a personal amplification device that is equipped with an onboard tone generator to enable user-controlled, automated, in situ audiometry; an onboard prescription to determine the initial hearing aid settings; and a trainable algorithm to enable user-controlled fine-tuning. The device is thus assembled, fitted, and managed by the user without the need for audiological or computer support. This article details the self-fitting concept and its potential application in both developing and developed countries. Potential advantages and disadvantages of such a device are discussed, and considerations for further investigations into the concept are presented. Overall, the concept is considered technologically viable with the main challenges anticipated to be development of clear, simple user instructions and a delivery model that ensures reliable supplies of instant-fit ear tips and batteries. PMID:22143873
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bouchier, F.; Ahrens, J.S.; Wells, G.
One thing that all access control applications have in common is the need to identify those individuals authorized to gain access to an area. Traditionally, the identification is based on something that person possesses, such as a key or badge, or something they know, such as a PIN or password. Biometric identifiers make their decisions based on the physiological or behavioral characteristics of individuals. The potential of biometrics devices to positively identify individuals has made them attractive for use in access control and computer security applications. However, no systems perform perfectly, so it is important to understand what a biometricmore » device`s performance is under real world conditions before deciding to implement one in an access control system. This paper will describe the evaluation of a prototype biometric identifier provided by IriScan Incorporated. This identifier was developed to recognize individual human beings based on the distinctive visual characteristics of the irises of their eyes. The main goal of the evaluation was to determine whether the system has potential as an access control device within the Department of Energy (DOE). The primary interest was an estimate of the accuracy of the system in terms of false accept and false reject rates. Data was also collected to estimate throughput time and user acceptability. The performance of the system during the test will be discussed. Lessons learned during the test which may aid in further testing and simplify implementation of a production system will also be discussed.« less
Can a tablet device alter undergraduate science students' study behavior and use of technology?
Morris, Neil P; Ramsay, Luke; Chauhan, Vikesh
2012-06-01
This article reports findings from a study investigating undergraduate biological sciences students' use of technology and computer devices for learning and the effect of providing students with a tablet device. A controlled study was conducted to collect quantitative and qualitative data on the impact of a tablet device on students' use of devices and technology for learning. Overall, we found that students made extensive use of the tablet device for learning, using it in preference to laptop computers to retrieve information, record lectures, and access learning resources. In line with other studies, we found that undergraduate students only use familiar Web 2.0 technologies and that the tablet device did not alter this behavior for the majority of tools. We conclude that undergraduate science students can make extensive use of a tablet device to enhance their learning opportunities without institutions changing their teaching methods or computer systems, but that institutional intervention may be needed to drive changes in student behavior toward the use of novel Web 2.0 technologies.
A REPORT ON INSTRUCTIONAL DEVICES IN FOREIGN LANGUAGE TEACHING.
ERIC Educational Resources Information Center
PORTER, DOUGLAS
RECOMMENDATIONS FALL INTO 3 CATEGORIES. FIRST, THE ROLE OF TEACHING DEVICES SHOULD BE MAJOR BECAUSE THEIR SUCCESS COULD RESULT IN ECONOMIC AND MANPOWER ADVANTAGES WHICH USUALLY HAVE TO AWAIT A NEW GENERATION OF TEACHERS TRAINED IN A GIVEN DISCIPLINE. LESS THAN FULL USE OF DEVICES COULD LEAD TO DEPENDENCE ON TRADITIONAL INSTRUCTIONAL TECHNIQUES…
Beyond the hearing aid: Assistive listening devices
NASA Astrophysics Data System (ADS)
Holmes, Alice E.
2003-04-01
Persons with hearing loss can obtain great benefit from hearing aids but there are many situations that traditional amplification devices will not provide enough help to ensure optimal communication. Assistive listening and signaling devices are designed to improve the communication of the hearing impaired in instances where traditional hearing aids are not sufficient. These devices are designed to help with problems created by listening in noise or against a competing message, improve distance listening, facilitate group conversation (help with problems created by rapidly changing speakers), and allow independence from friends and family. With the passage of the Americans with Disabilities Act in 1990, assistive listening devices (ALDs) are becoming more accessible to the public with hearing loss. Employers and public facilities must provide auxiliary aids and services when necessary to ensure effective communication for persons who are deaf or hard of hearing. However many professionals and persons with hearing loss are unaware of the various types and availability of ALDs. An overview of ALDs along with a discussion of their advantages and disadvantages will be given.
Andersen, Pia; Lindgaard, Anne-Mette; Prgomet, Mirela; Creswick, Nerida
2009-01-01
Background Selecting the right mix of stationary and mobile computing devices is a significant challenge for system planners and implementers. There is very limited research evidence upon which to base such decisions. Objective We aimed to investigate the relationships between clinician role, clinical task, and selection of a computer hardware device in hospital wards. Methods Twenty-seven nurses and eight doctors were observed for a total of 80 hours as they used a range of computing devices to access a computerized provider order entry system on two wards at a major Sydney teaching hospital. Observers used a checklist to record the clinical tasks completed, devices used, and location of the activities. Field notes were also documented during observations. Semi-structured interviews were conducted after observation sessions. Assessment of the physical attributes of three devices—stationary PCs, computers on wheels (COWs) and tablet PCs—was made. Two types of COWs were available on the wards: generic COWs (laptops mounted on trolleys) and ergonomic COWs (an integrated computer and cart device). Heuristic evaluation of the user interfaces was also carried out. Results The majority (93.1%) of observed nursing tasks were conducted using generic COWs. Most nursing tasks were performed in patients’ rooms (57%) or in the corridors (36%), with a small percentage at a patient’s bedside (5%). Most nursing tasks related to the preparation and administration of drugs. Doctors on ward rounds conducted 57.3% of observed clinical tasks on generic COWs and 35.9% on tablet PCs. On rounds, 56% of doctors’ tasks were performed in the corridors, 29% in patients’ rooms, and 3% at the bedside. Doctors not on a ward round conducted 93.6% of tasks using stationary PCs, most often within the doctors’ office. Nurses and doctors were observed performing workarounds, such as transcribing medication orders from the computer to paper. Conclusions The choice of device was related to clinical role, nature of the clinical task, degree of mobility required, including where task completion occurs, and device design. Nurses’ work, and clinical tasks performed by doctors during ward rounds, require highly mobile computer devices. Nurses and doctors on ward rounds showed a strong preference for generic COWs over all other devices. Tablet PCs were selected by doctors for only a small proportion of clinical tasks. Even when using mobile devices clinicians completed a very low proportion of observed tasks at the bedside. The design of the devices and ward space configurations place limitations on how and where devices are used and on the mobility of clinical work. In such circumstances, clinicians will initiate workarounds to compensate. In selecting hardware devices, consideration should be given to who will be using the devices, the nature of their work, and the physical layout of the ward. PMID:19674959
Simulation training tools for nonlethal weapons using gaming environments
NASA Astrophysics Data System (ADS)
Donne, Alexsana; Eagan, Justin; Tse, Gabriel; Vanderslice, Tom; Woods, Jerry
2006-05-01
Modern simulation techniques have a growing role for evaluating new technologies and for developing cost-effective training programs. A mission simulator facilitates the productive exchange of ideas by demonstration of concepts through compellingly realistic computer simulation. Revolutionary advances in 3D simulation technology have made it possible for desktop computers to process strikingly realistic and complex interactions with results depicted in real-time. Computer games now allow for multiple real human players and "artificially intelligent" (AI) simulated robots to play together. Advances in computer processing power have compensated for the inherent intensive calculations required for complex simulation scenarios. The main components of the leading game-engines have been released for user modifications, enabling game enthusiasts and amateur programmers to advance the state-of-the-art in AI and computer simulation technologies. It is now possible to simulate sophisticated and realistic conflict situations in order to evaluate the impact of non-lethal devices as well as conflict resolution procedures using such devices. Simulations can reduce training costs as end users: learn what a device does and doesn't do prior to use, understand responses to the device prior to deployment, determine if the device is appropriate for their situational responses, and train with new devices and techniques before purchasing hardware. This paper will present the status of SARA's mission simulation development activities, based on the Half-Life gameengine, for the purpose of evaluating the latest non-lethal weapon devices, and for developing training tools for such devices.
Student Media Usage Patterns and Non-Traditional Learning in Higher Education
ERIC Educational Resources Information Center
Zawacki-Richter, Olaf; Müskens, Wolfgang; Krause, Ulrike; Alturki, Uthman; Aldraiweesh, Ahmed
2015-01-01
A total of 2,338 students at German universities participated in a survey, which investigated media usage patterns of so-called traditional and non-traditional students (Schuetze & Wolter, 2003). The students provided information on the digital devices that they own or have access to, and on their usage of media and e-learning tools and…
Ag2S atomic switch-based `tug of war' for decision making
NASA Astrophysics Data System (ADS)
Lutz, C.; Hasegawa, T.; Chikyow, T.
2016-07-01
For a computing process such as making a decision, a software controlled chip of several transistors is necessary. Inspired by how a single cell amoeba decides its movements, the theoretical `tug of war' computing model was proposed but not yet implemented in an analogue device suitable for integrated circuits. Based on this model, we now developed a new electronic element for decision making processes, which will have no need for prior programming. The devices are based on the growth and shrinkage of Ag filaments in α-Ag2+δS gap-type atomic switches. Here we present the adapted device design and the new materials. We demonstrate the basic `tug of war' operation by IV-measurements and Scanning Electron Microscopy (SEM) observation. These devices could be the base for a CMOS-free new computer architecture.For a computing process such as making a decision, a software controlled chip of several transistors is necessary. Inspired by how a single cell amoeba decides its movements, the theoretical `tug of war' computing model was proposed but not yet implemented in an analogue device suitable for integrated circuits. Based on this model, we now developed a new electronic element for decision making processes, which will have no need for prior programming. The devices are based on the growth and shrinkage of Ag filaments in α-Ag2+δS gap-type atomic switches. Here we present the adapted device design and the new materials. We demonstrate the basic `tug of war' operation by IV-measurements and Scanning Electron Microscopy (SEM) observation. These devices could be the base for a CMOS-free new computer architecture. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr00690f
Lorah, Elizabeth R; Parnell, Ashley; Whitby, Peggy Schaefer; Hantula, Donald
2015-12-01
Powerful, portable, off-the-shelf handheld devices, such as tablet based computers (i.e., iPad(®); Galaxy(®)) or portable multimedia players (i.e., iPod(®)), can be adapted to function as speech generating devices for individuals with autism spectrum disorders or related developmental disabilities. This paper reviews the research in this new and rapidly growing area and delineates an agenda for future investigations. In general, participants using these devices acquired verbal repertoires quickly. Studies comparing these devices to picture exchange or manual sign language found that acquisition was often quicker when using a tablet computer and that the vast majority of participants preferred using the device to picture exchange or manual sign language. Future research in interface design, user experience, and extended verbal repertoires is recommended.
Controlling Laboratory Processes From A Personal Computer
NASA Technical Reports Server (NTRS)
Will, H.; Mackin, M. A.
1991-01-01
Computer program provides natural-language process control from IBM PC or compatible computer. Sets up process-control system that either runs without operator or run by workers who have limited programming skills. Includes three smaller programs. Two of them, written in FORTRAN 77, record data and control research processes. Third program, written in Pascal, generates FORTRAN subroutines used by other two programs to identify user commands with device-driving routines written by user. Also includes set of input data allowing user to define user commands to be executed by computer. Requires personal computer operating under MS-DOS with suitable hardware interfaces to all controlled devices. Also requires FORTRAN 77 compiler and device drivers written by user.
Modeling and Simulation of Explosively Driven Electromechanical Devices
NASA Astrophysics Data System (ADS)
Demmie, Paul N.
2002-07-01
Components that store electrical energy in ferroelectric materials and produce currents when their permittivity is explosively reduced are used in a variety of applications. The modeling and simulation of such devices is a challenging problem since one has to represent the coupled physics of detonation, shock propagation, and electromagnetic field generation. The high fidelity modeling and simulation of complicated electromechanical devices was not feasible prior to having the Accelerated Strategic Computing Initiative (ASCI) computers and the ASCI developed codes at Sandia National Laboratories (SNL). The EMMA computer code is used to model such devices and simulate their operation. In this paper, I discuss the capabilities of the EMMA code for the modeling and simulation of one such electromechanical device, a slim-loop ferroelectric (SFE) firing set.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-29
..., Including Mobile Phones, Mobile Tablets, Portable Music Players, and Computers, and Components Thereof... certain electronic devices, including mobile phones, mobile tablets, portable music players, and computers... mobile phones, mobile tablets, portable music players, and computers, and components thereof that...
[Mobile Health: IEEE Standard for Wearable Cuffless Blood Pressure Measuring Devices].
Zhou, Xia; Wu, Wenli; Bao, Shudi
2015-07-01
IEEE Std 1708-2014 breaks through the traditional standards of cuff based blood pressure measuring devices and establishes a normative definition of wearable cuffless blood pressure measuring devices and the objective performance evaluation of this kind of devices. This study firstly introduces the background of the new standard. Then, the standard details will be described, and the impact of cuffless blood pressure measuring devices with the new standard on manufacturers and end users will be addressed.
Abstractions for DNA circuit design.
Lakin, Matthew R; Youssef, Simon; Cardelli, Luca; Phillips, Andrew
2012-03-07
DNA strand displacement techniques have been used to implement a broad range of information processing devices, from logic gates, to chemical reaction networks, to architectures for universal computation. Strand displacement techniques enable computational devices to be implemented in DNA without the need for additional components, allowing computation to be programmed solely in terms of nucleotide sequences. A major challenge in the design of strand displacement devices has been to enable rapid analysis of high-level designs while also supporting detailed simulations that include known forms of interference. Another challenge has been to design devices capable of sustaining precise reaction kinetics over long periods, without relying on complex experimental equipment to continually replenish depleted species over time. In this paper, we present a programming language for designing DNA strand displacement devices, which supports progressively increasing levels of molecular detail. The language allows device designs to be programmed using a common syntax and then analysed at varying levels of detail, with or without interference, without needing to modify the program. This allows a trade-off to be made between the level of molecular detail and the computational cost of analysis. We use the language to design a buffered architecture for DNA devices, capable of maintaining precise reaction kinetics for a potentially unbounded period. We test the effectiveness of buffered gates to support long-running computation by designing a DNA strand displacement system capable of sustained oscillations.
Computing architecture for autonomous microgrids
Goldsmith, Steven Y.
2015-09-29
A computing architecture that facilitates autonomously controlling operations of a microgrid is described herein. A microgrid network includes numerous computing devices that execute intelligent agents, each of which is assigned to a particular entity (load, source, storage device, or switch) in the microgrid. The intelligent agents can execute in accordance with predefined protocols to collectively perform computations that facilitate uninterrupted control of the .
Spin-neurons: A possible path to energy-efficient neuromorphic computers
NASA Astrophysics Data System (ADS)
Sharad, Mrigank; Fan, Deliang; Roy, Kaushik
2013-12-01
Recent years have witnessed growing interest in the field of brain-inspired computing based on neural-network architectures. In order to translate the related algorithmic models into powerful, yet energy-efficient cognitive-computing hardware, computing-devices beyond CMOS may need to be explored. The suitability of such devices to this field of computing would strongly depend upon how closely their physical characteristics match with the essential computing primitives employed in such models. In this work, we discuss the rationale of applying emerging spin-torque devices for bio-inspired computing. Recent spin-torque experiments have shown the path to low-current, low-voltage, and high-speed magnetization switching in nano-scale magnetic devices. Such magneto-metallic, current-mode spin-torque switches can mimic the analog summing and "thresholding" operation of an artificial neuron with high energy-efficiency. Comparison with CMOS-based analog circuit-model of a neuron shows that "spin-neurons" (spin based circuit model of neurons) can achieve more than two orders of magnitude lower energy and beyond three orders of magnitude reduction in energy-delay product. The application of spin-neurons can therefore be an attractive option for neuromorphic computers of future.
Spin-neurons: A possible path to energy-efficient neuromorphic computers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharad, Mrigank; Fan, Deliang; Roy, Kaushik
Recent years have witnessed growing interest in the field of brain-inspired computing based on neural-network architectures. In order to translate the related algorithmic models into powerful, yet energy-efficient cognitive-computing hardware, computing-devices beyond CMOS may need to be explored. The suitability of such devices to this field of computing would strongly depend upon how closely their physical characteristics match with the essential computing primitives employed in such models. In this work, we discuss the rationale of applying emerging spin-torque devices for bio-inspired computing. Recent spin-torque experiments have shown the path to low-current, low-voltage, and high-speed magnetization switching in nano-scale magnetic devices.more » Such magneto-metallic, current-mode spin-torque switches can mimic the analog summing and “thresholding” operation of an artificial neuron with high energy-efficiency. Comparison with CMOS-based analog circuit-model of a neuron shows that “spin-neurons” (spin based circuit model of neurons) can achieve more than two orders of magnitude lower energy and beyond three orders of magnitude reduction in energy-delay product. The application of spin-neurons can therefore be an attractive option for neuromorphic computers of future.« less
Comparison of piezosurgery and traditional saw in bimaxillary orthognathic surgery.
Spinelli, Giuseppe; Lazzeri, Davide; Conti, Marco; Agostini, Tommaso; Mannelli, Giuditta
2014-10-01
Investigators have hypothesised that piezoelectric surgical device could permanently replace traditional saws in conventional orthognathic surgery. Twelve consecutive patients who underwent bimaxillary procedures were involved in the study. In six patients the right maxillary and mandible osteotomies were performed using traditional saw, whilst the left osteotomies by piezoosteotomy; in the remaining six patients, the surgical procedures were reversed. Intraoperative blood loss, procedure duration time, incision precision, postoperative swelling and haematoma, and nerve impairment were evaluated to compare the outcomes and costs of these two procedures. Compare to traditional mechanical surgery, piezoosteotomy showed a significant intraoperative blood loss reduction of 25% (p = 0.0367), but the mean surgical procedure duration was longer by 35% (p = 0.0018). Moreover, the use of piezoosteotomy for mandible procedure required more time than for the maxillary surgery (p = 0.0003). There was a lower incidence of postoperative haematoma and swelling following piezoosteotomy, and a statistically significant reduction in postoperative nerve impairment (p = 0.003). We believe that piezoelectric device allows surgeons to achieve better results compared to a traditional surgical saw, especially in terms of intraoperative blood loss, postoperative swelling and nerve impairment. This device represents a less aggressive and safer method to perform invasive surgical procedures such as a Le Fort I osteotomy. However, we recommend the use of traditional saw in mandible surgery because it provides more foreseeable outcomes and well-controlled osteotomy. Further studies are needed to analyse whether piezoosteotomy could prevent relapse and promote bony union in larger advancements. Copyright © 2014 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.
Ontological and Epistemological Issues Regarding Climate Models and Computer Experiments
NASA Astrophysics Data System (ADS)
Vezer, M. A.
2010-12-01
Recent philosophical discussions (Parker 2009; Frigg and Reiss 2009; Winsberg, 2009; Morgon 2002, 2003, 2005; Gula 2002) about the ontology of computer simulation experiments and the epistemology of inferences drawn from them are of particular relevance to climate science as computer modeling and analysis are instrumental in understanding climatic systems. How do computer simulation experiments compare with traditional experiments? Is there an ontological difference between these two methods of inquiry? Are there epistemological considerations that result in one type of inference being more reliable than the other? What are the implications of these questions with respect to climate studies that rely on computer simulation analysis? In this paper, I examine these philosophical questions within the context of climate science, instantiating concerns in the philosophical literature with examples found in analysis of global climate change. I concentrate on Wendy Parker’s (2009) account of computer simulation studies, which offers a treatment of these and other questions relevant to investigations of climate change involving such modelling. Two theses at the center of Parker’s account will be the focus of this paper. The first is that computer simulation experiments ought to be regarded as straightforward material experiments; which is to say, there is no significant ontological difference between computer and traditional experimentation. Parker’s second thesis is that some of the emphasis on the epistemological importance of materiality has been misplaced. I examine both of these claims. First, I inquire as to whether viewing computer and traditional experiments as ontologically similar in the way she does implies that there is no proper distinction between abstract experiments (such as ‘thought experiments’ as well as computer experiments) and traditional ‘concrete’ ones. Second, I examine the notion of materiality (i.e., the material commonality between object and target systems) and some arguments for the claim that materiality entails some inferential advantage to traditional experimentation. I maintain that Parker’s account of the ontology of computer simulations has some interesting though potentially problematic implications regarding conventional distinctions between abstract and concrete methods of inquiry. With respect to her account of materiality, I outline and defend an alternative account, posited by Mary Morgan (2002, 2003, 2005), which holds that ontological similarity between target and object systems confers some epistemological advantage to traditional forms of experimental inquiry.
Viewpoint Dependent Imaging: An Interactive Stereoscopic Display
NASA Astrophysics Data System (ADS)
Fisher, Scott
1983-04-01
Design and implementation of a viewpoint Dependent imaging system is described. The resultant display is an interactive, lifesize, stereoscopic image. that becomes a window into a three dimensional visual environment. As the user physically changes his viewpoint of the represented data in relation to the display surface, the image is continuously updated. The changing viewpoints are retrieved from a comprehensive, stereoscopic image array stored on computer controlled, optical videodisc and fluidly presented. in coordination with the viewer's, movements as detected by a body-tracking device. This imaging system is an attempt to more closely represent an observers interactive perceptual experience of the visual world by presenting sensory information cues not offered by traditional media technologies: binocular parallax, motion parallax, and motion perspective. Unlike holographic imaging, this display requires, relatively low bandwidth.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Naegle, John H.; Suppona, Roger A.; Aimone, James Bradley
In 2016, Lewis Rhodes Labs, (LRL), shipped the first commercially viable Neuromorphic Processing Unit, (NPU), branded as a Neuromorphic Data Microscope (NDM). This product leverages architectural mechanisms derived from the sensory cortex of the human brain to efficiently implement pattern matching. LRL and Sandia National Labs have optimized this product for streaming analytics, and demonstrated a 1,000x power per operation reduction in an FPGA format. When reduced to an ASIC, the efficiency will improve to 1,000,000x. Additionally, the neuromorphic nature of the device gives it powerful computational attributes that are counterintuitive to those schooled in traditional von Neumann architectures. Themore » Neuromorphic Data Microscope is the first of a broad class of brain-inspired, time domain processors that will profoundly alter the functionality and economics of data processing.« less
Comparison of alternative devices to determine aggregate shape.
DOT National Transportation Integrated Search
2005-01-01
This study compared devices (with corresponding procedures) that may be used to classify flat and elongated (F&E) particle content for coarse aggregate sources. The comparison involved the traditional (and manual) proportional caliper and two digital...
Research on Influence of Cloud Environment on Traditional Network Security
NASA Astrophysics Data System (ADS)
Ming, Xiaobo; Guo, Jinhua
2018-02-01
Cloud computing is a symbol of the progress of modern information network, cloud computing provides a lot of convenience to the Internet users, but it also brings a lot of risk to the Internet users. Second, one of the main reasons for Internet users to choose cloud computing is that the network security performance is great, it also is the cornerstone of cloud computing applications. This paper briefly explores the impact on cloud environment on traditional cybersecurity, and puts forward corresponding solutions.
Telerehabilitation: Review of the State-of-the-Art and Areas of Application.
Peretti, Alessandro; Amenta, Francesco; Tayebati, Seyed Khosrow; Nittari, Giulio; Mahdi, Syed Sarosh
2017-07-21
Telemedicine applications have been increasing due to the development of new computer science technologies and of more advanced telemedical devices. Various types of telerehabilitation treatments and their relative intensities and duration have been reported. The objective of this review is to provide a detailed overview of the rehabilitation techniques for remote sites (telerehabilitation) and their fields of application, with analysis of the benefits and the drawbacks related to use. We discuss future applications of telerehabilitation techniques with an emphasis on the development of high-tech devices, and on which new tools and applications can be used in the future. We retrieved relevant information and data on telerehabilitation from books, articles and online materials using the Medical Subject Headings (MeSH) "telerehabilitation," "telemedicine," and "rehabilitation," as well as "disabling pathologies." Telerehabilitation can be considered as a branch of telemedicine. Although this field is considerably new, its use has rapidly grown in developed countries. In general, telerehabilitation reduces the costs of both health care providers and patients compared with traditional inpatient or person-to-person rehabilitation. Furthermore, patients who live in remote places, where traditional rehabilitation services may not be easily accessible, can benefit from this technology. However, certain disadvantages of telerehabilitation, including skepticism on the part of patients due to remote interaction with their physicians or rehabilitators, should not be underestimated. This review evaluated different application fields of telerehabilitation, highlighting its benefits and drawbacks. This study may be a starting point for improving approaches and devices for telerehabilitation. In this context, patients' feedback may be important to adapt rehabilitation techniques and approaches to their needs, which would subsequently help to improve the quality of rehabilitation in the future. The need for proper training and education of people involved in this new and emerging form of intervention for more effective treatment can't be overstated. ©Alessandro Peretti, Francesco Amenta, Seyed Khosrow Tayebati, Giulio Nittari, Syed Sarosh Mahdi. Originally published in JMIR Rehabilitation and Assistive Technology (http://rehab.jmir.org), 21.07.2017.
Bridging the digital divide: mobile access to personal health records among patients with diabetes.
Graetz, Ilana; Huang, Jie; Brand, Richard J; Hsu, John; Yamin, Cyrus K; Reed, Mary E
2018-01-01
Some patients lack regular computer access and experience a digital divide that causes them to miss internet-based health innovations. The diffusion of smartphones has increased internet access across the socioeconomic spectrum, and increasing the channels through which patients can access their personal health records (PHRs) could help bridge the divide in PHR use. We examined PHR use through a computer-based Web browser or mobile device. Cross-sectional historical cohort analysis. Among adult patients in the diabetes registry of an integrated healthcare delivery system, we studied the devices used to access their PHR during 2016. Among 267,208 patients with diabetes, 68.1% used the PHR in 2016; 60.6% of all log-ins were via computer and 39.4% were via mobile device. Overall, 63.9% used it from both a computer and mobile device, 29.6% used only a computer, and 6.5% used only a mobile device. After adjustment, patients who were black, Hispanic, or Asian; lived in lower socioeconomic status (SES) neighborhoods; or had lower engagement were all significantly more likely to use the PHR only from a mobile device (P <.05). Patients using the PHR only via mobile device used it less frequently. Mobile-ready PHRs may increase access among patients facing a digital divide in computer use, disproportionately reaching racial/ethnic minorities and lower SES patients. Nonetheless, even with a mobile-optimized and app-accessible PHR, differences in PHR use by race/ethnicity and SES remain. Continued efforts are needed to increase equitable access to PHRs among patients with chronic conditions.
ERIC Educational Resources Information Center
Evanson, Nick
2004-01-01
Basic electronic devices have been used to great effect with console computer games. This paper looks at a range of devices from the very simple, such as microswitches and potentiometers, up to the more complex Hall effect probe. There is a great deal of relatively straightforward use of simple devices in computer games systems, and having read…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomquist, Heidi K.; Fixel, Deborah A.; Fett, David Brian
The Xyce Parallel Electronic Simulator simulates electronic circuit behavior in DC, AC, HB, MPDE and transient mode using standard analog (DAE) and/or device (PDE) device models including several age and radiation aware devices. It supports a variety of computing platforms (both serial and parallel) computers. Lastly, it uses a variety of modern solution algorithms dynamic parallel load-balancing and iterative solvers.
40 CFR 211.207 - Computation of the noise -reduction rating (NRR).
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Computation of the noise -reduction... (CONTINUED) NOISE ABATEMENT PROGRAMS PRODUCT NOISE LABELING Hearing Protective Devices § 211.207 Computation of the noise -reduction rating (NRR). Calculate the NRR for hearing protective devices by...
Computer Augmented Learning; A Survey.
ERIC Educational Resources Information Center
Kindred, J.
The report contains a description and summary of computer augmented learning devices and systems. The devices are of two general types programed instruction systems based on the teaching machines pioneered by Pressey and developed by Skinner, and the so-called "docile" systems that permit greater user-direction with the computer under student…
Computer Output Microfilm and Library Catalogs.
ERIC Educational Resources Information Center
Meyer, Richard W.
Early computers dealt with mathematical and scientific problems requiring very little input and not much output, therefore high speed printing devices were not required. Today with increased variety of use, high speed printing is necessary and Computer Output Microfilm (COM) devices have been created to meet this need. This indirect process can…
Telecommunications Relay Service
... used with an existing voice telephone and a computer or other Web-enabled device without requiring any ... based TRS call. The user may use a computer or other web-enabled device to communicate with ...
Gamble, Amanda L; D'Rozario, Angela L; Bartlett, Delwyn J; Williams, Shaun; Bin, Yu Sun; Grunstein, Ronald R; Marshall, Nathaniel S
2014-01-01
Electronic devices in the bedroom are broadly linked with poor sleep in adolescents. This study investigated whether there is a dose-response relationship between use of electronic devices (computers, cellphones, televisions and radios) in bed prior to sleep and adolescent sleep patterns. Adolescents aged 11-17 yrs (n = 1,184; 67.6% female) completed an Australia-wide internet survey that examined sleep patterns, sleepiness, sleep disorders, the presence of electronic devices in the bedroom and frequency of use in bed at night. Over 70% of adolescents reported 2 or more electronic devices in their bedroom at night. Use of devices in bed a few nights per week or more was 46.8% cellphone, 38.5% computer, 23.2% TV, and 15.8% radio. Device use had dose-dependent associations with later sleep onset on weekdays (highest-dose computer adjOR = 3.75: 99% CI = 2.17-6.46; cellphone 2.29: 1.22-4.30) and weekends (computer 3.68: 2.14-6.32; cellphone 3.24: 1.70-6.19; TV 2.32: 1.30-4.14), and later waking on weekdays (computer 2.08: 1.25-3.44; TV 2.31: 1.33-4.02) and weekends (computer 1.99: 1.21-3.26; cellphone 2.33: 1.33-4.08; TV 2.04: 1.18-3.55). Only 'almost every night' computer use (: 2.43: 1.45-4.08) was associated with short weekday sleep duration, and only 'almost every night' cellphone use (2.23: 1.26-3.94) was associated with wake lag (waking later on weekends). Use of computers, cell-phones and televisions at higher doses was associated with delayed sleep/wake schedules and wake lag, potentially impairing health and educational outcomes.
Hadoop-MCC: Efficient Multiple Compound Comparison Algorithm Using Hadoop.
Hua, Guan-Jie; Hung, Che-Lun; Tang, Chuan Yi
2018-01-01
In the past decade, the drug design technologies have been improved enormously. The computer-aided drug design (CADD) has played an important role in analysis and prediction in drug development, which makes the procedure more economical and efficient. However, computation with big data, such as ZINC containing more than 60 million compounds data and GDB-13 with more than 930 million small molecules, is a noticeable issue of time-consuming problem. Therefore, we propose a novel heterogeneous high performance computing method, named as Hadoop-MCC, integrating Hadoop and GPU, to copy with big chemical structure data efficiently. Hadoop-MCC gains the high availability and fault tolerance from Hadoop, as Hadoop is used to scatter input data to GPU devices and gather the results from GPU devices. Hadoop framework adopts mapper/reducer computation model. In the proposed method, mappers response for fetching SMILES data segments and perform LINGO method on GPU, then reducers collect all comparison results produced by mappers. Due to the high availability of Hadoop, all of LINGO computational jobs on mappers can be completed, even if some of the mappers encounter problems. A comparison of LINGO is performed on each the GPU device in parallel. According to the experimental results, the proposed method on multiple GPU devices can achieve better computational performance than the CUDA-MCC on a single GPU device. Hadoop-MCC is able to achieve scalability, high availability, and fault tolerance granted by Hadoop, and high performance as well by integrating computational power of both of Hadoop and GPU. It has been shown that using the heterogeneous architecture as Hadoop-MCC effectively can enhance better computational performance than on a single GPU device. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
A Distributed Prognostic Health Management Architecture
NASA Technical Reports Server (NTRS)
Bhaskar, Saha; Saha, Sankalita; Goebel, Kai
2009-01-01
This paper introduces a generic distributed prognostic health management (PHM) architecture with specific application to the electrical power systems domain. Current state-of-the-art PHM systems are mostly centralized in nature, where all the processing is reliant on a single processor. This can lead to loss of functionality in case of a crash of the central processor or monitor. Furthermore, with increases in the volume of sensor data as well as the complexity of algorithms, traditional centralized systems become unsuitable for successful deployment, and efficient distributed architectures are required. A distributed architecture though, is not effective unless there is an algorithmic framework to take advantage of its unique abilities. The health management paradigm envisaged here incorporates a heterogeneous set of system components monitored by a varied suite of sensors and a particle filtering (PF) framework that has the power and the flexibility to adapt to the different diagnostic and prognostic needs. Both the diagnostic and prognostic tasks are formulated as a particle filtering problem in order to explicitly represent and manage uncertainties; however, typically the complexity of the prognostic routine is higher than the computational power of one computational element ( CE). Individual CEs run diagnostic routines until the system variable being monitored crosses beyond a nominal threshold, upon which it coordinates with other networked CEs to run the prognostic routine in a distributed fashion. Implementation results from a network of distributed embedded devices monitoring a prototypical aircraft electrical power system are presented, where the CEs are Sun Microsystems Small Programmable Object Technology (SPOT) devices.
NASA Technical Reports Server (NTRS)
Gedney, Stephen D.; Lansing, Faiza
1993-01-01
The generalized Yee-algorithm is presented for the temporal full-wave analysis of planar microstrip devices. This algorithm has the significant advantage over the traditional Yee-algorithm in that it is based on unstructured and irregular grids. The robustness of the generalized Yee-algorithm is that structures that contain curved conductors or complex three-dimensional geometries can be more accurately, and much more conveniently modeled using standard automatic grid generation techniques. This generalized Yee-algorithm is based on the the time-marching solution of the discrete form of Maxwell's equations in their integral form. To this end, the electric and magnetic fields are discretized over a dual, irregular, and unstructured grid. The primary grid is assumed to be composed of general fitted polyhedra distributed throughout the volume. The secondary grid (or dual grid) is built up of the closed polyhedra whose edges connect the centroid's of adjacent primary cells, penetrating shared faces. Faraday's law and Ampere's law are used to update the fields normal to the primary and secondary grid faces, respectively. Subsequently, a correction scheme is introduced to project the normal fields onto the grid edges. It is shown that this scheme is stable, maintains second-order accuracy, and preserves the divergenceless nature of the flux densities. Finally, for computational efficiency the algorithm is structured as a series of sparse matrix-vector multiplications. Based on this scheme, the generalized Yee-algorithm has been implemented on vector and parallel high performance computers in a highly efficient manner.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-01
..., Including Wireless Communication Devices, Portable Music and Data Processing Devices, and Tablet Computers... electronic devices, including wireless communication devices, portable music and data processing devices, and... electronic devices, including wireless communication devices, portable music and data processing devices, and...
Device Driver Safety Through a Reference Validation Mechanism
2008-05-01
microkernels and other research operat- ing systems [2, 9, 21, 24] run device drivers in user space ∗Supported by NICECAP cooperative agreement FA8750...device driver architecture in the Nexus trusted operating system [28], which has many similarities to traditional microkernels , including hardware... microkernel operating sys- tems, every flaw in a device driver is a potential secu- rity hole given the absence of mechanisms to contain the (mis
ERIC Educational Resources Information Center
Zahadat, Nima
2016-01-01
With the rapid increase of smartphones and tablets, security concerns have also been on the rise. Traditionally, Information Technology (IT) departments set up devices, apply security, and monitor them. Such approaches do not apply to today's mobile devices due to a phenomenon called Bring Your Own Device or BYOD. Employees find it desirable to…
Home oxygen therapy: re-thinking the role of devices.
Melani, Andrea S; Sestini, Piersante; Rottoli, Paola
2018-03-01
A range of devices are available for delivering and monitoring home oxygen therapy (HOT). Guidelines do not give indications for the choice of the delivery device but recommend the use of an ambulatory system in subjects on HOT whilst walking. Areas covered: We provide a clinical overview of HOT and review traditional and newer delivery and monitoring devices for HOT. Despite relevant technology advancements, clinicians, faced with many challenges when they prescribe oxygen therapy, often remain familiar to traditional devices and continuous flow delivery of oxygen. Some self-filling delivery-less devices could increase the users' level of independence with ecological advantage and, perhaps, reduced cost. Some newer portable oxygen concentrators are being available, but more work is needed to understand their performances in different diseases and clinical settings. Pulse oximetry has gained large diffusion worldwide and some models permit long-term monitoring. Some closed-loop portable monitoring devices are also able to adjust oxygen flow automatically in accordance with the different needs of everyday life. This might help to improve adherence and the practice of proper oxygen titration that has often been omitted because difficult to perform and time-consuming. Expert commentary: The prescribing physicians should know the characteristics of newer devices and use technological advancements to improve the practice of HOT.
A serial digital data communications device. [for real time flight simulation
NASA Technical Reports Server (NTRS)
Fetter, J. L.
1977-01-01
A general purpose computer peripheral device which is used to provide a full-duplex, serial, digital data transmission link between a Xerox Sigma computer and a wide variety of external equipment, including computers, terminals, and special purpose devices is reported. The interface has an extensive set of user defined options to assist the user in establishing the necessary data links. This report describes those options and other features of the serial communications interface and its performance by discussing its application to a particular problem.
Scarano, Antonio
The immediate placement of single postextractive implants is increasing in the everyday clinical practice. Due to insufficient bone tissue volume, proper primary stability, essential for subsequent osseointegration, is sometimes not reached. The aim of this work was to compare two different approaches: implant bed preparation before and after root extraction. Twenty-two patients of both sexes were selected who needed an implant-prosthetic rehabilitation of the fractured first mandibular molar or presented an untreatable endodontic pathology. The sites were randomly assigned to the test group (treated with implant bed preparation before molar extractions) or control group (treated with implant bed preparation after molar extractions) by a computer-generated table. All implants were placed by the same operator, who was experienced in both traditional and ultrasonic techniques. The implant stability quotient (ISQ) and the position of the implant were evaluated. Statistical analysis was carried out. In the control group, three implants were placed in the central portion of the bone septum, while eight implants were placed with a tilted axis in relation to the septum; in the test group, all implants were placed in ideal positions within the root extraction sockets. The different position of the implants between the two procedures was statistically significant. This work presented an innovative approach for implant placement at the time of mandibular molar extraction. Preparing the implant bed with an ultrasonic device before root extraction is a simple technique and also allows greater stability to be reached in a selective case.
Kanumuri, Prathima; Ganai, Sabha; Wohaibi, Eyad M.; Bush, Ronald W.; Grow, Daniel R.
2008-01-01
Background: The study aim was to compare the effectiveness of virtual reality and computer-enhanced video-scopic training devices for training novice surgeons in complex laparoscopic skills. Methods: Third-year medical students received instruction on laparoscopic intracorporeal suturing and knot tying and then underwent a pretraining assessment of the task using a live porcine model. Students were then randomized to objectives-based training on either the virtual reality (n=8) or computer-enhanced (n=8) training devices for 4 weeks, after which the assessment was repeated. Results: Posttraining performance had improved compared with pretraining performance in both task completion rate (94% versus 18%; P<0.001*) and time [181±58 (SD) versus 292±24*]. Performance of the 2 groups was comparable before and after training. Of the subjects, 88% thought that haptic cues were important in simulators. Both groups agreed that their respective training systems were effective teaching tools, but computer-enhanced device trainees were more likely to rate their training as representative of reality (P<0.01). Conclusions: Training on virtual reality and computer-enhanced devices had equivalent effects on skills improvement in novices. Despite the perception that haptic feedback is important in laparoscopic simulation training, its absence in the virtual reality device did not impede acquisition of skill. PMID:18765042
Context-awareness in ubiquitous computing and the mobile devices
NASA Astrophysics Data System (ADS)
Akçit, Nuhcan; Tomur, Emrah; Karslıoǧlu, Mahmut Onur
2015-06-01
Mobile device use has vastly increased in the last few years. Many people use many mobile devices in their daily lives. Context-aware computing is the main feature of pervasive and ubiquitous computing. Context awareness is also an important topic that becomes more available with ubiquitous computing. As the sensors increase, the data collected via mobile device sensors and sensor networks do not have much value because of the difficulty in analysis and understanding the data. Context-aware computing helps us store contextual information and use or search it by mobile devices when we want to see or analyze it. Contextual data can be made more meaningful by context-aware processing. There are different types of data and context information that must be considered. By combining spatial and contextual data, we obtain more meaningful data based on the entities. Contextual data is any information that can be used to characterize the situation of the entity. The entity is a person, place, or object considered relevant to the interaction between the user and an application, including the users and the applications. Using contextual data and good integration to mobile devices adds great value to this data, and combining these with our other data sets will allow us to obtain more useful information and analysis.
MEMS device for spacecraft thermal control applications
NASA Technical Reports Server (NTRS)
Swanson, Theordore D. (Inventor)
2003-01-01
A micro-electromechanical device that comprises miniaturized mechanical louvers, referred to as Micro Electro-Mechanical Systems (MEMS) louvers are employed to achieve a thermal control function for spacecraft and instruments. The MEMS louvers are another form of a variable emittance control coating and employ micro-electromechanical technology. In a function similar to traditional, macroscopic thermal louvers, the MEMS louvers of the present invention change the emissivity of a surface. With the MEMS louvers, as with the traditional macroscopic louvers, a mechanical vane or window is opened and closed to allow an alterable radiative view to space.
Doctors' experience with handheld computers in clinical practice: qualitative study.
McAlearney, Ann Scheck; Schweikhart, Sharon B; Medow, Mitchell A
2004-05-15
To examine doctors' perspectives about their experiences with handheld computers in clinical practice. Qualitative study of eight focus groups consisting of doctors with diverse training and practice patterns. Six practice settings across the United States and two additional focus group sessions held at a national meeting of general internists. 54 doctors who did or did not use handheld computers. Doctors who used handheld computers in clinical practice seemed generally satisfied with them and reported diverse patterns of use. Users perceived that the devices helped them increase productivity and improve patient care. Barriers to use concerned the device itself and personal and perceptual constraints, with perceptual factors such as comfort with technology, preference for paper, and the impression that the devices are not easy to use somewhat difficult to overcome. Participants suggested that organisations can help promote handheld computers by providing advice on purchase, usage, training, and user support. Participants expressed concern about reliability and security of the device but were particularly concerned about dependency on the device and over-reliance as a substitute for clinical thinking. Doctors expect handheld computers to become more useful, and most seem interested in leveraging (getting the most value from) their use. Key opportunities with handheld computers included their use as a stepping stone to build doctors' comfort with other information technology and ehealth initiatives and providing point of care support that helps improve patient care.
Quantum computing: a prime modality in neurosurgery's future.
Lee, Brian; Liu, Charles Y; Apuzzo, Michael L J
2012-11-01
With each significant development in the field of neurosurgery, our dependence on computers, small and large, has continuously increased. From something as mundane as bipolar cautery to sophisticated intraoperative navigation with real-time magnetic resonance imaging-assisted surgical guidance, both technologies, however simple or complex, require computational processing power to function. The next frontier for neurosurgery involves developing a greater understanding of the brain and furthering our capabilities as surgeons to directly affect brain circuitry and function. This has come in the form of implantable devices that can electronically and nondestructively influence the cortex and nuclei with the purpose of restoring neuronal function and improving quality of life. We are now transitioning from devices that are turned on and left alone, such as vagus nerve stimulators and deep brain stimulators, to "smart" devices that can listen and react to the body as the situation may dictate. The development of quantum computers and their potential to be thousands, if not millions, of times faster than current "classical" computers, will significantly affect the neurosciences, especially the field of neurorehabilitation and neuromodulation. Quantum computers may advance our understanding of the neural code and, in turn, better develop and program implantable neural devices. When quantum computers reach the point where we can actually implant such devices in patients, the possibilities of what can be done to interface and restore neural function will be limitless. Copyright © 2012 Elsevier Inc. All rights reserved.
Mobile Resource Use in a Distance Learning Population: What Are They Really Doing on Those Devices?
ERIC Educational Resources Information Center
Gebb, Billie Anne; Young, Zach
2014-01-01
Mobile device use has been soaring in recent years in all user groups. Mobile learning is no longer an optional activity for academic institutions, but a necessary endeavor. Developing a curriculum around mobile learning is essential, particularly for distance-based, non-traditional students. Understanding how students use their mobile devices is…
The Use of Handheld Devices for Improved Phonemic Awareness in a Traditional Kindergarten Classroom
ERIC Educational Resources Information Center
Magagna-McBee, Cristy Ann
2010-01-01
Effective teaching strategies that improve the development of phonemic awareness are important to ensure students are fluent readers by third grade. The use of handheld devices to improve phonemic awareness with kindergarten students may be such a strategy, but no research exists that evaluates the use of these devices. This study explored the…
[Animal experimentation, computer simulation and surgical research].
Carpentier, Alain
2009-11-01
We live in a digital world In medicine, computers are providing new tools for data collection, imaging, and treatment. During research and development of complex technologies and devices such as artificial hearts, computer simulation can provide more reliable information than experimentation on large animals. In these specific settings, animal experimentation should serve more to validate computer models of complex devices than to demonstrate their reliability.
An optimized and low-cost FPGA-based DNA sequence alignment--a step towards personal genomics.
Shah, Hurmat Ali; Hasan, Laiq; Ahmad, Nasir
2013-01-01
DNA sequence alignment is a cardinal process in computational biology but also is much expensive computationally when performing through traditional computational platforms like CPU. Of many off the shelf platforms explored for speeding up the computation process, FPGA stands as the best candidate due to its performance per dollar spent and performance per watt. These two advantages make FPGA as the most appropriate choice for realizing the aim of personal genomics. The previous implementation of DNA sequence alignment did not take into consideration the price of the device on which optimization was performed. This paper presents optimization over previous FPGA implementation that increases the overall speed-up achieved as well as the price incurred by the platform that was optimized. The optimizations are (1) The array of processing elements is made to run on change in input value and not on clock, so eliminating the need for tight clock synchronization, (2) the implementation is unrestrained by the size of the sequences to be aligned, (3) the waiting time required for the sequences to load to FPGA is reduced to the minimum possible and (4) an efficient method is devised to store the output matrix that make possible to save the diagonal elements to be used in next pass, in parallel with the computation of output matrix. Implemented on Spartan3 FPGA, this implementation achieved 20 times performance improvement in terms of CUPS over GPP implementation.
Historical review of computer-assisted cognitive retraining.
Lynch, Bill
2002-10-01
This article details the introduction and development of the use of microcomputers as adjuncts to traditional cognitive rehabilitation of persons with acquired brain injury. The initial application of video games as therapeutic recreation in the late 1970s was soon followed in the early 1980s by the use of the first personal computers and available educational software. By the mid-1980s, both the IBM PC and Macintosh platforms were established, along with simplified programming languages that allowed individuals without extensive technical expertise to develop their own software. Several rehabilitation clinicians began to produce and market specially written cognitive retraining software for one or the other platform. Their work was detailed and reviewed, as was recently released software from commercial sources. The latter discussion included the latest developments in the rehabilitation applications of personal digital assistants and related organizing, reminding, and dictation devices. A summary of research on the general and specific efficacy of computer-assisted cognitive retraining illustrated the lingering controversy and skepticism that have been associated with this field since its inception. Computer-assisted cognitive retraining (CACR) can be an effective adjunct to a comprehensive program of cognitive rehabilitation. Training needs to be focused, structured, monitored, and as ecologically relevant as possible for optimum effect. Transfer or training or generalizability of skills remains a key issue in the field and should be considered the key criterion in evaluating whether to initiate or continue CACR.
The Research and Implementation of MUSER CLEAN Algorithm Based on OpenCL
NASA Astrophysics Data System (ADS)
Feng, Y.; Chen, K.; Deng, H.; Wang, F.; Mei, Y.; Wei, S. L.; Dai, W.; Yang, Q. P.; Liu, Y. B.; Wu, J. P.
2017-03-01
It's urgent to carry out high-performance data processing with a single machine in the development of astronomical software. However, due to the different configuration of the machine, traditional programming techniques such as multi-threading, and CUDA (Compute Unified Device Architecture)+GPU (Graphic Processing Unit) have obvious limitations in portability and seamlessness between different operation systems. The OpenCL (Open Computing Language) used in the development of MUSER (MingantU SpEctral Radioheliograph) data processing system is introduced. And the Högbom CLEAN algorithm is re-implemented into parallel CLEAN algorithm by the Python language and PyOpenCL extended package. The experimental results show that the CLEAN algorithm based on OpenCL has approximately equally operating efficiency compared with the former CLEAN algorithm based on CUDA. More important, the data processing in merely CPU (Central Processing Unit) environment of this system can also achieve high performance, which has solved the problem of environmental dependence of CUDA+GPU. Overall, the research improves the adaptability of the system with emphasis on performance of MUSER image clean computing. In the meanwhile, the realization of OpenCL in MUSER proves its availability in scientific data processing. In view of the high-performance computing features of OpenCL in heterogeneous environment, it will probably become the preferred technology in the future high-performance astronomical software development.
Development of a Traditional/Computer-aided Graphics Course for Engineering Technology.
ERIC Educational Resources Information Center
Anand, Vera B.
1985-01-01
Describes a two-semester-hour freshman course in engineering graphics which uses both traditional and computerized instruction. Includes course description, computer graphics topics, and recommendations. Indicates that combining interactive graphics software with development of simple programs gave students a better foundation for upper-division…
Signal and noise extraction from analog memory elements for neuromorphic computing.
Gong, N; Idé, T; Kim, S; Boybat, I; Sebastian, A; Narayanan, V; Ando, T
2018-05-29
Dense crossbar arrays of non-volatile memory (NVM) can potentially enable massively parallel and highly energy-efficient neuromorphic computing systems. The key requirements for the NVM elements are continuous (analog-like) conductance tuning capability and switching symmetry with acceptable noise levels. However, most NVM devices show non-linear and asymmetric switching behaviors. Such non-linear behaviors render separation of signal and noise extremely difficult with conventional characterization techniques. In this study, we establish a practical methodology based on Gaussian process regression to address this issue. The methodology is agnostic to switching mechanisms and applicable to various NVM devices. We show tradeoff between switching symmetry and signal-to-noise ratio for HfO 2 -based resistive random access memory. Then, we characterize 1000 phase-change memory devices based on Ge 2 Sb 2 Te 5 and separate total variability into device-to-device variability and inherent randomness from individual devices. These results highlight the usefulness of our methodology to realize ideal NVM devices for neuromorphic computing.
Paik, Soo-Hyun; Cho, Hyun; Chun, Ji-Won; Jeong, Jo-Eun; Kim, Dai-Jin
2017-12-05
Gaming behaviors have been significantly influenced by smartphones. This study was designed to explore gaming behaviors and clinical characteristics across different gaming device usage patterns and the role of the patterns on Internet gaming disorder (IGD). Responders of an online survey regarding smartphone and online game usage were classified by different gaming device usage patterns: (1) individuals who played only computer games; (2) individuals who played computer games more than smartphone games; (3) individuals who played computer and smartphone games evenly; (4) individuals who played smartphone games more than computer games; (5) individuals who played only smartphone games. Data on demographics, gaming-related behaviors, and scales for Internet and smartphone addiction, depression, anxiety disorder, and substance use were collected. Combined users, especially those who played computer and smartphone games evenly, had higher prevalence of IGD, depression, anxiety disorder, and substance use disorder. These subjects were more prone to develop IGD than reference group (computer only gamers) (B = 0.457, odds ratio = 1.579). Smartphone only gamers had the lowest prevalence of IGD, spent the least time and money on gaming, and showed lowest scores of Internet and smartphone addiction. Our findings suggest that gaming device usage patterns may be associated with the occurrence, course, and prognosis of IGD.
Cho, Hyun; Chun, Ji-Won; Jeong, Jo-Eun; Kim, Dai-Jin
2017-01-01
Gaming behaviors have been significantly influenced by smartphones. This study was designed to explore gaming behaviors and clinical characteristics across different gaming device usage patterns and the role of the patterns on Internet gaming disorder (IGD). Responders of an online survey regarding smartphone and online game usage were classified by different gaming device usage patterns: (1) individuals who played only computer games; (2) individuals who played computer games more than smartphone games; (3) individuals who played computer and smartphone games evenly; (4) individuals who played smartphone games more than computer games; (5) individuals who played only smartphone games. Data on demographics, gaming-related behaviors, and scales for Internet and smartphone addiction, depression, anxiety disorder, and substance use were collected. Combined users, especially those who played computer and smartphone games evenly, had higher prevalence of IGD, depression, anxiety disorder, and substance use disorder. These subjects were more prone to develop IGD than reference group (computer only gamers) (B = 0.457, odds ratio = 1.579). Smartphone only gamers had the lowest prevalence of IGD, spent the least time and money on gaming, and showed lowest scores of Internet and smartphone addiction. Our findings suggest that gaming device usage patterns may be associated with the occurrence, course, and prognosis of IGD. PMID:29206183
Tsai, Tsai-Hsuan; Nash, Robert J; Tseng, Kevin C
2009-05-01
This article presents how the researcher goes about answering the research question, 'how assistive technology impacts computer use among individuals with cervical spinal cord injury?' through an in-depth investigation into the real-life situations among computer operators with cervical spinal cord injuries (CSI). An in-depth survey was carried out to provide an insight into the function abilities and limitation, habitual practice and preference, choices and utilisation of input devices, personal and/or technical assistance, environmental set-up and arrangements and special requirements among 20 experienced computer users with cervical spinal cord injuries. Following the survey findings, a five-layer CSI users' needs hierarchy of input device selection and use was proposed. These needs were ranked in order: beginning with the most basic criterion at the bottom of the pyramid; lower-level criteria must be met before one moves onto the higher level. The users' needs hierarchy for CSI computer users, which had not been applied by previous research work and which has established a rationale for the development of alternative input devices. If an input device achieves the criteria set up in the needs hierarchy, then a good match of person and technology will be achieved.
Possible 6-qubit NMR quantum computer device material; simulator of the NMR line width
NASA Astrophysics Data System (ADS)
Hashi, K.; Kitazawa, H.; Shimizu, T.; Goto, A.; Eguchi, S.; Ohki, S.
2002-12-01
For an NMR quantum computer, splitting of an NMR spectrum must be larger than a line width. In order to find a best device material for a solid-state NMR quantum computer, we have made a simulation program to calculate the NMR line width due to the nuclear dipole field by the 2nd moment method. The program utilizes the lattice information prepared by commercial software to draw a crystal structure. By applying this program, we can estimate the NMR line width due to the nuclear dipole field without measurements and find a candidate material for a 6-qubit solid-state NMR quantum computer device.
NASA Astrophysics Data System (ADS)
Nishiura, Daisuke; Furuichi, Mikito; Sakaguchi, Hide
2015-09-01
The computational performance of a smoothed particle hydrodynamics (SPH) simulation is investigated for three types of current shared-memory parallel computer devices: many integrated core (MIC) processors, graphics processing units (GPUs), and multi-core CPUs. We are especially interested in efficient shared-memory allocation methods for each chipset, because the efficient data access patterns differ between compute unified device architecture (CUDA) programming for GPUs and OpenMP programming for MIC processors and multi-core CPUs. We first introduce several parallel implementation techniques for the SPH code, and then examine these on our target computer architectures to determine the most effective algorithms for each processor unit. In addition, we evaluate the effective computing performance and power efficiency of the SPH simulation on each architecture, as these are critical metrics for overall performance in a multi-device environment. In our benchmark test, the GPU is found to produce the best arithmetic performance as a standalone device unit, and gives the most efficient power consumption. The multi-core CPU obtains the most effective computing performance. The computational speed of the MIC processor on Xeon Phi approached that of two Xeon CPUs. This indicates that using MICs is an attractive choice for existing SPH codes on multi-core CPUs parallelized by OpenMP, as it gains computational acceleration without the need for significant changes to the source code.
Spintronic logic: from switching devices to computing systems
NASA Astrophysics Data System (ADS)
Friedman, Joseph S.
2017-09-01
Though numerous spintronic switching devices have been proposed or demonstrated, there has been significant difficulty in translating these advances into practical computing systems. The challenge of cascading has impeded the integration of multiple devices into a logic family, and several proposed solutions potentially overcome these challenges. Here, the cascading techniques by which the output of each spintronic device can drive the input of another device are described for several logic families, including spin-diode logic (in particular, all-carbon spin logic), complementary magnetic tunnel junction logic (CMAT), and emitter-coupled spin-transistor logic (ECSTL).
What Are Some Types of Assistive Devices and How Are They Used?
... in persons with hearing problems. Cognitive assistance, including computer or electrical assistive devices, can help people function following brain injury. Computer software and hardware, such as voice recognition programs, ...
González-Suárez, Ana; Trujillo, Macarena; Burdío, Fernando; Andaluz, Anna; Berjano, Enrique
2014-08-01
To assess by means of computer simulations whether the heat sink effect inside a large vessel (portal vein) could protect the vessel wall from thermal damage close to an internally cooled electrode during radiofrequency (RF)-assisted resection. First,in vivo experiments were conducted to validate the computational model by comparing the experimental and computational thermal lesion shapes created around the vessels. Computer simulations were then carried out to study the effect of different factors such as device-tissue contact, vessel position, and vessel-device distance on temperature distributions and thermal lesion shapes near a large vessel, specifically the portal vein. The geometries of thermal lesions around the vessels in the in vivo experiments were in agreement with the computer results. The thermal lesion shape created around the portal vein was significantly modified by the heat sink effect in all the cases considered. Thermal damage to the portal vein wall was inversely related to the vessel-device distance. It was also more pronounced when the device-tissue contact surface was reduced or when the vessel was parallel to the device or perpendicular to its distal end (blade zone), the vessel wall being damaged at distances less than 4.25 mm. The computational findings suggest that the heat sink effect could protect the portal vein wall for distances equal to or greater than 5 mm, regardless of its position and distance with respect to the RF-based device.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-06
... Mobile Communications Devices and Related Software; Notice of Investigation AGENCY: U.S. International... Apple Computer, Inc. of Cupertino, California and NeXT Software, Inc. f/k/a NeXT Computer, Inc. of... certain personal data and mobile communications devices and related software by reason of infringement of...
ERIC Educational Resources Information Center
Chung, Sorim
2016-01-01
Over the past few years, one of the most fundamental changes in current computer-mediated environments has been input devices, moving from mouse devices to touch interfaces. However, most studies of online retailing have not considered device environments as retail cues that could influence users' shopping behavior. In this research, I examine the…
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-28
..., Including Mobile Phones, Portable Music Players, and Computers; Notice of Investigation AGENCY: U.S... music players, and computers, by reason of infringement of certain claims of U.S. Patent Nos. 6,714,091... importation of certain electronic devices, including mobile phones, portable music players, or computers that...
A malicious pattern detection engine for embedded security systems in the Internet of Things.
Oh, Doohwan; Kim, Deokho; Ro, Won Woo
2014-12-16
With the emergence of the Internet of Things (IoT), a large number of physical objects in daily life have been aggressively connected to the Internet. As the number of objects connected to networks increases, the security systems face a critical challenge due to the global connectivity and accessibility of the IoT. However, it is difficult to adapt traditional security systems to the objects in the IoT, because of their limited computing power and memory size. In light of this, we present a lightweight security system that uses a novel malicious pattern-matching engine. We limit the memory usage of the proposed system in order to make it work on resource-constrained devices. To mitigate performance degradation due to limitations of computation power and memory, we propose two novel techniques, auxiliary shifting and early decision. Through both techniques, we can efficiently reduce the number of matching operations on resource-constrained systems. Experiments and performance analyses show that our proposed system achieves a maximum speedup of 2.14 with an IoT object and provides scalable performance for a large number of patterns.
An Infrastructure to Enable Lightweight Context-Awareness for Mobile Users
Curiel, Pablo; Lago, Ana B.
2013-01-01
Mobile phones enable us to carry out a wider range of tasks every day, and as a result they have become more ubiquitous than ever. However, they are still more limited in terms of processing power and interaction capabilities than traditional computers, and the often distracting and time-constricted scenarios in which we use them do not help in alleviating these limitations. Context-awareness is a valuable technique to address these issues, as it enables to adapt application behaviour to each situation. In this paper we present a context management infrastructure for mobile environments, aimed at controlling context information life-cycle in this kind of scenarios, with the main goal of enabling application and services to adapt their behaviour to better meet end-user needs. This infrastructure relies on semantic technologies and open standards to improve interoperability, and is based on a central element, the context manager. This element acts as a central context repository and takes most of the computational burden derived from dealing with this kind of information, thus relieving from these tasks to more resource-scarce devices in the system. PMID:23899932
Fast simulation of Proton Induced X-Ray Emission Tomography using CUDA
NASA Astrophysics Data System (ADS)
Beasley, D. G.; Marques, A. C.; Alves, L. C.; da Silva, R. C.
2013-07-01
A new 3D Proton Induced X-Ray Emission Tomography (PIXE-T) and Scanning Transmission Ion Microscopy Tomography (STIM-T) simulation software has been developed in Java and uses NVIDIA™ Common Unified Device Architecture (CUDA) to calculate the X-ray attenuation for large detector areas. A challenge with PIXE-T is to get sufficient counts while retaining a small beam spot size. Therefore a high geometric efficiency is required. However, as the detector solid angle increases the calculations required for accurate reconstruction of the data increase substantially. To overcome this limitation, the CUDA parallel computing platform was used which enables general purpose programming of NVIDIA graphics processing units (GPUs) to perform computations traditionally handled by the central processing unit (CPU). For simulation performance evaluation, the results of a CPU- and a CUDA-based simulation of a phantom are presented. Furthermore, a comparison with the simulation code in the PIXE-Tomography reconstruction software DISRA (A. Sakellariou, D.N. Jamieson, G.J.F. Legge, 2001) is also shown. Compared to a CPU implementation, the CUDA based simulation is approximately 30× faster.
Unsteady numerical simulation of a round jet with impinging microjets for noise suppression
Lew, Phoi-Tack; Najafi-Yazdi, Alireza; Mongeau, Luc
2013-01-01
The objective of this study was to determine the feasibility of a lattice-Boltzmann method (LBM)-Large Eddy Simulation methodology for the prediction of sound radiation from a round jet-microjet combination. The distinct advantage of LBM over traditional computational fluid dynamics methods is its ease of handling problems with complex geometries. Numerical simulations of an isothermal Mach 0.5, ReD = 1 × 105 circular jet (Dj = 0.0508 m) with and without the presence of 18 microjets (Dmj = 1 mm) were performed. The presence of microjets resulted in a decrease in the axial turbulence intensity and turbulent kinetic energy. The associated decrease in radiated sound pressure level was around 1 dB. The far-field sound was computed using the porous Ffowcs Williams-Hawkings surface integral acoustic method. The trend obtained is in qualitative agreement with experimental observations. The results of this study support the accuracy of LBM based numerical simulations for predictions of the effects of noise suppression devices on the radiated sound power. PMID:23967931
The order of three lowest-energy states of the six-electron harmonium at small force constant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strasburger, Krzysztof
2016-06-21
The order of low-energy states of six-electron harmonium is uncertain in the case of strong correlation, which is not a desired situation for the model system being considered for future testing of approximate methods of quantum chemistry. The computational study of these states has been carried out at the frequency parameter ω = 0.01, using the variational method with the basis of symmetry-projected, explicitly correlated Gaussian (ECG) lobe functions. It has revealed that the six-electron harmonium at this confinement strength is an octahedral Wigner molecule, whose order of states is different than in the strong confinement regime and does notmore » agree with the earlier predictions. The results obtained for ω = 0.5 and 10 are consistent with the findings based on the Hund’s rules for the s{sup 2}p{sup 4} electron configuration. Substantial part of the computations has been carried out on the graphical processing units and the efficiency of these devices in calculation of the integrals over ECG functions has been compared with traditional processors.« less
Spike-Timing Dependent Plasticity in Unipolar Silicon Oxide RRAM Devices
Zarudnyi, Konstantin; Mehonic, Adnan; Montesi, Luca; Buckwell, Mark; Hudziak, Stephen; Kenyon, Anthony J.
2018-01-01
Resistance switching, or Resistive RAM (RRAM) devices show considerable potential for application in hardware spiking neural networks (neuro-inspired computing) by mimicking some of the behavior of biological synapses, and hence enabling non-von Neumann computer architectures. Spike-timing dependent plasticity (STDP) is one such behavior, and one example of several classes of plasticity that are being examined with the aim of finding suitable algorithms for application in many computing tasks such as coincidence detection, classification and image recognition. In previous work we have demonstrated that the neuromorphic capabilities of silicon-rich silicon oxide (SiOx) resistance switching devices extend beyond plasticity to include thresholding, spiking, and integration. We previously demonstrated such behaviors in devices operated in the unipolar mode, opening up the question of whether we could add plasticity to the list of features exhibited by our devices. Here we demonstrate clear STDP in unipolar devices. Significantly, we show that the response of our devices is broadly similar to that of biological synapses. This work further reinforces the potential of simple two-terminal RRAM devices to mimic neuronal functionality in hardware spiking neural networks. PMID:29472837
NASA Astrophysics Data System (ADS)
Zacharia, Zacharias C.; Lazaridou, Charalambia; Avraamidou, Lucy
2016-03-01
The purpose of this study was to examine the impact of mobile learning among young learners. Specifically, we investigated whether the use of mobile devices for data collection during field trips outside the classroom could enhance fourth graders' learning about the parts of the flower and their functions, flower pollinators and the process of pollination/fertilization, and the interrelationship between animals and plants, more than students' use of traditional means of data collection. For this purpose, we designed a pre-post experimental design study with two conditions: one in which participants used a mobile device for data collection and another using traditional means (e.g. sketching and note-taking). The sample comprised 48 fourth graders (24 in each condition), who studied the flower, its parts, and their functions. A conceptual test was administered to assess students' understanding before and after instruction. Moreover, the students' science notebooks and accompanying artifacts were used as a data source for examining students' progress during the study's intervention. The conceptual test and notebook data were analyzed statistically, whereas we used open coding for the artifacts. Findings revealed that using mobile devices for data collection enhanced students' conceptual understanding more than using traditional means of data collection.
NASA Astrophysics Data System (ADS)
Onuoha, Cajetan O.
The purpose of this research study was to determine the overall effectiveness of computer-based laboratory compared with the traditional hands-on laboratory for improving students' science academic achievement and attitudes towards science subjects at the college and pre-college levels of education in the United States. Meta-analysis was used to synthesis the findings from 38 primary research studies conducted and/or reported in the United States between 1996 and 2006 that compared the effectiveness of computer-based laboratory with the traditional hands-on laboratory on measures related to science academic achievements and attitudes towards science subjects. The 38 primary research studies, with total subjects of 3,824 generated a total of 67 weighted individual effect sizes that were used in this meta-analysis. The study found that computer-based laboratory had small positive effect sizes over the traditional hands-on laboratory (ES = +0.26) on measures related to students' science academic achievements and attitudes towards science subjects (ES = +0.22). It was also found that computer-based laboratory produced more significant effects on physical science subjects compared to biological sciences (ES = +0.34, +0.17).
Eye-gaze and intent: Application in 3D interface control
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schryver, J.C.; Goldberg, J.H.
1993-06-01
Computer interface control is typically accomplished with an input ``device`` such as keyboard, mouse, trackball, etc. An input device translates a users input actions, such as mouse clicks and key presses, into appropriate computer commands. To control the interface, the user must first convert intent into the syntax of the input device. A more natural means of computer control is possible when the computer can directly infer user intent, without need of intervening input devices. We describe an application of eye-gaze-contingent control of an interactive three-dimensional (3D) user interface. A salient feature of the user interface is natural input, withmore » a heightened impression of controlling the computer directly by the mind. With this interface, input of rotation and translation are intuitive, whereas other abstract features, such as zoom, are more problematic to match with user intent. This paper describes successes with implementation to date, and ongoing efforts to develop a more sophisticated intent inferencing methodology.« less
Eye-gaze and intent: Application in 3D interface control
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schryver, J.C.; Goldberg, J.H.
1993-01-01
Computer interface control is typically accomplished with an input device'' such as keyboard, mouse, trackball, etc. An input device translates a users input actions, such as mouse clicks and key presses, into appropriate computer commands. To control the interface, the user must first convert intent into the syntax of the input device. A more natural means of computer control is possible when the computer can directly infer user intent, without need of intervening input devices. We describe an application of eye-gaze-contingent control of an interactive three-dimensional (3D) user interface. A salient feature of the user interface is natural input, withmore » a heightened impression of controlling the computer directly by the mind. With this interface, input of rotation and translation are intuitive, whereas other abstract features, such as zoom, are more problematic to match with user intent. This paper describes successes with implementation to date, and ongoing efforts to develop a more sophisticated intent inferencing methodology.« less
The Impact of Microcomputers on Composition Students.
ERIC Educational Resources Information Center
Hocking, Joan
To determine whether computer assisted instruction was just a fad or a viable alternative to traditional methods for teaching English composition, a microcomputer was used in a traditional college freshman English course. The class was divided into small groups: some went to the computer lab, while others worked in the classroom. Interactive…
Computer-Assisted Instruction: A Case Study of Two Charter Schools
ERIC Educational Resources Information Center
Keengwe, Jared; Hussein, Farhan
2013-01-01
The purpose of this study was to examine the relationship in achievement gap between English language learners (ELLs) utilizing computer-assisted instruction (CAI) in the classroom, and ELLs relying solely on traditional classroom instruction. The study findings showed that students using CAI to supplement traditional lectures performed better…
Student Learning Opportunities in Traditional and Computer-Mediated Internships
ERIC Educational Resources Information Center
Bayerlein, Leopold; Jeske, Debora
2018-01-01
Purpose: The purpose of this paper is to provide a student learning outcome focussed assessment of the benefits and limitations of traditional internships, e-internships, and simulated internships to evaluate the potential of computer-mediated internships (CMIs) (e-internships and simulated internships) within higher education from a student…
Flow Ambiguity: A Path Towards Classically Driven Blind Quantum Computation
NASA Astrophysics Data System (ADS)
Mantri, Atul; Demarie, Tommaso F.; Menicucci, Nicolas C.; Fitzsimons, Joseph F.
2017-07-01
Blind quantum computation protocols allow a user to delegate a computation to a remote quantum computer in such a way that the privacy of their computation is preserved, even from the device implementing the computation. To date, such protocols are only known for settings involving at least two quantum devices: either a user with some quantum capabilities and a remote quantum server or two or more entangled but noncommunicating servers. In this work, we take the first step towards the construction of a blind quantum computing protocol with a completely classical client and single quantum server. Specifically, we show how a classical client can exploit the ambiguity in the flow of information in measurement-based quantum computing to construct a protocol for hiding critical aspects of a computation delegated to a remote quantum computer. This ambiguity arises due to the fact that, for a fixed graph, there exist multiple choices of the input and output vertex sets that result in deterministic measurement patterns consistent with the same fixed total ordering of vertices. This allows a classical user, computing only measurement angles, to drive a measurement-based computation performed on a remote device while hiding critical aspects of the computation.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-19
... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-794] Certain Electronic Devices, Including Wireless Communication Devices, Portable Music and Data Processing Devices, and Tablet Computers... certain electronic devices, including wireless communication devices, portable music and data processing...
NASA Astrophysics Data System (ADS)
Shatravin, V.; Shashev, D. V.
2018-05-01
Currently, robots are increasingly being used in every industry. One of the most high-tech areas is creation of completely autonomous robotic devices including vehicles. The results of various global research prove the efficiency of vision systems in autonomous robotic devices. However, the use of these systems is limited because of the computational and energy resources available in the robot device. The paper describes the results of applying the original approach for image processing on reconfigurable computing environments by the example of morphological operations over grayscale images. This approach is prospective for realizing complex image processing algorithms and real-time image analysis in autonomous robotic devices.
Evaluating Imaging and Computer-aided Detection and Diagnosis Devices at the FDA
Gallas, Brandon D.; Chan, Heang-Ping; D’Orsi, Carl J.; Dodd, Lori E.; Giger, Maryellen L.; Gur, David; Krupinski, Elizabeth A.; Metz, Charles E.; Myers, Kyle J.; Obuchowski, Nancy A.; Sahiner, Berkman; Toledano, Alicia Y.; Zuley, Margarita L.
2017-01-01
This report summarizes the Joint FDA-MIPS Workshop on Methods for the Evaluation of Imaging and Computer-Assist Devices. The purpose of the workshop was to gather information on the current state of the science and facilitate consensus development on statistical methods and study designs for the evaluation of imaging devices to support US Food and Drug Administration submissions. Additionally, participants expected to identify gaps in knowledge and unmet needs that should be addressed in future research. This summary is intended to document the topics that were discussed at the meeting and disseminate the lessons that have been learned through past studies of imaging and computer-aided detection and diagnosis device performance. PMID:22306064
Stoot, Lauren J.; Cairns, Nicholas A.; Cull, Felicia; Taylor, Jessica J.; Jeffrey, Jennifer D.; Morin, Félix; Mandelman, John W.; Clark, Timothy D.; Cooke, Steven J.
2014-01-01
Non-human vertebrate blood is commonly collected and assayed for a variety of applications, including veterinary diagnostics and physiological research. Small, often non-lethal samples enable the assessment and monitoring of the physiological state and health of the individual. Traditionally, studies that rely on blood physiology have focused on captive animals or, in studies conducted in remote settings, have required the preservation and transport of samples for later analysis. In either situation, large, laboratory-bound equipment and traditional assays and analytical protocols are required. The use of point-of-care (POC) devices to measure various secondary blood physiological parameters, such as metabolites, blood gases and ions, has become increasingly popular recently, due to immediate results and their portability, which allows the freedom to study organisms in the wild. Here, we review the current uses of POC devices and their applicability to basic and applied studies on a variety of non-domesticated species. We located 79 individual studies that focused on non-domesticated vertebrates, including validation and application of POC tools. Studies focused on a wide spectrum of taxa, including mammals, birds and herptiles, although the majority of studies focused on fish, and typical variables measured included blood glucose, lactate and pH. We found that calibrations for species-specific blood physiology values are necessary, because ranges can vary within and among taxa and are sometimes outside the measurable range of the devices. In addition, although POC devices are portable and robust, most require durable cases, they are seldom waterproof/water-resistant, and factors such as humidity and temperature can affect the performance of the device. Overall, most studies concluded that POC devices are suitable alternatives to traditional laboratory devices and eliminate the need for transport of samples; however, there is a need for greater emphasis on rigorous calibration and validation of these units and appreciation of their limitations. PMID:27293632