NASA Technical Reports Server (NTRS)
Baroff, Lynn E.; Easter, Robert W.; Pomphrey, Richard B.
2004-01-01
Program Systems Engineering applies the principles of Systems Engineering at the program level. Space programs are composed of interrelated elements which can include collections of projects, advanced technologies, information systems, etc. Some program elements are outside traditional engineering's physical systems, such as education and public outreach, public relations, resource flow, and interactions within the political environments.
Jarm, Tomaz; Miklavcic, Damijan
2014-01-01
A new study program of biomedical engineering was recently established at Faculty of Electrical Engineering, University of Ljubljana, Slovenia. It is based on the long-lasting tradition of education in the field of BME at the host institution and is built on the BME areas in which the research groups of the Faculty of Electrical Engineering have been traditionally successful. The program was prepared in accordance with the recommendations of the TEMPUS IV CRH-BME Project consortium.
The History of Chemical Engineering and Pedagogy: The Paradox of Tradition and Innovation
ERIC Educational Resources Information Center
Wankat, Phillip C.
2009-01-01
The Massachusetts Institute of Technology started the first US chemical engineering program six score years ago. Since that time, the chemical engineering curriculum has evolved. The latest versions of the curriculum are attempts to broaden chemical engineering to add product engineering, biology and nanotechnology to the traditional process…
Engineering a General Education Program: Designing Mechanical Engineering General Education Courses
ERIC Educational Resources Information Center
Fagette, Paul; Chen, Shih-Jiun; Baran, George R.; Samuel, Solomon P.; Kiani, Mohammad F.
2013-01-01
The Department of Mechanical Engineering at our institution created two engineering courses for the General Education Program that count towards second level general science credit (traditional science courses are first level). The courses were designed for the general student population based upon the requirements of our General Education Program…
Application of Statistics in Engineering Technology Programs
ERIC Educational Resources Information Center
Zhan, Wei; Fink, Rainer; Fang, Alex
2010-01-01
Statistics is a critical tool for robustness analysis, measurement system error analysis, test data analysis, probabilistic risk assessment, and many other fields in the engineering world. Traditionally, however, statistics is not extensively used in undergraduate engineering technology (ET) programs, resulting in a major disconnect from industry…
ERIC Educational Resources Information Center
Dewhurst, D. G.; And Others
1989-01-01
An interactive computer-assisted learning program written for the BBC microcomputer to teach the basic principles of genetic engineering is described. Discussed are the hardware requirements software, use of the program, and assessment. (Author/CW)
Development of a Traditional/Computer-aided Graphics Course for Engineering Technology.
ERIC Educational Resources Information Center
Anand, Vera B.
1985-01-01
Describes a two-semester-hour freshman course in engineering graphics which uses both traditional and computerized instruction. Includes course description, computer graphics topics, and recommendations. Indicates that combining interactive graphics software with development of simple programs gave students a better foundation for upper-division…
ERIC Educational Resources Information Center
Wright, A. S.; Wu, X.; Frye, C. A.; Mathur, A. B.; Patrick, C. W., Jr.
2007-01-01
A Biomedical Engineering Internship Program conducted within a Comprehensive Cancer Center over a 10 year period was assessed and evaluated. Although this is a non-traditional location for an internship, it is an ideal site for a multidisciplinary training program for science, technology, engineering, and mathematics (STEM) students. We made a…
ZAP! Adapted: Incorporating design in the introductory electromagnetism lab
NASA Astrophysics Data System (ADS)
McNeil, J. A.
2002-04-01
In the last decade the Accreditation Board of Engineering and Technology(ABET) significantly reformed the criteria by which engineering programs are accredited. The new criteria are called Engineering Criteria 2000 (EC2000). Not surprisingly, engineering design constitutes an essential component of these criteria. The Engineering Physics program at the Colorado School of Mines (CSM) underwent an ABET general review and site visit in the fall of 2000. In preparation for this review and as part of a campus-wide curriculum reform the Physics Department was challenged to include elements of design in its introductory laboratories. As part of the background research for this reform, several laboratory programs were reviewed including traditional and studio modes as well as a course used by Cal Tech and MIT called "ZAP!" which incorporates design activities well-aligned with the EC2000 criteria but in a nontraditional delivery mode. CSM has adapted several ZAP! experiments to a traditional laboratory format while attempting to preserve significant design experiences. The new laboratory forms an important component of the reformed course which attempts to respect the psychological principles of learner-based education. This talk reviews the reformed introductory electromagnetism course and how the laboratories are integrated into the pedagogy along with design activities. In their new form the laboratories can be readily adopted by physics departments using traditional delivery formats.
Bishop, P L; Keener, T C; Kukreti, A R; Kowel, S T
2004-01-01
Environmental engineering education has rapidly expanded in recent years and new teaching methods are needed. Many professionals and educators believe that a MS degree in environmental engineering should be the minimum in order to practice the profession, along with practical training. This paper describes an innovative program being offered at the University of Cincinnati that combines an integrated BS in civil engineering and an MS in environmental engineering with extensive practical co-operative education (co-op) experience, all within a five-year period. The program includes distance learning opportunities during the co-op periods. The result is a well-trained graduate who will receive higher pay and more challenging career opportunities, and who will have developed professionalism and maturity beyond that from traditional engineering programs.
OJPOT: online judge & practice oriented teaching idea in programming courses
NASA Astrophysics Data System (ADS)
Wang, Gui Ping; Chen, Shu Yu; Yang, Xin; Feng, Rui
2016-05-01
Practical abilities are important for students from majors including Computer Science and Engineering, and Electrical Engineering. Along with the popularity of ACM International Collegiate Programming Contest (ACM/ICPC) and other programming contests, online judge (OJ) websites achieve rapid development, thus providing a new kind of programming practice, i.e. online practice. Due to fair and timely feedback results from OJ websites, online practice outperforms traditional programming practice. In order to promote students' practical abilities in programming and algorithm designing, this article presents a novel teaching idea, online judge & practice oriented teaching (OJPOT). OJPOT is applied to Programming Foundation course. OJPOT cultivates students' practical abilities through various kinds of programming practice, such as programming contests, online practice and course project. To verify the effectiveness of this novel teaching idea, this study conducts empirical research. The experimental results show that OJPOT works effectively in enhancing students' practical abilities compared with the traditional teaching idea.
Proposal for Supply Chain Concentration in the Traditional MBA Program
ERIC Educational Resources Information Center
Ramaswamy, K. V.
2012-01-01
The purpose of this proposal is to develop and implement a concentration in Supply Chain Management in the existing traditional MBA program effective fall 2012. Houston is the hub for many multinational oil and energy companies, large healthcare systems, wholesale/retail businesses, engineering and construction companies, and is a major city along…
NASA Technical Reports Server (NTRS)
Kenny, R. Jeremy; Casiano, Matthew; Fischbach, Sean; Hulka, James R.
2012-01-01
Liquid rocket engine combustion stability assessments are traditionally broken into three categories: dynamic stability, spontaneous stability, and rough combustion. This work focuses on comparing the spontaneous stability and rough combustion assessments for several liquid engine programs. The techniques used are those developed at Marshall Space Flight Center (MSFC) for the J-2X Workhorse Gas Generator program. Stability assessment data from the Integrated Powerhead Demonstrator (IPD), FASTRAC, and Common Extensible Cryogenic Engine (CECE) programs are compared against previously processed J-2X Gas Generator data. Prior metrics for spontaneous stability assessments are updated based on the compilation of all data sets.
A systems engineering management approach to resource management applications
NASA Technical Reports Server (NTRS)
Hornstein, Rhoda Shaller
1989-01-01
The author presents a program management response to the following question: How can the traditional practice of systems engineering management, including requirements specification, be adapted, enhanced, or modified to build future planning and scheduling systems for effective operations? The systems engineering management process, as traditionally practiced, is examined. Extensible resource management systems are discussed. It is concluded that extensible systems are a partial solution to problems presented by requirements that are incomplete, partially immeasurable, and often dynamic. There are positive indications that resource management systems have been characterized and modeled sufficiently to allow their implementation as extensible systems.
NASA Astrophysics Data System (ADS)
Bucks, Gregory Warren
Computers have become an integral part of how engineers complete their work, allowing them to collect and analyze data, model potential solutions and aiding in production through automation and robotics. In addition, computers are essential elements of the products themselves, from tennis shoes to construction materials. An understanding of how computers function, both at the hardware and software level, is essential for the next generation of engineers. Despite the need for engineers to develop a strong background in computing, little opportunity is given for engineering students to develop these skills. Learning to program is widely seen as a difficult task, requiring students to develop not only an understanding of specific concepts, but also a way of thinking. In addition, students are forced to learn a new tool, in the form of the programming environment employed, along with these concepts and thought processes. Because of this, many students will not develop a sufficient proficiency in programming, even after progressing through the traditional introductory programming sequence. This is a significant problem, especially in the engineering disciplines, where very few students receive more than one or two semesters' worth of instruction in an already crowded engineering curriculum. To address these issues, new pedagogical techniques must be investigated in an effort to enhance the ability of engineering students to develop strong computing skills. However, these efforts are hindered by the lack of published assessment instruments available for probing an individual's understanding of programming concepts across programming languages. Traditionally, programming knowledge has been assessed by producing written code in a specific language. This can be an effective method, but does not lend itself well to comparing the pedagogical impact of different programming environments, languages or paradigms. This dissertation presents a phenomenographic research study exploring the different ways of understanding held by individuals of two programming concepts: conditional structures and repetition structures. This work lays the foundation for the development of language independent assessment instruments, which can ultimately be used to assess the pedagogical implications of various programming environments.
Lessons Learned with Metallized Gelled Propellants
NASA Technical Reports Server (NTRS)
1996-01-01
During testing of metallized gelled propellants in a rocket engine, many changes had to be made to the normal test program for traditional liquid propellants. The lessons learned during the testing and the solutions for many of the new operational conditions posed with gelled fuels will help future programs run more smoothly. The major factors that influenced the success of the testing were propellant settling, piston-cylinder tank operation, control of self pressurization, capture of metal oxide particles, and a gelled-fuel protective layer. In these ongoing rocket combustion experiments at the NASA Lewis Research Center, metallized, gelled liquid propellants are used in a small modular engine that produces 30 to 40 lb of thrust. Traditional liquid RP-1 and gelled RP-1 with 0-, 5-, and 55-wt% loadings of aluminum are used with gaseous oxygen as the oxidizer. The figure compares the thrust chamber efficiencies of different engines.
Engineer: The Professional Bulletin of Army Engineers. Volume 42, January-April 2012
2012-04-01
Maintenance Discipline Program Especially important in mechanized or wheeled ve-hicle units, this program should be bread and butter for leaders. Regular...been identified at the wrong end of the map. We contracted to have a traditional breakfast of flat- bread , sweet cream, water, and tea to serve our...talk, and exchanged cell phone numbers. Refreshments were served as we began talking about their village. The best meetings began with questions
ERIC Educational Resources Information Center
Yelamarthi, Kumar
2016-01-01
Many interesting research and design questions occur at the intersections of traditional disciplines, yet most coursework and research programs for undergraduate engineering students are focused on one discipline. This leads to underutilization of the potential in better preparing students through multidisciplinary projects. Identifying this…
The Need for Alternative Paradigms in Science and Engineering Education
ERIC Educational Resources Information Center
Baggi, Dennis L.
2007-01-01
There are two main claims in this article. First, that the classic pillars of engineering education, namely, traditional mathematics and differential equations, are merely a particular, if not old-fashioned, representation of a broader mathematical vision, which spans from Turing machine programming and symbolic productions sets to sub-symbolic…
Program Evolves from Basic CAD to Total Manufacturing Experience
ERIC Educational Resources Information Center
Cassola, Joel
2011-01-01
Close to a decade ago, John Hersey High School (JHHS) in Arlington Heights, Illinois, made a transition from a traditional classroom-based pre-engineering program. The new program is geared towards helping students understand the entire manufacturing process. Previously, a JHHS student would design a project in computer-aided design (CAD) software…
Thermodynamics in High Rhythms and Rhymes: Creative Ways of Knowing in Engineering
ERIC Educational Resources Information Center
Bairaktarova, Diana; Eodice, Michele
2017-01-01
Thermodynamics is a foundational course in nearly every engineering program. In a traditional classroom, instructors focus on the analysis of thermodynamic energy systems and their application to real world contexts. Because these complex systems can be difficult to understand, some instructors encourage students to tap into their creative side…
A Team Taught Interdisciplinary Approach To Physics and Calculus Education.
ERIC Educational Resources Information Center
Johnson, David B.
The Special Intensive Program for Scientists and Engineers (SIPSE) at Diablo Valley College in California replaces the traditional engineering calculus and physics sequences with a single sequence that combines the two subjects into an integrated whole. The project report provides an overview of SIPSE, a section that traces the project from…
In Vitro Testing of Engineered Nanomaterials in the EPA’s ToxCast Program (WC9)
High-throughput and high-content screens are attractive approaches for prioritizing nanomaterial hazards and informing targeted testing due to the impracticality of using traditional toxicological testing on the large numbers and varieties of nanomaterials. The ToxCast program a...
Game Development as a Pathway to Information Technology Literacy
ERIC Educational Resources Information Center
Frydenberg, Mark
2016-01-01
Teaching game development has become an accepted methodology for introducing programming concepts and capturing the interest of beginning computer science and information technology (IT) students. This study, conducted over three consecutive semesters, explores game development using a gaming engine, rather than a traditional programming language,…
Shifting Expectations: Bringing STEM to Scale through Expanded Learning Systems
ERIC Educational Resources Information Center
Donner, Jessica; Wang, Yvonne
2013-01-01
Expanded learning opportunities, such as afterschool and summer programs, are particularly well positioned to help address science, technology, engineering, and mathematics (STEM) education crisis. A large percentage of youth participating in afterschool programs are members of groups traditionally underrepresented in STEM fields. Additionally,…
Predicted performance of an integrated modular engine system
NASA Technical Reports Server (NTRS)
Binder, Michael; Felder, James L.
1993-01-01
Space vehicle propulsion systems are traditionally comprised of a cluster of discrete engines, each with its own set of turbopumps, valves, and a thrust chamber. The Integrated Modular Engine (IME) concept proposes a vehicle propulsion system comprised of multiple turbopumps, valves, and thrust chambers which are all interconnected. The IME concept has potential advantages in fault-tolerance, weight, and operational efficiency compared with the traditional clustered engine configuration. The purpose of this study is to examine the steady-state performance of an IME system with various components removed to simulate fault conditions. An IME configuration for a hydrogen/oxygen expander cycle propulsion system with four sets of turbopumps and eight thrust chambers has been modeled using the Rocket Engine Transient Simulator (ROCETS) program. The nominal steady-state performance is simulated, as well as turbopump thrust chamber and duct failures. The impact of component failures on system performance is discussed in the context of the system's fault tolerant capabilities.
Re-Imagining Program Development and Re-Engineering Program Design.
Currie, Geoffrey M; Thomas, Catherine J
2018-05-03
Program development and review is a central part of institutional and industry quality assurance. Traditional approaches, while well established, present a number of barriers that could undermine process integrity and quality outcomes. Here a new approach to program development and design is explored with the goal of enhancing outcomes for students and institutions. Copyright © 2018 by the Society of Nuclear Medicine and Molecular Imaging, Inc.
An Assessment of Educational Benefits from the OpenOrbiter Space Program
ERIC Educational Resources Information Center
Straub, Jeremy; Whalen, David
2013-01-01
This paper analyzes the educational impact of the OpenOrbiter Small Spacecraft Development Initiative, a CubeSat development program underway at the University of North Dakota. OpenOrbiter includes traditional STEM activities (e.g., spacecraft engineering, software development); it also incorporates students from non-STEM disciplines not generally…
Professional Competence and Higher Education: The ASSET Programme.
ERIC Educational Resources Information Center
Winter, Richard; Maisch, Maire
This book describes the ASSET (Accreditation for Social Services Experience and Training) Program, a British program which addresses the need for effective education and development of social workers and a model variant of ASSET used to train engineers. The work draws on three different traditions: the principles of National Vocational…
Stafford Technical Center: Designing a Future for Architects and Builders
ERIC Educational Resources Information Center
Lucci, William, Jr.
2005-01-01
The Engineering Technology Academy (ETA) program at Stafford Technical Center in Rutland, Vermont, offers benefits beyond the conventional high school learning experience. In September, at the beginning of the program, students learn the traditional skills of using tools, line weights and lettering. Once they develop these basic skills, students…
Large Scale Quality Engineering in Distance Learning Programs
ERIC Educational Resources Information Center
Herron, Rita I.; Holsombach-Ebner, Cinda; Shomate, Alice K.; Szathmary, Kimberly J.
2012-01-01
Embry-Riddle Aeronautical University--Worldwide serves more than 36,000 online students across the globe, many of whom are military and other non-traditional students, offering 34 undergraduate, graduate, and professional education/workforce certificate programs, presented both online and via blended delivery modes. The centralized model of online…
NASA Astrophysics Data System (ADS)
Yamano, Masahiro; Matsuki, Noriaki; Numayama, Keiko; Takeda, Motohiro; Hayasaka, Tomoaki; Ishikawa, Takuji; Yamaguchi, Takami
We developed new bio-medical engineering curriculum for industrial engineers, and we confirmed that the engineer's needs and the educative effects by holding a trail program. This study in Tohoku University was supported by the Ministry of Economy, Trade and Industry (METI) . We named the curriculum as “ESTEEM” which is acronym of project title “Education through the Synergetic Training for the Engineering Enhanced Medicine” . In Tohoku University, the “REDEEM” curriculum which is an entry level course of bio-medical engineering for engineers has been already held. The positioning of “ESTEEM” program is an advanced course to enhance knowledge and experience in clinical point of view. The program is consisted of the problem based learning (PBL) style lectures, practical training, and observation learning in hospital. It is a unique opportunity to have instruction by doctors, from diagnosis to surgical operation, from traditional technique to front-line medical equipment. In this paper, we report and discuss on the progress of the new bio-medical engineering curriculum.
ERIC Educational Resources Information Center
Faraji, Sepideh
2012-01-01
In this study, an investigation into the proper use of weekly quizzes in chemical engineering program has been conducted. The traditional weekly homework assignments were replaced with weekly paper quizzes. Achievement levels of students were compared with those students who learn through traditional homework assignments only. The results show the…
A case study of non-traditional students re-entry into college physics and engineering
NASA Astrophysics Data System (ADS)
Langton, Stewart Gordon
Two groups of students in introductory physics courses of an Access Program for engineering technologies were the subjects of this study. Students with a wide range of academic histories and abilities were enrolled in the program; many of the students were re-entry and academically unprepared for post-secondary education. Five years of historical data were evaluated to use as a benchmark for revised instruction. Data were gathered to describe the pre-course academic state of the students and their academic progress during two physics courses. Additional information was used to search for factors that might constrain academic success and as feedback for the instructional methods. The data were interpreted to regulate constructivist design features for the physics courses. The Engineering Technology Access Program was introduced to meet the demand from non-traditional students for admission to two-year engineering' technology programs, but who did not meet normal academic requirements. The duration of the Access Program was two terms for electronic and computer engineering students and three terms for civil and mechanical engineering students. The sequence of mathematics and physics courses was different for the two groups. The Civil/Mechanical students enrolled in their first mathematics course before undertaking their first physics course. The first mathematics and physics courses for the Electronics students were concurrent. Academic success in the two groups was affected by this difference. Over a five-year period the success rate of students graduating with a technology diploma was approximately twenty-five percent. Results from this study indicate that it was possible to reduce the very high attrition in the combined Access/Technology Programs. While the success rate for the Electronics students increased to 38% the rate for the Civil/Mechanical students increased dramatically to 77%. It is likely that several factors, related to the extra term in the Access Program for the Civil/Mechanical students, contributed to this high retention rate. Additional time, with less academic pressure in the first term of the Access Program, provided the Civil/Mechanical students with the opportunity to develop academic skills and maturity resulting in improved self-concept and academic identity. These students may have been better equipped to take advantage of the alternate instructional setting of the revised physics courses. Results from a wide range of studies in Physics Education Research provide ideas and opportunities to improve instruction and students conceptual understanding in introductory physics courses. Most studies focus on traditional students and curriculum. The development and implementation of alternate curriculum and instruction may improve outcomes for different groups of students, particularly for students in disciplines indirectly related to the sciences.
Assessing the Potential Value of Semantic Web Technologies in Support of Military Operations
2003-09-01
Teleconference). Deitel , P. J. (2002). Java, How to Program , Fourth Edition. Upper Saddle River, New Jersey: Prentice-Hall, Inc. Description Logics... how clients connect with each other to form an impromptu community. Jini™ lets programs use services in a network without knowing anything about the...another runtime program (execution engine) to determine how the computer should do it. Declarative programming is very different from the traditional
An energy management for series hybrid electric vehicle using improved dynamic programming
NASA Astrophysics Data System (ADS)
Peng, Hao; Yang, Yaoquan; Liu, Chunyu
2018-02-01
With the increasing numbers of hybrid electric vehicle (HEV), management for two energy sources, engine and battery, is more and more important to achieve the minimum fuel consumption. This paper introduces several working modes of series hybrid electric vehicle (SHEV) firstly and then describes the mathematical model of main relative components in SHEV. On the foundation of this model, dynamic programming is applied to distribute energy of engine and battery on the platform of matlab and acquires less fuel consumption compared with traditional control strategy. Besides, control rule recovering energy in brake profiles is added into dynamic programming, so shorter computing time is realized by improved dynamic programming and optimization on algorithm.
Rocket propulsion research at Lewis Research Center
NASA Technical Reports Server (NTRS)
Dawson, Virginia P.
1992-01-01
A small contingent of engineers at NASA LeRC pioneered the basic research on liquid propellants for rockets shortly after World War 2. Carried on through the 1950s, this work influenced the important early decisions made by Abe Silverstein when he took charge of the Office of Space Flight Programs for NASA. He strongly supported the development of liquid hydrogen as a propulsion fuel in the face of resistance from Wernher von Braun. Members of the LeRC staff played an important role in bringing liquid hydrogen technology to the point of reliability through their management of the Centaur Program. This paper demonstrates how the personality and engineering intuition of Abe Silverstein shaped the Centaur program and left a lasting imprint on the laboratory research tradition. Many of the current leaders of LeRC received their first hands-on engineering experience when they worked on the Centaur program in the 1960s.
Rocket Propulsion Research at Lewis Research Center
NASA Technical Reports Server (NTRS)
Dawson, Virginia P.
1992-01-01
A small contingent of engineers at NASA Lewis Research Center pioneered in basic research on liquid propellants for rockets shortly after World War II. Carried on through the 1950s, this work influenced the important early decisions made by Abe Silverstein when he took charge of the Office of Space Flight Programs for NASA. He strongly supported the development of liquid hydrogen as a propulsion fuel in the face of resistance from Wernher von Braun. Members of the Lewis staff played an important role in bringing liquid hydrogen technology to the point of reliability through their management of the Centaur Program. This paper demonstrates how the personality and engineering intuition of Abe Silverstein shaped the Centaur program and left a lasting imprint on the laboratory research tradition. Many of the current leaders of Lewis Research Center received their first hands-on engineering experience when they worked on the Centaur program in the 1960s.
Critical assembly: A technical history of Los Alamos during the Oppenheimer years, 1943--1945
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoddeson, L.; Henriksen, P.W.; Meade, R.A.
1993-11-01
This volume treats the technical research that led to the first atomic bombs. The authors explore how the ``critical assembly`` of scientists, engineers, and military Personnel at Los Alamos collaborated during World War II, blending their traditions to create a new approach to large-scale research. The research was characterized by strong mission orientation, multidisciplinary teamwork, expansion of the scientists` traditional methodology with engineering techniques, and a trail-and-error methodology responding to wartime deadlines. The book opens with an introduction laying out major themes. After a synopsis of the prehistory of the bomb project, from the discovery of nuclear fission to themore » start of the Manhattan Engineer District, and an overview of the early materials program, the book examines the establishment of the Los Alamos Laboratory, the implosion and gun assembly programs, nuclear physics research, chemistry and metallurgy, explosives, uranium and plutonium development, confirmation of spontaneous fission in pile-produced plutonium, the thermonuclear bomb, critical assemblies, the Trinity test, and delivery of the combat weapons.« less
ERIC Educational Resources Information Center
Windchief, Sweeney; Brown, Blakely
2017-01-01
In order to address the disparity of American Indian/Alaska Native (AI/AN) doctorates in science, technology, engineering, and math (STEM), culturally congruent mentorship program development is needed. Because traditional Western academic paradigms are typically constrained to a non-Indigenous perspective, the authors question how American Indian…
ERIC Educational Resources Information Center
Green, Patrice Tolbert
2012-01-01
African Americans have a long and very important history in the engineering fields. With a tradition that includes accomplished scientists such as George Washington Carver, Norman Buknor, and Mark Dean, African Americans have been very important to the development of new products, technology, inventions, and innovations (Gordon, 2008). The…
NASA Propulsion Engineering Research Center, volume 1
NASA Technical Reports Server (NTRS)
1993-01-01
Over the past year, the Propulsion Engineering Research Center at The Pennsylvania State University continued its progress toward meeting the goals of NASA's University Space Engineering Research Centers (USERC) program. The USERC program was initiated in 1988 by the Office of Aeronautics and Space Technology to provide an invigorating force to drive technology advancements in the U.S. space industry. The Propulsion Center's role in this effort is to provide a fundamental basis from which the technology advances in propulsion can be derived. To fulfill this role, an integrated program was developed that focuses research efforts on key technical areas, provides students with a broad education in traditional propulsion-related science and engineering disciplines, and provides minority and other under-represented students with opportunities to take their first step toward professional careers in propulsion engineering. The program is made efficient by incorporating government propulsion laboratories and the U.S. propulsion industry into the program through extensive interactions and research involvement. The Center is comprised of faculty, professional staff, and graduate and undergraduate students working on a broad spectrum of research issues related to propulsion. The Center's research focus encompasses both current and advanced propulsion concepts for space transportation, with a research emphasis on liquid propellant rocket engines. The liquid rocket engine research includes programs in combustion and turbomachinery. Other space transportation modes that are being addressed include anti-matter, electric, nuclear, and solid propellant propulsion. Outside funding supports a significant fraction of Center research, with the major portion of the basic USERC grant being used for graduate student support and recruitment. The remainder of the USERC funds are used to support programs to increase minority student enrollment in engineering, to maintain Center infrastructure, and to develop research capability in key new areas. Significant research programs in propulsion systems for air and land transportation complement the space propulsion focus. The primary mission of the Center is student education. The student program emphasizes formal class work and research in classical engineering and science disciplines with applications to propulsion.
Filling the Gap: Integrating STEM into Career and Technical Education Middle School Programs
ERIC Educational Resources Information Center
Wu-Rorrer, Ray
2017-01-01
The field of STEM education is an educational framework that has surged in application over the past decade. Science, Technology, Engineering, and Math (STEM) is infused in nearly every facet of our society. Filling the gap of current research in middle school career and technical education (CTE) and STEM programs is important as traditional CTE…
ERIC Educational Resources Information Center
Hogue, Andrew; Kapralos, Bill; Desjardins, Francois
2011-01-01
Purpose: Problem/project-based-learning (PBL) approaches have traditionally been shown to be effective for learning within many professional programs that are directly related to the students' future career. The PBL approach has been adopted for over four decades in such fields as medicine and engineering and studies have demonstrated that…
Engineering research, development and technology report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Langland, R T
1999-02-01
Nineteen ninety-eight has been a transition year for Engineering, as we have moved from our traditional focus on thrust areas to a more focused approach with research centers. These five new centers of excellence collectively comprise Engineering's Science and Technology program. This publication summarizes our formative year under this new structure. Let me start by talking about the differences between a thrust area and a research center. The thrust area is more informal, combining an important technology with programmatic priorities. In contrast, a research center is directly linked to an Engineering core technology. It is the purer model, for itmore » is more enduring yet has the scope to be able to adapt quickly to evolving programmatic priorities. To put it another way, the mission of a thrust area was often to grow the programs in conjunction with a technology, whereas the task of a research center is to vigorously grow our core technologies. By cultivating each core technology, we in turn enable long-term growth of new programs.« less
Systems Prototyping with Fourth Generation Tools.
ERIC Educational Resources Information Center
Sholtys, Phyllis
1983-01-01
The development of information systems using an engineering approach that uses both traditional programing techniques and fourth generation software tools is described. Fourth generation applications tools are used to quickly develop a prototype system that is revised as the user clarifies requirements. (MLW)
DOT National Transportation Integrated Search
2015-12-01
The Florida Department of Transportation (FDOT) has initiated business plans to promote the Transportation : Systems Management and Operations (TSM&O) program throughout the State. TSM&O is traditionally managed : by traffic engineers that focus on o...
Clifford, Katie L; Zaman, Muhammad H
2016-01-01
The recent drafting of the Sustainable Development Goals challenges the research community to rethink the traditional approach to global health and provides the opportunity for science, technology, engineering, and mathematical (STEM) disciplines, particularly engineering, to demonstrate their benefit to the field. Higher education offers a platform for engineering to intersect with global health research through interdisciplinary partnerships among international universities that provide excellence in education, attract nontraditional STEM students, and foster a sense of innovation. However, a traditional lack of engineering-global health collaborations, as well as limited faculty and inadequate STEM research funding in low-income countries, has stifled progress. Still, the impact of higher education on development efforts holds great potential. This value will be realized in low-income countries through strengthening local capacity, supporting innovation through educational initiatives, and encouraging the inclusion of women and minorities in STEM programs. Current international university-level partnerships are working towards integrating engineering into global health research and strengthening STEM innovation among universities in low-income countries, but more can be done. Global health research informs sustainable development, and through integrating engineering into research efforts through university partnerships, we can accelerate progress and work towards a healthier future for all.
Technician and technologist photonics teaching: an Ontario success story
NASA Astrophysics Data System (ADS)
Yatulis, Jay; Beda, Johann; Casey, Peter J.; Chebbi, Brahim; Finnagan, Steve; Grevatt, Treena; McGlashan, Alexander; Nantel, Marc; Tiberi, Leo
2004-10-01
Launched in 2001, the Ontario Photonics Education and Training project (PET) has established an completely new Photonics Engineering Technician (2 years) and Photonics Engineering Technologist (3 years) programs at Niagara and Algonquin Colleges. The programs have now completed a full academic cycle at both colleges. This paper will review the history of the program, its collaborators, and industry climate changes. This paper will present recruitment statistics, which will include percentage uptake, student retention, and profiles of the student group. The first year"s intake was characterized by high achieving 'early adopters', including those with non-technical backgrounds and University converts. Lessons learned from recruitment and high school outreach activities will be discussed. We observe that 'photonics' is not a term recognized by the populace at large. An improved public understanding of the pervasive nature of electro-optic technologies in everyday life is desired. Curriculum highlights, recommendations; and the evolution of our facilities will be discussed. We will review employment and destination statistics of our graduates. Challenges for the future will be addressed, including the need for greater program visibility amongst regional photonics employers. In summary, the PET program has created an optics specialist with a practical skill-set that will fill the expertise gap that exists in traditional and non-traditional consumers of optical technologies.
Design and Testing of CO 2 Compression Using Supersonic Shock Wave Technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koopman, Aaron
This report summarizes work performed by Ramgen and subcontractors in pursuit of the design and construction of a 10 MW supersonic CO2 compressor and supporting facility. The compressor will demonstrate application of Ramgen’s supersonic compression technology at an industrial scale using CO2 in a closed-loop. The report includes details of early feasibility studies, CFD validation and comparison to experimental data, static test experimental results, compressor and facility design and analyses, and development of aerodynamic tools. A summary of Ramgen's ISC Engine program activity is also included. This program will demonstrate the adaptation of Ramgen's supersonic compression and advanced vortex combustionmore » technology to result in a highly efficient and cost effective alternative to traditional gas turbine engines. The build out of a 1.5 MW test facility to support the engine and associated subcomponent test program is summarized.« less
High-Throughput/High-Content Screening Assays with Engineered Nanomaterials in ToxCast
High-throughput and high-content screens are attractive approaches for prioritizing nanomaterial hazards and informing targeted testing due to the impracticality of using traditional toxicological testing on the large numbers and varieties of nanomaterials. The ToxCast program a...
ERIC Educational Resources Information Center
Lartson, Cobina Adu
2013-01-01
Recent trends indicate a significant decline in the number of students graduating from Science, Technology, Engineering and Math (STEM) programs in the US. The under-representation of students of color, females and low income students in STEM programs has also been documented. Design Based Science (DBS) instruction has been suggested to improve…
University Female Students' Motives in Enrolling for Non-traditional Degrees.
ERIC Educational Resources Information Center
Aluede, Oyaziwo Omon; Imahe, Caroline Izehi; Imahe, John
2002-01-01
A study of 280 Nigerian women in technical/technological degree programs identified four factors influencing enrollment in nontraditional education (in order of importance): vocational self-efficacy, perceived social support, valence of occupation, and perceived opportunity structure. Motivations of engineering, architecture, and medical sciences…
The Tailoring of Traditional Systems Engineering for the Morpheus Project
NASA Technical Reports Server (NTRS)
Devolites, Jennifer L.; Hart, Jeremy J.
2013-01-01
NASA's Morpheus Project has developed and tested a prototype planetary lander capable of vertical takeoff and landing that is designed to serve as a testbed for advanced spacecraft technologies. The lander vehicle, propelled by a LOX/Methane engine and sized to carry a 500kg payload to the lunar surface, provides a platform for bringing technologies from the laboratory into an integrated flight system at relatively low cost. From the beginning, one of goals for the Morpheus Project was to streamline agency processes and practices. The Morpheus project accepted a challenge to tailor the traditional NASA systems engineering approach in a way that would be appropriate for a lower cost, rapid prototype engineering effort, but retain the essence of the guiding principles. The team has produced innovative ways to create an infrastructure and approach that would challenge existing systems engineering processes while still enabling successful implementation of the current Morpheus Project. This paper describes the tailored systems engineering approach for the Morpheus project, including the processes, tools, and amount of rigor employed over the project's multiple lifecycles since the project began in FY11. Lessons learned from these trials have the potential to be scaled up and improve efficiency on a larger projects or programs.
Methods for comparative evaluation of propulsion system designs for supersonic aircraft
NASA Technical Reports Server (NTRS)
Tyson, R. M.; Mairs, R. Y.; Halferty, F. D., Jr.; Moore, B. E.; Chaloff, D.; Knudsen, A. W.
1976-01-01
The propulsion system comparative evaluation study was conducted to define a rapid, approximate method for evaluating the effects of propulsion system changes for an advanced supersonic cruise airplane, and to verify the approximate method by comparing its mission performance results with those from a more detailed analysis. A table look up computer program was developed to determine nacelle drag increments for a range of parametric nacelle shapes and sizes. Aircraft sensitivities to propulsion parameters were defined. Nacelle shapes, installed weights, and installed performance was determined for four study engines selected from the NASA supersonic cruise aircraft research (SCAR) engine studies program. Both rapid evaluation method (using sensitivities) and traditional preliminary design methods were then used to assess the four engines. The method was found to compare well with the more detailed analyses.
The design and application of a Transportable Inference Engine (TIE1)
NASA Technical Reports Server (NTRS)
Mclean, David R.
1986-01-01
A Transportable Inference Engine (TIE1) system has been developed by the author as part of the Interactive Experimenter Planning System (IEPS) task which is involved with developing expert systems in support of the Spacecraft Control Programs Branch at Goddard Space Flight Center in Greenbelt, Maryland. Unlike traditional inference engines, TIE1 is written in the C programming language. In the TIE1 system, knowledge is represented by a hierarchical network of objects which have rule frames. The TIE1 search algorithm uses a set of strategies, including backward chaining, to obtain the values of goals. The application of TIE1 to a spacecraft scheduling problem is described. This application involves the development of a strategies interpreter which uses TIE1 to do constraint checking.
High-throughput and high-content screens are attractive approaches for prioritizing nanomaterial hazards and informing targeted testing due to the impracticality of using traditional toxicological testing on the large numbers and varieties of nanomaterials. The ToxCast program a...
Transitional Patterns of Adolescent Females in Non-Traditional Career Paths.
ERIC Educational Resources Information Center
Ciccocioppo, Anna-Lisa; Stewin, Leonard L.; Madill, Helen M.; Montgomerie, T. Craig; Tovell, Dorothy R.; Armour, Margaret-Ann; Fitzsimmons, George W.
2002-01-01
Examines the factors that affected the career decision-making of adolescent females and young women in undergraduate science, engineering, and technology programs. Qualitative analysis was used to uncover seven themes: transition from high school, educational influences, family influences, academic issues, coursework management, gender issues, and…
User Participation and Participatory Design: Topics in Computing Education.
ERIC Educational Resources Information Center
Kautz, Karlheinz
1996-01-01
Discusses user participation and participatory design in the context of formal education for computing professionals. Topics include the current curriculum debate; mathematical- and engineering-based education; traditional system-development training; and an example of a course program that includes computers and society, and prototyping. (53…
Analysis of a STEM Education Professional Development Conference for Pre-Service Educators
ERIC Educational Resources Information Center
Hardrict-Ewing, Gloria
2017-01-01
Science, technology, engineering, and mathematics (STEM) disciplines are attracting increased attention in education. The iSTEM 2017 conference was a professional development program designed to acquaint pre-service teachers with interdisciplinary, research-based STEM instructional strategies that can transform traditional classroom instruction…
2017 Asian American Islander Program
2017-03-03
Warren Cain, an instructor at WuDang Martial Arts Center in Huntsville, leads Marshall Pathways intern Donna Cendana of the Engineering Directorate's Propulsion Systems Department, in a demonstration of tai chi, the noncompetitive Eastern martial arts tradition that evolved over the centuries into a means of alleviating stress and anxiety.
Can Service Learning be a Component of the Geoscience PhD?
NASA Astrophysics Data System (ADS)
Nyquist, J. E.
2008-12-01
Service learning in the science and engineering has traditionally been conducted through student clubs, or student involvement with non-profit organizations such as Engineers Without Borders or Chemists Without Borders. The newly created foundation, Geoscientists Without Borders (GWB), demonstrates that the geoscience industry and professional societies are also increasingly interested in supporting philanthropic efforts. GWB proclaims that its role is to 11Connect universities and industries with communities in need through projects using applied geophysics to benefit people and the environment around the world." In 2007, NSF convened a workshop on Humanitarian Service Science and Engineering to examine research issues and how they are being addressed. Clearly, the scientific community is eager to increase its involvement. The graduate program of Temple University's Department of Earth and Environmental Science is planning to offer a PhD degree option starting in 2009. Temple University has a long history of service learning, and our department deliberating over how to make service learning a component of a geoscience PhD. Attempting to incorporate humanitarian project formally into a PhD degree program, however, raises a number of difficult questions: Is it possible to sustain a graduate program focused on research funding and publishable results while simultaneously pursuing projects of practical humanitarian benefit? Would such a program be more effective if designed in partnership with graduate studies in the social sciences? Will graduates be competitive in industry or as candidates for new faculty positions, and will such a degree open non-traditional employment opportunities within government and non-government agencies? We hope to answer these questions by studying existing degree programs, polling service learning groups and non-profit agencies, and organizing workshops and meeting sessions to discuss service learning with the geosciences community.
[The Engineering and Technical Services Directorate at the Glenn Research Center
NASA Technical Reports Server (NTRS)
Moon, James
2004-01-01
My name is James Moon and I am a senior at Tennessee State University where my major is Aeronautical and Industrial Technology with a concentration in industrial electronics. I am currently serving my internship in the Engineering and Technical Services Directorate at the Glenn Research Center (GRC). The Engineering and Technical Service Directorate provides the services and infrastructure for the Glenn Research Center to take research concepts to reality. They provide a full range of integrated services including engineering, advanced prototyping and testing, facility management, and information technology for NASA, industry, and academia. Engineering and Technical Services contains the core knowledge in Information Technology (IT). This includes data systems and analysis, inter and intranet based systems design and data security. Including the design and development of embedded real-time s o h a r e applications for flight and supporting ground systems, Engineering and Technical Services provide a wide range of IT services and products specific to the Glenn Research Center research and engineering community. In the 7000 Directorate I work directly in the 7611 organization. This organization is known as the Aviation Environments Technical Branch. My mentor is Vincent Satterwhite who is also the Branch Chief of the Aviation Environments Technical Branch. In this branch, I serve as the Assistant program manager of the Engineering Technology Program. The Engineering Technology Program (ETP) is one of three components of the High School L.E.R.C.I.P. This is an Agency-sponsored, eight-week research-based apprenticeship program designed to attract traditionally underrepresented high school students that demonstrate an aptitude for and interest in mathematics, science, engineering, and technology.
Industrial Engineering Lifts Off at Kennedy Space Center
NASA Technical Reports Server (NTRS)
Barth, Tim
1998-01-01
When the National Aeronautics and Space Administration (NASA) began the Space Shuttle Program, it did not have an established industrial engineering (IE) capability for several probable reasons. For example, it was easy for some managers to dismiss IE principles as being inapplicable at NASA's John F. Kennedy Space Center (KSC). When NASA was formed by the National Aeronautics and Space Act of 1958, most industrial engineers worked in more traditional factory environments. The primary emphasis early in the shuttle program, and during previous human space flight programs such as Mercury and Apollo, was on technical accomplishments. Industrial engineering is sometimes difficult to explain in NASA's highly technical culture. IE is different in many ways from other engineering disciplines because it is devoted to process management and improvement, rather than product design. Images of clipboards and stopwatches still come to the minds of many people when the term industrial engineering is mentioned. The discipline of IE has only recently begun to gain acceptance and understanding in NASA. From an IE perspective today, the facilities used for flight hardware processing at KSC are NASA's premier factories. The products of these factories are among the most spectacular in the world: safe and successful launches of shuttles and expendable vehicles that carry tremendous payloads into space.
A Graphical Teaching Tool for Understanding Two's Complement.
ERIC Educational Resources Information Center
Luck, Carlos L.
As part of the Electrical Engineering program at the Univesity of Southern Maine, students are typically introduced to Two's Complement algebra and representation, a method to include negative numbers in the binary representation of integers that is widely used in microprocessors and related digital systems. The traditional, procedural method to…
Measuring cross sections using a sag tape: a generalized procedure
Gary A. Ray; Walter F. Megahan
1979-01-01
A procedure was developed for surveying cross sections using a sag tape with unequal end elevations. The procedure is as accurate as traditional engineer's level surveys, is faster and easier, and can be programed for a digital computer by following the flow diagram which is provided.
Students' Understanding of Alkyl Halide Reactions in Undergraduate Organic Chemistry
ERIC Educational Resources Information Center
Cruz-Ramirez de Arellano, Daniel
2013-01-01
Organic chemistry is an essential subject for many undergraduate students completing degrees in science, engineering, and pre-professional programs. However, students often struggle with the concepts and skills required to successfully solve organic chemistry exercises. Since alkyl halides are traditionally the first functional group that is…
Students' Understanding of Alkyl Halide Reactions in Undergraduate Organic Chemistry
ERIC Educational Resources Information Center
Cruz-Ramírez de Arellano, Daniel; Towns, Marcy H.
2014-01-01
Organic chemistry is an essential subject for many undergraduate students completing degrees in science, engineering, and pre-professional programs. However, students often struggle with the concepts and skills required to successfully solve organic chemistry exercises. Since alkyl halides are traditionally the first functional group that is…
The Atlanta University Center: A Consortium-Based Dual Degree Engineering Program
ERIC Educational Resources Information Center
Jackson, Marilyn T.
2007-01-01
The Atlanta University Center (AUC) comprises five historically black colleges and a centralized library. All are separate institutions, each having its own board of directors, president, infrastructure, students, faculty, staff, and traditions. To encourage coordination of effort and resources, the AUC was formed and the first formal cooperative…
Restorative Practices from Candy and Punishment to Celebrations and Problem-Solving Circles
ERIC Educational Resources Information Center
Goldys, Patrice H.
2016-01-01
Norwood Elementary, a Title I science, technology, engineering, and math (STEM) school in Baltimore County, MD, recently realized that traditional behavior management programs and processes were not working with their students. Over time, school administrators discovered more successful approaches, and restorative practices became the way to…
Discourse Classification into Rhetorical Functions for AWE Feedback
ERIC Educational Resources Information Center
Cotos, Elena; Pendar, Nick
2016-01-01
This paper reports on the development of an analysis engine for the Research Writing Tutor (RWT), an AWE program designed to provide genre and discipline-specific feedback on the functional units of research article discourse. Unlike traditional NLP-based applications that categorize complete documents, the analyzer categorizes every sentence in…
The central equipment pool, an opportunity for improved technology management.
Gentles, W M
2000-01-01
A model for a central equipment pool managed by a clinical engineering department has been presented. The advantages to patient care and to the clinical engineering department are many. The distribution of portable technology that has been traditionally managed by the materials management function is a logical match to the expanding role of clinical engineering departments in technology management. Accurate asset management tools have allowed us to provide reliable measures of infusion pump utilization, permitting us to predict future needs as programs expand. Thus we are more actively involved in strategic technology planning. The central equipment pool is an excellent opportunity for the clinical engineering department to increase its technology management activities.
Clifford, Katie L.; Zaman, Muhammad H.
2016-01-01
The recent drafting of the Sustainable Development Goals challenges the research community to rethink the traditional approach to global health and provides the opportunity for science, technology, engineering, and mathematical (STEM) disciplines, particularly engineering, to demonstrate their benefit to the field. Higher education offers a platform for engineering to intersect with global health research through interdisciplinary partnerships among international universities that provide excellence in education, attract nontraditional STEM students, and foster a sense of innovation. However, a traditional lack of engineering–global health collaborations, as well as limited faculty and inadequate STEM research funding in low-income countries, has stifled progress. Still, the impact of higher education on development efforts holds great potential. This value will be realized in low-income countries through strengthening local capacity, supporting innovation through educational initiatives, and encouraging the inclusion of women and minorities in STEM programs. Current international university-level partnerships are working towards integrating engineering into global health research and strengthening STEM innovation among universities in low-income countries, but more can be done. Global health research informs sustainable development, and through integrating engineering into research efforts through university partnerships, we can accelerate progress and work towards a healthier future for all. PMID:26790462
NASA Astrophysics Data System (ADS)
Hodges, K. V.
2007-12-01
Earth science --- when defined as the study of all biological, chemical, and physical processes that interact to define the behavior of the Earth system --- has direct societal relevance equal to or greater than that any other branch of science. However, "geology", "geoscience", and "Earth science" departments are contracting at many universities and even disappearing at some. This irony speaks volumes about the limitations of the traditional university structure that partitions educational and research programs into specific disciplines, each housed in its own department. Programs that transcend disciplinary boundaries are difficult to fit into the traditional structure and are thus highly vulnerable to threats such as chronic underfunding by university administrations, low enrollments in more advanced subjects, and being largely forgotten during capital campaigns. Dramatic improvements in this situation will require a different way of thinking about earth science programs by university administrations. As Earth scientists, our goal must not be to protect "traditional" geology departments, but rather to achieve a sustainable programmatic future for broader academic programs that focus on Earth evolution from past, present, and future perspectives. The first step toward meeting this goal must be to promote a more holistic definition of Earth science that includes modes of inquiry more commonly found in engineering and social science departments. We must think of Earth science as a meta-discipline that includes core components of physics, geology, chemistry, biology, and the emerging science of complexity. We must recognize that new technologies play an increasingly important role in our ability to monitor global environmental change, and thus our educational programs must include basic training in the modes of analysis employed by engineers as well as those employed by scientists. One of the most important lessons we can learn from the engineering community is the value of systems-level thinking, and it makes good sense to make this the essential mantra of Earth science undergraduate and graduate programs of the future. We must emphasize that Earth science plays a central role in understanding processes that have shaped our planet since the origin of our species, processes that have thus influenced the rise and fall of human societies. By studying the co-evolution of Earth and human societies, we lay a critical part of the foundation for future environmental policymaking. If we can make this point persuasively, Earth science might just be the "next great science".
ERIC Educational Resources Information Center
McGee, Daniel; Vasquez, Pedro; Cajigas, Jesus
2014-01-01
The University of Puerto Rico in Mayaguez (UPRM) has found that there are disadvantages to a semester long remedial mathematics course that is administered during the freshmen year to students with mathematics deficiencies in STEM (Science, Technology, Engineering and Math) programs. Correspondingly, the UPRM designed and implemented an…
Empowering K-12 Students with Disabilities to Learn Computational Thinking and Computer Programming
ERIC Educational Resources Information Center
Israel, Maya; Wherfel, Quentin M.; Pearson, Jamie; Shehab, Saadeddine; Tapia, Tanya
2015-01-01
This article's focus is on including computing and computational thinking in K-12 instruction within science, technology, engineering, and mathematics (STEM) education, and to provide that instruction in ways that promote access for students traditionally underrepresented in the STEM fields, such as students with disabilities. Providing computing…
NASA Langley Research Center outreach in astronautical education
NASA Technical Reports Server (NTRS)
Duberg, J. E.
1976-01-01
The Langley Research Center has traditionally maintained an active relationship with the academic community, especially at the graduate level, to promote the Center's research program and to make graduate education available to its staff. Two new institutes at the Center - the Joint Institute for Acoustics and Flight Sciences, and the Institute for Computer Applications - are discussed. Both provide for research activity at the Center by university faculties. The American Society of Engineering Education Summer Faculty Fellowship Program and the NASA-NRC Postdoctoral Resident Research Associateship Program are also discussed.
The impact of program experiences on the retention of women engineering students in Mexico
NASA Astrophysics Data System (ADS)
Villa, Maria Del Carmen Garcia
This qualitative study sought to describe and understand the experiences of female students attending engineering colleges in Mexico and the sources of support and strategies that helped them persist in their programs. The participants were 20 women engineering students enrolled in at least their third year in selected colleges of engineering in Mexico, in both public and private universities, and pursuing a variety of engineering majors. Findings focus on the experiences of female students that helped them stay in their programs. Participants described their experiences in college as very challenging and perceived the environment as hostile and uncertain. In addition, patriarchal Mexican cultural values and stereotypes were identified by students as influencing and helping shape the engineering environment. However, in this context, participants were able to find sources of support and use strategies that helped them remain in their majors, such as a strong desire to succeed, a perceived academic self-ability; and support from their families, peers, institutions, and---most importantly---their professors. Furthermore, the fact that participants were able to persist in their programs gave them a sense of pride and satisfaction that was shared by their families, peers, and faculty. In addition, participants experienced contradictory forces and were constantly negotiating between rejecting traditional gender norms and upholding the norms that are so deeply engrained in Mexican society. Finally, as the students advanced in their programs and became "accepted to the club," they tended to reproduce the male-dominated value system present in engineering colleges accepting their professors' expectations of being "top students," accepting the elitist culture of engineering superiority, and embracing the protection given by their male peers. Retention of Mexican female engineering students is important for all engineering colleges, but cultural factors must be taken into consideration. The dominance of machismo attitudes and values in Mexican culture present specific challenges to achieve an environment more supportive of women in Mexican engineering colleges. Institutions need to be proactive and creative in order to help faculty and administrators provide an environment in which female engineering students can be successful.
Low-Cost Approach to the Design and Fabrication of a LOX/RP-1 Injector
NASA Technical Reports Server (NTRS)
Shadoan, Michael D.; Sparks, Dave L.; Turner, James E. (Technical Monitor)
2000-01-01
NASA Marshall Space Flight Center (MSFC) has designed, built, and is currently testing Fastrac, a liquid oxygen (LOX)/RP-1 fueled 60K-lb thrust class rocket engine. One facet of Fastrac, which makes it unique is that it is the first large-scale engine designed and developed in accordance with the Agency's mandated "faster, better, cheaper" (FBC) program policy. The engine was developed under the auspices of MSFC's Low Cost Boost Technology office. Development work for the main injector actually began in 1993 in subscale form. In 1996, work began on the full-scale unit approximately 1 year prior to initiation of the engine development program. In order to achieve the value goals established by the FBC policy, a review of traditional design practices was necessary. This internal reevaluation would ultimately challenge more conventional methods of material selection. design process, and fabrication techniques. The effort was highly successful. This "new way" of thinking has resulted in an innovative injector design, one with reduced complexity and significantly lower cost. Application of lessons learned during this effort to new or existing designs can have a similar effect on costs and future program successes.
Unique Education and Workforce Development for NASA Engineers
NASA Technical Reports Server (NTRS)
Forsgren, Roger C.; Miller, Lauren L.
2010-01-01
NASA engineers are some of the world's best-educated graduates, responsible for technically complex, highly significant scientific programs. Even though these professionals are highly proficient in traditional analytical competencies, there is a unique opportunity to offer continuing education that further enhances their overall scientific minds. With a goal of maintaining the Agency's passionate, "best in class" engineering workforce, the NASA Academy of Program/Project & Engineering Leadership (APPEL) provides educational resources encouraging foundational learning, professional development, and knowledge sharing. NASA APPEL is currently partnering with the scientific community's most respected subject matter experts to expand its engineering curriculum beyond the analytics and specialized subsystems in the areas of: understanding NASA's overall vision and its fundamental basis, and the Agency initiatives supporting them; sharing NASA's vast reservoir of engineering experience, wisdom, and lessons learned; and innovatively designing hardware for manufacturability, assembly, and servicing. It takes collaboration and innovation to educate an organization that possesses such a rich and important historyand a future that is of great global interest. NASA APPEL strives to intellectually nurture the Agency's technical professionals, build its capacity for future performance, and exemplify its core valuesalJ to better enable NASA to meet its strategic visionand beyond.
High-Flux, High Performance H2O2 Catalyst Bed for ISTAR
NASA Technical Reports Server (NTRS)
Ponzo, J.
2005-01-01
On NASA's ISTAR RBCC program packaging and performance requirements exceeded traditional H2O2 catalyst bed capabilities. Aerojet refined a high performance, monolithic 90% H202 catalyst bed previously developed and demonstrated. This approach to catalyst bed design and fabrication was an enabling technology to the ISTAR tri-fluid engine. The catalyst bed demonstrated 55 starts at throughputs greater than 0.60 lbm/s/sq in for a duration of over 900 seconds in a physical envelope approximately 114 of traditional designs. The catalyst bed uses photoetched plates of metal bonded into a single piece monolithic structure. The precise control of the geometry and complete mixing results in repeatable, quick starting, high performing catalyst bed. Three different beds were designed and tested, with the best performing bed used for tri-fluid engine testing.
Energy Experiments for STEM Students
NASA Astrophysics Data System (ADS)
Fanchi, John
2011-03-01
Texas Christian University (TCU) is developing an undergraduate program that prepares students to become engineers with an emphasis in energy systems. One of the courses in the program is a technical overview of traditional energy (coal, oil and gas), nuclear energy, and renewable energy that requires as a pre-requisite two semesters of calculus-based physics. Energy experiments are being developed that will facilitate student involvement and provide hands-on learning opportunities. Students participating in the course will improve their understanding of energy systems; be introduced to outstanding scientific and engineering problems; learn about the role of energy in a global and societal context; and evaluate contemporary issues associated with energy. This talk will present the status of experiments being developed for the technical energy survey course.
EMISSIONS FROM COMBUSTION OF POST-CONSUMER ...
Symposium Paper The Portland cement industry is interested in the utilization of post-consumer carpet as a fuel to replace a portion of its traditional fuels. In response to this interest, the Carpet and Rug Institute, US Department of Energy, Georgia Institute of Technology School of Chemical and Biomolecular Engineering, US Environmental Protection Agency, Lehigh Cement Company, and the American Society of Mechanical Engineers Research Committee on Industrial and Municipal Waste are performing a collaborative program to assess the feasibility of using cement kilns for the destruction of post-consumer carpet.
Technical Leadership Development Program
2010-12-13
the traditional tenets of leadership and management , systems thinking, understanding SOS issues, and thinking and acting holistically. Our research...international element 2.0 Enterprise Leadership and Management UNCLASSIFIED Contract Number: H98230-08-D-0171 DO 002. TO002, RT 004 Report No...mechanisms for leadership of the overall technical effort, for systems engineering, for requirements, management , and for systems integration. o Develop
ERIC Educational Resources Information Center
Sholtys, Phyllis A.
The development of information systems using an engineering approach employing both traditional programming techniques and nonprocedural languages is described. A fourth generation application tool is used to develop a prototype system that is revised and expanded as the user clarifies individual requirements. When fully defined, a combination of…
ERIC Educational Resources Information Center
Darnell, Carl
2017-01-01
Historically Black Colleges and Universities have historically been given less funding than White institutions, a known discrepancy partially rectified by the Civil Rights era desegregation lawsuits. The court-ordered funding, however, came with race-based restrictions for public HBCUs, and many lost academic programs to traditionally White…
Overview of the national historic covered bridge preservation (NHCBP) program
James P. Wacker; Sheila Rimal Duwadi
2010-01-01
Covered wooden bridges proliferated in the United States in the mid-nineteenth century. Today an estimated 800 covered bridge structures remain, but they are nevertheless cherished links to the technological heritage of the United States. The through-truss designs vary from the Kingpost trusses built in the craft tradition to the engineered Burr arch and Paddleford...
ERIC Educational Resources Information Center
Machovec, George S., Ed.
1995-01-01
Explains the Common Gateway Interface (CGI) protocol as a set of rules for passing information from a Web server to an external program such as a database search engine. Topics include advantages over traditional client/server solutions, limitations, sample library applications, and sources of information from the Internet. (LRW)
ERIC Educational Resources Information Center
Donar, Ann
2011-01-01
At the tertiary level today, courses on design thinking can be found in diverse programs in and beyond the realm of traditional design disciplines. Across Canada, design thinking courses feature in communication, culture and information technology, and business and engineering. This paper reports findings from a study that investigated the…
Educating Next Generation Nuclear Criticality Safety Engineers at the Idaho National Laboratory
DOE Office of Scientific and Technical Information (OSTI.GOV)
J. D. Bess; J. B. Briggs; A. S. Garcia
2011-09-01
One of the challenges in educating our next generation of nuclear safety engineers is the limitation of opportunities to receive significant experience or hands-on training prior to graduation. Such training is generally restricted to on-the-job-training before this new engineering workforce can adequately provide assessment of nuclear systems and establish safety guidelines. Participation in the International Criticality Safety Benchmark Evaluation Project (ICSBEP) and the International Reactor Physics Experiment Evaluation Project (IRPhEP) can provide students and young professionals the opportunity to gain experience and enhance critical engineering skills. The ICSBEP and IRPhEP publish annual handbooks that contain evaluations of experiments along withmore » summarized experimental data and peer-reviewed benchmark specifications to support the validation of neutronics codes, nuclear cross-section data, and the validation of reactor designs. Participation in the benchmark process not only benefits those who use these Handbooks within the international community, but provides the individual with opportunities for professional development, networking with an international community of experts, and valuable experience to be used in future employment. Traditionally students have participated in benchmarking activities via internships at national laboratories, universities, or companies involved with the ICSBEP and IRPhEP programs. Additional programs have been developed to facilitate the nuclear education of students while participating in the benchmark projects. These programs include coordination with the Center for Space Nuclear Research (CSNR) Next Degree Program, the Collaboration with the Department of Energy Idaho Operations Office to train nuclear and criticality safety engineers, and student evaluations as the basis for their Master's thesis in nuclear engineering.« less
High speed turboprop aeroacoustic study (counterrotation). Volume 2: Computer programs
NASA Technical Reports Server (NTRS)
Whitfield, C. E.; Mani, R.; Gliebe, P. R.
1990-01-01
The isolated counterrotating high speed turboprop noise prediction program developed and funded by GE Aircraft Engines was compared with model data taken in the GE Aircraft Engines Cell 41 anechoic facility, the Boeing Transonic Wind Tunnel, and in the NASA-Lewis 8 x 6 and 9 x 15 wind tunnels. The predictions show good agreement with measured data under both low and high speed simulated flight conditions. The installation effect model developed for single rotation, high speed turboprops was extended to include counter rotation. The additional effect of mounting a pylon upstream of the forward rotor was included in the flow field modeling. A nontraditional mechanism concerning the acoustic radiation from a propeller at angle of attack was investigated. Predictions made using this approach show results that are in much closer agreement with measurement over a range of operating conditions than those obtained via traditional fluctuating force methods. The isolated rotors and installation effects models were combined into a single prediction program. The results were compared with data taken during the flight test of the B727/UDF (trademark) engine demonstrator aircraft.
High speed turboprop aeroacoustic study (counterrotation). Volume 2: Computer programs
NASA Astrophysics Data System (ADS)
Whitfield, C. E.; Mani, R.; Gliebe, P. R.
1990-07-01
The isolated counterrotating high speed turboprop noise prediction program developed and funded by GE Aircraft Engines was compared with model data taken in the GE Aircraft Engines Cell 41 anechoic facility, the Boeing Transonic Wind Tunnel, and in the NASA-Lewis 8 x 6 and 9 x 15 wind tunnels. The predictions show good agreement with measured data under both low and high speed simulated flight conditions. The installation effect model developed for single rotation, high speed turboprops was extended to include counter rotation. The additional effect of mounting a pylon upstream of the forward rotor was included in the flow field modeling. A nontraditional mechanism concerning the acoustic radiation from a propeller at angle of attack was investigated. Predictions made using this approach show results that are in much closer agreement with measurement over a range of operating conditions than those obtained via traditional fluctuating force methods. The isolated rotors and installation effects models were combined into a single prediction program. The results were compared with data taken during the flight test of the B727/UDF (trademark) engine demonstrator aircraft.
Encouraging more women into computer science: Initiating a single-sex intervention program in Sweden
NASA Astrophysics Data System (ADS)
Brandell, Gerd; Carlsson, Svante; Ekblom, Håkan; Nord, Ann-Charlotte
1997-11-01
The process of starting a new program in computer science and engineering, heavily based on applied mathematics and only open to women, is described in this paper. The program was introduced into an educational system without any tradition in single-sex education. Important observations made during the process included the considerable interest in mathematics and curiosity about computer science found among female students at the secondary school level, and the acceptance of the single-sex program by the staff, administration, and management of the university as well as among male and female students. The process described highlights the importance of preparing the environment for a totally new type of educational program.
Graduate studies on optoelectronics in Argentina: an experience
NASA Astrophysics Data System (ADS)
Fernández, Juan C.; Garea, María. T.; Isaurralde, Silvia; Perez, Liliana I.; Raffo, Carlos A.
2014-07-01
The number of graduate programs in Optoelectronics in Argentina is scarce. The current Optics and Photonics Education Directory lists only three programs. One of them was launched in 2001 in the Facultad de Ingeniería (College of Engineering), Universidad de Buenos Aires (UBA). This was the first graduate program in the field, leading to a Master Degree in Optoelectronics. This decision arose from the demand of telecommunications industries and several estate- or private-funded research institutions working with us in the fields of lasers, optics, remote sensing, etc. A great bonus was the steady work, during several decades, of research groups in the College on the development of different type of lasers and optical non destructive tests and their engineering applications. As happened in many engineering graduate programs in Argentina at that time, few non full-time students could finish their studies, which called for 800 hours of traditional lecture-recitation classes, and the Master Thesis. In recent years Argentine Education authorities downsized the Master programs to 700 hours of blended learning and we redesigned the Graduate Optoelectronic Engineering Program to meet the challenge, dividing it in two successive one year programs, the first aimed at a professional training for almost immediate insertion in the labor market (called Especialización en Ingeniería Optoelectrónica), and the second (called Maestría en Ingeniería Optoelectrónica y Fotónica) aimed at a more academic and research target to comply with the UBA standards for Master degrees. The present work is a presentation of the new program design, which has begun in the current year.
ERIC Educational Resources Information Center
Kane, Michael A.; Beals, Chuck; Valeau, Edward J.; Johnson, M. J.
2004-01-01
Hartnell College is an accredited California Community College serving Salinas and the Salinas Valley, a vast 1,000 square mile agricultural region. The district is characterized by large numbers of migrant workers and their families, chronically high unemployment, high rates of poverty, and low educational attainment. Hartnell's 10,000 students…
NASA Astrophysics Data System (ADS)
Wingate, Lory Mitchell
2017-01-01
The National Radio Astronomy Observatory’s (NRAO) National and International Non-Traditional Exchange (NINE) Program teaches concepts of project management and systems engineering to chosen participants within a nine-week program held at NRAO in New Mexico. Participants are typically graduate level students or professionals. Participation in the NINE Program is through a competitive process. The program includes a hands-on service project designed to increase the participants knowledge of radio astronomy. The approach demonstrate clearly to the learner the positive net effects of following methodical approaches to achieving optimal science results.The NINE teaches participants important sustainable skills associated with constructing, operating and maintaining radio astronomy observatories. NINE Program learners are expected to return to their host sites and implement the program in their own location as a NINE Hub. This requires forming a committed relationship (through a formal Letter of Agreement), establishing a site location, and developing a program that takes into consideration the needs of the community they represent. The anticipated outcome of this program is worldwide partnerships with fast growing radio astronomy communities designed to facilitate the exchange of staff and the mentoring of under-represented groups of learners, thereby developing a strong pipeline of global talent to construct, operate and maintain radio astronomy observatories.
Authentic scientific research in an international setting as a path toward higher education
NASA Astrophysics Data System (ADS)
Mladenov, N.; Palomo, M.; Casad, B.; Pietruschka, B.; Buckley, C.
2016-12-01
Studies have shown that undergraduate research opportunities foster student interest in research, encourage minority students to seek advanced degrees, and put students on a path toward higher education. It has been further suggested that engineering projects in international settings address issues of sustainability and promote a connection between engineering and social welfare that may compel students to seek future research opportunities. In this study, we explored the role that authentic research experiences in an international setting play in promoting higher education for students from groups typically under-represented in engineering and sciences. We hypothesized that the international context of the research experiences will provide undergraduate and graduate students with a global perspective of water reuse challenges and promote increased interest in pursuing a higher degree in engineering. Through the Sustainable Sanitation International Research Experiences for Students (IRES) Program, US students conducting research in Durban, South Africa in 2015 and 2016, were tasked with leading 6-week long research projects, collaborating with partners at the University of KwaZulu Natal, and producing papers and presentations for regional and international scientific conferences. All undergraduate participants were from groups under-represented in the sciences. Pre- and post-program survey results revealed that, after completing the program, participants of Cohort 1 had 1) greater research skills, 2) greater identification as an engineer, and 3) stronger intentions to pursue a PhD in engineering. Survey data were also used to evaluate comfort with cultural diversity before and after the international program and the effect of pairing US with South African student researchers. Our results indicate that students' awareness of societal needs and engineering challenges faced in Durban resulted in a positive impact on each student. The benefits gained from the international research experience have important implications for environmental engineering and other scientific fields in terms of inducing greater self-efficacy and fostering an interest in higher education for students from groups traditionally under-represented in the sciences.
ERIC Educational Resources Information Center
Masters, James S.
2010-01-01
With the need for larger and larger banks of items to support adaptive testing and to meet security concerns, large-scale item generation is a requirement for many certification and licensure programs. As part of the mass production of items, it is critical that the difficulty and the discrimination of the items be known without the need for…
An undergraduate program for astronomy in México
NASA Astrophysics Data System (ADS)
Bravo-Alfaro, Hector; Migenes, Victor
Astronomy in Mexico has an ancient tradition, reinforced during the XXth century by groups working in theoretical and observational astronomy. During the 90s, the Great Millimeter Telescope (a single 50-m antenna) has been approved, and a 6-m infrared telescope is under study. Graduate and undergraduate programs must be improved to prepare future Mexican and Latin American astronomers to take advantage of these facilities. To meet the challenge, two traditional Mexican programs (Instituto de Astronomia-UNAM and Instituto Nacional de Astrofisica, Optica y Electronica-INAOE) are updating their graduate programs for. Similarly, the Departamento de Astronomia de la Universidad de Guanajuato is joining physicists in the first undergraduate program in Mexico in Physics and Engineering with an option in Astrophysics. This will prepare students so that they can choose between industry, academia or national laboratories, either in Physics or Astronomy. Jobs in academia have been scarce; many students had to give up their goals after one or two postdoctoral positions. Graduate and undergraduate programs must adjust, by broadening the scope of present programs so that students are better prepared for other job opportunities. We present a BSc program designed by astronomers and physicists to try to address some of these concerns and prepare the students for either continuing with graduate studies or finding employment in an ever-changing job market.
NASA Astrophysics Data System (ADS)
Barak, Miri; Harward, Judson; Kocur, George; Lerman, Steven
2007-08-01
Within the framework of MIT's course 1.00: Introduction to Computers and Engineering Problem Solving, this paper describes an innovative project entitled: Studio 1.00 that integrates lectures with in-class demonstrations, active learning sessions, and on-task feedback, through the use of wireless laptop computers. This paper also describes a related evaluation study that investigated the effectiveness of different instructional strategies, comparing traditional teaching with two models of the studio format. Students' learning outcomes, specifically, their final grades and conceptual understanding of computational methods and programming, were examined. Findings indicated that Studio-1.00, in both its extensive- and partial-active learning modes, enhanced students' learning outcomes in Java programming. Comparing to the traditional courses, more students in the studio courses received "A" as their final grade and less failed. Moreover, students who regularly attended the active learning sessions were able to conceptualize programming principles better than their peers. We have also found two weaknesses in the teaching format of Studio-1.00 that can guide future versions of the course.
Human Systems Integration in Practice: Constellation Lessons Learned
NASA Technical Reports Server (NTRS)
Zumbado, Jennifer Rochlis
2012-01-01
NASA's Constellation program provided a unique testbed for Human Systems Integration (HSI) as a fundamental element of the Systems Engineering process. Constellation was the first major program to have HSI mandated by NASA's Human Rating document. Proper HSI is critical to the success of any project that relies on humans to function as operators, maintainers, or controllers of a system. HSI improves mission, system and human performance, significantly reduces lifecycle costs, lowers risk and minimizes re-design. Successful HSI begins with sufficient project schedule dedicated to the generation of human systems requirements, but is by no means solely a requirements management process. A top-down systems engineering process that recognizes throughout the organization, human factors as a technical discipline equal to traditional engineering disciplines with authority for the overall system. This partners with a bottoms-up mechanism for human-centered design and technical issue resolution. The Constellation Human Systems Integration Group (HSIG) was a part of the Systems Engineering and Integration (SE&I) organization within the program office, and existed alongside similar groups such as Flight Performance, Environments & Constraints, and Integrated Loads, Structures and Mechanisms. While the HSIG successfully managed, via influence leadership, a down-and-in Community of Practice to facilitate technical integration and issue resolution, it lacked parallel top-down authority to drive integrated design. This presentation will discuss how HSI was applied to Constellation, the lessons learned and best practices it revealed, and recommendations to future NASA program and project managers. This presentation will discuss how Human Systems Integration (HSI) was applied to NASA's Constellation program, the lessons learned and best practices it revealed, and recommendations to future NASA program and project managers on how to accomplish this critical function.
The Science Training Program for Young Italian Physicists and Engineers at Fermilab
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barzi, Emanuela; Bellettini, Giorgio; Donati, Simone
2015-03-12
Since 1984 Fermilab has been hosting a two-month summer training program for selected undergraduate and graduate Italian students in physics and engineering. Building on the traditional close collaboration between the Italian National Institute of Nuclear Physics (INFN) and Fermilab, the program is supported by INFN, by the DOE and by the Scuola Superiore di Sant`Anna of Pisa (SSSA), and is run by the Cultural Association of Italians at Fermilab (CAIF). This year the University of Pisa has qualified it as a “University of Pisa Summer School”, and will grant successful students with European Supplementary Credits. Physics students join the Fermilabmore » HEP research groups, while engineers join the Particle Physics, Accelerator, Technical, and Computing Divisions. Some students have also been sent to other U.S. laboratories and universities for special trainings. The programs cover topics of great interest for science and for social applications in general, like advanced computing, distributed data analysis, nanoelectronics, particle detectors for earth and space experiments, high precision mechanics, applied superconductivity. In the years, over 350 students have been trained and are now employed in the most diverse fields in Italy, Europe, and the U.S. In addition, the existing Laurea Program in Fermilab Technical Division was extended to the whole laboratory, with presently two students in Master’s thesis programs on neutrino physics and detectors in the Neutrino Division. And finally, a joint venture with the Italian Scientists and Scholars North-America Foundation (ISSNAF) provided this year 4 professional engineers free of charge for Fermilab. More details on all of the above can be found below.« less
An Overview of contributions of NASA Space Shuttle to Space Science and Engineering education
NASA Astrophysics Data System (ADS)
Lulla, Kamlesh
2012-07-01
This paper provides an indepth overview of the enormous contrbutions made by the NASA Space Shuttle Program to Space science and engineering education over the past thirty years. The author has served as one of the major contributors and editors of NASA book "Wings In Orbit: Scientific and Engineering Legacies of the Space Shuttle program" (NASA SP-2010-3409). Every Space Shuttle mission was an education mission: student involvement programs such as Get Away Specials housed in Shuttle payload allowed students to propose research and thus enrich their university education experience. School students were able to operate "EarthKAM" to learn the intricacies of orbital mechanics, earth viewing opportunities and were able to master the science and art of proposal writing and scientific collaboration. The purpose of this presentation is to introduce the global student and teaching community in space sciences and engineering to the plethora of educational resources available to them for engaging a wide variety of students (from early school to the undergraduate and graduate level and to inspire them towards careers in Space sciences and technologies. The volume "Wings In Orbit" book is one example of these ready to use in classroom materials. This paper will highlight the educational payloads, experiments and on-orbit classroom activities conducted for space science and engineering students, teachers and non-traditional educators. The presentation will include discussions on the science content and its educational relevance in all major disiciplines in which the research was conducted on-board the Space Shuttle.
Engineering and Software Engineering
NASA Astrophysics Data System (ADS)
Jackson, Michael
The phrase ‘software engineering' has many meanings. One central meaning is the reliable development of dependable computer-based systems, especially those for critical applications. This is not a solved problem. Failures in software development have played a large part in many fatalities and in huge economic losses. While some of these failures may be attributable to programming errors in the narrowest sense—a program's failure to satisfy a given formal specification—there is good reason to think that most of them have other roots. These roots are located in the problem of software engineering rather than in the problem of program correctness. The famous 1968 conference was motivated by the belief that software development should be based on “the types of theoretical foundations and practical disciplines that are traditional in the established branches of engineering.” Yet after forty years of currency the phrase ‘software engineering' still denotes no more than a vague and largely unfulfilled aspiration. Two major causes of this disappointment are immediately clear. First, too many areas of software development are inadequately specialised, and consequently have not developed the repertoires of normal designs that are the indispensable basis of reliable engineering success. Second, the relationship between structural design and formal analytical techniques for software has rarely been one of fruitful synergy: too often it has defined a boundary between competing dogmas, at which mutual distrust and incomprehension deprive both sides of advantages that should be within their grasp. This paper discusses these causes and their effects. Whether the common practice of software development will eventually satisfy the broad aspiration of 1968 is hard to predict; but an understanding of past failure is surely a prerequisite of future success.
NASA Astrophysics Data System (ADS)
Kuehl, C. Stephen
2003-08-01
Completing its final development and early deployment on the Navy's multi-role aircraft, the F/A-18 E/F Super Hornet, the SHAred Reconnaissance Pod (SHARP) provides the war fighter with the latest digital tactical reconnaissance (TAC Recce) Electro-Optical/Infrared (EO/IR) sensor system. The SHARP program is an evolutionary acquisition that used a spiral development process across a prototype development phase tightly coupled into overlapping Engineering and Manufacturing Development (EMD) and Low Rate Initial Production (LRIP) phases. Under a tight budget environment with a highly compressed schedule, SHARP challenged traditional acquisition strategies and systems engineering (SE) processes. Adopting tailored state-of-the-art systems engineering process models allowd the SHARP program to overcome the technical knowledge transition challenges imposed by a compressed program schedule. The program's original goal was the deployment of digital TAC Recce mission capabilities to the fleet customer by summer of 2003. Hardware and software integration technical challenges resulted from requirements definition and analysis activities performed across a government-industry led Integrated Product Team (IPT) involving Navy engineering and test sites, Boeing, and RTSC-EPS (with its subcontracted hardware and government furnished equipment vendors). Requirements development from a bottoms-up approach was adopted using an electronic requirements capture environment to clarify and establish the SHARP EMD product baseline specifications as relevant technical data became available. Applying Earned-Value Management (EVM) against an Integrated Master Schedule (IMS) resulted in efficiently managing SE task assignments and product deliveries in a dynamically evolving customer requirements environment. Application of Six Sigma improvement methodologies resulted in the uncovering of root causes of errors in wiring interconnectivity drawings, pod manufacturing processes, and avionics requirements specifications. Utilizing the draft NAVAIR SE guideline handbook and the ANSI/EIA-632 standard: Processes for Engineering a System, a systems engineering tailored process approach was adopted for the accelerated SHARP EMD prgram. Tailoring SE processes in this accelerated product delivery environment provided unique opportunities to be technically creative in the establishment of a product performance baseline. This paper provides an historical overview of the systems engineering activities spanning the prototype phase through the EMD SHARP program phase, the performance requirement capture activities and refinement process challenges, and what SE process improvements can be applied to future SHARP-like programs adopting a compressed, evolutionary spiral development acquisition paradigm.
2009-09-30
NRL Code 8221) is the Lead Thermal Engineer for heater and blanket design for the mission. WORK COMPLETED The program developed a briefing...development of such science-enabling technology is critical for space-flight mission on small spacecraft , such as CubeSats, that cannot afford the mass, power...critical for space-flight mission on small spacecraft , such as CubeSats, that cannot afford the mass, power or cost of traditional star trackers but
Highly Integrated Quality Assurance – An Empirical Case
DOE Office of Scientific and Technical Information (OSTI.GOV)
Drake Kirkham; Amy Powell; Lucas Rich
2011-02-01
Highly Integrated Quality Assurance – An Empirical Case Drake Kirkham1, Amy Powell2, Lucas Rich3 1Quality Manager, Radioisotope Power Systems (RPS) Program, Idaho National Laboratory, P.O. Box 1625 M/S 6122, Idaho Falls, ID 83415-6122 2Quality Engineer, RPS Program, Idaho National Laboratory 3Quality Engineer, RPS Program, Idaho National Laboratory Contact: Voice: (208) 533-7550 Email: Drake.Kirkham@inl.gov Abstract. The Radioisotope Power Systems Program of the Idaho National Laboratory makes an empirical case for a highly integrated Quality Assurance function pertaining to the preparation, assembly, testing, storage and transportation of 238Pu fueled radioisotope thermoelectric generators. Case data represents multiple campaigns including the Pluto/New Horizons mission,more » the Mars Science Laboratory mission in progress, and other related projects. Traditional Quality Assurance models would attempt to reduce cost by minimizing the role of dedicated Quality Assurance personnel in favor of either functional tasking or peer-based implementations. Highly integrated Quality Assurance adds value by placing trained quality inspectors on the production floor side-by-side with nuclear facility operators to enhance team dynamics, reduce inspection wait time, and provide for immediate, independent feedback. Value is also added by maintaining dedicated Quality Engineers to provide for rapid identification and resolution of corrective action, enhanced and expedited supply chain interfaces, improved bonded storage capabilities, and technical resources for requirements management including data package development and Certificates of Inspection. A broad examination of cost-benefit indicates highly integrated Quality Assurance can reduce cost through the mitigation of risk and reducing administrative burden thereby allowing engineers to be engineers, nuclear operators to be nuclear operators, and the cross-functional team to operate more efficiently. Applicability of this case extends to any high-value, long-term project where traceability and accountability are determining factors.« less
Morpheus Lander Testing Campaign
NASA Technical Reports Server (NTRS)
Hart, Jeremy J.; Mitchell, Jennifer D.
2011-01-01
NASA s Morpheus Project has developed and tested a prototype planetary lander capable of vertical takeoff and landing designed to serve as a testbed for advanced spacecraft technologies. The Morpheus vehicle has successfully performed a set of integrated vehicle test flights including hot-fire and tether tests, ultimately culminating in an un-tethered "free-flight" This development and testing campaign was conducted on-site at the Johnson Space Center (JSC), less than one year after project start. Designed, developed, manufactured and operated in-house by engineers at JSC, the Morpheus Project represents an unprecedented departure from recent NASA programs and projects that traditionally require longer development lifecycles and testing at remote, dedicated testing facilities. This paper documents the integrated testing campaign, including descriptions of test types (hot-fire, tether, and free-flight), test objectives, and the infrastructure of JSC testing facilities. A major focus of the paper will be the fast pace of the project, rapid prototyping, frequent testing, and lessons learned from this departure from the traditional engineering development process at NASA s Johnson Space Center.
Thermal Conductivity and Sintering Behavior of Advanced Thermal Barrier Coatings
NASA Technical Reports Server (NTRS)
Zhu, Dongming; Miller, Robert A.
2002-01-01
Advanced thermal barrier coatings, having significantly reduced long-term thermal conductivities, are being developed using an approach that emphasizes real-time monitoring of thermal conductivity under conditions that are engine-like in terms of temperatures and heat fluxes. This is in contrast to the traditional approach where coatings are initially optimized in terms of furnace and burner rig durability with subsequent measurement in the as-processed or furnace-sintered condition. The present work establishes a laser high-heat-flux test as the basis for evaluating advanced plasma-sprayed and physical vapor-deposited thermal barrier coatings under the NASA Ultra Efficient Engine Technology (UEET) Program. The candidate coating materials for this program are novel thermal barrier coatings that are found to have significantly reduced thermal conductivities due to an oxide-defect-cluster design. Critical issues for designing advanced low conductivity coatings with improved coating durability are also discussed.
Development of Advanced Low Conductivity Thermal Barrier Coatings
NASA Technical Reports Server (NTRS)
Zhu, Dong-Ming; Miller, Robert A.
2004-01-01
Advanced multi-component, low conductivity oxide thermal barrier coatings have been developed using an approach that emphasizes real-time monitoring of thermal conductivity under conditions that are engine-like in terms of temperatures and heat fluxes. This is in contrast to the traditional approach where coatings are initially optimized in terms of furnace and burner rig durability with subsequent measurement in the as-processed or furnace-sintered condition. The present work establishes a laser high-heat-flux test as the basis for evaluating advanced plasma-sprayed and electron beam-physical vapor deposited (EB-PVD) thermal barrier coatings under the NASA Ultra-Efficient Engine Technology (UEET) Program. The candidate coating materials for this program are novel thermal barrier coatings that are found to have significantly reduced thermal conductivities and improved thermal stability due to an oxide-defect-cluster design. Critical issues for designing advanced low conductivity coatings with improved coating durability are also discussed.
NASA Astrophysics Data System (ADS)
Tinney, Charles Evan
2007-12-01
By using the book "Physics for Scientists and Engineers" by Raymond A. Serway as a guide, CD problem sets for teaching a calculus-based physics course were developed, programmed, and evaluated for homework assignments during the 2003-2004 academic year at Utah State University. These CD sets were used to replace the traditionally handwritten and submitted homework sets. They included a research-based format that guided the students through problem-solving techniques using responseactivated helps and suggestions. The CD contents were designed to help the student improve his/her physics problem-solving skills. The analyzed score results showed a direct correlation between the scores obtained on the homework and the students' time spent per problem, as well as the number of helps used per problem.
Traditional engineering in the biological century: the biotraditional engineer.
Friedman, M H
2001-12-01
The increasing importance of life science in all engineering is prompting departments in the traditional engineering disciplines to offer life science as part of their curricula. Students who take advantage of this opportunity--"biotraditional engineers"--will be well positioned for careers in their discipline and in related areas of bioengineering. The founder engineering societies, such as the Bioengineering Division of ASME, are responding to this trend by broadening their scope and working increasingly across interdisciplinary borders.
Drazan, John F; Scott, John M; Hoke, Jahkeen I; Ledet, Eric H
2014-01-01
A hands-on learning module called "Science of the Slam" is created that taps into the passions and interests of an under-represented group in the fields of Science, Technology, Engineering and Mathematics (STEM). This is achieved by examining the use of the scientific method to quantify the biomechanics of basketball players who are good at performing the slam dunk. Students already have an intrinsic understanding of the biomechanics of basketball however this "hidden capital" has never translated into the underlying STEM concepts. The effectiveness of the program is rooted in the exploitation of "hidden capital" within the field of athletics to inform and enhance athletic performance. This translation of STEM concepts to athletic performance provides a context and a motivation for students to study the STEM fields who are traditionally disengaged from the classic engineering outreach programs. "Science of the Slam" has the potential to serve as a framework for other researchers to engage under-represented groups in novel ways by tapping into shared interests between the researcher and disadvantaged populations.
Ship Structure Committee Long-Range Research Plan - Guidelines for Program Development.
1982-01-01
many scientists and engineers who contributed their time and expertise. We are indebted especially to Mr. J. J. Hopkinson, Dr. J. G. Giannotti, Mr...projection is better than assuming extension of the status quo. There is a long lead time in the use of new knowledge. Scientific research maturation...They even promise to remove traditional constraints previously too intractable to be labelled problems. The modern computer is an outstanding example
2008-04-01
Space GmbH as follows: B. TECHNICAL PRPOPOSA/DESCRIPTION OF WORK Cell: A Revolutionary High Performance Computing Platform On 29 June 2005 [1...IBM has announced that is has partnered with Mercury Computer Systems, a maker of specialized computers . The Cell chip provides massive floating-point...the computing industry away from the traditional processor technology dominated by Intel. While in the past, the development of computing power has
Snapshot of Active Flow Control Research at NASA Langley
NASA Technical Reports Server (NTRS)
Washburn, A. E.; Gorton, S. Althoff; Anders, S. G.
2002-01-01
NASA Langley is aggressively investigating the potential advantages of active flow control as opposed to more traditional aerodynamic techniques. Many of these techniques will be blended with advanced materials and structures to further enhance payoff. Therefore a multi-disciplinary approach to technology development is being attempted that includes researchers from the more historical disciplines of fluid mechanics. acoustics, material science, structural mechanics, and control theory. The overall goals of the topics presented are focused on advancing the state of knowledge and understanding of controllable fundamental mechanisms in fluids rather than on specific engineering problems. An organizational view of current research activities at NASA Langley in active flow control as supported by several programs such as the Morphing Project under Breakthrough Vehicle Technologies Program (BVT). the Ultra-Efficient Engine Technology Program (UEET), and the 21st Century Aircraft Technology Program (TCAT) is presented. On-center research as well as NASA Langley funded contracts and grants are discussed at a relatively high level. The products of this research, as part of the fundamental NASA R and D (research and development) program. will be demonstrated as either bench-top experiments, wind-tunnel investigations, or in flight tests. Later they will be transferred to more applied research programs within NASA, DOD (Department of Defense), and U.S. industry.
The effect of an enriched learning community on success and retention in chemistry courses
NASA Astrophysics Data System (ADS)
Willoughby, Lois Jane
Since the mid-1990s, the United States has experienced a shortage of scientists and engineers, declining numbers of students choosing these fields as majors, and low student success and retention rates in these disciplines. Learning theorists, educational researchers, and practitioners believe that learning environments can be created so that an improvement in the numbers of students who complete courses successfully could be attained (Astin, 1993; Magolda & Terenzini, n.d.; O'Banion, 1997). Learning communities do this by providing high expectations, academic and social support, feedback during the entire educational process, and involvement with faculty, other students, and the institution (Ketcheson & Levine, 1999). A program evaluation of an existing learning community of science, mathematics, and engineering majors was conducted to determine the extent to which the program met its goals and was effective from faculty and student perspectives. The program provided laptop computers, peer tutors, supplemental instruction with and without computer software, small class size, opportunities for contact with specialists in selected career fields, a resource library, and Peer-Led Team Learning. During the two years the project has existed, success, retention, and next-course continuation rates were higher than in traditional courses. Faculty and student interviews indicated there were many affective accomplishments as well. Success and retention rates for one learning community class ( n = 27) and one traditional class (n = 61) in chemistry were collected and compared using Pearson chi square procedures ( p = .05). No statistically significant difference was found between the two groups. Data from an open-ended student survey about how specific elements of their course experiences contributed to success and persistence were analyzed by coding the responses and comparing the learning community and traditional classes. Substantial differences were found in their perceptions about the lecture, the lab, other supports used for the course, contact with other students, helping them reach their potential, and their recommendation about the course to others. Because of the limitation of small sample size, these differences are reported in descriptive terms.
A study on the development of engineering plastic piston used in the shock absorber
NASA Astrophysics Data System (ADS)
Kim, Young-Ho; Bae, Won-Byong; Lim, Dong-Ju; Suh, Yun-Soo
1998-08-01
A piston is an important component of the shock absorber which determines comfortable riding and handling. Conventional piston is made of metal powder that is pressed in a mold, and then sintered at high temperatures below the melting point before machining processes such as drilling, sizing and teflon banding. This study aims at cutting down cost and weight, and improving the process by replacing the traditional sintering process used for manufacturing the shock absorber with the injection molding process adopting engineering plastics as raw material. To analyze the injection molding process, we used the commercial program, MOLDFLOW, and obtained an optimal combination of the process parameters. In addition, by comparing the engineering plastic piston with the metal powder piston through the formability and the performance experiments, we confirmed the availability of this alternative process suggested.
2012-12-09
In Baikonur, Kazakhstan, Expedition 34/35 backup crewmembers Karen Nyberg of NASA (left), Luca Parmitano of the European Space Agency (center) and Fyodor Yurchikhin (right) view an exhibit honoring the Space Shuttle Program Dec. 9, 2012 during a traditional tour of the city. Nyberg flew on the STS-124 mission of the shuttle Discovery in 2008 and Yurchikhin flew on the shuttle Atlantis in 2002. Prime crewmembers Flight Engineer Tom Marshburn of NASA, Soyuz Commander Roman Romanenko and Flight Engineer Chris Hadfield of the Canadian Space Agency will launch Dec. 19 from the Baikonur Cosmodrome in their Soyuz TMA-07M spacecraft for a five-month mission on the International Space Station. Photo Credit: NASA/Victor Zelentsov
A Search Relevance Algorithm for Weather Effects Products
2006-12-29
accessed) are often search engines [4] [5]. This suggests that people are navigating the internet by searching and not through the traditional...geographic location. Unlike traditional search engines a Federated Search Engine does not scour all the data available and return matches. Instead...gold standard in search engines . However, its ranking system is based, largely, on a measure of interconnectedness. A page that is referenced more
A study of variable thrust, variable specific impulse trajectories for solar system exploration
NASA Astrophysics Data System (ADS)
Sakai, Tadashi
A study has been performed to determine the advantages and disadvantages of variable thrust and variable Isp (specific impulse) trajectories for solar system exploration. There have been several numerical research efforts for variable thrust, variable Isp, power-limited trajectory optimization problems. All of these results conclude that variable thrust, variable Isp (variable specific impulse, or VSI) engines are superior to constant thrust, constant Isp (constant specific impulse; or CSI) engines. However, most of these research efforts assume a mission from Earth to Mars, and some of them further assume that these planets are circular and coplanar. Hence they still lack the generality. This research has been conducted to answer the following questions: (1) Is a VSI engine always better than a CSI engine or a high thrust engine for any mission to any planet with any time of flight considering lower propellant mass as the sole criterion? (2) If a planetary swing-by is used for a VSI trajectory, is the fuel savings of a VSI swing-by trajectory better than that of a CSI swing-by or high thrust swing-by trajectory? To support this research, an unique, new computer-based interplanetary trajectory calculation program has been created. This program utilizes a calculus of variations algorithm to perform overall optimization of thrust, Isp, and thrust vector direction along a trajectory that minimizes fuel consumption for interplanetary travel. It is assumed that the propulsion system is power-limited, and thus the compromise between thrust and Isp is a variable to be optimized along the flight path. This program is capable of optimizing not only variable thrust trajectories but also constant thrust trajectories in 3-D space using a planetary ephemeris database. It is also capable of conducting planetary swing-bys. Using this program, various Earth-originating trajectories have been investigated and the optimized results have been compared to traditional CSI and high thrust trajectory solutions. Results show that VSI rocket engines reduce fuel requirements for any mission compared to CSI rocket engines. Fuel can be saved by applying swing-by maneuvers for VSI engines; but the effects of swing-bys due to VSI engines are smaller than that of CSI or high thrust engines.
Physics Education in a Multidisciplinary Materials Research Environment
NASA Astrophysics Data System (ADS)
Doyle, W. D.
1997-03-01
The MINT Center, an NSF Materials Research Science and Engineering Center, is a multidisciplinary research program focusing on materials information storage. It involves 17 faculty, 10 post-doctoral fellows and 25 graduate students from six academic programs including Physics, Chemistry, Materials Science, Metallurgical and Materials Engineering, Electric al Engineering and Chemical Engineering, whose research is supported by university, federal and industrial funds. The research facilities (15,000 ft^2) which include faculty and student offices are located in one building and are maintained by the university and the Center at no cost to participating faculty. The academic requirements for the students are determined by the individual departments along relatively rigid, traditional grounds although several materials and device courses are offered for students from all departments. Within the Center, participants work in teams assigning responsibilities and sharing results at regularly scheduled meetings. Bi-weekly research seminars for all participants provide excellent opportunities for students to improve their communication skills and to receive critical input from a large, diverse audience. Strong collaboration with industrial partners in the storage industry supported by workshops, research reviews, internships, industrial visitors and participation in industry consortia give students a broader criteria for self-evaluation, higher motivation and excellent career opportunities. Physics students, because of their rigorous basic training, are an important element in a strong materials sciences program, but they often are deficient in the behavior and characterization of real materials. The curriculum for physics students should be broadened to prepare them fully for a rewarding career in this emerging discipline.
NASA Technical Reports Server (NTRS)
Wlezien, R. W.; Horner, G. C.; McGowan, A. R.; Padula, S. L.; Scott, M. A.; Silcox, R. J.; Simpson, J. O.
1998-01-01
In the last decade smart technologies have become enablers that cut across traditional boundaries in materials science and engineering. Here we define smart to mean embedded actuation, sensing, and control logic in a tightly coupled feedback loop. While multiple successes have been achieved in the laboratory, we have yet to see the general applicability of smart devices to real aircraft systems. The NASA Aircraft Morphing program is an attempt to couple research across a wide range of disciplines to integrate smart technologies into high payoff aircraft applications. The program bridges research in seven individual disciplines and combines the effort into activities in three primary program thrusts. System studies are used to assess the highest- payoff program objectives, and specific research activities are defined to address the technologies required for development of smart aircraft systems. In this paper we address the overall program goals and programmatic structure, and discuss the challenges associated with bringing the technologies to fruition.
CERT tribal internship program. Final intern report: Maria Perez, 1994
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1998-09-01
Historically, American Indian Tribes have lacked sufficient numbers of trained, technical personnel from their communities to serve their communities; tribal expertise in the fields of science, business and engineering being extremely rare and programs to encourage these disciplines almost non-existent. Subsequently, Tribes have made crucial decisions about their land and other facets of Tribal existence based upon outside technical expertise, such as that provided by the United States government and/or private industries. These outside expert opinions rarely took into account the traditional and cultural values of the Tribes being advised. The purpose of this internship was twofold: Create and maintainmore » a working relationship between CERT and Colorado State University (CSU) to plan for the Summit on Tribal human resource development; and Evaluate and engage in current efforts to strengthen the Tribal Resource Institute in Business, Engineering and Science (TRIBES) program. The intern lists the following as the project results: Positive interactions and productive meetings between CERT and CSU; Gathered information from Tribes; CERT database structure modification; Experience as facilitator in participating methods; Preliminary job descriptions for staff of future TRIBES programs; and Additions for the intern`s personal database of professional contacts and resources.« less
Digital Learning Network Education Events of NASA's Extreme Environments Mission Operations
NASA Technical Reports Server (NTRS)
Paul, Heather; Guillory, Erika
2007-01-01
NASA's Digital Learning Network (DLN) reaches out to thousands of students each year through video conferencing and web casting. The DLN has created a series of live education videoconferences connecting NASA s Extreme Environment Missions Operations (NEEMO) team to students across the United States. The programs are also extended to students around the world live web casting. The primary focus of the events is the vision for space exploration. During the programs, NEEMO Crewmembers including NASA astronauts, engineers and scientists inform and inspire students about the importance of exploration and share the impact of the project as it correlates with plans to return to the moon and explore the planet Mars. These events highlight interactivity. Students talk live with the aquanauts in Aquarius, the National Oceanic and Atmospheric Administration s underwater laboratory. With this program, NASA continues the Agency s tradition of investing in the nation's education programs. It is directly tied to the Agency's major education goal of attracting and retaining students in science, technology, and engineering disciplines. Before connecting with the aquanauts, the students conduct experiments of their own designed to coincide with mission objectives. This paper describes the events that took place in September 2006.
American Indian Science & Engineering Society (AISES) Programs: Outreach to Native Americans
NASA Astrophysics Data System (ADS)
Lacourse, S.
2003-12-01
AISES is a national non-profit organization which nurtures building of community by bridging science and technology with traditional Native values. Through its educational programs, AISES provides opportunities for American Indians and Native Alaskans to pursue studies in science, engineering, and technology arenas. The trained professionals then become technologically informed leaders within the Indian community. AISES' ultimate goal is to be a catalyst for the advancement of American Indians and Native Alaskans as they seek to become self-reliant and self-determined members of society. AISES' Higher Education Program consists of scholarships, college relations, leadership development, and internships. This session will focus on the value and impact of AISES internships for AISES students, including hands-on experience in the student's field of study, co-op opportunities, and entrance into graduate school. AISES currently offers internship placements with NASA-Goddard Space Flight Center, the U.S. State Department, the Departments of Commerce and Veterans Affairs, and the Centers for Disease Control and Prevention. In 2004, AISES will also be offering placements at the Central Intelligence Agency.
NASA Technical Reports Server (NTRS)
Striepe, Scott A.; Blanchard, Robert C.; Kirsch, Michael F.; Fowler, Wallace T.
2007-01-01
On January 14, 2005, ESA's Huygens probe separated from NASA's Cassini spacecraft, entered the Titan atmosphere and landed on its surface. As part of NASA Engineering Safety Center Independent Technical Assessment of the Huygens entry, descent, and landing, and an agreement with ESA, NASA provided results of all EDL analyses and associated findings to the Huygens project team prior to probe entry. In return, NASA was provided the flight data from the probe so that trajectory reconstruction could be done and simulation models assessed. Trajectory reconstruction of the Huygens entry probe at Titan was accomplished using two independent approaches: a traditional method and a POST2-based method. Results from both approaches are discussed in this paper.
NASA Astrophysics Data System (ADS)
St-Jacques, J. M.; McGee, S.; Janze, R.; Longman, M.; Pete, S.; Starblanket, N.
2016-12-01
Canadian Indigenous people are an extremely poorly represented group in STEM today due to major barriers in obtaining a high school and then a university education. Approximately 10% of the undergraduate student population out of a total 12,600 students at the University of Regina, Regina, Saskatchewan, is First Nations, Métis or Inuit. The university is located in a catchment region where 30% of the population is First Nations or Métis. Approximately 100 students majoring in the sciences, mathematics and engineering have self-declared themselves to be Indigenous. For the past two years, we have been running a pilot project, the Initiative to Support and Increase the Number of Indigenous Students in the Sciences, Mathematics and Engineering at the Aboriginal Student Centre, with financial support from the Deans of Science and Engineering. We provide student networking lunches, Indigenous scientist and engineer speakers and mentors and supplemental tutoring. Our program is actively supported and guided by Elder Noel Starblanket, former president of the National Indian Brotherhood (now the Assembly of First Nations). Our students are greatly interested in the health and environmental sciences (particularly water quality), with a sprinkling of physics, mathematics and engineering majors. Our students have gone on to graduate work with prestigious scholarships and a paid internship in engineering. We report here on various lessons learned: the involvement of elders is key, as is the acceptance of non-traditional academic paths, and any STEM support program must respect Indigenous culture. There is great interest in science and engineering on the part of these students, if scientists and engineers are willing to listen and learn to talk with these students on their own terms.
NASA Astrophysics Data System (ADS)
Posner, Matthew T.; Jantzen, Alexander; van Putten, Lieke D.; Ravagli, Andrea; Donko, Andrei L.; Soper, Nathan; Wong, Nicholas H. L.; John, Pearl V.
2017-08-01
Universities in the United Kingdom have been driven to work with a larger pool of potential students than just the more traditional student (middle-class white male), in order to tackle the widely-accepted skills-shortage in the fields of science, technology, engineering and mathematics (STEM), whilst honoring their commitment to fair access to higher education. Student-led outreach programs have contributed significantly to this drive. Two such programs run by postgraduate students at the University of Southampton are the Lightwave Roadshow and Southampton Accelerate!, which focus on photonics and particle physics, respectively. The program ambassadors have developed activities to enhance areas of the national curriculum through presenting fundamental physical sciences and their applications to optics and photonics research. The activities have benefitted significantly from investment from international organizations, such as SPIE, OSA and the IEEE Photonics Society, and UK research councils, in conjunction with university recruitment and outreach strategies. New partnerships have been formed to expand outreach programs to work in non-traditional environments to challenge stereotypes of scientists. This paper presents two case studies of collaboration with education learning centers at Salisbury Cathedral and Winchester Cathedral. The paper outlines workshops and shows developed for pupils aged 6-14 years (UK key stages 2-4) on the electromagnetic spectrum, particle physics, telecommunications and the human eye using a combination of readily obtainable items, hand-built kits and elements from the EYEST Photonics Explorer kit. The activities are interactive to stimulate learning through active participation, complement the UK national curriculum and link the themes of science with the non-traditional setting of a cathedral. We present methods to evaluate the impact of the activity and tools to obtain qualitative feedback for continual program improvement. We also share lessons learned to assist educators emulating this format of engagement, and provide ideas and inspiration of outreach activities for student chapters to carry out.
A Roadmap for Using Agile Development in a Traditional Environment
NASA Technical Reports Server (NTRS)
Streiffert, Barbara; Starbird, Thomas; Grenander, Sven
2006-01-01
One of the newer classes of software engineering techniques is called 'Agile Development'. In Agile Development software engineers take small implementation steps and, in some cases, they program in pairs. In addition, they develop automatic tests prior to implementing their small functional piece. Agile Development focuses on rapid turnaround, incremental planning, customer involvement and continuous integration. Agile Development is not the traditional waterfall method or even a rapid prototyping method (although this methodology is closer to Agile Development). At the Jet Propulsion Laboratory (JPL) a few groups have begun Agile Development software implementations. The difficulty with this approach becomes apparent when Agile Development is used in an organization that has specific criteria and requirements handed down for how software development is to be performed. The work at the JPL is performed for the National Aeronautics and Space Agency (NASA). Both organizations have specific requirements, rules and processes for developing software. This paper will discuss some of the initial uses of the Agile Development methodology, the spread of this method and the current status of the successful incorporation into the current JPL development policies and processes.
A Roadmap for Using Agile Development in a Traditional Environment
NASA Technical Reports Server (NTRS)
Streiffert, Barbara A.; Starbird, Thomas; Grenander, Sven
2006-01-01
One of the newer classes of software engineering techniques is called 'Agile Development'. In Agile Development software engineers take small implementation steps and, in some cases they program in pairs. In addition, they develop automatic tests prior to implementing their small functional piece. Agile Development focuses on rapid turnaround, incremental planning, customer involvement and continuous integration. Agile Development is not the traditional waterfall method or even a rapid prototyping method (although this methodology is closer to Agile Development). At Jet Propulsion Laboratory (JPL) a few groups have begun Agile Development software implementations. The difficulty with this approach becomes apparent when Agile Development is used in an organization that has specific criteria and requirements handed down for how software development is to be performed. The work at the JPL is performed for the National Aeronautics and Space Agency (NASA). Both organizations have specific requirements, rules and procedure for developing software. This paper will discuss the some of the initial uses of the Agile Development methodology, the spread of this method and the current status of the successful incorporation into the current JPL development policies.
Agile hardware and software systems engineering for critical military space applications
NASA Astrophysics Data System (ADS)
Huang, Philip M.; Knuth, Andrew A.; Krueger, Robert O.; Garrison-Darrin, Margaret A.
2012-06-01
The Multi Mission Bus Demonstrator (MBD) is a successful demonstration of agile program management and system engineering in a high risk technology application where utilizing and implementing new, untraditional development strategies were necessary. MBD produced two fully functioning spacecraft for a military/DOD application in a record breaking time frame and at dramatically reduced costs. This paper discloses the adaptation and application of concepts developed in agile software engineering to hardware product and system development for critical military applications. This challenging spacecraft did not use existing key technology (heritage hardware) and created a large paradigm shift from traditional spacecraft development. The insertion of new technologies and methods in space hardware has long been a problem due to long build times, the desire to use heritage hardware, and lack of effective process. The role of momentum in the innovative process can be exploited to tackle ongoing technology disruptions and allowing risk interactions to be mitigated in a disciplined manner. Examples of how these concepts were used during the MBD program will be delineated. Maintaining project momentum was essential to assess the constant non recurring technological challenges which needed to be retired rapidly from the engineering risk liens. Development never slowed due to tactical assessment of the hardware with the adoption of the SCRUM technique. We adapted this concept as a representation of mitigation of technical risk while allowing for design freeze later in the program's development cycle. By using Agile Systems Engineering and Management techniques which enabled decisive action, the product development momentum effectively was used to produce two novel space vehicles in a fraction of time with dramatically reduced cost.
Liu, Ping; Li, Guodong; Liu, Xinggao
2015-09-01
Control vector parameterization (CVP) is an important approach of the engineering optimization for the industrial dynamic processes. However, its major defect, the low optimization efficiency caused by calculating the relevant differential equations in the generated nonlinear programming (NLP) problem repeatedly, limits its wide application in the engineering optimization for the industrial dynamic processes. A novel highly effective control parameterization approach, fast-CVP, is first proposed to improve the optimization efficiency for industrial dynamic processes, where the costate gradient formulae is employed and a fast approximate scheme is presented to solve the differential equations in dynamic process simulation. Three well-known engineering optimization benchmark problems of the industrial dynamic processes are demonstrated as illustration. The research results show that the proposed fast approach achieves a fine performance that at least 90% of the computation time can be saved in contrast to the traditional CVP method, which reveals the effectiveness of the proposed fast engineering optimization approach for the industrial dynamic processes. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
But I'm an engineer—not a contracts lawyer!
NASA Astrophysics Data System (ADS)
Warner, Mark; Bass, Harvey
2012-09-01
Industrial partners, commercial vendors, and subsystem contractors play a large role in the design and construction of modern telescopes. Because many telescope projects carry relatively small staffs, engineers are often required to perform the additional functions of technical writing, cost estimating, and contract bidding and negotiating. The skills required to carry out these tasks are not normally taught in traditional engineering programs. As a result, engineers often learn to write Request for Proposals (RFPs), select vendors, and negotiate contracts by trial-and-error and/or by adapting previous project documents to match their own requirements. Typically, this means that at the end of a contract the engineer has a large list of do's, don'ts, and lessons learned for the next RFP he or she must generate. This paper will present one such engineer's experience writing and bidding proposal packages for large telescope components and subsystems. Included are: thoughts on structuring SOWs, Specs, ICDs, and other RFP documents; modern methods for bidding the work; and systematic means for selecting and negotiating with a contractor to arrive at the best value for the project.
Teaching transportation systems thinking concepts to undergraduates.
DOT National Transportation Integrated Search
2013-05-01
Systems thinking is thought by many academics to be a graduate level educational venture. : Many traditional educators in the engineering field argue that first a student should gain a : grounding in some traditional branch of engineering (civil and ...
The founding of ISOTT: the Shamattawa of engineering science and medical science.
Bruley, Duane F
2014-01-01
The founding of ISOTT was based upon the blending of Medical and Engineering sciences. This occurrence is portrayed by the Shamattawa, the joining of the Chippewa and Flambeau rivers. Beginning with Carl Scheele's discovery of oxygen, the medical sciences advanced the knowledge of its importance to physiological phenomena. Meanwhile, engineering science was evolving as a mathematical discipline used to define systems quantitatively from basic principles. In particular, Adolf Fick's employment of a gradient led to the formalization of transport phenomena. These two rivers of knowledge were blended to found ISOTT at Clemson/Charleston, South Carolina, USA, in 1973.The establishment of our society with a mission to support the collaborative work of medical scientists, clinicians and all disciplines of engineering was a supporting step in the evolution of bioengineering. Traditional engineers typically worked in areas not requiring knowledge of biology or the life sciences. By encouraging collaboration between medical science and traditional engineering, our society became one of the forerunners in establishing bioengineering as the fifth traditional discipline of engineering.
A Language Translator for a Computer Aided Rapid Prototyping System.
1988-03-01
PROBLEM ................... S B. THE TRADITIONAL "WATERFALL LIFE CYCLE" .. ............... 14 C. RAPID PROTOTYPING...feature of everyday life for almost the entire industrialized world. Few governments or businesses function without the aid of computer systems. Com...engineering. B. TIE TRADITIONAL "WATERFALL LIFE CYCLE" I. Characteristics The traditional method of software engineering is the "waterfall life cycle
Space Software for Automotive Design
NASA Technical Reports Server (NTRS)
1988-01-01
John Thousand of Wolverine Western Corp. put his aerospace group to work on an unfamiliar job, designing a brake drum using computer design techniques. Computer design involves creation of a mathematical model of a product and analyzing its effectiveness in simulated operation. Technique enables study of performance and structural behavior of a number of different designs before settling on a final configuration. Wolverine employees attacked a traditional brake drum problem, the sudden buildup of heat during fast and repeated braking. Part of brake drum not confined tends to change its shape under combination of heat, physical pressure and rotational forces, a condition known as bellmouthing. Since bellmouthing is a major factor in braking effectiveness, a solution of problem would be a major advance in automotive engineering. A former NASA employee, now a Wolverine employee, knew of a series of NASA computer programs ideally suited to confronting bellmouthing. Originally developed as aids to rocket engine nozzle design, it's capable of analyzing problems generated in a rocket engine or automotive brake drum by heat, expansion, pressure and rotational forces. Use of these computer programs led to new brake drum concept featuring a more durable axle, and heat transfer ribs, or fins, on hub of drum.
Failure of engineering artifacts: a life cycle approach.
Del Frate, Luca
2013-09-01
Failure is a central notion both in ethics of engineering and in engineering practice. Engineers devote considerable resources to assure their products will not fail and considerable progress has been made in the development of tools and methods for understanding and avoiding failure. Engineering ethics, on the other hand, is concerned with the moral and social aspects related to the causes and consequences of technological failures. But what is meant by failure, and what does it mean that a failure has occurred? The subject of this paper is how engineers use and define this notion. Although a traditional definition of failure can be identified that is shared by a large part of the engineering community, the literature shows that engineers are willing to consider as failures also events and circumstance that are at odds with this traditional definition. These cases violate one or more of three assumptions made by the traditional approach to failure. An alternative approach, inspired by the notion of product life cycle, is proposed which dispenses with these assumptions. Besides being able to address the traditional cases of failure, it can deal successfully with the problematic cases. The adoption of a life cycle perspective allows the introduction of a clearer notion of failure and allows a classification of failure phenomena that takes into account the roles of stakeholders involved in the various stages of a product life cycle.
Economic Metrics for Commercial Reusable Space Transportation Systems
NASA Technical Reports Server (NTRS)
Shaw, Eric J.; Hamaker, Joseph (Technical Monitor)
2000-01-01
The success of any effort depends upon the effective initial definition of its purpose, in terms of the needs to be satisfied and the goals to be fulfilled. If the desired product is "A System" that is well-characterized, these high-level need and goal statements can be transformed into system requirements by traditional systems engineering techniques. The satisfaction of well-designed requirements can be tracked by fairly straightforward cost, schedule, and technical performance metrics. Unfortunately, some types of efforts, including those that NASA terms "Programs," tend to resist application of traditional systems engineering practices. In the NASA hierarchy of efforts, a "Program" is often an ongoing effort with broad, high-level goals and objectives. A NASA "project" is a finite effort, in terms of budget and schedule, that usually produces or involves one System. Programs usually contain more than one project and thus more than one System. Special care must be taken in the formulation of NASA Programs and their projects, to ensure that lower-level project requirements are traceable to top-level Program goals, feasible with the given cost and schedule constraints, and measurable against top-level goals. NASA Programs and projects are tasked to identify the advancement of technology as an explicit goal, which introduces more complicating factors. The justification for funding of technology development may be based on the technology's applicability to more than one System, Systems outside that Program or even external to NASA. Application of systems engineering to broad-based technology development, leading to effective measurement of the benefits, can be valid, but it requires that potential beneficiary Systems be organized into a hierarchical structure, creating a "system of Systems." In addition, these Systems evolve with the successful application of the technology, which creates the necessity for evolution of the benefit metrics to reflect the changing baseline. Still, economic metrics for technology development in these Programs and projects remain fairly straightforward, being based on reductions in acquisition and operating costs of the Systems. One of the most challenging requirements that NASA levies on its Programs is to plan for the commercialization of the developed technology. Some NASA Programs are created for the express purpose of developing technology for a particular industrial sector, such as aviation or space transportation, in financial partnership with that sector. With industrial investment, another set of goals, constraints and expectations are levied on the technology program. Economic benefit metrics then expand beyond cost and cost savings to include the marketability, profit, and investment return requirements of the private sector. Commercial investment criteria include low risk, potential for high return, and strategic alignment with existing product lines. These corporate criteria derive from top-level strategic plans and investment goals, which rank high among the most proprietary types of information in any business. As a result, top-level economic goals and objectives that industry partners bring to cooperative programs cannot usually be brought into technical processes, such as systems engineering, that are worked collaboratively between Industry and Government. In spite of these handicaps, the top-level economic goals and objectives of a joint technology program can be crafted in such a way that they accurately reflect the fiscal benefits from both Industry and Government perspectives. Valid economic metrics can then be designed that can track progress toward these goals and objectives, while maintaining the confidentiality necessary for the competitive process.
Engineering yeast transcription machinery for improved ethanol tolerance and production.
Alper, Hal; Moxley, Joel; Nevoigt, Elke; Fink, Gerald R; Stephanopoulos, Gregory
2006-12-08
Global transcription machinery engineering (gTME) is an approach for reprogramming gene transcription to elicit cellular phenotypes important for technological applications. Here we show the application of gTME to Saccharomyces cerevisiae for improved glucose/ethanol tolerance, a key trait for many biofuels programs. Mutagenesis of the transcription factor Spt15p and selection led to dominant mutations that conferred increased tolerance and more efficient glucose conversion to ethanol. The desired phenotype results from the combined effect of three separate mutations in the SPT15 gene [serine substituted for phenylalanine (Phe(177)Ser) and, similarly, Tyr(195)His, and Lys(218)Arg]. Thus, gTME can provide a route to complex phenotypes that are not readily accessible by traditional methods.
NASA Technical Reports Server (NTRS)
Berton, Jeffrey J.
1991-01-01
The analytical derivations of the non-axial thrust divergence losses for convergent-divergent nozzles are described as well as how these calculations are embodied in the Navy/NASA engine computer program. The convergent-divergent geometries considered are simple classic axisymmetric nozzles, two dimensional rectangular nozzles, and axisymmetric and two dimensional plug nozzles. A simple, traditional, inviscid mathematical approach is used to deduce the influence of the ineffectual non-axial thrust as a function of the nozzle exit divergence angle.
Building quality into medical product software design.
Mallory, S R
1993-01-01
The software engineering and quality assurance disciplines are a requisite to the design of safe and effective software-based medical devices. It is in the areas of software methodology and process that the most beneficial application of these disciplines to software development can be made. Software is a product of complex operations and methodologies and is not amenable to the traditional electromechanical quality assurance processes. Software quality must be built in by the developers, with the software verification and validation engineers acting as the independent instruments for ensuring compliance with performance objectives and with development and maintenance standards. The implementation of a software quality assurance program is a complex process involving management support, organizational changes, and new skill sets, but the benefits are profound. Its rewards provide safe, reliable, cost-effective, maintainable, and manageable software, which may significantly speed the regulatory review process and therefore potentially shorten the overall time to market. The use of a trial project can greatly facilitate the learning process associated with the first-time application of a software quality assurance program.
NASA Astrophysics Data System (ADS)
Dickinson Skaggs, Jennifer Anne
The number of women being enrolled and retained in engineering programs has steadily decreased since 1999, even with increased efforts and funding of initiatives to counteract this trend. Why are women not persisting or even choosing to pursue engineering? This qualitative research examines how undergraduate female engineering students perceive and negotiate their gender identities to successfully persist in engineering education. Narrative inquiry including semi-structured interviews, participant observation, and data analysis was conducted at a Research I institution. Participants were recruited through purposeful network sampling. Criteria for inclusion include students who have been in the American K-12 educational pipeline at least eight years and are junior or senior level academic standing and academic eligibility. By including male students in the collection of data, perceptions of the issues for women could be seen in context when compared to the perceptions of men in the same engineering discipline. The study focuses on the individual, institutional, and cultural perceptions of gender performativity within a network and the strategies and negotiations employed by undergraduate female engineering students to achieve their educational goals regarding each of these perspectives. Findings reveal female students utilize strategies of camouflage and costume, as well as internal and external support to persist in engineering education. Also, female engineering students are being prepared to only become engineering-students-in-the-making and kept from the larger engineering network, while male students are becoming engineers-in-the-making automatically connected to the larger engineering network based on gender. This lack of association with the network influences female engineering students in their decisions to pursue a career in professional engineering, or to pursue more traditionally gendered careers after graduation. This research is significant in its use of feminist theory and methodology to study engineering education. It is also significant in its use of qualitative methods allowing students to articulate their experiences in their own words and voices thus allowing for nuanced of meaning and understanding to emerge. Butler's theory of gender performativity in conjunction with Nespor's actor-network theory provides the conceptual framework with inductive analysis used as the primary tool for data analysis.
NASA Astrophysics Data System (ADS)
Keane, C. M.; Martinez, C. M.
2009-12-01
In many other science and engineering fields, the professional society is a key component of the student culture during their education. Students in fields such as physics, civil engineering, and mechanical engineering are usually expected to be members and active participants in their respective professional society, which in turn is tightly integrated with the academic programs through student chapters or activities. This phenomenon does not readily exist in the geosciences, and may be part of the reason for above average student attrition rates and subcompetitive recruitment over the entirety of business cycles. Part of this is a result of 45 societies, including over a dozen that actively recruit student members, but in the same vein, no single society has universal strong cultural presence across the 800 undergraduate programs in the United States. In addition, given the diversity of professional opportunities are not obvious to students because of the traditional subject stovepiping see in the curriculum and societies. To test and address this issue, the American Geological Institute is piloting a program to build student awareness of the breadth of career opportunities in a social context while also promoting the role of societies as a key networking and development conduit. Early responses to this test have resulted in some non-intuitive patterns and may yield insight into the world view of new and prospective majors.
An Account of Women's Progress in Engineering: a Social Cognitive Perspective
NASA Astrophysics Data System (ADS)
Vogt, Christina
Traditionally, women were not welcome in higher education, especially in male-dominated fields. Undoubtedly, women have dramatically increased their enrollments in many once male-only fields, such as law, medicine, and several of the sciences; nevertheless, engineering remains a field where women continue to be underrepresented. This has often been attributed to social barriers in engineering classrooms. However, a new turn of events has been reported: Young women entering engineering may receive higher grades and have a greater tendency to remain than men. To examine what has recently changed, the author applied Bandura's triadic model of reciprocity between environment, self, and behavior. The measured variables included academic integration or discrimination, self-measures of academic self-confidence, engineering self-efficacy, and behaviors taken to self-regulate learning: critical thinking, effort, peer learning, and help seeking. The data revealed that women apply slightly more effort and have slightly less self-efficacy than men. Their academic confidence is nearly equal in almost all areas. Most significantly, many previous gender biases appear diminished, and those that do exist are slight. However, it is recommended that continued efforts be undertaken to attract and retain women in engineering programs.
Consolidated Development Objectives Document (CDOD) For MB-60
NASA Technical Reports Server (NTRS)
Greene, William D.
2013-01-01
This document defines the objectives related to liquid rocket engine system development to be undertaken by JAXA in support of the Space Launch System (SLS) Program managed out of the NASA Marshall Space Flight Center (MSFC). These objectives include furnishing the necessary management, labor, facilities, tools, equipment, and materials required to execute the specified activities. 1.1 Project Scope: The scope of this effort is to develop a rocket engine and associated products per the objectives and technical requirements established in this document. This engine, minus the engine controller, designated here as MB ]60, is to be developed through to a prequalification point of maturity. It is assumed that should JCNE ]1 development proceed beyond this maturity point towards actual flight qualification, the engine controller will be supplied and integrated by NASA. 1.2 Document Structure: The structure of this Consolidated Development Objectives Document (CDOD) includes a traditional description of objectives in a SOO, plus the associated Data Products Document (DPD) in an attached appendix, and then Engine Requirements Document (ERD) as another attached appendix. It is the intent that this document, in conjunction with the cited applicable documents, should constitute a complete programmatic and technical description of the development effort to be pursued.
Low Cost Manufacturing Approach of High Temperature PMC Components
NASA Technical Reports Server (NTRS)
Kannmacher, Kevin
1997-01-01
The overall objective is to develop a satisfactory sheet molding compound (SMC) of a high temperature polyimide, such as PMR-11-50, VCAP-75, or NB2-76, and to develop compression molding processing parameters for a random, chopped fiber, high temperature, sheet molding compound that will be more affordable than the traditional hand lay-up fabrication methods. Compression molding will reduce manufacturing costs of composites by: (1) minimizing the conventional machining required after fabrication due to the use of full 360 deg matched tooling, (2) reducing fabrication time by minimizing the intensive hand lay-up operations associated with individual ply fabrication techniques, such as ply orientation and ply count and (3) possibly reducing component mold time by advanced B-staging prior to molding. This program is an integral part of Allison's T406/AE engine family's growth plan, which will utilize technologies developed under NASA's Sub-sonic Transport (AST) programs, UHPTET initiatives, and internally through Allison's IR&D projects. Allison is aggressively pursuing this next generation of engines, with both commercial and military applications, by reducing the overall weight of the engine through the incorporation of advanced, lightweight, high temperature materials, such as polymer matrix composites. This infusion of new materials into the engine is also a major factor in reducing engine cost because it permits the use of physically smaller structural components to achieve the same thrust levels as the generation that it replaced. A lighter, more efficient propulsion system translates to a substantial cost and weight savings to an airframe's structure.
Punzi, Vito L
2017-07-18
The development of the various themes of Catholic Social Teaching (CST) is based on numerous papal documents and ecclesiastical statements. While this paper provides a summary of a number of these documents, this paper focuses on two themes: the common good and care of the environment, and on three documents authored by Pope John Paul II in 1990, by Pope Benedict XVI in 2010, and by Pope Francis in 2015. By analyzing these documents from an engineer's perspective, the author proposes a model for Socially Responsible Engineering. The proposed model is intended to serve as a guide for engineering students and practicing engineers of all faith traditions and to those with no faith tradition at all who wish to incorporate CST in the daily conduct of their personal and professional lives; to provide guidance for the professional the author terms the aspiring Socially Responsible Engineer; and to offer engineers a preferred alternative to the undesirable aspects of the technocratic paradigm. While intended primarily for engineers, this document also serves as a guide for those with expertise in social justice and who, by gaining a better understanding of the thought processes of engineers, can become better mentors for engineering students and practicing engineers seeking to incorporate CST into their daily lives.
Hines, Michael L; Davison, Andrew P; Muller, Eilif
2009-01-01
The NEURON simulation program now allows Python to be used, alone or in combination with NEURON's traditional Hoc interpreter. Adding Python to NEURON has the immediate benefit of making available a very extensive suite of analysis tools written for engineering and science. It also catalyzes NEURON software development by offering users a modern programming tool that is recognized for its flexibility and power to create and maintain complex programs. At the same time, nothing is lost because all existing models written in Hoc, including graphical user interface tools, continue to work without change and are also available within the Python context. An example of the benefits of Python availability is the use of the xml module in implementing NEURON's Import3D and CellBuild tools to read MorphML and NeuroML model specifications.
Hines, Michael L.; Davison, Andrew P.; Muller, Eilif
2008-01-01
The NEURON simulation program now allows Python to be used, alone or in combination with NEURON's traditional Hoc interpreter. Adding Python to NEURON has the immediate benefit of making available a very extensive suite of analysis tools written for engineering and science. It also catalyzes NEURON software development by offering users a modern programming tool that is recognized for its flexibility and power to create and maintain complex programs. At the same time, nothing is lost because all existing models written in Hoc, including graphical user interface tools, continue to work without change and are also available within the Python context. An example of the benefits of Python availability is the use of the xml module in implementing NEURON's Import3D and CellBuild tools to read MorphML and NeuroML model specifications. PMID:19198661
Bringing education to your virtual doorstep
NASA Astrophysics Data System (ADS)
Kaurov, Vitaliy
2013-03-01
We currently witness significant migration of academic resources towards online CMS, social networking, and high-end computerized education. This happens for traditional academic programs as well as for outreach initiatives. The talk will go over a set of innovative integrated technologies, many of which are free. These were developed by Wolfram Research in order to facilitate and enhance the learning process in mathematical and physical sciences. Topics include: cloud computing with Mathematica Online; natural language programming; interactive educational resources and web publishing at the Wolfram Demonstrations Project; the computational knowledge engine Wolfram Alpha; Computable Document Format (CDF) and self-publishing with interactive e-books; course assistant apps for mobile platforms. We will also discuss outreach programs where such technologies are extensively used, such as the Wolfram Science Summer School and the Mathematica Summer Camp.
Generation of development environments for the Arden Syntax.
Bång, M.; Eriksson, H.
1997-01-01
Providing appropriate development environments for specialized languages requires a significant development and maintenance effort. Specialized environments are therefore expensive when compared to their general-language counterparts. The Arden Syntax for Medical Logic Modules (MLM) is a standardized language for representing medical knowledge. We have used PROTEGE-II, a knowledge-engineering environment, to generate a number of experimental development environments for the Arden Syntax. MEDAILLE is the resulting MLM editor, which provides a user-friendly environment that allows users to create and modify MLM definitions. Although MEDAILLE is a generated editor, it has similar functionality, while reducing the programming effort, as compared to other MLM editors developed using traditional programming techniques. We discuss how developers can use PROTEGE-II to generate development environments for other standardized languages and for general programming languages. PMID:9357639
NASA Technical Reports Server (NTRS)
Gonzalex, Oscar
2012-01-01
NASA's Commercial Crew and Cargo Program (CCP) is stimulating efforts within the private sector to develop and demonstrate safe, reliable, and cost-effective space transportation capabilities. One initiative involves investigating the use of commercial electronic parts. NASA's CCP asked the NASA Engineering and Safety Center (NESC) to collect data to help frame the technical, cost, and schedule risk trades associated with electrical, electronic and electromechanical (EEE) parts selection and specifically expressed desire of some of the CCP partners to employ EEE parts of a lower grade than traditionally used in most NASA safety-critical applications. This document contains the outcome from the NESC's review and analyses.
Lack of training threatening drilling talent supply
DOE Office of Scientific and Technical Information (OSTI.GOV)
Von Flatern, R.
When oil prices crashed in the mid-1980s, the industry tightened budgets. Among the austerity measures taken to survive the consequences of low product prices was an end to expensive, long-term investment training of drilling engineers. In the absence of traditional sources of trained drilling talent, forward-looking contractors are creating their own training programs. The paper describes the activities of some companies who are setting up their own training programs, and an alliance being set up by Chevron and Amoco for training. The paper also discusses training drilling managers, third-party trainers, and the consequences for the industry that does not renewmore » its inventory of people.« less
The Non-traditional Student, a new Geoscience Resource
NASA Astrophysics Data System (ADS)
Ferrell, R.; Anderson, L.; Bart, P.; Lorenzo, J. M.; Tomkin, J.
2004-12-01
The LSU GAEMP (Geoscience Alliance to Enhance Minority Participation) program targets non-traditional students, those without an undergraduate degree in geoscience, in its efforts to attract African American and Hispanic students from minority serving institutions (MSIs) to pursue careers in geology and geophysics. Faculty collaborators at nine MSIs (seven HBCUs and two HSIs) work closely with LSU faculty to advertise the program and to select student participants. The enthusiastic cooperation of the MSI Professors is crucial to success. The ideal student is a junior-level, high academic achiever with a major in one of the basic sciences, mathematics, engineering or computer science. A special summer course uses a focus on research to introduce basic geoscience concepts. Students are encouraged to design a cooperative research project to complete during their last year at their home institution and to apply for GAEMP graduate fellowships leading directly to an M.S. or Ph.D. in Geoscience. There are several reasons for the emphasis on these students 1. They have special knowledge and skills to use in graduate programs in geophysics, geochemistry, geobiology, etc. 2. Third-year students have demonstrated their ability to succeed in the academic world and are ready to select a graduate program that will enhance their employment prospects. 3. The MSIs, especially some of the physics programs at the collaborating HBCUs, provide well-trained, highly motivated graduates who have compiled excellent records in highly ranked graduate programs. This pool of talent is not available in the geosciences because most MSIs do not have geoscience degree programs. 4. This group provides a unique niche for focus as there are many programs concentrating on K-12 students and the recruitment of traditional majors. In the first year of GAEMP, 12 students participated in the summer program, six elected to pursue research projects and expressed interest in applying for the fellowships, and one student entered the graduate program early. The paucity of information regarding career opportunities and rewards in geoscience is one of the major obstacles encountered. GAEMP is sponsored by a 5-year NSF award through the OEDG program
A definition of high-level decisions in the engineering of systems
NASA Astrophysics Data System (ADS)
Powell, Robert Anthony
The role of the systems engineer defines that he or she be proactive and guide the program manager and their customers through their decisions to enhance the effectiveness of system development---producing faster, better, and cheaper systems. The present lack of coverage in literature on what these decisions are and how they relate to each other may be a contributing factor to the high rate of failure among system projects. At the onset of the system development process, decisions have an integral role in the design of a system that meets stakeholders' needs. This is apparent during the design and qualification of both the Development System and the Operational System. The performance, cost and schedule of the Development System affect the performance of the Operational System and are affected by decisions that influence physical elements of the Development System. The performance, cost, and schedule of the Operational System is affected by decisions that influence physical elements of the Operational System. Traditionally, product and process have been designed using know-how and trial and error. However, the empiricism of engineers and program managers is limited which can, and has led to costly mistakes. To date, very little research has explored decisions made in the engineering of a system. In government, literature exists on procurement processes for major system development; but in general literature on decisions, how they relate to each other, and the key information requirements within one of two systems and across the two systems is not readily available. This research hopes to improve the processes inherent in the engineering of systems. The primary focus of this research is on department of defense (DoD) military systems, specifically aerospace systems and may generalize more broadly. The result of this research is a process tool, a Decision System Model, which can be used by systems engineers to guide the program manager and their customers through the decisions about concurrently designing and qualifying both the Development and Operational systems.
A simulation evaluation of the engine monitoring and control system display
NASA Technical Reports Server (NTRS)
Abbott, Terence S.
1990-01-01
The Engine Monitoring and Control System (E-MACS) display is a new concept for an engine instrument display, the purpose of which is to provide an enhanced means for a pilot to control and monitor aircraft engine performance. It provides graphically-presented information about performance capabilities, current performance, and engine component or subsystem operational conditions relative to nominal conditions. The concept was evaluated by sixteen pilot-subjects against a traditional, state-of-the-art electronic engine display format. The results of this evaluation showed a substantial pilot preference for the E-MACS display relative to the traditional display. The results of the failure detection portion of the evaluation showed a 100 percent detection rate for the E-MACS display relative to a 57 percent rate for the traditional display. From these results, it is concluded that by providing this type of information in the cockpit, a reduction in pilot workload and an enhanced ability for detecting degraded or off-nominal conditions is probable, thus leading to an increase in operational safety.
The History of the Internet Search Engine: Navigational Media and the Traffic Commodity
NASA Astrophysics Data System (ADS)
van Couvering, E.
This chapter traces the economic development of the search engine industry over time, beginning with the earliest Web search engines and ending with the domination of the market by Google, Yahoo! and MSN. Specifically, it focuses on the ways in which search engines are similar to and different from traditional media institutions, and how the relations between traditional and Internet media have changed over time. In addition to its historical overview, a core contribution of this chapter is the analysis of the industry using a media value chain based on audiences rather than on content, and the development of traffic as the core unit of exchange. It shows that traditional media companies failed when they attempted to create vertically integrated portals in the late 1990s, based on the idea of controlling Internet content, while search engines succeeded in creating huge "virtually integrated" networks based on control of Internet traffic rather than Internet content.
Convolving engineering and medical pedagogies for training of tomorrow's health care professionals.
Lee, Raphael C
2013-03-01
Several fundamental benefits justify why biomedical engineering and medicine should form a more convergent alliance, especially for the training of tomorrow's physicians and biomedical engineers. Herein, we review the rationale underlying the benefits. Biological discovery has advanced beyond the era of molecular biology well into today's era of molecular systems biology, which focuses on understanding the rules that govern the behavior of complex living systems. This has important medical implications. To realize cost-effective personalized medicine, it is necessary to translate the advances in molecular systems biology to higher levels of biological organization (organ, system, and organismal levels) and then to develop new medical therapeutics based on simulation and medical informatics analysis. Higher education in biological and medical sciences must adapt to a new set of training objectives. This will involve a shifting away from reductionist problem solving toward more integrative, continuum, and predictive modeling approaches which traditionally have been more associated with engineering science. Future biomedical engineers and MDs must be able to predict clinical response to therapeutic intervention. Medical education will involve engineering pedagogies, wherein basic governing rules of complex system behavior and skill sets in manipulating these systems to achieve a practical desired outcome are taught. Similarly, graduate biomedical engineering programs will include more practical exposure to clinical problem solving.
Computing in Hydraulic Engineering Education
NASA Astrophysics Data System (ADS)
Duan, J. G.
2011-12-01
Civil engineers, pioneers of our civilization, are rarely perceived as leaders and innovators in modern society because of retardations in technology innovation. This crisis has resulted in the decline of the prestige of civil engineering profession, reduction of federal funding on deteriorating infrastructures, and problems with attracting the most talented high-school students. Infusion of cutting-edge computer technology and stimulating creativity and innovation therefore are the critical challenge to civil engineering education. To better prepare our graduates to innovate, this paper discussed the adaption of problem-based collaborative learning technique and integration of civil engineering computing into a traditional civil engineering curriculum. Three interconnected courses: Open Channel Flow, Computational Hydraulics, and Sedimentation Engineering, were developed with emphasis on computational simulations. In Open Channel flow, the focuses are principles of free surface flow and the application of computational models. This prepares students to the 2nd course, Computational Hydraulics, that introduce the fundamental principles of computational hydraulics, including finite difference and finite element methods. This course complements the Open Channel Flow class to provide students with in-depth understandings of computational methods. The 3rd course, Sedimentation Engineering, covers the fundamentals of sediment transport and river engineering, so students can apply the knowledge and programming skills gained from previous courses to develop computational models for simulating sediment transport. These courses effectively equipped students with important skills and knowledge to complete thesis and dissertation research.
Multi-objective optimisation and decision-making of space station logistics strategies
NASA Astrophysics Data System (ADS)
Zhu, Yue-he; Luo, Ya-zhong
2016-10-01
Space station logistics strategy optimisation is a complex engineering problem with multiple objectives. Finding a decision-maker-preferred compromise solution becomes more significant when solving such a problem. However, the designer-preferred solution is not easy to determine using the traditional method. Thus, a hybrid approach that combines the multi-objective evolutionary algorithm, physical programming, and differential evolution (DE) algorithm is proposed to deal with the optimisation and decision-making of space station logistics strategies. A multi-objective evolutionary algorithm is used to acquire a Pareto frontier and help determine the range parameters of the physical programming. Physical programming is employed to convert the four-objective problem into a single-objective problem, and a DE algorithm is applied to solve the resulting physical programming-based optimisation problem. Five kinds of objective preference are simulated and compared. The simulation results indicate that the proposed approach can produce good compromise solutions corresponding to different decision-makers' preferences.
Practice Oriented Master's in Optics
NASA Technical Reports Server (NTRS)
Dimmock, John O.
1997-01-01
This award provides support for the development and initial implementation of an interdisciplinary Master's Program with a concentration in Optics and Photonics Technology. This program is a collaboration between the University of Alabama in Huntsville, Alabama A&M University, Northwest Shoals Community College, the NASA Marshall Space Flight Center, the U. S. Army Missile Command, Oak Ridge National Laboratory, the National Institute for Standards and Technology, Advanced Optical Systems Inc., Dynetics, Inc., Hughes Danbury Optical Systems, Inc., Nichols Research Corp., SCI Inc., and Speedring Inc. These organizations have been participating fully in the design, development and implementation of the program. This program is directed at both traditional students as well as government and defense workers who desire specialty education in practical optics and optical systems design and manufacturing. It is intended to produce highly trained graduates who can solve practical problems, and includes an on-site practicum at a manufacturing location. The broad curriculum of this program emphasizes the fundamentals of optics, optical systems manufacturing and testing, and the principles of design and manufacturing-to-cost for commercial optical products. The degrees offered are the MS in Physics and the MSE in Electrical Engineering with concentration in Optics and Photonics Technology through the Physics and Electrical and Computer Engineering departments of UAH with support from and in consultation with the Steering Committee composed of representatives from each of the participating organizations plus a student representative.
Practice Oriented Master's in Optics
NASA Technical Reports Server (NTRS)
Dimmock, John O.
1996-01-01
This award provides support for the development and initial implementation of an interdisciplinary Master's Program with a concentration in Optics and Photonics Technology. This program is a collaboration between the University of Alabama in Huntsville, Alabama A and M University, Northwest Shoals Community College, the NASA Marshall Space Flight Center, the U.S. Army Missile Command, Oak Ridge National Laboratory, the National Institute for Standards and Technology, Advanced Optical Systems Inc., Dynetics, Inc., Hughes Danbury Optical Systems, Inc., Nichols Research Corp., SCI Inc., and Speedring Inc. These organizations have been participating fully in the design, development and implementation of the program. This program is directed at both traditional students as well as government and defense workers who desire specialty education in practical optics and optical systems design and manufacturing. It is intended to produce highly trained graduates who can solve practical problems, and includes an on-site practicum at a manufacturing location. The broad curriculum of this program emphasizes the fundamentals of optics, optical systems manufacturing and testing, and the principles of design and manufacturing-to-cost for commercial optical products. The degrees offered are the MS in Physics and the MSE in Electrical Engineering with concentration in Optics and Photonics Technology through the Physics and Electrical and Computer Engineering departments of UAH with support from and in consultation with the Steering Committee composed of representatives from each of the participating organizations plus a student representative.
NASA Astrophysics Data System (ADS)
Kravchenko, Iulia; Luhmann, Thomas; Shults, Roman
2016-06-01
For the preparation of modern specialists in the acquisition and processing of three-dimensional data, a broad and detailed study of related modern methods and technologies is necessary. One of the most progressive and effective methods of acquisition and analyzing spatial data is terrestrial laser scanning. The study of methods and technologies for terrestrial laser scanning is of great importance not only for GIS specialists, but also for surveying engineers who make decisions in traditional engineering tasks (monitoring, executive surveys, etc.). The understanding and formation of the right approach in preparing new professionals need to develop a modern and variable educational program. This educational program must provide effective practical and laboratory work and the student's coursework. The resulting knowledge of the study should form the basis for practical or research of young engineers. In 2014, the Institute of Applied Sciences (Jade University Oldenburg, Germany) and Kyiv National University of Construction and Architecture (Kiev, Ukraine) had launched a joint educational project for the introduction of terrestrial laser scanning technology for collection and processing of spatial data. As a result of this project practical recommendations have been developed for the organization of educational processes in the use of terrestrial laser scanning. An advanced project-oriented educational program was developed which is presented in this paper. In order to demonstrate the effectiveness of the program a 3D model of the big and complex main campus of Kyiv National University of Construction and Architecture has been generated.
Characterizing learning-through-service students in engineering by gender and academic year
NASA Astrophysics Data System (ADS)
Carberry, Adam Robert
Service is increasingly being viewed as an integral part of education nationwide. Service-based courses and programs are growing in popularity as opportunities for students to learn and experience their discipline. Widespread adoption of learning-through-service (LTS) in engineering is stymied by a lack of a body of rigorous research supporting the effectiveness of these experiences. In this study, I examine learning-through-service through a nationwide survey of engineering undergraduate and graduate students participating in a variety of LTS experiences. Students (N = 322) participating in some form of service -- service-learning courses or extra-curricular service programs -- from eighty-seven different institutions across the United States completed a survey measuring demographic information (institution, gender, academic year, age, major, and grade point average), self-perceived sources of learning (service and traditional coursework), engineering epistemological beliefs, personality traits, and self-concepts (self-efficacy, motivation, expectancy, and anxiety) toward engineering design. Responses to the survey were used to characterize engineering LTS students and identify differences in these variables in terms of gender and academic year. The overall findings were that LTS students perceived their service experience to be a beneficial source for learning professional skills and, to a lesser degree, technical skills, held moderately sophisticated engineering epistemological beliefs, and were generally outgoing, compassionate, and adventurous. Self-perceived sources of learning, epistemological beliefs, and personality traits were shown to be poor predictors of student engineering achievement. Self-efficacy, motivation, and outcome expectancy toward engineering design were generally high for all LTS students; most possessed rather low anxiety levels toward engineering design. These trends were generally consistent between genders and across the five academic years (first-year, sophomores, juniors, seniors, and graduate students) surveyed. Females had significantly more sophisticated epistemological beliefs, greater perceptions of service as a source of learning professional and technical skills, and higher anxiety toward engineering design. They also were significantly more extroverted and agreeable. Males had higher confidence, motivation, and expectancy for success toward engineering design. Across academic year it was seen that students varied in their engineering design self-concepts, except for motivation.
Enhancing Engineering Education through Engineering Management
ERIC Educational Resources Information Center
Pence, Kenneth R.; Rowe, Christopher J.
2012-01-01
Engineering Management courses are added to a traditional engineering curriculum to enhance the value of an undergraduate's engineering degree. A four-year engineering degree often leaves graduates lacking in business and management acumen. Engineering management education covers topics enhancing the value of new graduates by teaching management…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Melber, B.D.; Saari, L.M.; White, A.S.
This report assesses the job-relatedness of specialized educational programs for licensed nuclear reactor operators. The approach used involved systematically comparing the curriculum of specialized educational programs for college credit, to academic knowledge identified as necessary for carrying out the jobs of licenses reactor operators. A sample of eight programs, including A.S. degree, B.S. degree, and coursework programs were studied. Subject matter experts in the field of nuclear operations curriculum and training determined the extent to which individual program curricula covered the identified job-related academic knowledge. The major conclusions of the report are: There is a great deal of variation amongmore » individual programs, ranging from coverage of 15% to 65% of the job-related academic knowledge. Four schools cover at least half, and four schools cover less than one-third of this knowledge content; There is no systematic difference in the job-relatedness of the different types of specialized educational programs, A.S. degree, B.S. degree, and coursework; and Traditional B.S. degree programs in nuclear engineering cover as much job-related knowledge (about one-half of this knowledge content) as most of the specialized educational programs.« less
Active Learning and Reflection in Product Development Engineering Education
ERIC Educational Resources Information Center
Shekar, Aruna
2007-01-01
Traditional engineering courses at tertiary level have been traditionally theory-based, supported by laboratory work, but there is now a world-wide trend towards project-based learning. In product development education, project-based learning is essential in order to integrate the disciplines of design, marketing and manufacturing towards the…
Incorporating the Internet into Traditional Library Instruction.
ERIC Educational Resources Information Center
Fonseca, Tony; King, Monica
2000-01-01
Presents a template for teaching traditional library research and one for incorporating the Web. Highlights include the differences between directories and search engines; devising search strategies; creating search terms; how to choose search engines; evaluating online resources; helpful Web sites; and how to read URLs to evaluate a Web site's…
Middle School Engineering Problem Solving Using Traditional vs. E-PBL Module Instruction
ERIC Educational Resources Information Center
Baele, Loren C.
2017-01-01
This multiple methods (Denzin, 1978) study investigated two instructional approaches, traditional module and electronic Problem-Based Learning instruction (e-PBL), used within a middle school engineering classroom focused on the variables of engagement, content knowledge, student self-assessment and teacher assessment of problem solving solutions.…
Eliciting and characterizing students' mental models within the context of engineering design
NASA Astrophysics Data System (ADS)
Dankenbring, Chelsey
Recently, science education reform documents have called for the incorporation of engineering principles and practices into the K-12 science standards and curriculum. One way this has been done is through the use of engineering design tasks as a way for students to apply their scientific understandings to real-world problems. However, minimal studies have documented students' conceptions within the context of engineering design. Thus, the first chapter of this thesis outlines the steps taken to develop a draw-and-explain item that elicited students' mental models regarding the cause of the four seasons after finishing an engineering design task. Students' mental models regarding the reason for the seasons are also described. The second chapter characterizes students' conceptions regarding sun-Earth relationships, specifically the amount of daylight hours throughout the year, for students who completed either an engineering design task or more traditional learning activities. Results from these studies indicate that draw-and-explain items are an effective way of obtaining students' mental models and that students harbor a variety of alternate conceptions on astronomy related concepts within various learning contexts. Implications from this study include the need for further research regarding how engineering design is used in the classroom and how engineering design facilitates science learning. Also, professional development that allows in-service teachers to gain experience teaching engineering design is needed, as are teacher preparation programs that expose pre-service teachers to engineering design.
Power-grade butanol recovery and utilization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Noon, R.
1982-02-12
As an alternative to the traditional recovery systems, it was proposed in a previous publication that the n-butanol/acetone/ethanol fermentation products could be recovered as a power grade fuel blend and used directly as a fuel. This would affect a savings in process energy requirements because each chemical component would not have to be processed individually to technical grade purity. Further, some residual water could be tolerated in the fuel blend. To develop such a power grade fuel recovery scheme beyond the conceptual stage, the Energy Research and Resource Division of the Kansas Energy Office undertook a two-fold program to demonstratemore » and test a power grade butanol/acetone/ethanol fuel recovery system, and further to demonstrate the feasibility of using the fuel blend in a standard type engine. A development program was initiated to accomplish the following objectives: design and test an operational power grade butanol recovery plant that would operate at one liter per hour output; and test and assess the performance of power grade butanol in a spark ignition automotive engine. This project has demonstrated that recovery of a power grade butanol fuel blend is simple and can be accomplished at a considered energy advantage over ethanol. It was further demonstrated that such a power grade blend works well in a typical spark ignition engine.« less
GLobal Integrated Design Environment
NASA Technical Reports Server (NTRS)
Kunkel, Matthew; McGuire, Melissa; Smith, David A.; Gefert, Leon P.
2011-01-01
The GLobal Integrated Design Environment (GLIDE) is a collaborative engineering application built to resolve the design session issues of real-time passing of data between multiple discipline experts in a collaborative environment. Utilizing Web protocols and multiple programming languages, GLIDE allows engineers to use the applications to which they are accustomed in this case, Excel to send and receive datasets via the Internet to a database-driven Web server. Traditionally, a collaborative design session consists of one or more engineers representing each discipline meeting together in a single location. The discipline leads exchange parameters and iterate through their respective processes to converge on an acceptable dataset. In cases in which the engineers are unable to meet, their parameters are passed via e-mail, telephone, facsimile, or even postal mail. The result of this slow process of data exchange would elongate a design session to weeks or even months. While the iterative process remains in place, software can now exchange parameters securely and efficiently, while at the same time allowing for much more information about a design session to be made available. GLIDE is written in a compilation of several programming languages, including REALbasic, PHP, and Microsoft Visual Basic. GLIDE client installers are available to download for both Microsoft Windows and Macintosh systems. The GLIDE client software is compatible with Microsoft Excel 2000 or later on Windows systems, and with Microsoft Excel X or later on Macintosh systems. GLIDE follows the Client-Server paradigm, transferring encrypted and compressed data via standard Web protocols. Currently, the engineers use Excel as a front end to the GLIDE Client, as many of their custom tools run in Excel.
The development of a program analysis environment for Ada: Reverse engineering tools for Ada
NASA Technical Reports Server (NTRS)
Cross, James H., II
1991-01-01
The Graphical Representations of Algorithms, Structures, and Processes for Ada (GRASP/Ada) has successfully created and prototyped a new algorithm level graphical representation for Ada software, the Control Structure Diagram (CSD). The primary impetus for creation of the CSD was to improve the comprehension efficiency of Ada software and thus improve reliability and reduce costs. The emphasis was on the automatic generation of the CSD from Ada source code to support reverse engineering and maintenance. The CSD has the potential to replace traditional prettyprinted Ada source code. In Phase 1 of the GRASP/Ada project, the CSD graphical constructs were created and applied manually to several small Ada programs. A prototype (Version 1) was designed and implemented using FLEX and BISON running under the Virtual Memory System (VMS) on a VAX 11-780. In Phase 2, the prototype was improved and ported to the Sun 4 platform under UNIX. A user interface was designed and partially implemented. The prototype was applied successfully to numerous Ada programs ranging in size from several hundred to several thousand lines of source code. In Phase 3 of the project, the prototype was prepared for limited distribution (GRASP/Ada Version 3.0) to facilitate evaluation. The user interface was extensively reworked. The current prototype provides the capability for the user to generate CSD from Ada source code in a reverse engineering mode with a level of flexibility suitable for practical application.
Digital Image Correlation Techniques Applied to Large Scale Rocket Engine Testing
NASA Technical Reports Server (NTRS)
Gradl, Paul R.
2016-01-01
Rocket engine hot-fire ground testing is necessary to understand component performance, reliability and engine system interactions during development. The J-2X upper stage engine completed a series of developmental hot-fire tests that derived performance of the engine and components, validated analytical models and provided the necessary data to identify where design changes, process improvements and technology development were needed. The J-2X development engines were heavily instrumented to provide the data necessary to support these activities which enabled the team to investigate any anomalies experienced during the test program. This paper describes the development of an optical digital image correlation technique to augment the data provided by traditional strain gauges which are prone to debonding at elevated temperatures and limited to localized measurements. The feasibility of this optical measurement system was demonstrated during full scale hot-fire testing of J-2X, during which a digital image correlation system, incorporating a pair of high speed cameras to measure three-dimensional, real-time displacements and strains was installed and operated under the extreme environments present on the test stand. The camera and facility setup, pre-test calibrations, data collection, hot-fire test data collection and post-test analysis and results are presented in this paper.
Maintaining and Expanding the Hands-On Optics Program
NASA Astrophysics Data System (ADS)
Pompea, Stephen M.; Sparks, R. T.; Walker, C. E.
2008-05-01
Hands-On Optics (HOO) was funded by the National Science Foundation Informal Science Education program to bring optics education to traditionally underserved middle school students. We developed a series of six optics modules each covering a different topic in optics. During the four-year grant, we brought the program to the Mathematics, Science and Engineering Achievement (MESA) programs in seven states as well as 8 major science centers. We continue to support our established sites as well as expand our program. One of our expansion efforts involves continuing our partnership with the International Society for Optical Engineering (SPIE). We have been working closely with SPIE to present workshops for student chapter leaders at SPIE meetings. The student chapter leaders use HOO materials in their outreach activities. SPIE has teamed with us to bring HOO to Europe. We have received a grant from the Science Foundation of Arizona to expand HOO in Arizona. This program builds on our successful programs at the South Tucson Boys and Girls Club as well as the Sells Boys and Girls Club by expanding HOO to other sites around the state with an emphasis on rural locations such as Bisbee, Safford, Prescott Valley and the Tohon O'odham Nation. We have been working with a variety of Boys and Girls Clubs around the state. Several programs are underway and we hope to add more sites in the coming year. We continue to host local events at Kitt Peak National Observatory as well as special events for the community and students in the Tucson area. Our events include science nights at local schools, optics festivals and competitions, career days and teacher fairs. We will describe the current state of the program as well as lessons learned as we expand the program in a variety of settings.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martha R. Finck Ph.D.
2011-10-01
This program provides practical training to DHS graduate fellows in the DOE laboratory complex. It involves coordinating students, their thesis advisors, and their laboratory project mentors in establishing a meaningful program of research which contributes to the graduate student's formation as a member of the nuclear forensics community. The summary report details the student/mentor experience and future plans after the first summer practicum. This program provides practical training to DHS graduate fellows in the DOE laboratory complex. It involves coordinating students, their thesis advisors, and their laboratory project mentors in establishing a meaningful program of research which contributes to themore » graduate student's formation as a member of the nuclear forensics community. This final written report includes information concerning the overall mentoring experience, including benefits (to the lab, the mentors, and the students), challenges, student research contributions, and lab mentor interactions with students home universities. Idaho National Laboratory hosted two DHS Nuclear Forensics graduate Fellows (nuclear engineering) in summer 2011. Two more Fellows (radiochemistry) are expected to conduct research at the INL under this program starting in 2012. An undergraduate Fellow (nuclear engineering) who worked in summer 2011 at the laboratory is keenly interested in applying for the NF Graduate Fellowship this winter with the aim of returning to INL. In summary, this program appears to have great potential for success in supporting graduate level students who pursue careers in nuclear forensics. This relatively specialized field may not have been an obvious choice for some who have already shown talent in the traditional areas of chemistry or nuclear engineering. The active recruiting for this scholarship program for candidates at universities across the U.S. brings needed visibility to this field. Not only does this program offer critical practical training to these students, it brings attention to a very attractive field of work where young professionals are urgently required in order for the future. The effectiveness of retaining such talent remains to be seen and may be primarily controlled by the availability of DOE laboratory research funding in this field in the years to come.« less
NASA Astrophysics Data System (ADS)
Nelson, Philip
2015-03-01
I'll describe an intermediate-level course on ``Physical Models of Living Systems.'' The only prerequisite is first-year university physics and calculus. The course is a response to rapidly growing interest among undergraduates in a broad range of science and engineering majors. Students acquire several research skills that are often not addressed in traditional courses:
Stereoscopic applications for design visualization
NASA Astrophysics Data System (ADS)
Gilson, Kevin J.
2007-02-01
Advances in display technology and 3D design visualization applications have made real-time stereoscopic visualization of architectural and engineering projects a reality. Parsons Brinkerhoff (PB) is a transportation consulting firm that has used digital visualization tools from their inception and has helped pioneer the application of those tools to large scale infrastructure projects. PB is one of the first Architecture/Engineering/Construction (AEC) firms to implement a CAVE- an immersive presentation environment that includes stereoscopic rear-projection capability. The firm also employs a portable stereoscopic front-projection system, and shutter-glass systems for smaller groups. PB is using commercial real-time 3D applications in combination with traditional 3D modeling programs to visualize and present large AEC projects to planners, clients and decision makers in stereo. These presentations create more immersive and spatially realistic presentations of the proposed designs. This paper will present the basic display tools and applications, and the 3D modeling techniques PB is using to produce interactive stereoscopic content. The paper will discuss several architectural and engineering design visualizations we have produced.
Utilization of CAD/CAE for concurrent design of structural aircraft components
NASA Technical Reports Server (NTRS)
Kahn, William C.
1993-01-01
The feasibility of installing the Stratospheric Observatory for Infrared Astronomy telescope (named SOFIA) into an aircraft for NASA astronomy studies is investigated using CAD/CAE equipment to either design or supply data for every facet of design engineering. The aircraft selected for the platform was a Boeing 747, chosen on the basis of its ability to meet the flight profiles required for the given mission and payload. CAD models of the fuselage of two of the aircraft models studied (747-200 and 747 SP) were developed, and models for the component parts of the telescope and subsystems were developed by the various concurrent engineering groups of the SOFIA program, to determine the requirements for the cavity opening and for design configuration. It is noted that, by developing a plan to use CAD/CAE for concurrent engineering at the beginning of the study, it was possible to produce results in about two-thirds of the time required using traditional methods.
Synthetic biology: programming cells for biomedical applications.
Hörner, Maximilian; Reischmann, Nadine; Weber, Wilfried
2012-01-01
The emerging field of synthetic biology is a novel biological discipline at the interface between traditional biology, chemistry, and engineering sciences. Synthetic biology aims at the rational design of complex synthetic biological devices and systems with desired properties by combining compatible, modular biological parts in a systematic manner. While the first engineered systems were mainly proof-of-principle studies to demonstrate the power of the modular engineering approach of synthetic biology, subsequent systems focus on applications in the health, environmental, and energy sectors. This review describes recent approaches for biomedical applications that were developed along the synthetic biology design hierarchy, at the level of individual parts, of devices, and of complex multicellular systems. It describes how synthetic biological parts can be used for the synthesis of drug-delivery tools, how synthetic biological devices can facilitate the discovery of novel drugs, and how multicellular synthetic ecosystems can give insight into population dynamics of parasites and hosts. These examples demonstrate how this new discipline could contribute to novel solutions in the biopharmaceutical industry.
ERIC Educational Resources Information Center
Dodson, Thomas A.; Borders, L. DiAnne
2006-01-01
Men established in traditional (mechanical engineering, n = 100) and nontraditional (elementary school counseling, n = 100) careers were compared on their career compromise choices (sex type vs. prestige), adherence to masculinity ideology, gender role conflict, and job satisfaction. The engineers tended to choose sex type over prestige; the…
ERIC Educational Resources Information Center
Martinez-Caro, Eva; Campuzano-Bolarin, Francisco
2011-01-01
In this paper a two-year field study was carried out to analyse how satisfaction differs across the traditional and blended learning methods. Altogether, 21 courses for graduate and postgraduate engineering students were evaluated. Several variables and their relationship with student satisfaction in the first year, with all courses delivered in…
Comparing Traditional versus Alternative Sequencing of Instruction When Using Simulation Modeling
ERIC Educational Resources Information Center
Bowen, Bradley; DeLuca, William
2015-01-01
Many engineering and technology education classrooms incorporate simulation modeling as part of curricula to teach engineering and STEM-based concepts. The traditional method of the learning process has students first learn the content from the classroom teacher and then may have the opportunity to apply the learned content through simulation…
Science and Engineering Doctorate Production among Minorities with Non-Traditional Backgrounds.
ERIC Educational Resources Information Center
Brazziel, William F.; Brazziel, Marian E.
This study examined the extent to which minority individuals with baccalaureate origins as non-traditional students (baccalaureates completed at age 25 or over) completed doctoral degrees in science and engineering. It compared the efficacy of their degree completion, i.e., elapsed time and registered time to degree, with that of counterparts with…
Teaching the Fundamentals of Cell Phones and Wireless Communications
NASA Astrophysics Data System (ADS)
Davids, Mark; Forrest, Rick; Pata, Don
2010-04-01
Wireless communications are ubiquitous. Students and teachers use iPhones®, BlackBerrys®, and other smart phones at home and at work. More than 275 million Americans had cell phones in June of 2009 and expanded access to broadband is predicted this year.2 Despite the plethora of users, most students and teachers do not understand "how they work." Over the past several years, three high school teachers have collaborated with engineers at Cingular, Motorola, and the University of Michigan to explore the underlying science and design a three-week, student-centered unit with a constructivist pedagogy consistent with the "Modeling in Physics" philosophy.3 This unique pilot program reinforces traditional physics topics including vibrations and waves, sound, light, electricity and magnetism, and also introduces key concepts in communications and information theory. This article will describe the motivation for our work, outline a few key concepts with the corresponding student activities, and provide a summary of the program that has been developed to engage and inspire the next generation of scientists, engineers, and citizens.
NASA Technical Reports Server (NTRS)
Charity, Pamela C.; Klein, Paul B.; Wadhwa, Bhushan
1995-01-01
The Cleveland State University Minority Engineering Program Pipeline consist of programs which foster engineering career awareness, academic enrichment, and professional development for historically underrepresented minority studies. The programs involved are the Access to Careers in Engineering (ACE) Program for high school pre-engineering students: the LINK Program for undergraduate students pursuing degree which include engineering; and the PEP (Pre-calculus Enrichment Program) and EPIC (Enrichment Program in Calculus) mathematics programs for undergraduate academic enrichment. The pipeline is such that high school graduates from the ACE Program who enroll at Cleveland State University in pursuit of engineering degrees are admitted to the LINK Program for undergraduate level support. LINK Program students are among the minority participants who receive mathematics enrichment through the PEP and EPIC Programs for successful completion of their engineering required math courses. THese programs are interdependent and share the goal of preparing minority students for engineering careers by enabling them to achieve academically and obtain college degree and career related experience.
Earth, Meet Pluto: The New Horizons Education and Communications Partnership
NASA Astrophysics Data System (ADS)
Buckley, M.
2015-12-01
The unique partnership between the NASA New Horizons education/communications and public affairs programs tapped into the excitement of visiting an unexplored planet in a new region of the solar system - resulting in unprecedented public participation in and coverage of a planetary mission. With a range of hands-on learning experiences, Web materials and online , the program provided opportunities for students, educators, museums, science centers, the media, Web surfers and other members of the public to ride along on the first mission to Pluto and the Kuiper Belt. The programs leveraged resources, materials and expertise to address a wide range of traditional and nontraditional audiences while providing consistent messages and information on this historic NASA endeavor. The E/C program included a variety of formal lesson plans and learning materials — based on New Horizons science and engineering goals, and aligned with National Research Council's National Science Education Standards — that continue to help students in grades K-12 learn more about science, technology, engineering and mathematics. College students designed and built an actual flight instrument on New Horizons and held internships with the spacecraft integration and test team. New Horizons E/C programs went well beyond the classroom, from a chance for people to send their names to Pluto on board the New Horizons spacecraft before launch, to opportunities for the public to access milestone events and the first-ever close-up views of Pluto in places such as museums, science centers and libraries, TV and the Web — as well as thousands who attended interactive "Plutopalooza" road shows across the country. Teamed with E/C was the public affairs strategy to communicate New Horizons news and messages to media, mission stakeholders, the scientific community and the public. These messages include various aspects of New Horizons, including the progress of the mission and key milestones and achievements; the unique, long-distance operation of the spacecraft and its instruments; and the release of scientific data and results from New Horizons' historic Pluto encounter. Through traditional and social media channels the mission reached billions of people worldwide - and likely inspired millions among the next generation of STEM professionals.
BRIE: The Penn State Biogeochemical Research Initiative for Education
NASA Astrophysics Data System (ADS)
Freeman, K. H.; Brantley, S. L.; Brenchley, J.
2003-12-01
Few scientists are prepared to address the interdisciplinary challenges of biogeochemical research due to disciplinary differences in vocabulary, technique, and scientific paradigm. Thus scientists and engineers trained in traditional disciplines bring a restricted view to the study of environmental systems, which can limit their ability to exploit new techniques and opportunities for scientific advancement. Although the literature is effusive with enthusiasm for interdisciplinary approaches to biogeochemistry, there remains the basic difficulty of cross-training geological and biological scientists. The NSF-IGERT funded Biogeochemical Research Initiative for Education (BRIE) program at Penn State is specifically designed to break down both disciplinary and institutional barriers and it has fostered cross-disciplinary collaboration and training since 1999. Students and faculty are drawn from environmental engineering, geochemistry, soil science, chemistry and microbiology, and the program is regarded on the Penn State campus as a successful example of how interdisciplinary science can best be promoted. There are currently 23 Ph.D. students funded by the program, with an additional 7 affiliated students. At present, a total of 6 students have completed doctoral degrees, and they have done so within normal timeframes. The program is "discipline-plus," whereby students enroll in traditional disciplinary degree programs, and undertake broad training via 12 credits of graduate coursework in other departments. Students are co-advised by faculty from different disciplines, and engage in interdisciplinary research facilitated by research "credit cards." Funding is available for international research experiences, travel to meetings, and other opportunities for professional development. Students help institutionalize interdisciplinary training by designing and conducting a teaching module that shares their expertise with a class in another department or discipline. Community building through social activities and scientific forums is a priority in both the undergraduate and graduate programs. In addition, entering Ph.D. students build cohort identity by taking a course that introduces them to BRIE faculty and research facilities through hands-on laboratory and field-based research activities. The BRIE undergraduate summer internship program has provided interdisciplinary research opportunities for a total of 35 students over the past five summers. This program aims to recruit students to the Ph.D. program, and at present, two Ph.D. students have entered this way. Our efforts have focused on attracting students from under-represented groups. Diversity in this program has been above national norms: and summer students have include 10 (29 %) African-American or Hispanic-American students, and 25 (over 70 %) females. The Ph.D. students and graduates are 50% female, with three students from minority populations.
NASA Astrophysics Data System (ADS)
Perry, S.; Jordan, T.
2006-12-01
Our undergraduate research program, SCEC/UseIT, an NSF Research Experience for Undergraduates site, provides software for earthquake researchers and educators, movies for outreach, and ways to strengthen the technical career pipeline. SCEC/UseIT motivates diverse undergraduates towards science and engineering careers through team-based research in the exciting field of earthquake information technology. UseIT provides the cross-training in computer science/information technology (CS/IT) and geoscience needed to make fundamental progress in earthquake system science. Our high and increasing participation of women and minority students is crucial given the nation"s precipitous enrollment declines in CS/IT undergraduate degree programs, especially among women. UseIT also casts a "wider, farther" recruitment net that targets scholars interested in creative work but not traditionally attracted to summer science internships. Since 2002, SCEC/UseIT has challenged 79 students in three dozen majors from as many schools with difficult, real-world problems that require collaborative, interdisciplinary solutions. Interns design and engineer open-source software, creating increasingly sophisticated visualization tools (see "SCEC-VDO," session IN11), which are employed by SCEC researchers, in new curricula at the University of Southern California, and by outreach specialists who make animated movies for the public and the media. SCEC-VDO would be a valuable tool for research-oriented professional development programs.
Generation of structural topologies using efficient technique based on sorted compliances
NASA Astrophysics Data System (ADS)
Mazur, Monika; Tajs-Zielińska, Katarzyna; Bochenek, Bogdan
2018-01-01
Topology optimization, although well recognized is still widely developed. It has gained recently more attention since large computational ability become available for designers. This process is stimulated simultaneously by variety of emerging, innovative optimization methods. It is observed that traditional gradient-based mathematical programming algorithms, in many cases, are replaced by novel and e cient heuristic methods inspired by biological, chemical or physical phenomena. These methods become useful tools for structural optimization because of their versatility and easy numerical implementation. In this paper engineering implementation of a novel heuristic algorithm for minimum compliance topology optimization is discussed. The performance of the topology generator is based on implementation of a special function utilizing information of compliance distribution within the design space. With a view to cope with engineering problems the algorithm has been combined with structural analysis system Ansys.
Toxicity reduction in industrial effluents
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1990-01-01
Wastewater treatment technology is undergoing a profound transformation as a result of the fundamental changes in regulations and permit requirements. Established design procedures and criteria which have served the industry well for decades are no longer useful. Toxicity reduction requirements have forced reconsideration of design standards and caused practicing environmental engineers to seek additional training in the biological sciences. Formal academic programs have not traditionally provided the cross-training between biologists and engineers which is necessary to address these issues. This book describes not only the process of identifying the toxicity problem, but also the treatment technologies which are applicable tomore » reduction or elimination of toxicity. The information provided in this book is a compilation of the experience of ECK-ENFELDER INC. in serving the environmental needs of major industry, and the experience of the individual contributors in research and consultations.« less
Spatial Visualization Learning in Engineering: Traditional Methods vs. a Web-Based Tool
ERIC Educational Resources Information Center
Pedrosa, Carlos Melgosa; Barbero, Basilio Ramos; Miguel, Arturo Román
2014-01-01
This study compares an interactive learning manager for graphic engineering to develop spatial vision (ILMAGE_SV) to traditional methods. ILMAGE_SV is an asynchronous web-based learning tool that allows the manipulation of objects with a 3D viewer, self-evaluation, and continuous assessment. In addition, student learning may be monitored, which…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jacques Hugo
Traditional engineering methods do not make provision for the integration of human considerations, while traditional human factors methods do not scale well to the complexity of large-scale nuclear power plant projects. Although the need for up-to-date human factors engineering processes and tools is recognised widely in industry, so far no formal guidance has been developed. This article proposes such a framework.
Qu, Hai-bin; Cheng, Yi-yu; Wang, Yue-sheng
2003-10-01
Based on the review of some engineering problems on developing modern production industry of Traditional Chinese Medicine (TCM), the differences of TCM production industry between China and abroad were pointed out. Accelerating the application and extension of high-tech and computer integrated manufacturing system (CIMS) were suggested to promote the technology advancement of TCM industry.
NASA Astrophysics Data System (ADS)
Abbas, Mohammad
Recently developed methodology that provides the direct assessment of traditional thrust-based performance of aerospace vehicles in terms of entropy generation (i.e., exergy destruction) is modified for stand-alone jet engines. This methodology is applied to a specific single-spool turbojet engine configuration. A generic compressor performance map along with modeled engine component performance characterizations are utilized in order to provide comprehensive traditional engine performance results (engine thrust, mass capture, and RPM), for on and off-design engine operation. Details of exergy losses in engine components, across the entire engine, and in the engine wake are provided and the engine performance losses associated with their losses are discussed. Results are provided across the engine operating envelope as defined by operational ranges of flight Mach number, altitude, and fuel throttle setting. The exergy destruction that occurs in the engine wake is shown to be dominant with respect to other losses, including all exergy losses that occur inside the engine. Specifically, the ratio of the exergy destruction rate in the wake to the exergy destruction rate inside the engine itself ranges from 1 to 2.5 across the operational envelope of the modeled engine.
A Generic Software Safety Document Generator
NASA Technical Reports Server (NTRS)
Denney, Ewen; Venkatesan, Ram Prasad
2004-01-01
Formal certification is based on the idea that a mathematical proof of some property of a piece of software can be regarded as a certificate of correctness which, in principle, can be subjected to external scrutiny. In practice, however, proofs themselves are unlikely to be of much interest to engineers. Nevertheless, it is possible to use the information obtained from a mathematical analysis of software to produce a detailed textual justification of correctness. In this paper, we describe an approach to generating textual explanations from automatically generated proofs of program safety, where the proofs are of compliance with an explicit safety policy that can be varied. Key to this is tracing proof obligations back to the program, and we describe a tool which implements this to certify code auto-generated by AutoBayes and AutoFilter, program synthesis systems under development at the NASA Ames Research Center. Our approach is a step towards combining formal certification with traditional certification methods.
Active Flow Control Activities at NASA Langley
NASA Technical Reports Server (NTRS)
Anders, Scott G.; Sellers, William L., III; Washburn, Anthony E.
2004-01-01
NASA Langley continues to aggressively investigate the potential advantages of active flow control over more traditional aerodynamic techniques. This paper provides an update to a previous paper and describes both the progress in the various research areas and the significant changes in the NASA research programs. The goals of the topics presented are focused on advancing the state of knowledge and understanding of controllable fundamental mechanisms in fluids as well as to address engineering challenges. An organizational view of current research activities at NASA Langley in active flow control as supported by several projects is presented. On-center research as well as NASA Langley funded contracts and grants are discussed at a relatively high level. The products of this research are to be demonstrated either in bench-top experiments, wind-tunnel investigations, or in flight as part of the fundamental NASA R&D program and then transferred to more applied research programs within NASA, DOD, and U.S. industry.
Core and Off-Core Processes in Systems Engineering
NASA Technical Reports Server (NTRS)
Breidenthal, Julian; Forsberg, Kevin
2010-01-01
An emerging methodology of organizing systems-engineering plans is based on a concept of core and off-core processes or activities. This concept has emerged as a result of recognition of a risk in the traditional representation of systems-engineering plans by a Vee model alone, according to which a large system is decomposed into levels of smaller subsystems, then integrated through levels of increasing scope until the full system is constructed. Actual systems-engineering activity is more complicated, raising the possibility that the staff will become confused in the absence of plans which explain the nature and ordering of work beyond the traditional Vee model.
Research on fuzzy PID control to electronic speed regulator
NASA Astrophysics Data System (ADS)
Xu, Xiao-gang; Chen, Xue-hui; Zheng, Sheng-guo
2007-12-01
As an important part of diesel engine, the speed regulator plays an important role in stabilizing speed and improving engine's performance. Because there are so many model parameters of diesel-engine considered in traditional PID control and these parameters present non-linear characteristic.The method to adjust engine speed using traditional PID is not considered as a best way. Especially for the diesel-engine generator set. In this paper, the Fuzzy PID control strategy is proposed. Some problems about its utilization in electronic speed regulator are discussed. A mathematical model of electric control system for diesel-engine generator set is established and the way of the PID parameters in the model to affect the function of system is analyzed. And then it is proposed the differential coefficient must be applied in control design for reducing dynamic deviation of system and adjusting time. Based on the control theory, a study combined control with PID calculation together for turning fuzzy PID parameter is implemented. And also a simulation experiment about electronic speed regulator system was conducted using Matlab/Simulink and the Fuzzy-Toolbox. Compared with the traditional PID Algorithm, the simulated results presented obvious improvements in the instantaneous speed governing rate and steady state speed governing rate of diesel-engine generator set when the fuzzy logic control strategy used.
New Technology Sparks Smoother Engines and Cleaner Air
NASA Technical Reports Server (NTRS)
2001-01-01
Automotive Resources, Inc. (ARI) has developed a new device for igniting fuel in engines-the SmartPlug.TM SmartPlug is a self-contained ignition system that may be retrofitted to existing spark-ignition and compression-ignition engines. The SmartPlug needs as little as six watts of power for warm-up, and requires no electricity at all when the engine is running. Unlike traditional spark plugs, once the SmartPlug ignites the engine, and the engine heats up, the power supply for the plug is no longer necessary. In the utility industry, SmartPlugs can be used in tractors, portable generators, compressors, and pumps. In addition to general-purpose applications, such as lawn mowers and chainsaws, SmartPlugs can also be used in the recreational, marine, aviation, and automotive industries. Unlike traditional ignition systems, the SmartPlug system requires no distributor, coil points, or moving parts. SmartPlugs are non-fouling, with a faster and cleaner burn than traditional spark plugs. They prevent detonation and are not sensitive to moisture, allowing them to be used on a variety of engines. Other advantages include no electrical noise, no high voltage, exceptionally high altitude capabilities, and better cold-start statistics than those of standard spark ignition systems. Future applications for the SmartPlug are being evaluated by manufacturers in the snowmobile industry.
Building a pipeline of talent for operating radio observatories
NASA Astrophysics Data System (ADS)
Wingate, Lory M.
2016-07-01
The National Radio Astronomy Observatory's (NRAO) National and International Non-Traditional Exchange (NINE) Program teaches concepts of project management and systems engineering in a focused, nine-week, continuous effort that includes a hands-on build project with the objective of constructing and verifying the performance of a student-level basic radio instrument. The combination of using a project management (PM)/systems engineering (SE) methodical approach based on internationally recognized standards in completing this build is to demonstrate clearly to the learner the positive net effects of following methodical approaches to achieving optimal results. It also exposes the learner to basic radio science theory. An additional simple research project is used to impress upon the learner both the methodical approach, and to provide a basic understanding of the functional area of interest to the learner. This program is designed to teach sustainable skills throughout the full spectrum of activities associated with constructing, operating and maintaining radio astronomy observatories. NINE Program learners thereby return to their host sites and implement the program in their own location as a NINE Hub. This requires forming a committed relationship (through a formal Letter of Agreement), establishing a site location, and developing a program that takes into consideration the needs of the community they represent. The anticipated outcome of this program is worldwide partnerships with fast growing radio astronomy communities designed to facilitate the exchange of staff and the mentoring of under-represented1 groups of learners, thereby developing a strong pipeline of global talent to construct, operate and maintain radio astronomy observatories.
NASA Astrophysics Data System (ADS)
Ajhar, Edward A.; Blackwell, E.; Quesada, D.
2010-05-01
In South Florida, science teacher preparation is often weak as a shortage of science teachers often prompts administrators to assign teachers to science classes just to cover the classroom needs. This results is poor preparation of students for college science course work, which, in turn, causes the next generation of science teachers to be even weaker than the first. This cycle must be broken in order to prepare better students in the sciences. At St. Thomas University in Miami Gardens, Florida, our School of Science has teamed with our Institute for Education to create a program to alleviate this problem: A Master of Science in Education with a Concentration in Earth/Space Science. The Master's program consists of 36 total credits. Half the curriculum consists of traditional educational foundation and instructional leadership courses while the other half is focused on Earth and Space Science content courses. The content area of 18 credits also provides a separate certificate program. Although traditional high school science education places a heavy emphasis on Earth Science, this program expands that emphasis to include the broader context of astronomy, astrophysics, astrobiology, planetary science, and the practice and philosophy of science. From this contextual basis the teacher is better prepared to educate and motivate middle and high school students in all areas of the physical sciences. Because hands-on experience is especially valuable to educators, our program uses materials and equipment including small optical telescopes (Galileoscopes), several 8-in and 14-in Celestron and Meade reflectors, and a Small Radio Telescope installed on site. (Partial funding provided by the US Department of Education through Minority Science and Engineering Improvement Program grant P120A050062.)
ERIC Educational Resources Information Center
Halupa, Colleen M.; Caldwell, Benjamin W.
2015-01-01
This quasi-experimental research study evaluated two intact undergraduate engineering statics classes at a private university in Texas. Students in the control group received traditional lecture, readings and homework assignments. Those in the experimental group also were given access to a complete set of online video lectures and videos…
ERIC Educational Resources Information Center
Pizzolato, Nicola; Fazio, Claudio; Sperandeo Mineo, Rosa Maria; Persano Adorno, Dominique
2014-01-01
This paper addresses the efficacy of an open-inquiry approach that allows students to build on traditionally received knowledge. A sample of thirty engineering undergraduates, having already attended traditional university physics instruction, was selected for this study. The students were involved in a six-week long learning experience of…
Update of GRASP/Ada reverse engineering tools for Ada
NASA Technical Reports Server (NTRS)
Cross, James H., II
1992-01-01
The GRASP/Ada project (Graphical Representations of Algorithms, Structures, and Processes for Ada) has successfully created and prototyped a new algorithmic level graphical representation of Ada software, the Control Structure Diagram (CSD). The primary impetus for creation of the CSD was to improve the comprehension efficiency of Ada software and, as a result, improve reliability and reduce costs. The emphasis was on the automatic generation of the CSD from Ada PDL or source code to support reverse engineering and maintenance. The CSD has the potential to replace traditional prettyprinted Ada source code. In Phase 1 of the GRASP/Ada project, the CSD graphical constructs were created and applied manually to several small Ada programs. A prototype (Version 1) was designed and implemented using FLEX and BISON running under VMS on a VAS 11-780. In Phase 2, the prototype was improved and ported to the Sun 4 platform under UNIX. A user interface was designed and partially implemented using the HP widget toolkit and the X Windows System. In Phase 3, the user interface was extensively reworked using the Athena widget toolkit and X Windows. The prototype was applied successfully to numerous Ada programs ranging in size from several hundred to several thousand lines of source code. Following Phase 3, the prototype was evaluated by software engineering students at Auburn University and then updated with significant enhancements to the user interface including editing capabilities. Version 3.2 of the prototype was prepared for limited distribution to facilitate further evaluation. The current prototype provides the capability for the user to generate CSD's from Ada PDL or source code in a reverse engineering as well as forward engineering mode with a level of flexibility suitable for practical application.
NASA Astrophysics Data System (ADS)
Johnson, Clifford V.
2014-10-01
It is shown that in theories of gravity where the cosmological constant is considered a thermodynamic variable, it is natural to use black holes as heat engines. Two examples are presented in detail using AdS charged black holes as the working substance. We notice that for static black holes, the maximally efficient traditional Carnot engine is also a Stirling engine. The case of negative cosmological constant supplies a natural realization of these engines in terms of the field theory description of the fluids to which they are holographically dual. We first propose a precise picture of how the traditional thermodynamic dictionary of holography is extended when the cosmological constant is dynamical and then conjecture that the engine cycles can be performed by using renormalization group flow. We speculate about the existence of a natural dual field theory counterpart to the gravitational thermodynamic volume.
Physics First: Impact on SAT Math Scores
NASA Astrophysics Data System (ADS)
Bouma, Craig E.
Improving science, technology, engineering, and mathematics (STEM) education has become a national priority and the call to modernize secondary science has been heard. A Physics First (PF) program with the curriculum sequence of physics, chemistry, and biology (PCB) driven by inquiry- and project-based learning offers a viable alternative to the traditional curricular sequence (BCP) and methods of teaching, but requires more empirical evidence. This study determined impact of a PF program (PF-PCB) on math achievement (SAT math scores) after the first two cohorts of students completed the PF-PCB program at Matteo Ricci High School (MRHS) and provided more quantitative data to inform the PF debate and advance secondary science education. Statistical analysis (ANCOVA) determined the influence of covariates and revealed that PF-PCB program had a significant (p < .05) impact on SAT math scores in the second cohort at MRHS. Statistically adjusted, the SAT math means for PF students were 21.4 points higher than their non-PF counterparts when controlling for prior math achievement (HSTP math), socioeconomic status (SES), and ethnicity/race.
X-33 Attitude Control Using the XRS-2200 Linear Aerospike Engine
NASA Technical Reports Server (NTRS)
Hall, Charles E.; Panossian, Hagop V.
1999-01-01
The Vehicle Control Systems Team at Marshall Space Flight Center, Structures and Dynamics Laboratory, Guidance and Control Systems Division is designing, under a cooperative agreement with Lockheed Martin Skunkworks, the Ascent, Transition, and Entry flight attitude control systems for the X-33 experimental vehicle. Test flights, while suborbital, will achieve sufficient altitudes and Mach numbers to test Single Stage To Orbit, Reusable Launch Vehicle technologies. Ascent flight control phase, the focus of this paper, begins at liftoff and ends at linear aerospike main engine cutoff (MECO). The X-33 attitude control system design is confronted by a myriad of design challenges: a short design cycle, the X-33 incremental test philosophy, the concurrent design philosophy chosen for the X-33 program, and the fact that the attitude control system design is, as usual, closely linked to many other subsystems and must deal with constraints and requirements from these subsystems. Additionally, however, and of special interest, the use of the linear aerospike engine is a departure from the gimbaled engines traditionally used for thrust vector control (TVC) in launch vehicles and poses certain design challenges. This paper discusses the unique problem of designing the X-33 attitude control system with the linear aerospike engine, requirements development, modeling and analyses that verify the design.
NASA Astrophysics Data System (ADS)
Wang, Liwei; Liu, Xinggao; Zhang, Zeyin
2017-02-01
An efficient primal-dual interior-point algorithm using a new non-monotone line search filter method is presented for nonlinear constrained programming, which is widely applied in engineering optimization. The new non-monotone line search technique is introduced to lead to relaxed step acceptance conditions and improved convergence performance. It can also avoid the choice of the upper bound on the memory, which brings obvious disadvantages to traditional techniques. Under mild assumptions, the global convergence of the new non-monotone line search filter method is analysed, and fast local convergence is ensured by second order corrections. The proposed algorithm is applied to the classical alkylation process optimization problem and the results illustrate its effectiveness. Some comprehensive comparisons to existing methods are also presented.
Tour of Research Laboratories at the Ford Company
NASA Astrophysics Data System (ADS)
Reitz, J. R.
1981-01-01
A brief description of the physics programs encountered on the tour of the Ford Motor Company Research Laboratories is provided. A visit to the Research Laboratories of the Ford Motor Company is part of the Conference on Physics in the Automotive Industry. The visit will show a cross-section of the programs in Research Staff which are clearly identified as physics research as well as other areas where physicists have established themselves as dominant or team members in what might traditionally be regarded as the province of engineering R&D. After a brief orientation, the Conference visitors will be divided into tour groups and will visit laboratories involved in combustion research, arc-discharge physics, various spectroscopic applications, metal gauging, energy management, optical display systems and solar energy research. Synopses of the specific tour visits follow.
A Disturbance Rejection Framework for the Study of Traditional Chinese Medicine
Sun, Yan
2014-01-01
The traditional Chinese medicine (TCM) is explained in the language of engineering cybernetics (EC), an engineering science with the tradition of rigor and long history of practice. The inherent connection is articulated between EC, as a science of interrelations, and the Chinese conception of Wuxing. The combined cybernetic model of Wuxing seems to have significant explaining power for the TCM and could potentially facilitate better communications of the insights of the TCM to the West. In disturbance rejection, an engineering concept, a great metaphor, is found to show how the TCM is practiced, using the liver cancer pathogenesis and treatment as a case study. The results from a series of experimental studies seem to lend support to the cybernetic model of Wuxing and the principles of disturbance rejection. PMID:24995034
Designing Liquid Rocket Engine Injectors for Performance, Stability, and Cost
NASA Technical Reports Server (NTRS)
Westra, Douglas G.; West, Jeffrey S.
2014-01-01
NASA is developing the Space Launch System (SLS) for crewed exploration missions beyond low Earth orbit. Marshall Space Flight Center (MSFC) is designing rocket engines for the SLS Advanced Booster (AB) concepts being developed to replace the Shuttle-derived solid rocket boosters. One AB concept uses large, Rocket-Propellant (RP)-fueled engines that pose significant design challenges. The injectors for these engines require high performance and stable operation while still meeting aggressive cost reduction goals for access to space. Historically, combustion stability problems have been a critical issue for such injector designs. Traditional, empirical injector design tools and methodologies, however, lack the ability to reliably predict complex injector dynamics that often lead to combustion stability. Reliance on these tools alone would likely result in an unaffordable test-fail-fix cycle for injector development. Recently at MSFC, a massively parallel computational fluid dynamics (CFD) program was successfully applied in the SLS AB injector design process. High-fidelity reacting flow simulations were conducted for both single-element and seven-element representations of the full-scale injector. Data from the CFD simulations was then used to significantly augment and improve the empirical design tools, resulting in a high-performance, stable injector design.
Cheaper Adjoints by Reversing Address Computations
Hascoët, L.; Utke, J.; Naumann, U.
2008-01-01
The reverse mode of automatic differentiation is widely used in science and engineering. A severe bottleneck for the performance of the reverse mode, however, is the necessity to recover certain intermediate values of the program in reverse order. Among these values are computed addresses, which traditionally are recovered through forward recomputation and storage in memory. We propose an alternative approach for recovery that uses inverse computation based on dependency information. Address storage constitutes a significant portion of the overall storage requirements. An example illustrates substantial gains that the proposed approach yields, and we show use cases in practical applications.
NASA Astrophysics Data System (ADS)
Segret, Boris; Semery, Alain; Vannitsen, Jordan; Mosser, Benoît.; Miau, Jiun-Jih; Juang, Jyh-Ching; Deleflie, Florent
2014-08-01
The AGILE principles in the software industry seems well adapted to the paradigm of CubeSat missions that involve students for the development of space missions. Some of well-known engineering and program processes are revisited on the example of an interplanetary CubeSat mission profile that has been developed by several teams of students in various countries and at various educational levels since 02/2013. The lessons learned at adapting traditional space mission methods are emphasized and they produce a metaphoric image of paving stones.
Kids with disabilities inspire a musical instrument
Daily, Dan; Pfeifer, Kent
2018-02-14
The Midiwing is a musical instrument that unites music and computer technology for those who lack the experience, physical ability, or maturity to play music with traditional instruments. To create the instrument, Dan Daily, Director of Musicode Innovations, reworked and recoded Musical Instrument Digital Interface (MIDI) technology and introduced ergonomic design. He applied to the New Mexico Small Business Assistance (NMSBA) Program to receive help when he discovered the microcontroller he used was being phased out. Daily and Kent Pfeifer, an engineer at Sandia National Laboratories and musician himself, partnered to create a new state-of-the-art design.
Kids with disabilities inspire a musical instrument
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daily, Dan; Pfeifer, Kent
The Midiwing is a musical instrument that unites music and computer technology for those who lack the experience, physical ability, or maturity to play music with traditional instruments. To create the instrument, Dan Daily, Director of Musicode Innovations, reworked and recoded Musical Instrument Digital Interface (MIDI) technology and introduced ergonomic design. He applied to the New Mexico Small Business Assistance (NMSBA) Program to receive help when he discovered the microcontroller he used was being phased out. Daily and Kent Pfeifer, an engineer at Sandia National Laboratories and musician himself, partnered to create a new state-of-the-art design.
NASA Astrophysics Data System (ADS)
Shea, John E.
The structure of engineering curricula currently in place at most colleges and universities has existed since the early 1950's, and reflects an historical emphasis on a solid foundation in math, science, and engineering science. However, there is often not a close match between elements of the traditional engineering education, and the skill sets that graduates need to possess for success in the industrial environment. Considerable progress has been made to restructure engineering courses and curricula. What is lacking, however, are tools and methodologies that incorporate the many dimensions of college courses, and how they are structured to form a curriculum. If curriculum changes are to be made, the first objective must be to determine what knowledge and skills engineering graduates need to possess. To accomplish this, a set of engineering competencies was developed from existing literature, and used in the development of a comprehensive mail survey of alumni, employers, students and faculty. Respondents proposed some changes to the topics in the curriculum and recommended that work to improve the curriculum be focused on communication, problem solving and people skills. The process of designing a curriculum is similar to engineering design, with requirements that must be met, and objectives that must be optimized. From this similarity came the idea for developing a linear, additive, multi-objective model that identifies the objectives that must be considered when designing a curriculum, and contains the mathematical relationships necessary to quantify the value of a specific alternative. The model incorporates the three primary objectives of engineering topics, skills, and curriculum design principles and uses data from the survey. It was used to design new courses, to evaluate various curricula alternatives, and to conduct sensitivity analysis to better understand their differences. Using the multi-objective model to identify the highest scoring curriculum from a catalog of courses is difficult because of the many factors being considered. To assist this process, the multi-objective model and the curriculum requirements were incorporated in a linear program to select the "optimum" curriculum. The application of this tool was also beneficial in identifying the active constraints that limit curriculum development and content.
NASA Technical Reports Server (NTRS)
Garg, Sanjay
2014-01-01
This lecture will provide an overview of the aircraft turbine engine control research at NASA (National Aeronautics and Space Administration) Glenn Research Center (GRC). A brief introduction to the engine control problem is first provided with a description of the current state-of-the-art control law structure. A historical aspect of engine control development since the 1940s is then provided with a special emphasis on the contributions of GRC. The traditional engine control problem has been to provide a means to safely transition the engine from one steady-state operating point to another based on the pilot throttle inputs. With the increased emphasis on aircraft safety, enhanced performance and affordability, and the need to reduce the environmental impact of aircraft, there are many new challenges being faced by the designers of aircraft propulsion systems. The Controls and Dynamics Branch (CDB) at GRC is leading and participating in various projects in partnership with other organizations within GRC and across NASA, other government agencies, the U.S. aerospace industry, and academia to develop advanced propulsion controls and diagnostics technologies that will help meet the challenging goals of NASA programs under the Aeronautics Research Mission. The second part of the lecture provides an overview of the various CDB technology development activities in aircraft engine control and diagnostics, both current and some accomplished in the recent past. The motivation for each of the research efforts, the research approach, technical challenges and the key progress to date are summarized. The technologies to be discussed include system level engine control concepts, gas path diagnostics, active component control, and distributed engine control architecture. The lecture will end with a futuristic perspective of how the various current technology developments will lead to an Intelligent and Autonomous Propulsion System requiring none to very minimum pilot interface, interfacing directly with the flight management system to determine its mode of operation, and providing personalized engine control to optimize its performance given the current condition and mission objectives.
Sustainable Development and Energy Geotechnology Potential Roles for Geotechnical Engineering
DOE Office of Scientific and Technical Information (OSTI.GOV)
FragaszyProgram Dire, Dr. R. J.; Santamarina, Carlos; Espinoza, N.
2011-01-01
The world is facing unprecedented challenges related to energy resources, global climate change, material use, and waste generation. Failure to address these challenges will inhibit the growth of the developing world and will negatively impact the standard of living and security of future generations in all nations. The solutions to these challenges will require multidisciplinary research across the social and physical sciences and engineering. Although perhaps not always recognized, geotechnical engineering expertise is critical to the solution of many energy and sustainability-related problems. Hence, geotechnical engineers and academicians have opportunity and responsibility to contribute to the solution of these worldwidemore » problems. Research will need to be extended to non-standard issues such as thermal properties of soils; sediment and rock response to extreme conditions and at very long time scales; coupled hydro-chemo-thermo-bio-mechanical processes; positive feedback systems; the development of discontinuities; biological modification of soil properties; spatial variability; and emergent phenomena. Clearly, the challenges facing geotechnical engineering in the future will require a much broader knowledge base than our traditional educational programs provide. The geotechnical engineering curricula, from undergraduate education through continuing professional education, must address the changing needs of a profession that will increasingly be engaged in alternative/renewable energy production; energy efficiency; sustainable design, enhanced and more efficient use of natural resources, waste management, and underground utilization.« less
A generalized sizing method for revolutionary concepts under probabilistic design constraints
NASA Astrophysics Data System (ADS)
Nam, Taewoo
Internal combustion (IC) engines that consume hydrocarbon fuels have dominated the propulsion systems of air-vehicles for the first century of aviation. In recent years, however, growing concern over rapid climate changes and national energy security has galvanized the aerospace community into delving into new alternatives that could challenge the dominance of the IC engine. Nevertheless, traditional aircraft sizing methods have significant shortcomings for the design of such unconventionally powered aircraft. First, the methods are specialized for aircraft powered by IC engines, and thus are not flexible enough to assess revolutionary propulsion concepts that produce propulsive thrust through a completely different energy conversion process. Another deficiency associated with the traditional methods is that a user of these methods must rely heavily on experts' experience and advice for determining appropriate design margins. However, the introduction of revolutionary propulsion systems and energy sources is very likely to entail an unconventional aircraft configuration, which inexorably disqualifies the conjecture of such "connoisseurs" as a means of risk management. Motivated by such deficiencies, this dissertation aims at advancing two aspects of aircraft sizing: (1) to develop a generalized aircraft sizing formulation applicable to a wide range of unconventionally powered aircraft concepts and (2) to formulate a probabilistic optimization technique that is able to quantify appropriate design margins that are tailored towards the level of risk deemed acceptable to a decision maker. A more generalized aircraft sizing formulation, named the Architecture Independent Aircraft Sizing Method (AIASM), was developed for sizing revolutionary aircraft powered by alternative energy sources by modifying several assumptions of the traditional aircraft sizing method. Along with advances in deterministic aircraft sizing, a non-deterministic sizing technique, named the Probabilistic Aircraft Sizing Method (PASM), was developed. The method allows one to quantify adequate design margins to account for the various sources of uncertainty via the application of the chance-constrained programming (CCP) strategy to AIASM. In this way, PASM can also provide insights into a good compromise between cost and safety.
Aristotle and Autism: Reconsidering a Radical Shift to Virtue Ethics in Engineering.
Furey, Heidi
2017-04-01
Virtue-based approaches to engineering ethics have recently received considerable attention within the field of engineering education. Proponents of virtue ethics in engineering argue that the approach is practically and pedagogically superior to traditional approaches to engineering ethics, including the study of professional codes of ethics and normative theories of behavior. This paper argues that a virtue-based approach, as interpreted in the current literature, is neither practically or pedagogically effective for a significant subpopulation within engineering: engineers with high functioning autism spectrum disorder (ASD). Because the main argument for adopting a character-based approach is that it could be more successfully applied to engineering than traditional rule-based or algorithmic ethical approaches, this oversight is problematic for the proponents of the virtue-based view. Furthermore, without addressing these concerns, the wide adoption of a virtue-based approach to engineering ethics has the potential to isolate individuals with ASD and to devalue their contributions to moral practice. In the end, this paper gestures towards a way of incorporating important insights from virtue ethics in engineering that would be more inclusive of those with ASD.
Management Approach for NASA's Earth Venture-1 (EV-1) Airborne Science Investigations
NASA Technical Reports Server (NTRS)
Guillory, Anthony R.; Denkins, Todd C.; Allen, B. Danette
2013-01-01
The Earth System Science Pathfinder (ESSP) Program Office (PO) is responsible for programmatic management of National Aeronautics and Space Administration's (NASA) Science Mission Directorate's (SMD) Earth Venture (EV) missions. EV is composed of both orbital and suborbital Earth science missions. The first of the Earth Venture missions is EV-1, which are Principal Investigator-led, temporally-sustained, suborbital (airborne) science investigations costcapped at $30M each over five years. Traditional orbital procedures, processes and standards used to manage previous ESSP missions, while effective, are disproportionally comprehensive for suborbital missions. Conversely, existing airborne practices are primarily intended for smaller, temporally shorter investigations, and traditionally managed directly by a program scientist as opposed to a program office such as ESSP. In 2010, ESSP crafted a management approach for the successful implementation of the EV-1 missions within the constructs of current governance models. NASA Research and Technology Program and Project Management Requirements form the foundation of the approach for EV-1. Additionally, requirements from other existing NASA Procedural Requirements (NPRs), systems engineering guidance and management handbooks were adapted to manage programmatic, technical, schedule, cost elements and risk. As the EV-1 missions are nearly at the end of their successful execution and project lifecycle and the submission deadline of the next mission proposals near, the ESSP PO is taking the lessons learned and updated the programmatic management approach for all future Earth Venture Suborbital (EVS) missions for an even more flexible and streamlined management approach.
ERIC Educational Resources Information Center
Egbert, Robert I.; Stone, Lorene H.; Adams, David L.
2011-01-01
Four-year cooperative engineering programs are becoming more common in the United States. Cooperative engineering programs typically involve a "parent" institution with an established engineering program and one or more "satellite" institutions which typically have few or no engineering programs and are located in an area where…
Outreach to Scientists and Engineers at the Hanford Technical Library
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buxton, Karen A.
Staff at the Hanford Technical Library has developed a suite of programs designed to help busy researchers at the Pacific Northwest National Laboratory (PNNL) make better use of library products and services. Programs include formal training classes, one-on-one consultations, and targeted email messages announcing new materials to researchers in specific fields. A staple of outreach has been to teach classes to library clients covering research tools in their fields. These classes started out in the library classroom and then expanded to other venues around PNNL. Class surveys indicated that many researchers desired a practical approach to learning rather than themore » traditional lecture format. The library instituted “Library Learning Day” and hosted classes in the PNNL computer training room to provide lab employees with a hands-on learning experience. Classes are generally offered at noon and lab staff attends classes on their lunch hour. Many just do not have time to spend a full hour in training. Library staff added some experimental half-hour mini classes in campus buildings geared to the projects and interests of researchers there to see if this format was more appealing. As other programs have developed librarians are teaching fewer classes but average attendance figures has remained fairly stable from 2005-2007. In summer of 2004 the library began the Traveling Librarian program. Librarians call-on groups and individuals in 24 buildings on the Richland Washington campus. Five full-time and two part-time librarians are involved in the program. Librarians usually send out email announcements prior to visits and encourage scientists and engineers to make appointments for a brief 15 minute consultation in the researcher’s own office. During the meeting lab staff learn about products or product features that can help them work more productively. Librarians also make cold calls to staff that do not request a consultation and may not be making full use of the library. Scientists and engineers who require longer sessions can arrange half-hour training appointments in the researcher’s own office or at the library. Since the program was implemented staff made 165 visits to 1249 laboratory staff including some repeat consultation requests. New acquisitions lists are sent to individuals and groups that would be interested in recent journal, database, and books purchases. These lists are topic specific and targeted to groups and individuals with an interest in the field. For example newly acquired engineering resources are targeted at engineering groups. The new acquisitions list for engineering began mid year in 2005. An analysis of circulation statistics for engineering books in fiscal year 2005, 2006, and 2007 show that circulation increased each year with 2007 circulation nearly double that of 2005. This took place when overall circulation rose in FY06 but fell slightly in FY07. Outreach strategies tailored and individualized can be effective. Offering multiple outreach options offers researchers different ways to interact with library staff and services.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
The Mira supercomputer at the Argonne Leadership Computing Facility helped Argonne researchers model what happens inside an engine when you use gasoline in a diesel engine. Engineers are exploring this type of combustion as a sustainable transportation option because it may be more efficient than traditional gasoline combustion engines but produce less soot than diesel.
Teaching Teachers to Teach Green Engineering
ERIC Educational Resources Information Center
Flynn, Ann Marie; Naraghi, Mohammad H.; Austin, Nicole; Helak, Sean; Manzer, Jarrod
2006-01-01
The work provides guidelines for instructors who wish to incorporate green engineering concepts into a typical non-green engineering course without diluting course content or modifying the course syllabus by identifying 5 critical elements necessary to the successful integration of green engineering concepts into any traditional, design-oriented,…
Engineering Encounters: Catch Me if You Can!
ERIC Educational Resources Information Center
Lott, Kimberly; Wallin, Mark; Roghaar, Deborah; Price, Tyson
2013-01-01
A science, technology, engineering, and math (STEM) activity is any activity that integrates the use of science, technology, engineering, and mathematics to solve a problem. Traditionally, STEM activities are highly engaging and may involve competition among student teams. Young children are natural engineers and often times spontaneously build…
Ares I-X Roll Control System Development
NASA Technical Reports Server (NTRS)
Unger, Ronald J.; Massey, Edmund C.
2009-01-01
Project Managers often face challenging technical, schedule and budget issues. This presentation will explore how the Ares I-X Roll Control System Integrated Product Team (IPT) mitigated challenges such as concurrent engineering requirements and environments and evolving program processes, while successfully managing an aggressive project schedule and tight budget. IPT challenges also included communications and negotiations among inter- and intra-government agencies, including the US Air Force, NASA/MSFC Propulsion Engineering, LaRC, GRC, KSC, WSTF, and the Constellation Program. In order to successfully meet these challenges it was essential that the IPT define those items that most affected the schedule critical path, define early mitigation strategies to reduce technical, schedule, and budget risks, and maintain the end-product focus of an "unmanned test flight" context for the flight hardware. The makeup of the IPT and how it would function were also important considerations. The IPT consisted of NASA/MSFC (project management, engineering, and safety/quality) and contractors (Teledyne Brown Engineering and Pratt and Whitney Rocketdyne, who supplied heritage hardware experience). The early decision to have a small focused IPT working "badgelessly" across functional lines to eliminate functional stove-piping allowed for many more tasks to be done by fewer people. It also enhanced a sense of ownership of the products, while still being able to revert back to traditional roles in order to provide the required technical independence in design reviews and verification closures. This presentation will highlight several prominent issues and discuss how they were mitigated and the resulting Lessons Learned that might benefit other projects.
The Max Launch Abort System - Concept, Flight Test, and Evolution
NASA Technical Reports Server (NTRS)
Gilbert, Michael G.
2014-01-01
The NASA Engineering and Safety Center (NESC) is an independent engineering analysis and test organization providing support across the range of NASA programs. In 2007 NASA was developing the launch escape system for the Orion spacecraft that was evolved from the traditional tower-configuration escape systems used for the historic Mercury and Apollo spacecraft. The NESC was tasked, as a programmatic risk-reduction effort to develop and flight test an alternative to the Orion baseline escape system concept. This project became known as the Max Launch Abort System (MLAS), named in honor of Maxime Faget, the developer of the original Mercury escape system. Over the course of approximately two years the NESC performed conceptual and tradeoff analyses, designed and built full-scale flight test hardware, and conducted a flight test demonstration in July 2009. Since the flight test, the NESC has continued to further develop and refine the MLAS concept.
An undergraduate course, and new textbook, on ``Physical Models of Living Systems''
NASA Astrophysics Data System (ADS)
Nelson, Philip
2015-03-01
I'll describe an intermediate-level course on ``Physical Models of Living Systems.'' The only prerequisite is first-year university physics and calculus. The course is a response to rapidly growing interest among undergraduates in several science and engineering departments. Students acquire several research skills that are often not addressed in traditional courses, including: basic modeling skills, probabilistic modeling skills, data analysis methods, computer programming using a general-purpose platform like MATLAB or Python, dynamical systems, particularly feedback control. These basic skills, which are relevant to nearly any field of science or engineering, are presented in the context of case studies from living systems, including: virus dynamics; bacterial genetics and evolution of drug resistance; statistical inference; superresolution microscopy; synthetic biology; naturally evolved cellular circuits. Publication of a new textbook by WH Freeman and Co. is scheduled for December 2014. Supported in part by EF-0928048 and DMR-0832802.
Stryjewska, Agnieszka; Kiepura, Katarzyna; Librowski, Tadeusz; Lochyński, Stanisław
2013-01-01
Industrial biotechnology has been defined as the use and application of biotechnology for the sustainable processing and production of chemicals, materials and fuels. It makes use of biocatalysts such as microbial communities, whole-cell microorganisms or purified enzymes. In the review these processes are described. Drug design is an iterative process which begins when a chemist identifies a compound that displays an interesting biological profile and ends when both the activity profile and the chemical synthesis of the new chemical entity are optimized. Traditional approaches to drug discovery rely on a stepwise synthesis and screening program for large numbers of compounds to optimize activity profiles. Over the past ten to twenty years, scientists have used computer models of new chemical entities to help define activity profiles, geometries and relativities. This article introduces inter alia the concepts of molecular modelling and contains references for further reading.
Rasmussen's legacy: A paradigm change in engineering for safety.
Leveson, Nancy G
2017-03-01
This paper describes three applications of Rasmussen's idea to systems engineering practice. The first is the application of the abstraction hierarchy to engineering specifications, particularly requirements specification. The second is the use of Rasmussen's ideas in safety modeling and analysis to create a new, more powerful type of accident causation model that extends traditional models to better handle human-operated, software-intensive, sociotechnical systems. Because this new model has a formal, mathematical foundation built on systems theory (as was Rasmussen's original model), new modeling and analysis tools become possible. The third application is to engineering hazard analysis. Engineers have traditionally either omitted human from consideration in system hazard analysis or have treated them rather superficially, for example, that they behave randomly. Applying Rasmussen's model of human error to a powerful new hazard analysis technique allows human behavior to be included in engineering hazard analysis. Copyright © 2016 Elsevier Ltd. All rights reserved.
[Theory and practice of bionic cultivation of traditional Chinese medicine].
Liu, Dahui; Huang, Luqi; Guo, Lanping; Shao, Aijuan; Chen, Meilan
2009-03-01
The bionic cultivation of medicinal plant is an ecological cultivation pattern, which is adopting ecological engineering and modern agricultural techniques to simulate the natural ecosystem of wild medicinal plant community, and has been given greater attention on the agriculture of traditional Chinese medicine (TCM). It is also the cross subject that combines Chinese traditional medicine, agronomy, horticulture, ecology, agricultural engineering and management. Moreover, it has significant technology advantages of promoting the sustainable utilization of medicinal plant resources, improving the ecological environment and harmonizing man and nature. So it's important to develop the bionic cultivation of TCM.
Effectiveness of an ethics course delivered in traditional and non-traditional formats.
Feldhaus, Charles R; Fox, Patricia L
2004-04-01
This paper details a three-credit-hour undergraduate ethics course that was delivered using traditional, distance, and compressed formats. OLS 263: Ethical Decisions in Leadership is a 200-level course offered by the Department of Organizational Leadership and Supervision in the Purdue School of Engineering and Technology at Indiana University Purdue University Indianapolis (IUPUI). Students in engineering, technology, business, nursing, and other majors take the course. In an effort to determine student perceptions of course and instructor effectiveness, end-of-course student survey data were compared using data from traditional, distance, and compressed sections of the course. In addition, learning outcomes from the final course project were evaluated using a standardized assessment rubric and scores on the course project.
Retrospective Perceptions and Views of Engineering Students about Physics and Engineering Practicals
ERIC Educational Resources Information Center
Bhathal, R.
2011-01-01
Hands-on practical work in physics and engineering has a long and well-established tradition in Australian universities. Recently, however, the question of whether hands-on physics and engineering practicals are useful for engineering students and whether they could be deleted or whether these could be replaced with computer simulations has been…
Traditional Engineering Graphics versus Computer-Aided Drafting: A View from Academe.
ERIC Educational Resources Information Center
Foster, Robert J.
1987-01-01
Argues for a legitimate role of manually expressed engineering graphics within engineering education as a needed support for computer-assisted drafting work. Discusses what and how students should learn as well as trends in engineering graphics education. Compares and contrasts manual and computer drafting methods. (CW)
About, for, in or through Entrepreneurship in Engineering Education
ERIC Educational Resources Information Center
Mäkimurto-Koivumaa, Soili; Belt, Pekka
2016-01-01
Engineering competences form a potential basis for entrepreneurship. There are pressures to find new approaches to entrepreneurship education (EE) in engineering education, as the traditional analytical logic of engineering does not match the modern view of entrepreneurship. Since the previous models do not give tangible enough tools on how to…
A system management methodology for building successful resource management systems
NASA Technical Reports Server (NTRS)
Hornstein, Rhoda Shaller; Willoughby, John K.
1989-01-01
This paper presents a system management methodology for building successful resource management systems that possess lifecycle effectiveness. This methodology is based on an analysis of the traditional practice of Systems Engineering Management as it applies to the development of resource management systems. The analysis produced fifteen significant findings presented as recommended adaptations to the traditional practice of Systems Engineering Management to accommodate system development when the requirements are incomplete, unquantifiable, ambiguous and dynamic. Ten recommended adaptations to achieve operational effectiveness when requirements are incomplete, unquantifiable or ambiguous are presented and discussed. Five recommended adaptations to achieve system extensibility when requirements are dynamic are also presented and discussed. The authors conclude that the recommended adaptations to the traditional practice of Systems Engineering Management should be implemented for future resource management systems and that the technology exists to build these systems extensibly.
Stereoscopic display of 3D models for design visualization
NASA Astrophysics Data System (ADS)
Gilson, Kevin J.
2006-02-01
Advances in display technology and 3D design visualization applications have made real-time stereoscopic visualization of architectural and engineering projects a reality. Parsons Brinkerhoff (PB) is a transportation consulting firm that has used digital visualization tools from their inception and has helped pioneer the application of those tools to large scale infrastructure projects. PB is one of the first Architecture/Engineering/Construction (AEC) firms to implement a CAVE- an immersive presentation environment that includes stereoscopic rear-projection capability. The firm also employs a portable stereoscopic front-projection system, and shutter-glass systems for smaller groups. PB is using commercial real-time 3D applications in combination with traditional 3D modeling programs to visualize and present large AEC projects to planners, clients and decision makers in stereo. These presentations create more immersive and spatially realistic presentations of the proposed designs. This paper will present the basic display tools and applications, and the 3D modeling techniques PB is using to produce interactive stereoscopic content. The paper will discuss several architectural and engineering design visualizations we have produced.
Stem cell bioprinting for applications in regenerative medicine.
Tricomi, Brad J; Dias, Andrew D; Corr, David T
2016-11-01
Many regenerative medicine applications seek to harness the biologic power of stem cells in architecturally complex scaffolds or microenvironments. Traditional tissue engineering methods cannot create such intricate structures, nor can they precisely control cellular position or spatial distribution. These limitations have spurred advances in the field of bioprinting, aimed to satisfy these structural and compositional demands. Bioprinting can be defined as the programmed deposition of cells or other biologics, often with accompanying biomaterials. In this concise review, we focus on recent advances in stem cell bioprinting, including performance, utility, and applications in regenerative medicine. More specifically, this review explores the capability of bioprinting to direct stem cell fate, engineer tissue(s), and create functional vascular networks. Furthermore, the unique challenges and concerns related to bioprinting living stem cells, such as viability and maintaining multi- or pluripotency, are discussed. The regenerative capacity of stem cells, when combined with the structural/compositional control afforded by bioprinting, provides a unique and powerful tool to address the complex demands of tissue engineering and regenerative medicine applications. © 2016 New York Academy of Sciences.
Project Morpheus: Lessons Learned in Lander Technology Development
NASA Technical Reports Server (NTRS)
Olansen, Jon B.; Munday, Stephen R.; Mitchell, Jennifer D.
2013-01-01
NASA's Morpheus Project has developed and tested a prototype planetary lander capable of vertical takeoff and landing, that is designed to serve as a testbed for advanced spacecraft technologies. The lander vehicle, propelled by a LOX/Methane engine and sized to carry a 500kg payload to the lunar surface, provides a platform for bringing technologies from the laboratory into an integrated flight system at relatively low cost. Designed, developed, manufactured and operated in-house by engineers at Johnson Space Center, the initial flight test campaign began on-site at JSC less than one year after project start. After two years of testing, including two major upgrade periods, and recovery from a test crash that caused the loss of a vehicle, flight testing will evolve to executing autonomous flights simulating a 500m lunar approach trajectory, hazard avoidance maneuvers, and precision landing, incorporating the Autonomous Landing and Hazard Avoidance (ALHAT) sensor suite. These free-flights are conducted at a simulated planetary landscape built at Kennedy Space Center's Shuttle Landing Facility. The Morpheus Project represents a departure from recent NASA programs and projects that traditionally require longer development lifecycles and testing at remote, dedicated testing facilities. This paper expands on the project perspective that technologies offer promise, but capabilities offer solutions. It documents the integrated testing campaign, the infrastructure and testing facilities, and the technologies being evaluated in this testbed. The paper also describes the fast pace of the project, rapid prototyping, frequent testing, and lessons learned during this departure from the traditional engineering development process at NASA's Johnson Space Center.
NASA industry education initiative. Education programs report, 1991
NASA Technical Reports Server (NTRS)
1991-01-01
Findings from the initial inventory of education programs show that support for the NASA-Industry Education Initiative (NIEI) appears to be strong among the organizations surveyed. In addition, the range, depth and historical baselines of NIEI education programs are encouraging. It is also apparent that there is a significant level of cooperation between NIEI members and other organizations. Heavily focused towards science, engineering, mathematics and technology achievement, NIEI activities appear to be aligned with national education goals. Three criticisms are revealed: (1) the majority of programs are targeted fairly late in the education cycle; (2) the number of initiatives geared towards adult literacy and adult skills-enhancement appears to be relatively low; (3) the majority of NIEI activities involve traditional education-assistance programs, but the number of critical assessment and systematic reform initiatives is low. Four Working Group recommendations resulted from this activity: (1) NIEI Working Group operations should continue for an indefinite period, with participation open to other like-minded private-sector organization; (2) the report should be periodically updated; (3) an analysis of ongoing education programs should be conducted; (4) American corporations should continue to support education and evaluate in-house programs periodically.
The Case for Biocalculus: Design, Retention, and Student Performance
Eaton, Carrie Diaz; Highlander, Hannah Callender
2017-01-01
Calculus is one of the primary avenues for initial quantitative training of students in all science, technology, engineering, and mathematics fields, but life science students have been found to underperform in the traditional calculus setting. As a result, and because of perceived lack of its contribution to the understanding of biology, calculus is being actively cut from biology program requirements at many institutions. Here, we present an alternative: a model for learning mathematics that sees the partner disciplines as crucial to student success. We equip faculty with information to engage in dialogue within and between disciplinary departments involved in quantitative education. This includes presenting a process for interdisciplinary development and implementation of biology-oriented Calculus I courses at two institutions with different constituents, goals, and curricular constraints. When life science students enrolled in these redesigned calculus courses are compared with life science students enrolled in traditional calculus courses, students in the redesigned calculus courses learn calculus concepts and skills as well as their traditional course peers; however, the students in the redesigned courses experience more authentic life science applications and are more likely to stay and succeed in the course than their peers who are enrolled in traditional courses. Therefore, these redesigned calculus courses hold promise in helping life science undergraduate students attain Vision and Change recommended competencies. PMID:28450445
Modeling student success in engineering education
NASA Astrophysics Data System (ADS)
Jin, Qu
In order for the United States to maintain its global competitiveness, the long-term success of our engineering students in specific courses, programs, and colleges is now, more than ever, an extremely high priority. Numerous studies have focused on factors that impact student success, namely academic performance, retention, and/or graduation. However, there are only a limited number of works that have systematically developed models to investigate important factors and to predict student success in engineering. Therefore, this research presents three separate but highly connected investigations to address this gap. The first investigation involves explaining and predicting engineering students' success in Calculus I courses using statistical models. The participants were more than 4000 first-year engineering students (cohort years 2004 - 2008) who enrolled in Calculus I courses during the first semester in a large Midwestern university. Predictions from statistical models were proposed to be used to place engineering students into calculus courses. The success rates were improved by 12% in Calculus IA using predictions from models developed over traditional placement method. The results showed that these statistical models provided a more accurate calculus placement method than traditional placement methods and help improve success rates in those courses. In the second investigation, multi-outcome and single-outcome neural network models were designed to understand and to predict first-year retention and first-year GPA of engineering students. The participants were more than 3000 first year engineering students (cohort years 2004 - 2005) enrolled in a large Midwestern university. The independent variables include both high school academic performance factors and affective factors measured prior to entry. The prediction performances of the multi-outcome and single-outcome models were comparable. The ability to predict cumulative GPA at the end of an engineering student's first year of college was about a half of a grade point for both models. The predictors of retention and cumulative GPA while being similar differ in that high school academic metrics play a more important role in predicting cumulative GPA with the affective measures playing a more important role in predicting retention. In the last investigation, multi-outcome neural network models were used to understand and to predict engineering students' retention, GPA, and graduation from entry to departure. The participants were more than 4000 engineering students (cohort years 2004 - 2006) enrolled in a large Midwestern university. Different patterns of important predictors were identified for GPA, retention, and graduation. Overall, this research explores the feasibility of using modeling to enhance a student's educational experience in engineering. Student success modeling was used to identify the most important cognitive and affective predictors for a student's first calculus course retention, GPA, and graduation. The results suggest that the statistical modeling methods have great potential to assist decision making and help ensure student success in engineering education.
Using Internet search engines to estimate word frequency.
Blair, Irene V; Urland, Geoffrey R; Ma, Jennifer E
2002-05-01
The present research investigated Internet search engines as a rapid, cost-effective alternative for estimating word frequencies. Frequency estimates for 382 words were obtained and compared across four methods: (1) Internet search engines, (2) the Kucera and Francis (1967) analysis of a traditional linguistic corpus, (3) the CELEX English linguistic database (Baayen, Piepenbrock, & Gulikers, 1995), and (4) participant ratings of familiarity. The results showed that Internet search engines produced frequency estimates that were highly consistent with those reported by Kucera and Francis and those calculated from CELEX, highly consistent across search engines, and very reliable over a 6-month period of time. Additional results suggested that Internet search engines are an excellent option when traditional word frequency analyses do not contain the necessary data (e.g., estimates for forenames and slang). In contrast, participants' familiarity judgments did not correspond well with the more objective estimates of word frequency. Researchers are advised to use search engines with large databases (e.g., AltaVista) to ensure the greatest representativeness of the frequency estimates.
Fuller, C J; Narasimhan, Haripriya
2010-01-01
Since the nineteenth century, Tamil Brahmans have been very well represented in the educated professions, especially law and administration, medicine, engineering and nowadays, information technology. This is partly a continuation of the Brahmans' role as literate service people, owing to their traditions of education, learning and literacy, but the range of professions shows that any direct continuity is more apparent than real. Genealogical data are particularly used as evidence about changing patterns of employment, education and migration. Caste traditionalism was not a determining constraint, for Tamil Brahmans were predominant in medicine and engineering as well as law and administration in the colonial period, even though medicine is ritually polluting and engineering resembles low-status artisans' work. Crucially though, as modern, English-language, credential-based professions that are wellpaid and prestigious, law, medicine and engineering were and are all deemed eminently suitable for Tamil Brahmans, who typically regard their professional success as a sign of their caste superiority in the modern world. In reality, though, it is mainly a product of how their old social and cultural capital and their economic capital in land were transformed as they seized new educational and employment opportunities by flexibly deploying their traditional, inherited skills and advantages.
NASA Astrophysics Data System (ADS)
Schulz, Phyllis
Women remain underrepresented in science, technology, engineering, and mathematics (STEM) at all levels of higher education, which has become a concern in the competitive global marketplace. Using both quantitative and qualitative analysis, this dissertation sought to learn more about how the campus climate and self-concept influence the degree aspirations of female undergraduate students majoring in STEM programs. Using the Beginning Post-Secondary dataset, regression analyses showed that a student's initial degree aspirations, SAT scores, and interactions with faculty were all positively related to their degree aspirations three years later. Interviews with seven current STEM undergraduates confirmed the importance of interaction with faculty and suggested undergraduate research and classroom experiences also play a role in the degree aspirations of STEM students. Three of the seven students interviewed began their undergraduate educations as non-STEM majors, suggesting that the traditional STEM pipeline may no longer be the norm. These findings suggest that both future research and current practitioners should focus on undergraduate STEM classroom and research experiences. Additionally, the characteristics of students who switch into STEM majors should be explored so that we may continue to expand the number of students pursuing STEM degrees.
NASA Technical Reports Server (NTRS)
Melvin, Leland
2010-01-01
In response to the White House Educate to Innovate campaign, NASA developed a new science, technology, engineering, and mathematics (STEM) education program for non-traditional audiences that also focused on public-private partnerships and nationwide participation. NASA recognized that summer break is an often overlooked but opportune time to engage youth in STEM experiences, and elevated its ongoing commitment to the cultivation of diversity. The Summer of Innovation (SoI) is the resulting initiative that uses NASA's unique missions and resources to boost summer learning, particularly for students who are underrepresented, underserved and underperforming in STEM. The SoI pilot, launched in June 2010, is a multi-faceted effort designed to improve STEM teaching and learning through partnership, multi-week summer learning programs, special events, a national concluding event, and teacher development. The SoI pilot features strategic infusion of NASA content and educational resource materials, sustainability through STEM Learning Communities, and assessments of effectiveness of SoI interventions with other pilot efforts. This paper examines the inception and development of the Summer of Innovation pilot project, including achievements and effectiveness, as well as lessons learned for future efforts.
Validating the Use of pPerformance Risk Indices for System-Level Risk and Maturity Assessments
NASA Astrophysics Data System (ADS)
Holloman, Sherrica S.
With pressure on the U.S. Defense Acquisition System (DAS) to reduce cost overruns and schedule delays, system engineers' performance is only as good as their tools. Recent literature details a need for 1) objective, analytical risk quantification methodologies over traditional subjective qualitative methods -- such as, expert judgment, and 2) mathematically rigorous system-level maturity assessments. The Mahafza, Componation, and Tippett (2005) Technology Performance Risk Index (TPRI) ties the assessment of technical performance to the quantification of risk of unmet performance; however, it is structured for component- level data as input. This study's aim is to establish a modified TPRI with systems-level data as model input, and then validate the modified index with actual system-level data from the Department of Defense's (DoD) Major Defense Acquisition Programs (MDAPs). This work's contribution is the establishment and validation of the System-level Performance Risk Index (SPRI). With the introduction of the SPRI, system-level metrics are better aligned, allowing for better assessment, tradeoff and balance of time, performance and cost constraints. This will allow system engineers and program managers to ultimately make better-informed system-level technical decisions throughout the development phase.
High speed turboprop aeroacoustic study (counterrotation). Volume 1: Model development
NASA Technical Reports Server (NTRS)
Whitfield, C. E.; Mani, R.; Gliebe, P. R.
1990-01-01
The isolated counterrotating high speed turboprop noise prediction program was compared with model data taken in the GE Aircraft Engines Cell 41 anechoic facility, the Boeing Transonic Wind Tunnel, and in NASA-Lewis' 8x6 and 9x15 wind tunnels. The predictions show good agreement with measured data under both low and high speed simulated flight conditions. The installation effect model developed for single rotation, high speed turboprops was extended to include counterotation. The additional effect of mounting a pylon upstream of the forward rotor was included in the flow field modeling. A nontraditional mechanism concerning the acoustic radiation from a propeller at angle of attach was investigated. Predictions made using this approach show results that are in much closer agreement with measurement over a range of operating conditions than those obtained via traditional fluctuating force methods. The isolated rotors and installation effects models were combines into a single prediction program, results of which were compared with data taken during the flight test of the B727/UDF engine demonstrator aircraft. Satisfactory comparisons between prediction and measured data for the demonstrator airplane, together with the identification of a nontraditional radiation mechanism for propellers at angle of attack are achieved.
High speed turboprop aeroacoustic study (counterrotation). Volume 1: Model development
NASA Astrophysics Data System (ADS)
Whitfield, C. E.; Mani, R.; Gliebe, P. R.
1990-07-01
The isolated counterrotating high speed turboprop noise prediction program was compared with model data taken in the GE Aircraft Engines Cell 41 anechoic facility, the Boeing Transonic Wind Tunnel, and in NASA-Lewis' 8x6 and 9x15 wind tunnels. The predictions show good agreement with measured data under both low and high speed simulated flight conditions. The installation effect model developed for single rotation, high speed turboprops was extended to include counterotation. The additional effect of mounting a pylon upstream of the forward rotor was included in the flow field modeling. A nontraditional mechanism concerning the acoustic radiation from a propeller at angle of attach was investigated. Predictions made using this approach show results that are in much closer agreement with measurement over a range of operating conditions than those obtained via traditional fluctuating force methods. The isolated rotors and installation effects models were combines into a single prediction program, results of which were compared with data taken during the flight test of the B727/UDF engine demonstrator aircraft. Satisfactory comparisons between prediction and measured data for the demonstrator airplane, together with the identification of a nontraditional radiation mechanism for propellers at angle of attack are achieved.
Mertz, Leslie
2012-01-01
When the Defense Advanced Research Projects Agency (DARPA) asks research questions, it goes big. This is, after all, the same agency that put together teams of scientists and engineers to find a way to connect the worlds computers and, in doing so, developed the precursor to the Internet. DARPA, the experimental research wing of the U.S. Department of Defense, funds the types of research queries that scientists and engineers dream of tackling. Unlike a traditional granting agency that conservatively metes out its funding and only to projects with a good chance of success, DARPA puts its money on massive, multi-institutional projects that have no guarantees, but have enormous potential. In the 1990s, DARPA began its biological and medical science research to improve the safety, health, and well being of military personnel, according to DARPA program manager and Army Colonel Geoffrey Ling, Ph.D., M.D. More recently, DARPA has entered the realm of neuroscience and neurotechnology. Its focus with these projects is on its prime customer, the U.S. Department of Defense, but Ling acknowledged that technologies developed in its programs "certainly have potential to cascade into civilian uses."
Putting the “Spark” into Physical Science and Algebra
NASA Astrophysics Data System (ADS)
Dagenais, Andre; Pill, B.
2006-12-01
The presenters will describe a number of laboratory activities developed in collaboration with the Department of Electrical Engineering at the University of Delaware as part of their outreach program to help make math and science more authentic on the pre-college level. Lessons relating to electrical topics are often abstract and appropriate only for advanced students in math and science. We have devised lessons that rely on simple equipment. They promote skills that are included in National and State Standards. They emphasize the connections between math and science; they are appropriate for an algebra course, a physical science course, a PhysicsFirst course or a traditional physics course. Students benefit from seeing that what they learn in math and science courses can lead to cutting-edge work in areas such as passive wave imaging, photonics, wireless communication and high performance computing. The collaboration has been meaningful because it has motivated us to tailor our lessons to reflect what is happening in the research lab of our local university. Written materials for use in teacher training workshops will also be available. Funded by NSF Research Experience for Teachers(RET #0322633) program under the direction of Dr. Dennis Prather, University of Delaware Electrical Engineering
WaterBotics: Pooling Students to STEM
NASA Astrophysics Data System (ADS)
Stambaugh, Beverly
2015-04-01
The STEM workforce of the future is sitting in today's K-12 classrooms, attending summer camps, and participating in after-school programs. How do we attract more youth -- particularly those currently underrepresented in STEM fields such as girls and minorities -- to explore the marvels of engineering and science? How do we entice them to become active participants - not merely witnesses - in the creation of solutions for our global neighborhood's greatest challenges, from environmental cleanup, to safe and efficient energy production, to improvements in healthcare? The WaterBotics program is one vehicle that has demonstrated success in engaging young learners. This underwater robotics program is designed to provide hands-on experiences for middle and high school age youth to engineering design, information technology tools, and science concepts, and to increase awareness and interest in engineering and IT careers. Middle and high school participants demonstrate increased enjoyment in studying science and engineering and interest in STEM careers as a result of WaterBotics. Such results can be seen from a statewide initiative that reached more than 2,600 middle and high school students in New Jersey in 2006-09 where student learning of science concepts and programming increased (McGrath et al, 2009, 2008). These findings provide the impetus to expand the WaterBotics program nationally. The curriculum can be used either in traditional classroom settings or in after-school and summer-camp settings. This problem-based program requires teams of students to work together to design, build, test, and redesign underwater robots, or "bots" made of LEGO® and other components. Students use the NXT and LEGO Mindstorms® software to program their robots to maneuver in the water, thereby gaining valuable experience with computer programming, as well as 21st Century skills. Teams must complete a series of increasingly sophisticated challenges which culminates with a final challenge that integrates learning from the prior challenges. The nature of these challenges allows for easy adaptation to various real-world scenarios for students to engage in, such as developing a submarine for ocean floor study or designing a vehicle to explore and mine the ocean for mineral resources. First-hand experience with WaterBotics curriculum has shown the increased engagement and excitement for STEM. Starting with a peanut butter and jelly sandwich leads to amazing discovery as students work through the engineering design process, sketching and building their LEGO robots and learning the steps to simple programs that allow their robotic creations to complete various tasks. With LEGOs being so easy to use, students can easily revise their design over and over again until it looks and works as it should. Once the students have the opportunity to test their design in the water for the first time, they are hooked. They can see that something they designed and built actually completes the task, even if it takes multiple tries, and they want to try the next challenge.
Engineering Graphics in Education: Programming and Ready Programs.
ERIC Educational Resources Information Center
Audi, M. S.
1987-01-01
Suggests a method of integrating teaching microcomputer graphics in engineering curricula without encroaching on the fundamental engineering courses. Includes examples of engineering graphics produced by commercial programs and others produced by high-level language programing in a limited credit hour segment of an educational program. (CW)
NASA Astrophysics Data System (ADS)
Großmann, Jürgen; Schmauss, Bernhard
2017-08-01
The Master's Program in Advanced Optical Technologies (MAOT) was established at the Friedrich-Alexander Universität Erlangen-Nürnberg in 2007 as part of the Elite Network of Bavaria (ENB), an initiative by the Bavarian State Government comprising about 40 elite Master's programs and doctoral programs. MAOT can be studied after a Bachelor in physics or an engineering subject. The Master's program realizes an innovative concept combining three core elements: (1) Interdisciplinarity: The program integrates courses and researchers from five engineering subjects and from physics. The degree of interdisciplinarity goes far beyond traditional programs. (2) Internationality: The program is taught entirely in English and special support is given to international students. (3). Individuality: The course curriculum was adapted at several points based on the experience in the initial years. The same is true for the way in which international students are supported and the type of support they need. The students are given an unusually high degree of freedom to develop an individual curriculum and to pursue research projects. Crucial experience and lessons learned are: (1) Lecturers and researchers have to be coordinated and the perspectives of the different disciplines have to be integrated within one program. Students must be guided in order to deal with the demands and challenges of the different disciplines. (2) International students need support with settling in Germany and with learning and working in a German cultural environment. They need support with administrative issues. Furthermore, they need to analyze and understand cultural differences and how they impact on the cooperation between lecturers and students and on the work in research groups. (3) Students must be helped to develop their own curriculum. They must learn how to combine their first-degree qualification with the specialized qualification which they gain after completing their Master's program. They need to develop the skills to match their preferences with what is realistic and feasible.
Implications of multiplane-multispeed balancing for future turbine engine design and cost
NASA Technical Reports Server (NTRS)
Badgley, R. H.
1974-01-01
This paper describes several alternative approaches, provided by multiplane-multispeed balancing, to traditional gas turbine engine manufacture and assembly procedures. These alternatives, which range from addition of trim-balancing at the end of the traditional assembly process to modular design of the rotating system for assembly and balancing external to the engine, require attention by the engine designer as an integral part of the design process. Since multiplane-multispeed balancing may be incorporated at one or more of several points during manufacture-assembly, its deliberate use is expected to provide significant cost and performance (reduced vibration) benefits. Moreover, its availability provides the designer with a firm base from which he may advance, with reasonable assurance of success, into the flexible rotor dynamic regime.
Career Maturity of Students in Accelerated versus Traditional Programs
ERIC Educational Resources Information Center
Borges, Nicole J.; Richard, George V.; Duffy, Ryan D.
2007-01-01
The authors assessed the career maturity of students in accelerated versus traditional academic programs. Students in traditional programs were hypothesized to be more advanced regarding their career decision making and development when compared with students in accelerated programs. The Medical Career Development Inventory (see M. L. Savickas,…
NASA Astrophysics Data System (ADS)
Schwieterman, Edward; Binder, Breanna; Tremmel, Michael; Garofali, Kristen; Agol, Eric; Meadows, Victoria
2015-11-01
The Pre-Major in Astronomy Program (Pre-MAP) is a research and mentoring program for underclassmen and transfer students offered by the University of Washington Astronomy Department since 2005. The primary goal of Pre-MAP is to recruit and retain students from groups traditionally underrepresented in science, technology, engineering, and mathematics (STEM) through early exposure to research. The Pre-MAP seminar is the core component of the program and offers instruction in computing skills, data manipulation, science writing, statistical analysis, and scientific speaking and presentation skills. Students choose research projects proposed by faculty, post-docs and graduate students in areas related to astrophysics, planetary science, and astrobiology. Pre-MAP has been successful in retaining underrepresented students in STEM fields relative to the broader UW population, and we've found these students are more likely to graduate and excel academically than their peers. As of spring 2015, more than one hundred students have taken the Pre-MAP seminar, and both internal and external evaluations have shown that all groups of participating students report an increased interest in astronomy and science careers at the end of the seminar. Several former Pre-MAP students have obtained or are pursuing doctoral and master’s degrees in STEM fields; many more work at NASA centers, teaching colleges, or as engineers or data analysts. Pre- MAP student research has produced dozens of publications in peer-reviewed research journals. This talk will provide an overview of the program: the structure of the seminar, examples of projects completed by students, cohort-building activities outside the seminar, funding sources, recruitment strategies, and the aggregate demographic and achievement data of our students. It is our hope that similar programs may be adopted successfully at other institutions.
One University's Approach to Student-Based Experiential Training With Spaceflight Hardware
NASA Astrophysics Data System (ADS)
Klumpar, D. M.
2005-12-01
Montana State University's interdisciplinary Space Science and Engineering Laboratory (SSEL) is in the fifth year of a program that is providing trained space experimentalists and space-savvy engineers for the nation's workforce. Through this program students learn, through first hand experience, the need for rigorous trade studies, documentation, design reviews, and procedures by which interdisciplinary teams conduct successful scientific satellite missions. The program differs from more traditional university student involvements in satellite instrumentation in that, rather than somewhat compartmentalized participation in a formal NASA space mission (or sounding rocket investigation) these students conceive, design, build, test, and fly their own missions. As a result of these projects being entirely student managed and student executed, the students experience all aspects of the complete mission development cycle, including full responsibility for project management. Contributing to the success of the MSU program has been the fact that the projects are ongoing and are carried on outside of the academic course based curriculum structure. Rather than merely taking a course of two and then moving on, individual students spend much of their university tenure associated with the laboratory as an extracurricular activity. The program is based on continuing professional development of the individual student by providing increasingly challenging tasks through increasingly sophisticated projects. The tiered program offers ground-based instruments, balloon-borne systems and payloads, rockets and rocket-based instruments, and earth orbiting satellites and their subsystems. Frequent opportunities to develop and test hardware throughout the long process of satellite design and development are provided by low-cost and frequent high-altitude balloon flights. Strategies that have been developed for dealing with student turnover, and the multitude of priorities that distract the students will be discussed.
34 CFR 637.1 - What is the Minority Science and Engineering Improvement Program (MSEIP)?
Code of Federal Regulations, 2014 CFR
2014-07-01
... 34 Education 3 2014-07-01 2014-07-01 false What is the Minority Science and Engineering... ENGINEERING IMPROVEMENT PROGRAM General § 637.1 What is the Minority Science and Engineering Improvement Program (MSEIP)? The Minority Science and Engineering Improvement Program (MSEIP) is designed to effect...
34 CFR 637.1 - What is the Minority Science and Engineering Improvement Program (MSEIP)?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 34 Education 3 2010-07-01 2010-07-01 false What is the Minority Science and Engineering... ENGINEERING IMPROVEMENT PROGRAM General § 637.1 What is the Minority Science and Engineering Improvement Program (MSEIP)? The Minority Science and Engineering Improvement Program (MSEIP) is designed to effect...
34 CFR 637.3 - What regulations apply to the Minority Science and Engineering Improvement Program?
Code of Federal Regulations, 2013 CFR
2013-07-01
... Engineering Improvement Program? 637.3 Section 637.3 Education Regulations of the Offices of the Department of... ENGINEERING IMPROVEMENT PROGRAM General § 637.3 What regulations apply to the Minority Science and Engineering Improvement Program? The following regulations apply to the Minority Science and Engineering Improvement...
34 CFR 637.3 - What regulations apply to the Minority Science and Engineering Improvement Program?
Code of Federal Regulations, 2012 CFR
2012-07-01
... Engineering Improvement Program? 637.3 Section 637.3 Education Regulations of the Offices of the Department of... ENGINEERING IMPROVEMENT PROGRAM General § 637.3 What regulations apply to the Minority Science and Engineering Improvement Program? The following regulations apply to the Minority Science and Engineering Improvement...
34 CFR 637.3 - What regulations apply to the Minority Science and Engineering Improvement Program?
Code of Federal Regulations, 2011 CFR
2011-07-01
... Engineering Improvement Program? 637.3 Section 637.3 Education Regulations of the Offices of the Department of... ENGINEERING IMPROVEMENT PROGRAM General § 637.3 What regulations apply to the Minority Science and Engineering Improvement Program? The following regulations apply to the Minority Science and Engineering Improvement...
34 CFR 637.1 - What is the Minority Science and Engineering Improvement Program (MSEIP)?
Code of Federal Regulations, 2012 CFR
2012-07-01
... 34 Education 3 2012-07-01 2012-07-01 false What is the Minority Science and Engineering... ENGINEERING IMPROVEMENT PROGRAM General § 637.1 What is the Minority Science and Engineering Improvement Program (MSEIP)? The Minority Science and Engineering Improvement Program (MSEIP) is designed to effect...
34 CFR 637.3 - What regulations apply to the Minority Science and Engineering Improvement Program?
Code of Federal Regulations, 2014 CFR
2014-07-01
... Engineering Improvement Program? 637.3 Section 637.3 Education Regulations of the Offices of the Department of... ENGINEERING IMPROVEMENT PROGRAM General § 637.3 What regulations apply to the Minority Science and Engineering Improvement Program? The following regulations apply to the Minority Science and Engineering Improvement...
34 CFR 637.1 - What is the Minority Science and Engineering Improvement Program (MSEIP)?
Code of Federal Regulations, 2011 CFR
2011-07-01
... 34 Education 3 2011-07-01 2011-07-01 false What is the Minority Science and Engineering... ENGINEERING IMPROVEMENT PROGRAM General § 637.1 What is the Minority Science and Engineering Improvement Program (MSEIP)? The Minority Science and Engineering Improvement Program (MSEIP) is designed to effect...
34 CFR 637.1 - What is the Minority Science and Engineering Improvement Program (MSEIP)?
Code of Federal Regulations, 2013 CFR
2013-07-01
... 34 Education 3 2013-07-01 2013-07-01 false What is the Minority Science and Engineering... ENGINEERING IMPROVEMENT PROGRAM General § 637.1 What is the Minority Science and Engineering Improvement Program (MSEIP)? The Minority Science and Engineering Improvement Program (MSEIP) is designed to effect...
34 CFR 637.3 - What regulations apply to the Minority Science and Engineering Improvement Program?
Code of Federal Regulations, 2010 CFR
2010-07-01
... Engineering Improvement Program? 637.3 Section 637.3 Education Regulations of the Offices of the Department of... ENGINEERING IMPROVEMENT PROGRAM General § 637.3 What regulations apply to the Minority Science and Engineering Improvement Program? The following regulations apply to the Minority Science and Engineering Improvement...
ERIC Educational Resources Information Center
Singer, Kerri Patrick; Foutz, Tim; Navarro, Maria; Thompson, Sidney
2015-01-01
Engineers today need both engineering knowledge and social science knowledge to solve complex problems. However, most people have a traditional view of engineering as a field dominated by math and science foci, with little social consequence. This study examined and compared perceptions about engineering from Freshmen taking three different First…
Trends in Environmental Health Engineering
ERIC Educational Resources Information Center
Rowe, D. R.
1972-01-01
Reviews the trends in environmental health engineering and describes programs in environmental engineering technology and the associated environmental engineering courses at Western Kentucky University (four-year program), Wytheville Community College (two-year program), and Rensselaer Polytechnic Institute (four-year program). (PR)
The Accuracy of Student Grading in First-Year Engineering Courses
ERIC Educational Resources Information Center
Van Hattum-Janssen, Natascha; Pacheco, Jose Augusto; Vasconcelos, Rosa Maria
2004-01-01
Assessment has become a powerful tool to change student learning. In a project of the Council of Engineering Courses of the University of Minho, Portugal, students of textile engineering, apparel engineering and industrial electronics increased their participation in every aspect of their assessment process. The traditional exam was changed to…
Risk-Based Probabilistic Approach to Aeropropulsion System Assessment
NASA Technical Reports Server (NTRS)
Tong, Michael T.
2002-01-01
In an era of shrinking development budgets and resources, where there is also an emphasis on reducing the product development cycle, the role of system assessment, performed in the early stages of an engine development program, becomes very critical to the successful development of new aeropropulsion systems. A reliable system assessment not only helps to identify the best propulsion system concept among several candidates, it can also identify which technologies are worth pursuing. This is particularly important for advanced aeropropulsion technology development programs, which require an enormous amount of resources. In the current practice of deterministic, or point-design, approaches, the uncertainties of design variables are either unaccounted for or accounted for by safety factors. This could often result in an assessment with unknown and unquantifiable reliability. Consequently, it would fail to provide additional insight into the risks associated with the new technologies, which are often needed by decision makers to determine the feasibility and return-on-investment of a new aircraft engine. In this work, an alternative approach based on the probabilistic method was described for a comprehensive assessment of an aeropropulsion system. The statistical approach quantifies the design uncertainties inherent in a new aeropropulsion system and their influences on engine performance. Because of this, it enhances the reliability of a system assessment. A technical assessment of a wave-rotor-enhanced gas turbine engine was performed to demonstrate the methodology. The assessment used probability distributions to account for the uncertainties that occur in component efficiencies and flows and in mechanical design variables. The approach taken in this effort was to integrate the thermodynamic cycle analysis embedded in the computer code NEPP (NASA Engine Performance Program) and the engine weight analysis embedded in the computer code WATE (Weight Analysis of Turbine Engines) with the fast probability integration technique (FPI). FPI was developed by Southwest Research Institute under contract with the NASA Glenn Research Center. The results were plotted in the form of cumulative distribution functions and sensitivity analyses and were compared with results from the traditional deterministic approach. The comparison showed that the probabilistic approach provides a more realistic and systematic way to assess an aeropropulsion system. The current work addressed the application of the probabilistic approach to assess specific fuel consumption, engine thrust, and weight. Similarly, the approach can be used to assess other aspects of aeropropulsion system performance, such as cost, acoustic noise, and emissions. Additional information is included in the original extended abstract.
Examining Relationships among Choice, Affect, and Engagement in Summer STEM Programs.
Beymer, Patrick N; Rosenberg, Joshua M; Schmidt, Jennifer A; Naftzger, Neil J
2018-06-01
Out-of-school time programs focused on science, technology, engineering and mathematics (STEM) have proliferated recently because they are seen as having potential to appeal to youth and enhance STEM interest. Although such programs are not mandatory, youth are not always involved in making the choice about their participation and it is unclear whether youth's involvement in the choice to attend impacts their program experiences. Using data collected from experience sampling, traditional surveys, and video recordings, we explore relationships among youth's choice to attend out-of-school time programs (measured through a pre-survey) and their experience of affect (i.e., youth experience sampling ratings of happiness and excitement) and engagement (i.e., youth experience sampling ratings of concentration and effort) during program activities. Data were collected from a racially and ethnically diverse sample of 10-16 year old youth (n = 203; 50% female) enrolled in nine different summer STEM programs targeting underserved youth. Multilevel analysis indicated that choice and affect are independently and positively associated with momentary engagement. Though choice to enroll was a significant predictor of momentary engagement, positive affective experiences during the program may compensate for any decrements to engagement associated with lack of choice. Together, these findings have implications for researchers, parents, and educators and administrators of out-of-school time programming.
Low-Cost Virtual Laboratory Workbench for Electronic Engineering
ERIC Educational Resources Information Center
Achumba, Ifeyinwa E.; Azzi, Djamel; Stocker, James
2010-01-01
The laboratory component of undergraduate engineering education poses challenges in resource constrained engineering faculties. The cost, time, space and physical presence requirements of the traditional (real) laboratory approach are the contributory factors. These resource constraints may mitigate the acquisition of meaningful laboratory…
Riley, Thomas C; Mafi, Reza; Mafi, Pouya; Khan, Wasim S
2018-02-23
The incidence of knee ligament injury is increasing and represents a significant cost to healthcare providers. Current interventions include tissue grafts, suture repair and non-surgical management. These techniques have demonstrated good patient outcomes but have been associated graft rejection, infection, long term immobilization and reduced joint function. The limitations of traditional management strategies have prompted research into tissue engineering of knee ligaments. This paper aims to evaluate whether tissue engineering of knee ligaments offers a viable alternative in the clinical management of knee ligament injuries. A search of existing literature was performed using OVID Medline, Embase, AMED, PubMed and Google Scholar, and a manual review of citations identified within these papers. Silk, polymer and extracellular matrix based scaffolds can all improve graft healing and collagen production. Fibroblasts and stem cells demonstrate compatibility with scaffolds, and have been shown to increase organized collagen production. These effects can be augmented using growth factors and extracellular matrix derivatives. Animal studies have shown tissue engineered ligaments can provide the biomechanical characteristics required for effective treatment of knee ligament injuries. There is a growing clinical demand for a tissue engineered alternative to traditional management strategies. Currently, there is limited consensus regarding material selection for use in tissue engineered ligaments. Further research is required to optimize tissue engineered ligament production before clinical application. Controlled clinical trials comparing the use of tissue engineered ligaments and traditional management in patients with knee ligament injury could determine whether they can provide a cost-effective alternative. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
NASA Technical Reports Server (NTRS)
Hall, Philip; Whitfield, Susan
2011-01-01
As NASA undertakes increasingly complex projects, the need for expert systems engineers and leaders in systems engineering is becoming more pronounced. As a result of this issue, the Agency has undertaken an initiative to develop more systems engineering leaders through its Systems Engineering Leadership Development Program; however, the NASA Office of the Chief Engineer has also called on the field Centers to develop mechanisms to strengthen their expertise in systems engineering locally. In response to this call, Marshall Space Flight Center (MSFC) has developed a comprehensive development program for aspiring systems engineers and systems engineering leaders. This presentation will summarize the two-level program, which consists of a combination of training courses and on-the-job, developmental training assignments at the Center to help develop stronger expertise in systems engineering and technical leadership. In addition, it will focus on the success the program has had in its pilot year. The program hosted a formal kickoff event for Level I on October 13, 2009. The first class includes 42 participants from across MSFC and Michoud Assembly Facility (MAF). A formal call for Level II is forthcoming. With the new Agency focus on research and development of new technologies, having a strong pool of well-trained systems engineers is becoming increasingly more critical. Programs such as the Marshall Systems Engineering Leadership Development Program, as well as those developed at other Centers, help ensure that there is an upcoming generation of trained systems engineers and systems engineering leaders to meet future design challenges.
Computer program for a four-cylinder-Stirling-engine controls simulation
NASA Technical Reports Server (NTRS)
Daniels, C. J.; Lorenzo, C. F.
1982-01-01
A four cylinder Stirling engine, transient engine simulation computer program is presented. The program is intended for controls analysis. The associated engine model was simplified to shorten computer calculation time. The model includes engine mechanical drive dynamics and vehicle load effects. The computer program also includes subroutines that allow: (1) acceleration of the engine by addition of hydrogen to the system, and (2) braking of the engine by short circuiting of the working spaces. Subroutines to calculate degraded engine performance (e.g., due to piston ring and piston rod leakage) are provided. Input data required to run the program are described and flow charts are provided. The program is modular to allow easy modification of individual routines. Examples of steady state and transient results are presented.
A Software Engineering Paradigm for Quick-turnaround Earth Science Data Projects
NASA Astrophysics Data System (ADS)
Moore, K.
2016-12-01
As is generally the case with applied sciences professional and educational programs, the participants of such programs can come from a variety of technical backgrounds. In the NASA DEVELOP National Program, the participants constitute an interdisciplinary set of backgrounds, with varying levels of experience with computer programming. DEVELOP makes use of geographically explicit data sets, and it is necessary to use geographic information systems and geospatial image processing environments. As data sets cover longer time spans and include more complex sets of parameters, automation is becoming an increasingly prevalent feature. Though platforms such as ArcGIS, ERDAS Imagine, and ENVI facilitate the batch-processing of geospatial imagery, these environments are naturally constricting to the user in that they limit him or her to the tools that are available. Users must then turn to "homemade" scripting in more traditional programming languages such as Python, JavaScript, or R, to automate workflows. However, in the context of quick-turnaround projects like those in DEVELOP, the programming learning curve may be prohibitively steep. In this work, we consider how to best design a software development paradigm that addresses two major constants: an arbitrarily experienced programmer and quick-turnaround project timelines.
Engineering success: Undergraduate Latina women's persistence in an undergradute engineering program
NASA Astrophysics Data System (ADS)
Rosbottom, Steven R.
The purpose and focus of this narrative inquiry case study were to explore the personal stories of four undergraduate Latina students who persist in their engineering programs. This study was guided by two overarching research questions: a) What are the lived experiences of undergraduate Latina engineering students? b) What are the contributing factors that influence undergraduate Latina students to persist in an undergraduate engineering program? Yosso's (2005) community cultural wealth was used to the analyze data. Findings suggest through Yosso's (2005) aspirational capital, familial capital, social capital, navigational capital, and resistant capital the Latina student persisted in their engineering programs. These contributing factors brought to light five themes that emerged, the discovery of academic passions, guidance and support of family and teachers, preparation for and commitment to persistence, the power of community and collective engagement, and commitment to helping others. The themes supported their persistence in their engineering programs. Thus, this study informs policies, practices, and programs that support undergraduate Latina engineering student's persistence in engineering programs.
The Thinking Body in/of Multimodal Engineering Literacy
ERIC Educational Resources Information Center
Roth, Wolff-Michael
2017-01-01
Studies show that engineering is particularly suited for students traditionally experiencing difficulties in science, technology, engineering, and mathematics (STEM) subjects--including those marked learning disabled--because it supports literacy in its different manifestations (i.e., across modes). This article addresses this topic, building on…
Job Prospects for Agricultural Engineers.
ERIC Educational Resources Information Center
Basta, Nicholas
1986-01-01
Discusses the career outlook for agricultural engineers. Explains that the number of bachelor degrees awarded yearly continues to drop, and that the traditional industries that hire agricultural engineers are employing fewer each year. Suggests that future opportunities exist in the areas of information technology, biotechnology, and research. (TW)
Increasing Retention of Women in Engineering at WSU: A Model for a Women's Mentoring Program
ERIC Educational Resources Information Center
Poor, Cara J.; Brown, Shane
2013-01-01
Concerns with the retention of women in engineering have led to the implementation of numerous programs to improve retention, including mentoring programs. The college of engineering at Washington State University (WSU) started a novel women's mentoring program in 2008, using professional engineers who graduated from WSU as mentors. The program is…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kou, Stephen; Palsberg, Jens; Brooks, Jeffrey
Consumer electronics today such as cell phones often have one or more low-power FPGAs to assist with energy-intensive operations in order to reduce overall energy consumption and increase battery life. However, current techniques for programming FPGAs require people to be specially trained to do so. Ideally, software engineers can more readily take advantage of the benefits FPGAs offer by being able to program them using their existing skills, a common one being object-oriented programming. However, traditional techniques for compiling object-oriented languages are at odds with todays FPGA tools, which support neither pointers nor complex data structures. Open until now ismore » the problem of compiling an object-oriented language to an FPGA in a way that harnesses this potential for huge energy savings. In this paper, we present a new compilation technique that feeds into an existing FPGA tool chain and produces FPGAs with up to almost an order of magnitude in energy savings compared to a low-power microprocessor while still retaining comparable performance and area usage.« less
Charon Toolkit for Parallel, Implicit Structured-Grid Computations: Functional Design
NASA Technical Reports Server (NTRS)
VanderWijngaart, Rob F.; Kutler, Paul (Technical Monitor)
1997-01-01
In a previous report the design concepts of Charon were presented. Charon is a toolkit that aids engineers in developing scientific programs for structured-grid applications to be run on MIMD parallel computers. It constitutes an augmentation of the general-purpose MPI-based message-passing layer, and provides the user with a hierarchy of tools for rapid prototyping and validation of parallel programs, and subsequent piecemeal performance tuning. Here we describe the implementation of the domain decomposition tools used for creating data distributions across sets of processors. We also present the hierarchy of parallelization tools that allows smooth translation of legacy code (or a serial design) into a parallel program. Along with the actual tool descriptions, we will present the considerations that led to the particular design choices. Many of these are motivated by the requirement that Charon must be useful within the traditional computational environments of Fortran 77 and C. Only the Fortran 77 syntax will be presented in this report.
Reaching Out: The Bachelor of Arts Degree In Physics
NASA Astrophysics Data System (ADS)
Hobson, Art
1996-05-01
Physics degrees are not only for physicists. Our department believes that it would be healthy if attorneys, physicians, journalists, politicians, businesspeople, and others had undergraduate degrees in physics. Thus, we have begun offering a Bachelor of Arts degree in physics, for students who want to study physics as a background for other fields such as law (patents, environmental law), medical school, business (high-tech firms), journalism (science reporting, environmental reporting), music (accoustics, electronic music), and essentially any other profession. The program reaches outward, outside of physics, rather than pointing toward further work in physics. It begins with the algebra-based introductory course rather than the calculus-based course for future physicists and engineers. Two new courses are being created to provide these pre-professional students with broad science literacy and knowledge of physics-related technologies. The program is more flexible and less technical than the traditional Bachelor of Science program, allowing students time for outside electives and professional requirements in other fields.
A nonlinear bi-level programming approach for product portfolio management.
Ma, Shuang
2016-01-01
Product portfolio management (PPM) is a critical decision-making for companies across various industries in today's competitive environment. Traditional studies on PPM problem have been motivated toward engineering feasibilities and marketing which relatively pay less attention to other competitors' actions and the competitive relations, especially in mathematical optimization domain. The key challenge lies in that how to construct a mathematical optimization model to describe this Stackelberg game-based leader-follower PPM problem and the competitive relations between them. The primary work of this paper is the representation of a decision framework and the optimization model to leverage the PPM problem of leader and follower. A nonlinear, integer bi-level programming model is developed based on the decision framework. Furthermore, a bi-level nested genetic algorithm is put forward to solve this nonlinear bi-level programming model for leader-follower PPM problem. A case study of notebook computer product portfolio optimization is reported. Results and analyses reveal that the leader-follower bi-level optimization model is robust and can empower product portfolio optimization.
NASA Astrophysics Data System (ADS)
Javidi, Giti
2005-07-01
This study was designed to investigate an alternative to the use of traditional physical laboratory activities in a communication systems course. Specifically, this study examined whether as an alternative, computer simulation is as effective as physical laboratory activities in teaching college-level electronics engineering education students about the concepts of signal transmission, modulation and demodulation. Eighty undergraduate engineering students participated in the study, which was conducted at a southeastern four-year university. The students were randomly assigned to two groups. The groups were compared on understanding the concepts, remembering the concepts, completion time of the lab experiments and perception toward the laboratory experiments. The physical group's (n = 40) treatment was to conduct laboratory experiments in a physical laboratory. The students in this group used equipment in a controlled electronics laboratory. The Simulation group's (n = 40) treatment was to conduct similar experiments in a PC laboratory. The students in this group used a simulation program in a controlled PC lab. At the completion of the treatment, scores on a validated conceptual test were collected once after the treatment and again three weeks after the treatment. Attitude surveys and qualitative study were administered at the completion of the treatment. The findings revealed significant differences, in favor of the simulation group, between the two groups on both the conceptual post-test and the follow-up test. The findings also revealed significant correlation between simulation groups' attitude toward the simulation program and their post-test scores. Moreover, there was a significant difference between the two groups on their attitude toward their laboratory experience in favor of the simulation group. In addition, there was significant difference between the two groups on their lab completion time in favor of the simulation group. At the same time, the qualitative research has uncovered several issues not explored by the quantitative research. It was concluded that incorporating the recommendations acquired from the qualitative research, especially elements of incorporating hardware experience to avoid lack of hands-on skills, into the laboratory pedagogy should help improve students' experience regardless of the environment in which the laboratory is conducted.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-26
... disciplines: North Slope traditional and local knowledge, landscape ecology, petroleum engineering, civil engineering, geology, sociology, cultural anthropology, economics, ornithology, oceanography, fisheries...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-11
... disciplines: North Slope traditional and local knowledge, landscape ecology, petroleum engineering, civil engineering, geology, sociology, cultural anthropology, economics, ornithology, oceanography, fisheries...
Problems Associated with a Lack of Cohesive Policy in K-12 Pre-College Engineering
ERIC Educational Resources Information Center
Chandler, John; Fontenot, A. Dean; Tate, Derrick
2011-01-01
This article identifies a number of issues associated with current STEM education reform efforts, especially with regard to efforts to integrate engineering education into the K-12 curriculum. Precollege engineering is especially problematic in STEM reform since there is no well-established tradition of engineering in the K-12 curriculum. This…
Three Conceptions of Thermodynamics: Technical Matrices in Science and Engineering
NASA Astrophysics Data System (ADS)
Christiansen, Frederik V.; Rump, Camilla
2008-11-01
Introductory thermodynamics is a topic which is covered in a wide variety of science and engineering educations. However, very different teaching traditions have evolved within different scientific specialties. In this study we examine three courses in introductory thermodynamics within three different scientific specialties: physics, chemical engineering and mechanical engineering. Based on a generalization of Kuhn’s theory of disciplinary matrix, and the idea of boundary objects we analyse how basic thermodynamics theory is conceived in the different scientific specialties. The study is based on interviews with teachers and analysis of the different textbook traditions. It is concluded that teachers need to take into account how subject matter is conceived in other related scientific specialties when designing courses. Two examples demonstrating how this may be done are given.
Clinical Immersion and Biomedical Engineering Design Education: "Engineering Grand Rounds".
Walker, Matthew; Churchwell, André L
2016-03-01
Grand Rounds is a ritual of medical education and inpatient care comprised of presenting the medical problems and treatment of a patient to an audience of physicians, residents, and medical students. Traditionally, the patient would be in attendance for the presentation and would answer questions. Grand Rounds has evolved considerably over the years with most sessions being didactic-rarely having a patient present (although, in some instances, an actor will portray the patient). Other members of the team, such as nurses, nurse practitioners, and biomedical engineers, are not traditionally involved in the formal teaching process. In this study we examine the rapid ideation in a clinical setting to forge a system of cross talk between engineers and physicians as a steady state at the praxis of ideation and implementation.
75 FR 22576 - Minority Science and Engineering Improvement Program
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-29
... DEPARTMENT OF EDUCATION [CFDA No. 84.120A] Minority Science and Engineering Improvement Program... the fiscal year (FY) 2009 grant slate for the Minority Science and Engineering Improvement Program... Engineering Improvement Program (MSEIP), authorized by Title III, Part E of the Higher Education Act of 1965...
Automated Design Space Exploration with Aspen
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spafford, Kyle L.; Vetter, Jeffrey S.
Architects and applications scientists often use performance models to explore a multidimensional design space of architectural characteristics, algorithm designs, and application parameters. With traditional performance modeling tools, these explorations forced users to first develop a performance model and then repeatedly evaluate and analyze the model manually. These manual investigations proved laborious and error prone. More importantly, the complexity of this traditional process often forced users to simplify their investigations. To address this challenge of design space exploration, we extend our Aspen (Abstract Scalable Performance Engineering Notation) language with three new language constructs: user-defined resources, parameter ranges, and a collection ofmore » costs in the abstract machine model. Then, we use these constructs to enable automated design space exploration via a nonlinear optimization solver. We show how four interesting classes of design space exploration scenarios can be derived from Aspen models and formulated as pure nonlinear programs. The analysis tools are demonstrated using examples based on Aspen models for a three-dimensional Fast Fourier Transform, the CoMD molecular dynamics proxy application, and the DARPA Streaming Sensor Challenge Problem. Our results show that this approach can compose and solve arbitrary performance modeling questions quickly and rigorously when compared to the traditional manual approach.« less
Automated Design Space Exploration with Aspen
Spafford, Kyle L.; Vetter, Jeffrey S.
2015-01-01
Architects and applications scientists often use performance models to explore a multidimensional design space of architectural characteristics, algorithm designs, and application parameters. With traditional performance modeling tools, these explorations forced users to first develop a performance model and then repeatedly evaluate and analyze the model manually. These manual investigations proved laborious and error prone. More importantly, the complexity of this traditional process often forced users to simplify their investigations. To address this challenge of design space exploration, we extend our Aspen (Abstract Scalable Performance Engineering Notation) language with three new language constructs: user-defined resources, parameter ranges, and a collection ofmore » costs in the abstract machine model. Then, we use these constructs to enable automated design space exploration via a nonlinear optimization solver. We show how four interesting classes of design space exploration scenarios can be derived from Aspen models and formulated as pure nonlinear programs. The analysis tools are demonstrated using examples based on Aspen models for a three-dimensional Fast Fourier Transform, the CoMD molecular dynamics proxy application, and the DARPA Streaming Sensor Challenge Problem. Our results show that this approach can compose and solve arbitrary performance modeling questions quickly and rigorously when compared to the traditional manual approach.« less
ERIC Educational Resources Information Center
Jonas, Peter M.; Weimer, Don
This two-year study involving five colleges and universities compared the academic achievement, as measured by the Educational Testing Service (ETS) Major Field Achievement Test (MFAT) in Business of students in traditional undergraduate programs and those in non-traditional accelerated adult degree programs. The study also compared the subjects'…
Development of GUI Type On-Line Condition Monitoring Program for a Turboprop Engine Using Labview
NASA Astrophysics Data System (ADS)
Kong, Changduk; Kim, Keonwoo
2011-12-01
Recently, an aero gas turbine health monitoring system has been developed for precaution and maintenance action against faults or performance degradations of the advanced propulsion system which occurs in severe environments such as high altitude, foreign object damage particles, hot and heavy rain and snowy atmospheric conditions. However to establish this health monitoring system, the online condition monitoring program is firstly required, and the program must monitor the engine performance trend through comparison between measured engine performance data and base performance results calculated by base engine performance model. This work aims to develop a GUI type on-line condition monitoring program for the PT6A-67 turboprop engine of a high altitude and long endurance operation UAV using LabVIEW. The base engine performance of the on-line condition monitoring program is simulated using component maps inversely generated from the limited performance deck data provided by engine manufacturer. The base engine performance simulation program is evaluated because analysis results by this program agree well with the performance deck data. The proposed on-line condition program can monitor the real engine performance as well as the trend through precise comparison between clean engine performance results calculated by the base performance simulation program and measured engine performance signals. In the development phase of this monitoring system, a signal generation module is proposed to evaluate the proposed online monitoring system. For user friendly purpose, all monitoring program are coded by LabVIEW, and monitoring examples are demonstrated using the proposed GUI type on-condition monitoring program.
Promoting Ocean Literacy through American Meteorological Society Programs
NASA Astrophysics Data System (ADS)
Passow, Michael; Abshire, Wendy; Weinbeck, Robert; Geer, Ira; Mills, Elizabeth
2017-04-01
American Meteorological Society Education Programs provide course materials, online and physical resources, educator instruction, and specialized training in ocean, weather, and climate sciences (https://www.ametsoc.org/ams/index.cfm/education-careers/education-program/k-12-teachers/). Ocean Science literacy efforts are supported through the Maury Project, DataStreme Ocean, and AMS Ocean Studies. The Maury Project is a summer professional development program held at the US Naval Academy designed to enhance effective teaching of the science, technology, engineering, and mathematics of oceanography. DataStreme Ocean is a semester-long course offered twice a year to participants nationwide. Created and sustained with major support from NOAA, DS Ocean explores key concepts in marine geology, physical and chemical oceanography, marine biology, and climate change. It utilizes electronically-transmitted text readings, investigations and current environmental data. AMS Ocean Studies provides complete packages for undergraduate courses. These include online textbooks, investigations manuals, RealTime Ocean Portal (course website), and course management system-compatible files. It can be offered in traditional lecture/laboratory, completely online, and hybrid learning environments. Assistance from AMS staff and other course users is available.
DiBartolo, Patricia Marten; Gregg-Jolly, Leslie; Gross, Deborah; Manduca, Cathryn A.; Iverson, Ellen; Cooke, David B.; Davis, Gregory K.; Davidson, Cameron; Hertz, Paul E.; Hibbard, Lisa; Ireland, Shubha K.; Mader, Catherine; Pai, Aditi; Raps, Shirley; Siwicki, Kathleen; Swartz, Jim E.
2016-01-01
Best-practices pedagogy in science, technology, engineering, and mathematics (STEM) aims for inclusive excellence that fosters student persistence. This paper describes principles of inclusivity across 11 primarily undergraduate institutions designated as Capstone Awardees in Howard Hughes Medical Institute’s (HHMI) 2012 competition. The Capstones represent a range of institutional missions, student profiles, and geographical locations. Each successfully directed activities toward persistence of STEM students, especially those from traditionally underrepresented groups, through a set of common elements: mentoring programs to build community; research experiences to strengthen scientific skill/identity; attention to quantitative skills; and outreach/bridge programs to broaden the student pool. This paper grounds these program elements in learning theory, emphasizing their essential principles with examples of how they were implemented within institutional contexts. We also describe common assessment approaches that in many cases informed programming and created traction for stakeholder buy-in. The lessons learned from our shared experiences in pursuit of inclusive excellence, including the resources housed on our companion website, can inform others’ efforts to increase access to and persistence in STEM in higher education. PMID:27562960
Transputer parallel processing at NASA Lewis Research Center
NASA Technical Reports Server (NTRS)
Ellis, Graham K.
1989-01-01
The transputer parallel processing lab at NASA Lewis Research Center (LeRC) consists of 69 processors (transputers) that can be connected into various networks for use in general purpose concurrent processing applications. The main goal of the lab is to develop concurrent scientific and engineering application programs that will take advantage of the computational speed increases available on a parallel processor over the traditional sequential processor. Current research involves the development of basic programming tools. These tools will help standardize program interfaces to specific hardware by providing a set of common libraries for applications programmers. The thrust of the current effort is in developing a set of tools for graphics rendering/animation. The applications programmer currently has two options for on-screen plotting. One option can be used for static graphics displays and the other can be used for animated motion. The option for static display involves the use of 2-D graphics primitives that can be called from within an application program. These routines perform the standard 2-D geometric graphics operations in real-coordinate space as well as allowing multiple windows on a single screen.
Electronic Engineering Technology Program Exit Examination as an ABET and Self-Assessment Tool
ERIC Educational Resources Information Center
Thomas, Gary; Darayan, Shahryar
2018-01-01
Every engineering, computing, and engineering technology program accredited by the Accreditation Board for Engineering and Technology (ABET) has formulated many and varied self-assessment methods. Methods used to assess a program for ABET accreditation and continuous improvement are for keeping programs current with academic and industrial…
A bit of both science and economics: a non-traditional STEM identity narrative
NASA Astrophysics Data System (ADS)
Mark, Sheron L.
2017-10-01
Black males, as one non-dominant population, remain underrepresented and less successful in science, technology, engineering, and mathematics (STEM). Researchers focused on non-dominant populations are advised against generalizations and to examine cultural intersections (i.e. race, ethnicity, gender, and more) and also to explore cases of success, in addition to cases of under-achievement and underrepresentation. This study has focused on one African American male, Randy, who expressed high-achieving STEM career goals in computer science and engineering. Furthermore, recognizing that culture and identity development underlie STEM engagement and persistence, this long-term case study focused on how Randy developed a STEM identity during the course of the study and the implications of that process for his STEM career exploration. Étienne Wenger's (1999) communities-of-practice (CoP) was employed as a theoretical framework and, in doing so, (1) the informal STEM program in which Randy participated was characterized as a STEM-for-social-justice CoP and (2) Randy participated in ways that consistently utilized an "economics" lens from beyond the boundaries of the CoP. In doing so, Randy functioned as a broker within the CoP and developed a non-traditional STEM identity-in-practice which integrated STEM, "economics", and community engagement. Randy's STEM identity-in-practice is discussed in terms of the contextual factors that support scientific identity development (Hazari et al. in J Res Sci Teach 47:978-1003, 2010), the importance of recognizing and supporting the development of holistic and non-traditional STEM identities, especially for diverse populations in STEM, and the implications of this new understanding of Randy's STEM identity for his long-term STEM career exploration.
Breeding next generation tree fruits: technical and legal challenges
Dalla Costa, Lorenza; Malnoy, Mickael; Gribaudo, Ivana
2017-01-01
The new plant breeding technologies (NPBTs) have recently emerged as powerful tools in the context of ‘green’ biotechnologies. They have wide potential compared to classical genetic engineering and they are attracting the interest of politicians, stakeholders and citizens due to the revolutionary impact they may have on agriculture. Cisgenesis and genome editing potentially allow to obtain pathogen-resistant plants or plants with enhanced qualitative traits by introducing or disrupting specific genes in shorter times compared to traditional breeding programs and by means of minimal modifications in the plant genome. Grapevine, the most important fruit crop in the world from an economical point of view, is a peculiar case for NPBTs because of the load of cultural aspects, varietal traditions and consumer demands, which hinder the use of classical breeding techniques and, furthermore, the application of genetic engineering to wine grape cultivars. Here we explore the technical challenges which may hamper the application of cisgenesis and genome editing to this perennial plant, in particular focusing on the bottlenecks of the Agrobacterium-mediated gene transfer. In addition, strategies to eliminate undesired sequences from the genome and to choose proper target sites are discussed in light of peculiar features of this species. Furthermore is reported an update of the international legislative frameworks regulating NPBT products which shows conflicting positions and, in the case of the European Union, a prolonged lack of regulation. PMID:29238598
A fast and efficient method for device level layout analysis
NASA Astrophysics Data System (ADS)
Dong, YaoQi; Zou, Elaine; Pang, Jenny; Huang, Lucas; Yang, Legender; Zhang, Chunlei; Du, Chunshan; Hu, Xinyi; Wan, Qijian
2017-03-01
There is an increasing demand for device level layout analysis, especially as technology advances. The analysis is to study standard cells by extracting and classifying critical dimension parameters. There are couples of parameters to extract, like channel width, length, gate to active distance, and active to adjacent active distance, etc. for 14nm technology, there are some other parameters that are cared about. On the one hand, these parameters are very important for studying standard cell structures and spice model development with the goal of improving standard cell manufacturing yield and optimizing circuit performance; on the other hand, a full chip device statistics analysis can provide useful information to diagnose the yield issue. Device analysis is essential for standard cell customization and enhancements and manufacturability failure diagnosis. Traditional parasitic parameters extraction tool like Calibre xRC is powerful but it is not sufficient for this device level layout analysis application as engineers would like to review, classify and filter out the data more easily. This paper presents a fast and efficient method based on Calibre equation-based DRC (eqDRC). Equation-based DRC extends the traditional DRC technology to provide a flexible programmable modeling engine which allows the end user to define grouped multi-dimensional feature measurements using flexible mathematical expressions. This paper demonstrates how such an engine and its programming language can be used to implement critical device parameter extraction. The device parameters are extracted and stored in a DFM database which can be processed by Calibre YieldServer. YieldServer is data processing software that lets engineers query, manipulate, modify, and create data in a DFM database. These parameters, known as properties in eqDRC language, can be annotated back to the layout for easily review. Calibre DesignRev can create a HTML formatted report of the results displayed in Calibre RVE which makes it easy to share results among groups. This method has been proven and used in SMIC PDE team and SPICE team.
ERIC Educational Resources Information Center
Fonseca, James W., Comp.
Sixty-one papers are presented from the George Mason University (Virginia) annual conference on nontraditional interdisciplinary programs. They are grouped in the following categories, with three to ten papers per category: adjunct faculty; corporate/university linkages; experiential learning; graduate non-traditional programs; interdisciplinary…
ERIC Educational Resources Information Center
Reithlingshoefer, Sally J., Ed.; Sanford, James F., Ed.
A total of 72 papers on nontraditional and interdisciplinary programs are presented in 11 tracks: (1) Assessing Learning Outcomes and Providing Quality in Non-Traditional Degree Programs (8 papers, including "Assessing the Quality of a Non-Traditional Degree Program: A Case Study," by Solomon Deressa and Mary Sue Simmons); (2) Consortial,…
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-14
... disciplines: North Slope traditional and local knowledge, landscape ecology, petroleum engineering, civil engineering, geology, botany, hydrology, limnology, habitat biology, wildlife biology, biometrics, sociology...
Rocket-Based Combined Cycle Flowpath Testing for Modes 1 and 4
NASA Technical Reports Server (NTRS)
Rice, Tharen
2002-01-01
Under sponsorship of the NASA Glenn Research Center (NASA GRC), the Johns Hopkins University Applied Physics Laboratory (JHU/APL) designed and built a five-inch diameter, Rocket-Based Combined Cycle (RBCC) engine to investigate mode 1 and mode 4 engine performance as well as Mach 4 inlet performance. This engine was designed so that engine area and length ratios were similar to the NASA GRC GTX engine is shown. Unlike the GTX semi-circular engine design, the APL engine is completely axisymmetric. For this design, a traditional rocket thruster was installed inside of the scramjet flowpath, along the engine centerline. A three part test series was conducted to determine Mode I and Mode 4 engine performance. In part one, testing of the rocket thruster alone was accomplished and its performance determined (average Isp efficiency = 90%). In part two, Mode 1 (air-augmented rocket) testing was conducted at a nominal chamber pressure-to-ambient pressure ratio of 100 with the engine inlet fully open. Results showed that there was neither a thrust increment nor decrement over rocket-only thrust during Mode 1 operation. In part three, Mode 4 testing was conducted with chamber pressure-to-ambient pressure ratios lower than desired (80 instead of 600) with the inlet fully closed. Results for this testing showed a performance decrease of 20% as compared to the rocket-only testing. It is felt that these results are directly related to the low pressure ratio tested and not the engine design. During this program, Mach 4 inlet testing was also conducted. For these tests, a moveable centerbody was tested to determine the maximum contraction ratio for the engine design. The experimental results agreed with CFD results conducted by NASA GRC, showing a maximum geometric contraction ratio of approximately 10.5. This report details the hardware design, test setup, experimental results and data analysis associated with the aforementioned tests.
Retaining minorities in engineering: Assessment of a program prototype
NASA Astrophysics Data System (ADS)
Good, Jennifer Marie (Phillips)
Program assessment is an essential part of healthy program development. Assessment should include multiple considerations, dimensions, and outcomes that match the program's objectives. As a newly formed retention program, the Auburn University Minority Engineering Program, designed to help pre-engineering minority students make the transition into their freshman year of university studies, incorporated evaluation and assessment into all three components of the program (the interactive learning laboratory, critical-thinking workshops, and Sunday-evening tutorials) from the program's inception. If students successfully adapted to the university environment and the demands of the pre-engineering course of study, then retention of minority students in the College of Engineering should improve. Data were gathered on the students involved in the various program components. Students who entered the Minority Engineering Program were pre- and posttested on three standardized subtests (critical thinking, mathematics, and science reasoning) of the Collegiate Assessment of Academic Proficiency. The first-quarter grade-point averages of the students were also gathered to compare their grades to freshman students in previous quarters within the College of Engineering. Qualitative data were also gathered on this same group of students. An analysis of the data revealed that student achievement is affected by involvement in the Minority Engineering Program. Specifically, the first quarter grade point averages of students involved in the program exceeded those of their peers in earlier years of study prior to the program's existence. In addition, mathematics and science reasoning scores on standardized tests increased pre- to postintervention. Comments collected in journals and files also demonstrated use of critical-thinking and problem-solving skills employed by the students. Recommendations for alterations of the program were made based on the outcome of the program evaluation. Further suggestions for research in minority engineering program development and evaluation were also discussed.
Small Scale SOFC Demonstration Using Bio-Based and Fossil Fuels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petrik, Michael; Ruhl, Robert
2012-05-01
Technology Management, Inc. (TMI) of Cleveland, Ohio, has completed the project entitled Small Scale SOFC Demonstration using Bio-based and Fossil Fuels. Under this program, two 1-kW systems were engineered as technology demonstrators of an advanced technology that can operate on either traditional hydrocarbon fuels or renewable biofuels. The systems were demonstrated at Patterson's Fruit Farm of Chesterland, OH and were open to the public during the first quarter of 2012. As a result of the demonstration, TMI received quantitative feedback on operation of the systems as well as qualitative assessments from customers. Based on the test results, TMI believes thatmore » > 30% net electrical efficiency at 1 kW on both traditional and renewable fuels with a reasonable entry price is obtainable. The demonstration and analysis provide the confidence that a 1 kW entry-level system offers a viable value proposition, but additional modifications are warranted to reduce sound and increase reliability before full commercial acceptance.« less
NASA Astrophysics Data System (ADS)
Nicholas-Figueroa, Linda
Upon regaining the right to direct education at the local level, the North Slope Borough (NSB) of Alaska incorporated Inupiat educational philosophies into the educational system. The NSB in partnership with the University of Alaska Fairbanks established Ilisagvik College, the only tribal college in Alaska. Ilisagvik College seeks to broaden science, technology, engineering, and mathematical education on the North Slope. Incorporation of place-based and informal lessons with traditional ecological knowledge engages students in education. Ilisagvik hosted a 2-week climate change program from 2012 - 2015 for high school and middle school students that examined climate science and the effects of a warming climate on the local environment from a multitude of perspectives from scientists, Inupiat Elders, and instructor-led field trips. Pre-assessments and post-assessments using the Student Assessment of Learning Gains tool measured students' interests and conceptual understanding. Students developed and enhanced their understanding of science concepts and, at the end of the program, could articulate the impact of climatic changes on their local environment. Similarly, methods to incorporate Indigenous knowledge into research practices have been achieved, such as incorporating field trips and discussion with Elders on the importance of animal migration, whale feeding patterns, and the significance of sea-ice conditions, which are important community concerns.
Modified Fully Utilized Design (MFUD) Method for Stress and Displacement Constraints
NASA Technical Reports Server (NTRS)
Patnaik, Surya; Gendy, Atef; Berke, Laszlo; Hopkins, Dale
1997-01-01
The traditional fully stressed method performs satisfactorily for stress-limited structural design. When this method is extended to include displacement limitations in addition to stress constraints, it is known as the fully utilized design (FUD). Typically, the FUD produces an overdesign, which is the primary limitation of this otherwise elegant method. We have modified FUD in an attempt to alleviate the limitation. This new method, called the modified fully utilized design (MFUD) method, has been tested successfully on a number of designs that were subjected to multiple loads and had both stress and displacement constraints. The solutions obtained with MFUD compare favorably with the optimum results that can be generated by using nonlinear mathematical programming techniques. The MFUD method appears to have alleviated the overdesign condition and offers the simplicity of a direct, fully stressed type of design method that is distinctly different from optimization and optimality criteria formulations. The MFUD method is being developed for practicing engineers who favor traditional design methods rather than methods based on advanced calculus and nonlinear mathematical programming techniques. The Integrated Force Method (IFM) was found to be the appropriate analysis tool in the development of the MFUD method. In this paper, the MFUD method and its optimality are presented along with a number of illustrative examples.
Oden, Maria; Mirabal, Yvette; Epstein, Marc
2010-01-01
Recent reports have highlighted the need for educational programs to prepare students for careers developing and disseminating new interventions that improve global public health. Because of its multi-disciplinary, design-centered nature, the field of Biomedical Engineering can play an important role in meeting this challenge. This article describes a new program at Rice University to give undergraduate students from all disciplines a broad background in bioengineering and global health and provides an initial assessment of program impact. Working in partnership with health care providers in developing countries, students in the Beyond Traditional Borders (BTB) initiative learn about health challenges of the poor and put this knowledge to work immediately, using the engineering design process as a framework to formulate solutions to complex global health challenges. Beginning with a freshman design project and continuing through a capstone senior design course, the BTB curriculum uses challenges provided by partners in the developing world to teach students to integrate perspectives from multiple disciplines, and to develop leadership, communication, and teamwork skills. Exceptional students implement their designs under the guidance of clinicians through summer international internships. Since 2006, 333 students have designed more than 40 technologies and educational programs; 28 have been implemented in sub-Saharan Africa, Latin America, the Caribbean, southeast Asia, and the United States. More than 18,000 people have benefited from these designs. 95% of alumni who completed an international internship reported that participation in the program changed or strengthened their career plans to include a focus on global health medicine, research, and/or policy. Empowering students to use bioengineering design to address real problems is an effective way to teach the new generation of leaders needed to solve global health challenges. PMID:20387116
[An object-oriented intelligent engineering design approach for lake pollution control].
Zou, Rui; Zhou, Jing; Liu, Yong; Zhu, Xiang; Zhao, Lei; Yang, Ping-Jian; Guo, Huai-Cheng
2013-03-01
Regarding the shortage and deficiency of traditional lake pollution control engineering techniques, a new lake pollution control engineering approach was proposed in this study, based on object-oriented intelligent design (OOID) from the perspective of intelligence. It can provide a new methodology and framework for effectively controlling lake pollution and improving water quality. The differences between the traditional engineering techniques and the OOID approach were compared. The key points for OOID were described as object perspective, cause and effect foundation, set points into surface, and temporal and spatial optimization. The blue algae control in lake was taken as an example in this study. The effect of algae control and water quality improvement were analyzed in details from the perspective of object-oriented intelligent design based on two engineering techniques (vertical hydrodynamic mixer and pumping algaecide recharge). The modeling results showed that the traditional engineering design paradigm cannot provide scientific and effective guidance for engineering design and decision-making regarding lake pollution. Intelligent design approach is based on the object perspective and quantitative causal analysis in this case. This approach identified that the efficiency of mixers was much higher than pumps in achieving the goal of low to moderate water quality improvement. However, when the objective of water quality exceeded a certain value (such as the control objective of peak Chla concentration exceeded 100 microg x L(-1) in this experimental water), the mixer cannot achieve this goal. The pump technique can achieve the goal but with higher cost. The efficiency of combining the two techniques was higher than using one of the two techniques alone. Moreover, the quantitative scale control of the two engineering techniques has a significant impact on the actual project benefits and costs.
Teaching and Learning Objectives: The First Step in Assessment Programs
ERIC Educational Resources Information Center
O'Keefe, Robert D.; Lopez, Juan R.; Xu, Jun; Lall, Roger K.
2015-01-01
Currently traditional institutions of higher learning are facing more robust competition from alternative educational programs and non- traditional institutions offering certificates and degrees. In addition to this competition the programs offered by the traditional institutions of higher learning are being called into question by graduates; the…
Three Traditions of Computing: What Educators Should Know
ERIC Educational Resources Information Center
Tedre, Matti; Sutinen, Erkki
2008-01-01
Educators in the computing fields are often familiar with the characterization of computing as a combination of theoretical, scientific, and engineering traditions. That distinction is often used to guide the work and disciplinary self-identity of computing professionals. But the distinction is, by no means, an easy one. The three traditions of…
ERIC Educational Resources Information Center
Liu, Yucheng
2017-01-01
In this work, an industry-based and team-oriented education model was established based on a traditional mechanical engineering (ME) senior design class in order to better prepare future engineers and leaders so as to meet the increasing demand for high-quality engineering graduates. In the renovated curriculum, industry-sponsored projects became…
Chemical Reaction Engineering Applications in Non-traditional Technologies. A Textbook Supplement.
ERIC Educational Resources Information Center
Savage, Phillip E.; Blaine, Steven
1991-01-01
A set of educational materials that have been developed which deal with chemical engineering applications in emerging technologies is described. The organization and the content of the supplemental textbook materials and how they can be integrated into an undergraduate reaction engineering course are discussed. (KR)
Implementing Feminist Theory in Engineering: Obstacles within the Gender Studies Tradition
ERIC Educational Resources Information Center
Udén, Maria K.
2017-01-01
Scholars have noted that there is hesitation to utilise findings from gender studies in engineering education. Issues within gender studies may be part of the matching problem. Debates concerning two concepts for new engineering paradigms are investigated: "care" and "heterogeneity." Their appeals and the respective…
A Survey of Dual Career Couples in Engineering.
ERIC Educational Resources Information Center
Haemmerlie, Frances M.; Montgomery, Robert L.
Interest in the problems and concerns of dual career couples has increased markedly in the last decade. However, little research has been done with dual career couples in such traditionally non-female professions as engineering. To examine work, home, personal, and interpersonal characteristics and concerns, married female engineering graduates…
Engineering Design Modules as Physics Teaching Tools
ERIC Educational Resources Information Center
Oliver, Douglas L.; Kane, Jackie
2011-01-01
Pre-engineering is increasingly being taught as a high school subject. This development presents challenges as well as opportunities for the physics education community. If pre-engineering is taught as a separate class, it may divert resources and students from traditional physics classes. However, design modules can be used as physics teaching…
Incorporating Six Sigma Methodology Training into Chemical Engineering Education
ERIC Educational Resources Information Center
Dai, Lenore L.
2007-01-01
Six Sigma is a buzz term in today's technology and business world and there has been increasing interest to initiate Six Sigma training in college education. We have successfully incorporated Six Sigma methodology training into a traditional chemical engineering course, Engineering Experimentation, at Texas Tech University. The students have…
Brewing as a Comprehensive Learning Platform in Chemical Engineering
ERIC Educational Resources Information Center
Nielsen, Rudi P.; Sørensen, Jens L.; Simonsen, Morten E.; Madsen, Henrik T.; Muff, Jens; Strandgaard, Morten; Søgaard, Erik G.
2016-01-01
Chemical engineering is mostly taught using traditional classroom teaching and laboratory experiments when possible. Being a wide discipline encompassing topics such as analytical chemistry, process design, and microbiology, it may be argued that brewing of beer has many relations to chemical engineering topic-wise. This work illustrates how…
On the Role of Engineering in Mathematical Development
ERIC Educational Resources Information Center
Fernandez, Isabel; Pacheco, Jose
2005-01-01
It is customary for engineering syllabuses to include a substantial amount of mathematics, a fact traditionally justified through their usefulness in the analysis and resolution of many technological problems. In other words, usually the role of mathematics in engineering is emphasized. Nevertheless, the opposite viewpoint could be considered as…
Engineering Communication Interface: An Engineering Multi-Disciplinary Project
ERIC Educational Resources Information Center
Prescott, David; El-Sakran, Tharwat; Albasha, Lutfi; Aloul, Fadi; Al-Assaf, Yousef
2011-01-01
Well-developed professional communication skills, collaborative work practices, effective self-management and a clear understanding of social responsibility and ethical practices are essential for the new engineer who hopes to contribute to the profession and build a career. These attributes are in addition to the traditional sound knowledge of…
ERIC Educational Resources Information Center
Huckaba, Charles E.; Griffin, Ann
1983-01-01
Describes development of an interdisciplinary engineering course called "Social Aspects of the Technical Decision Process." Course content includes such interdisciplinary topics as alternative energy, ecology, and urban planning, which represent traditional engineering concepts. However, social and historical dimensions are built into topics.…
Educating Engineers in Information Utilization.
ERIC Educational Resources Information Center
Borovansky, Vladimir T.
1987-01-01
Traditionally engineers are not heaviest users of information resources. This can be traced to lack of emphasis on information sources in engineering education. Failure to use available knowledge leads to reinventing the wheel and losing the race for technological superiority. Few U.S. universities offer formal courses in information resources in…
Women in Engineering: Educational Concomitants of a Non-Traditional Career Choice.
ERIC Educational Resources Information Center
Evetts, Julia
1993-01-01
Uses career history data from 15 women in professional engineering careers to examine some educational concomitants of nontraditional career choices. The focus, from an interactionist theoretical perspective, is on how women actually experienced becoming an engineer. The educational influences identified are those perceived by women themselves to…
Documentation of the Benson Diesel Engine Simulation Program
NASA Technical Reports Server (NTRS)
Vangerpen, Jon
1988-01-01
This report documents the Benson Diesel Engine Simulation Program and explains how it can be used to predict the performance of diesel engines. The program was obtained from the Garrett Turbine Engine Company but has been extensively modified since. The program is a thermodynamic simulation of the diesel engine cycle which uses a single zone combustion model. It can be used to predict the effect of changes in engine design and operating parameters such as valve timing, speed and boost pressure. The most significan change made to this program is the addition of a more detailed heat transfer model to predict metal part temperatures. This report contains a description of the sub-models used in the Benson program, a description of the input parameters and sample program runs.
Information visualization: Beyond traditional engineering
NASA Technical Reports Server (NTRS)
Thomas, James J.
1995-01-01
This presentation addresses a different aspect of the human-computer interface; specifically the human-information interface. This interface will be dominated by an emerging technology called Information Visualization (IV). IV goes beyond the traditional views of computer graphics, CADS, and enables new approaches for engineering. IV specifically must visualize text, documents, sound, images, and video in such a way that the human can rapidly interact with and understand the content structure of information entities. IV is the interactive visual interface between humans and their information resources.
An Assessment of Research-Doctorate Programs in the United States: Engineering.
ERIC Educational Resources Information Center
Jones, Lyle V., Ed.; And Others
The quality of doctoral-level chemical engineering (N=79), civil engineering (N=74), electrical engineering (N=91), and mechanical engineering (N=82) programs at United States universities was assessed, using 16 measures. These measures focused on variables related to: (1) program size; (2) characteristics of graduates; (3) reputational factors…
An Engineering Research Program for High School Science Teachers: Year Two Changes and Results
ERIC Educational Resources Information Center
DeJong, Brian P.; Yelamarthi, Kumar; Kaya, Tolga
2016-01-01
The research experiences for teachers program at Central Michigan University was initiated to team in-service and pre-service teachers with undergraduate engineering students and engineering faculty, in an engineering research setting. During the six-week program, teachers learn engineering concepts and develop high-school instructional material…
34 CFR 637.4 - What definitions apply to the Minority Science and Engineering Improvement Program?
Code of Federal Regulations, 2014 CFR
2014-07-01
... Engineering Improvement Program? 637.4 Section 637.4 Education Regulations of the Offices of the Department of... ENGINEERING IMPROVEMENT PROGRAM General § 637.4 What definitions apply to the Minority Science and Engineering... American origin), Pacific Islander or other ethnic group underrepresented in science and engineering...
34 CFR 637.4 - What definitions apply to the Minority Science and Engineering Improvement Program?
Code of Federal Regulations, 2012 CFR
2012-07-01
... Engineering Improvement Program? 637.4 Section 637.4 Education Regulations of the Offices of the Department of... ENGINEERING IMPROVEMENT PROGRAM General § 637.4 What definitions apply to the Minority Science and Engineering... American origin), Pacific Islander or other ethnic group underrepresented in science and engineering...
34 CFR 637.4 - What definitions apply to the Minority Science and Engineering Improvement Program?
Code of Federal Regulations, 2010 CFR
2010-07-01
... Engineering Improvement Program? 637.4 Section 637.4 Education Regulations of the Offices of the Department of... ENGINEERING IMPROVEMENT PROGRAM General § 637.4 What definitions apply to the Minority Science and Engineering... American origin), Pacific Islander or other ethnic group underrepresented in science and engineering...
34 CFR 637.4 - What definitions apply to the Minority Science and Engineering Improvement Program?
Code of Federal Regulations, 2013 CFR
2013-07-01
... Engineering Improvement Program? 637.4 Section 637.4 Education Regulations of the Offices of the Department of... ENGINEERING IMPROVEMENT PROGRAM General § 637.4 What definitions apply to the Minority Science and Engineering... American origin), Pacific Islander or other ethnic group underrepresented in science and engineering...
34 CFR 637.4 - What definitions apply to the Minority Science and Engineering Improvement Program?
Code of Federal Regulations, 2011 CFR
2011-07-01
... Engineering Improvement Program? 637.4 Section 637.4 Education Regulations of the Offices of the Department of... ENGINEERING IMPROVEMENT PROGRAM General § 637.4 What definitions apply to the Minority Science and Engineering... American origin), Pacific Islander or other ethnic group underrepresented in science and engineering...
Update of GRASP/Ada reverse engineering tools for Ada
NASA Technical Reports Server (NTRS)
Cross, James H., II
1993-01-01
The GRASP/Ada project (Graphical Representations of Algorithms, Structures, and Processes for Ada) successfully created and prototyped a new algorithmic level graphical representation for Ada software, the Control Structure Diagram (CSD). The primary impetus for creation of the CSD was to improve the comprehension efficiency of Ada software and, as a result, improve reliability and reduce costs. The emphasis was on the automatic generation of the CSD from Ada PDL or source code to support reverse engineering and maintenance. The CSD has the potential to replace traditional pretty printed Ada source code. In Phase 1 of the GRASP/Ada project, the CSD graphical constructs were created and applied manually to several small Ada programs. A prototype CSD generator (Version 1) was designed and implemented using FLEX and BISON running under VMS on a VAX 11-780. In Phase 2, the prototype was improved and ported to the Sun 4 platform under UNIX. A user interface was designed and partially implemented using the HP widget toolkit and the X Windows System. In Phase 3, the user interface was extensively reworked using the Athena widget toolkit and X Windows. The prototype was applied successfully to numerous Ada programs ranging in size from several hundred to several thousand lines of source code. Following Phase 3,e two update phases were completed. Update'92 focused on the initial analysis of evaluation data collected from software engineering students at Auburn University and the addition of significant enhancements to the user interface. Update'93 (the current update) focused on the statistical analysis of the data collected in the previous update and preparation of Version 3.4 of the prototype for limited distribution to facilitate further evaluation. The current prototype provides the capability for the user to generate CSD's from Ada PDL or source code in a reverse engineering as well as forward engineering mode with a level of flexibility suitable for practical application. An overview of the GRASP/Ada project with an emphasis on the current update is provided.
Standardized development of computer software. Part 1: Methods
NASA Technical Reports Server (NTRS)
Tausworthe, R. C.
1976-01-01
This work is a two-volume set on standards for modern software engineering methodology. This volume presents a tutorial and practical guide to the efficient development of reliable computer software, a unified and coordinated discipline for design, coding, testing, documentation, and project organization and management. The aim of the monograph is to provide formal disciplines for increasing the probability of securing software that is characterized by high degrees of initial correctness, readability, and maintainability, and to promote practices which aid in the consistent and orderly development of a total software system within schedule and budgetary constraints. These disciplines are set forth as a set of rules to be applied during software development to drastically reduce the time traditionally spent in debugging, to increase documentation quality, to foster understandability among those who must come in contact with it, and to facilitate operations and alterations of the program as requirements on the program environment change.
Nondestructive Evaluation of the J-2X Direct Metal Laser Sintered Gas Generator Discharge Duct
NASA Technical Reports Server (NTRS)
Esther, Elizabeth A.; Beshears, Ronald D.; Lash, Rhonda K.
2012-01-01
The J-2X program at NASA's Marshall Space Flight Center (MSFC) procured a direct metal laser sintered (DMLS) gas generator discharge duct from Pratt & Whitney Rocketdyne and Morris Technologies for a test program that would evaluate the material properties and durability of the duct in an engine-like environment. DMLS technology was pursued as a manufacturing alternative to traditional techniques, which used off nominal practices to manufacture the gas generator duct's 180 degree turn geometry. MSFC's Nondestructive Evaluation (NDE) Team performed radiographic, ultrasonic, computed tomographic, and fluorescent penetrant examinations of the duct. Results from the NDE examinations reveal some shallow porosity but no major defects in the as-manufactured material. NDE examinations were also performed after hot-fire testing the gas generator duct and yielded similar results pre and post-test and showed no flaw growth or development.
NASA Astrophysics Data System (ADS)
Shila, Jacob Joshua Howard
The aviation industry is expected to grow at an annual rate of 5% until the year 2031 according to Boeing Outlook Report of 2012. Although the aerospace manufacturers have introduced new aircraft and engines technologies to reduce the emissions generated by aircraft engines, about 15% of all aircraft in 2032 will be using the older technologies. Therefore, agencies such as the National Aeronautics and Astronautics Administration (NASA), Federal Aviation Administration (FAA), the Environmental Protection Agency (EPA) among others together with some academic institutions have been working to characterize both physical and chemical characteristics of the aircraft particulate matter emissions to further understand their effects to the environment. The International Civil Aviation Organization (ICAO) is also working to establish an inventory with Particulate Matter emissions for all the aircraft turbine engines for certification purposes. This steps comes as a result of smoke measurements not being sufficient to provide detailed information on the effects of Particulate Matter (PM) emissions as far as the health and environmental concerns. The use of alternative fuels is essential to reduce the impacts of emissions released by Jet engines since alternative aviation fuels have been studied to lower particulate matter emissions in some types of engines families. The purpose of this study was to determine whether the emission indices of the biofuel blended fuels were lower than the emission indices of the traditional jet fuel at selected engine thrust settings. The biofuel blends observed were 75% Jet A-25% Camelina blend biofuel, and 50% Jet A-50% Jet A blend biofuel. The traditional jet fuel in this study was the Jet A fuel. The results of this study may be useful in establishing a baseline for aircraft engines' PM inventory. Currently the International Civil Aviation Organization (ICAO) engines emissions database contains only gaseous emissions data for only the TFE 731 and JT15D engines' families as representatives of other engines with rated thrust of 6000 pounds or below. The results of this study may be used to add to the knowledge of PM emission data that has been collected in other research studies. This study was quantitative in nature. Three factors were designated which were the types of fuels studied. The TFE-109 turbofan engine was the experimental subject. The independent variable was the engine thrust setting while the response variable was the emission index. Four engine runs were conducted for each fuel. In each engine run, four engine thrust settings were observed. The four engine thrust levels were 10%, 30%, 85%, and 100% rated thrusts levels. Therefore, for each engine thrust settings, there four replicates. The experiments were conducted using a TFE-109 engine test cell located in the Niswonger Aviation Technology building at the Purdue University Airport. The testing facility has the capability to conduct the aircraft PM emissions tests. Due to the equipment limitations, the study was limited to observe total PM emissions instead of specifically measuring the non-volatile PM emissions. The results indicate that the emissions indices of the blended biofuels were not statistically significantly lower compared to the emissions of the traditional jet fuel at rated thrust levels of 100% and 85% of TFE-109 turbofan engine. However, the emission indices for the 50%Jet A - 50%Camelina biofuel blend were statistically significantly lower compared to the emission indices of the 100% Jet A fuel at 10% and 30% engine rated thrusts levels of TFE-109 engine. The emission indices of the 50%-50% biofuel blend were lower by reductions of 15% and 17% at engine rated thrusts of 10% and 30% respectively compared to the emissions indices of the traditional jet fuel at the same engine thrust levels. Experimental modifications in future studies may provide estimates of the emissions indices range for this particular engine these estimates may be used to estimate the levels of PM emissions for other similar engines. Additional measurements steps such as heating of the sampling line, sampling dilution application, sampling line loss estimates, and calculations of the sampling line PM residence times will also be useful future results.
Attenuation of FJ44 Turbofan Engine Noise with a Foam-Metal Liner Installed Over-the-Rotor
NASA Technical Reports Server (NTRS)
Sutliff, Daniel L.; Elliott, Dave M.; Jones, Michael G.; Hartley, Thomas C.
2009-01-01
A Williams International FJ44-3A 3000-lb thrust class turbofan engine was used as a demonstrator for a Foam-Metal Liner (FML) installed in close proximity to the fan. Two FML designs were tested and compared to the hardwall baseline. Traditional single degree-of-freedom liner designs were also evaluated to provide a comparison. Farfield acoustic levels and limited engine performance results are presented in this paper. The results show that the FML achieved up to 5 dB Acoustic Power Level (PWL) overall attenuation in the forward quadrant, equivalent to the traditional liner design. An earlier report presented the test set-up and conditions.
Public health engineering education in India: current scenario, opportunities and challenges.
Hussain, Mohammad Akhtar; Sharma, Kavya; Zodpey, Sanjay
2011-01-01
Public health engineering can play an important and significant role in solving environmental health issues. In order to confront public health challenges emerging out of environmental problems we need adequately trained public health engineers / environmental engineers. Considering the current burden of disease attributable to environmental factors and expansion in scope of applications of public health / environmental engineering science, it is essential to understand the present scenario of teaching, training and capacity building programs in these areas. Against this background the present research was carried out to know the current teaching and training programs in public health engineering and related disciplines in India and to understand the potential opportunities and challenges available. A systematic, predefined approach was used to collect and assemble the data related to various teaching and training programs in public health engineering / environmental engineering in India. Public health engineering / environmental engineering education and training in the country is mainly offered through engineering institutions, as pre-service and in-service training. Pre-service programs include diploma, degree (graduate) and post-graduate courses affiliated to various state technical boards, institutes and universities, whereas in-service training is mainly provided by Government of India recognized engineering and public health training institutes. Though trainees of these programs acquire skills related to engineering sciences, they significantly lack in public health skills. The teaching and training of public health engineering / environmental engineering is limited as a part of public health programs (MD Community Medicine, MPH, DPH) in India. There is need for developing teaching and training of public health engineering or environmental engineering as an interdisciplinary subject. Public health institutes can play an important and significant role in this regard by engaging themselves in initiating specialized programs in this domain.
Change is necessary in a biological engineering curriculum.
Johnson, Arthur T; Montas, Hubert; Shirmohammadi, Adel; Wheaton, Fredrick W
2006-01-01
Success of a Biological Engineering undergraduate educational program can be measured in a number of ways, but however it is measured, a presently successful program can translate into an unsuccessful program if it cannot adjust to different conditions posed by technical advances, student characteristics, and academic pressures. Described in this paper is a Biological Engineering curriculum that has changed significantly since its transformation from Agricultural Engineering in 1993. As a result, student numbers have continued to climb, specific objectives have emerged, and unique courses have been developed. The Biological Resources Engineering program has evolved into a program that emphasizes breadth, fundamentals, communications skills, diversity, and practical engineering judgment.
NASA Technical Reports Server (NTRS)
Bagg, Thomas C., III; Brumfield, Mark D.; Jamison, Donald E.; Granata, Raymond L.; Casey, Carolyn A.; Heller, Stuart
2003-01-01
The Systems Engineering Education Development (SEED) Program at NASA Goddard Space Flight Center develops systems engineers from existing discipline engineers. The program has evolved significantly since the report to INCOSE in 2003. This paper describes the SEED Program as it is now, outlines the changes over the last year, discusses current status and results, and shows the value of human systems and leadership skills for practicing systems engineers.
2004-10-24
Expedition 9 Flight Engineer Michael Fincke performs the traditional crew signing inside of his Russian search and rescue helicopter while Expedition 5 Flight Engineer Peggy Whitson looks on, Sunday, October 24, 2004. Photo Credit: (NASA/Bill Ingalls)
Ceramic automotive Stirling engine program
NASA Technical Reports Server (NTRS)
1986-01-01
The Ceramic Automotive Stirling Engine Program evaluated the application of advanced ceramic materials to an automotive Stirling engine. The objective of the program was to evaluate the technical feasibility of utilizing advanced ceramics to increase peak engine operating temperature, and to evaluate the performance benefits of such an increase. Manufacturing cost estimates were also developed for various ceramic engine components and compared with conventional metallic engine component costs.
Robot-aided electrospinning toward intelligent biomedical engineering.
Tan, Rong; Yang, Xiong; Shen, Yajing
2017-01-01
The rapid development of robotics offers new opportunities for the traditional biofabrication in higher accuracy and controllability, which provides great potentials for the intelligent biomedical engineering. This paper reviews the state of the art of robotics in a widely used biomaterial fabrication process, i.e., electrospinning, including its working principle, main applications, challenges, and prospects. First, the principle and technique of electrospinning are introduced by categorizing it to melt electrospinning, solution electrospinning, and near-field electrospinning. Then, the applications of electrospinning in biomedical engineering are introduced briefly from the aspects of drug delivery, tissue engineering, and wound dressing. After that, we conclude the existing problems in traditional electrospinning such as low production, rough nanofibers, and uncontrolled morphology, and then discuss how those problems are addressed by robotics via four case studies. Lastly, the challenges and outlooks of robotics in electrospinning are discussed and prospected.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-20
...; Rehabilitation Engineering Research Centers AGENCY: Office of Special Education and Rehabilitative Services... Rehabilitation Research Projects and Centers Program--Rehabilitation Engineering Research Centers (RERC). SUMMARY... amended (Rehabilitation Act). Rehabilitation Engineering Research Centers Program (RERCs) The purpose of...
76 FR 37085 - Applications for New Awards; Rehabilitation Engineering Research Centers (RERCs)
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-24
... DEPARTMENT OF EDUCATION Applications for New Awards; Rehabilitation Engineering Research Centers...)--Disability and Rehabilitation Research Projects and Centers Program--Rehabilitation Engineering Research... (Rehabilitation Act). Rehabilitation Engineering Research Centers Program (RERCs) The purpose of the RERC program...
Project CAD as of July 1978: CAD support project, situation in July 1978
NASA Technical Reports Server (NTRS)
Boesch, L.; Lang-Lendorff, G.; Rothenberg, R.; Stelzer, V.
1979-01-01
The structure of Computer Aided Design (CAD) and the requirements for program developments in past and future are described. The actual standard and the future aims of CAD programs are presented. The developed programs in: (1) civil engineering; (2) mechanical engineering; (3) chemical engineering/shipbuilding; (4) electrical engineering; and (5) general programs are discussed.
High Schools That Work Presents a Pre-Engineering Program of Study.
ERIC Educational Resources Information Center
Southern Regional Education Board, Atlanta, GA.
The Southern Regional Education Board partnered with the not-for-profit organization Project Lead the Way (PLTW) to develop a program connecting challenging academic courses with a pre-engineering program of study. The programs goal is to increase the number and quality of engineers and engineering technologists by providing the following items:…
Training Program for Practical Engineering Design through the Collaboration with Regional Companies
NASA Astrophysics Data System (ADS)
Gofuku, Akio; Tabata, Nobuhisa; Tomita, Eiji; Funabiki, Nobuo
An education program to bring up engineering design capabilities through long-term internship by the collaboration with regional companies has been put in practice for five years. The program is composed of two types of long-term internships and several lectures for patent systems and engineering ethics. This paper describes the outline of the program, educational effects, and our experiences. The program was improved into two educational programs in 2011. The one is a special course to educate engineers and scientists who can lead the technologies of their domains. The other is a long-term internship program for master students in engineering divisions of graduate school. This paper also describes the current activities of the latter program.
NASA Technical Reports Server (NTRS)
Fishbach, L. H.; Koenig, R. W.
1972-01-01
A computer program which calculates steady-state design and off-design jet engine performance for two- or three-spool turbofans with one, two, or three nozzles is described. Included in the report are complete FORTRAN 4 listings of the program with sample results for nine basic turbofan engines that can be calculated: (1) three-spool, three-stream engine; (2) two-spool, three-stream, boosted-fan engine; (3) two-spool, three-stream, supercharged-compressor engine; (4) three-spool, two-stream engine; (5) two-spool, two-stream engine; (6) three-spool, three-stream, aft-fan engine; (7) two-spool, three-stream, aft-fan engine; (8) two-spool, two-stream, aft-engine; and (9) three-spool, two-stream, aft-fan engine. The simulation of other engines by using logical variables built into the program is also described.
General aviation internal-combustion engine research programs at NASA-Lewis Research Center
NASA Technical Reports Server (NTRS)
Willis, E. A.
1978-01-01
An update is presented of non-turbine general aviation engine programs. The program encompasses conventional, lightweight diesel and rotary engines. It's three major thrusts are: (1) reduced SFC's; (2) improved fuels tolerance; and (3) reduced emissions. Current and planned future programs in such areas as lean operation, improved fuel management, advanced cooling techniques and advanced engine concepts, are described. These are expected to lay the technology base, by the mid to latter 1980's, for engines whose life cycle fuel costs are 30 to 50% lower than today's conventional engines.
Empowering biomedical engineering undergraduates to help teach design.
Allen, Robert H; Tam, William; Shoukas, Artin A
2004-01-01
We report on our experience empowering upperclassmen and seniors to help teach design courses in biomedical engineering. Initiated in the fall of 1998, these courses are a projects-based set, where teams of students from freshmen level to senior level converge to solve practical problems in biomedical engineering. One goal in these courses is to teach the design process by providing experiences that mimic it. Student teams solve practical projects solicited from faculty, industry and the local community. To hone skills and have a metric for grading, written documentation, posters and oral presentations are required over the two-semester sequence. By requiring a mock design and build exercise in the fall, students appreciate the manufacturing process, the difficulties unforeseen in the design stage and the importance of testing. A Web-based, searchable design repository captures reporting information from each project since its inception. This serves as a resource for future projects, in addition to traditional ones such as library, outside experts and lab facilities. Based on results to date, we conclude that characteristics about our design program help students experience design and learn aspects about teamwork and mentoring useful in their profession or graduate education.
A strategy for reducing turnaround time in design optimization using a distributed computer system
NASA Technical Reports Server (NTRS)
Young, Katherine C.; Padula, Sharon L.; Rogers, James L.
1988-01-01
There is a need to explore methods for reducing lengthly computer turnaround or clock time associated with engineering design problems. Different strategies can be employed to reduce this turnaround time. One strategy is to run validated analysis software on a network of existing smaller computers so that portions of the computation can be done in parallel. This paper focuses on the implementation of this method using two types of problems. The first type is a traditional structural design optimization problem, which is characterized by a simple data flow and a complicated analysis. The second type of problem uses an existing computer program designed to study multilevel optimization techniques. This problem is characterized by complicated data flow and a simple analysis. The paper shows that distributed computing can be a viable means for reducing computational turnaround time for engineering design problems that lend themselves to decomposition. Parallel computing can be accomplished with a minimal cost in terms of hardware and software.
The analytical representation of viscoelastic material properties using optimization techniques
NASA Technical Reports Server (NTRS)
Hill, S. A.
1993-01-01
This report presents a technique to model viscoelastic material properties with a function of the form of the Prony series. Generally, the method employed to determine the function constants requires assuming values for the exponential constants of the function and then resolving the remaining constants through linear least-squares techniques. The technique presented here allows all the constants to be analytically determined through optimization techniques. This technique is employed in a computer program named PRONY and makes use of commercially available optimization tool developed by VMA Engineering, Inc. The PRONY program was utilized to compare the technique against previously determined models for solid rocket motor TP-H1148 propellant and V747-75 Viton fluoroelastomer. In both cases, the optimization technique generated functions that modeled the test data with at least an order of magnitude better correlation. This technique has demonstrated the capability to use small or large data sets and to use data sets that have uniformly or nonuniformly spaced data pairs. The reduction of experimental data to accurate mathematical models is a vital part of most scientific and engineering research. This technique of regression through optimization can be applied to other mathematical models that are difficult to fit to experimental data through traditional regression techniques.
Examining Provider Perspectives within Housing First and Traditional Programs
Henwood, Benjamin F.; Shinn, Marybeth; Tsemberis, Sam; Padgett, Deborah K.
2014-01-01
Pathways’ Housing First represents a radical departure from traditional programs that serve individuals experiencing homelessness and co-occurring psychiatric and substance use disorders. This paper considered two federally funded comparison studies of Pathways’ Housing First and traditional programs to examine whether differences were reflected in the perspectives of frontline providers. Both quantitative analysis of responses to structured questions with close-ended responses and qualitative analysis of open-ended responses to semistructured questions showed that Pathways providers had greater endorsement of consumer values, lesser endorsement of systems values, and greater tolerance for abnormal behavior that did not result in harm to others than their counterparts in traditional programs. Comparing provider perspectives also revealed an “implementation paradox”; traditional providers were inhibited from engaging consumers in treatment and services without housing, whereas HF providers could focus on issues other than securing housing. As programs increasingly adopt a Housing First approach, implementation challenges remain due to an existing workforce habituated to traditional services. PMID:24659925
Comparative Analysis of a High Bypass Turbofan Using a Pulsed Detonation Combustor
2007-03-01
Thrust Specific Fuel Consumption . . . . . . . . . . . . . 67 xiii List of Abbreviations Abbreviation Page PDE Pulsed Detonation Engine...past ten years to develop pulsed det- onation engines ( PDE ) as a means of aircraft propulsion. Detonation combustion holds the promise of a more...aviation engine, and detonation creates more of it than previous aircraft engines. It is hoped that a marriage of the PDE with traditional
Introduction to the Special Issue on Gender and Geoethics in the Geosciences.
Thornbush, Mary
2016-04-01
In this introduction to the Special Issue on Gender and Geoethics in the Geosciences is a focus on the participation of women in traditionally male-dominated professions, with geography as an exemplary academic subject. The Special Issue stems from the Commission of Gender and Geoethics as part of the International Association of Geoethics, and endeavors to bring together efforts at various spatial scales that examine the position of women in science and engineering in particular, as conveyed in engineering geology, disaster management sciences, and climate change adaptation studies. It has been discovered, for instance, that men are more active and personally prepared at the community level (in Atlantic Canada coastal communities), and more action is still required in developing countries especially to promote gender equality and empower women. Studies contained in this Special Issue also reveal that tutoring and mentoring by other women can promote further involvement in non-traditional professions, such as professional engineering geology, where women are preferring more traditional (less applied) approaches that may circumscribe their ability to find suitable employment after graduation. Moreover, the hiring policy needs to change in many countries, such as Canada, where there are fewer women at entry-level and senior ranks within geography, especially in physical geography as the scientific part of the discipline. The exclusion of women in traditionally male-dominated spheres needs to be addressed and rectified for the ascent of women to occur in scientific geography and in other geosciences as well as science and engineering at large.
NASA Astrophysics Data System (ADS)
Moler, Perry J.
The purpose of this study was to understand what perceptions junior and senior engineering & technology students have about change, change readiness, and selected attributes, skills, and abilities. The selected attributes, skills, and abilities for this study were lifelong learning, leadership, and self-efficacy. The business environment of today is dynamic, with any number of internal and external events requiring an organization to adapt through the process of organizational development. Organizational developments affect businesses as a whole, but these developments are more evident in fields related to engineering and technology. Which require employees working through such developments be flexible and adaptable to a new professional environment. This study was an Explanatory Sequential Mixed Methods design, with Stage One being an online survey that collected individuals' perceptions of change, change readiness, and associated attributes, skills, and abilities. Stage Two was a face-to-face interview with a random sample of individuals who agreed to be interviewed in Stage One. This process was done to understand why students' perceptions are what they are. By using a mixed-method study, a more complete understanding of the current perceptions of students was developed, thus allowing external stakeholders' such as Human Resource managers more insight into the individuals they seek to recruit. The results from Stage One, one sample T-test with a predicted mean of 3.000 for this study indicated that engineering & technology students have a positive perceptions of Change Mean = 3.7024; Change Readiness Mean = 3.9313; Lifelong Learning Mean = 4.571; Leadership = 4.036; and Self-Efficacy Mean = 4.321. A One-way ANOVA was also conducted to understand the differences between traditional and non-traditional student regarding change and change readiness. The results of the ANOVA test indicated there were no significant differences between these two groups. The results from Stage Two showed that students perceived change as both positive and negative. This perception stems from their life experiences rather than from educational or professional experiences. The same can be said for the concepts of change readiness, lifelong learning, leadership, and self-efficacy. This indicates that engineering & technology programs should implement these concepts into their curriculum to better prepare engineering & technology students to enter into professional careers.
ERIC Educational Resources Information Center
Dyer, Mark; Grey, Thomas; Kinnane, Oliver
2017-01-01
It has become increasingly common for tasks traditionally carried out by engineers to be undertaken by technicians and technologist with access to sophisticated computers and software that can often perform complex calculations that were previously the responsibility of engineers. Not surprisingly, this development raises serious questions about…
ERIC Educational Resources Information Center
Von Seggern, Marilyn; Jourdain, Janet M.
1996-01-01
A survey of the different technical communications and information-related activities of 305 engineers and scientists from 3 sites of the Philips Laboratory, an Air Force research and development laboratory, found that scientists have a closer affinity for libraries and traditional information sources than do engineers. Eight tables depict survey…
Supply and Demand for Scientists and Engineers in the Coming Decade.
ERIC Educational Resources Information Center
Vetter, Betty M.
1990-01-01
With fewer traditional students in the population, and fewer of these electing to earn a degree in natural science and engineering, American colleges are reaching out for women, minorities, and foreign students. Concludes, barring unexpected decline in American economy, job opportunities, especially in engineering, should be excellent. (Author/TE)
ERIC Educational Resources Information Center
Lappalainen, Pia
2015-01-01
Despite the changing global and industrial conditions requiring new approaches to leadership, management training as part of higher engineering education still remains understudied. The subsequent gap in engineering education calls for research on today's leader requirements and pedagogy supporting the inclusion of management competence in higher…
Finding Information on the World Wide Web: The Retrieval Effectiveness of Search Engines.
ERIC Educational Resources Information Center
Pathak, Praveen; Gordon, Michael
1999-01-01
Describes a study that examined the effectiveness of eight search engines for the World Wide Web. Calculated traditional information-retrieval measures of recall and precision at varying numbers of retrieved documents to use as the bases for statistical comparisons of retrieval effectiveness. Also examined the overlap between search engines.…
Object oriented development of engineering software using CLIPS
NASA Technical Reports Server (NTRS)
Yoon, C. John
1991-01-01
Engineering applications involve numeric complexity and manipulations of a large amount of data. Traditionally, numeric computation has been the concern in developing an engineering software. As engineering application software became larger and more complex, management of resources such as data, rather than the numeric complexity, has become the major software design problem. Object oriented design and implementation methodologies can improve the reliability, flexibility, and maintainability of the resulting software; however, some tasks are better solved with the traditional procedural paradigm. The C Language Integrated Production System (CLIPS), with deffunction and defgeneric constructs, supports the procedural paradigm. The natural blending of object oriented and procedural paradigms has been cited as the reason for the popularity of the C++ language. The CLIPS Object Oriented Language's (COOL) object oriented features are more versatile than C++'s. A software design methodology based on object oriented and procedural approaches appropriate for engineering software, and to be implemented in CLIPS was outlined. A method for sensor placement for Space Station Freedom is being implemented in COOL as a sample problem.
NASA Astrophysics Data System (ADS)
Frillman, Sharron Ann
2011-12-01
This phenomenological study examined the experiences of twelve female African Americans enrolled as fulltime undergraduate engineering students at North Carolina Agricultural and Technical State University, an historically Black university, and seven female African Americans enrolled as undergraduate engineering students at Purdue University in West Lafayette, Indiana, a traditionally White institution. Interviews provided insights into the "lived" experiences of these young women and the factors they believe have contributed to their success in their respective engineering programs. Data analysis involved coding each participant's responses to interview questions using Atlas.ti, a powerful qualitative data analysis tool. This generated 181 codes that were further categorized into nine emergent themes, indicating the potential for extensive associations among the variables. The emergent themes are as follows: (1) Demographic information/special circumstances, (2) Personal attributes and characteristics, (3) Personal insights, (4) Sense of mission, (5) Sources of negative stress, (6) Success strategies, (7) Various forms of support, (8) Would/would not have made it to where she is now, and (9) Being African American and female in engineering. Analysis of these themes and their relationships led to the development of the Frillman Model of Emergent Themes in Female African American Engineering Students. Success. In addressing similarities and differences, three overriding theme categories emerged. These were: (1) Four personhood themes and dual social identity theme; (2) Environmental input and response theme; and (3) Outcome emergent theme of Would/Would not have made it to where she is now. Recommendations were made for future research to expand upon this exploratory study.
Analysis of Engineering Content within Technology Education Programs
ERIC Educational Resources Information Center
Fantz, Todd D.; Katsioloudis, Petros J.
2011-01-01
In order to effectively teach engineering, technology teachers need to be taught engineering content, concepts, and related pedagogy. Some researchers posit that technology education programs may not have enough content to prepare technology teachers to teach engineering design. Certain technology teacher education programs have responded by…
NASA Technical Reports Server (NTRS)
Martinovic, Zoran N.; Cerro, Jeffrey A.
2002-01-01
This is an interim user's manual for current procedures used in the Vehicle Analysis Branch at NASA Langley Research Center, Hampton, Virginia, for launch vehicle structural subsystem weight estimation based on finite element modeling and structural analysis. The process is intended to complement traditional methods of conceptual and early preliminary structural design such as the application of empirical weight estimation or application of classical engineering design equations and criteria on one dimensional "line" models. Functions of two commercially available software codes are coupled together. Vehicle modeling and analysis are done using SDRC/I-DEAS, and structural sizing is performed with the Collier Research Corp. HyperSizer program.
ARPA-E: Engineering Innovative New Biofuels
Burbaum, Jonathan; Peter, Gary; Kirby, Jim; Lemaux
2018-05-30
ARPA-E's PETRO program was created to supply the transportation sector with plant-derived fuels that are cost-competitive with petroleum and don't affect U.S. food supply. This video highlights the role that ARPA-E has played in connecting traditionally distinct research areas to inform the research and development efforts of PETRO project teams. Specifically, it highlights how the University of Florida leveraged lessons learned from the Joint BioEnergy Institute's work with E. coli to directly influence their work in harvesting fuel molecules from pine trees, as well as how the same genes tested in pine are now being tested in tobacco at Lawrence Berkeley National Laboratory. This transfer of knowledge facilitates new discovery.
Study on light weight design of truss structures of spacecrafts
NASA Astrophysics Data System (ADS)
Zeng, Fuming; Yang, Jianzhong; Wang, Jian
2015-08-01
Truss structure is usually adopted as the main structure form for spacecrafts due to its high efficiency in supporting concentrated loads. Light-weight design is now becoming the primary concern during conceptual design of spacecrafts. Implementation of light-weight design on truss structure always goes through three processes: topology optimization, size optimization and composites optimization. During each optimization process, appropriate algorithm such as the traditional optimality criterion method, mathematical programming method and the intelligent algorithms which simulate the growth and evolution processes in nature will be selected. According to the practical processes and algorithms, combined with engineering practice and commercial software, summary is made for the implementation of light-weight design on truss structure for spacecrafts.
Reliability and Failure in NASA Missions: Blunders, Normal Accidents, High Reliability, Bad Luck
NASA Technical Reports Server (NTRS)
Jones, Harry W.
2015-01-01
NASA emphasizes crew safety and system reliability but several unfortunate failures have occurred. The Apollo 1 fire was mistakenly unanticipated. After that tragedy, the Apollo program gave much more attention to safety. The Challenger accident revealed that NASA had neglected safety and that management underestimated the high risk of shuttle. Probabilistic Risk Assessment was adopted to provide more accurate failure probabilities for shuttle and other missions. NASA's "faster, better, cheaper" initiative and government procurement reform led to deliberately dismantling traditional reliability engineering. The Columbia tragedy and Mars mission failures followed. Failures can be attributed to blunders, normal accidents, or bad luck. Achieving high reliability is difficult but possible.
Career Design Education by Cooperation and Collaboration
NASA Astrophysics Data System (ADS)
Takahashi, Takeo; Koma, Tetsuya; Akiyama, Akira; Kihara, Hitoshi; Yamada, Hirofumi
Kanazawa Technical College (KTC) was established to train beginner engineering students in 1962. Since then, KTC offers a unique education/hands on, and has maintained a 100% employment rate upon graduation. In the fourth grade, students participate in a unique industrial internship program for two weeks during summer vacation. As a result, students’ overall satisfaction rate concerning their education is high. Therefore, instead of offering traditional courses that value the experience of the present, it is necessary to offer a new course that lets student discover for themselves what their future will be like. In this paper, an outline of the career design education executed by the students together with their parent (s) /guardian, the school and industry is described.
How Shapley Lectures have Enriched a Small University in the Heart of Michigan
NASA Astrophysics Data System (ADS)
Reed, L.
1998-05-01
Saginaw Valley State University SVSU, is tucked in the industrial heartland of central Michigan. Our students can best be described as non-traditional in the sense that many are employed full - or part-time while working to upgrade or complete a degree. Our Physics Department is a small but active member of the College of Science, Engineering and Technology. Many Shapley lecturers have visited us over the years and each has inspired our students, faculty and community to think about the universe in a new and exciting way. I will share some of the feed back we have received about the program and emphasize its continuing importance to smaller institutions like SVSU
Systems Engineering Leadership Development: Advancing Systems Engineering Excellence
NASA Technical Reports Server (NTRS)
Hall, Phil; Whitfield, Susan
2011-01-01
This slide presentation reviews the Systems Engineering Leadership Development Program, with particular emphasis on the work being done in the development of systems engineers at Marshall Space Flight Center. There exists a lack of individuals with systems engineering expertise, in particular those with strong leadership capabilities, to meet the needs of the Agency's exploration agenda. Therefore there is a emphasis on developing these programs to identify and train systems engineers. The presentation reviews the proposed MSFC program that includes course work, and developmental assignments. The formal developmental programs at the other centers are briefly reviewed, including the Point of Contact (POC)
Bringing Engineering Research Coupled With Art Into The K-12 Classroom
NASA Astrophysics Data System (ADS)
Cola, J.
2016-12-01
The Partnerships for Research, Innovation and Multi-Scale Engineering Program, a Research Experiences for K-12 Teachers at Georgia Institute of Technology demonstrates a successful program that blends the fine arts with engineering research. Teachers selected for the program improve their science and engineering content knowledge, as well as their understanding of how to use STEAM to increase student comprehension and engagement. Participants in the program designed Science, Technology, Engineering, Art, and Mathematics (STEAM)- based lessons based on faculty engineering research. Examples of some STEAM lessons created will be discussed along with lessons learned.
Manufacturing Technology for Shipbuilding. Shipbuilding Technology Transfer
1983-01-01
to fit those social and traditional parts of our organization that could not or should not be changed at this time. 1) New functions had to be absorbed... traditional mechanical design and design incorporating zone outfitting. - SCOPE OF THE JOB The scope of the engineering required for any job is put into...from the traditional development methodology as follows: - The breakup of the composite area follows the unit breakups rather than the traditional
Testing Algorithmic Skills in Traditional and Non-Traditional Programming Environments
ERIC Educational Resources Information Center
Csernoch, Mária; Biró, Piroska; Máth, János; Abari, Kálmán
2015-01-01
The Testing Algorithmic and Application Skills (TAaAS) project was launched in the 2011/2012 academic year to test first year students of Informatics, focusing on their algorithmic skills in traditional and non-traditional programming environments, and on the transference of their knowledge of Informatics from secondary to tertiary education. The…
First-year engineering students' views of the nature of engineering
NASA Astrophysics Data System (ADS)
Karatas, Faik O.
The changing nature of engineering problems and new challenges that result from globalization and new ways of doing business have triggered calls for a revolutionary shift in engineering education. To respond to these challenges, the engineering education paradigm has been revised by adding more design and humanities/social sciences components to it. Philosophy, sociology, and history of engineering are more often cited as a major part of engineering education in this movement. Research on the nature of engineering (NOE), which is derived from philosophy, sociology, and the history of engineering, could have as much potential impact on engineering education as research on the nature of science (NOS) has had on science education. Thus, it is surprising that there has been no noteworthy research on this topic. The purpose of this study is to describe and determine first-year engineering students' views of the NOE and how these students differentiate engineering from science. In this research, an open-ended Views of the Nature of Engineering questionnaire (VNOE) was employed to collect baseline data. Semi-structured interviews based on the VNOE questionnaire were conducted with the second cohort of the participants. Data analysis was guided by a traditional phenomenographic approach, which is a branch of the hermeneutic tradition, coupled to constant comparison technique. The results of this study indicated that the participants' overall views of the nature of engineering were not ill-developed, but rather unarticulated. Moreover, the relationship between engineering and science was considered unidirectional rather than bidirectional. The results of this study could be used to inform engineering educators, first-year engineering coordinators, and policy makers as well as serving as the base for further research and potential implications for future first-year and K-12 engineering education.
Visible in camouflage of military engineering application
NASA Astrophysics Data System (ADS)
Pu, Huan; Kang, Qing; Chen, Shanjing; Wang, Zhenggang
2016-03-01
Our traditional methods of disguise shortcomings, using optical material combined with traditional methods to improve the efficiency of camouflage in disguise. Present lack of effective camouflage effect evaluation system, it refers to Matlab software for optical phase camouflage effect evaluation.
Automotive Stirling Engine Development Program
NASA Technical Reports Server (NTRS)
Allen, M. (Editor)
1980-01-01
Progress is reported in the following: the Stirling reference engine system design; components and subsystems; F-40 baseline Stirling engine installation and test; the first automotive engine to be built on the program; computer development activities; and technical assistance to the Government. The overall program philosophy is outlined, and data and results are given.
A Rational Method for Ranking Engineering Programs.
ERIC Educational Resources Information Center
Glower, Donald D.
1980-01-01
Compares two methods for ranking academic programs, the opinion poll v examination of career successes of the program's alumni. For the latter, "Who's Who in Engineering" and levels of research funding provided data. Tables display resulting data and compare rankings by the two methods for chemical engineering and civil engineering. (CS)
Pre-Engineering Program. Introduction to Engineering. Advanced Engineering.
ERIC Educational Resources Information Center
Henrico County Public Schools, Glen Allen, VA. Virginia Vocational Curriculum and Resource Center.
This guide contains information and hands-on activities to guide students through the problem-solving process needed in engineering (problem solving, presentation, and impact analysis) and information to help the instructor manage the program or courses in Virginia. Following an introduction, the guide contains a program description that supplies…
Nuclear Engine System Simulation (NESS). Volume 1: Program user's guide
NASA Astrophysics Data System (ADS)
Pelaccio, Dennis G.; Scheil, Christine M.; Petrosky, Lyman J.
1993-03-01
A Nuclear Thermal Propulsion (NTP) engine system design analysis tool is required to support current and future Space Exploration Initiative (SEI) propulsion and vehicle design studies. Currently available NTP engine design models are those developed during the NERVA program in the 1960's and early 1970's and are highly unique to that design or are modifications of current liquid propulsion system design models. To date, NTP engine-based liquid design models lack integrated design of key NTP engine design features in the areas of reactor, shielding, multi-propellant capability, and multi-redundant pump feed fuel systems. Additionally, since the SEI effort is in the initial development stage, a robust, verified NTP analysis design tool could be of great use to the community. This effort developed an NTP engine system design analysis program (tool), known as the Nuclear Engine System Simulation (NESS) program, to support ongoing and future engine system and stage design study efforts. In this effort, Science Applications International Corporation's (SAIC) NTP version of the Expanded Liquid Engine Simulation (ELES) program was modified extensively to include Westinghouse Electric Corporation's near-term solid-core reactor design model. The ELES program has extensive capability to conduct preliminary system design analysis of liquid rocket systems and vehicles. The program is modular in nature and is versatile in terms of modeling state-of-the-art component and system options as discussed. The Westinghouse reactor design model, which was integrated in the NESS program, is based on the near-term solid-core ENABLER NTP reactor design concept. This program is now capable of accurately modeling (characterizing) a complete near-term solid-core NTP engine system in great detail, for a number of design options, in an efficient manner. The following discussion summarizes the overall analysis methodology, key assumptions, and capabilities associated with the NESS presents an example problem, and compares the results to related NTP engine system designs. Initial installation instructions and program disks are in Volume 2 of the NESS Program User's Guide.
Nuclear Engine System Simulation (NESS). Volume 1: Program user's guide
NASA Technical Reports Server (NTRS)
Pelaccio, Dennis G.; Scheil, Christine M.; Petrosky, Lyman J.
1993-01-01
A Nuclear Thermal Propulsion (NTP) engine system design analysis tool is required to support current and future Space Exploration Initiative (SEI) propulsion and vehicle design studies. Currently available NTP engine design models are those developed during the NERVA program in the 1960's and early 1970's and are highly unique to that design or are modifications of current liquid propulsion system design models. To date, NTP engine-based liquid design models lack integrated design of key NTP engine design features in the areas of reactor, shielding, multi-propellant capability, and multi-redundant pump feed fuel systems. Additionally, since the SEI effort is in the initial development stage, a robust, verified NTP analysis design tool could be of great use to the community. This effort developed an NTP engine system design analysis program (tool), known as the Nuclear Engine System Simulation (NESS) program, to support ongoing and future engine system and stage design study efforts. In this effort, Science Applications International Corporation's (SAIC) NTP version of the Expanded Liquid Engine Simulation (ELES) program was modified extensively to include Westinghouse Electric Corporation's near-term solid-core reactor design model. The ELES program has extensive capability to conduct preliminary system design analysis of liquid rocket systems and vehicles. The program is modular in nature and is versatile in terms of modeling state-of-the-art component and system options as discussed. The Westinghouse reactor design model, which was integrated in the NESS program, is based on the near-term solid-core ENABLER NTP reactor design concept. This program is now capable of accurately modeling (characterizing) a complete near-term solid-core NTP engine system in great detail, for a number of design options, in an efficient manner. The following discussion summarizes the overall analysis methodology, key assumptions, and capabilities associated with the NESS presents an example problem, and compares the results to related NTP engine system designs. Initial installation instructions and program disks are in Volume 2 of the NESS Program User's Guide.
Aircraft Turbine Engine Control Research at NASA Glenn Research Center
NASA Technical Reports Server (NTRS)
Garg, Sanjay
2014-01-01
This lecture will provide an overview of the aircraft turbine engine control research at NASA (National Aeronautics and Space Administration) Glenn Research Center (GRC). A brief introduction to the engine control problem is first provided with a description of the current state-of-the-art control law structure. A historical aspect of engine control development since the 1940s is then provided with a special emphasis on the contributions of GRC. The traditional engine control problem has been to provide a means to safely transition the engine from one steady-state operating point to another based on the pilot throttle inputs. With the increased emphasis on aircraft safety, enhanced performance and affordability, and the need to reduce the environmental impact of aircraft, there are many new challenges being faced by the designers of aircraft propulsion systems. The Controls and Dynamics Branch (CDB) at GRC is leading and participating in various projects in partnership with other organizations within GRC and across NASA, other government agencies, the U.S. aerospace industry, and academia to develop advanced propulsion controls and diagnostics technologies that will help meet the challenging goals of NASA programs under the Aeronautics Research Mission. The second part of the lecture provides an overview of the various CDB technology development activities in aircraft engine control and diagnostics, both current and some accomplished in the recent past. The motivation for each of the research efforts, the research approach, technical challenges and the key progress to date are summarized. The technologies to be discussed include system level engine control concepts, gas path diagnostics, active component control, and distributed engine control architecture. The lecture will end with a futuristic perspective of how the various current technology developments will lead to an Intelligent and Autonomous Propulsion System requiring none to very minimum pilot interface, interfacing directly with the flight management system to determine its mode of operation, and providing personalized engine control to optimize its performance given the current condition and mission objectives.
Test Planning Approach and Lessons
NASA Technical Reports Server (NTRS)
Parkinson, Douglas A.; Brown, Kendall K.
2004-01-01
As NASA began technology risk reduction activities and planning for the next generation launch vehicle under the Space Launch Initiative (SLI), now the Next Generation Launch Technology (NGLT) Program, a review of past large liquid rocket engine development programs was performed. The intent of the review was to identify any significant lessons from the development testing programs that could be applied to current and future engine development programs. Because the primary prototype engine in design at the time of this study was the Boeing-Rocketdyne RS-84, the study was slightly biased towards LOX/RP-1 liquid propellant engines. However, the significant lessons identified are universal. It is anticipated that these lessons will serve as a reference for test planning in the Engine Systems Group at Marshall Space Flight Center (MSFC). Towards the end of F-1 and J-2 engine development testing, NASA/MSFC asked Rocketdyne to review those test programs. The result was a document titled, Study to Accelerate Development by Test of a Rocket Engine (R-8099). The "intent (of this study) is to apply this thinking and learning to more efficiently develop rocket engines to high reliability with improved cost effectivenes" Additionally, several other engine programs were reviewed - such as SSME, NSTS, STME, MC-1, and RS-83- to support or refute the R-8099. R-8099 revealed two primary lessons for test planning, which were supported by the other engine development programs. First, engine development programs can benefit from arranging the test program for engine system testing as early as feasible. The best test for determining environments is at the system level, the closest to the operational flight environment. Secondly, the component testing, which tends to be elaborate, should instead be geared towards reducing risk to enable system test. Technical risk can be reduced at the component level, but the design can only be truly verified and validated after engine system testing.
Students' perceptions of the flipped classroom model in an engineering course: a case study
NASA Astrophysics Data System (ADS)
Baytiyeh, Hoda; Naja, Mohamad K.
2017-11-01
The flipped classroom model is an innovative educational trend that has been widely adopted in the social sciences but not engineering education. In this model, an active instructional approach shifts the educational strategy from a teacher- to a student-centred approach. The purpose of this study is to compare the learning outcomes of engineering students attending a flipped-model section of the Dynamics of Structures course with students attending a traditional, lecture-based section of the same course taught by the same instructor. The results confirm previous research showing that test scores in the flipped course sections were slightly higher than traditional sections. Although the improvement in test scores was statistically insignificant, student statements indicated that the flipped model promoted a deeper, broader perspective on learning, facilitated problem-solving strategies and improved critical-thinking abilities, self-confidence and teamwork skills, which are needed for a successful engineering career.
Lee, Ben H; Santoni, Gregory W; Wood, Ezra C; Herndon, Scott C; Miake-Lye, Richard C; Zahniser, Mark S; Wofsy, Steven C; Munger, J William
2011-09-15
The Alternative Aviation Fuel Experiment (AAFEX), conducted in January of 2009 in Palmdale, California, quantified aerosol and gaseous emissions from a DC-8 aircraft equipped with CFM56-2C1 engines using both traditional and synthetic fuels. This study examines the emissions of nitrous acid (HONO) and nitrogen oxides (NO(x) = NO + NO(2)) measured 145 m behind the grounded aircraft. The fuel-based emission index (EI) for HONO increases approximately 6-fold from idle to takeoff conditions but plateaus between 65 and 100% of maximum rated engine thrust, while the EI for NO(x) increases continuously. At high engine power, NO(x) EI is greater when combusting traditional (JP-8) rather than Fischer-Tropsch fuels, while HONO exhibits the opposite trend. Additionally, hydrogen peroxide (H(2)O(2)) was identified in exhaust plumes emitted only during engine idle. Chemical reactions responsible for emissions and comparison to previous measurement studies are discussed.
Nuclear Engine System Simulation (NESS) version 2.0
NASA Technical Reports Server (NTRS)
Pelaccio, Dennis G.; Scheil, Christine M.; Petrosky, Lyman J.
1993-01-01
The topics are presented in viewgraph form and include the following; nuclear thermal propulsion (NTP) engine system analysis program development; nuclear thermal propulsion engine analysis capability requirements; team resources used to support NESS development; expanded liquid engine simulations (ELES) computer model; ELES verification examples; NESS program development evolution; past NTP ELES analysis code modifications and verifications; general NTP engine system features modeled by NESS; representative NTP expander, gas generator, and bleed engine system cycles modeled by NESS; NESS program overview; NESS program flow logic; enabler (NERVA type) nuclear thermal rocket engine; prismatic fuel elements and supports; reactor fuel and support element parameters; reactor parameters as a function of thrust level; internal shield sizing; and reactor thermal model.
Engaging Community College Students Using an Engineering Learning Community
NASA Astrophysics Data System (ADS)
Maccariella, James, Jr.
The study investigated whether community college engineering student success was tied to a learning community. Three separate data collection sources were utilized: surveys, interviews, and existing student records. Mann-Whitney tests were used to assess survey data, independent t-tests were used to examine pre-test data, and independent t-tests, analyses of covariance (ANCOVA), chi-square tests, and logistic regression were used to examine post-test data. The study found students that participated in the Engineering TLC program experienced a significant improvement in grade point values for one of the three post-test courses studied. In addition, the analysis revealed the odds of fall-to-spring retention were 5.02 times higher for students that participated in the Engineering TLC program, and the odds of graduating or transferring were 4.9 times higher for students that participated in the Engineering TLC program. However, when confounding variables were considered in the study (engineering major, age, Pell Grant participation, gender, ethnicity, and full-time/part-time status), the analyses revealed no significant relationship between participation in the Engineering TLC program and course success, fall-to-spring retention, and graduation/transfer. Thus, the confounding variables provided alternative explanations for results. The Engineering TLC program was also found to be effective in providing mentoring opportunities, engagement and motivation opportunities, improved self confidence, and a sense of community. It is believed the Engineering TLC program can serve as a model for other community college engineering programs, by striving to build a supportive environment, and provide guidance and encouragement throughout an engineering student's program of study.
Loftus, Patrick D; Elder, Craig T; D'Ambrosio, Troy; Langell, John T
2015-01-01
Graduate medical education has traditionally focused on training future physicians to be outstanding clinicians with basic and clinical science research skills. This focus has resulted in substantial knowledge gains, but a modest return on investment based on direct improvements in clinical care. In today's shifting healthcare landscape, a number of important challenges must be overcome to not only improve the delivery of healthcare, but to prepare future physicians to think outside the box, focus on and create healthcare innovations, and navigate the complex legal, business and regulatory hurdles of bringing innovation to the bedside. We created an interdisciplinary and experiential medical technology design competition to address these challenges and train medical students interested in moving new and innovative clinical solutions to the forefront of medicine. Medical students were partnered with business, law, design and engineering students to form interdisciplinary teams focused on developing solutions to unmet clinical needs. Over the course of six months teams were provided access to clinical and industry mentors, $500 prototyping funds, development facilities, and non-mandatory didactic lectures in ideation, design, intellectual property, FDA regulatory requirements, prototyping, market analysis, business plan development and capital acquisition. After four years of implementation, the program has supported 396 participants, seen the development of 91 novel medical devices, and launched the formation of 24 new companies. From our perspective, medical education programs that develop innovation training programs and shift incentives from purely traditional basic and clinical science research to also include high-risk innovation will see increased student engagement in improving healthcare delivery and an increase in the quality and quantity of innovative solutions to medical problems being brought to market.
Simulation of a combined-cycle engine
NASA Technical Reports Server (NTRS)
Vangerpen, Jon
1991-01-01
A FORTRAN computer program was developed to simulate the performance of combined-cycle engines. These engines combine features of both gas turbines and reciprocating engines. The computer program can simulate both design point and off-design operation. Widely varying engine configurations can be evaluated for their power, performance, and efficiency as well as the influence of altitude and air speed. Although the program was developed to simulate aircraft engines, it can be used with equal success for stationary and automative applications.
Hybrid Governance in an Adult Program: A Nuanced Relationship
ERIC Educational Resources Information Center
Cockley, Suzanne
2012-01-01
Eastern Mennonite University's adult program uses a hybrid governance structure. Functions separated from the traditional program include marketing, admissions, and student advising. Functions that remain connected to the traditional program include the registrar, financial aid, and student business accounts.
Ceramic applications in turbine engines
NASA Technical Reports Server (NTRS)
Helms, H. E.; Heitman, P. W.; Lindgren, L. C.; Thrasher, S. R.
1984-01-01
The application of ceramic components to demonstrate improved cycle efficiency by raising the operating temperature of the existing Allison IGI 404 vehicular gas turbine engine is discussed. This effort was called the Ceramic Applications in Turbine Engines (CATE) program and has successfully demonstrated ceramic components. Among these components are two design configurations featuring stationary and rotating caramic components in the IGT 404 engine. A complete discussion of all phases of the program, design, materials development, fabrication of ceramic components, and testing-including rig, engine, and vehicle demonstation test are presented. During the CATE program, a ceramic technology base was established that is now being applied to automotive and other gas turbine engine programs. This technology base is outlined and also provides a description of the CATE program accomplishments.
Evolving technologies drive the new roles of Biomedical Engineering.
Frisch, P H; St Germain, J; Lui, W
2008-01-01
Rapidly changing technology coupled with the financial impact of organized health care, has required hospital Biomedical Engineering organizations to augment their traditional operational and business models to increase their role in developing enhanced clinical applications utilizing new and evolving technologies. The deployment of these technology based applications has required Biomedical Engineering organizations to re-organize to optimize the manner in which they provide and manage services. Memorial Sloan-Kettering Cancer Center has implemented a strategy to explore evolving technologies integrating them into enhanced clinical applications while optimally utilizing the expertise of the traditional Biomedical Engineering component (Clinical Engineering) to provide expanded support in technology / equipment management, device repair, preventive maintenance and integration with legacy clinical systems. Specifically, Biomedical Engineering is an integral component of the Medical Physics Department which provides comprehensive and integrated support to the Center in advanced physical, technical and engineering technology. This organizational structure emphasizes the integration and collaboration between a spectrum of technical expertise for clinical support and equipment management roles. The high cost of clinical equipment purchases coupled with the increasing cost of service has driven equipment management responsibilities to include significant business and financial aspects to provide a cost effective service model. This case study details the dynamics of these expanded roles, future initiatives and benefits for Biomedical Engineering and Memorial Sloan Kettering Cancer Center.
Space civil engineering - A new discipline
NASA Technical Reports Server (NTRS)
Sadeh, Willy Z.; Criswell, Marvin E.
1991-01-01
Space Civil Engineering is an emerging engineering discipline that focuses on extending and expanding the Civil Engineering know-how and practice to the development and maintenance of infrastructure on celestial bodies. Space Civil Engineering is presently being developed as a new discipline within the Department of Civil Engineering at Colorado State University under a recently established NASA Space Grant College Program. Academic programs geared toward creating Space Civil Engineering Options at both undergraduate and graduate levels are being formulated. Basic ideas and concepts of the curriculum in the Space Civil Engineering Option at both undergraduate and graduate levels are presented. The role of Space Civil Engineering in the Space Program is discussed.
NASA/GE quiet engine C acoustic test results
NASA Technical Reports Server (NTRS)
Kazin, S. B.; Pass, J. E.
1974-01-01
The acoustic investigation and evaluation of the C propulsion turbofan engine are discussed. The engine was built as a part of the Quiet Engine Program. The objectives of the program are as follows: (1) to determine the noise levels produced turbofan bypass engines, (2) to demonstrate the technology and innovations which will reduce the production and radiation of noise in turbofan engines, and (3) to acquire experimental acoustic and aerodynamic data for high bypass turbofan engines to provide a better understanding of noise production mechanisms. The goals of the program called for a turbofan engine 15 to 20 PNdB quieter than currently available engines in the same thrust class.
Rationale in Choosing a Teacher Preparation Program.
ERIC Educational Resources Information Center
Raine, LaVerne; Harkins, Donna; Sampson, Mary Beth
A study examined students' reasons for, and implications of, choosing a traditional student teaching program or a field-based program of preservice teacher education. The traditional student teaching program and the field-based program were offered concurrently for a short period of time at Texas A&M University--Commerce. Students enrolled in…
The Cloud-Based Integrated Data Viewer (IDV)
NASA Astrophysics Data System (ADS)
Fisher, Ward
2015-04-01
Maintaining software compatibility across new computing environments and the associated underlying hardware is a common problem for software engineers and scientific programmers. While there are a suite of tools and methodologies used in traditional software engineering environments to mitigate this issue, they are typically ignored by developers lacking a background in software engineering. The result is a large body of software which is simultaneously critical and difficult to maintain. Visualization software is particularly vulnerable to this problem, given the inherent dependency on particular graphics hardware and software API's. The advent of cloud computing has provided a solution to this problem, which was not previously practical on a large scale; Application Streaming. This technology allows a program to run entirely on a remote virtual machine while still allowing for interactivity and dynamic visualizations, with little-to-no re-engineering required. Through application streaming we are able to bring the same visualization to a desktop, a netbook, a smartphone, and the next generation of hardware, whatever it may be. Unidata has been able to harness Application Streaming to provide a tablet-compatible version of our visualization software, the Integrated Data Viewer (IDV). This work will examine the challenges associated with adapting the IDV to an application streaming platform, and include a brief discussion of the underlying technologies involved. We will also discuss the differences between local software and software-as-a-service.
System Level Uncertainty Assessment for Collaborative RLV Design
NASA Technical Reports Server (NTRS)
Charania, A. C.; Bradford, John E.; Olds, John R.; Graham, Matthew
2002-01-01
A collaborative design process utilizing Probabilistic Data Assessment (PDA) is showcased. Given the limitation of financial resources by both the government and industry, strategic decision makers need more than just traditional point designs, they need to be aware of the likelihood of these future designs to meet their objectives. This uncertainty, an ever-present character in the design process, can be embraced through a probabilistic design environment. A conceptual design process is presented that encapsulates the major engineering disciplines for a Third Generation Reusable Launch Vehicle (RLV). Toolsets consist of aerospace industry standard tools in disciplines such as trajectory, propulsion, mass properties, cost, operations, safety, and economics. Variations of the design process are presented that use different fidelities of tools. The disciplinary engineering models are used in a collaborative engineering framework utilizing Phoenix Integration's ModelCenter and AnalysisServer environment. These tools allow the designer to join disparate models and simulations together in a unified environment wherein each discipline can interact with any other discipline. The design process also uses probabilistic methods to generate the system level output metrics of interest for a RLV conceptual design. The specific system being examined is the Advanced Concept Rocket Engine 92 (ACRE-92) RLV. Previous experience and knowledge (in terms of input uncertainty distributions from experts and modeling and simulation codes) can be coupled with Monte Carlo processes to best predict the chances of program success.
Gasoline Engine Mechanics. Florida Vocational Program Guide.
ERIC Educational Resources Information Center
University of South Florida, Tampa. Dept. of Adult and Vocational Education.
This vocational program guide is intended to assist in the organization, operation, and evaluation of a program in gasoline engine mechanics in school districts, area vocational centers, and community colleges. The following topics are covered: job duties of small-engine mechanics; program content (curriculum framework and student performance…
Education and Experience in Engineering, the E3 Program: Program Details.
ERIC Educational Resources Information Center
Illinois Inst. of Tech., Chicago.
Presented is a description of the Education and Experience in Engineering (E3) Program at the Illinois Institute of Technology. Included are the objectives, how the program works, faculty, dissemination of E3 information, integration of science and technology into the E3 program, and the integration of liberal arts and engineering. A chapter is…
ERIC Educational Resources Information Center
Canfield, Stephen L.; Ghafoor, Sheikh; Abdelrahman, Mohamed
2012-01-01
This paper describes the redesign and implementation of the course, "Introduction to Programming for Engineers" using microcontroller (MCU) hardware as the programming target. The objective of this effort is to improve the programming competency for engineering students by more closely relating the initial programming experience to the student's…
Assessing the Higher National Diploma Chemical Engineering Programme in Ghana: Students' Perspective
ERIC Educational Resources Information Center
Boateng, Cyril D.; Bensah, Edem Cudjoe; Ahiekpor, Julius C.
2012-01-01
Chemical engineers have played key roles in the growth of the chemical and allied industries in Ghana but indigenous industries that have traditionally been the domain of the informal sector need to be migrated to the formal sector through the entrepreneurship and innovation of chemical engineers. The Higher National Diploma Chemical Engineering…
ERIC Educational Resources Information Center
Maurice, Patricia Ann; Peterson, Brian
2015-01-01
Catholic colleges and universities traditionally are grounded in liberal arts education, yet many Catholic institutions also educate future scientists and engineers. We propose that a distinctively Catholic science and engineering education should include an emphasis on Catholic concepts of the common good and social justice, liberal arts…
A Framework for Quality K-12 Engineering Education: Research and Development
ERIC Educational Resources Information Center
Moore, Tamara J.; Glancy, Aran W.; Tank, Kristina M.; Kersten, Jennifer A.; Smith, Karl A.; Stohlmann, Micah S.
2014-01-01
Recent U.S. national documents have laid the foundation for highlighting the connection between science, technology, engineering and mathematics at the K-12 level. However, there is not a clear definition or a well-established tradition of what constitutes a quality engineering education at the K-12 level. The purpose of the current work has been…
Factors That Support Women in Being Successful in Engineering Professions: Identity as a Lens
ERIC Educational Resources Information Center
Lewinter, Jane Marincic
2013-01-01
Engineering has traditionally been and continues to be a male dominated profession. The National Academies' "Rising Above the Gathering Storm: Energizing America for a Brighter Future (2005)" warns that in the long run, the United States might not have enough scientists and engineers to meet its national goals unless the number of…
ERIC Educational Resources Information Center
Davis, C. E.; Yeary, M. B.; Sluss, J. J., Jr.
2012-01-01
This paper discusses an all-encompassing approach to increase the number of students in engineering through innovative outreach, recruiting, and retention programs. Prior to adopting these programs, the School of Electrical and Computer Engineering (ECE) at the University of Oklahoma (OU), Norman, experienced a reduction in engineering enrollment…
40 CFR 86.1905 - How does this program work?
Code of Federal Regulations, 2012 CFR
2012-07-01
... (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) Manufacturer-Run In-Use Testing Program for Heavy-Duty Diesel Engines § 86.1905 How does this program work? (a) You must test in-use engines from the families we select. We may select the following number of engine...
40 CFR 86.1905 - How does this program work?
Code of Federal Regulations, 2014 CFR
2014-07-01
... (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Manufacturer-Run In-Use Testing Program for Heavy-Duty Diesel Engines § 86.1905 How does this program work? (a) You must test in-use engines from the families we select. We may select the following number of engine families for...
40 CFR 86.1905 - How does this program work?
Code of Federal Regulations, 2013 CFR
2013-07-01
... (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) Manufacturer-Run In-Use Testing Program for Heavy-Duty Diesel Engines § 86.1905 How does this program work? (a) You must test in-use engines from the families we select. We may select the following number of engine...
General aviation internal combustion engine research programs at NASA-Lewis Research Center
NASA Technical Reports Server (NTRS)
Willis, E. A.
1978-01-01
An update is presented of non-turbine general aviation engine programs underway at the NASA-Lewis Research Center in Cleveland, Ohio. The program encompasses conventional, lightweight diesel and rotary engines. Its three major thrusts are: (a) reduced SFC's; (b) improved fuels tolerance; and (c) reducing emissions. Current and planned future programs in such areas as lean operation, improved fuel management, advanced cooling techniques and advanced engine concepts, are described. These are expected to lay the technology base, by the mid to late 1980's, for engines whose life cycle fuel costs are 30 to 50% lower than today's conventional engines.
NASA Astrophysics Data System (ADS)
Gao, Xuan
2017-04-01
Terraces are built in mountainous regions to provide larger area for cultivation,in which the hydrological and geomorphological processes are impacted by local farmers' water management strategies and are modified by manmade irrigation-drainage engineering systems.The Honghe Hani Rice Terraces is a 1300a history of traditional agricultural landscape that was inscribed in the 2013 World Heritage List.The local farmers had developed systematic water management strategies and built perfect irrigation-drainage engineering systems to adapt the local rainfall pattern and rice farming activities.Through field investigation,interviews,combined with Geographic Information Systems,Remote Sensing images and Global Positioning Systems technology,the water management strategies as well as the irrigation-drainage systems and their impacts on eco-hydrological process were studied,the results indicate:Firstly,the local people created and maintained an unique woodcarving allocating management system of irrigating water over hundreds years,which aids distributing water and natural nutrition to each terrace field evenly,and regularly according to cultivation schedule.Secondly,the management of local people play an essential role in effective irrigation-drainage engineering system.A ditch leader takes charge of managing the ditch of their village,keeping ample amount of irrigation water,repairing broken parts of ditches,dealing with unfair water using issues,and so on.Meanwhile,some traditional leaders of minority also take part in.Thus, this traditional way of irrigation-drainage engineering has bringed Hani people around 1300 years of rice harvest for its eco-hydrological effects.Lastly we discuss the future of Honghe Hani Rice Terraces,the traditional cultivation pattern has been influenced by the rapid development of modern civilization,in which some related changes such as the new equipment of county roads and plastic channels and the water overusing by tourism are not totally rely on eco-hydrological engineering rules,which broke the ecosystem stability of agricultural terraces.The current situation of Honghe Hani Rice Terraces heritage cannot completely meets the purpose of sustainability development and appropriate conservation of Honghe Hani Rice Terraces heritage.This study of traditional cultivation pattern can help us to propose rational solutions for future development of terraces heritages. Key words:Honghe Hani Rice Terraces,water management,eco-hydrological effects,heritage conservation
Modeling Engineered Nanomaterials (ENMs) Fate and Transport in Aquatic Ecosystems
Under the Toxic Substances Control Act (TSCA), the Environmental Protection Agency (EPA) is required to perform new chemical reviews of engineered nanomaterials (ENMs) identified in pre-manufacture notices. However, environmental fate models developed for traditional contaminants...
Simulating Exposure Concentrations of Engineered Nanomaterials in Surface Water Systems: WASP8
The unique properties of engineered nanomaterials led to their increased production and potential release into the environment. Currently available environmental fate models developed for traditional contaminants are limited in their ability to simulate nanomaterials’ envir...
Systems Engineering in NASA's R&TD Programs
NASA Technical Reports Server (NTRS)
Jones, Harry
2005-01-01
Systems engineering is largely the analysis and planning that support the design, development, and operation of systems. The most common application of systems engineering is in guiding systems development projects that use a phased process of requirements, specifications, design, and development. This paper investigates how systems engineering techniques should be applied in research and technology development programs for advanced space systems. These programs should include anticipatory engineering of future space flight systems and a project portfolio selection process, as well as systems engineering for multiple development projects.
Variable Cycle Engine Technology Program Planning and Definition Study
NASA Technical Reports Server (NTRS)
Westmoreland, J. S.; Stern, A. M.
1978-01-01
The variable stream control engine, VSCE-502B, was selected as the base engine, with the inverted flow engine concept selected as a backup. Critical component technologies were identified, and technology programs were formulated. Several engine configurations were defined on a preliminary basis to serve as demonstration vehicles for the various technologies. The different configurations present compromises in cost, technical risk, and technology return. Plans for possible variably cycle engine technology programs were formulated by synthesizing the technology requirements with the different demonstrator configurations.
Effects of unique biomedical education programs for engineers: REDEEM and ESTEEM projects.
Matsuki, Noriaki; Takeda, Motohiro; Yamano, Masahiro; Imai, Yohsuke; Ishikawa, Takuji; Yamaguchi, Takami
2009-06-01
Current engineering applications in the medical arena are extremely progressive. However, it is rather difficult for medical doctors and engineers to discuss issues because they do not always understand one another's jargon or ways of thinking. Ideally, medical engineers should become acquainted with medicine, and engineers should be able to understand how medical doctors think. Tohoku University in Japan has managed a number of unique reeducation programs for working engineers. Recurrent Education for the Development of Engineering Enhanced Medicine has been offered as a basic learning course since 2004, and Education through Synergetic Training for Engineering Enhanced Medicine has been offered as an advanced learning course since 2006. These programs, which were developed especially for engineers, consist of interactive, modular, and disease-based lectures (case studies) and substantial laboratory work. As a result of taking these courses, all students obtained better objective outcomes, on tests, and subjective outcomes, through student satisfaction. In this article, we report on our unique biomedical education programs for engineers and their effects on working engineers.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-24
... Measurement Science and Engineering Program; Availability of Funds AGENCY: National Institute of Standards and... Measurement Science and Engineering Program. This program is intended to promote research, training, and... Visiting Fellow Measurement Science and Engineering Program are as follows: 1. To advance, through...
Pre-Engineering Program: Science, Technology, Engineering and Mathematics (STEM)
2013-08-29
educators in the Urbana-Champaign area. 15. SUBJECT TERMS STEM: science, technology , engineering, mathematics 16. SECURITY CLASSIFICATION OF: 19a. NAME...9132T-13-1-0002 4. TITLE AND SUBTITLE Pre-Engineering Program: Science, Technology , Engineering and Mathematics (STEM) 5c. PROGRAM ELEMENT NUMBER N...project was focused on underserved children in grades 1-6 who need, but have limited access to, out-of-school time STEM (science, technology
Technology for reducing aircraft engine pollution
NASA Technical Reports Server (NTRS)
Rudey, R. A.; Kempke, E. E., Jr.
1975-01-01
Programs have been initiated by NASA to develop and demonstrate advanced technology for reducing aircraft gas turbine and piston engine pollutant emissions. These programs encompass engines currently in use for a wide variety of aircraft from widebody-jets to general aviation. Emission goals for these programs are consistent with the established EPA standards. Full-scale engine demonstrations of the most promising pollutant reduction techniques are planned within the next three years. Preliminary tests of advanced technology gas turbine engine combustors indicate that significant reductions in all major pollutant emissions should be attainable in present generation aircraft engines without adverse effects on fuel consumption. Fundamental-type programs are yielding results which indicate that future generation gas turbine aircraft engines may be able to utilize extremely low pollutant emission combustion systems.
Quiet engine program flight engine design study
NASA Technical Reports Server (NTRS)
Klapproth, J. F.; Neitzel, R. E.; Seeley, C. T.
1974-01-01
The results are presented of a preliminary flight engine design study based on the Quiet Engine Program high-bypass, low-noise turbofan engines. Engine configurations, weight, noise characteristics, and performance over a range of flight conditions typical of a subsonic transport aircraft were considered. High and low tip speed engines in various acoustically treated nacelle configurations were included.
Data systems and computer science: Software Engineering Program
NASA Technical Reports Server (NTRS)
Zygielbaum, Arthur I.
1991-01-01
An external review of the Integrated Technology Plan for the Civil Space Program is presented. This review is specifically concerned with the Software Engineering Program. The goals of the Software Engineering Program are as follows: (1) improve NASA's ability to manage development, operation, and maintenance of complex software systems; (2) decrease NASA's cost and risk in engineering complex software systems; and (3) provide technology to assure safety and reliability of software in mission critical applications.
ERIC Educational Resources Information Center
Malm, Joakim; Bryngfors, Leif E.; Mörner, Lise-Lotte
2010-01-01
The study presents an evaluation of the SI program in five engineering programs within the Faculty of Engineering (LTH) based on data from questionnaires to SI participants and SI-Leaders, credits taken by the students during the first year, and average grade data from high school for the first year students. The results show that participation in…
Integrated injury prevention program improves balance and vertical jump height in children.
DiStefano, Lindsay J; Padua, Darin A; Blackburn, J Troy; Garrett, William E; Guskiewicz, Kevin M; Marshall, Stephen W
2010-02-01
Implementing an injury prevention program to athletes under age 12 years may reduce injury rates. There is limited knowledge regarding whether these young athletes will be able to modify balance and performance measures after completing a traditional program that has been effective with older athletes or whether they require a specialized program for their age. The purpose of this study was to compare the effects of a pediatric program, which was designed specifically for young athletes, and a traditional program with no program in the ability to change balance and performance measures in youth athletes. We used a cluster-randomized controlled trial to evaluate the effects of the programs before and after a 9-week intervention period. Sixty-five youth soccer athletes (males: n = 37 mass = 34.16 +/- 5.36 kg, height = 143.07 +/- 6.27 cm, age = 10 +/- 1 yr; females: n = 28 mass = 33.82 +/- 5.37 kg, height = 141.02 +/- 6.59 cm) volunteered to participate and attended 2 testing sessions in a research laboratory. Teams were cluster-randomized to either a pediatric or traditional injury prevention program or a control group. Change scores for anterior-posterior and medial-lateral time-to-stabilization measures and maximum vertical jump height and power were calculated from pretest and post-test sessions. Contrary with our original hypotheses, the traditional program resulted in positive changes, whereas the pediatric program did not result in any improvements. Anterior-posterior time-to-stabilization decreased after the traditional program (mean change +/- SD = -0.92 +/- 0.49 s) compared with the control group (-0.49 +/- 0.59 s) (p = 0.003). The traditional program also increased vertical jump height (1.70 +/- 2.80 cm) compared with the control group (0.20 +/- 0.20 cm) (p = 0.04). There were no significant differences between control and pediatric programs. Youth athletes can improve balance ability and vertical jump height after completing an injury prevention program. Training specificity appears to affect improvements and should be considered with future program design.
Development and usage of eXtension's HorseQuest: an online resource.
Greene, E A; Griffin, A S; Whittle, J; Williams, C A; Howard, A B; Anderson, K P
2010-08-01
eXtension (pronounced e-extension) is an online resource transforming how faculty can collaborate and deliver equine education. As the first Community of Practice launched from eXtension, HorseQuest (HQ) offers free, interactive, peer-reviewed, online resources on a variety of equine-related topics at http://www.extension.org. This group has adapted traditional educational content to the online environment to maximize search engine optimization, to be more discoverable and relevant in the online world. This means that HQ resources are consistently being found on the first page of search results. Also, by researching key words searched by Internet users, HQ has guided new content direction and determined potential webcast topics based on relevance and frequency of those searches. In addition to establishing good search engine optimization, HQ has been utilizing the viral networking aspect of YouTube by uploading clips of existing equine educational videos to YouTube. HorseQuest content appears in mainstream media, is passed on by the user, and helps HQ effectively reach their community of interest (horse enthusiasts). HorseQuest partners with My Horse University to produce webcasts that combine concise knowledge exchange via a scripted presentation with viewer chat and incoming questions. HorseQuest has produced and published content including 12 learning modules, 8 webchats, 21 webcasts, and 572 videos segments. After the official public launch, there was a steady increase in average number of visits/mo and average page views/mo over the 26-mo period. These regressions show a statistically significant increase in visits (P < 0.001) of approximately 450 visits per month and a significant increase in page views (P = 0.004) of about 373 page views per month. HorseQuest is a resource for several state 4-H advancement and competition programs and will continue to be incorporated into traditional extension programs, while reaching and affecting global audiences.
ERIC Educational Resources Information Center
Litchfield, Carolyn G.
A project was conducted to develop a model for evaluating specialized and traditional programs in marketing and distributive education. The project included a review of literature containing information regarding the points of view expressed by advocates of the specialized, traditional, and middle-of-the-road approaches to program planning in…
ERIC Educational Resources Information Center
Fonseca, James W., Ed.
Six papers on graduate education are presented from the George Mason University (Virginia) annual conference on nontraditional interdisciplinary programs. The papers and authors include: "Management Education: A Non-Traditional Graduate Program for the Non-for-Profit Manager" (Susan Calkin); "'Pracademics': the Role of the Adjunct…
ERIC Educational Resources Information Center
Moraes, Ricardo
As a valuable addition to substance abuse treatment, adventure programming can have positive impacts on clients' self-efficacy, social behavior, and problem solving. A study explored the extent to which traditional substance abuse treatment programs use adventure programming, the level of adventure training and experience among substance abuse…
Automotive Stirling Engine Development Program
NASA Technical Reports Server (NTRS)
Nightingale, N.; Ernst, W.; Richey, A.; Simetkosky, M.; Smith, G.; Rohdenburg, C.; Antonelli, M. (Editor)
1983-01-01
Program status and plans are discussed for component and technology development; reference engine system design, the upgraded Mod 1 engine; industry test and evaluation; and product assurance. Four current Mod 1 engines reached a total of 2523 operational hours, while two upgraded engines accumulated 166 hours.
Instructional Design Processes and Traditional Colleges
ERIC Educational Resources Information Center
Vasser, Nichole
2010-01-01
Traditional colleges who have implemented distance education programs would benefit from using instructional design processes to develop their courses. Instructional design processes provide the framework for designing and delivering quality online learning programs in a highly-competitive educational market. Traditional college leaders play a…
Interactive-graphic flowpath plotting for turbine engines
NASA Technical Reports Server (NTRS)
Corban, R. R.
1981-01-01
An engine cycle program capable of simulating the design and off-design performance of arbitrary turbine engines, and a computer code which, when used in conjunction with the cycle code, can predict the weight of the engines are described. A graphics subroutine was added to the code to enable the engineer to visualize the designed engine with more clarity by producing an overall view of the designed engine for output on a graphics device using IBM-370 graphics subroutines. In addition, with the engine drawn on a graphics screen, the program allows for the interactive user to make changes to the inputs to the code for the engine to be redrawn and reweighed. These improvements allow better use of the code in conjunction with the engine program.
Aerospace applications of magnetic bearings
NASA Technical Reports Server (NTRS)
Downer, James; Goldie, James; Gondhalekar, Vijay; Hockney, Richard
1994-01-01
Magnetic bearings have traditionally been considered for use in aerospace applications only where performance advantages have been the primary, if not only, consideration. Conventional wisdom has been that magnetic bearings have certain performance advantages which must be traded off against increased weight, volume, electric power consumption, and system complexity. These perceptions have hampered the use of magnetic bearings in many aerospace applications because weight, volume, and power are almost always primary considerations. This paper will review progress on several active aerospace magnetic bearings programs at SatCon Technology Corporation. The magnetic bearing programs at SatCon cover a broad spectrum of applications including: a magnetically-suspended spacecraft integrated power and attitude control system (IPACS), a magnetically-suspended momentum wheel, magnetic bearings for the gas generator rotor of a turboshaft engine, a vibration-attenuating magnetic bearing system for an airborne telescope, and magnetic bearings for the compressor of a space-rated heat pump system. The emphasis of these programs is to develop magnetic bearing technologies to the point where magnetic bearings can be truly useful, reliable, and well tested components for the aerospace community.
Aerospace applications of magnetic bearings
NASA Astrophysics Data System (ADS)
Downer, James; Goldie, James; Gondhalekar, Vijay; Hockney, Richard
1994-05-01
Magnetic bearings have traditionally been considered for use in aerospace applications only where performance advantages have been the primary, if not only, consideration. Conventional wisdom has been that magnetic bearings have certain performance advantages which must be traded off against increased weight, volume, electric power consumption, and system complexity. These perceptions have hampered the use of magnetic bearings in many aerospace applications because weight, volume, and power are almost always primary considerations. This paper will review progress on several active aerospace magnetic bearings programs at SatCon Technology Corporation. The magnetic bearing programs at SatCon cover a broad spectrum of applications including: a magnetically-suspended spacecraft integrated power and attitude control system (IPACS), a magnetically-suspended momentum wheel, magnetic bearings for the gas generator rotor of a turboshaft engine, a vibration-attenuating magnetic bearing system for an airborne telescope, and magnetic bearings for the compressor of a space-rated heat pump system. The emphasis of these programs is to develop magnetic bearing technologies to the point where magnetic bearings can be truly useful, reliable, and well tested components for the aerospace community.
NASA Technical Reports Server (NTRS)
1979-01-01
One of the most comprehensive and most effective programs is NECAP, an acronym for NASA Energy Cost Analysis Program. Developed by Langley Research Center, NECAP operates according to heating/cooling calculation procedures formulated by the American Society of Heating, Refrigeration and Air Conditioning Engineers (ASHRAE). The program enables examination of a multitude of influences on heat flow into and out of buildings. For example, NECAP considers traditional weather patterns for a given locale and predicts the effects on a particular building design of sun, rain, wind, even shadows from other buildings. It takes into account the mass of structural materials, insulating values, the type of equipment the building will house, equipment operating schedules, heat by people and machinery, heat loss or gain through windows and other openings and a variety of additional details. NECAP ascertains how much energy the building should require ideally, aids selection of the most economical and most efficient energy systems and suggests design and operational measures for reducing the building's energy needs. Most importantly, NECAP determines cost effectiveness- whether an energy-saving measure will pay back its installation cost through monetary savings in energy bills. thrown off
NASA Technical Reports Server (NTRS)
1990-01-01
NASA formally launched Project LASER (Learning About Science, Engineering and Research) in March 1990, a program designed to help teachers improve science and mathematics education and to provide 'hands on' experiences. It featured the first LASER Mobile Teacher Resource Center (MTRC), is designed to reach educators all over the nation. NASA hopes to operate several MTRCs with funds provided by private industry. The mobile unit is a 22-ton tractor-trailer stocked with NASA educational publications and outfitted with six work stations. Each work station, which can accommodate two teachers at a time, has a computer providing access to NASA Spacelink. Each also has video recorders and photocopy/photographic equipment for the teacher's use. MTRC is only one of the five major elements within LASER. The others are: a Space Technology Course, to promote integration of space science studies with traditional courses; the Volunteer Databank, in which NASA employees are encouraged to volunteer as tutors, instructors, etc; Mobile Discovery Laboratories that will carry simple laboratory equipment and computers to provide hands-on activities for students and demonstrations of classroom activities for teachers; and the Public Library Science Program which will present library based science and math programs.
[A review on the advancement of internet-based public health surveillance program].
Zhao, Y Q; Ma, W J
2017-02-10
Internet data is introduced into public health arena under the features of fast updating and tremendous volume. Mining and analyzing internet data, researchers can model the internet-based surveillance system to assess the distribution of health-related events. There are two main types of internet-based surveillance systems, i.e. active and passive, which are distinguished by the sources of information. Through passive surveillance system, information is collected from search engine and social media while the active system gathers information through provision of the volunteers. Except for serving as a real-time and convenient complementary approach to traditional disease, food safety and adverse drug reaction surveillance program, Internet-based surveillance system can also play a role in health-related behavior surveillance and policy evaluation. Although several techniques have been applied to filter information, the accuracy of internet-based surveillance system is still bothered by the false positive information. In this article, we have summarized the development and application of internet-based surveillance system in public health to provide reference for a better surveillance program in China.
Hexavalent chromium emissions from aerospace operations: A case study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chaurushia, A.; Bajza, C.
1994-12-31
Northrop Aircraft Division (NAD) is subject to several air toxic regulations such as EPA SARA Title 3, California Assembly Bill 2588 (AB2588), and Proposition 65 and is a voluntary participant in air toxic emissions reduction programs such as the EPA 33/50 and MERIT Program. To quantify emissions, NAD initially followed regulatory guidelines which recommend that emission inventories of air toxics be based on engineering assumptions and conservative emission factors in absence of specific source test data. NAD was concerned that Chromium VI emissions from NAD`s spray coating and chemical tank line operations were not representative due to these techniques. Moremore » recently, NAD has relied upon information from its ongoing source testing program to determine emission rates of Chromium VI. Based on these source test results, NAD revised emission calculations for use in Chromium VI inventories, impact assessments and control strategies. NAD has been successful in demonstrating a significant difference between emissions calculated utilizing the source test results and emissions based on the traditional mass balance using agency suggested methods.« less
Student-Led Podcasting for Engineering Education
ERIC Educational Resources Information Center
Alpay, E.; Gulati, S.
2010-01-01
The use of podcasts is challenging traditional communication methods in higher education, with the potential for creating engaging and flexible resources for learning and development. Likewise, podcasts are helping to facilitate a stronger student identity and community within learning environments, replacing traditional student newsletter and…
ERIC Educational Resources Information Center
Timmons, Robert E.
2008-01-01
This study examines an innovative course pedagogy developed to increase learning of advanced financial concepts and positively affect attitudes of non-traditional graduate students toward the discipline of finance in a non-traditional Master of Business Administration program. The hypothesis tested is that use of innovative instructional methods,…
Brief 74 Nuclear Engineering Enrollments and Degrees Survey, 2014 Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
2015-03-15
The 2014 survey includes degrees granted between September 1, 2013 and August 31, 2014, and enrollments for fall 2014. There are three academic programs new to this year's survey. Thirty-five academic programs reported having nuclear engineering programs during 2014, and data were provided by all thirty-five. The enrollments and degrees data include students majoring in nuclear engineering or in an option program equivalent to a major. Two nuclear engineering programs have indicated that health physics option enrollments and degrees are also reported in the health physics enrollments and degrees survey.
Introduction to the Special Issue on Gender and Geoethics in the Geosciences
Thornbush, Mary
2016-01-01
In this introduction to the Special Issue on Gender and Geoethics in the Geosciences is a focus on the participation of women in traditionally male-dominated professions, with geography as an exemplary academic subject. The Special Issue stems from the Commission of Gender and Geoethics as part of the International Association of Geoethics, and endeavors to bring together efforts at various spatial scales that examine the position of women in science and engineering in particular, as conveyed in engineering geology, disaster management sciences, and climate change adaptation studies. It has been discovered, for instance, that men are more active and personally prepared at the community level (in Atlantic Canada coastal communities), and more action is still required in developing countries especially to promote gender equality and empower women. Studies contained in this Special Issue also reveal that tutoring and mentoring by other women can promote further involvement in non-traditional professions, such as professional engineering geology, where women are preferring more traditional (less applied) approaches that may circumscribe their ability to find suitable employment after graduation. Moreover, the hiring policy needs to change in many countries, such as Canada, where there are fewer women at entry-level and senior ranks within geography, especially in physical geography as the scientific part of the discipline. The exclusion of women in traditionally male-dominated spheres needs to be addressed and rectified for the ascent of women to occur in scientific geography and in other geosciences as well as science and engineering at large. PMID:27043609
TRACER - TRACING AND CONTROL OF ENGINEERING REQUIREMENTS
NASA Technical Reports Server (NTRS)
Turner, P. R.
1994-01-01
TRACER (Tracing and Control of Engineering Requirements) is a database/word processing system created to document and maintain the order of both requirements and descriptive material associated with an engineering project. A set of hierarchical documents are normally generated for a project whereby the requirements of the higher level documents levy requirements on the same level or lower level documents. Traditionally, the requirements are handled almost entirely by manual paper methods. The problem with a typical paper system, however, is that requirements written and changed continuously in different areas lead to misunderstandings and noncompliance. The purpose of TRACER is to automate the capture, tracing, reviewing, and managing of requirements for an engineering project. The engineering project still requires communications, negotiations, interactions, and iterations among people and organizations, but TRACER promotes succinct and precise identification and treatment of real requirements separate from the descriptive prose in a document. TRACER permits the documentation of an engineering project's requirements and progress in a logical, controllable, traceable manner. TRACER's attributes include the presentation of current requirements and status from any linked computer terminal and the ability to differentiate headers and descriptive material from the requirements. Related requirements can be linked and traced. The program also enables portions of documents to be printed, individual approval and release of requirements, and the tracing of requirements down into the equipment specification. Requirement "links" can be made "pending" and invisible to others until the pending link is made "binding". Individuals affected by linked requirements can be notified of significant changes with acknowledgement of the changes required. An unlimited number of documents can be created for a project and an ASCII import feature permits existing documents to be incorporated. TRACER can automatically renumber section headers when inserting or deleting sections of a document and generate sign-off forms for any approval process as well as a table of contents. TRACER was implemented on an IBM PC under PC-DOS. The program requires 640K RAM, a hard disk, and PC-DOS version 3.3 or higher. It was written in CLIPPER (Summer '87). TRACER is available on two 5.25 inch 1.2Mb MS-DOS format diskettes. The executable program is also provided with the distribution. TRACER is a copyrighted work with all copyright vested in the National Aeronautics and Space Administration. IBM PC and PC-DOS are registered trademarks of International Business Machines. CLIPPER is a trademark of Nantucket Corporation.
Lightweight two-stroke cycle aircraft diesel engine technology enablement program, volume 3
NASA Technical Reports Server (NTRS)
Freen, P. D.; Berenyi, S. G.; Brouwers, A. P.; Moynihan, M. E.
1985-01-01
An experimental Single Cylinder Test Engine Program is conducted to confirm the analytically projected performance of a two-stroke cycle diesel engine for aircraft applications. Testing confirms the ability of a proposed 4-cylinder version of such an engine to reach the target power at altitude in a highly turbocharged configuration. The experimental program defines all necessary parameters to permit design of a multicylinder engine for eventual flight applications.
Lightweight two-stroke cycle aircraft diesel engine technology enablement program, volume 2
NASA Technical Reports Server (NTRS)
Freen, P. D.; Berenyi, S. G.; Brouwers, A. P.; Moynihan, M. E.
1985-01-01
An experimental Single Cylinder Test Engine Program is conducted to confirm the analytically projected performance of a two-stroke cycle diesel engine for aircraft applications. Testing confirms the ability of a proposed 4-cylinder version of such an engine to reach the target power at altitude in a highly turbocharged configuration. The experimental program defines all necessary parameters to permit a design of a multicylinder engine for eventual flight applications.
Addressing HIV in Zambia through traditional games.
Njelesani, Janet; Njelesani, Donald
2018-05-18
There has been a proliferation of organizations in Zambia touting the mobilization of traditional games as a tool to prevent HIV. However, there is a dearth of evidence on how culturally important activities like traditional games are being incorporated into programing. The purpose of this study was to explore how traditional games are used as a strategy to prevent HIV in Zambia. This qualitative study generated data from 17 case studies of HIV programs operating in Lusaka, Zambia. Observations of the programs were conducted and 44 interviews with program staff were completed. Participants believed that traditional games can engage youth while helping them learn about HIV. However, when traditional games were implemented, they were oversimplified and taught via regimented practices that did not foster critical thinking. This kind of implementation comes at the expense of the development of skills needed to retain and act on information essential for HIV prevention. The results of the study also reveal that due to the increase in cultural pride that has welcomed the revival of traditional games, there are opportunities to encourage government and political support for their systematic integration to address HIV in Zambia.
Reformulating General Engineering and Biological Systems Engineering Programs at Virginia Tech
ERIC Educational Resources Information Center
Lohani, Vinod K.; Wolfe, Mary Leigh; Wildman, Terry; Mallikarjunan, Kumar; Connor, Jeffrey
2011-01-01
In 2004, a group of engineering and education faculty at Virginia Tech received a major curriculum reform and engineering education research grant under the department-level reform (DLR) program of the NSF. This DLR project laid the foundation of sponsored research in engineering education in the Department of Engineering Education. The DLR…
40 CFR 91.803 - Manufacturer in-use testing program.
Code of Federal Regulations, 2010 CFR
2010-07-01
... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM MARINE SPARK-IGNITION ENGINES In-Use Testing and Recall... failing engine, two more engines shall be tested until the total number of engines equals ten (10). (2... the total number of engines equals ten (10). (3) If an engine family was certified using carry over...
NASA Technical Reports Server (NTRS)
Allan, R. D.
1978-01-01
The Definition Study of a Variable Cycle Experimental Engine (VCEE) and Associated Test Program and Test Plan, was initiated to identify the most cost effective program for a follow-on to the AST Test Bed Program. The VCEE Study defined various subscale VCE's based on different available core engine components, and a full scale VCEE utilizing current technology. The cycles were selected, preliminary design accomplished and program plans and engineering costs developed for several program options. In addition to the VCEE program plans and options, a limited effort was applied to identifying programs that could logically be accomplished on the AST Test Bed Program VCE to extend the usefulness of this test hardware. Component programs were provided that could be accomplished prior to the start of a VCEE program.
Residents' Perceptions of Primary Care versus Traditional Internal Medicine Programs.
ERIC Educational Resources Information Center
Wilson, Howard K.; And Others
1983-01-01
Two internal medicine residency programs at Baylor College of Medicine are discussed. The traditional program emphasizes experience in the care of acute problems within a hospital inpatient environment. The primary care residency program emphasizes training in the outpatient environment and in noninternal medicine disciplines. (MLW)
Networked Workstations and Parallel Processing Utilizing Functional Languages
1993-03-01
program . This frees the programmer to concentrate on what the program is to do, not how the program is...traditional ’von Neumann’ architecture uses a timer based (e.g., the program counter), sequentially pro- grammed, single processor approach to problem...traditional ’von Neumann’ architecture uses a timer based (e.g., the program counter), sequentially programmed , single processor approach to
Neuhauser, Linda; Kreps, Gary L
2014-12-01
Traditional communication theory and research methods provide valuable guidance about designing and evaluating health communication programs. However, efforts to use health communication programs to educate, motivate, and support people to adopt healthy behaviors often fail to meet the desired goals. One reason for this failure is that health promotion issues are complex, changeable, and highly related to the specific needs and contexts of the intended audiences. It is a daunting challenge to effectively influence health behaviors, particularly culturally learned and reinforced behaviors concerning lifestyle factors related to diet, exercise, and substance (such as alcohol and tobacco) use. Too often, program development and evaluation are not adequately linked to provide rapid feedback to health communication program developers so that important revisions can be made to design the most relevant and personally motivating health communication programs for specific audiences. Design science theory and methods commonly used in engineering, computer science, and other fields can address such program and evaluation weaknesses. Design science researchers study human-created programs using tightly connected build-and-evaluate loops in which they use intensive participatory methods to understand problems and develop solutions concurrently and throughout the duration of the program. Such thinking and strategies are especially relevant to address complex health communication issues. In this article, the authors explore the history, scientific foundation, methods, and applications of design science and its potential to enhance health communication programs and their evaluation.
Nguyen, Toai Phuong; Khai, Ton That
2014-01-01
Participatory Action-Oriented Training (PAOT) has been known as a practical training methodology for improving health and safety at work, particularly for small- and medium-sized enterprises (SMEs). Our hypothesis is that PAOT is a better approach than a traditional local method, and the objective of this study was to evaluate the efficacy of PAOT and to make suggestions for improvement. An intervention was performed for one year at 20 volunteer SMEs. PAOT was applied in 10 factories, and a traditional local method was applied in the other 10 SMEs as a control. Two cross-sectional studies were performed consisting of a questionnaire and environmental measurements. Data were also collected on the number of factory improvements, productivity, worker income, accidents, and health costs. There were significant improvements among the intervention factories in terms of work environment, number of improvements and health costs between the pre- and post- intervention phases. In terms of productivity, significant increases were seen in the civil engineering, metal, garment, and rice mill industries in the intervention group, while the metal casting and, garment industries in the control group also showed significant increase in productivity. The findings support the idea that a PAOT program produces better outcomes in SMEs. It is recommended that a PAOT program be widely applied to SMEs to improve health and safety. A fuller examination could be obtained with more environmental measurements taken over a much longer period of time, together with data on sickness absence and accidents that have been independently validated.
Asquith, William H.; Slade, R.M.
1999-01-01
The U.S. Geological Survey, in cooperation with the Texas Department of Transportation, has developed a computer program to estimate peak-streamflow frequency for ungaged sites in natural basins in Texas. Peak-streamflow frequency refers to the peak streamflows for recurrence intervals of 2, 5, 10, 25, 50, and 100 years. Peak-streamflow frequency estimates are needed by planners, managers, and design engineers for flood-plain management; for objective assessment of flood risk; for cost-effective design of roads and bridges; and also for the desin of culverts, dams, levees, and other flood-control structures. The program estimates peak-streamflow frequency using a site-specific approach and a multivariate generalized least-squares linear regression. A site-specific approach differs from a traditional regional regression approach by developing unique equations to estimate peak-streamflow frequency specifically for the ungaged site. The stations included in the regression are selected using an informal cluster analysis that compares the basin characteristics of the ungaged site to the basin characteristics of all the stations in the data base. The program provides several choices for selecting the stations. Selecting the stations using cluster analysis ensures that the stations included in the regression will have the most pertinent information about flooding characteristics of the ungaged site and therefore provide the basis for potentially improved peak-streamflow frequency estimation. An evaluation of the site-specific approach in estimating peak-streamflow frequency for gaged sites indicates that the site-specific approach is at least as accurate as a traditional regional regression approach.
An automated procedure for developing hybrid computer simulations of turbofan engines
NASA Technical Reports Server (NTRS)
Szuch, J. R.; Krosel, S. M.
1980-01-01
A systematic, computer-aided, self-documenting methodology for developing hybrid computer simulations of turbofan engines is presented. The methodology makes use of a host program that can run on a large digital computer and a machine-dependent target (hybrid) program. The host program performs all of the calculations and date manipulations needed to transform user-supplied engine design information to a form suitable for the hybrid computer. The host program also trims the self contained engine model to match specified design point information. A test case is described and comparisons between hybrid simulation and specified engine performance data are presented.
A summary of NASA/Air Force full scale engine research programs using the F100 engine
NASA Technical Reports Server (NTRS)
Deskin, W. J.; Hurrell, H. G.
1979-01-01
A full scale engine research (FSER) program conducted with the F100 engine is presented. The program mechanism is described and the F100 test vehicles utilized are illustrated. Technology items were addressed in the areas of swirl augmentation, flutter phenomenon, advanced electronic control logic theory, strain gage technology and distortion sensitivity. The associated test programs are described. The FSER approach utilizes existing state of the art engine hardware to evaluate advanced technology concepts and problem areas. Aerodynamic phenomenon previously not considered by design systems were identified and incorporated into industry design tools.
NASA's new university engineering space research programs
NASA Technical Reports Server (NTRS)
Sadin, Stanley R.
1988-01-01
The objective of a newly emerging element of NASA's university engineering programs is to provide a more autonomous element that will enhance and broaden the capabilities in academia, enabling them to participate more effectively in the U.S. civil space program. The programs utilize technical monitors at NASA centers to foster collaborative arrangements, exchange of personnel, and the sharing of facilities between NASA and the universities. The elements include: the university advanced space design program, which funds advanced systems study courses at the senior and graduate levels; the university space engineering research program that supports cross-disciplinary research centers; the outreach flight experiments program that offers engineering research opportunities to universities; and the planned university investigator's research program to provide grants to individuals with outstanding credentials.
NASA Astrophysics Data System (ADS)
Hara, Toshitsugu
Elementary education program for engineering by the dual system combined with workshop program and teaching program with practical subject was discussed. The dual system which consists of several workshop programs and fundamental subjects (such as mathematics, English and physics) with practical material has been performed for the freshmen. The elementary workshop program (primary course) has four workshops and the related lectures. Fundamental subjects are taught with the practical or engineering texts. English subjects are taught by specified teachers who have ever worked in engineering field with English. The dual system was supported by such systems as the center for success initiative and the English education center.
Design Automation Using Script Languages. High-Level CAD Templates in Non-Parametric Programs
NASA Astrophysics Data System (ADS)
Moreno, R.; Bazán, A. M.
2017-10-01
The main purpose of this work is to study the advantages offered by the application of traditional techniques of technical drawing in processes for automation of the design, with non-parametric CAD programs, provided with scripting languages. Given that an example drawing can be solved with traditional step-by-step detailed procedures, is possible to do the same with CAD applications and to generalize it later, incorporating references. In today’s modern CAD applications, there are striking absences of solutions for building engineering: oblique projections (military and cavalier), 3D modelling of complex stairs, roofs, furniture, and so on. The use of geometric references (using variables in script languages) and their incorporation into high-level CAD templates allows the automation of processes. Instead of repeatedly creating similar designs or modifying their data, users should be able to use these templates to generate future variations of the same design. This paper presents the automation process of several complex drawing examples based on CAD script files aided with parametric geometry calculation tools. The proposed method allows us to solve complex geometry designs not currently incorporated in the current CAD applications and to subsequently create other new derivatives without user intervention. Automation in the generation of complex designs not only saves time but also increases the quality of the presentations and reduces the possibility of human errors.
Effects of the cyberbullying prevention program media heroes (Medienhelden) on traditional bullying.
Chaux, Enrique; Velásquez, Ana María; Schultze-Krumbholz, Anja; Scheithauer, Herbert
2016-01-01
There is considerable debate over whether cyberbullying is just another form of bullying, or whether it is a problem distinct enough to require specific intervention. One way to explore this issue is to analyze whether programs designed to prevent traditional bullying help prevent cyberbullying, and whether programs designed to prevent cyberbullying prevent traditional bullying. The main goal of the current study was to analyze the spillover effects of the cyberbullying prevention program Media Heroes (Medienhelden) on traditional bullying. Media Heroes promotes empathy, knowledge of risks and consequences, and strategies that allow bystanders to defend victims from cyberbullying. Mixed ANOVAs were conducted comparing pretest and post-test (6 months after intervention) measures of 722 students (ages 11-17) assigned to a long (15 sessions) intervention, a short (1 day) intervention, and a control group. In addition to confirming the previously reported effects on cyberbullying, Media Heroes was found to reduce traditional bullying. Effects were larger for the long-version of the program than for the short 1-day version. No effects were found on victimization by either cyberbullying or traditional bullying. Strategies to complement traditional and cyberbullying prevention efforts are discussed. Aggr. Behav. 42:157-165, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Naming in a Programming Support Environment.
1984-02-01
and Control, 1974. 10. T. E. Cheatham. An Overview of the Harvard Program Development System. I; Software Engineering Environments, H. Hunke, Ed.. North...Holland Publishing Compary, 1981, pp. 253-266. 11. T. E. Cheatham. Comparing Programming Support Environments. In Software Engineering Environments...Company. 1981. Third Edition 16. F. DeRemer and H Kron Programming -inthe Large Versus Programming -in-theSmall. IEEE Transactions on Software Engineering
Tull, Renetta G; Rutledge, Janet C; Carter, Frances D; Warnick, Jordan E
2012-11-01
PROMISE: Maryland's Alliance for Graduate Education and the Professoriate (AGEP), sponsored by the National Science Foundation, is a consortium that is designed to increase the numbers of underrepresented minority (URM) PhDs in science, technology, engineering, and mathematics fields who will pursue academic careers. A strength of PROMISE is its alliance infrastructure that connects URM graduate students on different campuses through centralized programming for the three research universities in Maryland: the University of Maryland Baltimore County (the lead institution in the alliance), the University of Maryland College Park, and the University of Maryland Baltimore (UMB). PROMISE initiatives cover graduate student recruitment, retention, community building, PhD completion, and transition to careers.Although it is not a fellowship, PROMISE offers professional development and skill-building programs that provide academic and personal support for URM students on all three campuses. PROMISE on UMB's campus includes the School of Medicine, which sponsors tricampus programs that promote health and wellness to accompany traditional professional development programs. PROMISE uniquely and atypically includes a medical school within its alliance. The PROMISE programs serve as interventions that reduce isolation and facilitate degree completion among diverse students on each campus. This article describes details of the PROMISE AGEP and presents suggestions for replicating professional development programs for URMs in biomedical, MD/master's, and MD/PhD programs on other campuses.
Wisneski, Andrew D; Huang, Lixia; Hong, Bo; Wang, Xiaoqin
2011-01-01
A model for an international undergraduate biomedical engineering research exchange program is outlined. In 2008, the Johns Hopkins University in collaboration with Tsinghua University in Beijing, China established the Tsinghua-Johns Hopkins Joint Center for Biomedical Engineering Research. Undergraduate biomedical engineering students from both universities are offered the opportunity to participate in research at the overseas institution. Programs such as these will not only provide research experiences for undergraduates but valuable cultural exchange and enrichment as well. Currently, strict course scheduling and rigorous curricula in most biomedical engineering programs may present obstacles for students to partake in study abroad opportunities. Universities are encouraged to harbor abroad opportunities for undergraduate engineering students, for which this particular program can serve as a model.
Optimization of a Low Heat Load Turbine Nozzle Guide Vane
2006-03-01
HEAT LOAD TURBINE NOZZLE GUIDE VANE THESIS Presented to the Faculty Department of Aeronautical and Astronautical Engineering ...a function of turbine inlet temperature. .................... 2 Figure 2 Traditional turbofan engine and stator vane location (from Ref [1...the non-rotating stator vanes within a cross-section of a classical two-spool turbofan engine which has an inlet, 4 compressor, combustor, turbine
ERIC Educational Resources Information Center
Haglund, Jesper; Stromdahl, Helge
2012-01-01
Nineteen informants (n = 19) were asked to study and comment two computer animations of the Otto combustion engine. One animation was non-interactive and realistic in the sense of depicting a physical engine. The other animation was more idealised, interactive and synchronised with a dynamic PV-graph. The informants represented practical and…
ERIC Educational Resources Information Center
Douglas, Elliot P.; Koro-Ljungberg, Mirka; Borrego, Maura
2010-01-01
The purpose of this paper is to explore some challenges and promises when the epistemological diversity embedded in qualitative research traditions is introduced to research communities with one dominant research paradigm, such as engineering education. Literature is used from other fields and empirical data are used from engineering education,…
SOFIA Program SE and I Lessons Learned
NASA Technical Reports Server (NTRS)
Ray, Ronald J.; Fobel, Laura J.; Brignola, Michael P.
2011-01-01
Once a "Troubled Project" threatened with cancellation, the Stratospheric Observatory for Infrared Astronomy (SOFIA) Program has overcome many difficult challenges and recently achieved its first light images. To achieve success, SOFIA had to overcome significant deficiencies in fundamental Systems Engineering identified during a major Program restructuring. This presentation will summarize the lessons learn in Systems Engineering on the SOFIA Program. After the Program was reformulated, an initial assessment of Systems Engineering established the scope of the problem and helped to set a list of priorities that needed to be work. A revised Systems Engineering Management Plan (SEMP) was written to address the new Program structure and requirements established in the approved NPR7123.1A. An important result of the "Technical Planning" effort was the decision by the Program and Technical Leadership team to re-phasing the lifecycle into increments. The reformed SOFIA Program Office had to quickly develop and establish several new System Engineering core processes including; Requirements Management, Risk Management, Configuration Management and Data Management. Implementing these processes had to consider the physical and cultural diversity of the SOFIA Program team which includes two Projects spanning two NASA Centers, a major German partnership, and sub-contractors located across the United States and Europe. The SOFIA Program experience represents a creative approach to doing "System Engineering in the middle" while a Program is well established. Many challenges were identified and overcome. The SOFIA example demonstrates it is never too late to benefit from fixing deficiencies in the System Engineering processes.
The effect of training programs on traditional approaches that mothers use in emergencies.
Özyazıcıoğlu, Nurcan; Polat, Sevinç; Bıçakcı, Hatice
2011-01-01
The approach of the residents of central Kars, Turkey, to emergencies in our conservative district is shaped by the effect of the culture. In emergency actions, many traditional approaches are preferred, using herbs and other available materials. Some of these approaches might be directly hazardous and some create danger indirectly as they prolong the treatment period. The study was performed using a one-group pretest/posttest design. Data were collected between June 3, 2006, and August 28, 2007. Two thousand sixty mothers completed the sociodemographic pretest and survey and attended the educational program. The final sample included 1754 mothers who completed the sociodemographic and pretest survey, attended the educational program, and completed the posttest survey. The posttest survey was administered 6 months following the educational program. In this study; the percentage of mothers resorting to traditional approaches in the pretest were at burns, 29.0%; lacerations, 21.4%; fractures, 25.7%; and poisoning, 45.1%; and in the posttest burns, 16.1%; lacerations, 12.7%; fractures, 15.6%; and poisoning, 34.4%. Mothers with higher educational levels were less likely to use traditional practices and the educational program significantly reduced the prevalence of using traditional practices. The training program had a positive effect in decreasing the incidence of resorting to traditional practices for certain emergencies. It was proven that the application of various harmful traditional practices had been used in first aid cases and that the rate decreased in the post training period. It is interesting to note that an additional 540 mothers who did not complete the pretest and sociodemographic questionnaire also attended the educational program because word of the program had spread throughout the region. Copyright © 2011 Emergency Nurses Association. Published by Mosby, Inc. All rights reserved.
ERIC Educational Resources Information Center
Autenrieth, Robin L.; Lewis, Chance W.; Butler-Purry, Karen L.
2017-01-01
The Enrichment Experiences in Engineering (E[superscript 3] ) summer teacher program is hosted by the Dwight Look College of Engineering at Texas A&M University and is designed to provide engineering research experiences for Texas high school science and mathematics teachers. The mission of the E[superscript 3] program is to educate and excite…
A Planning Approach of Engineering Characteristics Based on QFD-TRIZ Integrated
NASA Astrophysics Data System (ADS)
Liu, Shang; Shi, Dongyan; Zhang, Ying
Traditional QFD planning method compromises contradictions between engineering characteristics to achieve higher customer satisfaction. However, this compromise trade-off can not eliminate the contradictions existing among the engineering characteristics which limited the overall customer satisfaction. QFD (Quality function deployment) integrated with TRIZ (the Russian acronym of the Theory of Inventive Problem Solving) becomes hot research recently for TRIZ can be used to solve contradictions between engineering characteristics which construct the roof of HOQ (House of quality). But, the traditional QFD planning approach is not suitable for QFD integrated with TRIZ for that TRIZ requires emphasizing the contradictions between engineering characteristics at problem definition stage instead of compromising trade-off. So, a new planning approach based on QFD / TRIZ integration is proposed in this paper, which based on the consideration of the correlation matrix of engineering characteristics and customer satisfaction on the basis of cost. The proposed approach suggests that TRIZ should be applied to solve contradictions at the first step, and the correlation matrix of engineering characteristics should be amended at the second step, and at next step IFR (ideal final result) must be validated, then planning execute. An example is used to illustrate the proposed approach. The application indicated that higher customer satisfaction can be met and the contradictions between the characteristic parameters are eliminated.
Dynamic Gate Product and Artifact Generation from System Models
NASA Technical Reports Server (NTRS)
Jackson, Maddalena; Delp, Christopher; Bindschadler, Duane; Sarrel, Marc; Wollaeger, Ryan; Lam, Doris
2011-01-01
Model Based Systems Engineering (MBSE) is gaining acceptance as a way to formalize systems engineering practice through the use of models. The traditional method of producing and managing a plethora of disjointed documents and presentations ("Power-Point Engineering") has proven both costly and limiting as a means to manage the complex and sophisticated specifications of modern space systems. We have developed a tool and method to produce sophisticated artifacts as views and by-products of integrated models, allowing us to minimize the practice of "Power-Point Engineering" from model-based projects and demonstrate the ability of MBSE to work within and supersede traditional engineering practices. This paper describes how we have created and successfully used model-based document generation techniques to extract paper artifacts from complex SysML and UML models in support of successful project reviews. Use of formal SysML and UML models for architecture and system design enables production of review documents, textual artifacts, and analyses that are consistent with one-another and require virtually no labor-intensive maintenance across small-scale design changes and multiple authors. This effort thus enables approaches that focus more on rigorous engineering work and less on "PowerPoint engineering" and production of paper-based documents or their "office-productivity" file equivalents.
Ho, Shiaw-Hooi; Rerknimitr, Rungsun; Kudo, Kuriko; Tomimatsu, Shunta; Ahmad, Mohamad Zahir; Aso, Akira; Seo, Dong Wan; Goh, Khean-Lee; Shimizu, Shuji
2017-01-01
Background and study aims An Endoscopic Club E-conference (ECE) was set up in May 2014 to cater to increased demand for gastrointestinal endoscopy-related teleconferences in the Asia-Pacific region which were traditionally organized by the medical working group (MWG) of Asia-Pacific Advanced Network. This study describes how the ECE meeting was run, examines the group dynamics, outlines feedback and analyzes factors affecting the enthusiasm of participants. It is hoped that the findings here can serve as guidance for future development of other teleconference groups. Methods The preparation, running of and feedback on the ECE teleconference were evaluated and described. The country’s economic situation, time zone differences, connectivity with a research and education network (REN) and engineering cooperation of each member were recorded and analyzed with regard to their association with participant enthusiasm, which was taken as participation in at least 50 % of the meetings since joining. Associations were calculated using 2-way table with chi-square test to generate odds ratio and P value. Results To date, ECE members have increased from 7 to 29 (increment of 314 %). Feedback received indicated a high level of satisfaction with program content, audiovisual transmission and ease of technical preparation. Upper gastrointestinal luminal endoscopy-related topics were the most favored program content. Those topics were presented mainly via case studies with a focus on management challenges. Time zone differences of more than 6 hours and poor engineering cooperation were independently associated with inactive participation (P values of 0.04 and 0.001 respectively). Conclusions Good program content and high-quality audiovisual transmission are keys to the success of an endoscopic medical teleconference. In our analysis, poor engineering cooperation and discordant time zones contributed to inactive participation while connectivity with REN and a country’s economic situation were not significantly associated with participant enthusiasm. PMID:28382322
Ho, Shiaw-Hooi; Rerknimitr, Rungsun; Kudo, Kuriko; Tomimatsu, Shunta; Ahmad, Mohamad Zahir; Aso, Akira; Seo, Dong Wan; Goh, Khean-Lee; Shimizu, Shuji
2017-04-01
Background and study aims An Endoscopic Club E-conference (ECE) was set up in May 2014 to cater to increased demand for gastrointestinal endoscopy-related teleconferences in the Asia-Pacific region which were traditionally organized by the medical working group (MWG) of Asia-Pacific Advanced Network. This study describes how the ECE meeting was run, examines the group dynamics, outlines feedback and analyzes factors affecting the enthusiasm of participants. It is hoped that the findings here can serve as guidance for future development of other teleconference groups. Methods The preparation, running of and feedback on the ECE teleconference were evaluated and described. The country's economic situation, time zone differences, connectivity with a research and education network (REN) and engineering cooperation of each member were recorded and analyzed with regard to their association with participant enthusiasm, which was taken as participation in at least 50 % of the meetings since joining. Associations were calculated using 2-way table with chi-square test to generate odds ratio and P value. Results To date, ECE members have increased from 7 to 29 (increment of 314 %). Feedback received indicated a high level of satisfaction with program content, audiovisual transmission and ease of technical preparation. Upper gastrointestinal luminal endoscopy-related topics were the most favored program content. Those topics were presented mainly via case studies with a focus on management challenges. Time zone differences of more than 6 hours and poor engineering cooperation were independently associated with inactive participation ( P values of 0.04 and 0.001 respectively). Conclusions Good program content and high-quality audiovisual transmission are keys to the success of an endoscopic medical teleconference. In our analysis, poor engineering cooperation and discordant time zones contributed to inactive participation while connectivity with REN and a country's economic situation were not significantly associated with participant enthusiasm.
Program For Optimization Of Nuclear Rocket Engines
NASA Technical Reports Server (NTRS)
Plebuch, R. K.; Mcdougall, J. K.; Ridolphi, F.; Walton, James T.
1994-01-01
NOP is versatile digital-computer program devoloped for parametric analysis of beryllium-reflected, graphite-moderated nuclear rocket engines. Facilitates analysis of performance of engine with respect to such considerations as specific impulse, engine power, type of engine cycle, and engine-design constraints arising from complications of fuel loading and internal gradients of temperature. Predicts minimum weight for specified performance.
Shape-programmable magnetic soft matter
Lum, Guo Zhan; Ye, Zhou; Dong, Xiaoguang; Marvi, Hamid; Erin, Onder; Hu, Wenqi; Sitti, Metin
2016-01-01
Shape-programmable matter is a class of active materials whose geometry can be controlled to potentially achieve mechanical functionalities beyond those of traditional machines. Among these materials, magnetically actuated matter is particularly promising for achieving complex time-varying shapes at small scale (overall dimensions smaller than 1 cm). However, previous work can only program these materials for limited applications, as they rely solely on human intuition to approximate the required magnetization profile and actuating magnetic fields for their materials. Here, we propose a universal programming methodology that can automatically generate the required magnetization profile and actuating fields for soft matter to achieve new time-varying shapes. The universality of the proposed method can therefore inspire a vast number of miniature soft devices that are critical in robotics, smart engineering surfaces and materials, and biomedical devices. Our proposed method includes theoretical formulations, computational strategies, and fabrication procedures for programming magnetic soft matter. The presented theory and computational method are universal for programming 2D or 3D time-varying shapes, whereas the fabrication technique is generic only for creating planar beams. Based on the proposed programming method, we created a jellyfish-like robot, a spermatozoid-like undulating swimmer, and an artificial cilium that could mimic the complex beating patterns of its biological counterpart. PMID:27671658
Shape-programmable magnetic soft matter.
Lum, Guo Zhan; Ye, Zhou; Dong, Xiaoguang; Marvi, Hamid; Erin, Onder; Hu, Wenqi; Sitti, Metin
2016-10-11
Shape-programmable matter is a class of active materials whose geometry can be controlled to potentially achieve mechanical functionalities beyond those of traditional machines. Among these materials, magnetically actuated matter is particularly promising for achieving complex time-varying shapes at small scale (overall dimensions smaller than 1 cm). However, previous work can only program these materials for limited applications, as they rely solely on human intuition to approximate the required magnetization profile and actuating magnetic fields for their materials. Here, we propose a universal programming methodology that can automatically generate the required magnetization profile and actuating fields for soft matter to achieve new time-varying shapes. The universality of the proposed method can therefore inspire a vast number of miniature soft devices that are critical in robotics, smart engineering surfaces and materials, and biomedical devices. Our proposed method includes theoretical formulations, computational strategies, and fabrication procedures for programming magnetic soft matter. The presented theory and computational method are universal for programming 2D or 3D time-varying shapes, whereas the fabrication technique is generic only for creating planar beams. Based on the proposed programming method, we created a jellyfish-like robot, a spermatozoid-like undulating swimmer, and an artificial cilium that could mimic the complex beating patterns of its biological counterpart.
Shape-programmable magnetic soft matter
NASA Astrophysics Data System (ADS)
Zhan Lum, Guo; Ye, Zhou; Dong, Xiaoguang; Marvi, Hamid; Erin, Onder; Hu, Wenqi; Sitti, Metin
2016-10-01
Shape-programmable matter is a class of active materials whose geometry can be controlled to potentially achieve mechanical functionalities beyond those of traditional machines. Among these materials, magnetically actuated matter is particularly promising for achieving complex time-varying shapes at small scale (overall dimensions smaller than 1 cm). However, previous work can only program these materials for limited applications, as they rely solely on human intuition to approximate the required magnetization profile and actuating magnetic fields for their materials. Here, we propose a universal programming methodology that can automatically generate the required magnetization profile and actuating fields for soft matter to achieve new time-varying shapes. The universality of the proposed method can therefore inspire a vast number of miniature soft devices that are critical in robotics, smart engineering surfaces and materials, and biomedical devices. Our proposed method includes theoretical formulations, computational strategies, and fabrication procedures for programming magnetic soft matter. The presented theory and computational method are universal for programming 2D or 3D time-varying shapes, whereas the fabrication technique is generic only for creating planar beams. Based on the proposed programming method, we created a jellyfish-like robot, a spermatozoid-like undulating swimmer, and an artificial cilium that could mimic the complex beating patterns of its biological counterpart.
NASA Astrophysics Data System (ADS)
Nadeau, P. A.; Flores, K. E.; Zirakparvar, N. A.; Grcevich, J.; Ustunisik, G. K.; Kinzler, R. J.; Macdonald, M.; Mathez, E. A.; Mac Low, M.
2012-12-01
Educators and research scientists at the American Museum of Natural History are collaborating to implement a teacher education program with the goal of addressing a critical shortage of qualified Earth Science teachers in New York State (NYS), particularly in high-needs schools with diverse populations. This pilot program involves forging a one-of-a-kind partnership between a world-class research museum and high-needs schools in New York City. By placing teaching candidates in such schools, the project has potential to engage, motivate, and improve Earth Science achievement and interest in STEM careers of thousands of students from traditionally underrepresented populations including English language learners, special education students, and racial minority groups. The program, which is part of the state's Race to the Top initiative, is approved by the NYS Board of Regents and will prepare a total of 50 candidates in two cohorts to earn a Board of Regents-awarded Masters of Arts in Teaching (MAT) degree with a specialization in Earth Science for grades 7-12. The museum is in a unique position of being able to break traditional educational barriers as a result of a long history of interdisciplinary collaborations between educators and research scientists, as well as being the only stand-alone science graduate degree-granting museum in the United States. The intensive 15-month curriculum for MAT candidates comprises one summer of museum teaching residency, a full academic year of residency in high-needs public schools, one summer of science research residency, and concurrent graduate-level courses in Earth and space sciences, pedagogy, and adolescent psychology. We emphasize field-based geological studies and experiential learning, in contrast to many traditional teacher education programs. In an effort to ensure that MAT candidates have a robust knowledge base in Earth science, and per NYS Department of Education requirements, we selected candidates with strong backgrounds in fields including geology, meteorology, and environmental science and engineering. Program faculty includes curators and post-doctoral fellows specializing in geology, astrophysics, and paleontology, and doctoral-level Education faculty, who work side by side across disciplines to develop and co-teach courses. With the first cohort of teaching candidates having entered the program in June of 2012, the MAT program is still in the early stages. Current teacher candidates have a wide variety of scientific expertise, come from diverse geographic localities, range from recent bachelors graduates to career changers, and thus far have provided much positive feedback about their experiences with the MAT curriculum. Here we report on the first 6 months of the program.
ERIC Educational Resources Information Center
Hatheway, Allen W.
1978-01-01
Engineering geology remains a potpourri of applied classical geology, and 1977 witnessed an upswing in demand for these services. Traditional foundation-related work was slight, but construction related to national needs increased briskly. Major cities turned to concerns of transit waste-water treatment and solid-waste disposal. (Author/MA)
Restructuring the High School: The Renaissance Program.
ERIC Educational Resources Information Center
Donavel, David F.
Based on the premise that deficiencies in student learning are inherent byproducts of the traditional school structure, this study compares the effects of an experimental curriculum program on student learning with its traditional structural counterpart. The traditional school structure is characterized by a heavy teacher workload, segmented…
ERIC Educational Resources Information Center
Gilmore, A. W.
1970-01-01
Grumman Company has attempted to counter their acute shortage of engineers with diversified experience by establishing the Engineering Professional Development Program (EPDP). Selected engineers participate in an evening scholarship program, assignments to various sections within the company, and in-house seminars and programs to prepare them for…
ERIC Educational Resources Information Center
Mississippi Research and Curriculum Unit for Vocational and Technical Education, State College.
This document, which reflects Mississippi's statutory requirement that instructional programs be based on core curricula and performance-based assessment, contains outlines of the instructional units required in local instructional management plans and daily lesson plans for small engine repair I and II. Presented first are a program description…
Curriculum Development Based on the Big Picture Assessment of the Mechanical Engineering Program
ERIC Educational Resources Information Center
Sabri, Mohd Anas Mohd; Khamis, Nor Kamaliana; Tahir, Mohd Faizal Mat; Wahid, Zaliha; Kamal, Ahmad; Ihsan, Ariffin Mohd; Sulong, Abu Bakar; Abdullah, Shahrum
2013-01-01
One of the major concerns of the Engineering Accreditation Council (EAC) is the need for an effective monitoring and evaluation of program outcome domains that can be associated with courses taught under the Mechanical Engineering program. However, an effective monitoring method that can determine the results of each program outcome using Bloom's…
Digital electronic engine control F-15 overview
NASA Technical Reports Server (NTRS)
Kock, B.
1984-01-01
A flight test evaluation of the digital elctronic engine control (DEEC) system was conducted. An overview of the flight program is presented. The roles of the participating parties, the system, and the flight program objectives are described. The test program approach is discussed, and the engine performance benefits are summarized. A description of the follow-on programs is included.
Impacts of a Summer Bridge Program in Engineering on Student Retention and Graduation
ERIC Educational Resources Information Center
Cançado, Luciana; Reisel, John R.; Walker, Cindy M.
2018-01-01
A summer bridge program was developed in an engineering program to advance the preparation of incoming freshmen students, particularly with respect to their math course placement. The program was intended to raise the initial math course placement of students who otherwise would begin their engineering studies in courses below Calculus I. One…
Systems Engineering Education Development(SEED)Case Study
NASA Technical Reports Server (NTRS)
Bagg, Thomas C., III; Brumfield, Mark D.; Jamison, Donald E.; Granata, Raymond L.; Casey, Carolyn A.
2003-01-01
The Systems Engineering Development Program (SEED) was initiated to help Goddard resolve a Systems Engineering skill shortage. The chronology of events and the experiences of the pilot program are outlined to describe the development of the present program. The program goals are included in order to give a focus on what the developers saw as the program drivers. Lessons learned from a pilot program were incorporated into the present program. This program is constantly learning from its past efforts and looks for continuous improvement. We list several future ideas for improvement and change.
Providing Co-Curricular Support: A Multi-Case Study of Engineering Student Support Centers
ERIC Educational Resources Information Center
Lee, Walter C., Jr.
2015-01-01
In response to the student retention and diversity issues that have been persistent in undergraduate engineering education, many colleges have developed Engineering Student Support Centers (ESSCs) such as Minority Engineering Programs (MEPs) and Women in Engineering Programs (WEPs). ESSCs provide underrepresented students with co-curricular…
ERIC Educational Resources Information Center
Lee, Lung-Sheng; Lai, Chun-Chin
2004-01-01
In comparison with engineering, engineering technology is more practical and purposeful. The engineering technology education programs in Taiwan have been mainly offered in 56 universities/colleges of technology (UTs/CTs) and are anticipated to continuously improve their performance to prepare quality engineering technologists. However, it is…
NASA Technical Reports Server (NTRS)
Krebs, R. P.
1972-01-01
The computer program described calculates the design-point characteristics of a gas generator or a turbojet lift engine for V/STOL applications. The program computes the dimensions and mass, as well as the thermodynamic performance of the model engine and its components. The program was written in FORTRAN 4 language. Provision has been made so that the program accepts input values in either SI Units or U.S. Customary Units. Each engine design-point calculation requires less than 0.5 second of 7094 computer time.
CECE: A Deep Throttling Demonstrator Cryogenic Engine for NASA's Lunar Lander
NASA Technical Reports Server (NTRS)
Giuliano, Victor J.; Leonard, Timothy G.; Adamski, Walter M.; Kim, Tony S.
2007-01-01
As one of the first technology development programs awarded under NASA's Vision for Space Exploration, the Pratt & Whitney Rocketdyne (PWR) Deep Throttling, Common Extensible Cryogenic Engine (CECE) program was selected by NASA in November 2004 to begin technology development and demonstration toward a deep throttling, cryogenic Lunar Lander engine for use across multiple human and robotic lunar exploration mission segments with extensibility to Mars. The CECE program leverages the maturity and previous investment of a flight-proven hydrogen/oxygen expander cycle engine, the RL10, to develop and demonstrate an unprecedented combination of reliability, safety, durability, throttlability, and restart capabilities in a high-energy, cryogenic engine. NASA Marshall Space Flight Center and NASA Glenn Research Center personnel were integral design and analysis team members throughout the requirements assessment, propellant studies and the deep throttling demonstrator elements of the program. The testbed selected for the initial deep throttling demonstration phase of this program was a minimally modified RL10 engine, allowing for maximum current production engine commonality and extensibility with minimum program cost. In just nine months from technical program start, CECE Demonstrator No. 1 engine testing in April/May 2006 at PWR's E06 test stand successfully demonstrated in excess of 10:1 throttling of the hydrogen/oxygen expander cycle engine. This test provided an early demonstration of a viable, enabling cryogenic propulsion concept with invaluable system-level technology data acquisition toward design and development risk mitigation for both the subsequent CECE Demonstrator No. 2 program and to the future Lunar Lander Design, Development, Test and Evaluation effort.
NASA/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program 1992
NASA Technical Reports Server (NTRS)
Spencer, John H. (Compiler)
1992-01-01
Since 1964, the National Aeronautics and Space Administration (NASA) has supported a program of summer faculty fellowships for engineering and science educators. In a series of collaborations between NASA research and development centers and nearby universities, engineering faculty members spend 10 weeks working with professional peers on research. The Summer Faculty Program Committee of the American Society for Engineering Education supervises the programs. Objectives of the program are (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate and exchange ideas between participants and NASA; (3) to enrich and refresh the research and teaching activities of participants' institutions; and (4) to contribute to the research objectives of the NASA center.
Small engine technology programs
NASA Technical Reports Server (NTRS)
Niedzwiecki, Richard W.
1990-01-01
Described here is the small engine technology program being sponsored at the Lewis Research Center. Small gas turbine research is aimed at general aviation, commuter aircraft, rotorcraft, and cruise missile applications. The Rotary Engine program is aimed at supplying fuel flexible, fuel efficient technology to the general aviation industry, but also has applications to other missions. The Automotive Gas Turbine (AGT) and Heavy-Duty Diesel Transport Technology (HDTT) programs are sponsored by DOE. The Compound Cycle Engine program is sponsored by the Army. All of the programs are aimed towards highly efficient engine cycles, very efficient components, and the use of high temperature structural ceramics. This research tends to be generic in nature and has broad applications. The HDTT, rotary technology, and the compound cycle programs are all examining approaches to minimum heat rejection, or 'adiabatic' systems employing advanced materials. The AGT program is also directed towards ceramics application to gas turbine hot section components. Turbomachinery advances in the gas turbine programs will benefit advanced turbochargers and turbocompounders for the intermittent combustion systems, and the fundamental understandings and analytical codes developed in the research and technology programs will be directly applicable to the system projects.
Dragonfly: strengthening programming skills by building a game engine from scratch
NASA Astrophysics Data System (ADS)
Claypool, Mark
2013-06-01
Computer game development has been shown to be an effective hook for motivating students to learn both introductory and advanced computer science topics. While games can be made from scratch, to simplify the programming required game development often uses game engines that handle complicated or frequently used components of the game. These game engines present the opportunity to strengthen programming skills and expose students to a range of fundamental computer science topics. While educational efforts have been effective in using game engines to improve computer science education, there have been no published papers describing and evaluating students building a game engine from scratch as part of their course work. This paper presents the Dragonfly-approach in which students build a fully functional game engine from scratch and make a game using their engine as part of a junior-level course. Details on the programming projects are presented, as well as an evaluation of the results from two offerings that used Dragonfly. Student performance on the projects as well as student assessments demonstrates the efficacy of having students build a game engine from scratch in strengthening their programming skills.