Sample records for traffic control system

  1. Intelligent Traffic Light Based on PLC Control

    NASA Astrophysics Data System (ADS)

    Mei, Lin; Zhang, Lijian; Wang, Lingling

    2017-11-01

    The traditional traffic light system with a fixed control mode and single control function is contradicted with the current traffic section. The traditional one has been unable to meet the functional requirements of the existing flexible traffic control system. This paper research and develop an intelligent traffic light called PLC control system. It uses PLC as control core, using a sensor module for receiving real-time information of vehicles, traffic control mode for information to select the traffic lights. Of which control mode is flexible and changeable, and it also set the countdown reminder to improve the effectiveness of traffic lights, which can realize the goal of intelligent traffic diversion, intelligent traffic diversion.

  2. Fixed Point Learning Based Intelligent Traffic Control System

    NASA Astrophysics Data System (ADS)

    Zongyao, Wang; Cong, Sui; Cheng, Shao

    2017-10-01

    Fixed point learning has become an important tool to analyse large scale distributed system such as urban traffic network. This paper presents a fixed point learning based intelligence traffic network control system. The system applies convergence property of fixed point theorem to optimize the traffic flow density. The intelligence traffic control system achieves maximum road resources usage by averaging traffic flow density among the traffic network. The intelligence traffic network control system is built based on decentralized structure and intelligence cooperation. No central control is needed to manage the system. The proposed system is simple, effective and feasible for practical use. The performance of the system is tested via theoretical proof and simulations. The results demonstrate that the system can effectively solve the traffic congestion problem and increase the vehicles average speed. It also proves that the system is flexible, reliable and feasible for practical use.

  3. Overview of Airport Surface Traffic Control - Present and Future

    DOT National Transportation Integrated Search

    1975-09-01

    The Airport Surface Traffic Control System, an integral part of the nation's Air Traffic Control System, is specifically concerned with the safe and efficient control of airport airside surface traffic. The current status of airport surface traffic c...

  4. Next-generation smart traffic signals : RHODES with Intellidrive, the self-taught traffic control system.

    DOT National Transportation Integrated Search

    2009-01-01

    Can a self-calibrating signal control system lead to wider adoption of adaptive traffic control systems? The focus of Next Generation of Smart Traffic Signals, an Exploratory Advanced Research (EAR) Program project, is a system that-with lit...

  5. Evaluation of New Jersey Route 18 OPAC/MIST traffic-control system

    DOT National Transportation Integrated Search

    1997-01-01

    Conventional traffic-control strategies have limitations in handling unanticipated traffic demands. An adaptive traffic-signal control is expected to mitigate this problem and improve overall system performance. Furthermore, with the increasing needs...

  6. Traffic control systems handbook.

    DOT National Transportation Integrated Search

    2005-10-01

    The Traffic Control Systems Handbook updates the 1996 edition (FHWA-SA-96-032). It serves as a basic reference in planning, designing and implementing traffic control systems. : Specific chapters include introduction, summary of available and emergin...

  7. Traffic control systems handbook

    DOT National Transportation Integrated Search

    2005-10-01

    The 2005 edition of "Traffic Control Systems Handbook" updates the 1996 edition (FHWA-SA-96-032). It serves as a basic reference in planning, designing and implementing traffic control systems. Specific chapters include introduction, summary of avail...

  8. 49 CFR 236.401 - Automatic block signal system and interlocking standards applicable to traffic control systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Traffic Control Systems Standards § 236.401 Automatic... 49 Transportation 4 2011-10-01 2011-10-01 false Automatic block signal system and interlocking standards applicable to traffic control systems. 236.401 Section 236.401 Transportation Other Regulations...

  9. Control of Networked Traffic Flow Distribution - A Stochastic Distribution System Perspective

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Hong; Aziz, H M Abdul; Young, Stan

    Networked traffic flow is a common scenario for urban transportation, where the distribution of vehicle queues either at controlled intersections or highway segments reflect the smoothness of the traffic flow in the network. At signalized intersections, the traffic queues are controlled by traffic signal control settings and effective traffic lights control would realize both smooth traffic flow and minimize fuel consumption. Funded by the Energy Efficient Mobility Systems (EEMS) program of the Vehicle Technologies Office of the US Department of Energy, we performed a preliminary investigation on the modelling and control framework in context of urban network of signalized intersections.more » In specific, we developed a recursive input-output traffic queueing models. The queue formation can be modeled as a stochastic process where the number of vehicles entering each intersection is a random number. Further, we proposed a preliminary B-Spline stochastic model for a one-way single-lane corridor traffic system based on theory of stochastic distribution control.. It has been shown that the developed stochastic model would provide the optimal probability density function (PDF) of the traffic queueing length as a dynamic function of the traffic signal setting parameters. Based upon such a stochastic distribution model, we have proposed a preliminary closed loop framework on stochastic distribution control for the traffic queueing system to make the traffic queueing length PDF follow a target PDF that potentially realizes the smooth traffic flow distribution in a concerned corridor.« less

  10. 49 CFR 236.401 - Automatic block signal system and interlocking standards applicable to traffic control systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Automatic block signal system and interlocking standards applicable to traffic control systems. 236.401 Section 236.401 Transportation Other Regulations... block signal system and interlocking standards applicable to traffic control systems. The standards...

  11. Simulation of traffic control signal systems

    NASA Technical Reports Server (NTRS)

    Connolly, P. J.; Concannon, P. A.; Ricci, R. C.

    1974-01-01

    In recent years there has been considerable interest in the development and testing of control strategies for networks of urban traffic signal systems by simulation. Simulation is an inexpensive and timely method for evaluating the effect of these traffic control strategies since traffic phenomena are too complex to be defined by analytical models and since a controlled experiment may be hazardous, expensive, and slow in producing meaningful results. This paper describes the application of an urban traffic corridor program, to evaluate the effectiveness of different traffic control strategies for the Massachusetts Avenue TOPICS Project.

  12. Traveling With Success, How Local Governments Use Intelligent Transportation Systems

    DOT National Transportation Integrated Search

    1995-01-01

    ELECTRONIC TOLL COLLECTION AND TRAFFIC MANAGEMENT OR ETC/ETTM, ADVANCED TRAFFIC MANAGEMENT SYSTEMS OR ATMS, ADVANCED TRAVELER INFORMATION SYSTEMS OR ATIS, ELECTRONIC PAYMENTS SYSTEMS, TRAFFIC SIGNAL CONTROL/REAL-TIME ADAPTIVE CONTROL, TRANSIT MANAGEM...

  13. Adaptive traffic signal control system (ACS-Lite) for Wolf Road, Albany, New York.

    DOT National Transportation Integrated Search

    2014-10-01

    Adaptive Control Software Lite (ACS : - : Lite) is a : traffic : signal timing optimization system that : dynamically adjusts : traffic : signal timing : s : to meet current traffic demands. : The purpose of this : research project : was : to : deplo...

  14. Simulating and evaluating an adaptive and integrated traffic lights control system for smart city application

    NASA Astrophysics Data System (ADS)

    Djuana, E.; Rahardjo, K.; Gozali, F.; Tan, S.; Rambung, R.; Adrian, D.

    2018-01-01

    A city could be categorized as a smart city when the information technology has been developed to the point that the administration could sense, understand, and control every resource to serve its people and sustain the development of the city. One of the smart city aspects is transportation and traffic management. This paper presents a research project to design an adaptive traffic lights control system as a part of the smart system for optimizing road utilization and reducing congestion. Research problems presented include: (1) Congestion in one direction toward an intersection due to dynamic traffic condition from time to time during the day, while the timing cycles in traffic lights system are mostly static; (2) No timing synchronization among traffic lights in adjacent intersections that is causing unsteady flows; (3) Difficulties in traffic condition monitoring on the intersection and the lack of facility for remotely controlling traffic lights. In this research, a simulator has been built to model the adaptivity and integration among different traffic lights controllers in adjacent intersections, and a case study consisting of three sets of intersections along Jalan K. H. Hasyim Ashari has been simulated. It can be concluded that timing slots synchronization among traffic lights is crucial for maintaining a steady traffic flow.

  15. Initial Air Traffic Control Training at Tartu Aviation College

    DOT National Transportation Integrated Search

    1997-01-01

    A well developed air traffic control training system is vitally important for guaranteeing flight safety and the efficient provision of air traffic control services. During the Soviet era, air traffic control services in Estonia were provided by Aero...

  16. Delay-feedback control strategy for reducing CO2 emission of traffic flow system

    NASA Astrophysics Data System (ADS)

    Zhang, Li-Dong; Zhu, Wen-Xing

    2015-06-01

    To study the signal control strategy for reducing traffic emission theoretically, we first presented a kind of discrete traffic flow model with relative speed term based on traditional coupled map car-following model. In the model, the relative speed difference between two successive running cars is incorporated into following vehicle's acceleration running equation. Then we analyzed its stability condition with discrete control system stability theory. Third, we designed a delay-feedback controller to suppress traffic jam and decrease traffic emission based on modern controller theory. Last, numerical simulations are made to support our theoretical results, including the comparison of models' stability analysis, the influence of model type and signal control on CO2 emissions. The results show that the temporal behavior of our model is superior to other models, and the traffic signal controller has good effect on traffic jam suppression and traffic CO2 emission, which fully supports the theoretical conclusions.

  17. An observation tool to study air traffic control and flightdeck collaboration.

    PubMed

    Cox, Gemma; Sharples, Sarah; Stedmon, Alex; Wilson, John

    2007-07-01

    The complex systems of the flightdeck (FD) and the Air Traffic Control Centre (ATC) are characterised by numerous concurrently operating and interacting communication channels between people and between people and machines/computer systems. This paper describes work in support of investigating the impact of changes to technologies and responsibilities within this system with respect to human factors. It focuses primarily on the introduction of datalink (text-based communication rather than traditional radio communication) and the move towards freeflight (pilot-mediated air traffic control). Air traffic management investigations have outlined these specific changes as strategies to enable further increases in the volume of air traffic. A systems approach was taken and field studies were conducted. Small numbers of domain experts such as air traffic controllers (ATCOs) were involved in the field-based observations of how people interact with systems and each other. This paper summarises the overall research approach taken and then specifically reports on the field-based observations including the justification, development, and findings of the observation tool used. The observation tool examined information propagation through the air traffic control-flightdeck (ATC-FD) system, and resulted in models of possible information trajectories through the system.

  18. Lattice hydrodynamic model based traffic control: A transportation cyber-physical system approach

    NASA Astrophysics Data System (ADS)

    Liu, Hui; Sun, Dihua; Liu, Weining

    2016-11-01

    Lattice hydrodynamic model is a typical continuum traffic flow model, which describes the jamming transition of traffic flow properly. Previous studies in lattice hydrodynamic model have shown that the use of control method has the potential to improve traffic conditions. In this paper, a new control method is applied in lattice hydrodynamic model from a transportation cyber-physical system approach, in which only one lattice site needs to be controlled in this control scheme. The simulation verifies the feasibility and validity of this method, which can ensure the efficient and smooth operation of the traffic flow.

  19. Simulation of the air traffic control radar beacon system (soar) with application to a discrete address beacon system volume II: appendixes

    DOT National Transportation Integrated Search

    1975-04-01

    The report describes a computer simulation of the Air Traffic Control Radar Beacon System (ATCRBS). Operating on real air traffic data and actual characteristics of the relevant ground interrogators, the FORTRAN program re-enacts system operation in ...

  20. Simulation of the Air Traffic Control Radar Beacon System (SOAR) with application to a Discrete Address Beacon System. Volume 1 : text

    DOT National Transportation Integrated Search

    1975-04-01

    The report describes a computer simulation of the Air Traffic Control Radar Beacon System (ATCRBS). Operating on real air traffic data and actual characteristics of the relevant ground interrogators, the FORTRAN program re-enacts system operation in ...

  1. Research and design of intelligent distributed traffic signal light control system based on CAN bus

    NASA Astrophysics Data System (ADS)

    Chen, Yu

    2007-12-01

    Intelligent distributed traffic signal light control system was designed based on technologies of infrared, CAN bus, single chip microprocessor (SCM), etc. The traffic flow signal is processed with the core of SCM AT89C51. At the same time, the SCM controls the CAN bus controller SJA1000/transceiver PCA82C250 to build a CAN bus communication system to transmit data. Moreover, up PC realizes to connect and communicate with SCM through USBCAN chip PDIUSBD12. The distributed traffic signal light control system with three control styles of Vehicle flux, remote and PC is designed. This paper introduces the system composition method and parts of hardware/software design in detail.

  2. 14 CFR Special Federal Aviation... - Process for Requesting Waiver of Mandatory Separation Age for a Federal Aviation Administration...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Stations, Enroute or Terminal Facilities, and the David J. Hurley Air Traffic Control System Command Center... Stations, Enroute or Terminal Facilities, and the David J. Hurley Air Traffic Control System Command Center..., enroute facilities, terminal facilities, or at the David J. Hurley Air Traffic Control System Command...

  3. 14 CFR Special Federal Aviation... - Process for Requesting Waiver of Mandatory Separation Age for a Federal Aviation Administration...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Stations, Enroute or Terminal Facilities, and the David J. Hurley Air Traffic Control System Command Center... Stations, Enroute or Terminal Facilities, and the David J. Hurley Air Traffic Control System Command Center..., enroute facilities, terminal facilities, or at the David J. Hurley Air Traffic Control System Command...

  4. 14 CFR Special Federal Aviation... - Process for Requesting Waiver of Mandatory Separation Age for a Federal Aviation Administration...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Stations, Enroute or Terminal Facilities, and the David J. Hurley Air Traffic Control System Command Center... Stations, Enroute or Terminal Facilities, and the David J. Hurley Air Traffic Control System Command Center..., enroute facilities, terminal facilities, or at the David J. Hurley Air Traffic Control System Command...

  5. 14 CFR Special Federal Aviation... - Process for Requesting Waiver of Mandatory Separation Age for a Federal Aviation Administration...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Stations, Enroute or Terminal Facilities, and the David J. Hurley Air Traffic Control System Command Center... Stations, Enroute or Terminal Facilities, and the David J. Hurley Air Traffic Control System Command Center..., enroute facilities, terminal facilities, or at the David J. Hurley Air Traffic Control System Command...

  6. The Conception Approach to the Traffic Control in Czech Cities - Examples from Prague

    NASA Astrophysics Data System (ADS)

    Tichý, Tomáš; Krajčír, Dušan

    Modern and economic development of contemporary towns is without question highly dependent upon traffic infrastructure progress. Automobile transport intensity is dramatically rising in large towns and other Czech and European cities. At the same time number of traffic congestions and accidents is increasing, standing times are becoming longer and ecological stress is also escalated. To solve this situation seems to be the most effective solution to design intelligent traffic light intersection control system, variable message signs, preference of public transportation, road line traffic control and next telematics subsystems. This control system and subsystems should improve permeability of traffic road network with a respect for all demands on recent trends of traffic development in towns and regions.

  7. Semiautomated Management Of Arriving Air Traffic

    NASA Technical Reports Server (NTRS)

    Erzberger, Heinz; Nedell, William

    1992-01-01

    System of computers, graphical workstations, and computer programs developed for semiautomated management of approach and arrival of numerous aircraft at airport. System comprises three subsystems: traffic-management advisor, used for controlling traffic into terminal area; descent advisor generates information integrated into plan-view display of traffic on monitor; and final-approach-spacing tool used to merge traffic converging on final approach path while making sure aircraft are properly spaced. Not intended to restrict decisions of air-traffic controllers.

  8. Traffic signal control enhancements under vehicle infrastructure integration systems.

    DOT National Transportation Integrated Search

    2011-12-01

    Most current traffic signal systems are operated using a very archaic traffic-detection simple binary : logic (vehicle presence/non presence information). The logic was originally developed to provide input for old : electro-mechanical controllers th...

  9. Flight to the future : human factors in air traffic control

    DOT National Transportation Integrated Search

    1997-01-01

    The nation's air traffic control system is responsible for managing a complex : mixture of air traffic from commercial, general, corporate, and military : aviation. Despite a strong safety record, the system does suffer occasional : serious disruptio...

  10. 5 CFR 842.207 - Air traffic controllers.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 5 Administrative Personnel 2 2014-01-01 2014-01-01 false Air traffic controllers. 842.207 Section... (CONTINUED) FEDERAL EMPLOYEES RETIREMENT SYSTEM-BASIC ANNUITY Eligibility § 842.207 Air traffic controllers... misconduct, is entitled to an annuity— (1) After completing 25 years of service as an air traffic controller...

  11. 5 CFR 842.207 - Air traffic controllers.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 5 Administrative Personnel 2 2013-01-01 2013-01-01 false Air traffic controllers. 842.207 Section... (CONTINUED) FEDERAL EMPLOYEES RETIREMENT SYSTEM-BASIC ANNUITY Eligibility § 842.207 Air traffic controllers... misconduct, is entitled to an annuity— (1) After completing 25 years of service as an air traffic controller...

  12. 5 CFR 842.207 - Air traffic controllers.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 5 Administrative Personnel 2 2011-01-01 2011-01-01 false Air traffic controllers. 842.207 Section... (CONTINUED) FEDERAL EMPLOYEES RETIREMENT SYSTEM-BASIC ANNUITY Eligibility § 842.207 Air traffic controllers... misconduct, is entitled to an annuity— (1) After completing 25 years of service as an air traffic controller...

  13. 5 CFR 842.207 - Air traffic controllers.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 5 Administrative Personnel 2 2010-01-01 2010-01-01 false Air traffic controllers. 842.207 Section... (CONTINUED) FEDERAL EMPLOYEES RETIREMENT SYSTEM-BASIC ANNUITY Eligibility § 842.207 Air traffic controllers... misconduct, is entitled to an annuity— (1) After completing 25 years of service as an air traffic controller...

  14. Broadcast control of air traffic

    NASA Technical Reports Server (NTRS)

    Litchford, G. B.

    1972-01-01

    Applications of wide range broadcast procedures to improve air traffic control and make more airspace available are discussed. A combination of the Omega navigation system and the very high frequency omnirange (VOR) is recommended as a means for accomplishing improved air traffic control. The benefits to be derived by commercial and general aviation are described. The air/ground communications aspects of the improved air traffic control system are explained. Research and development programs for implementing the broadcast concept are recommended.

  15. Defining Human-Centered System Issues for Verifying and Validating Air Traffic Control Systems

    DOT National Transportation Integrated Search

    1993-01-01

    Over the past 40 years, the application of automation to the U.S. air traffic : control (ATC) system has grown enormously to meet significant increases in air : traffic volume. The next ten years will witness a dramatic overhaul of computer : hardwar...

  16. Consensus-Based Cooperative Control Based on Pollution Sensing and Traffic Information for Urban Traffic Networks

    PubMed Central

    Artuñedo, Antonio; del Toro, Raúl M.; Haber, Rodolfo E.

    2017-01-01

    Nowadays many studies are being conducted to develop solutions for improving the performance of urban traffic networks. One of the main challenges is the necessary cooperation among different entities such as vehicles or infrastructure systems and how to exploit the information available through networks of sensors deployed as infrastructures for smart cities. In this work an algorithm for cooperative control of urban subsystems is proposed to provide a solution for mobility problems in cities. The interconnected traffic lights controller (TLC) network adapts traffic lights cycles, based on traffic and air pollution sensory information, in order to improve the performance of urban traffic networks. The presence of air pollution in cities is not only caused by road traffic but there are other pollution sources that contribute to increase or decrease the pollution level. Due to the distributed and heterogeneous nature of the different components involved, a system of systems engineering approach is applied to design a consensus-based control algorithm. The designed control strategy contains a consensus-based component that uses the information shared in the network for reaching a consensus in the state of TLC network components. Discrete event systems specification is applied for modelling and simulation. The proposed solution is assessed by simulation studies with very promising results to deal with simultaneous responses to both pollution levels and traffic flows in urban traffic networks. PMID:28445398

  17. Consensus-Based Cooperative Control Based on Pollution Sensing and Traffic Information for Urban Traffic Networks.

    PubMed

    Artuñedo, Antonio; Del Toro, Raúl M; Haber, Rodolfo E

    2017-04-26

    Nowadays many studies are being conducted to develop solutions for improving the performance of urban traffic networks. One of the main challenges is the necessary cooperation among different entities such as vehicles or infrastructure systems and how to exploit the information available through networks of sensors deployed as infrastructures for smart cities. In this work an algorithm for cooperative control of urban subsystems is proposed to provide a solution for mobility problems in cities. The interconnected traffic lights controller ( TLC ) network adapts traffic lights cycles, based on traffic and air pollution sensory information, in order to improve the performance of urban traffic networks. The presence of air pollution in cities is not only caused by road traffic but there are other pollution sources that contribute to increase or decrease the pollution level. Due to the distributed and heterogeneous nature of the different components involved, a system of systems engineering approach is applied to design a consensus-based control algorithm. The designed control strategy contains a consensus-based component that uses the information shared in the network for reaching a consensus in the state of TLC network components. Discrete event systems specification is applied for modelling and simulation. The proposed solution is assessed by simulation studies with very promising results to deal with simultaneous responses to both pollution levels and traffic flows in urban traffic networks.

  18. Emergency automatic signalling system using time scheduling

    NASA Astrophysics Data System (ADS)

    Rayavel, P.; Surenderanath, S.; Rathnavel, P.; Prakash, G.

    2018-04-01

    It is difficult to handle traffic congestion and maintain roads during traffic mainly in India. As the people migrate from rural to urban and sub-urban areas, it becomes still more critical. Presently Roadways is a standout amongst the most vital transportation. At the point when a car crash happens, crisis vehicles, for example, ambulances and fire trucks must rush to the mischance scene. There emerges a situation where a portion of the crisis vehicles may cause another car crash. Therefore it becomes still more difficult for emergency vehicle to reach the destination within a predicted time. To avoid that kind of problem we have come out with an effective idea which can reduce the potential in the traffic system. The traffic system is been modified using a wireless technology and high speed micro controller to provide smooth and clear flow of traffic for ambulance to reach the destination on time. This is achieved by using RFID Tag at the ambulance and RFID Reader at the traffic system i.e., traffic signal. This mainly deals with identifying the emergency vehicle and providing a green signal to traffic signal at time of traffic jam. — By assigning priorities to various traffic movements, we can control the traffic jam. In some moments like ambulance emergency, high delegates arrive people facing lot of trouble. To overcome this problem in this paper we propose a time priority based traffic system achieved by using RFID transmitter at the emergency vehicle and RFID receiver at the traffic system i.e., traffic signal. The signal from the emergency vehicle is sent to traffic system which after detecting it sends it to microcontroller which controls the traffic signal. If any emergency vehicle is detected the system goes to emergency system mode where signal switch to green and if it is not detected normal system mode.

  19. RHODES-ITMS Tempe field test project : implementation and field testing of RHODES, a real-time traffic adaptive control system

    DOT National Transportation Integrated Search

    2001-09-01

    RHODES is a traffic-adaptive signal control system that optimally controls the traffic that is observed in real time. The RHODES-ITMS Program is the application of the RHODES strategy for the two intersections of a freeway-arterial diamond interchang...

  20. A knowledge-based system for controlling automobile traffic

    NASA Technical Reports Server (NTRS)

    Maravas, Alexander; Stengel, Robert F.

    1994-01-01

    Transportation network capacity variations arising from accidents, roadway maintenance activity, and special events as well as fluctuations in commuters' travel demands complicate traffic management. Artificial intelligence concepts and expert systems can be useful in framing policies for incident detection, congestion anticipation, and optimal traffic management. This paper examines the applicability of intelligent route guidance and control as decision aids for traffic management. Basic requirements for managing traffic are reviewed, concepts for studying traffic flow are introduced, and mathematical models for modeling traffic flow are examined. Measures for quantifying transportation network performance levels are chosen, and surveillance and control strategies are evaluated. It can be concluded that automated decision support holds great promise for aiding the efficient flow of automobile traffic over limited-access roadways, bridges, and tunnels.

  1. Remotely Accessed Vehicle Traffic Management System

    NASA Astrophysics Data System (ADS)

    Al-Alawi, Raida

    2010-06-01

    The ever increasing number of vehicles in most metropolitan cities around the world and the limitation in altering the transportation infrastructure, led to serious traffic congestion and an increase in the travelling time. In this work we exploit the emergence of novel technologies such as the internet, to design an intelligent Traffic Management System (TMS) that can remotely monitor and control a network of traffic light controllers located at different sites. The system is based on utilizing Embedded Web Servers (EWS) technology to design a web-based TMS. The EWS located at each intersection uses IP technology for communicating remotely with a Central Traffic Management Unit (CTMU) located at the traffic department authority. Friendly GUI software installed at the CTMU will be able to monitor the sequence of operation of the traffic lights and the presence of traffic at each intersection as well as remotely controlling the operation of the signals. The system has been validated by constructing a prototype that resembles the real application.

  2. Human factors in air traffic control: problems at the interfaces.

    PubMed

    Shouksmith, George

    2003-10-01

    The triangular ISIS model for describing the operation of human factors in complex sociotechnical organisations or systems is applied in this research to a large international air traffic control system. A large sample of senior Air Traffic Controllers were randomly assigned to small focus discussion groups, whose task was to identify problems occurring at the interfaces of the three major human factor components: individual, system impacts, and social. From these discussions, a number of significant interface problems, which could adversely affect the functioning of the Air Traffic Control System, emerged. The majority of these occurred at the Individual-System Impact and Individual-Social interfaces and involved a perceived need for further interface centered training.

  3. National Airspace System : current efforts and proposed changes to improve performance of FAA's air traffic control system

    DOT National Transportation Integrated Search

    2003-05-01

    To accelerate the modernization and improve the performance of the air traffic control system, the Wendell H. Ford Aviation Investment and Reform Act for the 21st Century (AIR-21) created the Air Traffic Services Subcommittee (subcommittee) to overse...

  4. Tour time in a two-route traffic system controlled by signals

    NASA Astrophysics Data System (ADS)

    Nagatani, Takashi; Naito, Yuichi

    2011-11-01

    We study the dynamic behavior of vehicular traffic in a two-route system with a series of signals (traffic lights) at low density where the number of signals on route A is different from that on route B. We investigate the dependence of the tour time on the route for some strategies of signal control. The nonlinear dynamic model of a two-route traffic system controlled by signals is presented by nonlinear maps. The vehicular traffic exhibits a very complex behavior, depending on the cycle time, the phase difference, and the irregularity. The dependence of the tour time on the route choice is clarified for the signal strategies.

  5. Human factors aspects of air traffic control

    NASA Technical Reports Server (NTRS)

    Older, H. J.; Cameron, B. J.

    1972-01-01

    An overview of human factors problems associated with the operation of present and future air traffic control systems is presented. A description is included of those activities and tasks performed by air traffic controllers at each operational position within the present system. Judgemental data obtained from controllers concerning psychological dimensions related to these tasks and activities are also presented. The analysis includes consideration of psychophysiological dimensions of human performance. The role of the human controller in present air traffic control systems and his predicted role in future systems is described, particularly as that role changes as the result of the system's evolution towards a more automated configuration. Special attention is directed towards problems of staffing, training, and system operation. A series of ten specific research and development projects are recommended and suggested work plans for their implementation are included.

  6. Developing traffic signal control systems using the national ITS architecture

    DOT National Transportation Integrated Search

    1998-02-01

    This is one of a series of documents providing support for deploying Intelligent Transportation Systems (ITS). This document focuses on traffic signal control, a component of ITS. It aims to provide practical help for the traffic engineering communit...

  7. Developing Traffic Signal Control Systems using the National ITS Architecture

    DOT National Transportation Integrated Search

    1998-02-01

    This is one of a series of documents providing support for deploying Intelligent Transportation Systems (ITS). This document focuses on traffic signal control, a component of ITS. It aims to provide practical help for the traffic engineering communit...

  8. An Adaptive Fuzzy-Logic Traffic Control System in Conditions of Saturated Transport Stream

    PubMed Central

    Marakhimov, A. R.; Igamberdiev, H. Z.; Umarov, Sh. X.

    2016-01-01

    This paper considers the problem of building adaptive fuzzy-logic traffic control systems (AFLTCS) to deal with information fuzziness and uncertainty in case of heavy traffic streams. Methods of formal description of traffic control on the crossroads based on fuzzy sets and fuzzy logic are proposed. This paper also provides efficient algorithms for implementing AFLTCS and develops the appropriate simulation models to test the efficiency of suggested approach. PMID:27517081

  9. Automatic speech recognition in air traffic control

    NASA Technical Reports Server (NTRS)

    Karlsson, Joakim

    1990-01-01

    Automatic Speech Recognition (ASR) technology and its application to the Air Traffic Control system are described. The advantages of applying ASR to Air Traffic Control, as well as criteria for choosing a suitable ASR system are presented. Results from previous research and directions for future work at the Flight Transportation Laboratory are outlined.

  10. Airport Surface Traffic Control Systems Deployment Analysis

    DOT National Transportation Integrated Search

    1974-01-01

    The report summarizes the findings of an analysis of ASTC (Airport Surface Traffic Control) system requirements and develops estimates of the deployment potential of proposed system alternatives. The tower control problem areas were investigated by a...

  11. Airport Surface Control Systems Development Analysis Expanded

    DOT National Transportation Integrated Search

    1990-01-01

    A previous MITRE Technical Report, Airport Surface Traffic Control Systems Deployment Analysis, FAA-RD-74-6, presented an analysis of ASTC (Airport Surface Traffic Control) system requirements and developed estimates of the deployment potential of pr...

  12. Improvement of driving safety in road traffic system

    NASA Astrophysics Data System (ADS)

    Li, Ke-Ping; Gao, Zi-You

    2005-05-01

    A road traffic system is a complex system in which humans participate directly. In this system, human factors play a very important role. In this paper, a kind of control signal is designated at a given site (i.e., signal point) of the road. Under the effect of the control signal, the drivers will decrease their velocities when their vehicles pass the signal point. Our aim is to transit the traffic flow states from disorder to order and then improve the traffic safety. We have tested this technique for the two-lane traffic model that is based on the deterministic Nagel-Schreckenberg (NaSch) traffic model. The simulation results indicate that the traffic flow states can be transited from disorder to order. Different order states can be observed in the system and these states are safer.

  13. Broadcast control of air traffic

    NASA Technical Reports Server (NTRS)

    Litchford, G. B.

    1971-01-01

    Concepts of increased pilot participation in air traffic control are presented. The design of an air traffic control system for pilot usage is considered. The operating and safety benefits of LF/VLF approaches in comparison to current nonprecision approach procedures and systems are discussed. With a good national system plan, flight testing and validation, and the use of local differential, or general diurnal, corrections, the LF/VLF system would provide service superior to that presently available.

  14. Traffic flow forecasting for intelligent transportation systems.

    DOT National Transportation Integrated Search

    1995-01-01

    The capability to forecast traffic volume in an operational setting has been identified as a critical need for intelligent transportation systems (ITS). In particular, traffic volume forecasts will directly support proactive traffic control and accur...

  15. Performance of air traffic control specialists (ATCS'S) on a laboratory radar monitoring task : an exploratory study of complacency and a comparison of ATCS and non-ATCS performance.

    DOT National Transportation Integrated Search

    1982-04-01

    The role of the air traffic control specialist (ATCS) is proposed highly automated air traffic systems of the future is currently receiving considerable attention. At the present time, a prevalent conception of the controller's role in such systems i...

  16. Evaluation of traffic responsive control on the Reston Parkway arterial network.

    DOT National Transportation Integrated Search

    2009-01-01

    Traffic responsive plan selection (TRPS) control is considered an effective operational mode in traffic signal systems. Its efficiency stems from the fact that it can capture variations in traffic patterns and switch timing plans based on existing tr...

  17. Application of color to reduce complexity in air traffic control.

    DOT National Transportation Integrated Search

    2002-11-01

    The United States Air Traffic Control (ATC) system is designed to provide for the safe and efficient flow of air : traffic from origin to destination. The Federal Aviation Administration predicts that traffic levels will continue : increasing over th...

  18. Air Traffic Controller Working Memory: Considerations in Air Traffic Control Tactical Operations

    DTIC Science & Technology

    1993-09-01

    INFORMATION PROCESSING SYSTEM 3 2. AIR TRAFFIC CONTROLLER MEMORY 5 2.1 MEMORY CODES 6 21.1 Visual Codes 7 2.1.2 Phonetic Codes 7 2.1.3 Semantic Codes 8...raise an awareness of the memory re- quirements of ATC tactical operations by presenting information on working memory processes that are relevant to...working v memory permeates every aspect of the controller’s ability to process air traffic information and control live traffic. The

  19. A simulation study of the effects of communication delay on air traffic control

    DOT National Transportation Integrated Search

    1990-09-01

    This study was conducted to examine the impacts of voice communications delays : characteristic of Voice Switching and Control System (VSCS) and satellite : communications systems on air traffic system performance, controller stress : and workload, a...

  20. Method and System For an Automated Tool for En Route Traffic Controllers

    NASA Technical Reports Server (NTRS)

    Erzberger, Heinz (Inventor); McNally, B. David (Inventor)

    2001-01-01

    A method and system for a new automation tool for en route air traffic controllers first finds all aircraft flying on inefficient routes, then determines whether it is possible to save time by bypassing some route segments, and finally whether the improved route is free of conflicts with other aircraft. The method displays all direct-to eligible aircraft to an air traffic controller in a list sorted by highest time savings. By allowing the air traffic controller to easily identify and work with the highest pay-off aircraft, the method of the present invention contributes to a significant increase in both air traffic controller and aircraft productivity. A graphical computer interface (GUI) is used to enable the air traffic controller to send the aircraft direct to a waypoint or fix closer to the destination airport by a simple point and click action.

  1. Method and system for an automated tool for en route traffic controllers

    NASA Technical Reports Server (NTRS)

    Erzberger, Heinz (Inventor); McNally, B. David (Inventor)

    2001-01-01

    A method and system for a new automation tool for en route air traffic controllers first finds all aircraft flying on inefficient routes, then determines whether it is possible to save time by bypassing some route segments, and finally whether the improved route is free of conflicts with other aircraft. The method displays all direct-to eligible aircraft to an air traffic controller in a list sorted by highest time savings. By allowing the air traffic controller to easily identify and work with the highest pay-off aircraft, the method of the present invention contributes to a significant increase in both air traffic controller and aircraft productivity. A graphical computer interface (GUI) is used to enable the air traffic controller to send the aircraft direct to a waypoint or fix closer to the destination airport by a simple point and click action.

  2. Communications Handbook for Traffic Control Systems

    DOT National Transportation Integrated Search

    1993-04-01

    The communications system generally proves the most critical and expensive element of a traffic control system/IVHS. Therefore the successful design, implementation, and operation of the communications system become key to the effectiveness of the ov...

  3. Algorithm and data support of traffic congestion forecasting in the controlled transport

    NASA Astrophysics Data System (ADS)

    Dmitriev, S. V.

    2015-06-01

    The topicality of problem of the traffic congestion forecasting in the logistic systems of product movement highways is considered. The concepts: the controlled territory, the highway occupancy by vehicles, the parking and the controlled territory are introduced. Technical realizabilityof organizing the necessary flow of information on the state of the transport system for its regulation has been marked. Sequence of practical implementation of the solution is given. An algorithm for predicting traffic congestion in the controlled transport system is suggested.

  4. Improved Navigational Technology and Air Traffic Control: A Description of Controller Coordination and Workload

    DOT National Transportation Integrated Search

    1995-04-01

    Improved navigational technology, such as microwave landing systems (MLS) or : global positioning systems (GPS), installed in today's commercial aircraft : enable the air traffic control (ATC) system to better utilize its airspace. : This increased e...

  5. A Wavelet Neural Network Optimal Control Model for Traffic-Flow Prediction in Intelligent Transport Systems

    NASA Astrophysics Data System (ADS)

    Huang, Darong; Bai, Xing-Rong

    Based on wavelet transform and neural network theory, a traffic-flow prediction model, which was used in optimal control of Intelligent Traffic system, is constructed. First of all, we have extracted the scale coefficient and wavelet coefficient from the online measured raw data of traffic flow via wavelet transform; Secondly, an Artificial Neural Network model of Traffic-flow Prediction was constructed and trained using the coefficient sequences as inputs and raw data as outputs; Simultaneous, we have designed the running principium of the optimal control system of traffic-flow Forecasting model, the network topological structure and the data transmitted model; Finally, a simulated example has shown that the technique is effectively and exactly. The theoretical results indicated that the wavelet neural network prediction model and algorithms have a broad prospect for practical application.

  6. Intersection Monitor for Traffic-Light-Preemption System

    NASA Technical Reports Server (NTRS)

    Bachelder, Aaron; Foster, Conrad

    2006-01-01

    The figure shows an intersection monitor that is a key subsystem of an emergency traffic-light-preemption system that could be any of the systems described in the three immediately preceding articles and in Systems Would Preempt Traffic Lights for Emergency Vehicles (NPO-30573), NASA Tech Briefs, Vol. 28, No. 10 (October 2004), page 36. This unit is so named because it is installed at an intersection, where it monitors the phases (in the sense of timing) of the traffic lights. The mode of operation of this monitor is independent of the type of traffic-light-controller hardware or software in use at the intersection. Moreover, the design of the monitor is such that (1) the monitor does not, by itself, affect the operation of the traffic- light controller and (2) in the event of a failure of the monitor, the trafficlight controller continues to function normally (albeit without preemption). The monitor is installed in series with the traffic-light controller at an intersection. The control signals of interest are monitored by use of high-impedance taps on affected control lines. These taps are fully isolated and further protected by high-voltage diodes that prevent any voltages or short circuits that arise within the monitor from affecting the controller. The signals from the taps are processed digitally and cleaned up by use of high-speed logic gates, and the resulting data are passed on to other parts of the traffic-light-preemption intersection subsystem. The data are compared continuously with data from vehicles and used to calculate timing for reliable preemption of the traffic lights. The pedestrian crossing at the intersection is also monitored, and pedestrians are warned not to cross during preemption.

  7. Houston Intercontinental and William P. Hobby Air Traffic Control System Analysis

    DOT National Transportation Integrated Search

    1982-06-01

    This report provides a decription of the non-surveillance aspects of the FAA air traffic control facility operation at Houston Intercontinental and William P. Hobby Airports from teh air traffic controller's point of view. It includes photographs of ...

  8. Ultrasonic Sensors in Urban Traffic Driving-Aid Systems

    PubMed Central

    Alonso, Luciano; Milanés, Vicente; Torre-Ferrero, Carlos; Godoy, Jorge; Oria, Juan P.; de Pedro, Teresa

    2011-01-01

    Currently, vehicles are often equipped with active safety systems to reduce the risk of accidents, most of which occur in urban environments. The most prominent include Antilock Braking Systems (ABS), Traction Control and Stability Control. All these systems use different kinds of sensors to constantly monitor the conditions of the vehicle, and act in an emergency. In this paper the use of ultrasonic sensors in active safety systems for urban traffic is proposed, and the advantages and disadvantages when compared to other sensors are discussed. Adaptive Cruise Control (ACC) for urban traffic based on ultrasounds is presented as an application example. The proposed system has been implemented in a fully-automated prototype vehicle and has been tested under real traffic conditions. The results confirm the good performance of ultrasonic sensors in these systems. PMID:22346596

  9. Ultrasonic sensors in urban traffic driving-aid systems.

    PubMed

    Alonso, Luciano; Milanés, Vicente; Torre-Ferrero, Carlos; Godoy, Jorge; Oria, Juan P; de Pedro, Teresa

    2011-01-01

    Currently, vehicles are often equipped with active safety systems to reduce the risk of accidents, most of which occur in urban environments. The most prominent include Antilock Braking Systems (ABS), Traction Control and Stability Control. All these systems use different kinds of sensors to constantly monitor the conditions of the vehicle, and act in an emergency. In this paper the use of ultrasonic sensors in active safety systems for urban traffic is proposed, and the advantages and disadvantages when compared to other sensors are discussed. Adaptive Cruise Control (ACC) for urban traffic based on ultrasounds is presented as an application example. The proposed system has been implemented in a fully-automated prototype vehicle and has been tested under real traffic conditions. The results confirm the good performance of ultrasonic sensors in these systems.

  10. Cockpit displayed traffic information and distributed management in air traffic control

    NASA Technical Reports Server (NTRS)

    Kreifeldt, J. G.

    1980-01-01

    A graphical display of information (such as surrounding aircraft and navigation routes) in the cockpit on a cathode ray tube has been proposed for improving the safety, orderliness, and expeditiousness of the air traffic control system. An investigation of this method at NASA-Ames indicated a large reduction in controller verbal work load without increasing pilot verbal load; the visual work may be increased. The cockpit displayed traffic and navigation information system reduced response delays permitting pilots to maintain their spacing more closely and precisely than when depending entirely on controller-issued radar vectors and speed command.

  11. Criteria for the Selection and Application of Advanced Traffic Signal Control Systems

    DOT National Transportation Integrated Search

    2012-06-01

    The Oregon Department of Transportation (ODOT) has recently begun changing their standard traffic signal control systems from the 170 controller running the Wapiti W4IKS firmware to 2070 controllers operating the Northwest Signal Supply Corporation...

  12. Human performance interfaces in air traffic control.

    PubMed

    Chang, Yu-Hern; Yeh, Chung-Hsing

    2010-01-01

    This paper examines how human performance factors in air traffic control (ATC) affect each other through their mutual interactions. The paper extends the conceptual SHEL model of ergonomics to describe the ATC system as human performance interfaces in which the air traffic controllers interact with other human performance factors including other controllers, software, hardware, environment, and organisation. New research hypotheses about the relationships between human performance interfaces of the system are developed and tested on data collected from air traffic controllers, using structural equation modelling. The research result suggests that organisation influences play a more significant role than individual differences or peer influences on how the controllers interact with the software, hardware, and environment of the ATC system. There are mutual influences between the controller-software, controller-hardware, controller-environment, and controller-organisation interfaces of the ATC system, with the exception of the controller-controller interface. Research findings of this study provide practical insights in managing human performance interfaces of the ATC system in the face of internal or external change, particularly in understanding its possible consequences in relation to the interactions between human performance factors.

  13. Development of the Surface Management System Integrated with CTAS Arrival Tools

    NASA Technical Reports Server (NTRS)

    Jung, Yoon C.; Jara, Dave

    2005-01-01

    The Surface Management System (SMS) developed by NASA Ames Research Center in coordination with the Federal Aviation Administration (FAA) is a decision support tool to help tower traffic coordinators and Ground/Local controllers in managing and controlling airport surface traffic in order to increase capacity, efficiency, and flexibility. SMS provides common situation awareness to personnel at various air traffic control facilities such as airport traffic control towers (ATCT s), airline ramp towers, Terminal Radar Approach Control (TRACON), and Air Route Traffic Control Center (ARTCC). SMS also provides a traffic management tool to assist ATCT traffic management coordinators (TMCs) in making decisions such as airport configuration and runway load balancing. The Build 1 of the SMS tool was installed and successfully tested at Memphis International Airport (MEM) and received high acceptance scores from ATCT controllers and coordinators, as well as airline ramp controllers. NASA Ames Research Center continues to develop SMS under NASA s Strategic Airspace Usage (SAU) project in order to improve its prediction accuracy and robustness under various modeling uncertainties. This paper reports the recent development effort performed by the NASA Ames Research Center: 1) integration of Center TRACON Automation System (CTAS) capability with SMS and 2) an alternative approach to obtain airline gate information through a publicly available website. The preliminary analysis results performed on the air/surface traffic data at the DFW airport have shown significant improvement in predicting airport arrival demand and IN time at the gate. This paper concludes with recommendations for future research and development.

  14. Advanced Flow Control as a Management Tool in the National Airspace System

    NASA Technical Reports Server (NTRS)

    Wugalter, S.

    1974-01-01

    Advanced Flow Control is closely related to Air Traffic Control. Air Traffic Control is the business of the Federal Aviation Administration. To formulate an understanding of advanced flow control and its use as a management tool in the National Airspace System, it becomes necessary to speak somewhat of air traffic control, the role of FAA, and their relationship to advanced flow control. Also, this should dispell forever, any notion that advanced flow control is the inspirational master valve scheme to be used on the Alaskan Oil Pipeline.

  15. Benefit Analysis of the Automated Flow Control Function of the Air Traffic Control Systems Command Center

    DOT National Transportation Integrated Search

    1977-06-01

    This report summarizes the findings of a benefit analysis study of the present and proposed Air Traffic Control Systems Command Center automation systems. The benefits analyzed were those associated with Fuel Advisory Departure and Quota Flow procedu...

  16. Traffic Monitor

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Mestech's X-15 "Eye in the Sky," a traffic monitoring system, incorporates NASA imaging and robotic vision technology. A camera or "sensor box" is mounted in a housing. The sensor detects vehicles approaching an intersection and sends the information to a computer, which controls the traffic light according to the traffic rate. Jet Propulsion Laboratory technical support packages aided in the company's development of the system. The X-15's "smart highway" can also be used to count vehicles on a highway and compute the number in each lane and their speeds, important information for freeway control engineers. Additional applications are in airport and railroad operations. The system is intended to replace loop-type traffic detectors.

  17. Web-based Traffic Noise Control Support System for Sustainable Transportation

    NASA Astrophysics Data System (ADS)

    Fan, Lisa; Dai, Liming; Li, Anson

    Traffic noise is considered as one of the major pollutions that will affect our communities in the future. This paper presents a framework of web-based traffic noise control support system (WTNCSS) for a sustainable transportation. WTNCSS is to provide the decision makers, engineers and publics a platform to efficiently access the information, and effectively making decisions related to traffic control. The system is based on a Service Oriented Architecture (SOA) which takes the advantages of the convenience of World Wide Web system with the data format of XML. The whole system is divided into different modules such as the prediction module, ontology-based expert module and dynamic online survey module. Each module of the system provides a distinct information service to the decision support center through the HTTP protocol.

  18. FAST-TRAC evaluation : evaluation summary report

    DOT National Transportation Integrated Search

    FAST-TRAC is an Intelligent Transportation System (ITS) that integrates advanced traffic control with a variety of advanced traffic information systems through centralized collection, processing, and dissemination of traffic data. The Road Commission...

  19. Concept for a Satellite-Based Advanced Air Traffic Management System : Volume 1. Summary.

    DOT National Transportation Integrated Search

    1974-02-01

    The report contains the results of studies and analyses directed toward the definition of a Satellite-Based Advanced Air Traffic Management System (SAATMS). This system is an advanced, integrated air traffic control system which is based on the use o...

  20. Building the Brain's "Air Traffic Control" System: How Early Experiences Shape the Development of Executive Function. Working Paper 11

    ERIC Educational Resources Information Center

    National Scientific Council on the Developing Child, 2011

    2011-01-01

    Being able to focus, hold, and work with information in mind, filter distractions, and switch gears is like having an air traffic control system at a busy airport to manage the arrivals and departures of dozens of planes on multiple runways. In the brain, this air traffic control mechanism is called executive functioning, a group of skills that…

  1. Summary Report: Uniform Traffic Control And Warning Messages For Portable Changeable Message Signs

    DOT National Transportation Integrated Search

    2000-03-01

    The California database incorporated in the Highway Safety Information System (HSIS) is derived from the California TASAS (Traffic Accident Surveillance and Analysis System). The system, maintained by the Traffic Operations Office of Caltrans, is a m...

  2. Dynamic Airspace Configuration

    NASA Technical Reports Server (NTRS)

    Bloem, Michael J.

    2014-01-01

    In air traffic management systems, airspace is partitioned into regions in part to distribute the tasks associated with managing air traffic among different systems and people. These regions, as well as the systems and people allocated to each, are changed dynamically so that air traffic can be safely and efficiently managed. It is expected that new air traffic control systems will enable greater flexibility in how airspace is partitioned and how resources are allocated to airspace regions. In this talk, I will begin by providing an overview of some previous work and open questions in Dynamic Airspace Configuration research, which is concerned with how to partition airspace and assign resources to regions of airspace. For example, I will introduce airspace partitioning algorithms based on clustering, integer programming optimization, and computational geometry. I will conclude by discussing the development of a tablet-based tool that is intended to help air traffic controller supervisors configure airspace and controllers in current operations.

  3. Creating a systems engineering approach for the manual on uniform traffic control devices.

    DOT National Transportation Integrated Search

    2011-03-01

    The Manual on Uniform Traffic Control Devices (MUTCD) provides basic principles for use of traffic : control devices (TCD). However, most TCDs are not explicitly required, and the decision to use a given : TCD in a given situation is typically made b...

  4. Variable speed limit strategies analysis with mesoscopic traffic flow model based on complex networks

    NASA Astrophysics Data System (ADS)

    Li, Shu-Bin; Cao, Dan-Ni; Dang, Wen-Xiu; Zhang, Lin

    As a new cross-discipline, the complexity science has penetrated into every field of economy and society. With the arrival of big data, the research of the complexity science has reached its summit again. In recent years, it offers a new perspective for traffic control by using complex networks theory. The interaction course of various kinds of information in traffic system forms a huge complex system. A new mesoscopic traffic flow model is improved with variable speed limit (VSL), and the simulation process is designed, which is based on the complex networks theory combined with the proposed model. This paper studies effect of VSL on the dynamic traffic flow, and then analyzes the optimal control strategy of VSL in different network topologies. The conclusion of this research is meaningful to put forward some reasonable transportation plan and develop effective traffic management and control measures to help the department of traffic management.

  5. Benefits of traffic safety facilities installed by police of Japan

    DOT National Transportation Integrated Search

    2000-11-09

    Presentation at the International workshop on ITS benefits held Thursday, November 9, 2000, Madrid Room, Lingotto Centre, Turin, Italy. : The presentation covers: : -UTMS(Universal Traffic Management Systems) : -ITCS(Integrated Traffic Control System...

  6. Broadcast control of air traffic

    NASA Technical Reports Server (NTRS)

    Litchford, G. B.

    1972-01-01

    The development of a system of broadcast control for improved flight safety and air traffic control is discussed. The system provides a balance of equality between improved cockpit guidance and control capability and ground control in order to provide the pilot with a greater degree of participation. The manner in which the system is operated and the equipment required for safe operation are examined.

  7. Methods and measurements in real-time air traffic control system simulation.

    DOT National Transportation Integrated Search

    1983-04-01

    The major purpose of this work was to asses dynamic simulation of air traffic control systems as a technique for evaluating such systems in a statistically sound and objective manner. A large set of customarily used measures based on the system missi...

  8. Economical Video Monitoring of Traffic

    NASA Technical Reports Server (NTRS)

    Houser, B. C.; Paine, G.; Rubenstein, L. D.; Parham, O. Bruce, Jr.; Graves, W.; Bradley, C.

    1986-01-01

    Data compression allows video signals to be transmitted economically on telephone circuits. Telephone lines transmit television signals to remote traffic-control center. Lines also carry command signals from center to TV camera and compressor at highway site. Video system with television cameras positioned at critical points on highways allows traffic controllers to determine visually, almost immediately, exact cause of traffic-flow disruption; e.g., accidents, breakdowns, or spills, almost immediately. Controllers can then dispatch appropriate emergency services and alert motorists to minimize traffic backups.

  9. Analysis of Radio Frequency Surveillance Systems for Air Traffic Control : Volume 1. Text.

    DOT National Transportation Integrated Search

    1976-02-01

    Performance criteria that afford quantitative evaluation of a variety of current and proposed configurations of the Air Traffic Control Radar Beacon System (ATCRBS) are described in detail. Two analytic system models are developed to allow applicatio...

  10. Automation Applications in an Advanced Air Traffic Management System : Volume 4A. Automation Requirements.

    DOT National Transportation Integrated Search

    1974-08-01

    Volume 4 describes the automation requirements. A presentation of automation requirements is made for an advanced air traffic management system in terms of controller work force, computer resources, controller productivity, system manning, failure ef...

  11. Statewide Intelligent Transportation Systems As-Is Agency Reports For Minnesota, Volume 6, City Of St. Paul

    DOT National Transportation Integrated Search

    1996-08-01

    KEYWORDS: : TRAFFIC SIGNAL CONTROL/REAL-TIME ADAPTIVE CONTROL, ADVANCED TRAFFIC MANAGEMENT SYSTEMS OR ATMS : THIS DOCUMENT PRESENTS THE METHODS, ASSUMPTIONS AND PROCEDURES USED TO COLLECT THE BASELINE INFORMATION. THE DOCUMENTATION OF SYSTEMS ...

  12. Enhancing TSM&O strategies through life cycle benefit/cost analysis : life cycle benefit/cost analysis & life cycle assessment of adaptive traffic control systems and ramp metering systems.

    DOT National Transportation Integrated Search

    2015-05-01

    The research team developed a comprehensive Benefit/Cost (B/C) analysis framework to evaluate existing and anticipated : intelligent transportation system (ITS) strategies, particularly, adaptive traffic control systems and ramp metering systems, : i...

  13. Computer-Aided Air-Traffic Control In The Terminal Area

    NASA Technical Reports Server (NTRS)

    Erzberger, Heinz

    1995-01-01

    Developmental computer-aided system for automated management and control of arrival traffic at large airport includes three integrated subsystems. One subsystem, called Traffic Management Advisor, another subsystem, called Descent Advisor, and third subsystem, called Final Approach Spacing Tool. Data base that includes current wind measurements and mathematical models of performances of types of aircraft contributes to effective operation of system.

  14. Design of a final approach spacing tool for TRACON air traffic control

    NASA Technical Reports Server (NTRS)

    Davis, Thomas J.; Erzberger, Heinz; Bergeron, Hugh

    1989-01-01

    This paper describes an automation tool that assists air traffic controllers in the Terminal Radar Approach Control (TRACON) Facilities in providing safe and efficient sequencing and spacing of arrival traffic. The automation tool, referred to as the Final Approach Spacing Tool (FAST), allows the controller to interactively choose various levels of automation and advisory information ranging from predicted time errors to speed and heading advisories for controlling time error. FAST also uses a timeline to display current scheduling and sequencing information for all aircraft in the TRACON airspace. FAST combines accurate predictive algorithms and state-of-the-art mouse and graphical interface technology to present advisory information to the controller. Furthermore, FAST exchanges various types of traffic information and communicates with automation tools being developed for the Air Route Traffic Control Center. Thus it is part of an integrated traffic management system for arrival traffic at major terminal areas.

  15. Air traffic control system baseline methodology guide.

    DOT National Transportation Integrated Search

    1999-06-01

    The Air Traffic Control System Baseline Methodology Guide serves as a reference in the design and conduct of baseline studies. : Engineering research psychologists are the intended audience for the Methodology Guide, which focuses primarily on techni...

  16. Automation Applications in an Advanced Air Traffic Management System : Volume 4B. Automation Requirements (Concluded)

    DOT National Transportation Integrated Search

    1974-08-01

    Volume 4 describes the automation requirements. A presentation of automation requirements is made for an advanced air traffic management system in terms of controller work for-e, computer resources, controller productivity, system manning, failure ef...

  17. An analysis of radio frequency surveillance systems for air traffic control volume II: appendixes

    DOT National Transportation Integrated Search

    1976-02-01

    Performance criteria that afford quantitative evaluation of a variety of current and proposed configurations of the Air Traffic Control Radar Beacon System (ATCRBS) are described in detail. Two analytic system models are developed to allow applicatio...

  18. Transforming the NAS: The Next Generation Air Traffic Control System

    NASA Technical Reports Server (NTRS)

    Erzberger, Heinz

    2004-01-01

    The next-generation air traffic control system must be designed to safely and efficiently accommodate the large growth of traffic expected in the near future. It should be sufficiently scalable to contend with the factor of 2 or more increase in demand expected by the year 2020. Analysis has shown that the current method of controlling air traffic cannot be scaled up to provide such levels of capacity. Therefore, to achieve a large increase in capacity while also giving pilots increased freedom to optimize their flight trajectories requires a fundamental change in the way air traffic is controlled. The key to achieving a factor of 2 or more increase in airspace capacity is to automate separation monitoring and control and to use an air-ground data link to send trajectories and clearances directly between ground-based and airborne systems. In addition to increasing capacity and offering greater flexibility in the selection of trajectories, this approach also has the potential to increase safety by reducing controller and pilot errors that occur in routine monitoring and voice communication tasks.

  19. Safety evaluation of the SCATS control system, final report.

    DOT National Transportation Integrated Search

    2010-09-01

    Since 1992, traffic signals in Oakland County and a portion of Macomb and Wayne Counties of Michigan have been : converted to the Sydney Coordinated Adaptive Traffic System (SCATS). County traffic engineers have been : adjusting various SCATS paramet...

  20. Design and development of an automated NEMA traffic signal controller tester : executive summary, August 2000.

    DOT National Transportation Integrated Search

    2000-08-01

    Traffic signal system controllers designed to meet the NEMA TS1 Standards are one of the most prevalent types in use in the US and Canada as of this writing. A PC-based tester for testing NEMA TS1 traffic signal controllers has been developed as a pa...

  1. Design and development of an automated NEMA traffic signal controller tester : final report, August 2000.

    DOT National Transportation Integrated Search

    2000-08-01

    Traffic signal system controllers designed to meet the NEMA TS1 Standards are one of the most prevalent types in use in the US and Canada as of this writing. A PC-based tester for testing NEMA TS1 traffic signal controllers has been developed as a pa...

  2. Cognitive process modelling of controllers in en route air traffic control.

    PubMed

    Inoue, Satoru; Furuta, Kazuo; Nakata, Keiichi; Kanno, Taro; Aoyama, Hisae; Brown, Mark

    2012-01-01

    In recent years, various efforts have been made in air traffic control (ATC) to maintain traffic safety and efficiency in the face of increasing air traffic demands. ATC is a complex process that depends to a large degree on human capabilities, and so understanding how controllers carry out their tasks is an important issue in the design and development of ATC systems. In particular, the human factor is considered to be a serious problem in ATC safety and has been identified as a causal factor in both major and minor incidents. There is, therefore, a need to analyse the mechanisms by which errors occur due to complex factors and to develop systems that can deal with these errors. From the cognitive process perspective, it is essential that system developers have an understanding of the more complex working processes that involve the cooperative work of multiple controllers. Distributed cognition is a methodological framework for analysing cognitive processes that span multiple actors mediated by technology. In this research, we attempt to analyse and model interactions that take place in en route ATC systems based on distributed cognition. We examine the functional problems in an ATC system from a human factors perspective, and conclude by identifying certain measures by which to address these problems. This research focuses on the analysis of air traffic controllers' tasks for en route ATC and modelling controllers' cognitive processes. This research focuses on an experimental study to gain a better understanding of controllers' cognitive processes in air traffic control. We conducted ethnographic observations and then analysed the data to develop a model of controllers' cognitive process. This analysis revealed that strategic routines are applicable to decision making.

  3. Automation Applications in an Advanced Air Traffic Management System : Volume 5A. DELTA Simulation Model - User's Guide

    DOT National Transportation Integrated Search

    1974-08-01

    Volume 4 describes the automation requirements. A presentation of automation requirements is made for an advanced air traffic management system in terms of controller work for-e, computer resources, controller productivity, system manning, failure ef...

  4. Air Traffic Controller Acceptability of Unmanned Aircraft System Detect-and-Avoid Thresholds

    NASA Technical Reports Server (NTRS)

    Mueller, Eric R.; Isaacson, Douglas R.; Stevens, Derek

    2016-01-01

    A human-in-the-loop experiment was conducted with 15 retired air traffic controllers to investigate two research questions: (a) what procedures are appropriate for the use of unmanned aircraft system (UAS) detect-and-avoid systems, and (b) how long in advance of a predicted close encounter should pilots request or execute a separation maneuver. The controller participants managed a busy Oakland air route traffic control sector with mixed commercial/general aviation and manned/UAS traffic, providing separation services, miles-in-trail restrictions and issuing traffic advisories. Controllers filled out post-scenario and post-simulation questionnaires, and metrics were collected on the acceptability of procedural options and temporal thresholds. The states of aircraft were also recorded when controllers issued traffic advisories. Subjective feedback indicated a strong preference for pilots to request maneuvers to remain well clear from intruder aircraft rather than deviate from their IFR clearance. Controllers also reported that maneuvering at 120 seconds until closest point of approach (CPA) was too early; maneuvers executed with less than 90 seconds until CPA were more acceptable. The magnitudes of the requested maneuvers were frequently judged to be too large, indicating a possible discrepancy between the quantitative UAS well clear standard and the one employed subjectively by manned pilots. The ranges between pairs of aircraft and the times to CPA at which traffic advisories were issued were used to construct empirical probability distributions of those metrics. Given these distributions, we propose that UAS pilots wait until an intruder aircraft is approximately 80 seconds to CPA or 6 nmi away before requesting a maneuver, and maneuver immediately if the intruder is within 60 seconds and 4 nmi. These thresholds should make the use of UAS detect and avoid systems compatible with current airspace procedures and controller expectations.

  5. Decision-making tool for applying adaptive traffic control systems : final report.

    DOT National Transportation Integrated Search

    2016-03-01

    Adaptive traffic signal control technologies have been increasingly deployed in real world situations. The objective of this project was to develop a decision-making tool to guide traffic engineers and decision-makers who must decide whether or not a...

  6. 29 CFR 1918.86 - Roll-on roll-off (Ro-Ro) operations (see also § 1918.2, Ro-Ro operations, and § 1918.25).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., Ro-Ro operations, and § 1918.25). 9 [Reserved] (a) Traffic control system. An organized system of vehicular and pedestrian traffic control shall be established and maintained at each entrance/exit ramp and on ramps within the vessel as traffic flow warrants. (b) Ramp load limit. Each ramp shall be plainly...

  7. 29 CFR 1918.86 - Roll-on roll-off (Ro-Ro) operations (see also § 1918.2, Ro-Ro operations, and § 1918.25).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., Ro-Ro operations, and § 1918.25). 9 [Reserved] (a) Traffic control system. An organized system of vehicular and pedestrian traffic control shall be established and maintained at each entrance/exit ramp and on ramps within the vessel as traffic flow warrants. (b) Ramp load limit. Each ramp shall be plainly...

  8. 29 CFR 1918.86 - Roll-on roll-off (Ro-Ro) operations (see also § 1918.2, Ro-Ro operations, and § 1918.25).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., Ro-Ro operations, and § 1918.25). 9 [Reserved] (a) Traffic control system. An organized system of vehicular and pedestrian traffic control shall be established and maintained at each entrance/exit ramp and on ramps within the vessel as traffic flow warrants. (b) Ramp load limit. Each ramp shall be plainly...

  9. The design method and research status of vehicle detection system based on geomagnetic detection principle

    NASA Astrophysics Data System (ADS)

    Lin, Y. H.; Bai, R.; Qian, Z. H.

    2018-03-01

    Vehicle detection systems are applied to obtain real-time information of vehicles, realize traffic control and reduce traffic pressure. This paper reviews geomagnetic sensors as well as the research status of the vehicle detection system. Presented in the paper are also our work on the vehicle detection system, including detection algorithms and experimental results. It is found that the GMR based vehicle detection system has a detection accuracy up to 98% with a high potential for application in the road traffic control area.

  10. An Exploration of Radiation Physics in Electromagnetics

    NASA Technical Reports Server (NTRS)

    Lee, Katherine K.

    2005-01-01

    Contents include the following: NASA's Missions and Aeronautics Research. Today's Air Traffic Control System. Development of Decision-Support Tools. The Center-TRACON Automation System (CTAS). The Traffic Management Advisor (TMA). The Multi-Center Traffic Management Advisor (McTMA). The Surface Management System (SMS). Future Directions: The Joint Planning and Development Office.

  11. Evaluation of Traffic Information and Prediction System (TIPS) as work zone traffic control.

    DOT National Transportation Integrated Search

    2004-03-01

    As part of a pavement rehabilitation project on I-64, the Traffic Information and Prediction System (TIPS) was installed as a a means of providing real-time data for motorists in advance and through the work zone. This system collects real-time data ...

  12. Performance of an Automated-Mixed-Traffic-Vehicle /AMTV/ System. [urban people mover

    NASA Technical Reports Server (NTRS)

    Peng, T. K. C.; Chon, K.

    1978-01-01

    This study analyzes the operation and evaluates the expected performance of a proposed automatic guideway transit system which uses low-speed Automated Mixed Traffic Vehicles (AMTV's). Vehicle scheduling and headway control policies are evaluated with a transit system simulation model. The effect of mixed-traffic interference on the average vehicle speed is examined with a vehicle-pedestrian interface model. Control parameters regulating vehicle speed are evaluated for safe stopping and passenger comfort.

  13. Large scale systems : a study of computer organizations for air traffic control applications.

    DOT National Transportation Integrated Search

    1971-06-01

    Based on current sizing estimates and tracking algorithms, some computer organizations applicable to future air traffic control computing systems are described and assessed. Hardware and software problem areas are defined and solutions are outlined.

  14. Human factors lessons learned in the design and implementation of air traffic control systems

    DOT National Transportation Integrated Search

    1998-01-01

    As air traffic continues to increase, new technology will be needed to accommodate it. The interesting opportunities that new technologies will present for air traffic control (ATC) will be matched by the human factors challenges. Automated tools, al...

  15. ATC simulation of helicopter IFR approaches into major terminal areas using RNAV, MLS, and CDTI

    NASA Technical Reports Server (NTRS)

    Tobias, L.; Lee, H. Q.; Peach, L. L.; Willett, F. M., Jr.; Obrien, P. J.

    1981-01-01

    The introduction of independent helicopter IFR routes at hub airports was investigated in a real time air traffic control system simulation involving a piloted helicopter simulator, computer generated air traffic, and air traffic controllers. The helicopter simulator was equipped to fly area navigation (RNAV) routes and microwave landing system approaches. Problems studied included: (1) pilot acceptance of the approach procedure and tracking accuracy; (2) ATC procedures for handling a mix of helicopter and fixed wing traffic; and (3) utility of the cockpit display of traffic information (CDTI) for the helicopter in the hub airport environment. Results indicate that the helicopter routes were acceptable to the subject pilots and were noninterfering with fixed wing traffic. Merging and spacing maneuvers using CDTI were successfully carried out by the pilots, but controllers had some reservations concerning the acceptability of the CDTI procedures.

  16. Controlling Air Traffic (Simulated) in the Presence of Automation (CATS PAu) 1995: A Study of Measurement Techniques for Situation Awareness in Air Traffic Control

    NASA Technical Reports Server (NTRS)

    French, Jennifer R.

    1995-01-01

    As automated systems proliferate in aviation systems, human operators are taking on less and less of an active role in the jobs they once performed, often reducing what should be important jobs to tasks barely more complex than monitoring machines. When operators are forced into these roles, they risk slipping into hazardous states of awareness, which can lead to reduced skills, lack of vigilance, and the inability to react quickly and competently when there is a machine failure. Using Air Traffic Control (ATC) as a model, the present study developed tools for conducting tests focusing on levels of automation as they relate to situation awareness. Subjects participated in a two-and-a-half hour experiment that consisted of a training period followed by a simulation of air traffic control similar to the system presently used by the FAA, then an additional simulation employing automated assistance. Through an iterative design process utilizing numerous revisions and three experimental sessions, several measures for situational awareness in a simulated Air Traffic Control System were developed and are prepared for use in future experiments.

  17. Quantifying the impact of adaptive traffic control systems on crash frequency and severity: Evidence from Oakland County, Michigan.

    PubMed

    Fink, Joshua; Kwigizile, Valerian; Oh, Jun-Seok

    2016-06-01

    Despite seeing widespread usage worldwide, adaptive traffic control systems have experienced relatively little use in the United States. Of the systems used, the Sydney Coordinated Adaptive Traffic System (SCATS) is the most popular in America. Safety benefits of these systems are not as well understood nor as commonly documented. This study investigates the safety benefits of adaptive traffic control systems by using the large SCATS-based system in Oakland County, MI known as FAST-TRAC. This study uses data from FAST-TRAC-controlled intersections in Oakland County and compares a wide variety of geometric, traffic, and crash characteristics to similar intersections in metropolitan areas elsewhere in Michigan. Data from 498 signalized intersections are used to conduct a cross-sectional analysis. Negative binomial models are used to estimate models for three dependent crash variables. Multinomial logit models are used to estimate an injury severity model. A variable tracking the presence of FAST-TRAC controllers at intersections is used in all models to determine if a SCATS-based system has an impact on crash occurrences or crash severity. Estimates show that the presence of SCATS-based controllers at intersections is likely to reduce angle crashes by up to 19.3%. Severity results show a statistically significant increase in non-serious injuries, but not a significant reduction in incapacitating injuries or fatal accidents. Copyright © 2016 Elsevier Ltd and National Safety Council. All rights reserved.

  18. Fourth Coast-Seaway Systems Requirements Analysis : Volume I - The Role of an Integrated Marine Traffic Information and Control System

    DOT National Transportation Integrated Search

    1972-03-24

    This report summarizes the need for an Integrated Marine Traffic Informaiton and Control System (IMTIC) in the St. Lawrence Seaway. The analytic emphasis is on the Welland Canal to Gulf of St. Lawrence portion of the Seaway system. The Upper Great La...

  19. 14 CFR Special Federal Aviation... - Air Traffic Control System Emergency Operation

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ..., prohibition, procedure or other action taken by the Director of the Office of Air Traffic Systems Management... is necessary for the safety and efficiency of the National Airspace System. Upon activation of the... Control system will be announced in Notices to Airmen issued pursuant to § 91.139 of the Federal Aviation...

  20. Formal Methods Applications in Air Transportation

    NASA Technical Reports Server (NTRS)

    Farley, Todd

    2009-01-01

    The U.S. air transportation system is the most productive in the world, moving far more people and goods than any other. It is also the safest system in the world, thanks in part to its venerable air traffic control system. But as demand for air travel continues to grow, the air traffic control system s aging infrastructure and labor-intensive procedures are impinging on its ability to keep pace with demand. And that impinges on the growth of our economy. Air traffic control modernization has long held the promise of a more efficient air transportation system. Part of NASA s current mission is to develop advanced automation and operational concepts that will expand the capacity of our national airspace system while still maintaining its excellent record for safety. It is a challenging mission, as efforts to modernize have, for decades, been hamstrung by the inability to assure safety to the satisfaction of system operators, system regulators, and/or the traveling public. In this talk, we ll provide a brief history of air traffic control, focusing on the tension between efficiency and safety assurance, and the promise of formal methods going forward.

  1. Variable cycle control model for intersection based on multi-source information

    NASA Astrophysics Data System (ADS)

    Sun, Zhi-Yuan; Li, Yue; Qu, Wen-Cong; Chen, Yan-Yan

    2018-05-01

    In order to improve the efficiency of traffic control system in the era of big data, a new variable cycle control model based on multi-source information is presented for intersection in this paper. Firstly, with consideration of multi-source information, a unified framework based on cyber-physical system is proposed. Secondly, taking into account the variable length of cell, hysteresis phenomenon of traffic flow and the characteristics of lane group, a Lane group-based Cell Transmission Model is established to describe the physical properties of traffic flow under different traffic signal control schemes. Thirdly, the variable cycle control problem is abstracted into a bi-level programming model. The upper level model is put forward for cycle length optimization considering traffic capacity and delay. The lower level model is a dynamic signal control decision model based on fairness analysis. Then, a Hybrid Intelligent Optimization Algorithm is raised to solve the proposed model. Finally, a case study shows the efficiency and applicability of the proposed model and algorithm.

  2. Automation Applications in an Advanced Air Traffic Management System : Volume 1. Summary.

    DOT National Transportation Integrated Search

    1974-08-01

    The Advanced Air Traffic Management System (AATMS) program is a long-range investigation of new concepts and techniques for controlling air traffic and providing services to the growing number of commercial, military, and general aviation users of th...

  3. Multiple curved descending approaches and the air traffic control problem

    NASA Technical Reports Server (NTRS)

    Hart, S. G.; Mcpherson, D.; Kreifeldt, J.; Wemple, T. E.

    1977-01-01

    A terminal area air traffic control simulation was designed to study ways of accommodating increased air traffic density. The concepts that were investigated assumed the availability of the microwave landing system and data link and included: (1) multiple curved descending final approaches; (2) parallel runways certified for independent and simultaneous operation under IFR conditions; (3) closer spacing between successive aircraft; and (4) a distributed management system between the air and ground. Three groups each consisting of three pilots and two air traffic controllers flew a combined total of 350 approaches. Piloted simulators were supplied with computer generated traffic situation displays and flight instruments. The controllers were supplied with a terminal area map and digital status information. Pilots and controllers also reported that the distributed management procedure was somewhat more safe and orderly than the centralized management procedure. Flying precision increased as the amount of turn required to intersect the outer mark decreased. Pilots reported that they preferred the alternative of multiple curved descending approaches with wider spacing between aircraft to closer spacing on single, straight in finals while controllers preferred the latter option. Both pilots and controllers felt that parallel runways are an acceptable way to accommodate increased traffic density safely and expeditiously.

  4. The research and realization of multi-platform real-time message-oriented middleware in large-scale air traffic control system

    NASA Astrophysics Data System (ADS)

    Liang, Haijun; Ren, Jialong; Song, Tao

    2017-05-01

    Operating requirement of air traffic control system, the multi-platform real-time message-oriented middleware was studied and realized, which is composed of CDCC and CDCS. The former provides application process interface, while the latter realizes data synchronism of CDCC and data exchange. MQM, as one important part of it, provides message queue management and, encrypt and compress data during transmitting procedure. The practical system application verifies that the middleware can simplify the development of air traffic control system, enhance its stability, improve its systematic function and make it convenient for maintenance and reuse.

  5. SCADA Protocol Anomaly Detection Utilizing Compression (SPADUC) 2013

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gordon Rueff; Lyle Roybal; Denis Vollmer

    2013-01-01

    There is a significant need to protect the nation’s energy infrastructures from malicious actors using cyber methods. Supervisory, Control, and Data Acquisition (SCADA) systems may be vulnerable due to the insufficient security implemented during the design and deployment of these control systems. This is particularly true in older legacy SCADA systems that are still commonly in use. The purpose of INL’s research on the SCADA Protocol Anomaly Detection Utilizing Compression (SPADUC) project was to determine if and how data compression techniques could be used to identify and protect SCADA systems from cyber attacks. Initially, the concept was centered on howmore » to train a compression algorithm to recognize normal control system traffic versus hostile network traffic. Because large portions of the TCP/IP message traffic (called packets) are repetitive, the concept of using compression techniques to differentiate “non-normal” traffic was proposed. In this manner, malicious SCADA traffic could be identified at the packet level prior to completing its payload. Previous research has shown that SCADA network traffic has traits desirable for compression analysis. This work investigated three different approaches to identify malicious SCADA network traffic using compression techniques. The preliminary analyses and results presented herein are clearly able to differentiate normal from malicious network traffic at the packet level at a very high confidence level for the conditions tested. Additionally, the master dictionary approach used in this research appears to initially provide a meaningful way to categorize and compare packets within a communication channel.« less

  6. Optimal Control of Hybrid Systems in Air Traffic Applications

    NASA Astrophysics Data System (ADS)

    Kamgarpour, Maryam

    Growing concerns over the scalability of air traffic operations, air transportation fuel emissions and prices, as well as the advent of communication and sensing technologies motivate improvements to the air traffic management system. To address such improvements, in this thesis a hybrid dynamical model as an abstraction of the air traffic system is considered. Wind and hazardous weather impacts are included using a stochastic model. This thesis focuses on the design of algorithms for verification and control of hybrid and stochastic dynamical systems and the application of these algorithms to air traffic management problems. In the deterministic setting, a numerically efficient algorithm for optimal control of hybrid systems is proposed based on extensions of classical optimal control techniques. This algorithm is applied to optimize the trajectory of an Airbus 320 aircraft in the presence of wind and storms. In the stochastic setting, the verification problem of reaching a target set while avoiding obstacles (reach-avoid) is formulated as a two-player game to account for external agents' influence on system dynamics. The solution approach is applied to air traffic conflict prediction in the presence of stochastic wind. Due to the uncertainty in forecasts of the hazardous weather, and hence the unsafe regions of airspace for aircraft flight, the reach-avoid framework is extended to account for stochastic target and safe sets. This methodology is used to maximize the probability of the safety of aircraft paths through hazardous weather. Finally, the problem of modeling and optimization of arrival air traffic and runway configuration in dense airspace subject to stochastic weather data is addressed. This problem is formulated as a hybrid optimal control problem and is solved with a hierarchical approach that decouples safety and performance. As illustrated with this problem, the large scale of air traffic operations motivates future work on the efficient implementation of the proposed algorithms.

  7. A demonstration of expert systems applications in transportation engineering : volume II, TRANZ, a prototype expert system for traffic control in highway work zones.

    DOT National Transportation Integrated Search

    1988-01-01

    The development of a prototype knowledge-based expert system (KBES) for selecting appropriate traffic control strategies and management techniques around highway work zones was initiated. This process was encompassed by the steps that formulate the p...

  8. Human Factors in the Design and Evaluation of Air Traffic Control Systems

    DOT National Transportation Integrated Search

    1995-04-01

    This document presents human factors issues that should be considered in the design and evaluation of air traffic : control (ATC) systems and subsystems. It provides background material on the capabilities and limitations of humans as : information p...

  9. Airport Surface Traffic Control Visual Ground Aids Engineering and Development Plan

    DOT National Transportation Integrated Search

    1977-01-01

    The plan described in this document supports the overall program at the Transportation Systems Center to define, design, develop, and evaluate systems that meet the requirements of airport surface traffic control. This plan is part of documentation s...

  10. Evaluation of the Anaheim Advanced Traffic Control System Field Operational Test : executive summary

    DOT National Transportation Integrated Search

    1999-07-01

    This Executive Summary provides an overview of the technical and institutional issues associated with the evaluation of the federally-sponsored Anaheim Advanced Traffic Control : System Field Operations Test. The primary FOT objective was the impleme...

  11. Automated mixed traffic vehicle control and scheduling study

    NASA Technical Reports Server (NTRS)

    Peng, T. K. C.; Chon, K.

    1976-01-01

    The operation and the expected performance of a proposed automatic guideway transit system which uses low speed automated mixed traffic vehicles (AMTVs) were analyzed. Vehicle scheduling and headway control policies were evaluated with a transit system simulation model. The effect of mixed traffic interference on the average vehicle speed was examined with a vehicle pedestrian interface model. Control parameters regulating vehicle speed were evaluated for safe stopping and passenger comfort. Some preliminary data on the cost and operation of an experimental AMTV system are included. These data were the result of a separate task conducted at JPL, and were included as background information.

  12. Factors Influencing the Decisions and Actions of Pilots and Air Traffic Controllers in Three Plausible NextGen Environments

    NASA Technical Reports Server (NTRS)

    Vu, Kim-Phuong L.; Strybel, Thomas Z.; Battiste, Vernol; Johnson, Walter

    2011-01-01

    In the current air traffic management (ATM) system, pilots and air traffic controllers have well-established roles and responsibilities: pilots fly aircraft and are concerned with energy management, fuel efficiency, and passenger comfort; controllers separate aircraft and are concerned with safety and management of traffic flows. Despite having different goals and obligations, both groups must be able to effectively communicate and interact with each other for the ATM system to work. This interaction will become even more challenging as traffic volume increases dramatically in the near future. To accommodate this increase, by 2025 the national air transportation system in the U.S. will go through a transformation that will modernize the ATM system and make it safer, more effective, and more efficient. This new system, NextGen, will change how pilots and controllers perform their tasks by incorporating advanced technologies and employing new procedures. It will also distribute responsibility between pilots, controllers and automation over such tasks as maintaining aircraft separation. The present chapter describes three plausible concepts of operations that allocate different ATM responsibilities to these groups. We describe how each concept changes the role of each operator and the types of decisions and actions performed by them.

  13. Forecast of the general aviation air traffic control environment for the 1980's

    NASA Technical Reports Server (NTRS)

    Hoffman, W. C.; Hollister, W. M.

    1976-01-01

    The critical information required for the design of a reliable, low cost, advanced avionics system which would enhance the safety and utility of general aviation is stipulated. Sufficient data is accumulated upon which industry can base the design of a reasonably priced system having the capability required by general aviation in and beyond the 1980's. The key features of the Air Traffic Control (ATC) system are: a discrete address beacon system, a separation assurance system, area navigation, a microwave landing system, upgraded ATC automation, airport surface traffic control, a wake vortex avoidance system, flight service stations, and aeronautical satellites. The critical parameters that are necessary for component design are identified. The four primary functions of ATC (control, surveillance, navigation, and communication) and their impact on the onboard avionics system design are assessed.

  14. 49 CFR 236.1005 - Requirements for Positive Train Control systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... be equipped with a PTC system shall be determined and reported as follows: (i) The traffic density... installed, based upon changes in rail traffic such as reductions in total traffic volume or cessation of... review of the requirement to install PTC on a low density track segment where a PTC system is otherwise...

  15. A sensemaking perspective on framing the mental picture of air traffic controllers.

    PubMed

    Malakis, Stathis; Kontogiannis, Tom

    2013-03-01

    It has long been recognized that controller strategies are based on a 'mental picture' or representation of traffic situations. Earlier studies indicated that controllers tend to maintain a selective representation of traffic flows based on a few salient traffic features that point out to interesting events (e.g., potential conflicts). A field study is presented in this paper that examines salient features or 'knowledge variables' that constitute the building blocks of controller mental pictures. Verbal reports from participants, a field experiment and observations of real-life scenarios provided insights into the cognitive processes that shape and reframe the mental pictures of controllers. Several cognitive processes (i.e., problem detection, elaboration, reframing and replanning) have been explored within a particular framework of sensemaking stemming from the data/frame theory (Klein et al., 2007). Cognitive maps, representing standard and non-standard air traffic flows, emerged as an explanatory framework for making sense of traffic patterns and for reframing mental pictures. The data/frame theory proved to be a useful theoretical tool for investigating complex cognitive phenomena. The findings of the study have implications for the design of training curricula and decision support systems in air traffic control systems. Copyright © 2012 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  16. Functional Description of Air Traffic Control

    DOT National Transportation Integrated Search

    1971-04-01

    The document contains a description of air traffic control in terms of generic operational functions. The functions are grouped by flight phase and by major system function (navigation, surveillance, control and communication). More detailed descript...

  17. Traffic handling capability of a broadband indoor wireless network using CDMA multiple access

    NASA Astrophysics Data System (ADS)

    Zhang, Chang G.; Hafez, H. M.; Falconer, David D.

    1994-05-01

    CDMA (code division multiple access) may be an attractive technique for wireless access to broadband services because of its multiple access simplicity and other appealing features. In order to investigate traffic handling capabilities of a future network providing a variety of integrated services, this paper presents a study of a broadband indoor wireless network supporting high-speed traffic using CDMA multiple access. The results are obtained through the simulation of an indoor environment and the traffic capabilities of the wireless access to broadband 155.5 MHz ATM-SONET networks using the mm-wave band. A distributed system architecture is employed and the system performance is measured in terms of call blocking probability and dropping probability. The impacts of the base station density, traffic load, average holding time, and variable traffic sources on the system performance are examined. The improvement of system performance by implementing various techniques such as handoff, admission control, power control and sectorization are also investigated.

  18. Improving air traffic control: Proving new tools or approving the joint human-machine system?

    NASA Technical Reports Server (NTRS)

    Gaillard, Irene; Leroux, Marcel

    1994-01-01

    From the description of a field problem (i.e., designing decision aids for air traffic controllers), this paper points out how a cognitive engineering approach provides the milestones for the evaluation of future joint human-machine systems.

  19. InSync Adaptive Traffic Control System for the Veterans Memorial Hwy Corridor on Long Island, NY

    DOT National Transportation Integrated Search

    2012-08-01

    This report documents Rhythm Engineerings adaptive traffic control system field installation performed : by New York State Department of Transportation (NYSDOT) along Veterans Memorial Hwy in Long : Island, NY. This report reviews the reason for t...

  20. Tailoring advanced technologies for air traffic control : the importance of the development process

    DOT National Transportation Integrated Search

    1995-04-01

    This paper describes a process that is currently being applied to the : development and assessment of an advanced air traffic control (ATC) system, the : Center TRACON Automation System (CTAS). This process deviates from established : practices of AT...

  1. An Initial Study of Airport Arrival Heinz Capacity Benefits Due to Improved Scheduling Accuracy

    NASA Technical Reports Server (NTRS)

    Meyn, Larry; Erzberger, Heinz

    2005-01-01

    The long-term growth rate in air-traffic demand leads to future air-traffic densities that are unmanageable by today's air-traffic control system. I n order to accommodate such growth, new technology and operational methods will be needed in the next generation air-traffic control system. One proposal for such a system is the Automated Airspace Concept (AAC). One of the precepts of AAC is to direct aircraft using trajectories that are sent via an air-ground data link. This greatly improves the accuracy in directing aircraft to specific waypoints at specific times. Studies of the Center-TRACON Automation System (CTAS) have shown that increased scheduling accuracy enables increased arrival capacity at CTAS equipped airports.

  2. Evaluation of the Anaheim Advanced Traffic Control System Field Operational Test : Task B : assessment of institutional issues

    DOT National Transportation Integrated Search

    1999-07-01

    This report provides an overview of the technical and institutional issues associated with the : evaluation of the federally-sponsored Anaheim Advanced Traffic Control System Field Operations Test. The primary FOT objective was the implementation and...

  3. Airport Information Retrieval System (AIRS) System Support Manual

    DOT National Transportation Integrated Search

    1973-01-01

    This handbook is a support manual for prototype air traffic flow control automation system developed for the FAA's Systems Command Center. The system is implemented on a time-sharing computer and is designed to provide airport traffic load prediction...

  4. Airport Information Retrieval System (AIRS) System Design

    DOT National Transportation Integrated Search

    1974-07-01

    This report presents the system design for a prototype air traffic flow control automation system developed for the FAA's Systems Command Center. The design was directed toward the immediate automation of airport data for use in traffic load predicti...

  5. Effects of iterative learning based signal control strategies on macroscopic fundamental diagrams of urban road networks

    NASA Astrophysics Data System (ADS)

    Yan, Fei; Tian, Fuli; Shi, Zhongke

    2016-10-01

    Urban traffic flows are inherently repeated on a daily or weekly basis. This repeatability can help improve the traffic conditions if it is used properly by the control system. In this paper, we propose a novel iterative learning control (ILC) strategy for traffic signals of urban road networks using the repeatability feature of traffic flow. To improve the control robustness, the ILC strategy is further integrated with an error feedback control law in a complementary manner. Theoretical analysis indicates that the ILC-based traffic signal control methods can guarantee the asymptotic learning convergence, despite the presence of modeling uncertainties and exogenous disturbances. Finally, the impacts of the ILC-based signal control strategies on the network macroscopic fundamental diagram (MFD) are examined. The results show that the proposed ILC-based control strategies can homogenously distribute the network accumulation by controlling the vehicle numbers in each link to the desired levels under different traffic demands, which can result in the network with high capacity and mobility.

  6. An integrated approach to evaluate policies for controlling traffic law violations.

    PubMed

    Mehmood, Arif

    2010-03-01

    Modeling dynamics of the driver behavior is a complex problem. In this paper a system approach is introduced to model and to analyze the driver behavior related to traffic law violations in the Emirate of Abu Dhabi. This paper demonstrates how the theoretical relationships between different factors can be expressed formally, and how the resulting model can assist in evaluating potential benefits of various policies to control the traffic law violations Using system approach, an integrated dynamic simulation model is developed, and model is tested to simulate the driver behavior for violating traffic laws during 2002-2007 in the Emirate of Abu Dhabi. The dynamic simulation model attempts to address the questions: (1) "what" interventions should be implemented to reduce and eventually control traffic violations which will lead to improving road safety and (2) "how" to justify those interventions will be effective or ineffective to control the violations in different transportation conditions. The simulation results reveal promising capability of applying system approach in the policy evaluation studies. Copyright 2009 Elsevier Ltd. All rights reserved.

  7. Performance evaluation of traffic sensing and control devices : [technical summary].

    DOT National Transportation Integrated Search

    2011-01-01

    High quality sensing and control systems are essential for providing efficient signalized arterial operations. INDOT operates over 2600 traffic signal controllers, approximately 2000 of which use some form of vehicle detection. The private sector con...

  8. JFK airport ground control recommendations.

    DOT National Transportation Integrated Search

    1971-11-01

    The object of this effort was to generate a detailed recommendation on what to do about the JFK Airport Ground Traffic Control Problem, including a review of STRACS, a Surface Traffic Control System. Problem areas were identified by direct observatio...

  9. Study of the human/ITS interface issues on the design of traffic information bulletin board and traffic control signal displays

    DOT National Transportation Integrated Search

    2002-10-01

    The success of automation for intelligent transportation systems is ultimately contingent upon the Interface between the users (humans) and the system (ITS). The issues of variable message signs (VMS) and traffic signal device (TSD) design were studi...

  10. Terminal Air Flow Planning

    NASA Technical Reports Server (NTRS)

    Denery, Dallas G.; Erzberger, Heinz; Edwards, Thomas A. (Technical Monitor)

    1998-01-01

    The Center TRACON Automation System (CTAS) will be the basis for air traffic planning and control in the terminal area. The system accepts arriving traffic within an extended terminal area and optimizes the flow based on current traffic and airport conditions. The operational use of CTAS will be presented together with results from current operations.

  11. Automated Air Traffic Control Operations with Weather and Time-Constraints: A First Look at (Simulated) Far-Term Control Room Operations

    NASA Technical Reports Server (NTRS)

    Prevot, Thomas; Homola, Jeffrey R.; Martin, Lynne H.; Mercer, Joey S.; Cabrall, Christopher C.

    2011-01-01

    In this paper we discuss results from a recent high fidelity simulation of air traffic control operations with automated separation assurance in the presence of weather and time-constraints. We report findings from a human-in-the-loop study conducted in the Airspace Operations Laboratory (AOL) at the NASA Ames Research Center. During four afternoons in early 2010, fifteen active and recently retired air traffic controllers and supervisors controlled high levels of traffic in a highly automated environment during three-hour long scenarios, For each scenario, twelve air traffic controllers operated eight sector positions in two air traffic control areas and were supervised by three front line managers, Controllers worked one-hour shifts, were relieved by other controllers, took a 3D-minute break, and worked another one-hour shift. On average, twice today's traffic density was simulated with more than 2200 aircraft per traffic scenario. The scenarios were designed to create peaks and valleys in traffic density, growing and decaying convective weather areas, and expose controllers to heavy and light metering conditions. This design enabled an initial look at a broad spectrum of workload, challenge, boredom, and fatigue in an otherwise uncharted territory of future operations. In this paper we report human/system integration aspects, safety and efficiency results as well as airspace throughput, workload, and operational acceptability. We conclude that, with further refinements. air traffic control operations with ground-based automated separation assurance can be an effective and acceptable means to routinely provide very high traffic throughput in the en route airspace.

  12. CTAS and NASA Air Traffic Management Fact Sheets for En Route Descent Advisor and Surface Management System

    NASA Technical Reports Server (NTRS)

    Lee, Katharine

    2004-01-01

    The Surface Management System (SMS) is a decision support tool that will help controllers, traffic managers, and NAS users manage the movements of aircraft on the surface of busy airports, improving capacity, efficiency, and flexibility. The Advanced Air Transportation Technologies (AATT) Project at NASA is developing SMS in cooperation with the FAA's Free Flight Phase 2 (FFP2) pro5ram. SMS consists of three parts: a traffic management tool, a controller tool, and a National Airspace System (NAS) information tool.

  13. Instability of cooperative adaptive cruise control traffic flow: A macroscopic approach

    NASA Astrophysics Data System (ADS)

    Ngoduy, D.

    2013-10-01

    This paper proposes a macroscopic model to describe the operations of cooperative adaptive cruise control (CACC) traffic flow, which is an extension of adaptive cruise control (ACC) traffic flow. In CACC traffic flow a vehicle can exchange information with many preceding vehicles through wireless communication. Due to such communication the CACC vehicle can follow its leader at a closer distance than the ACC vehicle. The stability diagrams are constructed from the developed model based on the linear and nonlinear stability method for a certain model parameter set. It is found analytically that CACC vehicles enhance the stabilization of traffic flow with respect to both small and large perturbations compared to ACC vehicles. Numerical simulation is carried out to support our analytical findings. Based on the nonlinear stability analysis, we will show analytically and numerically that the CACC system better improves the dynamic equilibrium capacity over the ACC system. We have argued that in parallel to microscopic models for CACC traffic flow, the newly developed macroscopic will provide a complete insight into the dynamics of intelligent traffic flow.

  14. Preliminary Investigation of Workload on Intrastate Bus Traffic Controllers

    NASA Astrophysics Data System (ADS)

    Yen Bin, Teo; Azlis-Sani, Jalil; Nur Annuar Mohd Yunos, Muhammad; Ismail, S. M. Sabri S. M.; Tajedi, Noor Aqilah Ahmad

    2016-11-01

    The daily routine of bus traffic controller which involves high mental processes would have a direct impact on the level of workload. To date, the level of workload on the bus traffic controllers in Malaysia is relatively unknown. Excessive workload on bus traffic controllers would affect the control and efficiency of the system. This paper served to study the workload on bus traffic controllers and justify the needs to conduct further detailed research on this field. The objectives of this research are to identify the level of workload on the intrastate bus traffic controllers. Based on the results, recommendations will be proposed for improvements and future studies. The level of workload for the bus traffic controllers is quantified using questionnaire adapted from NASA TLX. Interview sessions were conducted for validation of workload. Sixteen respondents were involved and it was found that the average level of workload based on NASA TLX was 6.91. It was found that workload is not affected by gender and marital status. This study also showed that the level of workload and working experience of bus traffic controllers has a strong positive linear relationship. This study would serve as a guidance and reference related to this field. Since this study is a preliminary investigation, further detailed studies could be conducted to obtain a better comprehension regarding the bus traffic controllers.

  15. CATS-based Air Traffic Controller Agents

    NASA Technical Reports Server (NTRS)

    Callantine, Todd J.

    2002-01-01

    This report describes intelligent agents that function as air traffic controllers. Each agent controls traffic in a single sector in real time; agents controlling traffic in adjoining sectors can coordinate to manage an arrival flow across a given meter fix. The purpose of this research is threefold. First, it seeks to study the design of agents for controlling complex systems. In particular, it investigates agent planning and reactive control functionality in a dynamic environment in which a variety perceptual and decision making skills play a central role. It examines how heuristic rules can be applied to model planning and decision making skills, rather than attempting to apply optimization methods. Thus, the research attempts to develop intelligent agents that provide an approximation of human air traffic controller behavior that, while not based on an explicit cognitive model, does produce task performance consistent with the way human air traffic controllers operate. Second, this research sought to extend previous research on using the Crew Activity Tracking System (CATS) as the basis for intelligent agents. The agents use a high-level model of air traffic controller activities to structure the control task. To execute an activity in the CATS model, according to the current task context, the agents reference a 'skill library' and 'control rules' that in turn execute the pattern recognition, planning, and decision-making required to perform the activity. Applying the skills enables the agents to modify their representation of the current control situation (i.e., the 'flick' or 'picture'). The updated representation supports the next activity in a cycle of action that, taken as a whole, simulates air traffic controller behavior. A third, practical motivation for this research is to use intelligent agents to support evaluation of new air traffic control (ATC) methods to support new Air Traffic Management (ATM) concepts. Current approaches that use large, human-in-the-loop simulations are unquestionably valuable for this purpose, but pose considerable logistical, fiscal, and experimental control problems. First, data analysis is extremely complicated, owing simply to the large number of participants and data sources in such simulations. In addition, experienced human air traffic controllers working adjacent sectors tend to flexibly adapt to the evolving control problem - potentially shifting to other strategies than those under investigation. In addition, their performance is tightly coupled to the control interface, which in the development phase may support some concepts and supporting strategies better than others. A simple shift in strategy by one controller can change the character of a particular traffic scenario dramatically, which makes experimental comparison of ATC performance under different traffic scenarios difficult. Training a given team of controllers on operations under a new ATM concept for a sufficient period of time could avert such difficulties, but instituting an adequate training program is expensive and logistically difficult.

  16. RHODES-ITMS-MILOS : ramp metering system test

    DOT National Transportation Integrated Search

    2002-04-01

    The RHODES-Integrated Traffic Management System Program addresses the design and development of a real-time traffic adaptive control system for an integrated system of freeways and arterial roads. The goals of this project were to test coordinated, a...

  17. Airport Information Retrieval System (AIRS) User's Guide

    DOT National Transportation Integrated Search

    1973-08-01

    The handbook is a user's guide for a prototype air traffic flow control automation system developed for the FAA's System Command Center. The system is implemented on a time-sharing computer and is designed to provide airport traffic load predictions ...

  18. An external logic architecture for implementing traffic signal system control strategies.

    DOT National Transportation Integrated Search

    2011-09-01

    The built-in logic functions in traffic controllers have very limited capability to store information, to analyze input data, to estimate performance measures, and to adopt control strategy decisions. These capabilities are imperative to support traf...

  19. Soft System Analysis to Integrate Technology & Human in Controller Workstation

    DOT National Transportation Integrated Search

    2011-10-16

    Computer-based decision support tools (DST), : shared information, and other forms of automation : are increasingly being planned for use by controllers : and pilots to support Air Traffic Management (ATM) : and Air Traffic Control (ATC) in the Next ...

  20. Potential safety benefits of intelligent cruise control systems.

    PubMed

    Chira-Chavala, T; Yoo, S M

    1994-04-01

    Potential safety impact of a hypothetical intelligent cruise control system (ICCS) is evaluated in terms of changes in traffic accidents and some traffic operation characteristics affecting safety. The analysis of changes in traffic accidents is accomplished by in-depth examinations of police accident reports for four major counties in California. The evaluation of changes in traffic operation characteristics affecting safety is accomplished by vehicle simulation. The accident analysis reveals that the use of the hypothetical ICCS could potentially reduce traffic accidents by up to 7.5%. Preliminary vehicle simulation results based on a 10-vehicle convoy indicate that the use of the hypothetical ICCS could reduce frequencies of hard acceleration and deceleration, enhance speed harmonization among vehicles, and reduce incidence of "less-safe" headway.

  1. A telephoto camera system with shooting direction control by gaze detection

    NASA Astrophysics Data System (ADS)

    Teraya, Daiki; Hachisu, Takumi; Yendo, Tomohiro

    2015-05-01

    For safe driving, it is important for driver to check traffic conditions such as traffic lights, or traffic signs as early as soon. If on-vehicle camera takes image of important objects to understand traffic conditions from long distance and shows these to driver, driver can understand traffic conditions earlier. To take image of long distance objects clearly, the focal length of camera must be long. When the focal length is long, on-vehicle camera doesn't have enough field of view to check traffic conditions. Therefore, in order to get necessary images from long distance, camera must have long-focal length and controllability of shooting direction. In previous study, driver indicates shooting direction on displayed image taken by a wide-angle camera, a direction controllable camera takes telescopic image, and displays these to driver. However, driver uses a touch panel to indicate the shooting direction in previous study. It is cause of disturb driving. So, we propose a telephoto camera system for driving support whose shooting direction is controlled by driver's gaze to avoid disturbing drive. This proposed system is composed of a gaze detector and an active telephoto camera whose shooting direction is controlled. We adopt non-wear detecting method to avoid hindrance to drive. The gaze detector measures driver's gaze by image processing. The shooting direction of the active telephoto camera is controlled by galvanometer scanners and the direction can be switched within a few milliseconds. We confirmed that the proposed system takes images of gazing straight ahead of subject by experiments.

  2. Air Traffic Management Research at NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Lee, Katharine

    2005-01-01

    Since the late 1980's, NASA Ames researchers have been investigating ways to improve the air transportation system through the development of decision support automation. These software advances, such as the Center-TRACON Automation System (eTAS) have been developed with teams of engineers, software developers, human factors experts, and air traffic controllers; some ASA Ames decision support tools are currently operational in Federal Aviation Administration (FAA) facilities and some are in use by the airlines. These tools have provided air traffic controllers and traffic managers the capabilities to help reduce overall delays and holding, and provide significant cost savings to the airlines as well as more manageable workload levels for air traffic service providers. NASA is continuing to collaborate with the FAA, as well as other government agencies, to plan and develop the next generation of decision support tools that will support anticipated changes in the air transportation system, including a projected increase to three times today's air-traffic levels by 2025. The presentation will review some of NASA Ames' recent achievements in air traffic management research, and discuss future tool developments and concepts currently under consideration.

  3. The Airspace Concepts Evaluation System Architecture and System Plant

    NASA Technical Reports Server (NTRS)

    Windhorst, Robert; Meyn, Larry; Manikonda, Vikram; Carlos, Patrick; Capozzi, Brian

    2006-01-01

    The Airspace Concepts Evaluation System is a simulation of the National Airspace System. It includes models of flights, airports, airspaces, air traffic controls, traffic flow managements, and airline operation centers operating throughout the United States. It is used to predict system delays in response to future capacity and demand scenarios and perform benefits assessments of current and future airspace technologies and operational concepts. Facilitation of these studies requires that the simulation architecture supports plug and play of different air traffic control, traffic flow management, and airline operation center models and multi-fidelity modeling of flights, airports, and airspaces. The simulation is divided into two parts that are named, borrowing from classical control theory terminology, control and plant. The control consists of air traffic control, traffic flow management, and airline operation center models, and the plant consists of flight, airport, and airspace models. The plant can run open loop, in the absence of the control. However, undesired affects, such as conflicts and over congestions in the airspaces and airports, can occur. Different controls are applied, "plug and played", to the plant. A particular control is evaluated by analyzing how well it managed conflicts and congestions. Furthermore, the terminal area plants consist of models of airports and terminal airspaces. Each model consists of a set of nodes and links which are connected by the user to form a network. Nodes model runways, fixes, taxi intersections, gates, and/or other points of interest, and links model taxiways, departure paths, and arrival paths. Metering, flow distribution, and sequencing functions can be applied at nodes. Different fidelity model of how a flight transits are can be used by links. The fidelity of the model can be adjusted by the user by either changing the complexity of the node/link network-or the way that the link models how the flights transit from one node to the other.

  4. Continuation of the interoperable coordinated signal system deployment in White Plains, New York.

    DOT National Transportation Integrated Search

    2015-12-01

    The City of White Plains, NY owns and operates an advanced traffic control system (TCS) that monitors : and controls over 130 intersections in real time. Its Traffic Department facility is not staffed 24 hours a : day, 7 days a week, but two other ce...

  5. Air traffic control : good progress on interim replacement for outage-plagued system, but risks can be further reduced

    DOT National Transportation Integrated Search

    1996-10-01

    Certain air traffic control(ATC) centers experienced a series of major outages, : some of which were caused by the Display Channel Complex or DCC-a mainframe : computer system that processes radar and other data into displayable images on : controlle...

  6. Evaluation of the Anaheim Advanced Traffic Control System Field Operational Test : introduction and Task A : evaluation of SCOOT performance

    DOT National Transportation Integrated Search

    1999-03-01

    This report provides an overview of both the Anaheim Advanced Traffic Control System Field Operations Test (FOT) and of the technical issues associated with the evaluation of SCOOT performance during the test. The primary objective of the FOT was to ...

  7. Geosynchronous platform definition study. Volume 4, Part 1: Traffic analysis and system requirements for the baseline traffic model

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The traffic analyses and system requirements data generated in the study resulted in the development of two traffic models; the baseline traffic model and the new traffic model. The baseline traffic model provides traceability between the numbers and types of geosynchronous missions considered in the study and the entire spectrum of missions foreseen in the total national space program. The information presented pertaining to the baseline traffic model includes: (1) definition of the baseline traffic model, including identification of specific geosynchronous missions and their payload delivery schedules through 1990; (2) Satellite location criteria, including the resulting distribution of the satellite population; (3) Geosynchronous orbit saturation analyses, including the effects of satellite physical proximity and potential electromagnetic interference; and (4) Platform system requirements analyses, including satellite and mission equipment descriptions, the options and limitations in grouping satellites, and on-orbit servicing criteria (both remotely controlled and man-attended).

  8. 49 CFR 236.1005 - Requirements for Positive Train Control systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... be determined and reported as follows: (i) The traffic density threshold of 5 million gross tons... in rail traffic such as reductions in total traffic volume or cessation of passenger or PIH service... requirement to install PTC on a low density track segment where a PTC system is otherwise required by this...

  9. 49 CFR 236.1005 - Requirements for Positive Train Control systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... be determined and reported as follows: (i) The traffic density threshold of 5 million gross tons... in rail traffic such as reductions in total traffic volume to a level below 5 million gross tons... requirement to install PTC on a low density track segment where a PTC system is otherwise required by this...

  10. 49 CFR 236.1005 - Requirements for Positive Train Control systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... be determined and reported as follows: (i) The traffic density threshold of 5 million gross tons... in rail traffic such as reductions in total traffic volume to a level below 5 million gross tons... requirement to install PTC on a low density track segment where a PTC system is otherwise required by this...

  11. 49 CFR 236.1005 - Requirements for Positive Train Control systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... be determined and reported as follows: (i) The traffic density threshold of 5 million gross tons... in rail traffic such as reductions in total traffic volume to a level below 5 million gross tons... requirement to install PTC on a low density track segment where a PTC system is otherwise required by this...

  12. Ramp - Metering Algorithms Evaluated within Simplified Conditions

    NASA Astrophysics Data System (ADS)

    Janota, Aleš; Holečko, Peter; Gregor, Michal; Hruboš, Marián

    2017-12-01

    Freeway networks reach their limits, since it is usually impossible to increase traffic volumes by indefinitely extending transport infrastructure through adding new traffic lanes. One of the possible solutions is to use advanced intelligent transport systems, particularly ramp metering systems. The paper shows how two particular algorithms of local and traffic-responsive control (Zone, ALINEA) can be adapted to simplified conditions corresponding to Slovak freeways. Both control strategies are modelled and simulated using PTV Vissim software, including the module VisVAP. Presented results demonstrate the properties of both control strategies, which are compared mutually as well as with the initial situation in which no control strategy is applied

  13. ATALARS Operational Requirements: Automated Tactical Aircraft Launch and Recovery System

    DOT National Transportation Integrated Search

    1988-04-01

    The Automated Tactical Aircraft Launch and Recovery System (ATALARS) is a fully automated air traffic management system intended for the military service but is also fully compatible with civil air traffic control systems. This report documents a fir...

  14. Nextgen Technologies for Mid-Term and Far-Term Air Traffic Control Operations

    NASA Technical Reports Server (NTRS)

    Prevot, Thomas

    2009-01-01

    This paper describes technologies for mid-term and far-term air traffic control operations in the Next Generation Air Transportation System (NextGen). The technologies were developed and evaluated with human-in-the-loop simulations in the Airspace Operations Laboratory (AOL) at the NASA Ames Research Center. The simulations were funded by several research focus areas within NASA's Airspace Systems program and some were co-funded by the FAA's Air Traffic Organization for Planning, Research and Technology.

  15. The design of traffic signal coordinated control

    NASA Astrophysics Data System (ADS)

    Guo, Xueting; Sun, Hongsheng; Wang, Xifu

    2017-05-01

    Traffic as the tertiary industry is an important pillar industry to support the normal development of the economy. But now China's road traffic development and economic development has shown a great imbalance and fault phenomenon, which greatly inhibited the normal development of China's economy. Now in many large and medium-sized cities in China are implementing green belt construction. The so-called green band is when the road conditions to meet the conditions for the establishment of the green band, the sections of the intersection of several planning to a traffic coordination control system, so that when the driver at a specific speed can be achieved without stopping the continuous Through the intersection. Green belt can effectively reduce the delay and queuing length of vehicle driving, the normal function of urban roads and reduce the economic losses caused by traffic congestion is a great help. In this paper, the theoretical basis of the design of the coordinated control system is described. Secondly, the green time offset is calculated by the analytic method and the green band is established. And then the VISSIM software is used to simulate the traffic system before and after the improvement. Finally, the results of the two simulations are compared.

  16. Identification of Communication and Coordination Issues in the US Air Traffic Control System

    NASA Technical Reports Server (NTRS)

    Davison, Hayley J.; Hansman, R. John

    2001-01-01

    Today's air traffic control system is approaching the point of saturation, as evidenced by increasing delays across the National Airspace System (NAS). There exists an opportunity to enhance NAS efficiency and reduce delays by improving strategic communication throughout the ATC system. Although several measures have been taken to improve communication (e.g., Collaborative Decision Making tools), communication issues between ATC facilities remain. It is hypothesized that by identifying the key issues plaguing inter-facility strategic communication, steps can be taken to enhance these communications, and therefore ATC system efficiency. In this report, a series of site visits were performed at Boston and New York ATC facilities as well as at the Air Traffic Control System Command Center. The results from these site visits were used to determine the current communication and coordination structure of Traffic Management Coordinators, who hold a pivotal role in inter-facility communications. Several themes emerged from the study, including: ambiguity of organizational structure in the current ATC system, awkward coordination between ATC facilities, information flow issues, organizational culture issues, and negotiation behaviors used to cope with organizational culture issues.

  17. Air Traffic Management Research at NASA

    NASA Technical Reports Server (NTRS)

    Farley, Todd

    2012-01-01

    The U.S. air transportation system is the most productive in the world, moving far more people and goods than any other. It is also the safest system in the world, thanks in part to its venerable air traffic control system. But as demand for air travel continues to grow, the air traffic control systems aging infrastructure and labor-intensive procedures are impinging on its ability to keep pace with demand. And that impinges on the growth of our economy. Part of NASA's current mission in aeronautics research is to invent new technologies and procedures for ATC that will enable our national airspace system to accommodate the increasing demand for air transportation well into the next generation while still maintaining its excellent record for safety. It is a challenging mission, as efforts to modernize have, for decades, been hamstrung by the inability to assure safety to the satisfaction of system operators, system regulators, and/or the traveling public. In this talk, we'll provide a brief history of air traffic control, focusing on the tension between efficiency and safety assurance, and we'll highlight some new NASA technologies coming down the pike.

  18. Concepts and algorithms for terminal-area traffic management

    NASA Technical Reports Server (NTRS)

    Erzberger, H.; Chapel, J. D.

    1984-01-01

    The nation's air-traffic-control system is the subject of an extensive modernization program, including the planned introduction of advanced automation techniques. This paper gives an overview of a concept for automating terminal-area traffic management. Four-dimensional (4D) guidance techniques, which play an essential role in the automated system, are reviewed. One technique, intended for on-board computer implementation, is based on application of optimal control theory. The second technique is a simplified approach to 4D guidance intended for ground computer implementation. It generates advisory messages to help the controller maintain scheduled landing times of aircraft not equipped with on-board 4D guidance systems. An operational system for the second technique, recently evaluated in a simulation, is also described.

  19. Center-to-center : local self-evaluation report

    DOT National Transportation Integrated Search

    2003-04-01

    Texas Department of Transportation implemented a software system to facilitate sharing of traffic management related information and control of Intelligent Transportation System field devices between Traffic Management Centers with heterogeneous Adva...

  20. Controller evaluation of initial data link en route air traffic control services : mini study 3

    DOT National Transportation Integrated Search

    1991-06-01

    This report documents a Federal Aviation Administration controller evaluation of air traffic control (ATC) Data Link services planned for implementation in the en route ATC system. The main body of the report includes a detailed description of the ob...

  1. Supervised learning from human performance at the computationally hard problem of optimal traffic signal control on a network of junctions

    PubMed Central

    Box, Simon

    2014-01-01

    Optimal switching of traffic lights on a network of junctions is a computationally intractable problem. In this research, road traffic networks containing signallized junctions are simulated. A computer game interface is used to enable a human ‘player’ to control the traffic light settings on the junctions within the simulation. A supervised learning approach, based on simple neural network classifiers can be used to capture human player's strategies in the game and thus develop a human-trained machine control (HuTMaC) system that approaches human levels of performance. Experiments conducted within the simulation compare the performance of HuTMaC to two well-established traffic-responsive control systems that are widely deployed in the developed world and also to a temporal difference learning-based control method. In all experiments, HuTMaC outperforms the other control methods in terms of average delay and variance over delay. The conclusion is that these results add weight to the suggestion that HuTMaC may be a viable alternative, or supplemental method, to approximate optimization for some practical engineering control problems where the optimal strategy is computationally intractable. PMID:26064570

  2. Supervised learning from human performance at the computationally hard problem of optimal traffic signal control on a network of junctions.

    PubMed

    Box, Simon

    2014-12-01

    Optimal switching of traffic lights on a network of junctions is a computationally intractable problem. In this research, road traffic networks containing signallized junctions are simulated. A computer game interface is used to enable a human 'player' to control the traffic light settings on the junctions within the simulation. A supervised learning approach, based on simple neural network classifiers can be used to capture human player's strategies in the game and thus develop a human-trained machine control (HuTMaC) system that approaches human levels of performance. Experiments conducted within the simulation compare the performance of HuTMaC to two well-established traffic-responsive control systems that are widely deployed in the developed world and also to a temporal difference learning-based control method. In all experiments, HuTMaC outperforms the other control methods in terms of average delay and variance over delay. The conclusion is that these results add weight to the suggestion that HuTMaC may be a viable alternative, or supplemental method, to approximate optimization for some practical engineering control problems where the optimal strategy is computationally intractable.

  3. Design of Center-TRACON Automation System

    NASA Technical Reports Server (NTRS)

    Erzberger, Heinz; Davis, Thomas J.; Green, Steven

    1993-01-01

    A system for the automated management and control of terminal area traffic, referred to as the Center-TRACON Automation System (CTAS), is being developed at NASA Ames Research Center. In a cooperative program, NASA and FAA have efforts underway to install and evaluate the system at the Denver area and Dallas/Ft. Worth area air traffic control facilities. This paper will review CTAS architecture, and automation functions as well as the integration of CTAS into the existing operational system. CTAS consists of three types of integrated tools that provide computer-generated advisories for both en-route and terminal area controllers to guide them in managing and controlling arrival traffic efficiently. One tool, the Traffic Management Advisor (TMA), generates runway assignments, landing sequences and landing times for all arriving aircraft, including those originating from nearby feeder airports. TMA also assists in runway configuration control and flow management. Another tool, the Descent Advisor (DA), generates clearances for the en-route controllers handling arrival flows to metering gates. The DA's clearances ensure fuel-efficient and conflict free descents to the metering gates at specified crossing times. In the terminal area, the Final Approach Spacing Tool (FAST) provides heading and speed advisories that help controllers produce an accurately spaced flow of aircraft on the final approach course. Data bases consisting of several hundred aircraft performance models, airline preferred operational procedures, and a three dimensional wind model support the operation of CTAS. The first component of CTAS, the Traffic Management Advisor, is being evaluated at the Denver TRACON and the Denver Air Route Traffic Control Center. The second component, the Final Approach Spacing Tool, will be evaluated in several stages at the Dallas/Fort Worth Airport beginning in October 1993. An initial stage of the Descent Advisor tool is being prepared for testing at the Denver Center in late 1994. Operational evaluations of all three integrated CTAS tools are expected to begin at the two field sites in 1995.

  4. Design and evaluation of an air traffic control Final Approach Spacing Tool

    NASA Technical Reports Server (NTRS)

    Davis, Thomas J.; Erzberger, Heinz; Green, Steven M.; Nedell, William

    1991-01-01

    This paper describes the design and simulator evaluation of an automation tool for assisting terminal radar approach controllers in sequencing and spacing traffic onto the final approach course. The automation tool, referred to as the Final Approach Spacing Tool (FAST), displays speed and heading advisories for arriving aircraft as well as sequencing information on the controller's radar display. The main functional elements of FAST are a scheduler that schedules and sequences the traffic, a four-dimensional trajectory synthesizer that generates the advisories, and a graphical interface that displays the information to the controller. FAST has been implemented on a high-performance workstation. It can be operated as a stand-alone in the terminal radar approach control facility or as an element of a system integrated with automation tools in the air route traffic control center. FAST was evaluated by experienced air traffic controllers in a real-time air traffic control simulation. simulation results summarized in the paper show that the automation tools significantly reduced controller work load and demonstrated a potential for an increase in landing rate.

  5. Database System Design and Implementation for Marine Air-Traffic-Controller Training

    DTIC Science & Technology

    2017-06-01

    NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS Approved for public release. Distribution is unlimited. DATABASE SYSTEM DESIGN AND...thesis 4. TITLE AND SUBTITLE DATABASE SYSTEM DESIGN AND IMPLEMENTATION FOR MARINE AIR-TRAFFIC-CONTROLLER TRAINING 5. FUNDING NUMBERS 6. AUTHOR(S...12b. DISTRIBUTION CODE 13. ABSTRACT (maximum 200 words) This project focused on the design , development, and implementation of a centralized

  6. Enhancing Traffic Control Systems to Reduce Emissions and Fuel Consumption

    DOT National Transportation Integrated Search

    2016-06-01

    This report contains four sub-reports on research tasks that were completed related to the enhancement of traffic control to reduce emissions and fuel consumption. The first task looks at the type of control to implement at an intersection, based on ...

  7. A time-based concept for terminal-area traffic management

    NASA Technical Reports Server (NTRS)

    Erzberger, H.; Tobias, L.

    1986-01-01

    An automated air-traffic-management concept that has the potential for significantly increasing the efficiency of traffic flows in high-density terminal areas is discussed. The concept's implementation depends on the techniques for controlling the landing time of all aircraft entering the terminal area, both those that are equipped with on-board four dimensional guidance systems as well as those aircraft types that are conventionally equipped. The two major ground-based elements of the system are a scheduler which assigns conflict-free landing times and a profile descent advisor. Landing times provided by the scheduler are uplinked to equipped aircraft and translated into the appropriate four dimensional trajectory by the on-board flight-management system. The controller issues descent advisories to unequipped aircraft to help them achieve the assigned landing times. Air traffic control simulations have established that the concept provides an efficient method for controlling various mixes of four dimensional-equipped and unequipped, as well as low-and high-performance, aircraft.

  8. Traffic signal inventory project

    DOT National Transportation Integrated Search

    2001-06-01

    The purpose of this study was to determine the level of compliance with the "Manual on Uniform Traffic Control Devices" (MUTCD) and other industry standards of traffic signals on the Iowa state highway system. Signals were randomly selected in cities...

  9. Aviation safety/automation program overview

    NASA Technical Reports Server (NTRS)

    Morello, Samuel A.

    1990-01-01

    The goal is to provide a technology base leading to improved safety of the national airspace system through the development and integration of human-centered automation technologies for aircraft crews and air traffic controllers. Information on the problems, specific objectives, human-automation interaction, intelligent error-tolerant systems, and air traffic control/cockpit integration is given in viewgraph form.

  10. Traffic analysis and control using image processing

    NASA Astrophysics Data System (ADS)

    Senthilkumar, K.; Ellappan, Vijayan; Arun, A. R.

    2017-11-01

    This paper shows the work on traffic analysis and control till date. It shows an approach to regulate traffic the use of image processing and MATLAB systems. This concept uses computational images that are to be compared with original images of the street taken in order to determine the traffic level percentage and set the timing for the traffic signal accordingly which are used to reduce the traffic stoppage on traffic lights. They concept proposes to solve real life scenarios in the streets, thus enriching the traffic lights by adding image receivers like HD cameras and image processors. The input is then imported into MATLAB to be used. as a method for calculating the traffic on roads. Their results would be computed in order to adjust the traffic light timings on a particular street, and also with respect to other similar proposals but with the added value of solving a real, big instance.

  11. Simulation of Controller Pilot Data Link Communications over VHF Digital Link Mode 3

    NASA Technical Reports Server (NTRS)

    Bretmersky, Steven C.; Murawski, Robert; Nguyen, Thanh C.; Raghavan, Rajesh S.

    2004-01-01

    The Federal Aviation Administration (FAA) has established an operational plan for the future Air Traffic Management (ATM) system, in which the Controller Pilot Data Link Communications (CPDLC) is envisioned to evolve into digital messaging that will take on an ever increasing role in controller to pilot communications, significantly changing the way the National Airspace System (NAS) is operating. According to FAA, CPDLC represents the first phase of the transition from the current analog voice system to an International Civil Aviation Organization (ICAO) compliant system in which digital communication becomes the alternate and perhaps primary method of routine communication. The CPDLC application is an Air Traffic Service (ATS) application in which pilots and controllers exchange messages via an addressed data link. CPDLC includes a set of clearance, information, and request message elements that correspond to existing phraseology employed by current Air Traffic Control (ATC) procedures. These message elements encompass altitude assignments, crossing constraints, lateral deviations, route changes and clearances, speed assignments, radio frequency assignments, and various requests for information. The pilot is provided with the capability to respond to messages, to request clearances and information, to report information, and to declare/rescind an emergency. A 'free text' capability is also provided to exchange information not conforming to defined formats. This paper presents simulated results of the aeronautical telecommunication application Controller Pilot Data Link Communications over VHF Digital Link Mode 3 (VDL Mode 3). The objective of this simulation study was to determine the impact of CPDLC traffic loads, in terms of timely message delivery and capacity of the VDL Mode 3 subnetwork. The traffic model is based on and is used for generating air/ground messages with different priorities. Communication is modeled for the en route domain of the Cleveland Center air traffic (ZOB ARTCC).

  12. Generic Airspace Concepts and Research

    NASA Technical Reports Server (NTRS)

    Mogford, Richard H.

    2010-01-01

    The purpose of this study was to evaluate methods for reducing the training and memorization required to manage air traffic in mid-term, Next Generation Air Transportation System (NextGen) airspace. We contrasted the performance of controllers using a sector information display and NextGen automation tools while working with familiar and unfamiliar sectors. The airspace included five sectors from Oakland and Salt Lake City Centers configured as a "generic center" called "West High Center." The Controller Information Tool was used to present essential information for managing these sectors. The Multi Aircraft Control System air traffic control simulator provided data link and conflict detection and resolution. There were five experienced air traffic controller participants. Each was familiar with one or two of the five sectors, but not the others. The participants rotated through all five sectors during the ten data collection runs. The results addressing workload, traffic management, and safety, as well as controller and observer comments, supported the generic sector concept. The unfamiliar sectors were comparable to the familiar sectors on all relevant measures.

  13. Idea Project Final Report, Distributed Input/ Output Subsystem For Traffic Signal Control

    DOT National Transportation Integrated Search

    1995-07-01

    IN AN EFFORT TO ADD MORE AND MORE FEATURES (PREEMPTION, MALFUNCTION MANAGEMENT, WEATHER MONITORING, AND DYNAMIC LANE ASSIGNMENT, AMONG OTHERS) TO TRAFFIC SIGNAL SYSTEMS, THE TRAFFIC SIGNAL CABINET HAS BECOME VERY : COMPLICATED (FIGURE 1). FURTHERMORE...

  14. Air Traffic Control: Weak Computer Security Practices Jeopardize Flight Safety

    DOT National Transportation Integrated Search

    1998-05-01

    Given the paramount importance of computer security of Air Traffic Control (ATC) systems, Congress asked the General Accounting Office to determine (1) whether the Fedcral Aviation Administration (FAA) is effectively managing physical security at ATC...

  15. Situation awareness in air traffic control : enhanced displays for advanced operations

    DOT National Transportation Integrated Search

    2000-01-01

    Future changes in the National Airspace System indicate a self-separation operational concept. This study examined the Air Traffic : Control Specialists ability to maintain situation awareness and provide needed monitoring and separation functions...

  16. Adding signals to coordinated traffic signal systems.

    DOT National Transportation Integrated Search

    1983-08-01

    The purpose of this research was to investigate the effect of adding or : removing traffic signals within a coordinated, signal-controlled street network. : The report includes a discussion of coordinated signal systems; arterial street : network con...

  17. Air Ground Integration Study

    NASA Technical Reports Server (NTRS)

    Lozito, Sandy; Mackintosh, Margaret-Anne; DiMeo, Karen; Kopardekar, Parimal

    2002-01-01

    A simulation was conducted to examine the effect of shared air/ground authority when each is equipped with enhanced traffic- and conflict-alerting systems. The potential benefits of an advanced air traffic management (ATM) concept referred to as "free flight" include improved safety through enhanced conflict detection and resolution capabilities, increased flight-operations management, and better decision-making tools for air traffic controllers and flight crews. One element of the free-flight concept suggests shifting aircraft separation responsibility from air traffic controllers to flight crews, thereby creating an environment with "shared-separation" authority. During FY00. NASA, the Federal Aviation Administration (FAA), and the Volpe National Transportation Systems Center completed the first integrated, high-fidelity, real-time, human-in-the-loop simulation.

  18. Optimal Control of Fully Routed Air Traffic in the Presence of Uncertainty and Kinodynamic Constraints

    DTIC Science & Technology

    2014-09-18

    Operations and Developing Issues . . . . . . . . . . . . . . . . . . 6 2.1.2 Next-Generation Air Transportation System (NextGen...Air Traffic Management ESP Euclidean Shortest Path FAA Federal Aviation Administration FCFS First-Come-First-Served HCS Hybrid Control System KKT...Karush-Kuhn-Tucker LGR Legendre-Gauss-Radau MLD Minimum Lateral Distance NAS National Airspace System NASA National Aeronautics and Space Administration

  19. Spacelab system analysis: The modified free access protocol: An access protocol for communication systems with periodic and Poisson traffic

    NASA Technical Reports Server (NTRS)

    Ingels, Frank; Owens, John; Daniel, Steven

    1989-01-01

    The protocol definition and terminal hardware for the modified free access protocol, a communications protocol similar to Ethernet, are developed. A MFA protocol simulator and a CSMA/CD math model are also developed. The protocol is tailored to communication systems where the total traffic may be divided into scheduled traffic and Poisson traffic. The scheduled traffic should occur on a periodic basis but may occur after a given event such as a request for data from a large number of stations. The Poisson traffic will include alarms and other random traffic. The purpose of the protocol is to guarantee that scheduled packets will be delivered without collision. This is required in many control and data collection systems. The protocol uses standard Ethernet hardware and software requiring minimum modifications to an existing system. The modification to the protocol only affects the Ethernet transmission privileges and does not effect the Ethernet receiver.

  20. Air Traffic Management: Civil/Military Systems and Technologies.

    DTIC Science & Technology

    1980-02-01

    consi-~derably Anthropo- Fig. 8 Increas of System Capcity versus Usable Gain in Traffic Flow Controllable ul R 5. The Future of ATC If we think of...years from 2,000 on we must think of an integrated system, integrating * the ATC-system of the Structure X (Fig. 7) * the aircraft, by improving flight...both civil and military traffic with a range of potential link applications and other information that could be helpful in their future thinking . No

  1. Design and Operational Evaluation of the Traffic Management Advisor at the Ft. Worth Air Route Traffic Control Center

    NASA Technical Reports Server (NTRS)

    Swenson, Harry N.; Vincent, Danny; Tobias, Leonard (Technical Monitor)

    1997-01-01

    NASA and the FAA have designed and developed and an automation tool known as the Traffic Management Advisor (TMA). The system was operationally evaluated at the Ft. Worth Air Route Traffic Control Center (ARTCC). The TMA is a time-based strategic planning tool that provides Traffic Management Coordinators and En Route Air Traffic Controllers the ability to efficiently optimize the capacity of a demand impacted airport. The TMA consists of trajectory prediction, constraint-based runway scheduling, traffic flow visualization and controllers advisories. The TMA was used and operationally evaluated for forty-one rush traffic periods during a one month period in the Summer of 1996. The evaluations included all shifts of air traffic operations as well as periods of inclement weather. Performance data was collected for engineering and human factor analysis and compared with similar operations without the TMA. The engineering data indicates that the operations with the TMA show a one to two minute per aircraft delay reduction during rush periods. The human factor data indicate a perceived reduction in en route controller workload as well as an increase in job satisfaction. Upon completion of the evaluation, the TMA has become part of the normal operations at the Ft. Worth ARTCC.

  2. Index to FAA Office of Aerospace Medicine Reports: 1961 Through 2012

    DTIC Science & Technology

    2013-01-01

    air traffic control research task. AD660198 65-32 Gogel WC, Mertens HW: Problems in depth perception: A method of simulating objects moving in depth...ADA092529/7 80-14 Smith RC: Stress, anxiety, and the air traffic control specialist: Some conclusions from a decade of research . ADA093266/5 80-15...PS, Manning CA: Selection of air traffic controllers for automated systems: applications from current research . ADA230058 90-14 Parker JF Jr, Shepherd

  3. Air Traffic Control: Immature Software Acquisition Processes Increase FAA System Acquisition Risks

    DOT National Transportation Integrated Search

    1997-03-01

    The General Accounting Office (GAO) at the request of Congress reviewed (1) : the maturity of Federal Aviation Administration's (FAA's) Air Traffic Control : (ATC) modernization software acquisition processes, and (2) the steps/actions : FAA has unde...

  4. Virtual C Machine and Integrated Development Environment for ATMS Controllers.

    DOT National Transportation Integrated Search

    2000-04-01

    The overall objective of this project is to develop a prototype virtual machine that fits on current Advanced Traffic Management Systems (ATMS) controllers and provides functionality for complex traffic operations.;Prepared in cooperation with Utah S...

  5. Effects of Automation Types on Air Traffic Controller Situation Awareness and Performance

    NASA Technical Reports Server (NTRS)

    Sethumadhavan, A.

    2009-01-01

    The Joint Planning and Development Office has proposed the introduction of automated systems to help air traffic controllers handle the increasing volume of air traffic in the next two decades (JPDO, 2007). Because fully automated systems leave operators out of the decision-making loop (e.g., Billings, 1991), it is important to determine the right level and type of automation that will keep air traffic controllers in the loop. This study examined the differences in the situation awareness (SA) and collision detection performance of individuals when they worked with information acquisition, information analysis, decision and action selection and action implementation automation to control air traffic (Parasuraman, Sheridan, & Wickens, 2000). When the automation was unreliable, the time taken to detect an upcoming collision was significantly longer for all the automation types compared with the information acquisition automation. This poor performance following automation failure was mediated by SA, with lower SA yielding poor performance. Thus, the costs associated with automation failure are greater when automation is applied to higher order stages of information processing. Results have practical implications for automation design and development of SA training programs.

  6. Distributed traffic signal control using fuzzy logic

    NASA Technical Reports Server (NTRS)

    Chiu, Stephen

    1992-01-01

    We present a distributed approach to traffic signal control, where the signal timing parameters at a given intersection are adjusted as functions of the local traffic condition and of the signal timing parameters at adjacent intersections. Thus, the signal timing parameters evolve dynamically using only local information to improve traffic flow. This distributed approach provides for a fault-tolerant, highly responsive traffic management system. The signal timing at an intersection is defined by three parameters: cycle time, phase split, and offset. We use fuzzy decision rules to adjust these three parameters based only on local information. The amount of change in the timing parameters during each cycle is limited to a small fraction of the current parameters to ensure smooth transition. We show the effectiveness of this method through simulation of the traffic flow in a network of controlled intersections.

  7. Modeling the heterogeneous traffic correlations in urban road systems using traffic-enhanced community detection approach

    NASA Astrophysics Data System (ADS)

    Lu, Feng; Liu, Kang; Duan, Yingying; Cheng, Shifen; Du, Fei

    2018-07-01

    A better characterization of the traffic influence among urban roads is crucial for traffic control and traffic forecasting. The existence of spatial heterogeneity imposes great influence on modeling the extent and degree of road traffic correlation, which is usually neglected by the traditional distance based method. In this paper, we propose a traffic-enhanced community detection approach to spatially reveal the traffic correlation in city road networks. First, the road network is modeled as a traffic-enhanced dual graph with the closeness between two road segments determined not only by their topological connection, but also by the traffic correlation between them. Then a flow-based community detection algorithm called Infomap is utilized to identify the road segment clusters. Evaluated by Moran's I, Calinski-Harabaz Index and the traffic interpolation application, we find that compared to the distance based method and the community based method, our proposed traffic-enhanced community based method behaves better in capturing the extent of traffic relevance as both the topological structure of the road network and the traffic correlations among urban roads are considered. It can be used in more traffic-related applications, such as traffic forecasting, traffic control and guidance.

  8. Airspace Complexity and its Application in Air Traffic Management

    NASA Technical Reports Server (NTRS)

    Sridhar, Banavar; Chatterji, Gano; Sheth, Kapil; Edwards, Thomas (Technical Monitor)

    1998-01-01

    The United States Air Traffic Management (ATM) system provides services to enable safe, orderly and efficient aircraft operations within the airspace over the continental United States and over large portions of the Pacific and Atlantic Oceans, and the Gulf of Mexico. It consists of two components, Air Traffic Control (ATC) and Traffic Flow Management (TFM). The ATC function ensures that the aircraft within the airspace are separated at all times while the TFM function organizes the aircraft into a flow pattern to ensure their safe and efficient movement. In order to accomplish the ATC and TFM functions, the airspace over United States is organized into 22 Air Route Traffic Control Centers (ARTCCs). The Center airspace is stratified into low-altitude, high-altitude and super-high altitude groups of Sectors. Each vertical layer is further partitioned into several horizontal Sectors. A typical ARTCC airspace is partitioned into 20 to 80 Sectors. These Sectors are the basic control units within the ATM system.

  9. Management by Trajectory Trade Study of Roles and Responsibilities Between Participants and Automation Report

    NASA Technical Reports Server (NTRS)

    Fernandes, Alicia D.; Kaler, Curt; Leiden, Kenneth; Atkins, Stephen; Bell, Alan; Kilbourne, Todd; Evans, Mark

    2017-01-01

    This report describes a trade study of roles and responsibilities associated with the Management by Trajectory (MBT) concept. The MBT concept describes roles, responsibilities, and information and automation requirements for providing air traffic controllers and managers the ability to quickly generate, evaluate and implement changes to an aircraft's trajectory. In addition, the MBT concept describes mechanisms for imposing constraints on flight operator preferred trajectories only to the extent necessary to maintain safe and efficient traffic flows, and the concept provides a method for the exchange of trajectory information between ground automation systems and the aircraft that allows for trajectory synchronization and trajectory negotiation. The participant roles considered in this trade study include: airline dispatcher, flight crew, radar controller, traffic manager, and Air Traffic Control System Command Center (ATCSCC) traffic management specialists. The proposed allocation of roles and responsibilities was based on analysis of several use cases that were developed for this purpose as well as for walking through concept elements. The resulting allocation of roles and responsibilities reflects both increased automation capability to support many aviation functions, as well as increased flexibility to assign responsibilities to different participants - in many cases afforded by the increased automation capabilities. Note that the selection of participants to consider for allocation of each function is necessarily rooted in the current environment, in that MBT is envisioned as an evolution of the National Airspace System (NAS), and not a revolution. A key feature of the MBT allocations is a vision for the traffic management specialist to take on a greater role. This is facilitated by the vision that separation management functions, in addition to traffic management functions, will be carried out as trajectory management functions. This creates an opportunity for flexibility, allowing the traffic management specialist to carry out tasks that today can only be carried out by the controller currently in contact with the aircraft. This additional tasking for the traffic management specialist comes with requirements for workload management. An increased role for the Data-side (D-side) controller relative to the Radar-side (R-side) controller is a potential approach to mitigating workload for the traffic management specialist, as the D-side controller would have similar ability to perform separation management functions in what today might be considered the "trajectory management" timeframe. This analysis did not distinguish between the D-side and R-side controllers since in many cases the R-side controller works unassisted.

  10. Design of an air traffic computer simulation system to support investigation of civil tiltrotor aircraft operations

    NASA Technical Reports Server (NTRS)

    Rogers, Ralph V.

    1992-01-01

    This research project addresses the need to provide an efficient and safe mechanism to investigate the effects and requirements of the tiltrotor aircraft's commercial operations on air transportation infrastructures, particularly air traffic control. The mechanism of choice is computer simulation. Unfortunately, the fundamental paradigms of the current air traffic control simulation models do not directly support the broad range of operational options and environments necessary to study tiltrotor operations. Modification of current air traffic simulation models to meet these requirements does not appear viable given the range and complexity of issues needing resolution. As a result, the investigation of systemic, infrastructure issues surrounding the effects of tiltrotor commercial operations requires new approaches to simulation modeling. These models should be based on perspectives and ideas closer to those associated with tiltrotor air traffic operations.

  11. Review of and preliminary guidelines for integrating transit into transportation management centers

    DOT National Transportation Integrated Search

    1994-07-01

    The advent of intelligent vehicle-highway system (IVHS) : technologies has fostered the development and implementation of : automated systems that control traffic and provide traffic : information to drivers. However, one very important element of : ...

  12. Boredom and monotony as a consequence of automation : a consideration of the evidence relating boredom and monotony to stress.

    DOT National Transportation Integrated Search

    1980-02-01

    As air traffic control becomes increasingly automated, the various implications of this trend should be considered. One of the likely byproducts of highly automated air traffic control systems is an increase in boredom and monotony among controllers ...

  13. Reduced posting and marking of flight progress strips for en route air traffic control : final report.

    DOT National Transportation Integrated Search

    2000-02-01

    The new Display System Replacement (DSR) being implemented in air route traffic control centers (ARTCCs) will allow the data-side controller less room to post Flight Progress Strips (FPSs). We tested a new FPS marking and posting procedure designed t...

  14. [Automobile tyre colloidal particle induced allergic damage of respiratory system in traffic policemen and its allergenicity].

    PubMed

    Zhang, Yong-xing; Wei, Qing-yu; Wang, Juan; Qiao, Ting-hui; Bai, Hong-bing; Cai, Li-na

    2007-06-01

    To explore the damage of respiratory system in the traffic policemen induced by automobile tyre colloidal particle and its allergenicity. The respiratory system symptoms in 445 traffic policemen working outside their offices and 243 controls were investigated and their pulmonary ventilation function index such as FVC, FEV(1.0), MMF and V(50) were determined. The specific IgE antibody of automobile tyre colloidal particle of their serum was determined and the skin-prick test of automobile tyre colloidal particle antigen was performed. Sixty-six traffic policemen working outside their offices and 5 controls with the positive of IgE antibody among them were detected by nasal mucosa provocation test. Sixty-six traffic policemen working outside their offices with the positive of IgE antibody were determined by Terbutaline inhalation test. The positive rate of respiratory system symptoms of traffic policemen such as cough, stethocatharsis, short breath, nasal obstruction, sneeze and nose running was 38.02%, 27.03%, 20.00%, 23.08%, 27.47%, 32.09% and 34.95% respectively and significantly higher than those of the control with significant difference (P < 0.01) or (P < 0.05). The positive rate of specific IgE antibody of automobile tyre colloidal particle, skin- prick test and nasal mucosa provocation test was 14.51%, 23.73% and 54.55% respectively with significant difference (P < 0.01) and (P < 0.05). The percentage, the actual figure compared with the prediction figure, of the index of pulmonary ventilation function (FVC, FEV(1.0) MMF and V(50)) of traffic policemen were significantly lower than those of the control. Terbutaline inhalation test in 66 positive subjects of specific IgE antibody of automobile tyre colloidal particle was positive in 44 subjects, accounting for 9.67% in all policemen investigated. The automobile tyre colloidal particle is one of etiological factors that induce pulmonary ventilation function damage and could result in allergic asthma of traffic police.

  15. Design and evaluation of impact of traffic light priority for trucks on traffic flow.

    DOT National Transportation Integrated Search

    2015-06-01

    Current traffic light control systems treat all vehicles the same. Trucks however have : different dynamics than passenger vehicles. They take a longer distance to stop, have : lower acceleration rates, have bigger turning rates that cause bigger tra...

  16. Implications of Automation for Operating and Staffing an Advanced Air Traffic Management System

    DOT National Transportation Integrated Search

    1974-08-01

    The role of the air traffic controller in future system operations is expected to be substantially affected by the introduction of new automated features. The number of human operators needed to man the system will almost certainly decrease as machin...

  17. Cooperative intersection collision avoidance system limited to stop sign and traffic signal violations (CICAS-V).

    DOT National Transportation Integrated Search

    2008-09-30

    The objective of the Cooperative Intersection Collision Avoidance System for Violations (CICAS-V) Project is to develop and field-test a comprehensive system to reduce the number of crashes at intersections due to violations of traffic control device...

  18. A cost-effective traffic data collection system based on the iDEN mobile telecommunication network.

    DOT National Transportation Integrated Search

    2008-10-01

    This report describes a cost-effective data collection system for Caltrans 170 traffic signal : controller. The data collection system is based on TCP/IP communication over existing : low-cost mobile communication networks and Motorola iDEN1 mobile...

  19. Human computer interactions in next-generation of aircraft smart navigation management systems: task analysis and architecture under an agent-oriented methodological approach.

    PubMed

    Canino-Rodríguez, José M; García-Herrero, Jesús; Besada-Portas, Juan; Ravelo-García, Antonio G; Travieso-González, Carlos; Alonso-Hernández, Jesús B

    2015-03-04

    The limited efficiency of current air traffic systems will require a next-generation of Smart Air Traffic System (SATS) that relies on current technological advances. This challenge means a transition toward a new navigation and air-traffic procedures paradigm, where pilots and air traffic controllers perform and coordinate their activities according to new roles and technological supports. The design of new Human-Computer Interactions (HCI) for performing these activities is a key element of SATS. However efforts for developing such tools need to be inspired on a parallel characterization of hypothetical air traffic scenarios compatible with current ones. This paper is focused on airborne HCI into SATS where cockpit inputs came from aircraft navigation systems, surrounding traffic situation, controllers' indications, etc. So the HCI is intended to enhance situation awareness and decision-making through pilot cockpit. This work approach considers SATS as a system distributed on a large-scale with uncertainty in a dynamic environment. Therefore, a multi-agent systems based approach is well suited for modeling such an environment. We demonstrate that current methodologies for designing multi-agent systems are a useful tool to characterize HCI. We specifically illustrate how the selected methodological approach provides enough guidelines to obtain a cockpit HCI design that complies with future SATS specifications.

  20. Alternative Architectures for Distributed Cooperative Problem-Solving in the National Airspace System

    NASA Technical Reports Server (NTRS)

    Smith, Phillip J.; Billings, Charles; McCoy, C. Elaine; Orasanu, Judith

    1999-01-01

    The air traffic management system in the United States is an example of a distributed problem solving system. It has elements of both cooperative and competitive problem-solving. This system includes complex organizations such as Airline Operations Centers (AOCs), the FAA Air Traffic Control Systems Command Center (ATCSCC), and traffic management units (TMUs) at enroute centers and TRACONs, all of which have a major focus on strategic decision-making. It also includes individuals concerned more with tactical decisions (such as air traffic controllers and pilots). The architecture for this system has evolved over time to rely heavily on the distribution of tasks and control authority in order to keep cognitive complexity manageable for any one individual operator, and to provide redundancy (both human and technological) to serve as a safety net to catch the slips or mistakes that any one person or entity might make. Currently, major changes are being considered for this architecture, especially with respect to the locus of control, in an effort to improve efficiency and safety. This paper uses a series of case studies to help evaluate some of these changes from the perspective of system complexity, and to point out possible alternative approaches that might be taken to improve system performance. The paper illustrates the need to maintain a clear understanding of what is required to assure a high level of performance when alternative system architectures and decompositions are developed.

  1. The application of traffic signal preemption systems for controlling bus headways

    DOT National Transportation Integrated Search

    1978-04-01

    This report investigates the application of selective traffic signal preemption : for controlling the headways of local service buses (buses with average time : headways of less than 10 minutes), The preemption is selective in that it is granted : to...

  2. Air Traffic Control: Complete and Enforced Architecture Needed for FAA Systems Modernization

    DOT National Transportation Integrated Search

    1997-02-01

    Because of the size, complexity, and importance of FAA's air traffic control : (ATC) modernization, the General Accounting Office (GAO) reviewed it to : determine (1) whether FAA has a target architecture(s), and associated : subarchitectures, to gui...

  3. Development and evaluation of a radar air traffic control research task.

    DOT National Transportation Integrated Search

    1965-12-01

    A system is described in which various elements of the radar air traffic controller's task can be presented repeatedly, reliably, and concurrently to each of six experimental subjects seated at separate task consoles. Programming of display condition...

  4. Engineering Social Justice into Traffic Control for Self-Driving Vehicles?

    PubMed

    Mladenovic, Milos N; McPherson, Tristram

    2016-08-01

    The convergence of computing, sensing, and communication technology will soon permit large-scale deployment of self-driving vehicles. This will in turn permit a radical transformation of traffic control technology. This paper makes a case for the importance of addressing questions of social justice in this transformation, and sketches a preliminary framework for doing so. We explain how new forms of traffic control technology have potential implications for several dimensions of social justice, including safety, sustainability, privacy, efficiency, and equal access. Our central focus is on efficiency and equal access as desiderata for traffic control design. We explain the limitations of conventional traffic control in meeting these desiderata, and sketch a preliminary vision for a next-generation traffic control tailored to address better the demands of social justice. One component of this vision is cooperative, hierarchically distributed self-organization among vehicles. Another component of this vision is a priority system enabling selection of priority levels by the user for each vehicle trip in the network, based on the supporting structure of non-monetary credits.

  5. TSAFE Interface Control Document v 2.0

    NASA Technical Reports Server (NTRS)

    Paielli, Russell A.; Bach, Ralph E.

    2013-01-01

    This document specifies the data interface for TSAFE, the Tactical Separation-Assured Flight Environment. TSAFE is a research prototype of a software application program for alerting air traffic controllers to imminent conflicts in enroute airspace. It is intended for Air Route Traffic Control Centers ("Centers") in the U.S. National Airspace System. It predicts trajectories for approximately 3 minutes into the future, searches for conflicts, and sends data about predicted conflicts to the client, which uses the data to alert an air traffic controller of conflicts. TSAFE itself does not provide a graphical user interface.

  6. Optimization strategy for and structural properties of traffic efficiency under bounded information accessibility

    NASA Astrophysics Data System (ADS)

    Sanghyun, Ahn; Seungwoong, Ha; Kim, Soo Yong

    2016-06-01

    A vital challenge for many socioeconomic systems is determining the optimum use of limited information. Traffic systems, wherein the range of resources is limited, are a particularly good example of this challenge. Based on bounded information accessibility in terms of, for example, high costs or technical limitations, we develop a new optimization strategy to improve the efficiency of a traffic system with signals and intersections. Numerous studies, including the study by Chowdery and Schadschneider (whose method we denote by ChSch), have attempted to achieve the maximum vehicle speed or the minimum wait time for a given traffic condition. In this paper, we introduce a modified version of ChSch with an independently functioning, decentralized control system. With the new model, we determine the optimization strategy under bounded information accessibility, which proves the existence of an optimal point for phase transitions in the system. The paper also provides insight that can be applied by traffic engineers to create more efficient traffic systems by analyzing the area and symmetry of local sites. We support our results with a statistical analysis using empirical traffic data from Seoul, Korea.

  7. IVHS Institutional and Legal Issues Program: Review of the FAST-TRAC Operational Test

    DOT National Transportation Integrated Search

    1994-06-01

    The FAST-TRAC (Faster and Safer Travel through Traffic Routing and Advanced Controls) operational test attempted to integrate advanced traveler information systems (ATIS) and advanced traffic management system (ATMS) technologies in Oakland County, M...

  8. Evaluation of pre-emption and transition strategies for Northern Virginia Smart Traffic Signal Systems (NVSTSS).

    DOT National Transportation Integrated Search

    2008-01-01

    Modern traffic signal control systems provide emergency vehicle preemption (EVP) capabilities by utilizing advanced sensors and communication technologies. EVP strategies are widely implemented by urban transportation management agencies. One of the ...

  9. Legal constraints to the research, development, and deployment of IVHS technology in the United States

    DOT National Transportation Integrated Search

    1993-03-31

    Intelligent Vehicle Highway Systems (IVHS) are a diffuse : collection of automotive, communications, controls, traffic : management, and systems technologies that hold the potential to : improve highway safety, reduce traffic congestion, and improve ...

  10. A time-based concept for terminal-area traffic management

    NASA Technical Reports Server (NTRS)

    Erzberger, Heinz; Tobias, Leonard

    1986-01-01

    An automated air-traffic-management concept that has the potential for significantly increasing the efficiency of traffic flows in high-density terminal areas is discussed. The concept's implementation depends on techniques for controlling the landing time of all aircraft entering the terminal area, both those that are equipped with on-board four-dimensional (4D) guidance systems as well as those aircraft types that are conventionally equipped. The two major ground-based elements of the system are a scheduler which assigns conflict-free landing times and a profile descent advisor. Landing time provided by the scheduler is uplinked to equipped aircraft and translated into the appropriate 4D trajectory by the-board flight-management system. The controller issues descent advisories to unequipped aircraft to help them achieve the assigned landing times. Air traffic control simulations have established that the concept provides an efficient method for controlling various mixes of 4D-equipped and unequipped, as well as low- and high-performance, aircraft. Piloted simulations of profiles flown with the aid of advisories have verified the ability to meet specified descent times with prescribed accuracy.

  11. An Alternative for Emergency Preemption of Traffic Lights

    NASA Technical Reports Server (NTRS)

    Foster, Conrad; Bachelder, Aaron

    2006-01-01

    An electronic communication-and-control system has been developed as a prototype of advanced means of automatically modifying the switching of traffic lights to give priority to emergency vehicles. This system could be used alternatively or in addition to other emergency traffic-light-preemption systems, including a variety of systems now in use as well as two proposed systems described in "Systems Would Preempt Traffic Lights for Emergency Vehicles" (NPO-30573), NASA Tech Briefs, Vol. 28, No. 10 (October 2004), page 36. Unlike those prior systems that depend on detection of sounds and/or lights emitted by emergency vehicles, this system is not subject to severe range limitations. This system can be retrofitted into any pre-existing traffic-light-control system, without need to modify that system other than to make a minimal number of wire connections between the two systems. This system comprises several subsystems, including a transponder and interface circuitry on each emergency vehicle, a monitoring and control unit at each intersection equipped with traffic lights, and a wide-area two-way radio communication network that connects the emergency vehicles and intersection units. Computers in the various intersections and vehicle units run special-purpose software that implements the traffic- light-preemption scheme. The operations of the intersection and vehicle units are synchronized by use of Global Positioning System (GPS) timing signals. The transponder in each vehicle estimates its own position and velocity by use of GPS signals, deductive ("dead") reckoning, data from the onboard diagnostic (OBD) computer of the vehicle, and/or triangulation of beacon signals. When the operator of an emergency vehicle turns on its flashing lights and sirens in response to a request for an emergency response, the transponder unit goes into action, reading the OBD data to determine speed and acceleration, and reading and gathering further navigational data as described above. The position, velocity, and acceleration data are combined with vehicle-identification data in a prescribed format, and the resulting set of data is transmitted to the intersections within communication range of the transponder.

  12. Effect of density feedback on the two-route traffic scenario with bottleneck

    NASA Astrophysics Data System (ADS)

    Sun, Xiao-Yan; Ding, Zhong-Jun; Huang, Guo-Hua

    2016-12-01

    In this paper, we investigate the effect of density feedback on the two-route scenario with a bottleneck. The simulation and theory analysis shows that there exist two critical vehicle entry probabilities αc1 and αc2. When vehicle entry probability α≤αc1, four different states, i.e. free flow state, transition state, maximum current state and congestion state are identified in the system, which correspond to three critical reference densities. However, in the interval αc1<α<αc2, the free flow and transition state disappear, and there is only congestion state when α≥αc2. According to the results, traffic control center can adjust the reference density so that the system is in maximum current state. In this case, the capacity of the traffic system reaches maximum so that drivers can make full use of the roads. We hope that the study results can provide good advice for alleviating traffic jam and be useful to traffic control center for designing advanced traveller information systems.

  13. Development of simulation techniques suitable for the analysis of air traffic control situations and instrumentation

    NASA Technical Reports Server (NTRS)

    1972-01-01

    A terminal area simulation is described which permits analysis and synthesis of current and advanced air traffic management system configurations including ground and airborne instrumentation and new and modified aircraft characteristics. Ground elements in the simulation include navigation aids, surveillance radars, communication links, air-route structuring, ATC procedures, airport geometries and runway handling constraints. Airborne elements include traffic samples with individual aircraft performance and operating characteristics and aircraft navigation equipment. The simulation also contains algorithms for conflict detection, conflict resolution, sequencing and pilot-controller data links. The simulation model is used to determine the sensitivities of terminal area traffic flow, safety and congestion to aircraft performance characteristics, avionics systems, and other ATC elements.

  14. Automated Traffic Management System and Method

    NASA Technical Reports Server (NTRS)

    Glass, Brian J. (Inventor); Spirkovska, Liljana (Inventor); McDermott, William J. (Inventor); Reisman, Ronald J. (Inventor); Gibson, James (Inventor); Iverson, David L. (Inventor)

    2000-01-01

    A data management system and method that enables acquisition, integration, and management of real-time data generated at different rates, by multiple heterogeneous incompatible data sources. The system achieves this functionality by using an expert system to fuse data from a variety of airline, airport operations, ramp control, and air traffic control tower sources, to establish and update reference data values for every aircraft surface operation. The system may be configured as a real-time airport surface traffic management system (TMS) that electronically interconnects air traffic control, airline data, and airport operations data to facilitate information sharing and improve taxi queuing. In the TMS operational mode, empirical data shows substantial benefits in ramp operations for airlines, reducing departure taxi times by about one minute per aircraft in operational use, translating as $12 to $15 million per year savings to airlines at the Atlanta, Georgia airport. The data management system and method may also be used for scheduling the movement of multiple vehicles in other applications, such as marine vessels in harbors and ports, trucks or railroad cars in ports or shipping yards, and railroad cars in switching yards. Finally, the data management system and method may be used for managing containers at a shipping dock, stock on a factory floor or in a warehouse, or as a training tool for improving situational awareness of FAA tower controllers, ramp and airport operators, or commercial airline personnel in airfield surface operations.

  15. A hierarchical framework for air traffic control

    NASA Astrophysics Data System (ADS)

    Roy, Kaushik

    Air travel in recent years has been plagued by record delays, with over $8 billion in direct operating costs being attributed to 100 million flight delay minutes in 2007. Major contributing factors to delay include weather, congestion, and aging infrastructure; the Next Generation Air Transportation System (NextGen) aims to alleviate these delays through an upgrade of the air traffic control system. Changes to large-scale networked systems such as air traffic control are complicated by the need for coordinated solutions over disparate temporal and spatial scales. Individual air traffic controllers must ensure aircraft maintain safe separation locally with a time horizon of seconds to minutes, whereas regional plans are formulated to efficiently route flows of aircraft around weather and congestion on the order of every hour. More efficient control algorithms that provide a coordinated solution are required to safely handle a larger number of aircraft in a fixed amount of airspace. Improved estimation algorithms are also needed to provide accurate aircraft state information and situational awareness for human controllers. A hierarchical framework is developed to simultaneously solve the sometimes conflicting goals of regional efficiency and local safety. Careful attention is given in defining the interactions between the layers of this hierarchy. In this way, solutions to individual air traffic problems can be targeted and implemented as needed. First, the regional traffic flow management problem is posed as an optimization problem and shown to be NP-Hard. Approximation methods based on aggregate flow models are developed to enable real-time implementation of algorithms that reduce the impact of congestion and adverse weather. Second, the local trajectory design problem is solved using a novel slot-based sector model. This model is used to analyze sector capacity under varying traffic patterns, providing a more comprehensive understanding of how increased automation in NextGen will affect the overall performance of air traffic control. The dissertation also provides solutions to several key estimation problems that support corresponding control tasks. Throughout the development of these estimation algorithms, aircraft motion is modeled using hybrid systems, which encapsulate both the discrete flight mode of an aircraft and the evolution of continuous states such as position and velocity. The target-tracking problem is posed as one of hybrid state estimation, and two new algorithms are developed to exploit structure specific to aircraft motion, especially near airports. First, discrete mode evolution is modeled using state-dependent transitions, in which the likelihood of changing flight modes is dependent on aircraft state. Second, an estimator is designed for systems with limited mode changes, including arrival aircraft. Improved target tracking facilitates increased safety in collision avoidance and trajectory design problems. A multiple-target tracking and identity management algorithm is developed to improve situational awareness for controllers about multiple maneuvering targets in a congested region. Finally, tracking algorithms are extended to predict aircraft landing times; estimated time of arrival prediction is one example of important decision support information for air traffic control.

  16. Conflict-free trajectory planning for air traffic control automation

    NASA Technical Reports Server (NTRS)

    Slattery, Rhonda; Green, Steve

    1994-01-01

    As the traffic demand continues to grow within the National Airspace System (NAS), the need for long-range planning (30 minutes plus) of arrival traffic increases greatly. Research into air traffic control (ATC) automation at ARC has led to the development of the Center-TRACON Automation System (CTAS). CTAS determines optimum landing schedules for arrival traffic and assists controllers in meeting those schedules safely and efficiently. One crucial element in the development of CTAS is the capability to perform long-range (20 minutes) and short-range (5 minutes) conflict prediction and resolution once landing schedules are determined. The determination of conflict-free trajectories within the Center airspace is particularly difficult because of large variations in speed and altitude. The paper describes the current design and implementation of the conflict prediction and resolution tools used to generate CTAS advisories in Center airspace. Conflict criteria (separation requirements) are defined and the process of separation prediction is described. The major portion of the paper will describe the current implementation of CTAS conflict resolution algorithms in terms of the degrees of freedom for resolutions as well as resolution search techniques. The tools described in this paper have been implemented in a research system designed to rapidly develop and evaluate prototype concepts and will form the basis for an operational ATC automation system.

  17. Assessment of current and proposed audio alarms in terminal air traffic control.

    DOT National Transportation Integrated Search

    2000-09-01

    The National Airspace System Human Factors Branch (ACT-530) has been engaged in research on the characteristics and use of audio : alerts and alarms in Air Traffic Control. In support of this program, Federal Data Corporation performed a comparative ...

  18. An examination of the operational error database for air route traffic control centers.

    DOT National Transportation Integrated Search

    1993-12-01

    Monitoring the frequency and determining the causes of operational errors - defined as the loss of prescribed separation between aircraft - is one approach to assessing the operational safety of the air traffic control system. The Federal Aviation Ad...

  19. Potential Use of High Frequency Data Transmission for Oceanic Air Traffic Control Improvement

    DOT National Transportation Integrated Search

    1979-09-01

    This report is concerned with the transatlantic Air Traffic Control (ATC) data links in the high frequency (HF) band. The report tries to broaden the appropriate communication system concepts by fortifying them with general parametric objectives. Whi...

  20. Congestion transition in air traffic networks.

    PubMed

    Monechi, Bernardo; Servedio, Vito D P; Loreto, Vittorio

    2015-01-01

    Air Transportation represents a very interesting example of a complex techno-social system whose importance has considerably grown in time and whose management requires a careful understanding of the subtle interplay between technological infrastructure and human behavior. Despite the competition with other transportation systems, a growth of air traffic is still foreseen in Europe for the next years. The increase of traffic load could bring the current Air Traffic Network above its capacity limits so that safety standards and performances might not be guaranteed anymore. Lacking the possibility of a direct investigation of this scenario, we resort to computer simulations in order to quantify the disruptive potential of an increase in traffic load. To this end we model the Air Transportation system as a complex dynamical network of flights controlled by humans who have to solve potentially dangerous conflicts by redirecting aircraft trajectories. The model is driven and validated through historical data of flight schedules in a European national airspace. While correctly reproducing actual statistics of the Air Transportation system, e.g., the distribution of delays, the model allows for theoretical predictions. Upon an increase of the traffic load injected in the system, the model predicts a transition from a phase in which all conflicts can be successfully resolved, to a phase in which many conflicts cannot be resolved anymore. We highlight how the current flight density of the Air Transportation system is well below the transition, provided that controllers make use of a special re-routing procedure. While the congestion transition displays a universal scaling behavior, its threshold depends on the conflict solving strategy adopted. Finally, the generality of the modeling scheme introduced makes it a flexible general tool to simulate and control Air Transportation systems in realistic and synthetic scenarios.

  1. Strategies for prevention of road traffic injuries (RTIs) in Pakistan: situational analysis.

    PubMed

    Khan, Adeel Ahmed; Fatmi, Zafar

    2014-05-01

    Road traffic injuries (RTIs) are one of the leading causes of death among productive age group. Using systems approach framework (SAF), current preventive strategies for RTI control were reviewed in Pakistan. A review of the literature was done using four international search engines. Only ten studies on preventive strategies for RTI stemming from Pakistan were found. The first Road Traffic Injuries Research Network (RTIRN) surveillance system for road traffic injuries was established in urban city (Karachi) in Pakistan has shown promise for injury control and should be scaled up to other cities. Enforcement of traffic laws on seat-belt and helmet wearing is poor. National Highway and Motorway Police Ordinance (2000) was one of the few legislative measure so far taken in Pakistan. Using SAF, efforts are required to implement interventions targeting human, vehicle design and also making environment safer for road users.

  2. Multifunction Data Link for an Advanced Air-Traffic Management System

    DOT National Transportation Integrated Search

    1972-11-01

    This report evaluates the requirements relating to a multi-function data link for an advanced Air Traffic Management System. A two-way time ordered data link is postulated to accomplish the communication and control function. Several candidate modula...

  3. Instruction manual for operating the Sensys System for temporary traffic counts

    DOT National Transportation Integrated Search

    2010-01-01

    This instruction manual provides information and the procedures for using the Sensys System, which was initially designed to operate in a server controlled network, for temporary traffic counts. The instructions will allow the user to fully understan...

  4. Evaluation of the ADAPTIR System for Work Zone Traffic Control

    DOT National Transportation Integrated Search

    1999-11-01

    The ADAPTIR system (Automated Data Acquisition and Processing of Traffic Information in Real Time) uses variable message signs (VMS) equipped with radar units, along with a software program to interpret the data, to display appropriate warning and ad...

  5. Integrated database and analysis system for the evaluation of freeway corridors for potential ramp signaling.

    DOT National Transportation Integrated Search

    2011-11-15

    Ramp signaling is a relatively low-cost traffic management strategy that aims to improve the flow of : traffic by controlling the rate at which vehicles enter the freeway. While studies have shown that ramp : signaling helps to alleviate traffic cong...

  6. Challenges of Field Testing The Traffic Monitoring Advisor in an Operational Air Traffic Control Facility

    DOT National Transportation Integrated Search

    1997-01-01

    The Traffic Management Advisor (TMA), the sequence and schedule tool of the : Center/TRACON Automation System (CTAS), was evaluated at the Fort Worth Center : (ZFW) in the summer of 1996. This paper describes the challenges encountered : during the v...

  7. An analysis of landing rates and separations at the Dallas/Fort Worth International Airport

    NASA Technical Reports Server (NTRS)

    Ballin, Mark G.; Erzberger, Heinz

    1996-01-01

    Advanced air traffic management systems such as the Center/TRACON Automation System (CTAS) should yield a wide range of benefits, including reduced aircraft delays and controller workload. To determine the traffic-flow benefits achievable from future terminal airspace automation, live radar information was used to perform an analysis of current aircraft landing rates and separations at the Dallas/Fort Worth International Airport. Separation statistics that result when controllers balance complex control procedural constraints in order to maintain high landing rates are presented. In addition, the analysis estimates the potential for airport capacity improvements by determining the unused landing opportunities that occur during rush traffic periods. Results suggest a large potential for improving the accuracy and consistency of spacing between arrivals on final approach, and they support earlier simulation findings that improved air traffic management would increase capacity and reduce delays.

  8. A Cognitive-System Model for En Route Air Traffic Management

    NASA Technical Reports Server (NTRS)

    Corker, Kevin M.; Pisanich, Gregory; Lebacqz, J. Victor (Technical Monitor)

    1998-01-01

    NASA Ames Research Center has been engaged in the development of advanced air traffic management technologies whose basic form is cognitive aiding systems for air traffic controller and flight deck operations. In the design and evaluation of such systems the dynamic interaction between the airborne aiding system and the ground-based aiding systems forms a critical coupling for control. The human operator is an integral control element in the system and the optimal integration of human decision and performance parameters with those of the automation aiding systems offers a significant challenge to cognitive engineering. This paper presents a study in full mission simulation and the development of a predictive computational model of human performance. We have found that this combination of methodologies provide a powerful design-aiding process. We have extended the computational model Man Machine Integrated Design and Analysis System (N13DAS) to include representation of multiple cognitive agents (both human operators and intelligent aiding systems), operating aircraft airline operations centers and air traffic control centers in the evolving airspace. The demands of this application require the representation of many intelligent agents sharing world-models, and coordinating action/intention with cooperative scheduling of goals and actions in a potentially unpredictable world of operations. The operator's activity structures have been developed to include prioritization and interruption of multiple parallel activities among multiple operators, to provide for anticipation (knowledge of the intention and action of remote operators), and to respond to failures of the system and other operators in the system in situation-specific paradigms. We have exercised this model in a multi-air traffic sector scenario with potential conflict among aircraft at and across sector boundaries. We have modeled the control situation as a multiple closed loop system. The inner and outer loop alerting structure of air traffic management has many implications that need to be investigated to assure adequate design. First, there are control and stability factors implicit in the design. As the inner loop response time approaches that of the outer loop, system stability may be compromised in that controllers may be solving a problem the nature of which has already been changed by pilot action. Second, information exchange and information presentation for both air and ground must be designed to complement as opposed to compete with each other. Third, the level of individual and shared awareness in trajectory modification and flight conformance needs to be defined. Fourth, the level of required awareness and performance impact of mixed fleet operations and failed-mode recovery must be explored.

  9. Performance of an Automated System for Control of Traffic in Terminal Airspace

    NASA Technical Reports Server (NTRS)

    Nikoleris, Tasos; Erzberger, Heinz; Paielli, Russell A.; Chu, Yung-Cheng

    2016-01-01

    This paper examines the performance of a system that performs automated conflict resolution and arrival scheduling for aircraft in the terminal airspace around major airports. Such a system has the potential to perform separation assurance and arrival sequencing tasks that are currently handled manually by human controllers. The performance of the system is tested against several simulated traffic scenarios that are characterized by the rate at which air traffic is metered into the terminal airspace. For each traffic scenario, the levels of performance that are examined include: number of conflicts predicted to occur, types of resolution maneuver used to resolve predicted conflicts, and the amount of delay for all flights. The simulation results indicate that the percentage of arrivals that required a maneuver that changes the flight's horizontal route ranged between 11% and 15% in all traffic scenarios. That finding has certain implications if this automated system were to be implemented simply as a decision support tool. It is also found that arrival delay due to purely wake vortex separation requirements on final approach constituted only between 29% and 35% of total arrival delay, while the remaining major portion of it is mainly due to delay back propagation effects.

  10. National IVHS Architecture Development Strategy

    DOT National Transportation Integrated Search

    1994-01-27

    NATIONAL INFORMATION AND CONTROL SYSTEMS ARE EMERGING THAT REQUIRE SYSTEM ARCHITECTURES FOR DEPLOYMENT ACROSS THE NATION, E.G., AIR TRAFFIC CONTROL SYSTEMS, MILITARY COMMAND AND CONTROL SYSTEMS, AND OTHER NATIONAL INFORMATION SYSTEMS. THE REQUIRED CH...

  11. Dynamic route guidance strategy in a two-route pedestrian-vehicle mixed traffic flow system

    NASA Astrophysics Data System (ADS)

    Liu, Mianfang; Xiong, Shengwu; Li, Bixiang

    2016-05-01

    With the rapid development of transportation, traffic questions have become the major issue for social, economic and environmental aspects. Especially, during serious emergencies, it is very important to alleviate road traffic congestion and improve the efficiency of evacuation to reduce casualties, and addressing these problems has been a major task for the agencies responsible in recent decades. Advanced road guidance strategies have been developed for homogeneous traffic flows, or to reduce traffic congestion and enhance the road capacity in a symmetric two-route scenario. However, feedback strategies have rarely been considered for pedestrian-vehicle mixed traffic flows with variable velocities and sizes in an asymmetric multi-route traffic system, which is a common phenomenon in many developing countries. In this study, we propose a weighted road occupancy feedback strategy (WROFS) for pedestrian-vehicle mixed traffic flows, which considers the system equilibrium to ease traffic congestion. In order to more realistic simulating the behavior of mixed traffic objects, the paper adopted a refined and dynamic cellular automaton model (RDPV_CA model) as the update mechanism for pedestrian-vehicle mixed traffic flow. Moreover, a bounded rational threshold control was introduced into the feedback strategy to avoid some negative effect of delayed information and reduce. Based on comparisons with the two previously proposed strategies, the simulation results obtained in a pedestrian-vehicle traffic flow scenario demonstrated that the proposed strategy with a bounded rational threshold was more effective and system equilibrium, system stability were reached.

  12. Data mining tools for the support of traffic signal timing plan development in arterial networks

    DOT National Transportation Integrated Search

    2001-05-01

    Intelligent transportation systems (ITS) include large numbers of traffic sensors that collect enormous quantities of data. The data provided by ITS is necessary for advanced forms of control; however, basic forms of control, primarily time-of-day (T...

  13. FAA Alleged Waste and Mismanagement of Air Route Traffic Control Centers Critical and Essential Power Systems Project

    DOT National Transportation Integrated Search

    1996-10-16

    The Office of Inspector General (OIG) reviewed a complaint from Congressman Deal on behalf of a constituent. The constituent alleged waste and mismanagement occurred in the Federal Aviation Administration (FAA) Air Route Traffic Control Centers Criti...

  14. Human Factors Checklist for the Design and Evaluation of Air Traffic Control Systems

    DOT National Transportation Integrated Search

    1995-04-01

    This document presents human factors issues that should bo considered in tho : design and evaluation of air traffic control (ATC! systoms and subsystems. Tho : checklist is a companion document to Human Factors in tho Design and Evaluation of : Air T...

  15. The role of flight progress strips in en route air traffic control : a time-series analysis.

    DOT National Transportation Integrated Search

    1995-01-01

    Paper flight progress strips (FPSs) are currently used in the United States en route air traffic control system to document flight information. Impending automation will replace these paper strips with electronic flight data entries. In this observat...

  16. Measurement of Temporal Awareness in Air Traffic Control

    NASA Technical Reports Server (NTRS)

    Rantanen, E.M.

    2009-01-01

    Temporal awareness, or level 3 situation awareness, is critical to successful control of air traffic, yet the construct remains ill-defined and difficult to measure. This research sought evidence for air traffic controllers awareness of temporal characteristics of their tasks in data from a high-fidelity system evaluation simulation. Five teams of controllers worked on four scenarios with different traffic load. Several temporal parameters were defined for each task controllers performed during a simulation run and their actions on the tasks were timed relative to them. Controllers showed a strong tendency to prioritize tasks according to a first come, first served principle. This trend persisted as task load increased. Also evident was awareness of the urgency of tasks, as tasks with impending closing of a window of opportunity were performed before tasks that had longer time available before closing of the window.

  17. System level traffic shaping in disk servers with heterogeneous protocols

    NASA Astrophysics Data System (ADS)

    Cano, Eric; Kruse, Daniele Francesco

    2014-06-01

    Disk access and tape migrations compete for network bandwidth in CASTORs disk servers, over various protocols: RFIO, Xroot, root and GridFTP. As there are a limited number of tape drives, it is important to keep them busy all the time, at their nominal speed. With potentially 100s of user read streams per server, the bandwidth for the tape migrations has to be guaranteed to a controlled level, and not the fair share the system gives by default. Xroot provides a prioritization mechanism, but using it implies moving exclusively to the Xroot protocol, which is not possible in short to mid-term time frame, as users are equally using all protocols. The greatest commonality of all those protocols is not more than the usage of TCP/IP. We investigated the Linux kernel traffic shaper to control TCP/ IP bandwidth. The performance and limitations of the traffic shaper have been understood in test environment, and satisfactory working point has been found for production. Notably, TCP offload engines' negative impact on traffic shaping, and the limitations of the length of the traffic shaping rules were discovered and measured. A suitable working point has been found and the traffic shaping is now successfully deployed in the CASTOR production systems at CERN. This system level approach could be transposed easily to other environments.

  18. Collision avoidance in commercial aircraft Free Flight via neural networks and non-linear programming.

    PubMed

    Christodoulou, Manolis A; Kontogeorgou, Chrysa

    2008-10-01

    In recent years there has been a great effort to convert the existing Air Traffic Control system into a novel system known as Free Flight. Free Flight is based on the concept that increasing international airspace capacity will grant more freedom to individual pilots during the enroute flight phase, thereby giving them the opportunity to alter flight paths in real time. Under the current system, pilots must request, then receive permission from air traffic controllers to alter flight paths. Understandably the new system allows pilots to gain the upper hand in air traffic. At the same time, however, this freedom increase pilot responsibility. Pilots face a new challenge in avoiding the traffic shares congested air space. In order to ensure safety, an accurate system, able to predict and prevent conflict among aircraft is essential. There are certain flight maneuvers that exist in order to prevent flight disturbances or collision and these are graded in the following categories: vertical, lateral and airspeed. This work focuses on airspeed maneuvers and tries to introduce a new idea for the control of Free Flight, in three dimensions, using neural networks trained with examples prepared through non-linear programming.

  19. Towards Designing Graceful Degradation into Trajectory Based Operations: A Human-Machine System Integration Approach

    NASA Technical Reports Server (NTRS)

    Edwards, Tamsyn; Lee, Paul

    2017-01-01

    One of the most fundamental changes to the air traffic management system in NextGen is the concept of trajectory based operations (TBO). With the introduction of such change, system safety and resilience is a critical concern, in particular, the ability of systems to gracefully degrade. In order to design graceful degradation into a TBO envrionment, knowledge of the potential causes of degradation, and appropriate solutions, is required. In addition, previous research has predominantly explored the technological contribution to graceful degradation, frequently neglecting to consider the role of the human operator, specifically, air traffic controllers (ATCOs). This is out of step with real-world operations, and potentially limits an ecologically valid understanding of achieving graceful degradation in an air traffic control (ATC) environment. The following literature review aims to identify and summarize the literature to date on the potential causes of degradation in ATC and the solutions that may be applied within a TBO context, with a specific focus on the contribution of the air traffic controller. A framework of graceful degradation, developed from the literature, is presented. It is argued that in order to achieve graceful degradation within TBO, a human-system integration approach must be applied.

  20. Towards Designing Graceful Degradation into Trajectory Based Operations: A Human-systems Integration Approach

    NASA Technical Reports Server (NTRS)

    Edwards, Tamsyn; Lee, Paul

    2017-01-01

    One of the most fundamental changes to the air traffic management system in NextGen is the concept of trajectory based operations (TBO). With the introduction of such change, system safety and resilience is a critical concern, in particular, the ability of systems to gracefully degrade. In order to design graceful degradation into a TBO envrionment, knowledge of the potential causes of degradation, and appropriate solutions, is required. In addition, previous research has predominantly explored the technological contribution to graceful degradation, frequently neglecting to consider the role of the human operator, specifically, air traffic controllers (ATCOs). This is out of step with real-world operations, and potentially limits an ecologically valid understanding of achieving graceful degradation in an air traffic control (ATC) environment. The following literature review aims to identify and summarize the literature to date on the potential causes of degradation in ATC and the solutions that may be applied within a TBO context, with a specific focus on the contribution of the air traffic controller. A framework of graceful degradation, developed from the literature, is presented. It is argued that in order to achieve graceful degradation within TBO, a human-system integration approach must be applied.

  1. Evaluation of temporary traffic signals in conjunction with pilot car operations at two-way long temporary work zones.

    DOT National Transportation Integrated Search

    2016-05-01

    The primary objective of this study was to evaluate the use of Portable Traffic Signal (PTS) systems at long, rural : two-lane work zones and to compare three different conditions for controlling one-lane traffic in conjunction with pilot car : opera...

  2. Automation in future air traffic management: effects of decision aid reliability on controller performance and mental workload.

    PubMed

    Metzger, Ulla; Parasuraman, Raja

    2005-01-01

    Future air traffic management concepts envisage shared decision-making responsibilities between controllers and pilots, necessitating that controllers be supported by automated decision aids. Even as automation tools are being introduced, however, their impact on the air traffic controller is not well understood. The present experiments examined the effects of an aircraft-to-aircraft conflict decision aid on performance and mental workload of experienced, full-performance level controllers in a simulated Free Flight environment. Performance was examined with both reliable (Experiment 1) and inaccurate automation (Experiment 2). The aid improved controller performance and reduced mental workload when it functioned reliably. However, detection of a particular conflict was better under manual conditions than under automated conditions when the automation was imperfect. Potential or actual applications of the results include the design of automation and procedures for future air traffic control systems.

  3. CTAS: Computer intelligence for air traffic control in the terminal area

    NASA Technical Reports Server (NTRS)

    Erzberger, Heinz

    1992-01-01

    A system for the automated management and control of arrival traffic, referred to as the Center-TRACON Automation System (CTAS), has been designed by the ATC research group at NASA Ames research center. In a cooperative program, NASA and the FAA have efforts underway to install and evaluate the system at the Denver and Dallas/Ft. Worth airports. CTAS consists of three types of integrated tools that provide computer-generated intelligence for both Center and TRACON controllers to guide them in managing and controlling arrival traffic efficiently. One tool, the Traffic Management Advisor (TMA), establishes optimized landing sequences and landing times for aircraft arriving in the center airspace several hundred miles from the airport. In TRACON, TMA frequencies missed approach aircraft and unanticipated arrivals. Another tool, the Descent Advisor (DA), generates clearances for the center controllers handling at crossing times provided by TMA. In the TRACON, the final approach spacing tool (FAST) provides heading and speed clearances that produce and accurately spaced flow of aircraft on the final approach course. A data base consisting of aircraft performance models, airline preferred operational procedures and real time wind measurements contribute to the effective operation of CTAS. Extensive simulator evaluations of CTAS have demonstrated controller acceptance, delay reductions, and fuel savings.

  4. Strobe Traffic Lights Warn of Approaching Emergency Vehicles

    NASA Technical Reports Server (NTRS)

    Bachelder, Aaron

    2004-01-01

    Strobe-enhanced traffic signals have been developed to aid in the preemption of road intersections for emergency vehicles. The strobe-enhanced traffic signals can be incorporated into both new and pre-existing traffic-control systems in which the traffic-signal heads are of a relatively new type based on arrays of light-emitting diodes (LEDs). The strobe-enhanced traffic signals offer a less expensive, less complex alternative to a recently developed system of LED-based warning signs placed next to traffic signals. Because of its visual complexity, the combination of traffic signals and warning signs is potentially confusing to motorists. The strobe-enhanced traffic signals present less visual clutter. In a given traffic-signal head, the strobe-enhanced traffic signal is embedded in the red LED array of the stop signal. Two strobe LED strips one horizontal and one vertical are made capable of operating separately from the rest of the red LED matrix. When no emergency vehicle is approaching, the red LED array functions as a normal stop signal: all the red LEDs are turned on and off together. When the intersection is to be preempted for an approaching emergency vehicle, only the LEDs in one of the strobe strips are lit, and are turned on in a sequence that indicates the direction of approach. For example (see figure), if an emergency vehicle approaches from the right, the strobe LEDs are lit in a sequence moving from right to left. Important to the success of strobe-enhanced traffic signals is conformance to city ordinances and close relation to pre-existing traffic standards. For instance, one key restriction is that new icons must not include arrows, so that motorists will not confuse new icons with conventional arrows that indicate allowed directions of movement. It is also critical that new displays like strobe-enhanced traffic signals be similar to displays used in traffic-control systems in large cities. For example, Charleston, South Carolina uses horizontal strobes on red traffic lights to alert motorists and thereby help motorists not to miss red lights. The one significant potential disadvantage of strobe-enhanced traffic lights is initial unfamiliarity on the part of motorists.

  5. An open-closed-loop iterative learning control approach for nonlinear switched systems with application to freeway traffic control

    NASA Astrophysics Data System (ADS)

    Sun, Shu-Ting; Li, Xiao-Dong; Zhong, Ren-Xin

    2017-10-01

    For nonlinear switched discrete-time systems with input constraints, this paper presents an open-closed-loop iterative learning control (ILC) approach, which includes a feedforward ILC part and a feedback control part. Under a given switching rule, the mathematical induction is used to prove the convergence of ILC tracking error in each subsystem. It is demonstrated that the convergence of ILC tracking error is dependent on the feedforward control gain, but the feedback control can speed up the convergence process of ILC by a suitable selection of feedback control gain. A switched freeway traffic system is used to illustrate the effectiveness of the proposed ILC law.

  6. Satellite switched FDMA advanced communication technology satellite program

    NASA Technical Reports Server (NTRS)

    Atwood, S.; Higton, G. H.; Wood, K.; Kline, A.; Furiga, A.; Rausch, M.; Jan, Y.

    1982-01-01

    The satellite switched frequency division multiple access system provided a detailed system architecture that supports a point to point communication system for long haul voice, video and data traffic between small Earth terminals at Ka band frequencies at 30/20 GHz. A detailed system design is presented for the space segment, small terminal/trunking segment at network control segment for domestic traffic model A or B, each totaling 3.8 Gb/s of small terminal traffic and 6.2 Gb/s trunk traffic. The small terminal traffic (3.8 Gb/s) is emphasized, for the satellite router portion of the system design, which is a composite of thousands of Earth stations with digital traffic ranging from a single 32 Kb/s CVSD voice channel to thousands of channels containing voice, video and data with a data rate as high as 33 Mb/s. The system design concept presented, effectively optimizes a unique frequency and channelization plan for both traffic models A and B with minimum reorganization of the satellite payload transponder subsystem hardware design. The unique zoning concept allows multiple beam antennas while maximizing multiple carrier frequency reuse. Detailed hardware design estimates for an FDMA router (part of the satellite transponder subsystem) indicate a weight and dc power budget of 353 lbs, 195 watts for traffic model A and 498 lbs, 244 watts for traffic model B.

  7. Pedestrian hybrid beacon crosswalk system (PHB) or high-intensity activated crosswalk (HAWK).

    DOT National Transportation Integrated Search

    2014-11-01

    The Pedestrian Hybrid Beacon Crosswalk (PHB) is a type of traffic control system, used to aid : pedestrians safely crossing the street and to regulate traffic flow. This study examines the : success of the first PHB installed in the state of Vermont....

  8. Development concerns for satellite-based air traffic control surveillance systems

    NASA Technical Reports Server (NTRS)

    Mcdonald, K. D.

    1985-01-01

    Preliminary results of an investigation directed toward the configuration of a practical system design which can form the baseline for assessing the applications and value of a satellite based air traffic surveillance system for future use in the National Airspace System (NAS) are described. This work initially studied the characteristics and capabilities of a satellite configuration which would operate compatibly with the signal structure and avionics of the next generation air traffic control secondary surveillance radar system, the Mode S system. A compatible satellite surveillance system concept is described and an analysis is presented of the link budgets for the various transmission paths. From this, the satellite characteristics are established involving a large multiple feed L band antenna of approximately 50 meter aperture dimension. Trade offs involved in several of the alternative large aperture antennas considered are presented as well as the influence of various antenna configurations on the performance capabilities of the surveillance system. The features and limitations of the use of large aperture antenna systems for air traffic surveillance are discussed. Tentative results of this continuing effort are summarized with a brief description of follow on investigations involving other space based antenna systems concepts.

  9. A Vision of the Future Air Traffic Control System

    NASA Technical Reports Server (NTRS)

    Erzberger, Heinz

    2000-01-01

    The air transportation system is on the verge of gridlock, with delays and cancelled flights this summer reaching all time highs. As demand for air transportation continues to increase, the capacity needed to accommodate the growth in traffic is falling farther and farther behind. Moreover, it has become increasingly apparent that the present system cannot be scaled up to provide the capacity increases needed to meet demand over the next 25 years. NASA, working with the Federal Aviation Administration and industry, is pursuing a major research program to develop air traffic management technologies that have the ultimate goal of doubling capacity while increasing safety and efficiency. This seminar will describe how the current system operates, what its limitations are and why a revolutionary "shift in paradigm" is needed to overcome fundamental limitations in capacity and safety. For the near term, NASA has developed a portfolio of software tools for air traffic controllers, called the Center-TRACON Automation System (CTAS), that provides modest gains in capacity and efficiency while staying within the current paradigm. The outline of a concept for the long term, with a deployment date of 2015 at the earliest, has recently been formulated and presented by NASA to a select group of industry and government stakeholders. Automated decision making software, combined with an Internet in the sky that enables sharing of information and distributes control between the cockpit and the ground, is key to this concept. However, its most revolutionary feature is a fundamental change in the roles and responsibilities assigned to air traffic controllers.

  10. Analysis of Air Traffic Track Data with the AutoBayes Synthesis System

    NASA Technical Reports Server (NTRS)

    Schumann, Johann Martin Philip; Cate, Karen; Lee, Alan G.

    2010-01-01

    The Next Generation Air Traffic System (NGATS) is aiming to provide substantial computer support for the air traffic controllers. Algorithms for the accurate prediction of aircraft movements are of central importance for such software systems but trajectory prediction has to work reliably in the presence of unknown parameters and uncertainties. We are using the AutoBayes program synthesis system to generate customized data analysis algorithms that process large sets of aircraft radar track data in order to estimate parameters and uncertainties. In this paper, we present, how the tasks of finding structure in track data, estimation of important parameters in climb trajectories, and the detection of continuous descent approaches can be accomplished with compact task-specific AutoBayes specifications. We present an overview of the AutoBayes architecture and describe, how its schema-based approach generates customized analysis algorithms, documented C/C++ code, and detailed mathematical derivations. Results of experiments with actual air traffic control data are discussed.

  11. A simple, effective media access protocol system for integrated, high data rate networks

    NASA Technical Reports Server (NTRS)

    Foudriat, E. C.; Maly, K.; Overstreet, C. M.; Khanna, S.; Zhang, L.

    1992-01-01

    The operation and performance of a dual media access protocol for integrated, gigabit networks are described. Unlike other dual protocols, each protocol supports a different class of traffic. The Carrier Sensed Multiple Access-Ring Network (CSMA/RN) protocol and the Circulating Reservation Packet (CRP) protocol support asynchronous and synchronous traffic, respectively. The two protocols operate with minimal impact upon each other. Performance information demonstrates that they support a complete range of integrated traffic loads, do not require call setup/termination or a special node for synchronous traffic control, and provide effective pre-use and recovery. The CRP also provides guaranteed access and fairness control for the asynchronous system. The paper demonstrates that the CSMA-CRP system fulfills many of the requirements for gigabit LAN-MAN networks most effectively and simply. To accomplish this, CSMA-CRP features are compared against similar ring and bus systems, such as Cambridge Fast Ring, Metaring, Cyclic Reservation Multiple Access, and Distributed Dual Queue Data Bus (DQDB).

  12. Task Analysis Assessment on Intrastate Bus Traffic Controllers

    NASA Astrophysics Data System (ADS)

    Yen Bin, Teo; Azlis-Sani, Jalil; Nur Annuar Mohd Yunos, Muhammad; Ismail, S. M. Sabri S. M.; Tajedi, Noor Aqilah Ahmad

    2016-11-01

    Public transportation acts as social mobility and caters the daily needs of the society for passengers to travel from one place to another. This is true for a country like Malaysia where international trade has been growing significantly over the past few decades. Task analysis assessment was conducted with the consideration of cognitive ergonomic view towards problem related to human factors. Conducting research regarding the task analysis on bus traffic controllers had allowed a better understanding regarding the nature of work and the overall monitoring activities of the bus services. This paper served to study the task analysis assessment on intrastate bus traffic controllers and the objectives of this study include to conduct task analysis assessment on the bus traffic controllers. Task analysis assessment for the bus traffic controllers was developed via Hierarchical Task Analysis (HTA). There are a total of five subsidiary tasks on level one and only two were able to be further broken down in level two. Development of HTA allowed a better understanding regarding the work and this could further ease the evaluation of the tasks conducted by the bus traffic controllers. Thus, human error could be reduced for the safety of all passengers and increase the overall efficiency of the system. Besides, it could assist in improving the operation of the bus traffic controllers by modelling or synthesizing the existing tasks if necessary.

  13. Exploiting geo-distributed clouds for a e-health monitoring system with minimum service delay and privacy preservation.

    PubMed

    Shen, Qinghua; Liang, Xiaohui; Shen, Xuemin; Lin, Xiaodong; Luo, Henry Y

    2014-03-01

    In this paper, we propose an e-health monitoring system with minimum service delay and privacy preservation by exploiting geo-distributed clouds. In the system, the resource allocation scheme enables the distributed cloud servers to cooperatively assign the servers to the requested users under the load balance condition. Thus, the service delay for users is minimized. In addition, a traffic-shaping algorithm is proposed. The traffic-shaping algorithm converts the user health data traffic to the nonhealth data traffic such that the capability of traffic analysis attacks is largely reduced. Through the numerical analysis, we show the efficiency of the proposed traffic-shaping algorithm in terms of service delay and privacy preservation. Furthermore, through the simulations, we demonstrate that the proposed resource allocation scheme significantly reduces the service delay compared to two other alternatives using jointly the short queue and distributed control law.

  14. Anti-collision radio-frequency identification system using passive SAW tags

    NASA Astrophysics Data System (ADS)

    Sorokin, A. V.; Shepeta, A. P.

    2017-06-01

    Modern multi sensor systems should have high operating speed and resistance to climate impacts. Radiofrequency systems use passive SAW tags for identification items and vehicles. These tags find application in industry, traffic remote control systems, and railway remote traffic control systems for identification and speed measuring. However, collision of the passive SAW RFID tags hinders development passive RFID SAW technology in Industry. The collision problem for passive SAW tags leads for incorrect identification and encoding each tag. In our researching, we suggest approach for identification of several passive SAW tags in collision case.

  15. Federal Aviation Administration Aviation System Capital Investment Plan 1993

    DTIC Science & Technology

    1993-12-01

    Facilitates full use of terminal airspace capacity. 0 Increases safety and efficiency. 62-21 Airport Surface Traffic 0 Optimizes sequencing and...installation of tower control computer complexes (TCCCs) in se- 0 AAS software for terminal and en route ATC lected airport traffic control towers. TCCCs...project provides economical ASR-4/5/6, and install 40 ASR-9s at radar service at airports with air traffic densi- ASR-4/5/6 sites). ties high enough to

  16. Model-Based Design of Air Traffic Controller-Automation Interaction

    NASA Technical Reports Server (NTRS)

    Romahn, Stephan; Callantine, Todd J.; Palmer, Everett A.; Null, Cynthia H. (Technical Monitor)

    1998-01-01

    A model of controller and automation activities was used to design the controller-automation interactions necessary to implement a new terminal area air traffic management concept. The model was then used to design a controller interface that provides the requisite information and functionality. Using data from a preliminary study, the Crew Activity Tracking System (CATS) was used to help validate the model as a computational tool for describing controller performance.

  17. Optimized Sensor Network and Multi-Agent Decision Support for Smart Traffic Light Management.

    PubMed

    Cruz-Piris, Luis; Rivera, Diego; Fernandez, Susel; Marsa-Maestre, Ivan

    2018-02-02

    One of the biggest challenges in modern societies is to solve vehicular traffic problems. Sensor networks in traffic environments have contributed to improving the decision-making process of Intelligent Transportation Systems. However, one of the limiting factors for the effectiveness of these systems is in the deployment of sensors to provide accurate information about the traffic. Our proposal is using the centrality measurement of a graph as a base to locate the best locations for sensor installation in a traffic network. After integrating these sensors in a simulation scenario, we define a Multi-Agent Systems composed of three types of agents: traffic light management agents, traffic jam detection agents, and agents that control the traffic lights at an intersection. The ultimate goal of these Multi-Agent Systems is to improve the trip duration for vehicles in the network. To validate our solution, we have developed the needed elements for modelling the sensors and agents in the simulation environment. We have carried out experiments using the Simulation of Urban MObility (SUMO) traffic simulator and the Travel and Activity PAtterns Simulation (TAPAS) Cologne traffic scenario. The obtained results show that our proposal allows to reduce the sensor network while still obtaining relevant information to have a global view of the environment. Finally, regarding the Multi-Agent Systems, we have carried out experiments that show that our proposal is able to improve other existing solutions such as conventional traffic light management systems (static or dynamic) in terms of reduction of vehicle trip duration and reduction of the message exchange overhead in the sensor network.

  18. Optimized Sensor Network and Multi-Agent Decision Support for Smart Traffic Light Management

    PubMed Central

    2018-01-01

    One of the biggest challenges in modern societies is to solve vehicular traffic problems. Sensor networks in traffic environments have contributed to improving the decision-making process of Intelligent Transportation Systems. However, one of the limiting factors for the effectiveness of these systems is in the deployment of sensors to provide accurate information about the traffic. Our proposal is using the centrality measurement of a graph as a base to locate the best locations for sensor installation in a traffic network. After integrating these sensors in a simulation scenario, we define a Multi-Agent Systems composed of three types of agents: traffic light management agents, traffic jam detection agents, and agents that control the traffic lights at an intersection. The ultimate goal of these Multi-Agent Systems is to improve the trip duration for vehicles in the network. To validate our solution, we have developed the needed elements for modelling the sensors and agents in the simulation environment. We have carried out experiments using the Simulation of Urban MObility (SUMO) traffic simulator and the Travel and Activity PAtterns Simulation (TAPAS) Cologne traffic scenario. The obtained results show that our proposal allows to reduce the sensor network while still obtaining relevant information to have a global view of the environment. Finally, regarding the Multi-Agent Systems, we have carried out experiments that show that our proposal is able to improve other existing solutions such as conventional traffic light management systems (static or dynamic) in terms of reduction of vehicle trip duration and reduction of the message exchange overhead in the sensor network. PMID:29393884

  19. Selection of the next generation of air traffic control specialists : aptitude requirements for the air traffic control tower cab in 2018.

    DOT National Transportation Integrated Search

    2013-03-01

    The Federal Aviation Administration (FAA) faces two significant organizational challenges in the 21st century: (1) transformation of the current NAS into the Next Generation Air Transportation System (NextGen); and (2) recruitment, selection, a...

  20. Automation Applications in an Advanced Air Traffic Management System : Volume 2D. Functional Analysis of Air Traffic Management (Concluded)

    DOT National Transportation Integrated Search

    1974-08-01

    The technical report presents a detailed description of the strategic control functional objectives, followed by a presentation of the basic strategic control algorithm and how it evolved. Contained in this discussion are the results of analyses that...

  1. Automation for "Direct-to" Clearances in Air-Traffic Control

    NASA Technical Reports Server (NTRS)

    Erzberger, Heinz; McNally, David

    2006-01-01

    A method of automation, and a system of computer hardware and software to implement the method, have been invented to assist en-route air-traffic controllers in the issuance of clearances to fly directly to specified waypoints or navigation fixes along straight paths that deviate from previously filed flight plans. Such clearances, called "direct-to" clearances, have been in use since before the invention of this method and system.

  2. Congestion control for a fair packet delivery in WSN: from a complex system perspective.

    PubMed

    Aguirre-Guerrero, Daniela; Marcelín-Jiménez, Ricardo; Rodriguez-Colina, Enrique; Pascoe-Chalke, Michael

    2014-01-01

    In this work, we propose that packets travelling across a wireless sensor network (WSN) can be seen as the active agents that make up a complex system, just like a bird flock or a fish school, for instance. From this perspective, the tools and models that have been developed to study this kind of systems have been applied. This is in order to create a distributed congestion control based on a set of simple rules programmed at the nodes of the WSN. Our results show that it is possible to adapt the carried traffic to the network capacity, even under stressing conditions. Also, the network performance shows a smooth degradation when the traffic goes beyond a threshold which is settled by the proposed self-organized control. In contrast, without any control, the network collapses before this threshold. The use of the proposed solution provides an effective strategy to address some of the common problems found in WSN deployment by providing a fair packet delivery. In addition, the network congestion is mitigated using adaptive traffic mechanisms based on a satisfaction parameter assessed by each packet which has impact on the global satisfaction of the traffic carried by the WSN.

  3. Traffic Sign Recognition with Invariance to Lighting in Dual-Focal Active Camera System

    NASA Astrophysics Data System (ADS)

    Gu, Yanlei; Panahpour Tehrani, Mehrdad; Yendo, Tomohiro; Fujii, Toshiaki; Tanimoto, Masayuki

    In this paper, we present an automatic vision-based traffic sign recognition system, which can detect and classify traffic signs at long distance under different lighting conditions. To realize this purpose, the traffic sign recognition is developed in an originally proposed dual-focal active camera system. In this system, a telephoto camera is equipped as an assistant of a wide angle camera. The telephoto camera can capture a high accuracy image for an object of interest in the view field of the wide angle camera. The image from the telephoto camera provides enough information for recognition when the accuracy of traffic sign is low from the wide angle camera. In the proposed system, the traffic sign detection and classification are processed separately for different images from the wide angle camera and telephoto camera. Besides, in order to detect traffic sign from complex background in different lighting conditions, we propose a type of color transformation which is invariant to light changing. This color transformation is conducted to highlight the pattern of traffic signs by reducing the complexity of background. Based on the color transformation, a multi-resolution detector with cascade mode is trained and used to locate traffic signs at low resolution in the image from the wide angle camera. After detection, the system actively captures a high accuracy image of each detected traffic sign by controlling the direction and exposure time of the telephoto camera based on the information from the wide angle camera. Moreover, in classification, a hierarchical classifier is constructed and used to recognize the detected traffic signs in the high accuracy image from the telephoto camera. Finally, based on the proposed system, a set of experiments in the domain of traffic sign recognition is presented. The experimental results demonstrate that the proposed system can effectively recognize traffic signs at low resolution in different lighting conditions.

  4. Advanced Air Traffic Management Research (Human Factors and Automation): NASA Research Initiatives in Human-Centered Automation Design in Airspace Management

    NASA Technical Reports Server (NTRS)

    Corker, Kevin M.; Condon, Gregory W. (Technical Monitor)

    1996-01-01

    NASA has initiated a significant thrust of research and development focused on providing the flight crew and air traffic managers automation aids to increase capacity in en route and terminal area operations through the use of flexible, more fuel-efficient routing, while improving the level of safety in commercial carrier operations. In that system development, definition of cognitive requirements for integrated multi-operator dynamic aiding systems is fundamental. The core processes of control and the distribution of decision making in that control are undergoing extensive analysis. From our perspective, the human operators and the procedures by which they interact are the fundamental determinants of the safe, efficient, and flexible operation of the system. In that perspective, we have begun to explore what our experience has taught will be the most challenging aspects of designing and integrating human-centered automation in the advanced system. We have performed a full mission simulation looking at the role shift to self-separation on board the aircraft with the rules of the air guiding behavior and the provision of a cockpit display of traffic information and an on-board traffic alert system that seamlessly integrates into the TCAS operations. We have performed and initial investigation of the operational impact of "Dynamic Density" metrics on controller relinquishing and reestablishing full separation authority. (We follow the assumption that responsibility at all times resides with the controller.) This presentation will describe those efforts as well as describe the process by which we will guide the development of error tolerant systems that are sensitive to shifts in operator work load levels and dynamic shifts in the operating point of air traffic management.

  5. Evaluation of temporary traffic signals in conjunction with pilot car operations at two-way long temporary work zones : technical summary.

    DOT National Transportation Integrated Search

    2016-05-01

    The primary objective of this study was to evaluate the use of Portable Traffic Signal (PTS) systems at long, rural two-lane work zones and to compare three different conditions for controlling one-lane traffic in conjunction with pilot car operation...

  6. Simulation Research Framework with Embedded Intelligent Algorithms for Analysis of Multi-Target, Multi-Sensor, High-Cluttered Environments

    NASA Astrophysics Data System (ADS)

    Hanlon, Nicholas P.

    The National Air Space (NAS) can be easily described as a complex aviation system-of-systems that seamlessly works in harmony to provide safe transit for all aircraft within its domain. The number of aircraft within the NAS is growing and according the FAA, "[o]n any given day, more than 85,000 flights are in the skies in the United States...This translates into roughly 5,000 planes in the skies above the United States at any given moment. More than 15,000 federal air traffic controllers in airport traffic control towers, terminal radar approach control facilities and air route traffic control centers guide pilots through the system". The FAA is currently rolling out the Next Generation Air Transportation System (NextGen) to handle projected growth while leveraging satellite-based navigation for improved tracking. A key component to instantiating NextGen lies in the equipage of Automatic Dependent Surveillance-Broadcast (ADS-B), a performance based surveillance technology that uses GPS navigation for more precise positioning than radars providing increased situational awareness to air traffic controllers. Furthermore, the FAA is integrating UAS into the NAS, further congesting the airways and information load on air traffic controllers. The expected increase in aircraft density due to NextGen implementation and UAS integration will require innovative algorithms to cope with the increase data flow and to support air traffic controllers in their decision-making. This research presents a few innovative algorithms to support increased aircraft density and UAS integration into the NAS. First, it is imperative that individual tracks are correlated prior to fusing to ensure a proper picture of the environment is correct. However, current approaches do not scale well as the number of targets and sensors are increased. This work presents a fuzzy clustering design to hierarchically break the problem down into smaller subspaces prior to correlation. This approach provides nearly identical performance metrics at orders of magnitude faster in execution. Second, a fuzzy inference system is presented that alleviates air traffic controllers from information overload by utilizing flight plan data and radar/GPS correlation values to highlight aircraft that deviate from their intended routes. Third, a genetic algorithm optimizes sensor placement that is robust and capable of handling unexpected routes in the environment. Fourth, a fuzzy CUSUM algorithm more accurately detects and corrects aircraft mode changes. Finally, all the work is packaged in a holistic simulation research framework that provides evaluation and analysis of various multi-sensor, multi-target scenarios.

  7. Enabling Airspace Integration for High Density Urban Air Mobility

    NASA Technical Reports Server (NTRS)

    Mueller, Eric Richard

    2017-01-01

    Aviation technologies and concepts have reached a level of maturity that may soon enable an era of on-demand mobility (ODM) fueled by quiet, efficient, and largely automated air taxis. However, successfully bringing such a system to fruition will require introducing orders of magnitude more aircraft to a given airspace volume than can be accommodated by the traditional air traffic control system, among other important technical challenges. The airspace integration problem is further compounded by requirements to set aside appropriate ground infrastructure for take-off and landing areas and ensuring these new aircraft types and their operations do not burden traditional airspace users and air traffic control. These challenge for ODM may be significantly reduced by extending the concepts and technologies developed to manage small unmanned aircraft systems (UAS) at low altitude the UAS traffic management (UTM) system to higher altitudes and aircraft with humans onboard in controlled airspace, or by equipping ODM aircraft with advanced sensors, algorithms, and interfaces. The precedent of operational freedom inherent in visual flight rules and the technologies developed for large UAS and commercial aircraft automation will contribute to the evolution of an ODM system enabled by UTM. This paper describes the set of air traffic services, normally provided by the traditional air traffic system, that an ODM system would implement to achieve the high densities needed for ODMs economic viability. Finally, the paper proposes a framework for integrating, evaluating, and deploying low-, medium-, and high-density ODM concepts that build on each other to ensure operational and economic feasibility at every step.

  8. Traffic-Light-Preemption Vehicle-Transponder Software Module

    NASA Technical Reports Server (NTRS)

    Bachelder, Aaron; Foster, Conrad

    2005-01-01

    A prototype wireless data-communication and control system automatically modifies the switching of traffic lights to give priority to emergency vehicles. The system, which was reported in several NASA Tech Briefs articles at earlier stages of development, includes a transponder on each emergency vehicle, a monitoring and control unit (an intersection controller) at each intersection equipped with traffic lights, and a central monitoring subsystem. An essential component of the system is a software module executed by a microcontroller in each transponder. This module integrates and broadcasts data on the position, velocity, acceleration, and emergency status of the vehicle. The position, velocity, and acceleration data are derived partly from the Global Positioning System, partly from deductive reckoning, and partly from a diagnostic computer aboard the vehicle. The software module also monitors similar broadcasts from other vehicles and from intersection controllers, informs the driver of which intersections it controls, and generates visible and audible alerts to inform the driver of any other emergency vehicles that are close enough to create a potential hazard. The execution of the software module can be monitored remotely and the module can be upgraded remotely and, hence, automatically

  9. Simulation of three lanes one-way freeway in low visibility weather by possible traffic accidents

    NASA Astrophysics Data System (ADS)

    Pang, Ming-bao; Zheng, Sha-sha; Cai, Zhang-hui

    2015-09-01

    The aim of this work is to investigate the traffic impact of low visibility weather on a freeway including the fraction of real vehicle rear-end accidents and road traffic capacity. Based on symmetric two-lane Nagel-Schreckenberg (STNS) model, a cellular automaton model of three-lane freeway mainline with the real occurrence of rear-end accidents in low visibility weather, which considers delayed reaction time and deceleration restriction, was established with access to real-time traffic information of intelligent transportation system (ITS). The characteristics of traffic flow in different visibility weather were discussed via the simulation experiments. The results indicate that incoming flow control (decreasing upstream traffic volume) and inputting variable speed limits (VSL) signal are effective in accident reducing and road actual traffic volume's enhancing. According to different visibility and traffic demand the appropriate control strategies should be adopted in order to not only decrease the probability of vehicle accidents but also avoid congestion.

  10. Traffic jam driving with NMV avoidance

    NASA Astrophysics Data System (ADS)

    Milanés, Vicente; Alonso, Luciano; Villagrá, Jorge; Godoy, Jorge; de Pedro, Teresa; Oria, Juan P.

    2012-08-01

    In recent years, the development of advanced driver assistance systems (ADAS) - mainly based on lidar and cameras - has considerably improved the safety of driving in urban environments. These systems provide warning signals for the driver in the case that any unexpected traffic circumstance is detected. The next step is to develop systems capable not only of warning the driver but also of taking over control of the car to avoid a potential collision. In the present communication, a system capable of autonomously avoiding collisions in traffic jam situations is presented. First, a perception system was developed for urban situations—in which not only vehicles have to be considered, but also pedestrians and other non-motor-vehicles (NMV). It comprises a differential global positioning system (DGPS) and wireless communication for vehicle detection, and an ultrasound sensor for NMV detection. Then, the vehicle's actuators - brake and throttle pedals - were modified to permit autonomous control. Finally, a fuzzy logic controller was implemented capable of analyzing the information provided by the perception system and of sending control commands to the vehicle's actuators so as to avoid accidents. The feasibility of the integrated system was tested by mounting it in a commercial vehicle, with the results being encouraging.

  11. A graph based algorithm for adaptable dynamic airspace configuration for NextGen

    NASA Astrophysics Data System (ADS)

    Savai, Mehernaz P.

    The National Airspace System (NAS) is a complicated large-scale aviation network, consisting of many static sectors wherein each sector is controlled by one or more controllers. The main purpose of the NAS is to enable safe and prompt air travel in the U.S. However, such static configuration of sectors will not be able to handle the continued growth of air travel which is projected to be more than double the current traffic by 2025. Under the initiative of the Next Generation of Air Transportation system (NextGen), the main objective of Adaptable Dynamic Airspace Configuration (ADAC) is that the sectors should change to the changing traffic so as to reduce the controller workload variance with time while increasing the throughput. Change in the resectorization should be such that there is a minimal increase in exchange of air traffic among controllers. The benefit of a new design (improvement in workload balance, etc.) should sufficiently exceed the transition cost, in order to deserve a change. This leads to the analysis of the concept of transition workload which is the cost associated with a transition from one sectorization to another. Given two airspace configurations, a transition workload metric which considers the air traffic as well as the geometry of the airspace is proposed. A solution to reduce this transition workload is also discussed. The algorithm is specifically designed to be implemented for the Dynamic Airspace Configuration (DAC) Algorithm. A graph model which accurately represents the air route structure and air traffic in the NAS is used to formulate the airspace configuration problem. In addition, a multilevel graph partitioning algorithm is developed for Dynamic Airspace Configuration which partitions the graph model of airspace with given user defined constraints and hence provides the user more flexibility and control over various partitions. In terms of air traffic management, vertices represent airports and waypoints. Some of the major (busy) airports need to be given more importance and hence treated separately. Thus the algorithm takes into account the air route structure while finding a balance between sector workloads. The performance of the proposed algorithms and performance metrics is validated with the Enhanced Traffic Management System (ETMS) air traffic data.

  12. Evaluating the effectiveness of active vehicle safety systems.

    PubMed

    Jeong, Eunbi; Oh, Cheol

    2017-03-01

    Advanced vehicle safety systems have been widely introduced in transportation systems and are expected to enhance traffic safety. However, these technologies mainly focus on assisting individual vehicles that are equipped with them, and less effort has been made to identify the effect of vehicular technologies on the traffic stream. This study proposed a methodology to assess the effectiveness of active vehicle safety systems (AVSSs), which represent a promising technology to prevent traffic crashes and mitigate injury severity. The proposed AVSS consists of longitudinal and lateral vehicle control systems, which corresponds to the Level 2 vehicle automation presented by the National Highway Safety Administration (NHTSA). The effectiveness evaluation for the proposed technology was conducted in terms of crash potential reduction and congestion mitigation. A microscopic traffic simulator, VISSIM, was used to simulate freeway traffic stream and collect vehicle-maneuvering data. In addition, an external application program interface, VISSIM's COM-interface, was used to implement the AVSS. A surrogate safety assessment model (SSAM) was used to derive indirect safety measures to evaluate the effectiveness of the AVSS. A 16.7-km freeway stretch between the Nakdong and Seonsan interchanges on Korean freeway 45 was selected for the simulation experiments to evaluate the effectiveness of AVSS. A total of five simulation runs for each evaluation scenario were conducted. For the non-incident conditions, the rear-end and lane-change conflicts were reduced by 78.8% and 17.3%, respectively, under the level of service (LOS) D traffic conditions. In addition, the average delay was reduced by 55.5%. However, the system's effectiveness was weakened in the LOS A-C categories. Under incident traffic conditions, the number of rear-end conflicts was reduced by approximately 9.7%. Vehicle delays were reduced by approximately 43.9% with 100% of market penetration rate (MPR). These results imply that from the perspective of traffic operations and control to address the safety and congestion issues of a traffic stream, smarter management strategies that consider both traffic conditions and MPR are required to fully exploit the effectiveness of the AVSS in the field. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Understanding conflict-resolution taskload: Implementing advisory conflict-detection and resolution algorithms in an airspace

    NASA Astrophysics Data System (ADS)

    Vela, Adan Ernesto

    2011-12-01

    From 2010 to 2030, the number of instrument flight rules aircraft operations handled by Federal Aviation Administration en route traffic centers is predicted to increase from approximately 39 million flights to 64 million flights. The projected growth in air transportation demand is likely to result in traffic levels that exceed the abilities of the unaided air traffic controller in managing, separating, and providing services to aircraft. Consequently, the Federal Aviation Administration, and other air navigation service providers around the world, are making several efforts to improve the capacity and throughput of existing airspaces. Ultimately, the stated goal of the Federal Aviation Administration is to triple the available capacity of the National Airspace System by 2025. In an effort to satisfy air traffic demand through the increase of airspace capacity, air navigation service providers are considering the inclusion of advisory conflict-detection and resolution systems. In a human-in-the-loop framework, advisory conflict-detection and resolution decision-support tools identify potential conflicts and propose resolution commands for the air traffic controller to verify and issue to aircraft. A number of researchers and air navigation service providers hypothesize that the inclusion of combined conflict-detection and resolution tools into air traffic control systems will reduce or transform controller workload and enable the required increases in airspace capacity. In an effort to understand the potential workload implications of introducing advisory conflict-detection and resolution tools, this thesis provides a detailed study of the conflict event process and the implementation of conflict-detection and resolution algorithms. Specifically, the research presented here examines a metric of controller taskload: how many resolution commands an air traffic controller issues under the guidance of a conflict-detection and resolution decision-support tool. The goal of the research is to understand how the formulation, capabilities, and implementation of conflict-detection and resolution tools affect the controller taskload (system demands) associated with the conflict-resolution process, and implicitly the controller workload (physical and psychological demands). Furthermore this thesis seeks to establish best practices for the design of future conflict-detection and resolution systems. To generalize conclusions on the conflict-resolution taskload and best design practices of conflict-detection and resolution systems, this thesis focuses on abstracting and parameterizing the behaviors and capabilities of the advisory tools. Ideally, this abstraction of advisory decision-support tools serves as an alternative to exhaustively designing tools, implementing them in high-fidelity simulations, and analyzing their conflict-resolution taskload. Such an approach of simulating specific conflict-detection and resolution systems limits the type of conclusions that can be drawn concerning the design of more generic algorithms. In the process of understanding conflict-detection and resolution systems, evidence in the thesis reveals that the most effective approach to reducing conflict-resolution taskload is to improve conflict-detection systems. Furthermore, studies in the this thesis indicate that there is significant exibility in the design of conflict-resolution algorithms.

  14. An original traffic additional emission model and numerical simulation on a signalized road

    NASA Astrophysics Data System (ADS)

    Zhu, Wen-Xing; Zhang, Jing-Yu

    2017-02-01

    Based on VSP (Vehicle Specific Power) model traffic real emissions were theoretically classified into two parts: basic emission and additional emission. An original additional emission model was presented to calculate the vehicle's emission due to the signal control effects. Car-following model was developed and used to describe the traffic behavior including cruising, accelerating, decelerating and idling at a signalized intersection. Simulations were conducted under two situations: single intersection and two adjacent intersections with their respective control policy. Results are in good agreement with the theoretical analysis. It is also proved that additional emission model may be used to design the signal control policy in our modern traffic system to solve the serious environmental problems.

  15. Conception of the system for traffic measurements based on piezoelectric foils

    NASA Astrophysics Data System (ADS)

    Płaczek, M.

    2016-08-01

    A concept of mechatronic system for traffic measurements based on the piezoelectric transducers used as sensors is presented. The aim of the work project is to theoretically and experimentally analyse the dynamic response of road infrastructure forced by vehicles motion. The subject of the project is therefore on the borderline of civil engineering and mechanical and covers a wide range of issues in both these areas. To measure the dynamic response of the tested pieces of road infrastructure application of piezoelectric, in particular piezoelectric transducers in the form of piezoelectric films (MFC - Macro Fiber Composite) is proposed. The purpose is to verify the possibility to use composite piezoelectric transducers as sensors used in traffic surveillance systems - innovative methods of controlling the road infrastructure and traffic. Presented paper reports works that were done in order to receive the basic information about analysed systems and their behaviour under excitation by passing vehicles. It is very important to verify if such kind of systems can be controlled by the analysis of the dynamic response of road infrastructure measured using piezoelectric transducers. Obtained results show that it could be possible.

  16. Localization and recognition of traffic signs for automated vehicle control systems

    NASA Astrophysics Data System (ADS)

    Zadeh, Mahmoud M.; Kasvand, T.; Suen, Ching Y.

    1998-01-01

    We present a computer vision system for detection and recognition of traffic signs. Such systems are required to assist drivers and for guidance and control of autonomous vehicles on roads and city streets. For experiments we use sequences of digitized photographs and off-line analysis. The system contains four stages. First, region segmentation based on color pixel classification called SRSM. SRSM limits the search to regions of interest in the scene. Second, we use edge tracing to find parts of outer edges of signs which are circular or straight, corresponding to the geometrical shapes of traffic signs. The third step is geometrical analysis of the outer edge and preliminary recognition of each candidate region, which may be a potential traffic sign. The final step in recognition uses color combinations within each region and model matching. This system maybe used for recognition of other types of objects, provided that the geometrical shape and color content remain reasonably constant. The method is reliable, easy to implement, and fast, This differs form the road signs recognition method in the PROMETEUS. The overall structure of the approach is sketched.

  17. Integrated Application of Active Controls (IAAC) technology to an advanced subsonic transport project. ACT/Control/Guidance System study, volume 1

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The active control technology (ACT) control/guidance system task of the integrated application of active controls (IAAC) technology project within the NASA energy efficient transport program was documented. The air traffic environment of navigation and air traffic control systems and procedures were extrapolated. An approach to listing flight functions which will be performed by systems and crew of an ACT configured airplane of the 1990s, and a determination of function criticalities to safety of flight, are the basis of candidate integrated ACT/Control/Guidance System architecture. The system mechanizes five active control functions: pitch augmented stability, angle of attack limiting, lateral/directional augmented stability, gust load alleviation, and maneuver load control. The scope and requirements of a program for simulating the integrated ACT avionics and flight deck system, with pilot in the loop, are defined, system and crew interface elements are simulated, and mechanization is recommended. Relationships between system design and crew roles and procedures are evaluated.

  18. Automated mixed traffic transit vehicle microprocessor controller

    NASA Technical Reports Server (NTRS)

    Marks, R. A.; Cassell, P.; Johnston, A. R.

    1981-01-01

    An improved Automated Mixed Traffic Vehicle (AMTV) speed control system employing a microprocessor and transistor chopper motor current controller is described and its performance is presented in terms of velocity versus time curves. The on board computer hardware and software systems are described as is the software development system. All of the programming used in this controller was implemented using FORTRAN. This microprocessor controller made possible a number of safety features and improved the comfort associated with starting and shopping. In addition, most of the vehicle's performance characteristics can be altered by simple program parameter changes. A failure analysis of the microprocessor controller was generated and the results are included. Flow diagrams for the speed control algorithms and complete FORTRAN code listings are also included.

  19. Design of automation tools for management of descent traffic

    NASA Technical Reports Server (NTRS)

    Erzberger, Heinz; Nedell, William

    1988-01-01

    The design of an automated air traffic control system based on a hierarchy of advisory tools for controllers is described. Compatibility of the tools with the human controller, a key objective of the design, is achieved by a judicious selection of tasks to be automated and careful attention to the design of the controller system interface. The design comprises three interconnected subsystems referred to as the Traffic Management Advisor, the Descent Advisor, and the Final Approach Spacing Tool. Each of these subsystems provides a collection of tools for specific controller positions and tasks. This paper focuses primarily on the Descent Advisor which provides automation tools for managing descent traffic. The algorithms, automation modes, and graphical interfaces incorporated in the design are described. Information generated by the Descent Advisor tools is integrated into a plan view traffic display consisting of a high-resolution color monitor. Estimated arrival times of aircraft are presented graphically on a time line, which is also used interactively in combination with a mouse input device to select and schedule arrival times. Other graphical markers indicate the location of the fuel-optimum top-of-descent point and the predicted separation distances of aircraft at a designated time-control point. Computer generated advisories provide speed and descent clearances which the controller can issue to aircraft to help them arrive at the feeder gate at the scheduled times or with specified separation distances. Two types of horizontal guidance modes, selectable by the controller, provide markers for managing the horizontal flightpaths of aircraft under various conditions. The entire system consisting of descent advisor algorithm, a library of aircraft performance models, national airspace system data bases, and interactive display software has been implemented on a workstation made by Sun Microsystems, Inc. It is planned to use this configuration in operational evaluations at an en route center.

  20. Simulator evaluation of the final approach spacing tool

    NASA Technical Reports Server (NTRS)

    Davis, Thomas J.; Erzberger, Heinz; Green, Steven M.

    1990-01-01

    The design and simulator evaluation of an automation tool for assisting terminal radar approach controllers in sequencing and spacing traffic onto the final approach course is described. The automation tool, referred to as the Final Approach Spacing Tool (FAST), displays speed and heading advisories for arrivals as well as sequencing information on the controller's radar display. The main functional elements of FAST are a scheduler that schedules and sequences the traffic, a 4-D trajectory synthesizer that generates the advisories, and a graphical interface that displays the information to the controller. FAST was implemented on a high performance workstation. It can be operated as a stand-alone in the Terminal Radar Approach Control (TRACON) Facility or as an element of a system integrated with automation tools in the Air Route Traffic Control Center (ARTCC). FAST was evaluated by experienced TRACON controllers in a real-time air traffic control simulation. Simulation results show that FAST significantly reduced controller workload and demonstrated a potential for an increase in landing rate.

  1. Studies of vehicle lane-changing dynamics and its effect on traffic efficiency, safety and environmental impact

    NASA Astrophysics Data System (ADS)

    Li, Xiang; Sun, Jian-Qiao

    2017-02-01

    Drivers often change lanes on the road to maintain desired speed and to avoid slow vehicles, pedestrians, obstacles and lane closure. Understanding the effect of lane-changing on the traffic is an important topic in designing optimal traffic control systems. This paper presents a comprehensive study of this topic. We review the theory of microscopic dynamic car-following models and the lane-changing models, propose additional lane-changing rules to deal with moving bottleneck and lane reduction, and investigate the effects of lane-changing on the traffic efficiency, traffic safety and fuel consumption as a function of different variables including the distance of the emergency sign ahead of the lane closure, speed limit, traffic density, etc. Extensive simulations of the traffic system have been carried out in different scenarios. A number of important findings of the effect of various factors on the traffic are reported. These findings provide guidance on the traffic management and are important to the designers and engineers of modern highway or inner city roads to achieve high traffic efficiency and safety with minimum environmental impact.

  2. A new cellular automata model of traffic flow with negative exponential weighted look-ahead potential

    NASA Astrophysics Data System (ADS)

    Ma, Xiao; Zheng, Wei-Fan; Jiang, Bao-Shan; Zhang, Ji-Ye

    2016-10-01

    With the development of traffic systems, some issues such as traffic jams become more and more serious. Efficient traffic flow theory is needed to guide the overall controlling, organizing and management of traffic systems. On the basis of the cellular automata model and the traffic flow model with look-ahead potential, a new cellular automata traffic flow model with negative exponential weighted look-ahead potential is presented in this paper. By introducing the negative exponential weighting coefficient into the look-ahead potential and endowing the potential of vehicles closer to the driver with a greater coefficient, the modeling process is more suitable for the driver’s random decision-making process which is based on the traffic environment that the driver is facing. The fundamental diagrams for different weighting parameters are obtained by using numerical simulations which show that the negative exponential weighting coefficient has an obvious effect on high density traffic flux. The complex high density non-linear traffic behavior is also reproduced by numerical simulations. Project supported by the National Natural Science Foundation of China (Grant Nos. 11572264, 11172247, 11402214, and 61373009).

  3. A System Concept for Facilitating User Preferences in En Route Airspace

    NASA Technical Reports Server (NTRS)

    Vivona, R. A.; Ballin, M. G.; Green, S. M.; Bach, R. E.; McNally, B. D.

    1996-01-01

    The Federal Aviation Administration is trying to make its air traffic management system more responsive to the needs of the aviation community by exploring the concept of 'free flight' for aircraft flying under instrument flight rules. A logical first step toward free flight could be made without significantly altering current air traffic control (ATC) procedures or requiring new airborne equipment by designing a ground-based system to be highly responsive to 'user preference' in en route airspace while providing for an orderly transition to the terminal area. To facilitate user preference in all en route environments, a system based on an extension of the Center/TRACON Automation System (CTAS) is proposed in this document. The new system would consist of two integrated components. An airspace tool (AT) focuses on unconstrained en route aircraft (e.g., not transitioning to the terminal airspace), taking advantage of the relatively unconstrained nature of their flights and using long-range trajectory prediction to provide cost-effective conflict resolution advisories to sector controllers. A sector tool (ST) generates efficient advisories for all aircraft, with a focus on supporting controllers in analyzing and resolving complex, highly constrained traffic situations. When combined, the integrated AT/ST system supports user preference in any air route traffic control center sector. The system should also be useful in evaluating advanced free-flight concepts by serving as a test bed for future research. This document provides an overview of the design concept, explains its anticipated benefits, and recommends a development strategy that leads to a deployable system.

  4. 5 CFR 842.405 - Air traffic controllers, firefighters, law enforcement officers, and nuclear materials couriers.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 5 Administrative Personnel 2 2013-01-01 2013-01-01 false Air traffic controllers, firefighters, law enforcement officers, and nuclear materials couriers. 842.405 Section 842.405 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT (CONTINUED) CIVIL SERVICE REGULATIONS (CONTINUED) FEDERAL EMPLOYEES RETIREMENT SYSTEM-BASIC ANNUITY Computations ...

  5. 5 CFR 842.405 - Air traffic controllers, firefighters, law enforcement officers, and nuclear materials couriers.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 5 Administrative Personnel 2 2014-01-01 2014-01-01 false Air traffic controllers, firefighters, law enforcement officers, and nuclear materials couriers. 842.405 Section 842.405 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT (CONTINUED) CIVIL SERVICE REGULATIONS (CONTINUED) FEDERAL EMPLOYEES RETIREMENT SYSTEM-BASIC ANNUITY Computations ...

  6. 5 CFR 842.405 - Air traffic controllers, firefighters, law enforcement officers, and nuclear materials couriers.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 5 Administrative Personnel 2 2012-01-01 2012-01-01 false Air traffic controllers, firefighters, law enforcement officers, and nuclear materials couriers. 842.405 Section 842.405 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT (CONTINUED) CIVIL SERVICE REGULATIONS (CONTINUED) FEDERAL EMPLOYEES RETIREMENT SYSTEM-BASIC ANNUITY Computations ...

  7. 78 FR 23626 - Agency Information Collection Activities; Requests for Comments; Clearance of Renewed Approval of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-19

    ... Dependent Surveillance--Broadcast (ADS-B) Out Performance Requirements To Support Air Traffic Control (ATC.... The final rule titled ``Automatic Dependent Surveillance-- Broadcast (ADS-B) Equipage Mandate To... System. The rule facilitates the use of ADS-B for aircraft surveillance by FAA air traffic controllers to...

  8. ATC system error and appraisal of controller proficiency.

    DOT National Transportation Integrated Search

    1965-07-01

    The report presents suggestions for the design of an air traffic control (ATC) incident-reporting system aimed at maximizing the amount of corrective feedback to the ATC system. The approach taken is system-oriented rather than controller-oriented. I...

  9. Conflict Probe Concepts Analysis in Support of Free Flight

    NASA Technical Reports Server (NTRS)

    Warren, Anthony W.; Schwab, Robert W.; Geels, Timothy J.; Shakarian, Arek

    1997-01-01

    This study develops an operational concept and requirements for en route Free Flight using a simulation of the Cleveland Air Route Traffic Control Center, and develops requirements for an automated conflict probe for use in the Air Traffic Control (ATC) Centers. In this paper, we present the results of simulation studies and summarize implementation concepts and infrastructure requirements to transition from the current air traffic control system to mature Free Right. The transition path to Free Flight envisioned in this paper assumes an orderly development of communications, navigation, and surveillance (CNS) technologies based on results from our simulation studies. The main purpose of this study is to provide an overall context and methodology for evaluating airborne and ground-based requirements for cooperative development of the future ATC system.

  10. Dual-task performance consequences of imperfect alerting associated with a cockpit display of traffic information.

    PubMed

    Wickens, Christopher; Colcombe, Angela

    2007-10-01

    Performance consequences related to integrating an imperfect alert within a complex task domain were examined in two experiments. Cockpit displays of traffic information (CDTIs) are being designed for use in airplane cockpits as responsibility for safe separation becomes shared between pilots and controllers. Of interest in this work is how characteristics of the alarm system such as threshold, modality, and number of alert levels impact concurrent task (flight control) performance and response to potential conflicts. Student pilots performed a tracking task analogous to flight control while simultaneously monitoring for air traffic conflicts with the aid of a CDTI alert as the threshold, modality, and level of alert was varied. As the alerting system became more prone to false alerts, pilot compliance decreased and concurrent performance improved. There was some evidence of auditory preemption with auditory alerts as the false alarm rate increased. Finally, there was no benefit to a three-level system over a two-level system. There is justification for increased false alarm rates, as miss-prone systems appear to be costly. The 4:1 false alarm to miss ratio employed here improved accuracy and concurrent task performance. More research needs to address the potential benefits of likelihood alerting. The issues addressed in this research can be applied to any imperfect alerting system such as in aviation, driving, or air traffic control. It is crucial to understand the performance consequences of new technology and the efficacy of potential mitigating design features within the specific context desired.

  11. Traffic signal operations handbook : second edition.

    DOT National Transportation Integrated Search

    2011-10-01

    "This handbook provides guidelines for timing traffic control signals at intersections that operate in isolation : or as part of a coordinated signal system. The guidelines are intended to describe best practices, as identified : through interviews w...

  12. Mining vehicle classifications from the Columbus Metropolitan Freeway Management System.

    DOT National Transportation Integrated Search

    2015-01-01

    Vehicle classification data are used in many transportation applications, including: pavement design, : environmental impact studies, traffic control, and traffic safety. Ohio has over 200 permanent count stations, : supplemented by many more short-t...

  13. Neural network model for automatic traffic incident detection : executive summary.

    DOT National Transportation Integrated Search

    2001-04-01

    Automatic freeway incident detection is an important component of advanced transportation management systems (ATMS) that provides information for emergency relief and traffic control and management purposes. In this research, a multi-paradigm intelli...

  14. Evaluation of the Caravelle litter retrieval system.

    DOT National Transportation Integrated Search

    1988-01-01

    Based on observations, the Caravelle Litter Technologies, Inc's., demonstration of its litter retrieval equipment it was concluded that use of the equipment on highways open to traffic would require extensive and expensive traffic control. The machin...

  15. 49 CFR 235.5 - Changes requiring filing of application.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... system, automatic train stop, train control, or cab signal system or other similar appliance or device..., automatic train stop, train control, or cab signal system; or (3) The modification of a block signal system, interlocking, traffic control system, automatic train stop, train control, or cab signal system. (b) [Reserved...

  16. 49 CFR 235.5 - Changes requiring filing of application.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... system, automatic train stop, train control, or cab signal system or other similar appliance or device..., automatic train stop, train control, or cab signal system; or (3) The modification of a block signal system, interlocking, traffic control system, automatic train stop, train control, or cab signal system. (b) [Reserved...

  17. An Overview of Current Capabilities and Research Activities in the Airspace Operations Laboratory at NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Prevot, Thomas; Smith, Nancy M.; Palmer, Everett; Callantine, Todd; Lee, Paul; Mercer, Joey; Homola, Jeff; Martin, Lynne; Brasil, Connie; Cabrall, Christopher

    2014-01-01

    The Airspace Operations Laboratory at NASA Ames conducts research to provide a better understanding of roles, responsibilities, and requirements for human operators and automation in future air traffic management (ATM) systems. The research encompasses developing, evaluating, and integrating operational concepts and technologies for near-, mid-, and far-term air traffic operations. Current research threads include efficient arrival operations, function allocation in separation assurance and efficient airspace and trajectory management. The AOL has developed powerful air traffic simulation capabilities, most notably the Multi Aircraft Control System (MACS) that is used for many air traffic control simulations at NASA and its partners in government, academia and industry. Several additional NASA technologies have been integrated with the AOL's primary simulation capabilities where appropriate. Using this environment, large and small-scale system-level evaluations can be conducted to help make near-term improvements and transition NASA technologies to the FAA, such as the technologies developed under NASA's Air Traffic Management Demonstration-1 (ATD-1). The AOL's rapid prototyping and flexible simulation capabilities have proven a highly effective environment to progress the initiation of trajectory-based operations and support the mid-term implementation of NextGen. Fundamental questions about accuracy requirements have been investigated as well as realworld problems on how to improve operations in some of the most complex airspaces in the US. This includes using advanced trajectory-based operations and prototype tools for coordinating arrivals to converging runways at Newark airport and coordinating departures and arrivals in the San Francisco and the New York metro areas. Looking beyond NextGen, the AOL has started exploring hybrid human/automation control strategies as well as highly autonomous operations in the air traffic control domain. Initial results indicate improved capacity, low operator workload, good situation awareness and acceptability for controllers teaming with autonomous air traffic systems. While much research and development needs to be conducted to make such concepts a reality, these approaches have the potential to truly transform the airspace system towards increased mobility, safe and efficient growth in global operations and enabling many of the new vehicles and operations that are expected over the next decades. This paper describes how the AOL currently contributes to the ongoing air transportation transformation.

  18. Intelligent advisory speed limit dedication in highway using VANET.

    PubMed

    Jalooli, Ali; Shaghaghi, Erfan; Jabbarpour, Mohammad Reza; Noor, Rafidah Md; Yeo, Hwasoo; Jung, Jason J

    2014-01-01

    Variable speed limits (VSLs) as a mean for enhancing road traffic safety are studied for decades to modify the speed limit based on the prevailing road circumstances. In this study the pros and cons of VSL systems and their effects on traffic controlling efficiency are summarized. Despite the potential effectiveness of utilizing VSLs, we have witnessed that the effectiveness of this system is impacted by factors such as VSL control strategy used and the level of driver compliance. Hence, the proposed approach called Intelligent Advisory Speed Limit Dedication (IASLD) as the novel VSL control strategy which considers the driver compliance aims to improve the traffic flow and occupancy of vehicles in addition to amelioration of vehicle's travel times. The IASLD provides the advisory speed limit for each vehicle exclusively based on the vehicle's characteristics including the vehicle type, size, and safety capabilities as well as traffic and weather conditions. The proposed approach takes advantage of vehicular ad hoc network (VANET) to accelerate its performance, in the way that simulation results demonstrate the reduction of incident detection time up to 31.2% in comparison with traditional VSL strategy. The simulation results similarly indicate the improvement of traffic flow efficiency, occupancy, and travel time in different conditions.

  19. A novel solution for car traffic control based on radiometric microwave devices

    NASA Astrophysics Data System (ADS)

    Soldovieri, Francesco; Denisov, Alexander; Speziale, Victor

    2014-05-01

    The significant problem of traffic in big cities, connected with huge and building up quantity of automobile cars, demands for novel strategies, based on nonconventional solutions, in order to improve system traffic control, especially at crossroads. As well known, the usual solution is based on the time relay, which requires the installation of a fixed traffic interval (signal light switching) at a crossroad; this solution is low cost, but does not account for the actual traffic conditions. Therefore, in the recent years, attention is towards to new designs, where the monitoring of the and control of traffic is carried out by using various methods including, optical, the infrared, magnetic, radar tracking, acoustical ones. In this work, we discuss the deployment of high sensitivity radiometric systems and radiometers(sensor) in the microwave range [1, 2]. In fact, the radiometer as "sensor" can provide an always updated information about the car traffic in any weather condition and in absence or low visibility conditions. In fact, the radiometric sensor detects the cars thanks to the different behavior of the car roofs which reflect the cold sky whereas the road asphalt is visible as warm object (at around outside temperature). [1] A. G. Denisov, V. P. Gorishnyak, S. E. Kuzmin et al., "Some experiments concerning resolution of 32 sensors passive 8mm wave imaging system," in Proceedings of the International Symposium on Space Terahertz Technology (ISSTT '09), Charlottesville, Va, USA, April 2009. [2] F. Soldovieri, A. Natale, V. Gorishnyak, A. Pavluchenko, A. Denisov, and L. Chen, "Radiometric Imaging for Monitoring and Surveillance Issues," International Journal of Antennas and Propagation, vol. 2013, Article ID 272561, 8 pages, 2013. doi:10.1155/2013/272561.

  20. Taking Over Control From Highly Automated Vehicles in Complex Traffic Situations: The Role of Traffic Density.

    PubMed

    Gold, Christian; Körber, Moritz; Lechner, David; Bengler, Klaus

    2016-06-01

    The aim of this study was to quantify the impact of traffic density and verbal tasks on takeover performance in highly automated driving. In highly automated vehicles, the driver has to occasionally take over vehicle control when approaching system limits. To ensure safety, the ability of the driver to regain control of the driving task under various driving situations and different driver states needs to be quantified. Seventy-two participants experienced takeover situations requiring an evasive maneuver on a three-lane highway with varying traffic density (zero, 10, and 20 vehicles per kilometer). In a between-subjects design, half of the participants were engaged in a verbal 20-Questions Task, representing speaking on the phone while driving in a highly automated vehicle. The presence of traffic in takeover situations led to longer takeover times and worse takeover quality in the form of shorter time to collision and more collisions. The 20-Questions Task did not influence takeover time but seemed to have minor effects on the takeover quality. For the design and evaluation of human-machine interaction in takeover situations of highly automated vehicles, the traffic state seems to play a major role, compared to the driver state, manipulated by the 20-Questions Task. The present results can be used by developers of highly automated systems to appropriately design human-machine interfaces and to assess the driver's time budget for regaining control. © 2016, Human Factors and Ergonomics Society.

  1. Automated Conflict Resolution For Air Traffic Control

    NASA Technical Reports Server (NTRS)

    Erzberger, Heinz

    2005-01-01

    The ability to detect and resolve conflicts automatically is considered to be an essential requirement for the next generation air traffic control system. While systems for automated conflict detection have been used operationally by controllers for more than 20 years, automated resolution systems have so far not reached the level of maturity required for operational deployment. Analytical models and algorithms for automated resolution have been traffic conditions to demonstrate that they can handle the complete spectrum of conflict situations encountered in actual operations. The resolution algorithm described in this paper was formulated to meet the performance requirements of the Automated Airspace Concept (AAC). The AAC, which was described in a recent paper [1], is a candidate for the next generation air traffic control system. The AAC's performance objectives are to increase safety and airspace capacity and to accommodate user preferences in flight operations to the greatest extent possible. In the AAC, resolution trajectories are generated by an automation system on the ground and sent to the aircraft autonomously via data link .The algorithm generating the trajectories must take into account the performance characteristics of the aircraft, the route structure of the airway system, and be capable of resolving all types of conflicts for properly equipped aircraft without requiring supervision and approval by a controller. Furthermore, the resolution trajectories should be compatible with the clearances, vectors and flight plan amendments that controllers customarily issue to pilots in resolving conflicts. The algorithm described herein, although formulated specifically to meet the needs of the AAC, provides a generic engine for resolving conflicts. Thus, it can be incorporated into any operational concept that requires a method for automated resolution, including concepts for autonomous air to air resolution.

  2. Integrated risk/cost planning models for the US Air Traffic system

    NASA Technical Reports Server (NTRS)

    Mulvey, J. M.; Zenios, S. A.

    1985-01-01

    A prototype network planning model for the U.S. Air Traffic control system is described. The model encompasses the dual objectives of managing collision risks and transportation costs where traffic flows can be related to these objectives. The underlying structure is a network graph with nonseparable convex costs; the model is solved efficiently by capitalizing on its intrinsic characteristics. Two specialized algorithms for solving the resulting problems are described: (1) truncated Newton, and (2) simplicial decomposition. The feasibility of the approach is demonstrated using data collected from a control center in the Midwest. Computational results with different computer systems are presented, including a vector supercomputer (CRAY-XMP). The risk/cost model has two primary uses: (1) as a strategic planning tool using aggregate flight information, and (2) as an integrated operational system for forecasting congestion and monitoring (controlling) flow throughout the U.S. In the latter case, access to a supercomputer is required due to the model's enormous size.

  3. Experimental system for computer network via satellite /CS/. III - Network control processor

    NASA Astrophysics Data System (ADS)

    Kakinuma, Y.; Ito, A.; Takahashi, H.; Uchida, K.; Matsumoto, K.; Mitsudome, H.

    1982-03-01

    A network control processor (NCP) has the functions of generating traffics, the control of links and the control of transmitting bursts. The NCP executes protocols, monitors of experiments, gathering and compiling data of measurements, of which programs are loaded on a minicomputer (MELCOM 70/40) with 512KB of memories. The NCP acts as traffic generators, instead of a host computer, in the experiment. For this purpose, 15 fake stations are realized by the software in each user station. This paper describes the configuration of the NCP and the implementation of the protocols for the experimental system.

  4. Air Traffic Control Capabilities: Opportunity to Utilize Automated Dependent Surveillance-Broadcast (ADS-B) Equipment on Aircraft for Military Air Traffic Control and Command and Control in Combat and Humanitarian Operations

    DTIC Science & Technology

    2011-01-21

    and as a result reduce aircraft fuel burn and CO2 emissions .”1 EUROCONTROL, representing 32 European nations, is implementing ADS-B under the...ELS) with possible exemptions. By 1 January 2019, they must also be equipped for ADS-B. Canada has also mandated ADS-B4, and nations currently ...based navigational systems 6 like Global Positioning System (GPS). Also, in some domestic overflight or terminal airspaces that currently have 5NM

  5. Work Practice Simulation of Complex Human-Automation Systems in Safety Critical Situations: The Brahms Generalized berlingen Model

    NASA Technical Reports Server (NTRS)

    Clancey, William J.; Linde, Charlotte; Seah, Chin; Shafto, Michael

    2013-01-01

    The transition from the current air traffic system to the next generation air traffic system will require the introduction of new automated systems, including transferring some functions from air traffic controllers to on­-board automation. This report describes a new design verification and validation (V&V) methodology for assessing aviation safety. The approach involves a detailed computer simulation of work practices that includes people interacting with flight-critical systems. The research is part of an effort to develop new modeling and verification methodologies that can assess the safety of flight-critical systems, system configurations, and operational concepts. The 2002 Ueberlingen mid-air collision was chosen for analysis and modeling because one of the main causes of the accident was one crew's response to a conflict between the instructions of the air traffic controller and the instructions of TCAS, an automated Traffic Alert and Collision Avoidance System on-board warning system. It thus furnishes an example of the problem of authority versus autonomy. It provides a starting point for exploring authority/autonomy conflict in the larger system of organization, tools, and practices in which the participants' moment-by-moment actions take place. We have developed a general air traffic system model (not a specific simulation of Überlingen events), called the Brahms Generalized Ueberlingen Model (Brahms-GUeM). Brahms is a multi-agent simulation system that models people, tools, facilities/vehicles, and geography to simulate the current air transportation system as a collection of distributed, interactive subsystems (e.g., airports, air-traffic control towers and personnel, aircraft, automated flight systems and air-traffic tools, instruments, crew). Brahms-GUeM can be configured in different ways, called scenarios, such that anomalous events that contributed to the Überlingen accident can be modeled as functioning according to requirements or in an anomalous condition, as occurred during the accident. Brahms-GUeM thus implicitly defines a class of scenarios, which include as an instance what occurred at Überlingen. Brahms-GUeM is a modeling framework enabling "what if" analysis of alternative work system configurations and thus facilitating design of alternative operations concepts. It enables subsequent adaption (reusing simulation components) for modeling and simulating NextGen scenarios. This project demonstrates that BRAHMS provides the capacity to model the complexity of air transportation systems, going beyond idealized and simple flights to include for example the interaction of pilots and ATCOs. The research shows clearly that verification and validation must include the entire work system, on the one hand to check that mechanisms exist to handle failures of communication and alerting subsystems and/or failures of people to notice, comprehend, or communicate problematic (unsafe) situations; but also to understand how people must use their own judgment in relating fallible systems like TCAS to other sources of information and thus to evaluate how the unreliability of automation affects system safety. The simulation shows in particular that distributed agents (people and automated systems) acting without knowledge of each others' actions can create a complex, dynamic system whose interactive behavior is unexpected and is changing too quickly to comprehend and control.

  6. A Survey on Urban Traffic Management System Using Wireless Sensor Networks.

    PubMed

    Nellore, Kapileswar; Hancke, Gerhard P

    2016-01-27

    Nowadays, the number of vehicles has increased exponentially, but the bedrock capacities of roads and transportation systems have not developed in an equivalent way to efficiently cope with the number of vehicles traveling on them. Due to this, road jamming and traffic correlated pollution have increased with the associated adverse societal and financial effect on different markets worldwide. A static control system may block emergency vehicles due to traffic jams. Wireless Sensor networks (WSNs) have gained increasing attention in traffic detection and avoiding road congestion. WSNs are very trendy due to their faster transfer of information, easy installation, less maintenance, compactness and for being less expensive compared to other network options. There has been significant research on Traffic Management Systems using WSNs to avoid congestion, ensure priority for emergency vehicles and cut the Average Waiting Time (AWT) of vehicles at intersections. In recent decades, researchers have started to monitor real-time traffic using WSNs, RFIDs, ZigBee, VANETs, Bluetooth devices, cameras and infrared signals. This paper presents a survey of current urban traffic management schemes for priority-based signalling, and reducing congestion and the AWT of vehicles. The main objective of this survey is to provide a taxonomy of different traffic management schemes used for avoiding congestion. Existing urban traffic management schemes for the avoidance of congestion and providing priority to emergency vehicles are considered and set the foundation for further research.

  7. A Survey on Urban Traffic Management System Using Wireless Sensor Networks

    PubMed Central

    Nellore, Kapileswar; Hancke, Gerhard P.

    2016-01-01

    Nowadays, the number of vehicles has increased exponentially, but the bedrock capacities of roads and transportation systems have not developed in an equivalent way to efficiently cope with the number of vehicles traveling on them. Due to this, road jamming and traffic correlated pollution have increased with the associated adverse societal and financial effect on different markets worldwide. A static control system may block emergency vehicles due to traffic jams. Wireless Sensor networks (WSNs) have gained increasing attention in traffic detection and avoiding road congestion. WSNs are very trendy due to their faster transfer of information, easy installation, less maintenance, compactness and for being less expensive compared to other network options. There has been significant research on Traffic Management Systems using WSNs to avoid congestion, ensure priority for emergency vehicles and cut the Average Waiting Time (AWT) of vehicles at intersections. In recent decades, researchers have started to monitor real-time traffic using WSNs, RFIDs, ZigBee, VANETs, Bluetooth devices, cameras and infrared signals. This paper presents a survey of current urban traffic management schemes for priority-based signalling, and reducing congestion and the AWT of vehicles. The main objective of this survey is to provide a taxonomy of different traffic management schemes used for avoiding congestion. Existing urban traffic management schemes for the avoidance of congestion and providing priority to emergency vehicles are considered and set the foundation for further research. PMID:26828489

  8. Neural network model for automatic traffic incident detection : final report, August 2001.

    DOT National Transportation Integrated Search

    2001-08-01

    Automatic freeway incident detection is an important component of advanced transportation management systems (ATMS) that provides information for emergency relief and traffic control and management purposes. In this research, a multi-paradigm intelli...

  9. Intelligent Transportation Infrastructure Benefits: Expected And Experienced

    DOT National Transportation Integrated Search

    1996-08-20

    In traffic engineering, the concept of traffic control is giving way to the broader philosophy of Transportation Systems Management (TSM), whose purpose is not to move vehicles, but to optimize the utilization of transportation resources to improve t...

  10. Mining vehicle classifications from the Columbus Metropolitan Freeway Management System : [summary].

    DOT National Transportation Integrated Search

    2015-01-01

    Vehicle classification data are used in many transportation applications, including: pavement design, : environmental impact studies, traffic control, and traffic safety. Ohio has over 200 permanent count : stations, supplemented by many more short-t...

  11. Operating guidelines for TxDOT ramp control signals.

    DOT National Transportation Integrated Search

    2009-01-01

    The Texas Department of Transportation (TxDOT) currently maintains a Traffic Signals Manual. : Originally published in 1999, this manual provides a guide and reference for handling requests : for traffic signals on the designated State Highway System...

  12. ATC contingency operations in the en-route flight regime

    NASA Technical Reports Server (NTRS)

    Lyman, E. G.

    1981-01-01

    Air traffic control (ATC) operations were examined to learn what factors of controller performance should be given consideration in the design and development of future automation systems enhancing ATC. Contingencies were of two types: those constraining airspace usage or traffic flow (i.e., weather); and those related to system and equipment usage (i.e., radar/radio status). Examination of controller response to contingencies and workload pressures showed differing effects on controller allocations of effort among the three primary function of planning, monitoring, and informaton transfer. Automation advancements oriented towards aiding the controller in performing monitoring tasks may offer the most substantial safety benefit.

  13. Investment Criteria for Airport Surveillance Radar, Air Traffic Control Radar Beacon System, and Automated Radar Terminal System (ASR/ATCRBS/ARTS)

    DTIC Science & Technology

    1983-05-01

    15 FIQGX 4 Tine Saved By ASR: 3 Mile vs. 7.5 Mile Separation 40 3 4 S10" 6 ;9 q4, ItI I ILI 10! i~o 2 _ _P𔃻_ _ P_ _ IFR HUM 16 :,.4eS _OE_ AT_...8217 16 . Abstract ""This report develops revised investment criteria for Airport Survoiillance Radar, Air Traffic Control Radar Beacon System, and...12 A. Introduction. .................... 1. 32 B. IFR Delay Reduction Benefits ...... ............. 13 C. Safety Benefits

  14. Defining the drivers for accepting decision making automation in air traffic management.

    PubMed

    Bekier, Marek; Molesworth, Brett R C; Williamson, Ann

    2011-04-01

    Air Traffic Management (ATM) operators are under increasing pressure to improve the efficiency of their operation to cater for forecasted increases in air traffic movements. One solution involves increasing the utilisation of automation within the ATM system. The success of this approach is contingent on Air Traffic Control Operators' (ATCOs) willingness to accept increased levels of automation. The main aim of the present research was to examine the drivers underpinning ATCOs' willingness to accept increased utilisation of automation within their role. Two fictitious scenarios involving the application of two new automated decision-making tools were created. The results of an online survey revealed traditional predictors of automation acceptance such as age, trust and job satisfaction explain between 4 and 7% of the variance. Furthermore, these predictors varied depending on the purpose in which the automation was to be employed. These results are discussed from an applied and theoretical perspective. STATEMENT OF RELEVANCE: Efficiency improvements in ATM are required to cater for forecasted increases in air traffic movements. One solution is to increase the utilisation of automation within Air Traffic Control. The present research examines the drivers underpinning air traffic controllers' willingness to accept increased levels of automation in their role.

  15. Satellite applications to electric-utility communications needs. [land mobile satellite service

    NASA Technical Reports Server (NTRS)

    Horstein, M.; Barnett, R.

    1981-01-01

    Significant changes in the Nation's electric power systems are expected to result from the integration of new technology, possible during the next decade. Digital communications for monitor and control, exclusive of protective relaying, are expected to double or triple current traffic. A nationwide estimate of 13 Mb/s traffic is projected. Of this total, 8 Mb/s is attributed to the bulk-power system as it is now being operated (4 Mb/s). This traffic could be accommodated by current communications satellites using 3- to 4.5-m-diameter ground terminals costing $35,000 to $70,000 each. The remaining 5-Mb/s traffic is attributed to new technology concepts integrated into the distribution system. Such traffic is not compatible with current satellite technology because it requires small, low-cost ground terminals. Therefore, a high effective isotropic radiated power satellite, such as the one being planned by NASA for the Land Mobile Satellite Service, is required.

  16. Criticism of generally accepted fundamentals and methodologies of traffic and transportation theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kerner, Boris S.

    It is explained why the set of the fundamental empirical features of traffic breakdown (a transition from free flow to congested traffic) should be the empirical basis for any traffic and transportation theory that can be reliable used for control and optimization in traffic networks. It is shown that generally accepted fundamentals and methodologies of traffic and transportation theory are not consistent with the set of the fundamental empirical features of traffic breakdown at a highway bottleneck. To these fundamentals and methodologies of traffic and transportation theory belong (i) Lighthill-Whitham-Richards (LWR) theory, (ii) the General Motors (GM) model class (formore » example, Herman, Gazis et al. GM model, Gipps’s model, Payne’s model, Newell’s optimal velocity (OV) model, Wiedemann’s model, Bando et al. OV model, Treiber’s IDM, Krauß’s model), (iii) the understanding of highway capacity as a particular stochastic value, and (iv) principles for traffic and transportation network optimization and control (for example, Wardrop’s user equilibrium (UE) and system optimum (SO) principles). Alternatively to these generally accepted fundamentals and methodologies of traffic and transportation theory, we discuss three-phase traffic theory as the basis for traffic flow modeling as well as briefly consider the network breakdown minimization (BM) principle for the optimization of traffic and transportation networks with road bottlenecks.« less

  17. Analysis of in-trail following dynamics of CDTI-equipped aircraft. [Cockpit Displays of Traffic Information

    NASA Technical Reports Server (NTRS)

    Sorensen, J. A.; Goka, T.

    1982-01-01

    In connection with the necessity to provide greater terminal area capacity, attention is given to approaches in which the required increase in capacity will be obtained by making use of more automation and by involving the pilot to a larger degree in the air traffic control (ATC) process. It was recommended that NASA should make extensive use of its research aircraft and cockpit simulators to assist the FAA in examining the capabilities and limitations of cockpit displays of traffic information (CDTI). A program was organized which utilizes FAA ATC (ground-based) simulators and NASA aircraft and associated cockpit simulators in a research project which explores applications of the CDTI system. The present investigation is concerned with several questions related to the CDTI-based terminal area traffic tactical control concepts. Attention is given to longitudinal separation criteria, a longitudinal following model, longitudinal capture, combined longitudinal/vertical control, and lateral control.

  18. Flexible traffic control of the synfire-mode transmission by inhibitory modulation: Nonlinear noise reduction

    NASA Astrophysics Data System (ADS)

    Shinozaki, Takashi; Okada, Masato; Reyes, Alex D.; Câteau, Hideyuki

    2010-01-01

    Intermingled neural connections apparent in the brain make us wonder what controls the traffic of propagating activity in the brain to secure signal transmission without harmful crosstalk. Here, we reveal that inhibitory input but not excitatory input works as a particularly useful traffic controller because it controls the degree of synchrony of population firing of neurons as well as controlling the size of the population firing bidirectionally. Our dynamical system analysis reveals that the synchrony enhancement depends crucially on the nonlinear membrane potential dynamics and a hidden slow dynamical variable. Our electrophysiological study with rodent slice preparations show that the phenomenon happens in real neurons. Furthermore, our analysis with the Fokker-Planck equations demonstrates the phenomenon in a semianalytical manner.

  19. Evaluation of the Terminal Area Precision Scheduling and Spacing System for Performance-Based Navigation Arrivals

    NASA Technical Reports Server (NTRS)

    Jung, Jaewoo; Swenson, Harry; Thipphavong, Jane; Martin, Lynne Hazel; Chen, Liang; Nguyen, Jimmy

    2013-01-01

    The growth of global demand for air transportation has put increasing strain on the nation's air traffic management system. To relieve this strain, the International Civil Aviation Organization has urged all nations to adopt Performance-Based Navigation (PBN), which can help to reduce air traffic congestion, decrease aviation fuel consumption, and protect the environment. NASA has developed a Terminal Area Precision Scheduling and Spacing (TAPSS) system that can support increased use of PBN during periods of high traffic, while supporting fuel-efficient, continuous descent approaches. In the original development of this system, arrival aircraft are assigned fuel-efficient Area Navigation (RNAV) Standard Terminal Arrival Routes before their initial descent from cruise, with routing defined to a specific runway. The system also determines precise schedules for these aircraft that facilitate continuous descent through the assigned routes. To meet these schedules, controllers are given a set of advisory tools to precisely control aircraft. The TAPSS system has been evaluated in a series of human-in-the-loop (HITL) air traffic simulations during 2010 and 2011. Results indicated increased airport arrival throughput up to 10 over current operations, and maintained fuel-efficient aircraft decent profiles from the initial descent to landing with reduced controller workload. This paper focuses on results from a joint NASA and FAA HITL simulation conducted in 2012. Due to the FAA rollout of the advance terminal area PBN procedures at mid-sized airports first, the TAPSS system was modified to manage arrival aircraft as they entered Terminal Radar Approach Control (TRACON). Dallas-Love Field airport (DAL) was selected by the FAA as a representative mid-sized airport within a constrained TRACON airspace due to the close proximity of a major airport, in this case Dallas-Ft Worth International Airport, one of the busiest in the world. To address this constraint, RNAV routes and Required Navigation Performance with the particular capability known as Radius-to-Fix (RNP-RF) approaches to a short final were used. The purpose of this simulation was to get feedback on how current operations could benefit with the TAPSS system and also to evaluate the efficacy of the advisory tools to support the broader use of PBN in the US National Airspace System. For this NASA-FAA joint experiment, an Air Traffic Control laboratory at NASA Ames was arranged to simulate arrivals into DAL in Instrument Meteorological Conditions utilizing parallel dependent approaches, with two feeder positions that handed off traffic to one final position. Four FAA controllers participated, alternately covering these three positions. All participants were Full-Performance Level terminal controllers and members of the National Air Traffic Controllers Association. During the simulation, PBN arrival operations were compared and contrasted in three conditions. They were the Baseline, where none of the TAPSS systems TRACON controller decision support advisories were provided, the Limited Advisories, reflecting the existing but dormant capabilities of the current terminal automation equipment with providing a subset of the TAPSS systems advisories; numerical delay, landing sequence, and runway assignment information, and the Full Advisories, with providing the following in addition to the ones in the Limited condition; trajectory slot markers, timelines of estimated times of arrivals and sched

  20. Patients' Risk of Causing Traffic Violations and Traffic Accidents while Driving.

    PubMed

    Šestan, Nevenka; Dodič Fikfak, Metoda; Balantič, Zvone

    2017-09-01

    This study examines whether drivers suffering from epilepsy, chronic alcoholism and/or hazardous drinking, psychoactive substance abuse, other diseases of the nervous system, mental and behavioural disorders, cardiovascular diseases, severe diabetes, and severe eye diseases are at a greater risk of causing traffic accidents and traffic violations than drivers that cause accidents and violations without these diagnoses. A case control study was carried out. The cases were drivers checked by a special medical committee in the period observed suffering from the diseases listed above. Matched controls were taken from the cohort of those that caused accidents and violations during the same period observed. The descriptive statistics were followed by calculation of correlations, t-tests and χ 2 , and the odds ratio. Drivers with referrals for diseases of the nervous system are five times more likely to cause a traffic accident compared to controls (OR=5.18; 95% CI=2.59-10.34); in addition, a high risk is associated with drivers with mental and behavioural disorders (OR=3.64; 95% CI=1.91-6.94), drivers with epilepsy (OR=1.99; 95% CI=1.01-3.92), and drivers addicted to alcohol (OR=1.71; 95% CI=1.01-2.89). Drivers suffering from addiction, a disease of the nervous system, or epilepsy are more likely to cause a traffic accident, which is a contribution to the inconclusive findings of previous studies. The multiple reasons for risks of patients suffering from mental and behavioural disorders need to be further investigated. Copyright© by the National Institute of Public Health, Prague 2017

  1. Seaway Information System Management and Control Requirements

    DOT National Transportation Integrated Search

    1973-10-01

    This report examines in detail the control and information system requirements of the St. Lawrence Seaway development program in terms of the needs of the vessel traffic controllers and the management users. Structural control models of Seaway operat...

  2. Theory of Radar Target Discrimination

    DTIC Science & Technology

    1991-02-01

    which a capability for target or system identification could be put to good use: air traffic control , border patrol, security and surveillance...different targets from each other, there would be big advantages in air safety. Airport traffic controllers have made serious errors from their...in a way that we can neither predict nor control . Of course, any data function d(t) which can be recorded for computer processing will be digitized and

  3. Agent-based traffic management and reinforcement learning in congested intersection network.

    DOT National Transportation Integrated Search

    2012-08-01

    This study evaluates the performance of traffic control systems based on reinforcement learning (RL), also called approximate dynamic programming (ADP). Two algorithms have been selected for testing: 1) Q-learning and 2) approximate dynamic programmi...

  4. Traffic flow visualization and control (TFVC) : final report

    DOT National Transportation Integrated Search

    1998-11-01

    The TFVC system was developed in collaboration with the New York State Department of Transportation, the Federal Highway Administration, and the US Air Force Research Laboratory. It is a video-camera-based, wide-area, traffic surveillance and detecti...

  5. Design and evaluation of an advanced air-ground data-link system for air traffic control

    NASA Technical Reports Server (NTRS)

    Denbraven, Wim

    1992-01-01

    The design and evaluation of the ground-based portion of an air-ground data-link system for air traffic control (ATC) are described. The system was developed to support the 4D Aircraft/ATC Integration Study, a joint simulation experiment conducted at NASA's Ames and Langley Research Centers. The experiment focused on airborne and ground-based procedures for handling aircraft equipped with a 4D-Flight Management System (FMS) and the system requirements needed to ensure conflict-free traffic flow. The Center/TRACON Automation System (CTAS) at Ames was used for the ATC part of the experiment, and the 4D-FMS-equipped aircraft was simulated by the Transport Systems Research Vehicle (TSRV) simulator at Langley. The data-link system supported not only conventional ATC communications, but also the communications needed to accommodate the 4D-FMS capabilities of advanced aircraft. Of great significance was the synergism gained from integrating the data link with CTAS. Information transmitted via the data link was used to improve the monitoring and analysis capability of CTAS without increasing controller input workload. Conversely, CTAS was used to anticipate and create prototype messages, thus reducing the workload associated with the manual creation of data-link messages.

  6. Emergency vehicle traffic signal preemption system

    NASA Technical Reports Server (NTRS)

    Foster, Conrad F. (Inventor); Bachelder, Aaron D. (Inventor)

    2005-01-01

    An emergency vehicle traffic light preemption system for preemption of traffic lights at an intersection to allow safe passage of emergency vehicles. The system includes a real-time status monitor of an intersection which is relayed to a communications controller for transmission to emergency vehicles as well as to a central dispatch office. The system also provides for audio warnings at an intersection to protect pedestrians who may not be in a position to see visual warnings or for various reasons cannot hear the approach of emergency vehicles. A transponder mounted on an emergency vehicle provides autonomous control so the vehicle operator can attend to getting to an emergency and not be concerned with the operation of the system. Activation of a Code 3 situation provides communications with each intersection being approached by an emergency vehicle and indicates whether the intersection is preempted or if there is any conflict with other approaching emergency vehicles. On-board diagnostics handle various information including heading, speed, and acceleration sent to a communications controller which is transmitted to an intersection and which also simultaneously receives information regarding the status of an intersection.

  7. NASA UAS Traffic Management National Campaign Operations across Six UAS Test Sites

    NASA Technical Reports Server (NTRS)

    Rios, Joseph; Mulfinger, Daniel; Homola, Jeff; Venkatesan, Priya

    2016-01-01

    NASA's Unmanned Aircraft Systems Traffic Management research aims to develop policies, procedures, requirements, and other artifacts to inform the implementation of a future system that enables small drones to access the low altitude airspace. In this endeavor, NASA conducted a geographically diverse flight test in conjunction with the FAA's six unmanned aircraft systems Test Sites. A control center at NASA Ames Research Center autonomously managed the airspace for all participants in eight states as they flew operations (both real and simulated). The system allowed for common situational awareness across all stakeholders, kept traffic procedurally separated, offered messages to inform the participants of activity relevant to their operations. Over the 3- hour test, 102 flight operations connected to the central research platform with 17 different vehicle types and 8 distinct software client implementations while seamlessly interacting with simulated traffic.

  8. Extravehicular Activity/Air Traffic Control (EVA/ATC) test report. [communication links to the astronaut

    NASA Technical Reports Server (NTRS)

    Tomaro, D. J.

    1982-01-01

    During extravehicular activity (EVA), communications between the EVA astronaut and the space shuttle orbiter are maintained by means of transceiver installed in the environmental support system backpack. Onboard the orbiter, a transceiver line replaceable unit and its associated equipment performs the task of providing a communications link to the astronaut in the extravehicular activity/air traffic control (EVA/ATC) mode. Results of the acceptance tests that performed on the system designed and fabricated for EVA/ATC testing are discussed.

  9. Sensor Technologies for Intelligent Transportation Systems

    PubMed Central

    Guerrero-Ibáñez, Juan; Zeadally, Sherali

    2018-01-01

    Modern society faces serious problems with transportation systems, including but not limited to traffic congestion, safety, and pollution. Information communication technologies have gained increasing attention and importance in modern transportation systems. Automotive manufacturers are developing in-vehicle sensors and their applications in different areas including safety, traffic management, and infotainment. Government institutions are implementing roadside infrastructures such as cameras and sensors to collect data about environmental and traffic conditions. By seamlessly integrating vehicles and sensing devices, their sensing and communication capabilities can be leveraged to achieve smart and intelligent transportation systems. We discuss how sensor technology can be integrated with the transportation infrastructure to achieve a sustainable Intelligent Transportation System (ITS) and how safety, traffic control and infotainment applications can benefit from multiple sensors deployed in different elements of an ITS. Finally, we discuss some of the challenges that need to be addressed to enable a fully operational and cooperative ITS environment. PMID:29659524

  10. Sensor Technologies for Intelligent Transportation Systems.

    PubMed

    Guerrero-Ibáñez, Juan; Zeadally, Sherali; Contreras-Castillo, Juan

    2018-04-16

    Modern society faces serious problems with transportation systems, including but not limited to traffic congestion, safety, and pollution. Information communication technologies have gained increasing attention and importance in modern transportation systems. Automotive manufacturers are developing in-vehicle sensors and their applications in different areas including safety, traffic management, and infotainment. Government institutions are implementing roadside infrastructures such as cameras and sensors to collect data about environmental and traffic conditions. By seamlessly integrating vehicles and sensing devices, their sensing and communication capabilities can be leveraged to achieve smart and intelligent transportation systems. We discuss how sensor technology can be integrated with the transportation infrastructure to achieve a sustainable Intelligent Transportation System (ITS) and how safety, traffic control and infotainment applications can benefit from multiple sensors deployed in different elements of an ITS. Finally, we discuss some of the challenges that need to be addressed to enable a fully operational and cooperative ITS environment.

  11. Florida specific NTCIP MIB development for actuated signal controller (ASC), closed-circuit television (CCTV), and center-to-center (C2C) communications with SunGuideSM software and ITS device test procedure development : summary of final report.

    DOT National Transportation Integrated Search

    2009-06-01

    To provide hardware, software, network, systems research, and testing for multi-million dollar traffic : operations, Intelligent Transportation Systems (ITS), and statewide communications investments, the : Traffic Engineering and Operations Office h...

  12. Florida specific NTCIP MIB development for actuated signal controller (ASC), closed-circuit television (CCTV), and center-to-center (C2C) communications with SunGuideSM software and ITS device test procedure development : executive summary.

    DOT National Transportation Integrated Search

    2009-06-01

    To provide hardware, software, network, systems research, and testing for multi-million : dollar traffic operations, Intelligent Transportation Systems (ITS), and statewide : communications investments, the Traffic Engineering and Operations Office h...

  13. The Center/TRACON Automation System (CTAS): A video presentation

    NASA Technical Reports Server (NTRS)

    Green, Steven M.; Freeman, Jeannine

    1992-01-01

    NASA Ames, working with the FAA, has developed a highly effective set of automation tools for aiding the air traffic controller in traffic management within the terminal area. To effectively demonstrate these tools, the video AAV-1372, entitled 'Center/TRACON Automation System,' was produced. The script to the video is provided along with instructions for its acquisition.

  14. Evidence toward an expanded international civil aviation organization (ICAO) concept of a single unified global communication navigation surveillance air traffic management (CNS/ATM) system: A quantitative analysis of ADS-B technology within a CNS/ATM system

    NASA Astrophysics Data System (ADS)

    Gardner, Gregory S.

    This research dissertation summarizes research done on the topic of global air traffic control, to include technology, controlling world organizations and economic considerations. The International Civil Aviation Organization (ICAO) proposed communication, navigation, surveillance, air traffic management system (CNS/ATM) plan is the basis for the development of a single global CNS/ATM system concept as it is discussed within this study. Research will be evaluated on the efficacy of a single technology, Automatic Dependent Surveillance-Broadcast (ADS-B) within the scope of a single global CNS/ATM system concept. ADS-B has been used within the Federal Aviation Administration's (FAA) Capstone program for evaluation since the year 2000. The efficacy of ADS-B was measured solely by using National Transportation Safety Board (NTSB) data relating to accident and incident rates within the Alaskan airspace (AK) and that of the national airspace system (NAS).

  15. Evaluation of Intersection Traffic Control Measures through Simulation

    NASA Astrophysics Data System (ADS)

    Asaithambi, Gowri; Sivanandan, R.

    2015-12-01

    Modeling traffic flow is stochastic in nature due to randomness in variables such as vehicle arrivals and speeds. Due to this and due to complex vehicular interactions and their manoeuvres, it is extremely difficult to model the traffic flow through analytical methods. To study this type of complex traffic system and vehicle interactions, simulation is considered as an effective tool. Application of homogeneous traffic models to heterogeneous traffic may not be able to capture the complex manoeuvres and interactions in such flows. Hence, a microscopic simulation model for heterogeneous traffic is developed using object oriented concepts. This simulation model acts as a tool for evaluating various control measures at signalized intersections. The present study focuses on the evaluation of Right Turn Lane (RTL) and Channelised Left Turn Lane (CLTL). A sensitivity analysis was performed to evaluate RTL and CLTL by varying the approach volumes, turn proportions and turn lane lengths. RTL is found to be advantageous only up to certain approach volumes and right-turn proportions, beyond which it is counter-productive. CLTL is found to be advantageous for lower approach volumes for all turn proportions, signifying the benefits of CLTL. It is counter-productive for higher approach volume and lower turn proportions. This study pinpoints the break-even points for various scenarios. The developed simulation model can be used as an appropriate intersection lane control tool for enhancing the efficiency of flow at intersections. This model can also be employed for scenario analysis and can be valuable to field traffic engineers in implementing vehicle-type based and lane-based traffic control measures.

  16. Justification for, and design of, an economical programmable multiple flight simulator

    NASA Technical Reports Server (NTRS)

    Kreifeldt, J. G.; Wittenber, J.; Macdonald, G.

    1981-01-01

    The considered research interests in air traffic control (ATC) studies revolve about the concept of distributed ATC management based on the assumption that the pilot has a cockpit display of traffic and navigation information (CDTI) via CRT graphics. The basic premise is that a CDTI equipped pilot can, in coordination with a controller, manage a part of his local traffic situation thereby improving important aspects of ATC performance. A modularly designed programmable flight simulator system is prototyped as a means of providing an economical facility of up to eight simulators to interface with a mainframe/graphics system for ATC experimentation, particularly CDTI-distributed management in which pilot-pilot interaction can have a determining effect on system performance. Need for a multiman simulator facility is predicted on results from an earlier three simulator facility.

  17. Green-wave control of an unbalanced two-route traffic system with signals

    NASA Astrophysics Data System (ADS)

    Tobita, Kazuhiro; Nagatani, Takashi

    2013-11-01

    We introduce the preference parameter into the two-route dynamic model proposed by Wahle et al. The parameter represents the driver’s preference for the route choice. When the driver prefers a route, the traffic flow on route A does not balance with that on route B. We study the signal control for the unbalanced two-route traffic flow at the tour-time feedback strategy where the vehicles move ahead through a series of signals. The traffic signals are controlled by both cycle time and phase shift (offset time). We find that the mean tour time can be balanced by selecting the offset time successfully. We derive the relationship between the mean tour time and offset time (phase shift). Also, the dependences of the mean density and mean current on the offset time are derived.

  18. Enabling Airspace Integration for High-Density On-Demand Mobility Operations

    NASA Technical Reports Server (NTRS)

    Mueller, Eric; Kopardekar, Parimal; Goodrich, Kenneth H.

    2017-01-01

    Aviation technologies and concepts have reached a level of maturity that may soon enable an era of on-demand mobility (ODM) fueled by quiet, efficient, and largely automated air taxis. However, successfully bringing such a system to fruition will require introducing orders of magnitude more aircraft to a given airspace volume than can be accommodated by the traditional air traffic control system, among other important technical challenges. The airspace integration problem is further compounded by requirements to set aside appropriate ground infrastructure for take-off and landing areas and ensuring these new aircraft types and their operations do not burden traditional airspace users and air traffic control. This airspace integration challenge may be significantly reduced by extending the concepts and technologies developed to manage small unmanned aircraft systems (UAS) at low altitudethe UAS traffic management (UTM) systemto higher altitudes and new aircraft types, or by equipping ODM aircraft with advanced sensors, algorithms, and interfaces. The precedent of operational freedom inherent in visual flight rules and the technologies developed for large UAS and commercial aircraft automation will contribute to the evolution of an ODM system enabled by UTM. This paper describes the set of air traffic services, normally provided by the traditional air traffic system, that an ODM system would implement to achieve the high densities needed for ODMs economic viability. Finally, the paper proposes a framework for integrating, evaluating, and deploying low-, medium-, and high-density ODM concepts that build on each other to ensure operational and economic feasibility at every step.

  19. 23 CFR 655.604 - Achieving basic uniformity.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION ENGINEERING AND TRAFFIC OPERATIONS... system should be based on inventories made in accordance with the Highway Safety Program Guideline 21, “Roadway Safety.” These inventories provide the information necessary for programming traffic control...

  20. An integrated computer system for analysis, selection, and evaluation of unconventional intersections.

    DOT National Transportation Integrated Search

    2011-03-01

    The emergence of unconventional intersections in the traffic community has been motivated by the notion : of improving service quality with innovative control strategies, such as rerouting the turning movements : or flipping the paths of two traffic ...

  1. Frankfurt, Germany: 1030/1090 MegaHertz Signal Analysis

    DOT National Transportation Integrated Search

    1996-07-01

    The Data Link Test Analysis System (DATAS) was used in the Frankfort, Germany : to collect data in the frequency band used by Air Traffic Control Radar : Beacon (ATCRBS), Mode Select (Mode S), and Traffic Alert and Collision : Avoidance (TCAS). Data ...

  2. An empirically grounded agent based model for modeling directs, conflict detection and resolution operations in air traffic management.

    PubMed

    Bongiorno, Christian; Miccichè, Salvatore; Mantegna, Rosario N

    2017-01-01

    We present an agent based model of the Air Traffic Management socio-technical complex system aiming at modeling the interactions between aircraft and air traffic controllers at a tactical level. The core of the model is given by the conflict detection and resolution module and by the directs module. Directs are flight shortcuts that are given by air controllers to speed up the passage of an aircraft within a certain airspace and therefore to facilitate airline operations. Conflicts between flight trajectories can occur for two main reasons: either the planning of the flight trajectory was not sufficiently detailed to rule out all potential conflicts or unforeseen events during the flight require modifications of the flight plan that can conflict with other flight trajectories. Our model performs a local conflict detection and resolution procedure. Once a flight trajectory has been made conflict-free, the model searches for possible improvements of the system efficiency by issuing directs. We give an example of model calibration based on real data. We then provide an illustration of the capability of our model in generating scenario simulations able to give insights about the air traffic management system. We show that the calibrated model is able to reproduce the existence of a geographical localization of air traffic controllers' operations. Finally, we use the model to investigate the relationship between directs and conflict resolutions (i) in the presence of perfect forecast ability of controllers, and (ii) in the presence of some degree of uncertainty in flight trajectory forecast.

  3. Air traffic control by distributed management in a MLS environment

    NASA Technical Reports Server (NTRS)

    Kreifeldt, J. G.; Parkin, L.; Hart, S.

    1977-01-01

    The microwave landing system (MLS) is a technically feasible means for increasing runway capacity since it could support curved approaches to a short final. The shorter the final segment of the approach, the wider the variety of speed mixes possible so that theoretically, capacity would ultimately be limited by runway occupance time only. An experiment contrasted air traffic control in a MLS environment under a centralized form of management and under distributed management which was supported by a traffic situation display in each of the 3 piloted simulators. Objective flight data, verbal communication and subjective responses were recorded on 18 trial runs lasting about 20 minutes each. The results were in general agreement with previous distributed management research. In particular, distributed management permitted a smaller spread of intercrossing times and both pilots and controllers perceived distributed management as the more 'ideal' system in this task. It is concluded from this and previous research that distributed management offers a viable alternative to centralized management with definite potential for dealing with dense traffic in a safe, orderly and expeditious manner.

  4. Oceanic Situational Awareness Over the Western Atlantic Track Routing System

    NASA Technical Reports Server (NTRS)

    Welch, Bryan; Greenfeld, Israel

    2005-01-01

    Air traffic control (ATC) mandated, aircraft separations over the oceans impose a limitation on traffic capacity for a given corridor, given the projected traffic growth over the Western Atlantic Track Routing System (WATRS). The separations result from a lack of acceptable situational awareness over oceans where radar position updates are not available. This study considers the use of Automatic Dependent Surveillance (ADS) data transmitted over a commercial satellite communications system as an approach to provide ATC with the needed situational awareness and thusly allow for reduced aircraft separations. This study uses Federal Aviation Administration data from a single day for the WATRS corridor to analyze traffic loading to be used as a benchmark against which to compare several approaches for coordinating data transmissions from the aircraft to the satellites.

  5. An RFID-based intelligent vehicle speed controller using active traffic signals.

    PubMed

    Pérez, Joshué; Seco, Fernando; Milanés, Vicente; Jiménez, Antonio; Díaz, Julio C; de Pedro, Teresa

    2010-01-01

    These days, mass-produced vehicles benefit from research on Intelligent Transportation System (ITS). One prime example of ITS is vehicle Cruise Control (CC), which allows it to maintain a pre-defined reference speed, to economize on fuel or energy consumption, to avoid speeding fines, or to focus all of the driver's attention on the steering of the vehicle. However, achieving efficient Cruise Control is not easy in roads or urban streets where sudden changes of the speed limit can happen, due to the presence of unexpected obstacles or maintenance work, causing, in inattentive drivers, traffic accidents. In this communication we present a new Infrastructure to Vehicles (I2V) communication and control system for intelligent speed control, which is based upon Radio Frequency Identification (RFID) technology for identification of traffic signals on the road, and high accuracy vehicle speed measurement with a Hall effect-based sensor. A fuzzy logic controller, based on sensor fusion of the information provided by the I2V infrastructure, allows the efficient adaptation of the speed of the vehicle to the circumstances of the road. The performance of the system is checked empirically, with promising results.

  6. An RFID-Based Intelligent Vehicle Speed Controller Using Active Traffic Signals

    PubMed Central

    Pérez, Joshué; Seco, Fernando; Milanés, Vicente; Jiménez, Antonio; Díaz, Julio C.; de Pedro, Teresa

    2010-01-01

    These days, mass-produced vehicles benefit from research on Intelligent Transportation System (ITS). One prime example of ITS is vehicle Cruise Control (CC), which allows it to maintain a pre-defined reference speed, to economize on fuel or energy consumption, to avoid speeding fines, or to focus all of the driver’s attention on the steering of the vehicle. However, achieving efficient Cruise Control is not easy in roads or urban streets where sudden changes of the speed limit can happen, due to the presence of unexpected obstacles or maintenance work, causing, in inattentive drivers, traffic accidents. In this communication we present a new Infrastructure to Vehicles (I2V) communication and control system for intelligent speed control, which is based upon Radio Frequency Identification (RFID) technology for identification of traffic signals on the road, and high accuracy vehicle speed measurement with a Hall effect-based sensor. A fuzzy logic controller, based on sensor fusion of the information provided by the I2V infrastructure, allows the efficient adaptation of the speed of the vehicle to the circumstances of the road. The performance of the system is checked empirically, with promising results. PMID:22219692

  7. Intelligent Traffic Quantification System

    NASA Astrophysics Data System (ADS)

    Mohanty, Anita; Bhanja, Urmila; Mahapatra, Sudipta

    2017-08-01

    Currently, city traffic monitoring and controlling is a big issue in almost all cities worldwide. Vehicular ad-hoc Network (VANET) technique is an efficient tool to minimize this problem. Usually, different types of on board sensors are installed in vehicles to generate messages characterized by different vehicle parameters. In this work, an intelligent system based on fuzzy clustering technique is developed to reduce the number of individual messages by extracting important features from the messages of a vehicle. Therefore, the proposed fuzzy clustering technique reduces the traffic load of the network. The technique also reduces congestion and quantifies congestion.

  8. The NASA Air Traffic Management Ontology: Technical Documentation

    NASA Technical Reports Server (NTRS)

    Keller, Richard M.

    2017-01-01

    This document is intended to serve as comprehensive documentation for the NASA Air Traffic Management (ATM) Ontology. The ATM Ontology is a conceptual model that defines key classes of entities and relationships pertaining to the US National Airspace System (NAS) and the management of air traffic through that system. A wide variety of classes are represented in the ATM Ontology, including classes corresponding to flights, aircraft, manufacturers, airports, airlines, air routes, NAS facilities, air traffic control advisories, weather phenomena, and many others. The Ontology can be useful in the context of a variety of information management tasks relevant to NAS, including information exchange, data query and search, information organization, information integration, and terminology standardization.

  9. A Sarsa(λ)-based control model for real-time traffic light coordination.

    PubMed

    Zhou, Xiaoke; Zhu, Fei; Liu, Quan; Fu, Yuchen; Huang, Wei

    2014-01-01

    Traffic problems often occur due to the traffic demands by the outnumbered vehicles on road. Maximizing traffic flow and minimizing the average waiting time are the goals of intelligent traffic control. Each junction wants to get larger traffic flow. During the course, junctions form a policy of coordination as well as constraints for adjacent junctions to maximize their own interests. A good traffic signal timing policy is helpful to solve the problem. However, as there are so many factors that can affect the traffic control model, it is difficult to find the optimal solution. The disability of traffic light controllers to learn from past experiences caused them to be unable to adaptively fit dynamic changes of traffic flow. Considering dynamic characteristics of the actual traffic environment, reinforcement learning algorithm based traffic control approach can be applied to get optimal scheduling policy. The proposed Sarsa(λ)-based real-time traffic control optimization model can maintain the traffic signal timing policy more effectively. The Sarsa(λ)-based model gains traffic cost of the vehicle, which considers delay time, the number of waiting vehicles, and the integrated saturation from its experiences to learn and determine the optimal actions. The experiment results show an inspiring improvement in traffic control, indicating the proposed model is capable of facilitating real-time dynamic traffic control.

  10. Intelligent Advisory Speed Limit Dedication in Highway Using VANET

    PubMed Central

    Md Noor, Rafidah; Yeo, Hwasoo; Jung, Jason J.

    2014-01-01

    Variable speed limits (VSLs) as a mean for enhancing road traffic safety are studied for decades to modify the speed limit based on the prevailing road circumstances. In this study the pros and cons of VSL systems and their effects on traffic controlling efficiency are summarized. Despite the potential effectiveness of utilizing VSLs, we have witnessed that the effectiveness of this system is impacted by factors such as VSL control strategy used and the level of driver compliance. Hence, the proposed approach called Intelligent Advisory Speed Limit Dedication (IASLD) as the novel VSL control strategy which considers the driver compliance aims to improve the traffic flow and occupancy of vehicles in addition to amelioration of vehicle's travel times. The IASLD provides the advisory speed limit for each vehicle exclusively based on the vehicle's characteristics including the vehicle type, size, and safety capabilities as well as traffic and weather conditions. The proposed approach takes advantage of vehicular ad hoc network (VANET) to accelerate its performance, in the way that simulation results demonstrate the reduction of incident detection time up to 31.2% in comparison with traditional VSL strategy. The simulation results similarly indicate the improvement of traffic flow efficiency, occupancy, and travel time in different conditions. PMID:24999493

  11. Optimization design of urban expressway ramp control

    NASA Astrophysics Data System (ADS)

    Xu, Hongke; Li, Peiqi; Zheng, Jinnan; Sun, Xiuzhen; Lin, Shan

    2017-05-01

    In this paper, various types of expressway systems are analyzed, and a variety of signal combinations are proposed to mitigate traffic congestion. And various signal combinations are used to verify the effectiveness of the multi-signal combinatorial control strategy. The simulation software VISSIM was used to simulate the system. Based on the network model of 25 kinds of road length combinations and the simulation results, an optimization scheme suitable for the practical road model is summarized. The simulation results show that the controller can reduce the travel time by 25% under the large traffic flow and improve the road capacity by about 20%.

  12. 49 CFR 233.1 - Scope.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... TRANSPORTATION SIGNAL SYSTEMS REPORTING REQUIREMENTS § 233.1 Scope. This part prescribed reporting requirements with respect to methods of train operation, block signal systems, interlockings, traffic control systems, automatic train stop, train control, and cab signal systems, or other similar appliances, methods...

  13. 49 CFR 233.1 - Scope.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... TRANSPORTATION SIGNAL SYSTEMS REPORTING REQUIREMENTS § 233.1 Scope. This part prescribed reporting requirements with respect to methods of train operation, block signal systems, interlockings, traffic control systems, automatic train stop, train control, and cab signal systems, or other similar appliances, methods...

  14. Satellite-aided coastal zone monitoring and vessel traffic system

    NASA Technical Reports Server (NTRS)

    Baker, J. L.

    1981-01-01

    The development and demonstration of a coastal zone monitoring and vessel traffic system is described. This technique uses a LORAN-C navigational system and relays signals via the ATS-3 satellite to a computer driven color video display for real time control. Multi-use applications of the system to search and rescue operations, coastal zone management and marine safety are described. It is emphasized that among the advantages of the system are: its unlimited range; compatibility with existing navigation systems; and relatively inexpensive cost.

  15. The Changeable Block Distance System Analysis

    NASA Astrophysics Data System (ADS)

    Lewiński, Andrzej; Toruń, Andrzej

    The paper treats about efficiency analysis in Changeable Block Distance (CBD) System connected with wireless positioning and control of train. The analysis is based on modeling of typical ERTMS line and comparison with actual and future traffic. The calculations are related to assumed parameters of railway traffic corresponding to real time - table of distance Psary - Góra Włodowska from CMK line equipped in classic, ETCS Level 1 and ETCS with CBD systems.

  16. Comparative analysis of characteristics and risk factors of traffic injury in aged people from urban and rural areas in Chongqing.

    PubMed

    Zhang, Liang; Zhou, Ji-Hong; Qiu, Jun; Zhang, Xiu-Zhu; Yuan, Dan-Feng; Gao, Zhi-Ming; Dai, Wei

    2012-01-01

    To study the epidemiologic characteristics of traffic injuries among people over 60 years old in the Nan'an district (urban) and Jiangjin district (rural) of Chongqing, and to discuss the corresponding strategies for its prevention and cure. Records of traffic injuries in people over 60 years old registered by the traffic police between 2000 and 2006 in Nan'an district and Jiangjin district were collected in the Database of Road Traffic Accidents and Traffic Injuries. Epidemiologic characteristics of traffic injuries among the aged people were analyzed and compared. Between the year 2000 and 2006, the average annual incidence of traffic injuries and mortality rate in the aged people in Nan'an district were 124.62/100 000 and 13.85/ 100 000 respectively, higher than that in Jiangjin district (27.49/ 100 000, 7.13/100 000, P less than 0.01). However, the mortality rate for the aged people who were involved in traffic injuries in Jiangjin district was 20.60%, higher than that in Nan'an district (10.00%, P less than 0.01). Head injury was the primary cause of death. Totally 76.58% of casualties were pede-strians. Over 90% of the traffic accidents occurred in the areas with no traffic signal or traffic control system. The traffic environment is unfavorable to the aged people. It is important to enhance traffic safety consciousness of drivers and the elderly and to strengthen traffic safety system and traffic law, so as to provide a safe road traffic environment for the aged people.

  17. Benefits of Imperfect Conflict Resolution Advisory Aids for Future Air Traffic Control.

    PubMed

    Trapsilawati, Fitri; Wickens, Christopher D; Qu, Xingda; Chen, Chun-Hsien

    2016-11-01

    The aim of this study was to examine the human-automation interaction issues and the interacting factors in the context of conflict detection and resolution advisory (CRA) systems. The issues of imperfect automation in air traffic control (ATC) have been well documented in previous studies, particularly in conflict-alerting systems. The extent to which the prior findings can be applied to an integrated conflict detection and resolution system in future ATC remains unknown. Twenty-four participants were evenly divided into two groups corresponding to a medium- and a high-traffic density condition, respectively. In each traffic density condition, participants were instructed to perform simulated ATC tasks under four automation conditions, including reliable, unreliable with short time allowance to secondary conflict (TAS), unreliable with long TAS, and manual conditions. Dependent variables accounted for conflict resolution performance, workload, situation awareness, and trust in and dependence on the CRA aid, respectively. Imposing the CRA automation did increase performance and reduce workload as compared with manual performance. The CRA aid did not decrease situation awareness. The benefits of the CRA aid were manifest even when it was imperfectly reliable and were apparent across traffic loads. In the unreliable blocks, trust in the CRA aid was degraded but dependence was not influenced, yet the performance was not adversely affected. The use of CRA aid would benefit ATC operations across traffic densities. CRA aid offers benefits across traffic densities, regardless of its imperfection, as long as its reliability level is set above the threshold of assistance, suggesting its application for future ATC. © 2016, Human Factors and Ergonomics Society.

  18. An optimization model for the US Air-Traffic System

    NASA Technical Reports Server (NTRS)

    Mulvey, J. M.

    1986-01-01

    A systematic approach for monitoring U.S. air traffic was developed in the context of system-wide planning and control. Towards this end, a network optimization model with nonlinear objectives was chosen as the central element in the planning/control system. The network representation was selected because: (1) it provides a comprehensive structure for depicting essential aspects of the air traffic system, (2) it can be solved efficiently for large scale problems, and (3) the design can be easily communicated to non-technical users through computer graphics. Briefly, the network planning models consider the flow of traffic through a graph as the basic structure. Nodes depict locations and time periods for either individual planes or for aggregated groups of airplanes. Arcs define variables as actual airplanes flying through space or as delays across time periods. As such, a special case of the network can be used to model the so called flow control problem. Due to the large number of interacting variables and the difficulty in subdividing the problem into relatively independent subproblems, an integrated model was designed which will depict the entire high level (above 29000 feet) jet route system for the 48 contiguous states in the U.S. As a first step in demonstrating the concept's feasibility a nonlinear risk/cost model was developed for the Indianapolis Airspace. The nonlinear network program --NLPNETG-- was employed in solving the resulting test cases. This optimization program uses the Truncated-Newton method (quadratic approximation) for determining the search direction at each iteration in the nonlinear algorithm. It was shown that aircraft could be re-routed in an optimal fashion whenever traffic congestion increased beyond an acceptable level, as measured by the nonlinear risk function.

  19. Airborne Four-Dimensional Flight Management in a Time-based Air Traffic Control Environment

    NASA Technical Reports Server (NTRS)

    Williams, David H.; Green, Steven M.

    1991-01-01

    Advanced Air Traffic Control (ATC) systems are being developed which contain time-based (4D) trajectory predictions of aircraft. Airborne flight management systems (FMS) exist or are being developed with similar 4D trajectory generation capabilities. Differences between the ATC generated profiles and those generated by the airborne 4D FMS may introduce system problems. A simulation experiment was conducted to explore integration of a 4D equipped aircraft into a 4D ATC system. The NASA Langley Transport Systems Research Vehicle cockpit simulator was linked in real time to the NASA Ames Descent Advisor ATC simulation for this effort. Candidate procedures for handling 4D equipped aircraft were devised and traffic scenarios established which required time delays absorbed through speed control alone or in combination with path stretching. Dissimilarities in 4D speed strategies between airborne and ATC generated trajectories were tested in these scenarios. The 4D procedures and FMS operation were well received by airline pilot test subjects, who achieved an arrival accuracy at the metering fix of 2.9 seconds standard deviation time error. The amount and nature of the information transmitted during a time clearance were found to be somewhat of a problem using the voice radio communication channel. Dissimilarities between airborne and ATC-generated speed strategies were found to be a problem when the traffic remained on established routes. It was more efficient for 4D equipped aircraft to fly trajectories with similar, though less fuel efficient, speeds which conform to the ATC strategy. Heavy traffic conditions, where time delays forced off-route path stretching, were found to produce a potential operational benefit of the airborne 4D FMS.

  20. Advisory Systems Save Time, Fuel for Airlines

    NASA Technical Reports Server (NTRS)

    2012-01-01

    Heinz Erzberger never thought the sky was falling, but he knew it could benefit from enhanced traffic control. Throughout the 1990s, Erzberger led a team at Ames Research Center to develop a suite of automated tools to reduce restrictions and improve the efficiency of air traffic control operations. Called CTAS, or Center-TRACON (Terminal Radar Approach Control) Automation System, the software won NASA s Software of the Year award in 1998, and one of the tools in the suite - the traffic management advisor - was adopted by the Federal Aviation Administration and implemented at traffic control centers across the United States. Another one of the tools, Direct-To, has followed a different path. The idea behind Direct-To, explains Erzberger, a senior scientist at Ames, was that airlines could save fuel and money by shortening the routes they flew between take-off and landing. Aircraft are often limited to following established airways comprised of inefficient route segments. The routes are not easily adjusted because neither the pilot nor the aircraft controller can anticipate the constantly changing air traffic situation. To make the routes more direct while in flight, Erzberger came up with an idea for a software algorithm that could automatically examine air traffic in real-time, check to see if a shortcut was available, and then check for conflicts. If there were no conflicts and the shortcut saved more than 1 minute of flight time, the controller could be notified. "I was trying to figure out what goes on in the pilot and controller s minds when they decide to guide the aircraft in a certain way. That resulted in a different kind analysis," Erzberger says. As the engineer s idea went from theory to practice, in 2001, NASA demonstrated Direct-To in the airspace of Dallas-Ft. Worth. Estimations based on the demonstration found the technology was capable of saving 900 flying minutes per day for the aircraft in the test area.

  1. Traffic Flow Management Using Aggregate Flow Models and the Development of Disaggregation Methods

    NASA Technical Reports Server (NTRS)

    Sun, Dengfeng; Sridhar, Banavar; Grabbe, Shon

    2010-01-01

    A linear time-varying aggregate traffic flow model can be used to develop Traffic Flow Management (tfm) strategies based on optimization algorithms. However, there are no methods available in the literature to translate these aggregate solutions into actions involving individual aircraft. This paper describes and implements a computationally efficient disaggregation algorithm, which converts an aggregate (flow-based) solution to a flight-specific control action. Numerical results generated by the optimization method and the disaggregation algorithm are presented and illustrated by applying them to generate TFM schedules for a typical day in the U.S. National Airspace System. The results show that the disaggregation algorithm generates control actions for individual flights while keeping the air traffic behavior very close to the optimal solution.

  2. Advanced public transportation systems deployment in the United States

    DOT National Transportation Integrated Search

    2003-01-01

    Traffic control devices shall be defined as all signs, signals, markings, and other devices used to regulate, warn, or guide traffic, placed on, over, or adjacent to a street, highway, pedestrian facility, or bikeway by authority of a public agency h...

  3. Real-time network traffic classification technique for wireless local area networks based on compressed sensing

    NASA Astrophysics Data System (ADS)

    Balouchestani, Mohammadreza

    2017-05-01

    Network traffic or data traffic in a Wireless Local Area Network (WLAN) is the amount of network packets moving across a wireless network from each wireless node to another wireless node, which provide the load of sampling in a wireless network. WLAN's Network traffic is the main component for network traffic measurement, network traffic control and simulation. Traffic classification technique is an essential tool for improving the Quality of Service (QoS) in different wireless networks in the complex applications such as local area networks, wireless local area networks, wireless personal area networks, wireless metropolitan area networks, and wide area networks. Network traffic classification is also an essential component in the products for QoS control in different wireless network systems and applications. Classifying network traffic in a WLAN allows to see what kinds of traffic we have in each part of the network, organize the various kinds of network traffic in each path into different classes in each path, and generate network traffic matrix in order to Identify and organize network traffic which is an important key for improving the QoS feature. To achieve effective network traffic classification, Real-time Network Traffic Classification (RNTC) algorithm for WLANs based on Compressed Sensing (CS) is presented in this paper. The fundamental goal of this algorithm is to solve difficult wireless network management problems. The proposed architecture allows reducing False Detection Rate (FDR) to 25% and Packet Delay (PD) to 15 %. The proposed architecture is also increased 10 % accuracy of wireless transmission, which provides a good background for establishing high quality wireless local area networks.

  4. Intelligent lightening system of urban and rural road traffic based on pyroelectric infrared detector

    NASA Astrophysics Data System (ADS)

    Miao, Man-Xiang

    2007-12-01

    By using the photo-voltage characteristics of pyroelectric infrared detector to fulfill signal acquisition, the detecting signal is processed with the core of a single chip microprocessor AT89C51. AT89C51 controls the CAN bus controller SJA1000/transceiver 82C250 to structure CAN bus communication system to transmit data through serial interface MAX232 connected with PC. The intelligent lightening system of urban and rural road traffic was carried out. In this paper, its construction and part's methods of hardware and software design were introduced in detail.

  5. 49 CFR 236.814 - Station, control.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Station, control. 236.814 Section 236.814..., MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Definitions § 236.814 Station, control. The place where the control machine of a traffic control system is located. ...

  6. 49 CFR 236.777 - Operator, control.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Operator, control. 236.777 Section 236.777..., MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Definitions § 236.777 Operator, control. An employee assigned to operate the control machine of a traffic control system. ...

  7. 49 CFR 236.777 - Operator, control.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Operator, control. 236.777 Section 236.777..., MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Definitions § 236.777 Operator, control. An employee assigned to operate the control machine of a traffic control system. ...

  8. 49 CFR 236.814 - Station, control.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Station, control. 236.814 Section 236.814..., MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Definitions § 236.814 Station, control. The place where the control machine of a traffic control system is located. ...

  9. 49 CFR 236.814 - Station, control.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Station, control. 236.814 Section 236.814..., MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Definitions § 236.814 Station, control. The place where the control machine of a traffic control system is located. ...

  10. 49 CFR 236.777 - Operator, control.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Operator, control. 236.777 Section 236.777..., MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Definitions § 236.777 Operator, control. An employee assigned to operate the control machine of a traffic control system. ...

  11. 49 CFR 236.814 - Station, control.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Station, control. 236.814 Section 236.814..., MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Definitions § 236.814 Station, control. The place where the control machine of a traffic control system is located. ...

  12. 49 CFR 236.777 - Operator, control.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Operator, control. 236.777 Section 236.777..., MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Definitions § 236.777 Operator, control. An employee assigned to operate the control machine of a traffic control system. ...

  13. Traffic Aware Planner for Cockpit-Based Trajectory Optimization

    NASA Technical Reports Server (NTRS)

    Woods, Sharon E.; Vivona, Robert A.; Henderson, Jeffrey; Wing, David J.; Burke, Kelly A.

    2016-01-01

    The Traffic Aware Planner (TAP) software application is a cockpit-based advisory tool designed to be hosted on an Electronic Flight Bag and to enable and test the NASA concept of Traffic Aware Strategic Aircrew Requests (TASAR). The TASAR concept provides pilots with optimized route changes (including altitude) that reduce fuel burn and/or flight time, avoid interactions with known traffic, weather and restricted airspace, and may be used by the pilots to request a route and/or altitude change from Air Traffic Control. Developed using an iterative process, TAP's latest improvements include human-machine interface design upgrades and added functionality based on the results of human-in-the-loop simulation experiments and flight trials. Architectural improvements have been implemented to prepare the system for operational-use trials with partner commercial airlines. Future iterations will enhance coordination with airline dispatch and add functionality to improve the acceptability of TAP-generated route-change requests to pilots, dispatchers, and air traffic controllers.

  14. Integrated Traffic Flow Management Decision Making

    NASA Technical Reports Server (NTRS)

    Grabbe, Shon R.; Sridhar, Banavar; Mukherjee, Avijit

    2009-01-01

    A generalized approach is proposed to support integrated traffic flow management decision making studies at both the U.S. national and regional levels. It can consider tradeoffs between alternative optimization and heuristic based models, strategic versus tactical flight controls, and system versus fleet preferences. Preliminary testing was accomplished by implementing thirteen unique traffic flow management models, which included all of the key components of the system and conducting 85, six-hour fast-time simulation experiments. These experiments considered variations in the strategic planning look-ahead times, the replanning intervals, and the types of traffic flow management control strategies. Initial testing indicates that longer strategic planning look-ahead times and re-planning intervals result in steadily decreasing levels of sector congestion for a fixed delay level. This applies when accurate estimates of the air traffic demand, airport capacities and airspace capacities are available. In general, the distribution of the delays amongst the users was found to be most equitable when scheduling flights using a heuristic scheduling algorithm, such as ration-by-distance. On the other hand, equity was the worst when using scheduling algorithms that took into account the number of seats aboard each flight. Though the scheduling algorithms were effective at alleviating sector congestion, the tactical rerouting algorithm was the primary control for avoiding en route weather hazards. Finally, the modeled levels of sector congestion, the number of weather incursions, and the total system delays, were found to be in fair agreement with the values that were operationally observed on both good and bad weather days.

  15. Effects of ATC automation on precision approaches to closely space parallel runways

    NASA Technical Reports Server (NTRS)

    Slattery, R.; Lee, K.; Sanford, B.

    1995-01-01

    Improved navigational technology (such as the Microwave Landing System and the Global Positioning System) installed in modern aircraft will enable air traffic controllers to better utilize available airspace. Consequently, arrival traffic can fly approaches to parallel runways separated by smaller distances than are currently allowed. Previous simulation studies of advanced navigation approaches have found that controller workload is increased when there is a combination of aircraft that are capable of following advanced navigation routes and aircraft that are not. Research into Air Traffic Control automation at Ames Research Center has led to the development of the Center-TRACON Automation System (CTAS). The Final Approach Spacing Tool (FAST) is the component of the CTAS used in the TRACON area. The work in this paper examines, via simulation, the effects of FAST used for aircraft landing on closely spaced parallel runways. The simulation contained various combinations of aircraft, equipped and unequipped with advanced navigation systems. A set of simulations was run both manually and with an augmented set of FAST advisories to sequence aircraft, assign runways, and avoid conflicts. The results of the simulations are analyzed, measuring the airport throughput, aircraft delay, loss of separation, and controller workload.

  16. Human Factors Assessment: The Passive Final Approach Spacing Tool (pFAST) Operational Evaluation

    NASA Technical Reports Server (NTRS)

    Lee, Katharine K.; Sanford, Beverly D.

    1998-01-01

    Automation to assist air traffic controllers in the current terminal and en route air traff ic environments is being developed at Ames Research Center in conjunction with the Federal Aviation Administration. This automation, known collectively as the Center-TRACON Automation System (CTAS), provides decision- making assistance to air traffic controllers through computer-generated advisories. One of the CTAS tools developed specifically to assist terminal area air traffic controllers is the Passive Final Approach Spacing Tool (pFAST). An operational evaluation of PFAST was conducted at the Dallas/Ft. Worth, Texas, Terminal Radar Approach Control (TRACON) facility. Human factors data collected during the test describe the impact of the automation upon the air traffic controller in terms of perceived workload and acceptance. Results showed that controller self-reported workload was not significantly increased or reduced by the PFAST automation; rather, controllers reported that the levels of workload remained primarily the same. Controller coordination and communication data were analyzed, and significant differences in the nature of controller coordination were found. Controller acceptance ratings indicated that PFAST was acceptable. This report describes the human factors data and results from the 1996 Operational Field Evaluation of Passive FAST.

  17. A Sarsa(λ)-Based Control Model for Real-Time Traffic Light Coordination

    PubMed Central

    Zhu, Fei; Liu, Quan; Fu, Yuchen; Huang, Wei

    2014-01-01

    Traffic problems often occur due to the traffic demands by the outnumbered vehicles on road. Maximizing traffic flow and minimizing the average waiting time are the goals of intelligent traffic control. Each junction wants to get larger traffic flow. During the course, junctions form a policy of coordination as well as constraints for adjacent junctions to maximize their own interests. A good traffic signal timing policy is helpful to solve the problem. However, as there are so many factors that can affect the traffic control model, it is difficult to find the optimal solution. The disability of traffic light controllers to learn from past experiences caused them to be unable to adaptively fit dynamic changes of traffic flow. Considering dynamic characteristics of the actual traffic environment, reinforcement learning algorithm based traffic control approach can be applied to get optimal scheduling policy. The proposed Sarsa(λ)-based real-time traffic control optimization model can maintain the traffic signal timing policy more effectively. The Sarsa(λ)-based model gains traffic cost of the vehicle, which considers delay time, the number of waiting vehicles, and the integrated saturation from its experiences to learn and determine the optimal actions. The experiment results show an inspiring improvement in traffic control, indicating the proposed model is capable of facilitating real-time dynamic traffic control. PMID:24592183

  18. A Report by the NEHA Air Pollution Committee

    ERIC Educational Resources Information Center

    Kirkpatrick, Lane

    1972-01-01

    Transportation controls to reduce air pollution are elaborated. These include: traffic control, parking restrictions, retrofit systems, testing and inspection, gaseous fuel systems, improved public transportation, and work schedule changes. (BL)

  19. Analytical studies on the instabilities of heterogeneous intelligent traffic flow

    NASA Astrophysics Data System (ADS)

    Ngoduy, D.

    2013-10-01

    It has been widely reported in literature that a small perturbation in traffic flow such as a sudden deceleration of a vehicle could lead to the formation of traffic jams without a clear bottleneck. These traffic jams are usually related to instabilities in traffic flow. The applications of intelligent traffic systems are a potential solution to reduce the amplitude or to eliminate the formation of such traffic instabilities. A lot of research has been conducted to theoretically study the effect of intelligent vehicles, for example adaptive cruise control vehicles, using either computer simulation or analytical method. However, most current analytical research has only applied to single class traffic flow. To this end, the main topic of this paper is to perform a linear stability analysis to find the stability threshold of heterogeneous traffic flow using microscopic models, particularly the effect of intelligent vehicles on heterogeneous (or multi-class) traffic flow instabilities. The analytical results will show how intelligent vehicle percentages affect the stability of multi-class traffic flow.

  20. 77 FR 39206 - Public Hearing on Proposed Rule for Heavy Vehicle Electronic Stability Control Systems

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-02

    ... Control Systems AGENCY: National Highway Traffic Safety Administration (NHTSA), Department of...) systems on truck tractors and large buses. NHTSA is announcing a public hearing to provide an opportunity... No. 136, Electronic Stability Control Systems for Heavy Vehicles (77 FR 30766). The standard would...

  1. Enabling Airspace Integration for High-Density On-Demand Mobility Operations

    NASA Technical Reports Server (NTRS)

    Mueller, Eric; Kopardekar, Parimal; Goodrich, Kenneth H.

    2017-01-01

    Aviation technologies and concepts have reached a level of maturity that may soon enable an era of on-demand mobility (ODM) fueled by quiet, efficient, and largely automated air taxis. However, successfully bringing such a system to fruition will require introducing orders of magnitude more aircraft to a given airspace volume than can be accommodated by the traditional air traffic control system, among other important technical challenges. The airspace integration problem is further compounded by requirements to set aside appropriate ground infrastructure for take-off and landing areas and ensuring these new aircraft types and their operations do not burden traditional airspace users and air traffic control. This airspace integration challenge may be significantly reduced by extending the concepts and technologies developed to manage small unmanned aircraft systems (UAS) at low altitude - the UAS traffic management (UTM) system - to higher altitudes and new aircraft types, or by equipping ODM aircraft with advanced sensors, algorithms, and interfaces. The precedent of operational freedom inherent in visual flight rules and the technologies developed for large UAS and commercial aircraft automation will contribute to the evolution of an ODM system enabled by UTM. This paper describes the set of air traffic services, normally provided by the traditional air traffic system, that an ODM system would implement to achieve the high densities needed for ODM's economic viability. Finally, the paper proposes a framework for integrating, evaluating, and deploying low-, medium-, and high-density ODM concepts that build on each other to ensure operational and economic feasibility at every step.

  2. Information Requirements for Supervisory Air Traffic Controllers in Support of a Mid-Term Wake Vortex Departure System

    NASA Technical Reports Server (NTRS)

    Lohr, Gary W.; Williams, Daniel M.; Trujillo, Anna C.; Johnson, Edward J.; Domino, David A.

    2008-01-01

    A concept focusing on wind dependent departure operations has been developed the current version of this concept is called the Wake Turbulence Mitigation for Departures (WTMD). This concept takes advantage the fact that cross winds of sufficient velocity blow wakes generated by "heavy" and B757 category aircraft on the downwind runway away from the upwind runway. Supervisory Air Traffic Controllers would be responsible for authorization of the Procedure. An investigation of the information requirements necessary to for Supervisors to approve monitor and terminate the Procedure was conducted. Results clearly indicated that the requisite information is currently available in air traffic control towers and that additional information was not required.

  3. Automatic Traffic Advisory and Resolution Service (ATARS) Multi-Site Algorithms. Revision 1,

    DTIC Science & Technology

    1980-10-01

    Summary Concept Description The Automatic Traffic Advisory and Resolution Service is a ground based collision avoidance system to be implemented in the...capability. A ground based computer processes the data and continuously provides proximity warning information and, when necessary, resolution advisories to...of ground- based air traffic control which provides proximity warning and separation services to uncontrolled aircraft in a given region of airspace. it

  4. Graphical User Interface Development and Design to Support Airport Runway Configuration Management

    NASA Technical Reports Server (NTRS)

    Jones, Debra G.; Lenox, Michelle; Onal, Emrah; Latorella, Kara A.; Lohr, Gary W.; Le Vie, Lisa

    2015-01-01

    The objective of this effort was to develop a graphical user interface (GUI) for the National Aeronautics and Space Administration's (NASA) System Oriented Runway Management (SORM) decision support tool to support runway management. This tool is expected to be used by traffic flow managers and supervisors in the Airport Traffic Control Tower (ATCT) and Terminal Radar Approach Control (TRACON) facilities.

  5. Continental Land Mass Air Traffic Control (COLM ATC). [using three artificial satellite configurations

    NASA Technical Reports Server (NTRS)

    Pecar, J. A.; Henrich, J. E.

    1973-01-01

    The application of various satellite systems and techniques relative to providing air traffic control services for the continental United States was studied. Three satellite configurations were reviewed. The characteristics and capabilities of the satellites are described. The study includes consideration for the various ranging waveforms, multiple access alternatives, and the power and bandwidth required as a function of the number of users.

  6. A Survey of Research in Supervisory Control and Data Acquisition (SCADA)

    DTIC Science & Technology

    2014-09-01

    distance learning .2 The data acquired may be operationally oriented and used to better run the system, or it could be strategic in nature and used to...Technically the SCADA system is composed of the information technology (IT) that provides the human- machine interface (HMI) and stores and analyzes the data...systems work by learning what normal or benign traffic is and reporting on any abnormal traffic. These systems have the potential to detect zero-day

  7. 49 CFR 236.15 - Timetable instructions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ..., MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Rules and Instructions: All Systems General § 236.15 Timetable instructions. Automatic block, traffic control, train stop, train control and cab signal territory shall be designated in timetable instructions. ...

  8. 49 CFR 236.15 - Timetable instructions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Rules and Instructions: All Systems General § 236.15 Timetable instructions. Automatic block, traffic control, train stop, train control and cab signal territory shall be designated in timetable instructions. ...

  9. Evidence of traffic-related pollutant control in soil-based sustainable urban drainage systems (SUDS).

    PubMed

    Napier, F; Jefferies, C; Heal, K V; Fogg, P; Arcy, B J D; Clarke, R

    2009-01-01

    SUDS are being increasingly employed to control highway runoff and have the potential to protect groundwater and surface water quality by minimising the risks of both point and diffuse sources of pollution. While these systems are effective at retaining polluted solids by filtration and sedimentation processes, less is known of the detail of pollutant behaviour within SUDS structures. This paper reports on investigations carried out as part of a co-ordinated programme of controlled studies and field measurements at soft-engineered SUDS undertaken in the UK, observing the accumulation and behaviour of traffic-related heavy metals, oil and PAHs. The field data presented were collected from two extended detention basins serving the M74 motorway in the south-west of Scotland. Additional data were supplied from an experimental lysimeter soil core leaching study. Results show that basin design influences pollutant accumulation and behaviour in the basins. Management and/or control strategies are discussed for reducing the impact of traffic-related pollutants on the aqueous environment.

  10. Study on the propagation and dissipation of inland ship congestion under different control strategies

    NASA Astrophysics Data System (ADS)

    Chen, Yanyi; Wu, Hongyu; Wen, Zhe

    2017-05-01

    Inland waterway transportation is an important part of the comprehensive transportation system of sustainable development, and it is also a way of transportation which is restricted by natural conditions greatly. In recent years, the problems of insufficient traffic capacity of The Three Gorges become prominent due to the increasing in the number of ships. And the ship's detention caused by gale, frog, accident and one-way traffic in dry season has occurred, which not only increased the pressure of the navigable waterway but also seriously affected the safety of shipping. Based on the different types of ships, the Arena software was used to simulate the ship traffic flow. The paper analyzed the traffic congestion propagation and dissipation rule of the ship under different navigation control methods, and provided decision reference for the navigation management department to formulate the relevant navigation control strategy.

  11. Remotely Operated Aircraft (ROA) Impact on the National Airspace System (NAS) Work Package: Automation Impacts of ROA's in the NAS

    NASA Technical Reports Server (NTRS)

    2005-01-01

    The purpose of this document is to analyze the impact of Remotely Operated Aircraft (ROA) operations on current and planned Air Traffic Control (ATC) automation systems in the En Route, Terminal, and Traffic Flow Management domains. The operational aspects of ROA flight, while similar, are not entirely identical to their manned counterparts and may not have been considered within the time-horizons of the automation tools. This analysis was performed to determine if flight characteristics of ROAs would be compatible with current and future NAS automation tools. Improvements to existing systems / processes are recommended that would give Air Traffic Controllers an indication that a particular aircraft is an ROA and modifications to IFR flight plan processing algorithms and / or designation of airspace where an ROA will be operating for long periods of time.

  12. Develop a Normative or Descriptive Model of the International/Domestic Civil Aviation Industry. Volume 3.

    DTIC Science & Technology

    1982-09-30

    agencies, and airports, conducting aviation safety related- research and development, and managing and operating the national air space system. At the end of...1978 there were almost 800,000 active FAA certificated , t including slightly over 200,000 student pilots.2 Mechanics, control tower operators, and...U.S., and 107 overseas. The FAA operates and maintains 25 air route traffic control centers, 428 airport traffic control centers, 21 ccmbined stations

  13. Joint NASA Ames/Langley Experimental Evaluation of Integrated Air/Ground Operations for En Route Free Maneuvering

    NASA Technical Reports Server (NTRS)

    Barhydt, Richard; Kopardekar, Parimal; Battiste, Vernol; Doble, Nathan; Johnson, Walter; Lee, Paul; Prevot, Thomas; Smith, Nancy

    2005-01-01

    In order to meet the anticipated future demand for air travel, the National Aeronautics and Space Administration (NASA) is investigating a new concept of operations known as Distributed Air-Ground Traffic Management (DAG-TM). Under the En Route Free Maneuvering component of DAG-TM, appropriately equipped autonomous aircraft self separate from other autonomous aircraft and from managed aircraft that continue to fly under today s Instrument Flight Rules (IFR). Controllers provide separation services between IFR aircraft and assign traffic flow management constraints to all aircraft. To address concept feasibility issues pertaining to integrated air/ground operations at various traffic levels, NASA Ames and Langley Research Centers conducted a joint human-in-the-loop experiment. Professional airline pilots and air traffic controllers flew a total of 16 scenarios under four conditions: mixed autonomous/managed operations at three traffic levels and a baseline all-managed condition at the lowest traffic level. These scenarios included en route flights and descents to a terminal area meter fix in airspace modeled after the Dallas Ft. Worth area. Pilots of autonomous aircraft met controller assigned meter fix constraints with high success. Separation violations by subject pilots did not appear to vary with traffic level and were mainly attributable to software errors and procedural lapses. Controller workload was lower for mixed flight conditions, even at higher traffic levels. Pilot workload was deemed acceptable under all conditions. Controllers raised several safety concerns, most of which pertained to the occurrence of near-term conflicts between autonomous and managed aircraft. These issues are being addressed through better compatibility between air and ground systems and refinements to air and ground procedures.

  14. Feasibility Studies of Surveillance, Communication, and Data Processing Subsystems for Advanced Air Traffic Management

    DOT National Transportation Integrated Search

    1972-11-01

    Analyses are made of waveforms, parameters, codes, error rates, and multi-access noise for proposed communications and surveillance subsystems to be useful for air traffic control in the 1990-2000 time period. The systems represented in these analyse...

  15. MARSnet: Mission-aware Autonomous Radar Sensor Network for Future Combat Systems

    DTIC Science & Technology

    2007-05-03

    34Parameter estimation for 3-parameter log-logistic distribution (LLD3) by Porne ", Parameter estimation for 3-parameter log-logistic distribu- tion...section V we physical security, air traffic control, traffic monitoring, andvidefaconu s cribedy. video surveillance, industrial automation etc. Each

  16. ATD-1 ATM Technology Demonstration-1 and Integrated Scheduling

    NASA Technical Reports Server (NTRS)

    Quon, Leighton

    2014-01-01

    Enabling efficient arrivals for the NextGen Air Traffic Management System and developing a set of integrated decision support tools to reduce the high cognitive workload so that controllers are able to simultaneously achieve safe, efficient, and expedient operations at high traffic demand levels.

  17. Human Computer Interactions in Next-Generation of Aircraft Smart Navigation Management Systems: Task Analysis and Architecture under an Agent-Oriented Methodological Approach

    PubMed Central

    Canino-Rodríguez, José M.; García-Herrero, Jesús; Besada-Portas, Juan; Ravelo-García, Antonio G.; Travieso-González, Carlos; Alonso-Hernández, Jesús B.

    2015-01-01

    The limited efficiency of current air traffic systems will require a next-generation of Smart Air Traffic System (SATS) that relies on current technological advances. This challenge means a transition toward a new navigation and air-traffic procedures paradigm, where pilots and air traffic controllers perform and coordinate their activities according to new roles and technological supports. The design of new Human-Computer Interactions (HCI) for performing these activities is a key element of SATS. However efforts for developing such tools need to be inspired on a parallel characterization of hypothetical air traffic scenarios compatible with current ones. This paper is focused on airborne HCI into SATS where cockpit inputs came from aircraft navigation systems, surrounding traffic situation, controllers’ indications, etc. So the HCI is intended to enhance situation awareness and decision-making through pilot cockpit. This work approach considers SATS as a system distributed on a large-scale with uncertainty in a dynamic environment. Therefore, a multi-agent systems based approach is well suited for modeling such an environment. We demonstrate that current methodologies for designing multi-agent systems are a useful tool to characterize HCI. We specifically illustrate how the selected methodological approach provides enough guidelines to obtain a cockpit HCI design that complies with future SATS specifications. PMID:25746092

  18. 49 CFR 236.403 - Signals at controlled point.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Signals at controlled point. 236.403 Section 236..., INSPECTION, MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Traffic Control Systems Standards § 236.403 Signals at controlled point. Signals at controlled point shall be so...

  19. 49 CFR 236.403 - Signals at controlled point.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Signals at controlled point. 236.403 Section 236..., INSPECTION, MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Traffic Control Systems Standards § 236.403 Signals at controlled point. Signals at controlled point shall be so...

  20. 49 CFR 236.403 - Signals at controlled point.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Signals at controlled point. 236.403 Section 236..., INSPECTION, MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Traffic Control Systems Standards § 236.403 Signals at controlled point. Signals at controlled point shall be so...

  1. 49 CFR 236.403 - Signals at controlled point.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Signals at controlled point. 236.403 Section 236..., INSPECTION, MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Traffic Control Systems Standards § 236.403 Signals at controlled point. Signals at controlled point shall be so...

  2. 49 CFR 236.403 - Signals at controlled point.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Signals at controlled point. 236.403 Section 236..., INSPECTION, MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Traffic Control Systems Standards § 236.403 Signals at controlled point. Signals at controlled point shall be so...

  3. Traffic signs recognition for driving assistance

    NASA Astrophysics Data System (ADS)

    Sai Sangram Reddy, Yatham; Karthik, Devareddy; Rana, Nikunj; Jasmine Pemeena Priyadarsini, M.; Rajini, G. K.; Naseera, Shaik

    2017-11-01

    In the current circumstances with the innovative headway, we must be able to provide assistance to the driving in recognising the traffic signs on the roads. At present time, many reviews are being directed moving in the direction of the usage of a keen Traffic Systems. One field of this exploration is driving support systems, and many reviews are being directed to create frameworks which distinguish and perceive street signs in front of the vehicle, and afterward utilize the data to advise the driver or to even control the vehicle by implementing this system on self-driving vehicles. In this paper we propose a method to detect the traffic sign board in a frame using HAAR cascading and then identifying the sign on it. The output may be either given out in voice or can be displayed as per the driver’s convenience. Each of the Traffic Sign is recognised using a database of images of symbols used to train the KNN classifier using open CV libraries.

  4. Acceptability of Flight Deck-Based Interval Management Crew Procedures

    NASA Technical Reports Server (NTRS)

    Murdock, Jennifer L.; Wilson, Sara R.; Hubbs, Clay E.; Smail, James W.

    2013-01-01

    The Interval Management for Near-term Operations Validation of Acceptability (IM-NOVA) experiment was conducted at the National Aeronautics and Space Administration (NASA) Langley Research Center (LaRC) in support of the NASA Next Generation Air Transportation System (NextGen) Airspace Systems Program's Air Traffic Management Technology Demonstration - 1 (ATD-1). ATD-1 is intended to showcase an integrated set of technologies that provide an efficient arrival solution for managing aircraft using NextGen surveillance, navigation, procedures, and automation for both airborne and ground-based systems. The goal of the IM-NOVA experiment was to assess if procedures outlined by the ATD-1 Concept of Operations, when used with a minimum set of Flight deck-based Interval Management (FIM) equipment and a prototype crew interface, were acceptable to and feasible for use by flight crews in a voice communications environment. To investigate an integrated arrival solution using ground-based air traffic control tools and aircraft automatic dependent surveillance broadcast (ADS-B) tools, the LaRC FIM system and the Traffic Management Advisor with Terminal Metering and Controller Managed Spacing tools developed at the NASA Ames Research Center (ARC) were integrated in LaRC's Air Traffic Operations Laboratory. Data were collected from 10 crews of current, qualified 757/767 pilots asked to fly a high-fidelity, fixed based simulator during scenarios conducted within an airspace environment modeled on the Dallas-Fort Worth (DFW) Terminal Radar Approach Control area. The aircraft simulator was equipped with the Airborne Spacing for Terminal Area Routes algorithm and a FIM crew interface consisting of electronic flight bags and ADS-B guidance displays. Researchers used "pseudo-pilot" stations to control 24 simulated aircraft that provided multiple air traffic flows into DFW, and recently retired DFW air traffic controllers served as confederate Center, Feeder, Final, and Tower controllers. Pilot participant feedback indicated that the procedures used by flight crews to receive and execute interval management (IM) clearances in a voice communications environment were logical, easy to follow, did not contain any missing or extraneous steps, and required the use of an acceptable level of workload. The majority of the pilot participants found the IM concept, in addition to the proposed FIM crew procedures, to be acceptable and indicated that the ATD-1 procedures can be successfully executed in a near-term NextGen environment.

  5. The Dynamic Planner: The Sequencer, Scheduler, and Runway Allocator for Air Traffic Control Automation

    NASA Technical Reports Server (NTRS)

    Wong, Gregory L.; Denery, Dallas (Technical Monitor)

    2000-01-01

    The Dynamic Planner (DP) has been designed, implemented, and integrated into the Center-TRACON Automation System (CTAS) to assist Traffic Management Coordinators (TMCs), in real time, with the task of planning and scheduling arrival traffic approximately 35 to 200 nautical miles from the destination airport. The TMC may input to the DP a series of current and future scheduling constraints that reflect the operation and environmental conditions of the airspace. Under these constraints, the DP uses flight plans, track updates, and Estimated Time of Arrival (ETA) predictions to calculate optimal runway assignments and arrival schedules that help ensure an orderly, efficient, and conflict-free flow of traffic into the terminal area. These runway assignments and schedules can be shown directly to controllers or they can be used by other CTAS tools to generate advisories to the controllers. Additionally, the TMC and controllers may override the decisions made by the DP for tactical considerations. The DP will adapt to computations to accommodate these manual inputs.

  6. Concepts of Integration for UAS Operations in the NAS

    NASA Technical Reports Server (NTRS)

    Consiglio, Maria C.; Chamberlain, James P.; Munoz, Cesar A.; Hoffler, Keith D.

    2012-01-01

    One of the major challenges facing the integration of Unmanned Aircraft Systems (UAS) in the National Airspace System (NAS) is the lack of an onboard pilot that can comply with the legal requirement identified in the US Code of Federal Regulations (CFR) that pilots see and avoid other aircraft. UAS will be expected to demonstrate the means to perform the function of see and avoid while preserving the safety level of the airspace and the efficiency of the air traffic system. This paper introduces a Sense and Avoid (SAA) concept for integration of UAS into the NAS that is currently being developed by the National Aeronautics and Space Administration (NASA) and identifies areas that require additional experimental evaluation to further inform various elements of the concept. The concept design rests on interoperability principles that take into account both the Air Traffic Control (ATC) environment as well as existing systems such as the Traffic Alert and Collision Avoidance System (TCAS). Specifically, the concept addresses the determination of well clear values that are large enough to avoid issuance of TCAS corrective Resolution Advisories, undue concern by pilots of proximate aircraft and issuance of controller traffic alerts. The concept also addresses appropriate declaration times for projected losses of well clear conditions and maneuvers to regain well clear separation.

  7. An Agent-Based Model for Analyzing Control Policies and the Dynamic Service-Time Performance of a Capacity-Constrained Air Traffic Management Facility

    NASA Technical Reports Server (NTRS)

    Conway, Sheila R.

    2006-01-01

    Simple agent-based models may be useful for investigating air traffic control strategies as a precursory screening for more costly, higher fidelity simulation. Of concern is the ability of the models to capture the essence of the system and provide insight into system behavior in a timely manner and without breaking the bank. The method is put to the test with the development of a model to address situations where capacity is overburdened and potential for propagation of the resultant delay though later flights is possible via flight dependencies. The resultant model includes primitive representations of principal air traffic system attributes, namely system capacity, demand, airline schedules and strategy, and aircraft capability. It affords a venue to explore their interdependence in a time-dependent, dynamic system simulation. The scope of the research question and the carefully-chosen modeling fidelity did allow for the development of an agent-based model in short order. The model predicted non-linear behavior given certain initial conditions and system control strategies. Additionally, a combination of the model and dimensionless techniques borrowed from fluid systems was demonstrated that can predict the system s dynamic behavior across a wide range of parametric settings.

  8. Automatic Dependent Surveillance Broadcast (ADS-B) System for Ownership and Traffic Situational Awareness

    NASA Technical Reports Server (NTRS)

    Arteaga, Ricardo A. (Inventor)

    2016-01-01

    The present invention proposes an automatic dependent surveillance broadcast (ADS-B) architecture and process, in which priority aircraft and ADS-B IN traffic information are included in the transmission of data through the telemetry communications to a remote ground control station. The present invention further proposes methods for displaying general aviation traffic information in three and/or four dimension trajectories using an industry standard Earth browser for increased situation awareness and enhanced visual acquisition of traffic for conflict detection. The present invention enable the applications of enhanced visual acquisition of traffic, traffic alerts, and en-route and terminal surveillance used to augment pilot situational awareness through ADS-B IN display and information in three or four dimensions for self-separation awareness.

  9. 49 CFR 235.1 - Scope.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... SIGNAL SYSTEM OR RELIEF FROM THE REQUIREMENTS OF PART 236 § 235.1 Scope. This part prescribes application for approval to discontinue or materially modify block signal systems, interlockings, traffic control systems, automatic train stop, train control, or cab signal systems, or other similar appliances, devices...

  10. Synthesis study of Texas signal control systems : technical report.

    DOT National Transportation Integrated Search

    2012-09-01

    In recent years, several versions of traffic control systems have been established across the United States and within the state of Texas. There is a growing need to identify the various versions of these systems that exist, including the system hard...

  11. Is vehicle automation enough to prevent crashes? Role of traffic operations in automated driving environments for traffic safety.

    PubMed

    Jeong, Eunbi; Oh, Cheol; Lee, Seolyoung

    2017-07-01

    Automated driving systems (ADSs) are expected to prevent traffic accidents caused by driver carelessness on freeways. There is no doubt regarding this safety benefit if all vehicles in the transportation system were equipped with ADSs; however, it is implausible to expect that ADSs will reach 100% market penetration rate (MPR) in the near future. Therefore, the following question arises: 'Can ADSs, which consider only situations in the vicinity of an equipped vehicle, really contribute to a significant reduction in traffic accidents?' To address this issue, the interactions between equipped and unequipped vehicles must be investigated, which is the purpose of this study. This study evaluated traffic safety at different MPRs based on a proposed index to represent the overall rear-end crash risk of the traffic stream. Two approaches were evaluated for adjusting longitudinal vehicle maneuvers: vehicle safety-based maneuvering (VSM), which considers the crash risk of an equipped vehicle and its neighboring vehicles, and traffic safety-based maneuvering (TSM), which considers the overall crash risk in the traffic stream. TSM assumes that traffic operational agencies are able to monitor all the vehicles and to intervene in vehicle maneuvering. An optimization process, which attempts to obtain vehicle maneuvering control parameters to minimize the overall crash risk, is integrated into the proposed evaluation framework. The main purpose of employing the optimization process for vehicle maneuvering in this study is to identify opportunities to improve traffic safety through effective traffic management rather than developing a vehicle control algorithm that can be implemented in practice. The microscopic traffic simulator VISSIM was used to simulate the freeway traffic stream and to conduct systematic evaluations based on the proposed methodology. Both TSM and VSM achieved significant reductions in the potential for rear-end crashes. However, TSM obtained much greater reductions when the MPR was greater than 50%. This study should inspire transportation researchers and engineers to develop effective traffic operations strategies for automated driving environments. Copyright © 2017. Published by Elsevier Ltd.

  12. 14 CFR 170.13 - Airport Traffic Control Tower (ATCT) establishment criteria.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Airport Traffic Control Tower (ATCT... AIR TRAFFIC CONTROL SERVICES AND NAVIGATIONAL FACILITIES Airport Traffic Control Towers § 170.13 Airport Traffic Control Tower (ATCT) establishment criteria. (a) The following criteria along with general...

  13. Variable speed limit strategies analysis with link transmission model on urban expressway

    NASA Astrophysics Data System (ADS)

    Li, Shubin; Cao, Danni

    2018-02-01

    The variable speed limit (VSL) is a kind of active traffic management method. Most of the strategies are used in the expressway traffic flow control in order to ensure traffic safety. However, the urban expressway system is the main artery, carrying most traffic pressure. It has similar traffic characteristics with the expressways between cities. In this paper, the improved link transmission model (LTM) combined with VSL strategies is proposed, based on the urban expressway network. The model can simulate the movement of the vehicles and the shock wave, and well balance the relationship between the amount of calculation and accuracy. Furthermore, the optimal VSL strategy can be proposed based on the simulation method. It can provide management strategies for managers. Finally, a simple example is given to illustrate the model and method. The selected indexes are the average density, the average speed and the average flow on the traffic network in the simulation. The simulation results show that the proposed model and method are feasible. The VSL strategy can effectively alleviate traffic congestion in some cases, and greatly promote the efficiency of the transportation system.

  14. Information Requirements for Supervisory Air Traffic Controllers in Support of a Wake Vortex Departure System

    NASA Technical Reports Server (NTRS)

    Lohr, Gary W.; Williams, Daniel M.; Trujillo, Anna C.

    2008-01-01

    Closely Space Parallel Runway (CSPR) configurations are capacity limited for departures due to the requirement to apply wake vortex separation standards from traffic departing on the adjacent parallel runway. To mitigate the effects of this constraint, a concept focusing on wind dependent departure operations has been developed, known as the Wake Turbulence Mitigation for Departures (WTMD). This concept takes advantage of the fact that crosswinds of sufficient velocity blow wakes generated by aircraft departing from the downwind runway away from the upwind runway. Consequently, under certain conditions, wake separations on the upwind runway would not be required based on wakes generated by aircraft on the downwind runway, as is currently the case. It follows that information requirements, and sources for this information, would need to be determined for airport traffic control tower (ATCT) supervisory personnel who would be charged with decisions regarding use of the procedure. To determine the information requirements, data were collected from ATCT supervisors and controller-in-charge qualified individuals at Lambert-St. Louis International Airport (STL) and George Bush Houston Intercontinental Airport (IAH). STL and IAH were chosen as data collection sites based on the implementation of a WTMD prototype system, operating in shadow mode, at these locations. The 17 total subjects (STL: 5, IAH: 12) represented a broad-base of air traffic experience. Results indicated that the following information was required to support the conduct of WTMD operations: current and forecast weather information, current and forecast traffic demand and traffic flow restrictions, and WTMD System status information and alerting. Subjects further indicated that the requisite information is currently available in the tower cab with the exception of the WTMD status and alerting. Subjects were given a demonstration of a display supporting the prototype systems and unanimously stated that the WTMD status information they felt important was represented. Overwhelmingly, subjects felt that approving, monitoring and terminating the WTMD procedure could be integrated into their supervisory workload.

  15. Effect of signals on two-route traffic system with real-time information

    NASA Astrophysics Data System (ADS)

    Tobita, Kazuhiro; Nagatani, Takashi

    2012-12-01

    We study the effect of signals on the vehicular traffic in the two-route system at the tour-time feedback strategy where the vehicles move ahead through a series of signals. The Nagel-Schreckenberg model is applied to the vehicular motion. The traffic signals are controlled by both cycle time and split. The tour times on two routes fluctuate periodically and alternately. The period increases with decreasing the split. Also, the tour time on each route varies with time by synchronizing with the density. The dependences of tour times and densities on both split and cycle time are clarified.

  16. Distributed Acoustic Sensing (DAS) Array near a Highway for Traffic Monitoring and Near-Surface Shear-Wave Velocity Profiles

    NASA Astrophysics Data System (ADS)

    Wang, H. F.; Fratta, D.; Lancelle, C.; Ak, E. Ms; Lord, N. E.

    2017-12-01

    Monitoring traffic is important for many technical reasons. It allows for better design of future roads and assessment of the state of current roads. The number, size, weight, and speed of vehicles control deterioration rate. Also, real-time information supplies data to intelligent information systems to help control traffic. Recently there have been studies looking at monitoring traffic seismically as vibrations from traffic are not sensitive to weather and poor visibility. Furthermore, traffic noise can be used to image S-wave velocity distribution in the near surface by capturing and interpreting Rayleigh and Love waves (Nakata, 2016; Zeng et al. 2016). The capability of DAS for high spatial sampling (1 m), temporal sampling (up to 10 kHz), and distributed nature (tens of kilometers) allows for a closer look at the traffic as it passes and how the speed of the vehicle may change over the length of the array. The potential and difficulties of using DAS for these objectives were studied using two DAS arrays. One at Garner Valley in Southern California (a 700-meter array adjacent to CA Highway 74) and another in Brady Hot Springs, Nevada (an 8700-meter array adjacent to Interstate 80). These studies experimentally evaluated the use of DAS data for monitoring traffic and assessing the use of traffic vibration as non-localized sources for seismic imaging. DAS arrays should also be resilient to issues with lighting conditions that are problematic for video monitoring and it may be sensitive to the weight of a vehicle. This study along a major interstate provides a basis for examining DAS' potential and limitations as a key component of intelligent highway systems.

  17. Los Angeles FOT spread spectrum radio traffic signal interconnect evaluation task : final report on full deployment

    DOT National Transportation Integrated Search

    1998-10-01

    The use of a spread spectrum radio network (SSRN) as an alternative to hard-wired communications between field equipment and the City of Los Angeless Automated Traffic Surveillance and Control (ATSAC) system has been investigated. The aim of using...

  18. Impact of Optimization Strategy and Adoption Rate on V2X Technology on Environmental Impact

    DOT National Transportation Integrated Search

    2018-12-31

    This research evaluated the effects of automated vehicle control strategies on system level emissions, travel time and wait time through a series of traffic lights. The study was conducted using traffic simulation and a realistic vehicle mix. Two con...

  19. Detection and enforcement of failure-to-yield in an emergency vehicle preemption system

    NASA Technical Reports Server (NTRS)

    Bachelder, Aaron (Inventor); Wickline, Richard (Inventor)

    2007-01-01

    An intersection controlled by an intersection controller receives trigger signals from on-coming emergency vehicles responding to an emergency call. The intersection controller initiates surveillance of the intersection via cameras installed at the intersection in response to a received trigger signal. The surveillance may begin immediately upon receipt of the trigger signal from an emergency vehicle, or may wait until the intersection controller determines that the signaling emergency vehicle is in the field of view of the cameras at the intersection. Portions of the captured images are tagged by the intersection controller based on tag signals transmitted by the vehicle or based on detected traffic patterns that indicate a potential traffic violation. The captured images are downloaded to a processing facility that analyzes the images and automatically issues citations for captured traffic violations.

  20. Simulating Human Cognition in the Domain of Air Traffic Control

    NASA Technical Reports Server (NTRS)

    Freed, Michael; Johnston, James C.; Null, Cynthia H. (Technical Monitor)

    1995-01-01

    Experiments intended to assess performance in human-machine interactions are often prohibitively expensive, unethical or otherwise impractical to run. Approximations of experimental results can be obtained, in principle, by simulating the behavior of subjects using computer models of human mental behavior. Computer simulation technology has been developed for this purpose. Our goal is to produce a cognitive model suitable to guide the simulation machinery and enable it to closely approximate a human subject's performance in experimental conditions. The described model is designed to simulate a variety of cognitive behaviors involved in routine air traffic control. As the model is elaborated, our ability to predict the effects of novel circumstances on controller error rates and other performance characteristics should increase. This will enable the system to project the impact of proposed changes to air traffic control procedures and equipment on controller performance.

  1. System Would Predictively Preempt Traffic Lights for Emergency Vehicles

    NASA Technical Reports Server (NTRS)

    Bachelder, Aaron; Foster, Conrad

    2004-01-01

    Two electronic communication-and-control systems have been proposed as means of modifying the switching of traffic lights to give priority to emergency vehicles. Both systems would utilize the inductive loops already installed in the streets of many municipalities to detect vehicles for timing the switching of traffic lights. The proposed systems could be used alone or to augment other automated emergency traffic-light preemption systems that are already present in some municipalities, including systems that recognize flashing lights or siren sounds or that utilize information on the positions of emergency vehicles derived from the Global Positioning System (GPS). Systems that detect flashing lights and siren sounds are limited in range, cannot "see" or "hear" well around corners, and are highly vulnerable to noise. GPS-based systems are effective in rural areas and small cities, but are often ineffective in large cities because of frequent occultation of GPS satellite signals by large structures. In contrast, the proposed traffic-loop forward prediction system would be relatively invulnerable to noise, would not be subject to significant range limitations, and would function well in large cities -- even in such places as underneath bridges and in tunnels, where GPS-based systems do not work. One proposed system has been characterized as "car-active" because each participating emergency vehicle would be equipped with a computer and a radio transceiver that would communicate with stationary transceivers at the traffic loops. The other proposed system has been characterized as "car-passive" because a passive radio transponder would be installed on the underside of a participating vehicle.

  2. The Development of the Multi-Center Traffic Management Advisor (MCTMA): Traffic Flow Management Research in a Multi-Facility Environment

    NASA Technical Reports Server (NTRS)

    Lee, Katharine K.; Davis, Thomas J.; Levin, Kerry M.; Rowe, Dennis W.

    2001-01-01

    The Traffic Management Advisor (TMA) is a decision-support tool for traffic managers and air traffic controllers that provides traffic flow visualization and other flow management tools. TMA creates an efficiently sequenced and safely spaced schedule for arrival traffic that meets but does not exceed specified airspace system constraints. TMA is being deployed at selected facilities throughout the National Airspace System in the US as part of the FAA's Free Flight Phase 1 program. TMA development and testing, and its current deployment, focuses on managing the arrival capacity for single major airports within single terminal areas and single en route centers. The next phase of development for this technology is the expansion of the TMA capability to complex facilities in which a terminal area or airport is fed by multiple en route centers, thus creating a multicenter TMA functionality. The focus of the multi-center TMA (McTMA) development is on the busy facilities in the Northeast comdor of the US. This paper describes the planning and development of McTMA and the challenges associated with adapting a successful traffic flow management tool for a very complex airspace.

  3. A preliminary estimate of future communications traffic for the electric power system

    NASA Technical Reports Server (NTRS)

    Barnett, R. M.

    1981-01-01

    Diverse new generator technologies using renewable energy, and to improve operational efficiency throughout the existing electric power systems are presented. A description of a model utility and the information transfer requirements imposed by incorporation of dispersed storage and generation technologies and implementation of more extensive energy management are estimated. An example of possible traffic for an assumed system, and an approach that can be applied to other systems, control configurations, or dispersed storage and generation penetrations is provided.

  4. The Future of Air Traffic Management

    NASA Technical Reports Server (NTRS)

    Denery, Dallas G.; Erzberger, Heinz; Edwards, Thomas A. (Technical Monitor)

    1998-01-01

    A system for the control of terminal area traffic to improve productivity, referred to as the Center-TRACON Automation System (CTAS), is being developed at NASA's Ames Research Center under a joint program with the FAA. CTAS consists of a set of integrated tools that provide computer-generated advisories for en-route and terminal area controllers. The premise behind the design of CTAS has been that successful planning of traffic requires accurate trajectory prediction. Data bases consisting of representative aircraft performance models, airline preferred operational procedures and a three dimensional wind model support the trajectory prediction. The research effort has been the design of a set of automation tools that make use of this trajectory prediction capability to assist controllers in overall management of traffic. The first tool, the Traffic Management Advisor (TMA), provides the overall flow management between the en route and terminal areas. A second tool, the Final Approach Spacing Tool (FAST) provides terminal area controllers with sequence and runway advisories to allow optimal use of the runways. The TMA and FAST are now being used in daily operations at Dallas/Ft. Worth airport. Additional activities include the development of several other tools. These include: 1) the En Route Descent Advisor that assist the en route controller in issuing conflict free descents and ascents; 2) the extension of FAST to include speed and heading advisories and the Expedite Departure Path (EDP) that assists the terminal controller in management of departures; and 3) the Collaborative Arrival Planner (CAP) that will assist the airlines in operational decision making. The purpose of this presentation is to review the CTAS concept and to present the results of recent field tests. The paper will first discuss the overall concept and then discuss the status of the individual tools.

  5. Cooperative and Integrated Vehicle and Intersection Control for Energy Efficiency (CIVIC-E²)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hou, Yunfei; Seliman, Salaheldeen M. S.; Wang, Enshu

    Recent advances in connected vehicle technologies enable vehicles and signal controllers to cooperate and improve the traffic management at intersections. This paper explores the opportunity for cooperative and integrated vehicle and intersection control for energy efficiency (CIVIC-E 2) to contribute to a more sustainable transportation system. We propose a two-level approach that jointly optimizes the traffic signal timing and vehicles' approach speed, with the objective being to minimize total energy consumption for all vehicles passing through an isolated intersection. More specifically, at the intersection level, a dynamic programming algorithm is designed to find the optimal signal timing by explicitly consideringmore » the arrival time and energy profile of each vehicle. At the vehicle level, a model predictive control strategy is adopted to ensure that vehicles pass through the intersection in a timely fashion. Our simulation study has shown that the proposed CIVIC-E 2 system can significantly improve intersection performance under various traffic conditions. Compared with conventional fixed-time and actuated signal control strategies, the proposed algorithm can reduce energy consumption and queue length by up to 31% and 95%, respectively.« less

  6. Cooperative and Integrated Vehicle and Intersection Control for Energy Efficiency (CIVIC-E²)

    DOE PAGES

    Hou, Yunfei; Seliman, Salaheldeen M. S.; Wang, Enshu; ...

    2018-02-15

    Recent advances in connected vehicle technologies enable vehicles and signal controllers to cooperate and improve the traffic management at intersections. This paper explores the opportunity for cooperative and integrated vehicle and intersection control for energy efficiency (CIVIC-E 2) to contribute to a more sustainable transportation system. We propose a two-level approach that jointly optimizes the traffic signal timing and vehicles' approach speed, with the objective being to minimize total energy consumption for all vehicles passing through an isolated intersection. More specifically, at the intersection level, a dynamic programming algorithm is designed to find the optimal signal timing by explicitly consideringmore » the arrival time and energy profile of each vehicle. At the vehicle level, a model predictive control strategy is adopted to ensure that vehicles pass through the intersection in a timely fashion. Our simulation study has shown that the proposed CIVIC-E 2 system can significantly improve intersection performance under various traffic conditions. Compared with conventional fixed-time and actuated signal control strategies, the proposed algorithm can reduce energy consumption and queue length by up to 31% and 95%, respectively.« less

  7. 76 FR 54156 - National Standards for Traffic Control Devices; the Manual on Uniform Traffic Control Devices for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-31

    ... traffic control device design, location, or operation that have made some existing devices in the field...-2010-0159] RIN 2125-AF43 National Standards for Traffic Control Devices; the Manual on Uniform Traffic Control Devices for Streets and Highways; Revision AGENCY: Federal Highway Administration (FHWA...

  8. 77 FR 28460 - National Standards for Traffic Control Devices; the Manual on Uniform Traffic Control Devices for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-14

    ...-2010-0159] RIN 2125-AF43 National Standards for Traffic Control Devices; the Manual on Uniform Traffic Control Devices for Streets and Highways; Revision AGENCY: Federal Highway Administration (FHWA..., approved by the FHWA, and recognized as the national standard for traffic control devices used on all...

  9. Signal system data mining

    DOT National Transportation Integrated Search

    2000-09-01

    Intelligent transportation systems (ITS) include large numbers of traffic sensors that collect enormous quantities of data. The data provided by ITS is necessary for advanced forms of control, however basic forms of control, primarily time-of-day (TO...

  10. Engineering management consideration for an integrated aeronautical mobile satellite service

    NASA Astrophysics Data System (ADS)

    Belcher, John M.

    In order to meet local air traffic control terminal requirements as well as national and transborder requirements, countries have developed communications, navigation, and surveillance (CNS) systems having little systems integration and a solely ground-based solution to air traffic control problems. It is believed that the application of satellite technology is the only currently viable solution that will enable international civil aviation to overcome the shortcomings of the presently available CNS systems. If properly implemented, available satellite system technology integrated with avionics and ground based capabilities, can be used to meet new global aviation demands. A clear transition plan has to be implemented so as to ensure continuity of service, recognize user-borne costs, and satisfy institutional and national objectives in the progress toward a universal air traffic management (ATM) system. ATM systems design should rely on a modular approach for flexibility and upgrading. An aeronautical mobile satellite service is intended to provide a worldwide satellite data link and direct air/ground voice communication. Institutional and financial roadblocks for implemetation of a global based approach will likely be far greater than technical constraints.

  11. A Review of Function Allocation and En Route Separation Assurance

    NASA Technical Reports Server (NTRS)

    Lewis, Timothy A.; Aweiss, Arwa S.; Guerreiro, Nelson M.; Daiker, Ronald J.

    2016-01-01

    Today's air traffic control system has reached a limit to the number of aircraft that can be safely managed at the same time. This air traffic capacity bottleneck is a critical problem along the path to modernization for air transportation. The design of the next separation assurance system to address this problem is a cornerstone of air traffic management research today. This report reviews recent work by NASA and others in the areas of function allocation and en route separation assurance. This includes: separation assurance algorithms and technology prototypes; concepts of operations and designs for advanced separation assurance systems; and specific investigations into air-ground and human-automation function allocation.

  12. Traffic Monitor

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Intelligent Vision Systems, Inc. (InVision) needed image acquisition technology that was reliable in bad weather for its TDS-200 Traffic Detection System. InVision researchers used information from NASA Tech Briefs and assistance from Johnson Space Center to finish the system. The NASA technology used was developed for Earth-observing imaging satellites: charge coupled devices, in which silicon chips convert light directly into electronic or digital images. The TDS-200 consists of sensors mounted above traffic on poles or span wires, enabling two sensors to view an intersection; a "swing and sway" feature to compensate for movement of the sensors; a combination of electronic shutter and gain control; and sensor output to an image digital signal processor, still frame video and optionally live video.

  13. Crew systems and flight station concepts for a 1995 transport aircraft

    NASA Technical Reports Server (NTRS)

    Sexton, G. A.

    1983-01-01

    Aircraft functional systems and crew systems were defined for a 1995 transport aircraft through a process of mission analysis, preliminary design, and evaluation in a soft mockup. This resulted in a revolutionary pilot's desk flight station design featuring an all-electric aircraft, fly-by-wire/light flight and thrust control systems, large electronic color head-down displays, head-up displays, touch panel controls for aircraft functional systems, voice command and response systems, and air traffic control systems projected for the 1990s. The conceptual aircraft, for which crew systems were designed, is a generic twin-engine wide-body, low-wing transport, capable of worldwide operation. The flight control system consists of conventional surfaces (some employed in unique ways) and new surfaces not used on current transports. The design will be incorporated into flight simulation facilities at NASA-Langley, NASA-Ames, and the Lockheed-Georgia Company. When interfaced with advanced air traffic control system models, the facilities will provide full-mission capability for researching issues affecting transport aircraft flight stations and crews of the 1990s.

  14. Case Study: Influences of Uncertainties and Traffic Scenario Difficulties in a Human-in-the-Loop Simulation

    NASA Technical Reports Server (NTRS)

    Bienert, Nancy; Mercer, Joey; Homola, Jeffrey; Morey, Susan; Prevot, Thomas

    2014-01-01

    This paper presents a case study of how factors such as wind prediction errors and metering delays can influence controller performance and workload in Human-In-The-Loop simulations. Retired air traffic controllers worked two arrival sectors adjacent to the terminal area. The main tasks were to provide safe air traffic operations and deliver the aircraft to the metering fix within +/- 25 seconds of the scheduled arrival time with the help of provided decision support tools. Analyses explore the potential impact of metering delays and system uncertainties on controller workload and performance. The results suggest that trajectory prediction uncertainties impact safety performance, while metering fix accuracy and workload appear subject to the scenario difficulty.

  15. A Multiple Agent Model of Human Performance in Automated Air Traffic Control and Flight Management Operations

    NASA Technical Reports Server (NTRS)

    Corker, Kevin; Pisanich, Gregory; Condon, Gregory W. (Technical Monitor)

    1995-01-01

    A predictive model of human operator performance (flight crew and air traffic control (ATC)) has been developed and applied in order to evaluate the impact of automation developments in flight management and air traffic control. The model is used to predict the performance of a two person flight crew and the ATC operators generating and responding to clearances aided by the Center TRACON Automation System (CTAS). The purpose of the modeling is to support evaluation and design of automated aids for flight management and airspace management and to predict required changes in procedure both air and ground in response to advancing automation in both domains. Additional information is contained in the original extended abstract.

  16. 14 CFR Special Federal Aviation... - Air Traffic Control System Emergency Operation

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Operation Federal Special Federal Aviation Regulation No. 60 Aeronautics and Space FEDERAL AVIATION... OPERATING AND FLIGHT RULES Pt. 91, SFAR No. 60 Special Federal Aviation Regulation No. 60—Air Traffic... Aviation Regulations (14 CFR chapter I), be familiar with all available information concerning that...

  17. 14 CFR Special Federal Aviation... - Air Traffic Control System Emergency Operation

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Operation Federal Special Federal Aviation Regulation No. 60 Aeronautics and Space FEDERAL AVIATION... OPERATING AND FLIGHT RULES Pt. 91, SFAR No. 60 Special Federal Aviation Regulation No. 60—Air Traffic... Aviation Regulations (14 CFR chapter I), be familiar with all available information concerning that...

  18. 14 CFR Special Federal Aviation... - Air Traffic Control System Emergency Operation

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Operation Federal Special Federal Aviation Regulation No. 60 Aeronautics and Space FEDERAL AVIATION... OPERATING AND FLIGHT RULES Pt. 91, SFAR No. 60 Special Federal Aviation Regulation No. 60—Air Traffic... Aviation Regulations (14 CFR chapter I), be familiar with all available information concerning that...

  19. 14 CFR Special Federal Aviation... - Air Traffic Control System Emergency Operation

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Operation Federal Special Federal Aviation Regulation No. 60 Aeronautics and Space FEDERAL AVIATION... OPERATING AND FLIGHT RULES Pt. 91, SFAR No. 60 Special Federal Aviation Regulation No. 60—Air Traffic... Aviation Regulations (14 CFR chapter I), be familiar with all available information concerning that...

  20. 47 CFR 80.383 - Vessel Traffic Services (VTS) system frequencies.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... protection areas provided there is no interference to VTS communications within the VTS areas. [51 FR 31213... geographic radio protected areas. (a) Assigned frequencies: Vessel Traffic Control Frequencies Carrier frequencies (MHz) Geographic areas 156.250 Seattle. 156.550 New York, New Orleans, 2 Houston, Prince William...

  1. 47 CFR 80.383 - Vessel Traffic Services (VTS) system frequencies.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... protection areas provided there is no interference to VTS communications within the VTS areas. [51 FR 31213... geographic radio protected areas. (a) Assigned frequencies: Vessel Traffic Control Frequencies Carrier frequencies (MHz) Geographic areas 156.250 Seattle. 156.550 New York, New Orleans, 2 Houston, Prince William...

  2. 47 CFR 80.383 - Vessel Traffic Services (VTS) system frequencies.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... protection areas provided there is no interference to VTS communications within the VTS areas. [51 FR 31213... geographic radio protected areas. (a) Assigned frequencies: Vessel Traffic Control Frequencies Carrier frequencies (MHz) Geographic areas 156.250 Seattle. 156.550 New York, New Orleans, 2 Houston, Prince William...

  3. 47 CFR 80.383 - Vessel Traffic Services (VTS) system frequencies.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... protection areas provided there is no interference to VTS communications within the VTS areas. [51 FR 31213... geographic radio protected areas. (a) Assigned frequencies: Vessel Traffic Control Frequencies Carrier frequencies (MHz) Geographic areas 156.250 Seattle. 156.550 New York, New Orleans, 2 Houston, Prince William...

  4. 47 CFR 80.383 - Vessel Traffic Services (VTS) system frequencies.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... protection areas provided there is no interference to VTS communications within the VTS areas. [51 FR 31213... geographic radio protected areas. (a) Assigned frequencies: Vessel Traffic Control Frequencies Carrier frequencies (MHz) Geographic areas 156.250 Seattle. 156.550 New York, New Orleans, 2 Houston, Prince William...

  5. Development of an FAA-EUROCONTROL technique for the analysis of human error in ATM : final report.

    DOT National Transportation Integrated Search

    2002-07-01

    Human error has been identified as a dominant risk factor in safety-oriented industries such as air traffic control (ATC). However, little is known about the factors leading to human errors in current air traffic management (ATM) systems. The first s...

  6. Switched Systems and Motion Coordination: Combinatorial Challenges

    NASA Technical Reports Server (NTRS)

    Sadovsky, Alexander V.

    2016-01-01

    Problems of routing commercial air traffic in a terminal airspace encounter different constraints: separation assurance, aircraft performance limitations, regulations. The general setting of these problems is that of a switched control system. Such a system combines the differentiable motion of the aircraft with the combinatorial choices of choosing precedence when traffic routes merge and choosing branches when the routes diverge. This presentation gives an overview of the problem, the ATM context, related literature, and directions for future research.

  7. Interval Management Display Design Study

    NASA Technical Reports Server (NTRS)

    Baxley, Brian T.; Beyer, Timothy M.; Cooke, Stuart D.; Grant, Karlus A.

    2014-01-01

    In 2012, the Federal Aviation Administration (FAA) estimated that U.S. commercial air carriers moved 736.7 million passengers over 822.3 billion revenue-passenger miles. The FAA also forecasts, in that same report, an average annual increase in passenger traffic of 2.2 percent per year for the next 20 years, which approximates to one-and-a-half times the number of today's aircraft operations and passengers by the year 2033. If airspace capacity and throughput remain unchanged, then flight delays will increase, particularly at those airports already operating near or at capacity. Therefore it is critical to create new and improved technologies, communications, and procedures to be used by air traffic controllers and pilots. National Aeronautics and Space Administration (NASA), the FAA, and the aviation industry are working together to improve the efficiency of the National Airspace System and the cost to operate in it in several ways, one of which is through the creation of the Next Generation Air Transportation System (NextGen). NextGen is intended to provide airspace users with more precise information about traffic, routing, and weather, as well as improve the control mechanisms within the air traffic system. NASA's Air Traffic Management Technology Demonstration-1 (ATD-1) Project is designed to contribute to the goals of NextGen, and accomplishes this by integrating three NASA technologies to enable fuel-efficient arrival operations into high-density airports. The three NASA technologies and procedures combined in the ATD-1 concept are advanced arrival scheduling, controller decision support tools, and aircraft avionics to enable multiple time deconflicted and fuel efficient arrival streams in high-density terminal airspace.

  8. An empirically grounded agent based model for modeling directs, conflict detection and resolution operations in air traffic management

    PubMed Central

    Bongiorno, Christian; Mantegna, Rosario N.

    2017-01-01

    We present an agent based model of the Air Traffic Management socio-technical complex system aiming at modeling the interactions between aircraft and air traffic controllers at a tactical level. The core of the model is given by the conflict detection and resolution module and by the directs module. Directs are flight shortcuts that are given by air controllers to speed up the passage of an aircraft within a certain airspace and therefore to facilitate airline operations. Conflicts between flight trajectories can occur for two main reasons: either the planning of the flight trajectory was not sufficiently detailed to rule out all potential conflicts or unforeseen events during the flight require modifications of the flight plan that can conflict with other flight trajectories. Our model performs a local conflict detection and resolution procedure. Once a flight trajectory has been made conflict-free, the model searches for possible improvements of the system efficiency by issuing directs. We give an example of model calibration based on real data. We then provide an illustration of the capability of our model in generating scenario simulations able to give insights about the air traffic management system. We show that the calibrated model is able to reproduce the existence of a geographical localization of air traffic controllers’ operations. Finally, we use the model to investigate the relationship between directs and conflict resolutions (i) in the presence of perfect forecast ability of controllers, and (ii) in the presence of some degree of uncertainty in flight trajectory forecast. PMID:28419160

  9. A Cockpit-Based Application for Traffic Aware Trajectory Optimization

    NASA Technical Reports Server (NTRS)

    Woods, Sharon E.; Vivona, Robert A.; Roscoe, David A.; LeFebvre, Brendan C.; Wing, David J.; Ballin, Mark G.

    2013-01-01

    The Traffic Aware Planner (TAP) is a cockpit-based advisory tool designed to be hosted on a Class 2 Electronic Flight Bag and developed to enable the concept of Traffic Aware Strategic Aircrew Requests (TASAR). This near-term concept provides pilots with optimized route changes that reduce fuel burn or flight time, avoids interactions with known traffic, weather and restricted airspace, and may be used by the pilots to request a trajectory change from air traffic control. TAP's internal architecture and algorithms are derived from the Autonomous Operations Planner, a flight-deck automation system developed by NASA to support research into aircraft self-separation. This paper reviews the architecture, functionality and operation of TAP.

  10. General Dynamics of Topology and Traffic on Weighted Technological Networks

    NASA Astrophysics Data System (ADS)

    Wang, Wen-Xu; Wang, Bing-Hong; Hu, Bo; Yan, Gang; Ou, Qing

    2005-05-01

    For most technical networks, the interplay of dynamics, traffic, and topology is assumed crucial to their evolution. In this Letter, we propose a traffic-driven evolution model of weighted technological networks. By introducing a general strength-coupling mechanism under which the traffic and topology mutually interact, the model gives power-law distributions of degree, weight, and strength, as confirmed in many real networks. Particularly, depending on a parameter W that controls the total weight growth of the system, the nontrivial clustering coefficient C, degree assortativity coefficient r, and degree-strength correlation are all consistent with empirical evidence.

  11. Evaluation of Early Ground Control Station Configurations for Interacting with a UAS Traffic Management (UTM) System

    NASA Technical Reports Server (NTRS)

    Dao, Arik-Quang V.; Martin, Lynne; Mohlenbrink, Christoph; Bienert, Nancy; Wolte, Cynthia; Gomez, Ashley; Claudatos, Lauren; Mercer, Joey

    2017-01-01

    The purpose of this paper is to report on a human factors evaluation of ground control station design concepts for interacting with an unmanned traffic management system. The data collected for this paper comes from recent field tests for NASA's Unmanned Traffic Management (UTM) project, and covers the following topics; workload, situation awareness, as well as flight crew communication, coordination, and procedures. The goal of this evaluation was to determine if the various software implementations for interacting with the UTM system can be described and classified into design concepts to provide guidance for the development of future UTM interfaces. We begin with a brief description of NASA's UTM project, followed by a description of the test range configuration related to a second development phase. We identified (post hoc) two classes in which the ground control stations could be grouped. This grouping was based on level of display integration. The analysis was exploratory and informal. It was conducted to compare ground stations across those two classes and against the aforementioned topics. Herein, we discuss the results.

  12. Development of a framework for the assessment of capacity and throughput technologies within the National Airspace System

    NASA Astrophysics Data System (ADS)

    Garcia, Elena

    The demand for air travel is expanding beyond the capacity of the existing National Airspace System. Excess traffic results in delays and compromised safety. Thus, a number of initiatives to improve airspace capacity have been proposed. To assess the impact of these technologies on air traffic one must move beyond the vehicle to a system-of-systems point of view. This top-level perspective must include consideration of the aircraft, airports, air traffic control and airlines that make up the airspace system. In addition to these components and their interactions economics, safety and government regulations must also be considered. Furthermore, the air transportation system is inherently variable with changes in everything from fuel prices to the weather. The development of a modeling environment that enables a comprehensive probabilistic evaluation of technological impacts was the subject of this thesis. The final modeling environment developed used economics as the thread to tie the airspace components together. Airport capacities and delays were calculated explicitly with due consideration to the impacts of air traffic control. The delay costs were then calculated for an entire fleet, and an airline economic analysis, considering the impact of these costs, was carried out. Airline return on investment was considered the metric of choice since it brings together all costs and revenues, including the cost of delays, landing fees for airport use and aircraft financing costs. Safety was found to require a level of detail unsuitable for a system-of-systems approach and was relegated to future airspace studies. Environmental concerns were considered to be incorporated into airport regulations and procedures and were not explicitly modeled. A deterministic case study was developed to test this modeling environment. The Atlanta airport operations for the year 2000 were used for validation purposes. A 2005 baseline was used as a basis for comparing the four technologies considered: a very large aircraft, Terminal Area Productivity air traffic control technologies, smoothing of an airline schedule, and the addition of a runway. A case including all four technologies simultaneously was also considered. Unfortunately, the complexity of the system prevented full exploration of the probabilistic aspects of the National Airspace System.

  13. Competition between Local Collisions and Collective Hydrodynamic Feedback Controls Traffic Flows in Microfluidic Networks

    NASA Astrophysics Data System (ADS)

    Belloul, M.; Engl, W.; Colin, A.; Panizza, P.; Ajdari, A.

    2009-05-01

    By studying the repartition of monodisperse droplets at a simple T junction, we show that the traffic of discrete fluid systems in microfluidic networks results from two competing mechanisms, whose significance is driven by confinement. Traffic is dominated by collisions occurring at the junction for small droplets and by collective hydrodynamic feedback for large ones. For each mechanism, we present simple models in terms of the pertinent dimensionless parameters of the problem.

  14. Distributed Traffic Complexity Management by Preserving Trajectory Flexibility

    NASA Technical Reports Server (NTRS)

    Idris, Husni; Vivona, Robert A.; Garcia-Chico, Jose-Luis; Wing, David J.

    2007-01-01

    In order to handle the expected increase in air traffic volume, the next generation air transportation system is moving towards a distributed control architecture, in which groundbased service providers such as controllers and traffic managers and air-based users such as pilots share responsibility for aircraft trajectory generation and management. This paper presents preliminary research investigating a distributed trajectory-oriented approach to manage traffic complexity, based on preserving trajectory flexibility. The underlying hypotheses are that preserving trajectory flexibility autonomously by aircraft naturally achieves the aggregate objective of avoiding excessive traffic complexity, and that trajectory flexibility is increased by collaboratively minimizing trajectory constraints without jeopardizing the intended air traffic management objectives. This paper presents an analytical framework in which flexibility is defined in terms of robustness and adaptability to disturbances and preliminary metrics are proposed that can be used to preserve trajectory flexibility. The hypothesized impacts are illustrated through analyzing a trajectory solution space in a simple scenario with only speed as a degree of freedom, and in constraint situations involving meeting multiple times of arrival and resolving conflicts.

  15. Human-Centered Technologies and Procedures for Future Air Traffic Management

    NASA Technical Reports Server (NTRS)

    Smith, Philip; Woods, David; McCoy, Elaine; Billings, Charles; Sarter, Nadine; Denning, Rebecca; Dekker, Sidney

    1997-01-01

    The use of various methodologies to predict the impact of future Air Traffic Management (ATM) concepts and technologies is explored. The emphasis has been on the importance of modeling coordination and cooperation among multiple agents within this system, and on understanding how the interactions among these agents will be influenced as new roles, responsibilities, procedures and technologies are introduced. To accomplish this, we have been collecting data on performance under the current air traffic management system, identifying critical problem areas and looking for examples suggestive of general approaches for solving such problems. Using the results of these field studies, we have developed a set of concrete scenarios centered around future designs, and have studied performance in these scenarios with a set of 40 controllers, dispatchers, pilots and traffic managers.

  16. Stress in air traffic controllers : comparison of two air route traffic control centers on different shift rotation patterns.

    DOT National Transportation Integrated Search

    1975-01-01

    Stress in 23 air traffic controllers (ATCS) at Atlanta Air Route Traffic Control Center (ATL) on the straight 5-day shift rotation schedule was compared with stress in 23 ATCS's on the 2-2-1 shift rotation schedule at Fort Worth Air Route Traffic Con...

  17. Network Analysis of Reconnaissance and Intrusion of an Industrial Control System

    DTIC Science & Technology

    2016-09-01

    simulated a plant engineer using the engineering workstation web browser to authenticate to the vegetable cooker HMI. While the engineer established the...observed the vegetable cooker HMI web display, the attacker stopped capturing network traffic. Acting as the attacker, we searched the attacker’s pcap...manually controlled by human activity. In this testbed network, only web browser traffic (HTTP) is created by an operator to view an HMI status

  18. UAS Air Traffic Controller Acceptability Study. 2; Evaluating Detect and Avoid Technology and Communication Delays in Simulation

    NASA Technical Reports Server (NTRS)

    Comstock, James R., Jr.; Ghatas, Rania W.; Consiglio, Maria C.; Chamberlain, James P.; Hoffler, Keith D.

    2015-01-01

    This study evaluated the effects of communications delays and winds on air traffic controller ratings of acceptability of horizontal miss distances (HMDs) for encounters between Unmanned Aircraft Systems (UAS) and manned aircraft in a simulation of the Dallas-Ft. Worth (DFW) airspace. Fourteen encounters per hour were staged in the presence of moderate background traffic. Seven recently retired controllers with experience at DFW served as subjects. Guidance provided to the UAS pilots for maintaining a given HMD was provided by information from Detect and Avoid (DAA) self-separation algorithms (Stratway+) displayed on the Multi-Aircraft Control System. This guidance consisted of amber "bands" on the heading scale of the UAS navigation display indicating headings that would result in a loss of well clear between the UAS and nearby traffic. Winds tested were successfully handled by the DAA algorithms and did not affect the controller acceptability ratings of the HMDs. Voice communications delays for the UAS were also tested and included one-way delay times of 0, 400, 1200, and 1800 msec. For longer communications delays, there were changes in strategy and communications flow that were observed and reported by the controllers. The aim of this work is to provide useful information for guiding future rules and regulations applicable to flying UAS in the NAS. Information from this study will also be of value to the Radio Technical Commission for Aeronautics (RTCA) Special Committee 228 - Minimum Performance Standards for UAS.

  19. A passive brain-computer interface application for the mental workload assessment on professional air traffic controllers during realistic air traffic control tasks.

    PubMed

    Aricò, P; Borghini, G; Di Flumeri, G; Colosimo, A; Pozzi, S; Babiloni, F

    2016-01-01

    In the last decades, it has been a fast-growing concept in the neuroscience field. The passive brain-computer interface (p-BCI) systems allow to improve the human-machine interaction (HMI) in operational environments, by using the covert brain activity (eg, mental workload) of the operator. However, p-BCI technology could suffer from some practical issues when used outside the laboratories. In particular, one of the most important limitations is the necessity to recalibrate the p-BCI system each time before its use, to avoid a significant reduction of its reliability in the detection of the considered mental states. The objective of the proposed study was to provide an example of p-BCIs used to evaluate the users' mental workload in a real operational environment. For this purpose, through the facilities provided by the École Nationale de l'Aviation Civile of Toulouse (France), the cerebral activity of 12 professional air traffic control officers (ATCOs) has been recorded while performing high realistic air traffic management scenarios. By the analysis of the ATCOs' brain activity (electroencephalographic signal-EEG) and the subjective workload perception (instantaneous self-assessment) provided by both the examined ATCOs and external air traffic control experts, it has been possible to estimate and evaluate the variation of the mental workload under which the controllers were operating. The results showed (i) a high significant correlation between the neurophysiological and the subjective workload assessment, and (ii) a high reliability over time (up to a month) of the proposed algorithm that was also able to maintain high discrimination accuracies by using a low number of EEG electrodes (~3 EEG channels). In conclusion, the proposed methodology demonstrated the suitability of p-BCI systems in operational environments and the advantages of the neurophysiological measures with respect to the subjective ones. © 2016 Elsevier B.V. All rights reserved.

  20. Delivery performance of conventional aircraft by terminal-area, time-based air traffic control: A real-time simulation evaluation

    NASA Technical Reports Server (NTRS)

    Credeur, Leonard; Houck, Jacob A.; Capron, William R.; Lohr, Gary W.

    1990-01-01

    A description and results are presented of a study to measure the performance and reaction of airline flight crews, in a full workload DC-9 cockpit, flying in a real-time simulation of an air traffic control (ATC) concept called Traffic Intelligence for the Management of Efficient Runway-scheduling (TIMER). Experimental objectives were to verify earlier fast-time TIMER time-delivery precision results and obtain data for the validation or refinement of existing computer models of pilot/airborne performance. Experimental data indicated a runway threshold, interarrival-time-error standard deviation in the range of 10.4 to 14.1 seconds. Other real-time system performance parameters measured include approach speeds, response time to controller turn instructions, bank angles employed, and ATC controller message delivery-time errors.

  1. System for Better Spacing of Airplanes En Route

    NASA Technical Reports Server (NTRS)

    Green, Steven; Erzberger, Heinz

    2004-01-01

    An improved method of computing the spacing of airplanes en route, and software to implement the method, have been invented. The purpose of the invention is to help air-traffic controllers minimize those deviations of the airplanes from the trajectories preferred by their pilots that are needed to make the airplanes comply with miles-in-trail spacing requirements. The software is meant to be a modular component of the Center TRACON Automation System (CTAS) (TRACON signifies "terminal radar approach control"). The invention reduces controllers workloads and reduces fuel consumption by reducing the number of corrective clearances needed to achieve conformance with specified flow rates, without causing conflicts, while providing for more efficient distribution of spacing workload upstream and across air-traffic-control sectors.

  2. Prediction based active ramp metering control strategy with mobility and safety assessment

    NASA Astrophysics Data System (ADS)

    Fang, Jie; Tu, Lili

    2018-04-01

    Ramp metering is one of the most direct and efficient motorway traffic flow management measures so as to improve traffic conditions. However, owing to short of traffic conditions prediction, in earlier studies, the impact on traffic flow dynamics of the applied RM control was not quantitatively evaluated. In this study, a RM control algorithm adopting Model Predictive Control (MPC) framework to predict and assess future traffic conditions, which taking both the current traffic conditions and the RM-controlled future traffic states into consideration, was presented. The designed RM control algorithm targets at optimizing the network mobility and safety performance. The designed algorithm is evaluated in a field-data-based simulation. Through comparing the presented algorithm controlled scenario with the uncontrolled scenario, it was proved that the proposed RM control algorithm can effectively relieve the congestion of traffic network with no significant compromises in safety aspect.

  3. The Loss of Efficiency Caused by Agents’ Uncoordinated Routing in Transport Networks

    PubMed Central

    Wang, Junjie; Wang, Pu

    2014-01-01

    Large-scale daily commuting data were combined with detailed geographical information system (GIS) data to analyze the loss of transport efficiency caused by drivers’ uncoordinated routing in urban road networks. We used Price of Anarchy (POA) to quantify the loss of transport efficiency and found that both volume and distribution of human mobility demand determine the POA. In order to reduce POA, a small number of highways require considerable decreases in traffic, and their neighboring arterial roads need to attract more traffic. The magnitude of the adjustment in traffic flow can be estimated using the fundamental measure traffic flow only, which is widely available and easy to collect. Surprisingly, the most congested roads or the roads with largest traffic flow were not those requiring the most reduction of traffic. This study can offer guidance for the optimal control of urban traffic and facilitate improvements in the efficiency of transport networks. PMID:25349995

  4. Individual Markers of Resilience in Train Traffic Control: The Role of Operators' Goals and Strategic Mental Models and Implications for Variation, Expertise, and Performance.

    PubMed

    Lo, Julia C; Pluyter, Kari R; Meijer, Sebastiaan A

    2016-02-01

    The aim of this study was to examine individual markers of resilience and obtain quantitative insights into the understanding and the implications of variation and expertise levels in train traffic operators' goals and strategic mental models and their impact on performance. The Dutch railways are one of the world's most heavy utilized railway networks and have been identified to be weak in system and organizational resilience. Twenty-two train traffic controllers enacted two scenarios in a human-in-the-loop simulator. Their experience, goals, strategic mental models, and performance were assessed through questionnaires and simulator logs. Goals were operationalized through performance indicators and strategic mental models through train completion strategies. A variation was found between operators for both self-reported primary performance indicators and completion strategies. Further, the primary goal of only 14% of the operators reflected the primary organizational goal (i.e., arrival punctuality). An incongruence was also found between train traffic controllers' self-reported performance indicators and objective performance in a more disrupted condition. The level of experience tends to affect performance differently. There is a gap between primary organizational goals and preferred individual goals. Further, the relative strong diversity in primary operator goals and strategic mental models indicates weak resilience at the individual level. With recent and upcoming large-scale changes throughout the sociotechnical space of the railway infrastructure organization, the findings are useful to facilitate future railway traffic control and the development of a resilient system. © 2015, Human Factors and Ergonomics Society.

  5. 77 FR 28455 - National Standards for Traffic Control Devices; the Manual on Uniform Traffic Control Devices for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-14

    ... Options for design and applications of traffic control devices, this Manual should not be considered a... application of traffic control devices, as well as in the location and design of roads and streets that the..., while this Manual provides Standards, Guidance, and Options for design and applications of traffic...

  6. Evaluation of the intelligent cruise control system. Volume 2, Appendices

    DOT National Transportation Integrated Search

    1999-10-01

    The Intelligent Cruise Control (ICC) system evaluation was sponsored by the National Highway Traffic Safety Administration (NHTSA) and based on an ICC Field Operational Test (FOT) conducted under a cooperative agreement between the NHTSA and the Univ...

  7. Towards a Functionally-Formed Air Traffic System-of-Systems

    NASA Technical Reports Server (NTRS)

    Conway, Sheila R.; Consiglio, Maria C.

    2005-01-01

    Incremental improvements to the national aviation infrastructure have not resulted in sufficient increases in capacity and flexibility to meet emerging demand. Unfortunately, revolutionary changes capable of substantial and rapid increases in capacity have proven elusive. Moreover, significant changes have been difficult to implement, and the operational consequences of such change, difficult to predict due to the system s complexity. Some research suggests redistributing air traffic control functions through the system, but this work has largely been dismissed out of hand, accused of being impractical. However, the case for functionally-based reorganization of form can be made from a theoretical, systems perspective. This paper investigates Air Traffic Management functions and their intrinsic biases towards centralized/distributed operations, grounded in systems engineering and information technology theories. Application of these concepts to a small airport operations design is discussed. From this groundwork, a robust, scalable system transformation plan may be made in light of uncertain demand.

  8. School Security: A Growing Concern

    ERIC Educational Resources Information Center

    Walker, Milton G.

    1976-01-01

    Vandalism, trespassing, drug traffic, crowd control, automobile traffic, and emergencies such as fire or storms--these are the kinds of problems a school security system should be designed to eliminate or minimize. A preventive program can save more money than it costs and can improve the learning environment at the same time, says this writer.…

  9. Project no. B371 : acoustic emission and strain gage monitoring of WIDOT structure B-5-158, Tower Drive Tied Arch, Green Bay, Wisconsin

    DOT National Transportation Integrated Search

    1993-06-16

    The City of South Lyon converted the traffic signals on the street network from fixed time control to the Sydney Coordinated Adaptive Traffic System (SCATS). The objectives of this research study were to analyze the differences in certain delay param...

  10. Interface Control Document for the Traffic Lights and Emergency Communications System at Gretna and Governor Nicholls Traffic Light Facilities

    DOT National Transportation Integrated Search

    1997-11-06

    Gretna and Governor Nicholls Light facilities are two manned shore side : facilities mounted in critical areas on the banks of the Mississippi River in : the port of New Orleans, Louisiana. Coast Guard plans call for the lights to : be remotely contr...

  11. Factors Affecting Road Traffic Accident in Batu Pahat, Johor, Malaysia

    NASA Astrophysics Data System (ADS)

    Che-Him, Norziha; Roslan, Rozaini; Saifullah Rusiman, Mohd; Khalid, Kamil; Ghazali Kamardan, M.; Azbi Arobi, Farquis; Mohamad, Nazeera

    2018-04-01

    A road traffic accident resulted from the combination of factors related to the few components of the system involving environment, roads, road users, vehicles and the interaction between those systems. Road traffic accident (RTA) in Malaysia recorded as the highest fatality rate (per 100,000 population) among the ASEAN countries. In 2016, more than half of million cases accident recorded with more than 7,000 people were killed. Therefore, the RTA is one of the most critical issue in Malaysia even become the worldwide burden to authority. Generally, driving is a complex process which involves movement of a vehicle by either a computer or human controller. However, failure to control and coordinate will contribute to an accident. The objective of this study is to identify the pattern of accident in Johor Malaysia and to examine the relationship between the number of accident and the types of vehicles and roads. The results could help the government to recognise the different patterns, types of vehicles and roads that show major factors in the increasing of road traffic accident in Malaysia.

  12. GIS and RDBMS Used with Offline FAA Airspace Databases

    NASA Technical Reports Server (NTRS)

    Clark, J.; Simmons, J.; Scofield, E.; Talbott, B.

    1994-01-01

    A geographic information system (GIS) and relational database management system (RDBMS) were used in a Macintosh environment to access, manipulate, and display off-line FAA databases of airport and navigational aid locations, airways, and airspace boundaries. This proof-of-concept effort used data available from the Adaptation Controlled Environment System (ACES) and Digital Aeronautical Chart Supplement (DACS) databases to allow FAA cartographers and others to create computer-assisted charts and overlays as reference material for air traffic controllers. These products were created on an engineering model of the future GRASP (GRaphics Adaptation Support Position) workstation that will be used to make graphics and text products for the Advanced Automation System (AAS), which will upgrade and replace the current air traffic control system. Techniques developed during the prototyping effort have shown the viability of using databases to create graphical products without the need for an intervening data entry step.

  13. JPL's Real-Time Weather Processor project (RWP) metrics and observations at system completion

    NASA Technical Reports Server (NTRS)

    Loesh, Robert E.; Conover, Robert A.; Malhotra, Shan

    1990-01-01

    As an integral part of the overall upgraded National Airspace System (NAS), the objective of the Real-Time Weather Processor (RWP) project is to improve the quality of weather information and the timeliness of its dissemination to system users. To accomplish this, an RWP will be installed in each of the Center Weather Service Units (CWSUs), located in 21 of the 23 Air Route Traffic Control Centers (ARTCCs). The RWP System is a prototype system. It is planned that the software will be GFE and that production hardware will be acquired via industry competitive procurement. The ARTCC is a facility established to provide air traffic control service to aircraft operating on Instrument Flight Rules (IFR) flight plans within controlled airspace, principally during the en route phase of the flight. Covered here are requirement metrics, Software Problem Failure Reports (SPFRs), and Ada portability metrics and observations.

  14. Complexity, Robustness, and Multistability in Network Systems with Switching Topologies: A Hierarchical Hybrid Control Approach

    DTIC Science & Technology

    2015-05-22

    sensor networks for managing power levels of wireless networks ; air and ground transportation systems for air traffic control and payload transport and... network systems, large-scale systems, adaptive control, discontinuous systems 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF...cover a broad spectrum of ap- plications including cooperative control of unmanned air vehicles, autonomous underwater vehicles, distributed sensor

  15. Flightdeck and air traffic control collaboration evaluation (FACE): evaluating aviation communication in the laboratory and field.

    PubMed

    Sharples, Sarah; Stedmon, Alex; Cox, Gemma; Nicholls, Alistair; Shuttleworth, Tracey; Wilson, John

    2007-07-01

    The challenge to anticipate the human factors impact of introducing new technologies into a safety critical environment can be addressed in a number of ways. This paper presents a research programme that utilised both laboratory- and field-based assessments to examine the way in which datalink and freeflight may affect the communication and collaboration between pilots, air traffic controllers, and other actors and artefacts in the flightdeck-air traffic control (ATC) joint cognitive system. An overview of the results from these studies is presented, and guidance is provided as to the likely situations in which this new technology is most likely to be successfully applied. In addition, the methodological approach of combining results from field and laboratory data is discussed.

  16. Future ATM Concepts Evaluation Tool (FACET) Interface Control Document

    NASA Technical Reports Server (NTRS)

    Grabbe, Shon R.

    2017-01-01

    This Interface Control Document (ICD) documents the airspace adaptation and air traffic inputs of NASA's Future ATM Concepts and Evaluation Tool (FACET). Its intended audience is the project manager, project team, development team, and stakeholders interested in interfacing with the system. FACET equips Air Traffic Management (ATM) researchers and service providers with a way to explore, develop and evaluate advanced air transportation concepts before they are field-tested and eventually deployed. FACET is a flexible software tool that is capable of quickly generating and analyzing thousands of aircraft trajectories. It provides researchers with a simulation environment for preliminary testing of advanced ATM concepts. Using aircraft performance profiles, airspace models, weather data, and flight schedules, the tool models trajectories for the climb, cruise, and descent phases of flight for each type of aircraft. An advanced graphical interface displays traffic patterns in two and three dimensions, under various current and projected conditions for specific airspace regions or over the entire continental United States. The system is able to simulate a full day's dynamic national airspace system (NAS) operations, model system uncertainty, measure the impact of different decision-makers in the NAS, and provide analysis of the results in graphical form, including sector, airport, fix, and airway usage statistics. NASA researchers test and analyze the system-wide impact of new traffic flow management algorithms under anticipated air traffic growth projections on the nation's air traffic system. In addition to modeling the airspace system for NASA research, FACET has also successfully transitioned into a valuable tool for operational use. Federal Aviation Administration (FAA) traffic flow managers and commercial airline dispatchers have used FACET technology for real-time operations planning. FACET integrates live air traffic data from FAA radar systems and weather data from the National Weather Service to summarize NAS performance. This information allows system operators to reroute flights around congested airspace and severe weather to maintain safety and minimize delay. FACET also supports the planning and post-operational evaluation of reroute strategies at the national level to maximize system efficiency. For the commercial airline passenger, strategic planning with FACET can result in fewer flight delays and cancellations. The performance capabilities of FACET are largely due to its architecture, which strikes a balance between flexibility and fidelity. FACET is capable of modeling the airspace operations for the continental United States, processing thousands of aircraft on a single computer. FACET was written in Java and C, enabling the portability of its software to a variety of operating systems. In addition, FACET was designed with a modular software architecture to facilitate rapid prototyping of diverse ATM concepts. Several advanced ATM concepts have already been implemented in FACET, including aircraft self-separation, prediction of aircraft demand and sector congestion, system-wide impact assessment of traffic flow management constraints, and wind-optimal routing.

  17. Real-Time SCADA Cyber Protection Using Compression Techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lyle G. Roybal; Gordon H Rueff

    2013-11-01

    The Department of Energy’s Office of Electricity Delivery and Energy Reliability (DOE-OE) has a critical mission to secure the energy infrastructure from cyber attack. Through DOE-OE’s Cybersecurity for Energy Delivery Systems (CEDS) program, the Idaho National Laboratory (INL) has developed a method to detect malicious traffic on Supervisory, Control, and Data Acquisition (SCADA) network using a data compression technique. SCADA network traffic is often repetitive with only minor differences between packets. Research performed at the INL showed that SCADA network traffic has traits desirable for using compression analysis to identify abnormal network traffic. An open source implementation of a Lempel-Ziv-Welchmore » (LZW) lossless data compression algorithm was used to compress and analyze surrogate SCADA traffic. Infected SCADA traffic was found to have statistically significant differences in compression when compared against normal SCADA traffic at the packet level. The initial analyses and results are clearly able to identify malicious network traffic from normal traffic at the packet level with a very high confidence level across multiple ports and traffic streams. Statistical differentiation between infected and normal traffic level was possible using a modified data compression technique at the 99% probability level for all data analyzed. However, the conditions tested were rather limited in scope and need to be expanded into more realistic simulations of hacking events using techniques and approaches that are better representative of a real-world attack on a SCADA system. Nonetheless, the use of compression techniques to identify malicious traffic on SCADA networks in real time appears to have significant merit for infrastructure protection.« less

  18. Intelligent aircraft/airspace systems

    NASA Technical Reports Server (NTRS)

    Wangermann, John P.

    1995-01-01

    Projections of future air traffic predict at least a doubling of the number of revenue passenger miles flown by the year 2025. To meet this demand, an Intelligent Aircraft/Airspace System (IAAS) has been proposed. The IAAS operates on the basis of principled negotiation between intelligent agents. The aircraft/airspace system today consists of many agents, such as airlines, control facilities, and aircraft. All the agents are becoming increasingly capable as technology develops. These capabilities should be exploited to create an Intelligent Aircraft/Airspace System (IAAS) that would meet the predicted traffic levels of 2005.

  19. Emergency vehicle traffic signal preemption system

    NASA Technical Reports Server (NTRS)

    Bachelder, Aaron D. (Inventor); Foster, Conrad F. (Inventor)

    2011-01-01

    An emergency vehicle traffic light preemption system for preemption of traffic lights at an intersection to allow safe passage of emergency vehicles. The system includes a real-time status monitor of an intersection which is relayed to a control module for transmission to emergency vehicles as well as to a central dispatch office. The system also provides for audio warnings at an intersection to protect pedestrians who may not be in a position to see visual warnings or for various reasons cannot hear the approach of emergency vehicles. A transponder mounted on an emergency vehicle provides autonomous control so the vehicle operator can attend to getting to an emergency and not be concerned with the operation of the system. Activation of a priority-code (i.e. Code-3) situation provides communications with each intersection being approached by an emergency vehicle and indicates whether the intersection is preempted or if there is any conflict with other approaching emergency vehicles. On-board diagnostics handle various information including heading, speed, and acceleration sent to a control module which is transmitted to an intersection and which also simultaneously receives information regarding the status of an intersection. Real-time communications and operations software allow central and remote monitoring, logging, and command of intersections and vehicles.

  20. An Advanced Trajectory-Based Operations Prototype Tool and Focus Group Evaluation

    NASA Technical Reports Server (NTRS)

    Guerreiro, Nelson M.; Jones, Denise R.; Barmore, Bryan E.; Butler, Ricky W.; Hagen, George E.; Maddalon, Jeffrey M.; Ahmad, Nash'at N.; Rogers, Laura J.; Underwood, Matthew C.; Johnson, Sally C.

    2017-01-01

    Trajectory-based operations (TBO) is a key concept in the Next Generation Air Transportation System transformation of the National Airspace System (NAS) that will increase the predictability and stability of traffic flows, support a common operational picture through the use of digital data sharing, facilitate more effective collaborative decision making between airspace users and air navigation service providers, and enable increased levels of integrated automation across the NAS. The National Aeronautics and Space Administration (NASA) has been developing trajectory-based systems to improve the efficiency of the NAS during specific phases of flight and is now also exploring Advanced 4-Dimensional Trajectory (4DT) operational concepts that will integrate these technologies and incorporate new technology where needed to create both automation and procedures to support gate-to-gate TBO. A TBO Prototype simulation toolkit has been developed that demonstrates initial functionality that may reside in an Advanced 4DT TBO concept. Pilot and controller subject matter experts (SMEs) were brought to the Air Traffic Operations Laboratory at NASA Langley Research Center for discussions on an Advanced 4DT operational concept and were provided an interactive demonstration of the TBO Prototype using four example scenarios. The SMEs provided feedback on potential operational, technological, and procedural opportunities and concerns. After viewing the interactive demonstration scenarios, the SMEs felt the operational capabilities demonstrated would be useful for performing TBO while maintaining situation awareness and low mental workload. The TBO concept demonstrated produced defined routings around weather which resulted in a more organized, consistent flow of traffic where it was clear to both the controller and pilot what route the aircraft was to follow. In general, the controller SMEs felt that traffic flow management should be responsible for generating and negotiating the operational constraints demonstrated, in cooperation with the Air Traffic Control System Command Center, while air traffic control should be responsible for the implementation of those constraints. The SMEs also indicated that digital data communications would be very beneficial for TBO operations and would result in less workload due to reduced communications, would eliminate issues due to language barriers and frequency problems, and would make receiving, loading, accepting, and executing clearances easier, less ambiguous, and more expeditious. This paper describes an Advanced 4DT operational concept, the TBO Prototype, the demonstration scenarios and methods used, and the feedback obtained from the pilot and controller SMEs in this focus group evaluation.

Top