ERIC Educational Resources Information Center
Safara, Maryam; Ghasemi, Pejman
2017-01-01
The aim of this study was to evaluate the efficacy of yoga on spiritual intelligence in air traffic controllers in Tehran flight control center. This was a quasi-experimental research and the study population includes all air traffic controllers in Tehran flight control center. The sample consisted of 40 people of the study population that were…
Traffic Aware Strategic Aircrew Requests (TASAR)
NASA Technical Reports Server (NTRS)
Ballin, Mark G.; Wing, David J.
2012-01-01
Under Instrument Flight Rules, pilots are not permitted to make changes to their approved trajectory without first receiving permission from Air Traffic Control (ATC). Referred to as "user requests," trajectory change requests from aircrews are often denied or deferred by controllers because they have awareness of traffic and airspace constraints not currently available to flight crews. With the introduction of Automatic Dependent Surveillance-Broadcast (ADS-B) and other information services, a rich traffic, weather, and airspace information environment is becoming available on the flight deck. Automation developed by NASA uses this information to aid flight crews in the identification and formulation of optimal conflict-free trajectory requests. The concept of Traffic Aware Strategic Aircrew Requests (TASAR) combines ADS-B and airborne automation to enable user-optimal in-flight trajectory replanning and to increase the likelihood of ATC approval for the resulting trajectory change request. TASAR may improve flight efficiency or other user-desired attributes of the flight while not impacting and potentially benefiting the air traffic controller. This paper describes the TASAR concept of operations, its enabling automation technology which is currently under development, and NASA s plans for concept assessment and maturation.
The role of flight progress strips in en route air traffic control : a time-series analysis.
DOT National Transportation Integrated Search
1995-01-01
Paper flight progress strips (FPSs) are currently used in the United States en route air traffic control system to document flight information. Impending automation will replace these paper strips with electronic flight data entries. In this observat...
NASA Technical Reports Server (NTRS)
Lozito, Sandy; Mackintosh, Margaret-Anne; DiMeo, Karen; Kopardekar, Parimal
2002-01-01
A simulation was conducted to examine the effect of shared air/ground authority when each is equipped with enhanced traffic- and conflict-alerting systems. The potential benefits of an advanced air traffic management (ATM) concept referred to as "free flight" include improved safety through enhanced conflict detection and resolution capabilities, increased flight-operations management, and better decision-making tools for air traffic controllers and flight crews. One element of the free-flight concept suggests shifting aircraft separation responsibility from air traffic controllers to flight crews, thereby creating an environment with "shared-separation" authority. During FY00. NASA, the Federal Aviation Administration (FAA), and the Volpe National Transportation Systems Center completed the first integrated, high-fidelity, real-time, human-in-the-loop simulation.
Assessment of Air Traffic Controller Acceptability of Aircrew Route Change Requests
NASA Technical Reports Server (NTRS)
Idris, Husni; Enea, Gabriele; Burke, Kelly; Wing, David
2017-01-01
NASA developed the traffic aware strategic aircrew requests concept for a cockpit automation that identifies route improvements and advises the aircrew to request the change from the air traffic controller. In order to increase the chance of air traffic control approval, the automation ensures that the route is clear of known traffic, weather, and airspace restrictions. Hence the technology is anticipated to provide benefits in areas such as flight efficiency, flight schedule compliance, passenger comfort, and pilot and controller workload. In support of a field trial of a prototype of the technology, observations were conducted at the Atlanta and Jacksonville air traffic control centers to identify the main factors that affect the acceptability of aircrew requests by air traffic controllers. Observers shadowed air traffic controllers as the test flight pilot made pre-scripted requests to invoke acceptability issues and then they interviewed voluntarily fifty controllers with experience ranging from one to thirty-five years. The most common reason for rejecting requests is conflicting with traffic followed by violating air traffic procedures, increasing sector workload, and conflicting with major arrival and departure flows and flow restrictions. Quantitative parameters such as the distance that a route should maintain from sector boundaries and special use airspace were identified and recommended for inclusion in the automation.
En route air traffic controllers' use of flight progress strips : a graph-theoretic analysis.
DOT National Transportation Integrated Search
1992-11-01
In the United States, flight data are represented on a paper Flight Progress Strip (FPS). The role of the FPS has recently attracted attention because of plans to automate this aspect of air traffic control. The communication activities and FPS activ...
Initial Air Traffic Control Training at Tartu Aviation College
DOT National Transportation Integrated Search
1997-01-01
A well developed air traffic control training system is vitally important for guaranteeing flight safety and the efficient provision of air traffic control services. During the Soviet era, air traffic control services in Estonia were provided by Aero...
NASA Technical Reports Server (NTRS)
Corker, Kevin; Pisanich, Gregory; Condon, Gregory W. (Technical Monitor)
1995-01-01
A predictive model of human operator performance (flight crew and air traffic control (ATC)) has been developed and applied in order to evaluate the impact of automation developments in flight management and air traffic control. The model is used to predict the performance of a two person flight crew and the ATC operators generating and responding to clearances aided by the Center TRACON Automation System (CTAS). The purpose of the modeling is to support evaluation and design of automated aids for flight management and airspace management and to predict required changes in procedure both air and ground in response to advancing automation in both domains. Additional information is contained in the original extended abstract.
Christodoulou, Manolis A; Kontogeorgou, Chrysa
2008-10-01
In recent years there has been a great effort to convert the existing Air Traffic Control system into a novel system known as Free Flight. Free Flight is based on the concept that increasing international airspace capacity will grant more freedom to individual pilots during the enroute flight phase, thereby giving them the opportunity to alter flight paths in real time. Under the current system, pilots must request, then receive permission from air traffic controllers to alter flight paths. Understandably the new system allows pilots to gain the upper hand in air traffic. At the same time, however, this freedom increase pilot responsibility. Pilots face a new challenge in avoiding the traffic shares congested air space. In order to ensure safety, an accurate system, able to predict and prevent conflict among aircraft is essential. There are certain flight maneuvers that exist in order to prevent flight disturbances or collision and these are graded in the following categories: vertical, lateral and airspeed. This work focuses on airspeed maneuvers and tries to introduce a new idea for the control of Free Flight, in three dimensions, using neural networks trained with examples prepared through non-linear programming.
Subject Matter Expert Evaluation of Multi-Flight Common Route Advisories
NASA Technical Reports Server (NTRS)
Bilimoria, Karl; Hayashi, Miwa; Sheth, Kapil S.
2017-01-01
Traffic flow management seeks to balance the demand for National Airspace System (NAS) flight resources, such as airspace and airports, with the available supply. When forecasted weather blocks nominal air traffic routes, traffic managers must re-route affected flights for weather avoidance. Depending on the nature and scope of the weather, traffic managers may use pre-coordinated re-routes such as Playbook Routes or Coded Departure Routes, or may design ad hoc local re-routes. The routes of affected flights are modified accordingly. These weather avoidance routes will, of course, be less efficient than the nominal routes due to increased flight time and fuel burn. In current traffic management operations, the transition into a weather avoidance re-routing initiative is typically implemented more aggressively than the transition out of that initiative after the weather has dissipated or moved away. For example, strategic large-scale Playbook re-routes are sometimes left in place (as initially implemented) for many hours before being lifted entirely when the weather dissipates. There is an opportunity to periodically modify the re-routing plan as weather evolves, thereby attenuating its adverse impact on flight time and fuel consumption; this is called delay recovery. Multi-Flight Common Routes (MFCR) is a NASA-developed operational concept and associated decision support tool for delay recovery, designed to assist traffic managers to efficiently update weather avoidance traffic routes after the original re-routes have become stale due to subsequent evolution of the convective weather system. MFCR groups multiple flights to reduce the number of advisories that the traffic manager needs to evaluate, and also merges these flights on a common route segment to provide an orderly flow of re-routed traffic. The advisory is presented to the appropriate traffic manager who evaluates it and has the option to modify it using MFCRs graphical user interface. If the traffic manager finds the advisory to be operationally appropriate, he or she would coordinate with the Area Supervisor(s) of the sectors that currently control the flights in the advisory. When the traffic manager accepts the MFCR advisory via the user interface, the corresponding flight plan amendments would be sent to the displays of the appropriate sector controllers, using the Airborne Re-Routing (ABRR) capability which is scheduled for nationwide operation in 2017. The sector controllers would then offer this time-saving route modification to the pilots of the affected flights via datalink (or voice), and implement the corresponding flight plan amendment if the pilots accept it. MFCR is implemented as an application in the software environment of the Future Air traffic management Concepts Evaluation Tool (FACET). This paper focuses on an initial subject matter expert (SME) evaluation of MFCR. The evaluation covers MFCRs operational concept, algorithm, and user interface.
Stress in air traffic personnel : low-density towers and flight service stations.
DOT National Transportation Integrated Search
1977-09-01
Stress and anxiety levels were measured in 10 air traffic control specialists (ATCS) at two low-traffic-density towers, Fayetteville (FYV), Arkansas, and Roswell (ROW), New Mexico, and in 24 flight service (FS) specialists at Oklahoma City (OKC), Okl...
DOT National Transportation Integrated Search
2000-02-01
The new Display System Replacement (DSR) being implemented in air route traffic control centers (ARTCCs) will allow the data-side controller less room to post Flight Progress Strips (FPSs). We tested a new FPS marking and posting procedure designed t...
Manpower Requirements for Air Traffic Control and Flight Service Specialists in Indiana.
ERIC Educational Resources Information Center
Purdue Univ., Lafayette, IN. Office of Manpower Studies.
As of January 1, 1968 the Federal Aviation Administration (FAA) of the United States Department of Transportation employed 6,963 controllers in airport towers, 7,617 controllers in Air Route Traffic Control Centers, and 4,459 flight service specialists at airport locations. Projected needs are as follows: (1) Controllers in airport towers:…
Development of a Free-Flight Simulation Infrastructure
NASA Technical Reports Server (NTRS)
Miles, Eric S.; Wing, David J.; Davis, Paul C.
1999-01-01
In anticipation of a projected rise in demand for air transportation, NASA and the FAA are researching new air-traffic-management (ATM) concepts that fall under the paradigm known broadly as ":free flight". This paper documents the software development and engineering efforts in progress by Seagull Technology, to develop a free-flight simulation (FFSIM) that is intended to help NASA researchers test mature-state concepts for free flight, otherwise referred to in this paper as distributed air / ground traffic management (DAG TM). Under development is a distributed, human-in-the-loop simulation tool that is comprehensive in its consideration of current and envisioned communication, navigation and surveillance (CNS) components, and will allow evaluation of critical air and ground traffic management technologies from an overall systems perspective. The FFSIM infrastructure is designed to incorporate all three major components of the ATM triad: aircraft flight decks, air traffic control (ATC), and (eventually) airline operational control (AOC) centers.
14 CFR Appendix G to Part 91 - Operations in Reduced Vertical Separation Minimum (RVSM) Airspace
Code of Federal Regulations, 2012 CFR
2012-01-01
... flight planned route through the appropriate flight planning information sources. (b) No person may show..., DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT..., air traffic control (ATC) separates aircraft by a minimum of 1,000 feet vertically between flight...
14 CFR Appendix G to Part 91 - Operations in Reduced Vertical Separation Minimum (RVSM) Airspace
Code of Federal Regulations, 2014 CFR
2014-01-01
... flight planned route through the appropriate flight planning information sources. (b) No person may show..., DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT..., air traffic control (ATC) separates aircraft by a minimum of 1,000 feet vertically between flight...
14 CFR Appendix G to Part 91 - Operations in Reduced Vertical Separation Minimum (RVSM) Airspace
Code of Federal Regulations, 2011 CFR
2011-01-01
... flight planned route through the appropriate flight planning information sources. (b) No person may show..., DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT..., air traffic control (ATC) separates aircraft by a minimum of 1,000 feet vertically between flight...
14 CFR Appendix G to Part 91 - Operations in Reduced Vertical Separation Minimum (RVSM) Airspace
Code of Federal Regulations, 2013 CFR
2013-01-01
... flight planned route through the appropriate flight planning information sources. (b) No person may show..., DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT..., air traffic control (ATC) separates aircraft by a minimum of 1,000 feet vertically between flight...
14 CFR Appendix G to Part 91 - Operations in Reduced Vertical Separation Minimum (RVSM) Airspace
Code of Federal Regulations, 2010 CFR
2010-01-01
... flight planned route through the appropriate flight planning information sources. (b) No person may show..., DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT..., air traffic control (ATC) separates aircraft by a minimum of 1,000 feet vertically between flight...
14 CFR 93.29 - International Arrival Authorizations.
Code of Federal Regulations, 2011 CFR
2011-01-01
... (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES SPECIAL AIR TRAFFIC RULES Congestion and Delay Reduction... marketing arrangement unless the flight was predominately marketed, by contract, under the control of another Carrier. If the flight was under the marketing control of another Carrier or the entire inventory...
TASAR Flight Trial 2: Assessment of Air Traffic Controller Acceptability of TASAR Requests
NASA Technical Reports Server (NTRS)
Idris, Husni; Enea, Gabriele
2016-01-01
In support of the Flight Trial (FT-2) of NASA's prototype of the Traffic Aware Strategic Aircrew Requests (TASAR) concept, observations were conducted at the air traffic facilities to identify and assess the main factors that affect the acceptability of pilot requests by air traffic controllers. Two observers shadowed air traffic controllers at the Atlanta (ZTL) and Jacksonville (ZJX) air traffic control centers as the test flight pilot made pre-scripted requests to invoke acceptability issues and then they interviewed the observed and other controllers voluntarily. Fifty controllers were interviewed with experience ranging from one to thirty-five years. All interviewed controllers were enthusiastic about the technology and accounting for sector boundaries in pilot requests, particularly if pilots can be made aware of high workload situations. All interviewed controllers accept more than fifty percent of pilot requests; forty percent of them reject less than ten percent of requests. The most common reason for rejecting requests is conflicting with traffic followed by violating letters of agreement (LOAs) and negatively impacting neighboring sector workload, major arrival and departure flows and flow restrictions. Thirty-six requests were made during the test, eight of which were rejected due to: the aircraft already handed off to another sector, violating LOA, opposing traffic, intruding into an active special use airspace (SUA), intruding into another center, weather, and unfamiliarity with the requested waypoint. Nine requests were accepted with delay mostly because the controller needed to locate unfamiliar waypoints or to coordinate with other controllers.
Bongiorno, Christian; Miccichè, Salvatore; Mantegna, Rosario N
2017-01-01
We present an agent based model of the Air Traffic Management socio-technical complex system aiming at modeling the interactions between aircraft and air traffic controllers at a tactical level. The core of the model is given by the conflict detection and resolution module and by the directs module. Directs are flight shortcuts that are given by air controllers to speed up the passage of an aircraft within a certain airspace and therefore to facilitate airline operations. Conflicts between flight trajectories can occur for two main reasons: either the planning of the flight trajectory was not sufficiently detailed to rule out all potential conflicts or unforeseen events during the flight require modifications of the flight plan that can conflict with other flight trajectories. Our model performs a local conflict detection and resolution procedure. Once a flight trajectory has been made conflict-free, the model searches for possible improvements of the system efficiency by issuing directs. We give an example of model calibration based on real data. We then provide an illustration of the capability of our model in generating scenario simulations able to give insights about the air traffic management system. We show that the calibrated model is able to reproduce the existence of a geographical localization of air traffic controllers' operations. Finally, we use the model to investigate the relationship between directs and conflict resolutions (i) in the presence of perfect forecast ability of controllers, and (ii) in the presence of some degree of uncertainty in flight trajectory forecast.
Benefits of Using Pairwise Trajectory Management in the Central East Pacific
NASA Technical Reports Server (NTRS)
Chartrand, Ryan; Ballard, Kathryn
2016-01-01
Pairwise Trajectory Management (PTM) is a concept that utilizes airborne and ground-based capabilities to enable airborne spacing operations in oceanic regions. The goal of PTM is to use enhanced surveillance, along with airborne tools, to manage the spacing between aircraft. Due to the enhanced airborne surveillance of Automatic Dependent Surveillance-Broadcast (ADS-B) information and reduced communication, the PTM minimum spacing distance will be less than distances currently required of an air traffic controller. Reduced minimum distance will increase the capacity of aircraft operations at a given altitude or volume of airspace, thereby increasing time on desired trajectory and overall flight efficiency. PTM is designed to allow a flight crew to resolve a specific traffic conflict (or conflicts), identified by the air traffic controller, while maintaining the flight crew's desired altitude. The air traffic controller issues a PTM clearance to a flight crew authorized to conduct PTM operations in order to resolve a conflict for the pair (or pairs) of aircraft (i.e., the PTM aircraft and a designated target aircraft). This clearance requires the flight crew of the PTM aircraft to use their ADS-B-enabled onboard equipment to manage their spacing relative to the designated target aircraft to ensure spacing distances that are no closer than the PTM minimum distance. When the air traffic controller determines that PTM is no longer required, the controller issues a clearance to cancel the PTM operation.
32 CFR 245.22 - Policy for application of EATPL.
Code of Federal Regulations, 2010 CFR
2010-07-01
... (CONTINUED) MISCELLANEOUS PLAN FOR THE EMERGENCY SECURITY CONTROL OF AIR TRAFFIC (ESCAT) ESCAT Air Traffic... individual filing the flight plan will be responsible for including the priority number as determined by the originator of the aircraft flight operation, in the remarks section of the flight plan. (c) Situations may...
Conflict Resolution Performance in an Experimental Study of En Route Free Maneuvering Operations
NASA Technical Reports Server (NTRS)
Doble, Nathan A.; Barhydt, Richard; Hitt, James M., II
2005-01-01
NASA has developed a far-term air traffic management concept, termed Distributed Air/Ground Traffic Management (DAG-TM). One component of DAG-TM, En Route Free Maneuvering, allows properly trained flight crews of equipped autonomous aircraft to assume responsibility for separation from other autonomous aircraft and from Instrument Flight Rules (IFR) aircraft. Ground-based air traffic controllers continue to separate IFR traffic and issue flow management constraints to all aircraft. To examine En Route Free Maneuvering operations, a joint human-in-the-loop experiment was conducted in summer 2004 at the NASA Ames and Langley Research Centers. Test subject pilots used desktop flight simulators to resolve traffic conflicts and adhere to air traffic flow constraints issued by subject controllers. The experimental airspace integrated both autonomous and IFR aircraft at varying traffic densities. This paper presents a subset of the En Route Free Maneuvering experimental results, focusing on airborne and ground-based conflict resolution, and the effects of increased traffic levels on the ability of pilots and air traffic controllers to perform this task. The results show that, in general, increases in autonomous traffic do not significantly impact conflict resolution performance. In addition, pilot acceptability of autonomous operations remains high throughout the range of traffic densities studied. Together with previously reported findings, these results continue to support the feasibility of the En Route Free Maneuvering component of DAG-TM.
Air Traffic Control: Economics of Flight
NASA Technical Reports Server (NTRS)
Murphy, James R.
2004-01-01
Contents include the following: 1. Commercial flight is a partnership. Airlines. Pilots. Air traffic control. 2. Airline schedules and weather problems can cause delays at the airport. Delays are inevitable in de-regulated industry due to simple economics. 3.Delays can be mitigated. Build more runways/technology. Increase airspace supply. 4. Cost/benefit analysis determine justification.
Flight to the future : human factors in air traffic control
DOT National Transportation Integrated Search
1997-01-01
The nation's air traffic control system is responsible for managing a complex : mixture of air traffic from commercial, general, corporate, and military : aviation. Despite a strong safety record, the system does suffer occasional : serious disruptio...
Bongiorno, Christian; Mantegna, Rosario N.
2017-01-01
We present an agent based model of the Air Traffic Management socio-technical complex system aiming at modeling the interactions between aircraft and air traffic controllers at a tactical level. The core of the model is given by the conflict detection and resolution module and by the directs module. Directs are flight shortcuts that are given by air controllers to speed up the passage of an aircraft within a certain airspace and therefore to facilitate airline operations. Conflicts between flight trajectories can occur for two main reasons: either the planning of the flight trajectory was not sufficiently detailed to rule out all potential conflicts or unforeseen events during the flight require modifications of the flight plan that can conflict with other flight trajectories. Our model performs a local conflict detection and resolution procedure. Once a flight trajectory has been made conflict-free, the model searches for possible improvements of the system efficiency by issuing directs. We give an example of model calibration based on real data. We then provide an illustration of the capability of our model in generating scenario simulations able to give insights about the air traffic management system. We show that the calibrated model is able to reproduce the existence of a geographical localization of air traffic controllers’ operations. Finally, we use the model to investigate the relationship between directs and conflict resolutions (i) in the presence of perfect forecast ability of controllers, and (ii) in the presence of some degree of uncertainty in flight trajectory forecast. PMID:28419160
Flight test experience using advanced airborne equipment in a time-based metered traffic environment
NASA Technical Reports Server (NTRS)
Morello, S. A.
1980-01-01
A series of test flights have demonstrated that time-based metering guidance and control was acceptable to pilots and air traffic controllers. The descent algorithm of the technique, with good representation of aircraft performance and wind modeling, yielded arrival time accuracy within 12 sec. It is expected that this will represent significant fuel savings (1) through a reduction of the time error dispersions at the metering fix for the entire fleet, and (2) for individual aircraft as well, through the presentation of guidance for a fuel-efficient descent. Air traffic controller workloads were also reduced, in keeping with the reduction of required communications resulting from the transfer of navigation responsibilities to pilots. A second series of test flights demonstrated that an existing flight management system could be modified to operate in the new mode.
The Airspace Concepts Evaluation System Architecture and System Plant
NASA Technical Reports Server (NTRS)
Windhorst, Robert; Meyn, Larry; Manikonda, Vikram; Carlos, Patrick; Capozzi, Brian
2006-01-01
The Airspace Concepts Evaluation System is a simulation of the National Airspace System. It includes models of flights, airports, airspaces, air traffic controls, traffic flow managements, and airline operation centers operating throughout the United States. It is used to predict system delays in response to future capacity and demand scenarios and perform benefits assessments of current and future airspace technologies and operational concepts. Facilitation of these studies requires that the simulation architecture supports plug and play of different air traffic control, traffic flow management, and airline operation center models and multi-fidelity modeling of flights, airports, and airspaces. The simulation is divided into two parts that are named, borrowing from classical control theory terminology, control and plant. The control consists of air traffic control, traffic flow management, and airline operation center models, and the plant consists of flight, airport, and airspace models. The plant can run open loop, in the absence of the control. However, undesired affects, such as conflicts and over congestions in the airspaces and airports, can occur. Different controls are applied, "plug and played", to the plant. A particular control is evaluated by analyzing how well it managed conflicts and congestions. Furthermore, the terminal area plants consist of models of airports and terminal airspaces. Each model consists of a set of nodes and links which are connected by the user to form a network. Nodes model runways, fixes, taxi intersections, gates, and/or other points of interest, and links model taxiways, departure paths, and arrival paths. Metering, flow distribution, and sequencing functions can be applied at nodes. Different fidelity model of how a flight transits are can be used by links. The fidelity of the model can be adjusted by the user by either changing the complexity of the node/link network-or the way that the link models how the flights transit from one node to the other.
Visual search in complex displays: factors affecting conflict detection by air traffic controllers.
Remington, R W; Johnston, J C; Ruthruff, E; Gold, M; Romera, M
2000-01-01
Recent free flight proposals to relax airspace constraints and give greater autonomy to aircraft have raised concerns about their impact on controller performance. Relaxing route and altitude restrictions would reduce the regularity of traffic through individual sectors, possibly impairing controller situation awareness. We examined the impact of this reduced regularity in four visual search experiments that tested controllers' detection of traffic conflicts in the four conditions created by factorial manipulation of fixed routes (present vs. absent) and altitude restrictions (present vs. absent). These four conditions were tested under varying levels of traffic load and conflict geometry (conflict time and conflict angle). Traffic load and conflict geometry showed strong and consistent effects in all experiments. Color coding altitude also substantially improved detection times. In contrast, removing altitude restrictions had only a small negative impact, and removing route restrictions had virtually no negative impact. In some cases conflict detection was actually better without fixed routes. The implications and limitations of these results for the feasibility of free flight are discussed. Actual or potential applications include providing guidance in the selection of free flight operational concepts.
Traffic Aware Planner for Cockpit-Based Trajectory Optimization
NASA Technical Reports Server (NTRS)
Woods, Sharon E.; Vivona, Robert A.; Henderson, Jeffrey; Wing, David J.; Burke, Kelly A.
2016-01-01
The Traffic Aware Planner (TAP) software application is a cockpit-based advisory tool designed to be hosted on an Electronic Flight Bag and to enable and test the NASA concept of Traffic Aware Strategic Aircrew Requests (TASAR). The TASAR concept provides pilots with optimized route changes (including altitude) that reduce fuel burn and/or flight time, avoid interactions with known traffic, weather and restricted airspace, and may be used by the pilots to request a route and/or altitude change from Air Traffic Control. Developed using an iterative process, TAP's latest improvements include human-machine interface design upgrades and added functionality based on the results of human-in-the-loop simulation experiments and flight trials. Architectural improvements have been implemented to prepare the system for operational-use trials with partner commercial airlines. Future iterations will enhance coordination with airline dispatch and add functionality to improve the acceptability of TAP-generated route-change requests to pilots, dispatchers, and air traffic controllers.
A Cockpit-Based Application for Traffic Aware Trajectory Optimization
NASA Technical Reports Server (NTRS)
Woods, Sharon E.; Vivona, Robert A.; Roscoe, David A.; LeFebvre, Brendan C.; Wing, David J.; Ballin, Mark G.
2013-01-01
The Traffic Aware Planner (TAP) is a cockpit-based advisory tool designed to be hosted on a Class 2 Electronic Flight Bag and developed to enable the concept of Traffic Aware Strategic Aircrew Requests (TASAR). This near-term concept provides pilots with optimized route changes that reduce fuel burn or flight time, avoids interactions with known traffic, weather and restricted airspace, and may be used by the pilots to request a trajectory change from air traffic control. TAP's internal architecture and algorithms are derived from the Autonomous Operations Planner, a flight-deck automation system developed by NASA to support research into aircraft self-separation. This paper reviews the architecture, functionality and operation of TAP.
DOT National Transportation Integrated Search
1965-07-01
A statistical study of training- and job-performance measures of several hundred Air Traffic Control Specialists (ATCS) representing Enroute, Terminal, and Flight Service Station specialties revealed that training-performance measures reflected: : 1....
Functional Description of Air Traffic Control
DOT National Transportation Integrated Search
1971-04-01
The document contains a description of air traffic control in terms of generic operational functions. The functions are grouped by flight phase and by major system function (navigation, surveillance, control and communication). More detailed descript...
Flight tests with a data link used for air traffic control information exchange
NASA Technical Reports Server (NTRS)
Knox, Charles E.; Scanlon, Charles H.
1991-01-01
Previous studies showed that air traffic control (ATC) message exchange with a data link offers the potential benefits of increased airspace system safety and efficiency. To accomplish these benefits, data link can be used to reduce communication errors and relieve overloaded ATC voice radio frequencies, which hamper efficient message exchange during peak traffic periods. Flight tests with commercial airline pilots as test subjects were conducted in the NASA Transport Systems Research Vehicle Boeing 737 airplane to contrast flight operations that used current voice communications with flight operations that used data link to transmit both strategic and tactical ATC clearances during a typical commercial airflight from takeoff to landing. The results of these tests that used data link as the primary communication source with ATC showed flight crew acceptance, a perceived reduction in crew work load, and a reduction in crew communication errors.
Analysis and improvement measures of flight delay in China
NASA Astrophysics Data System (ADS)
Zang, Yuhang
2017-03-01
Firstly, this paper establishes the principal component regression model to analyze the data quantitatively, based on principal component analysis to get the three principal component factors of flight delays. Then the least square method is used to analyze the factors and obtained the regression equation expression by substitution, and then found that the main reason for flight delays is airlines, followed by weather and traffic. Aiming at the above problems, this paper improves the controllable aspects of traffic flow control. For reasons of traffic flow control, an adaptive genetic queuing model is established for the runway terminal area. This paper, establish optimization method that fifteen planes landed simultaneously on the three runway based on Beijing capital international airport, comparing the results with the existing FCFS algorithm, the superiority of the model is proved.
Conflict Probe Concepts Analysis in Support of Free Flight
NASA Technical Reports Server (NTRS)
Warren, Anthony W.; Schwab, Robert W.; Geels, Timothy J.; Shakarian, Arek
1997-01-01
This study develops an operational concept and requirements for en route Free Flight using a simulation of the Cleveland Air Route Traffic Control Center, and develops requirements for an automated conflict probe for use in the Air Traffic Control (ATC) Centers. In this paper, we present the results of simulation studies and summarize implementation concepts and infrastructure requirements to transition from the current air traffic control system to mature Free Right. The transition path to Free Flight envisioned in this paper assumes an orderly development of communications, navigation, and surveillance (CNS) technologies based on results from our simulation studies. The main purpose of this study is to provide an overall context and methodology for evaluating airborne and ground-based requirements for cooperative development of the future ATC system.
Automatic speech recognition in air traffic control
NASA Technical Reports Server (NTRS)
Karlsson, Joakim
1990-01-01
Automatic Speech Recognition (ASR) technology and its application to the Air Traffic Control system are described. The advantages of applying ASR to Air Traffic Control, as well as criteria for choosing a suitable ASR system are presented. Results from previous research and directions for future work at the Flight Transportation Laboratory are outlined.
Efficient Conversation: The Talk between Pilots and Air Traffic Controllers.
ERIC Educational Resources Information Center
Simmons, James L.
Two-way radio communications between air traffic controllers using radar on the ground to give airplane pilots instructions are of interest within the developing framework of the sociology of language. The main purpose of air traffic control language is efficient communication to promote flight safety. This study describes the standardized format…
NASA Technical Reports Server (NTRS)
Hansman, Robert John, Jr.
1999-01-01
MIT has investigated Situational Awareness issues relating to the implementation of Datalink in the Air Traffic Control environment for a number of years under this grant activity. This work has investigated: 1) The Effect of "Party Line" Information. 2) The Effect of Datalink-Enabled Automated Flight Management Systems (FMS) on Flight Crew Situational Awareness. 3) The Effect of Cockpit Display of Traffic Information (CDTI) on Situational Awareness During Close Parallel Approaches. 4) Analysis of Flight Path Management Functions in Current and Future ATM Environments. 5) Human Performance Models in Advanced ATC Automation: Flight Crew and Air Traffic Controllers. 6) CDTI of Datalink-Based Intent Information in Advanced ATC Environments. 7) Shared Situational Awareness between the Flight Deck and ATC in Datalink-Enabled Environments. 8) Analysis of Pilot and Controller Shared SA Requirements & Issues. 9) Development of Robust Scenario Generation and Distributed Simulation Techniques for Flight Deck ATC Simulation. 10) Methods of Testing Situation Awareness Using Testable Response Techniques. The work is detailed in specific technical reports that are listed in the following bibliography, and are attached as an appendix to the master final technical report.
Interaction Between Strategic and Local Traffic Flow Controls
NASA Technical Reports Server (NTRS)
Grabbe, Son; Sridhar, Banavar; Mukherjee, Avijit; Morando, Alexander
2010-01-01
The loosely coordinated sets of traffic flow management initiatives that are operationally implemented at the national- and local-levels have the potential to under, over, and inconsistently control flights. This study is designed to explore these interactions through fast-time simulations with an emphasis on identifying inequitable situations in which flights receive multiple uncoordinated delays. Two operationally derived scenarios were considered in which flights arriving into the Dallas/Fort Worth International Airport were first controlled at the national-level, either with a Ground Delay Program or a playbook reroute. These flights were subsequently controlled at the local level. The Traffic Management Advisor assigned them arrival scheduling delays. For the Ground Delay Program scenarios, between 51% and 53% of all arrivals experience both pre-departure delays from the Ground Delay Program and arrival scheduling delays from the Traffic Management Advisor. Of the subset of flights that received multiple delays, between 5.7% and 6.4% of the internal departures were first assigned a pre-departure delay by the Ground Delay Program, followed by a second pre-departure delay as a result of the arrival scheduling. For the playbook reroute scenario, Dallas/Fort Worth International Airport arrivals were first assigned pre-departure reroutes based on the MW_2_DALLAS playbook plan, and were subsequently assigned arrival scheduling delays by the Traffic Management Advisor. Since the airport was operating well below capacity when the playbook reroute was in effect, only 7% of the arrivals were observed to receive both rerouting and arrival scheduling delays. Findings from these initial experiments confirm field observations that Ground Delay Programs operated in conjunction with arrival scheduling can result in inequitable situations in which flights receive multiple uncoordinated delays.
NASA Technical Reports Server (NTRS)
Wing, David J.; Ballin, Mark G.; Koczo, Stefan, Jr.; Vivona, Robert A.; Henderson, Jeffrey M.
2013-01-01
The concept of Traffic Aware Strategic Aircrew Requests (TASAR) combines Automatic Dependent Surveillance Broadcast (ADS-B) IN and airborne automation to enable user-optimal in-flight trajectory replanning and to increase the likelihood of Air Traffic Control (ATC) approval for the resulting trajectory change request. TASAR is designed as a near-term application to improve flight efficiency or other user-desired attributes of the flight while not impacting and potentially benefiting ATC. Previous work has indicated the potential for significant benefits for each TASAR-equipped aircraft. This paper will discuss the approach to minimizing TASAR's cost for implementation and accelerating readiness for near-term implementation.
Flight Test Assessments of Pilot Workload, System Usability, and Situation Awareness of TASAR
NASA Technical Reports Server (NTRS)
Burke, Kelly A.; Haynes, Mark A.
2016-01-01
Traffic Aware Strategic Aircrew Requests (TASAR) is an onboard automation concept intended to identify trajectory optimizations, in terms of fuel and time saving objectives, clear of known traffic, weather, and airspace restrictions prior to the aircrew initiating a route-change request to Air Traffic Control (ATC). The software implementation of the TASAR concept is the Traffic Aware Planner (TAP). TASAR analysis and development is being executed by the NASA Langley Research Center's Crew Systems and Aviation Operations Branch (CSAOB) under the sponsorship of the Airspace Technology Demonstration (ATD) Project of the NASA Airspace Operations and Safety Program (AOSP). The TASAR Flight Trial-2 (FT-2) was conducted in June, 2015 out of the Newport News/Williamsburg International Airport. This flight trial was conducted using a Piaggio Avanti flight test aircraft and consisted of 12 Evaluation Flights with airline commercial pilots participating as the Evaluation Pilots, three destination airports in Atlanta and Jacksonville Air Route Traffic Control Centers, and one pair of flight plans associated with each destination airport. The primary goal of FT-2 was to reduce risk for upcoming operational trials with NASA partner airlines, Alaska Airlines and Virgin America. To accomplish this primary goal, six independent objectives were conducted during FT-2, however, this paper will report only the findings of Objective 5; the assessment of system usability, pilot perceived workload, and the degree of pilot acceptability of the TAP Human Machine Interface (HMI) during flight operations, via the administration of several subjective measures.
Free Flight Simulation: An Initial Examination of Air-Ground Integration Issues
NASA Technical Reports Server (NTRS)
Lozito, Sandra; McGann, Alison; Cashion, Patricia; Dunbar, Melisa; Mackintosh, Margaret; Dulchinos, Victoria; Jordan, Kevin; Remington, Roger (Technical Monitor)
2000-01-01
The concept of "free flight" is intended to emphasize more flexibility for operators in the National Airspace System (RTCA, 1995). This may include the potential for aircraft self-separation. The purpose of this simulation was to begin examining some of the communication and procedural issues associated with self-separation in an integrated air-ground environment. Participants were 10 commercial U.S. flight crews who flew the B747-400 simulator and 10 Denver ARTCC controllers who monitored traffic in an ATC simulation. A prototypic airborne alerting logic and flight deck display features were designed to allow for increased traffic and maneuvering information. Eight different scenarios representing different conflict types were developed. The effects of traffic density (high and low) and different traffic convergence angles (obtuse, acute, and right) were assessed. Conflict detection times were found to be lower for the flight crews in low density compared to high density scenarios. For the controllers, an interaction between density and convergence angle was revealed. Analyses on the controller detection times found longer detection times in the obtuse high density compared to obtuse low density, as well as the shortest detection times in the high density acute angle condition. Maneuvering and communication events are summarized, and a discussion of future research issues is provided.
14 CFR 65.45 - Performance of duties.
Code of Federal Regulations, 2010 CFR
2010-01-01
... the FAA, to provide for the safe, orderly, and expeditious flow of air traffic. (b) An operator with a... CERTIFICATION: AIRMEN OTHER THAN FLIGHT CREWMEMBERS Air Traffic Control Tower Operators § 65.45 Performance of duties. (a) An air traffic control tower operator shall perform his duties in accordance with the...
14 CFR 65.45 - Performance of duties.
Code of Federal Regulations, 2011 CFR
2011-01-01
... the FAA, to provide for the safe, orderly, and expeditious flow of air traffic. (b) An operator with a... CERTIFICATION: AIRMEN OTHER THAN FLIGHT CREWMEMBERS Air Traffic Control Tower Operators § 65.45 Performance of duties. (a) An air traffic control tower operator shall perform his duties in accordance with the...
14 CFR 65.45 - Performance of duties.
Code of Federal Regulations, 2014 CFR
2014-01-01
... the FAA, to provide for the safe, orderly, and expeditious flow of air traffic. (b) An operator with a... CERTIFICATION: AIRMEN OTHER THAN FLIGHT CREWMEMBERS Air Traffic Control Tower Operators § 65.45 Performance of duties. (a) An air traffic control tower operator shall perform his duties in accordance with the...
14 CFR 65.45 - Performance of duties.
Code of Federal Regulations, 2013 CFR
2013-01-01
... the FAA, to provide for the safe, orderly, and expeditious flow of air traffic. (b) An operator with a... CERTIFICATION: AIRMEN OTHER THAN FLIGHT CREWMEMBERS Air Traffic Control Tower Operators § 65.45 Performance of duties. (a) An air traffic control tower operator shall perform his duties in accordance with the...
14 CFR 65.45 - Performance of duties.
Code of Federal Regulations, 2012 CFR
2012-01-01
... the FAA, to provide for the safe, orderly, and expeditious flow of air traffic. (b) An operator with a... CERTIFICATION: AIRMEN OTHER THAN FLIGHT CREWMEMBERS Air Traffic Control Tower Operators § 65.45 Performance of duties. (a) An air traffic control tower operator shall perform his duties in accordance with the...
Holiday Perspectives on Air Traffic Control
2016-12-14
As America travels over the holidays, NASA’s FutureFlight Central (FFC) is working to help passengers get to their destinations on time. The 360-degree virtual air traffic control tower is capable of simulating traffic and weather conditions to include snow, sleet and rain at almost any airport in the United States.
NASA Technical Reports Server (NTRS)
Rogers, Ralph V.
1993-01-01
The TATSS Project's goal was to develop a design for computer software that would support the attainment of the following objectives for the air traffic simulation model: (1) Full freedom of movement for each aircraft object in the simulation model. Each aircraft object may follow any designated flight plan or flight path necessary as required by the experiment under consideration. (2) Object position precision up to +/- 3 meters vertically and +/- 15 meters horizontally. (3) Aircraft maneuvering in three space with the object position precision identified above. (4) Air traffic control operations and procedures. (5) Radar, communication, navaid, and landing aid performance. (6) Weather. (7) Ground obstructions and terrain. (8) Detection and recording of separation violations. (9) Measures of performance including deviations from flight plans, air space violations, air traffic control messages per aircraft, and traditional temporal based measures.
NASA Technical Reports Server (NTRS)
Taube, L. J.
1972-01-01
This volume contains cost, schedule, and technical information on the following B-70 aircraft subsystems: air induction system, flight control, personnel accommodation and escape, alighting and arresting, mission and traffic control, flight indication, test instrumentation, and installation, checkout, and pre-flight.
14 CFR 91.189 - Category II and III operations: General operating rules.
Code of Federal Regulations, 2013 CFR
2013-01-01
... pilot who is controlling the aircraft has appropriate instrumentation for the type of flight control... TRANSPORTATION (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Flight Rules Instrument Flight Rules § 91.189 Category II and III operations: General operating rules. (a) No...
14 CFR 91.189 - Category II and III operations: General operating rules.
Code of Federal Regulations, 2012 CFR
2012-01-01
... pilot who is controlling the aircraft has appropriate instrumentation for the type of flight control... TRANSPORTATION (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Flight Rules Instrument Flight Rules § 91.189 Category II and III operations: General operating rules. (a) No...
14 CFR 91.189 - Category II and III operations: General operating rules.
Code of Federal Regulations, 2014 CFR
2014-01-01
... pilot who is controlling the aircraft has appropriate instrumentation for the type of flight control... TRANSPORTATION (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Flight Rules Instrument Flight Rules § 91.189 Category II and III operations: General operating rules. (a) No...
Achieving TASAR Operational Readiness
NASA Technical Reports Server (NTRS)
Wing, David J.
2015-01-01
NASA has been developing and testing the Traffic Aware Strategic Aircrew Requests (TASAR) concept for aircraft operations featuring a NASA-developed cockpit automation tool, the Traffic Aware Planner (TAP), which computes traffic/hazard-compatible route changes to improve flight efficiency. The TAP technology is anticipated to save fuel and flight time and thereby provide immediate and pervasive benefits to the aircraft operator, as well as improving flight schedule compliance, passenger comfort, and pilot and controller workload. Previous work has indicated the potential for significant benefits for TASAR-equipped aircraft, and a flight trial of the TAP software application in the National Airspace System has demonstrated its technical viability. This paper reviews previous and ongoing activities to prepare TASAR for operational use.
NASA Technical Reports Server (NTRS)
Barhydt, Richard; Kopardekar, Parimal; Battiste, Vernol; Doble, Nathan; Johnson, Walter; Lee, Paul; Prevot, Thomas; Smith, Nancy
2005-01-01
In order to meet the anticipated future demand for air travel, the National Aeronautics and Space Administration (NASA) is investigating a new concept of operations known as Distributed Air-Ground Traffic Management (DAG-TM). Under the En Route Free Maneuvering component of DAG-TM, appropriately equipped autonomous aircraft self separate from other autonomous aircraft and from managed aircraft that continue to fly under today s Instrument Flight Rules (IFR). Controllers provide separation services between IFR aircraft and assign traffic flow management constraints to all aircraft. To address concept feasibility issues pertaining to integrated air/ground operations at various traffic levels, NASA Ames and Langley Research Centers conducted a joint human-in-the-loop experiment. Professional airline pilots and air traffic controllers flew a total of 16 scenarios under four conditions: mixed autonomous/managed operations at three traffic levels and a baseline all-managed condition at the lowest traffic level. These scenarios included en route flights and descents to a terminal area meter fix in airspace modeled after the Dallas Ft. Worth area. Pilots of autonomous aircraft met controller assigned meter fix constraints with high success. Separation violations by subject pilots did not appear to vary with traffic level and were mainly attributable to software errors and procedural lapses. Controller workload was lower for mixed flight conditions, even at higher traffic levels. Pilot workload was deemed acceptable under all conditions. Controllers raised several safety concerns, most of which pertained to the occurrence of near-term conflicts between autonomous and managed aircraft. These issues are being addressed through better compatibility between air and ground systems and refinements to air and ground procedures.
Development of the L-1011 four-dimensional flight management system
NASA Technical Reports Server (NTRS)
Lee, H. P.; Leffler, M. F.
1984-01-01
The development of 4-D guidance and control algorithms for the L-1011 Flight Management System is described. Four-D Flight Management is a concept by which an aircraft's flight is optimized along the 3-D path within the constraints of today's ATC environment, while its arrival time is controlled to fit into the air traffic flow without incurring or causing delays. The methods developed herein were designed to be compatible with the time-based en route metering techniques that were recently developed by the Dallas/Fort Worth and Denver Air Route Traffic Control Centers. The ensuing development of the 4-D guidance algorithms, the necessary control laws and the operational procedures are discussed. Results of computer simulation evaluation of the guidance algorithms and control laws are presented, along with a description of the software development procedures utilized.
Modeling and Analyzing Transient Military Air Traffic Control
2010-12-01
arrive and be serviced. In general, for n flights, the number of ways that flights can enter and leave the ATC is given by the nth Catalan number ...collection of information if it does not display a currently valid OMB control number . 1. REPORT DATE DEC 2010 2. REPORT TYPE 3. DATES COVERED 00-00...2010 to 00-00-2010 4. TITLE AND SUBTITLE Modeling and Analyzing Transient Military Air Traffic Control 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c
14 CFR 133.33 - Operating rules.
Code of Federal Regulations, 2011 CFR
2011-01-01
... that directional control is adequate. (4) Accelerate into forward flight to verify that no attitude... traffic control, if necessary, and a detailed chart depicting the flight routes and altitudes. (2) Each...
14 CFR 133.33 - Operating rules.
Code of Federal Regulations, 2012 CFR
2012-01-01
... that directional control is adequate. (4) Accelerate into forward flight to verify that no attitude... traffic control, if necessary, and a detailed chart depicting the flight routes and altitudes. (2) Each...
14 CFR 133.33 - Operating rules.
Code of Federal Regulations, 2014 CFR
2014-01-01
... that directional control is adequate. (4) Accelerate into forward flight to verify that no attitude... traffic control, if necessary, and a detailed chart depicting the flight routes and altitudes. (2) Each...
14 CFR 133.33 - Operating rules.
Code of Federal Regulations, 2013 CFR
2013-01-01
... that directional control is adequate. (4) Accelerate into forward flight to verify that no attitude... traffic control, if necessary, and a detailed chart depicting the flight routes and altitudes. (2) Each...
How controllers compensate for the lack of flight progress strips.
DOT National Transportation Integrated Search
1996-02-01
The role of the Flight Progress Strip, currently used to display important flight data, has been debated because of long range plans to automate the air traffic control (ATC) human-computer interface. Currently, the Fight Progress Strip is viewed by ...
NASA Langley and NLR Research of Distributed Air/Ground Traffic Management
NASA Technical Reports Server (NTRS)
Ballin, Mark G.; Hoekstra, Jacco M.; Wing, David J.; Lohr, Gary W.
2002-01-01
Distributed Air/Ground Traffic Management (DAG-TM) is a concept of future air traffic operations that proposes to distribute information, decision-making authority, and responsibility among flight crews, the air traffic service provider, and aeronautical operational control organizations. This paper provides an overview and status of DAG-TM research at NASA Langley Research Center and the National Aerospace Laboratory of The Netherlands. Specific objectives of the research are to evaluate the technical and operational feasibility of the autonomous airborne component of DAG-TM, which is founded on the operational paradigm of free flight. The paper includes an overview of research approaches, the airborne technologies under development, and a summary of experimental investigations and findings to date. Although research is not yet complete, these findings indicate that free flight is feasible and will significantly enhance system capacity and safety. While free flight cannot alone resolve the complex issues faced by those modernizing the global airspace, it should be considered an essential part of a comprehensive air traffic management modernization activity.
Air Traffic Control: Weak Computer Security Practices Jeopardize Flight Safety
DOT National Transportation Integrated Search
1998-05-01
Given the paramount importance of computer security of Air Traffic Control (ATC) systems, Congress asked the General Accounting Office to determine (1) whether the Fedcral Aviation Administration (FAA) is effectively managing physical security at ATC...
Traffic Flow Management Using Aggregate Flow Models and the Development of Disaggregation Methods
NASA Technical Reports Server (NTRS)
Sun, Dengfeng; Sridhar, Banavar; Grabbe, Shon
2010-01-01
A linear time-varying aggregate traffic flow model can be used to develop Traffic Flow Management (tfm) strategies based on optimization algorithms. However, there are no methods available in the literature to translate these aggregate solutions into actions involving individual aircraft. This paper describes and implements a computationally efficient disaggregation algorithm, which converts an aggregate (flow-based) solution to a flight-specific control action. Numerical results generated by the optimization method and the disaggregation algorithm are presented and illustrated by applying them to generate TFM schedules for a typical day in the U.S. National Airspace System. The results show that the disaggregation algorithm generates control actions for individual flights while keeping the air traffic behavior very close to the optimal solution.
Analysis of Multi-Flight Common Routes for Traffic Flow Management
NASA Technical Reports Server (NTRS)
Sheth, Kapil; Clymer, Alexis; Morando, Alex; Shih, Fu-Tai
2016-01-01
When severe convective weather requires rerouting aircraft, FAA traffic managers employ severe weather avoidance plans (e.g., Playbook routes, Coded Departure Routes, etc.) These routes provide pilots with safe paths around weather-affected regions, and provide controllers with predictable, and often well-established flight plans. However, they often introduce large deviations to the nominal flight plans, which may not be necessary as weather conditions change. If and when the imposed traffic management initiatives (TMIs) become stale, updated shorter path flight trajectories may be found en route, providing significant time-savings to the affected flights. Multiple Flight Common Routes (MFCR) is a concept that allows multiple flights that are within a specified proximity or region, to receive updated shorter flight plans in an operationally efficient manner. MFCR is believed to provide benefits to the National Airspace System (NAS) by allowing traffic managers to update several flight plans of en route aircraft simultaneously, reducing operational workload within the TMUs of all affected ARTCCs. This paper will explore some aspects of the MFCR concept by analyzing multiple flights that have been selected for rerouting by the NAS Constraint Evaluation and Notification Tool (NASCENT). Various methods of grouping aircraft with common or similar routes will be presented, along with a comparison of the efficacy of these methods.
Effects of modeling errors on trajectory predictions in air traffic control automation
NASA Technical Reports Server (NTRS)
Jackson, Michael R. C.; Zhao, Yiyuan; Slattery, Rhonda
1996-01-01
Air traffic control automation synthesizes aircraft trajectories for the generation of advisories. Trajectory computation employs models of aircraft performances and weather conditions. In contrast, actual trajectories are flown in real aircraft under actual conditions. Since synthetic trajectories are used in landing scheduling and conflict probing, it is very important to understand the differences between computed trajectories and actual trajectories. This paper examines the effects of aircraft modeling errors on the accuracy of trajectory predictions in air traffic control automation. Three-dimensional point-mass aircraft equations of motion are assumed to be able to generate actual aircraft flight paths. Modeling errors are described as uncertain parameters or uncertain input functions. Pilot or autopilot feedback actions are expressed as equality constraints to satisfy control objectives. A typical trajectory is defined by a series of flight segments with different control objectives for each flight segment and conditions that define segment transitions. A constrained linearization approach is used to analyze trajectory differences caused by various modeling errors by developing a linear time varying system that describes the trajectory errors, with expressions to transfer the trajectory errors across moving segment transitions. A numerical example is presented for a complete commercial aircraft descent trajectory consisting of several flight segments.
Implications of reduced involvement in en route air traffic control.
DOT National Transportation Integrated Search
1999-08-01
The expansion of the National Route Program will allow airlines to be more flexible in filing and amending flight plans. This may : result in a change in the role of the air traffic control specialist from direct control to a position with more monit...
NASA Technical Reports Server (NTRS)
Knox, C. E.; Cannon, D. G.
1979-01-01
A flight management algorithm designed to improve the accuracy of delivering the airplane fuel efficiently to a metering fix at a time designated by air traffic control is discussed. The algorithm provides a 3-D path with time control (4-D) for a test B 737 airplane to make an idle thrust, clean configured descent to arrive at the metering fix at a predetermined time, altitude, and airspeed. The descent path is calculated for a constant Mach/airspeed schedule from linear approximations of airplane performance with considerations given for gross weight, wind, and nonstandard pressure and temperature effects. The flight management descent algorithms and the results of the flight tests are discussed.
Crew systems and flight station concepts for a 1995 transport aircraft
NASA Technical Reports Server (NTRS)
Sexton, G. A.
1983-01-01
Aircraft functional systems and crew systems were defined for a 1995 transport aircraft through a process of mission analysis, preliminary design, and evaluation in a soft mockup. This resulted in a revolutionary pilot's desk flight station design featuring an all-electric aircraft, fly-by-wire/light flight and thrust control systems, large electronic color head-down displays, head-up displays, touch panel controls for aircraft functional systems, voice command and response systems, and air traffic control systems projected for the 1990s. The conceptual aircraft, for which crew systems were designed, is a generic twin-engine wide-body, low-wing transport, capable of worldwide operation. The flight control system consists of conventional surfaces (some employed in unique ways) and new surfaces not used on current transports. The design will be incorporated into flight simulation facilities at NASA-Langley, NASA-Ames, and the Lockheed-Georgia Company. When interfaced with advanced air traffic control system models, the facilities will provide full-mission capability for researching issues affecting transport aircraft flight stations and crews of the 1990s.
A piloted simulation study of data link ATC message exchange
NASA Technical Reports Server (NTRS)
Waller, Marvin C.; Lohr, Gary W.
1989-01-01
Data link Air Traffic Control (ATC) and Air Traffic Service (ATS) message and data exchange offers the potential benefits of increased flight safety and efficiency by reducing communication errors and allowing more information to be transferred between aircraft and ground facilities. Digital communication also presents an opportunity to relieve the overloading of ATC radio frequencies which hampers message exchange during peak traffic hours in many busy terminal areas. A piloted simulation study to develop pilot factor guidelines and assess potential flight crew benefits and liabilities from using data link ATC message exchange was completed. The data link ATC message exchange concept, implemented on an existing navigation computer Control Display Unit (CDU) required maintaining a voice radio telephone link with an appropriate ATC facility. Flight crew comments, scanning behavior, and measurements of time spent in ATC communication activities for data link ATC message exchange were compared to similar measures for simulated conventional voice radio operations. The results show crew preference for the quieter flight deck environment and a perception of lower communication workload.
A System Concept for Facilitating User Preferences in En Route Airspace
NASA Technical Reports Server (NTRS)
Vivona, R. A.; Ballin, M. G.; Green, S. M.; Bach, R. E.; McNally, B. D.
1996-01-01
The Federal Aviation Administration is trying to make its air traffic management system more responsive to the needs of the aviation community by exploring the concept of 'free flight' for aircraft flying under instrument flight rules. A logical first step toward free flight could be made without significantly altering current air traffic control (ATC) procedures or requiring new airborne equipment by designing a ground-based system to be highly responsive to 'user preference' in en route airspace while providing for an orderly transition to the terminal area. To facilitate user preference in all en route environments, a system based on an extension of the Center/TRACON Automation System (CTAS) is proposed in this document. The new system would consist of two integrated components. An airspace tool (AT) focuses on unconstrained en route aircraft (e.g., not transitioning to the terminal airspace), taking advantage of the relatively unconstrained nature of their flights and using long-range trajectory prediction to provide cost-effective conflict resolution advisories to sector controllers. A sector tool (ST) generates efficient advisories for all aircraft, with a focus on supporting controllers in analyzing and resolving complex, highly constrained traffic situations. When combined, the integrated AT/ST system supports user preference in any air route traffic control center sector. The system should also be useful in evaluating advanced free-flight concepts by serving as a test bed for future research. This document provides an overview of the design concept, explains its anticipated benefits, and recommends a development strategy that leads to a deployable system.
Pruchnicki, Shawn A; Wu, Lora J; Belenky, Gregory
2011-05-01
On 27 August 2006 at 0606 eastern daylight time (EDT) at Bluegrass Airport in Lexington, KY (LEX), the flight crew of Comair Flight 5191 inadvertently attempted to take off from a general aviation runway too short for their aircraft. The aircraft crashed killing 49 of the 50 people on board. To better understand this accident and to aid in preventing similar accidents, we applied mathematical modeling predicting fatigue-related degradation in performance for the Air Traffic Controller on-duty at the time of the crash. To provide the necessary input to the model, we attempted to estimate circadian phase and sleep/wake histories for the Captain, First Officer, and Air Traffic Controller. We were able to estimate with confidence the circadian phase for each. We were able to estimate with confidence the sleep/wake history for the Air Traffic Controller, but unable to do this for the Captain and First Officer. Using the sleep/wake history estimates for the Air Traffic Controller as input, the mathematical modeling predicted moderate fatigue-related performance degradation at the time of the crash. This prediction was supported by the presence of what appeared to be fatigue-related behaviors in the Air Traffic Controller during the 30 min prior to and in the minutes after the crash. Our modeling results do not definitively establish fatigue in the Air Traffic Controller as a cause of the accident, rather they suggest that had he been less fatigued he might have detected Comair Flight 5191's lining up on the wrong runway. We were not able to perform a similar analysis for the Captain and First Officer because we were not able to estimate with confidence their sleep/wake histories. Our estimates of sleep/wake history and circadian rhythm phase for the Air Traffic Controller might generalize to other air traffic controllers and to flight crew operating in the early morning hours at LEX. Relative to other times of day, the modeling results suggest an elevated risk of fatigue-related error, incident, or accident in the early morning due to truncated sleep from the early start and adverse circadian phase from the time of day. This in turn suggests that fatigue mitigation targeted to early morning starts might reduce fatigue risk. In summary, this study suggests that mathematical models predicting performance from sleep/wake history and circadian phase are (1) useful in retrospective accident analysis provided reliable sleep/wake histories are available for the accident personnel and, (2) useful in prospective fatigue-risk identification, mitigation, and accident prevention. Copyright © 2010 Elsevier Ltd. All rights reserved.
Broadcast control of air traffic
NASA Technical Reports Server (NTRS)
Litchford, G. B.
1971-01-01
Concepts of increased pilot participation in air traffic control are presented. The design of an air traffic control system for pilot usage is considered. The operating and safety benefits of LF/VLF approaches in comparison to current nonprecision approach procedures and systems are discussed. With a good national system plan, flight testing and validation, and the use of local differential, or general diurnal, corrections, the LF/VLF system would provide service superior to that presently available.
14 CFR 189.3 - Kinds of messages accepted or relayed.
Code of Federal Regulations, 2012 CFR
2012-01-01
... address: (1) Distress messages and distress traffic. (2) Messages concerning the safety of human life. (3) Flight safety messages concerning— (i) Air traffic control, including— (A) Messages concerning aircraft...
DOT National Transportation Integrated Search
2017-05-01
Fundamental differences exist between transmissions of Air Traffic Control clearances over voice and those transmitted via Controller Pilot Data Link Communications (CPDLC). This paper provides flight deck human factors issues that apply to processin...
NASA Technical Reports Server (NTRS)
Knox, C. E.; Person, L. H., Jr.
1981-01-01
The NASA developed, implemented, and flight tested a flight management algorithm designed to improve the accuracy of delivering an airplane in a fuel-conservative manner to a metering fix at a time designated by air traffic control. This algorithm provides a 3D path with time control (4D) for the TCV B-737 airplane to make an idle-thrust, clean configured (landing gear up, flaps zero, and speed brakes retracted) descent to arrive at the metering fix at a predetermined time, altitude, and airspeed. The descent path is calculated for a constant Mach/airspeed schedule from linear approximations of airplane performance with considerations given for gross weight, wind, and nonstandard pressure and temperature effects. The flight management descent algorithms are described and flight test results are presented.
Step 1: Human System Integration Simulation and Flight Test Progress Report
NASA Technical Reports Server (NTRS)
2005-01-01
The Access 5 Human Systems Integration Work Package produced simulation and flight demonstration planning products for use throughout the program. These included: Test Objectives for Command, Control, Communications; Pilot Questionnaire for Command, Control, Communications; Air Traffic Controller Questionnaire for Command, Control, Communications; Test Objectives for Collision Avoidance; Pilot Questionnaire for Collision Avoidance; Plans for Unmanned Aircraft Systems Control Station Simulations Flight Requirements for the Airspace Operations Demonstration
NASA Technical Reports Server (NTRS)
2005-01-01
The purpose of this document is to analyze the impact of Remotely Operated Aircraft (ROA) operations on current and planned Air Traffic Control (ATC) automation systems in the En Route, Terminal, and Traffic Flow Management domains. The operational aspects of ROA flight, while similar, are not entirely identical to their manned counterparts and may not have been considered within the time-horizons of the automation tools. This analysis was performed to determine if flight characteristics of ROAs would be compatible with current and future NAS automation tools. Improvements to existing systems / processes are recommended that would give Air Traffic Controllers an indication that a particular aircraft is an ROA and modifications to IFR flight plan processing algorithms and / or designation of airspace where an ROA will be operating for long periods of time.
14 CFR 65.55 - Knowledge requirements.
Code of Federal Regulations, 2013 CFR
2013-01-01
... meteorological conditions in the National Airspace System; (8) Air traffic control procedures and pilot... aircraft's flight characteristics and performance in normal and abnormal flight regimes; (11) Human factors...
14 CFR 61.155 - Aeronautical knowledge.
Code of Federal Regulations, 2013 CFR
2013-01-01
... meteorological conditions in the National Airspace System; (8) Air traffic control procedures and pilot... aircraft's flight characteristics and performance in normal and abnormal flight regimes; (11) Human factors...
Broadcast control of air traffic
NASA Technical Reports Server (NTRS)
Litchford, G. B.
1972-01-01
The development of a system of broadcast control for improved flight safety and air traffic control is discussed. The system provides a balance of equality between improved cockpit guidance and control capability and ground control in order to provide the pilot with a greater degree of participation. The manner in which the system is operated and the equipment required for safe operation are examined.
NASA Technical Reports Server (NTRS)
Evans, Antony D.; Sridhar, Banavar; McNally, David
2016-01-01
The Dynamic Weather Routes (DWR) tool is a ground-based trajectory automation system that continuously and automatically analyzes active in-flight aircraft in en route airspace to find simple modifications to flight plan routes that can save significant flying time, while avoiding weather and considering traffic conflicts, airspace sector congestion, special use airspace, and FAA routing restrictions. Trials of the DWR system have shown that significant delay savings are possible. However, some DWR advised routes are also rejected by dispatchers or modified before being accepted. Similarly, of those sent by dispatchers to flight crews as proposed route change requests, many are not accepted by air traffic control, or are modified before implementation as Center route amendments. Such actions suggest that the operational acceptability of DWR advised route corrections could be improved, which may reduce workload and increase delay savings. This paper analyzes the historical usage of different flight routings, varying from simple waypoint pairs to lengthy strings of waypoints incorporating jet routes, in order to improve DWR route acceptability. An approach is developed that can be incorporated into DWR, advising routings with high historical usage and savings potential similar to that of the nominal DWR advisory. It is hypothesized that modifying a nominal DWR routing to one that is commonly used, and nearby, will result in more actual savings since common routings are generally familiar and operationally acceptable to air traffic control. The approach allows routing segments with high historical usage to be concatenated to form routes that meet all DWR constraints. The relevance of a route's historical usage to its acceptance by dispatchers and air traffic control is quantified by analyzing historical DWR data. Results indicate that while historical usage may be less of a concern to flight dispatchers accepting or rejecting DWR advised route corrections, it may be important to air traffic control acceptance of DWR routes.
NASA Technical Reports Server (NTRS)
Koczo, Stefan, Jr.
2013-01-01
Safety analyses of the Traffic Aware Strategic Aircrew Requests (TASAR) Electronic Flight Bag (EFB) application are provided to establish its Failure Effects Classification which affects certification and operational approval requirements. TASAR was developed by NASA Langley Research Center to offer flight path improvement opportunities to the pilot during flight for operational benefits (e.g., reduced fuel, flight time). TASAR, using own-ship and network-enabled information concerning the flight and its environment, including weather and Air Traffic Control (ATC) system constraints, provides recommended improvements to the flight trajectory that the pilot can choose to request via Change Requests to ATC for revised clearance. This study reviews the Change Request process of requesting updates to the current clearance, examines the intended function of TASAR, and utilizes two safety assessment methods to establish the Failure Effects Classification of TASAR. Considerable attention has been given in this report to the identification of operational hazards potentially associated with TASAR.
Acceptability of Flight Deck-Based Interval Management Crew Procedures
NASA Technical Reports Server (NTRS)
Murdock, Jennifer L.; Wilson, Sara R.; Hubbs, Clay E.; Smail, James W.
2013-01-01
The Interval Management for Near-term Operations Validation of Acceptability (IM-NOVA) experiment was conducted at the National Aeronautics and Space Administration (NASA) Langley Research Center (LaRC) in support of the NASA Next Generation Air Transportation System (NextGen) Airspace Systems Program's Air Traffic Management Technology Demonstration - 1 (ATD-1). ATD-1 is intended to showcase an integrated set of technologies that provide an efficient arrival solution for managing aircraft using NextGen surveillance, navigation, procedures, and automation for both airborne and ground-based systems. The goal of the IM-NOVA experiment was to assess if procedures outlined by the ATD-1 Concept of Operations, when used with a minimum set of Flight deck-based Interval Management (FIM) equipment and a prototype crew interface, were acceptable to and feasible for use by flight crews in a voice communications environment. To investigate an integrated arrival solution using ground-based air traffic control tools and aircraft automatic dependent surveillance broadcast (ADS-B) tools, the LaRC FIM system and the Traffic Management Advisor with Terminal Metering and Controller Managed Spacing tools developed at the NASA Ames Research Center (ARC) were integrated in LaRC's Air Traffic Operations Laboratory. Data were collected from 10 crews of current, qualified 757/767 pilots asked to fly a high-fidelity, fixed based simulator during scenarios conducted within an airspace environment modeled on the Dallas-Fort Worth (DFW) Terminal Radar Approach Control area. The aircraft simulator was equipped with the Airborne Spacing for Terminal Area Routes algorithm and a FIM crew interface consisting of electronic flight bags and ADS-B guidance displays. Researchers used "pseudo-pilot" stations to control 24 simulated aircraft that provided multiple air traffic flows into DFW, and recently retired DFW air traffic controllers served as confederate Center, Feeder, Final, and Tower controllers. Pilot participant feedback indicated that the procedures used by flight crews to receive and execute interval management (IM) clearances in a voice communications environment were logical, easy to follow, did not contain any missing or extraneous steps, and required the use of an acceptable level of workload. The majority of the pilot participants found the IM concept, in addition to the proposed FIM crew procedures, to be acceptable and indicated that the ATD-1 procedures can be successfully executed in a near-term NextGen environment.
Code of Federal Regulations, 2014 CFR
2014-10-01
... for ground vehicle identification and collision avoidance; (3) No more than two hundred 1090 MHz... utility station at an airport served by a control tower, RCO or FAA flight service station is the frequency used by the control tower for ground traffic control or by the flight service station for...
Human factors in aviation: Terminal control area boundary conflicts
NASA Technical Reports Server (NTRS)
Monan, William P.
1989-01-01
Air-to-air conflicts in the vicinity of Terminal Control Area (TCA) boundaries were studied to obtain a better understanding of the causal dynamics of these events with particular focus on human factor issues. The study dataset consisted of 381 Instrument Flight Rules/Visual Flight Rules (IFR/VFR) traffic conflicts in airspace layers above TCA ceiling and below TCA floors; 213 reports of incursions in TCA terminal airspace by VFR aircraft, of which 123 resulted in conflicts; and an additional set of reports describing problems with Air Traffic Control (ATC) services in and around TCAs. Results and conclusions are detailed.
Traffic Aware Strategic Aircrew Requests (TASAR) Concept of Operations
NASA Technical Reports Server (NTRS)
Henderson, Jeffrey
2013-01-01
Aircrews submit trajectory change requests to air traffic control (ATC) to better achieve the operator's preferred business trajectory. Requests are currently made with limited information and are often denied because the change is not compatible with traffic. Also, request opportunities can be overlooked due to lack of automation that advises aircrews of trajectory changes that improve flight time, fuel burn, and other objectives. The Traffic Aware Strategic Aircrew Requests (TASAR) concept leverages Automatic Dependent Surveillance-Broadcast (ADS-B) surveillance information to advise the aircrew of beneficial trajectory changes that are probed for traffic compatibility prior to issuing the request to ATC. This document describes the features, benefits, and limitations of TASAR automation hosted on an Electronic Flight Bag. TASAR has two modes: (1) auto mode that continuously assesses opportunities for improving the performance of the flight and (2) manual mode that probes trajectory changes entered by aircrews for conflicts and performance objectives. The roles and procedures of the aircrew and ATC remain unchanged under TASAR.
Conflict Resolution Automation and Pilot Situation Awareness
NASA Technical Reports Server (NTRS)
Dao, Arik-Quang V.; Brandt, Summer L.; Bacon, Paige; Kraut, Josh; Nguyen, Jimmy; Minakata, Katsumi; Raza, Hamzah; Rozovski, David; Johnson, Walter W.
2010-01-01
This study compared pilot situation awareness across three traffic management concepts. The Concepts varied in terms of the allocation of traffic avoidance responsibility between the pilot on the flight deck, the air traffic controllers, and a conflict resolution automation system. In Concept 1, the flight deck was equipped with conflict resolution tools that enable them to fully handle the responsibility of weather avoidance and maintaining separation between ownship and surrounding traffic. In Concept 2, pilots were not responsible for traffic separation, but were provided tools for weather and traffic avoidance. In Concept 3, flight deck tools allowed pilots to deviate for weather, but conflict detection tools were disabled. In this concept pilots were dependent on ground based automation for conflict detection and resolution. Situation awareness of the pilots was measured using online probes. Results showed that individual situation awareness was highest in Concept 1, where the pilots were most engaged, and lowest in Concept 3, where automation was heavily used. These findings suggest that for conflict resolution tasks, situation awareness is improved when pilots remain in the decision-making loop.
Experiments using electronic display information in the NASA terminal configured vehicle
NASA Technical Reports Server (NTRS)
Morello, S. A.
1980-01-01
The results of research experiments concerning pilot display information requirements and visualization techniques for electronic display systems are presented. Topics deal with display related piloting tasks in flight controls for approach-to-landing, flight management for the descent from cruise, and flight operational procedures considering the display of surrounding air traffic. Planned research of advanced integrated display formats for primary flight control throughout the various phases of flight is also discussed.
78 FR 78300 - Proposed Establishment of Class E Airspace; Albuquerque, NM
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-26
... Instrument Flight Rules (IFR) aircraft under control of Albuquerque Air Route Traffic Control Center (ARTCC... be changed in light of comments received. All comments submitted will be available for examination in... http://www.faa.gov/airports_airtraffic/air_traffic/publications/airspace_amendments/ . You may review...
78 FR 78296 - Proposed Establishment of Class E Airspace; Needles, CA
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-26
... Instrument Flight Rules (IFR) aircraft under control of Los Angeles Air Route Traffic Control Center (ARTCC... be changed in light of comments received. All comments submitted will be available for examination in... http://www.faa.gov/airports_airtraffic/air_traffic/publications/airspace_amendments/ . You may review...
78 FR 77023 - Proposed Establishment of Class E Airspace; Tucumcari, NM
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-20
... Instrument Flight Rules (IFR) aircraft under control of Albuquerque Air Route Traffic Control Center (ARTCC... be changed in light of comments received. All comments submitted will be available for examination in... http://www.faa.gov/airports_airtraffic/air_traffic/publications/airspace_amendments/ . You may review...
DOT National Transportation Integrated Search
1992-08-01
This experiment was conducted to expand initial efforts to validate the requirement for normal color vision in Air Traffic Control Specialist (ATCS) personnel who work at en route center, terminal, and flight service station facilities. An enlarged d...
DOT National Transportation Integrated Search
1995-01-01
Prepared ca. 1995. This paper describes Air-MIDAS, a model of pilot performance in interaction with varied levels of automation in flight management operations. The model was used to predict the performance of a two person flight crew responding to c...
NASA Technical Reports Server (NTRS)
Yoo, Hyo-Sang; Brasil, Connie; Buckley, Nathan; Mohlenbrink, Christoph; Speridakos, Constantine; Parke, Bonny; Hodell, Gita; Lee, Paul U.; Smith, Nancy M.
2017-01-01
This paper introduces NASA's Integrated Demand Management (IDM) concept and presents the results from an early proof-of-concept evaluation and an exploratory experiment. An initial development of the concept was focused on integrating two systems - i.e. the FAA's newly deployed Traffic Flow Management System (TFMS) tool called the Collaborative Trajectory Options Program (CTOP) and the Time-Based Flow Management (TBFM) system with Extended Metering (XM) capabilities to manage projected heavy traffic demand into a capacity-constrained airport. A human-in-the-loop (HITL) simulation experiment was conducted to demonstrate the feasibility of the initial development of the concept by adapting it to an arrival traffic problem at Newark Liberty International Airport (EWR) during clear weather conditions. In this study, the CTOP was utilized to strategically plan the arrival traffic demand by controlling take-off times of both short- and long-haul flights (long-hauls specify aircraft outside TBFM regions and short-hauls specify aircraft within TBFM regions) in a way that results in equitable delays among the groups. Such strategic planning allows less airborne delay to occur within TBFM by feeding manageable long-haul traffic demand while reserving sufficient slots in the overhead streams for the short-haul departures. The manageable traffic demand indicates the TBFM scheduler assigns no more airborne delay than its assigned airspace is capable of absorbing. TBFM then uses its time-based metering capabilities to deliver the desirable throughput by tactically rescheduling the TBFM entered long-haul flights and short-haul departures. Additional research was also performed to explore use of Required Time of Arrival (RTA) capabilities as a potential control mechanism for the airborne flights to improve arrival traffic delivery accuracy of scheduled long-haul traffic demand. The study results show that both short- and long-haul flights received similar ground delays. In addition, there was a noticeable reduction in the total amount of excessive unanticipated last-minute ground delays, i.e. delays that are frequently imposed on the short-haul flight in current day operations due to saturation in the overhead stream, commonly referred to as 'double penalty'. Furthermore, the concept achieved the target throughput while minimizing the expected cost associated with overall delays in arrival traffic. Assessment of the RTA capabilities showed that there was indeed improvement of the scheduled entry times into TBFM regions by using RTA capabilities. However, with respect to reduction in delays incurred within TBFM, there was no observable benefit of improving the precision of long-haul flights entry times.
76 FR 77386 - Amendment to and Establishment of Restricted Areas; Warren Grove, NJ
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-13
... Traffic Control Center (ARTCC) and Washington ARTCC. To minimize potential impact to Instrument Flight Rules (IFR) traffic flows, the FAA will only authorize activation of these areas when New York and Washington ARTCCs determine there would be minimal to no impact on IFR traffic operating in the affected area...
Air-ground integration experiment.
DOT National Transportation Integrated Search
2002-01-01
The concept of free flight is intended to provide increased flexibility and efficiency throughout the global airspace system. This idea : could potentially shift aircraft separation responsibility from air traffic controllers to flight crews creating...
Guidance concepts for time-based flight operations
NASA Technical Reports Server (NTRS)
Vicroy, Dan D.
1990-01-01
Airport congestion and the associated delays are severe in today's airspace system and are expected to increase. NASA and the FAA is investigating various methods of alleviating this problem through new technology and operational procedures. One concept for improving airspace productivity is time-based control of aircraft. Research to date has focused primarily on the development of time-based flight management systems and Air Traffic Control operational procedures. Flight operations may, however, require special onboard guidance in order to satisfy the Air Traffic Control imposed time constraints. The results are presented of a simulation study aimed at evaluating several time-based guidance concepts in terms of tracking performance, pilot workload, and subjective preference. The guidance concepts tested varied in complexity from simple digital time-error feedback to an advanced time-referenced-energy guidance scheme.
NASA Technical Reports Server (NTRS)
1976-01-01
Payload mission control concepts are developed for real time flight operations of STS. Flight planning, training, simulations, and other flight preparations are included. Payload activities for the preflight phase, activity sequences and organizational allocations, and traffic and experience factors to establish composite man-loading for joint STS payload activities are identified for flight operations from 1980 to 1985.
Descent advisor preliminary field test
NASA Technical Reports Server (NTRS)
Green, Steven M.; Vivona, Robert A.; Sanford, Beverly
1995-01-01
A field test of the Descent Advisor (DA) automation tool was conducted at the Denver Air Route Traffic Control Center in September 1994. DA is being developed to assist Center controllers in the efficient management and control of arrival traffic. DA generates advisories, based on trajectory predictions, to achieve accurate meter-fix arrival times in a fuel efficient manner while assisting the controller with the prediction and resolution of potential conflicts. The test objectives were to evaluate the accuracy of DA trajectory predictions for conventional- and flight-management-system-equipped jet transports, to identify significant sources of trajectory prediction error, and to investigate procedural and training issues (both air and ground) associated with DA operations. Various commercial aircraft (97 flights total) and a Boeing 737-100 research aircraft participated in the test. Preliminary results from the primary test set of 24 commercial flights indicate a mean DA arrival time prediction error of 2.4 sec late with a standard deviation of 13.1 sec. This paper describes the field test and presents preliminary results for the commercial flights.
TSAFE Interface Control Document v 2.0
NASA Technical Reports Server (NTRS)
Paielli, Russell A.; Bach, Ralph E.
2013-01-01
This document specifies the data interface for TSAFE, the Tactical Separation-Assured Flight Environment. TSAFE is a research prototype of a software application program for alerting air traffic controllers to imminent conflicts in enroute airspace. It is intended for Air Route Traffic Control Centers ("Centers") in the U.S. National Airspace System. It predicts trajectories for approximately 3 minutes into the future, searches for conflicts, and sends data about predicted conflicts to the client, which uses the data to alert an air traffic controller of conflicts. TSAFE itself does not provide a graphical user interface.
NASA Technical Reports Server (NTRS)
1982-01-01
The active control technology (ACT) control/guidance system task of the integrated application of active controls (IAAC) technology project within the NASA energy efficient transport program was documented. The air traffic environment of navigation and air traffic control systems and procedures were extrapolated. An approach to listing flight functions which will be performed by systems and crew of an ACT configured airplane of the 1990s, and a determination of function criticalities to safety of flight, are the basis of candidate integrated ACT/Control/Guidance System architecture. The system mechanizes five active control functions: pitch augmented stability, angle of attack limiting, lateral/directional augmented stability, gust load alleviation, and maneuver load control. The scope and requirements of a program for simulating the integrated ACT avionics and flight deck system, with pilot in the loop, are defined, system and crew interface elements are simulated, and mechanization is recommended. Relationships between system design and crew roles and procedures are evaluated.
Comprehensive Software Eases Air Traffic Management
NASA Technical Reports Server (NTRS)
2007-01-01
To help air traffic control centers improve the safety and the efficiency of the National Airspace System, Ames Research Center developed the Future Air Traffic Management Concepts Evaluation Tool (FACET) software, which won NASA's 2006 "Software of the Year" competition. In 2005, Ames licensed FACET to Flight Explorer Inc., for integration into its Flight Explorer (version 6.0) software. The primary FACET features incorporated in the Flight Explorer software system alert airspace users to forecasted demand and capacity imbalances. Advance access to this information helps dispatchers anticipate congested sectors (airspace) and delays at airports, and decide if they need to reroute flights. FACET is now a fully integrated feature in the Flight Explorer Professional Edition (version 7.0). Flight Explorer Professional offers end-users other benefits, including ease of operation; automatic alerts to inform users of important events such as weather conditions and potential airport delays; and international, real-time flight coverage over Canada, the United Kingdom, New Zealand, and sections of the Atlantic and Pacific Oceans. Flight Explorer Inc. recently broadened coverage by partnering with Honeywell International Inc.'s Global Data Center, Blue Sky Network, Sky Connect LLC, SITA, ARINC Incorporated, Latitude Technologies Corporation, and Wingspeed Corporation, to track their aircraft anywhere in the world.
Man-Vehicle Systems Research Facility - Design and operating characteristics
NASA Technical Reports Server (NTRS)
Shiner, Robert J.; Sullivan, Barry T.
1992-01-01
This paper describes the full-mission flight simulation facility at the NASA Ames Research Center. The Man-Vehicle Systems Research Facility (MVSRF) supports aeronautical human factors research and consists of two full-mission flight simulators and an air-traffic-control simulator. The facility is used for a broad range of human factors research in both conventional and advanced aviation systems. The objectives of the research are to improve the understanding of the causes and effects of human errors in aviation operations, and to limit their occurrence. The facility is used to: (1) develop fundamental analytical expressions of the functional performance characteristics of aircraft flight crews; (2) formulate principles and design criteria for aviation environments; (3) evaluate the integration of subsystems in contemporary flight and air traffic control scenarios; and (4) develop training and simulation technologies.
14 CFR 91.1101 - Pilots: Initial, transition, and upgrade ground training.
Code of Federal Regulations, 2014 CFR
2014-01-01
... consumption and cruise control; (9) Flight planning; (10) Each normal and emergency procedure; and (11) The..., DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT... manager's flight locating procedures; (2) Principles and methods for determining weight and balance, and...
14 CFR 91.1101 - Pilots: Initial, transition, and upgrade ground training.
Code of Federal Regulations, 2013 CFR
2013-01-01
... consumption and cruise control; (9) Flight planning; (10) Each normal and emergency procedure; and (11) The..., DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT... manager's flight locating procedures; (2) Principles and methods for determining weight and balance, and...
14 CFR 91.1101 - Pilots: Initial, transition, and upgrade ground training.
Code of Federal Regulations, 2012 CFR
2012-01-01
... consumption and cruise control; (9) Flight planning; (10) Each normal and emergency procedure; and (11) The..., DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT... manager's flight locating procedures; (2) Principles and methods for determining weight and balance, and...
Integrated Traffic Flow Management Decision Making
NASA Technical Reports Server (NTRS)
Grabbe, Shon R.; Sridhar, Banavar; Mukherjee, Avijit
2009-01-01
A generalized approach is proposed to support integrated traffic flow management decision making studies at both the U.S. national and regional levels. It can consider tradeoffs between alternative optimization and heuristic based models, strategic versus tactical flight controls, and system versus fleet preferences. Preliminary testing was accomplished by implementing thirteen unique traffic flow management models, which included all of the key components of the system and conducting 85, six-hour fast-time simulation experiments. These experiments considered variations in the strategic planning look-ahead times, the replanning intervals, and the types of traffic flow management control strategies. Initial testing indicates that longer strategic planning look-ahead times and re-planning intervals result in steadily decreasing levels of sector congestion for a fixed delay level. This applies when accurate estimates of the air traffic demand, airport capacities and airspace capacities are available. In general, the distribution of the delays amongst the users was found to be most equitable when scheduling flights using a heuristic scheduling algorithm, such as ration-by-distance. On the other hand, equity was the worst when using scheduling algorithms that took into account the number of seats aboard each flight. Though the scheduling algorithms were effective at alleviating sector congestion, the tactical rerouting algorithm was the primary control for avoiding en route weather hazards. Finally, the modeled levels of sector congestion, the number of weather incursions, and the total system delays, were found to be in fair agreement with the values that were operationally observed on both good and bad weather days.
Oculometer Measurement of Air Traffic Controller Visual Attention
1975-02-01
AD/A-006 965 OCULOMETER MEASUREMENT OF AIR TRAFFIC CONTR OLLER VISUAL ATTENTION Gloria Karsten, et al National Aviation Facilities Experimental Cente...Radiation Center, Lexington, Mass., July 1971. 2. Stell, Kenneth J ., Avionics: Optical Device Studies Flight Displays, Aviation Week and Space Technology
NASA Technical Reports Server (NTRS)
Roske-Hofstrand, Renate J.
1990-01-01
The man-machine interface and its influence on the characteristics of computer displays in automated air traffic is discussed. The graphical presentation of spatial relationships and the problems it poses for air traffic control, and the solution of such problems are addressed. Psychological factors involved in the man-machine interface are stressed.
Congestion transition in air traffic networks.
Monechi, Bernardo; Servedio, Vito D P; Loreto, Vittorio
2015-01-01
Air Transportation represents a very interesting example of a complex techno-social system whose importance has considerably grown in time and whose management requires a careful understanding of the subtle interplay between technological infrastructure and human behavior. Despite the competition with other transportation systems, a growth of air traffic is still foreseen in Europe for the next years. The increase of traffic load could bring the current Air Traffic Network above its capacity limits so that safety standards and performances might not be guaranteed anymore. Lacking the possibility of a direct investigation of this scenario, we resort to computer simulations in order to quantify the disruptive potential of an increase in traffic load. To this end we model the Air Transportation system as a complex dynamical network of flights controlled by humans who have to solve potentially dangerous conflicts by redirecting aircraft trajectories. The model is driven and validated through historical data of flight schedules in a European national airspace. While correctly reproducing actual statistics of the Air Transportation system, e.g., the distribution of delays, the model allows for theoretical predictions. Upon an increase of the traffic load injected in the system, the model predicts a transition from a phase in which all conflicts can be successfully resolved, to a phase in which many conflicts cannot be resolved anymore. We highlight how the current flight density of the Air Transportation system is well below the transition, provided that controllers make use of a special re-routing procedure. While the congestion transition displays a universal scaling behavior, its threshold depends on the conflict solving strategy adopted. Finally, the generality of the modeling scheme introduced makes it a flexible general tool to simulate and control Air Transportation systems in realistic and synthetic scenarios.
Advanced flight control system study
NASA Technical Reports Server (NTRS)
Hartmann, G. L.; Wall, J. E., Jr.; Rang, E. R.; Lee, H. P.; Schulte, R. W.; Ng, W. K.
1982-01-01
A fly by wire flight control system architecture designed for high reliability includes spare sensor and computer elements to permit safe dispatch with failed elements, thereby reducing unscheduled maintenance. A methodology capable of demonstrating that the architecture does achieve the predicted performance characteristics consists of a hierarchy of activities ranging from analytical calculations of system reliability and formal methods of software verification to iron bird testing followed by flight evaluation. Interfacing this architecture to the Lockheed S-3A aircraft for flight test is discussed. This testbed vehicle can be expanded to support flight experiments in advanced aerodynamics, electromechanical actuators, secondary power systems, flight management, new displays, and air traffic control concepts.
14 CFR 93.71 - General operating procedures.
Code of Federal Regulations, 2014 CFR
2014-01-01
...) AIR TRAFFIC AND GENERAL OPERATING RULES SPECIAL AIR TRAFFIC RULES Flight Restrictions in the Vicinity... International Control Dam) to the United States/Canadian Border and thence along the border to the point of... to approval of Transport Canada, aircraft carrying law enforcement officials, or aircraft carrying...
UTM Technical Capabilities Level 2 (TLC2) Test at Reno-Stead Airport.
2016-10-06
Test of Unmanned Aircraft Systems Traffic Management (UTM) technical capability Level 2 (TCL2) at Reno-Stead Airport, Nevada. During the test, five drones simultaneously crossed paths, separated by altitude. Two drones flew beyond visual line-of-sight and three flew within line-of-sight of their operators. Engineers Priya Venkatesan and Joey Mercer review flight paths using the UAS traffic management research platform at flight operations mission control at NASA’s UTM TCL2 test.
1990-03-30
systems on the DoD in terms of safety and operational- effectiveness and probable impacts on specific Air Force mission requirements. The report does... Systems ................................. 2-21 2.1.3 Flight Service and Weather Systems .......................... 2-22 2.1.3.1 Flight Service Automation...2-41 2.2.2 Terminal Control and Landing Systems .. ....................... 2-44 2.2.3 Flight Information and Weather Systems
Descent Advisor Preliminary Field Test
NASA Technical Reports Server (NTRS)
Green, Steven M.; Vivona, Robert A.; Sanford, Beverly
1995-01-01
A field test of the Descent Advisor (DA) automation tool was conducted at the Denver Air Route Traffic Control Center in September 1994. DA is being developed to assist Center controllers in the efficient management and control of arrival traffic. DA generates advisories, based on trajectory predictions, to achieve accurate meter-fix arrival times in a fuel efficient manner while assisting the controller with the prediction and resolution of potential conflicts. The test objectives were: (1) to evaluate the accuracy of DA trajectory predictions for conventional and flight-management system equipped jet transports, (2) to identify significant sources of trajectory prediction error, and (3) to investigate procedural and training issues (both air and ground) associated with DA operations. Various commercial aircraft (97 flights total) and a Boeing 737-100 research aircraft participated in the test. Preliminary results from the primary test set of 24 commercial flights indicate a mean DA arrival time prediction error of 2.4 seconds late with a standard deviation of 13.1 seconds. This paper describes the field test and presents preliminary results for the commercial flights.
Justification for, and design of, an economical programmable multiple flight simulator
NASA Technical Reports Server (NTRS)
Kreifeldt, J. G.; Wittenber, J.; Macdonald, G.
1981-01-01
The considered research interests in air traffic control (ATC) studies revolve about the concept of distributed ATC management based on the assumption that the pilot has a cockpit display of traffic and navigation information (CDTI) via CRT graphics. The basic premise is that a CDTI equipped pilot can, in coordination with a controller, manage a part of his local traffic situation thereby improving important aspects of ATC performance. A modularly designed programmable flight simulator system is prototyped as a means of providing an economical facility of up to eight simulators to interface with a mainframe/graphics system for ATC experimentation, particularly CDTI-distributed management in which pilot-pilot interaction can have a determining effect on system performance. Need for a multiman simulator facility is predicted on results from an earlier three simulator facility.
ERIC Educational Resources Information Center
Kim, Hyejeong; Billington, Rosey
2018-01-01
This article explores the issues of pronunciation and comprehension in the English as a lingua franca (ELF) context of pilot--air traffic controller radiotelephony communication, and how these are handled in the proficiency rating scale globally used to assess pilots and air traffic controllers engaging in international flight and air traffic…
JPL's Real-Time Weather Processor project (RWP) metrics and observations at system completion
NASA Technical Reports Server (NTRS)
Loesh, Robert E.; Conover, Robert A.; Malhotra, Shan
1990-01-01
As an integral part of the overall upgraded National Airspace System (NAS), the objective of the Real-Time Weather Processor (RWP) project is to improve the quality of weather information and the timeliness of its dissemination to system users. To accomplish this, an RWP will be installed in each of the Center Weather Service Units (CWSUs), located in 21 of the 23 Air Route Traffic Control Centers (ARTCCs). The RWP System is a prototype system. It is planned that the software will be GFE and that production hardware will be acquired via industry competitive procurement. The ARTCC is a facility established to provide air traffic control service to aircraft operating on Instrument Flight Rules (IFR) flight plans within controlled airspace, principally during the en route phase of the flight. Covered here are requirement metrics, Software Problem Failure Reports (SPFRs), and Ada portability metrics and observations.
Airborne Management of Traffic Conflicts in Descent With Arrival Constraints
NASA Technical Reports Server (NTRS)
Doble, Nathan A.; Barhydt, Richard; Krishnamurthy, Karthik
2005-01-01
NASA is studying far-term air traffic management concepts that may increase operational efficiency through a redistribution of decisionmaking authority among airborne and ground-based elements of the air transportation system. One component of this research, En Route Free Maneuvering, allows trained pilots of equipped autonomous aircraft to assume responsibility for traffic separation. Ground-based air traffic controllers would continue to separate traffic unequipped for autonomous operations and would issue flow management constraints to all aircraft. To evaluate En Route Free Maneuvering operations, a human-in-the-loop experiment was jointly conducted by the NASA Ames and Langley Research Centers. In this experiment, test subject pilots used desktop flight simulators to resolve conflicts in cruise and descent, and to adhere to air traffic flow constraints issued by test subject controllers. Simulators at NASA Langley were equipped with a prototype Autonomous Operations Planner (AOP) flight deck toolset to assist pilots with conflict management and constraint compliance tasks. Results from the experiment are presented, focusing specifically on operations during the initial descent into the terminal area. Airborne conflict resolution performance in descent, conformance to traffic flow management constraints, and the effects of conflicting traffic on constraint conformance are all presented. Subjective data from subject pilots are also presented, showing perceived levels of workload, safety, and acceptability of autonomous arrival operations. Finally, potential AOP functionality enhancements are discussed along with suggestions to improve arrival procedures.
Autonomous Flight Rules - A Concept for Self-Separation in U.S. Domestic Airspace
NASA Technical Reports Server (NTRS)
Wing, David J.; Cotton, William B.
2011-01-01
Autonomous Flight Rules (AFR) are proposed as a new set of operating regulations in which aircraft navigate on tracks of their choice while self-separating from traffic and weather. AFR would exist alongside Instrument and Visual Flight Rules (IFR and VFR) as one of three available flight options for any appropriately trained and qualified operator with the necessary certified equipment. Historically, ground-based separation services evolved by necessity as aircraft began operating in the clouds and were unable to see each other. Today, technologies for global navigation, airborne surveillance, and onboard computing enable the functions of traffic conflict management to be fully integrated with navigation procedures onboard the aircraft. By self-separating, aircraft can operate with more flexibility and fewer restrictions than are required when using ground-based separation. The AFR concept is described in detail and provides practical means by which self-separating aircraft could share the same airspace as IFR and VFR aircraft without disrupting the ongoing processes of Air Traffic Control.
Code of Federal Regulations, 2010 CFR
2010-01-01
.... Hurley Air Traffic Control System Command Center. It is responsible for the administration of... 6). “Enhanced Computer Voice Reservation System (e-CVRS)” is the system used by the FAA to make... charter flights; hired aircraft service; ferry flights; and other non-passenger flights. Section 3...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-26
... large certificated air carriers to file ``On-Time Flight Performance Reports'' and ``Mishandled-Baggage... On-Time Flight Performance Reports to identify problem areas within the air traffic control system... concerning their chances of on-time flights and the rate of mishandled baggage by the 18 largest scheduled...
14 CFR 216.4 - Special authorizations.
Code of Federal Regulations, 2010 CFR
2010-01-01
... REGULATIONS COMMINGLING OF BLIND SECTOR TRAFFIC BY FOREIGN AIR CARRIERS § 216.4 Special authorizations. (a... part, for the carriage of blind sector traffic on a particular flight, series of flights, or for a... flight or flights upon which it is proposed to carry such blind sector traffic, including routing...
NASA Technical Reports Server (NTRS)
Callantine, Todd J.; Kupfer, Michael; Martin, Lynne Hazel; Prevot, Thomas
2013-01-01
Air traffic management simulations conducted in the Airspace Operations Laboratory at NASA Ames Research Center have addressed the integration of trajectory-based arrival-management automation, controller tools, and Flight-Deck Interval Management avionics to enable Continuous Descent Operations (CDOs) during periods of sustained high traffic demand. The simulations are devoted to maturing the integrated system for field demonstration, and refining the controller tools, clearance phraseology, and procedures specified in the associated concept of operations. The results indicate a variety of factors impact the concept's safety and viability from a controller's perspective, including en-route preconditioning of arrival flows, useable clearance phraseology, and the characteristics of airspace, routes, and traffic-management methods in use at a particular site. Clear understanding of automation behavior and required shifts in roles and responsibilities is important for controller acceptance and realizing potential benefits. This paper discusses the simulations, drawing parallels with results from related European efforts. The most recent study found en-route controllers can effectively precondition arrival flows, which significantly improved route conformance during CDOs. Controllers found the tools acceptable, in line with previous studies.
ERIC Educational Resources Information Center
Colton, Ted
This six-lesson unit is designed to familiarize sixth, seventh, and eighth grade students with air traffic safety and the individuals who make air traffic safety possible. Each lesson consists of a statement of the concept fostered, a list of objectives, a brief discussion on the focus of the unit, and instructional strategies for lesson topics…
NASA Technical Reports Server (NTRS)
Sawyer, R. H.; Mclaughlin, M. D.
1974-01-01
The operating problems and equipment requirements for STOL airplanes in terminal area operations in simulated air traffic control (ATC) environments were studied. These studies consisted of Instrument Flight Rules (IFR) arrivals and departures in the New York area to and from a downtown STOL port, STOL runways at John F. Kennedy International Airport, or STOL runways at a hypothetical international airport. The studies were accomplished in real time by using a STOL airplane flight simulator. An experimental powered lift STOL airplane and two in-service airplanes having high aerodynamic lift (i.e., STOL) capability were used in the simulations.
Strategic Air Traffic Planning Using Eulerian Route Based Modeling and Optimization
NASA Astrophysics Data System (ADS)
Bombelli, Alessandro
Due to a soaring air travel growth in the last decades, air traffic management has become increasingly challenging. As a consequence, planning tools are being devised to help human decision-makers achieve a better management of air traffic. Planning tools are divided into two categories, strategic and tactical. Strategic planning generally addresses a larger planning domain and is performed days to hours in advance. Tactical planning is more localized and is performed hours to minutes in advance. An aggregate route model for strategic air traffic flow management is presented. It is an Eulerian model, describing the flow between cells of unidirectional point-to-point routes. Aggregate routes are created from flight trajectory data based on similarity measures. Spatial similarity is determined using the Frechet distance. The aggregate routes approximate actual well-traveled traffic patterns. By specifying the model resolution, an appropriate balance between model accuracy and model dimension can be achieved. For a particular planning horizon, during which weather is expected to restrict the flow, a procedure for designing airborne reroutes and augmenting the traffic flow model is developed. The dynamics of the traffic flow on the resulting network take the form of a discrete-time, linear time-invariant system. The traffic flow controls are ground holding, pre-departure rerouting and airborne rerouting. Strategic planning--determining how the controls should be used to modify the future traffic flow when local capacity violations are anticipated--is posed as an integer programming problem of minimizing a weighted sum of flight delays subject to control and capacity constraints. Several tests indicate the effectiveness of the modeling and strategic planning approach. In the final, most challenging, test, strategic planning is demonstrated for the six western-most Centers of the 22-Center national airspace. The planning time horizon is four hours long, and there is weather predicted that causes significant delays to the scheduled flights. Airborne reroute options are computed and added to the route model, and it is shown that the predicted delays can be significantly reduced. The test results also indicate the computational feasibility of the approach for a planning problem of this size.
A USA Commercial Flight Track Database for Upper Tropospheric Aircraft Emission Studies
NASA Technical Reports Server (NTRS)
Garber, Donald P.; Minnis, Patrick; Costulis, Kay P.
2003-01-01
A new air traffic database over the contiguous United States of America (USA) has been developed from a commercially available real-time product for 2001-2003 for all non-military flights above 25,000 ft. Both individual flight tracks and gridded spatially integrated flight legs are available. On average, approximately 24,000 high-altitude flights were recorded each day. The diurnal cycle of air traffic over the USA is characterized by a broad daytime maximum with a 0130-LT minimum and a mean day-night air traffic ratio of 2.4. Each week, the air traffic typically peaks on Thursday and drops to a low Saturday with a range of 18%. Flight density is greatest during late summer and least during winter. The database records the disruption of air traffic after the air traffic shutdown during September 2001. The dataset should be valuable for realistically simulating the atmospheric effects of aircraft in the upper troposphere.
Initial Evaluation of a Conflict Detection Tool in the Terminal Area
NASA Technical Reports Server (NTRS)
Verma Savita Arora; Tang, Huabin; Ballinger, Deborah S.; Kozon, Thomas E.; Farrahi, Amir Hossein
2012-01-01
Despite the recent economic recession and its adverse impact on air travel, the Federal Aviation Administration (FAA) continues to forecast an increase in air traffic demand that may see traffic double or triple by the year 2025. Increases in air traffic will burden the air traffic management system, and higher levels of safety and efficiency will be required. The air traffic controllers primary task is to ensure separation between aircraft in their airspace and keep the skies safe. As air traffic is forecasted to increase in volume and complexity [1], there is an increased likelihood of conflicts between aircraft, which adds risk and inefficiency to air traffic management and increases controller workload. To attenuate these factors, recent ATM research has shown that air and ground-based automation tools could reduce controller workload, especially if the automation is focused on conflict detection and resolution. Conflict Alert is a short time horizon conflict detection tool deployed in the Terminal Radar Approach Control (TRACON), which has limited utility due to the high number of false alerts generated and its use of dead reckoning to predict loss of separation between aircraft. Terminal Tactical Separation Assurance Flight Environment (T-TSAFE) is a short time horizon conflict detection tool that uses both flight intent and dead reckoning to detect conflicts. Results of a fast time simulation experiment indicated that TTSAFE provided a more effective alert lead-time and generated less false alerts than Conflict Alert [2]. TSAFE was previously tested in a Human-In-The-Loop (HITL) simulation study that focused on the en route phase of flight [3]. The current study tested the T-TSAFE tool in an HITL simulation study, focusing on the terminal environment with current day operations. The study identified procedures, roles, responsibilities, information requirements and usability, with the help of TRACON controllers who participated in the experiment. Metrics such as lead alert time, alert response time, workload, situation awareness and other measures were statistically analyzed. These metrics were examined from an overall perspective and comparisons between conditions (altitude resolutions via keyboard entry vs. ADS-B entry) and controller positions (two final approach sectors and two feeder sectors) were also examined. Results of these analyses and controller feedback provided evidence of T-TSAFE s potential promise as a useful air traffic controller tool. Heuristic analysis also provided information on ways in which the T-TSAFE tool can be improved. Details of analyses results will be presented in the full paper.
Conflict Detection and Resolution for Future Air Transportation Management
NASA Technical Reports Server (NTRS)
Krozel, Jimmy; Peters, Mark E.; Hunter, George
1997-01-01
With a Free Flight policy, the emphasis for air traffic control is shifting from active control to passive air traffic management with a policy of intervention by exception. Aircraft will be allowed to fly user preferred routes, as long as safety Alert Zones are not violated. If there is a potential conflict, two (or more) aircraft must be able to arrive at a solution for conflict resolution without controller intervention. Thus, decision aid tools are needed in Free Flight to detect and resolve conflicts, and several problems must be solved to develop such tools. In this report, we analyze and solve problems of proximity management, conflict detection, and conflict resolution under a Free Flight policy. For proximity management, we establish a system based on Delaunay Triangulations of aircraft at constant flight levels. Such a system provides a means for analyzing the neighbor relationships between aircraft and the nearby free space around air traffic which can be utilized later in conflict resolution. For conflict detection, we perform both 2-dimensional and 3-dimensional analyses based on the penetration of the Protected Airspace Zone. Both deterministic and non-deterministic analyses are performed. We investigate several types of conflict warnings including tactical warnings prior to penetrating the Protected Airspace Zone, methods based on the reachability overlap of both aircraft, and conflict probability maps to establish strategic Alert Zones around aircraft.
NASA Technical Reports Server (NTRS)
Kibler, Jennifer L.; Wilson, Sara R.; Hubbs, Clay E.; Smail, James W.
2015-01-01
The Interval Management for Near-term Operations Validation of Acceptability (IM-NOVA) experiment was conducted at the National Aeronautics and Space Administration (NASA) Langley Research Center (LaRC) in support of the NASA Airspace Systems Program's Air Traffic Management Technology Demonstration-1 (ATD-1). ATD-1 is intended to showcase an integrated set of technologies that provide an efficient arrival solution for managing aircraft using Next Generation Air Transportation System (NextGen) surveillance, navigation, procedures, and automation for both airborne and ground-based systems. The goal of the IMNOVA experiment was to assess if procedures outlined by the ATD-1 Concept of Operations were acceptable to and feasible for use by flight crews in a voice communications environment when used with a minimum set of Flight Deck-based Interval Management (FIM) equipment and a prototype crew interface. To investigate an integrated arrival solution using ground-based air traffic control tools and aircraft Automatic Dependent Surveillance-Broadcast (ADS-B) tools, the LaRC FIM system and the Traffic Management Advisor with Terminal Metering and Controller Managed Spacing tools developed at the NASA Ames Research Center (ARC) were integrated into LaRC's Air Traffic Operations Laboratory (ATOL). Data were collected from 10 crews of current 757/767 pilots asked to fly a high-fidelity, fixed-based simulator during scenarios conducted within an airspace environment modeled on the Dallas-Fort Worth (DFW) Terminal Radar Approach Control area. The aircraft simulator was equipped with the Airborne Spacing for Terminal Area Routes (ASTAR) algorithm and a FIM crew interface consisting of electronic flight bags and ADS-B guidance displays. Researchers used "pseudo-pilot" stations to control 24 simulated aircraft that provided multiple air traffic flows into the DFW International Airport, and recently retired DFW air traffic controllers served as confederate Center, Feeder, Final, and Tower controllers. Analyses of qualitative data revealed that the procedures used by flight crews to receive and execute interval management (IM) clearances in a voice communications environment were logical, easy to follow, did not contain any missing or extraneous steps, and required the use of an acceptable workload level. The majority of the pilot participants found the IM concept, in addition to the proposed FIM crew procedures, to be acceptable and indicated that the ATD-1 procedures could be successfully executed in a nearterm NextGen environment. Analyses of quantitative data revealed that the proposed procedures were feasible for use by flight crews in a voice communications environment. The delivery accuracy at the achieve-by point was within +/-5 sec, and the delivery precision was less than 5 sec. Furthermore, FIM speed commands occurred at a rate of less than one per minute, and pilots found the frequency of the speed commands to be acceptable at all times throughout the experiment scenarios.
14 CFR Special Federal Aviation... - Air Traffic Control System Emergency Operation
Code of Federal Regulations, 2012 CFR
2012-01-01
... Operation Federal Special Federal Aviation Regulation No. 60 Aeronautics and Space FEDERAL AVIATION... OPERATING AND FLIGHT RULES Pt. 91, SFAR No. 60 Special Federal Aviation Regulation No. 60—Air Traffic... Aviation Regulations (14 CFR chapter I), be familiar with all available information concerning that...
14 CFR Special Federal Aviation... - Air Traffic Control System Emergency Operation
Code of Federal Regulations, 2013 CFR
2013-01-01
... Operation Federal Special Federal Aviation Regulation No. 60 Aeronautics and Space FEDERAL AVIATION... OPERATING AND FLIGHT RULES Pt. 91, SFAR No. 60 Special Federal Aviation Regulation No. 60—Air Traffic... Aviation Regulations (14 CFR chapter I), be familiar with all available information concerning that...
14 CFR Special Federal Aviation... - Air Traffic Control System Emergency Operation
Code of Federal Regulations, 2011 CFR
2011-01-01
... Operation Federal Special Federal Aviation Regulation No. 60 Aeronautics and Space FEDERAL AVIATION... OPERATING AND FLIGHT RULES Pt. 91, SFAR No. 60 Special Federal Aviation Regulation No. 60—Air Traffic... Aviation Regulations (14 CFR chapter I), be familiar with all available information concerning that...
14 CFR Special Federal Aviation... - Air Traffic Control System Emergency Operation
Code of Federal Regulations, 2014 CFR
2014-01-01
... Operation Federal Special Federal Aviation Regulation No. 60 Aeronautics and Space FEDERAL AVIATION... OPERATING AND FLIGHT RULES Pt. 91, SFAR No. 60 Special Federal Aviation Regulation No. 60—Air Traffic... Aviation Regulations (14 CFR chapter I), be familiar with all available information concerning that...
Terminal area air traffic control simulation
NASA Technical Reports Server (NTRS)
1977-01-01
To study the impact of advanced aeronautical technologies on operations to and from terminal airports, a computer model of air traffic movements was developed. The advantages of fast-time simulation are discussed, and the arrival scheduling and flight simulation are described. A New York area study, user's guide, and programmer's guide are included.
Validation of Digital Systems in Avionics and Flight Control Applications Handbook. Volume 1.
1983-07-01
will also be available to Airways Facilities, Systems Research and Development Service, Air Traffic Control Service, and Flight Standards elements...2114, March 12-14, 1979. 3. Validation Methods Research for Fault-Tolerant Avionics and Control Systems-- *r Working Group Meeting II, NASA...command generation with the multiple methods becoming avail- able for closure of the outer control loop necessitates research on alternative integration
NASA UAS Traffic Management National Campaign Operations across Six UAS Test Sites
NASA Technical Reports Server (NTRS)
Rios, Joseph; Mulfinger, Daniel; Homola, Jeff; Venkatesan, Priya
2016-01-01
NASA's Unmanned Aircraft Systems Traffic Management research aims to develop policies, procedures, requirements, and other artifacts to inform the implementation of a future system that enables small drones to access the low altitude airspace. In this endeavor, NASA conducted a geographically diverse flight test in conjunction with the FAA's six unmanned aircraft systems Test Sites. A control center at NASA Ames Research Center autonomously managed the airspace for all participants in eight states as they flew operations (both real and simulated). The system allowed for common situational awareness across all stakeholders, kept traffic procedurally separated, offered messages to inform the participants of activity relevant to their operations. Over the 3- hour test, 102 flight operations connected to the central research platform with 17 different vehicle types and 8 distinct software client implementations while seamlessly interacting with simulated traffic.
NASA Technical Reports Server (NTRS)
Lee, Katharine
2004-01-01
The Surface Management System (SMS) is a decision support tool that will help controllers, traffic managers, and NAS users manage the movements of aircraft on the surface of busy airports, improving capacity, efficiency, and flexibility. The Advanced Air Transportation Technologies (AATT) Project at NASA is developing SMS in cooperation with the FAA's Free Flight Phase 2 (FFP2) pro5ram. SMS consists of three parts: a traffic management tool, a controller tool, and a National Airspace System (NAS) information tool.
Performance of an Automated System for Control of Traffic in Terminal Airspace
NASA Technical Reports Server (NTRS)
Nikoleris, Tasos; Erzberger, Heinz; Paielli, Russell A.; Chu, Yung-Cheng
2016-01-01
This paper examines the performance of a system that performs automated conflict resolution and arrival scheduling for aircraft in the terminal airspace around major airports. Such a system has the potential to perform separation assurance and arrival sequencing tasks that are currently handled manually by human controllers. The performance of the system is tested against several simulated traffic scenarios that are characterized by the rate at which air traffic is metered into the terminal airspace. For each traffic scenario, the levels of performance that are examined include: number of conflicts predicted to occur, types of resolution maneuver used to resolve predicted conflicts, and the amount of delay for all flights. The simulation results indicate that the percentage of arrivals that required a maneuver that changes the flight's horizontal route ranged between 11% and 15% in all traffic scenarios. That finding has certain implications if this automated system were to be implemented simply as a decision support tool. It is also found that arrival delay due to purely wake vortex separation requirements on final approach constituted only between 29% and 35% of total arrival delay, while the remaining major portion of it is mainly due to delay back propagation effects.
Flight tests show potential benefits of data link as primary communication medium
NASA Technical Reports Server (NTRS)
Scanlon, Charles H.; Knox, Charles E.
1991-01-01
Message exchange for air traffic control (ATC) purposes via data link offers the potential benefits of increasing the airspace system safety and efficiency. This is accomplished by reducing communication errors and relieving the overloaded ATC radio frequencies, which hamper efficient message exchanges during peak traffic periods in many busy terminal areas. However, the many uses and advantages of data link create additional questions concerning the interface among the human-users and the cockpit and ground systems. A flight test was conducted in the NASA Langley B-737 airplane to contrast flight operations using current voice communications with the use of data link for transmitting both strategic and tactical ATC clearances during a typical commercial airline flight from takeoff to landing. Commercial airplane pilots were used as test subjects.
Complexity Analysis of Traffic in Corridors-in-the-Sky
NASA Technical Reports Server (NTRS)
Xue, Min; Zelinski, Shannon Jean
2010-01-01
The corridors-in-the-sky concept imitates the highway system in ground transportation. The benefit expected from a corridor relies on its capability of handling high density traffic with negligible controller workload, the acceptance of extra fuel or distance, and the complexity reduction in underlying sectors. This work evaluates a selected corridor from these perspectives through simulations. To examine traffic inside the corridor, a corridor traffic simulation tool that can resolve conflicts is developed using C language. Prescribed conflict resolution maneuvers mimic corridor users behaviors and conflict resolution counts measure complexity. Different lane options and operational policies are proposed to examine their impacts on complexity. Fuel consumption is calculated and compared for corridor traffic. On the other hand, to investigate the complexity of non-corridor traffic in underlying sectors, the existing Airspace Concept Evaluation System tool is utilized along with the Automated Airspace Concept tool. The number of conflict resolutions is examined and treated as the complexity measurement. The results show heavy traffic can be managed with low complexity for a historical traffic schedule simulated with appropriate operational policies and lane options. For instance, with 608 flights and peak aircraft count of 100, only 84 actions need to be taken in a 24-hour period to resolve the conflicts for an 8-lane corridor. Compared with the fuel consumptions with great circle trajectories, the simulation of corridor traffic shows that the total extra fuel for corridor flights is 26,373 gallons, or 2.76%, which is 0.38% less than flying filed flight plans. Without taking climb and descent portions of corridor traffic, the complexity of underlying sectors is reduced by 17.71%. However the climb and descent portions will eliminate the reduction and the overall complexity of sectors is actually increased by 9.14%.
Metzger, Ulla; Parasuraman, Raja
2005-01-01
Future air traffic management concepts envisage shared decision-making responsibilities between controllers and pilots, necessitating that controllers be supported by automated decision aids. Even as automation tools are being introduced, however, their impact on the air traffic controller is not well understood. The present experiments examined the effects of an aircraft-to-aircraft conflict decision aid on performance and mental workload of experienced, full-performance level controllers in a simulated Free Flight environment. Performance was examined with both reliable (Experiment 1) and inaccurate automation (Experiment 2). The aid improved controller performance and reduced mental workload when it functioned reliably. However, detection of a particular conflict was better under manual conditions than under automated conditions when the automation was imperfect. Potential or actual applications of the results include the design of automation and procedures for future air traffic control systems.
Efficient Trajectory Options Allocation for the Collaborative Trajectory Options Program
NASA Technical Reports Server (NTRS)
Rodionova, Olga; Arneson, Heather; Sridhar, Banavar; Evans, Antony
2017-01-01
The Collaborative Trajectory Options Program (CTOP) is a Traffic Management Initiative (TMI) intended to control the air traffic flow rates at multiple specified Flow Constrained Areas (FCAs), where demand exceeds capacity. CTOP allows flight operators to submit the desired Trajectory Options Set (TOS) for each affected flight with associated Relative Trajectory Cost (RTC) for each option. CTOP then creates a feasible schedule that complies with capacity constraints by assigning affected flights with routes and departure delays in such a way as to minimize the total cost while maintaining equity across flight operators. The current version of CTOP implements a Ration-by-Schedule (RBS) scheme, which assigns the best available options to flights based on a First-Scheduled-First-Served heuristic. In the present study, an alternative flight scheduling approach is developed based on linear optimization. Results suggest that such an approach can significantly reduce flight delays, in the deterministic case, while maintaining equity as defined using a Max-Min fairness scheme.
Wake-Vortex Separation Distances when Flight-Path Corridors are Constrained
NASA Technical Reports Server (NTRS)
Rossow, Vernon J.; Olson, Lawrence E. (Technical Monitor)
1995-01-01
Since the vortex wakes of large transport aircraft can pose a hazard to smaller following aircraft during landing and takeoff operations, certain separation guidelines are followed while aircraft are in the approach and departure corridors at airports. These guidelines reduce the capacity of airports because the separation distances are larger than other airport factors require. This paper studies the effect that a decrease in the size of the cross-section of the flight corridors for air traffic control would have on the wake-vortex separation guidelines; e.g., when the Global Positioning System (GPS) is implemented for air traffic control. It is first shown why smaller flight corridors permit reduced spacings at airports. Several arrangements of smaller flight corridors are then presented to illustrate how differing atmospheric and airport conditions can be accommodated. These considerations indicate that a reduction is then permissible in the wake-vortex spacings while still retaining the same or an improved degree of safety.
2007 Ikhana Western States and Southern California Emergency UAS Fire Missions
NASA Technical Reports Server (NTRS)
Cobleigh, Brent
2008-01-01
Four demonstration and four emergency fire imaging missions completed: a) Thermal infrared imagery delivered in near real-time (5 to 15 minutes) to: 1) SoCal Emergency: FEMA, NIFC, NorthCom, California EOC; 2) Demo Flights: NIFC, Individual Fire Incident Commands. Imagery used for tactical and strategic decision making. Air Traffic Control gave excellent support. Mission plans flown in reverse. Real time requests for revisits of active fires. Added new fire during mission. Moved fire loiter points as fires moved. Real-time reroute around thunderstorm activity. Pre & Post flight telecons with FAA were held to review mission and discuss operational improvements. No issues with air traffic control during the 8 fire missions flown.
Convective Weather Avoidance with Uncertain Weather Forecasts
NASA Technical Reports Server (NTRS)
Karahan, Sinan; Windhorst, Robert D.
2009-01-01
Convective weather events have a disruptive impact on air traffic both in terminal area and in en-route airspaces. In order to make sure that the national air transportation system is safe and efficient, it is essential to respond to convective weather events effectively. Traffic flow control initiatives in response to convective weather include ground delay, airborne delay, miles-in-trail restrictions as well as tactical and strategic rerouting. The rerouting initiatives can potentially increase traffic density and complexity in regions neighboring the convective weather activity. There is a need to perform rerouting in an intelligent and efficient way such that the disruptive effects of rerouting are minimized. An important area of research is to study the interaction of in-flight rerouting with traffic congestion or complexity and developing methods that quantitatively measure this interaction. Furthermore, it is necessary to find rerouting solutions that account for uncertainties in weather forecasts. These are important steps toward managing complexity during rerouting operations, and the paper is motivated by these research questions. An automated system is developed for rerouting air traffic in order to avoid convective weather regions during the 20- minute - 2-hour time horizon. Such a system is envisioned to work in concert with separation assurance (0 - 20-minute time horizon), and longer term air traffic management (2-hours and beyond) to provide a more comprehensive solution to complexity and safety management. In this study, weather is dynamic and uncertain; it is represented as regions of airspace that pilots are likely to avoid. Algorithms are implemented in an air traffic simulation environment to support the research study. The algorithms used are deterministic but periodically revise reroutes to account for weather forecast updates. In contrast to previous studies, in this study convective weather is represented as regions of airspace that pilots are likely to avoid. The automated system periodically updates forecasts and reassesses rerouting decisions in order to account for changing weather predictions. The main objectives are to reroute flights to avoid convective weather regions and determine the resulting complexity due to rerouting. The eventual goal is to control and reduce complexity while rerouting flights during the 20 minute - 2 hour planning period. A three-hour simulation is conducted using 4800 flights in the national airspace. The study compares several metrics against a baseline scenario using the same traffic and weather but with rerouting disabled. The results show that rerouting can have a negative impact on congestion in some sectors, as expected. The rerouting system provides accurate measurements of the resulting complexity in the congested sectors. Furthermore, although rerouting is performed only in the 20-minute - 2-hour range, it results in a 30% reduction in encounters with nowcast weather polygons (100% being the ideal for perfectly predictable and accurate weather). In the simulations, rerouting was performed for the 20-minute - 2-hour flight time horizon, and for the en-route segment of air traffic. The implementation uses CWAM, a set of polygons that represent probabilities of pilot deviation around weather. The algorithms were implemented in a software-based air traffic simulation system. Initial results of the system's performance and effectiveness were encouraging. Simulation results showed that when flights were rerouted in the 20-minute - 2-hour flight time horizon of air traffic, there were fewer weather encounters in the first 20 minutes than for flights that were not rerouted. Some preliminary results were also obtained that showed that rerouting will also increase complexity. More simulations will be conducted in order to report conclusive results on the effects of rerouting on complexity. Thus, the use of the 20-minute - 2-hour flight time horizon weather avoidance teniques performed in the simulation is expected to provide benefits for short-term weather avoidance.
Automation for "Direct-to" Clearances in Air-Traffic Control
NASA Technical Reports Server (NTRS)
Erzberger, Heinz; McNally, David
2006-01-01
A method of automation, and a system of computer hardware and software to implement the method, have been invented to assist en-route air-traffic controllers in the issuance of clearances to fly directly to specified waypoints or navigation fixes along straight paths that deviate from previously filed flight plans. Such clearances, called "direct-to" clearances, have been in use since before the invention of this method and system.
Variations in "Party Line" Information Importance Between Pilots of Difference Characteristics
NASA Technical Reports Server (NTRS)
Pritchett, Amy R.; Hansman, R. John
1995-01-01
The introduction of digital datalink communications into the air traffic control (ATC) system may cause a reduction of the situation awareness of flight crews due to the reduction of 'Party Line' Information (PLI) that can be overheard on the shared voice frequencies. A survey was distributed to determine current PLI use by pilots from different geographic regions, operational groups, experience levels, and aircraft equipage. Pilots indicated highest perceived importance for PLI during the phases of flight nearest the airport and lowest importance during cruise. Several specific traffic and weather information elements were identified as particularly important; traffic and weather information was also cited by pilots as information required for global situation awareness. Some variations in responses were found between pilots from different operational types.
NASA Technical Reports Server (NTRS)
Knox, C. E.; Cannon, D. G.
1980-01-01
A simple flight management descent algorithm designed to improve the accuracy of delivering an airplane in a fuel-conservative manner to a metering fix at a time designated by air traffic control was developed and flight tested. This algorithm provides a three dimensional path with terminal area time constraints (four dimensional) for an airplane to make an idle thrust, clean configured (landing gear up, flaps zero, and speed brakes retracted) descent to arrive at the metering fix at a predetermined time, altitude, and airspeed. The descent path was calculated for a constant Mach/airspeed schedule from linear approximations of airplane performance with considerations given for gross weight, wind, and nonstandard pressure and temperature effects. The flight management descent algorithm is described. The results of the flight tests flown with the Terminal Configured Vehicle airplane are presented.
A hierarchical framework for air traffic control
NASA Astrophysics Data System (ADS)
Roy, Kaushik
Air travel in recent years has been plagued by record delays, with over $8 billion in direct operating costs being attributed to 100 million flight delay minutes in 2007. Major contributing factors to delay include weather, congestion, and aging infrastructure; the Next Generation Air Transportation System (NextGen) aims to alleviate these delays through an upgrade of the air traffic control system. Changes to large-scale networked systems such as air traffic control are complicated by the need for coordinated solutions over disparate temporal and spatial scales. Individual air traffic controllers must ensure aircraft maintain safe separation locally with a time horizon of seconds to minutes, whereas regional plans are formulated to efficiently route flows of aircraft around weather and congestion on the order of every hour. More efficient control algorithms that provide a coordinated solution are required to safely handle a larger number of aircraft in a fixed amount of airspace. Improved estimation algorithms are also needed to provide accurate aircraft state information and situational awareness for human controllers. A hierarchical framework is developed to simultaneously solve the sometimes conflicting goals of regional efficiency and local safety. Careful attention is given in defining the interactions between the layers of this hierarchy. In this way, solutions to individual air traffic problems can be targeted and implemented as needed. First, the regional traffic flow management problem is posed as an optimization problem and shown to be NP-Hard. Approximation methods based on aggregate flow models are developed to enable real-time implementation of algorithms that reduce the impact of congestion and adverse weather. Second, the local trajectory design problem is solved using a novel slot-based sector model. This model is used to analyze sector capacity under varying traffic patterns, providing a more comprehensive understanding of how increased automation in NextGen will affect the overall performance of air traffic control. The dissertation also provides solutions to several key estimation problems that support corresponding control tasks. Throughout the development of these estimation algorithms, aircraft motion is modeled using hybrid systems, which encapsulate both the discrete flight mode of an aircraft and the evolution of continuous states such as position and velocity. The target-tracking problem is posed as one of hybrid state estimation, and two new algorithms are developed to exploit structure specific to aircraft motion, especially near airports. First, discrete mode evolution is modeled using state-dependent transitions, in which the likelihood of changing flight modes is dependent on aircraft state. Second, an estimator is designed for systems with limited mode changes, including arrival aircraft. Improved target tracking facilitates increased safety in collision avoidance and trajectory design problems. A multiple-target tracking and identity management algorithm is developed to improve situational awareness for controllers about multiple maneuvering targets in a congested region. Finally, tracking algorithms are extended to predict aircraft landing times; estimated time of arrival prediction is one example of important decision support information for air traffic control.
Control Design and Performance Analysis for Autonomous Formation Flight Experimentss
NASA Astrophysics Data System (ADS)
Rice, Caleb Michael
Autonomous Formation Flight is a key approach for reducing greenhouse gas emissions and managing traffic in future high density airspace. Unmanned Aerial Vehicles (UAV's) have made it possible for the physical demonstration and validation of autonomous formation flight concepts inexpensively and eliminates the flight risk to human pilots. This thesis discusses the design, implementation, and flight testing of three different formation flight control methods, Proportional Integral and Derivative (PID); Fuzzy Logic (FL); and NonLinear Dynamic Inversion (NLDI), and their respective performance behavior. Experimental results show achievable autonomous formation flight and performance quality with a pair of low-cost unmanned research fixed wing aircraft and also with a solo vertical takeoff and landing (VTOL) quadrotor.
Sixty years of aeronautical research, 1917-1977. [Langley Research Center
NASA Technical Reports Server (NTRS)
Anderton, D. A.
1978-01-01
The history of Langley Research Center and its contributions to solving problems related to flight over the past six decades is recounted. Technical innovations described include those related to air craft construction materials, jet and rocket propulsion, flight testing and simulation, wind tunnel tests, noise reduction, supersonic flight, air traffic control, structural analysis, computational aerodynamics, and fuel efficiency.
Pilot age and expertise predict flight simulator performance: a 3-year longitudinal study.
Taylor, Joy L; Kennedy, Quinn; Noda, Art; Yesavage, Jerome A
2007-02-27
Expert knowledge may compensate for age-related declines in basic cognitive and sensory-motor abilities in some skill domains. We investigated the influence of age and aviation expertise (indexed by Federal Aviation Administration pilot ratings) on longitudinal flight simulator performance. Over a 3-year period, 118 general aviation pilots aged 40 to 69 years were tested annually, in which their flight performance was scored in terms of 1) executing air-traffic controller communications; 2) traffic avoidance; 3) scanning cockpit instruments; 4) executing an approach to landing; and 5) a flight summary score. More expert pilots had better flight summary scores at baseline and showed less decline over time. Secondary analyses revealed that expertise effects were most evident in the accuracy of executing aviation communications, the measure on which performance declined most sharply over time. Regarding age, even though older pilots initially performed worse than younger pilots, over time older pilots showed less decline in flight summary scores than younger pilots. Secondary analyses revealed that the oldest pilots did well over time because their traffic avoidance performance improved more vs younger pilots. These longitudinal findings support previous cross-sectional studies in aviation as well as non-aviation domains, which demonstrated the advantageous effect of prior experience and specialized expertise on older adults' skilled cognitive performances.
Pilot age and expertise predict flight simulator performance
Kennedy, Quinn; Noda, Art; Yesavage, Jerome A.
2010-01-01
Background Expert knowledge may compensate for age-related declines in basic cognitive and sensory-motor abilities in some skill domains. We investigated the influence of age and aviation expertise (indexed by Federal Aviation Administration pilot ratings) on longitudinal flight simulator performance. Methods Over a 3-year period, 118 general aviation pilots aged 40 to 69 years were tested annually, in which their flight performance was scored in terms of 1) executing air-traffic controller communications; 2) traffic avoidance; 3) scanning cockpit instruments; 4) executing an approach to landing; and 5) a flight summary score. Results More expert pilots had better flight summary scores at baseline and showed less decline over time. Secondary analyses revealed that expertise effects were most evident in the accuracy of executing aviation communications, the measure on which performance declined most sharply over time. Regarding age, even though older pilots initially performed worse than younger pilots, over time older pilots showed less decline in flight summary scores than younger pilots. Secondary analyses revealed that the oldest pilots did well over time because their traffic avoidance performance improved more vs younger pilots. Conclusions These longitudinal findings support previous cross-sectional studies in aviation as well as non-aviation domains, which demonstrated the advantageous effect of prior experience and specialized expertise on older adults’ skilled cognitive performances. PMID:17325270
Airborne Data Link Operational Evaluation Test Plan
DOT National Transportation Integrated Search
1993-08-01
This plan describes an end-to-end study of operational concepts and procedures associated with the introduction of electronic data communications between flight crews and air traffic controllers. Full performance controllers from : terminal facilitie...
Flight demonstration of integrated airport surface automation concepts
NASA Technical Reports Server (NTRS)
Jones, Denise R.; Young, Steven D.
1995-01-01
A flight demonstration was conducted to address airport surface movement area capacity issues by providing pilots with enhanced situational awareness information. The demonstration showed an integration of several technologies to government and industry representatives. These technologies consisted of an electronic moving map display in the cockpit, a Differential Global Positioning System (DGPS) receiver, a high speed VHF data link, an ASDE-3 radar, and the Airport Movement Area Safety System (AMASS). Aircraft identification was presented to an air traffic controller on AMASS. The onboard electronic map included the display of taxi routes, hold instructions, and clearances, which were sent to the aircraft via data link by the controller. The map also displayed the positions of other traffic and warning information, which were sent to the aircraft automatically from the ASDE-3/AMASS system. This paper describes the flight demonstration in detail, along with preliminary results.
Software for Simulating Air Traffic
NASA Technical Reports Server (NTRS)
Sridhar, Banavar; Bilimoria, Karl; Grabbe, Shon; Chatterji, Gano; Sheth, Kapil; Mulfinger, Daniel
2006-01-01
Future Air Traffic Management Concepts Evaluation Tool (FACET) is a system of software for performing computational simulations for evaluating advanced concepts of advanced air-traffic management. FACET includes a program that generates a graphical user interface plus programs and databases that implement computational models of weather, airspace, airports, navigation aids, aircraft performance, and aircraft trajectories. Examples of concepts studied by use of FACET include aircraft self-separation for free flight; prediction of air-traffic-controller workload; decision support for direct routing; integration of spacecraft-launch operations into the U.S. national airspace system; and traffic- flow-management using rerouting, metering, and ground delays. Aircraft can be modeled as flying along either flight-plan routes or great-circle routes as they climb, cruise, and descend according to their individual performance models. The FACET software is modular and is written in the Java and C programming languages. The architecture of FACET strikes a balance between flexibility and fidelity; as a consequence, FACET can be used to model systemwide airspace operations over the contiguous U.S., involving as many as 10,000 aircraft, all on a single desktop or laptop computer running any of a variety of operating systems. Two notable applications of FACET include: (1) reroute conformance monitoring algorithms that have been implemented in one of the Federal Aviation Administration s nationally deployed, real-time, operational systems; and (2) the licensing and integration of FACET with the commercially available Flight Explorer, which is an Internet- based, real-time flight-tracking system.
Interface Supports Multiple Broadcast Transceivers for Flight Applications
NASA Technical Reports Server (NTRS)
Block, Gary L.; Whitaker, William D.; Dillon, James W.; Lux, James P.; Ahmad, Mohammad
2011-01-01
A wireless avionics interface provides a mechanism for managing multiple broadcast transceivers. This interface isolates the control logic required to support multiple transceivers so that the flight application does not have to manage wireless transceivers. All of the logic to select transceivers, detect transmitter and receiver faults, and take autonomous recovery action is contained in the interface, which is not restricted to using wireless transceivers. Wired, wireless, and mixed transceiver technologies are supported. This design s use of broadcast data technology provides inherent cross strapping of data links. This greatly simplifies the design of redundant flight subsystems. The interface fully exploits the broadcast data link to determine the health of other transceivers used to detect and isolate faults for fault recovery. The interface uses simplified control logic, which can be implemented as an intellectual-property (IP) core in a field-programmable gate array (FPGA). The interface arbitrates the reception of inbound data traffic appearing on multiple receivers. It arbitrates the transmission of outbound traffic. This system also monitors broadcast data traffic to determine the health of transmitters in the network, and then uses this health information to make autonomous decisions for routing traffic through transceivers. Multiple selection strategies are supported, like having an active transceiver with the secondary transceiver powered off except to send periodic health status reports. Transceivers can operate in round-robin for load-sharing and graceful degradation.
An avionics sensitivity study. Volume 1: Operational considerations
NASA Technical Reports Server (NTRS)
Scott, R. W.; Mcconkey, E. D.
1976-01-01
Equipment and operational concepts affecting aircraft in the terminal area are reported. Curved approach applications and modified climb and descent procedures for minimum fuel consumption are considered. The curved approach study involves the application of MLS guidance to enable execution of the current visual approach to Washington National Airport under instrument flight conditions. The operational significance and the flight path control requirements involved in the application of curved approach paths to this situation are considered. Alternative flight path control regimes are considered to achieve minimum fuel consumption subject to constraints related to air traffic control requirements, flight crew and passenger reactions, and airframe and powerplant limitations.
Air traffic control surveillance accuracy and update rate study
NASA Technical Reports Server (NTRS)
Craigie, J. H.; Morrison, D. D.; Zipper, I.
1973-01-01
The results of an air traffic control surveillance accuracy and update rate study are presented. The objective of the study was to establish quantitative relationships between the surveillance accuracies, update rates, and the communication load associated with the tactical control of aircraft for conflict resolution. The relationships are established for typical types of aircraft, phases of flight, and types of airspace. Specific cases are analyzed to determine the surveillance accuracies and update rates required to prevent two aircraft from approaching each other too closely.
Speed and path control for conflict-free flight in high air traffic demand in terminal airspace
NASA Astrophysics Data System (ADS)
Rezaei, Ali
To accommodate the growing air traffic demand, flights will need to be planned and navigated with a much higher level of precision than today's aircraft flight path. The Next Generation Air Transportation System (NextGen) stands to benefit significantly in safety and efficiency from such movement of aircraft along precisely defined paths. Air Traffic Operations (ATO) relying on such precision--the Precision Air Traffic Operations or PATO--are the foundation of high throughput capacity envisioned for the future airports. In PATO, the preferred method is to manage the air traffic by assigning a speed profile to each aircraft in a given fleet in a given airspace (in practice known as (speed control). In this research, an algorithm has been developed, set in the context of a Hybrid Control System (HCS) model, that determines whether a speed control solution exists for a given fleet of aircraft in a given airspace and if so, computes this solution as a collective speed profile that assures separation if executed without deviation. Uncertainties such as weather are not considered but the algorithm can be modified to include uncertainties. The algorithm first computes all feasible sequences (i.e., all sequences that allow the given fleet of aircraft to reach destinations without violating the FAA's separation requirement) by looking at all pairs of aircraft. Then, the most likely sequence is determined and the speed control solution is constructed by a backward trajectory generation, starting with the aircraft last out and proceeds to the first out. This computation can be done for different sequences in parallel which helps to reduce the computation time. If such a solution does not exist, then the algorithm calculates a minimal path modification (known as path control) that will allow separation-compliance speed control. We will also prove that the algorithm will modify the path without creating a new separation violation. The new path will be generated by adding new waypoints in the airspace. As a byproduct, instead of minimal path modification, one can use the aircraft arrival time schedule to generate the sequence in which the aircraft reach their destinations.
32 CFR 245.21 - ESCAT air traffic priority list.
Code of Federal Regulations, 2012 CFR
2012-07-01
... aircraft post-maintenance test flights. (7) Federal aircraft post maintenance check flights in support of... Staff. (2) Aircraft engaged in active continental defense missions, including anti-submarine aircraft, interceptors, air refueling tanker aircraft, and airborne early-warning and control aircraft (e.g., E-3, E-2, P...
NASA Technical Reports Server (NTRS)
Parker, J. F., Jr.; Duffy, J. W.; Christensen, D. G.
1981-01-01
A Flight Data Console simulation of a digital communication link to replace the current voice communication system used in air traffic control (ATC) was developed. The study determined how a digital communications system reduces cockpit workload, improve, flight proficiency, and is acceptable to general aviation pilots. It is shown that instrument flight, including approach and landing, can be accomplished by using a digital data link system for ATC communication.
Air Traffic Management: Civil/Military Systems and Technologies.
1980-02-01
consi-~derably Anthropo- Fig. 8 Increas of System Capcity versus Usable Gain in Traffic Flow Controllable ul R 5. The Future of ATC If we think of...years from 2,000 on we must think of an integrated system, integrating * the ATC-system of the Structure X (Fig. 7) * the aircraft, by improving flight...both civil and military traffic with a range of potential link applications and other information that could be helpful in their future thinking . No
Multiple curved descending approaches and the air traffic control problem
NASA Technical Reports Server (NTRS)
Hart, S. G.; Mcpherson, D.; Kreifeldt, J.; Wemple, T. E.
1977-01-01
A terminal area air traffic control simulation was designed to study ways of accommodating increased air traffic density. The concepts that were investigated assumed the availability of the microwave landing system and data link and included: (1) multiple curved descending final approaches; (2) parallel runways certified for independent and simultaneous operation under IFR conditions; (3) closer spacing between successive aircraft; and (4) a distributed management system between the air and ground. Three groups each consisting of three pilots and two air traffic controllers flew a combined total of 350 approaches. Piloted simulators were supplied with computer generated traffic situation displays and flight instruments. The controllers were supplied with a terminal area map and digital status information. Pilots and controllers also reported that the distributed management procedure was somewhat more safe and orderly than the centralized management procedure. Flying precision increased as the amount of turn required to intersect the outer mark decreased. Pilots reported that they preferred the alternative of multiple curved descending approaches with wider spacing between aircraft to closer spacing on single, straight in finals while controllers preferred the latter option. Both pilots and controllers felt that parallel runways are an acceptable way to accommodate increased traffic density safely and expeditiously.
1989-01-01
Mid * Advanced Propulsion System Far * Rotor Burst Protection Reports Mid 11.4 Flight Safety / * Aircraft Icing Handbook Near Atmospheric Hazards...with operating the national aviation system include air traffic controllers, flight service specialists, maintenance technicians, safety inspectors...address the design and certification of flight deck systems and revised crew training requirements. In FY 1988, studies of safety data were initiated to
14 CFR 91.139 - Emergency air traffic rules.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 2 2014-01-01 2014-01-01 false Emergency air traffic rules. 91.139 Section...) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Flight Rules General § 91.139 Emergency air traffic rules. (a) This section prescribes a process for utilizing Notices to Airmen...
14 CFR 91.139 - Emergency air traffic rules.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false Emergency air traffic rules. 91.139 Section...) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Flight Rules General § 91.139 Emergency air traffic rules. (a) This section prescribes a process for utilizing Notices to Airmen...
14 CFR 91.139 - Emergency air traffic rules.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Emergency air traffic rules. 91.139 Section...) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Flight Rules General § 91.139 Emergency air traffic rules. (a) This section prescribes a process for utilizing Notices to Airmen...
14 CFR 125.225 - Flight data recorders.
Code of Federal Regulations, 2014 CFR
2014-01-01
... acceleration; (5) Heading; (6) Time of each radio transmission to or from air traffic control; (7) Pitch attitude; (8) Roll attitude; (9) Longitudinal acceleration; (10) Control column or pitch control surface... control; (7) Pitch attitude; (8) Roll attitude; (9) Longitudinal acceleration; (10) Pitch trim position...
NASA Technical Reports Server (NTRS)
Fernandes, Alicia D.; Kaler, Curt; Leiden, Kenneth; Atkins, Stephen; Bell, Alan; Kilbourne, Todd; Evans, Mark
2017-01-01
This report describes a trade study of roles and responsibilities associated with the Management by Trajectory (MBT) concept. The MBT concept describes roles, responsibilities, and information and automation requirements for providing air traffic controllers and managers the ability to quickly generate, evaluate and implement changes to an aircraft's trajectory. In addition, the MBT concept describes mechanisms for imposing constraints on flight operator preferred trajectories only to the extent necessary to maintain safe and efficient traffic flows, and the concept provides a method for the exchange of trajectory information between ground automation systems and the aircraft that allows for trajectory synchronization and trajectory negotiation. The participant roles considered in this trade study include: airline dispatcher, flight crew, radar controller, traffic manager, and Air Traffic Control System Command Center (ATCSCC) traffic management specialists. The proposed allocation of roles and responsibilities was based on analysis of several use cases that were developed for this purpose as well as for walking through concept elements. The resulting allocation of roles and responsibilities reflects both increased automation capability to support many aviation functions, as well as increased flexibility to assign responsibilities to different participants - in many cases afforded by the increased automation capabilities. Note that the selection of participants to consider for allocation of each function is necessarily rooted in the current environment, in that MBT is envisioned as an evolution of the National Airspace System (NAS), and not a revolution. A key feature of the MBT allocations is a vision for the traffic management specialist to take on a greater role. This is facilitated by the vision that separation management functions, in addition to traffic management functions, will be carried out as trajectory management functions. This creates an opportunity for flexibility, allowing the traffic management specialist to carry out tasks that today can only be carried out by the controller currently in contact with the aircraft. This additional tasking for the traffic management specialist comes with requirements for workload management. An increased role for the Data-side (D-side) controller relative to the Radar-side (R-side) controller is a potential approach to mitigating workload for the traffic management specialist, as the D-side controller would have similar ability to perform separation management functions in what today might be considered the "trajectory management" timeframe. This analysis did not distinguish between the D-side and R-side controllers since in many cases the R-side controller works unassisted.
NASA Technical Reports Server (NTRS)
Hayashi, Miwa; Hoang, Ty; Jung, Yoon C.; Malik, Waqar; Lee, Hanbong; Dulchinos, Victoria L.
2015-01-01
This paper proposes a new departure pushback decision-support tool (DST) for airport ramp-tower controllers. It is based on NASA's Spot and Runway Departure Advisor (SARDA) collaborative decision-making concept, except with the modification that the gate releases now are controlled by tactical pushback (or gate-hold) advisories instead of strategic pre-assignments of target pushback times to individual departure flights. The proposed ramp DST relies on data exchange with the airport traffic control tower (ATCT) to coordinate pushbacks with the ATCT's flow-management intentions under current operational constraints, such as Traffic Management Initiative constraints. Airlines would benefit in reduced taxi delay and fuel burn. The concept was evaluated in a human-in-the-loop simulation experiment with current ramp-tower controllers at the Charlotte Douglas International Airport as participants. The results showed that the tool helped reduce taxi time by one minute per flight and overall departure flight fuel consumption by 10-12% without reducing runway throughput. Expect Departure Clearance Time (EDCT) conformance also was improved when advisories were provided. These benefits were attained without increasing the ramp-tower controllers' workload. Additionally, the advisories reduced the ATCT controllers' workload.
Advisory Systems Save Time, Fuel for Airlines
NASA Technical Reports Server (NTRS)
2012-01-01
Heinz Erzberger never thought the sky was falling, but he knew it could benefit from enhanced traffic control. Throughout the 1990s, Erzberger led a team at Ames Research Center to develop a suite of automated tools to reduce restrictions and improve the efficiency of air traffic control operations. Called CTAS, or Center-TRACON (Terminal Radar Approach Control) Automation System, the software won NASA s Software of the Year award in 1998, and one of the tools in the suite - the traffic management advisor - was adopted by the Federal Aviation Administration and implemented at traffic control centers across the United States. Another one of the tools, Direct-To, has followed a different path. The idea behind Direct-To, explains Erzberger, a senior scientist at Ames, was that airlines could save fuel and money by shortening the routes they flew between take-off and landing. Aircraft are often limited to following established airways comprised of inefficient route segments. The routes are not easily adjusted because neither the pilot nor the aircraft controller can anticipate the constantly changing air traffic situation. To make the routes more direct while in flight, Erzberger came up with an idea for a software algorithm that could automatically examine air traffic in real-time, check to see if a shortcut was available, and then check for conflicts. If there were no conflicts and the shortcut saved more than 1 minute of flight time, the controller could be notified. "I was trying to figure out what goes on in the pilot and controller s minds when they decide to guide the aircraft in a certain way. That resulted in a different kind analysis," Erzberger says. As the engineer s idea went from theory to practice, in 2001, NASA demonstrated Direct-To in the airspace of Dallas-Ft. Worth. Estimations based on the demonstration found the technology was capable of saving 900 flying minutes per day for the aircraft in the test area.
Nicholls, Alastair P; Melia, Anne; Farmer, Eric W; Shaw, Gareth; Milne, Tracey; Stedmon, Alex; Sharples, Sarah; Cox, Gemma
2007-07-01
At present, air traffic controllers (ATCOs) exercise strict control over routing authority for aircraft movement in airspace. The onset of a free flight environment, however, may well result in a dramatic change to airspace jurisdictions, with aircraft movements for the large part being governed by aircrew, not ATCOs. The present study examined the impact of such changes on spatial memory for recent and non-recent locations of aircraft represented on a visual display. The experiment contrasted present conditions, in which permission for manoeuvres is granted by ATCOs, with potential free flight conditions, in which aircrew undertake deviations without explicit approval from ATCOs. Results indicated that the ATCO role adopted by participants impacted differently on short-term and long-term spatial representations of aircraft manoeuvres. Although informing participants of impending deviations has beneficial effects on spatial representations in the short term, long-term representations of spatial events are affected deleteriously by the presentation of subsequent information pertaining to other aircraft. This study suggests strongly that recognition of the perceptual and cognitive consequences of changing to a free flight environment is crucial if air safety is not to be jeopardized.
Interaction of Airspace Partitions and Traffic Flow Management Delay
NASA Technical Reports Server (NTRS)
Palopo, Kee; Chatterji, Gano B.; Lee, Hak-Tae
2010-01-01
To ensure that air traffic demand does not exceed airport and airspace capacities, traffic management restrictions, such as delaying aircraft on the ground, assigning them different routes and metering them in the airspace, are implemented. To reduce the delays resulting from these restrictions, revising the partitioning of airspace has been proposed to distribute capacity to yield a more efficient airspace configuration. The capacity of an airspace partition, commonly referred to as a sector, is limited by the number of flights that an air traffic controller can safely manage within the sector. Where viable, re-partitioning of the airspace distributes the flights over more efficient sectors and reduces individual sector demand. This increases the overall airspace efficiency, but requires additional resources in some sectors in terms of controllers and equipment, which is undesirable. This study examines the tradeoff of the number of sectors designed for a specified amount of traffic in a clear-weather day and the delays needed for accommodating the traffic demand. Results show that most of the delays are caused by airport arrival and departure capacity constraints. Some delays caused by airspace capacity constraints can be eliminated by re-partitioning the airspace. Analyses show that about 360 high-altitude sectors, which are approximately today s operational number of sectors of 373, are adequate for delays to be driven solely by airport capacity constraints for the current daily air traffic demand. For a marginal increase of 15 seconds of average delay, the number of sectors can be reduced to 283. In addition, simulations of traffic growths of 15% and 20% with forecasted airport capacities in the years 2018 and 2025 show that delays will continue to be governed by airport capacities. In clear-weather days, for small increases in traffic demand, increasing sector capacities will have almost no effect on delays.
FAA aviation forecasts : fiscal years 1997-2008
DOT National Transportation Integrated Search
1997-03-01
This report contains the Fiscal Years 1997-2008 Federal Aviation Administration (FAA) forecasts of aviation activity at FAA facilities. These include airports with both FAA and contract control towers, air route traffic control centers, and flight se...
Research into the development of a knowledge acquisition taxonomy
NASA Technical Reports Server (NTRS)
Fink, Pamela K.
1991-01-01
Monthly progress reports for September 1990 to January 1991 are given. Topics that are briefly covered include problem solving and learning taxonomies, knowledge acquisition techniques, software design, air traffic control, and space shuttle flight control.
A Multi-Operator Simulation for Investigation of Distributed Air Traffic Management Concepts
NASA Technical Reports Server (NTRS)
Peters, Mark E.; Ballin, Mark G.; Sakosky, John S.
2002-01-01
This paper discusses the current development of an air traffic operations simulation that supports feasibility research for advanced air traffic management concepts. The Air Traffic Operations Simulation (ATOS) supports the research of future concepts that provide a much greater role for the flight crew in traffic management decision-making. ATOS provides representations of the future communications, navigation, and surveillance (CNS) infrastructure, a future flight deck systems architecture, and advanced crew interfaces. ATOS also provides a platform for the development of advanced flight guidance and decision support systems that may be required for autonomous operations.
Transforming the NAS: The Next Generation Air Traffic Control System
NASA Technical Reports Server (NTRS)
Erzberger, Heinz
2004-01-01
The next-generation air traffic control system must be designed to safely and efficiently accommodate the large growth of traffic expected in the near future. It should be sufficiently scalable to contend with the factor of 2 or more increase in demand expected by the year 2020. Analysis has shown that the current method of controlling air traffic cannot be scaled up to provide such levels of capacity. Therefore, to achieve a large increase in capacity while also giving pilots increased freedom to optimize their flight trajectories requires a fundamental change in the way air traffic is controlled. The key to achieving a factor of 2 or more increase in airspace capacity is to automate separation monitoring and control and to use an air-ground data link to send trajectories and clearances directly between ground-based and airborne systems. In addition to increasing capacity and offering greater flexibility in the selection of trajectories, this approach also has the potential to increase safety by reducing controller and pilot errors that occur in routine monitoring and voice communication tasks.
For Spacious Skies: Self-Separation with "Autonomous Flight Rules" in US Domestic Airspace
NASA Technical Reports Server (NTRS)
Wing, David J.; Cotton, William B.
2011-01-01
Autonomous Flight Rules (AFR) are proposed as a new set of operating regulations in which aircraft navigate on tracks of their choice while self-separating from traffic and weather. AFR would exist alongside Instrument and Visual Flight Rules (IFR and VFR) as one of three available flight options for any appropriately trained and qualified operator with the necessary certified equipment. Historically, ground-based separation services evolved by necessity as aircraft began operating in the clouds and were unable to see each other. Today, technologies for global precision navigation, emerging airborne surveillance, and onboard computing enable traffic conflict management to be fully integrated with navigation procedures onboard the aircraft. By self-separating, aircraft can operate with more flexibility and fewer flight restrictions than are required when using ground-based separation. The AFR concept proposes a practical means in which self-separating aircraft could share the same airspace as IFR and VFR aircraft without disrupting the ongoing processes of Air Traffic Control. The paper discusses the context and motivation for implementing self-separation in US domestic airspace. It presents a historical perspective on separation, the proposed way forward in AFR, the rationale behind mixed operations, and the expected benefits of AFR for the airspace user community.
14 CFR Appendix A to Part 129 - Application for Operations Specifications by Foreign Air Carriers
Code of Federal Regulations, 2010 CFR
2010-01-01
.... Operations. State whether the operation proposed is day or night, visual flight rules, instrument flight...). Sec. IV. Communications facilities. List all communication facilities to be used by the applicant in... English language to a degree necessary to enable them to properly communicate with Airport Traffic Control...
Assessing Prior Experience in the Selection of Air Traffic Control Specialists
2013-04-01
Crosstabulation --------------------------B1 APPENDIX C: IFR Operations Experience • Academy Training Performance Crosstabulation ---------C1 APPENDIX...Control Specialist (ATCS) rating? (n=9,333) BQ35 – Do you have prior Instrument Flight Rules ( IFR ) operations experience? (n = 9,349) 2. Hold or...not have a prior ATCS rating. Do you have prior IFR (Instrument Flight Rules) Operations experience? Of the 9,349 respondents to this question
NASA Technical Reports Server (NTRS)
Chandra, D.; Bussolari, S. R.; Hansman, R. J.
1989-01-01
A user centered evaluation is performed on the use of flight deck automation for display and control of aircraft horizontal flight path. A survey was distributed to pilots with a wide range of experience with the use of flight management computers in transport category aircraft to determine the acceptability and use patterns as reflected by the need for information displayed on the electronic horizontal situation indicator. A summary of survey results and planned part-task simulation to compare three communication modes (verbal, alphanumeric, graphic) are presented.
Evaluation of Flight Deck-Based Interval Management Crew Procedure Feasibility
NASA Technical Reports Server (NTRS)
Wilson, Sara R.; Murdoch, Jennifer L.; Hubbs, Clay E.; Swieringa, Kurt A.
2013-01-01
Air traffic demand is predicted to increase over the next 20 years, creating a need for new technologies and procedures to support this growth in a safe and efficient manner. The National Aeronautics and Space Administration's (NASA) Air Traffic Management Technology Demonstration - 1 (ATD-1) will operationally demonstrate the feasibility of efficient arrival operations combining ground-based and airborne NASA technologies. The integration of these technologies will increase throughput, reduce delay, conserve fuel, and minimize environmental impacts. The ground-based tools include Traffic Management Advisor with Terminal Metering for precise time-based scheduling and Controller Managed Spacing decision support tools for better managing aircraft delay with speed control. The core airborne technology in ATD-1 is Flight deck-based Interval Management (FIM). FIM tools provide pilots with speed commands calculated using information from Automatic Dependent Surveillance - Broadcast. The precise merging and spacing enabled by FIM avionics and flight crew procedures will reduce excess spacing buffers and result in higher terminal throughput. This paper describes a human-in-the-loop experiment designed to assess the acceptability and feasibility of the ATD-1 procedures used in a voice communications environment. This experiment utilized the ATD-1 integrated system of ground-based and airborne technologies. Pilot participants flew a high-fidelity fixed base simulator equipped with an airborne spacing algorithm and a FIM crew interface. Experiment scenarios involved multiple air traffic flows into the Dallas-Fort Worth Terminal Radar Control airspace. Results indicate that the proposed procedures were feasible for use by flight crews in a voice communications environment. The delivery accuracy at the achieve-by point was within +/- five seconds and the delivery precision was less than five seconds. Furthermore, FIM speed commands occurred at a rate of less than one per minute, and pilots found the frequency of the speed commands to be acceptable at all times throughout the experiment scenarios.
Refinement for fault-tolerance: An aircraft hand-off protocol
NASA Technical Reports Server (NTRS)
Marzullo, Keith; Schneider, Fred B.; Dehn, Jon
1994-01-01
Part of the Advanced Automation System (AAS) for air-traffic control is a protocol to permit flight hand-off from one air-traffic controller to another. The protocol must be fault-tolerant and, therefore, is subtle -- an ideal candidate for the application of formal methods. This paper describes a formal method for deriving fault-tolerant protocols that is based on refinement and proof outlines. The AAS hand-off protocol was actually derived using this method; that derivation is given.
Time-based air traffic management using expert systems
NASA Technical Reports Server (NTRS)
Tobias, L.; Scoggins, J. L.
1986-01-01
A prototype expert system has been developed for the time scheduling of aircraft into the terminal area. The three functions of the air-traffic-control schedule advisor are as follows: (1) for each new arrival, it develops an admisible flight plan for that aircraft; (2) as the aircraft progresses through the terminal area, it monitors deviations from the aircraft's flight plan and provides advisories to return the aircraft to its assigned schedule; and (3) if major disruptions such as missed approaches occur, it develops a revised plan. The advisor is operational on a Symbolics 3600, and is programmed in MRS (a logic programming language), Lisp, and Fortran.
Time-based air traffic management using expert systems
NASA Technical Reports Server (NTRS)
Tobias, L.; Scoggins, J. L.
1986-01-01
A prototype expert system was developed for the time scheduling of aircraft into the terminal area. The three functions of the air traffic control schedule advisor are as follows: first, for each new arrival, it develops an admissible flight plan for that aircraft. Second, as the aircraft progresses through the terminal area, it monitors deviations from the flight plan and provides advisories to return the aircraft to its assigned schedule. Third, if major disruptions such as missed approaches occur, it develops a revised plan. The advisor is operational on a Symbolics 3600, and is programed in MRS (a logic programming language), Lisp, and FORTRAN.
NASA Astrophysics Data System (ADS)
Zhong, Z. W.; Ridhwan Salleh, Saiful; Chow, W. X.; Ong, Z. M.
2016-10-01
Air traffic forecasting is important as it helps stakeholders to plan their budgets and facilities. Thus, three most commonly used forecasting models were compared to see which model suited the air passenger traffic the best. General forecasting equations were also created to forecast the passenger traffic. The equations could forecast around 6.0% growth from 2015 onwards. Another study sought to provide an initial work for determining a theoretical airspace load with relevant calculations. The air traffic was simulated to investigate the current airspace load. Logical and reasonable results were obtained from the modelling and simulations. The current utilization percentages for airspace load per hour and the static airspace load in the interested airspace were found to be 6.64% and 11.21% respectively. Our research also studied how ADS-B would affect the time taken for aircraft to travel. 6000 flights departing from and landing at the airport were studied. New flight plans were simulated with improved flight paths due to the implementation of ADS-B, and flight times of all studied flights could be improved.
Flight Demonstration of Integrated Airport Surface Technologies for Increased Capacity and Safety
NASA Technical Reports Server (NTRS)
Jones, Denise R.; Young, Steven D.; Wills, Robert W.; Smith, Kathryn A.; Shipman, Floyd S.; Bryant, Wayne H.; Eckhardt, Dave E., Jr.
1998-01-01
A flight demonstration was conducted to address airport surface movement area capacity and safety issues by providing pilots with enhanced situational awareness information. The demonstration presented an integration of several technologies to government and industry representatives. These technologies consisted of an electronic moving map display in the cockpit, a Differential Global Positioning system (DGPS) receiver, a high speed very high frequency (VHF) data link, an Airport Surface Detection Equipment (ASDE-3) radar, and the Airport Movement Area Safety System (AMASS). Aircraft identification was presented to an air traffic controller on an AMASS display. The onboard electronic map included the display of taxi routes, hold instructions, and clearances, which were sent to the aircraft via data link by the controller. The map also displayed the positions of other traffic and warning information, which were sent to the aircraft automatically from the ASDE-3/AMASS system. This paper describes the flight demonstration in detail, along with test results.
2000-01-01
for flight test data, and both generic and specialized tools of data filtering , data calibration, modeling , system identification, and simulation...GRAMMATICAL MODEL AND PARSER FOR AIR TRAFFIC CONTROLLER’S COMMANDS 11 A SPEECH-CONTROLLED INTERACTIVE VIRTUAL ENVIRONMENT FOR SHIP FAMILIARIZATION 12... MODELING AND SIMULATION IN THE 21ST CENTURY 23 NEW COTS HARDWARE AND SOFTWARE REDUCE THE COST AND EFFORT IN REPLACING AGING FLIGHT SIMULATORS SUBSYSTEMS
Code of Federal Regulations, 2013 CFR
2013-10-01
... traffic control. 325-435 kHz Q RLB Radiobeacons. 410.0 kHz F MA International direction-finding for use outside of United States. 457.0 kHz F MA Working frequency for aircraft on over-water flights. 500.0 kHz F MA International calling and distress frequency for ships and aircraft on over-water flights. 510-535...
Code of Federal Regulations, 2012 CFR
2012-10-01
... traffic control. 325-435 kHz Q RLB Radiobeacons. 410.0 kHz F MA International direction-finding for use outside of United States. 457.0 kHz F MA Working frequency for aircraft on over-water flights. 500.0 kHz F MA International calling and distress frequency for ships and aircraft on over-water flights. 510-535...
Code of Federal Regulations, 2014 CFR
2014-10-01
... traffic control. 325-435 kHz Q RLB Radiobeacons. 410.0 kHz F MA International direction-finding for use outside of United States. 457.0 kHz F MA Working frequency for aircraft on over-water flights. 500.0 kHz F MA International calling and distress frequency for ships and aircraft on over-water flights. 510-535...
Code of Federal Regulations, 2010 CFR
2010-10-01
... traffic control. 325-435 kHz Q RLB Radiobeacons. 410.0 kHz F MA International direction-finding for use outside of United States. 457.0 kHz F MA Working frequency for aircraft on over-water flights. 500.0 kHz F MA International calling and distress frequency for ships and aircraft on over-water flights. 510-535...
Code of Federal Regulations, 2011 CFR
2011-10-01
... traffic control. 325-435 kHz Q RLB Radiobeacons. 410.0 kHz F MA International direction-finding for use outside of United States. 457.0 kHz F MA Working frequency for aircraft on over-water flights. 500.0 kHz F MA International calling and distress frequency for ships and aircraft on over-water flights. 510-535...
14 CFR 93.339 - Requirements for operating in the DC SFRA, including the DC FRZ.
Code of Federal Regulations, 2010 CFR
2010-01-01
... aircraft in the DC SFRA, including the DC FRZ, the pilot obtains and transmits a discrete transponder code... flight plan by obtaining a discrete transponder code. The flight plan is closed upon landing at an... transmitting an Air Traffic Control-assigned discrete transponder code. (c) When operating an aircraft in the...
Air Traffic Management Technology Demonstration-1 Concept of Operations (ATD-1 ConOps), Version 2.0
NASA Technical Reports Server (NTRS)
Baxley, Brian T.; Johnson, William C.; Swenson, Harry N.; Robinson, John E.; Prevot, Tom; Callantine, Todd J.; Scardina, John; Greene, Michael
2013-01-01
This document is an update to the operations and procedures envisioned for NASA s Air Traffic Management (ATM) Technology Demonstration #1 (ATD-1). The ATD-1 Concept of Operations (ConOps) integrates three NASA technologies to achieve high throughput, fuel-efficient arrival operations into busy terminal airspace. They are Traffic Management Advisor with Terminal Metering (TMA-TM) for precise time-based schedules to the runway and points within the terminal area, Controller-Managed Spacing (CMS) decision support tools for terminal controllers to better manage aircraft delay using speed control, and Flight deck Interval Management (FIM) avionics and flight crew procedures to conduct airborne spacing operations. The ATD-1 concept provides de-conflicted and efficient operations of multiple arrival streams of aircraft, passing through multiple merge points, from top-of-descent (TOD) to the Final Approach Fix. These arrival streams are Optimized Profile Descents (OPDs) from en route altitude to the runway, using primarily speed control to maintain separation and schedule. The ATD-1 project is currently addressing the challenges of integrating the three technologies, and their implantation into an operational environment. The ATD-1 goals include increasing the throughput of high-density airports, reducing controller workload, increasing efficiency of arrival operations and the frequency of trajectory-based operations, and promoting aircraft ADS-B equipage.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-14
...: Norton Sound Low, Control 1234L and Control 1487L; Alaska AGENCY: Federal Aviation Administration (FAA... Low, Control 1234L, and Control 1487L Offshore Airspace Areas in Alaska. The airspace floors would be... there is a requirement to provide Instrument Flight Rules (IFR) en route Air Traffic Control (ATC...
14 CFR 93.307 - Minimum flight altitudes.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Minimum flight altitudes. 93.307 Section 93...) AIR TRAFFIC AND GENERAL OPERATING RULES SPECIAL AIR TRAFFIC RULES Special Flight Rules in the Vicinity of Grand Canyon National Park, AZ § 93.307 Minimum flight altitudes. Except in an emergency, or if...
14 CFR 93.307 - Minimum flight altitudes.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false Minimum flight altitudes. 93.307 Section 93...) AIR TRAFFIC AND GENERAL OPERATING RULES SPECIAL AIR TRAFFIC RULES Special Flight Rules in the Vicinity of Grand Canyon National Park, AZ § 93.307 Minimum flight altitudes. Except in an emergency, or if...
Cooperative Collision Avoidance Step 1 - Technology Demonstration Flight Test Report. Revision 1
NASA Technical Reports Server (NTRS)
Trongale, Nicholas A.
2006-01-01
The National Aeronautics and Space Administration (NASA) Access 5 Project Office sponsored a cooperative collision avoidance flight demonstration program for unmanned aircraft systems (UAS). This flight test was accomplished between September 21st and September 27th 2005 from the Mojave Airport, Mojave, California. The objective of these flights was to collect data for the Access 5 Cooperative Collision Avoidance (CCA) Work Package simulation effort, i.e., to gather data under select conditions to allow validation of the CCA simulation. Subsequent simulation to be verified were: Demonstrate the ability to detect cooperative traffic and provide situational awareness to the ROA pilot; Demonstrate the ability to track the detected cooperative traffic and provide position information to the ROA pilot; Demonstrate the ability to determine collision potential with detected cooperative traffic and provide notification to the ROA pilot; Demonstrate that the CCA subsystem provides information in sufficient time for the ROA pilot to initiate an evasive maneuver to avoid collision; Demonstrate an evasive maneuver that avoids collision with the threat aircraft; and lastly, Demonstrate the ability to assess the adequacy of the maneuver and determine that the collision potential has been avoided. The Scaled Composites, LLC Proteus Optionally Piloted Vehicle (OPV) was chosen as the test platform. Proteus was manned by two on-board pilots but was also capable of being controlled from an Air Vehicle Control Station (AVCS) located on the ground. For this demonstration, Proteus was equipped with cooperative collision sensors and the required hardware and software to place the data on the downlink. Prior to the flight phase, a detailed set of flight test scenarios were developed to address the flight test objectives. Two cooperative collision avoidance sensors were utilized for detecting aircraft in the evaluation: Traffic Alert and Collision Avoidance System-II (TCAS-II) and Automatic Dependent Surveillance Broadcast (ADS-B). A single intruder aircraft was used during all the flight testing, a NASA Gulfstream III (G-III). During the course of the testing, six geometrically different near-collision scenarios were evaluated. These six scenarios were each tested using various combinations of sensors and collision avoidance software. Of the 54 planned test points 49 were accomplished successfully. Proteus flew a total of 21.5 hours during the testing and the G-III flew 19.8 hours. The testing fully achieved all flight test objectives. The Flight IPT performed an analysis to determine the accuracy of the simulation model used to predict the location of the host aircraft downstream during an avoidance maneuver. The data collected by this flight program was delivered to the Access 5 Cooperative Collision Avoidance (CCA) Work Package Team who was responsible for reporting on their analysis of this flight data.
14 CFR 91.527 - Operating in icing conditions.
Code of Federal Regulations, 2012 CFR
2012-01-01
... (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Large and Turbine..., windshield, stabilizing or control surface; to a powerplant installation; or to an airspeed, altimeter, rate... each rotor blade, propeller, windshield, wing, stabilizing or control surface, and each airspeed...
Wickens, Christopher; Colcombe, Angela
2007-10-01
Performance consequences related to integrating an imperfect alert within a complex task domain were examined in two experiments. Cockpit displays of traffic information (CDTIs) are being designed for use in airplane cockpits as responsibility for safe separation becomes shared between pilots and controllers. Of interest in this work is how characteristics of the alarm system such as threshold, modality, and number of alert levels impact concurrent task (flight control) performance and response to potential conflicts. Student pilots performed a tracking task analogous to flight control while simultaneously monitoring for air traffic conflicts with the aid of a CDTI alert as the threshold, modality, and level of alert was varied. As the alerting system became more prone to false alerts, pilot compliance decreased and concurrent performance improved. There was some evidence of auditory preemption with auditory alerts as the false alarm rate increased. Finally, there was no benefit to a three-level system over a two-level system. There is justification for increased false alarm rates, as miss-prone systems appear to be costly. The 4:1 false alarm to miss ratio employed here improved accuracy and concurrent task performance. More research needs to address the potential benefits of likelihood alerting. The issues addressed in this research can be applied to any imperfect alerting system such as in aviation, driving, or air traffic control. It is crucial to understand the performance consequences of new technology and the efficacy of potential mitigating design features within the specific context desired.
ATC contingency operations in the en-route flight regime
NASA Technical Reports Server (NTRS)
Lyman, E. G.
1981-01-01
Air traffic control (ATC) operations were examined to learn what factors of controller performance should be given consideration in the design and development of future automation systems enhancing ATC. Contingencies were of two types: those constraining airspace usage or traffic flow (i.e., weather); and those related to system and equipment usage (i.e., radar/radio status). Examination of controller response to contingencies and workload pressures showed differing effects on controller allocations of effort among the three primary function of planning, monitoring, and informaton transfer. Automation advancements oriented towards aiding the controller in performing monitoring tasks may offer the most substantial safety benefit.
Investigation of air transportation technology at Princeton University, 1985
NASA Technical Reports Server (NTRS)
Stengel, Robert F.
1987-01-01
The program proceeded along five avenues during 1985. Guidance and control strategies for penetration of microbursts and wind shear, application of artificial intelligence in flight control and air traffic control systems, the use of voice recognition in the cockpit, the effects of control saturation on closed-loop stability and response of open-loop unstable aircraft, and computer aided control system design are among the topics briefly considered. Areas of investigation relate to guidance and control of commercial transports as well as general aviation aircraft. Interaction between the flight crew and automatic systems is the subject of principal concern.
Air-Ground Integration Experiment
DOT National Transportation Integrated Search
2002-01-01
could potentially shift aircraft separation responsibility from air traffic controllers to flight crews creating a'shared-separation' : authority environment Areal-time, human-in-the-loop study was conducted using facilities at NASA Ames Research Cen...
Analysis of Multi-Flight Common Routes for Traffic Flow Management
NASA Technical Reports Server (NTRS)
Sheth, Kapil; Clymer, Alexis; Morando, Alex; Shih, Fu-Tai
2016-01-01
This paper presents an approach for creating common weather avoidance reroutes for multiple flights and the associated benefits analysis, which is an extension of the single flight advisories generated using the Dynamic Weather Routes (DWR) concept. These multiple flight advisories are implemented in the National Airspace System (NAS) Constraint Evaluation and Notification Tool (NASCENT), a nation-wide simulation environment to generate time- and fuel-saving alternate routes for flights during severe weather events. These single flight advisories are clustered together in the same Center by considering parameters such as a common return capture fix. The clustering helps propose routes called, Multi-Flight Common Routes (MFCR), that avoid weather and other airspace constraints, and save time and fuel. It is expected that these routes would also provide lower workload for traffic managers and controllers since a common route is found for several flights, and presumably the route clearances would be easier and faster. This study was based on 30-days in 2014 and 2015 each, which had most delays attributed to convective weather. The results indicate that many opportunities exist where individual flight routes can be clustered to fly along a common route to save a significant amount of time and fuel, and potentially reducing the amount of coordination needed.
Preliminary Design and Evaluation of Portable Electronic Flight Progress Strips
NASA Technical Reports Server (NTRS)
Doble, Nathan A.; Hansman, R. John
2002-01-01
There has been growing interest in using electronic alternatives to the paper Flight Progress Strip (FPS) for air traffic control. However, most research has been centered on radar-based control environments, and has not considered the unique operational needs of the airport air traffic control tower. Based on an analysis of the human factors issues for control tower Decision Support Tool (DST) interfaces, a requirement has been identified for an interaction mechanism which replicates the advantages of the paper FPS (e.g., head-up operation, portability) but also enables input and output with DSTs. An approach has been developed which uses a Portable Electronic FPS that has attributes of both a paper strip and an electronic strip. The prototype flight strip system uses Personal Digital Assistants (PDAs) to replace individual paper strips in addition to a central management interface which is displayed on a desktop computer. Each PDA is connected to the management interface via a wireless local area network. The Portable Electronic FPSs replicate the core functionality of paper flight strips and have additional features which provide a heads-up interface to a DST. A departure DST is used as a motivating example. The central management interface is used for aircraft scheduling and sequencing and provides an overview of airport departure operations. This paper will present the design of the Portable Electronic FPS system as well as preliminary evaluation results.
Air traffic management evaluation tool
NASA Technical Reports Server (NTRS)
Sridhar, Banavar (Inventor); Chatterji, Gano Broto (Inventor); Schipper, John F. (Inventor); Bilimoria, Karl D. (Inventor); Grabbe, Shon (Inventor); Sheth, Kapil S. (Inventor)
2012-01-01
Methods for evaluating and implementing air traffic management tools and approaches for managing and avoiding an air traffic incident before the incident occurs. A first system receives parameters for flight plan configurations (e.g., initial fuel carried, flight route, flight route segments followed, flight altitude for a given flight route segment, aircraft velocity for each flight route segment, flight route ascent rate, flight route descent route, flight departure site, flight departure time, flight arrival time, flight destination site and/or alternate flight destination site), flight plan schedule, expected weather along each flight route segment, aircraft specifics, airspace (altitude) bounds for each flight route segment, navigational aids available. The invention provides flight plan routing and direct routing or wind optimal routing, using great circle navigation and spherical Earth geometry. The invention provides for aircraft dynamics effects, such as wind effects at each altitude, altitude changes, airspeed changes and aircraft turns to provide predictions of aircraft trajectory (and, optionally, aircraft fuel use). A second system provides several aviation applications using the first system. Several classes of potential incidents are analyzed and averted, by appropriate change en route of one or more parameters in the flight plan configuration, as provided by a conflict detection and resolution module and/or traffic flow management modules. These applications include conflict detection and resolution, miles-in trail or minutes-in-trail aircraft separation, flight arrival management, flight re-routing, weather prediction and analysis and interpolation of weather variables based upon sparse measurements. The invention combines these features to provide an aircraft monitoring system and an aircraft user system that interact and negotiate changes with each other.
Code of Federal Regulations, 2010 CFR
2010-01-01
...-Federal Microwave Landing System (MLS) facilities that provide the basis for instrument flight rules (IFR) and air traffic control procedures. ... FACILITIES NON-FEDERAL NAVIGATION FACILITIES Microwave Landing System (MLS) § 171.301 Scope. This subpart...
NASA Technical Reports Server (NTRS)
Wong, Gregory L.; Denery, Dallas (Technical Monitor)
2000-01-01
The Dynamic Planner (DP) has been designed, implemented, and integrated into the Center-TRACON Automation System (CTAS) to assist Traffic Management Coordinators (TMCs), in real time, with the task of planning and scheduling arrival traffic approximately 35 to 200 nautical miles from the destination airport. The TMC may input to the DP a series of current and future scheduling constraints that reflect the operation and environmental conditions of the airspace. Under these constraints, the DP uses flight plans, track updates, and Estimated Time of Arrival (ETA) predictions to calculate optimal runway assignments and arrival schedules that help ensure an orderly, efficient, and conflict-free flow of traffic into the terminal area. These runway assignments and schedules can be shown directly to controllers or they can be used by other CTAS tools to generate advisories to the controllers. Additionally, the TMC and controllers may override the decisions made by the DP for tactical considerations. The DP will adapt to computations to accommodate these manual inputs.
A time-based concept for terminal-area traffic management
NASA Technical Reports Server (NTRS)
Erzberger, H.; Tobias, L.
1986-01-01
An automated air-traffic-management concept that has the potential for significantly increasing the efficiency of traffic flows in high-density terminal areas is discussed. The concept's implementation depends on the techniques for controlling the landing time of all aircraft entering the terminal area, both those that are equipped with on-board four dimensional guidance systems as well as those aircraft types that are conventionally equipped. The two major ground-based elements of the system are a scheduler which assigns conflict-free landing times and a profile descent advisor. Landing times provided by the scheduler are uplinked to equipped aircraft and translated into the appropriate four dimensional trajectory by the on-board flight-management system. The controller issues descent advisories to unequipped aircraft to help them achieve the assigned landing times. Air traffic control simulations have established that the concept provides an efficient method for controlling various mixes of four dimensional-equipped and unequipped, as well as low-and high-performance, aircraft.
Seafloor in the Malaysia Airlines Flight MH370 Search Area
NASA Astrophysics Data System (ADS)
Smith, Walter H. F.; Marks, Karen M.
2014-05-01
On the morning of 8 March 2014, Malaysia Airlines flight MH370, from Kuala Lumpur to Beijing, lost contact with air traffic control shortly after takeoff and vanished. While the world waited for any sign of the missing aircraft and the 239 people on board, authorities and scientists began to investigate what little information was known about the plane's actual movements.
Voice data entry in air traffic control
NASA Technical Reports Server (NTRS)
Connolly, Donald W.
1977-01-01
Several of the keyboard data languages were tabulated and analyzed. The key language chosen as a test vehicle was that used by the nonradar or flight data controllers. This application was undertaken to minimize effort in a cost efficient way and with less research and development.
Extending Validated Human Performance Models to Explore NextGen Concepts
NASA Technical Reports Server (NTRS)
Gore, Brian Francis; Hooey, Becky Lee; Mahlstedt, Eric; Foyle, David C.
2012-01-01
To meet the expected increases in air traffic demands, NASA and FAA are researching and developing Next Generation Air Transportation System (NextGen) concepts. NextGen will require substantial increases in the data available to pilots on the flight deck (e.g., weather,wake, traffic trajectory predictions, etc.) to support more precise and closely coordinated operations (e.g., self-separation, RNAV/RNP, and closely spaced parallel operations, CSPOs). These NextGen procedures and operations, along with the pilot's roles and responsibilities, must be designed with consideration of the pilot's capabilities and limitations. Failure to do so will leave the pilots, and thus the entire aviation system, vulnerable to error. A validated Man-machine Integration and design Analysis System (MIDAS) v5 model was extended to evaluate anticipated changes to flight deck and controller roles and responsibilities in NextGen approach and Land operations. Compared to conditions when the controllers are responsible for separation on decent to land phase of flight, the output from these model predictions suggest that the flight deck response time to detect the lead aircraft blunder will decrease, pilot scans to the navigation display will increase, and workload will increase.
NASA Technical Reports Server (NTRS)
Maris, John
2015-01-01
NASA's Traffic Aware Planner (TAP) is a cockpit decision support tool that provides aircrew with vertical and lateral flight-path optimizations with the intent of achieving significant fuel and time savings, while automatically avoiding traffic, weather, and restricted airspace conflicts. A key step towards the maturation and deployment of TAP concerned its operational evaluation in a representative flight environment. This Systems Engineering Management Plan (SEMP) addresses the test-vehicle design, systems integration, and flight-test planning for the first TAP operational flight evaluations, which were successfully completed in November 2013. The trial outcomes are documented in the Traffic Aware Planner (TAP) flight evaluation paper presented at the 14th AIAA Aviation Technology, Integration, and Operations Conference, Atlanta, GA. (AIAA-2014-2166, Maris, J. M., Haynes, M. A., Wing, D. J., Burke, K. A., Henderson, J., & Woods, S. E., 2014).
Attentional models of multitask pilot performance using advanced display technology.
Wickens, Christopher D; Goh, Juliana; Helleberg, John; Horrey, William J; Talleur, Donald A
2003-01-01
In the first part of the reported research, 12 instrument-rated pilots flew a high-fidelity simulation, in which air traffic control presentation of auditory (voice) information regarding traffic and flight parameters was compared with advanced display technology presentation of equivalent information regarding traffic (cockpit display of traffic information) and flight parameters (data link display). Redundant combinations were also examined while pilots flew the aircraft simulation, monitored for outside traffic, and read back communications messages. The data suggested a modest cost for visual presentation over auditory presentation, a cost mediated by head-down visual scanning, and no benefit for redundant presentation. The effects in Part 1 were modeled by multiple-resource and preemption models of divided attention. In the second part of the research, visual scanning in all conditions was fit by an expected value model of selective attention derived from a previous experiment. This model accounted for 94% of the variance in the scanning data and 90% of the variance in a second validation experiment. Actual or potential applications of this research include guidance on choosing the appropriate modality for presenting in-cockpit information and understanding task strategies induced by introducing new aviation technology.
Forecast of the general aviation air traffic control environment for the 1980's
NASA Technical Reports Server (NTRS)
Hoffman, W. C.; Hollister, W. M.
1976-01-01
The critical information required for the design of a reliable, low cost, advanced avionics system which would enhance the safety and utility of general aviation is stipulated. Sufficient data is accumulated upon which industry can base the design of a reasonably priced system having the capability required by general aviation in and beyond the 1980's. The key features of the Air Traffic Control (ATC) system are: a discrete address beacon system, a separation assurance system, area navigation, a microwave landing system, upgraded ATC automation, airport surface traffic control, a wake vortex avoidance system, flight service stations, and aeronautical satellites. The critical parameters that are necessary for component design are identified. The four primary functions of ATC (control, surveillance, navigation, and communication) and their impact on the onboard avionics system design are assessed.
NASA Technical Reports Server (NTRS)
Credeur, Leonard; Houck, Jacob A.; Capron, William R.; Lohr, Gary W.
1990-01-01
A description and results are presented of a study to measure the performance and reaction of airline flight crews, in a full workload DC-9 cockpit, flying in a real-time simulation of an air traffic control (ATC) concept called Traffic Intelligence for the Management of Efficient Runway-scheduling (TIMER). Experimental objectives were to verify earlier fast-time TIMER time-delivery precision results and obtain data for the validation or refinement of existing computer models of pilot/airborne performance. Experimental data indicated a runway threshold, interarrival-time-error standard deviation in the range of 10.4 to 14.1 seconds. Other real-time system performance parameters measured include approach speeds, response time to controller turn instructions, bank angles employed, and ATC controller message delivery-time errors.
NASA Technical Reports Server (NTRS)
Ligda, Sarah V.; Dao, Arik-Quang V.; Vu, Kim-Phuong; Strybel, Thomas Z.; Battiste, Vernol; Johnson, Walter W.
2010-01-01
Pilot workload was examined during simulated flights requiring flight deck-based merging and spacing while avoiding weather. Pilots used flight deck tools to avoid convective weather and space behind a lead aircraft during an arrival into Louisville International airport. Three conflict avoidance management concepts were studied: pilot, controller or automation primarily responsible. A modified Air Traffic Workload Input Technique (ATWIT) metric showed highest workload during the approach phase of flight and lowest during the en-route phase of flight (before deviating for weather). In general, the modified ATWIT was shown to be a valid and reliable workload measure, providing more detailed information than post-run subjective workload metrics. The trend across multiple workload metrics revealed lowest workload when pilots had both conflict alerting and responsibility of the three concepts, while all objective and subjective measures showed highest workload when pilots had no conflict alerting or responsibility. This suggests that pilot workload was not tied primarily to responsibility for resolving conflicts, but to gaining and/or maintaining situation awareness when conflict alerting is unavailable.
Effect of Dynamic Sector Boundary Changes on Air Traffic Controllers
NASA Technical Reports Server (NTRS)
Jung, Jaewoo; Lee, Paul; Kessell, Angela; Homola, Jeff; Zelinski, Shannon
2010-01-01
The effect of dynamic sector boundary changes on air traffic controller workload was investigated with data from a human-in-the-loop simulation. Multiple boundary changes were made during simulated operations, and controller rating of workload was recorded. Analysis of these data showed an increase of 16.9% in controller workload due to boundary changes. This increased workload was correlated with the number of aircraft handoffs and change in sector volume. There was also a 12.7% increase in average workload due to the changed sector design after boundary changes. This increase was correlated to traffic flow crossing points getting closer to sector boundaries and an increase in the number of flights with short dwell time in a sector. This study has identified some of the factors that affect controller workload when sector boundaries are changed, but more research is needed to better understand their relationships.
NASA Astrophysics Data System (ADS)
Vela, Adan Ernesto
2011-12-01
From 2010 to 2030, the number of instrument flight rules aircraft operations handled by Federal Aviation Administration en route traffic centers is predicted to increase from approximately 39 million flights to 64 million flights. The projected growth in air transportation demand is likely to result in traffic levels that exceed the abilities of the unaided air traffic controller in managing, separating, and providing services to aircraft. Consequently, the Federal Aviation Administration, and other air navigation service providers around the world, are making several efforts to improve the capacity and throughput of existing airspaces. Ultimately, the stated goal of the Federal Aviation Administration is to triple the available capacity of the National Airspace System by 2025. In an effort to satisfy air traffic demand through the increase of airspace capacity, air navigation service providers are considering the inclusion of advisory conflict-detection and resolution systems. In a human-in-the-loop framework, advisory conflict-detection and resolution decision-support tools identify potential conflicts and propose resolution commands for the air traffic controller to verify and issue to aircraft. A number of researchers and air navigation service providers hypothesize that the inclusion of combined conflict-detection and resolution tools into air traffic control systems will reduce or transform controller workload and enable the required increases in airspace capacity. In an effort to understand the potential workload implications of introducing advisory conflict-detection and resolution tools, this thesis provides a detailed study of the conflict event process and the implementation of conflict-detection and resolution algorithms. Specifically, the research presented here examines a metric of controller taskload: how many resolution commands an air traffic controller issues under the guidance of a conflict-detection and resolution decision-support tool. The goal of the research is to understand how the formulation, capabilities, and implementation of conflict-detection and resolution tools affect the controller taskload (system demands) associated with the conflict-resolution process, and implicitly the controller workload (physical and psychological demands). Furthermore this thesis seeks to establish best practices for the design of future conflict-detection and resolution systems. To generalize conclusions on the conflict-resolution taskload and best design practices of conflict-detection and resolution systems, this thesis focuses on abstracting and parameterizing the behaviors and capabilities of the advisory tools. Ideally, this abstraction of advisory decision-support tools serves as an alternative to exhaustively designing tools, implementing them in high-fidelity simulations, and analyzing their conflict-resolution taskload. Such an approach of simulating specific conflict-detection and resolution systems limits the type of conclusions that can be drawn concerning the design of more generic algorithms. In the process of understanding conflict-detection and resolution systems, evidence in the thesis reveals that the most effective approach to reducing conflict-resolution taskload is to improve conflict-detection systems. Furthermore, studies in the this thesis indicate that there is significant exibility in the design of conflict-resolution algorithms.
Early flight test experience with Cockpit Displayed Traffic Information (CDTI)
NASA Technical Reports Server (NTRS)
Abbott, T. S.; Moen, G. C.; Person, L. H., Jr.; Keyser, G. L., Jr.; Yenni, K. R.; Garren, J. F., Jr.
1980-01-01
Coded symbology, based on the results of early human factors studies, was displayed on the electronic horizontal situation indicator and flight tested on an advanced research aircraft in order to subject the coded traffic symbology to a realistic flight environment and to assess its value by means of a direct comparison with simple, uncoded traffic symbology. The tests consisted of 28 curved, decelerating approaches, flown by research-pilot flight crews. The traffic scenarios involved both conflict-free and blunder situations. Subjective pilot commentary was obtained through the use of a questionnaire and extensive pilot debriefing sessions. The results of these debriefing sessions group conveniently under either of two categories: display factors or task performance. A major item under the display factor category was the problem of display clutter. The primary contributors to clutter were the use of large map-scale factors, the use of traffic data blocks, and the presentation of more than a few aircraft. In terms of task performance, the cockpit displayed traffic information was found to provide excellent overall situation awareness.
NASA Technical Reports Server (NTRS)
Clancey, William J.; Linde, Charlotte; Seah, Chin; Shafto, Michael
2013-01-01
The transition from the current air traffic system to the next generation air traffic system will require the introduction of new automated systems, including transferring some functions from air traffic controllers to on-board automation. This report describes a new design verification and validation (V&V) methodology for assessing aviation safety. The approach involves a detailed computer simulation of work practices that includes people interacting with flight-critical systems. The research is part of an effort to develop new modeling and verification methodologies that can assess the safety of flight-critical systems, system configurations, and operational concepts. The 2002 Ueberlingen mid-air collision was chosen for analysis and modeling because one of the main causes of the accident was one crew's response to a conflict between the instructions of the air traffic controller and the instructions of TCAS, an automated Traffic Alert and Collision Avoidance System on-board warning system. It thus furnishes an example of the problem of authority versus autonomy. It provides a starting point for exploring authority/autonomy conflict in the larger system of organization, tools, and practices in which the participants' moment-by-moment actions take place. We have developed a general air traffic system model (not a specific simulation of Überlingen events), called the Brahms Generalized Ueberlingen Model (Brahms-GUeM). Brahms is a multi-agent simulation system that models people, tools, facilities/vehicles, and geography to simulate the current air transportation system as a collection of distributed, interactive subsystems (e.g., airports, air-traffic control towers and personnel, aircraft, automated flight systems and air-traffic tools, instruments, crew). Brahms-GUeM can be configured in different ways, called scenarios, such that anomalous events that contributed to the Überlingen accident can be modeled as functioning according to requirements or in an anomalous condition, as occurred during the accident. Brahms-GUeM thus implicitly defines a class of scenarios, which include as an instance what occurred at Überlingen. Brahms-GUeM is a modeling framework enabling "what if" analysis of alternative work system configurations and thus facilitating design of alternative operations concepts. It enables subsequent adaption (reusing simulation components) for modeling and simulating NextGen scenarios. This project demonstrates that BRAHMS provides the capacity to model the complexity of air transportation systems, going beyond idealized and simple flights to include for example the interaction of pilots and ATCOs. The research shows clearly that verification and validation must include the entire work system, on the one hand to check that mechanisms exist to handle failures of communication and alerting subsystems and/or failures of people to notice, comprehend, or communicate problematic (unsafe) situations; but also to understand how people must use their own judgment in relating fallible systems like TCAS to other sources of information and thus to evaluate how the unreliability of automation affects system safety. The simulation shows in particular that distributed agents (people and automated systems) acting without knowledge of each others' actions can create a complex, dynamic system whose interactive behavior is unexpected and is changing too quickly to comprehend and control.
A Flight Deck Decision Support Tool for Autonomous Airborne Operations
NASA Technical Reports Server (NTRS)
Ballin, Mark G.; Sharma, Vivek; Vivona, Robert A.; Johnson, Edward J.; Ramiscal, Ermin
2002-01-01
NASA is developing a flight deck decision support tool to support research into autonomous operations in a future distributed air/ground traffic management environment. This interactive real-time decision aid, referred to as the Autonomous Operations Planner (AOP), will enable the flight crew to plan autonomously in the presence of dense traffic and complex flight management constraints. In assisting the flight crew, the AOP accounts for traffic flow management and airspace constraints, schedule requirements, weather hazards, aircraft operational limits, and crew or airline flight-planning goals. This paper describes the AOP and presents an overview of functional and implementation design considerations required for its development. Required AOP functionality is described, its application in autonomous operations research is discussed, and a prototype software architecture for the AOP is presented.
NASA Technical Reports Server (NTRS)
Hindson, W. S.; Hardy, G.
1980-01-01
Several different flight research programs carried out by NASA and the Canadian Government using the Augmentor Wing Jet STOL Research Aircraft to investigate the design, operational, and systems requirements for powered-lift STOL aircraft are summarized. Some of these programs considered handling qualities and certification criteria for this class of aircraft, and addressed pilot control techniques, control system design, and improved cockpit displays for the powered-lift STOL approach configuration. Other programs involved exploiting the potential of STOL aircraft for constrained terminal-area approaches within the context of present or future air traffic control environments. Both manual and automatic flight control investigations are discussed, and an extensive bibliography of the flight programs is included.
The NASA Air Traffic Management Ontology: Technical Documentation
NASA Technical Reports Server (NTRS)
Keller, Richard M.
2017-01-01
This document is intended to serve as comprehensive documentation for the NASA Air Traffic Management (ATM) Ontology. The ATM Ontology is a conceptual model that defines key classes of entities and relationships pertaining to the US National Airspace System (NAS) and the management of air traffic through that system. A wide variety of classes are represented in the ATM Ontology, including classes corresponding to flights, aircraft, manufacturers, airports, airlines, air routes, NAS facilities, air traffic control advisories, weather phenomena, and many others. The Ontology can be useful in the context of a variety of information management tasks relevant to NAS, including information exchange, data query and search, information organization, information integration, and terminology standardization.
Automated Conflict Resolution For Air Traffic Control
NASA Technical Reports Server (NTRS)
Erzberger, Heinz
2005-01-01
The ability to detect and resolve conflicts automatically is considered to be an essential requirement for the next generation air traffic control system. While systems for automated conflict detection have been used operationally by controllers for more than 20 years, automated resolution systems have so far not reached the level of maturity required for operational deployment. Analytical models and algorithms for automated resolution have been traffic conditions to demonstrate that they can handle the complete spectrum of conflict situations encountered in actual operations. The resolution algorithm described in this paper was formulated to meet the performance requirements of the Automated Airspace Concept (AAC). The AAC, which was described in a recent paper [1], is a candidate for the next generation air traffic control system. The AAC's performance objectives are to increase safety and airspace capacity and to accommodate user preferences in flight operations to the greatest extent possible. In the AAC, resolution trajectories are generated by an automation system on the ground and sent to the aircraft autonomously via data link .The algorithm generating the trajectories must take into account the performance characteristics of the aircraft, the route structure of the airway system, and be capable of resolving all types of conflicts for properly equipped aircraft without requiring supervision and approval by a controller. Furthermore, the resolution trajectories should be compatible with the clearances, vectors and flight plan amendments that controllers customarily issue to pilots in resolving conflicts. The algorithm described herein, although formulated specifically to meet the needs of the AAC, provides a generic engine for resolving conflicts. Thus, it can be incorporated into any operational concept that requires a method for automated resolution, including concepts for autonomous air to air resolution.
NASA Technical Reports Server (NTRS)
Prinzel, III, Lawrence J. (Inventor); Pope, Alan T. (Inventor); Williams, Steven P. (Inventor); Bailey, Randall E. (Inventor); Arthur, Jarvis J. (Inventor); Kramer, Lynda J. (Inventor); Schutte, Paul C. (Inventor)
2012-01-01
Embodiments of the invention permit flight paths (current and planned) to be viewed from various orientations to provide improved path and terrain awareness via graphical two-dimensional or three-dimensional perspective display formats. By coupling the flight path information with a terrain database, uncompromising terrain awareness relative to the path and ownship is provided. In addition, missed approaches, path deviations, and any navigational path can be reviewed and rehearsed before performing the actual task. By rehearsing a particular mission, check list items can be reviewed, terrain awareness can be highlighted, and missed approach procedures can be discussed by the flight crew. Further, the use of Controller Pilot Datalink Communications enables data-linked path, flight plan changes, and Air Traffic Control requests to be integrated into the flight display of the present invention.
NASA Technical Reports Server (NTRS)
Underwood, Matthew C.; Guminsky, Michael D.
2015-01-01
Several public sector businesses and government agencies, including the National Aeronautics and Space Administration are currently working on solving key technological barriers that must be overcome in order to realize the vision of low-boom supersonic flights conducted over land. However, once these challenges are met, the manner in which this class of aircraft is integrated in the National Airspace System may become a potential constraint due to the significant environmental, efficiency, and economic repercussions that their integration may cause. Background research was performed on historic supersonic operations in the National Airspace System, including both flight deck procedures and air traffic controller procedures. Using this information, an experiment was created to test some of these historic procedures in a current-day, emerging Next Generation Air Transportation System (NextGen) environment and observe the interactions between commercial supersonic transport aircraft and modern-day air traffic. Data was gathered through batch simulations of supersonic commercial transport category aircraft operating in present-day traffic scenarios as a base-lining study to identify the magnitude of the integration problems and begin the exploration of new air traffic management technologies and architectures which will be needed to seamlessly integrate subsonic and supersonic transport aircraft operations. The data gathered include information about encounters between subsonic and supersonic aircraft that may occur when supersonic commercial transport aircraft are integrated into the National Airspace System, as well as flight time data. This initial investigation is being used to inform the creation and refinement of a preliminary Concept of Operations and for the subsequent development of technologies that will enable overland supersonic flight.
Development of an air ground data exchange concept: Flight deck perspective
NASA Technical Reports Server (NTRS)
Flathers, G. W., II
1987-01-01
The planned modernization of the U.S. National Airspace System (NAS) includes the development and use of a digital data link as a means to exchange information between aircraft and ground-based facilities. This report presents an operationally-oriented concept on how data link could be used for applications related directly to air traffic control. The specific goal is to establish the role that data link could play in the air-ground communications. Due regard is given to the unique characteristics of data link and voice communications, current principles of air traffic control, operational procedures, human factors/man-machine interfaces, and the integration of data link with other air and ground systems. The resulting concept is illustrated in the form of a paper-and-pencil simulation in which data link and voice communications during the course of a hypothetical flight are described.
CSMA Versus Prioritized CSMA for Air-Traffic-Control Improvement
NASA Technical Reports Server (NTRS)
Robinson, Daryl C.
2001-01-01
OPNET version 7.0 simulations are presented involving an important application of the Aeronautical Telecommunications Network (ATN), Controller Pilot Data Link Communications (CPDLC) over the Very High Frequency Data Link, Mode 2 (VDL-2). Communication is modeled for essentially all incoming and outgoing nonstop air-traffic for just three United States cities: Cleveland, Cincinnati, and Detroit. There are 32 airports in the simulation, 29 of which are either sources or destinations for the air-traffic of the aforementioned three airports. The simulation involves 111 Air Traffic Control (ATC) ground stations, and 1,235 equally equipped aircraft-taking off, flying realistic free-flight trajectories, and landing in a 24-hr period. Collisionless, Prioritized Carrier Sense Multiple Access (CSMA) is successfully tested and compared with the traditional CSMA typically associated with VDL-2. The performance measures include latency, throughput, and packet loss. As expected, Prioritized CSMA is much quicker and more efficient than traditional CSMA. These simulation results show the potency of Prioritized CSMA for implementing low latency, high throughput, and efficient connectivity.
Airborne Four-Dimensional Flight Management in a Time-based Air Traffic Control Environment
NASA Technical Reports Server (NTRS)
Williams, David H.; Green, Steven M.
1991-01-01
Advanced Air Traffic Control (ATC) systems are being developed which contain time-based (4D) trajectory predictions of aircraft. Airborne flight management systems (FMS) exist or are being developed with similar 4D trajectory generation capabilities. Differences between the ATC generated profiles and those generated by the airborne 4D FMS may introduce system problems. A simulation experiment was conducted to explore integration of a 4D equipped aircraft into a 4D ATC system. The NASA Langley Transport Systems Research Vehicle cockpit simulator was linked in real time to the NASA Ames Descent Advisor ATC simulation for this effort. Candidate procedures for handling 4D equipped aircraft were devised and traffic scenarios established which required time delays absorbed through speed control alone or in combination with path stretching. Dissimilarities in 4D speed strategies between airborne and ATC generated trajectories were tested in these scenarios. The 4D procedures and FMS operation were well received by airline pilot test subjects, who achieved an arrival accuracy at the metering fix of 2.9 seconds standard deviation time error. The amount and nature of the information transmitted during a time clearance were found to be somewhat of a problem using the voice radio communication channel. Dissimilarities between airborne and ATC-generated speed strategies were found to be a problem when the traffic remained on established routes. It was more efficient for 4D equipped aircraft to fly trajectories with similar, though less fuel efficient, speeds which conform to the ATC strategy. Heavy traffic conditions, where time delays forced off-route path stretching, were found to produce a potential operational benefit of the airborne 4D FMS.
NASA Technical Reports Server (NTRS)
Conway, Sheila R.
2006-01-01
Simple agent-based models may be useful for investigating air traffic control strategies as a precursory screening for more costly, higher fidelity simulation. Of concern is the ability of the models to capture the essence of the system and provide insight into system behavior in a timely manner and without breaking the bank. The method is put to the test with the development of a model to address situations where capacity is overburdened and potential for propagation of the resultant delay though later flights is possible via flight dependencies. The resultant model includes primitive representations of principal air traffic system attributes, namely system capacity, demand, airline schedules and strategy, and aircraft capability. It affords a venue to explore their interdependence in a time-dependent, dynamic system simulation. The scope of the research question and the carefully-chosen modeling fidelity did allow for the development of an agent-based model in short order. The model predicted non-linear behavior given certain initial conditions and system control strategies. Additionally, a combination of the model and dimensionless techniques borrowed from fluid systems was demonstrated that can predict the system s dynamic behavior across a wide range of parametric settings.
Dynamic Weather Routes: A Weather Avoidance Concept for Trajectory-Based Operations
NASA Technical Reports Server (NTRS)
McNally, B. David; Love, John
2011-01-01
The integration of convective weather modeling with trajectory automation for conflict detection, trial planning, direct routing, and auto resolution has uncovered a concept that could help controllers, dispatchers, and pilots identify improved weather routes that result in significant savings in flying time and fuel burn. Trajectory automation continuously and automatically monitors aircraft in flight to find those that could potentially benefit from improved weather reroutes. Controllers, dispatchers, and pilots then evaluate reroute options to assess their suitability given current weather and traffic. In today's operations aircraft fly convective weather avoidance routes that were implemented often hours before aircraft approach the weather and automation does not exist to automatically monitor traffic to find improved weather routes that open up due to changing weather conditions. The automation concept runs in real-time and employs two keysteps. First, a direct routing algorithm automatically identifies flights with large dog legs in their routes and therefore potentially large savings in flying time. These are common - and usually necessary - during convective weather operations and analysis of Fort Worth Center traffic shows many aircraft with short cuts that indicate savings on the order of 10 flying minutes. The second and most critical step is to apply trajectory automation with weather modeling to determine what savings could be achieved by modifying the direct route such that it avoids weather and traffic and is acceptable to controllers and flight crews. Initial analysis of Fort Worth Center traffic suggests a savings of roughly 50% of the direct route savings could be achievable.The core concept is to apply trajectory automation with convective weather modeling in real time to identify a reroute that is free of weather and traffic conflicts and indicates enough time and fuel savings to be considered. The concept is interoperable with today's integrated FMS/datalink. Auxiliary(lat/long) waypoints define a minimum delay reroute between current position and a downstream capture fix beyond the weather. These auxiliary waypoints can be uplinked to equipped aircraft and auto-loaded into the FMS. Alternatively, for unequipped aircraft, auxiliary waypoints can be replaced by nearby named fixes, but this could reduce potential savings. The presentation includes an overview of the automation approach and focuses on several cases in terms of potential savings, reroute complexity, best auxiliary waypoint solution vs. named fix solution, and other metrics.
Relationship between Weather, Traffic and Delay Based on Empirical Methods
NASA Technical Reports Server (NTRS)
Sridhar, Banavar; Swei, Sean S. M.
2006-01-01
The steady rise in demand for air transportation over the years has put much emphasis on the need for sophisticated air traffic flow management (TFM) within the National Airspace System (NAS). The NAS refers to hardware, software and people, including runways, radars, networks, FAA, airlines, etc., involved in air traffic management (ATM) in the US. One of the metrics that has been used to assess the performance of NAS is the actual delays provided through FAA's Air Traffic Operations Network (OPSNET). The OPSNET delay data includes those reportable delays, i.e. delays of 15 minutes or more experienced by Instrument Flight Rule (IFR) flights, submitted by the FAA facilities. These OPSNET delays are caused by the application of TFM initiatives in response to, for instance, weather conditions, increased traffic volume, equipment outages, airline operations, and runway conditions. TFM initiatives such as, ground stops, ground delay programs, rerouting, airborne holding, and miles-in-trail restrictions, are actions which are needed to control the air traffic demand to mitigate the demand-capacity imbalance due to the reduction in capacity. Consequently, TFM initiatives result in NAS delays. Of all the causes, weather has been identified as the most important causal factor for NAS delays. Therefore, in order to accurately assess the NAS performance, it has become necessary to create a baseline for NAS performance and establish a model which characterizes the relation between weather and NAS delays.
Future ATM Concepts Evaluation Tool (FACET) Interface Control Document
NASA Technical Reports Server (NTRS)
Grabbe, Shon R.
2017-01-01
This Interface Control Document (ICD) documents the airspace adaptation and air traffic inputs of NASA's Future ATM Concepts and Evaluation Tool (FACET). Its intended audience is the project manager, project team, development team, and stakeholders interested in interfacing with the system. FACET equips Air Traffic Management (ATM) researchers and service providers with a way to explore, develop and evaluate advanced air transportation concepts before they are field-tested and eventually deployed. FACET is a flexible software tool that is capable of quickly generating and analyzing thousands of aircraft trajectories. It provides researchers with a simulation environment for preliminary testing of advanced ATM concepts. Using aircraft performance profiles, airspace models, weather data, and flight schedules, the tool models trajectories for the climb, cruise, and descent phases of flight for each type of aircraft. An advanced graphical interface displays traffic patterns in two and three dimensions, under various current and projected conditions for specific airspace regions or over the entire continental United States. The system is able to simulate a full day's dynamic national airspace system (NAS) operations, model system uncertainty, measure the impact of different decision-makers in the NAS, and provide analysis of the results in graphical form, including sector, airport, fix, and airway usage statistics. NASA researchers test and analyze the system-wide impact of new traffic flow management algorithms under anticipated air traffic growth projections on the nation's air traffic system. In addition to modeling the airspace system for NASA research, FACET has also successfully transitioned into a valuable tool for operational use. Federal Aviation Administration (FAA) traffic flow managers and commercial airline dispatchers have used FACET technology for real-time operations planning. FACET integrates live air traffic data from FAA radar systems and weather data from the National Weather Service to summarize NAS performance. This information allows system operators to reroute flights around congested airspace and severe weather to maintain safety and minimize delay. FACET also supports the planning and post-operational evaluation of reroute strategies at the national level to maximize system efficiency. For the commercial airline passenger, strategic planning with FACET can result in fewer flight delays and cancellations. The performance capabilities of FACET are largely due to its architecture, which strikes a balance between flexibility and fidelity. FACET is capable of modeling the airspace operations for the continental United States, processing thousands of aircraft on a single computer. FACET was written in Java and C, enabling the portability of its software to a variety of operating systems. In addition, FACET was designed with a modular software architecture to facilitate rapid prototyping of diverse ATM concepts. Several advanced ATM concepts have already been implemented in FACET, including aircraft self-separation, prediction of aircraft demand and sector congestion, system-wide impact assessment of traffic flow management constraints, and wind-optimal routing.
How to sharpen your automated tools.
DOT National Transportation Integrated Search
2014-12-01
New programs that claim to make flying more efficient have several things in common, new tasks for pilots, new flight deck displays, automated support tools, changes to ground automation, and displays for air traffic control. Training is one of the t...
An Exploratory Study of Runway Arrival Procedures: Time Based Arrival and Self-Spacing
NASA Technical Reports Server (NTRS)
Houston, Vincent E.; Barmore, Bryan
2009-01-01
The ability of a flight crew to deliver their aircraft to its arrival runway on time is important to the overall efficiency of the National Airspace System (NAS). Over the past several years, the NAS has been stressed almost to its limits resulting in problems such as airport congestion, flight delay, and flight cancellation to reach levels that have never been seen before in the NAS. It is predicted that this situation will worsen by the year 2025, due to an anticipated increase in air traffic operations to one-and-a-half to three times its current level. Improved arrival efficiency, in terms of both capacity and environmental impact, is an important part of improving NAS operations. One way to improve the arrival performance of an aircraft is to enable the flight crew to precisely deliver their aircraft to a specified point at either a specified time or specified interval relative to another aircraft. This gives the flight crew more control to make the necessary adjustments to their aircraft s performance with less tactical control from the controller; it may also decrease the controller s workload. Two approaches to precise time navigation have been proposed: Time-Based Arrivals (e.g., required times of arrival) and Self-Spacing. Time-Based Arrivals make use of an aircraft s Flight Management System (FMS) to deliver the aircraft to the runway threshold at a given time. Self-Spacing enables the flight crew to achieve an ATC assigned spacing goals at the runway threshold relative to another aircraft. The Joint Planning and Development Office (JPDO), a multi-agency initiative established to plan and coordinate the development of the Next Generation Air Transportation System (NextGen), has asked for data for both of these concepts to facilitate future research and development. This paper provides a first look at the delivery performance of these two concepts under various initial and environmental conditions in an air traffic simulation environment.
A time-based concept for terminal-area traffic management
NASA Technical Reports Server (NTRS)
Erzberger, Heinz; Tobias, Leonard
1986-01-01
An automated air-traffic-management concept that has the potential for significantly increasing the efficiency of traffic flows in high-density terminal areas is discussed. The concept's implementation depends on techniques for controlling the landing time of all aircraft entering the terminal area, both those that are equipped with on-board four-dimensional (4D) guidance systems as well as those aircraft types that are conventionally equipped. The two major ground-based elements of the system are a scheduler which assigns conflict-free landing times and a profile descent advisor. Landing time provided by the scheduler is uplinked to equipped aircraft and translated into the appropriate 4D trajectory by the-board flight-management system. The controller issues descent advisories to unequipped aircraft to help them achieve the assigned landing times. Air traffic control simulations have established that the concept provides an efficient method for controlling various mixes of 4D-equipped and unequipped, as well as low- and high-performance, aircraft. Piloted simulations of profiles flown with the aid of advisories have verified the ability to meet specified descent times with prescribed accuracy.
Impact of digital systems technology on man-vehicle systems research
NASA Technical Reports Server (NTRS)
Bretoi, R. N.
1983-01-01
The present study, based on a NASA technology assessment, examines the effect of new technologies on trends in crew-systems design and their implications from the vantage point of man-vehicle systems research. Those technologies that are most relevant to future trends in crew-systems design are considered along with problems associated with the introduction of rapidly changing technologies and systems concepts from a human-factors point of view. The technologies discussed include information processing, displays and controls, flight and propulsion control, flight and systems management, air traffic control, training and simulation, and flight and resource management. The historical evolution of cockpit systems design is used to illustrate past and possible future trends in man-vehicle systems research.
Air Traffic Management Technology Demostration: 1 Research and Procedural Testing of Routes
NASA Technical Reports Server (NTRS)
Wilson, Sara R.; Kibler, Jennifer L.; Hubbs, Clay E.; Smail, James W.
2015-01-01
NASA's Air Traffic Management Technology Demonstration-1 (ATD-1) will operationally demonstrate the feasibility of efficient arrival operations combining ground-based and airborne NASA technologies. The ATD-1 integrated system consists of the Traffic Management Advisor with Terminal Metering which generates precise time-based schedules to the runway and merge points; Controller Managed Spacing decision support tools which provide controllers with speed advisories and other information needed to meet the schedule; and Flight deck-based Interval Management avionics and procedures which allow flight crews to adjust their speed to achieve precise relative spacing. Initial studies identified air-ground challenges related to the integration of these three scheduling and spacing technologies, and NASA's airborne spacing algorithm was modified to address some of these challenges. The Research and Procedural Testing of Routes human-in-the-loop experiment was then conducted to assess the performance of the new spacing algorithm. The results of this experiment indicate that the algorithm performed as designed, and the pilot participants found the airborne spacing concept, air-ground procedures, and crew interface to be acceptable. However, the researchers concluded that the data revealed issues with the frequency of speed changes and speed reversals.
Helicopter pilots' views of air traffic controller responsibilities: a mismatch.
Martin, Daniel; Nixon, Jim
2018-02-21
Controllers and pilots must work together to ensure safe and efficient helicopter flight within the London control zone. Subjective ratings of pilot perception of controller responsibility for five key flight tasks were obtained from thirty helicopter pilots. Three types of airspace were investigated. Results indicate that there is variation in pilot understanding of controller responsibility compared to the formal regulations that define controller responsibility. Significant differences in the perception of controller responsibility were found for the task of aircraft separation in class D airspace and along helicopter routes. Analysis of the patterns of response suggests that task type rather than the airspace type may be the key factor. Results are framed using the concept of a shared mental model. This research demonstrates that pilots flying in complex London airspace have an expectation of controller responsibility for certain flight tasks, in certain airspace types that is not supported by aviation regulation. Practitioner Summary: The responsibility for tasks during flight varies according to the flight rules used and airspace type. Helicopter pilots may attribute responsibility to controllers for tasks when controllers have no responsibility as defined by regulation. This variation between pilot perceptions of controller responsibility could affect safety within the London control zone.
NASA Astrophysics Data System (ADS)
Hanlon, Nicholas P.
The National Air Space (NAS) can be easily described as a complex aviation system-of-systems that seamlessly works in harmony to provide safe transit for all aircraft within its domain. The number of aircraft within the NAS is growing and according the FAA, "[o]n any given day, more than 85,000 flights are in the skies in the United States...This translates into roughly 5,000 planes in the skies above the United States at any given moment. More than 15,000 federal air traffic controllers in airport traffic control towers, terminal radar approach control facilities and air route traffic control centers guide pilots through the system". The FAA is currently rolling out the Next Generation Air Transportation System (NextGen) to handle projected growth while leveraging satellite-based navigation for improved tracking. A key component to instantiating NextGen lies in the equipage of Automatic Dependent Surveillance-Broadcast (ADS-B), a performance based surveillance technology that uses GPS navigation for more precise positioning than radars providing increased situational awareness to air traffic controllers. Furthermore, the FAA is integrating UAS into the NAS, further congesting the airways and information load on air traffic controllers. The expected increase in aircraft density due to NextGen implementation and UAS integration will require innovative algorithms to cope with the increase data flow and to support air traffic controllers in their decision-making. This research presents a few innovative algorithms to support increased aircraft density and UAS integration into the NAS. First, it is imperative that individual tracks are correlated prior to fusing to ensure a proper picture of the environment is correct. However, current approaches do not scale well as the number of targets and sensors are increased. This work presents a fuzzy clustering design to hierarchically break the problem down into smaller subspaces prior to correlation. This approach provides nearly identical performance metrics at orders of magnitude faster in execution. Second, a fuzzy inference system is presented that alleviates air traffic controllers from information overload by utilizing flight plan data and radar/GPS correlation values to highlight aircraft that deviate from their intended routes. Third, a genetic algorithm optimizes sensor placement that is robust and capable of handling unexpected routes in the environment. Fourth, a fuzzy CUSUM algorithm more accurately detects and corrects aircraft mode changes. Finally, all the work is packaged in a holistic simulation research framework that provides evaluation and analysis of various multi-sensor, multi-target scenarios.
NASA aviation safety reporting system
NASA Technical Reports Server (NTRS)
1981-01-01
Aviation safety reports that relate to loss of control in flight, problems that occur as a result of similar sounding alphanumerics, and pilot incapacitation are presented. Problems related to the go around maneuver in air carrier operations, and bulletins (and FAA responses to them) that pertain to air traffic control systems and procedures are included.
78 FR 45475 - Proposed Establishment of Class E Airspace; Rome, OR
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-29
... Flight Rules (IFR) aircraft under control of Salt Lake City, Oakland and Seattle Air Route Traffic Control Centers (ARTCCs). The FAA is proposing this action to enhance the safety and management of... proposal contained in this action may be changed in light of comments received. All comments submitted will...
Joint University Program for Air Transportation Research, 1985
NASA Technical Reports Server (NTRS)
Morrell, Frederick R. (Compiler)
1987-01-01
Air transportation research being carried on at the Massachusetts Institute of Technology, Princeton University, and Ohio University is discussed. Global Positioning System experiments, Loran-C monitoring, inertial navigation, the optimization of aircraft trajectories through severe microbursts, fault tolerant flight control systems, and expert systems for air traffic control are among the topics covered.
Wheels-Off Time Uncertainty Impact on Benefits of Early Call for Release Scheduling
NASA Technical Reports Server (NTRS)
Palopo, Kee; Chatterji, Gano B.; Almog, Noam
2017-01-01
Arrival traffic scenarios with 808 flights from 173 airports to Houston George Bush International airport are simulated to determine if Call For Release flights can receive a benefit in terms of less delay over other flights by scheduling prior to gate pushback (look-ahead in time) as opposed to at gate pushback. Call for Release flights are departures that require approval from Air Route Traffic Control Center prior to release. Realism is brought to the study by including gate departure delay and taxi-out delay uncertainties for the 77 major U. S. airports. Gate departure delay uncertainty is assumed to increase as a function of look-ahead time. Results show that Call For Release flights from an airport within the freeze horizon (a region surrounding the arrival airport) can get an advantage over other flights to a capacity constrained airport by scheduling prior to gate pushback, provided the wheels-off time uncertainty with respect to schedule is controlled to a small value, such as within a three-minute window. Another finding of the study is that system delay, measured as the sum of arrival delays, is smaller when flights are scheduled in the order of arrival compared to in the order of departure. Because flights from airports within the freeze horizon are scheduled in the order of departure, an increase in the number of internal airports with a larger freeze horizon increases system delay. Delay in the given scenario was found to increase by 126% (from 13.8 hours to 31.2 hours) as freeze horizon was increased from 30-minutes to 2-hours in the baseline scenario.
dos Santos Silva, Isabel; De Stavola, Bianca; Pizzi, Costanza; Evans, Anthony D; Evans, Sally A
2013-01-15
Flight crew are occupationally exposed to several potentially carcinogenic hazards; however, previous investigations have been hampered by lack of information on lifestyle exposures. The authors identified, through the United Kingdom Civil Aviation Authority medical records, a cohort of 16,329 flight crew and 3,165 air traffic control officers (ATCOs) and assembled data on their occupational and lifestyle exposures. Standardised incidence ratios (SIRs) were estimated to compare cancer incidence in each occupation to that of the general population; internal analyses were conducted by fitting Cox regression models. All-cancer incidence was 20-29% lower in each occupation than in the general population, mainly due to a lower incidence of smoking-related cancers [SIR (95% CI) = 0.33 (0.27-0.38) and 0.42 (0.28-0.60) for flight crew and ATCOs, respectively], consistent with their much lower prevalence of smoking. Skin melanoma rates were increased in both flight crew (SIR = 1.87; 95% CI = 1.45-2.38) and ATCOs (2.66; 1.55-4.25), with rates among the former increasing with increasing number of flight hours (p-trend = 0.02). However, internal analyses revealed no differences in skin melanoma rates between flight crew and ATCOs (hazard ratio: 0.78, 95% CI = 0.37-1.66) and identified skin that burns easily when exposed to sunlight (p = 0.001) and sunbathing to get a tan (p = 0.07) as the strongest risk predictors of skin melanoma in both occupations. The similar site-specific cancer risks between the two occupational groups argue against risks among flight crew being driven by occupation-specific exposures. The skin melanoma excess reflects sun-related behaviour rather than cosmic radiation exposure. Copyright © 2012 UICC.
De Stavola, Bianca L; Pizzi, Costanza; Clemens, Felicity; Evans, Sally Ann; Evans, Anthony D; dos Santos Silva, Isabel
2012-04-01
Flight crew are exposed to several potential occupational hazards. This study compares mortality rates in UK flight crew to those in air traffic control officers (ATCOs) and the general population. A total of 19,489 flight crew and ATCOs were identified from the UK Civil Aviation Authority medical records and followed to the end of 2006. Consented access to medical records and questionnaire data provided information on demographic, behavioral, clinical, and occupational variables. Standardized mortality ratios (SMR) were estimated for these two occupational groups using the UK general population. Adjusted mortality hazard ratios (HR) for flight crew versus ATCOs were estimated via Cox regression models. A total of 577 deaths occurred during follow-up. Relative to the general population, both flight crew (SMR 0.32; 95% CI 0.30, 0.35) and ATCOs (0.39; 0.32, 0.47) had lower all-cause mortality, mainly due to marked reductions in mortality from neoplasms and cardiovascular diseases, although flight crew had higher mortality from aircraft accidents (SMR 42.8; 27.9, 65.6). There were no differences in all-cause mortality (HR 0.99; 95% CI 0.79, 1.25), or in mortality from any major cause, between the two occupational groups after adjustment for health-related variables, again except for those from aircraft accidents. The latter ratios, however, declined with increasing number of hours. The low all-cause mortality observed in both occupational groups relative to the general population is consistent with a strong "healthy worker effect" and their low prevalence of smoking and other risk factors. Mortality among flight crew did not appear to be influenced by occupational exposures, except for a rise in mortality from aircraft accidents.
Collaborative Arrival Planning: Data Sharing and User Preference Tools
NASA Technical Reports Server (NTRS)
Zelenka, Richard E.; Edwards, Thomas A. (Technical Monitor)
1998-01-01
Air traffic growth and air carrier economic pressures have motivated efforts to increase the flexibility of the air traffic management process and change the relationship between the air traffic control service provider and the system user. One of the most visible of these efforts is the U.S. government/industry "free flight" initiative, in which the service provider concentrates on safety and cross-airline fairness, and the user on their business objectives and operating preferences, including selecting their own path and speed in real-time. In the terminal arrival phase of flight, severe restrictions and rigid control are currently placed on system users, typically without regard for individual user operational preferences. Airborne delays applied to arriving aircraft into capacity constrained airports are imposed on a first-come, first-serve basis, and thus do not allow the system user to plan for or prioritize late arrivals, or to economically optimize their arrival sequence. A central tenant of the free-flight operating paradigm is collaboration between service providers and users in reaching air traffic management decisions. Such collaboration would be particularly beneficial to an airline's "hub" operation, where off-schedule arrival aircraft are a consistent problem, as they cause serious air-port ramp difficulties, rippling airline scheduling effects, and result in large economic inefficiencies. Greater collaboration can also lead to increased airport capacity and decrease the severity of over-capacity rush periods. In the NASA Collaborative Arrival Planning (CAP) project, both independent exchange of real-time data between the service provider and system user and collaborative decision support tools are addressed. Data exchange of real-time arrival scheduling, airspace management, and air carrier fleet data between the FAA service provider and an air carrier is being conducted and evaluated. Collaborative arrival decision support tools to allow intra-airline arrival preferences are being developed and simulated. The CAP project is part of and leveraged from the NASA/FAA Center TRACON Automation System (CTAS), a fielded set of decision support tools that provide computer generated advisories for both enroute and terminal area controllers to manage and control arrival traffic more efficiently. In this paper, the NASA Collaborative Arrival Planning project is outlined and recent results detailed, including the real-time use of CTAS arrival scheduling data by a major air carrier and simulations of tactical and strategic user preference decision support tools.
A Near-Term Concept for Trajectory Based Operations with Air/Ground Data Link Communication
NASA Technical Reports Server (NTRS)
McNally, David; Mueller, Eric; Thipphavong, David; Paielli, Russell; Cheng, Jinn-Hwei; Lee, Chuhan; Sahlman, Scott; Walton, Joe
2010-01-01
An operating concept and required system components for trajectory-based operations with air/ground data link for today's en route and transition airspace is proposed. Controllers are fully responsible for separation as they are today, and no new aircraft equipage is required. Trajectory automation computes integrated solutions to problems like metering, weather avoidance, traffic conflicts and the desire to find and fly more time/fuel efficient flight trajectories. A common ground-based system supports all levels of aircraft equipage and performance including those equipped and not equipped for data link. User interface functions for the radar controller's display make trajectory-based clearance advisories easy to visualize, modify if necessary, and implement. Laboratory simulations (without human operators) were conducted to test integrated operation of selected system components with uncertainty modeling. Results are based on 102 hours of Fort Worth Center traffic recordings involving over 37,000 individual flights. The presence of uncertainty had a marginal effect (5%) on minimum-delay conflict resolution performance, and windfavorable routes had no effect on detection and resolution metrics. Flight plan amendments and clearances were substantially reduced compared to today s operations. Top-of-descent prediction errors are the largest cause of failure indicating that better descent predictions are needed to reliably achieve fuel-efficient descent profiles in medium to heavy traffic. Improved conflict detections for climbing flights could enable substantially more continuous climbs to cruise altitude. Unlike today s Conflict Alert, tactical automation must alert when an altitude amendment is entered, but before the aircraft starts the maneuver. In every other failure case tactical automation prevented losses of separation. A real-time prototype trajectory trajectory-automation system is running now and could be made ready for operational testing at an en route Center in 1-2 years.
NASA Technical Reports Server (NTRS)
Corker, Kevin M.; Pisanich, Gregory; Lebacqz, J. Victor (Technical Monitor)
1998-01-01
This paper presents a set of studies in full mission simulation and the development of a predictive computational model of human performance in control of complex airspace operations. NASA and the FAA have initiated programs of research and development to provide flight crew, airline operations and air traffic managers with automation aids to increase capacity in en route and terminal area to support the goals of safe, flexible, predictable and efficient operations. In support of these developments, we present a computational model to aid design that includes representation of multiple cognitive agents (both human operators and intelligent aiding systems). The demands of air traffic management require representation of many intelligent agents sharing world-models, coordinating action/intention, and scheduling goals and actions in a potentially unpredictable world of operations. The operator-model structure includes attention functions, action priority, and situation assessment. The cognitive model has been expanded to include working memory operations including retrieval from long-term store, and interference. The operator's activity structures have been developed to provide for anticipation (knowledge of the intention and action of remote operators), and to respond to failures of the system and other operators in the system in situation-specific paradigms. System stability and operator actions can be predicted by using the model. The model's predictive accuracy was verified using the full-mission simulation data of commercial flight deck operations with advanced air traffic management techniques.
En route Spacing Tool: Efficient Conflict-free Spacing to Flow-Restricted Airspace
NASA Technical Reports Server (NTRS)
Green, S.
1999-01-01
This paper describes the Air Traffic Management (ATM) problem within the U.S. of flow-restricted en route airspace, an assessment of its impact on airspace users, and a set of near-term tools and procedures to resolve the problem. The FAA is committed, over the next few years, to deploy the first generation of modem ATM decision support tool (DST) technology under the Free-Flight Phase-1 (FFp1) program. The associated en route tools include the User Request Evaluation Tool (URET) and the Traffic Management Advisor (TMA). URET is an initial conflict probe (ICP) capability that assists controllers with the detection and resolution of conflicts in en route airspace. TMA orchestrates arrivals transitioning into high-density terminal airspace by providing controllers with scheduled times of arrival (STA) and delay feedback advisories to assist with STA conformance. However, these FFPl capabilities do not mitigate the en route Miles-In-Trail (MIT) restrictions that are dynamically applied to mitigate airspace congestion. National statistics indicate that en route facilities (Centers) apply Miles-In-Trail (MIT) restrictions for approximately 5000 hours per month. Based on results from this study, an estimated 45,000 flights are impacted by these restrictions each month. Current-day practices for implementing these restrictions result in additional controller workload and an economic impact of which the fuel penalty alone may approach several hundred dollars per flight. To mitigate much of the impact of these restrictions on users and controller workload, a DST and procedures are presented. The DST is based on a simple derivative of FFP1 technology that is designed to introduce a set of simple tools for flow-rate (spacing) conformance and integrate them with conflict-probe capabilities. The tool and associated algorithms are described based on a concept prototype implemented within the CTAS baseline in 1995. A traffic scenario is used to illustrate the controller's use of the tool, and potential display options are presented for future controller evaluation.
Air Traffic Control Improvement Using Prioritized CSMA
NASA Technical Reports Server (NTRS)
Robinson, Daryl C.
2001-01-01
Version 7 simulations of the industry-standard network simulation software "OPNET" are presented of two applications of the Aeronautical Telecommunications Network (ATN), Controller Pilot Data Link Communications (CPDLC) and Automatic Dependent Surveillance-Broadcast mode (ADS-B), over VHF Data Link mode 2 (VDL-2). Communication is modeled for air traffic between just three cities. All aircraft are assumed to have the same equipage. The simulation involves Air Traffic Control (ATC) ground stations and 105 aircraft taking off, flying realistic free-flight trajectories, and landing in a 24-hr period. All communication is modeled as unreliable. Collision-less, prioritized carrier sense multiple access (CSMA) is successfully tested. The statistics presented include latency, queue length, and packet loss. This research may show that a communications system simpler than the currently accepted standard envisioned may not only suffice, but also surpass performance of the standard at a lower cost of deployment.
Direct-To Tool for En Route Controllers
NASA Technical Reports Server (NTRS)
Erzberger, Heinz; McNally, David; Foster, Michelle
2002-01-01
This paper describes a new automation tool for en route air traffic controllers, called the Direct-To Tool. The Tool is designed to reduce the time of flight and fuel consumption for aircraft flying in en route airspace. It provides each controller with the identities of aircraft in his/her sector, which can reduce their time en route by bypassing dog-legged route segments and flying "direct to" a waypoint closer to the destination airport. The Tool uses its build-in conflict probing capability to determine if the improved route is free of conflicts with other aircraft. The Tool's graphical computer interface enables the controller to enter a direct-to clearance by a simple point and click action. Because of its low workload and convenience, this method is strongly favored by controllers The Tool has been running since January with live radar data received at NASA from the Fort Worth Air Route Traffic Control Center. For aircraft operating in the Fort Worth Center, the Tool has the potential to save in excess of 500,000 in-flight minutes per year. A provisional patent application for this Tool has been filed. A field task in planned for the last quarter of this year.
NASA Technical Reports Server (NTRS)
Johnson, Walter; Battiste, Vernol
2016-01-01
The 3D-Cockpit Display of Traffic Information (3D-CDTI) is a flight deck tool that presents aircrew with: proximal traffic aircraft location, their current status and flight plan data; strategic conflict detection and alerting; automated conflict resolution strategies; the facility to graphically plan manual route changes; time-based, in-trail spacing on approach. The CDTI is manipulated via a touchpad on the flight deck, and by mouse when presented as part of a desktop flight simulator.
Energy Navigation: Simulation Evaluation and Benefit Analysis
NASA Technical Reports Server (NTRS)
Williams, David H.; Oseguera-Lohr, Rosa M.; Lewis, Elliot T.
2011-01-01
This paper presents results from two simulation studies investigating the use of advanced flight-deck-based energy navigation (ENAV) and conventional transport-category vertical navigation (VNAV) for conducting a descent through a busy terminal area, using Continuous Descent Arrival (CDA) procedures. This research was part of the Low Noise Flight Procedures (LNFP) element within the Quiet Aircraft Technology (QAT) Project, and the subsequent Airspace Super Density Operations (ASDO) research focus area of the Airspace Project. A piloted simulation study addressed development of flight guidance, and supporting pilot and Air Traffic Control (ATC) procedures for high density terminal operations. The procedures and charts were designed to be easy to understand, and to make it easy for the crew to make changes via the Flight Management Computer Control-Display Unit (FMC-CDU) to accommodate changes from ATC.
NASA Technical Reports Server (NTRS)
Sheth, Kapil S.; Gutierrez-Nolasco, Sebastian
2010-01-01
This paper presents an analysis of factors that impact user flight schedules during air traffic congestion. In pre-departure flight planning, users file one route per flight, which often leads to increased delays, inefficient airspace utilization, and exclusion of user flight preferences. In this paper, first the idea of filing alternate routes and providing priorities on each of those routes is introduced. Then, the impact of varying planning interval and system imposed departure delay increment is discussed. The metrics of total delay and equity are used for analyzing the impact of these factors on increased traffic and on different users. The results are shown for four cases, with and without the optional routes and priority assignments. Results demonstrate that adding priorities to optional routes further improves system performance compared to filing one route per flight and using first-come first-served scheme. It was also observed that a two-hour planning interval with a five-minute system imposed departure delay increment results in highest delay reduction. The trend holds for a scenario with increased traffic.
On optimal scheduling and air traffic control in the near terminal area. M.S. Thesis
NASA Technical Reports Server (NTRS)
Sarris, A. H.
1971-01-01
A scheme is proposed for automated air traffic control of landing aircraft in the vicinity of the airport. Each aircraft is put under the control of an airport-based computer as soon as it enters the near-terminal area (NTA). Scheduling is done immediately thereafter. The aircraft is given a flight plan which, if followed precisely, will lead it to the runway at a prespecified time. The geometry of the airspace in the NTA is chosen so that delays are executed far from the outer marker, and violations of minimum altitude and lateral separations are avoided. Finally, a solution to the velocity mix problem is proposed.
14 CFR 65.35 - Knowledge requirements.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Knowledge requirements. 65.35 Section 65.35 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIRMEN CERTIFICATION: AIRMEN OTHER THAN FLIGHT CREWMEMBERS Air Traffic Control Tower Operators § 65.35 Knowledge...
14 CFR 65.35 - Knowledge requirements.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Knowledge requirements. 65.35 Section 65.35 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIRMEN CERTIFICATION: AIRMEN OTHER THAN FLIGHT CREWMEMBERS Air Traffic Control Tower Operators § 65.35 Knowledge...
Support of Helicopter 'Free Flight' Operations in the 1996 Olympics
NASA Technical Reports Server (NTRS)
Branstetter, James R.; Cooper, Eric G.
1996-01-01
The microcosm of activity surrounding the 1996 Olympic Games provided researchers an opportunity for demonstrating state-of-the art technology in the first large-scale deployment of a prototype digital communication/navigation/surveillance system in a confined environment. At the same time it provided an ideal opportunity for transportation officials to showcase the merits of an integrated transportation system in meeting the operational needs to transport time sensitive goods and provide public safety services under real-world conditions. Five aeronautical CNS functions using a digital datalink system were chosen for operational flight testing onboard 91 aircraft, most of them helicopters, participating in the Atlanta Short-Haul Transportation System. These included: GPS-based Automatic Dependent Surveillance, Cockpit Display of Traffic Information, Controller-Pilot Communications, Graphical Weather Information (uplink), and Automated Electronic Pilot Reporting (downlink). Atlanta provided the first opportunity to demonstrate, in an actual operating environment, key datalink functions which would enhance flight safety and situational awareness for the pilot and supplement conventional air traffic control. The knowledge gained from such a large-scale deployment will help system designers in development of a national infrastructure where aircraft would have the ability to navigate autonomously.
Shared Situation Awareness in the Flight Deck-ATC System
NASA Technical Reports Server (NTRS)
Endsley, Mica R.; Hansman, R. John; Farley, Todd C.
1998-01-01
New technologies and operational concept changes have been proposed for implementation in the National Airspace System (NAS). These changes include improved datalink (CPDLC) technologies for providing improved weather, traffic, Flight Object (FO) and navigation information to the pilot and controller, and new forms of automation for both the flight deck and air traffic management system. In addition, the way business is conducted in the NAS is under consideration. Increases in the discretion provided to pilots (and dispatchers in commercial airlines) are being contemplated in an effort to increase system capacity and flexibility. New concepts of operation (e.g., Collaborative Decision Making and Free Flight) allow for more control to be given to the cockpit or airline with correspondingly greater monitoring responsibilities on the ground. In addition, new technologies and displays make possible much greater information flow between the ground and the cockpit and also dramatic changes in the type of information provided. Designing to support these changes suggests two integrally linked questions: (1) What display technologies and information are needed to support desired changes responsibilities? (2) How will the changes in information availability influence the negotiation process between the cockpit and the ground? Each of these proposed changes (both in technology and operational concept) will have a marked impact on the performance, workload, and Situation Awareness (SA) of both pilots and controllers. Typically such changes are evaluated independently in terms of the effects of the proposed change on either pilot performance or ATC performance. It is proposed here, however, that in order to fully understand the effects of such changes, the joint pilot/controller system must be considered.
Surface Map Traffic Intent Displays and Net-Centric Data-link Communications for NextGen
NASA Technical Reports Server (NTRS)
Shelton, Kevin J.; Prinzel, Lawrence J., III; Jones, Denise R.; Allamandola, Angela S.; Arthur, Jarvis J., III; Bailey, Randall E.
2009-01-01
By 2025, U.S. air traffic is predicted to increase three fold and may strain the current air traffic management system, which may not be able to accommodate this growth. In response to this challenge, a revolutionary new concept has been proposed for U.S. aviation operations, termed the Next Generation Air Transportation System or "NextGen". Many key capabilities are being identified to enable NextGen, including the use of data-link communications. Because NextGen represents a radically different approach to air traffic management and requires a dramatic shift in the tasks, roles, and responsibilities for the flight deck, there are numerous research issues and challenges that must be overcome to ensure a safe, sustainable air transportation system. Flight deck display and crew-vehicle interaction concepts are being developed that proactively investigate and overcome potential technology and safety barriers that might otherwise constrain the full realization of NextGen. The paper describes simulation research, conducted at National Aeronautics and Space Administration (NASA) Langley Research Center, examining data-link communications and traffic intent data during envisioned four-dimensional trajectory (4DT)-based and equivalent visual (EV) surface operations. Overall, the results suggest that controller pilot data-link communications (CPDLC) with the use of mandatory pilot read-back of all clearances significantly enhanced situation awareness for 4DT and EV surface operations. The depiction of graphical traffic state and intent information on the surface map display further enhanced off-nominal detection and pilot qualitative reports of safety and awareness.
Interval Management: Development and Implementation of an Airborne Spacing Concept
NASA Technical Reports Server (NTRS)
Barmore, Bryan E.; Penhallegon, William J.; Weitz, Lesley A.; Bone, Randall S.; Levitt, Ian; Flores Kriegsfeld, Julia A.; Arbuckle, Doug; Johnson, William C.
2016-01-01
Interval Management is a suite of ADS-B-enabled applications that allows the air traffic controller to instruct a flight crew to achieve and maintain a desired spacing relative to another aircraft. The flight crew, assisted by automation, manages the speed of their aircraft to deliver more precise inter-aircraft spacing than is otherwise possible, which increases traffic throughput at the same or higher levels of safety. Interval Management has evolved from a long history of research and is now seen as a core NextGen capability. With avionics standards recently published, completion of an Investment Analysis Readiness Decision by the FAA, and multiple flight tests planned, Interval Management will soon be part of everyday use in the National Airspace System. Second generation, Advanced Interval Management capabilities are being planned to provide a wider range of operations and improved performance and benefits. This paper briefly reviews the evolution of Interval Management and describes current development and deployment plans. It also reviews concepts under development as the next generation of applications.
"Party Line" Information Use Studies and Implications for ATC Datalink Communications
NASA Technical Reports Server (NTRS)
Hansman, R. John; Pritchett, Amy; Midkiff, Alan
1995-01-01
The perceived importance and utilization of 'party line' information by air carrier flight crews was investigated through pilot surveys and a flight simulation study. The importance, availability, and accuracy of party line information elements were explored through surveys of pilots of several operational types. The survey identified numerous traffic and weather party line information elements which were considered important. These elements were scripted into a full-mission flight simulation which examined the utilization of party line information by studying subject responses to specific information element stimuli. The awareness of the different Party Line elements varied, and awareness was also affected by pilot workload. In addition, pilots were aware of some traffic information elements, but were reluctant to act on Party Line Information alone. Finally, the results of both the survey and the simulation indicated that the importance of party line information appeared to be greatest for operations near or on the airport. This indicates that caution should be exercised when implementing datalink communications in tower and close-in terminal control sectors.
'Party Line' Information Use Studies and Implications for ATV Datalink Communications
NASA Technical Reports Server (NTRS)
Pritchett, Amy; Hansman, R. John; Midkiff, Alan
1995-01-01
The perceived importance and utilization of 'party line' information by air carrier flight crews was investigated through pilot surveys and a flight simulation study. The Importance, Availability, and Accuracy of party line information elements were explored through surveys of pilots of several operational types. The survey identified numerous traffic and weather party line information elements which were considered important. These elements were scripted into a full-mission flight simulation which examined the utilization of party line information by studying subject responses to specific information element stimuli. The awareness of the different Party Line elements varied, and awareness was also affected by pilot workload. In addition, pilots were aware of some traffic information elements, but were reluctant to act on Party Line Information alone. Finally, the importance of party line information appears to be greatest for operations near or on the airport. This indicates that caution should be exercised when implementing datalink communications in tower and close-in terminal control sectors.
The Small Aircraft Transportation System Higher Volume Operations (SATS HVO) Flight Experiment
NASA Technical Reports Server (NTRS)
Williams, Daniel M.; Murdoch, Jennifer L.; Adams, Catherine H.
2005-01-01
This paper provides a summary of conclusions from the Small Aircraft Transportation System (SATS) Higher Volume Operations (HVO) Flight Experiment which NASA conducted to determine pilot acceptability of the HVO concept for normal conditions. The SATS HVO concept improves efficiency at non-towered, non-radar airports in Instrument Meteorological Conditions (IMC) while achieving a level of safety equal to today s system. Reported are results from flight experiment data that indicate that the SATS HVO concept is viable. The success of the SATS HVO concept is based on acceptable pilot workload, performance, and subjective criteria when compared to the procedural control operations in use today at non-towered, non-radar controlled airfields in IMC. The HVO Flight Experiment, flown on NASA's Cirrus SR22, used a subset of the HVO Simulation Experiment scenarios and evaluation pilots in order to validate the simulation experiment results. HVO and Baseline (today s system) scenarios flown included: single aircraft arriving for a GPS non-precision approach; aircraft arriving for the approach with multiple traffic aircraft; and aircraft arriving for the approach with multiple traffic aircraft and then conducting a missed approach. Results reveal that all twelve low-time instrument-rated pilots preferred SATS HVO when compared to current procedural separation operations. These pilots also flew the HVO procedures safely and proficiently without additional workload in comparison to today s system (Baseline). Detailed results of pilot flight technical error, and their subjective assessments of workload and situation awareness are presented in this paper.
Air traffic control by distributed management in a MLS environment
NASA Technical Reports Server (NTRS)
Kreifeldt, J. G.; Parkin, L.; Hart, S.
1977-01-01
The microwave landing system (MLS) is a technically feasible means for increasing runway capacity since it could support curved approaches to a short final. The shorter the final segment of the approach, the wider the variety of speed mixes possible so that theoretically, capacity would ultimately be limited by runway occupance time only. An experiment contrasted air traffic control in a MLS environment under a centralized form of management and under distributed management which was supported by a traffic situation display in each of the 3 piloted simulators. Objective flight data, verbal communication and subjective responses were recorded on 18 trial runs lasting about 20 minutes each. The results were in general agreement with previous distributed management research. In particular, distributed management permitted a smaller spread of intercrossing times and both pilots and controllers perceived distributed management as the more 'ideal' system in this task. It is concluded from this and previous research that distributed management offers a viable alternative to centralized management with definite potential for dealing with dense traffic in a safe, orderly and expeditious manner.
ATM Technology Demonstration 1 (ATD-1) Project: Terminal Airspace Technologies for NextGen (Public)
NASA Technical Reports Server (NTRS)
Robinson, John E.; Wang, Easter
2015-01-01
This video highlights the human-in-the-loop (HITL) simulations conducted by the ATD-1 project and features visual elements developed for Traffic Management Advisor - Terminal Metering, Controller Managed Spacing, and Flight Deck Interval Management. The video content is fairly technical and intended for audiences that have some knowledge of air traffic management issues. This includes researchers and management from NASA, FAA, industry partners, and others interested in terminal metering, controller managed spacing, and interval management technologies. Please note that the media release only clears the video for peer audiences such as ATM conferences or as part of presentations to researchers.
Automatic Speech Recognition in Air Traffic Control: a Human Factors Perspective
NASA Technical Reports Server (NTRS)
Karlsson, Joakim
1990-01-01
The introduction of Automatic Speech Recognition (ASR) technology into the Air Traffic Control (ATC) system has the potential to improve overall safety and efficiency. However, because ASR technology is inherently a part of the man-machine interface between the user and the system, the human factors issues involved must be addressed. Here, some of the human factors problems are identified and related methods of investigation are presented. Research at M.I.T.'s Flight Transportation Laboratory is being conducted from a human factors perspective, focusing on intelligent parser design, presentation of feedback, error correction strategy design, and optimal choice of input modalities.
NASA Technical Reports Server (NTRS)
Pritchett, Amy; Hansman, John
1997-01-01
Current air traffic control communications use shared VHF voice frequencies from which pilots can obtain 'party line' information (PLI) by overhearing communications addressed to other aircraft. Previous studies have shown that pilots perceive PLI to be important. There is concern that some critical PLI may be lost in the proposed data link environment, where communications will be discretely addressed. Different types of flight operations will be equipped with data link equipment at different times, generating a mixed environment in which some pilots will rely on PLI, while others will receive their information by data link. To research the importance, availability, and accuracy of PLI and to query pilots on the information they feel is necessary for global situation awareness, a survey was distributed to pilots. The pilots were selected from four flight operation groups to study the variations in PLI requirements in the mixed data link environment. Pilots perceived PLI to be important overall, with specific traffic and weather information elements identified as critical. Most PLI elements followed a pattern of higher perceived importance during terminal area operations, final approach, and landing. Pilots from the different flight operation groups identified some elements as particularly important. In a free-response question designed to identify the information requirements for global situation awareness, pilots frequently indicated a need for traffic and weather information. The results of this survey reveal specific concerns to be addressed when implementing data link communications.
NASA Technical Reports Server (NTRS)
Barhydt, Richard; Palmer, Michael T.; Eischeid, Todd M.
2004-01-01
NASA Langley Research Center is developing an Autonomous Operations Planner (AOP) that functions as an Airborne Separation Assurance System for autonomous flight operations. This development effort supports NASA s Distributed Air-Ground Traffic Management (DAG-TM) operational concept, designed to significantly increase capacity of the national airspace system, while maintaining safety. Autonomous aircraft pilots use the AOP to maintain traffic separation from other autonomous aircraft and managed aircraft flying under today's Instrument Flight Rules, while maintaining traffic flow management constraints assigned by Air Traffic Service Providers. AOP is designed to facilitate eventual implementation through careful modeling of its operational environment, interfaces with other aircraft systems and data links, and conformance with established flight deck conventions and human factors guidelines. AOP uses currently available or anticipated data exchanged over modeled Arinc 429 data buses and an Automatic Dependent Surveillance Broadcast 1090 MHz link. It provides pilots with conflict detection, prevention, and resolution functions and works with the Flight Management System to maintain assigned traffic flow management constraints. The AOP design has been enhanced over the course of several experiments conducted at NASA Langley and is being prepared for an upcoming Joint Air/Ground Simulation with NASA Ames Research Center.
Conceptual model for collision detection and avoidance for runway incursion prevention
NASA Astrophysics Data System (ADS)
Latimer, Bridgette A.
The Federal Aviation Administration (FAA), National Transportation and Safety Board (NTSB), National Aeronautics and Space Administration (NASA), numerous corporate entities, and research facilities have each come together to determine ways to make air travel safer and more efficient. These efforts have resulted in the development of a concept known as the Next Generation (Next Gen) of Aircraft or Next Gen. The Next Gen concept promises to be a clear departure from the way in which aircraft operations are performed today. The Next Gen initiatives require that modifications are made to the existing National Airspace System (NAS) concept of operations, system level requirements, software (SW) and hardware (HW) requirements, SW and HW designs and implementations. A second example of the changes in the NAS is the shift away from air traffic controllers having the responsibility for separation assurance. In the proposed new scheme of free flight, each aircraft would be responsible for assuring that it is safely separated from surrounding aircraft. Free flight would allow the separation minima for enroute aircraft to be reduced from 2000 nautical miles (nm) to 1000 nm. Simply put "Free Flight is a concept of air traffic management that permits pilots and controllers to share information and work together to manage air traffic from pre-flight through arrival without compromising safety [107]." The primary goal of this research project was to create a conceptual model that embodies the essential ingredients needed for a collision detection and avoidance system. This system was required to operate in two modes: air traffic controller's perspective and pilot's perspective. The secondary goal was to demonstrate that the technologies, procedures, and decision logic embedded in the conceptual model were able to effectively detect and avoid collision risks from both perspectives. Embodied in the conceptual model are five distinct software modules: Data Acquisition, State Processor, Projection, Collision Detection, and Alerting and Resolution. The underlying algorithms in the Projection module are linear projection and Kalman filtering which are used to estimate the future state of the aircraft. The Resolution and Alerting module is comprised of two algorithms: a generic alerting algorithm and the potential fields algorithm [71]. The conceptual model was created using Enterprise Architect RTM and MATLAB RTM was used to code the methods and to simulate conflict scenarios.
Code of Federal Regulations, 2010 CFR
2010-01-01
... FACILITIES NON-FEDERAL NAVIGATION FACILITIES Nondirectional Radio Beacon Facilities § 171.21 Scope. (a) This... radio beacon facilities that are to be involved in the approval of instrument flight rules and air traffic control procedures related to those facilities. (b) A nondirectional radio beacon (“H” facilities...
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Maximum hours. 65.47 Section 65.47 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIRMEN CERTIFICATION: AIRMEN OTHER THAN FLIGHT CREWMEMBERS Air Traffic Control Tower Operators § 65.47 Maximum hours...
External Vision Systems (XVS) Proof-of-Concept Flight Test Evaluation
NASA Technical Reports Server (NTRS)
Shelton, Kevin J.; Williams, Steven P.; Kramer, Lynda J.; Arthur, Jarvis J.; Prinzel, Lawrence, III; Bailey, Randall E.
2014-01-01
NASA's Fundamental Aeronautics Program, High Speed Project is performing research, development, test and evaluation of flight deck and related technologies to support future low-boom, supersonic configurations (without forward-facing windows) by use of an eXternal Vision System (XVS). The challenge of XVS is to determine a combination of sensor and display technologies which can provide an equivalent level of safety and performance to that provided by forward-facing windows in today's aircraft. This flight test was conducted with the goal of obtaining performance data on see-and-avoid and see-to-follow traffic using a proof-of-concept XVS design in actual flight conditions. Six data collection flights were flown in four traffic scenarios against two different sized participating traffic aircraft. This test utilized a 3x1 array of High Definition (HD) cameras, with a fixed forward field-of-view, mounted on NASA Langley's UC-12 test aircraft. Test scenarios, with participating NASA aircraft serving as traffic, were presented to two evaluation pilots per flight - one using the proof-of-concept (POC) XVS and the other looking out the forward windows. The camera images were presented on the XVS display in the aft cabin with Head-Up Display (HUD)-like flight symbology overlaying the real-time imagery. The test generated XVS performance data, including comparisons to natural vision, and post-run subjective acceptability data were also collected. This paper discusses the flight test activities, its operational challenges, and summarizes the findings to date.
NASA Technical Reports Server (NTRS)
Baxley, B.; Williams, D.; Consiglio, M.; Conway, S.; Adams, C.; Abbott, T.
2005-01-01
The ability to conduct concurrent, multiple aircraft operations in poor weather, at virtually any airport, offers an important opportunity for a significant increase in the rate of flight operations, a major improvement in passenger convenience, and the potential to foster growth of charter operations at small airports. The Small Aircraft Transportation System, (SATS) Higher Volume Operations (HVO) concept is designed to increase traffic flow at any of the 3400 nonradar, non-towered airports in the United States where operations are currently restricted to one-in/one-out procedural separation during Instrument Meteorological Conditions (IMC). The concept's key feature is pilots maintain their own separation from other aircraft using procedures, aircraft flight data sent via air-to-air datalink, cockpit displays, and on-board software. This is done within the Self-Controlled Area (SCA), an area of flight operations established during poor visibility or low ceilings around an airport without Air Traffic Control (ATC) services. The research described in this paper expands the HVO concept to include most off-nominal situations that could be expected to occur in a future SATS environment. The situations were categorized into routine off-nominal operations, procedural deviations, equipment malfunctions, and aircraft emergencies. The combination of normal and off-nominal HVO procedures provides evidence for an operational concept that is safe, requires little ground infrastructure, and enables concurrent flight operations in poor weather.
The importance of the diurnal and annual cycle of air traffic for contrail radiative forcing.
Stuber, Nicola; Forster, Piers; Rädel, Gaby; Shine, Keith
2006-06-15
Air traffic condensation trails, or contrails, are believed to have a net atmospheric warming effect, although one that is currently small compared to that induced by other sources of human emissions. However, the comparably large growth rate of air traffic requires an improved understanding of the resulting impact of aircraft radiative forcing on climate. Contrails have an effect on the Earth's energy balance similar to that of high thin ice clouds. Their trapping of outgoing longwave radiation emitted by the Earth and atmosphere (positive radiative forcing) is partly compensated by their reflection of incoming solar radiation (negative radiative forcing). On average, the longwave effect dominates and the net contrail radiative forcing is believed to be positive. Over daily and annual timescales, varying levels of air traffic, meteorological conditions, and solar insolation influence the net forcing effect of contrails. Here we determine the factors most important for contrail climate forcing using a sophisticated radiative transfer model for a site in southeast England, located in the entrance to the North Atlantic flight corridor. We find that night-time flights during winter (December to February) are responsible for most of the contrail radiative forcing. Night flights account for only 25 per cent of daily air traffic, but contribute 60 to 80 per cent of the contrail forcing. Further, winter flights account for only 22 per cent of annual air traffic, but contribute half of the annual mean forcing. These results suggest that flight rescheduling could help to minimize the climate impact of aviation.
Basic avionics module design for general aviation aircraft
NASA Technical Reports Server (NTRS)
Smyth, R. K.; Smyth, D. E.
1978-01-01
The design of an advanced digital avionics system (basic avionics module) for general aviation aircraft operated with a single pilot under IFR conditions is described. The microprocessor based system provided all avionic functions, including flight management, navigation, and lateral flight control. The mode selection was interactive with the pilot. The system used a navigation map data base to provide operation in the current and planned air traffic control environment. The system design included software design listings for some of the required modules. The distributed microcomputer uses the IEEE 488 bus for interconnecting the microcomputer and sensors.
NASA Technical Reports Server (NTRS)
Knox, C. E.
1983-01-01
A simplified flight-management descent algorithm, programmed on a small programmable calculator, was developed and flight tested. It was designed to aid the pilot in planning and executing a fuel-conservative descent to arrive at a metering fix at a time designated by the air traffic control system. The algorithm may also be used for planning fuel-conservative descents when time is not a consideration. The descent path was calculated for a constant Mach/airspeed schedule from linear approximations of airplane performance with considerations given for gross weight, wind, and nonstandard temperature effects. The flight-management descent algorithm is described. The results of flight tests flown with a T-39A (Sabreliner) airplane are presented.
The Human Performance Envelope: Past Research, Present Activities and Future Directions
NASA Technical Reports Server (NTRS)
Edwards, Tamsyn
2017-01-01
Air traffic controllers (ATCOs) must maintain a consistently high level of human performance in order to maintain flight safety and efficiency. In current control environments, performance-influencing factors such as workload, fatigue and situation awareness can co-occur, and interact, to effect performance. However, multifactor influences and the association with performance are under-researched. This study utilized a high fidelity human in the loop enroute air traffic control simulation to investigate the relationship between workload, situation awareness and ATCO performance. The study aimed to replicate and extend Edwards, Sharples, Wilson and Kirwans (2012) previous study and confirm multifactor interactions with a participant sample of ex-controllers. The study also aimed to extend Edwards et als previous research by comparing multifactor relationships across 4 automation conditions. Results suggest that workload and SA may interact to produce a cumulative impact on controller performance, although the effect of the interaction on performance may be dependent on the context and amount of automation present. Findings have implications for human-automation teaming in air traffic control, and the potential prediction and support of ATCO performance.
14 CFR 437.69 - Communications.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Communications. 437.69 Section 437.69... TRANSPORTATION LICENSING EXPERIMENTAL PERMITS Safety Requirements § 437.69 Communications. (a) A permittee must be in communication with Air Traffic Control during all phases of flight. (b) A permittee must record...
14 CFR 437.69 - Communications.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Communications. 437.69 Section 437.69... TRANSPORTATION LICENSING EXPERIMENTAL PERMITS Safety Requirements § 437.69 Communications. (a) A permittee must be in communication with Air Traffic Control during all phases of flight. (b) A permittee must record...
14 CFR 437.69 - Communications.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Communications. 437.69 Section 437.69... TRANSPORTATION LICENSING EXPERIMENTAL PERMITS Safety Requirements § 437.69 Communications. (a) A permittee must be in communication with Air Traffic Control during all phases of flight. (b) A permittee must record...
Airborne Trajectory Management (ABTM): A Blueprint for Greater Autonomy in Air Traffic Management
NASA Technical Reports Server (NTRS)
Cotton, William B.; Wing, David
2017-01-01
The aviation users of the National Airspace System (NAS) - the airlines, General Aviation (GA), the military and, most recently, operators of Unmanned Aircraft Systems (UAS) - are constrained in their operations by the design of the current paradigm for air traffic control (ATC). Some of these constraints include ATC preferred routes, departure fix restrictions and airspace ground delay programs. As a result, most flights cannot operate on their most efficient business trajectories and a great many flights are delayed even getting into the air, which imposes a significant challenge to maintaining efficient flight and network operations. Rather than accepting ever more sophisticated scheduling solutions to accommodate the existing constraints in the airspace, a series of increasingly capable airborne technologies, integrated with planned improvements in the ground system through the Federal Aviation Administration (FAA) Next Generation Air Traffic Management System (NextGen) programs, could produce much greater operational flexibility for flight path optimization by the aviation system users. These capabilities, described in research coming out of NASA's Aeronautics Research Mission Directorate, can maintain or improve operational safety while taking advantage of air and ground NextGen technologies in novel ways. The underlying premise is that the nation's physical airspace is still abundant and underused, and that the delays and inefficient flight operations resulting from artificial structure in airspace use and procedural constraints on those operations may not be necessary for safe and efficient flight. This article is not an indictment of today's NAS or the people who run it. Indeed, it is an exceptional achievement that Air Traffic Management (ATM) - the complex human/machine conglomeration of communications, navigation and surveillance equipment and the rules and procedures for controlling traffic in the airspace - has both the capacity and enables the degree of efficiency in air travel that it does. But it is also true that sixty years of the "radar religion" (i.e., reliance on radar-based command and control) has produced several generations of ATM system operators and researchers who believe that introducing automation within the existing functional structure of ATM is the only way to "modernize" the system. Even NextGen, which began as a proposal for "transformational" change in the way ATC is performed, has morphed over the last decade and a half to become just the inclusion of Global Positioning System (GPS) for navigation, Automatic Dependent Surveillance Broadcast (ADS-B) for surveillance, and Data Communications (Data Comm) for communications, while still operating in rigidly structured airspace with human controllers being responsible for separation and traffic flow management (TFM) within defined sectors of airspace, using the same horizontal separation standards that have been in use since raw primary radar was introduced in the 1950s. No system as massive as the current NAS ATM can be replaced with a better system while simultaneously meeting the transportation and other aviation needs of the nation. A new generation of more flexible operations must emerge and yet coexist in harmony with the current operation (i.e., share the same airspace without segregation), thereby enabling a long-term transformation to take place in the way increasing numbers of flights are handled. Market forces will be the ultimate driver of this transformation, and investment realities mandate that real benefits must accrue to the first operators to adopt these new capabilities. In fact, the kinds of missions envisioned in the emerging world of UAS operations, unachievable under conventional ATM, demand that this transformation take place. Airborne Trajectory Management (ABTM) is proposed as a series of transformational steps leading to vastly increased flexibility in flight operations and capacity in the airspace to accommodate many varied airspace uses while improving safety. As will be described, ABTM enables the gradual emergence of a new paradigm for user-based trajectory management in ATM that brings tangible benefits to equipped operators at every step while leveraging the air and ground investments of NextGen. There are five steps in this ABTM transformation.1 NASA has extensively studied the first and last of these steps, and a roadmap of increasing capabilities and benefits is proposed for bridging between these operational concepts.
NASA Technical Reports Server (NTRS)
Baxley, Brian; Swieringa, Kurt; Berckefeldt, Rick; Boyle, Dan
2017-01-01
NASA's first Air Traffic Management Technology Demonstration (ATD-1) subproject successfully completed a 19-day flight test of an Interval Management (IM) avionics prototype. The prototype was built based on IM standards, integrated into two test aircraft, and then flown in real-world conditions to determine if the goals of improving aircraft efficiency and airport throughput during high-density arrival operations could be met. The ATD-1 concept of operation integrates advanced arrival scheduling, controller decision support tools, and the IM avionics to enable multiple time-based arrival streams into a high-density terminal airspace. IM contributes by calculating airspeeds that enable an aircraft to achieve a spacing interval behind the preceding aircraft. The IM avionics uses its data (route of flight, position, etc.) and Automatic Dependent Surveillance-Broadcast (ADS-B) state data from the Target aircraft to calculate this airspeed. The flight test demonstrated that the IM avionics prototype met the spacing accuracy design goal for three of the four IM operation types tested. The primary issue requiring attention for future IM work is the high rate of IM speed commands and speed reversals. In total, during this flight test, the IM avionics prototype showed significant promise in contributing to the goals of improving aircraft efficiency and airport throughput.
A Comparison of Center/TRACON Automation System and Airline Time of Arrival Predictions
NASA Technical Reports Server (NTRS)
Heere, Karen R.; Zelenka, Richard E.
2000-01-01
Benefits from information sharing between an air traffic service provider and a major air carrier are evaluated. Aircraft arrival time schedules generated by the NASA/FAA Center/TRACON Automation System (CTAS) were provided to the American Airlines System Operations Control Center in Fort Worth, Texas, during a field trial of a specialized CTAS display. A statistical analysis indicates that the CTAS schedules, based on aircraft trajectories predicted from real-time radar and weather data, are substantially more accurate than the traditional airline arrival time estimates, constructed from flight plans and en route crew updates. The improvement offered by CTAS is especially advantageous during periods of heavy traffic and substantial terminal area delay, allowing the airline to avoid large predictive errors with serious impact on the efficiency and profitability of flight operations.
78 FR 41336 - Proposed Establishment of Class E Airspace; Wasatch, UT
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-10
... lat. 39[deg]03'55'' N., long. 110[deg]37'49'' W.; to lat. 38[deg]28'51'' N., long. 110[deg]38'05'' W... Flight Rules (IFR) aircraft under control of Salt Lake City Air Route Traffic Control Center (ARTCC). The... considered before taking action on the proposed rule. The proposal contained in this action may be changed in...
78 FR 34554 - Establishment of Class E Airspace; Blue Mesa, CO
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-10
...This action establishes Class E airspace at Blue Mesa VHF Omni-Directional Radio Range/Distance Measuring Equipment (VOR/DME), Blue Mesa, CO, to facilitate vectoring of Instrument Flight Rules (IFR) aircraft under control of Denver and Albuquerque Air Route Traffic Control Centers (ARTCCs). This improves the safety and management of IFR operations within the National Airspace System.
Hoarseness and vocal tract discomfort and associated risk factors in air traffic controllers.
Korn, Gustavo Polacow; Villar, Anna Carolina; Azevedo, Renata Rangel
2018-04-05
An air traffic controller is a professional who performs air traffic control functions in air traffic control units and is responsible for controlling the various stages of a flight. To compare hoarseness and vocal tract discomfort and their risk factors among air traffic controllers in the approach control of São Paulo. In a cross-sectional survey, a voice self-evaluation adapted from to self-evaluation prepared by the Brazilian Ministry of Labor for teachers was administered to 76 air traffic controllers at approach control of São Paulo, Brazil. The percentage of hoarseness and vocal tract discomfort was 19.7% and 38.2%, respectively. In relation to air pollution, the percentages of hoarseness and vocal tract discomfort were higher among those who consider their working environment to be intolerable than among those in a comfortable or disturbing environment. The percentage of hoarseness was higher among those who seek medical advice due to vocal complaints and among those who experience difficulty using their voice at work than among those who experience mild or no difficulty. The percentage of vocal tract discomfort was higher among those in a very tense and stressful environment than among those who consider their work environment to be mild or moderately tense and stressful. The percentage of vocal tract discomfort was higher among those who describe themselves as very tense and stressed or tense and stressed than among those who describe themselves as calm. Additionally, the percentage of vocal tract discomfort was higher among those who care about their health. Among air traffic controllers, the percentage of vocal tract discomfort was almost twice that of hoarseness. Both symptoms are prevalent among air traffic controllers who considered their workplace intolerable in terms of air pollution. Vocal tract discomfort was related to a tense and stressful environment, and hoarseness was related to difficulty using the voice at work. Copyright © 2018 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.
Balloon-borne air traffic management (ATM) as a precursor to space-based ATM
NASA Astrophysics Data System (ADS)
Brodsky, Yuval; Rieber, Richard; Nordheim, Tom
2012-01-01
The International Space University—Balloon Air traffic control Technology Experiment (I-BATE ) has flown on board two stratospheric balloons and has tracked nearby aircraft by receiving their Automatic Dependent Surveillance-Broadcast (ADS-B) transmissions. Air traffic worldwide is facing increasing congestion. It is predicted that daily European flight volumes will more than double by 2030 compared to 2009 volumes. ADS-B is an air traffic management system being used to mitigate air traffic congestion. Each aircraft is equipped with both a GPS receiver and an ADS-B transponder. The transponder transmits an equipped aircraft's unique identifier, position, heading, and velocity once per second. The ADS-B transmissions can then be received by ground stations for use in traditional air traffic management. Airspace not monitored by these ground stations or other traditional means remains uncontrolled and poorly monitored. A constellation of space-based ADS-B receivers could close these gaps and provide global air traffic monitoring. By flying an ADS-B receiver on a stratospheric balloon, I-BATE has served as a precursor to a constellation of ADS-B-equipped Earth-orbiting satellites. From the ˜30 km balloon altitude, I-BATE tracked aircraft ranging up to 850 km. The experiment has served as a proof of concept for space-based air traffic management and supports a technology readiness level 6 of space-based ADS-B reception. I-BATE: International Space University—Balloon Air traffic control Technology Experiment.
Efficiency Benefits Using the Terminal Area Precision Scheduling and Spacing System
NASA Technical Reports Server (NTRS)
Thipphavong, Jane; Swenson, Harry N.; Lin, Paul; Seo, Anthony Y.; Bagasol, Leonard N.
2011-01-01
NASA has developed a capability for terminal area precision scheduling and spacing (TAPSS) to increase the use of fuel-efficient arrival procedures during periods of traffic congestion at a high-density airport. Sustained use of fuel-efficient procedures throughout the entire arrival phase of flight reduces overall fuel burn, greenhouse gas emissions and noise pollution. The TAPSS system is a 4D trajectory-based strategic planning and control tool that computes schedules and sequences for arrivals to facilitate optimal profile descents. This paper focuses on quantifying the efficiency benefits associated with using the TAPSS system, measured by reduction of level segments during aircraft descent and flight distance and time savings. The TAPSS system was tested in a series of human-in-the-loop simulations and compared to current procedures. Compared to the current use of the TMA system, simulation results indicate a reduction of total level segment distance by 50% and flight distance and time savings by 7% in the arrival portion of flight (200 nm from the airport). The TAPSS system resulted in aircraft maintaining continuous descent operations longer and with more precision, both achieved under heavy traffic demand levels.
Code of Federal Regulations, 2010 CFR
2010-01-01
... REGULATIONS COMMINGLING OF BLIND SECTOR TRAFFIC BY FOREIGN AIR CARRIERS § 216.1 Definitions. (a) As used in... amended. Blind sector traffic means revenue traffic, carried by a foreign air carrier on a flight...
NASA Technical Reports Server (NTRS)
Anderson, W. W.; Will, R. W.; Grantham, C.
1972-01-01
A concept for automating the control of air traffic in the terminal area in which the primary man-machine interface is the cockpit is described. The ground and airborne inputs required for implementing this concept are discussed. Digital data link requirements of 10,000 bits per second are explained. A particular implementation of this concept including a sequencing and separation algorithm which generates flight paths and implements a natural order landing sequence is presented. Onboard computer/display avionics utilizing a traffic situation display is described. A preliminary simulation of this concept has been developed which includes a simple, efficient sequencing algorithm and a complete aircraft dynamics model. This simulated jet transport was flown through automated terminal-area traffic situations by pilots using relatively sophisticated displays, and pilot performance and observations are discussed.
1993-06-01
Aircraft 21 3-4 Mean Proportion Correct: Last Command Issued 22 3-5 Mean Proportion Correct: Last Altitude Change Issued 23 LIST OF TABLES Table Page 2-1...record altitude changes on strips. The same pattern of results was obtained. Participants with lower video-game experience showed poorer memory for...altitude changes than did those with higher experience, particularly when note- writing was not allowed. Flight strips may have been helpful to the group
Virtual Planning at Work: A Tour of NASA Future Flight Central
NASA Technical Reports Server (NTRS)
McClenahen, Jim; Dorighi, Nancy S. (Technical Monitor)
2000-01-01
FutureFlight Central will permit integration of tomorrow's technologies in a risk-free simulation of any airport, airfield, and tower cab environment. The facility provides an opportunity for airlines to mitigate passenger delays by fine tuning airport hub operations, gate management and ramp movement procedures. It also allows airport managers an opportunity to study effects of various improvements at their airports. Finally, it enables air traffic controllers to provide feedback and to become familiar with new airport operations and technologies before final installation.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-28
... Communication & Surveillance Systems (ACSS) Traffic Alert and Collision Avoidance System (TCAS) Units AGENCY... & Surveillance Systems (ACSS) Traffic Alert and Collision Avoidance System (TCAS) units during a flight test over... applies to Aviation Communication & Surveillance Systems (ACSS) Traffic Alert and Collision Avoidance...
A Cognitive-System Model for En Route Air Traffic Management
NASA Technical Reports Server (NTRS)
Corker, Kevin M.; Pisanich, Gregory; Lebacqz, J. Victor (Technical Monitor)
1998-01-01
NASA Ames Research Center has been engaged in the development of advanced air traffic management technologies whose basic form is cognitive aiding systems for air traffic controller and flight deck operations. In the design and evaluation of such systems the dynamic interaction between the airborne aiding system and the ground-based aiding systems forms a critical coupling for control. The human operator is an integral control element in the system and the optimal integration of human decision and performance parameters with those of the automation aiding systems offers a significant challenge to cognitive engineering. This paper presents a study in full mission simulation and the development of a predictive computational model of human performance. We have found that this combination of methodologies provide a powerful design-aiding process. We have extended the computational model Man Machine Integrated Design and Analysis System (N13DAS) to include representation of multiple cognitive agents (both human operators and intelligent aiding systems), operating aircraft airline operations centers and air traffic control centers in the evolving airspace. The demands of this application require the representation of many intelligent agents sharing world-models, and coordinating action/intention with cooperative scheduling of goals and actions in a potentially unpredictable world of operations. The operator's activity structures have been developed to include prioritization and interruption of multiple parallel activities among multiple operators, to provide for anticipation (knowledge of the intention and action of remote operators), and to respond to failures of the system and other operators in the system in situation-specific paradigms. We have exercised this model in a multi-air traffic sector scenario with potential conflict among aircraft at and across sector boundaries. We have modeled the control situation as a multiple closed loop system. The inner and outer loop alerting structure of air traffic management has many implications that need to be investigated to assure adequate design. First, there are control and stability factors implicit in the design. As the inner loop response time approaches that of the outer loop, system stability may be compromised in that controllers may be solving a problem the nature of which has already been changed by pilot action. Second, information exchange and information presentation for both air and ground must be designed to complement as opposed to compete with each other. Third, the level of individual and shared awareness in trajectory modification and flight conformance needs to be defined. Fourth, the level of required awareness and performance impact of mixed fleet operations and failed-mode recovery must be explored.
1990-05-01
faire atterrir las a~ronefs sans recourir de faqon systimatique aux attentes habituelles; un de leurs coll~gues ayant contribu6 At la recherche de la...applicable to or usable for the management of the flows of aircraft and the control of individual flights, the integration of control phases over...February 1976. AIR TRAFFIC MANAGEMENT : Civil/Military Systems and Technologies Guidance and Control Symposium, Copenhagen, Denmark, 9-12 October 1979. AGARD
Negotiation Based Deconfliction in Air-traffic Control
2008-01-15
specifying the object models and their location in the world. Skybox Layer is able to show any background textures behind the defined world in the...visual- ization. The skybox is constructed as a standard large cube, thus six textures are mapped to each of its side. No-flight Zones Layer gives
DOT National Transportation Integrated Search
2012-01-01
The novel strategic conflict-resolution algorithm for fuel minimization that is documented in this report : provides air traffic controllers and/or pilots with fuel-optimal heading, speed, and altitude : recommendations in the en route flight phase, ...
Preliminary C3 Loading Analysis for Future High-Altitude Unmanned Aircraft in the NAS
NASA Technical Reports Server (NTRS)
Ho, Yan-Shek; Gheorghisor, Izabela; Box, Frank
2006-01-01
This document provides a preliminary assessment and summary of the command, control, and communications (C(sup 3)) loading requirements of a generic future high-altitude, long-endurance unmanned aircraft (UA) operating at in the National Airspace System. Two principal types of C(sup 3) traffic are considered in our analysis: communications links providing air traffic services (ATS) to the UA and its human pilot, and the command and control data links enabling the pilot to operate the UA remotely. we have quantified the loading requirements of both types of traffic for two different assumed levels of UA autonomy. Our results indicate that the potential use of UA-borne relays for the ATS links, and the degree of autonomy exercised by the UA during the departure and arrival phases of its flight, will be among the key drivers of C(sup 3) loading and bandwidth requirements.
Airborne Precision Spacing: A Trajectory-based Approach to Improve Terminal Area Operations
NASA Technical Reports Server (NTRS)
Barmore, Bryan
2006-01-01
Airborne Precision Spacing has been developed by the National Aeronautics and Space Administration (NASA) over the past seven years as an attempt to benefit from the capabilities of the flight deck to precisely space their aircraft relative to another aircraft. This development has leveraged decades of work on improving terminal area operations, especially the arrival phase. With APS operations, the air traffic controller instructs the participating aircraft to achieve an assigned inter-arrival spacing interval at the runway threshold, relative to another aircraft. The flight crew then uses airborne automation to manage the aircraft s speed to achieve the goal. The spacing tool is designed to keep the speed within acceptable operational limits, promote system-wide stability, and meet the assigned goal. This reallocation of tasks with the controller issuing strategic goals and the flight crew managing the tactical achievement of those goals has been shown to be feasible through simulation and flight test. A precision of plus or minus 2-3 seconds is generally achievable. Simulations of long strings of arriving traffic show no signs of instabilities or compression waves. Subject pilots have rated the workload to be similar to current-day operations and eye-tracking data substantiate this result. This paper will present a high-level review of research results over the past seven years from a variety of tests and experiments. The results will focus on the precision and accuracy achievable, flow stability and some major sources of uncertainty. The paper also includes a summary of the flight crew s procedures and interface and a brief concept overview.
Integrated risk/cost planning models for the US Air Traffic system
NASA Technical Reports Server (NTRS)
Mulvey, J. M.; Zenios, S. A.
1985-01-01
A prototype network planning model for the U.S. Air Traffic control system is described. The model encompasses the dual objectives of managing collision risks and transportation costs where traffic flows can be related to these objectives. The underlying structure is a network graph with nonseparable convex costs; the model is solved efficiently by capitalizing on its intrinsic characteristics. Two specialized algorithms for solving the resulting problems are described: (1) truncated Newton, and (2) simplicial decomposition. The feasibility of the approach is demonstrated using data collected from a control center in the Midwest. Computational results with different computer systems are presented, including a vector supercomputer (CRAY-XMP). The risk/cost model has two primary uses: (1) as a strategic planning tool using aggregate flight information, and (2) as an integrated operational system for forecasting congestion and monitoring (controlling) flow throughout the U.S. In the latter case, access to a supercomputer is required due to the model's enormous size.
NASA Technical Reports Server (NTRS)
Chappell, Sheryl L.; Billings, Charles E.; Scott, Barry C.; Tuttell, Robert J.; Olsen, M. Christine; Kozon, Thomas E.
1989-01-01
Pilots' use of and responses to a traffic alert and collision-avoidance system (TCAS 2) in simulated air carrier line operations are discribed in Volume 1. TCAS 2 monitors the positions of nearby aircraft by means of transponder interrogation, and it commands a climb or descent which conflicting aircraft are projected to reach an unsafe closest point-of-approach within 20 to 25 seconds. A different level of information about the location of other air traffic was presented to each of three groups of flight crews during their execution of eight simulated air carrier flights. A fourth group of pilots flew the same segments without TCAS 2 equipment. Traffic conflicts were generated at intervals during the flights; many of the conflict aircraft were visible to the flight crews. The TCAS equipment successfully ameliorated the seriousness of all conflicts; three of four non-TCAS crews had hazardous encounters. Response times to TCAS maneuver commands did not differ as a function of the amount of information provided, nor did response accuracy. Differences in flight experience did not appear to contribute to the small performance differences observed. Pilots used the displays of conflicting traffic to maneuver to avoid unseen traffic before maneuver advisories were issued by the TCAS equipment. The results indicate: (1) that pilots utilize TCAS effectively within the response times allocated by the TCAS logic, and (2) that TCAS 2 is an effective collision avoidance device. Volume 2 contains the appendices referenced in Volume 1, providing details of the experiment and the results, and the text of two reports written in support of the program.
NASA Technical Reports Server (NTRS)
Chappell, Sheryl L.; Billings, Charles E.; Scott, Barry C.; Tuttell, Robert J.; Olsen, M. Christine; Kozon, Thomas E.
1989-01-01
Pilots' use of and responses to a traffic alert and collision-avoidance system (TCAS 2) in simulated air carrier line operations are described in Volume 1. TCAS 2 monitors the positions of nearby aircraft by means of transponder interrogation, and it commands a climb or descent when conflicting aircraft are projected to reach an unsafe closest point-of-approach within 20 to 25 seconds. A different level of information about the location of other air traffic was presented to each of three groups of flight crews during their execution of eight simulated air carrier flights. A fourth group of pilots flew the same segments without TCAS 2 equipment. Traffic conflicts were generated at intervals during the flights; many of the conflict aircraft were visible to the flight crews. The TCAS equipment successfully ameliorated the seriousness of all conflicts; three of four non-TCAS crews had hazardous encounters. Response times to TCAS maneuver commands did not differ as a function of the amount of information provided, nor did response accuracy. Differences in flight experience did not appear to contribute to the small performance differences observed. Pilots used the displays of conflicting traffic to maneuver to avoid unseen traffic before maneuver advisories were issued by the TCAS equipment. The results indicate: (1) that pilots utilize TCAS effectively within the response times allocated by the TCAS logic, and (2) that TCAS 2 is an effective collision avoidance device. Volume II contains the appendices referenced in Volume I, providing details of the experiment and the results, and the text of two reports written in support of the program.
Virtual decoupling flight control via real-time trajectory synthesis and tracking
NASA Astrophysics Data System (ADS)
Zhang, Xuefu
The production of the General Aviation industry has declined in the past 25 years. Ironically, however, the increasing demand for air travel as a fast, safe, and high-quality mode of transportation has been far from satisfied. Addressing this demand shortfall with personal air transportation necessitates advanced systems for navigation, guidance, control, flight management, and flight traffic control. Among them, an effective decoupling flight control system will not only improve flight quality, safety, and simplicity, and increase air space usage, but also reduce expenses on pilot initial and current training, and thus expand the current market and explore new markets. Because of the formidable difficulties encountered in the actual decoupling of non-linear, time-variant, and highly coupled flight control systems through traditional approaches, a new approach, which essentially converts the decoupling problem into a real-time trajectory synthesis and tracking problem, is employed. Then, the converted problem is solved and a virtual decoupling effect is achieved. In this approach, a trajectory in inertial space can be predefined and dynamically modified based on the flight mission and the pilot's commands. A feedforward-feedback control architecture is constructed to guide the airplane along the trajectory as precisely as possible. Through this approach, the pilot has much simpler, virtually decoupled control of the airplane in terms of speed, flight path angle and horizontal radius of curvature. To verify and evaluate this approach, extensive computer simulation is performed. A great deal of test cases are designed for the flight control under different flight conditions. The simulation results show that our decoupling strategy is satisfactory and promising, and therefore the research can serve as a consolidated foundation for future practical applications.
Concept of Operations for Interval Management Arrivals and Approach
NASA Technical Reports Server (NTRS)
Hicok, Daniel S.; Barmore, Bryan E.
2016-01-01
This paper presents the concept of operations for interval management operations to be deployed in the US National Airspace System (NAS) by the Federal Aviation Administration (FAA) after 2020. The use of interval management operations is described that begin in en route airspace and continue to a termination point inside the arrival terminal area, in a terminal environment that includes other arrival management tools such as arrival metering, Ground-based Interval Management - Spacing (GIM-S), and Terminal Sequencing and Spacing (TSAS). The roles of Air Traffic Controllers and Flight Crews and the ground automation tools that are used by Air Traffic Controllers to enable the primary operation and variations are described.
A study of ASRS reports involving general aviation and weather encounters
NASA Technical Reports Server (NTRS)
Rockwell, T. H.; Roach, D. E.; Griffin, W. C.
1981-01-01
Consideration is given to the nature and characteristics of problems involving dissemination of weather information, use of this information by pilots, its adequacy for the purpose intended, the ability of the air traffic control system to cope with weather related incidents, and the various aspects of pilot behavior, aircraft equipment, and NAVAIDS affecting flights in which weather figures. It is concluded from the study that skill and training deficiencies of general aviation pilots are not major factors in weather related occurrences, nor is lack of aircraft equipment. Major problem causes are identified with timely and easily interpreted weather information, judgement and attitude factors of pilots, and the functioning of the air traffic control system.
Computationally-Efficient Minimum-Time Aircraft Routes in the Presence of Winds
NASA Technical Reports Server (NTRS)
Jardin, Matthew R.
2004-01-01
A computationally efficient algorithm for minimizing the flight time of an aircraft in a variable wind field has been invented. The algorithm, referred to as Neighboring Optimal Wind Routing (NOWR), is based upon neighboring-optimal-control (NOC) concepts and achieves minimum-time paths by adjusting aircraft heading according to wind conditions at an arbitrary number of wind measurement points along the flight route. The NOWR algorithm may either be used in a fast-time mode to compute minimum- time routes prior to flight, or may be used in a feedback mode to adjust aircraft heading in real-time. By traveling minimum-time routes instead of direct great-circle (direct) routes, flights across the United States can save an average of about 7 minutes, and as much as one hour of flight time during periods of strong jet-stream winds. The neighboring optimal routes computed via the NOWR technique have been shown to be within 1.5 percent of the absolute minimum-time routes for flights across the continental United States. On a typical 450-MHz Sun Ultra workstation, the NOWR algorithm produces complete minimum-time routes in less than 40 milliseconds. This corresponds to a rate of 25 optimal routes per second. The closest comparable optimization technique runs approximately 10 times slower. Airlines currently use various trial-and-error search techniques to determine which of a set of commonly traveled routes will minimize flight time. These algorithms are too computationally expensive for use in real-time systems, or in systems where many optimal routes need to be computed in a short amount of time. Instead of operating in real-time, airlines will typically plan a trajectory several hours in advance using wind forecasts. If winds change significantly from forecasts, the resulting flights will no longer be minimum-time. The need for a computationally efficient wind-optimal routing algorithm is even greater in the case of new air-traffic-control automation concepts. For air-traffic-control automation, thousands of wind-optimal routes may need to be computed and checked for conflicts in just a few minutes. These factors motivated the need for a more efficient wind-optimal routing algorithm.
NASA Technical Reports Server (NTRS)
Rios, Joseph
2016-01-01
Currently, there is no established infrastructure to enable and safely manage the widespread use of low-altitude airspace and UAS flight operations. Given this, and understanding that the FAA faces a mandate to modernize the present air traffic management system through computer automation and significantly reduce the number of air traffic controllers by FY 2020, the FAA maintains that a comprehensive, yet fully automated UAS traffic management (UTM) system for low-altitude airspace is needed. The concept of UTM is to begin by leveraging concepts from the system of roads, lanes, stop signs, rules and lights that govern vehicles on the ground today. Building on its legacy of work in air traffic management (ATM), NASA is working with industry to develop prototype technologies for a UAS Traffic Management (UTM) system that would evolve airspace integration procedures for enabling safe, efficient low-altitude flight operations that autonomously manage UAS operating in an approved low-altitude airspace environment. UTM is a cloud-based system that will autonomously manage all traffic at low altitudes to include UASs being operated beyond visual line of sight of an operator. UTM would thus enable safe and efficient flight operations by providing fully integrated traffic management services such as airspace design, corridors, dynamic geofencing, severe weather and wind avoidance, congestion management, terrain avoidance, route planning re-routing, separation management, sequencing spacing, and contingency management. UTM removes the need for human operators to continuously monitor aircraft operating in approved areas. NASA envisions concepts for two types of UTM systems. The first would be a small portable system, which could be moved between geographical areas in support of operations such as precision agriculture and public safety. The second would be a Persistent system, which would support low-altitude operations in an approved area by providing continuous automated coverage. Both would require persistent communication, navigation, and surveillance (CNS) coverage to track, ensure, and monitor conformance. UTM is creating an airspace management tool that allows the ATM system to accommodate the number of UAS that will operate in the low altitude airspace. The analogy is just because we have a car, whether its autonomous or someone is driving, does not diminish the need for a road or road signs or rules of the road.
Real-time state estimation in a flight simulator using fNIRS.
Gateau, Thibault; Durantin, Gautier; Lancelot, Francois; Scannella, Sebastien; Dehais, Frederic
2015-01-01
Working memory is a key executive function for flying an aircraft. This function is particularly critical when pilots have to recall series of air traffic control instructions. However, working memory limitations may jeopardize flight safety. Since the functional near-infrared spectroscopy (fNIRS) method seems promising for assessing working memory load, our objective is to implement an on-line fNIRS-based inference system that integrates two complementary estimators. The first estimator is a real-time state estimation MACD-based algorithm dedicated to identifying the pilot's instantaneous mental state (not-on-task vs. on-task). It does not require a calibration process to perform its estimation. The second estimator is an on-line SVM-based classifier that is able to discriminate task difficulty (low working memory load vs. high working memory load). These two estimators were tested with 19 pilots who were placed in a realistic flight simulator and were asked to recall air traffic control instructions. We found that the estimated pilot's mental state matched significantly better than chance with the pilot's real state (62% global accuracy, 58% specificity, and 72% sensitivity). The second estimator, dedicated to assessing single trial working memory loads, led to 80% classification accuracy, 72% specificity, and 89% sensitivity. These two estimators establish reusable blocks for further fNIRS-based passive brain computer interface development.
NASA Technical Reports Server (NTRS)
Lee, Katharine K.; Davis, Thomas J.; Levin, Kerry M.; Rowe, Dennis W.
2001-01-01
The Traffic Management Advisor (TMA) is a decision-support tool for traffic managers and air traffic controllers that provides traffic flow visualization and other flow management tools. TMA creates an efficiently sequenced and safely spaced schedule for arrival traffic that meets but does not exceed specified airspace system constraints. TMA is being deployed at selected facilities throughout the National Airspace System in the US as part of the FAA's Free Flight Phase 1 program. TMA development and testing, and its current deployment, focuses on managing the arrival capacity for single major airports within single terminal areas and single en route centers. The next phase of development for this technology is the expansion of the TMA capability to complex facilities in which a terminal area or airport is fed by multiple en route centers, thus creating a multicenter TMA functionality. The focus of the multi-center TMA (McTMA) development is on the busy facilities in the Northeast comdor of the US. This paper describes the planning and development of McTMA and the challenges associated with adapting a successful traffic flow management tool for a very complex airspace.
Flight-deck automation - Promises and problems
NASA Technical Reports Server (NTRS)
Wiener, E. L.; Curry, R. E.
1980-01-01
The paper analyzes the role of human factors in flight-deck automation, identifies problem areas, and suggests design guidelines. Flight-deck automation using microprocessor technology and display systems improves performance and safety while leading to a decrease in size, cost, and power consumption. On the other hand negative factors such as failure of automatic equipment, automation-induced error compounded by crew error, crew error in equipment set-up, failure to heed automatic alarms, and loss of proficiency must also be taken into account. Among the problem areas discussed are automation of control tasks, monitoring of complex systems, psychosocial aspects of automation, and alerting and warning systems. Guidelines are suggested for designing, utilising, and improving control and monitoring systems. Investigation into flight-deck automation systems is important as the knowledge gained can be applied to other systems such as air traffic control and nuclear power generation, but the many problems encountered with automated systems need to be analyzed and overcome in future research.
Procedural errors in air traffic control: effects of traffic density, expertise, and automation.
Di Nocera, Francesco; Fabrizi, Roberto; Terenzi, Michela; Ferlazzo, Fabio
2006-06-01
Air traffic management requires operators to frequently shift between multiple tasks and/or goals with different levels of accomplishment. Procedural errors can occur when a controller accomplishes one of the tasks before the entire operation has been completed. The present study had two goals: first, to verify the occurrence of post-completion errors in air traffic control (ATC) tasks; and second, to assess effects on performance of medium term conflict detection (MTCD) tools. There were 18 military controllers who performed a simulated ATC task with and without automation support (MTCD vs. manual) in high and low air traffic density conditions. During the task, which consisted of managing several simulated flights in an enroute ATC scenario, a trace suddenly disappeared "after" the operator took the aircraft in charge, "during" the management of the trace, or "before" the pilot's first contact. In the manual condition, only the fault type "during" was found to be significantly different from the other two. On the contrary, when in the MTCD condition, the fault type "after" generated significantly less errors than the fault type "before." Additionally, automation was found to affect performance of junior controllers, whereas seniors' performance was not affected. Procedural errors can happen in ATC, but automation can mitigate this effect. Lack of benefits for the "before" fault type may be due to the fact that operators extend their reliance to a part of the task that is unsupported by the automated system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Knox, C.E.
A simplified flight-management descent algorithm, programmed on a small programmable calculator, was developed and flight tested. It was designed to aid the pilot in planning and executing a fuel-conservative descent to arrive at a metering fix at a time designated by the air traffic control system. The algorithm may also be used for planning fuel-conservative descents when time is not a consideration. The descent path was calculated for a constant Mach/airspeed schedule from linear approximations of airplane performance with considerations given for gross weight, wind, and nonstandard temperature effects. The flight-management descent algorithm is described. The results of flight testsmore » flown with a T-39A (Sabreliner) airplane are presented.« less
NASA's ATM Technology Demonstration-1: Integrated Concept of Arrival Operations
NASA Technical Reports Server (NTRS)
Baxley, Brian T.; Swenson, Harry N.; Prevot, Thomas; Callantine, Todd J.
2012-01-01
This paper describes operations and procedures envisioned for NASA s Air Traffic Management (ATM) Technology Demonstration #1 (ATD-1). The ATD-1 Concept of Operations (ConOps) demonstration will integrate three NASA technologies to achieve high throughput, fuel-efficient arrival operations into busy terminal airspace. They are Traffic Management Advisor with Terminal Metering (TMA-TM) for precise time-based schedules to the runway and points within the terminal area, Controller-Managed Spacing (CMS) decision support tools for terminal controllers to better manage aircraft delay using speed control, and Flight deck Interval Management (FIM) avionics and flight crew procedures to conduct airborne spacing operations. The ATD-1 concept provides de-conflicted and efficient operations of multiple arrival streams of aircraft, passing through multiple merge points, from top-of-descent (TOD) to touchdown. It also enables aircraft to conduct Optimized Profile Descents (OPDs) from en route altitude to the runway, using primarily speed control to maintain separation and schedule. The ATD-1 project is currently addressing the challenges of integrating the three technologies, and implantation into an operational environment. Goals of the ATD-1 demonstration include increasing the throughput of high-density airports, reducing controller workload, increasing efficiency of arrival operations and the frequency of trajectory-based operations, and promoting aircraft ADS-B equipage.
78 FR 78794 - Proposed Establishment of Class E Airspace; Flagstaff, AZ
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-27
...This action proposes to establish Class E airspace at the Flagstaff VHF Omni-Directional Radio Range/Distance Measuring Equipment (VOR/DME) navigation aid, Flagstaff, AZ, to facilitate vectoring of Instrument Flight Rules (IFR) aircraft under control of Albuquerque Air Route Traffic Control Center (ARTCC). The FAA is proposing this action to enhance the safety and management of aircraft operations within the National Airspace System.
Integrating LMINET with TAAM and SIMMOD: A Feasibility Study
NASA Technical Reports Server (NTRS)
Long, Dou; Stouffer-Coston, Virginia; Kostiuk, Peter; Kula, Richard; Yackovetsky, Robert (Technical Monitor)
2001-01-01
LMINET is a queuing network air traffic simulation model implemented at 64 large airports and the entire National Airspace System in the United States. TAAM and SIMMOD are two widely used air traffic event-driven simulation models mostly for airports. Based on our proposed Progressive Augmented window approach, TAAM and SIMMOD are integrated with LMINET though flight schedules. In the integration, the flight schedules are modified through the flight delays reported by the other models. The benefit to the local simulation study is to let TAAM or SIMMOD take the modified schedule from LMINET, which takes into account of the air traffic congestion and flight delays at the national network level. We demonstrate the value of the integrated models by the case studies at Chicago O'Hare International Airport and Washington Dulles International Airport. Details of the integration are reported and future work for a full-blown integration is identified.
System and Method for Providing a Real Time Audible Message to a Pilot
NASA Technical Reports Server (NTRS)
Johnson, Walter W. (Inventor); Lachter, Joel B. (Inventor); Koteskey, Robert W. (Inventor); Battiste, Vernol (Inventor)
2016-01-01
A system and method for providing information to a crew of the aircraft while in-flight. The system includes a module having: a receiver for receiving a message while in-flight; a filter having a set of screening parameters and operative to filter the message based on the set of screening parameters; and a converter for converting the message into an audible message. The message includes a pilot report having at least one of weather information, separation information, congestion information, flight deviation information and destination information. The message is sent to the aircraft by another aircraft or an air traffic controller.
Primary separation between three aircraft using traffic displays
NASA Technical Reports Server (NTRS)
Chappell, S. L.; Palmer, E. A.
1983-01-01
The use of a sophisticated traffic and map display termed electronic flight rules (EFR) by general aviation pilots for primary seperation in low density airspace is studied. The experimental flights were made under four conditions: with and without sensor noise in the traffic information and with and without communications for traffic coordination. Pilots were required to maintain two miles horizontal and 500 ft vertical separation from other aircraft for 24 different traffic situations repeated randomly for each of the four experimental conditions. Of 1152 aircraft encounters 12.8 percent were in violation of separation minimums. In general, the effects of sensor noise were minimal, communications affected some of the measures, and the group effect was quite significant. When pilots were able to communicate and coordinate their maneuvers, the time to resolve conflict was reduced.
Optimal Control of Hybrid Systems in Air Traffic Applications
NASA Astrophysics Data System (ADS)
Kamgarpour, Maryam
Growing concerns over the scalability of air traffic operations, air transportation fuel emissions and prices, as well as the advent of communication and sensing technologies motivate improvements to the air traffic management system. To address such improvements, in this thesis a hybrid dynamical model as an abstraction of the air traffic system is considered. Wind and hazardous weather impacts are included using a stochastic model. This thesis focuses on the design of algorithms for verification and control of hybrid and stochastic dynamical systems and the application of these algorithms to air traffic management problems. In the deterministic setting, a numerically efficient algorithm for optimal control of hybrid systems is proposed based on extensions of classical optimal control techniques. This algorithm is applied to optimize the trajectory of an Airbus 320 aircraft in the presence of wind and storms. In the stochastic setting, the verification problem of reaching a target set while avoiding obstacles (reach-avoid) is formulated as a two-player game to account for external agents' influence on system dynamics. The solution approach is applied to air traffic conflict prediction in the presence of stochastic wind. Due to the uncertainty in forecasts of the hazardous weather, and hence the unsafe regions of airspace for aircraft flight, the reach-avoid framework is extended to account for stochastic target and safe sets. This methodology is used to maximize the probability of the safety of aircraft paths through hazardous weather. Finally, the problem of modeling and optimization of arrival air traffic and runway configuration in dense airspace subject to stochastic weather data is addressed. This problem is formulated as a hybrid optimal control problem and is solved with a hierarchical approach that decouples safety and performance. As illustrated with this problem, the large scale of air traffic operations motivates future work on the efficient implementation of the proposed algorithms.
NASA Technical Reports Server (NTRS)
Waller, Marvin C.; Scanlon, Charles H.
1999-01-01
A number of our nations airports depend on closely spaced parallel runway operations to handle their normal traffic throughput when weather conditions are favorable. For safety these operations are curtailed in Instrument Meteorological Conditions (IMC) when the ceiling or visibility deteriorates and operations in many cases are limited to the equivalent of a single runway. Where parallel runway spacing is less than 2500 feet, capacity loss in IMC is on the order of 50 percent for these runways. Clearly, these capacity losses result in landing delays, inconveniences to the public, increased operational cost to the airlines, and general interruption of commerce. This document presents a description and the results of a fixed-base simulation study to evaluate an initial concept that includes a set of procedures for conducting safe flight in closely spaced parallel runway operations in IMC. Consideration of flight-deck information technology and displays to support the procedures is also included in the discussions. The procedures and supporting technology rely heavily on airborne capabilities operating in conjunction with the air traffic control system.
Air traffic management evaluation tool
NASA Technical Reports Server (NTRS)
Sheth, Kapil S. (Inventor); Sridhar, Banavar (Inventor); Bilimoria, Karl D. (Inventor); Grabbe, Shon (Inventor); Chatterji, Gano Broto (Inventor); Schipper, John F. (Inventor)
2010-01-01
Method and system for evaluating and implementing air traffic management tools and approaches for managing and avoiding an air traffic incident before the incident occurs. The invention provides flight plan routing and direct routing or wind optimal routing, using great circle navigation and spherical Earth geometry. The invention provides for aircraft dynamics effects, such as wind effects at each altitude, altitude changes, airspeed changes and aircraft turns to provide predictions of aircraft trajectory (and, optionally, aircraft fuel use). A second system provides several aviation applications using the first system. These applications include conflict detection and resolution, miles-in trail or minutes-in-trail aircraft separation, flight arrival management, flight re-routing, weather prediction and analysis and interpolation of weather variables based upon sparse measurements.
Control of Entry to a Queueing System
1979-11-01
being devoted to the use of queueing theory to control ard optimize the o~peration i f a system. Here, queueing analyses are used to design a system...operpting costs below somae upper bound while maximizing throughput of the queue. This more recent approach of designing or controlling a queueing system...ports designated as high density traffic airports, the Federal Aviation Administration (FAA) limits the number of instrument flight r’ule (IFR
1981-09-01
centers (OACCs), while units serving oceanic and domestic CTAs are area control centers ( ACCa ). Flight information centers (FICs) provide the non-ATC...Shanwick OACC, and also might be applied by the Santa Maria and Reykjavik ACCa . An alternative procedure permits the inclusion of altitude or time...OACCs), while units serving oceanic and domestic CTAs are area control centers ( ACCa ). Although control centers generally have responsibility for total
Autonomous aircraft initiative study
NASA Technical Reports Server (NTRS)
Hewett, Marle D.
1991-01-01
The results of a consulting effort to aid NASA Ames-Dryden in defining a new initiative in aircraft automation are described. The initiative described is a multi-year, multi-center technology development and flight demonstration program. The initiative features the further development of technologies in aircraft automation already being pursued at multiple NASA centers and Department of Defense (DoD) research and Development (R and D) facilities. The proposed initiative involves the development of technologies in intelligent systems, guidance, control, software development, airborne computing, navigation, communications, sensors, unmanned vehicles, and air traffic control. It involves the integration and implementation of these technologies to the extent necessary to conduct selected and incremental flight demonstrations.
NASA Technical Reports Server (NTRS)
Kelly, J. R.
1983-01-01
A simulator investigation was conducted to determine the effect of the lead-aircraft ground-speed quantization level on self-spacing performance using a Cockpit Display of Traffic Information (CDTI). The study utilized a simulator employing cathode-ray tubes for the primary flight and navigation displays and highly augmented flight control modes. The pilot's task was to follow, and self-space on, a lead aircraft which was performing an idle-thrust profile descent to an instrument landing system (ILS) approach and landing. The spacing requirement was specified in terms of both a minimum distance and a time interval. The results indicate that the ground-speed quantization level, lead-aircraft scenario, and pilot technique had a significant effect on self-spacing performance. However, the ground-speed quantization level only had a significant effect on the performance when the lead aircraft flew a fast final approach.
Use of Traffic Intent Information by Autonomous Aircraft in Constrained Operations
NASA Technical Reports Server (NTRS)
Wing, David J.; Barmore, Bryan E.; Krishnamurthy, Karthik
2002-01-01
This paper presents findings of a research study designed to provide insight into the issue of intent information exchange in constrained en-route air-traffic operations and its effect on pilot decision-making and flight performance. The piloted simulation was conducted in the Air Traffic Operations Laboratory at the NASA Langley Research Center. Two operational modes for autonomous flight management were compared under conditions of low and high operational complexity (traffic and airspace hazard density). The tactical mode was characterized primarily by the use of traffic state data for conflict detection and resolution and a manual approach to meeting operational constraints. The strategic mode involved the combined use of traffic state and intent information, provided the pilot an additional level of alerting, and allowed an automated approach to meeting operational constraints. Operational constraints applied in the experiment included separation assurance, schedule adherence, airspace hazard avoidance, flight efficiency, and passenger comfort. The strategic operational mode was found to be effective in reducing unnecessary maneuvering in conflict situations where the intruder's intended maneuvers would resolve the conflict. Conditions of high operational complexity and vertical maneuvering resulted in increased proliferation of conflicts, but both operational modes exhibited characteristics of stability based on observed conflict proliferation rates of less than 30 percent. Scenario case studies illustrated the need for maneuver flight restrictions to prevent the creation of new conflicts through maneuvering and the need for an improved user interface design that appropriately focuses the pilot's attention on conflict prevention information. Pilot real-time assessment of maximum workload indicated minimal sensitivity to operational complexity, providing further evidence that pilot workload is not the limiting factor for feasibility of an en-route distributed traffic management system, even under highly constrained conditions.
Global Simulation of Aviation Operations
NASA Technical Reports Server (NTRS)
Sridhar, Banavar; Sheth, Kapil; Ng, Hok Kwan; Morando, Alex; Li, Jinhua
2016-01-01
The simulation and analysis of global air traffic is limited due to a lack of simulation tools and the difficulty in accessing data sources. This paper provides a global simulation of aviation operations combining flight plans and real air traffic data with historical commercial city-pair aircraft type and schedule data and global atmospheric data. The resulting capability extends the simulation and optimization functions of NASA's Future Air Traffic Management Concept Evaluation Tool (FACET) to global scale. This new capability is used to present results on the evolution of global air traffic patterns from a concentration of traffic inside US, Europe and across the Atlantic Ocean to a more diverse traffic pattern across the globe with accelerated growth in Asia, Australia, Africa and South America. The simulation analyzes seasonal variation in the long-haul wind-optimal traffic patterns in six major regions of the world and provides potential time-savings of wind-optimal routes compared with either great circle routes or current flight-plans if available.
Coordinated traffic incident management using the I-Net embedded sensor architecture
NASA Astrophysics Data System (ADS)
Dudziak, Martin J.
1999-01-01
The I-Net intelligent embedded sensor architecture enables the reconfigurable construction of wide-area remote sensing and data collection networks employing diverse processing and data acquisition modules communicating over thin- server/thin-client protocols. Adaptive initially for operation using mobile remotely-piloted vehicle platforms such as small helicopter robots such as the Hornet and Ascend-I, the I-Net architecture lends itself to a critical problem in the management of both spontaneous and planned traffic congestion and rerouting over major interstate thoroughfares such as the I-95 Corridor. Pre-programmed flight plans and ad hoc operator-assisted navigation of the lightweight helicopter, using an auto-pilot and gyroscopic stabilization augmentation units, allows daytime or nighttime over-the-horizon flights of the unit to collect and transmit real-time video imagery that may be stored or transmitted to other locations. With on-board GPS and ground-based pattern recognition capabilities to augment the standard video collection process, this approach enables traffic management and emergency response teams to plan and assist real-time in the adjustment of traffic flows in high- density or congested areas or during dangerous road conditions such as during ice, snow, and hurricane storms. The I-Net architecture allows for integration of land-based and roadside sensors within a comprehensive automated traffic management system with communications to and form an airborne or other platform to devices in the network other than human-operated desktop computers, thereby allowing more rapid assimilation and response for critical data. Experiments have been conducted using several modified platforms and standard video and still photographic equipment. Current research and development is focused upon modification of the modular instrumentation units in order to accommodate faster loading and reloading of equipment onto the RPV, extension of the I-Net architecture to enable RPV-to-RPV signaling and control, and refinement of safety and emergency mechanisms to handle RPV mechanical failure during flight.
DOT National Transportation Integrated Search
1981-10-01
Two statistical procedures have been developed to estimate hourly or daily aircraft counts. These counts can then be transformed into estimates of instantaneous air counts. The first procedure estimates the stable (deterministic) mean level of hourly...
DOT National Transportation Integrated Search
1983-01-01
Safety in the Air is designed to be taught as a six-lesson unit to middle school : students, preferably sixth, seventh, or eighth grade level. : This curriculum is designed first of all to familiarize both the teacher and the : student with some basi...
NASA Technical Reports Server (NTRS)
Williams, Daniel; Consiglio, Maria; Murdoch, Jennifer; Adams, Catherine
2004-01-01
This document provides a preliminary validation of the Small Aircraft Transportation System (SATS) Higher Volume Operations (HVO) concept for normal conditions. Initial results reveal that the concept provides reduced air traffic delays when compared to current operations without increasing pilot workload. Characteristic to the SATS HVO concept is the establishment of a newly defined area of flight operations called a Self-Controlled Area (SCA) which would be activated by air traffic control (ATC) around designated non-towered, non-radar airports. During periods of poor visibility, SATS pilots would take responsibility for separation assurance between their aircraft and other similarly equipped aircraft in the SCA. Using onboard equipment and simple instrument flight procedures, they would then be better able to approach and land at the airport or depart from it. This concept would also require a new, ground-based automation system, typically located at the airport that would provide appropriate sequencing information to the arriving aircraft. Further validation of the SATS HVO concept is required and is the subject of ongoing research and subsequent publications.
Proceedings: Third Annual Workshop on Meteorological and Environmental Inputs to Aviation Systems
NASA Technical Reports Server (NTRS)
Camp, D. W. (Editor); Frost, W. (Editor)
1979-01-01
The proceedings of a workshop on meteorological and environmental inputs to aviation systems are reported. The major objectives of the workshop are to satisfy such needs of the sponsoring agencies as the expansion of our understanding and knowledge of the interaction of the atmosphere with aviation systems, the better definition and implementation of services to operators, and the collection and interpretation of data for establishing operational criteria, relating the total meteorological inputs from the atmospheric sciences to the needs of aviation communities. The unique aspect of the workshop was the achievement of communication across the interface of the boundaries between pilots, meteorologists, training personnel, accident investigators, traffic controllers, flight operation personnel from military, civil, general aviation, and commercial interests alike. Representatives were in attendance from government, airlines, private agencies, aircraft manufacturers, Department of Defense, industries, research institutes, and universities. Full-length papers addressed the topics of training, flight operations, accident investigation, air traffic control, and airports. Winds and wind shear; icing and frost; atmospheric electricity and lightning; fog, visibility and ceilings; and turbulence were discussed.
Air System Information Management
NASA Technical Reports Server (NTRS)
Filman, Robert E.
2004-01-01
I flew to Washington last week, a trip rich in distributed information management. Buying tickets, at the gate, in flight, landing and at the baggage claim, myriad messages about my reservation, the weather, our flight plans, gates, bags and so forth flew among a variety of travel agency, airline and Federal Aviation Administration (FAA) computers and personnel. By and large, each kind of information ran on a particular application, often specialized to own data formats and communications network. I went to Washington to attend an FAA meeting on System-Wide Information Management (SWIM) for the National Airspace System (NAS) (http://www.nasarchitecture.faa.gov/Tutorials/NAS101.cfm). NAS (and its information infrastructure, SWIM) is an attempt to bring greater regularity, efficiency and uniformity to the collection of stovepipe applications now used to manage air traffic. Current systems hold information about flight plans, flight trajectories, weather, air turbulence, current and forecast weather, radar summaries, hazardous condition warnings, airport and airspace capacity constraints, temporary flight restrictions, and so forth. Information moving among these stovepipe systems is usually mediated by people (for example, air traffic controllers) or single-purpose applications. People, whose intelligence is critical for difficult tasks and unusual circumstances, are not as efficient as computers for tasks that can be automated. Better information sharing can lead to higher system capacity, more efficient utilization and safer operations. Better information sharing through greater automation is possible though not necessarily easy.
Operational Evaluatioin of Dynamic Weather Routes at American Airlines
NASA Technical Reports Server (NTRS)
McNally, David; Sheth, Kapil; Gong, Chester; Borchers, Paul; Osborne, Jeff; Keany, Desmond; Scott, Brennan; Smith, Steve; Sahlman, Scott; Lee, Chuhan;
2013-01-01
Dynamic Weather Routes (DWR) is a search engine that continuously and automatically analyzes inflight aircraft in en route airspace and proposes simple route amendments for more efficient routes around convective weather while considering sector congestion, traffic conflicts, and active Special Use Airspace. NASA and American Airlines (AA) are conducting an operational trial of DWR at the AA System Operations Center in Fort Worth, TX. The trial includes only AA flights in Fort Worth Center airspace. Over the period from July 31, 2012 through August 31, 2012, 45% of routes proposed by DWR and evaluated by AA users - air traffic control coordinators and flight dispatchers - were rated as acceptable as proposed or with some modifications. The wind-corrected potential flying time savings for these acceptable routes totals 470 flying min, and results suggest another 1,500 min of potential savings for flights not evaluated due to staffing limitations. A sector congestion analysis shows that in only two out of 83 DWR routes rated acceptable by AA staff were the flights predicted to fly through a congested sector inside of 30 min downstream of present position. This shows that users considered sector congestion data provided by DWR automation and in nearly all cases did not accept routes through over-capacity sectors. It is estimated that 12 AA flights were given reroute clearances as a direct result of DWR for a total savings of 67 flying min.
NASA Technical Reports Server (NTRS)
Cosentino, Gary B.
2008-01-01
The Joint Unmanned Combat Air Systems (J-UCAS) program is a collaborative effort between the Defense Advanced Research Project Agency (DARPA), the US Air Force (USAF) and the US Navy (USN). Together they have reviewed X-45A flight test site processes and personnel as part of a system demonstration program for the UCAV-ATD Flight Test Program. The goal was to provide a disciplined controlled process for system integration and testing and demonstration flight tests. NASA's Dryden Flight Research Center (DFRC) acted as the project manager during this effort and was tasked with the responsibilities of range and ground safety, the provision of flight test support and infrastructure and the monitoring of technical and engineering tasks. DFRC also contributed their engineering knowledge through their contributions in the areas of autonomous ground taxi control development, structural dynamics testing and analysis and the provision of other flight test support including telemetry data, tracking radars, and communications and control support equipment. The Air Force Flight Test Center acted at the Deputy Project Manager in this effort and was responsible for the provision of system safety support and airfield management and air traffic control services, among other supporting roles. The T-33 served as a J-UCAS surrogate aircraft and demonstrated flight characteristics similar to that of the the X-45A. The surrogate served as a significant risk reduction resource providing mission planning verification, range safety mission assessment and team training, among other contributions.
NASA Technical Reports Server (NTRS)
Knox, C. E.
1984-01-01
A simple airborne flight management descent algorithm designed to define a flight profile subject to the constraints of using idle thrust, a clean airplane configuration (landing gear up, flaps zero, and speed brakes retracted), and fixed-time end conditions was developed and flight tested in the NASA TSRV B-737 research airplane. The research test flights, conducted in the Denver ARTCC automated time-based metering LFM/PD ATC environment, demonstrated that time guidance and control in the cockpit was acceptable to the pilots and ATC controllers and resulted in arrival of the airplane over the metering fix with standard deviations in airspeed error of 6.5 knots, in altitude error of 23.7 m (77.8 ft), and in arrival time accuracy of 12 sec. These accuracies indicated a good representation of airplane performance and wind modeling. Fuel savings will be obtained on a fleet-wide basis through a reduction of the time error dispersions at the metering fix and on a single-airplane basis by presenting the pilot with guidance for a fuel-efficient descent.
NASA Ames Research Center Overview
NASA Technical Reports Server (NTRS)
Boyd, Jack
2006-01-01
A general overview of the NASA Ames Research Center is presented. The topics include: 1) First Century of Flight, 1903-2003; 2) NACA Research Centers; 3) 65 Years of Innovation; 4) Ames Projects; 5) NASA Ames Research Center Today-founded; 6) Astrobiology; 7) SOFIA; 8) To Explore the Universe and Search for Life: Kepler: The Search for Habitable Planets; 9) Crew Exploration Vehicle/Crew Launch Vehicle; 10) Lunar Crater Observation and Sensing Satellite (LCROSS); 11) Thermal Protection Materials and Arc-Jet Facility; 12) Information Science & Technology; 13) Project Columbia Integration and Installation; 14) Air Traffic Management/Air Traffic Control; and 15) New Models-UARC.
Methodology for Generating Conflict Scenarios by Time Shifting Recorded Traffic Data
NASA Technical Reports Server (NTRS)
Paglione, Mike; Oaks, Robert; Bilimoria, Karl D.
2003-01-01
A methodology is presented for generating conflict scenarios that can be used as test cases to estimate the operational performance of a conflict probe. Recorded air traffic data is time shifted to create traffic scenarios featuring conflicts with characteristic properties similar to those encountered in typical air traffic operations. First, a reference set of conflicts is obtained from trajectories that are computed using birth points and nominal flight plans extracted from recorded traffic data. Distributions are obtained for several primary properties (e.g., encounter angle) that are most likely to affect the performance of a conflict probe. A genetic algorithm is then utilized to determine the values of time shifts for the recorded track data so that the primary properties of conflicts generated by the time shifted data match those of the reference set. This methodology is successfully demonstrated using recorded traffic data for the Memphis Air Route Traffic Control Center; a key result is that the required time shifts are less than 5 min for 99% of the tracks. It is also observed that close matching of the primary properties used in this study additionally provides a good match for some other secondary properties.
Automated Flight Routing Using Stochastic Dynamic Programming
NASA Technical Reports Server (NTRS)
Ng, Hok K.; Morando, Alex; Grabbe, Shon
2010-01-01
Airspace capacity reduction due to convective weather impedes air traffic flows and causes traffic congestion. This study presents an algorithm that reroutes flights in the presence of winds, enroute convective weather, and congested airspace based on stochastic dynamic programming. A stochastic disturbance model incorporates into the reroute design process the capacity uncertainty. A trajectory-based airspace demand model is employed for calculating current and future airspace demand. The optimal routes minimize the total expected traveling time, weather incursion, and induced congestion costs. They are compared to weather-avoidance routes calculated using deterministic dynamic programming. The stochastic reroutes have smaller deviation probability than the deterministic counterpart when both reroutes have similar total flight distance. The stochastic rerouting algorithm takes into account all convective weather fields with all severity levels while the deterministic algorithm only accounts for convective weather systems exceeding a specified level of severity. When the stochastic reroutes are compared to the actual flight routes, they have similar total flight time, and both have about 1% of travel time crossing congested enroute sectors on average. The actual flight routes induce slightly less traffic congestion than the stochastic reroutes but intercept more severe convective weather.
Simpler ISS Flight Control Communications and Log Keeping via Social Tools and Techniques
NASA Technical Reports Server (NTRS)
Scott, David W.; Cowart, Hugh; Stevens, Dan
2012-01-01
The heart of flight operations control involves a) communicating effectively in real time with other controllers in the room and/or in remote locations and b) tracking significant events, decisions, and rationale to support the next set of decisions, provide a thorough shift handover, and troubleshoot/improve operations. International Space Station (ISS) flight controllers speak with each other via multiple voice circuits or loops, each with a particular purpose and constituency. Controllers monitor and/or respond to several loops concurrently. The primary tracking tools are console logs, typically kept by a single operator and not visible to others in real-time. Information from telemetry, commanding, and planning systems also plays into decision-making. Email is very secondary/tertiary due to timing and archival considerations. Voice communications and log entries supporting ISS operations have increased by orders of magnitude because the number of control centers, flight crew, and payload operations have grown. This paper explores three developmental ground system concepts under development at Johnson Space Center s (JSC) Mission Control Center Houston (MCC-H) and Marshall Space Flight Center s (MSFC) Payload Operations Integration Center (POIC). These concepts could reduce ISS control center voice traffic and console logging yet increase the efficiency and effectiveness of both. The goal of this paper is to kindle further discussion, exploration, and tool development.
NASA Technical Reports Server (NTRS)
Sundstrom, J. L.
1980-01-01
The techniques required to produce and validate six detailed task timeline scenarios for crew workload studies are described. Specific emphasis is given to: general aviation single pilot instrument flight rules operations in a high density traffic area; fixed path metering and spacing operations; and comparative workload operation between the forward and aft-flight decks of the NASA terminal control vehicle. The validation efforts also provide a cursory examination of the resultant demand workload based on the operating procedures depicted in the detailed task scenarios.
Development of advanced avionics systems applicable to terminal-configured vehicles
NASA Technical Reports Server (NTRS)
Heimbold, R. L.; Lee, H. P.; Leffler, M. F.
1980-01-01
A technique to add the time constraint to the automatic descent feature of the existing L-1011 aircraft Flight Management System (FMS) was developed. Software modifications were incorporated in the FMS computer program and the results checked by lab simulation and on a series of eleven test flights. An arrival time dispersion (2 sigma) of 19 seconds was achieved. The 4 D descent technique can be integrated with the time-based metering method of air traffic control. Substantial reductions in delays at today's busy airports should result.
Pilot In Command: A Feasibility Assessment of Autonomous Flight Management Operations
NASA Technical Reports Server (NTRS)
Wing, David J.; Ballin, Mark G.; Krishnamurthy, Karthik
2004-01-01
Several years of NASA research have produced the air traffic management operational concept of Autonomous Flight Management with high potential for operational feasibility, significant system and user benefits, and safety. Among the chief potential benefits are demand-adaptive or scalable capacity, user flexibility and autonomy that may finally enable truly successful business strategies, and compatibility with current-day operations such that the implementation rate can be driven from within the user community. A concept summary of Autonomous Flight Management is provided, including a description of how these operations would integrate in shared airspace with existing ground-controlled flight operations. The mechanisms enabling the primary benefits are discussed, and key findings of a feasibility assessment of airborne autonomous operations are summarized. Concept characteristics that impact safety are presented, and the potential for initially implementing Autonomous Flight Management is discussed.
Prototype Conflict Alerting Logic for Free Flight
NASA Technical Reports Server (NTRS)
Yang, Lee C.; Kuchar, James K.
1997-01-01
This paper discusses the development of a prototype alerting system for a conceptual Free Flight environment. The concept assumes that datalink between aircraft is available and that conflicts are primarily resolved on the flight deck. Four alert stages are generated depending on the likelihood of a conflict. If the conflict is not resolved by the flight crews, Air Traffic Control is notified to take over separation authority. The alerting logic is based on probabilistic analysis through modeling of aircraft sensor and trajectory uncertainties. Monte Carlo simulations were used over a range of encounter situations to determine conflict probability. The four alert stages were then defined based on probability of conflict and on the number of avoidance maneuvers available to the flight crew. Preliminary results from numerical evaluations and from a piloted simulator study at NASA Ames Research Center are summarized.
A flight investigation of simulated data link communications during single-pilot IFR flight
NASA Technical Reports Server (NTRS)
Parker, J. F.; Duffy, J. W.; Christensen, D. G.
1983-01-01
A Flight Data Console (FDC) was developed to allow simulation of a digital communications link to replace the current voice communication system used in air traffic control (ATC). The voice system requires manipulation of radio equipment, read-back of clearances, and mental storage of critical information items, all contributing to high workload, particularly during single-pilot operations. This was an inflight study to determine how a digital communications system might reduce cockpit workload, improve flight proficiency, and be accepted by general aviation pilots. Results show that instrument flight, including approach and landing, can be accomplished quite effectively using a digital data link system for ATC communications. All pilots expressed a need for a back-up voice channel. When included, this channel was used sparingly and principally to confirm any item of information about which there might be uncertainty.
Fact Sheets of CTAS and NASA Decision-Support Tools and Concepts
NASA Technical Reports Server (NTRS)
Lee, Katharine
2004-01-01
Distributed Air/Ground (DAG) Traffic Management (TM) is an integrated operational concept in which flight deck crews, air traffic service providers and aeronautical operational control personnel use distributed decision-making to enable user preferences and increase system capacity, while meeting air traffic management (ATM) requirements. It is a possible operational mode under the Free Flight concept outlined by the RTCA Task Force 3. The goal of DAG-TM is to enhance user flexibility/efficiency and increase system capacity, without adversely affecting system safety or restricting user accessibility to the National Airspace System (NAS). DAG-TM will be accomplished with a human-centered operational paradigm enabled by procedural and technological innovations. These innovations include automation aids, information sharing and Communication, Navigation, and Surveillance (CNS) / ATM technologies. The DAG-TM concept is intended to eliminate static restrictions to the maximum extent possible. In this paradigm, users may plan and operate according to their preferences - as the rule rather than the exception - with deviations occumng eyond the year 2015. Out of a total of 15 concept elements, 4 have been selected for initial sutidies (see Key Elements in sidebar). DAG-TM research is being performed at Ames, Glenn, and Langley Research Centers.
DAG-TM Concept Element 11 CNS Performance Assessment: ADS-B Performance in the TRACON
NASA Technical Reports Server (NTRS)
Raghavan, Rajesh S.
2004-01-01
Distributed Air/Ground (DAG) Traffic Management (TM) is an integrated operational concept in which flight deck crews, air traffic service providers and aeronautical operational control personnel use distributed decision-making to enable user preferences and increase system capacity, while meeting air traffic management (ATM) safety requirements. It is a possible operational mode under the Free Flight concept outlined by the RTCA Task Force 3. The goal of DAG-TM is to enhance user flexibility/efficiency and increase system capacity, without adversely affecting system safety or restricting user accessibility to the National Airspace System (NAS). DAG-TM will be accomplished with a human-centered operational paradigm enabled by procedural and technological innovations. These innovations include automation aids, information sharing and Communication, Navigation, and Surveillance (CNS) / ATM technologies. The DAG-TM concept is intended to eliminate static restrictions to the maximum extent possible. In this paradigm, users may plan and operate according to their preferences - as the rule rather than the exception - with deviations occurring only as necessary. The DAG-TM concept elements aim to mitigate the extent and impact of dynamic NAS constraints, while maximizing the flexibility of airspace operations
Design and Development of a Flight Route Modification, Logging, and Communication Network
NASA Technical Reports Server (NTRS)
Merlino, Daniel K.; Wilson, C. Logan; Carboneau, Lindsey M.; Wilder, Andrew J.; Underwood, Matthew C.
2016-01-01
There is an overwhelming desire to create and enhance communication mechanisms between entities that operate within the National Airspace System. Furthermore, airlines are always extremely interested in increasing the efficiency of their flights. An innovative system prototype was developed and tested that improves collaborative decision making without modifying existing infrastructure or operational procedures within the current Air Traffic Management System. This system enables collaboration between flight crew and airline dispatchers to share and assess optimized flight routes through an Internet connection. Using a sophisticated medium-fidelity flight simulation environment, a rapid-prototyping development, and a unified modeling language, the software was designed to ensure reliability and scalability for future growth and applications. Ensuring safety and security were primary design goals, therefore the software does not interact or interfere with major flight control or safety systems. The system prototype demonstrated an unprecedented use of in-flight Internet to facilitate effective communication with Airline Operations Centers, which may contribute to increased flight efficiency for airlines.
Flight Test Evaluation of the ATD-1 Interval Management Application
NASA Technical Reports Server (NTRS)
Swieringa, Kurt A.; Wilson, Sara R.; Baxley, Brian T.; Roper, Roy D.; Abbott, Terence S.; Levitt, Ian; Scharl, Julien
2017-01-01
Interval Management (IM) is a concept designed to be used by air traffic controllers and flight crews to more efficiently and precisely manage inter-aircraft spacing. Both government and industry have been working together to develop the IM concept and standards for both ground automation and supporting avionics. NASA contracted with Boeing, Honeywell, and United Airlines to build and flight test an avionics prototype based on NASA's spacing algorithm and conduct a flight test. The flight test investigated four different types of IM operations over the course of nineteen days, and included en route, arrival, and final approach phases of flight. This paper examines the spacing accuracy achieved during the flight test and the rate of speed commands provided to the flight crew. Many of the time-based IM operations met or exceeded the operational design goals set out in the standards for the maintain operations and a subset of the achieve operations. Those operations which did not meet the goals were due to issues that are identified and will be further analyzed.
Impact of Probabilistic Weather on Flight Routing Decisions
NASA Technical Reports Server (NTRS)
Sheth, Kapil; Sridhar, Banavar; Mulfinger, Daniel
2006-01-01
Flight delays in the United States have been found to increase year after year, along with the increase in air traffic. During the four-month period from May through August of 2005, weather related delays accounted for roughly 70% of all reported delays, The current weather prediction in tactical (within 2 hours) timeframe is at manageable levels, however, the state of forecasting weather for strategic (2-6 hours) timeframe is still not dependable for long-term planning. In the absence of reliable severe weather forecasts, the decision-making for flights longer than two hours is challenging. This paper deals with an approach of using probabilistic weather prediction for Traffic Flow Management use, and a general method using this prediction for estimating expected values of flight length and delays in the National Airspace System (NAS). The current state-of-the-art convective weather forecasting is employed to aid the decision makers in arriving at decisions for traffic flow and flight planing. The six-agency effort working on the Next Generation Air Transportation System (NGATS) have considered weather-assimilated decision-making as one of the principal foci out of a list of eight. The weather Integrated Product Team has considered integrated weather information and improved aviation weather forecasts as two of the main efforts (Ref. 1, 2). Recently, research has focused on the concept of operations for strategic traffic flow management (Ref. 3) and how weather data can be integrated for improved decision-making for efficient traffic management initiatives (Ref. 4, 5). An overview of the weather data needs and benefits of various participants in the air traffic system along with available products can be found in Ref. 6. Previous work related to use of weather data in identifying and categorizing pilot intrusions into severe weather regions (Ref. 7, 8) has demonstrated a need for better forecasting in the strategic planning timeframes and moving towards a probabilistic description of weather (Ref. 9). This paper focuses on. specified probability in a local region for flight intrusion/deviation decision-making. The process uses a probabilistic weather description, implements that in a air traffic assessment system to study trajectories of aircraft crossing a cut-off probability contour. This value would be useful for meteorologists in creating optimum distribution profiles for severe weather, Once available, the expected values of flight path and aggregate delays are calculated for efficient operations. The current research, however, does not deal with the issue of multiple cell encounters, as well as echo tops, and will be a topic of future work.
Optimal Time Advance In Terminal Area Arrivals: Throughput vs. Fuel Savings
NASA Technical Reports Server (NTRS)
Sadovsky, Alexander V .; Swenson, Harry N.; Haskell, William B.; Rakas, Jasenka
2011-01-01
The current operational practice in scheduling air traffic arriving at an airport is to adjust flight schedules by delay, i.e. a postponement of an aircrafts arrival at a scheduled location, to manage safely the FAA-mandated separation constraints between aircraft. To meet the observed and forecast growth in traffic demand, however, the practice of time advance (speeding up an aircraft toward a scheduled location) is envisioned for future operations as a practice additional to delay. Time advance has two potential advantages. The first is the capability to minimize, or at least reduce, the excess separation (the distances between pairs of aircraft immediately in-trail) and thereby to increase the throughput of the arriving traffic. The second is to reduce the total traffic delay when the traffic sample is below saturation density. A cost associated with time advance is the fuel expenditure required by an aircraft to speed up. We present an optimal control model of air traffic arriving in a terminal area and solve it using the Pontryagin Maximum Principle. The admissible controls allow time advance, as well as delay, some of the way. The cost function reflects the trade-off between minimizing two competing objectives: excess separation (negatively correlated with throughput) and fuel burn. A number of instances are solved using three different methods, to demonstrate consistency of solutions.
Crew Procedures for Continuous Descent Arrivals Using Conventional Guidance
NASA Technical Reports Server (NTRS)
Oseguera-Lohr, Rosa M.; Williams, David H.; Lewis, Elliot T,
2007-01-01
This paper presents results from a simulation study which investigated the use of Continuous Descent Arrival (CDA) procedures for conducting a descent through a busy terminal area, using conventional transport-category automation. This research was part of the Low Noise Flight Procedures (LNFP) element within the Quiet Aircraft Technology (QAT) Project, that addressed development of flight guidance, and supporting pilot and Air Traffic Control (ATC) procedures for low noise operations. The procedures and chart were designed to be easy to understand, and to make it easy for the crew to make changes via the Flight Management Computer Control-Display Unit (FMC-CDU) to accommodate changes from ATC. The test runs were intended to represent situations typical of what exists in many of today's terminal areas, including interruptions to the descent in the form of clearances issued by ATC.
Small Aircraft Transportation System, Higher Volume Operations Concept: Off-Nominal Operations
NASA Technical Reports Server (NTRS)
Abbott, Terence S.; Consiglio, Maria C.; Baxley, Brian T.; Williams, Daniel M.; Conway, Sheila R.
2005-01-01
This document expands the Small Aircraft Transportation System, (SATS) Higher Volume Operations (HVO) concept to include off-nominal conditions. The general philosophy underlying the HVO concept is the establishment of a newly defined area of flight operations called a Self-Controlled Area (SCA). During periods of poor weather, a block of airspace would be established around designated non-towered, non-radar airports. Aircraft flying enroute to a SATS airport would be on a standard instrument flight rules flight clearance with Air Traffic Control providing separation services. Within the SCA, pilots would take responsibility for separation assurance between their aircraft and other similarly equipped aircraft. Previous work developed the procedures for normal HVO operations. This document provides details for off-nominal and emergency procedures for situations that could be expected to occur in a future SCA.
A Perspective on NASA Ames Air Traffic Management Research
NASA Technical Reports Server (NTRS)
Schroeder, Jeffery A.
2012-01-01
This paper describes past and present air-traffic-management research at NASA Ames Research Center. The descriptions emerge from the perspective of a technical manager who supervised the majority of this research for the last four years. Past research contributions built a foundation for calculating accurate flight trajectories to enable efficient airspace management in time. That foundation led to two predominant research activities that continue to this day - one in automatically separating aircraft and the other in optimizing traffic flows. Today s national airspace uses many of the applications resulting from research at Ames. These applications include the nationwide deployment of the Traffic Management Advisor, new procedures enabling continuous descent arrivals, cooperation with industry to permit more direct flights to downstream way-points, a surface management system in use by two cargo carriers, and software to evaluate how well flights conform to national traffic management initiatives. The paper concludes with suggestions for prioritized research in the upcoming years. These priorities include: enabling more first-look operational evaluations, improving conflict detection and resolution for climbing or descending aircraft, and focusing additional attention on the underpinning safety critical items such as a reliable datalink.
NASA Technical Reports Server (NTRS)
Pritchett, Amy R.; Hansman, R. John
1994-01-01
Current Air Traffic Control communications use shared very high frequency (VHF) voice frequencies from which pilots can obtain 'Party Line' Information (PLI) by overhearing communications addressed to other aircraft. A prior study has shown pilots perceive this PLI to be important. There is concern that some critical PLI may be lost in the proposed datalink environment where communications will be discretely addressed. Different types of flight operations will be, equipped with datalink equipment at different times, generating a 'mixed environment' where some pilots may rely on PLI while others will receive their information by datalink. To research the importance, availability and accuracy of PLI and to query pilots on the information they feel is necessary, a survey was distributed to pilots. The pilots were selected from four flight operation groups to study the variations in PLI requirements in the mixed datalink environment. Pilots perceived PLI to be important overall. Specific information elements pertaining to traffic and weather information were identified as Critical. Most PLI elements followed a pattern of higher perceived importance during terminal area operations, final approach and landing. Pilots from the different flight operation groups identified some elements as particularly important. Pilots perceived PLI to be only moderately available and accurate overall. Several PLI elements received very low availability and accuracy ratings but are perceived as important. In a free response question designed to find the information requirements for global situation awareness, pilots frequently indicated a need for traffic and weather information. These elements were also frequently cited by them as information that could be presented by a datalink system. The results of this survey identify specific concerns to be addressed when implementing datalink communications.
Trajectory specification for high capacity air traffic control
NASA Technical Reports Server (NTRS)
Paielli, Russell A. (Inventor)
2010-01-01
Method and system for analyzing and processing information on one or more aircraft flight paths, using a four-dimensional coordinate system including three Cartesian or equivalent coordinates (x, y, z) and a fourth coordinate .delta. that corresponds to a distance estimated along a reference flight path to a nearest reference path location corresponding to a present location of the aircraft. Use of the coordinate .delta., rather than elapsed time t, avoids coupling of along-track error into aircraft altitude and reduces effects of errors on an aircraft landing site. Along-track, cross-track and/or altitude errors are estimated and compared with a permitted error bounding space surrounding the reference flight path.
NASA Technical Reports Server (NTRS)
Baxley, Brian T.; Hubbs, Clay; Shay, Rick; Karanian, James
2011-01-01
The Interval Management (IM) concept is being developed as a method to maintain or increase high traffic density airport arrival throughput while allowing aircraft to conduct near idle thrust descents. The Interval Management with Spacing to Parallel Dependent Runways (IMSPiDR1) experiment at NASA Langley Research Center used 24 commercial pilots to examine IM procedures to conduct parallel dependent runway arrival operations while maintaining safe but efficient intervals behind the preceding aircraft. The use of IM procedures during these operations requires a lengthy and complex clearance from Air Traffic Control (ATC) to the participating aircraft, thereby making the use of Controller Pilot Data Link Communications (CPDLC) highly desirable as the communication method. The use of CPDLC reduces the need for voice transmissions between controllers and flight crew, and enables automated transfer of IM clearance elements into flight management systems or other aircraft avionics. The result is reduced crew workload and an increase in the efficiency of crew procedures. This paper focuses on the subset of data collected related to the use of CPDLC for IM operations into a busy airport. Overall, the experiment and results were very successful, with the mean time under 43 seconds for the flight crew to load the clearance into the IM spacing tool, review the calculated speed, and respond to ATC. An overall mean rating of Moderately Agree was given when the crews were asked if the use of CPDLC was operationally acceptable as simulated in this experiment. Approximately half of the flight crew reported the use of CPDLC below 10,000 for IM operations was unacceptable, with 83% reporting below 5000 was unacceptable. Also described are proposed modifications to the IM operations that may reduce CPDLC Respond time to less than 30 seconds and should significantly reduce the complexity of crew procedures, as well as follow-on research issues for operational use of CPDLC during IM operations.
Probabilistic Predictions of Traffic Demand for En Route Sectors Based on Individual Flight Data
DOT National Transportation Integrated Search
2010-01-01
The Traffic Flow Management System (TFMS) predicts the demand for each sector, and traffic managers use these predictions to spot possible congestion and to take measures to prevent it. These predictions of sector demand, however, are currently made ...
Navigation and guidance requirements for commercial VTOL operations
NASA Technical Reports Server (NTRS)
Hoffman, W. C.; Hollister, W. M.; Howell, J. D.
1974-01-01
The NASA Langley Research Center (LaRC) has undertaken a research program to develop the navigation, guidance, control, and flight management technology base needed by Government and industry in establishing systems design concepts and operating procedures for VTOL short-haul transportation systems in the 1980s time period. The VALT (VTOL Automatic Landing Technology) Program encompasses the investigation of operating systems and piloting techniques associated with VTOL operations under all-weather conditions from downtown vertiports; the definition of terminal air traffic and airspace requirements; and the development of avionics including navigation, guidance, controls, and displays for automated takeoff, cruise, and landing operations. The program includes requirements analyses, design studies, systems development, ground simulation, and flight validation efforts.
Aeronautics and Space Report of the President: Fiscal Year 1996 Activities
NASA Technical Reports Server (NTRS)
1996-01-01
Topics considered include: (1) Space launch activities: space shuttle missions; expendable launch vehicles. (2) Space science: astronomy and space physics; solar system exploration. (3) Space flight and technology: life and microgravity sciences; space shuttle technology; reuseable launch vehicles; international space station; energy; safety and mission assurance; commercial development and regulation of space; surveillance. (4) Space communications: communications satellites; space network; ground networks; mission control and data systems. (5) Aeronautical activities: technology developments; air traffic control and navigation; weather-related aeronautical activities; flight safety and security; aviation medicine and human factors. (6) Studies of the planet earth: terrestrial studies and applications: atmospheric studies: oceanographic studies; international aeronautical and space activities; and appendices.
English Education and Communication Studies: Ambiguity in the International Airway.
ERIC Educational Resources Information Center
Aune, Adonica Schultz; Huglen, Mark; Lim, Dan
In the airline industry, English is now the accepted medium of communication for all air traffic controllers and pilots. For international flights it is of vital importance to hundreds of airline passengers that English be spoken clearly and properly to execute proper procedures and to act decisively and safely. Airspeak, aviation English, or air…
14 CFR 93.341 - Aircraft operations in the DC FRZ.
Code of Federal Regulations, 2010 CFR
2010-01-01
...-assigned discrete transponder code. The pilot must monitor VHF frequency 121.5 or UHF frequency 243.0. (d... authorization must file and activate an IFR or a DC FRZ or a DC SFRA flight plan and transmit a discrete transponder code assigned by an Air Traffic Control facility. Aircraft must transmit the discrete transponder...
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Process for Requesting Waiver of Mandatory Separation Age for a Federal Aviation Administration Air Traffic Control Specialist In Flight Service..., SFAR 103 Special Federal Aviation Regulation No. 103—Process for Requesting Waiver of Mandatory...
Cultural factors influencing safety need to be addressed in design and operation of technology.
Meshkati, N
1996-10-01
Cultural factors which influence aviation safety in aircraft design, air traffic control, and human factors training are examined. Analysis of the Avianca Flight 052 crash in New York in January, 1990, demonstrates the catastrosphic effects cultural factors can play. Cultural factors include attitude toward work and technology, organizational hierarchy, religion, and population stereotyping.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-27
... E Airspace; State College, PA AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule... College, PA, to accommodate a new air traffic control tower at University Park Airport. The FAA is taking this action to enhance the safety and management of instrument Flight Rules (IFR) operations. DATES...
Real-Time State Estimation in a Flight Simulator Using fNIRS
Gateau, Thibault; Durantin, Gautier; Lancelot, Francois; Scannella, Sebastien; Dehais, Frederic
2015-01-01
Working memory is a key executive function for flying an aircraft. This function is particularly critical when pilots have to recall series of air traffic control instructions. However, working memory limitations may jeopardize flight safety. Since the functional near-infrared spectroscopy (fNIRS) method seems promising for assessing working memory load, our objective is to implement an on-line fNIRS-based inference system that integrates two complementary estimators. The first estimator is a real-time state estimation MACD-based algorithm dedicated to identifying the pilot’s instantaneous mental state (not-on-task vs. on-task). It does not require a calibration process to perform its estimation. The second estimator is an on-line SVM-based classifier that is able to discriminate task difficulty (low working memory load vs. high working memory load). These two estimators were tested with 19 pilots who were placed in a realistic flight simulator and were asked to recall air traffic control instructions. We found that the estimated pilot’s mental state matched significantly better than chance with the pilot’s real state (62% global accuracy, 58% specificity, and 72% sensitivity). The second estimator, dedicated to assessing single trial working memory loads, led to 80% classification accuracy, 72% specificity, and 89% sensitivity. These two estimators establish reusable blocks for further fNIRS-based passive brain computer interface development. PMID:25816347
Code of Federal Regulations, 2010 CFR
2010-01-01
... AND GENERAL OPERATING RULES SPECIAL AIR TRAFFIC RULES Washington, DC Metropolitan Area Special Flight Rules Area § 93.335 Definitions. For purposes of this subpart— DC FRZ flight plan is a flight plan filed... the DC FRZ. This flight plan is separate and distinct from a standard VFR flight plan, and does not...
14 CFR 91.1061 - Augmented flight crews.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Augmented flight crews. 91.1061 Section 91...) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Fractional Ownership Operations Program Management § 91.1061 Augmented flight crews. (a) No program manager may assign any flight...
14 CFR 91.105 - Flight crewmembers at stations.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false Flight crewmembers at stations. 91.105... (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Flight Rules General § 91.105 Flight crewmembers at stations. (a) During takeoff and landing, and while en route, each...
14 CFR 91.105 - Flight crewmembers at stations.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 2 2013-01-01 2013-01-01 false Flight crewmembers at stations. 91.105... (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Flight Rules General § 91.105 Flight crewmembers at stations. (a) During takeoff and landing, and while en route, each...
14 CFR 91.1061 - Augmented flight crews.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false Augmented flight crews. 91.1061 Section 91...) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Fractional Ownership Operations Program Management § 91.1061 Augmented flight crews. (a) No program manager may assign any flight...
14 CFR 91.105 - Flight crewmembers at stations.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Flight crewmembers at stations. 91.105... (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Flight Rules General § 91.105 Flight crewmembers at stations. (a) During takeoff and landing, and while en route, each...
NASA Technical Reports Server (NTRS)
Dao, Arik-Quang V.; Martin, Lynne; Mohlenbrink, Christoph; Bienert, Nancy; Wolte, Cynthia; Gomez, Ashley; Claudatos, Lauren; Mercer, Joey
2017-01-01
The purpose of this paper is to report on a human factors evaluation of ground control station design concepts for interacting with an unmanned traffic management system. The data collected for this paper comes from recent field tests for NASA's Unmanned Traffic Management (UTM) project, and covers the following topics; workload, situation awareness, as well as flight crew communication, coordination, and procedures. The goal of this evaluation was to determine if the various software implementations for interacting with the UTM system can be described and classified into design concepts to provide guidance for the development of future UTM interfaces. We begin with a brief description of NASA's UTM project, followed by a description of the test range configuration related to a second development phase. We identified (post hoc) two classes in which the ground control stations could be grouped. This grouping was based on level of display integration. The analysis was exploratory and informal. It was conducted to compare ground stations across those two classes and against the aforementioned topics. Herein, we discuss the results.
Models of Human Information Requirements: "When Reasonable Aiding Systems Disagree"
NASA Technical Reports Server (NTRS)
Corker, Kevin; Pisanich, Gregory; Shafto, Michael (Technical Monitor)
1994-01-01
Aircraft flight management and Air Traffic Control (ATC) automation are under development to maximize the economy of flight and to increase the capacity of the terminal area airspace while maintaining levels of flight safety equal to or better than current system performance. These goals are being realized by the introduction of flight management automation aiding and operations support systems on the flight deck and by new developments of ATC aiding systems that seek to optimize scheduling of aircraft while potentially reducing required separation and accounting for weather and wake vortex turbulence. Aiding systems on both the flight deck and the ground operate through algorithmic functions on models of the aircraft and of the airspace. These models may differ from each other as a result of variations in their models of the immediate environment. The resultant flight operations or ATC commands may differ in their response requirements (e.g. different preferred descent speeds or descent initiation points). The human operators in the system must then interact with the automation to reconcile differences and resolve conflicts. We have developed a model of human performance including cognitive functions (decision-making, rule-based reasoning, procedural interruption recovery and forgetting) that supports analysis of the information requirements for resolution of flight aiding and ATC conflicts. The model represents multiple individuals in the flight crew and in ATC. The model is supported in simulation on a Silicon Graphics' workstation using Allegro Lisp. Design guidelines for aviation automation aiding systems have been developed using the model's specification of information and team procedural requirements. Empirical data on flight deck operations from full-mission flight simulation are provided to support the model's predictions. The paper describes the model, its development and implementation, the simulation test of the model predictions, and the empirical validation process. The model and its supporting data provide a generalizable tool that is being expanded to include air/ground compatibility and ATC crew interactions in air traffic management.
Future Air Traffic Growth and Schedule Model, Supplement
NASA Technical Reports Server (NTRS)
Kimmel, William M. (Technical Monitor); Smith, Jeremy C.; Dollyhigh, Samuel M.
2004-01-01
The Future Air Traffic Growth and Schedule Model was developed as an implementation of the Fratar algorithm to project future traffic flow between airports in a system and of then scheduling the additional flights to reflect current passenger time-of-travel preferences. The methodology produces an unconstrained future schedule from a current (or baseline) schedule and the airport operations growth rates. As an example of the use of the model, future schedules are projected for 2010 and 2022 for all flights arriving at, departing from, or flying between all continental United States airports that had commercial scheduled service for May 17, 2002. Inter-continental US traffic and airports are included and the traffic is also grown with the Fratar methodology to account for their arrivals and departures to the continental US airports. Input data sets derived from the Official Airline Guide (OAG) data and FAA Terminal Area Forecast (TAF) are included in the examples of the computer code execution.
NASA Technical Reports Server (NTRS)
Green, Steven M.; Den Braven, Wim; Williams, David H.
1991-01-01
The profile negotiation process (PNP) concept as applied to the management of arrival traffic within the extended terminal area is presented, focusing on functional issues from the ground-based perspective. The PNP is an interactive process between an aircraft and air traffic control (ATC) which combines airborne and ground-based automation capabilities to determine conflict-free trajectories that are as close to an aircraft's preference as possible. Preliminary results from a real-time simulation study show that the controller teams are able to consistently and effectively negotiate conflict-free vertical profiles with 4D-equipped aircraft. The ability of the airborne 4D flight management system to adapt to ATC specified 4D trajectory constraints is found to be a requirement for successful execution of the PNP. It is recommended that the conventional method of cost index iteration for obtaining the minimum fuel 4D trajectory be supplemented by a method which constrains the profile speeds to those desired by ATC.
An aircraft noise study in Norway
NASA Technical Reports Server (NTRS)
Gjestland, Truls T.; Liasjo, Kare H.; Bohn, Hans Einar
1990-01-01
An extensive study of aircraft noise is currently being conducted in Oslo, Norway. The traffic at Oslo Airport Fornebu that includes both national and international flights, totals approximately 350 movements per day: 250 of these are regular scheduled flights with intermediate and large size aircraft, the bulk being DC9 and Boeing 737. The total traffic during the summer of 1989 was expected to resemble the maximum level to which the regular traffic will increase before the new airport can be put into operation. The situation therefore represented a possibility to study the noise impact on the communities around Fornebu. A comprehensive social survey was designed, including questions on both aircraft and road traffic noise. A random sample of 1650 respondents in 15 study areas were contacted for an interview. These areas represent different noise levels and different locations relative to the flight paths. The interviews were conducted in a 2 week period just prior to the transfer of charter traffic from Gardemoen to Fornebu. In the same period the aircraft noise was monitored in all 15 areas. In addition the airport is equipped with a permanent flight track and noise monitoring system. The noise situation both in the study period and on an average basis can therefore be accurately described. In August a group of 1800 new respondents were subjected to identical interviews in the same 15 areas, and the noise measurement program was repeated. Results of the study are discussed.
A Laboratory Glass-Cockpit Flight Simulator for Automation and Communications Research
NASA Technical Reports Server (NTRS)
Pisanich, Gregory M.; Heers, Susan T.; Shafto, Michael G. (Technical Monitor)
1995-01-01
A laboratory glass-cockpit flight simulator supporting research on advanced commercial flight deck and Air Traffic Control (ATC) automation and communication interfaces has been developed at the Aviation Operations Branch at the NASA Ames Research Center. This system provides independent and integrated flight and ATC simulator stations, party line voice and datalink communications, along with video and audio monitoring and recording capabilities. Over the last several years, it has been used to support the investigation of flight human factors research issues involving: communication modality; message content and length; graphical versus textual presentation of information, and human accountability for automation. This paper updates the status of this simulator, describing new functionality in the areas of flight management system, EICAS display, and electronic checklist integration. It also provides an overview of several experiments performed using this simulator, including their application areas and results. Finally future enhancements to its ATC (integration of CTAS software) and flight deck (full crew operations) functionality are described.
Experimental Evaluation of CTAS/FMS Integration in TRACON Airspace
NASA Technical Reports Server (NTRS)
Romahn, Stephen; Palmer, Everett; Null, Cynthia H. (Technical Monitor)
1999-01-01
A CTAS/FMS integration project at Ames Research Center addresses extensions to the CTAS air traffic management concept, among them the introduction of arrival routes specially designed for the use with a Flight Management System. These FMS arrival routes shall allow for the use of the INS' lateral and vertical navigation capabilities throughout the arrival until final approach. For the use in this project CTAS controller support tools that compliment the concept have been created. These tools offer controllers access to CTAS' prediction and planning capabilities in terms of speed and route advisories. The objective is to allow for a more strategic way of controlling aircraft. Expected benefits are an increase in arrival rate and a reduction of average travel times through TRACER airspace. A real time simulation is being conducted at Ames to investigate how FMS arrivals and approach transitions - with and without the support of CTAS tools - effect the flow of arriving traffic within TRACER airspace and the controllers' task performance. Four conditions will be investigated and compared to today's technique of controlling traffic with tactical vectoring: 1. FMS arrivals and approach transitions are available for controllers to issue to equipped aircraft - traffic permitting; 2. Speed advisories that match CTAS' runway balancing and sequencing plan are displayed to Feeder controllers; 3. Approach transition advisories (e.g., location of the base turn point) are displayed to Final controllers for tactical clearances ("Turn base now"); and 4. Approach transition advisories (voice and data link) are generated by CTAS and displayed to final controllers for strategic voice clearances ("Turn base five miles after waypoint xyz") or prepared in terms of a trajectory description for strategic data link clearance. Scenarios used in the study will represent current traffic and vary in density of arriving traffic and the kind and mix of equipage of arriving aircraft. Data will be collected from experiment runs with active TRACON controllers on the final approach spacing, the aircraft's speed profiles, the controllers interaction with CTAS tools, and number and timing of pilot controllers communications under the described conditions.
14 CFR 91.533 - Flight attendant requirements.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false Flight attendant requirements. 91.533... (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Large and Turbine-Powered Multiengine Airplanes and Fractional Ownership Program Aircraft § 91.533 Flight attendant...
14 CFR 91.529 - Flight engineer requirements.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Flight engineer requirements. 91.529... (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Large and Turbine-Powered Multiengine Airplanes and Fractional Ownership Program Aircraft § 91.529 Flight engineer...
14 CFR 91.533 - Flight attendant requirements.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Flight attendant requirements. 91.533... (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Large and Turbine-Powered Multiengine Airplanes and Fractional Ownership Program Aircraft § 91.533 Flight attendant...
14 CFR 91.529 - Flight engineer requirements.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false Flight engineer requirements. 91.529... (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Large and Turbine-Powered Multiengine Airplanes and Fractional Ownership Program Aircraft § 91.529 Flight engineer...
NASA Technical Reports Server (NTRS)
Bortolussi, Michael R.
1997-01-01
The General Aviation (GA) industry has suffered a ten-year decline in the number of airplanes sold. This decline is due mainly to the increase cost associated with purchasing, insuring, maintaining, operating, and pilot training a GA airplane. In response to this decline the Federal Aviation Administration (FAA) and the National Aeronautics and Space Administration (NASA) developed a program (Advanced General Aviation Transport Experiments - AGATE) to address these issues. The purpose of AGATE focused within this report is to reduce the costs to acquire and maintain instrument-flight-proficiency. The AGATE program defined four elements necessary to accomplish these goals: (1) new and intuitive cockpit displays and controls, (2) situation technologies for weather, traffic, and navigation, (3) expert systems for system monitoring, and (4) reduced cost training methods. One recognized need for the GA pilot and airplane is to provide cockpit displays and systems already available to transport category airplane. These displays such as Electronic Flight and Instrument System (EFIS), graphic weather and traffic displays, and flight management systems. The goal of this grant was to develop the AGATE GA Display Evaluation Workstation as a tool to test these existing and emerging technologies in the GA environment.
Real-time adaptive aircraft scheduling
NASA Technical Reports Server (NTRS)
Kolitz, Stephan E.; Terrab, Mostafa
1990-01-01
One of the most important functions of any air traffic management system is the assignment of ground-holding times to flights, i.e., the determination of whether and by how much the take-off of a particular aircraft headed for a congested part of the air traffic control (ATC) system should be postponed in order to reduce the likelihood and extent of airborne delays. An analysis is presented for the fundamental case in which flights from many destinations must be scheduled for arrival at a single congested airport; the formulation is also useful in scheduling the landing of airborne flights within the extended terminal area. A set of approaches is described for addressing a deterministic and a probabilistic version of this problem. For the deterministic case, where airport capacities are known and fixed, several models were developed with associated low-order polynomial-time algorithms. For general delay cost functions, these algorithms find an optimal solution. Under a particular natural assumption regarding the delay cost function, an extremely fast (O(n ln n)) algorithm was developed. For the probabilistic case, using an estimated probability distribution of airport capacities, a model was developed with an associated low-order polynomial-time heuristic algorithm with useful properties.
14 CFR 437.57 - Operating area containment.
Code of Federal Regulations, 2012 CFR
2012-01-01
... containment. (a) During each permitted flight, a permittee must contain its reusable suborbital rocket's..., railway traffic, or waterborne vessel traffic. (c) The FAA may prohibit a reusable suborbital rocket's...
14 CFR 437.57 - Operating area containment.
Code of Federal Regulations, 2014 CFR
2014-01-01
... containment. (a) During each permitted flight, a permittee must contain its reusable suborbital rocket's..., railway traffic, or waterborne vessel traffic. (c) The FAA may prohibit a reusable suborbital rocket's...
14 CFR 437.57 - Operating area containment.
Code of Federal Regulations, 2013 CFR
2013-01-01
... containment. (a) During each permitted flight, a permittee must contain its reusable suborbital rocket's..., railway traffic, or waterborne vessel traffic. (c) The FAA may prohibit a reusable suborbital rocket's...
14 CFR 437.57 - Operating area containment.
Code of Federal Regulations, 2010 CFR
2010-01-01
... containment. (a) During each permitted flight, a permittee must contain its reusable suborbital rocket's..., railway traffic, or waterborne vessel traffic. (c) The FAA may prohibit a reusable suborbital rocket's...
14 CFR 437.57 - Operating area containment.
Code of Federal Regulations, 2011 CFR
2011-01-01
... containment. (a) During each permitted flight, a permittee must contain its reusable suborbital rocket's..., railway traffic, or waterborne vessel traffic. (c) The FAA may prohibit a reusable suborbital rocket's...
Flight Departure Delay and Rerouting Under Uncertainty in En Route Convective Weather
NASA Technical Reports Server (NTRS)
Mukherjee, Avijit; Grabbe, Shon; Sridhar, Banavar
2011-01-01
Delays caused by uncertainty in weather forecasts can be reduced by improving traffic flow management decisions. This paper presents a methodology for traffic flow management under uncertainty in convective weather forecasts. An algorithm for assigning departure delays and reroutes to aircraft is presented. Departure delay and route assignment are executed at multiple stages, during which, updated weather forecasts and flight schedules are used. At each stage, weather forecasts up to a certain look-ahead time are treated as deterministic and flight scheduling is done to mitigate the impact of weather on four-dimensional flight trajectories. Uncertainty in weather forecasts during departure scheduling results in tactical airborne holding of flights. The amount of airborne holding depends on the accuracy of forecasts as well as the look-ahead time included in the departure scheduling. The weather forecast look-ahead time is varied systematically within the experiments performed in this paper to analyze its effect on flight delays. Based on the results, longer look-ahead times cause higher departure delays and additional flying time due to reroutes. However, the amount of airborne holding necessary to prevent weather incursions reduces when the forecast look-ahead times are higher. For the chosen day of traffic and weather, setting the look-ahead time to 90 minutes yields the lowest total delay cost.
Dynamic Resectorization and Coordination Technology: An Evaluation of Air Traffic Control Complexity
NASA Technical Reports Server (NTRS)
Brinton, Christopher R.
1996-01-01
The work described in this report is done under contract with the National Aeronautics and Space Administration (NASA) to support the Advanced Air Transportation Technology (AATR) program. The goal of this program is to contribute to and accelerate progress in Advanced Air Transportation Technologies. Wyndemere Incorporated is supporting this goal by studying the complexity of the Air Traffic Specialist's role in maintaining the safety of the Air Transportation system. It is envisioned that the implementation of Free Flight may significantly increase the complexity and difficulty of maintaining this safety. Wyndemere Incorporated is researching potential methods to reduce this complexity. This is the final report for the contract.
NASA Technical Reports Server (NTRS)
Wing, David J.; Barhydt, Richard; Barmore, Bryan; Krishnamurthy, Karthik
2003-01-01
Feasibility and safety of autonomous aircraft operations were studied in a multi-piloted simulation of overconstrained traffic conflicts to determine the need for, and utility of, priority flight rules to maintain safety in this extraordinary and potentially hazardous situation. An overconstrained traffic conflict is one in which the separation assurance objective is incompatible with other objectives. In addition, a proposed scheme for implementing priority flight rules by staggering the alerting time between the two aircraft in conflict was tested for effectiveness. The feasibility study was conducted through a simulation in the Air Traffic Operations Laboratory at the NASA Langley Research Center. This research activity is a continuation of the Distributed Air-Ground Traffic Management feasibility analysis reported in the 4th USA/Europe Air Traffic Management R&D Seminar in December 2001 (paper #48). The over-constrained conflict scenario studied here consisted of two piloted aircraft that were assigned an identical en-route waypoint arrival time and altitude crossing restriction. The simulation results indicated that the pilots safely resolved the conflict without the need for a priority flight rule system. Occurrences of unnecessary maneuvering near the common waypoint were traced to false conflict alerts, generated as the result of including waypoint constraint information in the broadcast data link message issued from each aircraft. This result suggests that, in the conservative interests of safety, broadcast intent information should be based on the commanded trajectory and not on the Flight Management System flight plan, to which the aircraft may not actually adhere. The use of priority flight rules had no effect on the percentage of the aircraft population meeting completely predictable which aircraft in a given pair would meet the constraints and which aircraft would make the first maneuver to yield right-of-way. Therefore, the proposed scheme for implementing priority flight rules through staggering the alerting time between the two aircraft was completely effective. The data and observations from this experiment, together with results from the previously reported study, support the feasibility of autonomous aircraft operations.
Joint University Program for Air Transportation Research, 1991-1992
NASA Technical Reports Server (NTRS)
Morrell, Frederick R. (Compiler)
1993-01-01
This report summarizes the research conducted during the academic year 1991-1992 under the FAA/NASA sponsored Joint University Program for Air Transportation Research. The year end review was held at Ohio University, Athens, Ohio, June 18-19, 1992. The Joint University Program is a coordinated set of three grants sponsored by the Federal Aviation Administration and NASA Langley Research Center, one each with the Massachusetts Institute of Technology (NGL-22-009-640), Ohio University (NGR-36-009-017), and Princeton University (NGL-31-001-252). Completed works, status reports, and annotated bibliographies are presented for research topics, which include navigation, guidance and control theory and practice, intelligent flight control, flight dynamics, human factors, and air traffic control processes. An overview of the year's activities for each university is also presented.
NASA Technical Reports Server (NTRS)
Kreifeldt, J. G.; Parkin, L.; Wempe, T. E.; Huff, E. F.
1975-01-01
Perceived orderliness in the ground tracks of five A/C during their simulated flights was studied. Dynamically developing ground tracks for five A/C from 21 separate runs were reproduced from computer storage and displayed on CRTS to professional pilots and controllers for their evaluations and preferences under several criteria. The ground tracks were developed in 20 seconds as opposed to the 5 minutes of simulated flight using speedup techniques for display. Metric and nonmetric multidimensional scaling techniques are being used to analyze the subjective responses in an effort to: (1) determine the meaningfulness of basing decisions on such complex subjective criteria; (2) compare pilot/controller perceptual spaces; (3) determine the dimensionality of the subjects' perceptual spaces; and thereby (4) determine objective measures suitable for comparing alternative traffic management simulations.
Flight Deck Weather Avoidance Decision Support: Implementation and Evaluation
NASA Technical Reports Server (NTRS)
Wu, Shu-Chieh; Luna, Rocio; Johnson, Walter W.
2013-01-01
Weather related disruptions account for seventy percent of the delays in the National Airspace System (NAS). A key component in the weather plan of the Next Generation of Air Transportation System (NextGen) is to assimilate observed weather information and probabilistic forecasts into the decision process of flight crews and air traffic controllers. In this research we explore supporting flight crew weather decision making through the development of a flight deck predicted weather display system that utilizes weather predictions generated by ground-based radar. This system integrates and presents this weather information, together with in-flight trajectory modification tools, within a cockpit display of traffic information (CDTI) prototype. that the CDTI features 2D and perspective 3D visualization models of weather. The weather forecast products that we implemented were the Corridor Integrated Weather System (CIWS) and the Convective Weather Avoidance Model (CWAM), both developed by MIT Lincoln Lab. We evaluated the use of CIWS and CWAM for flight deck weather avoidance in two part-task experiments. Experiment 1 compared pilots' en route weather avoidance performance in four weather information conditions that differed in the type and amount of predicted forecast (CIWS current weather only, CIWS current and historical weather, CIWS current and forecast weather, CIWS current and forecast weather and CWAM predictions). Experiment 2 compared the use of perspective 3D and 21/2D presentations of weather for flight deck weather avoidance. Results showed that pilots could take advantage of longer range predicted weather forecasts in performing en route weather avoidance but more research will be needed to determine what combinations of information are optimal and how best to present them.
A Vision of the Future Air Traffic Control System
NASA Technical Reports Server (NTRS)
Erzberger, Heinz
2000-01-01
The air transportation system is on the verge of gridlock, with delays and cancelled flights this summer reaching all time highs. As demand for air transportation continues to increase, the capacity needed to accommodate the growth in traffic is falling farther and farther behind. Moreover, it has become increasingly apparent that the present system cannot be scaled up to provide the capacity increases needed to meet demand over the next 25 years. NASA, working with the Federal Aviation Administration and industry, is pursuing a major research program to develop air traffic management technologies that have the ultimate goal of doubling capacity while increasing safety and efficiency. This seminar will describe how the current system operates, what its limitations are and why a revolutionary "shift in paradigm" is needed to overcome fundamental limitations in capacity and safety. For the near term, NASA has developed a portfolio of software tools for air traffic controllers, called the Center-TRACON Automation System (CTAS), that provides modest gains in capacity and efficiency while staying within the current paradigm. The outline of a concept for the long term, with a deployment date of 2015 at the earliest, has recently been formulated and presented by NASA to a select group of industry and government stakeholders. Automated decision making software, combined with an Internet in the sky that enables sharing of information and distributes control between the cockpit and the ground, is key to this concept. However, its most revolutionary feature is a fundamental change in the roles and responsibilities assigned to air traffic controllers.
NASA Research on an Integrated Concept for Airport Surface Operations Management
NASA Technical Reports Server (NTRS)
Gupta, Gautam
2012-01-01
Surface operations at airports in the US are based on tactical operations, where departure aircraft primarily queue up and wait at the departure runways. There have been attempts to address the resulting inefficiencies with both strategic and tactical tools for metering departure aircraft. This presentation gives an overview of Spot And Runway Departure Advisor with Collaborative Decision Making (SARDA-CDM): an integrated strategic and tactical system for improving surface operations by metering departure aircraft. SARDA-CDM is the augmentation of ground and local controller advisories through sharing of flight movement and related operations information between airport operators, flight operators and air traffic control at the airport. The goal is to enhance the efficiency of airport surface operations by exchanging information between air traffic control and airline operators, while minimizing adverse effects on stakeholders and passengers. The presentation motivates the need for departure metering, and provides a brief background on the previous work on SARDA. Then, the concept of operations for SARDA-CDM is described. Then the preliminary results from testing the concept in a real-time automated simulation environment are described. Results indicate benefits such as reduction in taxiing delay and fuel consumption. Further, the preliminary implementation of SARDA-CDM seems robust for two minutes delay in gate push-back times.
NASA Technical Reports Server (NTRS)
Hercencia-Zapana, Heber; Herencia-Zapana, Heber; Hagen, George E.; Neogi, Natasha
2012-01-01
Projections of future traffic in the national airspace show that most of the hub airports and their attendant airspace will need to undergo significant redevelopment and redesign in order to accommodate any significant increase in traffic volume. Even though closely spaced parallel approaches increase throughput into a given airport, controller workload in oversubscribed metroplexes is further taxed by these approaches that require stringent monitoring in a saturated environment. The interval management (IM) concept in the TRACON area is designed to shift some of the operational burden from the control tower to the flight deck, placing the flight crew in charge of implementing the required speed changes to maintain a relative spacing interval. The interval management tolerance is a measure of the allowable deviation from the desired spacing interval for the IM aircraft (and its target aircraft). For this complex task, Formal Methods can help to ensure better design and system implementation. In this paper, we propose a probabilistic framework to quantify the uncertainty and performance associated with the major components of the IM tolerance. The analytical basis for this framework may be used to formalize both correctness and probabilistic system safety claims in a modular fashion at the algorithmic level in a way compatible with several Formal Methods tools.
Automation for Accommodating Fuel-Efficient Descents in Constrained Airspace
NASA Technical Reports Server (NTRS)
Coopenbarger, Richard A.
2010-01-01
Continuous descents at low engine power are desired to reduce fuel consumption, emissions and noise during arrival operations. The challenge is to allow airplanes to fly these types of efficient descents without interruption during busy traffic conditions. During busy conditions today, airplanes are commonly forced to fly inefficient, step-down descents as airtraffic controllers work to ensure separation and maximize throughput. NASA in collaboration with government and industry partners is developing new automation to help controllers accommodate continuous descents in the presence of complex traffic and airspace constraints. This automation relies on accurate trajectory predictions to compute strategic maneuver advisories. The talk will describe the concept behind this new automation and provide an overview of the simulations and flight testing used to develop and refine its underlying technology.
Improving ETMS Default Route Assignment
DOT National Transportation Integrated Search
2005-01-01
Twenty-four hours before a scheduled flight departs, data on this flight from the Official Airline Guide (OAG) is loaded into the Enhanced Traffic Management System (ETMS). This flight is then included in the Monitor/Alert demand predictions that ETM...
Technology-enabled Airborne Spacing and Merging
NASA Technical Reports Server (NTRS)
Hull, James; Barmore, Bryan; Abbott, Tetence
2005-01-01
Over the last several decades, advances in airborne and groundside technologies have allowed the Air Traffic Service Provider (ATSP) to give safer and more efficient service, reduce workload and frequency congestion, and help accommodate a critically escalating traffic volume. These new technologies have included advanced radar displays, and data and communication automation to name a few. In step with such advances, NASA Langley is developing a precision spacing concept designed to increase runway throughput by enabling the flight crews to manage their inter-arrival spacing from TRACON entry to the runway threshold. This concept is being developed as part of NASA s Distributed Air/Ground Traffic Management (DAG-TM) project under the Advanced Air Transportation Technologies Program. Precision spacing is enabled by Automatic Dependent Surveillance-Broadcast (ADS-B), which provides air-to-air data exchange including position and velocity reports; real-time wind information and other necessary data. On the flight deck, a research prototype system called Airborne Merging and Spacing for Terminal Arrivals (AMSTAR) processes this information and provides speed guidance to the flight crew to achieve the desired inter-arrival spacing. AMSTAR is designed to support current ATC operations, provide operationally acceptable system-wide increases in approach spacing performance and increase runway throughput through system stability, predictability and precision spacing. This paper describes problems and costs associated with an imprecise arrival flow. It also discusses methods by which Air Traffic Controllers achieve and maintain an optimum interarrival interval, and explores means by which AMSTAR can assist in this pursuit. AMSTAR is an extension of NASA s previous work on in-trail spacing that was successfully demonstrated in a flight evaluation at Chicago O Hare International Airport in September 2002. In addition to providing for precision inter-arrival spacing, AMSTAR provides speed guidance for aircraft on converging routes to safely and smoothly merge onto a common approach. Much consideration has been given to working with operational conditions such as imperfect ADS-B data, wind prediction errors, changing winds, differing aircraft types and wake vortex separation requirements. A series of Monte Carlo simulations are planned for the spring and summer of 2004 at NASA Langley to further study the system behavior and performance under more operationally extreme and varying conditions. This will coincide with a human-in-the-loop study to investigate the flight crew interface, workload and acceptability.
A Mathematical Model and Algorithm for Routing Air Traffic Under Weather Uncertainty
NASA Technical Reports Server (NTRS)
Sadovsky, Alexander V.
2016-01-01
A central challenge in managing today's commercial en route air traffic is the task of routing the aircraft in the presence of adverse weather. Such weather can make regions of the airspace unusable, so all affected flights must be re-routed. Today this task is carried out by conference and negotiation between human air traffic controllers (ATC) responsible for the involved sectors of the airspace. One can argue that, in so doing, ATC try to solve an optimization problem without giving it a precise quantitative formulation. Such a formulation gives the mathematical machinery for constructing and verifying algorithms that are aimed at solving the problem. This paper contributes one such formulation and a corresponding algorithm. The algorithm addresses weather uncertainty and has closed form, which allows transparent analysis of correctness, realism, and computational costs.
14 CFR 91.515 - Flight altitude rules.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false Flight altitude rules. 91.515 Section 91...) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Large and Turbine-Powered Multiengine Airplanes and Fractional Ownership Program Aircraft § 91.515 Flight altitude rules. (a...
NASA Astrophysics Data System (ADS)
Heitzman, Nicholas
There are significant fuel consumption consequences for non-optimal flight operations. This study is intended to analyze and highlight areas of interest that affect fuel consumption in typical flight operations. By gathering information from actual flight operators (pilots, dispatch, performance engineers, and air traffic controllers), real performance issues can be addressed and analyzed. A series of interviews were performed with various individuals in the industry and organizations. The wide range of insight directed this study to focus on FAA regulations, airline policy, the ATC system, weather, and flight planning. The goal is to highlight where operational performance differs from design intent in order to better connect optimization with actual flight operations. After further investigation and consensus from the experienced participants, the FAA regulations do not need any serious attention until newer technologies and capabilities are implemented. The ATC system is severely out of date and is one of the largest limiting factors in current flight operations. Although participants are pessimistic about its timely implementation, the FAA's NextGen program for a future National Airspace System should help improve the efficiency of flight operations. This includes situational awareness, weather monitoring, communication, information management, optimized routing, and cleaner flight profiles like Required Navigation Performance (RNP) and Continuous Descent Approach (CDA). Working off the interview results, trade-studies were performed using an in-house flight profile simulation of a Boeing 737-300, integrating NASA legacy codes EDET and NPSS with a custom written mission performance and point-performance "Skymap" calculator. From these trade-studies, it was found that certain flight conditions affect flight operations more than others. With weather, traffic, and unforeseeable risks, flight planning is still limited by its high level of precaution. From this study, it is recommended that air carriers increase focus on defining policies like load scheduling, CG management, reduction in zero fuel weight, inclusion of performance measurement systems, and adapting to the regulations to best optimize the spirit of the requirement.. As well, air carriers should create a larger drive to implement the FAA's NextGen system and move the industry into the future.
Design Analysis of Corridors-in-the-Sky
NASA Technical Reports Server (NTRS)
Xue, Min
2008-01-01
Corridors-in-the-sky or tubes is one of new concepts in dynamic airspace configuration. It accommodates high density traffic, which has similar trajectories. Less air traffic controllers workload is expected than classic airspaces, thus, corridors-in-the-sky may increase national airspace capacity and reduce flight delays. To design corridors-in-the-sky, besides identifying their locations, their utilization, altitudes, and impacts on remaining system need to be analyzed. This paper chooses one tube candidate and presents analyses of spatial and temporal utilization of the tube, the impact on the remaining traffic, and the potential benefit caused by off-loading the traffic from underlying sectors. Fundamental issues regarding to the benefits have been also clarified. Methods developed to assist the analysis are described. Analysis results suggest dynamic tubes in terms of varied utilizations during different time periods. And it is found that combined lane options would be a good choice to lower the impact on non-tube users. Finally, it shows significant reduction of peak aircraft count in underlying sectors with only one tube enabled.
Modifying and Testing ATC Controller Interface (CI) for Data Link Clearances
NASA Technical Reports Server (NTRS)
2001-01-01
The Controller-Pilot Data Link Communications (CPDLC) and Air Traffic Control workstation research was conducted as part of the 1997 NASA Low Visibility Landing and Surface Operations (LVLASO) demonstration program at Atlanta Hartsfield airport. Research activity under this grant increased the sophistication of the Controllers' Communication and Situational Awareness Terminal (C-CAST) and developed a VHF Data Link -Mode 2 communications platform. The research culminated with participation in the 2000 NASA Aviation Safety Program's Synthetic Vision System (SVS) / Runway Incursion Prevention System (RIPS) flight demonstration at Dallas-Fort Worth Airport.
Operational Overview for UAS Integration in the NAS Project Flight Test Series 3
NASA Technical Reports Server (NTRS)
Valkov, Steffi B.; Sternberg, Daniel; Marston, Michael
2017-01-01
The National Aeronautics and Space Administration Unmanned Aircraft Systems Integration in the National Airspace System Project has conducted a series of flight tests intended to support the reduction of barriers that prevent unmanned aircraft from flying without the required waivers from the Federal Aviation Administration. The 2015 Flight Test Series 3, supported two separate test configurations. The first configuration investigated the timing of Detect and Avoid alerting thresholds using a radar equipped unmanned vehicle and multiple live intruders flown at varying encounter geometries. The second configuration included a surrogate unmanned vehicle (flown from a ground control station, with a safety pilot on board) flying a mission in a virtual air traffic control airspace sector using research pilot displays and Detect and Avoid advisories to maintain separation from live and virtual aircraft. The test was conducted over an eight-week span within the R-2508 Special Use Airspace. Over 200 encounters were flown for the first configuration, and although the second configuration was cancelled after three data collection flights, Flight Test 3 proved to be invaluable for the purposes of planning, managing, and execution of this type of integrated flight test.
NASA Technical Reports Server (NTRS)
Shelton, Kevin J.; Prinzel, Lawrence J., III; Arthur, Jarvis J., III; Jones, Deise R.; Allamandola, Angela S.; Bailey, Randall E.
2009-01-01
By 2025, U.S. air traffic is predicted to increase 3-fold and may strain the current air traffic management system, which may not be able to accommodate this growth. In response to this challenge, a consortium of industry, academia and government agencies have proposed a revolutionary new concept for U.S. aviation operations, termed the Next Generation Air Transportation System or "NextGen". Many key capabilities are being identified to enable NextGen, including the concept of "net-centric" operations whereby each aircraft and air services provider shares information to allow real-time adaptability to ever-changing factors such as weather, traffic, flight trajectories, and security. Data-link is likely to be the primary source of communication in NextGen. Because NextGen represents a radically different approach to air traffic management and requires a dramatic shift in the tasks, roles, and responsibilities for the flight deck, there are numerous research issues and challenges that must be overcome to ensure a safe, sustainable air transportation system. Flight deck display and crew-vehicle interaction concepts are being developed that proactively investigate and overcome potential technology and safety barriers that might otherwise constrain the full realization of NextGen.
Tropospheric Airborne Meteorological Data Reporting (TAMDAR) Sensor Development
NASA Technical Reports Server (NTRS)
Daniels, Taumi S.
2002-01-01
In response to recommendations from the National Aviation Weather Program Council, the National Aeronautics and Space Administration (NASA) is working with industry to develop an electronic pilot reporting capability for small aircraft. This paper describes the Tropospheric Airborne Meteorological Data Reporting (TAMDAR) sensor development effort. NASA is working with industry to develop a sensor capable of measuring temperature, relative humidity, magnetic heading, pressure, icing, and average turbulence energy dissipation. Users of the data include National Centers for Environmental Prediction (NCEP) forecast modelers, air traffic controllers, flight service stations, airline operation centers, and pilots. Preliminary results from flight tests are presented.
Wellicome, Troy I.; Bayne, Erin M.
2017-01-01
The expansion of humans and their related infrastructure is increasing the likelihood that wildlife will interact with humans. When disturbed by humans, animals often change their behaviour, which can result in time and energetic costs to that animal. An animal's decision to change behaviour is likely related to the type of disturbance, the individual's past experience with disturbance, and the landscape in which the disturbance occurs. In southern Alberta and Saskatchewan, we quantified probability of flight initiation from the nest by Ferruginous Hawks (Buteo regalis) during approaches to nests by investigators. We tested if probability of flight was related to different disturbance types, previous experience, and the anthropogenic landscape in which individual Ferruginous Hawks nested. Probability of flight was related to the type of approach by the investigator, the number of previous visits by investigators, and the vehicular traffic around the nest. Approaches by humans on foot resulted in a greater probability of flight than those in a vehicle. Approaches in a vehicle via low traffic volume access roads were related to increased probability of flight relative to other road types. The number of previous investigator approaches to the nest increased the probability of flight. Overall, we found support that Ferruginous Hawks show habituation to vehicles and the positive reinforcement hypotheses as probability of flight was negatively related to an index of traffic activity near the nest. Our work emphasizes that complex, dynamic processes drive the decision to initiate flight from the nest, and contributes to the growing body of work explaining how responses to humans vary within species. PMID:28542334
Nordell, Cameron J; Wellicome, Troy I; Bayne, Erin M
2017-01-01
The expansion of humans and their related infrastructure is increasing the likelihood that wildlife will interact with humans. When disturbed by humans, animals often change their behaviour, which can result in time and energetic costs to that animal. An animal's decision to change behaviour is likely related to the type of disturbance, the individual's past experience with disturbance, and the landscape in which the disturbance occurs. In southern Alberta and Saskatchewan, we quantified probability of flight initiation from the nest by Ferruginous Hawks (Buteo regalis) during approaches to nests by investigators. We tested if probability of flight was related to different disturbance types, previous experience, and the anthropogenic landscape in which individual Ferruginous Hawks nested. Probability of flight was related to the type of approach by the investigator, the number of previous visits by investigators, and the vehicular traffic around the nest. Approaches by humans on foot resulted in a greater probability of flight than those in a vehicle. Approaches in a vehicle via low traffic volume access roads were related to increased probability of flight relative to other road types. The number of previous investigator approaches to the nest increased the probability of flight. Overall, we found support that Ferruginous Hawks show habituation to vehicles and the positive reinforcement hypotheses as probability of flight was negatively related to an index of traffic activity near the nest. Our work emphasizes that complex, dynamic processes drive the decision to initiate flight from the nest, and contributes to the growing body of work explaining how responses to humans vary within species.
UTM Technical Capabilities Level 2 (TLC2) Test at Reno-Stead Airport.
2016-10-06
Test of Unmanned Aircraft Systems Traffic Management (UTM) technical capability Level 2 (TCL2) at Reno-Stead Airport, Nevada. During the test, five drones simultaneously crossed paths, separated by altitude. Two drones flew beyond visual line-of-sight and three flew within line-of-sight of their operators. Engineer Joey Mercer reviews flight paths using the UAS traffic management research platform UTM coordinator app to verify and validate flight paths.
Analysis of the Chinese air route network as a complex network
NASA Astrophysics Data System (ADS)
Cai, Kai-Quan; Zhang, Jun; Du, Wen-Bo; Cao, Xian-Bin
2012-02-01
The air route network, which supports all the flight activities of the civil aviation, is the most fundamental infrastructure of air traffic management system. In this paper, we study the Chinese air route network (CARN) within the framework of complex networks. We find that CARN is a geographical network possessing exponential degree distribution, low clustering coefficient, large shortest path length and exponential spatial distance distribution that is obviously different from that of the Chinese airport network (CAN). Besides, via investigating the flight data from 2002 to 2010, we demonstrate that the topology structure of CARN is homogeneous, howbeit the distribution of flight flow on CARN is rather heterogeneous. In addition, the traffic on CARN keeps growing in an exponential form and the increasing speed of west China is remarkably larger than that of east China. Our work will be helpful to better understand Chinese air traffic systems.
Simulation Results for Airborne Precision Spacing along Continuous Descent Arrivals
NASA Technical Reports Server (NTRS)
Barmore, Bryan E.; Abbott, Terence S.; Capron, William R.; Baxley, Brian T.
2008-01-01
This paper describes the results of a fast-time simulation experiment and a high-fidelity simulator validation with merging streams of aircraft flying Continuous Descent Arrivals through generic airspace to a runway at Dallas-Ft Worth. Aircraft made small speed adjustments based on an airborne-based spacing algorithm, so as to arrive at the threshold exactly at the assigned time interval behind their Traffic-To-Follow. The 40 aircraft were initialized at different altitudes and speeds on one of four different routes, and then merged at different points and altitudes while flying Continuous Descent Arrivals. This merging and spacing using flight deck equipment and procedures to augment or implement Air Traffic Management directives is called Flight Deck-based Merging and Spacing, an important subset of a larger Airborne Precision Spacing functionality. This research indicates that Flight Deck-based Merging and Spacing initiated while at cruise altitude and well prior to the Terminal Radar Approach Control entry can significantly contribute to the delivery of aircraft at a specified interval to the runway threshold with a high degree of accuracy and at a reduced pilot workload. Furthermore, previously documented work has shown that using a Continuous Descent Arrival instead of a traditional step-down descent can save fuel, reduce noise, and reduce emissions. Research into Flight Deck-based Merging and Spacing is a cooperative effort between government and industry partners.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Flight plans. 93.323 Section 93.323... AND GENERAL OPERATING RULES SPECIAL AIR TRAFFIC RULES Special Flight Rules in the Vicinity of Grand Canyon National Park, AZ § 93.323 Flight plans. Each certificate holder conducting a commercial SFRA...
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 2 2013-01-01 2013-01-01 false Flight plans. 93.323 Section 93.323... AND GENERAL OPERATING RULES SPECIAL AIR TRAFFIC RULES Special Flight Rules in the Vicinity of Grand Canyon National Park, AZ § 93.323 Flight plans. Each certificate holder conducting a commercial SFRA...
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 2 2014-01-01 2014-01-01 false Flight plans. 93.323 Section 93.323... AND GENERAL OPERATING RULES SPECIAL AIR TRAFFIC RULES Special Flight Rules in the Vicinity of Grand Canyon National Park, AZ § 93.323 Flight plans. Each certificate holder conducting a commercial SFRA...
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false Flight plans. 93.323 Section 93.323... AND GENERAL OPERATING RULES SPECIAL AIR TRAFFIC RULES Special Flight Rules in the Vicinity of Grand Canyon National Park, AZ § 93.323 Flight plans. Each certificate holder conducting a commercial SFRA...
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Flight plans. 93.323 Section 93.323... AND GENERAL OPERATING RULES SPECIAL AIR TRAFFIC RULES Special Flight Rules in the Vicinity of Grand Canyon National Park, AZ § 93.323 Flight plans. Each certificate holder conducting a commercial SFRA...
14 CFR 91.711 - Special rules for foreign civil aircraft.
Code of Federal Regulations, 2014 CFR
2014-01-01
... aircraft of U.S. manufacture for the purpose of— (i) Flight testing the aircraft; (ii) Training foreign... TRANSPORTATION (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Foreign... States shall give flight notification or file a flight plan in accordance with the Supplementary...
14 CFR 91.1097 - Pilot and flight attendant crewmember training programs.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false Pilot and flight attendant crewmember..., DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Fractional Ownership Operations Program Management § 91.1097 Pilot and flight attendant crewmember...
14 CFR 91.1097 - Pilot and flight attendant crewmember training programs.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 2 2014-01-01 2014-01-01 false Pilot and flight attendant crewmember..., DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Fractional Ownership Operations Program Management § 91.1097 Pilot and flight attendant crewmember...
14 CFR 91.1097 - Pilot and flight attendant crewmember training programs.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 2 2013-01-01 2013-01-01 false Pilot and flight attendant crewmember..., DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Fractional Ownership Operations Program Management § 91.1097 Pilot and flight attendant crewmember...
14 CFR 91.711 - Special rules for foreign civil aircraft.
Code of Federal Regulations, 2013 CFR
2013-01-01
... aircraft of U.S. manufacture for the purpose of— (i) Flight testing the aircraft; (ii) Training foreign... TRANSPORTATION (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Foreign... States shall give flight notification or file a flight plan in accordance with the Supplementary...
14 CFR 91.711 - Special rules for foreign civil aircraft.
Code of Federal Regulations, 2012 CFR
2012-01-01
... aircraft of U.S. manufacture for the purpose of— (i) Flight testing the aircraft; (ii) Training foreign... TRANSPORTATION (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Foreign... States shall give flight notification or file a flight plan in accordance with the Supplementary...
14 CFR 91.711 - Special rules for foreign civil aircraft.
Code of Federal Regulations, 2011 CFR
2011-01-01
... aircraft of U.S. manufacture for the purpose of— (i) Flight testing the aircraft; (ii) Training foreign... TRANSPORTATION (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Foreign... States shall give flight notification or file a flight plan in accordance with the Supplementary...
14 CFR 298.61 - Reporting of traffic statistics.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Reporting of traffic statistics. 298.61... Requirements § 298.61 Reporting of traffic statistics. (a) Each commuter air carrier and small certificated air... statistics shall be compiled in terms of each flight stage as actually performed. The detail T-100 data shall...
14 CFR 298.61 - Reporting of traffic statistics.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Reporting of traffic statistics. 298.61... Requirements § 298.61 Reporting of traffic statistics. (a) Each commuter air carrier and small certificated air... statistics shall be compiled in terms of each flight stage as actually performed. The detail T-100 data shall...
2012-07-20
CAPE CANAVERAL, Fla. – At the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida, students and their flight instructors from Florida Tech, or FIT, in Melbourne, tour the midfield Air Traffic Control Tower. The instructors and their students arrived at the SLF in Cherokee Warrior and Cessna 172S lightweight aircraft. The middle and high school students are participating in FIT’s Av/Aero summer camp experience. They and their flight instructors toured the SLF midfield control tower, viewed F104 Starfighters and NASA Huey helicopters in the RLV Hangar, viewed the runway plaques marking wheels stop for each of the three space shuttles, and toured the Vehicle Assembly Building where space shuttle Atlantis currently is stored. Photo credit: NASA/Kim Shiflett
Code of Federal Regulations, 2010 CFR
2010-01-01
... REGULATIONS COMMINGLING OF BLIND SECTOR TRAFFIC BY FOREIGN AIR CARRIERS § 216.3 Prohibition. No foreign air carrier shall carry any blind sector traffic, as defined in this part, on any flight operating in air...
NASA Technical Reports Server (NTRS)
Parker, J. F., Jr.; Duffy, J. W.
1982-01-01
Key problems in single pilot instrument flight operations are in the management of flight data and the processing of cockpit information during conditions of heavy workload. A flight data console was developed to allow simulation of a digital data link to replace the current voice communications stem used in air traffic control. This is a human factors evaluation of a data link communications system to determine how such a system might reduce cockpit workload, improve flight proficiency, and be accepted by general aviation pilots. The need for a voice channel as backup to a digital link is examined. The evaluations cover both airport terminal area operations and full mission instrument flight. Results show that general aviation pilots operate well with a digital data link communications system. The findings indicate that a data link system for pilot/ATC communications, with a backup voice channel, is well accepted by general aviation pilots and is considered to be safer, more efficient, and result in less workload than the current voice system.
An Evaluation of a Flight Deck Interval Management Algorithm Including Delayed Target Trajectories
NASA Technical Reports Server (NTRS)
Swieringa, Kurt A.; Underwood, Matthew C.; Barmore, Bryan; Leonard, Robert D.
2014-01-01
NASA's first Air Traffic Management (ATM) Technology Demonstration (ATD-1) was created to facilitate the transition of mature air traffic management technologies from the laboratory to operational use. The technologies selected for demonstration are the Traffic Management Advisor with Terminal Metering (TMA-TM), which provides precise timebased scheduling in the terminal airspace; Controller Managed Spacing (CMS), which provides controllers with decision support tools enabling precise schedule conformance; and Interval Management (IM), which consists of flight deck automation that enables aircraft to achieve or maintain precise in-trail spacing. During high demand operations, TMA-TM may produce a schedule and corresponding aircraft trajectories that include delay to ensure that a particular aircraft will be properly spaced from other aircraft at each schedule waypoint. These delayed trajectories are not communicated to the automation onboard the aircraft, forcing the IM aircraft to use the published speeds to estimate the target aircraft's estimated time of arrival. As a result, the aircraft performing IM operations may follow an aircraft whose TMA-TM generated trajectories have substantial speed deviations from the speeds expected by the spacing algorithm. Previous spacing algorithms were not designed to handle this magnitude of uncertainty. A simulation was conducted to examine a modified spacing algorithm with the ability to follow aircraft flying delayed trajectories. The simulation investigated the use of the new spacing algorithm with various delayed speed profiles and wind conditions, as well as several other variables designed to simulate real-life variability. The results and conclusions of this study indicate that the new spacing algorithm generally exhibits good performance; however, some types of target aircraft speed profiles can cause the spacing algorithm to command less than optimal speed control behavior.
Conducting Safe and Efficient Airport Surface Operations in a NextGen Environment
NASA Technical Reports Server (NTRS)
Jones, Denise R.; Prinzel, Lawrence J., III; Bailey, Randall E.; Arthur, Jarvis J., III; Barnes, James R.
2016-01-01
The Next Generation Air Transportation System (NextGen) vision proposes many revolutionary operational concepts, such as surface trajectory-based operations (STBO) and technologies, including display of traffic information and movements, airport moving maps (AMM), and proactive alerts of runway incursions and surface traffic conflicts, to deliver an overall increase in system capacity and safety. A piloted simulation study was conducted at the National Aeronautics and Space Administration (NASA) Langley Research Center to evaluate the ability of a flight crew to conduct safe and efficient airport surface operations while utilizing an AMM. Position accuracy of traffic was varied, and the effect of traffic position accuracy on airport conflict detection and resolution (CD&R) capability was measured. Another goal was to evaluate the crew's ability to safely conduct STBO by assessing the impact of providing traffic intent information, CD&R system capability, and the display of STBO guidance to the flight crew on both head-down and head-up displays (HUD). Nominal scenarios and off-nominal conflict scenarios were conducted using 12 airline crews operating in a simulated Memphis International Airport terminal environment. The data suggest that all traffic should be shown on the airport moving map, whether qualified or unqualified, and conflict detection and resolution technologies provide significant safety benefits. Despite the presence of traffic information on the map, collisions or near-collisions still occurred; when indications or alerts were generated in these same scenarios, the incidents were averted. During the STBO testing, the flight crews met their required time-of-arrival at route end within 10 seconds on 98 percent of the trials, well within the acceptable performance bounds of 15 seconds. Traffic intent information was found to be useful in determining the intent of conflicting traffic, with graphical presentation preferred. The CD&R system was only minimally effective during STBO because the prevailing visibility was sufficient for visual detection of conflicting traffic. Overall, the pilots indicated STBO increased general situation awareness but also negatively impacted workload, reduced the ability to watch for other traffic, and increased head-down time.
Future Air Traffic Growth and Schedule Model User's Guide
NASA Technical Reports Server (NTRS)
Kimmel, William M. (Technical Monitor); Smith, Jeremy C.; Dollyhigh, Samuel M.
2004-01-01
The Future Air Traffic Growth and Schedule Model was developed as an implementation of the Fratar algorithm to project future traffic flow between airports in a system and of then scheduling the additional flights to reflect current passenger time-of-travel preferences. The methodology produces an unconstrained future schedule from a current (or baseline) schedule and the airport operations growth rates. As an example of the use of the model, future schedules are projected for 2010 and 2022 for all flights arriving at, departing from, or flying between all continental United States airports that had commercial scheduled service for May 17, 2002. Inter-continental US traffic and airports are included and the traffic is also grown with the Fratar methodology to account for their arrivals and departures to the continental US airports. Input data sets derived from the Official Airline Guide (OAG) data and FAA Terminal Area Forecast (TAF) are included in the examples of the computer code execution.
ATD-1 Avionics Phase 2 Flight Test: Flight Test Operations and Saftey Report (FTOSR)
NASA Technical Reports Server (NTRS)
Boyle, Dan; Rein-Weston, Karl; Berckefeldt, Rick; Eggling, Helmuth; Stankiewicz, Craig; Silverman, George
2017-01-01
The Air Traffic Management Technology Demonstration-1 (ATD-1) is a major applied research and development activity of NASA's Airspace Operations and Safety Program (AOSP). The demonstration is the first of an envisioned series of Air Traffic Management (ATM) Technology Demonstration sub-projects that will demonstrate innovative NASA technologies that have attained a sufficient level of maturity to merit more in-depth research and evaluation at the system level in relevant environments.
Mertens, H W; Milburn, N J; Collins, W E
2000-12-01
Two practical color vision tests were developed and validated for use in screening Air Traffic Control Specialist (ATCS) applicants for work at en route center or terminal facilities. The development of the tests involved careful reproduction/simulation of color-coded materials from the most demanding, safety-critical color task performed in each type of facility. The tests were evaluated using 106 subjects with normal color vision and 85 with color vision deficiency. The en route center test, named the Flight Progress Strips Test (FPST), required the identification of critical red/black coding in computer printing and handwriting on flight progress strips. The terminal option test, named the Aviation Lights Test (ALT), simulated red/green/white aircraft lights that must be identified in night ATC tower operations. Color-coding is a non-redundant source of safety-critical information in both tasks. The FPST was validated by direct comparison of responses to strip reproductions with responses to the original flight progress strips and a set of strips selected independently. Validity was high; Kappa = 0.91 with original strips as the validation criterion and 0.86 with different strips. The light point stimuli of the ALT were validated physically with a spectroradiometer. The reliabilities of the FPST and ALT were estimated with Chronbach's alpha as 0.93 and 0.98, respectively. The high job-relevance, validity, and reliability of these tests increases the effectiveness and fairness of ATCS color vision testing.
NextGen Operations in a Simulated NY Area Airspace
NASA Technical Reports Server (NTRS)
Smith, Nancy M.; Parke, Bonny; Lee, Paul; Homola, Jeff; Brasil, Connie; Buckley, Nathan; Cabrall, Chris; Chevalley, Eric; Lin, Cindy; Morey, Susan;
2013-01-01
A human-in-the-loop simulation conducted in the Airspace Operations Laboratory (AOL) at NASA Ames Research Center explored the feasibility of a Next Generation Air Transportation System (NextGen) solution to address airspace and airport capacity limitations in and around the New York metropolitan area. A week-long study explored the feasibility of a new Optimal Profile Descent (OPD) arrival into the airspace as well as a novel application of a Terminal Area Precision Scheduling and Spacing (TAPSS) enhancement to the Traffic Management Advisor (TMA) arrival scheduling tool to coordinate high volume arrival traffic to intersecting runways. In the simulation, four en route sector controllers and four terminal radar approach control (TRACON) controllers managed traffic inbound to Newark International Airport's primary runway, 22L, and its intersecting overflow runway, 11. TAPSS was used to generate independent arrival schedules for each runway and a traffic management coordinator participant adjusted the arrival schedule for each runway 11 aircraft to follow one of the 22L aircraft. TAPSS also provided controller-managed spacing tools (slot markers with speed advisories and timelines) to assist the TRACON controllers in managing the arrivals that were descending on OPDs. Results showed that the tools significantly decreased the occurrence of runway violations (potential go-arounds) when compared with a Baseline condition with no tools. Further, the combined use of the tools with the new OPD produced a peak arrival rate of over 65 aircraft per hour using instrument flight rules (IFR), exceeding the current maximum arrival rate at Newark Liberty International Airport (EWR) of 52 per hour under visual flight rules (VFR). Although the participants rated the workload as relatively low and acceptable both with and without the tools, they rated the tools as reducing their workload further. Safety and coordination were rated by most participants as acceptable in both conditions, although the TRACON Runway Coordinator (TRC) rated neither as acceptable in the Baseline condition. Regarding the role of the TRC, the two TRACON controllers handling the 11 arrivals indicated that the TRC was very much needed in the Baseline condition without tools, but not needed in the condition with tools. This indicates that the tools were providing much of the sequencing and spacing information that the TRC had supplied in the Baseline condition.
14 CFR Appendix E to Part 91 - Airplane Flight Recorder Specifications
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false Airplane Flight Recorder Specifications E... (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Pt. 91, App. E Appendix E to Part 91—Airplane Flight Recorder Specifications Parameters Range Installed system 1 minimum...
14 CFR Appendix F to Part 91 - Helicopter Flight Recorder Specifications
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false Helicopter Flight Recorder Specifications F... (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Pt. 91, App. F Appendix F to Part 91—Helicopter Flight Recorder Specifications Parameters Range Installed system 1 minimum...
Design and evaluation of an advanced air-ground data-link system for air traffic control
NASA Technical Reports Server (NTRS)
Denbraven, Wim
1992-01-01
The design and evaluation of the ground-based portion of an air-ground data-link system for air traffic control (ATC) are described. The system was developed to support the 4D Aircraft/ATC Integration Study, a joint simulation experiment conducted at NASA's Ames and Langley Research Centers. The experiment focused on airborne and ground-based procedures for handling aircraft equipped with a 4D-Flight Management System (FMS) and the system requirements needed to ensure conflict-free traffic flow. The Center/TRACON Automation System (CTAS) at Ames was used for the ATC part of the experiment, and the 4D-FMS-equipped aircraft was simulated by the Transport Systems Research Vehicle (TSRV) simulator at Langley. The data-link system supported not only conventional ATC communications, but also the communications needed to accommodate the 4D-FMS capabilities of advanced aircraft. Of great significance was the synergism gained from integrating the data link with CTAS. Information transmitted via the data link was used to improve the monitoring and analysis capability of CTAS without increasing controller input workload. Conversely, CTAS was used to anticipate and create prototype messages, thus reducing the workload associated with the manual creation of data-link messages.
Benefits Analysis of Multi-Center Dynamic Weather Routes
NASA Technical Reports Server (NTRS)
Sheth, Kapil; McNally, David; Morando, Alexander; Clymer, Alexis; Lock, Jennifer; Petersen, Julien
2014-01-01
Dynamic weather routes are flight plan corrections that can provide airborne flights more than user-specified minutes of flying-time savings, compared to their current flight plan. These routes are computed from the aircraft's current location to a flight plan fix downstream (within a predefined limit region), while avoiding forecasted convective weather regions. The Dynamic Weather Routes automation has been continuously running with live air traffic data for a field evaluation at the American Airlines Integrated Operations Center in Fort Worth, TX since July 31, 2012, where flights within the Fort Worth Air Route Traffic Control Center are evaluated for time savings. This paper extends the methodology to all Centers in United States and presents benefits analysis of Dynamic Weather Routes automation, if it was implemented in multiple airspace Centers individually and concurrently. The current computation of dynamic weather routes requires a limit rectangle so that a downstream capture fix can be selected, preventing very large route changes spanning several Centers. In this paper, first, a method of computing a limit polygon (as opposed to a rectangle used for Fort Worth Center) is described for each of the 20 Centers in the National Airspace System. The Future ATM Concepts Evaluation Tool, a nationwide simulation and analysis tool, is used for this purpose. After a comparison of results with the Center-based Dynamic Weather Routes automation in Fort Worth Center, results are presented for 11 Centers in the contiguous United States. These Centers are generally most impacted by convective weather. A breakdown of individual Center and airline savings is presented and the results indicate an overall average savings of about 10 minutes of flying time are obtained per flight.
Journal of Air Transportation, Volume 12, No. 1
NASA Technical Reports Server (NTRS)
Bowers, Brent D. (Editor); Kabashkin, Igor (Editor)
2007-01-01
Topics discussed include: a) Data Mining Methods Applied to Flight Operations Quality Assurance Data: A Comparison to Standard Statistical Methods; b) Financial Comparisons across Different Business Models in the Canadian Airline Industry; c) Carving a Niche for the "No-Frills" Carrier, Air Arabia, in Oil-Rich Skies; d) Situational Leadership in Air Traffic Control; and e) The Very Light Jet Arrives: Stakeholders and Their Perceptions.
Terminal-area STOL operating systems experiments program
NASA Technical Reports Server (NTRS)
Smith, D. W.; Watson, D.; Christensen, J. V.
1972-01-01
A system study to determine the application of short takeoff aircraft for a high speed, short haul air transportation service was conducted. The study focused on developing information which will aid in choosing system concepts, design criteria, operating procedures, landing guidance systems, air traffic control systems, and airborne avionics and flight control systems. A terminal area STOL operating system experiments program was developed. The objectives, program approach, program schedule, typical experiments, research facilities to be used, and program status are discussed.
Effectiveness evaluation of STOL transport operations
NASA Technical Reports Server (NTRS)
Hitt, E. F.; Bruckner, J. M. H.; Drago, V. J.; Brown, R. A.; Rea, F. G.; Porter, R. F.
1973-01-01
A short-takeoff and landing (STOL) systems simulation model has been developed and implemented in a computer code (known as STOL OPS) which permits evaluation of the operation of a STOL aircraft and its avionics in a commercial airline operating environment. STOL OPS concentrated on the avionics functions of navigation, guidance, control, communication, hazard aviodance, and systems management. External world factors influencing the operation of the STOL aircraft include each airport and its geometry, air traffic at each airport, air traffic control equipment and procedures, weather (including winds and visibility), and the flight path between each airport served by the route. The development of the STOL OPS program provides NASA a set of computer programs which can be used for detailed analysis of a STOL aircraft and its avionics and permit establishment of system requirements as a function of airline mission performance goals.
Space Weather Effects on Aircraft Navigation
NASA Astrophysics Data System (ADS)
Stanley, J. C.; Cade, W. B.
2012-12-01
Many aircraft today use satellites for GPS navigation, arrival and departure to and from airspaces, and for "shooting" non-precision and precision Instrument Approaches into airports. Also in development is an Air Traffic Control system based on satellite technology that seeks to modernize current air traffic control and improve safety, eventually phasing out radar (though not yet in the very near future). Due to the general, commercial, and military aviation fields all becoming more and more reliant on satellite and GPS technologies, the effects of space weather events on these systems is of paramount concern to militaries, airlines, private pilots, and other aviation operators. In this study we analyze data from airlines and other resources regarding effects on satellite and GPS systems, which is crucial to the conduct of safe flight operations now and improving systems for future and continued use.
NASA Technical Reports Server (NTRS)
Johnson, Marcus; Jung, Jaewoo; Rios, Joseph; Mercer, Joey; Homola, Jeffrey; Prevot, Thomas; Mulfinger, Daniel; Kopardekar, Parimal
2017-01-01
This study evaluates a traffic management concept designed to enable simultaneous operations of multiple small unmanned aircraft systems (UAS) in the national airspace system (NAS). A five-day flight-test activity is described that examined the feasibility of operating multiple UAS beyond visual line of sight (BVLOS) of their respective operators in the same airspace. Over the five-day campaign, three groups of five flight crews operated a total of eleven different aircraft. Each group participated in four flight scenarios involving five simultaneous missions. Each vehicle was operated BVLOS up to 1.5 miles from the pilot in command. Findings and recommendations are presented to support the feasibility and safety of routine BVLOS operations for small UAS.
NASA Technical Reports Server (NTRS)
Johnson, Marcus; Jung, Jaewoo; Rios, Joseph; Mercer, Joey; Homola, Jeffrey; Prevot, Thomas; Mulfinger, Daniel; Kopardekar, Parimal
2017-01-01
This study evaluates a traffic management concept designed to enable simultaneous operations of multiple small unmanned aircraft systems (UAS) in the national airspace system (NAS). A five-day flight-test activity is described that examined the feasibility of operating multiple UAS beyond visual line of sight (BVLOS) of their respective operators in the same airspace. Over the five-day campaign, three groups of five flight crews operated a total of eleven different aircraft. Each group participated in four flight scenarios involving five simultaneous missions. Each vehicle was operated BVLOS up to 1.5 miles from the pilot in command. Findings and recommendations are presented to support the feasibility and safety of routine BVLOS operations for small UAS.
Estimating Controller Intervention Probabilities for Optimized Profile Descent Arrivals
NASA Technical Reports Server (NTRS)
Meyn, Larry A.; Erzberger, Heinz; Huynh, Phu V.
2011-01-01
Simulations of arrival traffic at Dallas/Fort-Worth and Denver airports were conducted to evaluate incorporating scheduling and separation constraints into advisories that define continuous descent approaches. The goal was to reduce the number of controller interventions required to ensure flights maintain minimum separation distances of 5 nmi horizontally and 1000 ft vertically. It was shown that simply incorporating arrival meter fix crossing-time constraints into the advisory generation could eliminate over half of the all predicted separation violations and more than 80% of the predicted violations between two arrival flights. Predicted separation violations between arrivals and non-arrivals were 32% of all predicted separation violations at Denver and 41% at Dallas/Fort-Worth. A probabilistic analysis of meter fix crossing-time errors is included which shows that some controller interventions will still be required even when the predicted crossing-times of the advisories are set to add a 1 or 2 nmi buffer above the minimum in-trail separation of 5 nmi. The 2 nmi buffer was shown to increase average flight delays by up to 30 sec when compared to the 1 nmi buffer, but it only resulted in a maximum decrease in average arrival throughput of one flight per hour.
NASA Technical Reports Server (NTRS)
Corker, Kevin M.; Condon, Gregory W. (Technical Monitor)
1996-01-01
NASA has initiated a significant thrust of research and development focused on providing the flight crew and air traffic managers automation aids to increase capacity in en route and terminal area operations through the use of flexible, more fuel-efficient routing, while improving the level of safety in commercial carrier operations. In that system development, definition of cognitive requirements for integrated multi-operator dynamic aiding systems is fundamental. The core processes of control and the distribution of decision making in that control are undergoing extensive analysis. From our perspective, the human operators and the procedures by which they interact are the fundamental determinants of the safe, efficient, and flexible operation of the system. In that perspective, we have begun to explore what our experience has taught will be the most challenging aspects of designing and integrating human-centered automation in the advanced system. We have performed a full mission simulation looking at the role shift to self-separation on board the aircraft with the rules of the air guiding behavior and the provision of a cockpit display of traffic information and an on-board traffic alert system that seamlessly integrates into the TCAS operations. We have performed and initial investigation of the operational impact of "Dynamic Density" metrics on controller relinquishing and reestablishing full separation authority. (We follow the assumption that responsibility at all times resides with the controller.) This presentation will describe those efforts as well as describe the process by which we will guide the development of error tolerant systems that are sensitive to shifts in operator work load levels and dynamic shifts in the operating point of air traffic management.
Interval Management Display Design Study
NASA Technical Reports Server (NTRS)
Baxley, Brian T.; Beyer, Timothy M.; Cooke, Stuart D.; Grant, Karlus A.
2014-01-01
In 2012, the Federal Aviation Administration (FAA) estimated that U.S. commercial air carriers moved 736.7 million passengers over 822.3 billion revenue-passenger miles. The FAA also forecasts, in that same report, an average annual increase in passenger traffic of 2.2 percent per year for the next 20 years, which approximates to one-and-a-half times the number of today's aircraft operations and passengers by the year 2033. If airspace capacity and throughput remain unchanged, then flight delays will increase, particularly at those airports already operating near or at capacity. Therefore it is critical to create new and improved technologies, communications, and procedures to be used by air traffic controllers and pilots. National Aeronautics and Space Administration (NASA), the FAA, and the aviation industry are working together to improve the efficiency of the National Airspace System and the cost to operate in it in several ways, one of which is through the creation of the Next Generation Air Transportation System (NextGen). NextGen is intended to provide airspace users with more precise information about traffic, routing, and weather, as well as improve the control mechanisms within the air traffic system. NASA's Air Traffic Management Technology Demonstration-1 (ATD-1) Project is designed to contribute to the goals of NextGen, and accomplishes this by integrating three NASA technologies to enable fuel-efficient arrival operations into high-density airports. The three NASA technologies and procedures combined in the ATD-1 concept are advanced arrival scheduling, controller decision support tools, and aircraft avionics to enable multiple time deconflicted and fuel efficient arrival streams in high-density terminal airspace.
Enabling Airspace Integration for High Density Urban Air Mobility
NASA Technical Reports Server (NTRS)
Mueller, Eric Richard
2017-01-01
Aviation technologies and concepts have reached a level of maturity that may soon enable an era of on-demand mobility (ODM) fueled by quiet, efficient, and largely automated air taxis. However, successfully bringing such a system to fruition will require introducing orders of magnitude more aircraft to a given airspace volume than can be accommodated by the traditional air traffic control system, among other important technical challenges. The airspace integration problem is further compounded by requirements to set aside appropriate ground infrastructure for take-off and landing areas and ensuring these new aircraft types and their operations do not burden traditional airspace users and air traffic control. These challenge for ODM may be significantly reduced by extending the concepts and technologies developed to manage small unmanned aircraft systems (UAS) at low altitude the UAS traffic management (UTM) system to higher altitudes and aircraft with humans onboard in controlled airspace, or by equipping ODM aircraft with advanced sensors, algorithms, and interfaces. The precedent of operational freedom inherent in visual flight rules and the technologies developed for large UAS and commercial aircraft automation will contribute to the evolution of an ODM system enabled by UTM. This paper describes the set of air traffic services, normally provided by the traditional air traffic system, that an ODM system would implement to achieve the high densities needed for ODMs economic viability. Finally, the paper proposes a framework for integrating, evaluating, and deploying low-, medium-, and high-density ODM concepts that build on each other to ensure operational and economic feasibility at every step.
14 CFR 91.1025 - Program operating manual contents.
Code of Federal Regulations, 2010 CFR
2010-01-01
... (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Fractional Ownership... flight; (f) Procedures to be followed by the pilot in command for determining that mechanical irregularities or defects reported for previous flights have been corrected or that correction of certain...
14 CFR 91.1025 - Program operating manual contents.
Code of Federal Regulations, 2013 CFR
2013-01-01
... (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Fractional Ownership... flight; (f) Procedures to be followed by the pilot in command for determining that mechanical irregularities or defects reported for previous flights have been corrected or that correction of certain...
14 CFR 91.1025 - Program operating manual contents.
Code of Federal Regulations, 2012 CFR
2012-01-01
... (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Fractional Ownership... flight; (f) Procedures to be followed by the pilot in command for determining that mechanical irregularities or defects reported for previous flights have been corrected or that correction of certain...
14 CFR 91.1025 - Program operating manual contents.
Code of Federal Regulations, 2014 CFR
2014-01-01
... (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Fractional Ownership... flight; (f) Procedures to be followed by the pilot in command for determining that mechanical irregularities or defects reported for previous flights have been corrected or that correction of certain...
14 CFR 91.1025 - Program operating manual contents.
Code of Federal Regulations, 2011 CFR
2011-01-01
... (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Fractional Ownership... flight; (f) Procedures to be followed by the pilot in command for determining that mechanical irregularities or defects reported for previous flights have been corrected or that correction of certain...
NASA Technical Reports Server (NTRS)
Macdonald, G.
1983-01-01
A prototype Air Traffic Control facility and multiman flight simulator facility was designed and one of the component simulators fabricated as a proof of concept. The facility was designed to provide a number of independent simple simulator cabs that would have the capability of some local, stand alone processing that would in turn interface with a larger host computer. The system can accommodate up to eight flight simulators (commercially available instrument trainers) which could be operated stand alone if no graphics were required or could operate in a common simulated airspace if connected to the host computer. A proposed addition to the original design is the capability of inputing pilot inputs and quantities displayed on the flight and navigation instruments to the microcomputer when the simulator operates in the stand alone mode to allow independent use of these commercially available instrument trainers for research. The conceptual design of the system and progress made to date on its implementation are described.
NASA Technical Reports Server (NTRS)
Knox, C. E.; Vicroy, D. D.; Simmon, D. A.
1985-01-01
A simple, airborne, flight-management descent algorithm was developed and programmed into a small programmable calculator. The algorithm may be operated in either a time mode or speed mode. The time mode was designed to aid the pilot in planning and executing a fuel-conservative descent to arrive at a metering fix at a time designated by the air traffic control system. The speed model was designed for planning fuel-conservative descents when time is not a consideration. The descent path for both modes was calculated for a constant with considerations given for the descent Mach/airspeed schedule, gross weight, wind, wind gradient, and nonstandard temperature effects. Flight tests, using the algorithm on the programmable calculator, showed that the open-loop guidance could be useful to airline flight crews for planning and executing fuel-conservative descents.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Knox, C.E.; Vicroy, D.D.; Simmon, D.A.
A simple, airborne, flight-management descent algorithm was developed and programmed into a small programmable calculator. The algorithm may be operated in either a time mode or speed mode. The time mode was designed to aid the pilot in planning and executing a fuel-conservative descent to arrive at a metering fix at a time designated by the air traffic control system. The speed model was designed for planning fuel-conservative descents when time is not a consideration. The descent path for both modes was calculated for a constant with considerations given for the descent Mach/airspeed schedule, gross weight, wind, wind gradient, andmore » nonstandard temperature effects. Flight tests, using the algorithm on the programmable calculator, showed that the open-loop guidance could be useful to airline flight crews for planning and executing fuel-conservative descents.« less
Cloud-based large-scale air traffic flow optimization
NASA Astrophysics Data System (ADS)
Cao, Yi
The ever-increasing traffic demand makes the efficient use of airspace an imperative mission, and this paper presents an effort in response to this call. Firstly, a new aggregate model, called Link Transmission Model (LTM), is proposed, which models the nationwide traffic as a network of flight routes identified by origin-destination pairs. The traversal time of a flight route is assumed to be the mode of distribution of historical flight records, and the mode is estimated by using Kernel Density Estimation. As this simplification abstracts away physical trajectory details, the complexity of modeling is drastically decreased, resulting in efficient traffic forecasting. The predicative capability of LTM is validated against recorded traffic data. Secondly, a nationwide traffic flow optimization problem with airport and en route capacity constraints is formulated based on LTM. The optimization problem aims at alleviating traffic congestions with minimal global delays. This problem is intractable due to millions of variables. A dual decomposition method is applied to decompose the large-scale problem such that the subproblems are solvable. However, the whole problem is still computational expensive to solve since each subproblem is an smaller integer programming problem that pursues integer solutions. Solving an integer programing problem is known to be far more time-consuming than solving its linear relaxation. In addition, sequential execution on a standalone computer leads to linear runtime increase when the problem size increases. To address the computational efficiency problem, a parallel computing framework is designed which accommodates concurrent executions via multithreading programming. The multithreaded version is compared with its monolithic version to show decreased runtime. Finally, an open-source cloud computing framework, Hadoop MapReduce, is employed for better scalability and reliability. This framework is an "off-the-shelf" parallel computing model that can be used for both offline historical traffic data analysis and online traffic flow optimization. It provides an efficient and robust platform for easy deployment and implementation. A small cloud consisting of five workstations was configured and used to demonstrate the advantages of cloud computing in dealing with large-scale parallelizable traffic problems.
NASA Technical Reports Server (NTRS)
Giulianetti, Demo J.
2001-01-01
Ground and airborne technologies were developed in the Terminal Area Productivity (TAP) project for increasing throughput at major airports by safely maintaining good-weather operating capacity during bad weather. Methods were demonstrated for accurately predicting vortices to prevent wake-turbulence encounters and to reduce in-trail separation requirements for aircraft approaching the same runway for landing. Technology was demonstrated that safely enabled independent simultaneous approaches in poor weather conditions to parallel runways spaced less than 3,400 ft apart. Guidance, control, and situation-awareness systems were developed to reduce congestion in airport surface operations resulting from the increased throughput, particularly during night and instrument meteorological conditions (IMC). These systems decreased runway occupancy time by safely and smoothly decelerating the aircraft, increasing taxi speed, and safely steering the aircraft off the runway. Simulations were performed in which optimal trajectories were determined by air traffic control (ATC) and communicated to flight crews by means of Center TRACON Automation System/Flight Management System (CTASFMS) automation to reduce flight delays, increase throughput, and ensure flight safety.
Improved Conflict Detection for Reducing Operational Errors in Air Traffic Control
NASA Technical Reports Server (NTRS)
Paielli, Russell A.; Erzberger, Hainz
2003-01-01
An operational error is an incident in which an air traffic controller allows the separation between two aircraft to fall below the minimum separation standard. The rates of such errors in the US have increased significantly over the past few years. This paper proposes new detection methods that can help correct this trend by improving on the performance of Conflict Alert, the existing software in the Host Computer System that is intended to detect and warn controllers of imminent conflicts. In addition to the usual trajectory based on the flight plan, a "dead-reckoning" trajectory (current velocity projection) is also generated for each aircraft and checked for conflicts. Filters for reducing common types of false alerts were implemented. The new detection methods were tested in three different ways. First, a simple flightpath command language was developed t o generate precisely controlled encounters for the purpose of testing the detection software. Second, written reports and tracking data were obtained for actual operational errors that occurred in the field, and these were "replayed" to test the new detection algorithms. Finally, the detection methods were used to shadow live traffic, and performance was analysed, particularly with regard to the false-alert rate. The results indicate that the new detection methods can provide timely warnings of imminent conflicts more consistently than Conflict Alert.
Advanced flight deck/crew station simulator functional requirements
NASA Technical Reports Server (NTRS)
Wall, R. L.; Tate, J. L.; Moss, M. J.
1980-01-01
This report documents a study of flight deck/crew system research facility requirements for investigating issues involved with developing systems, and procedures for interfacing transport aircraft with air traffic control systems planned for 1985 to 2000. Crew system needs of NASA, the U.S. Air Force, and industry were investigated and reported. A matrix of these is included, as are recommended functional requirements and design criteria for simulation facilities in which to conduct this research. Methods of exploiting the commonality and similarity in facilities are identified, and plans for exploiting this in order to reduce implementation costs and allow efficient transfer of experiments from one facility to another are presented.
Human System Integration: Regulatory Analysis
NASA Technical Reports Server (NTRS)
2005-01-01
This document was intended as an input to the Access 5 Policy Integrated Product team. Using a Human System Integration (HIS) perspective, a regulatory analyses of the FARS (specifically Part 91), the Airman s Information Manual (AIM) and the FAA Controllers Handbook (7110.65) was conducted as part of a front-end approach needed to derive HSI requirements for Unmanned Aircraft Systems (UAS) operations in the National Airspace System above FL430. The review of the above aviation reference materials yielded eighty-four functions determined to be necessary or highly desirable for flight within the Air Traffic Management System. They include categories for Flight, Communications, Navigation, Surveillance, and Hazard Avoidance.
Integrated Airport Surface Operations
NASA Technical Reports Server (NTRS)
Koczo, S.
1998-01-01
The current air traffic environment in airport terminal areas experiences substantial delays when weather conditions deteriorate to Instrument Meteorological Conditions (IMC). Research activity at NASA has culminated in the development, flight test and demonstration of a prototype Low Visibility Landing and Surface Operations (LVLASO) system. A NASA led industry team and the FAA developed the system which integrated airport surface surveillance systems, aeronautical data links, DGPS navigation, automation systems, and controller and flight deck displays. The LVLASO system was demonstrated at the Hartsfield-Atlanta International Airport using a Boeing 757-200 aircraft during August, 1997. This report documents the contractors role in this testing particularly in the area of data link and DGPS navigation.
Defining the ATC Controller Interface for Data Link Clearances
NASA Technical Reports Server (NTRS)
Rankin, James
1998-01-01
The Controller Interface (CI) is the primary method for Air Traffic Controllers to communicate with aircraft via Controller-Pilot Data Link Communications (CPDLC). The controller, wearing a microphone/headset, aurally gives instructions to aircraft as he/she would with today's voice radio systems. The CI's voice recognition system converts the instructions to digitized messages that are formatted according to the RTCA DO-219 Operational Performance Standards for ATC Two-Way Data Link Communications. The DO-219 messages are transferred via RS-232 to the ATIDS system for uplink using a Mode-S datalink. Pilot acknowledgments of controller messages are downlinked to the ATIDS system and transferred to the Cl. A computer monitor is used to convey information to the controller. Aircraft data from the ARTS database are displayed on flight strips. The flight strips are electronic versions of the strips currently used in the ATC system. Outgoing controller messages cause the respective strip to change color to indicate an unacknowledged transmission. The message text is shown on the flight strips for reference. When the pilot acknowledges the message, the strip returns to its normal color. A map of the airport can also be displayed on the monitor. In addition to voice recognition, the controller can enter messages using the monitor's touch screen or by mouse/keyboard.
STOL Traffic environment and operational procedures
NASA Technical Reports Server (NTRS)
Schlundt, R. W.; Dewolf, R. W.; Ausrotas, R. A.; Curry, R. E.; Demaio, D.; Keene, D. W.; Speyer, J. L.; Weinreich, M.; Zeldin, S.
1972-01-01
The expected traffic environment for an intercity STOL transportation system is examined, and operational procedures are discussed in order to identify problem areas which impact STOL avionics requirements. Factors considered include: traffic densities, STOL/CTOL/VTOL traffic mix, the expect ATC environment, aircraft noise models and community noise models and community noise impact, flight paths for noise abatement, wind considerations affecting landing, approach and landing considerations, STOLport site selection, runway capacity, and STOL operations at jetports, suburban airports, and separate STOLports.
Airspace Technology Demonstration 2 (ATD-2) Phase 1 Concept of Use (ConUse)
NASA Technical Reports Server (NTRS)
Jung, Yoon; Engelland, Shawn; Capps, Richard; Coppenbarger, Rich; Hooey, Becky; Sharma, Shivanjli; Stevens, Lindsay; Verma, Savita; Lohr, Gary; Chevalley, Eric;
2018-01-01
This document presents an operational Concept of Use (ConUse) for the Phase 1 Baseline Integrated Arrival, Departure, and Surface (IADS) prototype system of NASA's Airspace Technology Demonstration 2 (ATD-2) sub-project, which began demonstration in 2017 at Charlotte Douglas International Airport (CLT). NASA is developing the IADS system under the ATD-2 sub-project in coordination with the Federal Aviation Administration (FAA) and aviation industry partners. The primary goal of ATD-2 sub-project is to improve the predictability and the operational efficiency of the air traffic system in metroplex environments, through the enhancement, development, and integration of the nation's most advanced and sophisticated arrival, departure, and surface prediction, scheduling, and management systems. The ATD-2 effort is a five-year research activity through 2020. The initial phase of the ATD-2 sub-project, which is the focus of this document, will demonstrate the Phase 1 Baseline IADS capability at CLT in 2017. The Phase 1 Baseline IADS capabilities of the ATD-2 sub-project consists of: (a) Strategic and tactical surface scheduling to improve efficiency and predictability of airport surface operations, (b) Tactical departure scheduling to enhance merging of departures into overhead traffic streams via accurate predictions of takeoff times and automated coordination between the Airport Traffic Control Tower (ATCT, or Tower) and the Air Route Traffic Control Center (ARTCC, or Center), (c) Improvements in departure surface demand predictions in Time Based Flow Management (TBFM), (d) A prototype Electronic Flight Data (EFD) system provided by the FAA via the Terminal Flight Data Manager (TFDM) early implementation effort, and (e) Improved situational awareness and demand predictions through integration with the Traffic Flow Management System (TFMS), TBFM, and TFDM (3Ts) for electronic data integration and exchange, and an on-screen dashboard displaying pertinent analytics in real-time. The surface scheduling and metering element of the capability is consistent with the Surface CDM Concept of Operations published in 2014 by the FAA Surface Operations Directorate.1 Upon successful demonstration of the Phase 1 Baseline IADS capability, follow-on demonstrations of the matured IADS traffic management capabilities will be conducted in the 2018-2020 timeframe. At the end of each phase of the demonstrations, NASA will transfer the ATD-2 sub-project technology to the FAA and industry partners.
DOT National Transportation Integrated Search
2009-08-01
Federal Aviation Administration (FAA) air traffic flow management (TFM) : decision-making is based primarily on a comparison of deterministic predictions of demand : and capacity at National Airspace System (NAS) elements such as airports, fixes and ...
14 CFR 91.1017 - Amending program manager's management specifications.
Code of Federal Regulations, 2013 CFR
2013-01-01
... management specifications, the following procedure applies: (1) The Flight Standards District Office that... filed within 30 days, the procedures of paragraph (c) of this section apply. (e) If the Flight Standards... TRANSPORTATION (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Fractional...
14 CFR 91.1017 - Amending program manager's management specifications.
Code of Federal Regulations, 2011 CFR
2011-01-01
... management specifications, the following procedure applies: (1) The Flight Standards District Office that... filed within 30 days, the procedures of paragraph (c) of this section apply. (e) If the Flight Standards... TRANSPORTATION (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Fractional...
14 CFR 91.1039 - IFR takeoff, approach and landing minimums.
Code of Federal Regulations, 2010 CFR
2010-01-01
...) For flight planning purposes, if the destination airport does not have a weather reporting facility... TRANSPORTATION (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Fractional... on a program aircraft operating a program flight may begin an instrument approach procedure to an...
14 CFR 91.1039 - IFR takeoff, approach and landing minimums.
Code of Federal Regulations, 2011 CFR
2011-01-01
...) For flight planning purposes, if the destination airport does not have a weather reporting facility... TRANSPORTATION (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Fractional... on a program aircraft operating a program flight may begin an instrument approach procedure to an...
14 CFR 91.1039 - IFR takeoff, approach and landing minimums.
Code of Federal Regulations, 2013 CFR
2013-01-01
...) For flight planning purposes, if the destination airport does not have a weather reporting facility... TRANSPORTATION (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Fractional... on a program aircraft operating a program flight may begin an instrument approach procedure to an...
14 CFR 91.1039 - IFR takeoff, approach and landing minimums.
Code of Federal Regulations, 2012 CFR
2012-01-01
...) For flight planning purposes, if the destination airport does not have a weather reporting facility... TRANSPORTATION (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Fractional... on a program aircraft operating a program flight may begin an instrument approach procedure to an...
14 CFR 91.1039 - IFR takeoff, approach and landing minimums.
Code of Federal Regulations, 2014 CFR
2014-01-01
...) For flight planning purposes, if the destination airport does not have a weather reporting facility... TRANSPORTATION (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Fractional... on a program aircraft operating a program flight may begin an instrument approach procedure to an...
Evolutionary Concepts for Decentralized Air Traffic Flow Management
NASA Technical Reports Server (NTRS)
Adams, Milton; Kolitz, Stephan; Milner, Joseph; Odoni, Amedeo
1997-01-01
Alternative concepts for modifying the policies and procedures under which the air traffic flow management system operates are described, and an approach to the evaluation of those concepts is discussed. Here, air traffic flow management includes all activities related to the management of the flow of aircraft and related system resources from 'block to block.' The alternative concepts represent stages in the evolution from the current system, in which air traffic management decision making is largely centralized within the FAA, to a more decentralized approach wherein the airlines and other airspace users collaborate in air traffic management decision making with the FAA. The emphasis in the discussion is on a viable medium-term partially decentralized scenario representing a phase of this evolution that is consistent with the decision-making approaches embodied in proposed Free Flight concepts for air traffic management. System-level metrics for analyzing and evaluating the various alternatives are defined, and a simulation testbed developed to generate values for those metrics is described. The fundamental issue of modeling airline behavior in decentralized environments is also raised, and an example of such a model, which deals with the preservation of flight bank integrity in hub airports, is presented.
Estimate of air carrier and air taxi crash frequencies from high altitude en route flight operations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanzo, D.; Kimura, C.Y.; Prassinos, P.G.
1996-06-03
In estimating the frequency of an aircraft crashing into a facility, it has been found convenient to break the problem down into two broad categories. One category estimates the aircraft crash frequency due to air traffic from nearby airports, the so-called near-airport environment. The other category estimates the aircraft crash frequency onto facilities due to air traffic from airways, jet routes, and other traffic flying outside the near-airport environment The total aircraft crash frequency is the summation of the crash frequencies from each airport near the facility under evaluation and from all airways, jet routes, and other traffic near themore » facility of interest. This paper will examine the problems associated with the determining the aircraft crash frequencies onto facilities outside the near-airport environment. This paper will further concentrate on the estimating the risk of aircraft crashes to ground facilities due to high altitude air carrier and air taxi traffic. High altitude air carrier and air taxi traffic will be defined as all air carrier and air taxi flights above 18,000 feet Mean Sea Level (MSL).« less
NASA Technical Reports Server (NTRS)
Johnson, Marcus; Jung, Jaewoo; Rios, Joseph; Mercer, Joey; Homola, Jeffrey; Prevot, Thomas; Mulfinger, Daniel; Kopardekar, Parimal
2017-01-01
Many applications of small Unmanned Aircraft System (UAS) have been envisioned. These include surveillance of key assets such as pipelines, rail, or electric wires, deliveries, search and rescue, traffic monitoring, videography, and precision agriculture. These operations are likely to occur in the same airspace in the presence of many static and dynamic constraints such as airports, and high wind areas. Therefore, operations of small UAS need to be managed to ensure safety and operation efficiency is maintained. NASA has advanced a concept for UAS Traffic Management (UTM) and has initiated a research effort to refine that concept and develop operational and system requirements. A UTM research platform is in development and flight test activities to evaluate core functions and key assumptions focusing exclusively on UAS operations in different environments are underway. This seminar will present lessons learned from a recent flight test focused on enabling operations of multiple UAS in lower-risk environments within and beyond visual line of sight (BVLOS).
Incorporating Data Link Messaging into a Multi-function Display for General Aviation Aircraft
NASA Technical Reports Server (NTRS)
Adams, Catherine A.; Murdoch, Jennifer L.
2006-01-01
One objective of the Small Aircraft Transportation System (SATS) Project is to increase the capacity and utilization of small non-towered, non-radar equipped airports by transferring traffic management activities to an automated system and separation responsibilities to general aviation (GA) pilots. This paper describes the development of a research multi-function display (MFD) to support the interaction between pilots and an automated Airport Management Module (AMM). Preliminary results of simulation and flight tests indicate that adding the responsibility of monitoring other traffic for self-separation does not increase pilots subjective workload levels. Pilots preferred using the enhanced MFD to execute flight procedures, reporting improved situation awareness over conventional instrument flight rules (IFR) procedures.
1988-07-29
VOLff2) 6 July 19837 A-74 A1.5.6 MONITORING NON-CONTROLLED OBJECTS AIM, 7 OIHERS REPORT AIRSPACEJ FIRST 10 DETECT INTRUSION IradR’SIoN BY NON-CON’TROLLED 1...1988 Volume II: ACF/ACCC Terminal and En Route Controllers (ClIG 1) 6 . Porliming Organization Code 7 . Author(s) 8. Performing Organization Report No...MANEUVER SYSTEM GENERATES ABSORPT ION PREVIOUSLY PREPARED RECEIVED MANEUVER FOR A FLIGHT CLEAPANCEI D0T/FAA/AP-47-01 (VOLt2) 6 July 1987 A- 7 A,1.O
NASA Technical Reports Server (NTRS)
Robinson, Daryl C.
2002-01-01
While the results of this paper are similar to those of [I], in this paper technical difficulties present in [I] are eliminated, producing better results, enabling one to more readily see the benefits of Prioritized CSMA (PCSMA). A new analysis section also helps to generalize this research so that it is not limited to exploration of the new concept of PCSMA. Commercially available network simulation software, OPNET version 7.0, simulations are presented involving an important application of the Aeronautical Telecommunications Network (ATN), Controller Pilot Data Link Communications (CPDLC) over the Very High Frequency Data Link Mode 2 (VDL-2). Communication is modeled for essentially all incoming and outgoing nonstop air-traffic for just three United States cities: Cleveland, Cincinnati, and Detroit. The simulation involves 111 Air Traffic Control (ATC) ground stations, 32 airports distributed throughout the U.S., which are either sources or destinations for the air traffic landing or departing from the three cities, and also 1,235 equally equipped aircraft-taking off, flying realistic free-flight trajectories, and landing in a 24-hr period. Collision-less PCSMA is successfully tested and compared with the traditional CSMA typically associated with VDL-2. The performance measures include latency, throughput, and packet loss. As expected, PCSMA is much quicker and more efficient than traditional CSMA. These simulation results show the potency of PCSMA for implementing low latency, high throughput and efficient connectivity. Moreover, since PCSMA outperforms traditional CSMA, by simulating with it, we can determine the limits of performance beyond which traditional CSMA may not pass. So we have the tools to determine the traffic-loading conditions where traditional CSMA will fail, and we are testing a new and better data link that could replace it with relative ease. Work is currently being done to drastically expand the number of flights to make the simulation more representative of the National Aerospace System.
Midair collisions - The accidents, the systems, and the Realpolitik
NASA Technical Reports Server (NTRS)
Wiener, E. L.
1980-01-01
Two midair collisions occurring in 1978 are described, and the air traffic control system and procedures in use at the time, human factors implications and political consequences of the accidents are examined. The first collision occurred in Memphis and involved a Falcon jet and a Cessna 150 in a situation in which the controllers handling each aircraft were not aware of the presence of the other aircraft until it was too late. The second occurred in San Diego four months later, when a Boeing 727 on a visual approach struck a Cessna 172 from the rear. Following the San Diego collision there arose a great deal of investigative activity, resulting in suggestions for tighter control on visual flight rules aircraft and the expansion of positive control airspace. These issues then led to a political battle involving general aviation, the FAA and the Congress. It is argued, however, that the collisions were in fact system-induced errors resulting from an air traffic control system which emphasizes airspace allocation and politics rather than the various human factors problems facing pilots and controllers.
Arrival Metering Precision Study
NASA Technical Reports Server (NTRS)
Prevot, Thomas; Mercer, Joey; Homola, Jeffrey; Hunt, Sarah; Gomez, Ashley; Bienert, Nancy; Omar, Faisal; Kraut, Joshua; Brasil, Connie; Wu, Minghong, G.
2015-01-01
This paper describes the background, method and results of the Arrival Metering Precision Study (AMPS) conducted in the Airspace Operations Laboratory at NASA Ames Research Center in May 2014. The simulation study measured delivery accuracy, flight efficiency, controller workload, and acceptability of time-based metering operations to a meter fix at the terminal area boundary for different resolution levels of metering delay times displayed to the air traffic controllers and different levels of airspeed information made available to the Time-Based Flow Management (TBFM) system computing the delay. The results show that the resolution of the delay countdown timer (DCT) on the controllers display has a significant impact on the delivery accuracy at the meter fix. Using the 10 seconds rounded and 1 minute rounded DCT resolutions resulted in more accurate delivery than 1 minute truncated and were preferred by the controllers. Using the speeds the controllers entered into the fourth line of the data tag to update the delay computation in TBFM in high and low altitude sectors increased air traffic control efficiency and reduced fuel burn for arriving aircraft during time based metering.
32 CFR 245.21 - ESCAT air traffic priority list.
Code of Federal Regulations, 2013 CFR
2013-07-01
... aircraft post-maintenance test flights. (7) Federal aircraft post maintenance check flights in support of... identified as high threat targets. (c) Priority Three. (1) Forces being deployed or performing pre-deployment...
32 CFR 245.21 - ESCAT air traffic priority list.
Code of Federal Regulations, 2010 CFR
2010-07-01
... aircraft post-maintenance test flights. (7) Federal aircraft post maintenance check flights in support of... identified as high threat targets. (c) Priority Three. (1) Forces being deployed or performing pre-deployment...
32 CFR 245.21 - ESCAT air traffic priority list.
Code of Federal Regulations, 2014 CFR
2014-07-01
... aircraft post-maintenance test flights. (7) Federal aircraft post maintenance check flights in support of... identified as high threat targets. (c) Priority Three. (1) Forces being deployed or performing pre-deployment...
32 CFR 245.21 - ESCAT air traffic priority list.
Code of Federal Regulations, 2011 CFR
2011-07-01
... aircraft post-maintenance test flights. (7) Federal aircraft post maintenance check flights in support of... identified as high threat targets. (c) Priority Three. (1) Forces being deployed or performing pre-deployment...