Sample records for training adapting simulators

  1. Development of an Integrated Team Training Design and Assessment Architecture to Support Adaptability in Healthcare Teams

    DTIC Science & Technology

    2016-10-01

    and implementation of embedded, adaptive feedback and performance assessment. The investigators also initiated work designing a Bayesian Belief ...training; Teamwork; Adaptive performance; Leadership; Simulation; Modeling; Bayesian belief networks (BBN) 16. SECURITY CLASSIFICATION OF: 17. LIMITATION...Trauma teams Team training Teamwork Adaptability Adaptive performance Leadership Simulation Modeling Bayesian belief networks (BBN) 6

  2. Models and Methods for Adaptive Management of Individual and Team-Based Training Using a Simulator

    NASA Astrophysics Data System (ADS)

    Lisitsyna, L. S.; Smetyuh, N. P.; Golikov, S. P.

    2017-05-01

    Research of adaptive individual and team-based training has been analyzed and helped find out that both in Russia and abroad, individual and team-based training and retraining of AASTM operators usually includes: production training, training of general computer and office equipment skills, simulator training including virtual simulators which use computers to simulate real-world manufacturing situation, and, as a rule, the evaluation of AASTM operators’ knowledge determined by completeness and adequacy of their actions under the simulated conditions. Such approach to training and re-training of AASTM operators stipulates only technical training of operators and testing their knowledge based on assessing their actions in a simulated environment.

  3. Motion sickness adaptation to Coriolis-inducing head movements in a sustained G flight simulator.

    PubMed

    Newman, Michael C; McCarthy, Geoffrey W; Glaser, Scott T; Bonato, Frederick; Bubka, Andrea

    2013-02-01

    Technological advances have allowed centrifuges to become more than physiological testing and training devices; sustained G, fully interactive flight simulation is now possible. However, head movements under G can result in vestibular stimulation that can lead to motion sickness (MS) symptoms that are potentially distracting, nauseogenic, and unpleasant. In the current study an MS adaptation protocol was tested for head movements under +Gz. Experienced pilots made 14 predetermined head movements in a sustained G flight simulator (at 3 +Gz) on 5 consecutive days and 17 d after training. Symptoms were measured after each head turn using a subjective 0-10 MS scale. The Simulator Sickness Questionnaire (SSQ) was also administered before and after each daily training session. After five daily training sessions, normalized mean MS scores were 58% lower than on Day 1. Mean total, nausea, and disorientation SSQ scores were 55%, 52%, and 78% lower, respectively. During retesting 17 d after training, nearly all scores indicated 90-100% retention of training benefits. The reduction of unpleasant effects associated with sustained G flight simulation using an adaptation training protocol may enhance the effectiveness of simulation. Practical use of sustained G simulators is also likely to be interspersed with other types of ground and in-flight training. Hence, it would be undesirable and unpleasant for trainees to lose adaptation benefits after a short gap in centrifuge use. However, current results suggest that training gaps in excess of 2 wk may be permissible with almost no loss of adaptation training benefits.

  4. Adaptive thinking & leadership simulation game training for special forces officers.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raybourn, Elaine Marie; Mendini, Kip; Heneghan, Jerry

    Complex problem solving approaches and novel strategies employed by the military at the squad, team, and commander level are often best learned experimentally. Since live action exercises can be costly, advances in simulation game training technology offer exciting ways to enhance current training. Computer games provide an environment for active, critical learning. Games open up possibilities for simultaneous learning on multiple levels; players may learn from contextual information embedded in the dynamics of the game, the organic process generated by the game, and through the risks, benefits, costs, outcomes, and rewards of alternative strategies that result from decision making. Inmore » the present paper we discuss a multiplayer computer game simulation created for the Adaptive Thinking & Leadership (ATL) Program to train Special Forces Team Leaders. The ATL training simulation consists of a scripted single-player and an immersive multiplayer environment for classroom use which leverages immersive computer game technology. We define adaptive thinking as consisting of competencies such as negotiation and consensus building skills, the ability to communicate effectively, analyze ambiguous situations, be self-aware, think innovatively, and critically use effective problem solving skills. Each of these competencies is an essential element of leader development training for the U.S. Army Special Forces. The ATL simulation is used to augment experiential learning in the curriculum for the U.S. Army JFK Special Warfare Center & School (SWCS) course in Adaptive Thinking & Leadership. The school is incorporating the ATL simulation game into two additional training pipelines (PSYOPS and Civil Affairs Qualification Courses) that are also concerned with developing cultural awareness, interpersonal communication adaptability, and rapport-building skills. In the present paper, we discuss the design, development, and deployment of the training simulation, and emphasize how the multiplayer simulation game is successfully used in the Special Forces Officer training program.« less

  5. Space motion sickness preflight adaptation training: preliminary studies with prototype trainers

    NASA Technical Reports Server (NTRS)

    Parker, D. E.; Rock, J. C.; von Gierke, H. E.; Ouyang, L.; Reschke, M. F.; Arrott, A. P.

    1987-01-01

    Preflight training frequently has been proposed as a potential solution to the problem of space motion sickness. The paper considers successively the otolith reinterpretation, the concept for a preflight adaptation trainer and the research with the Miami University Seesaw, the Wright Patterson Air-Force Base Dynamic Environment Simulator and the Visually Coupled Airborne Systems Simulator prototype adaptation trainers.

  6. Adaptive Game Based Learning Using Brain Measures for Attention--Some Explorations

    ERIC Educational Resources Information Center

    van der Pal, Jelke; Roos, Christopher; Sewnath, Ghanshaam; Rosheuvel, Christian

    2016-01-01

    The prospective use of low fidelity simulation and gaming in aviation training is high, and may facilitate individual, personal training needs in usually asynchronous training setting. Without direct feedback from, or intervention by, an instructor, adaptivity of the training environment is in high demand to ensure training sessions maintain an…

  7. Web-Based Simulation in Psychiatry Residency Training: A Pilot Study

    ERIC Educational Resources Information Center

    Gorrindo, Tristan; Baer, Lee; Sanders, Kathy M.; Birnbaum, Robert J.; Fromson, John A.; Sutton-Skinner, Kelly M.; Romeo, Sarah A.; Beresin, Eugene V.

    2011-01-01

    Background: Medical specialties, including surgery, obstetrics, anesthesia, critical care, and trauma, have adopted simulation technology for measuring clinical competency as a routine part of their residency training programs; yet, simulation technologies have rarely been adapted or used for psychiatry training. Objective: The authors describe…

  8. A self-paced brain-computer interface for controlling a robot simulator: an online event labelling paradigm and an extended Kalman filter based algorithm for online training.

    PubMed

    Tsui, Chun Sing Louis; Gan, John Q; Roberts, Stephen J

    2009-03-01

    Due to the non-stationarity of EEG signals, online training and adaptation are essential to EEG based brain-computer interface (BCI) systems. Self-paced BCIs offer more natural human-machine interaction than synchronous BCIs, but it is a great challenge to train and adapt a self-paced BCI online because the user's control intention and timing are usually unknown. This paper proposes a novel motor imagery based self-paced BCI paradigm for controlling a simulated robot in a specifically designed environment which is able to provide user's control intention and timing during online experiments, so that online training and adaptation of the motor imagery based self-paced BCI can be effectively investigated. We demonstrate the usefulness of the proposed paradigm with an extended Kalman filter based method to adapt the BCI classifier parameters, with experimental results of online self-paced BCI training with four subjects.

  9. Feasibility of the adaptive and automatic presentation of tasks (ADAPT) system for rehabilitation of upper extremity function post-stroke.

    PubMed

    Choi, Younggeun; Gordon, James; Park, Hyeshin; Schweighofer, Nicolas

    2011-08-03

    Current guidelines for rehabilitation of arm and hand function after stroke recommend that motor training focus on realistic tasks that require reaching and manipulation and engage the patient intensively, actively, and adaptively. Here, we investigated the feasibility of a novel robotic task-practice system, ADAPT, designed in accordance with such guidelines. At each trial, ADAPT selects a functional task according to a training schedule and with difficulty based on previous performance. Once the task is selected, the robot picks up and presents the corresponding tool, simulates the dynamics of the tasks, and the patient interacts with the tool to perform the task. Five participants with chronic stroke with mild to moderate impairments (> 9 months post-stroke; Fugl-Meyer arm score 49.2 ± 5.6) practiced four functional tasks (selected out of six in a pre-test) with ADAPT for about one and half hour and 144 trials in a pseudo-random schedule of 3-trial blocks per task. No adverse events occurred and ADAPT successfully presented the six functional tasks without human intervention for a total of 900 trials. Qualitative analysis of trajectories showed that ADAPT simulated the desired task dynamics adequately, and participants reported good, although not excellent, task fidelity. During training, the adaptive difficulty algorithm progressively increased task difficulty leading towards an optimal challenge point based on performance; difficulty was then continuously adjusted to keep performance around the challenge point. Furthermore, the time to complete all trained tasks decreased significantly from pretest to one-hour post-test. Finally, post-training questionnaires demonstrated positive patient acceptance of ADAPT. ADAPT successfully provided adaptive progressive training for multiple functional tasks based on participant's performance. Our encouraging results establish the feasibility of ADAPT; its efficacy will next be tested in a clinical trial.

  10. Assessment of COTS IR image simulation tools for ATR development

    NASA Astrophysics Data System (ADS)

    Seidel, Heiko; Stahl, Christoph; Bjerkeli, Frode; Skaaren-Fystro, Paal

    2005-05-01

    Following the tendency of increased use of imaging sensors in military aircraft, future fighter pilots will need onboard artificial intelligence e.g. ATR for aiding them in image interpretation and target designation. The European Aeronautic Defence and Space Company (EADS) in Germany has developed an advanced method for automatic target recognition (ATR) which is based on adaptive neural networks. This ATR method can assist the crew of military aircraft like the Eurofighter in sensor image monitoring and thereby reduce the workload in the cockpit and increase the mission efficiency. The EADS ATR approach can be adapted for imagery of visual, infrared and SAR sensors because of the training-based classifiers of the ATR method. For the optimal adaptation of these classifiers they have to be trained with appropriate and sufficient image data. The training images must show the target objects from different aspect angles, ranges, environmental conditions, etc. Incomplete training sets lead to a degradation of classifier performance. Additionally, ground truth information i.e. scenario conditions like class type and position of targets is necessary for the optimal adaptation of the ATR method. In Summer 2003, EADS started a cooperation with Kongsberg Defence & Aerospace (KDA) from Norway. The EADS/KDA approach is to provide additional image data sets for training-based ATR through IR image simulation. The joint study aims to investigate the benefits of enhancing incomplete training sets for classifier adaptation by simulated synthetic imagery. EADS/KDA identified the requirements of a commercial-off-the-shelf IR simulation tool capable of delivering appropriate synthetic imagery for ATR development. A market study of available IR simulation tools and suppliers was performed. After that the most promising tool was benchmarked according to several criteria e.g. thermal emission model, sensor model, targets model, non-radiometric image features etc., resulting in a recommendation. The synthetic image data that are used for the investigation are generated using the recommended tool. Within the scope of this study, ATR performance on IR imagery using classifiers trained on real, synthetic and mixed image sets was evaluated. The performance of the adapted classifiers is assessed using recorded IR imagery with known ground-truth and recommendations are given for the use of COTS IR image simulation tools for ATR development.

  11. Transfer of Training from Virtual to Real Baseball Batting

    PubMed Central

    Gray, Rob

    2017-01-01

    The use of virtual environments (VE) for training perceptual-motors skills in sports continues to be a rapidly growing area. However, there is a dearth of research that has examined whether training in sports simulation transfers to the real task. In this study, the transfer of perceptual-motor skills trained in an adaptive baseball batting VE to real baseball performance was investigated. Eighty participants were assigned equally to groups undertaking adaptive hitting training in the VE, extra sessions of batting practice in the VE, extra sessions of real batting practice, and a control condition involving no additional training to the players’ regular practice. Training involved two 45 min sessions per week for 6 weeks. Performance on a batting test in the VE, in an on-field test of batting, and on a pitch recognition test was measured pre- and post-training. League batting statistics in the season following training and the highest level of competition reached in the following 5 years were also analyzed. For the majority of performance measures, the adaptive VE training group showed a significantly greater improvement from pre-post training as compared to the other groups. In addition, players in this group had superior batting statistics in league play and reached higher levels of competition. Training in a VE can be used to improve real, on-field performance especially when designers take advantage of simulation to provide training methods (e.g., adaptive training) that do not simply recreate the real training situation. PMID:29326627

  12. Planning a sports training program using Adaptive Particle Swarm Optimization with emphasis on physiological constraints.

    PubMed

    Kumyaito, Nattapon; Yupapin, Preecha; Tamee, Kreangsak

    2018-01-08

    An effective training plan is an important factor in sports training to enhance athletic performance. A poorly considered training plan may result in injury to the athlete, and overtraining. Good training plans normally require expert input, which may have a cost too great for many athletes, particularly amateur athletes. The objectives of this research were to create a practical cycling training plan that substantially improves athletic performance while satisfying essential physiological constraints. Adaptive Particle Swarm Optimization using ɛ-constraint methods were used to formulate such a plan and simulate the likely performance outcomes. The physiological constraints considered in this study were monotony, chronic training load ramp rate and daily training impulse. A comparison of results from our simulations against a training plan from British Cycling, which we used as our standard, showed that our training plan outperformed the benchmark in terms of both athletic performance and satisfying all physiological constraints.

  13. Motor simulation and the coordination of self and other in real-time joint action

    PubMed Central

    Ticini, Luca F.; Schütz-Bosbach, Simone; Keller, Peter E.

    2014-01-01

    Joint actions require the integration of simultaneous self- and other-related behaviour. Here, we investigated whether this function is underpinned by motor simulation, that is the capacity to represent a perceived action in terms of the neural resources required to execute it. This was tested in a music performance experiment wherein on-line brain stimulation (double-pulse transcranial magnetic stimulation, dTMS) was employed to interfere with motor simulation. Pianists played the right-hand part of piano pieces in synchrony with a recording of the left-hand part, which had (Trained) or had not (Untrained) been practiced beforehand. Training was assumed to enhance motor simulation. The task required adaptation to tempo changes in the left-hand part that, in critical conditions, were preceded by dTMS delivered over the right primary motor cortex. Accuracy of tempo adaptation following dTMS or sham stimulations was compared across Trained and Untrained conditions. Results indicate that dTMS impaired tempo adaptation accuracy only during the perception of trained actions. The magnitude of this interference was greater in empathic individuals possessing a strong tendency to adopt others’ perspectives. These findings suggest that motor simulation provides a functional resource for the temporal coordination of one’s own behaviour with others in dynamic social contexts. PMID:23709353

  14. A Guide to Computer Simulations of Three Adaptive Instructional Models for the Advanced Instructional System Phases II and III. Final Report.

    ERIC Educational Resources Information Center

    Hansen, Duncan N.; And Others

    Computer simulations of three individualized adaptive instructional models (AIM) were undertaken to determine if these models function as prescribed in Air Force technical training programs. In addition, the project sought to develop a user's guide for effective understanding of adaptive models during field implementation. Successful simulations…

  15. Design and Evaluation of Simulations for the Development of Complex Decision-Making Skills.

    ERIC Educational Resources Information Center

    Hartley, Roger; Varley, Glen

    2002-01-01

    Command and Control Training Using Simulation (CACTUS) is a computer digital mapping system used by police to manage large-scale public events. Audio and video records of adaptive training scenarios using CACTUS show how the simulation develops decision-making skills for strategic and tactical event management. (SK)

  16. Feasibility of the adaptive and automatic presentation of tasks (ADAPT) system for rehabilitation of upper extremity function post-stroke

    PubMed Central

    2011-01-01

    Background Current guidelines for rehabilitation of arm and hand function after stroke recommend that motor training focus on realistic tasks that require reaching and manipulation and engage the patient intensively, actively, and adaptively. Here, we investigated the feasibility of a novel robotic task-practice system, ADAPT, designed in accordance with such guidelines. At each trial, ADAPT selects a functional task according to a training schedule and with difficulty based on previous performance. Once the task is selected, the robot picks up and presents the corresponding tool, simulates the dynamics of the tasks, and the patient interacts with the tool to perform the task. Methods Five participants with chronic stroke with mild to moderate impairments (> 9 months post-stroke; Fugl-Meyer arm score 49.2 ± 5.6) practiced four functional tasks (selected out of six in a pre-test) with ADAPT for about one and half hour and 144 trials in a pseudo-random schedule of 3-trial blocks per task. Results No adverse events occurred and ADAPT successfully presented the six functional tasks without human intervention for a total of 900 trials. Qualitative analysis of trajectories showed that ADAPT simulated the desired task dynamics adequately, and participants reported good, although not excellent, task fidelity. During training, the adaptive difficulty algorithm progressively increased task difficulty leading towards an optimal challenge point based on performance; difficulty was then continuously adjusted to keep performance around the challenge point. Furthermore, the time to complete all trained tasks decreased significantly from pretest to one-hour post-test. Finally, post-training questionnaires demonstrated positive patient acceptance of ADAPT. Conclusions ADAPT successfully provided adaptive progressive training for multiple functional tasks based on participant's performance. Our encouraging results establish the feasibility of ADAPT; its efficacy will next be tested in a clinical trial. PMID:21813010

  17. QuickStrike ASOC Battlefield Simulation: Preparing the War Fighter to Win

    NASA Technical Reports Server (NTRS)

    Jones, Richard L.

    2010-01-01

    The QuickStrike ASOC (Air Support Operations Center) Battlefield Simulation fills a crucial gap in USAF and United Kingdom Close Air Support (CAS) and airspace manager training. The system now provides six squadrons with the capability to conduct total-mission training events whenever the personnel and time are available. When the 111th ASOC returned from their first deployment to Afghanistan they realized the training available prior to deployment was inadequate. They sought an organic training capability focused on the ASOC mission that was low cost, simple to use, adaptable, and available now. Using a commercial off-the-shelf simulation, they developed a complete training system by adapting the simulation to their training needs. Through more than two years of spiral development, incorporating lessons learned, the system has matured, and can now realistically replicate the Tactical Operations Center (TOC) in Kabul, Afghanistan, the TOC supporting the mission in Iraq, or can expand to support a major conflict scenario. The training system provides a collaborative workspace for the training audience and exercise control group via integrated software and workstations that can easily adapt to new mission reqUirements and TOC configurations. The system continues to mature. Based on inputs from the war fighter, new capabilities have been incorporated to add realism and simplify the scenario development process. The QuickStrike simulation can now import TBMCS Air Tasking Order air mission data and can provide air and ground tracks to a common operating picture; presented through either C2PC or JADOCS. This oranic capability to practice team processes and tasks and to conduct mission rehearsals proved its value in the 111 h ASOS's next deployment. The ease of scenario development and the simple to learn and intuitive gamelike interface enables the squadrons to develop and share scenarios incorporating lessons learned from every deployment. These war fighters have now filled the training gap and have the capability they need to train to win.

  18. Adaptive optics vision simulation and perceptual learning system based on a 35-element bimorph deformable mirror.

    PubMed

    Dai, Yun; Zhao, Lina; Xiao, Fei; Zhao, Haoxin; Bao, Hua; Zhou, Hong; Zhou, Yifeng; Zhang, Yudong

    2015-02-10

    An adaptive optics visual simulation combined with a perceptual learning (PL) system based on a 35-element bimorph deformable mirror (DM) was established. The larger stroke and smaller size of the bimorph DM made the system have larger aberration correction or superposition ability and be more compact. By simply modifying the control matrix or the reference matrix, select correction or superposition of aberrations was realized in real time similar to a conventional adaptive optics closed-loop correction. PL function was first integrated in addition to conventional adaptive optics visual simulation. PL training undertaken with high-order aberrations correction obviously improved the visual function of adult anisometropic amblyopia. The preliminary application of high-order aberrations correction with PL training on amblyopia treatment was being validated with a large scale population, which might have great potential in amblyopia treatment and visual performance maintenance.

  19. Simulation in Training--The Current Imperative.

    DTIC Science & Technology

    1980-05-16

    Carlisle Barracks, PA 17013 - I1. CONTROLLING OFFICE NAME AND ADDRESS 12 . REPORT DATE I. NUMBER OF PAGES 24 14. MONITORING AGENCY NAME & ADDRESSQIf different...growth in components, spare parts, fuel and lubricants, as well as limited space in which to train, the Army must adapt a strategy of field train- ing...I________________________ k AUTHOR(S): Richard P. Diehl, LTC, INF TITLE: Simulation in Training--The Current Imperative FORMAT: Individual Study Project DATE: 16

  20. Adaptive Training Considerations for Use in Simulation-Based Systems

    DTIC Science & Technology

    2010-09-01

    their rulings were given and three cases were used for both the pretest and posttest . In the fully adaptive condition, the number of instances...Mercado Anthony J. Aakre KAEGAN Corporation NAVAL AIR WARFARE CENTER TRAINING SYSTEMS DIVISION 12350 Research Parkway Orlando, FL, 32826-3275...Engineering Director, Research & Technology Division Department Special Report 2010-001 2

  1. Individual Learner and Team Modeling for Adaptive Training and Education in Support of the US Army Learning Model: Research Outline

    DTIC Science & Technology

    2015-09-01

    evaluate adaptive technologies to make them usable by a larger segment of the training and educational community. This research includes 5...Needed for Modeling Small Unit Team Processes and Performance Outcomes That Can Be Used in Adaptive Tutoring 25 8.2 Design Simulation Technologies ...learning and career development through the growth of metacognitive (e.g., reflection), self-assessment, and motivational skills (Butler and Winne 1995

  2. Colonoscopy procedure simulation: virtual reality training based on a real time computational approach.

    PubMed

    Wen, Tingxi; Medveczky, David; Wu, Jackie; Wu, Jianhuang

    2018-01-25

    Colonoscopy plays an important role in the clinical screening and management of colorectal cancer. The traditional 'see one, do one, teach one' training style for such invasive procedure is resource intensive and ineffective. Given that colonoscopy is difficult, and time-consuming to master, the use of virtual reality simulators to train gastroenterologists in colonoscopy operations offers a promising alternative. In this paper, a realistic and real-time interactive simulator for training colonoscopy procedure is presented, which can even include polypectomy simulation. Our approach models the colonoscopy as thick flexible elastic rods with different resolutions which are dynamically adaptive to the curvature of the colon. More material characteristics of this deformable material are integrated into our discrete model to realistically simulate the behavior of the colonoscope. We present a simulator for training colonoscopy procedure. In addition, we propose a set of key aspects of our simulator that give fast, high fidelity feedback to trainees. We also conducted an initial validation of this colonoscopic simulator to determine its clinical utility and efficacy.

  3. Hypoxia and training-induced adaptation of hormonal responses to exercise in humans.

    PubMed

    Engfred, K; Kjaer, M; Secher, N H; Friedman, D B; Hanel, B; Nielsen, O J; Bach, F W; Galbo, H; Levine, B D

    1994-01-01

    To establish whether or not hypoxia influences the training-induced adaptation of hormonal responses to exercise, 21 healthy, untrained subjects (2) years, mean (SE)] were studied in three groups before and after 5 weeks' training (cycle ergometer, 45 min.day-1, 5 days.week-1). Group 1 trained at sea level at 70% maximal oxygen uptake (VO2max), group 2 in a hypobaric chamber at a simulated altitude of 2500 m at 70% of altitude VO2max, and group 3 at a simulated altitude of 2500 m at the same absolute work rate as group 1. Arterial blood was sampled before, during and at the end of exhaustive cycling at sea level (85% of pretraining VO2max). VO2max increased by 12 (2)% with no significant difference between groups, whereas endurance improved most in group 1 (P < 0.05). Training-induced changes in response to exercise of noradrenaline, adrenaline, growth hormone, beta-endorphin, glucagon, and insulin were similar in the three groups. Concentrations of erythropoietin and 2,3-diphosphoglycerate at rest did not change over the training period. In conclusion, within 5 weeks of training, no further adaptation of hormonal exercise responses takes place if intensity is increased above 70% VO2max. Furthermore, hypoxia per se does not add to the training-induced hormonal responses to exercise.

  4. Promoting cultural humility during labor and birth: putting theory into action during PRONTO obstetric and neonatal emergency training.

    PubMed

    Fahey, Jenifer O; Cohen, Susanna R; Holme, Francesca; Buttrick, Elizabeth S; Dettinger, Julia C; Kestler, Edgar; Walker, Dilys M

    2013-01-01

    Maternal and neonatal mortality in Northern Guatemala, a region with a high percentage of indigenous people, is disproportionately high. Initiatives to improve quality of care at local health facilities equipped for births, and increasing the number of births attended at these facilities will help address this problem. PRONTO (Programa de Rescate Obstétrico y Neonatal: Tratamiento Óptimo y Oportuno) is a low-tech, high-fidelity, simulation-based, provider-to-provider training in the management of obstetric and neonatal emergencies. This program has been successfully tested and implemented in Mexico. PRONTO will now be implemented in Guatemala as part of an initiative to decrease maternal and perinatal mortality. Guatemalan health authorities have requested that the training include training on cultural humility and humanized birth. This article describes the process of curricular adaptation to satisfy this request. The PRONTO team adapted the existing program through 4 steps: (a) analysis of the problem and context through a review of qualitative data and stakeholder interviews, (b) literature review and adoption of a theoretical framework regarding cultural humility and adult learning, (c) adaptation of the curriculum and design of new activities and simulations, and (d) implementation of adapted and expanded curriculum and further refinement in response to participant response.

  5. Asymmetric generalization in adaptation to target displacement errors in humans and in a neural network model.

    PubMed

    Westendorff, Stephanie; Kuang, Shenbing; Taghizadeh, Bahareh; Donchin, Opher; Gail, Alexander

    2015-04-01

    Different error signals can induce sensorimotor adaptation during visually guided reaching, possibly evoking different neural adaptation mechanisms. Here we investigate reach adaptation induced by visual target errors without perturbing the actual or sensed hand position. We analyzed the spatial generalization of adaptation to target error to compare it with other known generalization patterns and simulated our results with a neural network model trained to minimize target error independent of prediction errors. Subjects reached to different peripheral visual targets and had to adapt to a sudden fixed-amplitude displacement ("jump") consistently occurring for only one of the reach targets. Subjects simultaneously had to perform contralateral unperturbed saccades, which rendered the reach target jump unnoticeable. As a result, subjects adapted by gradually decreasing reach errors and showed negative aftereffects for the perturbed reach target. Reach errors generalized to unperturbed targets according to a translational rather than rotational generalization pattern, but locally, not globally. More importantly, reach errors generalized asymmetrically with a skewed generalization function in the direction of the target jump. Our neural network model reproduced the skewed generalization after adaptation to target jump without having been explicitly trained to produce a specific generalization pattern. Our combined psychophysical and simulation results suggest that target jump adaptation in reaching can be explained by gradual updating of spatial motor goal representations in sensorimotor association networks, independent of learning induced by a prediction-error about the hand position. The simulations make testable predictions about the underlying changes in the tuning of sensorimotor neurons during target jump adaptation. Copyright © 2015 the American Physiological Society.

  6. Asymmetric generalization in adaptation to target displacement errors in humans and in a neural network model

    PubMed Central

    Westendorff, Stephanie; Kuang, Shenbing; Taghizadeh, Bahareh; Donchin, Opher

    2015-01-01

    Different error signals can induce sensorimotor adaptation during visually guided reaching, possibly evoking different neural adaptation mechanisms. Here we investigate reach adaptation induced by visual target errors without perturbing the actual or sensed hand position. We analyzed the spatial generalization of adaptation to target error to compare it with other known generalization patterns and simulated our results with a neural network model trained to minimize target error independent of prediction errors. Subjects reached to different peripheral visual targets and had to adapt to a sudden fixed-amplitude displacement (“jump”) consistently occurring for only one of the reach targets. Subjects simultaneously had to perform contralateral unperturbed saccades, which rendered the reach target jump unnoticeable. As a result, subjects adapted by gradually decreasing reach errors and showed negative aftereffects for the perturbed reach target. Reach errors generalized to unperturbed targets according to a translational rather than rotational generalization pattern, but locally, not globally. More importantly, reach errors generalized asymmetrically with a skewed generalization function in the direction of the target jump. Our neural network model reproduced the skewed generalization after adaptation to target jump without having been explicitly trained to produce a specific generalization pattern. Our combined psychophysical and simulation results suggest that target jump adaptation in reaching can be explained by gradual updating of spatial motor goal representations in sensorimotor association networks, independent of learning induced by a prediction-error about the hand position. The simulations make testable predictions about the underlying changes in the tuning of sensorimotor neurons during target jump adaptation. PMID:25609106

  7. An easy-to-build, low-budget point-of-care ultrasound simulator: from Linux to a web-based solution.

    PubMed

    Damjanovic, Domagoj; Goebel, Ulrich; Fischer, Benedikt; Huth, Martin; Breger, Hartmut; Buerkle, Hartmut; Schmutz, Axel

    2017-12-01

    Hands-on training in point-of-care ultrasound (POC-US) should ideally comprise bedside teaching, as well as simulated clinical scenarios. High-fidelity phantoms and portable ultrasound simulation systems are commercially available, however, at considerable costs. This limits their suitability for medical schools. A Linux-based software for Emergency Department Ultrasound Simulation (edus2TM) was developed by Kulyk and Olszynski in 2011. Its feasibility for POC-US education has been well-documented, and shows good acceptance. An important limitation to an even more widespread use of edus2, however, may be due to the need for a virtual machine for WINDOWS ® systems. Our aim was to adapt the original software toward an HTML-based solution, thus making it affordable and applicable in any simulation setting. We created an HTML browser-based ultrasound simulation application, which reads the input of different sensors, triggering an ultrasound video to be displayed on a respective device. RFID tags, NFC tags, and QR Codes™ have been integrated into training phantoms or were attached to standardized patients. The RFID antenna was hidden in a mock ultrasound probe. The application is independent from the respective device. Our application was used successfully with different trigger/scanner combinations and mounted readily into simulated training scenarios. The application runs independently from operating systems or electronic devices. This low-cost, browser-based ultrasound simulator is easy-to-build, very adaptive, and independent from operating systems. It has the potential to facilitate POC-US training throughout the world, especially in resource-limited areas.

  8. Integration of Online Parameter Identification and Neural Network for In-Flight Adaptive Control

    NASA Technical Reports Server (NTRS)

    Hageman, Jacob J.; Smith, Mark S.; Stachowiak, Susan

    2003-01-01

    An indirect adaptive system has been constructed for robust control of an aircraft with uncertain aerodynamic characteristics. This system consists of a multilayer perceptron pre-trained neural network, online stability and control derivative identification, a dynamic cell structure online learning neural network, and a model following control system based on the stochastic optimal feedforward and feedback technique. The pre-trained neural network and model following control system have been flight-tested, but the online parameter identification and online learning neural network are new additions used for in-flight adaptation of the control system model. A description of the modification and integration of these two stand-alone software packages into the complete system in preparation for initial flight tests is presented. Open-loop results using both simulation and flight data, as well as closed-loop performance of the complete system in a nonlinear, six-degree-of-freedom, flight validated simulation, are analyzed. Results show that this online learning system, in contrast to the nonlearning system, has the ability to adapt to changes in aerodynamic characteristics in a real-time, closed-loop, piloted simulation, resulting in improved flying qualities.

  9. Development and validation of an artificial wetlab training system for the lumbar discectomy.

    PubMed

    Adermann, Jens; Geissler, Norman; Bernal, Luis E; Kotzsch, Susanne; Korb, Werner

    2014-09-01

    An initial research indicated that realistic haptic simulators with an adapted training concept are needed to enhance the training for spinal surgery. A cognitive task analysis (CTA) was performed to define a realistic and helpful scenario-based simulation. Based on the results a simulator for lumbar discectomy was developed. Additionally, a realistic training operating room was built for a pilot. The results were validated. The CTA showed a need for realistic scenario-based training in spine surgery. The developed simulator consists of synthetic bone structures, synthetic soft tissue and an advanced bleeding system. Due to the close interdisciplinary cooperation of surgeons between engineers and psychologists, the iterative multicentre validation showed that the simulator is visually and haptically realistic. The simulator offers integrated sensors for the evaluation of the traction being used and the compression during surgery. The participating surgeons in the pilot workshop rated the simulator and the training concept as very useful for the improvement of their surgical skills. In the context of the present work a precise definition for the simulator and training concept was developed. The additional implementation of sensors allows the objective evaluation of the surgical training by the trainer. Compared to other training simulators and concepts, the high degree of objectivity strengthens the acceptance of the feedback. The measured data of the nerve root tension and the compression of the dura can be used for intraoperative control and a detailed postoperative evaluation.

  10. Operator adaptation to changes in system reliability under adaptable automation.

    PubMed

    Chavaillaz, Alain; Sauer, Juergen

    2017-09-01

    This experiment examined how operators coped with a change in system reliability between training and testing. Forty participants were trained for 3 h on a complex process control simulation modelling six levels of automation (LOA). In training, participants either experienced a high- (100%) or low-reliability system (50%). The impact of training experience on operator behaviour was examined during a 2.5 h testing session, in which participants either experienced a high- (100%) or low-reliability system (60%). The results showed that most operators did not often switch between LOA. Most chose an LOA that relieved them of most tasks but maintained their decision authority. Training experience did not have a strong impact on the outcome measures (e.g. performance, complacency). Low system reliability led to decreased performance and self-confidence. Furthermore, complacency was observed under high system reliability. Overall, the findings suggest benefits of adaptable automation because it accommodates different operator preferences for LOA. Practitioner Summary: The present research shows that operators can adapt to changes in system reliability between training and testing sessions. Furthermore, it provides evidence that each operator has his/her preferred automation level. Since this preference varies strongly between operators, adaptable automation seems to be suitable to accommodate these large differences.

  11. Benefits of full scope simulators during solar thermal power plants design and construction

    NASA Astrophysics Data System (ADS)

    Gallego, José F.; Gil, Elena; Rey, Pablo

    2017-06-01

    In order to efficiently develop high-precision dynamic simulators for solar thermal power plants, Tecnatom adapted its simulation technology to consider solar thermal models. This effort and the excellent response of the simulation market have allowed Tecnatom to develop simulators with both parabolic trough and solar power tower technologies, including molten salt energy storage. These simulators may pursue different objectives, giving rise to training or engineering simulators. Solar thermal power market combines the need for the training of the operators with the potential benefits associated to the improvement of the design of the plants. This fact along with the simulation capabilities enabled by the current technology and the broad experience of Tecnatom present the development of an engineering+training simulator as a very advantageous option. This paper describes the challenge of the development and integration of a full scope simulator during the design and construction stages of a solar thermal power plant, showing the added value to the different engineering areas.

  12. Adapting the Goddard research and engineering management exercise (GREMEX) to nonspacecraft environments

    NASA Technical Reports Server (NTRS)

    Wales, R. O.

    1973-01-01

    A computerized training aid for all levels of research and development managers is presented. The computer model used for NASA training simulates development of a spacecraft. Operation of the model is described together with instructions for changing the input-data cards to alter the nomenclature and response of the model for use in other training environments.

  13. Algebraic and adaptive learning in neural control systems

    NASA Astrophysics Data System (ADS)

    Ferrari, Silvia

    A systematic approach is developed for designing adaptive and reconfigurable nonlinear control systems that are applicable to plants modeled by ordinary differential equations. The nonlinear controller comprising a network of neural networks is taught using a two-phase learning procedure realized through novel techniques for initialization, on-line training, and adaptive critic design. A critical observation is that the gradients of the functions defined by the neural networks must equal corresponding linear gain matrices at chosen operating points. On-line training is based on a dual heuristic adaptive critic architecture that improves control for large, coupled motions by accounting for actual plant dynamics and nonlinear effects. An action network computes the optimal control law; a critic network predicts the derivative of the cost-to-go with respect to the state. Both networks are algebraically initialized based on prior knowledge of satisfactory pointwise linear controllers and continue to adapt on line during full-scale simulations of the plant. On-line training takes place sequentially over discrete periods of time and involves several numerical procedures. A backpropagating algorithm called Resilient Backpropagation is modified and successfully implemented to meet these objectives, without excessive computational expense. This adaptive controller is as conservative as the linear designs and as effective as a global nonlinear controller. The method is successfully implemented for the full-envelope control of a six-degree-of-freedom aircraft simulation. The results show that the on-line adaptation brings about improved performance with respect to the initialization phase during aircraft maneuvers that involve large-angle and coupled dynamics, and parameter variations.

  14. International collaborative faculty development program on simulation-based healthcare education: a report on its successes and challenges.

    PubMed

    Chung, Hyun Soo; Issenberg, S Barry; Phrampus, Paul; Miller, Geoff; Je, Sang Mo; Lim, Tae Ho; Kim, Young Min

    2012-12-01

    Countries that are less experienced with simulation-based healthcare education (SBHE) often import Western programs to initiate their efforts to deliver effective simulation training. Acknowledging cultural differences, we sought to determine whether faculty development program on SBHE in the United States could be transported successfully to train faculty members in Korea. An international, collaborative, multi-professional program from a pre-existing Western model was adapted. The process focused on prioritization of curricular elements based on local needs, translation of course materials, and delivery of the program in small group facilitation exercises. Three types of evaluation data were collected: participants' simulation experience; participants' ratings of the course; and participant's self-assessment of the impact of the course on their knowledge, skills, and attitudes (KSA) toward simulation teaching. Thirty faculty teachers participated in the course. Eighty percent of the participants answered that they spent less than 25% of their time as simulation instructors. Time spent on planning, scenario development, delivering training, research, and administrative work ranged from 10% to 30%. Twenty-eight of 30 participants agreed or strongly agreed that the course was excellent and relevant to their needs. The participants' assessment of the impact of the course on their KSA toward simulation teaching improved significantly. Although there were many challenges to overcome, a systematic approach in the adaptation of a Western simulation faculty development course model was successfully implemented in Korea, and the program improves self-confidence and learning in participants.

  15. Modeling and simulation for space medicine operations: preliminary requirements considered

    NASA Technical Reports Server (NTRS)

    Dawson, D. L.; Billica, R. D.; McDonald, P. V.

    2001-01-01

    The NASA Space Medicine program is now developing plans for more extensive use of high-fidelity medical simulation systems. The use of simulation is seen as means to more effectively use the limited time available for astronaut medical training. Training systems should be adaptable for use in a variety of training environments, including classrooms or laboratories, space vehicle mockups, analog environments, and in microgravity. Modeling and simulation can also provide the space medicine development program a mechanism for evaluation of other medical technologies under operationally realistic conditions. Systems and procedures need preflight verification with ground-based testing. Traditionally, component testing has been accomplished, but practical means for "human in the loop" verification of patient care systems have been lacking. Medical modeling and simulation technology offer potential means to accomplish such validation work. Initial considerations in the development of functional requirements and design standards for simulation systems for space medicine are discussed.

  16. Requirements for Modeling and Simulation for Space Medicine Operations: Preliminary Considerations

    NASA Technical Reports Server (NTRS)

    Dawson, David L.; Billica, Roger D.; Logan, James; McDonald, P. Vernon

    2001-01-01

    The NASA Space Medicine program is now developing plans for more extensive use of high-fidelity medical Simulation systems. The use of simulation is seen as means to more effectively use the limited time available for astronaut medical training. Training systems should be adaptable for use in a variety of training environments, including classrooms or laboratories, space vehicle mockups, analog environments, and in microgravity. Modeling and simulation can also provide the space medicine development program a mechanism for evaluation of other medical technologies under operationally realistic conditions. Systems and procedures need preflight verification with ground-based testing. Traditionally, component testing has been accomplished, but practical means for "human in the loop" verification of patient care systems have been lacking. Medical modeling and simulation technology offer potential means to accomplish such validation work. Initial considerations in the development of functional requirements and design standards for simulation systems for space medicine are discussed.

  17. Incorporating haptic effects into three-dimensional virtual environments to train the hemiparetic upper extremity

    PubMed Central

    Adamovich, Sergei; Fluet, Gerard G.; Merians, Alma S.; Mathai, Abraham; Qiu, Qinyin

    2010-01-01

    Current neuroscience has identified several constructs to increase the effectiveness of upper extremity rehabilitation. One is the use of progressive, skill acquisition-oriented training. Another approach emphasizes the use of bilateral activities. Building on these principles, this paper describes the design and feasibility testing of a robotic / virtual environment system designed to train the arm of persons who have had strokes. The system provides a variety of assistance modes, scalable workspaces and hand-robot interfaces allowing persons with strokes to train multiple joints in three dimensions. The simulations utilize assistance algorithms that adjust task difficulty both online and offline in relation to subject performance. Several distinctive haptic effects have been incorporated into the simulations. An adaptive master-slave relationship between the unimpaired and impaired arm encourages active movement of the subject's hemiparetic arm during a bimanual task. Adaptive anti-gravity support and damping stabilize the arm during virtual reaching and placement tasks. An adaptive virtual spring provides assistance to complete the movement if the subject is unable to complete the task in time. Finally, haptically rendered virtual objects help to shape the movement trajectory during a virtual placement task. A proof of concept study demonstrated this system to be safe, feasible and worthy of further study. PMID:19666345

  18. Performance implications of leader briefings and team-interaction training for team adaptation to novel environments.

    PubMed

    Marks, M A; Zaccaro, S J; Mathieu, J E

    2000-12-01

    The authors examined how leader briefings and team-interaction training influence team members' knowledge structures concerning processes related to effective performance in both routine and novel environments. Two-hundred thirty-seven undergraduates from a large mid-Atlantic university formed 79 three-member tank platoon teams and participated in a low-fidelity tank simulation. Team-interaction training, leader briefings, and novelty of performance environment were manipulated. Findings indicated that both leader briefings and team-interaction training affected the development of mental models, which in turn positively influenced team communication processes and team performance. Mental models and communication processes predicted performance more strongly in novel than in routine environments. Implications for the role of team-interaction training, leader briefings, and mental models as mechanisms for team adaptation are discussed.

  19. An Adaptive Rear-End Collision Warning System for Drivers That Estimates Driving Phase and Selects Training Data

    NASA Astrophysics Data System (ADS)

    Ikeda, Kazushi; Mima, Hiroki; Inoue, Yuta; Shibata, Tomohiro; Fukaya, Naoki; Hitomi, Kentaro; Bando, Takashi

    The paper proposes a rear-end collision warning system for drivers, where the collision risk is adaptively set from driving signals. The system employs the inverse of the time-to-collision with a constant relative acceleration as the risk and the one-class support vector machine as the anomaly detector. The system also utilizes brake sequences for outliers detection. When a brake sequence has a low likelihood with respect to trained hidden Markov models, the driving data during the sequence are removed from the training dataset. This data selection is confirmed to increase the robustness of the system by computer simulations.

  20. Abstract to Action: Targeted Learning System Theory Applied to Adaptive Flight Training

    DTIC Science & Technology

    2018-04-18

    complete the VRLE trained task in the real world confirming a good transfer of spatial knowledge from VR to reality.39 A VRLE was also used in a...opportunities if the technology was customized to produce the necessary datasets for the required education or training outcomes. The TLST maximizes...the simulator staging area to confirm your Virtual Reality training times. Good Luck! ` 92 Pre-Virtual Reality (VR) Instructions You are

  1. Self-guided strategy-adaption training for older adults: Transfer effects to everyday tasks.

    PubMed

    Bottiroli, Sara; Cavallini, Elena; Dunlosky, John; Vecchi, Tomaso; Hertzog, Christopher

    2017-09-01

    The goal of the present research was to examine the potential of a learner-oriented approach to improving older adults' performance in tasks that are similar to real-life situations that require strategic deployment of cognitive resources. A crucial element of this approach involves encouraging older adults to explicitly analyze tasks to consider how to adapt trained skills to a new task context. In an earlier study, a specialist-directed intervention produced training gains and transfer to some untrained memory tasks. In the present study, older adults received a manual instructing them about principles of task analysis, two memory strategies, and strategy adaptation. Self-guided strategy-adaption training involved practicing some memory tasks as well as instructions on how the trained skills could be applied to new tasks that were not practiced. The criterion tasks involved practice tasks, non-practiced tasks that were discussed in the manual, and transfer tasks that were never mentioned in the manual. Two of the tests were from the Everyday Cognition Battery (inductive reasoning and working memory). As compared to a waiting-list control group, older adults assigned to self-guided strategy-adaption training showed memory improvements on tasks that were practiced or discussed during training. Most important, the learner-oriented approach produced transfer to the everyday tasks. Our findings show the potential of instructing task appraisal processes as a basis for fostering transfer, including improving older adults' performance in simulated everyday tasks. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Robotically facilitated virtual rehabilitation of arm transport integrated with finger movement in persons with hemiparesis.

    PubMed

    Merians, Alma S; Fluet, Gerard G; Qiu, Qinyin; Saleh, Soha; Lafond, Ian; Davidow, Amy; Adamovich, Sergei V

    2011-05-16

    Recovery of upper extremity function is particularly recalcitrant to successful rehabilitation. Robotic-assisted arm training devices integrated with virtual targets or complex virtual reality gaming simulations are being developed to deal with this problem. Neural control mechanisms indicate that reaching and hand-object manipulation are interdependent, suggesting that training on tasks requiring coordinated effort of both the upper arm and hand may be a more effective method for improving recovery of real world function. However, most robotic therapies have focused on training the proximal, rather than distal effectors of the upper extremity. This paper describes the effects of robotically-assisted, integrated upper extremity training. Twelve subjects post-stroke were trained for eight days on four upper extremity gaming simulations using adaptive robots during 2-3 hour sessions. The subjects demonstrated improved proximal stability, smoothness and efficiency of the movement path. This was in concert with improvement in the distal kinematic measures of finger individuation and improved speed. Importantly, these changes were accompanied by a robust 16-second decrease in overall time in the Wolf Motor Function Test and a 24-second decrease in the Jebsen Test of Hand Function. Complex gaming simulations interfaced with adaptive robots requiring integrated control of shoulder, elbow, forearm, wrist and finger movements appear to have a substantial effect on improving hemiparetic hand function. We believe that the magnitude of the changes and the stability of the patient's function prior to training, along with maintenance of several aspects of the gains demonstrated at retention make a compelling argument for this approach to training.

  3. Robotically facilitated virtual rehabilitation of arm transport integrated with finger movement in persons with hemiparesis

    PubMed Central

    2011-01-01

    Background Recovery of upper extremity function is particularly recalcitrant to successful rehabilitation. Robotic-assisted arm training devices integrated with virtual targets or complex virtual reality gaming simulations are being developed to deal with this problem. Neural control mechanisms indicate that reaching and hand-object manipulation are interdependent, suggesting that training on tasks requiring coordinated effort of both the upper arm and hand may be a more effective method for improving recovery of real world function. However, most robotic therapies have focused on training the proximal, rather than distal effectors of the upper extremity. This paper describes the effects of robotically-assisted, integrated upper extremity training. Methods Twelve subjects post-stroke were trained for eight days on four upper extremity gaming simulations using adaptive robots during 2-3 hour sessions. Results The subjects demonstrated improved proximal stability, smoothness and efficiency of the movement path. This was in concert with improvement in the distal kinematic measures of finger individuation and improved speed. Importantly, these changes were accompanied by a robust 16-second decrease in overall time in the Wolf Motor Function Test and a 24-second decrease in the Jebsen Test of Hand Function. Conclusions Complex gaming simulations interfaced with adaptive robots requiring integrated control of shoulder, elbow, forearm, wrist and finger movements appear to have a substantial effect on improving hemiparetic hand function. We believe that the magnitude of the changes and the stability of the patient's function prior to training, along with maintenance of several aspects of the gains demonstrated at retention make a compelling argument for this approach to training. PMID:21575185

  4. Modelling and regulating of cardio-respiratory response for the enhancement of interval training

    PubMed Central

    2014-01-01

    Background The interval training method has been a well known exercise protocol which helps strengthen and improve one’s cardiovascular fitness. Purpose To develop an effective training protocol to improve cardiovascular fitness based on modelling and analysis of Heart Rate (HR) and Oxygen Uptake (VO2) dynamics. Methods In order to model the cardiorespiratory response to the onset and offset exercises, the (K4b2, Cosmed) gas analyzer was used to monitor and record the heart rate and oxygen uptake for ten healthy male subjects. An interval training protocol was developed for young health users and was simulated using a proposed RC switching model which was presented to accommodate the variations of the cardiorespiratory dynamics to running exercises. A hybrid system model was presented to describe the adaptation process and a multi-loop PI control scheme was designed for the tuning of interval training regime. Results By observing the original data for each subject, we can clearly identify that all subjects have similar HR and VO2 profiles. The proposed model is capable to simulate the exercise responses during onset and offset exercises; it ensures the continuity of the outputs within the interval training protocol. Under some mild assumptions, a hybrid system model can describe the adaption process and accordingly a multi-loop PI controller can be designed for the tuning of interval training protocol. The self-adaption feature of the proposed controller gives the exerciser the opportunity to reach his desired setpoints after a certain number of training sessions. Conclusions The established interval training protocol targets a range of 70-80% of HRmax which is mainly a training zone for the purpose of cardiovascular system development and improvement. Furthermore, the proposed multi-loop feedback controller has the potential to tune the interval training protocol according to the feedback from an individual exerciser. PMID:24499131

  5. Simulation as a surgical teaching model.

    PubMed

    Ruiz-Gómez, José Luis; Martín-Parra, José Ignacio; González-Noriega, Mónica; Redondo-Figuero, Carlos Godofredo; Manuel-Palazuelos, José Carlos

    2018-01-01

    Teaching of surgery has been affected by many factors over the last years, such as the reduction of working hours, the optimization of the use of the operating room or patient safety. Traditional teaching methodology fails to reduce the impact of these factors on surgeońs training. Simulation as a teaching model minimizes such impact, and is more effective than traditional teaching methods for integrating knowledge and clinical-surgical skills. Simulation complements clinical assistance with training, creating a safe learning environment where patient safety is not affected, and ethical or legal conflicts are avoided. Simulation uses learning methodologies that allow teaching individualization, adapting it to the learning needs of each student. It also allows training of all kinds of technical, cognitive or behavioural skills. Copyright © 2017 AEC. Publicado por Elsevier España, S.L.U. All rights reserved.

  6. Evaluating and Enhancing Driving Ability Among Teens with Autism Spectrum Disorder (ASD)

    DTIC Science & Technology

    2014-10-01

    able to engage in the driving training, and none have experienced simulation adaptation syndrome. 15. SUBJECT TERMS Autism, Driving Safety , Driving...routine driving training (RT) required by the DMV, VRDS training + RT (VRDS-T) would lead to greater improvement in driving safety and less driving...improved driving safety above and beyond RT. We hypothesized that computer-generated feedback would be more palatable than human-generated feedback to

  7. Development of Analytical Algorithm for the Performance Analysis of Power Train System of an Electric Vehicle

    NASA Astrophysics Data System (ADS)

    Kim, Chul-Ho; Lee, Kee-Man; Lee, Sang-Heon

    Power train system design is one of the key R&D areas on the development process of new automobile because an optimum size of engine with adaptable power transmission which can accomplish the design requirement of new vehicle can be obtained through the system design. Especially, for the electric vehicle design, very reliable design algorithm of a power train system is required for the energy efficiency. In this study, an analytical simulation algorithm is developed to estimate driving performance of a designed power train system of an electric. The principal theory of the simulation algorithm is conservation of energy with several analytical and experimental data such as rolling resistance, aerodynamic drag, mechanical efficiency of power transmission etc. From the analytical calculation results, running resistance of a designed vehicle is obtained with the change of operating condition of the vehicle such as inclined angle of road and vehicle speed. Tractive performance of the model vehicle with a given power train system is also calculated at each gear ratio of transmission. Through analysis of these two calculation results: running resistance and tractive performance, the driving performance of a designed electric vehicle is estimated and it will be used to evaluate the adaptability of the designed power train system on the vehicle.

  8. A Comparison of Adaptive and Nonadaptive Training Strategies in the Acquisition of a Physically Complex Psychomotor Skill.

    ERIC Educational Resources Information Center

    Riedel, James A.; And Others

    Results of research to determine if an adaptive technique could be used to teach a physically complex psychomotor skill (specifically, performing on an arc welding simulator) more efficiently than the skill could be taught with a nonadaptive technique are presented. Sixty hull maintenance technician firemen and fireman apprentice trainees were…

  9. From bricks to buildings: adapting the Medical Research Council framework to develop programs of research in simulation education and training for the health professions.

    PubMed

    Haji, Faizal A; Da Silva, Celina; Daigle, Delton T; Dubrowski, Adam

    2014-08-01

    Presently, health care simulation research is largely conducted on a study-by-study basis. Although such "project-based" research generates a plethora of evidence, it can be chaotic and contradictory. A move toward sustained, thematic, theory-based programs of research is necessary to advance knowledge in the field. Recognizing that simulation is a complex intervention, we present a framework for developing research programs in simulation-based education adapted from the Medical Research Council (MRC) guidance. This framework calls for an iterative approach to developing, refining, evaluating, and implementing simulation interventions. The adapted framework guidance emphasizes: (1) identification of theory and existing evidence; (2) modeling and piloting interventions to clarify active ingredients and identify mechanisms linking the context, intervention, and outcomes; and (3) evaluation of intervention processes and outcomes in both the laboratory and real-world setting. The proposed framework will aid simulation researchers in developing more robust interventions that optimize simulation-based education and advance our understanding of simulation pedagogy.

  10. Adaptive backstepping control of train systems with traction/braking dynamics and uncertain resistive forces

    NASA Astrophysics Data System (ADS)

    Song, Qi; Song, Y. D.; Cai, Wenchuan

    2011-09-01

    Although backstepping control design approach has been widely utilised in many practical systems, little effort has been made in applying this useful method to train systems. The main purpose of this paper is to apply this popular control design technique to speed and position tracking control of high-speed trains. By integrating adaptive control with backstepping control, we develop a control scheme that is able to address not only the traction and braking dynamics ignored in most existing methods, but also the uncertain friction and aerodynamic drag forces arisen from uncertain resistance coefficients. As such, the resultant control algorithms are able to achieve high precision train position and speed tracking under varying operation railway conditions, as validated by theoretical analysis and numerical simulations.

  11. The influence of the adequacy of training simulators on simulator planning training

    NASA Astrophysics Data System (ADS)

    Kuatov, B. Zh; Kemalov, B. K.; Yurkov, N. K.

    2017-01-01

    The analysis of the works with attempts to verify the adequacy of both simulation and simulators themselves was carried out. However, these attempts are limited by determining the facts of adequacy or inadequacy of checking systems that cannot be used to identify the skills acquired in accordance with the input of a generalized classification. Adequacy is a concomitant sign of inadequate use of simulators, however, the established base for assessing the adequacy of simulators does not allow presenting it in the form of the indicator of the accompanying sign of inadequacy of use of simulators. And the primary task is to determine its quantitative form, which would eliminate the disparity evaluations of teaching. This research paper presents the problems of the simulator training organization that regardless of the received ideas of flight missions planning, have the real objective, which is in conflict with an aircraft application, the essence of which is the presence of contradictions between the predicted and real necessary amount of forces and means to ensure the effectiveness. The paper aims at the adaptation of the content curriculum component for eliminating inadequate use of simulators, which should be focused on developing measures to compensate false skills in order to improve the accuracy of determining the flying skills in simulator training planning.

  12. Learning an EMG Controlled Game: Task-Specific Adaptations and Transfer

    PubMed Central

    van Dijk, Ludger; van der Sluis, Corry K.; van Dijk, Hylke W.; Bongers, Raoul M.

    2016-01-01

    Video games that aim to improve myoelectric control (myogames) are gaining popularity and are often part of the rehabilitation process following an upper limb amputation. However, direct evidence for their effect on prosthetic skill is limited. This study aimed to determine whether and how myogaming improves EMG control and whether performance improvements transfer to a prosthesis-simulator task. Able-bodied right-handed participants (N = 28) were randomly assigned to 1 of 2 groups. The intervention group was trained to control a video game (Breakout-EMG) using the myosignals of wrist flexors and extensors. Controls played a regular Mario computer game. Both groups trained 20 minutes a day for 4 consecutive days. Before and after training, two tests were conducted: one level of the Breakout-EMG game, and grasping objects with a prosthesis-simulator. Results showed a larger increase of in-game accuracy for the Breakout-EMG group than for controls. The Breakout-EMG group moreover showed increased adaptation of the EMG signal to the game. No differences were found in using a prosthesis-simulator. This study demonstrated that myogames lead to task-specific myocontrol skills. Transfer to a prosthesis task is therefore far from easy. We discuss several implications for future myogame designs. PMID:27556154

  13. Learning an EMG Controlled Game: Task-Specific Adaptations and Transfer.

    PubMed

    van Dijk, Ludger; van der Sluis, Corry K; van Dijk, Hylke W; Bongers, Raoul M

    2016-01-01

    Video games that aim to improve myoelectric control (myogames) are gaining popularity and are often part of the rehabilitation process following an upper limb amputation. However, direct evidence for their effect on prosthetic skill is limited. This study aimed to determine whether and how myogaming improves EMG control and whether performance improvements transfer to a prosthesis-simulator task. Able-bodied right-handed participants (N = 28) were randomly assigned to 1 of 2 groups. The intervention group was trained to control a video game (Breakout-EMG) using the myosignals of wrist flexors and extensors. Controls played a regular Mario computer game. Both groups trained 20 minutes a day for 4 consecutive days. Before and after training, two tests were conducted: one level of the Breakout-EMG game, and grasping objects with a prosthesis-simulator. Results showed a larger increase of in-game accuracy for the Breakout-EMG group than for controls. The Breakout-EMG group moreover showed increased adaptation of the EMG signal to the game. No differences were found in using a prosthesis-simulator. This study demonstrated that myogames lead to task-specific myocontrol skills. Transfer to a prosthesis task is therefore far from easy. We discuss several implications for future myogame designs.

  14. Low-cost phantom for stereotactic breast biopsy training.

    PubMed

    Larrison, Matthew; DiBona, Alex; Hogg, David E

    2006-10-01

    This article reports on the construction of a low-cost phantom to be used for training technologists, residents, and radiologists to perform stereotactic breast biopsy. The model is adaptable to a variety of biopsy devices and realistically simulates the aspects of stereotactic breast biopsy. We believe our model provides an excellent alternative to more expensive commercial products.

  15. Introduction to the EC’s Marie Curie Initial Training Network Project: The European Training Network in Digital Medical Imaging for Radiotherapy (ENTERVISION)

    PubMed Central

    Dosanjh, Manjit; Cirilli, Manuela; Navin, Sparsh

    2015-01-01

    Between 2011 and 2015, the ENTERVISION Marie Curie Initial Training Network has been training 15 young researchers from a variety of backgrounds on topics ranging from in-beam Positron Emission Tomography or Single Particle Tomography techniques, to adaptive treatment planning, optical imaging, Monte Carlo simulations and biological phantom design. This article covers the main research activities, as well as the training scheme implemented by the participating institutes, which included academia, research, and industry. PMID:26697403

  16. Adaptive Conditioning of Multiple-Point Geostatistical Facies Simulation to Flow Data with Facies Probability Maps

    NASA Astrophysics Data System (ADS)

    Khodabakhshi, M.; Jafarpour, B.

    2013-12-01

    Characterization of complex geologic patterns that create preferential flow paths in certain reservoir systems requires higher-order geostatistical modeling techniques. Multipoint statistics (MPS) provides a flexible grid-based approach for simulating such complex geologic patterns from a conceptual prior model known as a training image (TI). In this approach, a stationary TI that encodes the higher-order spatial statistics of the expected geologic patterns is used to represent the shape and connectivity of the underlying lithofacies. While MPS is quite powerful for describing complex geologic facies connectivity, the nonlinear and complex relation between the flow data and facies distribution makes flow data conditioning quite challenging. We propose an adaptive technique for conditioning facies simulation from a prior TI to nonlinear flow data. Non-adaptive strategies for conditioning facies simulation to flow data can involves many forward flow model solutions that can be computationally very demanding. To improve the conditioning efficiency, we develop an adaptive sampling approach through a data feedback mechanism based on the sampling history. In this approach, after a short period of sampling burn-in time where unconditional samples are generated and passed through an acceptance/rejection test, an ensemble of accepted samples is identified and used to generate a facies probability map. This facies probability map contains the common features of the accepted samples and provides conditioning information about facies occurrence in each grid block, which is used to guide the conditional facies simulation process. As the sampling progresses, the initial probability map is updated according to the collective information about the facies distribution in the chain of accepted samples to increase the acceptance rate and efficiency of the conditioning. This conditioning process can be viewed as an optimization approach where each new sample is proposed based on the sampling history to improve the data mismatch objective function. We extend the application of this adaptive conditioning approach to the case where multiple training images are proposed to describe the geologic scenario in a given formation. We discuss the advantages and limitations of the proposed adaptive conditioning scheme and use numerical experiments from fluvial channel formations to demonstrate its applicability and performance compared to non-adaptive conditioning techniques.

  17. Development of an Integrated Team Training Design and Assessment Architecture to Support Adaptability in Healthcare Teams

    DTIC Science & Technology

    2017-10-01

    to patient safety by addressing key methodological and conceptual gaps in healthcare simulation-based team training. The investigators are developing...primary outcome of Aim 1a is a conceptually and methodologically sound training design architecture that supports the development and integration of team...should be delivered. This subtask was delayed by approximately 1 month and is now completed. Completed Evaluation of existing experimental dataset to

  18. Developing an Adaptability Training Strategy and Policy for the Department of Defense (DOD)

    DTIC Science & Technology

    2010-08-01

    reach a broad audience, and do so much more inexpensively than would be the case with live simulations. With this in mind, we attended the annual...authors acknowledge ongoing debates about the relationship between training and education. Because the military makes a distinction between training...programs and educational programs, we simply accept that both are vehicles for learning and that there is an overlap between the two. 23 See for

  19. Emergent Capabilities Converging into M and S 2.0

    NASA Technical Reports Server (NTRS)

    Reitz, Emilie; Reist, Jay

    2012-01-01

    The continued operational environment complexity faced by the Department of Defense, despite a restricted resource environment, is a mandate for greater adaptability and availability in joint training. To address these constraints, this paper proposes a model for the potential integration of adaptability training, virtual world capabilities and immersive training into the wider Joint Live Virtual and Constructive (JLVC) Federation, supported by human, social, cultural and behavior modeling, and measurement and assessment. By fusing those capabilities and modeling and simulation enhancements into the JLVC federation, it will create a force who is more apt to arrive at and implement correct decisions, and more able to appropriately seize initiative in the field. The model would allow for the testing and training of capabilities and TTPs that cannot be reasonably explored to their logical conclusions in a 'live' environment, as well as enhance training fidelity for all echelons and tasks.

  20. Support vector machine multiuser receiver for DS-CDMA signals in multipath channels.

    PubMed

    Chen, S; Samingan, A K; Hanzo, L

    2001-01-01

    The problem of constructing an adaptive multiuser detector (MUD) is considered for direct sequence code division multiple access (DS-CDMA) signals transmitted through multipath channels. The emerging learning technique, called support vector machines (SVM), is proposed as a method of obtaining a nonlinear MUD from a relatively small training data block. Computer simulation is used to study this SVM MUD, and the results show that it can closely match the performance of the optimal Bayesian one-shot detector. Comparisons with an adaptive radial basis function (RBF) MUD trained by an unsupervised clustering algorithm are discussed.

  1. Adaptive optimal training of animal behavior

    NASA Astrophysics Data System (ADS)

    Bak, Ji Hyun; Choi, Jung Yoon; Akrami, Athena; Witten, Ilana; Pillow, Jonathan

    Neuroscience experiments often require training animals to perform tasks designed to elicit various sensory, cognitive, and motor behaviors. Training typically involves a series of gradual adjustments of stimulus conditions and rewards in order to bring about learning. However, training protocols are usually hand-designed, and often require weeks or months to achieve a desired level of task performance. Here we combine ideas from reinforcement learning and adaptive optimal experimental design to formulate methods for efficient training of animal behavior. Our work addresses two intriguing problems at once: first, it seeks to infer the learning rules underlying an animal's behavioral changes during training; second, it seeks to exploit these rules to select stimuli that will maximize the rate of learning toward a desired objective. We develop and test these methods using data collected from rats during training on a two-interval sensory discrimination task. We show that we can accurately infer the parameters of a learning algorithm that describes how the animal's internal model of the task evolves over the course of training. We also demonstrate by simulation that our method can provide a substantial speedup over standard training methods.

  2. A novel heterogeneous training sample selection method on space-time adaptive processing

    NASA Astrophysics Data System (ADS)

    Wang, Qiang; Zhang, Yongshun; Guo, Yiduo

    2018-04-01

    The performance of ground target detection about space-time adaptive processing (STAP) decreases when non-homogeneity of clutter power is caused because of training samples contaminated by target-like signals. In order to solve this problem, a novel nonhomogeneous training sample selection method based on sample similarity is proposed, which converts the training sample selection into a convex optimization problem. Firstly, the existing deficiencies on the sample selection using generalized inner product (GIP) are analyzed. Secondly, the similarities of different training samples are obtained by calculating mean-hausdorff distance so as to reject the contaminated training samples. Thirdly, cell under test (CUT) and the residual training samples are projected into the orthogonal subspace of the target in the CUT, and mean-hausdorff distances between the projected CUT and training samples are calculated. Fourthly, the distances are sorted in order of value and the training samples which have the bigger value are selective preference to realize the reduced-dimension. Finally, simulation results with Mountain-Top data verify the effectiveness of the proposed method.

  3. Exercise training - Blood pressure responses in subjects adapted to microgravity

    NASA Technical Reports Server (NTRS)

    Convertino, Victor A.

    1991-01-01

    Conventional endurance exercise training that involves daily workouts of 1-2 hr duration during exposure to microgravity has not proven completely effective in ameliorating postexposure orthostatic hypotension. Single bouts of intense exercise have been shown to increase plasma volume and baroreflex sensitivity in ambulatory subjects through 24 hr postexercise and to reverse decrements in maximal oxygen uptake and syncopal episodes following exposure to simulated microgravity. These physiological adaptations to acute intense exercise were opposite to those observed following exposure to microgravity. These results suggest that the 'exercise training' stimulus used to prevent orthostatic hypotension induced by microgravity may be specific and should be redefined to include single bouts of maximal exercise which may provide an acute effective countermeasure against postflight hypotension.

  4. Skylab 3 crew during training in Orbital Workshop trainer

    NASA Image and Video Library

    1973-06-19

    S73-28412 (February 1973) --- The three members of the prime crew of the third of three scheduled manned Skylab missions (Skylab 4) go through Skylab preflight training in the Mission Training and Simulation Facility at the Johnson Space Center. Astronaut Gerald P. Carr (on right), Skylab 4 commander, is seated at a simulator which represents the control and display console of the Apollo Telescope Mount which is located in the space station's Multiple Docking Adapter. Seated on the left is scientist-astronaut Edward G. Gibson, Skylab 4 science pilot. In the left background is astronaut William R. Pogue, Skylab 4 pilot. (Unmanned Skylab 1 will carry the Skylab space station payload into Earth orbit). Photo credit: NASA

  5. Communications Modeling of Training and Simulation Traffic in a Tactical Internet

    DTIC Science & Technology

    2006-08-01

    Florida. VIDEO GAME TRAINING Eric Minton Today’s Officer January 24, 2005 Here is something parents everywhere won’t want to read: video ...experience, video games make for a wiser and more adaptable individual and team player. That is what the U.S. military is discovering as each branch...embraces video games and gaming technology in their training regimens. This is more just catering to a generation that knew the joy of joysticks while

  6. Leveraging Health Care Simulation Technology for Human Factors Research: Closing the Gap Between Lab and Bedside.

    PubMed

    Deutsch, Ellen S; Dong, Yue; Halamek, Louis P; Rosen, Michael A; Taekman, Jeffrey M; Rice, John

    2016-11-01

    We describe health care simulation, designed primarily for training, and provide examples of how human factors experts can collaborate with health care professionals and simulationists-experts in the design and implementation of simulation-to use contemporary simulation to improve health care delivery. The need-and the opportunity-to apply human factors expertise in efforts to achieve improved health outcomes has never been greater. Health care is a complex adaptive system, and simulation is an effective and flexible tool that can be used by human factors experts to better understand and improve individual, team, and system performance within health care. Expert opinion is presented, based on a panel delivered during the 2014 Human Factors and Ergonomics Society Health Care Symposium. Diverse simulators, physically or virtually representing humans or human organs, and simulation applications in education, research, and systems analysis that may be of use to human factors experts are presented. Examples of simulation designed to improve individual, team, and system performance are provided, as are applications in computational modeling, research, and lifelong learning. The adoption or adaptation of current and future training and assessment simulation technologies and facilities provides opportunities for human factors research and engineering, with benefits for health care safety, quality, resilience, and efficiency. Human factors experts, health care providers, and simulationists can use contemporary simulation equipment and techniques to study and improve health care delivery. © 2016, Human Factors and Ergonomics Society.

  7. Evaluation of a pilot 'peer support' training programme for volunteers in a hospital-based cancer information and support centre.

    PubMed

    Kinnane, Nicole Anne; Waters, Trish; Aranda, Sanchia

    2011-01-01

    Volunteers from Peter MacCallum Cancer Centre (Peter Mac) Patient Information and Support Centre (PISC) assist the Cancer Support Nurse by helping patients and families/carers find information and provide face-to-face peer support. Benefits of shared personal experiences between volunteer and patient are clearly different from professional support. Volunteers require specific skill sets and detailed preparation for this role. Volunteers completed a 3-day training programme adapted from the Cancer Council Victoria's 'Cancer Connect Telephone Peer Support Volunteer' training programme. The focus was role expectations and boundaries for peer support volunteers, debriefing, communication skills training, support services, complementary and alternative therapies and internet information. Assessment included a quiz and observation for a range of competencies. Role-play with simulated patients developed appropriate support skills. Eight volunteers participated. Pre-training questionnaires revealed all volunteers highly self-rated existing skills supporting people affected by cancer. During training, volunteers recognised these skills were inadequate. All agreed that role-play using an actor as a 'simulated patient' helped develop communication skills; however, the experience proved challenging. Post-training all reported increased knowledge of role definition and boundaries, supportive communication skills, supports available for patients and families/carers and importance of self-care. Facilitators recommended seven of the eight participants be accredited PISC Peer Support Volunteers. One volunteer was assessed unsuitable for consistently overstepping the boundaries of the peer support role and withdrew from training. Success of the programme resulted in a trained 'face-to-face peer support volunteer' group better equipped for their role. Sixteen months following training, all who completed the programme remain active volunteers in the PISC. Planned educational updates include needs identified by the volunteers. The training programme would require adapting for future peer support volunteers.

  8. Quick fuzzy backpropagation algorithm.

    PubMed

    Nikov, A; Stoeva, S

    2001-03-01

    A modification of the fuzzy backpropagation (FBP) algorithm called QuickFBP algorithm is proposed, where the computation of the net function is significantly quicker. It is proved that the FBP algorithm is of exponential time complexity, while the QuickFBP algorithm is of polynomial time complexity. Convergence conditions of the QuickFBP, resp. the FBP algorithm are defined and proved for: (1) single output neural networks in case of training patterns with different targets; and (2) multiple output neural networks in case of training patterns with equivalued target vector. They support the automation of the weights training process (quasi-unsupervised learning) establishing the target value(s) depending on the network's input values. In these cases the simulation results confirm the convergence of both algorithms. An example with a large-sized neural network illustrates the significantly greater training speed of the QuickFBP rather than the FBP algorithm. The adaptation of an interactive web system to users on the basis of the QuickFBP algorithm is presented. Since the QuickFBP algorithm ensures quasi-unsupervised learning, this implies its broad applicability in areas of adaptive and adaptable interactive systems, data mining, etc. applications.

  9. Preadaptation to the stimulus rearrangement of weightlessness: Preliminary studies and concepts for trainer designs

    NASA Technical Reports Server (NTRS)

    Parker, D. E.; Reschke, M. F.

    1988-01-01

    An effort to develop preflight adaptation training (PAT) apparatus and procedures to adapt astronauts to the stimulus rearrangement of weightless spaceflight is being pursued. Based on the otolith tilt-translation reinterpretation model of sensory adaptation to weightlessness, two prototype preflight adaptation trainers (PAT) have been developed. These trainers couple pitch movement of the subject with translation of the visual surround. Subjects were exposed to this stimulus rearrangement for periods of 30 m. The hypothesis is that exposure to the rearrangement would attenuate vertical eye movements was supported by two experiments using the Miami University Seesaw (MUS) PAT prototype. The Dynamic Environment Simulator (DES) prototype failed to support this hypothesis; this result is attributed to a pecularity of the DES apparatus. A final experiment demonstrated that changes in vertical eye movements were not a consequence of fixation on an external target during exposure to a control condition. Together these experiments support the view that preflight adaptation training can alter eye movements in a manner consistent with adaptation to weightlessness. Following these initial studies, concepts for development of operational preflight trainers were proposed. The trainers are intended to: demonstrate the stimulus rearrangement of weightlessness; allow astronauts to train in altered sensory environment; modify sensory motor reflexes; and reduce/eliminate space motion sickness symptoms.

  10. Adaptive Effects on Locomotion Performance Following Exposure to a Rotating Virtual Environment

    NASA Technical Reports Server (NTRS)

    Mulavara, A. P.; Richards, J. T.; Marshburn, A. M.; Bucello, R.; Bloomberg, J. J.

    2003-01-01

    During long-duration spaceflight, astronauts experience alterations in vestibular and somatosensory cues that result in adaptive disturbances in balance and coordination upon return to Earth. These changes can pose a risk to crew safety and to mission objectives if nominal or emergency vehicle egress is required immediately following long-duration spaceflight. At present, no operational countermeasure is available to mitigate the adaptive sensorimotor component underlying the locomotor disturbances that occur after spaceflight. Therefore, the goal of this study is to develop an inflight training regimen that facilitates recovery of locomotor function after long-duration spaceflight. The countermeasure we are proposing is based on the concept of adaptive generalization. During this type of training the subject gains experience producing the appropriate adaptive motor behavior under a variety of sensory conditions and response constraints. As a result of this training a subject learns to solve a class of motor problems, rather than a specific motor solution to one problem, i.e., the subject learns response generalizability or the ability to "learn to learn." under a variety of environmental constraints. We are developing an inflight countermeasure built around treadmill exercise activities. By manipulating the sensory conditions of exercise by varying visual flow patterns, body load and speed we will systematically and repeatedly promote adaptive change in locomotor behavior. It has been shown that variable practice training increases adaptability to novel visuo-motor situations. While walking over ground in a stereoscopic virtual environment that oscillated in roll, subjects have shown compensatory torso rotation in the direction of scene rotation that resulted in positional variation away from a desired linear path. Thus, postural sway and locomotor stability in 1-g can be modulated by visual flow patterns and used during inflight treadmill training to promote adaptive generalization. The purpose of this study was to determine if adaptive modification in locomotor performance could be achieved by viewing simulated self-motion in a passive-immersive virtual ' environment over a prolonged period during treadmill locomotion.

  11. Learning to Make Change Happen in Chinese Schools: Adapting a Problem-Based Computer Simulation for Developing School Leaders

    ERIC Educational Resources Information Center

    Hallinger, Philip; Shaobing, Tang; Jiafang, Lu

    2017-01-01

    School leader training has become a critical strategy in educational reform. However, in China, there still exists a big gap in terms of how to transfer leadership knowledge into practice. Thus, tools that can integrate formal knowledge into practice are called for urgently in school leader training. This paper presents the results of a research…

  12. Tutoring electronic troubleshooting in a simulated maintenance work environment

    NASA Technical Reports Server (NTRS)

    Gott, Sherrie P.

    1987-01-01

    A series of intelligent tutoring systems, or intelligent maintenance simulators, is being developed based on expert and novice problem solving data. A graded series of authentic troubleshooting problems provides the curriculum, and adaptive instructional treatments foster active learning in trainees who engage in extensive fault isolation practice and thus in conditionalizing what they know. A proof of concept training study involving human tutoring was conducted as a precursor to the computer tutors to assess this integrated, problem based approach to task analysis and instruction. Statistically significant improvements in apprentice technicians' troubleshooting efficiency were achieved after approximately six hours of training.

  13. Adaptive receiver structures for asynchronous CDMA systems

    NASA Astrophysics Data System (ADS)

    Rapajic, Predrag B.; Vucetic, Branka S.

    1994-05-01

    Adaptive linear and decision feedback receiver structures for coherent demodulation in asynchronous code division multiple access (CDMA) systems are considered. It is assumed that the adaptive receiver has no knowledge of the signature waveforms and timing of other users. The receiver is trained by a known training sequence prior to data transmission and continuously adjusted by an adaptive algorithm during data transmission. The proposed linear receiver is as simple as a standard single-user detector receiver consisting of a matched filter with constant coefficients, but achieves essential advantages with respect to timing recovery, multiple access interference elimination, near/far effect, narrowband and frequency-selective fading interference suppression, and user privacy. An adaptive centralized decision feedback receiver has the same advantages of the linear receiver but, in addition, achieves a further improvement in multiple access interference cancellation at the expense of higher complexity. The proposed receiver structures are tested by simulation over a channel with multipath propagation, multiple access interference, narrowband interference, and additive white Gaussian noise.

  14. An analysis of neural receptive field plasticity by point process adaptive filtering

    PubMed Central

    Brown, Emery N.; Nguyen, David P.; Frank, Loren M.; Wilson, Matthew A.; Solo, Victor

    2001-01-01

    Neural receptive fields are plastic: with experience, neurons in many brain regions change their spiking responses to relevant stimuli. Analysis of receptive field plasticity from experimental measurements is crucial for understanding how neural systems adapt their representations of relevant biological information. Current analysis methods using histogram estimates of spike rate functions in nonoverlapping temporal windows do not track the evolution of receptive field plasticity on a fine time scale. Adaptive signal processing is an established engineering paradigm for estimating time-varying system parameters from experimental measurements. We present an adaptive filter algorithm for tracking neural receptive field plasticity based on point process models of spike train activity. We derive an instantaneous steepest descent algorithm by using as the criterion function the instantaneous log likelihood of a point process spike train model. We apply the point process adaptive filter algorithm in a study of spatial (place) receptive field properties of simulated and actual spike train data from rat CA1 hippocampal neurons. A stability analysis of the algorithm is sketched in the Appendix. The adaptive algorithm can update the place field parameter estimates on a millisecond time scale. It reliably tracked the migration, changes in scale, and changes in maximum firing rate characteristic of hippocampal place fields in a rat running on a linear track. Point process adaptive filtering offers an analytic method for studying the dynamics of neural receptive fields. PMID:11593043

  15. SKYLAB (SL)-3 CREW - TRAINING - ORBITAL WORKSHOP (OWS) TRAINER - JSC

    NASA Image and Video Library

    1973-06-19

    S73-28411 (February 1973) --- The three members of the prime crew of the third of three scheduled manned Skylab missions (Skylab 4) go through Skylab preflight training in the Mission Training and Simulation Facility at the Johnson Space Center. Astronaut Gerald P. Carr (on right), Skylab 4 commander, is seated at a simulator which represents the control and display console of the Apollo Telescope Mount which is located in the space station's Multiple Docking Adapter. Seated on the left is scientist-astronaut Edward G. Gibson, Skylab 4 science pilot. In the left background is astronaut William R. Pogue, Skylab 4 pilot. (Unmanned Skylab 1 will carry the Skylab space station payload into Earth orbit). Photo credit: NASA

  16. A tutorial platform suitable for surgical simulator training (SimMentor).

    PubMed

    Røtnes, Jan Sigurd; Kaasa, Johannes; Westgaard, Geir; Eriksen, Eivind Myrold; Hvidsten, Per Oyvind; Strøm, Kyrre; Sørhus, Vidar; Halbwachs, Yvon; Haug, Einar; Grimnes, Morten; Fontenelle, Hugues; Ekeberg, Tom; Thomassen, Jan B; Elle, Ole Jakob; Fosse, Erik

    2002-01-01

    The introduction of simulators in surgical training entails the need to develop pedagogic platforms adapted to the potentials and limitations provided by the information technology. As a solution to the technical challenges in treating all possible interaction events and to obtain a suitable pedagogic approach, we have developed a pedagogic platform for surgical training, SimMentor. In SimMentor the procedure to be practiced is divided into a number of natural phases. The trainee will practice on one phase at a time, however he can select the sequence of phases arbitrarily. A phase is taught by letting the trainee alternate freely between 2 modes: 1: A 3-dimensional animated guidance designed for learning the objectives and challenges in a procedure. 2: An interactive training session through the instrument manipulator device designed for training motoric responses based on visual and tactile responses produced by the simulator. The two modes are interfaced with the same virtual reality platform, thus SimMentor allows a seamless transition between the modes. We have developed a prototype simulator for robotic assisted endoscopic CABG (Coronary Artery Bypass Grafting) procedure by first focusing on the anastomosis part of the operation. Tissue, suture and instrument models have been developed and integrated with a simulated model of a beating heart comprises the elements in the simulator engine that is used in construction a training platform for learning different methods for performing a coronary anastomosis procedure. The platform is designed for integrating the following features: 1) practical approach to handle interactivity events with flexible-objects 3D simulators, 2) methods for quantitative evaluations of performance, 3) didactic presentations, 4) effective ways of producing diversity of clinical and pathological training scenarios.

  17. An intelligent simulation training system

    NASA Technical Reports Server (NTRS)

    Biegel, John E.

    1990-01-01

    The Department of Industrial Engineering at the University of Central Florida, Embry-Riddle Aeronautical University and General Electric (SCSD) have been funded by the State of Florida to build an Intelligent Simulation Training System. The objective was and is to make the system generic except for the domain expertise. Researchers accomplished this objective in their prototype. The system is modularized and therefore it is easy to make any corrections, expansions or adaptations. The funding by the state of Florida has exceeded $3 million over the past three years and through the 1990 fiscal year. UCF has expended in excess of 15 work years on the project. The project effort has been broken into three major tasks. General Electric provides the simulation. Embry-Riddle Aeronautical University provides the domain expertise. The University of Central Florida has constructed the generic part of the system which is comprised of several modules that perform the tutoring, evaluation, communication, status, etc. The generic parts of the Intelligent Simulation Training Systems (ISTS) are described.

  18. Active control strategy for the running attitude of high-speed train under strong crosswind condition

    NASA Astrophysics Data System (ADS)

    Li, Decang; Meng, Jianjun; Bai, Huan; Xu, Ruxun

    2018-07-01

    This paper focuses on the safety of high-speed trains under strong crosswind conditions. A new active control strategy is proposed based on the adaptive predictive control theory. The new control strategy aims at adjusting the attitudes of a train by controlling the new-type intelligent giant magnetostrictive actuator (GMA). It combined adaptive control with dynamic matrix control; parameters of predictive controller was real-time adjusted by online distinguishing to enhance the robustness of the control algorithm. On this basis, a correction control algorithm is also designed to regulate the parameters of predictive controller based on the step response of a controlled objective. Finally, the simulation results show that the proposed control strategy can adjust the running attitudes of high-speed trains under strong crosswind conditions; they also indicate that the new active control strategy is effective and applicable in improving the safety performance of a train based on a host-target computer technology provided by Matlab/Simulink.

  19. Considerations for Adaptive Tutoring Within Serious Games: Authoring Cognitive Models and game Interfaces

    DTIC Science & Technology

    2011-06-01

    character skills correspond to real- world player skills (transfer). In games such as World of Warcraft , "grinding" behaviors are popular (boring...reflecting on a recent emphasis on self-directed learning using game-based simulations and virtual worlds , the authors considered key challenges in...transforming serious games and virtual worlds into adaptive training tools. This article reflects specifically on the challenges and potential of cognitive

  20. Human Behaviour in Long-Term Missions

    NASA Technical Reports Server (NTRS)

    1997-01-01

    In this session, Session WP1, the discussion focuses on the following topics: Psychological Support for International Space Station Mission; Psycho-social Training for Man in Space; Study of the Physiological Adaptation of the Crew During A 135-Day Space Simulation; Interpersonal Relationships in Space Simulation, The Long-Term Bed Rest in Head-Down Tilt Position; Psychological Adaptation in Groups of Varying Sizes and Environments; Deviance Among Expeditioners, Defining the Off-Nominal Act in Space and Polar Field Analogs; Getting Effective Sleep in the Space-Station Environment; Human Sleep and Circadian Rhythms are Altered During Spaceflight; and Methodological Approach to Study of Cosmonauts Errors and Its Instrumental Support.

  1. Testability, Test Automation and Test Driven Development for the Trick Simulation Toolkit

    NASA Technical Reports Server (NTRS)

    Penn, John

    2014-01-01

    This paper describes the adoption of a Test Driven Development approach and a Continuous Integration System in the development of the Trick Simulation Toolkit, a generic simulation development environment for creating high fidelity training and engineering simulations at the NASA Johnson Space Center and many other NASA facilities. It describes the approach, and the significant benefits seen, such as fast, thorough and clear test feedback every time code is checked into the code repository. It also describes an approach that encourages development of code that is testable and adaptable.

  2. Robust adaptive cruise control of high speed trains.

    PubMed

    Faieghi, Mohammadreza; Jalali, Aliakbar; Mashhadi, Seyed Kamal-e-ddin Mousavi

    2014-03-01

    The cruise control problem of high speed trains in the presence of unknown parameters and external disturbances is considered. In particular a Lyapunov-based robust adaptive controller is presented to achieve asymptotic tracking and disturbance rejection. The system under consideration is nonlinear, MIMO and non-minimum phase. To deal with the limitations arising from the unstable zero-dynamics we do an output redefinition such that the zero-dynamics with respect to new outputs becomes stable. Rigorous stability analyses are presented which establish the boundedness of all the internal states and simultaneously asymptotic stability of the tracking error dynamics. The results are presented for two common configurations of high speed trains, i.e. the DD and PPD designs, based on the multi-body model and are verified by several numerical simulations. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.

  3. Patch-based iterative conditional geostatistical simulation using graph cuts

    NASA Astrophysics Data System (ADS)

    Li, Xue; Mariethoz, Gregoire; Lu, DeTang; Linde, Niklas

    2016-08-01

    Training image-based geostatistical methods are increasingly popular in groundwater hydrology even if existing algorithms present limitations that often make real-world applications difficult. These limitations include a computational cost that can be prohibitive for high-resolution 3-D applications, the presence of visual artifacts in the model realizations, and a low variability between model realizations due to the limited pool of patterns available in a finite-size training image. In this paper, we address these issues by proposing an iterative patch-based algorithm which adapts a graph cuts methodology that is widely used in computer graphics. Our adapted graph cuts method optimally cuts patches of pixel values borrowed from the training image and assembles them successively, each time accounting for the information of previously stitched patches. The initial simulation result might display artifacts, which are identified as regions of high cost. These artifacts are reduced by iteratively placing new patches in high-cost regions. In contrast to most patch-based algorithms, the proposed scheme can also efficiently address point conditioning. An advantage of the method is that the cut process results in the creation of new patterns that are not present in the training image, thereby increasing pattern variability. To quantify this effect, a new measure of variability is developed, the merging index, quantifies the pattern variability in the realizations with respect to the training image. A series of sensitivity analyses demonstrates the stability of the proposed graph cuts approach, which produces satisfying simulations for a wide range of parameters values. Applications to 2-D and 3-D cases are compared to state-of-the-art multiple-point methods. The results show that the proposed approach obtains significant speedups and increases variability between realizations. Connectivity functions applied to 2-D models transport simulations in 3-D models are used to demonstrate that pattern continuity is preserved.

  4. Human Factors in Training - Space Flight Resource Management Training

    NASA Technical Reports Server (NTRS)

    Bryne, Vicky; Connell, Erin; Barshi, Immanuel; Arsintescu, L.

    2009-01-01

    Accidents and incidents show that high workload-induced stress and poor teamwork skills lead to performance decrements and errors. Research on teamwork shows that effective teams are able to adapt to stressful situations, and to reduce workload by using successful strategies for communication and decision making, and through dynamic redistribution of tasks among team members. Furthermore, superior teams are able to recognize signs and symptoms of workload-induced stress early, and to adapt their coordination and communication strategies to the high workload, or stress conditions. Mission Control Center (MCC) teams often face demanding situations in which they must operate as an effective team to solve problems with crew and vehicle during onorbit operations. To be successful as a team, flight controllers (FCers) must learn effective teamwork strategies. Such strategies are the focus of Space Flight Resource Management (SFRM) training. SFRM training in MOD has been structured to include some classroom presentations of basic concepts and case studies, with the assumption that skill development happens in mission simulation. Integrated mission simulations do provide excellent opportunities for FCers to practice teamwork, but also require extensive technical knowledge of vehicle systems, mission operations, and crew actions. Such technical knowledge requires lengthy training. When SFRM training is relegated to integrated simulations, FCers can only practice SFRM after they have already mastered the technical knowledge necessary for these simulations. Given the centrality of teamwork to the success of MCC, holding SFRM training till late in the flow is inefficient. But to be able to train SFRM earlier in the flow, the training cannot rely on extensive mission-specific technical knowledge. Hence, the need for a generic SFRM training framework that would allow FCers to develop basic teamwork skills which are mission relevant, but without the required mission knowledge. Work on SFRM training has been conducted in collaboration with the Expedition Vehicle Division at the Mission Operations Directorate (MOD) and with United Space Alliance (USA) which provides training to Flight Controllers. The space flight resource management training work is part of the Human Factors in Training Directed Research Project (DRP) of the Space Human Factors Engineering (SHFE) Project under the Space Human Factors and Habitability (SHFH) Element of the Human Research Program (HRP). Human factors researchers at the Ames Research Center have been investigating team work and distributed decision making processes to develop a generic SFRM training framework for flight controllers. The work proposed for FY10 continues to build on this strong collaboration with MOD and the USA Training Group as well as previous research in relevant domains such as aviation. In FY10, the work focuses on documenting and analyzing problem solving strategies and decision making processes used in MCC by experienced FCers.

  5. Adaptive Virtual Reality Training to Optimize Military Medical Skills Acquisition and Retention.

    PubMed

    Siu, Ka-Chun; Best, Bradley J; Kim, Jong Wook; Oleynikov, Dmitry; Ritter, Frank E

    2016-05-01

    The Department of Defense has pursued the integration of virtual reality simulation into medical training and applications to fulfill the need to train 100,000 military health care personnel annually. Medical personnel transitions, both when entering an operational area and returning to the civilian theater, are characterized by the need to rapidly reacquire skills that are essential but have decayed through disuse or infrequent use. Improved efficiency in reacquiring such skills is critical to avoid the likelihood of mistakes that may result in mortality and morbidity. We focus here on a study testing a theory of how the skills required for minimally invasive surgery for military surgeons are learned and retained. Our adaptive virtual reality surgical training system will incorporate an intelligent mechanism for tracking performance that will recognize skill deficiencies and generate an optimal adaptive training schedule. Our design is modeling skill acquisition based on a skill retention theory. The complexity of appropriate training tasks is adjusted according to the level of retention and/or surgical experience. Based on preliminary work, our system will improve the capability to interactively assess the level of skills learning and decay, optimizes skill relearning across levels of surgical experience, and positively impact skill maintenance. Our system could eventually reduce mortality and morbidity by providing trainees with the reexperience they need to help make a transition between operating theaters. This article reports some data that will support adaptive tutoring of minimally invasive surgery and similar surgical skills. Reprint & Copyright © 2016 Association of Military Surgeons of the U.S.

  6. An adaptive vibration control method to suppress the vibration of the maglev train caused by track irregularities

    NASA Astrophysics Data System (ADS)

    Zhou, Danfeng; Yu, Peichang; Wang, Lianchun; Li, Jie

    2017-11-01

    The levitation gap of the urban maglev train is around 8 mm, which puts a rather high requirement on the smoothness of the track. In practice, it is found that the track irregularity may cause stability problems when the maglev train is traveling. In this paper, the dynamic response of the levitation module, which is the basic levitation structure of the urban maglev train, is investigated in the presence of track irregularities. Analyses show that due to the structural configuration of the levitation module, the vibration of the levitation gap may be amplified and "resonances" may be observed under some specified track wavelengths and train speeds; besides, it is found that the gap vibration of the rear levitation unit in a levitation module is more significant than that of the front levitation unit, which agrees well with practice. To suppress the vibration of the rear levitation gap, an adaptive vibration control method is proposed, which utilizes the information of the front levitation unit as a reference. A pair of mirror FIR (finite impulse response) filters are designed and tuned by an adaptive mechanism, and they produce a compensation signal for the rear levitation controller to cancel the disturbance brought by the track irregularity. Simulations under some typical track conditions, including the sinusoidal track profile, random track irregularity, as well as track steps, indicate that the adaptive vibration control scheme can significantly reduce the amplitude of the rear gap vibration, which provides a method to improve the stability and ride comfort of the maglev train.

  7. [Suture simulator - Cleft palate surgery].

    PubMed

    Devinck, F; Riot, S; Qassemyar, A; Belkhou, A; Wolber, A; Martinot Duquennoy, V; Guerreschi, P

    2017-04-01

    Cleft palate requires surgery in the first years of life, furthermore repairing anatomically the soft and hard palate is complex on a surgical level because of the fine tissues and the local intraoral configuration. It is valuable to train first on simulators before going to the operating room. However, there is no material dedicated to learning how to perform intraoral sutures in cleft palate surgery. We made one, in an artisanal manner, in order to practice before the real surgical gesture. The simulator was designed based on precise anatomical data. A steel pipe, fixed on a rigid base represented the oral cavity. An adapted split spoon represented the palate. All pieces could be removed in order to apply a hydrocellular dressing before training for sutures. Our simulator was tested by 3 senior surgeons in our department in close to real-life conditions in order to evaluate its anatomical accuracy. It is valuable to have a simulator to train on cleft palate sutures within teaching university hospitals that manage this pathology. Our simulator has a very low cost, it is easy to make and is anatomically accurate. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  8. Brain-Behavior Mechanisms for the Transfer of Neuromuscular Training Adaptions to Simulated Sport: Initial Findings from the Train the Brain Project.

    PubMed

    Grooms, Dustin R; Kiefer, Adam W; Riley, Michael A; Ellis, Jonathan D; Thomas, Staci; Kitchen, Katie; DiCesare, Christopher; Bonnette, Scott; Gadd, Brooke; Barber Foss, Kim D; Yuan, Weihong; Silva, Paula; Galloway, Ryan; Diekfuss, Jed; Leach, James; Berz, Kate; Myer, Gregory D

    2018-03-27

    A limiting factor for reducing anterior cruciate ligament (ACL) injury risk is ensuring that the movement adaptions made during the prevention program transfer to sport-specific activity. Virtual reality provides a mechanism to assess transferability and neuroimaging provides a means to assay the neural processes allowing for such skill transfer. To determine the neural mechanisms for injury risk reducing biomechanics transfer to sport after ACL injury prevention training. Cohort study Setting: Research laboratory Participants: Four healthy high school soccer athletes. Participants completed augmented neuromuscular training utilizing real-time visual feedback. An unloaded knee extension task and a loaded leg-press task was completed with neuroimaging before and after training. A virtual reality soccer specific landing task was also competed following training to assess transfer of movement mechanics. Landing mechanics during the virtual reality soccer task and blood oxygen level dependent signal change during neuroimaging. Increased motor planning, sensory and visual region activity during unloaded knee extension and decreased motor cortex activity during loaded leg-press were highly correlated with improvements in landing mechanics (decreased hip adduction and knee rotation). Changes in brain activity may underlie adaptation and transfer of injury risk reducing movement mechanics to sport activity. Clinicians may be able to target these specific brain processes with adjunctive therapy to facilitate intervention improvements transferring to sport.

  9. The New Jersey Institute of Technology Robot-Assisted Virtual Rehabilitation (NJIT-RAVR) system for children with cerebral palsy: a feasibility study.

    PubMed

    Qiu, Qinyin; Ramirez, Diego A; Saleh, Soha; Fluet, Gerard G; Parikh, Heta D; Kelly, Donna; Adamovich, Sergei V

    2009-11-16

    We hypothesize that the integration of virtual reality (VR) with robot assisted rehabilitation could be successful if applied to children with hemiparetic CP. The combined benefits of increased attention provided by VR and the larger training stimulus afforded by adaptive robotics may increase the beneficial effects of these two approaches synergistically. This paper will describe the NJIT-RAVR system, which combines adaptive robotics with complex VR simulations for the rehabilitation of upper extremity impairments and function in children with CP and examine the feasibility of this system in the context of a two subject training study. The NJIT-RAVR system consists of the Haptic Master, a 6 degrees of freedom, admittance controlled robot and a suite of rehabilitation simulations that provide adaptive algorithms for the Haptic Master, allowing the user to interact with rich virtual environments. Two children, a ten year old boy and a seven year old girl, both with spastic hemiplegia secondary to Cerebral Palsy were recruited from the outpatient center of a comprehensive pediatric rehabilitation facility. Subjects performed a battery of clinical testing and kinematic measurements of reaching collected by the NJIT-RAVR system. Subjects trained with the NJIT-RAVR System for one hour, 3 days a week for three weeks. The subjects played a combination of four or five simulations depending on their therapeutic goals, tolerances and preferences. Games were modified to increase difficulty in order to challenge the subjects as their performance improved. The testing battery was repeated following the training period. Both participants completed 9 hours of training in 3 weeks. No untoward events occurred and no adverse responses to treatment or complaints of cyber sickness were reported. One participant showed improvements in overall performance on the functional aspects of the testing battery. The second subject made improvements in upper extremity active range of motion and in kinematic measures of reaching movements. We feel that this study establishes the feasibility of integrating robotics and rich virtual environments to address functional limitations and decreased motor performance in children with mild to moderate cerebral palsy.

  10. Self-rotations in simulated microgravity: performance effects of strategy training.

    PubMed

    Stirling, Leia; Newman, Dava; Willcox, Karen

    2009-01-01

    This research studies reorientation methodologies in a simulated microgravity environment using an experimental framework to reduce astronaut adaptation time and provide for a safety countermeasure during extravehicular activity. There were 20 subjects (10 men, 10 women, mean age of 23.6 +/- 3.5) who were divided into 2 groups, fully trained and minimally trained, which determined the amount of motion strategy training received. Subjects performed a total of 48 rotations about their pitch, roll, and yaw axes in a suspension system that simulated microgravity. In each trial subjects either rotated 90 degrees in pitch, 90 degrees in roll, or 180 degrees in yaw. Experimental measures include subject coordination, performance time, cognitive workload assessments, and qualitative motion control strategies. Subjects in the fully trained group had better initial performance with respect to performance time and workload scores for the pitch and yaw rotations. Further, trained subjects reached a steady-state performance time in fewer trials than those with minimal training. The subjects with minimal training tended to use motions that were common in an Earth environment since no technique was provided. For roll rotations they developed motions that would have led to significant off-axis (pitch and yaw) rotations in a true microgravity environment. We have shown that certain body axes are easier to rotate about than others and that fully trained subjects had an easier time performing the body rotations than the minimally trained subjects. This study has provided the groundwork for the development of an astronaut motion-control training program.

  11. A Gaussian mixture model based adaptive classifier for fNIRS brain-computer interfaces and its testing via simulation

    NASA Astrophysics Data System (ADS)

    Li, Zheng; Jiang, Yi-han; Duan, Lian; Zhu, Chao-zhe

    2017-08-01

    Objective. Functional near infra-red spectroscopy (fNIRS) is a promising brain imaging technology for brain-computer interfaces (BCI). Future clinical uses of fNIRS will likely require operation over long time spans, during which neural activation patterns may change. However, current decoders for fNIRS signals are not designed to handle changing activation patterns. The objective of this study is to test via simulations a new adaptive decoder for fNIRS signals, the Gaussian mixture model adaptive classifier (GMMAC). Approach. GMMAC can simultaneously classify and track activation pattern changes without the need for ground-truth labels. This adaptive classifier uses computationally efficient variational Bayesian inference to label new data points and update mixture model parameters, using the previous model parameters as priors. We test GMMAC in simulations in which neural activation patterns change over time and compare to static decoders and unsupervised adaptive linear discriminant analysis classifiers. Main results. Our simulation experiments show GMMAC can accurately decode under time-varying activation patterns: shifts of activation region, expansions of activation region, and combined contractions and shifts of activation region. Furthermore, the experiments show the proposed method can track the changing shape of the activation region. Compared to prior work, GMMAC performed significantly better than the other unsupervised adaptive classifiers on a difficult activation pattern change simulation: 99% versus  <54% in two-choice classification accuracy. Significance. We believe GMMAC will be useful for clinical fNIRS-based brain-computer interfaces, including neurofeedback training systems, where operation over long time spans is required.

  12. Remarks to Eighth Annual State of Modeling and Simulation

    DTIC Science & Technology

    1999-06-04

    organization, training as well as materiel Discovery vice Verification Tolerance for Surprise Free play Red Team Iterative Process Push to failure...Account for responsive & innovative future adversaries – free play , adaptive strategies and tactics by professional red teams • Address C2 issues & human

  13. Intelligent adaptive nonlinear flight control for a high performance aircraft with neural networks.

    PubMed

    Savran, Aydogan; Tasaltin, Ramazan; Becerikli, Yasar

    2006-04-01

    This paper describes the development of a neural network (NN) based adaptive flight control system for a high performance aircraft. The main contribution of this work is that the proposed control system is able to compensate the system uncertainties, adapt to the changes in flight conditions, and accommodate the system failures. The underlying study can be considered in two phases. The objective of the first phase is to model the dynamic behavior of a nonlinear F-16 model using NNs. Therefore a NN-based adaptive identification model is developed for three angular rates of the aircraft. An on-line training procedure is developed to adapt the changes in the system dynamics and improve the identification accuracy. In this procedure, a first-in first-out stack is used to store a certain history of the input-output data. The training is performed over the whole data in the stack at every stage. To speed up the convergence rate and enhance the accuracy for achieving the on-line learning, the Levenberg-Marquardt optimization method with a trust region approach is adapted to train the NNs. The objective of the second phase is to develop intelligent flight controllers. A NN-based adaptive PID control scheme that is composed of an emulator NN, an estimator NN, and a discrete time PID controller is developed. The emulator NN is used to calculate the system Jacobian required to train the estimator NN. The estimator NN, which is trained on-line by propagating the output error through the emulator, is used to adjust the PID gains. The NN-based adaptive PID control system is applied to control three angular rates of the nonlinear F-16 model. The body-axis pitch, roll, and yaw rates are fed back via the PID controllers to the elevator, aileron, and rudder actuators, respectively. The resulting control system has learning, adaptation, and fault-tolerant abilities. It avoids the storage and interpolation requirements for the too many controller parameters of a typical flight control system. Performance of the control system is successfully tested by performing several six-degrees-of-freedom nonlinear simulations.

  14. Anthropogenic and technogenic factors of operational risk at hazardous industrial objects of fuel-power complex

    NASA Astrophysics Data System (ADS)

    Magid, S. I.; Arkhipova, E. N.; Kulichikhin, V. V.; Zagretdinov, I. Sh.

    2016-12-01

    Technogenic and anthropogenic accidence at hazardous industrial objects (HIO) in the Russian Federation has been considered. The accidence level at HIO, including power plants and network enterprises, is determined by anthropogenic reasons, so-called "human factor", in 70% of all cases. The analysis of incidents caused by personnel has shown that errors occur most often during accidental situations, launches, holdups, routine switches, and other effects on equipment controls. It has been demonstrated that skills needed to perform type and routine switches can be learned, to certain limits, on real operating equipment, while combating emergency and accidental situations can be learned only with the help of modern training simulators developed based on information technologies. Problems arising during the following processes have been considered: development of mathematical and software support of modern training equipment associated, in one way or another, with adequate power-generating object modeling in accordance with human operator specifics; modeling and/or simulation of the corresponding control and management systems; organization of the education system (functional supply of the instructor, education and methodological resources (EMR)); organization of the program-technical, scalable and adaptable, platform for modeling of the main and secondary functions of the training simulator. It has been concluded that the systemic approach principle on the necessity and sufficiency in the applied methodology allows to reproduce all technological characteristics of the equipment, its topological completeness, as well as to achieve the acceptable counting rate. The initial "rough" models of processes in the equipment are based on the normative techniques and equation coefficients taken from the normative materials as well. Then, the synthesis of "fine" models has been carried out following the global practice in modeling and training simulator building, i.e., verification of "rough" models based on experimental data available to the developer. Finally, the last stage of modeling is adaptation (validation) of "fine" models to the prototype object using experimental data on the power-generating object and tests of these models with operating and maintaining personnel. These stages determine adequacy of the used mathematical model for a particular training simulator and, thus, its compliance with such modern scientific criteria as objectivity and experimental verifiability.

  15. A serious game for learning ultrasound-guided needle placement skills.

    PubMed

    Chan, Wing-Yin; Qin, Jing; Chui, Yim-Pan; Heng, Pheng-Ann

    2012-11-01

    Ultrasound-guided needle placement is a key step in a lot of radiological intervention procedures such as biopsy, local anesthesia and fluid drainage. To help training future intervention radiologists, we develop a serious game to teach the skills involved. We introduce novel techniques for realistic simulation and integrate game elements for active and effective learning. This game is designed in the context of needle placement training based on the some essential characteristics of serious games. Training scenarios are interactively generated via a block-based construction scheme. A novel example-based texture synthesis technique is proposed to simulate corresponding ultrasound images. Game levels are defined based on the difficulties of the generated scenarios. Interactive recommendation of desirable insertion paths is provided during the training as an adaptation mechanism. We also develop a fast physics-based approach to reproduce the shadowing effect of needles in ultrasound images. Game elements such as time-attack tasks, hints and performance evaluation tools are also integrated in our system. Extensive experiments are performed to validate its feasibility for training.

  16. Task-Oriented Gaming for Transfer to Prosthesis Use.

    PubMed

    van Dijk, Ludger; van der Sluis, Corry K; van Dijk, Hylke W; Bongers, Raoul M

    2016-12-01

    The aim of this study is to establish the effect of task-oriented video gaming on using a myoelectric prosthesis in a basic activity of daily life (ADL). Forty-one able-bodied right-handed participants were randomly assigned to one of four groups. In three of these groups the participants trained to control a video game using the myosignals of the flexors and extensors of the wrist: in the Adaptive Catching group participants needed to catch falling objects by opening and closing a grabber and received ADL-relevant feedback during performance. The Free Catching group used the same game, but without augmented feedback. The Interceptive Catching group trained a game where the goal was to intercept a falling object by moving a grabber to the left and right. They received no additional feedback. The control group played a regular Mario computer game. All groups trained 20 minutes a day for four consecutive days. Two tests were conducted before and after training: one level of the training game was performed, and participants grasped objects with a prosthesis simulator. Results showed all groups improved their game performance over controls. In the prosthesis-simulator task, after training the Adaptive Catching group outperformed the other groups in their ability to adjust the hand aperture to the size of the objects and the degree of compression of compressible objects. This study is the first to demonstrate transfer effects from a serious game to a myoelectric prosthesis task. The specificity of the learning effects suggests that research into serious gaming will benefit from placing ADL-specific constraints on game development.

  17. Surrogate Modeling of High-Fidelity Fracture Simulations for Real-Time Residual Strength Predictions

    NASA Technical Reports Server (NTRS)

    Spear, Ashley D.; Priest, Amanda R.; Veilleux, Michael G.; Ingraffea, Anthony R.; Hochhalter, Jacob D.

    2011-01-01

    A surrogate model methodology is described for predicting in real time the residual strength of flight structures with discrete-source damage. Starting with design of experiment, an artificial neural network is developed that takes as input discrete-source damage parameters and outputs a prediction of the structural residual strength. Target residual strength values used to train the artificial neural network are derived from 3D finite element-based fracture simulations. A residual strength test of a metallic, integrally-stiffened panel is simulated to show that crack growth and residual strength are determined more accurately in discrete-source damage cases by using an elastic-plastic fracture framework rather than a linear-elastic fracture mechanics-based method. Improving accuracy of the residual strength training data would, in turn, improve accuracy of the surrogate model. When combined, the surrogate model methodology and high-fidelity fracture simulation framework provide useful tools for adaptive flight technology.

  18. Surrogate Modeling of High-Fidelity Fracture Simulations for Real-Time Residual Strength Predictions

    NASA Technical Reports Server (NTRS)

    Spear, Ashley D.; Priest, Amanda R.; Veilleux, Michael G.; Ingraffea, Anthony R.; Hochhalter, Jacob D.

    2011-01-01

    A surrogate model methodology is described for predicting, during flight, the residual strength of aircraft structures that sustain discrete-source damage. Starting with design of experiment, an artificial neural network is developed that takes as input discrete-source damage parameters and outputs a prediction of the structural residual strength. Target residual strength values used to train the artificial neural network are derived from 3D finite element-based fracture simulations. Two ductile fracture simulations are presented to show that crack growth and residual strength are determined more accurately in discrete-source damage cases by using an elastic-plastic fracture framework rather than a linear-elastic fracture mechanics-based method. Improving accuracy of the residual strength training data does, in turn, improve accuracy of the surrogate model. When combined, the surrogate model methodology and high fidelity fracture simulation framework provide useful tools for adaptive flight technology.

  19. Interleaved Training and Training-Based Transmission Design for Hybrid Massive Antenna Downlink

    NASA Astrophysics Data System (ADS)

    Zhang, Cheng; Jing, Yindi; Huang, Yongming; Yang, Luxi

    2018-06-01

    In this paper, we study the beam-based training design jointly with the transmission design for hybrid massive antenna single-user (SU) and multiple-user (MU) systems where outage probability is adopted as the performance measure. For SU systems, we propose an interleaved training design to concatenate the feedback and training procedures, thus making the training length adaptive to the channel realization. Exact analytical expressions are derived for the average training length and the outage probability of the proposed interleaved training. For MU systems, we propose a joint design for the beam-based interleaved training, beam assignment, and MU data transmissions. Two solutions for the beam assignment are provided with different complexity-performance tradeoff. Analytical results and simulations show that for both SU and MU systems, the proposed joint training and transmission designs achieve the same outage performance as the traditional full-training scheme but with significant saving in the training overhead.

  20. C3Conflict a Simulation Environment for Studying Teamwork in Command and Control

    DTIC Science & Technology

    2011-06-01

    the Sciences (pp. 173- 217). Amsterdam/New York: Rodopi. Kolb , D. A. (1984). Experiential Learning – Experience as a source of learning and...increases dramatically when the students can see a replay and discuss their collaboration. Kolb has expressed a generally accepted model of experiential ... learning ( Kolb , 1998). The model can be adapted for research and team training performed with computer-based simulations (Granlund, 2008). The main

  1. Design of a complex virtual reality simulation to train finger motion for persons with hemiparesis: a proof of concept study.

    PubMed

    Adamovich, Sergei V; Fluet, Gerard G; Mathai, Abraham; Qiu, Qinyin; Lewis, Jeffrey; Merians, Alma S

    2009-07-17

    Current neuroscience has identified rehabilitation approaches with the potential to stimulate adaptive changes in the brains of persons with hemiparesis. These approaches include, intensive task-oriented training, bimanual activities and balancing proximal and distal upper extremity interventions to reduce competition between these segments for neural territory. This paper describes the design and feasibility testing of a robotic/virtual environment system designed to train the hand and arm of persons with hemiparesis. The system employs a simulated piano that presents visual, auditory and tactile feedback comparable to an actual piano. Arm tracking allows patients to train both the arm and hand as a coordinated unit, emphasizing the integration of both transport and manipulation phases. The piano trainer includes songs and scales that can be performed with one or both hands. Adaptable haptic assistance is available for more involved subjects. An algorithm adjusts task difficulty in proportion to subject performance. A proof of concept study was performed on four subjects with upper extremity hemiparesis secondary to chronic stroke to establish: a) the safety and feasibility of this system and b) the concurrent validity of robotically measured kinematic and performance measures to behavioral measures of upper extremity function. None of the subjects experienced adverse events or responses during or after training. As a group, the subjects improved in both performance time and key press accuracy. Three of the four subjects demonstrated improvements in fractionation, the ability to move each finger individually. Two subjects improved their aggregate time on the Jebsen Test of Hand Function and three of the four subjects improved in Wolf Motor Function Test aggregate time. The system designed in this paper has proven to be safe and feasible for the training of hand function for persons with hemiparesis. It features a flexible design that allows for the use and further study of adjustments in point of view, bilateral and unimanual treatment modes, adaptive training algorithms and haptically rendered collisions in the context of rehabilitation of the hemiparetic hand.

  2. Design of a complex virtual reality simulation to train finger motion for persons with hemiparesis: a proof of concept study

    PubMed Central

    Adamovich, Sergei V; Fluet, Gerard G; Mathai, Abraham; Qiu, Qinyin; Lewis, Jeffrey; Merians, Alma S

    2009-01-01

    Background Current neuroscience has identified rehabilitation approaches with the potential to stimulate adaptive changes in the brains of persons with hemiparesis. These approaches include, intensive task-oriented training, bimanual activities and balancing proximal and distal upper extremity interventions to reduce competition between these segments for neural territory. Methods This paper describes the design and feasibility testing of a robotic/virtual environment system designed to train the hand and arm of persons with hemiparesis. The system employs a simulated piano that presents visual, auditory and tactile feedback comparable to an actual piano. Arm tracking allows patients to train both the arm and hand as a coordinated unit, emphasizing the integration of both transport and manipulation phases. The piano trainer includes songs and scales that can be performed with one or both hands. Adaptable haptic assistance is available for more involved subjects. An algorithm adjusts task difficulty in proportion to subject performance. A proof of concept study was performed on four subjects with upper extremity hemiparesis secondary to chronic stroke to establish: a) the safety and feasibility of this system and b) the concurrent validity of robotically measured kinematic and performance measures to behavioral measures of upper extremity function. Results None of the subjects experienced adverse events or responses during or after training. As a group, the subjects improved in both performance time and key press accuracy. Three of the four subjects demonstrated improvements in fractionation, the ability to move each finger individually. Two subjects improved their aggregate time on the Jebsen Test of Hand Function and three of the four subjects improved in Wolf Motor Function Test aggregate time. Conclusion The system designed in this paper has proven to be safe and feasible for the training of hand function for persons with hemiparesis. It features a flexible design that allows for the use and further study of adjustments in point of view, bilateral and unimanual treatment modes, adaptive training algorithms and haptically rendered collisions in the context of rehabilitation of the hemiparetic hand. PMID:19615045

  3. [Operative vaginal deliveries training].

    PubMed

    Dupuis, O

    2008-12-01

    The appropriate use of forceps, vacuums or spatulas facilitates the rapid delivery of foetuses faced with life-threatening situations. It also makes possible the relief of certain cases of prolonged second-stage labor. In France, operative vaginal delivery (OVD) accounts for approximately 10% of all births. OVD training aims to optimize maternal, as well as neonatal safety. It should enable trainees to indicate or contraindicate an OVD safely, as well as to choose the appropriate instrument, use it correctly, and master quality control principles. Traditional OVD training is confronted with both spatial and time-related limitations. Spatial constraints involve both the teacher and trainee who only have limited visual access to the pelvic canal, and the head of the foetus; the time constraint occurs whenever the OVD occurs in an emergency setting. These limitations have been further aggravated by new constraints: decreasing time dedicated to training (European safety rules prohibit work the day after night duty), increasing litigation, and constraints imposed by society. Training by means of simulation removes such limitations making it possible to both avoid exposing pregnant women to the hazards of traditional training, and adapt the training to the skills of each trainee. OVD training should include forceps, vacuums and the use of spatulas. The OVD skills of obstetricians should be audited regularly on both a personal and a confidential level. Such audits could be based on a method using a simulator. Prospective studies comparing traditional and simulation-based training should be encouraged.

  4. Physiological Adaptations to Hypoxic vs. Normoxic Training during Intermittent Living High

    PubMed Central

    De Smet, Stefan; van Herpt, Paul; D'Hulst, Gommaar; Van Thienen, Ruud; Van Leemputte, Marc; Hespel, Peter

    2017-01-01

    In the setting of “living high,” it is unclear whether high-intensity interval training (HIIT) should be performed “low” or “high” to stimulate muscular and performance adaptations. Therefore, 10 physically active males participated in a 5-week “live high-train low or high” program (TR), whilst eight subjects were not engaged in any altitude or training intervention (CON). Five days per week (~15.5 h per day), TR was exposed to normobaric hypoxia simulating progressively increasing altitude of ~2,000–3,250 m. Three times per week, TR performed HIIT, administered as unilateral knee-extension training, with one leg in normobaric hypoxia (~4,300 m; TRHYP) and with the other leg in normoxia (TRNOR). “Living high” elicited a consistent elevation in serum erythropoietin concentrations which adequately predicted the increase in hemoglobin mass (r = 0.78, P < 0.05; TR: +2.6%, P < 0.05; CON: −0.7%, P > 0.05). Muscle oxygenation during training was lower in TRHYP vs. TRNOR (P < 0.05). Muscle homogenate buffering capacity and pH-regulating protein abundance were similar between pretest and posttest. Oscillations in muscle blood volume during repeated sprints, as estimated by oscillations in NIRS-derived tHb, increased from pretest to posttest in TRHYP (~80%, P < 0.01) but not in TRNOR (~50%, P = 0.08). Muscle capillarity (~15%) as well as repeated-sprint ability (~8%) and 3-min maximal performance (~10–15%) increased similarly in both legs (P < 0.05). Maximal isometric strength increased in TRHYP (~8%, P < 0.05) but not in TRNOR (~4%, P > 0.05). In conclusion, muscular and performance adaptations were largely similar following normoxic vs. hypoxic HIIT. However, hypoxic HIIT stimulated adaptations in isometric strength and muscle perfusion during intermittent sprinting. PMID:28620311

  5. Managing human error in aviation.

    PubMed

    Helmreich, R L

    1997-05-01

    Crew resource management (CRM) programs were developed to address team and leadership aspects of piloting modern airplanes. The goal is to reduce errors through team work. Human factors research and social, cognitive, and organizational psychology are used to develop programs tailored for individual airlines. Flight crews study accident case histories, group dynamics, and human error. Simulators provide pilots with the opportunity to solve complex flight problems. CRM in the simulator is called line-oriented flight training (LOFT). In automated cockpits CRM promotes the idea of automation as a crew member. Cultural aspects of aviation include professional, business, and national culture. The aviation CRM model has been adapted for training surgeons and operating room staff in human factors.

  6. Adaptive filter design using recurrent cerebellar model articulation controller.

    PubMed

    Lin, Chih-Min; Chen, Li-Yang; Yeung, Daniel S

    2010-07-01

    A novel adaptive filter is proposed using a recurrent cerebellar-model-articulation-controller (CMAC). The proposed locally recurrent globally feedforward recurrent CMAC (RCMAC) has favorable properties of small size, good generalization, rapid learning, and dynamic response, thus it is more suitable for high-speed signal processing. To provide fast training, an efficient parameter learning algorithm based on the normalized gradient descent method is presented, in which the learning rates are on-line adapted. Then the Lyapunov function is utilized to derive the conditions of the adaptive learning rates, so the stability of the filtering error can be guaranteed. To demonstrate the performance of the proposed adaptive RCMAC filter, it is applied to a nonlinear channel equalization system and an adaptive noise cancelation system. The advantages of the proposed filter over other adaptive filters are verified through simulations.

  7. The decay of motor adaptation to novel movement dynamics reveals an asymmetry in the stability of motion state-dependent learning

    PubMed Central

    Hosseini, Eghbal A.; Nguyen, Katrina P.; Joiner, Wilsaan M.

    2017-01-01

    Motor adaptation paradigms provide a quantitative method to study short-term modification of motor commands. Despite the growing understanding of the role motion states (e.g., velocity) play in this form of motor learning, there is little information on the relative stability of memories based on these movement characteristics, especially in comparison to the initial adaptation. Here, we trained subjects to make reaching movements perturbed by force patterns dependent upon either limb position or velocity. Following training, subjects were exposed to a series of error-clamp trials to measure the temporal characteristics of the feedforward motor output during the decay of learning. The compensatory force patterns were largely based on the perturbation kinematic (e.g., velocity), but also showed a small contribution from the other motion kinematic (e.g., position). However, the velocity contribution in response to the position-based perturbation decayed at a slower rate than the position contribution to velocity-based training, suggesting a difference in stability. Next, we modified a previous model of motor adaptation to reflect this difference and simulated the behavior for different learning goals. We were interested in the stability of learning when the perturbations were based on different combinations of limb position or velocity that subsequently resulted in biased amounts of motion-based learning. We trained additional subjects on these combined motion-state perturbations and confirmed the predictions of the model. Specifically, we show that (1) there is a significant separation between the observed gain-space trajectories for the learning and decay of adaptation and (2) for combined motion-state perturbations, the gain associated to changes in limb position decayed at a faster rate than the velocity-dependent gain, even when the position-dependent gain at the end of training was significantly greater. Collectively, these results suggest that the state-dependent adaptation associated with movement velocity is relatively more stable than that based on position. PMID:28481891

  8. Fault Analysis of Space Station DC Power Systems-Using Neural Network Adaptive Wavelets to Detect Faults

    NASA Technical Reports Server (NTRS)

    Momoh, James A.; Wang, Yanchun; Dolce, James L.

    1997-01-01

    This paper describes the application of neural network adaptive wavelets for fault diagnosis of space station power system. The method combines wavelet transform with neural network by incorporating daughter wavelets into weights. Therefore, the wavelet transform and neural network training procedure become one stage, which avoids the complex computation of wavelet parameters and makes the procedure more straightforward. The simulation results show that the proposed method is very efficient for the identification of fault locations.

  9. Adaptive temporal compressive sensing for video with motion estimation

    NASA Astrophysics Data System (ADS)

    Wang, Yeru; Tang, Chaoying; Chen, Yueting; Feng, Huajun; Xu, Zhihai; Li, Qi

    2018-04-01

    In this paper, we present an adaptive reconstruction method for temporal compressive imaging with pixel-wise exposure. The motion of objects is first estimated from interpolated images with a designed coding mask. With the help of motion estimation, image blocks are classified according to the degree of motion and reconstructed with the corresponding dictionary, which was trained beforehand. Both the simulation and experiment results show that the proposed method can obtain accurate motion information before reconstruction and efficiently reconstruct compressive video.

  10. A university teaching simulation facility

    NASA Technical Reports Server (NTRS)

    Stark, Lawrence; Kim, Won-Soo; Tendick, Frank; Tyler, Mitchell; Hannaford, Blake; Barakat, Wissam; Bergengruen, Olaf; Braddi, Louis; Eisenberg, Joseph; Ellis, Stephen

    1987-01-01

    An experimental telerobotics (TR) simulation is described suitable for studying human operator (HO) performance. Simple manipulator pick-and-place and tracking tasks allowed quantitative comparison of a number of calligraphic display viewing conditions. A number of control modes could be compared in this TR simulation, including displacement, rate, and acceleratory control using position and force joysticks. A homeomorphic controller turned out to be no better than joysticks; the adaptive properties of the HO can apparently permit quite good control over a variety of controller configurations and control modes. Training by optimal control example seemed helpful in preliminary experiments.

  11. Automatic Train Operation Using Autonomic Prediction of Train Runs

    NASA Astrophysics Data System (ADS)

    Asuka, Masashi; Kataoka, Kenji; Komaya, Kiyotoshi; Nishida, Syogo

    In this paper, we present an automatic train control method adaptable to disturbed train traffic conditions. The proposed method presumes transmission of detected time of a home track clearance to trains approaching to the station by employing equipment of Digital ATC (Automatic Train Control). Using the information, each train controls its acceleration by the method that consists of two approaches. First, by setting a designated restricted speed, the train controls its running time to arrive at the next station in accordance with predicted delay. Second, the train predicts the time at which it will reach the current braking pattern generated by Digital ATC, along with the time when the braking pattern transits ahead. By comparing them, the train correctly chooses the coasting drive mode in advance to avoid deceleration due to the current braking pattern. We evaluated the effectiveness of the proposed method regarding driving conditions, energy consumption and reduction of delays by simulation.

  12. Performance-based robotic assistance during rhythmic arm exercises.

    PubMed

    Leconte, Patricia; Ronsse, Renaud

    2016-09-13

    Rhythmic and discrete upper-limb movements are two fundamental motor primitives controlled by different neural pathways, at least partially. After stroke, both primitives can be impaired. Both conventional and robot-assisted therapies mainly train discrete functional movements like reaching and grasping. However, if the movements form two distinct neural and functional primitives, both should be trained to recover the complete motor repertoire. Recent studies show that rhythmic movements tend to be less impaired than discrete ones, so combining both movement types in therapy could support the execution of movements with a higher degree of impairment by movements that are performed more stably. A new performance-based assistance method was developed to train rhythmic movements with a rehabilitation robot. The algorithm uses the assist-as-needed paradigm by independently assessing and assisting movement features of smoothness, velocity, and amplitude. The method relies on different building blocks: (i) an adaptive oscillator captures the main movement harmonic in state variables, (ii) custom metrics measure the movement performance regarding the three features, and (iii) adaptive forces assist the patient. The patient is encouraged to improve performance regarding these three features with assistance forces computed in parallel to each other. The method was tested with simulated jerky signals and a pilot experiment with two stroke patients, who were instructed to make circular movements with an end-effector robot with assistance during half of the trials. Simulation data reveal sensitivity of the metrics for assessing the features while limiting interference between them. The assistance's effectiveness with stroke patients is established since it (i) adapts to the patient's real-time performance, (ii) improves patient motor performance, and (iii) does not lead the patient to slack. The smoothness assistance was by far the most used by both patients, while it provided no active mechanical work to the patient on average. Our performance-based assistance method for training rhythmic movements is a viable candidate to complement robot-assisted upper-limb therapies for training a larger motor repertoire.

  13. Methodologies for Adaptive Flight Envelope Estimation and Protection

    NASA Technical Reports Server (NTRS)

    Tang, Liang; Roemer, Michael; Ge, Jianhua; Crassidis, Agamemnon; Prasad, J. V. R.; Belcastro, Christine

    2009-01-01

    This paper reports the latest development of several techniques for adaptive flight envelope estimation and protection system for aircraft under damage upset conditions. Through the integration of advanced fault detection algorithms, real-time system identification of the damage/faulted aircraft and flight envelop estimation, real-time decision support can be executed autonomously for improving damage tolerance and flight recoverability. Particularly, a bank of adaptive nonlinear fault detection and isolation estimators were developed for flight control actuator faults; a real-time system identification method was developed for assessing the dynamics and performance limitation of impaired aircraft; online learning neural networks were used to approximate selected aircraft dynamics which were then inverted to estimate command margins. As off-line training of network weights is not required, the method has the advantage of adapting to varying flight conditions and different vehicle configurations. The key benefit of the envelope estimation and protection system is that it allows the aircraft to fly close to its limit boundary by constantly updating the controller command limits during flight. The developed techniques were demonstrated on NASA s Generic Transport Model (GTM) simulation environments with simulated actuator faults. Simulation results and remarks on future work are presented.

  14. SKYLAB (SL) PRIME CREW - BLDG. 5 - JSC

    NASA Image and Video Library

    1973-03-20

    S73-20759 (1 March 1973) --- Astronaut Charles Conrad Jr., commander of the first manned Skylab mission, takes items from the M512 materials processing equipment storage assembly during Skylab training at Johnson Space Center. Conrad is standing in the Multiple Docking Adapter (MDA) trainer in the JSC Mission Simulation and Training Facility. The assembly holds equipment designed to explore space manufacturing capability in a weightless state. Conrad is holding one of the experiment parts in his left hand. Photo credit: NASA

  15. Variety Wins: Soccer-Playing Robots and Infant Walking.

    PubMed

    Ossmy, Ori; Hoch, Justine E; MacAlpine, Patrick; Hasan, Shohan; Stone, Peter; Adolph, Karen E

    2018-01-01

    Although both infancy and artificial intelligence (AI) researchers are interested in developing systems that produce adaptive, functional behavior, the two disciplines rarely capitalize on their complementary expertise. Here, we used soccer-playing robots to test a central question about the development of infant walking. During natural activity, infants' locomotor paths are immensely varied. They walk along curved, multi-directional paths with frequent starts and stops. Is the variability observed in spontaneous infant walking a "feature" or a "bug?" In other words, is variability beneficial for functional walking performance? To address this question, we trained soccer-playing robots on walking paths generated by infants during free play and tested them in simulated games of "RoboCup." In Tournament 1, we compared the functional performance of a simulated robot soccer team trained on infants' natural paths with teams trained on less varied, geometric paths-straight lines, circles, and squares. Across 1,000 head-to-head simulated soccer matches, the infant-trained team consistently beat all teams trained with less varied walking paths. In Tournament 2, we compared teams trained on different clusters of infant walking paths. The team trained with the most varied combination of path shape, step direction, number of steps, and number of starts and stops outperformed teams trained with less varied paths. This evidence indicates that variety is a crucial feature supporting functional walking performance. More generally, we propose that robotics provides a fruitful avenue for testing hypotheses about infant development; reciprocally, observations of infant behavior may inform research on artificial intelligence.

  16. The role of simulation in the development of technical competence during surgical training: a literature review

    PubMed Central

    2013-01-01

    Objectives To establish the current state of knowledge on the effect of surgical simulation on the development of technical competence during surgical training. Methods Using a defined search strategy, the medical and educational literature was searched to identify empirical research that uses simulation as an educational intervention with surgical trainees. Included studies were analysed according to guidelines adapted from a Best Evidence in Medical Education review. Results A total of 32 studies were analysed, across 5 main categories of surgical simulation technique - use of bench models and box trainers (9 studies); Virtual Reality (14 studies); human cadavers (4 studies); animal models (2 studies) and robotics (3 studies). An improvement in technical skill was seen within the simulated environment across all five categories. This improvement was seen to transfer to the real patient in the operating room in all categories except the use of animals. Conclusions Based on current evidence, surgical trainees should be confident in the effects of using simulation, and should have access to formal, structured simulation as part of their training. Surgical simulation should incorporate the use of bench models and box trainers, with the use of Virtual Reality where resources allow. Alternatives to cadaveric and animal models should be considered due to the ethical and moral issues surrounding their use, and due to their equivalency with other simulation techniques. However, any use of surgical simulation must be tailored to the individual needs of trainees, and should be accompanied by feedback from expert tutors.

  17. An ICAI architecture for troubleshooting in complex, dynamic systems

    NASA Technical Reports Server (NTRS)

    Fath, Janet L.; Mitchell, Christine M.; Govindaraj, T.

    1990-01-01

    Ahab, an intelligent computer-aided instruction (ICAI) program, illustrates an architecture for simulator-based ICAI programs to teach troubleshooting in complex, dynamic environments. The architecture posits three elements of a computerized instructor: the task model, the student model, and the instructional module. The task model is a prescriptive model of expert performance that uses symptomatic and topographic search strategies to provide students with directed problem-solving aids. The student model is a descriptive model of student performance in the context of the task model. This student model compares the student and task models, critiques student performance, and provides interactive performance feedback. The instructional module coordinates information presented by the instructional media, the task model, and the student model so that each student receives individualized instruction. Concept and metaconcept knowledge that supports these elements is contained in frames and production rules, respectively. The results of an experimental evaluation are discussed. They support the hypothesis that training with an adaptive online system built using the Ahab architecture produces better performance than training using simulator practice alone, at least with unfamiliar problems. It is not sufficient to develop an expert strategy and present it to students using offline materials. The training is most effective if it adapts to individual student needs.

  18. Tensor-Train Split-Operator Fourier Transform (TT-SOFT) Method: Multidimensional Nonadiabatic Quantum Dynamics.

    PubMed

    Greene, Samuel M; Batista, Victor S

    2017-09-12

    We introduce the "tensor-train split-operator Fourier transform" (TT-SOFT) method for simulations of multidimensional nonadiabatic quantum dynamics. TT-SOFT is essentially the grid-based SOFT method implemented in dynamically adaptive tensor-train representations. In the same spirit of all matrix product states, the tensor-train format enables the representation, propagation, and computation of observables of multidimensional wave functions in terms of the grid-based wavepacket tensor components, bypassing the need of actually computing the wave function in its full-rank tensor product grid space. We demonstrate the accuracy and efficiency of the TT-SOFT method as applied to propagation of 24-dimensional wave packets, describing the S 1 /S 2 interconversion dynamics of pyrazine after UV photoexcitation to the S 2 state. Our results show that the TT-SOFT method is a powerful computational approach for simulations of quantum dynamics of polyatomic systems since it avoids the exponential scaling problem of full-rank grid-based representations.

  19. Muscle coordination in healthy subjects during floor walking and stair climbing in robot assisted gait training.

    PubMed

    Hussein, S; Schmidt, H; Volkmar, M; Werner, C; Helmich, I; Piorko, F; Krüger, J; Hesse, S

    2008-01-01

    The aim of gait rehabilitation is a restoration of an independent gait and improvement of daily life walking functions. Therefore the specific patterns, that are to be relearned, must be practiced to stimulate the learning process of the central nervous system (CNS). The Walking Simulator HapticWalker allows for the training of arbitrary gait trajectories of daily life. To evaluate the quality of the training a total of 9 subjects were investigated during free floor walking and stair climbing and during the same tasks in two different training modes on the HapticWalker: 1) with and 2) without vertical center of mass (CoM) motion. Electromyograms (EMG) of 8 gait relevant muscles were measured and muscle activation was compared for the various training modes. Besides the muscle activation as an indicator for the quality of rehabilitation training the study investigates if a cancellation of the vertical CoM movement by adaption of the footplate trajectory is feasible i.e. the muscle activation patterns for the two training modes on the HapticWalker agree. Results show no significant differences in activation timing between the training modes. This indicates the feasibility of using a passive patient suspension and emulate the vertical CoM motion by trajectory adaption of the footplates. The muscle activation timing during HapticWalker training shows important characteristics observed in physiological free walking though a few differences can still remain.

  20. Using virtual reality to augment perception, enhance sensorimotor adaptation, and change our minds.

    PubMed

    Wright, W Geoffrey

    2014-01-01

    Technological advances that involve human sensorimotor processes can have both intended and unintended effects on the central nervous system (CNS). This mini review focuses on the use of virtual environments (VE) to augment brain functions by enhancing perception, eliciting automatic motor behavior, and inducing sensorimotor adaptation. VE technology is becoming increasingly prevalent in medical rehabilitation, training simulators, gaming, and entertainment. Although these VE applications have often been shown to optimize outcomes, whether it be to speed recovery, reduce training time, or enhance immersion and enjoyment, there are inherent drawbacks to environments that can potentially change sensorimotor calibration. Across numerous VE studies over the years, we have investigated the effects of combining visual and physical motion on perception, motor control, and adaptation. Recent results from our research involving exposure to dynamic passive motion within a visually-depicted VE reveal that short-term exposure to augmented sensorimotor discordance can result in systematic aftereffects that last beyond the exposure period. Whether these adaptations are advantageous or not, remains to be seen. Benefits as well as risks of using VE-driven sensorimotor stimulation to enhance brain processes will be discussed.

  1. Error Detection-Based Model to Assess Educational Outcomes in Crisis Resource Management Training: A Pilot Study.

    PubMed

    Bouhabel, Sarah; Kay-Rivest, Emily; Nhan, Carol; Bank, Ilana; Nugus, Peter; Fisher, Rachel; Nguyen, Lily Hp

    2017-06-01

    Otolaryngology-head and neck surgery (OTL-HNS) residents face a variety of difficult, high-stress situations, which may occur early in their training. Since these events occur infrequently, simulation-based learning has become an important part of residents' training and is already well established in fields such as anesthesia and emergency medicine. In the domain of OTL-HNS, it is gradually gaining in popularity. Crisis Resource Management (CRM), a program adapted from the aviation industry, aims to improve outcomes of crisis situations by attempting to mitigate human errors. Some examples of CRM principles include cultivating situational awareness; promoting proper use of available resources; and improving rapid decision making, particularly in high-acuity, low-frequency clinical situations. Our pilot project sought to integrate CRM principles into an airway simulation course for OTL-HNS residents, but most important, it evaluated whether learning objectives were met, through use of a novel error identification model.

  2. Examining longitudinal train dynamics in ore car tipplers

    NASA Astrophysics Data System (ADS)

    Cole, Colin; Spiryagin, Maksym; Bosomworth, Chris

    2017-04-01

    Train simulation has been adapted in this paper to model the behaviour of indexing operations in ore car tippler operations. An important consideration in simulations at these low speeds (less than 4 km/h) is the increased rolling resistance transitioning from stationary conditions to motion. Most formulations of rolling resistance equations do not include this range although there are empirical values in some railway standards. The indexer control utilised here has a target trapezoidal velocity profile. The indexer to train connection was modelled as a stiff linear spring, a damper and a gap element. A sensitivity analysis was completed considering variations in wagon connections including wedge static friction, preload, coupling slack and tippler slack. Track topography including downhill grades of 0.1% and 0.2% and a valley profile were also investigated. Results showed high sensitivity to draft gear parameters of static friction and preload, but minimal benefit from downhill grades and changes in coupling slack.

  3. A continually online-trained neural network controller for brushless DC motor drives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rubaai, A.; Kotaru, R.; Kankam, M.D.

    2000-04-01

    In this paper, a high-performance controller with simultaneous online identification and control is designed for brushless dc motor drives. The dynamics of the motor/load are modeled online, and controlled using two different neural network based identification and control schemes, as the system is in operation. In the first scheme, an attempt is made to control the rotor angular speed, utilizing a single three-hidden-layer network. The second scheme attempts to control the stator currents, using a predetermined control law as a function of the estimated states. This schemes incorporates three multilayered feedforward neural networks that are online trained, using the Levenburg-Marquadtmore » training algorithm. The control of the direct and quadrature components of the stator current successfully tracked a wide variety of trajectories after relatively short online training periods. The control strategy adapts to the uncertainties of the motor/load dynamics and, in addition, learns their inherent nonlinearities. Simulation results illustrated that a neurocontroller used in conjunction with adaptive control schemes can result in a flexible control device which may be utilized in a wide range of environments.« less

  4. Current Status of Simulation-based Training Tools in Orthopedic Surgery: A Systematic Review.

    PubMed

    Morgan, Michael; Aydin, Abdullatif; Salih, Alan; Robati, Shibby; Ahmed, Kamran

    To conduct a systematic review of orthopedic training and assessment simulators with reference to their level of evidence (LoE) and level of recommendation. Medline and EMBASE library databases were searched for English language articles published between 1980 and 2016, describing orthopedic simulators or validation studies of these models. All studies were assessed for LoE, and each model was subsequently awarded a level of recommendation using a modified Oxford Centre for Evidence-Based Medicine classification, adapted for education. A total of 76 articles describing orthopedic simulators met the inclusion criteria, 47 of which described at least 1 validation study. The most commonly identified models (n = 34) and validation studies (n = 26) were for knee arthroscopy. Construct validation was the most frequent validation study attempted by authors. In all, 62% (47 of 76) of the simulator studies described arthroscopy simulators, which also contained validation studies with the highest LoE. Orthopedic simulators are increasingly being subjected to validation studies, although the LoE of such studies generally remain low. There remains a lack of focus on nontechnical skills and on cost analyses of orthopedic simulators. Copyright © 2017 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.

  5. A New Approach to Teaching Biomechanics Through Active, Adaptive, and Experiential Learning.

    PubMed

    Singh, Anita

    2017-07-01

    Demand of biomedical engineers continues to rise to meet the needs of healthcare industry. Current training of bioengineers follows the traditional and dominant model of theory-focused curricula. However, the unmet needs of the healthcare industry warrant newer skill sets in these engineers. Translational training strategies such as solving real world problems through active, adaptive, and experiential learning hold promise. In this paper, we report our findings of adding a real-world 4-week problem-based learning unit into a biomechanics capstone course for engineering students. Surveys assessed student perceptions of the activity and learning experience. While students, across three cohorts, felt challenged to solve a real-world problem identified during the simulation lab visit, they felt more confident in utilizing knowledge learned in the biomechanics course and self-directed research. Instructor evaluations indicated that the active and experiential learning approach fostered their technical knowledge and life-long learning skills while exposing them to the components of adaptive learning and innovation.

  6. Assessing Continuous Operator Workload With a Hybrid Scaffolded Neuroergonomic Modeling Approach.

    PubMed

    Borghetti, Brett J; Giametta, Joseph J; Rusnock, Christina F

    2017-02-01

    We aimed to predict operator workload from neurological data using statistical learning methods to fit neurological-to-state-assessment models. Adaptive systems require real-time mental workload assessment to perform dynamic task allocations or operator augmentation as workload issues arise. Neuroergonomic measures have great potential for informing adaptive systems, and we combine these measures with models of task demand as well as information about critical events and performance to clarify the inherent ambiguity of interpretation. We use machine learning algorithms on electroencephalogram (EEG) input to infer operator workload based upon Improved Performance Research Integration Tool workload model estimates. Cross-participant models predict workload of other participants, statistically distinguishing between 62% of the workload changes. Machine learning models trained from Monte Carlo resampled workload profiles can be used in place of deterministic workload profiles for cross-participant modeling without incurring a significant decrease in machine learning model performance, suggesting that stochastic models can be used when limited training data are available. We employed a novel temporary scaffold of simulation-generated workload profile truth data during the model-fitting process. A continuous workload profile serves as the target to train our statistical machine learning models. Once trained, the workload profile scaffolding is removed and the trained model is used directly on neurophysiological data in future operator state assessments. These modeling techniques demonstrate how to use neuroergonomic methods to develop operator state assessments, which can be employed in adaptive systems.

  7. Integrating dynamic stopping, transfer learning and language models in an adaptive zero-training ERP speller.

    PubMed

    Kindermans, Pieter-Jan; Tangermann, Michael; Müller, Klaus-Robert; Schrauwen, Benjamin

    2014-06-01

    Most BCIs have to undergo a calibration session in which data is recorded to train decoders with machine learning. Only recently zero-training methods have become a subject of study. This work proposes a probabilistic framework for BCI applications which exploit event-related potentials (ERPs). For the example of a visual P300 speller we show how the framework harvests the structure suitable to solve the decoding task by (a) transfer learning, (b) unsupervised adaptation, (c) language model and (d) dynamic stopping. A simulation study compares the proposed probabilistic zero framework (using transfer learning and task structure) to a state-of-the-art supervised model on n = 22 subjects. The individual influence of the involved components (a)-(d) are investigated. Without any need for a calibration session, the probabilistic zero-training framework with inter-subject transfer learning shows excellent performance--competitive to a state-of-the-art supervised method using calibration. Its decoding quality is carried mainly by the effect of transfer learning in combination with continuous unsupervised adaptation. A high-performing zero-training BCI is within reach for one of the most popular BCI paradigms: ERP spelling. Recording calibration data for a supervised BCI would require valuable time which is lost for spelling. The time spent on calibration would allow a novel user to spell 29 symbols with our unsupervised approach. It could be of use for various clinical and non-clinical ERP-applications of BCI.

  8. Integrating dynamic stopping, transfer learning and language models in an adaptive zero-training ERP speller

    NASA Astrophysics Data System (ADS)

    Kindermans, Pieter-Jan; Tangermann, Michael; Müller, Klaus-Robert; Schrauwen, Benjamin

    2014-06-01

    Objective. Most BCIs have to undergo a calibration session in which data is recorded to train decoders with machine learning. Only recently zero-training methods have become a subject of study. This work proposes a probabilistic framework for BCI applications which exploit event-related potentials (ERPs). For the example of a visual P300 speller we show how the framework harvests the structure suitable to solve the decoding task by (a) transfer learning, (b) unsupervised adaptation, (c) language model and (d) dynamic stopping. Approach. A simulation study compares the proposed probabilistic zero framework (using transfer learning and task structure) to a state-of-the-art supervised model on n = 22 subjects. The individual influence of the involved components (a)-(d) are investigated. Main results. Without any need for a calibration session, the probabilistic zero-training framework with inter-subject transfer learning shows excellent performance—competitive to a state-of-the-art supervised method using calibration. Its decoding quality is carried mainly by the effect of transfer learning in combination with continuous unsupervised adaptation. Significance. A high-performing zero-training BCI is within reach for one of the most popular BCI paradigms: ERP spelling. Recording calibration data for a supervised BCI would require valuable time which is lost for spelling. The time spent on calibration would allow a novel user to spell 29 symbols with our unsupervised approach. It could be of use for various clinical and non-clinical ERP-applications of BCI.

  9. Feedback in Videogame-Based Adaptive Training

    ERIC Educational Resources Information Center

    Rivera, Iris Daliz

    2010-01-01

    The field of training has been changing rapidly due to advances in technology such as videogame-based adaptive training. Videogame-based adaptive training has provided flexibility and adaptability for training in cost-effective ways. Although this method of training may have many benefits for the trainee, current research has not kept up to pace…

  10. An infectious way to teach students about outbreaks.

    PubMed

    Cremin, Íde; Watson, Oliver; Heffernan, Alastair; Imai, Natsuko; Ahmed, Norin; Bivegete, Sandra; Kimani, Teresia; Kyriacou, Demetris; Mahadevan, Preveina; Mustafa, Rima; Pagoni, Panagiota; Sophiea, Marisa; Whittaker, Charlie; Beacroft, Leo; Riley, Steven; Fisher, Matthew C

    2018-06-01

    The study of infectious disease outbreaks is required to train today's epidemiologists. A typical way to introduce and explain key epidemiological concepts is through the analysis of a historical outbreak. There are, however, few training options that explicitly utilise real-time simulated stochastic outbreaks where the participants themselves comprise the dataset they subsequently analyse. In this paper, we present a teaching exercise in which an infectious disease outbreak is simulated over a five-day period and subsequently analysed. We iteratively developed the teaching exercise to offer additional insight into analysing an outbreak. An R package for visualisation, analysis and simulation of the outbreak data was developed to accompany the practical to reinforce learning outcomes. Computer simulations of the outbreak revealed deviations from observed dynamics, highlighting how simplifying assumptions conventionally made in mathematical models often differ from reality. Here we provide a pedagogical tool for others to use and adapt in their own settings. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  11. Virtual reality-based simulators for spine surgery: a systematic review.

    PubMed

    Pfandler, Michael; Lazarovici, Marc; Stefan, Philipp; Wucherer, Patrick; Weigl, Matthias

    2017-09-01

    Virtual reality (VR)-based simulators offer numerous benefits and are very useful in assessing and training surgical skills. Virtual reality-based simulators are standard in some surgical subspecialties, but their actual use in spinal surgery remains unclear. Currently, only technical reviews of VR-based simulators are available for spinal surgery. Thus, we performed a systematic review that examined the existing research on VR-based simulators in spinal procedures. We also assessed the quality of current studies evaluating VR-based training in spinal surgery. Moreover, we wanted to provide a guide for future studies evaluating VR-based simulators in this field. This is a systematic review of the current scientific literature regarding VR-based simulation in spinal surgery. Five data sources were systematically searched to identify relevant peer-reviewed articles regarding virtual, mixed, or augmented reality-based simulators in spinal surgery. A qualitative data synthesis was performed with particular attention to evaluation approaches and outcomes. Additionally, all included studies were appraised for their quality using the Medical Education Research Study Quality Instrument (MERSQI) tool. The initial review identified 476 abstracts and 63 full texts were then assessed by two reviewers. Finally, 19 studies that examined simulators for the following procedures were selected: pedicle screw placement, vertebroplasty, posterior cervical laminectomy and foraminotomy, lumbar puncture, facet joint injection, and spinal needle insertion and placement. These studies had a low-to-medium methodological quality with a MERSQI mean score of 11.47 out of 18 (standard deviation=1.81). This review described the current state and applications of VR-based simulator training and assessment approaches in spinal procedures. Limitations, strengths, and future advancements of VR-based simulators for training and assessment in spinal surgery were explored. Higher-quality studies with patient-related outcome measures are needed. To establish further adaptation of VR-based simulators in spinal surgery, future evaluations need to improve the study quality, apply long-term study designs, and examine non-technical skills, as well as multidisciplinary team training. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. A new adaptive videogame for training attention and executive functions: design principles and initial validation.

    PubMed

    Montani, Veronica; De Filippo De Grazia, Michele; Zorzi, Marco

    2014-01-01

    A growing body of evidence suggests that action videogames could enhance a variety of cognitive skills and more specifically attention skills. The aim of this study was to develop a novel adaptive videogame to support the rehabilitation of the most common consequences of traumatic brain injury (TBI), that is the impairment of attention and executive functions. TBI patients can be affected by psychomotor slowness and by difficulties in dealing with distraction, maintain a cognitive set for a long time, processing different simultaneously presented stimuli, and planning purposeful behavior. Accordingly, we designed a videogame that was specifically conceived to activate those functions. Playing involves visuospatial planning and selective attention, active maintenance of the cognitive set representing the goal, and error monitoring. Moreover, different game trials require to alternate between two tasks (i.e., task switching) or to perform the two tasks simultaneously (i.e., divided attention/dual-tasking). The videogame is controlled by a multidimensional adaptive algorithm that calibrates task difficulty on-line based on a model of user performance that is updated on a trial-by-trial basis. We report simulations of user performance designed to test the adaptive game as well as a validation study with healthy participants engaged in a training protocol. The results confirmed the involvement of the cognitive abilities that the game is supposed to enhance and suggested that training improved attentional control during play.

  13. A new adaptive videogame for training attention and executive functions: design principles and initial validation

    PubMed Central

    Montani, Veronica; De Filippo De Grazia, Michele; Zorzi, Marco

    2014-01-01

    A growing body of evidence suggests that action videogames could enhance a variety of cognitive skills and more specifically attention skills. The aim of this study was to develop a novel adaptive videogame to support the rehabilitation of the most common consequences of traumatic brain injury (TBI), that is the impairment of attention and executive functions. TBI patients can be affected by psychomotor slowness and by difficulties in dealing with distraction, maintain a cognitive set for a long time, processing different simultaneously presented stimuli, and planning purposeful behavior. Accordingly, we designed a videogame that was specifically conceived to activate those functions. Playing involves visuospatial planning and selective attention, active maintenance of the cognitive set representing the goal, and error monitoring. Moreover, different game trials require to alternate between two tasks (i.e., task switching) or to perform the two tasks simultaneously (i.e., divided attention/dual-tasking). The videogame is controlled by a multidimensional adaptive algorithm that calibrates task difficulty on-line based on a model of user performance that is updated on a trial-by-trial basis. We report simulations of user performance designed to test the adaptive game as well as a validation study with healthy participants engaged in a training protocol. The results confirmed the involvement of the cognitive abilities that the game is supposed to enhance and suggested that training improved attentional control during play. PMID:24860529

  14. Variety Wins: Soccer-Playing Robots and Infant Walking

    PubMed Central

    Ossmy, Ori; Hoch, Justine E.; MacAlpine, Patrick; Hasan, Shohan; Stone, Peter; Adolph, Karen E.

    2018-01-01

    Although both infancy and artificial intelligence (AI) researchers are interested in developing systems that produce adaptive, functional behavior, the two disciplines rarely capitalize on their complementary expertise. Here, we used soccer-playing robots to test a central question about the development of infant walking. During natural activity, infants' locomotor paths are immensely varied. They walk along curved, multi-directional paths with frequent starts and stops. Is the variability observed in spontaneous infant walking a “feature” or a “bug?” In other words, is variability beneficial for functional walking performance? To address this question, we trained soccer-playing robots on walking paths generated by infants during free play and tested them in simulated games of “RoboCup.” In Tournament 1, we compared the functional performance of a simulated robot soccer team trained on infants' natural paths with teams trained on less varied, geometric paths—straight lines, circles, and squares. Across 1,000 head-to-head simulated soccer matches, the infant-trained team consistently beat all teams trained with less varied walking paths. In Tournament 2, we compared teams trained on different clusters of infant walking paths. The team trained with the most varied combination of path shape, step direction, number of steps, and number of starts and stops outperformed teams trained with less varied paths. This evidence indicates that variety is a crucial feature supporting functional walking performance. More generally, we propose that robotics provides a fruitful avenue for testing hypotheses about infant development; reciprocally, observations of infant behavior may inform research on artificial intelligence. PMID:29867427

  15. Adaptive regularization network based neural modeling paradigm for nonlinear adaptive estimation of cerebral evoked potentials.

    PubMed

    Zhang, Jian-Hua; Böhme, Johann F

    2007-11-01

    In this paper we report an adaptive regularization network (ARN) approach to realizing fast blind separation of cerebral evoked potentials (EPs) from background electroencephalogram (EEG) activity with no need to make any explicit assumption on the statistical (or deterministic) signal model. The ARNs are proposed to construct nonlinear EEG and EP signal models. A novel adaptive regularization training (ART) algorithm is proposed to improve the generalization performance of the ARN. Two adaptive neural modeling methods based on the ARN are developed and their implementation and performance analysis are also presented. The computer experiments using simulated and measured visual evoked potential (VEP) data have shown that the proposed ARN modeling paradigm yields computationally efficient and more accurate VEP signal estimation owing to its intrinsic model-free and nonlinear processing characteristics.

  16. A Comparison of Motor Adaptations to Robotically Facilitated Upper Extremity Task Practice Demonstrated by Children with Cerebral Palsy and Adults with Stroke

    PubMed Central

    Qiu, Qinyin; Adamovich, Sergei; Saleh, Soha; Lafond, Ian; Merians, Alma S.; Fluet, Gerard G.

    2015-01-01

    Nine children with cerebral palsy and nine adults with stroke were trained using 5 different upper extremity simulations using the NJIT-RAVR system for approximately nine to twelve hours over a three week period. Both groups made improvements in clinical measurements of upper extremity function and reaching kinematics. Patterns and magnitudes of improvement differ between the two groups. Responses to training required adjustment of the robotic system to accommodate the rehabilitation needs of children with cerebral palsy. PMID:22275632

  17. Feasibility of adapting the fundamentals of laparoscopic surgery trainer box to endoscopic skills training tool.

    PubMed

    Crespin, Oscar M; Okrainec, Allan; Kwong, Andrea V; Habaz, Ilay; Jimenez, Maria Carolina; Szasz, Peter; Weiss, Ethan; Gonzalez, Cecilia G; Mosko, Jeffrey D; Liu, Louis W C; Swanstrom, Lee L; Perretta, Silvana; Shlomovitz, Eran

    2018-06-01

    The fundamentals of laparoscopic surgery (FLS) training box is a validated tool, already accessible to surgical trainees to hone their laparoscopic skills. We aim to investigate the feasibility of adapting the FLS box for the practice and assessment of endoscopic skills. This would allow for a highly available, reusable, low-cost, mechanical trainer. The design and development process was based on a user-centered design, which is a combination of the design thinking method and cognitive task analysis. The process comprises four phases: empathy, cognitive, prototyping/adaptation, and end user testing. The underlying idea was to utilize as many of the existing components of FLS training to maintain simplicity and cost effectiveness while allowing for the practice of clinically relevant endoscopic skills. A sample size of 18 participants was calculated to be sufficient to detect performance differences between experts and trainees using a two tailed t test with alpha set at 0.05, standard deviation of 5.5, and a power of 80%. Adaptation to the FLS box included two fundamental attachments: a front panel with an insertion point for an endoscope and a shaft which provides additional support and limits movement of the scope. The panel also allows for mounting of retroflexion tasks. Six endoscopic tasks inspired by FLS were designed (two of which utilize existing FLS components). Pilot testing with 38 participants showed high user's satisfaction and demonstrated that the trainer was robust and reliable. Task performance times was able to discriminate between trainees and experts for all six tasks. A mechanical, reusable, low-cost adaptation of the FLS training box for endoscopic skills is feasible and has high user satisfaction. Preliminary testing shows that the simulator is able to discriminate between trainees and experts. Following further validation, this adaptation may act as a supplement to the FES program.

  18. The importance of training strategy adaptation: a learner-oriented approach for improving older adults' memory and transfer.

    PubMed

    Bottiroli, Sara; Cavallini, Elena; Dunlosky, John; Vecchi, Tomaso; Hertzog, Christopher

    2013-09-01

    We investigated the benefits of strategy-adaptation training for promoting transfer effects. This learner-oriented approach--which directly encourages the learner to generalize strategic behavior to new tasks--helps older adults appraise new tasks and adapt trained strategies to them. In Experiment 1, older adults in a strategy-adaptation training group used 2 strategies (imagery and sentence generation) while practicing 2 tasks (list and associative learning); they were then instructed on how to do a simple task analysis to help them adapt the trained strategies for 2 different unpracticed tasks (place learning and text learning) that were discussed during training. Two additional criterion tasks (name-face associative learning and grocery-list learning) were never mentioned during training. Two other groups were included: A strategy training group (who received strategy training and transfer instructions but not strategy-adaptation training) and a waiting-list control group. Both training procedures enhanced older adults' performance on the trained tasks and those tasks that were discussed during training, but transfer was greatest after strategy-adaptation training. Experiment 2 found that strategy-adaptation training conducted via a manual that older adults used at home also promoted transfer. These findings demonstrate the importance of adopting a learner-oriented approach to promote transfer of strategy training. PsycINFO Database Record (c) 2013 APA, all rights reserved.

  19. Aiming for excellence - A simulation-based study on adapting and testing an instrument for developing non-technical skills in Norwegian student nurse anaesthetists.

    PubMed

    Flynn, Fiona M; Sandaker, Kjersti; Ballangrud, Randi

    2017-01-01

    There is increasing focus on building safety into anaesthesia practice, with excellence in anaesthesia as an aspirational goal. Non-technical skills are an important factor in excellence and improved patient safety, though there have been few systematic attempts at integrating them into anaesthesia nursing education. This study aimed to test the reliability of NANTS-no, a specially adapted behavioural marker system for nurse anaesthetists in Norway, and explore the development of non-technical skills in student nurse anaesthetists. The pre-test post-test design incorporated a 10-week simulation-based programme, where non-technical skills in 14 student nurse anaesthetists were rated on three different occasions during high-fidelity simulation, before and after taking part in a training course. NANTS-no demonstrated high overall inter-rater reliability (ICC = 0.91), high test-retest reliability (ICC = 0.94) and good internal consistency (Cronbach's α of 0.85-0.92). A significant improvement was demonstrated across all categories of non-technical skills, with greatest improvements between the first and third and second and third sessions. There was also a significant improvement in two categories between the first and second sessions. NANTS-no is therefore suitable for assessing non-technical skills during simulation training in anaesthesia nursing education. More research is needed to validate its use in clinical practice. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Navigating towards improved surgical safety using aviation-based strategies.

    PubMed

    Kao, Lillian S; Thomas, Eric J

    2008-04-01

    Safety practices in the aviation industry are being increasingly adapted to healthcare in an effort to reduce medical errors and patient harm. However, caution should be applied in embracing these practices because of limited experience in surgical disciplines, lack of rigorous research linking these practices to outcome, and fundamental differences between the two industries. Surgeons should have an in-depth understanding of the principles and data supporting aviation-based safety strategies before routinely adopting them. This paper serves as a review of strategies adapted to improve surgical safety, including the following: implementation of crew resource management in training operative teams; incorporation of simulation in training of technical and nontechnical skills; and analysis of contributory factors to errors using surveys, behavioral marker systems, human factors analysis, and incident reporting. Avenues and challenges for future research are also discussed.

  1. How to interpret cognitive training studies: A reply to Lindskog & Winman

    PubMed Central

    Park, Joonkoo; Brannon, Elizabeth M.

    2017-01-01

    In our previous studies, we demonstrated that repeated training on an approximate arithmetic task selectively improves symbolic arithmetic performance (Park & Brannon, 2013, 2014). We proposed that mental manipulation of quantity is the common cognitive component between approximate arithmetic and symbolic arithmetic, driving the causal relationship between the two. In a commentary to our work, Lindskog and Winman argue that there is no evidence of performance improvement during approximate arithmetic training and that this challenges the proposed causal relationship between approximate arithmetic and symbolic arithmetic. Here, we argue that causality in cognitive training experiments is interpreted from the selectivity of transfer effects and does not hinge upon improved performance in the training task. This is because changes in the unobservable cognitive elements underlying the transfer effect may not be observable from performance measures in the training task. We also question the validity of Lindskog and Winman’s simulation approach for testing for a training effect, given that simulations require a valid and sufficient model of a decision process, which is often difficult to achieve. Finally we provide an empirical approach to testing the training effects in adaptive training. Our analysis reveals new evidence that approximate arithmetic performance improved over the course of training in Park and Brannon (2014). We maintain that our data supports the conclusion that approximate arithmetic training leads to improvement in symbolic arithmetic driven by the common cognitive component of mental quantity manipulation. PMID:26972469

  2. An FPGA-based DS-CDMA multiuser demodulator employing adaptive multistage parallel interference cancellation

    NASA Astrophysics Data System (ADS)

    Li, Xinhua; Song, Zhenyu; Zhan, Yongjie; Wu, Qiongzhi

    2009-12-01

    Since the system capacity is severely limited, reducing the multiple access interfere (MAI) is necessary in the multiuser direct-sequence code division multiple access (DS-CDMA) system which is used in the telecommunication terminals data-transferred link system. In this paper, we adopt an adaptive multistage parallel interference cancellation structure in the demodulator based on the least mean square (LMS) algorithm to eliminate the MAI on the basis of overviewing various of multiuser dectection schemes. Neither a training sequence nor a pilot signal is needed in the proposed scheme, and its implementation complexity can be greatly reduced by a LMS approximate algorithm. The algorithm and its FPGA implementation is then derived. Simulation results of the proposed adaptive PIC can outperform some of the existing interference cancellation methods in AWGN channels. The hardware setup of mutiuser demodulator is described, and the experimental results based on it demonstrate that the simulation results shows large performance gains over the conventional single-user demodulator.

  3. Attention theory and training research

    NASA Technical Reports Server (NTRS)

    Connelly, James G., Jr.; Wickens, Christopher D.; Lintern, Gavan; Harwood, Kelly

    1987-01-01

    This study used elements of attention theory as a methodological basis to decompose a complex training task in order to improve training efficiency. The complex task was a microcomputer flight simulation where subjects were required to control the stability of their own helicopter while acquiring and engaging enemy helicopers in a threat enviroment. Subjects were divided into whole-task, part-task, and part/open loop adaptive task groups in a transfer of training paradigm. The effect of reducing mental workload at the early stages of learning was examined with respect to the degree that subordinate elements of the complex task could be automated through practice of consistent, learnable stimulus-response relationships. Results revealed trends suggesting the benefit of isolating consistently mapped sub-tasks for part-task training and the presence of a time-sharing skill over and above the skill required for the separate subtasks.

  4. Weekly Time Course of Neuro-Muscular Adaptation to Intensive Strength Training.

    PubMed

    Brown, Niklas; Bubeck, Dieter; Haeufle, Daniel F B; Weickenmeier, Johannes; Kuhl, Ellen; Alt, Wilfried; Schmitt, Syn

    2017-01-01

    Detailed description of the time course of muscular adaptation is rarely found in literature. Thus, models of muscular adaptation are difficult to validate since no detailed data of adaptation are available. In this article, as an initial step toward a detailed description and analysis of muscular adaptation, we provide a case report of 8 weeks of intense strength training with two active, male participants. Muscular adaptations were analyzed on a morphological level with MRI scans of the right quadriceps muscle and the calculation of muscle volume, on a voluntary strength level by isometric voluntary contractions with doublet stimulation (interpolated twitch technique) and on a non-voluntary level by resting twitch torques. Further, training volume and isokinetic power were closely monitored during the training phase. Data were analyzed weekly for 1 week prior to training, pre-training, 8 weeks of training and 2 weeks of detraining (no strength training). Results show a very individual adaptation to the intense strength training protocol. While training volume and isokinetic power increased linearly during the training phase, resting twitch parameters decreased for both participants after the first week of training and stayed below baseline until de-training. Voluntary activation level showed an increase in the first 4 weeks of training, while maximum voluntary contraction showed only little increase compared to baseline. Muscle volume increased for both subjects. Especially training status seemed to influence the acute reaction to intense strength training. Fatigue had a major influence on performance and could only be overcome by one participant. The results give a first detailed insight into muscular adaptation to intense strength training on various levels, providing a basis of data for a validation of muscle fatigue and adaptation models.

  5. Using virtual reality to augment perception, enhance sensorimotor adaptation, and change our minds

    PubMed Central

    Wright, W. Geoffrey

    2014-01-01

    Technological advances that involve human sensorimotor processes can have both intended and unintended effects on the central nervous system (CNS). This mini review focuses on the use of virtual environments (VE) to augment brain functions by enhancing perception, eliciting automatic motor behavior, and inducing sensorimotor adaptation. VE technology is becoming increasingly prevalent in medical rehabilitation, training simulators, gaming, and entertainment. Although these VE applications have often been shown to optimize outcomes, whether it be to speed recovery, reduce training time, or enhance immersion and enjoyment, there are inherent drawbacks to environments that can potentially change sensorimotor calibration. Across numerous VE studies over the years, we have investigated the effects of combining visual and physical motion on perception, motor control, and adaptation. Recent results from our research involving exposure to dynamic passive motion within a visually-depicted VE reveal that short-term exposure to augmented sensorimotor discordance can result in systematic aftereffects that last beyond the exposure period. Whether these adaptations are advantageous or not, remains to be seen. Benefits as well as risks of using VE-driven sensorimotor stimulation to enhance brain processes will be discussed. PMID:24782724

  6. Adaptive Training of Manual Control: 1. Comparison of Three Adaptive Variables and Two Logic Schemes.

    ERIC Educational Resources Information Center

    Norman, D. A.; And Others

    "Machine controlled adaptive training is a promising concept. In adaptive training the task presented to the trainee varies as a function of how well he performs. In machine controlled training, adaptive logic performs a function analogous to that performed by a skilled operator." This study looks at the ways in which gain-effective time…

  7. Simulation in Urology to Train Non-Technical Skills in Ward Rounds.

    PubMed

    Somasundram, K; Spence, H; Colquhoun, A J; Mcilhenny, C; Biyani, C S; Jain, S

    2018-05-19

    We have designed an exercise to train newly appointed Urology trainees in non-technical skills on ward rounds as a part of a simulation 'boot camp'. This paper reports our experience, including a qualitative analysis of participant feedback on the utility of this method of training. The simulations took place in a high-fidelity simulated ward bay. Forty-eight doctors with formal Urology training ranging between 2-60 months (mean 19.1 ± 11.6 months) took part. Thirty-one participants were on a formal Urology specialty training pathway. The remaining participants were core (pre-specialty) surgical trainees. The entry requirement was that participants must be junior-level urologists, ideally at the beginning of specialty training. Participants individually led a simulated ward round, which was devised using actors to play as patients and a simulated 'switchboard' for telephone conversations. Distractions were introduced deliberately for participants to manage an emergent urology-related scenario. 'Freeze-frames' were used to 'pause' the ward-round, whereby observing consultants provided feedback on performance. Following the simulated exercises, a whole-group structured debrief took place. Non-technical skills for surgeons (NOTSS) scores were generated for participants by seven consultant urologists. Participants completed a two-part feedback form. Part-one involved nine questions scored on a Likert scale, and part-two required free-text responses. The mean itemised NOTSS scores for situational awareness, decision-making, communication and teamwork and leadership were 3.01 (SD ± 0.15), 2.95 (SD ± 0.16), 3.05 (SD ± 0.19), 2.98 (SD ± 0.15), respectively. From the thematic analysis, participants commented positively on the number of scenarios per participant, the use of real patient-actors and staff, and the use of 'freeze-frames' for immediate feedback. Residents also provided suggestions for distractions to be considered in the future. This simulated ward round was generally well received by participants, and the obtained feedback provides an insight into how this can be adapted to maximise the benefits for new specialty residents. The mean NOTSS scores indicated that non-technical skills performances could be improved. This supports our rationale to train non-technical skills in a safe environment to bolster career transition into positions of greater decision-making autonomy. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  8. Simulation Software

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Various NASA Small Business Innovation Research grants from Marshall Space Flight Center, Langley Research Center and Ames Research Center were used to develop the 'kernel' of COMCO's modeling and simulation software, the PHLEX finite element code. NASA needed it to model designs of flight vehicles; one of many customized commercial applications is UNISIM, a PHLEX-based code for analyzing underground flows in oil reservoirs for Texaco, Inc. COMCO's products simulate a computational mechanics problem, estimate the solution's error and produce the optimal hp-adapted mesh for the accuracy the user chooses. The system is also used as a research or training tool in universities and in mechanical design in industrial corporations.

  9. Adaptive space warping to enhance passive haptics in an arthroscopy surgical simulator.

    PubMed

    Spillmann, Jonas; Tuchschmid, Stefan; Harders, Matthias

    2013-04-01

    Passive haptics, also known as tactile augmentation, denotes the use of a physical counterpart to a virtual environment to provide tactile feedback. Employing passive haptics can result in more realistic touch sensations than those from active force feedback, especially for rigid contacts. However, changes in the virtual environment would necessitate modifications of the physical counterparts. In recent work space warping has been proposed as one solution to overcome this limitation. In this technique virtual space is distorted such that a variety of virtual models can be mapped onto one single physical object. In this paper, we propose as an extension adaptive space warping; we show how this technique can be employed in a mixed-reality surgical training simulator in order to map different virtual patients onto one physical anatomical model. We developed methods to warp different organ geometries onto one physical mock-up, to handle different mechanical behaviors of the virtual patients, and to allow interactive modifications of the virtual structures, while the physical counterparts remain unchanged. Various practical examples underline the wide applicability of our approach. To the best of our knowledge this is the first practical usage of such a technique in the specific context of interactive medical training.

  10. Performance evaluation in full-mission simulation - Methodological advances and research challenges. [in air transport operations

    NASA Technical Reports Server (NTRS)

    Chidester, Thomas R.; Kanki, Barbara G.; Helmreich, Robert L.

    1989-01-01

    The crew-factors research program at NASA Ames has developed a methodology for studying the impact of a variety of variables on the effectiveness of crews flying realistic but high workload simulated trips. The validity of investigations using the methodology is enhanced by careful design of full-mission scenarios, performance assessment using converging sources of data, and recruitment of representative subjects. Recently, portions of this methodology have been adapted for use in assessing the effectiveness of crew coordination among participants in line-oriented flight training.

  11. Adaptive dynamic surface control of flexible-joint robots using self-recurrent wavelet neural networks.

    PubMed

    Yoo, Sung Jin; Park, Jin Bae; Choi, Yoon Ho

    2006-12-01

    A new method for the robust control of flexible-joint (FJ) robots with model uncertainties in both robot dynamics and actuator dynamics is proposed. The proposed control system is a combination of the adaptive dynamic surface control (DSC) technique and the self-recurrent wavelet neural network (SRWNN). The adaptive DSC technique provides the ability to overcome the "explosion of complexity" problem in backstepping controllers. The SRWNNs are used to observe the arbitrary model uncertainties of FJ robots, and all their weights are trained online. From the Lyapunov stability analysis, their adaptation laws are induced, and the uniformly ultimately boundedness of all signals in a closed-loop adaptive system is proved. Finally, simulation results for a three-link FJ robot are utilized to validate the good position tracking performance and robustness against payload uncertainties and external disturbances of the proposed control system.

  12. Neural network L1 adaptive control of MIMO systems with nonlinear uncertainty.

    PubMed

    Zhen, Hong-tao; Qi, Xiao-hui; Li, Jie; Tian, Qing-min

    2014-01-01

    An indirect adaptive controller is developed for a class of multiple-input multiple-output (MIMO) nonlinear systems with unknown uncertainties. This control system is comprised of an L 1 adaptive controller and an auxiliary neural network (NN) compensation controller. The L 1 adaptive controller has guaranteed transient response in addition to stable tracking. In this architecture, a low-pass filter is adopted to guarantee fast adaptive rate without generating high-frequency oscillations in control signals. The auxiliary compensation controller is designed to approximate the unknown nonlinear functions by MIMO RBF neural networks to suppress the influence of uncertainties. NN weights are tuned on-line with no prior training and the project operator ensures the weights bounded. The global stability of the closed-system is derived based on the Lyapunov function. Numerical simulations of an MIMO system coupled with nonlinear uncertainties are used to illustrate the practical potential of our theoretical results.

  13. A Pilot Study Assessing Performance and Visual Attention of Teenagers with ASD in a Novel Adaptive Driving Simulator.

    PubMed

    Wade, Joshua; Weitlauf, Amy; Broderick, Neill; Swanson, Amy; Zhang, Lian; Bian, Dayi; Sarkar, Medha; Warren, Zachary; Sarkar, Nilanjan

    2017-11-01

    Individuals with Autism Spectrum Disorder (ASD), compared to typically-developed peers, may demonstrate behaviors that are counter to safe driving. The current work examines the use of a novel simulator in two separate studies. Study 1 demonstrates statistically significant performance differences between individuals with (N = 7) and without ASD (N = 7) with regards to the number of turning-related driving errors (p < 0.01). Study 2 shows that both the performance-based feedback group (N = 9) and combined performance- and gaze-sensitive feedback group (N = 8) achieved statistically significant reductions in driving errors following training (p < 0.05). These studies are the first to present results of fine-grained measures of visual attention of drivers and an adaptive driving intervention for individuals with ASD.

  14. Improving patient safety through better teamwork: how effective are different methods of simulation debriefing? Protocol for a pragmatic, prospective and randomised study

    PubMed Central

    Freytag, Julia; Stroben, Fabian; Hautz, Wolf E; Eisenmann, Dorothea; Kämmer, Juliane E

    2017-01-01

    Introduction Medical errors have an incidence of 9% and may lead to worse patient outcome. Teamwork training has the capacity to significantly reduce medical errors and therefore improve patient outcome. One common framework for teamwork training is crisis resource management, adapted from aviation and usually trained in simulation settings. Debriefing after simulation is thought to be crucial to learning teamwork-related concepts and behaviours but it remains unclear how best to debrief these aspects. Furthermore, teamwork-training sessions and studies examining education effects on undergraduates are rare. The study aims to evaluate the effects of two teamwork-focused debriefings on team performance after an extensive medical student teamwork training. Methods and analyses A prospective experimental study has been designed to compare a well-established three-phase debriefing method (gather–analyse–summarise; the GAS method) to a newly developed and more structured debriefing approach that extends the GAS method with TeamTAG (teamwork techniques analysis grid). TeamTAG is a cognitive aid listing preselected teamwork principles and descriptions of behavioural anchors that serve as observable patterns of teamwork and is supposed to help structure teamwork-focused debriefing. Both debriefing methods will be tested during an emergency room teamwork-training simulation comprising six emergency medicine cases faced by 35 final-year medical students in teams of five. Teams will be randomised into the two debriefing conditions. Team performance during simulation and the number of principles discussed during debriefing will be evaluated. Learning opportunities, helpfulness and feasibility will be rated by participants and instructors. Analyses will include descriptive, inferential and explorative statistics. Ethics and dissemination The study protocol was approved by the institutional office for data protection and the ethics committee of Charité Medical School Berlin and registered under EA2/172/16. All students will participate voluntarily and will sign an informed consent after receiving written and oral information about the study. Results will be published. PMID:28667224

  15. Basic emotions and adaptation. A computational and evolutionary model.

    PubMed

    Pacella, Daniela; Ponticorvo, Michela; Gigliotta, Onofrio; Miglino, Orazio

    2017-01-01

    The core principles of the evolutionary theories of emotions declare that affective states represent crucial drives for action selection in the environment and regulated the behavior and adaptation of natural agents in ancestrally recurrent situations. While many different studies used autonomous artificial agents to simulate emotional responses and the way these patterns can affect decision-making, few are the approaches that tried to analyze the evolutionary emergence of affective behaviors directly from the specific adaptive problems posed by the ancestral environment. A model of the evolution of affective behaviors is presented using simulated artificial agents equipped with neural networks and physically inspired on the architecture of the iCub humanoid robot. We use genetic algorithms to train populations of virtual robots across generations, and investigate the spontaneous emergence of basic emotional behaviors in different experimental conditions. In particular, we focus on studying the emotion of fear, therefore the environment explored by the artificial agents can contain stimuli that are safe or dangerous to pick. The simulated task is based on classical conditioning and the agents are asked to learn a strategy to recognize whether the environment is safe or represents a threat to their lives and select the correct action to perform in absence of any visual cues. The simulated agents have special input units in their neural structure whose activation keep track of their actual "sensations" based on the outcome of past behavior. We train five different neural network architectures and then test the best ranked individuals comparing their performances and analyzing the unit activations in each individual's life cycle. We show that the agents, regardless of the presence of recurrent connections, spontaneously evolved the ability to cope with potentially dangerous environment by collecting information about the environment and then switching their behavior to a genetically selected pattern in order to maximize the possible reward. We also prove the determinant presence of an internal time perception unit for the robots to achieve the highest performance and survivability across all conditions.

  16. A comparison of adaptive and adaptable automation under different levels of environmental stress.

    PubMed

    Sauer, Juergen; Kao, Chung-Shan; Wastell, David

    2012-01-01

    The effectiveness of different forms of adaptive and adaptable automation was examined under low- and high-stress conditions, in the form of different levels of noise. Thirty-six participants were assigned to one of the three types of variable automation (adaptive event-based, adaptive performance-based and adaptable serving as a control condition). Participants received 3 h of training on a simulation of a highly automated process control task and were subsequently tested during a 4-h session under noise exposure and quiet conditions. The results for performance suggested no clear benefits of one automation control mode over the other two. However, it emerged that participants under adaptable automation adopted a more active system management strategy and reported higher levels of self-confidence than in the two adaptive control modes. Furthermore, the results showed higher levels of perceived workload, fatigue and anxiety for performance-based adaptive automation control than the other two modes. This study compared two forms of adaptive automation (where the automated system flexibly allocates tasks between human and machine) with adaptable automation (where the human allocates the tasks). The adaptable mode showed marginal advantages. This is of relevance, given that this automation mode may also be easier to design.

  17. Heuristic pattern correction scheme using adaptively trained generalized regression neural networks.

    PubMed

    Hoya, T; Chambers, J A

    2001-01-01

    In many pattern classification problems, an intelligent neural system is required which can learn the newly encountered but misclassified patterns incrementally, while keeping a good classification performance over the past patterns stored in the network. In the paper, an heuristic pattern correction scheme is proposed using adaptively trained generalized regression neural networks (GRNNs). The scheme is based upon both network growing and dual-stage shrinking mechanisms. In the network growing phase, a subset of the misclassified patterns in each incoming data set is iteratively added into the network until all the patterns in the incoming data set are classified correctly. Then, the redundancy in the growing phase is removed in the dual-stage network shrinking. Both long- and short-term memory models are considered in the network shrinking, which are motivated from biological study of the brain. The learning capability of the proposed scheme is investigated through extensive simulation studies.

  18. Online human training of a myoelectric prosthesis controller via actor-critic reinforcement learning.

    PubMed

    Pilarski, Patrick M; Dawson, Michael R; Degris, Thomas; Fahimi, Farbod; Carey, Jason P; Sutton, Richard S

    2011-01-01

    As a contribution toward the goal of adaptable, intelligent artificial limbs, this work introduces a continuous actor-critic reinforcement learning method for optimizing the control of multi-function myoelectric devices. Using a simulated upper-arm robotic prosthesis, we demonstrate how it is possible to derive successful limb controllers from myoelectric data using only a sparse human-delivered training signal, without requiring detailed knowledge about the task domain. This reinforcement-based machine learning framework is well suited for use by both patients and clinical staff, and may be easily adapted to different application domains and the needs of individual amputees. To our knowledge, this is the first my-oelectric control approach that facilitates the online learning of new amputee-specific motions based only on a one-dimensional (scalar) feedback signal provided by the user of the prosthesis. © 2011 IEEE

  19. Handwritten word preprocessing for database adaptation

    NASA Astrophysics Data System (ADS)

    Oprean, Cristina; Likforman-Sulem, Laurence; Mokbel, Chafic

    2013-01-01

    Handwriting recognition systems are typically trained using publicly available databases, where data have been collected in controlled conditions (image resolution, paper background, noise level,...). Since this is not often the case in real-world scenarios, classification performance can be affected when novel data is presented to the word recognition system. To overcome this problem, we present in this paper a new approach called database adaptation. It consists of processing one set (training or test) in order to adapt it to the other set (test or training, respectively). Specifically, two kinds of preprocessing, namely stroke thickness normalization and pixel intensity normalization are considered. The advantage of such approach is that we can re-use the existing recognition system trained on controlled data. We conduct several experiments with the Rimes 2011 word database and with a real-world database. We adapt either the test set or the training set. Results show that training set adaptation achieves better results than test set adaptation, at the cost of a second training stage on the adapted data. Accuracy of data set adaptation is increased by 2% to 3% in absolute value over no adaptation.

  20. Education and Training of Emergency Medical Teams: Recommendations for a Global Operational Learning Framework.

    PubMed

    Amat Camacho, Nieves; Hughes, Amy; Burkle, Frederick M; Ingrassia, Pier Luigi; Ragazzoni, Luca; Redmond, Anthony; Norton, Ian; von Schreeb, Johan

    2016-10-21

    An increasing number of international emergency medical teams are deployed to assist disaster-affected populations worldwide. Since Haiti earthquake those teams have been criticised for ill adapted care, lack of preparedness in addition to not coordinating with the affected country healthcare system. The Emergency Medical Teams (EMTs) initiative, as part of the Word Health Organization's Global Health Emergency Workforce program, aims to address these shortcomings by improved EMT coordination, and mechanisms to ensure quality and accountability of national and international EMTs. An essential component to reach this goal is appropriate education and training. Multiple disaster education and training programs are available. However, most are centred on individuals' professional development rather than on the EMTs operational performance. Moreover, no common overarching or standardised training frameworks exist. In this report, an expert panel review and discuss the current approaches to disaster education and training and propose a three-step operational learning framework that could be used for EMTs globally. The proposed framework includes the following steps: 1) ensure professional competence and license to practice, 2) support adaptation of technical and non-technical professional capacities into the low-resource and emergency context and 3) prepare for an effective team performance in the field. A combination of training methodologies is also recommended, including individual theory based education, immersive simulations and team training. Agreed curriculum and open access training materials for EMTs need to be further developed, ideally through collaborative efforts between WHO, operational EMT organizations, universities, professional bodies and training agencies.  Keywords: disasters; education; emergencies; global health; learning.

  1. Education and Training of Emergency Medical Teams: Recommendations for a Global Operational Learning Framework

    PubMed Central

    Amat Camacho, Nieves; Hughes, Amy; Burkle, Frederick M.; Ingrassia, Pier Luigi; Ragazzoni, Luca; Redmond, Anthony; Norton, Ian; von Schreeb, Johan

    2016-01-01

    An increasing number of international emergency medical teams are deployed to assist disaster-affected populations worldwide. Since Haiti earthquake those teams have been criticised for ill adapted care, lack of preparedness in addition to not coordinating with the affected country healthcare system. The Emergency Medical Teams (EMTs) initiative, as part of the Word Health Organization’s Global Health Emergency Workforce program, aims to address these shortcomings by improved EMT coordination, and mechanisms to ensure quality and accountability of national and international EMTs. An essential component to reach this goal is appropriate education and training. Multiple disaster education and training programs are available. However, most are centred on individuals’ professional development rather than on the EMTs operational performance. Moreover, no common overarching or standardised training frameworks exist. In this report, an expert panel review and discuss the current approaches to disaster education and training and propose a three-step operational learning framework that could be used for EMTs globally. The proposed framework includes the following steps: 1) ensure professional competence and license to practice, 2) support adaptation of technical and non-technical professional capacities into the low-resource and emergency context and 3) prepare for an effective team performance in the field. A combination of training methodologies is also recommended, including individual theory based education, immersive simulations and team training. Agreed curriculum and open access training materials for EMTs need to be further developed, ideally through collaborative efforts between WHO, operational EMT organizations, universities, professional bodies and training agencies.  Keywords: disasters; education; emergencies; global health; learning PMID:27917306

  2. A review of the design and development processes of simulation for training in healthcare - A technology-centered versus a human-centered perspective.

    PubMed

    Persson, Johanna

    2017-01-01

    This article reviews literature about simulation systems for training in healthcare regarding the prevalence of human-centered approaches in the design and development of these systems, motivated by a tradition in this field of working technology-centered. The results show that the focus on human needs and context of use is limited. It is argued that a reduction of the focus on technical advancements in favor of the needs of the users and the healthcare community, underpinned by human factors and ergonomics theory, is favorable. Due to the low number of identified articles describing or discussing human-centered approaches it is furthermore concluded that the publication culture promotes technical descriptions and summative evaluations rather than descriptions and reflections regarding the design and development processes. Shifting the focus from a technology-centered approach to a human-centered one can aid in the process of creating simulation systems for training in healthcare that are: 1) relevant to the learning objectives, 2) adapted to the needs of users, context and task, and 3) not selected based on technical or fidelity criteria. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Spatiotemporal topology and temporal sequence identification with an adaptive time-delay neural network

    NASA Astrophysics Data System (ADS)

    Lin, Daw-Tung; Ligomenides, Panos A.; Dayhoff, Judith E.

    1993-08-01

    Inspired from the time delays that occur in neurobiological signal transmission, we describe an adaptive time delay neural network (ATNN) which is a powerful dynamic learning technique for spatiotemporal pattern transformation and temporal sequence identification. The dynamic properties of this network are formulated through the adaptation of time-delays and synapse weights, which are adjusted on-line based on gradient descent rules according to the evolution of observed inputs and outputs. We have applied the ATNN to examples that possess spatiotemporal complexity, with temporal sequences that are completed by the network. The ATNN is able to be applied to pattern completion. Simulation results show that the ATNN learns the topology of a circular and figure eight trajectories within 500 on-line training iterations, and reproduces the trajectory dynamically with very high accuracy. The ATNN was also trained to model the Fourier series expansion of the sum of different odd harmonics. The resulting network provides more flexibility and efficiency than the TDNN and allows the network to seek optimal values for time-delays as well as optimal synapse weights.

  4. Modeling the behavioral substrates of associate learning and memory - Adaptive neural models

    NASA Technical Reports Server (NTRS)

    Lee, Chuen-Chien

    1991-01-01

    Three adaptive single-neuron models based on neural analogies of behavior modification episodes are proposed, which attempt to bridge the gap between psychology and neurophysiology. The proposed models capture the predictive nature of Pavlovian conditioning, which is essential to the theory of adaptive/learning systems. The models learn to anticipate the occurrence of a conditioned response before the presence of a reinforcing stimulus when training is complete. Furthermore, each model can find the most nonredundant and earliest predictor of reinforcement. The behavior of the models accounts for several aspects of basic animal learning phenomena in Pavlovian conditioning beyond previous related models. Computer simulations show how well the models fit empirical data from various animal learning paradigms.

  5. Haptic control of a pneumatic muscle actuator to provide resistance for simulated isokinetic exercise; part II: control development and testing.

    PubMed

    Hall, Kara L; Phillips, Chandler A; Reynolds, David B; Mohler, Stanley R; Rogers, Dana B; Neidhard-Doll, Amy T

    2015-01-01

    Pneumatic muscle actuators (PMAs) have a high power to weight ratio and possess unique characteristics which make them ideal actuators for applications involving human interaction. PMAs are difficult to control due to nonlinear dynamics, presenting challenges in system implementation. Despite these challenges, PMAs have great potential as a source of resistance for strength training and rehabilitation. The objective of this work was to control a PMA for use in isokinetic exercise, potentially benefiting anyone in need of optimal strength training through a joint's range of motion. The controller, based on an inverse three-element phenomenological model and adaptive nonlinear control, allows the system to operate as a type of haptic device. A human quadriceps dynamic simulator was developed (as described in Part I of this work) so that control effectiveness and accommodation could be tested prior to human implementation. Tracking error results indicate that the control system is effective at producing PMA displacement and resistance necessary for a scaled, simulated neuromuscular actuator to maintain low-velocity isokinetic movement during simulated concentric and eccentric knee extension.

  6. [Innovative training for enhancing patient safety. Safety culture and integrated concepts].

    PubMed

    Rall, M; Schaedle, B; Zieger, J; Naef, W; Weinlich, M

    2002-11-01

    Patient safety is determined by the performance safety of the medical team. Errors in medicine are amongst the leading causes of death of hospitalized patients. These numbers call for action. Backgrounds, methods and new forms of training are introduced in this article. Concepts from safety research are transformed to the field of emergency medical treatment. Strategies from realistic patient simulator training sessions and innovative training concepts are discussed. The reasons for the high numbers of errors in medicine are not due to a lack of medical knowledge, but due to human factors and organisational circumstances. A first step towards an improved patient safety is to accept this. We always need to be prepared that errors will occur. A next step would be to separate "error" from guilt (culture of blame) allowing for a real analysis of accidents and establishment of meaningful incident reporting systems. Concepts with a good success record from aviation like "crew resource management" (CRM) training have been adapted my medicine and are ready to use. These concepts require theoretical education as well as practical training. Innovative team training sessions using realistic patient simulator systems with video taping (for self reflexion) and interactive debriefing following the sessions are very promising. As the need to reduce error rates in medicine is very high and the reasons, methods and training concepts are known, we are urged to implement these new training concepts widely and consequently. To err is human - not to counteract it is not.

  7. Nutrition and training adaptations in aquatic sports.

    PubMed

    Mujika, Iñigo; Stellingwerff, Trent; Tipton, Kevin

    2014-08-01

    The adaptive response to training is determined by the combination of the intensity, volume, and frequency of the training. Various periodized approaches to training are used by aquatic sports athletes to achieve performance peaks. Nutritional support to optimize training adaptations should take periodization into consideration; that is, nutrition should also be periodized to optimally support training and facilitate adaptations. Moreover, other aspects of training (e.g., overload training, tapering and detraining) should be considered when making nutrition recommendations for aquatic athletes. There is evidence, albeit not in aquatic sports, that restricting carbohydrate availability may enhance some training adaptations. More research needs to be performed, particularly in aquatic sports, to determine the optimal strategy for periodizing carbohydrate intake to optimize adaptations. Protein nutrition is an important consideration for optimal training adaptations. Factors other than the total amount of daily protein intake should be considered. For instance, the type of protein, timing and pattern of protein intake and the amount of protein ingested at any one time influence the metabolic response to protein ingestion. Body mass and composition are important for aquatic sport athletes in relation to power-to-mass and for aesthetic reasons. Protein may be particularly important for athletes desiring to maintain muscle while losing body mass. Nutritional supplements, such as b-alanine and sodium bicarbonate, may have particular usefulness for aquatic athletes' training adaptation.

  8. Enhancing the immersive reality of virtual simulators for easily accessible laparoscopic surgical training

    NASA Astrophysics Data System (ADS)

    McKenna, Kyra; McMenemy, Karen; Ferguson, R. S.; Dick, Alistair; Potts, Stephen

    2008-02-01

    Computer simulators are a popular method of training surgeons in the techniques of laparoscopy. However, for the trainee to feel totally immersed in the process, the graphical display should be as lifelike as possible and two-handed force feedback interaction is required. This paper reports on how a compelling immersive experience can be delivered at low cost using commonly available hardware components. Three specific themes are brought together. Firstly, programmable shaders executing in standard PC graphics adapter's deliver the appearance of anatomical realism, including effects of: translucent tissue surfaces, semi-transparent membranes, multilayer image texturing and real-time shadowing. Secondly, relatively inexpensive 'off the shelf' force feedback devices contribute to a holistic immersive experience. The final element described is the custom software that brings these together with hierarchically organized and optimized polygonal models for abdominal anatomy.

  9. Prior-knowledge-based feedforward network simulation of true boiling point curve of crude oil.

    PubMed

    Chen, C W; Chen, D Z

    2001-11-01

    Theoretical results and practical experience indicate that feedforward networks can approximate a wide class of functional relationships very well. This property is exploited in modeling chemical processes. Given finite and noisy training data, it is important to encode the prior knowledge in neural networks to improve the fit precision and the prediction ability of the model. In this paper, as to the three-layer feedforward networks and the monotonic constraint, the unconstrained method, Joerding's penalty function method, the interpolation method, and the constrained optimization method are analyzed first. Then two novel methods, the exponential weight method and the adaptive method, are proposed. These methods are applied in simulating the true boiling point curve of a crude oil with the condition of increasing monotonicity. The simulation experimental results show that the network models trained by the novel methods are good at approximating the actual process. Finally, all these methods are discussed and compared with each other.

  10. Improving public transportation systems with self-organization: A headway-based model and regulation of passenger alighting and boarding.

    PubMed

    Carreón, Gustavo; Gershenson, Carlos; Pineda, Luis A

    2017-01-01

    The equal headway instability-the fact that a configuration with regular time intervals between vehicles tends to be volatile-is a common regulation problem in public transportation systems. An unsatisfactory regulation results in low efficiency and possible collapses of the service. Computational simulations have shown that self-organizing methods can regulate the headway adaptively beyond the theoretical optimum. In this work, we develop a computer simulation for metro systems fed with real data from the Mexico City Metro to test the current regulatory method with a novel self-organizing approach. The current model considers overall system's data such as minimum and maximum waiting times at stations, while the self-organizing method regulates the headway in a decentralized manner using local information such as the passenger's inflow and the positions of neighboring trains. The simulation shows that the self-organizing method improves the performance over the current one as it adapts to environmental changes at the timescale they occur. The correlation between the simulation of the current model and empirical observations carried out in the Mexico City Metro provides a base to calculate the expected performance of the self-organizing method in case it is implemented in the real system. We also performed a pilot study at the Balderas station to regulate the alighting and boarding of passengers through guide signs on platforms. The analysis of empirical data shows a delay reduction of the waiting time of trains at stations. Finally, we provide recommendations to improve public transportation systems.

  11. Improving public transportation systems with self-organization: A headway-based model and regulation of passenger alighting and boarding

    PubMed Central

    Gershenson, Carlos; Pineda, Luis A.

    2017-01-01

    The equal headway instability—the fact that a configuration with regular time intervals between vehicles tends to be volatile—is a common regulation problem in public transportation systems. An unsatisfactory regulation results in low efficiency and possible collapses of the service. Computational simulations have shown that self-organizing methods can regulate the headway adaptively beyond the theoretical optimum. In this work, we develop a computer simulation for metro systems fed with real data from the Mexico City Metro to test the current regulatory method with a novel self-organizing approach. The current model considers overall system’s data such as minimum and maximum waiting times at stations, while the self-organizing method regulates the headway in a decentralized manner using local information such as the passenger’s inflow and the positions of neighboring trains. The simulation shows that the self-organizing method improves the performance over the current one as it adapts to environmental changes at the timescale they occur. The correlation between the simulation of the current model and empirical observations carried out in the Mexico City Metro provides a base to calculate the expected performance of the self-organizing method in case it is implemented in the real system. We also performed a pilot study at the Balderas station to regulate the alighting and boarding of passengers through guide signs on platforms. The analysis of empirical data shows a delay reduction of the waiting time of trains at stations. Finally, we provide recommendations to improve public transportation systems. PMID:29287120

  12. Oncology clinicians' defenses and adherence to communication skills training with simulated patients: an exploratory study.

    PubMed

    Bernard, Mathieu; de Roten, Yves; Despland, Jean-Nicolas; Stiefel, Friedrich

    2012-06-01

    The aim of this exploratory study was to assess the impact of clinicians' defense mechanisms-defined as self-protective psychological mechanisms triggered by the affective load of the encounter with the patient-on adherence to a communication skills training (CST). The population consisted of oncology clinicians (N=31) who participated in a CST. An interview with simulated cancer patients was recorded prior and 6 months after CST. Defenses were measured before and after CST and correlated with a prototype of an ideally conducted interview based on the criteria of CST-teachers. Clinicians who used more adaptive defense mechanisms showed better adherence to communication skills after CST than clinicians with less adaptive defenses (F(1, 29) =5.26, p=0.03, d=0.42). Improvement in communication skills after CST seems to depend on the initial levels of defenses of the clinician prior to CST. Implications for practice and training are discussed. Communication has been recognized as a central element of cancer care [1]. Ineffective communication may contribute to patients' confusion, uncertainty, and increased difficulty in asking questions, expressing feelings, and understanding information [2, 3], and may also contribute to clinicians' lack of job satisfaction and emotional burnout [4]. Therefore, communication skills trainings (CST) for oncology clinicians have been widely developed over the last decade. These trainings should increase the skills of clinicians to respond to the patient's needs, and enhance an adequate encounter with the patient with efficient exchange of information [5]. While CSTs show a great diversity with regard to their pedagogic approaches [6, 7], the main elements of CST consist of (1) role play between participants, (2) analysis of videotaped interviews with simulated patients, and (3) interactive case discussion provided by participants. As recently stated in a consensus paper [8], CSTs need to be taught in small groups (up to 10-12 participants) and have a minimal duration of at least 3 days in order to be effective. Several systematic reviews evaluated the impact of CST on clinicians' communication skills [9-11]. Effectiveness of CST can be assessed by two main approaches: participant-based and patient-based outcomes. Measures can be self-reported, but, according to Gysels et al. [10], behavioral assessment of patient-physician interviews [12] is the most objective and reliable method for measuring change after training. Based on 22 studies on participants' outcomes, Merckaert et al. [9] reported an increase of communication skills and participants' satisfaction with training and changes in attitudes and beliefs. The evaluation of CST remains a challenging task and variables mediating skills improvement remain unidentified. We recently thus conducted a study evaluating the impact of CST on clinicians' defenses by comparing the evolution of defenses of clinicians participating in CST with defenses of a control group without training [13]. Defenses are unconscious psychological processes which protect from anxiety or distress. Therefore, they contribute to the individual's adaptation to stress [14]. Perry refers to the term "defensive functioning" to indicate the degree of adaptation linked to the use of a range of specific defenses by an individual, ranging from low defensive functioning when he or she tends to use generally less adaptive defenses (such as projection, denial, or acting out) to high defensive functioning when he or she tends to use generally more adaptive defenses (such as altruism, intellectualization, or introspection) [15, 16]. Although several authors have addressed the emotional difficulties of oncology clinicians when facing patients and their need to preserve themselves [7, 17, 18], no research has yet been conducted on the defenses of clinicians. For example, repeated use of less adaptive defenses, such as denial, may allow the clinician to avoid or reduce distress, but it also diminishes his ability to respond to the patient's emotions, to identify and to respond adequately to his needs, and to foster the therapeutic alliance. Results of the above-mentioned study [13] showed two groups of clinicians: one with a higher defensive functioning and one with a lower defensive functioning prior to CST. After the training, a difference in defensive functioning between clinicians who participated in CST and clinicians of the control group was only showed for clinicians with a higher defensive functioning. Some clinicians may therefore be more responsive to CST than others. To further address this issue, the present study aimed to evaluate the relationship between the level of adherence to an "ideally conducted interview", as defined by the teachers of the CST, and the level of the clinician' defensive functioning. We hypothesized that, after CST, clinicians with a higher defensive functioning show a greater adherence to the "ideally conducted interview" than clinicians with a lower defensive functioning.

  13. Driving with Hemianopia V: Do Individuals with Hemianopia Spontaneously Adapt Their Gaze Scanning to Differing Hazard Detection Demands?

    PubMed Central

    Alberti, Concetta F.; Goldstein, Robert B.; Peli, Eli; Bowers, Alex R.

    2017-01-01

    Purpose We investigated whether people with homonymous hemianopia (HH) were able to spontaneously (without training or instructions) adapt their blind-side scan magnitudes in response to differing scanning requirements for detection of pedestrians in a driving simulator when differing cues about pedestrian eccentricities and movement behaviors were available in the seeing hemifield. Methods Twelve HH participants completed two sessions in a driving simulator pressing the horn when they detected a pedestrian. Stationary pedestrians outside the driving lane were presented in one session and approaching pedestrians on a collision course in the other. Gaze data were analyzed for pedestrians initially appearing at approximately 14° in the blind hemifield. No instructions were given regarding scanning. Results After appearing, the stationary pedestrians' eccentricity increased rapidly to a median of 31° after 2.5 seconds, requiring increasingly larger blind-side gaze scans for detection, while the approaching pedestrians' eccentricity remained constant at approximately 14°, requiring a more moderate scan (∼14°) for detection. Although median scan magnitudes did not differ between the two conditions (approaching: 14° [IQR 9°–15°]; stationary: 13° [IQR 9°–20°]; P = 0.43), three participants showed evidence of adapting (increasing) their blind-side scan magnitudes in the stationary condition. Conclusions Three participants (25%) appeared to be able to apply voluntary cognitive control to modify their blind-side gaze scanning in response to the differing scanning requirements of the two conditions without explicit training. Translational Relevance Our results suggest that only a minority of people with hemianopia are likely to be able to spontaneously adapt their blind-side scanning in response to rapidly changing and unpredictable situations in on-road driving. PMID:29067219

  14. An adaptive drug delivery design using neural networks for effective treatment of infectious diseases: a simulation study.

    PubMed

    Padhi, Radhakant; Bhardhwaj, Jayender R

    2009-06-01

    An adaptive drug delivery design is presented in this paper using neural networks for effective treatment of infectious diseases. The generic mathematical model used describes the coupled evolution of concentration of pathogens, plasma cells, antibodies and a numerical value that indicates the relative characteristic of a damaged organ due to the disease under the influence of external drugs. From a system theoretic point of view, the external drugs can be interpreted as control inputs, which can be designed based on control theoretic concepts. In this study, assuming a set of nominal parameters in the mathematical model, first a nonlinear controller (drug administration) is designed based on the principle of dynamic inversion. This nominal drug administration plan was found to be effective in curing "nominal model patients" (patients whose immunological dynamics conform to the mathematical model used for the control design exactly. However, it was found to be ineffective in curing "realistic model patients" (patients whose immunological dynamics may have off-nominal parameter values and possibly unwanted inputs) in general. Hence, to make the drug delivery dosage design more effective for realistic model patients, a model-following adaptive control design is carried out next by taking the help of neural networks, that are trained online. Simulation studies indicate that the adaptive controller proposed in this paper holds promise in killing the invading pathogens and healing the damaged organ even in the presence of parameter uncertainties and continued pathogen attack. Note that the computational requirements for computing the control are very minimal and all associated computations (including the training of neural networks) can be carried out online. However it assumes that the required diagnosis process can be carried out at a sufficient faster rate so that all the states are available for control computation.

  15. Demonstration of Self-Training Autonomous Neural Networks in Space Vehicle Docking Simulations

    NASA Technical Reports Server (NTRS)

    Patrick, M. Clinton; Thaler, Stephen L.; Stevenson-Chavis, Katherine

    2006-01-01

    Neural Networks have been under examination for decades in many areas of research, with varying degrees of success and acceptance. Key goals of computer learning, rapid problem solution, and automatic adaptation have been elusive at best. This paper summarizes efforts at NASA's Marshall Space Flight Center harnessing such technology to autonomous space vehicle docking for the purpose of evaluating applicability to future missions.

  16. Impact of an open-chest extracorporeal membrane oxygenation model for in situ simulated team training: a pilot study.

    PubMed

    Atamanyuk, Iryna; Ghez, Olivier; Saeed, Imran; Lane, Mary; Hall, Judith; Jackson, Tim; Desai, Ajay; Burmester, Margarita

    2014-01-01

    To develop an affordable realistic open-chest extracorporeal membrane oxygenation (ECMO) model for embedded in situ interprofessional crisis resource management training in emergency management of a post-cardiac surgery child. An innovative attachment to a high-fidelity mannequin (Laerdal Simbaby) was used to enable a cardiac tamponade/ECMO standstill scenario. Two saline bags with blood dye were placed over the mannequin's chest. A 'heart' bag with venous and arterial outlets was connected to the corresponding tubes of the ECMO circuit. The bag was divided into arterial and venous parts by loosely wrapping silicon tubing around its centre. A 'pericardial' bag was placed above it. Both were then covered by a chest skin that had a sutured silicone membrane window. False blood injected into the 'pericardial' bag caused expansion leading to (i) bulging of silastic membrane, simulating tamponade, and (ii) compression of tubing around the 'heart' bag, creating negative venous pressures and cessation of ECMO flow. In situ Simulation Paediatric Resuscitation Team Training (SPRinT) was performed on paediatric intensive care unit; the course included a formal team training/scenario of an open-chest ECMO child with acute cardiac tamponade due to blocked chest drains/debriefing by trained facilitators. Cardiac tamponade was reproducible, and ECMO flow/circuit pressure changes were effective and appropriate. There were eight participants: one cardiac surgeon, two intensivists, one cardiologist, one perfusionist and three nurses. Five of the eight reported the realism of the model and 6/8 the realism of the clinical scenario as highly effective. Eight of eight reported a highly effective impact on (i) their practice and (ii) teamwork. Six of eight reported a highly effective impact on communication skills and increased confidence in attending future real events. Innovative adaptation of a high-fidelity mannequin for open-chest ECMO simulation can achieve a realistic and reproducible training model. The impact on interprofessional team training is promising but needs to be validated further.

  17. Exercise detraining: Applicability to microgravity

    NASA Technical Reports Server (NTRS)

    Coyle, Edward F.

    1994-01-01

    Physical training exposes the various systems of the body to potent physiologic stimuli. These stimuli induce specific adaptations that enhance an individual's tolerance for the type of exercise encountered in training. The level of adaptation and the magnitude of improvement in exercise tolerance is proportional to the potency of the physical training stimuli. Likewise, our bodies are stimulated by gravity, which promotes adaptations of both the cardiovascular and skeletal muscles. Exposure to microgravity removes normal stimuli to these systems, and the body adapts to these reduced demands. In many respects the cessation of physical training in athletes and the transition from normal gravity to microgravity represent similar paradigms. Inherent to these situations is the concept of the reversibility of the adaptations induced by training or by exposure to normal gravity. The reversibility concept holds that when physical training is stopped (i.e., detraining) or reduced, or a person goes from normal gravity to microgravity, the bodily systems readjust in accordance with the diminished physiologic stimuli. The focus of this chapter is on the time course of loss of the adaptations to endurance training as well as on the possibility that certain adaptations persist, to some extent, when training is stopped. Because endurance exercise training generally improves cardiovascular function and promotes metabolic adaptations within the exercising skeletal musculature, the reversibility of these specific adaptations is considered. These observations have some applicability to the transition from normal to microgravity.

  18. STS-92 crew poses for photo after emergency egress training

    NASA Technical Reports Server (NTRS)

    2000-01-01

    After completing emergency egress training at Launch Pad 39A, the STS-92 crew poses for a photo. Standing, left to right, are Pilot Pamela Ann Melroy, Commander Brian Duffy and Mission Specialists Michael Lopez-Alegria, Peter J.K. '''Jeff''' Wisoff, Leroy Chiao, William S. McArthur Jr. and Koichi Wakata of Japan. The training is part of Terminal Countdown Demonstration Test activities that also include a simulated countdown. STS-92 is scheduled to launch Oct. 5 at 9:38 p.m. EDT on the fifth flight to the International Space Station. It will carry two elements of the Space Station, the Integrated Truss Structure Z1 and the third Pressurized Mating Adapter. The mission is also the 100th flight in the Shuttle program.

  19. Countermeasures for Maintenance of Cardiovascular and Muscle Function in Space Flight

    NASA Technical Reports Server (NTRS)

    1997-01-01

    In this session, Session FA2, the discussion focuses on the following topics: Effects of Repeated Long Duration +2Gz Load on Man's Cardiovascular Function; Certain Approaches to the Development of On-Board Automated Training System; Cardiac, Arterial, and Venous Adaptation to Og during 6 Month MIR-Spaceflights with and without "Thigh Cuffs" (93-95); Space Cycle(TM) Induced Physiologic Responses; Muscular Deconditioning During Long-term Spaceflight Exercise Recommendations to Optimize Crew Performance; Structure And Function of Knee Extensors After Long-Duration Spaceflight in Man, Effects of Countermeasure Exercise Training; Force and power characteristics of an exercise ergometer designed for use in space; and The simulating of overgravity conditions for astronauts' motor apparatus at the conditions of the training for orbital flights.

  20. Training Effectiveness of a Wide Area Virtual Environment in Medical Simulation.

    PubMed

    Wier, Grady S; Tree, Rebekah; Nusr, Rasha

    2017-02-01

    The success of war fighters and medical personnel handling traumatic injuries largely depends on the quality of training they receive before deployment. The purpose of this study was to gauge the utility of a Wide Area Virtual Environment (WAVE) as a training adjunct by comparing and evaluating student performance, measuring sense of realism, and assessing the impact on student satisfaction with their training exposure in an immersive versus a field environment. This comparative prospective cohort study examined the utility of a three-screen WAVE where subjects were immersed in the training environment with medical simulators. Standard field training commenced for the control group subjects. Medical skills, time to completion, and Team Strategies and Tools to Enhance Performance and Patient Safety objective metrics were assessed for each team (n = 94). In addition, self-efficacy questionnaires were collected for each subject (N = 470). Medical teams received poorer overall team scores (F1,186 = 0.756, P = 0.001), took longer to complete the scenario (F1,186 = 25.15, P = 0.001), and scored lower on The National Registry of Emergency Medical Technicians trauma assessment checklist (F1,186 = 1.13, P = 0.000) in the WAVE versus the field environment. Critical thinking and realism factors within the self-efficacy questionnaires scored higher in the WAVE versus the field [(F1,466 = 8.04, P = 0.005), (F1,465 = 18.57, P = 0.000), and (F1,466 = 53.24, P = 0.000), respectively]. Environmental and emotional stressors may negatively affect critical thinking and clinical skill performance of medical teams. However, by introducing more advanced simulation trainings with added stressors, students may be able to adapt and overcome barriers to performance found in high-stress environments.

  1. Postural Control Disturbances Produced By Exposure to HMD and Dome Vr Systems

    NASA Technical Reports Server (NTRS)

    Harm, D. L.; Taylor, L. C.

    2005-01-01

    Two critical and unresolved human factors issues in VR systems are: 1) potential "cybersickness", a form of motion sickness which is experienced in virtual worlds, and 2) maladaptive sensorimotor performance following exposure to VR systems. Interestingly, these aftereffects are often quite similar to adaptive sensorimotor responses observed in astronauts during and/or following space flight. Most astronauts and cosmonauts experience perceptual and sensorimotor disturbances during and following space flight. All astronauts exhibit decrements in postural control following space flight. It has been suggested that training in virtual reality (VR) may be an effective countermeasure for minimizing perceptual and/or sensorimotor disturbances. People adapt to consistent, sustained alterations of sensory input such as those produced by microgravity, and experimentally-produced stimulus rearrangements (e.g., reversing prisms, magnifying lenses, flight simulators, and VR systems). Adaptation is revealed by aftereffects including perceptual disturbances and sensorimotor control disturbances. The purpose of the current study was to compare disturbances in postural control produced by dome and head-mounted virtual environment displays. Individuals recovered from motion sickness and the detrimental effects of exposure to virtual reality on postural control within one hour. Sickness severity and initial decrements in postural equilibrium decreases over days, which suggests that subjects become dual-adapted over time. These findings provide some direction for developing training schedules for VR users that facilitate adaptation, and address safety concerns about aftereffects.

  2. A robotic voice simulator and the interactive training for hearing-impaired people.

    PubMed

    Sawada, Hideyuki; Kitani, Mitsuki; Hayashi, Yasumori

    2008-01-01

    A talking and singing robot which adaptively learns the vocalization skill by means of an auditory feedback learning algorithm is being developed. The robot consists of motor-controlled vocal organs such as vocal cords, a vocal tract and a nasal cavity to generate a natural voice imitating a human vocalization. In this study, the robot is applied to the training system of speech articulation for the hearing-impaired, because the robot is able to reproduce their vocalization and to teach them how it is to be improved to generate clear speech. The paper briefly introduces the mechanical construction of the robot and how it autonomously acquires the vocalization skill in the auditory feedback learning by listening to human speech. Then the training system is described, together with the evaluation of the speech training by auditory impaired people.

  3. Adaptive Decision Aiding in Computer-Assisted Instruction: Adaptive Computerized Training System (ACTS).

    ERIC Educational Resources Information Center

    Hopf-Weichel, Rosemarie; And Others

    This report describes results of the first year of a three-year program to develop and evaluate a new Adaptive Computerized Training System (ACTS) for electronics maintenance training. (ACTS incorporates an adaptive computer program that learns the student's diagnostic and decision value structure, compares it to that of an expert, and adapts the…

  4. Predictions of the Contribution of HCN Half-Maximal Activation Potential Heterogeneity to Variability in Intrinsic Adaptation of Spiral Ganglion Neurons.

    PubMed

    Boulet, Jason; Bruce, Ian C

    2017-04-01

    Spiral ganglion neurons (SGNs) exhibit a wide range in their strength of intrinsic adaptation on a timescale of 10s to 100s of milliseconds in response to electrical stimulation from a cochlear implant (CI). The purpose of this study was to determine how much of that variability could be caused by the heterogeneity in half-maximal activation potentials of hyperpolarization-activated cyclic nucleotide-gated cation (HCN) channels, which are known to produce intrinsic adaptation. In this study, a computational membrane model of cat type I SGN was developed based on the Hodgkin-Huxley model plus HCN and low-threshold potassium (KLT) conductances in which the half-maximal activation potential of the HCN channel was varied and the response of the SGN to pulse train and paired-pulse stimulation was simulated. Physiologically plausible variation of HCN half-maximal activation potentials could indeed determine the range of adaptation on the timescale of 10s to 100s of milliseconds and recovery from adaptation seen in the physiological data while maintaining refractoriness within physiological bounds. This computational model demonstrates that HCN channels may play an important role in regulating the degree of adaptation in response to pulse train stimulation and therefore contribute to variable constraints on acoustic information coding by CIs. This finding has broad implications for CI stimulation paradigms in that cell-to-cell variation of HCN channel properties are likely to significantly alter SGN excitability and therefore auditory perception.

  5. Influence of combined iron supplementation and simulated hypoxia on the haematological module of the athlete biological passport.

    PubMed

    Garvican-Lewis, Laura A; Vuong, Victor L; Govus, Andrew D; Schumacher, Yorck Olaf; Hughes, David; Lovell, Greg; Eichner, Daniel; Gore, Christopher J

    2018-04-01

    The integrity of the athlete biological passport (ABP) is underpinned by understanding normal fluctuations of its biomarkers to environmental or medical conditions, for example, altitude training or iron deficiency. The combined impact of altitude and iron supplementation on the ABP was evaluated in endurance-trained athletes (n = 34) undertaking 3 weeks of simulated live-high: train-low (14 h.d -1 , 3000 m). Athletes received either oral, intravenous (IV) or placebo iron supplementation, commencing 2 weeks prior and continuing throughout hypoxic exposure. Venous blood was sampled twice prior, weekly during, and up to 6 weeks after altitude. Individual ABP thresholds for haemoglobin concentration ([Hb]), reticulocyte percentage (%retic), and OFF score were calculated using the adaptive model and assessed at 99% and 99.9% specificity. Eleven athletes returned values outside of the calculated reference ranges at 99%, with 8 at 99.9%. The percentage of athletes exceeding the thresholds in each group was similar, but IV returned the most individual occurrences. A similar frequency of abnormalities occurred across the 3 biomarkers, with abnormal [Hb] and OFF score values arising mainly during-, and %retic values mainly post- altitude. Removing samples collected during altitude from the model resulted in 10 athletes returning abnormal values at 99% specificity, 2 of whom had not triggered the model previously. In summary, the abnormalities observed in response to iron supplementation and hypoxia were not systematic and mostly in line with expected physiological adaptations. They do not represent a uniform weakness in the ABP. Nevertheless, altitude training and iron supplementation should be carefully considered by experts evaluating abnormal ABP profiles. Copyright © 2017 John Wiley & Sons, Ltd.

  6. 'Simulation-based learning in psychiatry for undergraduates at the University of Zimbabwe medical school'.

    PubMed

    Piette, Angharad; Muchirahondo, Florence; Mangezi, Walter; Iversen, Amy; Cowan, Frances; Dube, Michelle; Peterkin, Hugh Grant-; Araya, Ricardo; Abas, Melanie

    2015-02-21

    The use of simulated patients to teach in psychiatry has not been reported from low-income countries. This is the first study using simulation teaching in psychiatry in Africa. The aim of this study was to introduce a novel method of psychiatric teaching to medical students at the University of Zimbabwe and assess its feasibility and preliminary effectiveness. We selected depression to simulate because students in Zimbabwe are most likely to see cases of psychoses during their ward-based clinical exposure. Zimbabwean psychiatrists adapted scenarios on depression and suicide based on ones used in London. Zimbabwean post-graduate trainee psychiatrists were invited to carry out the teaching and psychiatric nursing staff were recruited and trained in one hour to play the simulated patients (SPs). All students undertaking their psychiatry placement (n = 30) were allocated into groups for a short didactic lecture on assessing for clinical depression and then rotated around 3 scenarios in groups of 4-5 and asked to interview a simulated patient with signs of depression. Students received feedback from peers, SPs and facilitators. Students completed the Confidence in Assessing and Managing Depression (CAM-D) questionnaire before and after the simulation session and provided written free-text feedback. Post-graduate trainers, together with one consultant, facilitated the simulated teaching after three hours training. Student confidence scores increased from mean 15.90 to 20.05 (95% CI = 2.58- 5.71) t (20) = 5.52, (p > 0.0001) following the simulation teaching session. Free-text feedback was positive overall with students commenting that it was "helpful", "enjoyable" and "boosted confidence". In Zimbabwe, simulation teaching was acceptable and could be adapted with minimal effort by local psychiatrists and implemented by post-graduate trainees and one consultant, Students found it helpful and enjoyable and their confidence increased after the teaching. It offers students a broader exposure to psychiatric conditions than they receive during clinical attachment to the inpatient wards. Involving psychiatry trainees and nursing staff may be a sustainable approach in a setting with small number of consultants and limited funds to pay for professional actors.

  7. Adaptive Personalized Training Games for Individual and Collaborative Rehabilitation of People with Multiple Sclerosis

    PubMed Central

    2014-01-01

    Any rehabilitation involves people who are unique individuals with their own characteristics and rehabilitation needs, including patients suffering from Multiple Sclerosis (MS). The prominent variation of MS symptoms and the disease severity elevate a need to accommodate the patient diversity and support adaptive personalized training to meet every patient's rehabilitation needs. In this paper, we focus on integrating adaptivity and personalization in rehabilitation training for MS patients. We introduced the automatic adjustment of difficulty levels as an adaptation that can be provided in individual and collaborative rehabilitation training exercises for MS patients. Two user studies have been carried out with nine MS patients to investigate the outcome of this adaptation. The findings showed that adaptive personalized training trajectories have been successfully provided to MS patients according to their individual training progress, which was appreciated by the patients and the therapist. They considered the automatic adjustment of difficulty levels to provide more variety in the training and to minimize the therapists involvement in setting up the training. With regard to social interaction in the collaborative training exercise, we have observed some social behaviors between the patients and their training partner which indicated the development of social interaction during the training. PMID:24982862

  8. The combined effects of action observation and passive proprioceptive training on adaptive motor learning.

    PubMed

    Lei, Yuming; Bao, Shancheng; Wang, Jinsung

    2016-09-07

    Sensorimotor adaptation can be induced by action observation, and also by passive training. Here, we investigated the effect of a protocol that combined action observation and passive training on visuomotor adaptation, by comparing it with the effect of action observation or passive training alone. Subjects were divided into five conditions during the training session: (1) action observation, in which the subjects watched a video of a model who adapted to a novel visuomotor rotation; (2) proprioceptive training, in which the subject's arm was moved passively to target locations that were associated with desired trajectories; (3) combined training, in which the subjects watched the video of a model during a half of the session and experienced passive movements during the other half; (4) active training, in which the subjects adapted actively to the rotation; and (5) a control condition, in which the subjects did not perform any task. Following that session, all subjects adapted to the same visuomotor rotation. Results showed that the subjects in the combined training condition adapted to the rotation significantly better than those in the observation or proprioceptive training condition, although their performance was not as good as that of those who adapted actively. These findings suggest that although a protocol that combines action observation and passive training consists of all the processes involved in active training (error detection and correction, effector-specific and proprioceptively based reaching movements), these processes in that protocol may work differently as compared to a protocol in which the same processes are engaged actively. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  9. STS-88 crew use simulators and virtual reality in preflight training

    NASA Image and Video Library

    1998-04-08

    S98-05079 (8 Apr. 1998) --- Astronaut Jerry L. Ross, assigned as a mission specialist for the mission, uses specialized gear to train for his duties aboard the Space Shuttle Endeavour. This type virtual reality training allows each of the assigned Extravehicular Activity (EVA) astronauts -- Ross and James H. Newman -- to wear a helmet and special gloves to look at computer displays simulating actual movements around the various locations on the International Space Station (ISS) hardware with which they'll be working. One of those elements will be the Functional Cargo Block (FGB), which will have been launched a couple of weeks prior to STS-88. Once the FGB is captured using the Remote Manipulator System (RMS) of the Endeavour, astronaut Nancy J. Currie will maneuver the robot arm to dock the FGB to the conical mating adapter at the top of Node 1, to be carried in the Shuttle's cargo bay. In ensuing days, three EVA space walks by Ross and Newman will be performed to make power, data and utility connections between the two modules. Currie also uses this same lab to train for her RMS controlling duties.

  10. STS-88 crew use simulators and virtual reality in preflight training

    NASA Image and Video Library

    1998-04-08

    S98-05074 (8 Apr. 1998) --- Astronaut Jerry L. Ross, assigned as a mission specialist for the mission, uses special gear and software to train for his duties aboard the Space Shuttle Endeavour. This type virtual reality training supplements practice for each of the assigned space-walking astronauts -- Ross and James H. Newman -- during which they wear a helmet and special gloves to look at computer displays simulating actual movements around the various locations on the early International Space Station (ISS) hardware with which they'll be working. One of those elements will be the Functional Cargo Block (FGB), which will have been launched a couple of weeks prior to STS-88. Once the FGB is captured using the Remote Manipulator System (RMS) of the Endeavour, astronaut Nancy J. Currie will maneuver the robot arm to dock the FGB to the conical mating adapter at the top of Node 1, to be carried in the Shuttle's cargo bay. In ensuing days, three space walks by Ross and Newman will be performed to make power, data and utility connections between the two modules. Currie also uses this same lab to train for her RMS controlling duties.

  11. STS-88 crew use simulators and virtual reality in preflight training

    NASA Image and Video Library

    1998-04-08

    S98-05076 (8 Apr. 1998) --- Astronaut Jerry L. Ross, assigned as a mission specialist for the mission, uses special gear and software to train for his duties aboard the Space Shuttle Endeavour. This type virtual reality training supplements practice for each of the assigned space-walking astronauts -- Ross and James H. Newman -- during which they wear a helmet and special gloves to look at computer displays simulating actual movements around the various locations on the early International Space Station (ISS) hardware with which they'll be working. One of those elements will be the Functional Cargo Block (FGB), which will have been launched a couple of weeks prior to STS-88. Once the FGB is captured using the Remote Manipulator System (RMS) of the Endeavour, astronaut Nancy J. Currie will maneuver the robot arm to dock the FGB to the conical mating adapter at the top of Node 1, to be carried in the Shuttle's cargo bay. In ensuing days, three space walks by Ross and Newman will be performed to make power, data and utility connections between the two modules. Currie also uses this same lab to train for her RMS controlling duties.

  12. Countermeasures to Enhance Sensorimotor Adaptability

    NASA Technical Reports Server (NTRS)

    Bloomberg, J. J.; Peters, B. T.; Mulavara, A. P.; Brady, R. A.; Batson, C. C.; Miller, C. A.; Cohen, H. S.

    2011-01-01

    During exploration-class missions, sensorimotor disturbances may lead to disruption in the ability to ambulate and perform functional tasks during the initial introduction to a novel gravitational environment following a landing on a planetary surface. The goal of our current project is to develop a sensorimotor adaptability (SA) training program to facilitate rapid adaptation to novel gravitational environments. We have developed a unique training system comprised of a treadmill placed on a motion-base facing a virtual visual scene that provides an unstable walking surface combined with incongruent visual flow designed to enhance sensorimotor adaptability. We have conducted a series of studies that have shown: Training using a combination of modified visual flow and support surface motion during treadmill walking enhances locomotor adaptability to a novel sensorimotor environment. Trained individuals become more proficient at performing multiple competing tasks while walking during adaptation to novel discordant sensorimotor conditions. Trained subjects can retain their increased level of adaptability over a six months period. SA training is effective in producing increased adaptability in a more complex over-ground ambulatory task on an obstacle course. This confirms that for a complex task like walking, treadmill training contains enough of the critical features of overground walking to be an effective training modality. The structure of individual training sessions can be optimized to promote fast/strategic motor learning. Training sessions that each contain short-duration exposures to multiple perturbation stimuli allows subjects to acquire a greater ability to rapidly reorganize appropriate response strategies when encountering a novel sensory environment. Individual sensory biases (i.e. increased visual dependency) can predict adaptive responses to novel sensory environments suggesting that customized training prescriptions can be developed to enhance adaptability. These results indicate that SA training techniques can be added to existing treadmill exercise equipment and procedures to produce a single integrated countermeasure system to improve performance of astro/cosmonauts during prolonged exploratory space missions.

  13. Making neurorehabilitation fun: Multiplayer training via damping forces balancing differences in skill levels.

    PubMed

    Baur, Kilian; Wolf, Peter; Riener, Robert; Duarte, Jaime E

    2017-07-01

    Multiplayer environments are thought to increase the training intensity in robot-aided rehabilitation therapy after stroke. We developed a haptic-based environment to investigate the dynamics of two-player training performing time-constrained reaching movements using the ARMin rehabilitation robot. We implemented a challenge level adaptation algorithm that controlled a virtual damping coefficient to reach a desired success rate. We tested the algorithm's effectiveness in regulating the success rate during game play in a simulation with computer-controlled players, in a feasibility study with six unimpaired players, and in a single session with one stroke patient. The algorithm demonstrated its capacity to adjust the damping coefficient to reach three levels of success rate (low [50%], moderate [70%], and high [90%]) during singleplayer and multiplayer training. For the patient - tested in single-player mode at the moderate success rate only - the algorithm showed also promising behavior. Results of the feasibility study showed that to increase the player's willingness to play at a more challenging task condition, the effect of the challenge level adaptation - regardless of being played in single player or multiplayer mode - might be more important than the provision of multiplayer setting alone. Furthermore, the multiplayer setting tends to be a motivating and encouraging therapy component. Based on these results we will optimize and expand the multiplayer training platform and further investigate multiplayer settings in stroke therapy.

  14. Automation of a portable extracorporeal circulatory support system with adaptive fuzzy controllers.

    PubMed

    Mendoza García, A; Krane, M; Baumgartner, B; Sprunk, N; Schreiber, U; Eichhorn, S; Lange, R; Knoll, A

    2014-08-01

    The presented work relates to the procedure followed for the automation of a portable extracorporeal circulatory support system. Such a device may help increase the chances of survival after suffering from cardiogenic shock outside the hospital, additionally a controller can provide of optimal organ perfusion, while reducing the workload of the operator. Animal experiments were carried out for the acquisition of haemodynamic behaviour of the body under extracorporeal circulation. A mathematical model was constructed based on the experimental data, including a cardiovascular model, gas exchange and the administration of medication. As the base of the controller fuzzy logic was used allowing the easy integration of knowledge from trained perfusionists, an adaptive mechanism was included to adapt to the patient's individual response. Initial simulations show the effectiveness of the controller and the improvements of perfusion after adaptation. Copyright © 2014 IPEM. Published by Elsevier Ltd. All rights reserved.

  15. Adaptive rival penalized competitive learning and combined linear predictor model for financial forecast and investment.

    PubMed

    Cheung, Y M; Leung, W M; Xu, L

    1997-01-01

    We propose a prediction model called Rival Penalized Competitive Learning (RPCL) and Combined Linear Predictor method (CLP), which involves a set of local linear predictors such that a prediction is made by the combination of some activated predictors through a gating network (Xu et al., 1994). Furthermore, we present its improved variant named Adaptive RPCL-CLP that includes an adaptive learning mechanism as well as a data pre-and-post processing scheme. We compare them with some existing models by demonstrating their performance on two real-world financial time series--a China stock price and an exchange-rate series of US Dollar (USD) versus Deutschmark (DEM). Experiments have shown that Adaptive RPCL-CLP not only outperforms the other approaches with the smallest prediction error and training costs, but also brings in considerable high profits in the trading simulation of foreign exchange market.

  16. Adaptive and perceptual learning technologies in medical education and training.

    PubMed

    Kellman, Philip J

    2013-10-01

    Recent advances in the learning sciences offer remarkable potential to improve medical education and maximize the benefits of emerging medical technologies. This article describes 2 major innovation areas in the learning sciences that apply to simulation and other aspects of medical learning: Perceptual learning (PL) and adaptive learning technologies. PL technology offers, for the first time, systematic, computer-based methods for teaching pattern recognition, structural intuition, transfer, and fluency. Synergistic with PL are new adaptive learning technologies that optimize learning for each individual, embed objective assessment, and implement mastery criteria. The author describes the Adaptive Response-Time-based Sequencing (ARTS) system, which uses each learner's accuracy and speed in interactive learning to guide spacing, sequencing, and mastery. In recent efforts, these new technologies have been applied in medical learning contexts, including adaptive learning modules for initial medical diagnosis and perceptual/adaptive learning modules (PALMs) in dermatology, histology, and radiology. Results of all these efforts indicate the remarkable potential of perceptual and adaptive learning technologies, individually and in combination, to improve learning in a variety of medical domains. Reprint & Copyright © 2013 Association of Military Surgeons of the U.S.

  17. GENERALIZATION OF TREADMILL-SLIP TRAINING TO PREVENT A FALL FOLLLOWING A SUDDEN (NOVEL) SLIP IN OVER-GROUND WALKING

    PubMed Central

    Yang, Feng; Bhatt, Tanvi; Pai, Yi-Chung

    2012-01-01

    The purposes of the study were to determine 1) whether treadmill-slip training could reduce the likelihood of falls during a novel slip in over-ground walking, and 2) to what extent such (indirect) training would be comparable to (direct) over-ground-slip training. A treadmill-slip training group (Group A, n=17) initially experienced repeated perturbations on treadmill intended to simulate forward-slip in over-ground walking. Perturbation continued and its intensity reduced when necessary to ensure subjects’ successful adaptation (i.e., when they could land their trailing foot ahead of the slipping foot in at least 3 of 5 consecutive trials). They then experienced a novel slip during over-ground walking. Another 17 young adults in Group B experienced an identical novel slip that served as the controls. They then underwent more slip trials during over-ground walking. Their 16th slip trial was analyzed to represent the over-ground-slip training effect. Eight subjects (47%) in Group A fell upon their first treadmill slip, while all adapted successfully after a minimum of 15 slip trials. Upon the novel slip during over-ground walking, none of them fell in comparison to four subjects (23.5%) fell in Group B upon the same trial (p<0.05). Group A’s control of stability, both proactive and reactive, was significantly better than that of Group B’s on their first over-ground slip, while the level of improvement derived from indirect treadmill training was not as strong as that from direct over-ground-slip training, as demonstrated in Group B’s 16th slip trial (p<0.001). These results clearly demonstrated the feasibility of fall reduction through treadmill-slip training. PMID:23141636

  18. Neural network for image compression

    NASA Astrophysics Data System (ADS)

    Panchanathan, Sethuraman; Yeap, Tet H.; Pilache, B.

    1992-09-01

    In this paper, we propose a new scheme for image compression using neural networks. Image data compression deals with minimization of the amount of data required to represent an image while maintaining an acceptable quality. Several image compression techniques have been developed in recent years. We note that the coding performance of these techniques may be improved by employing adaptivity. Over the last few years neural network has emerged as an effective tool for solving a wide range of problems involving adaptivity and learning. A multilayer feed-forward neural network trained using the backward error propagation algorithm is used in many applications. However, this model is not suitable for image compression because of its poor coding performance. Recently, a self-organizing feature map (SOFM) algorithm has been proposed which yields a good coding performance. However, this algorithm requires a long training time because the network starts with random initial weights. In this paper we have used the backward error propagation algorithm (BEP) to quickly obtain the initial weights which are then used to speedup the training time required by the SOFM algorithm. The proposed approach (BEP-SOFM) combines the advantages of the two techniques and, hence, achieves a good coding performance in a shorter training time. Our simulation results demonstrate the potential gains using the proposed technique.

  19. A Framework for Determining the Return on Investment of Simulation-Based Training in Health Care

    PubMed Central

    Bukhari, Hatim; Andreatta, Pamela; Goldiez, Brian; Rabelo, Luis

    2017-01-01

    This article describes a framework that has been developed to monetize the real value of simulation-based training in health care. A significant consideration has been given to the incorporation of the intangible and qualitative benefits, not only the tangible and quantitative benefits of simulation-based training in health care. The framework builds from three works: the value measurement methodology (VMM) used by several departments of the US Government, a methodology documented in several books by Dr Jack Phillips to monetize various training approaches, and a traditional return on investment methodology put forth by Frost and Sullivan, and Immersion Medical. All 3 source materials were adapted to create an integrated methodology that can be readily implemented. This article presents details on each of these methods and how they can be integrated and presents a framework that integrates the previous methods. In addition to that, it describes the concept and the application of the developed framework. As a test of the applicability of the framework, a real case study has been used to demonstrate the application of the framework. This case study provides real data related to the correlation between the pediatric patient cardiopulmonary arrest (CPA) survival rates and a simulation-based mock codes at the University of Michigan tertiary care academic medical center. It is important to point out that the proposed framework offers the capability to consider a wide range of benefits and values, but on the other hand, there are several limitations that has been discussed and need to be taken in consideration. PMID:28133988

  20. A Framework for Determining the Return on Investment of Simulation-Based Training in Health Care.

    PubMed

    Bukhari, Hatim; Andreatta, Pamela; Goldiez, Brian; Rabelo, Luis

    2017-01-01

    This article describes a framework that has been developed to monetize the real value of simulation-based training in health care. A significant consideration has been given to the incorporation of the intangible and qualitative benefits, not only the tangible and quantitative benefits of simulation-based training in health care. The framework builds from three works: the value measurement methodology (VMM) used by several departments of the US Government, a methodology documented in several books by Dr Jack Phillips to monetize various training approaches, and a traditional return on investment methodology put forth by Frost and Sullivan, and Immersion Medical. All 3 source materials were adapted to create an integrated methodology that can be readily implemented. This article presents details on each of these methods and how they can be integrated and presents a framework that integrates the previous methods. In addition to that, it describes the concept and the application of the developed framework. As a test of the applicability of the framework, a real case study has been used to demonstrate the application of the framework. This case study provides real data related to the correlation between the pediatric patient cardiopulmonary arrest (CPA) survival rates and a simulation-based mock codes at the University of Michigan tertiary care academic medical center. It is important to point out that the proposed framework offers the capability to consider a wide range of benefits and values, but on the other hand, there are several limitations that has been discussed and need to be taken in consideration.

  1. Research on three-dimensional real scene technology of Sichuan-Tibet highway

    NASA Astrophysics Data System (ADS)

    Yin, Peng; Bo, Xianglei; Liu, Fen

    2018-04-01

    This paper studies the three-dimensional real scene technology in the application of highway simulation, and a system to realize three-dimensional real scene of Sichuan-Tibet highway is presented. This system can improve the defect of the traditional Sichuan-Tibet highway geographic information system from performance and feeling. The Tibet forces can use this system to improve motor adaptive training effect and command decision-making ability.

  2. Unsteady Separated Flows: Vorticity and Turbulence.

    DTIC Science & Technology

    1982-10-01

    investigation. The vortex train used in the mathe- matical model is adapted to simulate the flow generated in the wake of an oscillating spoiler moving...weak wake structure. C H - At K = 1.5, the trailing edge vortex clearly leads the vorte : generated from the leading edge in the normal geonetry tests...flows is summarized. Specific projects reviewed include: (a) oscillating airfoil dynamic stall; (b) vortex entrapment and stability analysis -and (c

  3. Interpersonal Biocybernetics: Connecting Through Social Psychophysiology

    NASA Technical Reports Server (NTRS)

    Pope, Alan T.; Stephens, Chad L.

    2012-01-01

    One embodiment of biocybernetic adaptation is a human-computer interaction system designed such that physiological signals modulate the effect that control of a task by other means, usually manual control, has on performance of the task. Such a modulation system enables a variety of human-human interactions based upon physiological self-regulation performance. These interpersonal interactions may be mixes of competition and cooperation for simulation training and/or videogame entertainment

  4. Fitting neuron models to spike trains.

    PubMed

    Rossant, Cyrille; Goodman, Dan F M; Fontaine, Bertrand; Platkiewicz, Jonathan; Magnusson, Anna K; Brette, Romain

    2011-01-01

    Computational modeling is increasingly used to understand the function of neural circuits in systems neuroscience. These studies require models of individual neurons with realistic input-output properties. Recently, it was found that spiking models can accurately predict the precisely timed spike trains produced by cortical neurons in response to somatically injected currents, if properly fitted. This requires fitting techniques that are efficient and flexible enough to easily test different candidate models. We present a generic solution, based on the Brian simulator (a neural network simulator in Python), which allows the user to define and fit arbitrary neuron models to electrophysiological recordings. It relies on vectorization and parallel computing techniques to achieve efficiency. We demonstrate its use on neural recordings in the barrel cortex and in the auditory brainstem, and confirm that simple adaptive spiking models can accurately predict the response of cortical neurons. Finally, we show how a complex multicompartmental model can be reduced to a simple effective spiking model.

  5. Bega - Android-Based Beergame Simulation Software for Interactive Training and Innovation

    NASA Astrophysics Data System (ADS)

    Lestyánszka Škůrková, Katarína; Szander, Norina

    2013-12-01

    The supply chain management challenges and inventory holding problems can easily be demonstrated by the widely known BeerGame simulation. In the Szabó-Szoba R&D Laboratory, we developed an android-based software application for tablets and smart phones for the purpose of having an adaptable, entertaining and effective program which can provide a real life experience to the participants about the nature of the bullwhip effect. Having an appropriate and comprehensive performance measurement system with the critical parameters and KPIs is inevitable for finding the right solutions - We used four perspectives of the Balanced Scorecard method. The innovative force of our research is based on the trainings: the discussion on outcomes and the team learning. The purpose of the current development is to build a new feature in the software: an artificial client can substitute one or more players in the supply chain, which makes decisions by using genetic algorithms.

  6. Computing resonant frequency of C-shaped compact microstrip antennas by using ANFIS

    NASA Astrophysics Data System (ADS)

    Akdagli, Ali; Kayabasi, Ahmet; Develi, Ibrahim

    2015-03-01

    In this work, the resonant frequency of C-shaped compact microstrip antennas (CCMAs) operating at UHF band is computed by using the adaptive neuro-fuzzy inference system (ANFIS). For this purpose, 144 CCMAs with various relative dielectric constants and different physical dimensions were simulated by the XFDTD software package based on the finite-difference time domain (FDTD) method. One hundred and twenty-nine CCMAs were employed for training, while the remaining 15 CCMAs were used for testing of the ANFIS model. Average percentage error (APE) values were obtained as 0.8413% and 1.259% for training and testing, respectively. In order to demonstrate its validity and accuracy, the proposed ANFIS model was also tested over the simulation data given in the literature, and APE was obtained as 0.916%. These results show that ANFIS can be successfully used to compute the resonant frequency of CCMAs.

  7. On the practicality of emergency surgery during long-duration space missions.

    PubMed

    Dawson, David L

    2008-07-01

    While discussions of the practicality of surgery in space often focus on technical issues, such as adapting instrumentation and procedures for use in microgravity, programmatic issues need to be addressed if meaningful capabilities for emergency surgery are to be considered for human exploration missions beyond low Earth orbit. Advanced technologies that have been evaluated, including simulation-enhanced training, telementoring, or robotic assistance, might help prepare or augment a crew medical officer, but a physician with advanced training and relevant experience will be needed if surgical capabilities beyond basic emergency aid are to be considered. Specific operational roles for physician-astronauts should be established.

  8. A WSN-based tool for urban and industrial fire-fighting.

    PubMed

    De San Bernabe Clemente, Alberto; Martínez-de Dios, José Ramiro; Ollero Baturone, Aníbal

    2012-11-06

    This paper describes a WSN tool to increase safety in urban and industrial fire-fighting activities. Unlike most approaches, we assume that there is no preexisting WSN in the building, which involves interesting advantages but imposes some constraints. The system integrates the following functionalities: fire monitoring, firefighter monitoring and dynamic escape path guiding. It also includes a robust localization method that employs RSSI-range models dynamically trained to cope with the peculiarities of the environment. The training and application stages of the method are applied simultaneously, resulting in significant adaptability. Besides simulations and laboratory tests, a prototype of the proposed system has been validated in close-to-operational conditions.

  9. Evolving RBF neural networks for adaptive soft-sensor design.

    PubMed

    Alexandridis, Alex

    2013-12-01

    This work presents an adaptive framework for building soft-sensors based on radial basis function (RBF) neural network models. The adaptive fuzzy means algorithm is utilized in order to evolve an RBF network, which approximates the unknown system based on input-output data from it. The methodology gradually builds the RBF network model, based on two separate levels of adaptation: On the first level, the structure of the hidden layer is modified by adding or deleting RBF centers, while on the second level, the synaptic weights are adjusted with the recursive least squares with exponential forgetting algorithm. The proposed approach is tested on two different systems, namely a simulated nonlinear DC Motor and a real industrial reactor. The results show that the produced soft-sensors can be successfully applied to model the two nonlinear systems. A comparison with two different adaptive modeling techniques, namely a dynamic evolving neural-fuzzy inference system (DENFIS) and neural networks trained with online backpropagation, highlights the advantages of the proposed methodology.

  10. An efficient surrogate-based simulation-optimization method for calibrating a regional MODFLOW model

    NASA Astrophysics Data System (ADS)

    Chen, Mingjie; Izady, Azizallah; Abdalla, Osman A.

    2017-01-01

    Simulation-optimization method entails a large number of model simulations, which is computationally intensive or even prohibitive if the model simulation is extremely time-consuming. Statistical models have been examined as a surrogate of the high-fidelity physical model during simulation-optimization process to tackle this problem. Among them, Multivariate Adaptive Regression Splines (MARS), a non-parametric adaptive regression method, is superior in overcoming problems of high-dimensions and discontinuities of the data. Furthermore, the stability and accuracy of MARS model can be improved by bootstrap aggregating methods, namely, bagging. In this paper, Bagging MARS (BMARS) method is integrated to a surrogate-based simulation-optimization framework to calibrate a three-dimensional MODFLOW model, which is developed to simulate the groundwater flow in an arid hardrock-alluvium region in northwestern Oman. The physical MODFLOW model is surrogated by the statistical model developed using BMARS algorithm. The surrogate model, which is fitted and validated using training dataset generated by the physical model, can approximate solutions rapidly. An efficient Sobol' method is employed to calculate global sensitivities of head outputs to input parameters, which are used to analyze their importance for the model outputs spatiotemporally. Only sensitive parameters are included in the calibration process to further improve the computational efficiency. Normalized root mean square error (NRMSE) between measured and simulated heads at observation wells is used as the objective function to be minimized during optimization. The reasonable history match between the simulated and observed heads demonstrated feasibility of this high-efficient calibration framework.

  11. Changing the Learning Curve in Novice Laparoscopists: Incorporating Direct Visualization into the Simulation Training Program.

    PubMed

    Dawidek, Mark T; Roach, Victoria A; Ott, Michael C; Wilson, Timothy D

    A major challenge in laparoscopic surgery is the lack of depth perception. With the development and continued improvement of 3D video technology, the potential benefit of restoring 3D vision to laparoscopy has received substantial attention from the surgical community. Despite this, procedures conducted under 2D vision remain the standard of care, and trainees must become proficient in 2D laparoscopy. This study aims to determine whether incorporating 3D vision into a 2D laparoscopic simulation curriculum accelerates skill acquisition in novices. Postgraduate year-1 surgical specialty residents (n = 15) at the Schulich School of Medicine and Dentistry, at Western University were randomized into 1 of 2 groups. The control group practiced the Fundamentals of Laparoscopic Surgery peg-transfer task to proficiency exclusively under standard 2D laparoscopy conditions. The experimental group first practiced peg transfer under 3D direct visualization, with direct visualization of the working field. Upon reaching proficiency, this group underwent a perceptual switch, changing to standard 2D laparoscopy conditions, and once again trained to proficiency. Incorporating 3D direct visualization before training under standard 2D conditions significantly (p < 0.0.5) reduced the total training time to proficiency by 10.9 minutes or 32.4%. There was no difference in total number of repetitions to proficiency. Data were also used to generate learning curves for each respective training protocol. An adaptive learning approach, which incorporates 3D direct visualization into a 2D laparoscopic simulation curriculum, accelerates skill acquisition. This is in contrast to previous work, possibly owing to the proficiency-based methodology employed, and has implications for resource savings in surgical training. Crown Copyright © 2016. Published by Elsevier Inc. All rights reserved.

  12. Learning communication from erroneous video-based examples: A double-blind randomised controlled trial.

    PubMed

    Schmitz, Felix Michael; Schnabel, Kai Philipp; Stricker, Daniel; Fischer, Martin Rudolf; Guttormsen, Sissel

    2017-06-01

    Appropriate training strategies are required to equip undergraduate healthcare students to benefit from communication training with simulated patients. This study examines the learning effects of different formats of video-based worked examples on initial communication skills. First-year nursing students (N=36) were randomly assigned to one of two experimental groups (correct v. erroneous examples) or to the control group (no examples). All the groups were provided an identical introduction to learning materials on breaking bad news; the experimental groups also received a set of video-based worked examples. Each example was accompanied by a self-explanation prompt (considering the example's correctness) and elaborated feedback (the true explanation). Participants presented with erroneous examples broke bad news to a simulated patient significantly more appropriately than students in the control group. Additionally, they tended to outperform participants who had correct examples, while participants presented with correct examples tended to outperform the control group. The worked example effect was successfully adapted for learning in the provider-patient communication domain. Implementing video-based worked examples with self-explanation prompts and feedback can be an effective strategy to prepare students for their training with simulated patients, especially when examples are erroneous. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Fuzzy logic and neural network technologies

    NASA Technical Reports Server (NTRS)

    Villarreal, James A.; Lea, Robert N.; Savely, Robert T.

    1992-01-01

    Applications of fuzzy logic technologies in NASA projects are reviewed to examine their advantages in the development of neural networks for aerospace and commercial expert systems and control. Examples of fuzzy-logic applications include a 6-DOF spacecraft controller, collision-avoidance systems, and reinforcement-learning techniques. The commercial applications examined include a fuzzy autofocusing system, an air conditioning system, and an automobile transmission application. The practical use of fuzzy logic is set in the theoretical context of artificial neural systems (ANSs) to give the background for an overview of ANS research programs at NASA. The research and application programs include the Network Execution and Training Simulator and faster training algorithms such as the Difference Optimized Training Scheme. The networks are well suited for pattern-recognition applications such as predicting sunspots, controlling posture maintenance, and conducting adaptive diagnoses.

  14. Autogenic-feedback training: A preventive method for space adaptation syndrome

    NASA Technical Reports Server (NTRS)

    Cowings, Patricia S.; Sharp, Joseph C.; Toscano, William B.; Kamiya, Joe; Miller, Neal E.

    1987-01-01

    The progress made to date on the reduction of data for Spacelab 3 Shuttle experiment, No. 3AFT23 is reported. Four astronauts participated as subjects in this experiment. Crewmen A and B served as treatment subjects (i.e., received preflight training for control of their own motion sickness symptoms) and Crewmen C and D served as control (i.e., did not receive training). A preliminary evaluation of Autogenic Feedback Training (AFT) was made from visual inspections of graphs that were generated from the preflight and inflight and inflight physiological data which included: (1) Baseline rotating chair tests for all crewmen; (2) Posttraining rotating chair tests of treatment groups subjects; (3) Preflight data from Joint Integrated Simulations for all crewmen; and (4) Flight data for all crewmen during mission days 0 through 4, and mission day 6 for treatment subjects only. A summary of the findings suggested by these data is outlined.

  15. The influence of taekwondo training on school-life adaptation and exercise value in the United States

    PubMed Central

    Cho, Ik Rae; Park, Hyo Joo; Lee, Taek Kyun

    2018-01-01

    Previous experience has shown that school-based taekwondo training in the United States (US) results in many beneficial effect sregarding school education and the physical health of the adolescent participants; of especial significance, the training plays an important role in terms of exercise value and school-life adaptation. To explore this overall effect, a self-administered questionnaire was distributed to 401 adolescents over the age of 10 years. The survey comprisesa total of 29 questions that consist of 17 exercise-value-related questions (general, moral, and status) and 12 questions that are related to school-life adaptation (adaptation to teachers, adaptation to academic activities, adaptation to rule compliance, and adaptation to school activities). The survey results show that taekwondo training affects school-life adaptation by helping to improve student morality and by bolstering the students compliance with school rules during their schooling. The exercise value of taekwondo training is considered a necessity for US adolescents due to the corresponding educational aspects; in particular, the training plays a very important role in the maintenance of amenable student-teacher and student-peer relationships. From the previously mentioned findings, and if taekwondo teachers train their students carefully with educational missions in mind, it is expected that taekwondo training will play a very important role in the cultivation of anappropriate education value among US adolescents. PMID:29740554

  16. The influence of taekwondo training on school-life adaptation and exercise value in the United States.

    PubMed

    Cho, Ik Rae; Park, Hyo Joo; Lee, Taek Kyun

    2018-04-01

    Previous experience has shown that school-based taekwondo training in the United States (US) results in many beneficial effect sregarding school education and the physical health of the adolescent participants; of especial significance, the training plays an important role in terms of exercise value and school-life adaptation. To explore this overall effect, a self-administered questionnaire was distributed to 401 adolescents over the age of 10 years. The survey comprisesa total of 29 questions that consist of 17 exercise-value-related questions (general, moral, and status) and 12 questions that are related to school-life adaptation (adaptation to teachers, adaptation to academic activities, adaptation to rule compliance, and adaptation to school activities). The survey results show that taekwondo training affects school-life adaptation by helping to improve student morality and by bolstering the students compliance with school rules during their schooling. The exercise value of taekwondo training is considered a necessity for US adolescents due to the corresponding educational aspects; in particular, the training plays a very important role in the maintenance of amenable student-teacher and student-peer relationships. From the previously mentioned findings, and if taekwondo teachers train their students carefully with educational missions in mind, it is expected that taekwondo training will play a very important role in the cultivation of anappropriate education value among US adolescents.

  17. Comparison of an adaptive neuro-fuzzy inference system and an artificial neural network in the cross-talk correction of simultaneous 99 m Tc / 201Tl SPECT imaging using a GATE Monte-Carlo simulation

    NASA Astrophysics Data System (ADS)

    Heidary, Saeed; Setayeshi, Saeed; Ghannadi-Maragheh, Mohammad

    2014-09-01

    The aim of this study is to compare the adaptive neuro-fuzzy inference system (ANFIS) and the artificial neural network (ANN) to estimate the cross-talk contamination of 99 m Tc / 201 Tl image acquisition in the 201 Tl energy window (77 ± 15% keV). GATE (Geant4 Application in Emission and Tomography) is employed due to its ability to simulate multiple radioactive sources concurrently. Two kinds of phantoms, including two digital and one physical phantom, are used. In the real and the simulation studies, data acquisition is carried out using eight energy windows. The ANN and the ANFIS are prepared in MATLAB, and the GATE results are used as a training data set. Three indications are evaluated and compared. The ANFIS method yields better outcomes for two indications (Spearman's rank correlation coefficient and contrast) and the two phantom results in each category. The maximum image biasing, which is the third indication, is found to be 6% more than that for the ANN.

  18. Comparison of RF spectrum prediction methods for dynamic spectrum access

    NASA Astrophysics Data System (ADS)

    Kovarskiy, Jacob A.; Martone, Anthony F.; Gallagher, Kyle A.; Sherbondy, Kelly D.; Narayanan, Ram M.

    2017-05-01

    Dynamic spectrum access (DSA) refers to the adaptive utilization of today's busy electromagnetic spectrum. Cognitive radio/radar technologies require DSA to intelligently transmit and receive information in changing environments. Predicting radio frequency (RF) activity reduces sensing time and energy consumption for identifying usable spectrum. Typical spectrum prediction methods involve modeling spectral statistics with Hidden Markov Models (HMM) or various neural network structures. HMMs describe the time-varying state probabilities of Markov processes as a dynamic Bayesian network. Neural Networks model biological brain neuron connections to perform a wide range of complex and often non-linear computations. This work compares HMM, Multilayer Perceptron (MLP), and Recurrent Neural Network (RNN) algorithms and their ability to perform RF channel state prediction. Monte Carlo simulations on both measured and simulated spectrum data evaluate the performance of these algorithms. Generalizing spectrum occupancy as an alternating renewal process allows Poisson random variables to generate simulated data while energy detection determines the occupancy state of measured RF spectrum data for testing. The results suggest that neural networks achieve better prediction accuracy and prove more adaptable to changing spectral statistics than HMMs given sufficient training data.

  19. Developing Personalized Sensorimotor Adaptability Countermeasures for Spaceflight

    NASA Technical Reports Server (NTRS)

    Mulavara, A. P.; Seidler, R. D.; Peters, B.; Cohen, H. S.; Wood, S.; Bloomberg, J. J.

    2016-01-01

    Astronauts experience sensorimotor disturbances during their initial exposure to microgravity and during the re-adaptation phase following a return to an Earth-gravitational environment. Interestingly, astronauts who return from spaceflight show substantial differences in their abilities to readapt to a gravitational environment. The ability to predict the manner and degree to which individual astronauts would be affected would improve the effectiveness of countermeasure training programs designed to enhance sensorimotor adaptability. In this paper we will be presenting results from our ground-based study that show how behavioral, brain imaging and genomic data may be used to predict individual differences in sensorimotor adaptability to novel sensorimotor environments. This approach will allow us to better design and implement sensorimotor adaptability training countermeasures against decrements in post-mission adaptive capability that are customized for each crewmember's sensory biases, adaptive capacity, brain structure, functional capacities, and genetic predispositions. The ability to customize adaptability training will allow more efficient use of crew time during training and will optimize training prescriptions for astronauts to ensure expected outcomes.

  20. Modeling of steam distillation mechanism during steam injection process using artificial intelligence.

    PubMed

    Daryasafar, Amin; Ahadi, Arash; Kharrat, Riyaz

    2014-01-01

    Steam distillation as one of the important mechanisms has a great role in oil recovery in thermal methods and so it is important to simulate this process experimentally and theoretically. In this work, the simulation of steam distillation is performed on sixteen sets of crude oil data found in the literature. Artificial intelligence (AI) tools such as artificial neural network (ANN) and also adaptive neurofuzzy interference system (ANFIS) are used in this study as effective methods to simulate the distillate recoveries of these sets of data. Thirteen sets of data were used to train the models and three sets were used to test the models. The developed models are highly compatible with respect to input oil properties and can predict the distillate yield with minimum entry. For showing the performance of the proposed models, simulation of steam distillation is also done using modified Peng-Robinson equation of state. Comparison between the calculated distillates by ANFIS and neural network models and also equation of state-based method indicates that the errors of the ANFIS model for training data and test data sets are lower than those of other methods.

  1. Modeling of Steam Distillation Mechanism during Steam Injection Process Using Artificial Intelligence

    PubMed Central

    Ahadi, Arash; Kharrat, Riyaz

    2014-01-01

    Steam distillation as one of the important mechanisms has a great role in oil recovery in thermal methods and so it is important to simulate this process experimentally and theoretically. In this work, the simulation of steam distillation is performed on sixteen sets of crude oil data found in the literature. Artificial intelligence (AI) tools such as artificial neural network (ANN) and also adaptive neurofuzzy interference system (ANFIS) are used in this study as effective methods to simulate the distillate recoveries of these sets of data. Thirteen sets of data were used to train the models and three sets were used to test the models. The developed models are highly compatible with respect to input oil properties and can predict the distillate yield with minimum entry. For showing the performance of the proposed models, simulation of steam distillation is also done using modified Peng-Robinson equation of state. Comparison between the calculated distillates by ANFIS and neural network models and also equation of state-based method indicates that the errors of the ANFIS model for training data and test data sets are lower than those of other methods. PMID:24883365

  2. Improving patient safety through better teamwork: how effective are different methods of simulation debriefing? Protocol for a pragmatic, prospective and randomised study.

    PubMed

    Freytag, Julia; Stroben, Fabian; Hautz, Wolf E; Eisenmann, Dorothea; Kämmer, Juliane E

    2017-06-30

    Medical errors have an incidence of 9% and may lead to worse patient outcome. Teamwork training has the capacity to significantly reduce medical errors and therefore improve patient outcome. One common framework for teamwork training is crisis resource management, adapted from aviation and usually trained in simulation settings. Debriefing after simulation is thought to be crucial to learning teamwork-related concepts and behaviours but it remains unclear how best to debrief these aspects. Furthermore, teamwork-training sessions and studies examining education effects on undergraduates are rare. The study aims to evaluate the effects of two teamwork-focused debriefings on team performance after an extensive medical student teamwork training. A prospective experimental study has been designed to compare a well-established three-phase debriefing method (gather-analyse-summarise; the GAS method ) to a newly developed and more structured debriefing approach that extends the GAS method with TeamTAG (teamwork techniques analysis grid). TeamTAG is a cognitive aid listing preselected teamwork principles and descriptions of behavioural anchors that serve as observable patterns of teamwork and is supposed to help structure teamwork-focused debriefing. Both debriefing methods will be tested during an emergency room teamwork-training simulation comprising six emergency medicine cases faced by 35 final-year medical students in teams of five. Teams will be randomised into the two debriefing conditions. Team performance during simulation and the number of principles discussed during debriefing will be evaluated. Learning opportunities, helpfulness and feasibility will be rated by participants and instructors. Analyses will include descriptive, inferential and explorative statistics. The study protocol was approved by the institutional office for data protection and the ethics committee of Charité Medical School Berlin and registered under EA2/172/16. All students will participate voluntarily and will sign an informed consent after receiving written and oral information about the study. Results will be published. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  3. A Step Towards EEG-based Brain Computer Interface for Autism Intervention*

    PubMed Central

    Fan, Jing; Wade, Joshua W.; Bian, Dayi; Key, Alexandra P.; Warren, Zachary E.; Mion, Lorraine C.; Sarkar, Nilanjan

    2017-01-01

    Autism Spectrum Disorder (ASD) is a prevalent and costly neurodevelopmental disorder. Individuals with ASD often have deficits in social communication skills as well as adaptive behavior skills related to daily activities. We have recently designed a novel virtual reality (VR) based driving simulator for driving skill training for individuals with ASD. In this paper, we explored the feasibility of detecting engagement level, emotional states, and mental workload during VR-based driving using EEG as a first step towards a potential EEG-based Brain Computer Interface (BCI) for assisting autism intervention. We used spectral features of EEG signals from a 14-channel EEG neuroheadset, together with therapist ratings of behavioral engagement, enjoyment, frustration, boredom, and difficulty to train a group of classification models. Seven classification methods were applied and compared including Bayes network, naïve Bayes, Support Vector Machine (SVM), multilayer perceptron, K-nearest neighbors (KNN), random forest, and J48. The classification results were promising, with over 80% accuracy in classifying engagement and mental workload, and over 75% accuracy in classifying emotional states. Such results may lead to an adaptive closed-loop VR-based skill training system for use in autism intervention. PMID:26737113

  4. Training Modalities to Increase Sensorimotor Adaptability

    NASA Technical Reports Server (NTRS)

    Bloomberg, J. J.; Mulavara, A. P.; Peters, B. T.; Brady, R.; Audas, C.; Cohen, H. S.

    2009-01-01

    During the acute phase of adaptation to novel gravitational environments, sensorimotor disturbances have the potential to disrupt the ability of astronauts to perform required mission tasks. The goal of our current series of studies is develop a sensorimotor adaptability (SA) training program designed to facilitate recovery of functional capabilities when astronauts transition to different gravitational environments. The project has conducted a series of studies investigating the efficacy of treadmill training combined with a variety of sensory challenges (incongruent visual input, support surface instability) designed to increase adaptability. SA training using a treadmill combined with exposure to altered visual input was effective in producing increased adaptability in a more complex over-ground ambulatory task on an obstacle course. This confirms that for a complex task like walking, treadmill training contains enough of the critical features of overground walking to be an effective training modality. SA training can be optimized by using a periodized training schedule. Test sessions that each contain short-duration exposures to multiple perturbation stimuli allows subjects to acquire a greater ability to rapidly reorganize appropriate response strategies when encountering a novel sensory environment. Using a treadmill mounted on top of a six degree-of-freedom motion base platform we investigated locomotor training responses produced by subjects introduced to a dynamic walking surface combined with alterations in visual flow. Subjects who received this training had improved locomotor performance and faster reaction times when exposed to the novel sensory stimuli compared to control subjects. Results also demonstrate that individual sensory biases (i.e. increased visual dependency) can predict adaptive responses to novel sensory environments suggesting that individual training prescription can be developed to enhance adaptability. These data indicate that SA training can be effectively integrated with treadmill exercise and optimized to provide a unique system that combines multiple training requirements in a single countermeasure system. Learning Objectives: The development of a new countermeasure approach that enhances sensorimotor adaptability will be discussed.

  5. Office of Land and Emergency Management (OLEM) Climate Change Adaptation Training

    EPA Pesticide Factsheets

    This training discusses climate vulnerabilities and methods for incorporating adaptation measures into OLEM programs. This training is meant to follow completion of EPA's Introductory Climate Change Training.

  6. Stochastic Averaging for Constrained Optimization With Application to Online Resource Allocation

    NASA Astrophysics Data System (ADS)

    Chen, Tianyi; Mokhtari, Aryan; Wang, Xin; Ribeiro, Alejandro; Giannakis, Georgios B.

    2017-06-01

    Existing approaches to resource allocation for nowadays stochastic networks are challenged to meet fast convergence and tolerable delay requirements. The present paper leverages online learning advances to facilitate stochastic resource allocation tasks. By recognizing the central role of Lagrange multipliers, the underlying constrained optimization problem is formulated as a machine learning task involving both training and operational modes, with the goal of learning the sought multipliers in a fast and efficient manner. To this end, an order-optimal offline learning approach is developed first for batch training, and it is then generalized to the online setting with a procedure termed learn-and-adapt. The novel resource allocation protocol permeates benefits of stochastic approximation and statistical learning to obtain low-complexity online updates with learning errors close to the statistical accuracy limits, while still preserving adaptation performance, which in the stochastic network optimization context guarantees queue stability. Analysis and simulated tests demonstrate that the proposed data-driven approach improves the delay and convergence performance of existing resource allocation schemes.

  7. Variation and adaptation: learning from success in patient safety-oriented simulation training.

    PubMed

    Dieckmann, Peter; Patterson, Mary; Lahlou, Saadi; Mesman, Jessica; Nyström, Patrik; Krage, Ralf

    2017-01-01

    Simulation is traditionally used to reduce errors and their negative consequences. But according to modern safety theories, this focus overlooks the learning potential of the positive performance, which is much more common than errors. Therefore, a supplementary approach to simulation is needed to unfold its full potential. In our commentary, we describe the learning from success (LFS) approach to simulation and debriefing. Drawing on several theoretical frameworks, we suggest supplementing the widespread deficit-oriented, corrective approach to simulation with an approach that focusses on systematically understanding how good performance is produced in frequent (mundane) simulation scenarios. We advocate to investigate and optimize human activity based on the connected layers of any setting: the embodied competences of the healthcare professionals, the social and organizational rules that guide their actions, and the material aspects of the setting. We discuss implications of these theoretical perspectives for the design and conduct of simulation scenarios, post-simulation debriefings, and faculty development programs.

  8. Simulation of Earth textures by conditional image quilting

    NASA Astrophysics Data System (ADS)

    Mahmud, K.; Mariethoz, G.; Caers, J.; Tahmasebi, P.; Baker, A.

    2014-04-01

    Training image-based approaches for stochastic simulations have recently gained attention in surface and subsurface hydrology. This family of methods allows the creation of multiple realizations of a study domain, with a spatial continuity based on a training image (TI) that contains the variability, connectivity, and structural properties deemed realistic. A major drawback of these methods is their computational and/or memory cost, making certain applications challenging. It was found that similar methods, also based on training images or exemplars, have been proposed in computer graphics. One such method, image quilting (IQ), is introduced in this paper and adapted for hydrogeological applications. The main difficulty is that Image Quilting was originally not designed to produce conditional simulations and was restricted to 2-D images. In this paper, the original method developed in computer graphics has been modified to accommodate conditioning data and 3-D problems. This new conditional image quilting method (CIQ) is patch based, does not require constructing a pattern databases, and can be used with both categorical and continuous training images. The main concept is to optimally cut the patches such that they overlap with minimum discontinuity. The optimal cut is determined using a dynamic programming algorithm. Conditioning is accomplished by prior selection of patches that are compatible with the conditioning data. The performance of CIQ is tested for a variety of hydrogeological test cases. The results, when compared with previous multiple-point statistics (MPS) methods, indicate an improvement in CPU time by a factor of at least 50.

  9. Throughput Optimization Via Adaptive MIMO Communications

    DTIC Science & Technology

    2006-05-30

    End-to-end matlab packet simulation platform. * Low density parity check code (LDPCC). * Field trials with Silvus DSP MIMO testbed. * High mobility...incorporate advanced LDPC (low density parity check) codes . Realizing that the power of LDPC codes come at the price of decoder complexity, we also...Channel Coding Binary Convolution Code or LDPC Packet Length 0 - 216-1, bytes Coding Rate 1/2, 2/3, 3/4, 5/6 MIMO Channel Training Length 0 - 4, symbols

  10. Effectiveness of a computerised working memory training in adolescents with mild to borderline intellectual disabilities.

    PubMed

    Van der Molen, M J; Van Luit, J E H; Van der Molen, M W; Klugkist, I; Jongmans, M J

    2010-05-01

    The goal of this study is to evaluate the effectiveness of a computerised working memory (WM) training on memory, response inhibition, fluid intelligence, scholastic abilities and the recall of stories in adolescents with mild to borderline intellectual disabilities attending special education. A total of 95 adolescents with mild to borderline intellectual disabilities were randomly assigned to either a training adaptive to each child's progress in WM, a non-adaptive WM training, or to a control group. Verbal short-term memory (STM) improved significantly from pre- to post-testing in the group who received the adaptive training compared with the control group. The beneficial effect on verbal STM was maintained at follow-up and other effects became clear at that time as well. Both the adaptive and non-adaptive WM training led to higher scores at follow-up than at post-intervention on visual STM, arithmetic and story recall compared with the control condition. In addition, the non-adaptive training group showed a significant increase in visuo-spatial WM capacity. The current study provides the first demonstration that WM can be effectively trained in adolescents with mild to borderline intellectual disabilities.

  11. Basic emotions and adaptation. A computational and evolutionary model

    PubMed Central

    2017-01-01

    The core principles of the evolutionary theories of emotions declare that affective states represent crucial drives for action selection in the environment and regulated the behavior and adaptation of natural agents in ancestrally recurrent situations. While many different studies used autonomous artificial agents to simulate emotional responses and the way these patterns can affect decision-making, few are the approaches that tried to analyze the evolutionary emergence of affective behaviors directly from the specific adaptive problems posed by the ancestral environment. A model of the evolution of affective behaviors is presented using simulated artificial agents equipped with neural networks and physically inspired on the architecture of the iCub humanoid robot. We use genetic algorithms to train populations of virtual robots across generations, and investigate the spontaneous emergence of basic emotional behaviors in different experimental conditions. In particular, we focus on studying the emotion of fear, therefore the environment explored by the artificial agents can contain stimuli that are safe or dangerous to pick. The simulated task is based on classical conditioning and the agents are asked to learn a strategy to recognize whether the environment is safe or represents a threat to their lives and select the correct action to perform in absence of any visual cues. The simulated agents have special input units in their neural structure whose activation keep track of their actual “sensations” based on the outcome of past behavior. We train five different neural network architectures and then test the best ranked individuals comparing their performances and analyzing the unit activations in each individual’s life cycle. We show that the agents, regardless of the presence of recurrent connections, spontaneously evolved the ability to cope with potentially dangerous environment by collecting information about the environment and then switching their behavior to a genetically selected pattern in order to maximize the possible reward. We also prove the determinant presence of an internal time perception unit for the robots to achieve the highest performance and survivability across all conditions. PMID:29107988

  12. Concluding remarks: nutritional strategies to support the adaptive response to prolonged exercise training.

    PubMed

    van Loon, Luc J C; Tipton, Kevin D

    2013-01-01

    Nutrition plays a key role in allowing the numerous training hours to be translated into useful adaptive responses of various tissues in the individual athlete. Research over the last decade has shown many examples of the impact of dietary interventions to modulate the skeletal muscle adaptive response to prolonged exercise training. Proper nutritional coaching should be applied throughout both training and competition, each with their specific requirements regarding nutrient provision. Such dietary support will improve exercise training efficiency and, as such, further increase performance capacity. Here, we provide an overview on the properties of various nutritional interventions that may be useful to support the adaptive response to exercise training and competition and, as such, to augment exercise training efficiency. Copyright © 2013 Nestec Ltd., Vevey/S. Karger AG, Basel.

  13. Desired Accuracy Estimation of Noise Function from ECG Signal by Fuzzy Approach

    PubMed Central

    Vahabi, Zahra; Kermani, Saeed

    2012-01-01

    Unknown noise and artifacts present in medical signals with non-linear fuzzy filter will be estimated and then removed. An adaptive neuro-fuzzy interference system which has a non-linear structure presented for the noise function prediction by before Samples. This paper is about a neuro-fuzzy method to estimate unknown noise of Electrocardiogram signal. Adaptive neural combined with Fuzzy System to construct a fuzzy Predictor. For this system setting parameters such as the number of Membership Functions for each input and output, training epochs, type of MFs for each input and output, learning algorithm and etc. is determined by learning data. At the end simulated experimental results are presented for proper validation. PMID:23717810

  14. Climate change impact and potential adaptation strategies under alternate realizations of climate scenarios for three major crops in Europe

    NASA Astrophysics Data System (ADS)

    Donatelli, Marcello; Srivastava, Amit Kumar; Duveiller, Gregory; Niemeyer, Stefan; Fumagalli, Davide

    2015-07-01

    This study presents an estimate of the effects of climate variables and CO2 on three major crops, namely wheat, rapeseed and sunflower, in EU27 Member States. We also investigated some technical adaptation options which could offset climate change impacts. The time-slices 2000, 2020 and 2030 were chosen to represent the baseline and future climate, respectively. Furthermore, two realizations within the A1B emission scenario proposed by the Special Report on Emissions Scenarios (SRES), from the ECHAM5 and HadCM3 GCM, were selected. A time series of 30 years for each GCM and time slice were used as input weather data for simulation. The time series were generated with a stochastic weather generator trained over GCM-RCM time series (downscaled simulations from the ENSEMBLES project which were statistically bias-corrected prior to the use of the weather generator). GCM-RCM simulations differed primarily for rainfall patterns across Europe, whereas the temperature increase was similar in the time horizons considered. Simulations based on the model CropSyst v. 3 were used to estimate crop responses; CropSyst was re-implemented in the modelling framework BioMA. The results presented in this paper refer to abstraction of crop growth with respect to its production system, and consider growth as limited by weather and soil water. How crop growth responds to CO2 concentrations; pests, diseases, and nutrients limitations were not accounted for in simulations. The results show primarily that different realization of the emission scenario lead to noticeably different crop performance projections in the same time slice. Simple adaptation techniques such as changing sowing dates and the use of different varieties, the latter in terms of duration of the crop cycle, may be effective in alleviating the adverse effects of climate change in most areas, although response to best adaptation (within the techniques tested) differed across crops. Although a negative impact of climate scenarios is evident in most areas, the combination of rainfall patterns and increased photosynthesis efficiency due to CO2 concentrations showed possible improvements of production patterns in some areas, including Southern Europe. The uncertainty deriving from GCM realizations with respect to rainfall suggests that articulated and detailed testing of adaptation techniques would be redundant. Using ensemble simulations would allow for the identification of areas where adaptation, like those simulated, may be run autonomously by farmers, hence not requiring specific intervention in terms of support policies.

  15. Development of a vehicle-track model assembly and numerical method for simulation of wheel-rail dynamic interaction due to unsupported sleepers

    NASA Astrophysics Data System (ADS)

    Zhu, Jian Jun; Ahmed, A. K. W.; Rakheja, Subhash; Khajepour, Amir

    2010-12-01

    In practice, it is not very uncommon to find railway track systems with unsupported sleepers due to the uneven settlement of a ballasted track system. These unsupported sleepers are among the major vibration excitations for a train and track system when a train moves forwards on a track. The vibration induced by unsupported sleepers can cause a large dynamic contact force between wheels and rails. For heavily loaded high-speed trains, the deteriorated sleeper support may lead to accelerated degradation of the railway track and vehicle components, and may thus impose safety risk to the operation. This paper presents analyses of a coupled vehicle-track assembly consisting of a roll plane vehicle model, a continuous track system model and an adaptive wheel-rail contact model. In order to improve the simulation efficiency, a numerical approach based on the central finite difference method is proposed in this investigation. The developed model assembly and proposed simulation method are utilised to simulate the vehicle-track dynamic interaction in the presence of unsupported sleepers. The dynamic response in terms of the dynamic wheel-rail interaction force due to one or multiple unsupported sleepers is studied. Important factors influencing the dynamic wheel-rail interaction force in the presence of sleeper voids are also investigated. The results show that the vehicle speed, the gap size and the number of unsupported sleepers primarily dictate the magnitude of impact load which can be significant.

  16. Molecular Dynamics Simulations with Quantum Mechanics/Molecular Mechanics and Adaptive Neural Networks.

    PubMed

    Shen, Lin; Yang, Weitao

    2018-03-13

    Direct molecular dynamics (MD) simulation with ab initio quantum mechanical and molecular mechanical (QM/MM) methods is very powerful for studying the mechanism of chemical reactions in a complex environment but also very time-consuming. The computational cost of QM/MM calculations during MD simulations can be reduced significantly using semiempirical QM/MM methods with lower accuracy. To achieve higher accuracy at the ab initio QM/MM level, a correction on the existing semiempirical QM/MM model is an attractive idea. Recently, we reported a neural network (NN) method as QM/MM-NN to predict the potential energy difference between semiempirical and ab initio QM/MM approaches. The high-level results can be obtained using neural network based on semiempirical QM/MM MD simulations, but the lack of direct MD samplings at the ab initio QM/MM level is still a deficiency that limits the applications of QM/MM-NN. In the present paper, we developed a dynamic scheme of QM/MM-NN for direct MD simulations on the NN-predicted potential energy surface to approximate ab initio QM/MM MD. Since some configurations excluded from the database for NN training were encountered during simulations, which may cause some difficulties on MD samplings, an adaptive procedure inspired by the selection scheme reported by Behler [ Behler Int. J. Quantum Chem. 2015 , 115 , 1032 ; Behler Angew. Chem., Int. Ed. 2017 , 56 , 12828 ] was employed with some adaptions to update NN and carry out MD iteratively. We further applied the adaptive QM/MM-NN MD method to the free energy calculation and transition path optimization on chemical reactions in water. The results at the ab initio QM/MM level can be well reproduced using this method after 2-4 iteration cycles. The saving in computational cost is about 2 orders of magnitude. It demonstrates that the QM/MM-NN with direct MD simulations has great potentials not only for the calculation of thermodynamic properties but also for the characterization of reaction dynamics, which provides a useful tool to study chemical or biochemical systems in solution or enzymes.

  17. Virtual reality based surgical assistance and training system for long duration space missions.

    PubMed

    Montgomery, K; Thonier, G; Stephanides, M; Schendel, S

    2001-01-01

    Access to medical care during long duration space missions is extremely important. Numerous unanticipated medical problems will need to be addressed promptly and efficiently. Although telemedicine provides a convenient tool for remote diagnosis and treatment, it is impractical due to the long delay between data transmission and reception to Earth. While a well-trained surgeon-internist-astronaut would be an essential addition to the crew, the vast number of potential medical problems necessitate instant access to computerized, skill-enhancing and diagnostic tools. A functional prototype of a virtual reality based surgical training and assistance tool was created at our center, using low-power, small, lightweight components that would be easy to transport on a space mission. The system consists of a tracked, head-mounted display, a computer system, and a number of tracked surgical instruments. The software provides a real-time surgical simulation system with integrated monitoring and information retrieval and a voice input/output subsystem. Initial medical content for the system has been created, comprising craniofacial, hand, inner ear, and general anatomy, as well as information on a number of surgical procedures and techniques. One surgical specialty in particular, microsurgery, was provided as a full simulation due to its long training requirements, significant impact on result due to experience, and likelihood for need. However, the system is easily adapted to realistically simulate a large number of other surgical procedures. By providing a general system for surgical simulation and assistance, the astronaut-surgeon can maintain their skills, acquire new specialty skills, and use tools for computer-based surgical planning and assistance to minimize overall crew and mission risk.

  18. Simulation-based educational curriculum for fluoroscopically guided lumbar puncture improves operator confidence and reduces patient dose.

    PubMed

    Faulkner, Austin R; Bourgeois, Austin C; Bradley, Yong C; Hudson, Kathleen B; Heidel, R Eric; Pasciak, Alexander S

    2015-05-01

    Fluoroscopically guided lumbar puncture (FGLP) is a commonly performed procedure with increased success rates relative to bedside technique. However, FGLP also exposes both patient and staff to ionizing radiation. The purpose of this study was to determine if the use of a simulation-based FGLP training program using an original, inexpensive lumbar spine phantom could improve operator confidence and efficiency, while also reducing patient dose. A didactic and simulation-based FGLP curriculum was designed, including a 1-hour lecture and hands-on training with a lumbar spine phantom prototype developed at our institution. Six incoming post-graduate year 2 (PGY-2) radiology residents completed a short survey before taking the course, and each resident practiced 20 simulated FGLPs using the phantom before their first clinical procedure. Data from the 114 lumbar punctures (LPs) performed by the six trained residents (prospective cohort) were compared to data from 514 LPs performed by 17 residents who did not receive simulation-based training (retrospective cohort). Fluoroscopy time (FT), FGLP success rate, and indication were compared. There was a statistically significant reduction in average FT for the 114 procedures performed by the prospective study cohort compared to the 514 procedures performed by the retrospective cohort. This held true for all procedures in aggregate, LPs for myelography, and all procedures performed for a diagnostic indication. Aggregate FT for the prospective group (0.87 ± 0.68 minutes) was significantly lower compared to the retrospective group (1.09 ± 0.65 minutes) and resulted in a 25% reduction in average FT (P = .002). There was no statistically significant difference in the number of failed FGLPs between the two groups. Our simulation-based FGLP curriculum resulted in improved operator confidence and reduced FT. These changes suggest that resident procedure efficiency was improved, whereas patient dose was reduced. The FGLP training program was implemented by radiology residents and required a minimal investment of time and resources. The LP spine phantom used during training was inexpensive, durable, and effective. In addition, the phantom is compatible with multiple modalities including fluoroscopy, computed tomography, and ultrasound and could be easily adapted to other applications such as facet injections or joint arthrograms. Copyright © 2015 AUR. Published by Elsevier Inc. All rights reserved.

  19. Development of Methodologies for IV and V of Neural Networks

    NASA Technical Reports Server (NTRS)

    Taylor, Brian; Darrah, Marjorie

    2003-01-01

    Non-deterministic systems often rely upon neural network (NN) technology to "lean" to manage flight systems under controlled conditions using carefully chosen training sets. How can these adaptive systems be certified to ensure that they will become increasingly efficient and behave appropriately in real-time situations? The bulk of Independent Verification and Validation (IV&V) research of non-deterministic software control systems such as Adaptive Flight Controllers (AFC's) addresses NNs in well-behaved and constrained environments such as simulations and strict process control. However, neither substantive research, nor effective IV&V techniques have been found to address AFC's learning in real-time and adapting to live flight conditions. Adaptive flight control systems offer good extensibility into commercial aviation as well as military aviation and transportation. Consequently, this area of IV&V represents an area of growing interest and urgency. ISR proposes to further the current body of knowledge to meet two objectives: Research the current IV&V methods and assess where these methods may be applied toward a methodology for the V&V of Neural Network; and identify effective methods for IV&V of NNs that learn in real-time, including developing a prototype test bed for IV&V of AFC's. Currently. no practical method exists. lSR will meet these objectives through the tasks identified and described below. First, ISR will conduct a literature review of current IV&V technology. TO do this, ISR will collect the existing body of research on IV&V of non-deterministic systems and neural network. ISR will also develop the framework for disseminating this information through specialized training. This effort will focus on developing NASA's capability to conduct IV&V of neural network systems and to provide training to meet the increasing need for IV&V expertise in such systems.

  20. Virtual suturing simulation based on commodity physics engine for medical learning.

    PubMed

    Choi, Kup-Sze; Chan, Sze-Ho; Pang, Wai-Man

    2012-06-01

    Development of virtual-reality medical applications is usually a complicated and labour intensive task. This paper explores the feasibility of using commodity physics engine to develop a suturing simulator prototype for manual skills training in the fields of nursing and medicine, so as to enjoy the benefits of rapid development and hardware-accelerated computation. In the prototype, spring-connected boxes of finite dimension are used to simulate soft tissues, whereas needle and thread are modelled with chained segments. Spherical joints are used to simulate suture's flexibility and to facilitate thread cutting. An algorithm is developed to simulate needle insertion and thread advancement through the tissue. Two-handed manipulations and force feedback are enabled with two haptic devices. Experiments on the closure of a wound show that the prototype is able to simulate suturing procedures at interactive rates. The simulator is also used to study a curvature-adaptive suture modelling technique. Issues and limitations of the proposed approach and future development are discussed.

  1. Adaptive Technologies for Training and Education

    ERIC Educational Resources Information Center

    Durlach, Paula J., Ed; Lesgold, Alan M., Ed.

    2012-01-01

    This edited volume provides an overview of the latest advancements in adaptive training technology. Intelligent tutoring has been deployed for well-defined and relatively static educational domains such as algebra and geometry. However, this adaptive approach to computer-based training has yet to come into wider usage for domains that are less…

  2. Finite element analysis of Al 2024/Cu-Al-Ni shape memory alloy composites with defects/cracks

    NASA Astrophysics Data System (ADS)

    Kotresh, M.; Benal, M. M., Dr; Siddalinga Swamy, N. H., Dr

    2018-02-01

    In this work, a numerical approach to predict the stress field behaviour of defect/crack in shape memory alloy (SMA) particles reinforced composite known as the adaptive composite is presented. Simulation is based on the finite element method. The critical stress field approach was used to determine the stresses around defect/crack. Thereby stress amplification issue is being resolved. In this paper, the effect volume % of shape memory alloy and shape memory effect of reinforcement for as-cast and SME trained composites are examined and discussed. Shape memory effect known as training is achieved by pre-straining of reinforcement particles by equivalent changes in their expansion coefficients.

  3. A WSN-Based Tool for Urban and Industrial Fire-Fighting

    PubMed Central

    De San Bernabe Clemente, Alberto; Dios, José Ramiro Martínez-de; Baturone, Aníbal Ollero

    2012-01-01

    This paper describes a WSN tool to increase safety in urban and industrial fire-fighting activities. Unlike most approaches, we assume that there is no preexisting WSN in the building, which involves interesting advantages but imposes some constraints. The system integrates the following functionalities: fire monitoring, firefighter monitoring and dynamic escape path guiding. It also includes a robust localization method that employs RSSI-range models dynamically trained to cope with the peculiarities of the environment. The training and application stages of the method are applied simultaneously, resulting in significant adaptability. Besides simulations and laboratory tests, a prototype of the proposed system has been validated in close-to-operational conditions. PMID:23202198

  4. Does hydrotherapy help or hinder adaptation to training in competitive cyclists?

    PubMed

    Halson, Shona L; Bartram, Jason; West, Nicholas; Stephens, Jessica; Argus, Christos K; Driller, Matthew W; Sargent, Charli; Lastella, Michele; Hopkins, Will G; Martin, David T

    2014-08-01

    Cold water immersion (CWI) may be beneficial for acute recovery from exercise, but it may impair long-term performance by attenuating the stimuli responsible for adaptation to training. We compared effects of CWI and passive rest on cycling performance during a simulated cycling grand tour. Thirty-four male endurance-trained competitive cyclists were randomized to CWI for four times per week for 15 min at 15°C or control (passive recovery) groups for 7 d of baseline training, 21 d of intensified training, and an 11-d taper. Criteria for completion of training and testing were satisfied by 10 cyclists in the CWI group (maximal aerobic power, 5.13 ± 0.21 W·kg; mean ± SD) and 11 in the control group (5.01 ± 0.41 W·kg). Each week, cyclists completed a high-intensity interval cycling test and two 4-min bouts separated by 30 min. CWI was performed four times per week for 15 min at 15°C. Between baseline and taper, cyclists in the CWI group had an unclear change in overall 4-min power relative to control (2.7% ± 5.7%), although mean power in the second effort relative to the first was likely higher for the CWI group relative to control (3.0% ± 3.8%). The change in 1-s maximum mean sprint power in the CWI group was likely beneficial compared with control (4.4% ± 4.2%). Differences between groups for the 10-min time trial were unclear (-0.4% ± 4.3%). Although some effects of CWI on performance were unclear, data from this study do not support recent speculation that CWI is detrimental to performance after increased training load in competitive cyclists.

  5. [EVALUATION OF THE EFFECTIVENESS OF ADDITIONAL PROFESSIONAL EDUCATION ON THE BASIS OF HEALTH CARE FACILITY].

    PubMed

    Bohomaz, V M; Rymarenko, P V

    2014-01-01

    In this study we tested methods of facility learning of health care workers as part of a modern model of quality management of medical services. The statistical and qualitative analysis of the effectiveness of additional training in emergency medical care at the health facility using an adapted curriculum and special mannequins. Under the guidance of a certified instructor focus group of 53 doctors and junior medical specialists studied 22 hours. According to a survey of employees trained their level of selfassessment of knowledge and skills sigificantly increased. Also significantly increased the proportion of correct answers in a formalized testing both categories of workers. Using androgological learning model, mannequins simulators and training in small groups at work create the most favorable conditions for effective individual and group practical skills of emergency medicine.

  6. An adaptive critic-based scheme for consensus control of nonlinear multi-agent systems

    NASA Astrophysics Data System (ADS)

    Heydari, Ali; Balakrishnan, S. N.

    2014-12-01

    The problem of decentralised consensus control of a network of heterogeneous nonlinear systems is formulated as an optimal tracking problem and a solution is proposed using an approximate dynamic programming based neurocontroller. The neurocontroller training comprises an initial offline training phase and an online re-optimisation phase to account for the fact that the reference signal subject to tracking is not fully known and available ahead of time, i.e., during the offline training phase. As long as the dynamics of the agents are controllable, and the communication graph has a directed spanning tree, this scheme guarantees the synchronisation/consensus even under switching communication topology and directed communication graph. Finally, an aerospace application is selected for the evaluation of the performance of the method. Simulation results demonstrate the potential of the scheme.

  7. Constellation Training Facility Support

    NASA Technical Reports Server (NTRS)

    Flores, Jose M.

    2008-01-01

    The National Aeronautics and Space Administration is developing the next set of vehicles that will take men back to the moon under the Constellation Program. The Constellation Training Facility (CxTF) is a project in development that will be used to train astronauts, instructors, and flight controllers on the operation of Constellation Program vehicles. It will also be used for procedure verification and validation of flight software and console tools. The CxTF will have simulations for the Crew Exploration Vehicle (CEV), Crew Module (CM), CEV Service Module (SM), Launch Abort System (LAS), Spacecraft Adapter (SA), Crew Launch Vehicle (CLV), Pressurized Cargo Variant CM, Pressurized Cargo Variant SM, Cargo Launch Vehicle, Earth Departure Stage (EDS), and the Lunar Surface Access Module (LSAM). The Facility will consist of part-task and full-task trainers, each with a specific set of mission training capabilities. Part task trainers will be used for focused training on a single vehicle system or set of related systems. Full task trainers will be used for training on complete vehicles and all of its subsystems. Support was provided in both software development and project planning areas of the CxTF project. Simulation software was developed for the hydraulic system of the Thrust Vector Control (TVC) of the ARES I launch vehicle. The TVC system is in charge of the actuation of the nozzle gimbals for navigation control of the upper stage of the ARES I rocket. Also, software was developed using C standards to send and receive data to and from hand controllers to be used in CxTF cockpit simulations. The hand controllers provided movement in all six rotational and translational axes. Under Project Planning & Control, support was provided to the development and maintenance of integrated schedules for both the Constellation Training Facility and Missions Operations Facilities Division. These schedules maintain communication between projects in different levels. The CxTF support provided is one that requires continuous maintenance since the project is still on initial development phases.

  8. Emergency preparedness volunteer training program.

    PubMed

    Matthews, Amanda K; Sprague, Kristin; Girling, Eileen; Dapice, Lynne; Palumbo, Mary Val; Berry, Patricia

    2005-11-01

    The Vermont Department of Health (VDH) does not have sufficient personnel to fully staff a mass prophylaxis or vaccination clinic in response to a natural or man-made disease outbreak. Therefore, the VDH developed an emergency preparedness volunteer training program with three primary goals: to include both background information about public health and emergency preparedness and a hands-on training for clinic volunteers; to be adaptable for both community and healthcare professional volunteers; and to examine local emergencies and the VDH public health response to these events. Major components of the training program include basic public health goals and capacities; an introduction to emergency preparedness; a role-playing exercise using Job Action Sheets to simulate "just-in-time" training; and guidance for personal and family preparedness. The VDH has experienced difficulty finding and recruiting volunteers. To increase the potential volunteer pool, it will be implementing a multifaceted training program (on-line, through the mail, in person) to most effectively engage volunteers with varying interests and learning styles. The VDH must also develop a system to maintain regular contact with volunteers and clarify regulations regarding their scope of practice and liability.

  9. Issues in development, evaluation, and use of the NASA Preflight Adaptation Trainer (PAT)

    NASA Technical Reports Server (NTRS)

    Lane, Norman E.; Kennedy, Robert S.

    1988-01-01

    The Preflight Adaptation Trainer (PAT) is intended to reduce or alleviate space adaptation syndrome by providing opportunities for portions of that adaptation to occur under normal gravity conditions prior to space flight. Since the adaptation aspects of the PAT objectives involve modification not only of the behavior of the trainee, but also of sensiomotor skills which underly the behavioral generation, the defining of training objectives of the PAT utilizes four mechanisms: familiarization, demonstration, training and adaptation. These mechanisms serve as structural reference points for evaluation, drive the content and organization of the training procedures, and help to define the roles of the PAT instructors and operators. It was determined that three psychomotor properties are most critical for PAT evaluation: reliability; sensitivity; and relevance. It is cause for concern that the number of measures available to examine PAT effects exceed those that can be properly studied with the available sample sizes; special attention will be required in selection of the candidate measure set. The issues in PAT use and application within a training system context are addressed through linking the three training related mechanisms of familiarization, demonstration and training to the fourth mechanism, adaptation.

  10. A Context-Adaptive Teacher Training Model in a Ubiquitous Learning Environment

    ERIC Educational Resources Information Center

    Chen, Min; Chiang, Feng Kuang; Jiang, Ya Na; Yu, Sheng Quan

    2017-01-01

    In view of the discrepancies in teacher training and teaching practice, this paper put forward a context-adaptive teacher training model in a ubiquitous learning (u-learning) environment. The innovative model provides teachers of different subjects with adaptive and personalized learning content in a u-learning environment, implements intra- and…

  11. Dual RBFNNs-Based Model-Free Adaptive Control With Aspen HYSYS Simulation.

    PubMed

    Zhu, Yuanming; Hou, Zhongsheng; Qian, Feng; Du, Wenli

    2017-03-01

    In this brief, we propose a new data-driven model-free adaptive control (MFAC) method with dual radial basis function neural networks (RBFNNs) for a class of discrete-time nonlinear systems. The main novelty lies in that it provides a systematic design method for controller structure by the direct usage of I/O data, rather than using the first-principle model or offline identified plant model. The controller structure is determined by equivalent-dynamic-linearization representation of the ideal nonlinear controller, and the controller parameters are tuned by the pseudogradient information extracted from the I/O data of the plant, which can deal with the unknown nonlinear system. The stability of the closed-loop control system and the stability of the training process for RBFNNs are guaranteed by rigorous theoretical analysis. Meanwhile, the effectiveness and the applicability of the proposed method are further demonstrated by the numerical example and Aspen HYSYS simulation of distillation column in crude styrene produce process.

  12. Magnetic resonance image restoration via dictionary learning under spatially adaptive constraints.

    PubMed

    Wang, Shanshan; Xia, Yong; Dong, Pei; Feng, David Dagan; Luo, Jianhua; Huang, Qiu

    2013-01-01

    This paper proposes a spatially adaptive constrained dictionary learning (SAC-DL) algorithm for Rician noise removal in magnitude magnetic resonance (MR) images. This algorithm explores both the strength of dictionary learning to preserve image structures and the robustness of local variance estimation to remove signal-dependent Rician noise. The magnitude image is first separated into a number of partly overlapping image patches. The statistics of each patch are collected and analyzed to obtain a local noise variance. To better adapt to Rician noise, a correction factor is formulated with the local signal-to-noise ratio (SNR). Finally, the trained dictionary is used to denoise each image patch under spatially adaptive constraints. The proposed algorithm has been compared to the popular nonlocal means (NLM) filtering and unbiased NLM (UNLM) algorithm on simulated T1-weighted, T2-weighted and PD-weighted MR images. Our results suggest that the SAC-DL algorithm preserves more image structures while effectively removing the noise than NLM and it is also superior to UNLM at low noise levels.

  13. Hierarchical Adaptive Means (HAM) clustering for hardware-efficient, unsupervised and real-time spike sorting.

    PubMed

    Paraskevopoulou, Sivylla E; Wu, Di; Eftekhar, Amir; Constandinou, Timothy G

    2014-09-30

    This work presents a novel unsupervised algorithm for real-time adaptive clustering of neural spike data (spike sorting). The proposed Hierarchical Adaptive Means (HAM) clustering method combines centroid-based clustering with hierarchical cluster connectivity to classify incoming spikes using groups of clusters. It is described how the proposed method can adaptively track the incoming spike data without requiring any past history, iteration or training and autonomously determines the number of spike classes. Its performance (classification accuracy) has been tested using multiple datasets (both simulated and recorded) achieving a near-identical accuracy compared to k-means (using 10-iterations and provided with the number of spike classes). Also, its robustness in applying to different feature extraction methods has been demonstrated by achieving classification accuracies above 80% across multiple datasets. Last but crucially, its low complexity, that has been quantified through both memory and computation requirements makes this method hugely attractive for future hardware implementation. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Graphic and haptic simulation for transvaginal cholecystectomy training in NOTES.

    PubMed

    Pan, Jun J; Ahn, Woojin; Dargar, Saurabh; Halic, Tansel; Li, Bai C; Sankaranarayanan, Ganesh; Roberts, Kurt; Schwaitzberg, Steven; De, Suvranu

    2016-04-01

    Natural Orifice Transluminal Endoscopic Surgery (NOTES) provides an emerging surgical technique which usually needs a long learning curve for surgeons. Virtual reality (VR) medical simulators with vision and haptic feedback can usually offer an efficient and cost-effective alternative without risk to the traditional training approaches. Under this motivation, we developed the first virtual reality simulator for transvaginal cholecystectomy in NOTES (VTEST™). This VR-based surgical simulator aims to simulate the hybrid NOTES of cholecystectomy. We use a 6DOF haptic device and a tracking sensor to construct the core hardware component of simulator. For software, an innovative approach based on the inner-spheres is presented to deform the organs in real time. To handle the frequent collision between soft tissue and surgical instruments, an adaptive collision detection method based on GPU is designed and implemented. To give a realistic visual performance of gallbladder fat tissue removal by cautery hook, a multi-layer hexahedral model is presented to simulate the electric dissection of fat tissue. From the experimental results, trainees can operate in real time with high degree of stability and fidelity. A preliminary study was also performed to evaluate the realism and the usefulness of this hybrid NOTES simulator. This prototyped simulation system has been verified by surgeons through a pilot study. Some items of its visual performance and the utility were rated fairly high by the participants during testing. It exhibits the potential to improve the surgical skills of trainee and effectively shorten their learning curve. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Development of a Countermeasure to Enhance Postflight Locomotor Adaptability

    NASA Technical Reports Server (NTRS)

    Bloomberg, Jacob J.

    2006-01-01

    Astronauts returning from space flight experience locomotor dysfunction following their return to Earth. Our laboratory is currently developing a gait adaptability training program that is designed to facilitate recovery of locomotor function following a return to a gravitational environment. The training program exploits the ability of the sensorimotor system to generalize from exposure to multiple adaptive challenges during training so that the gait control system essentially learns to learn and therefore can reorganize more rapidly when faced with a novel adaptive challenge. We have previously confirmed that subjects participating in adaptive generalization training programs using a variety of visuomotor distortions can enhance their ability to adapt to a novel sensorimotor environment. Importantly, this increased adaptability was retained even one month after completion of the training period. Adaptive generalization has been observed in a variety of other tasks requiring sensorimotor transformations including manual control tasks and reaching (Bock et al., 2001, Seidler, 2003) and obstacle avoidance during walking (Lam and Dietz, 2004). Taken together, the evidence suggests that a training regimen exposing crewmembers to variation in locomotor conditions, with repeated transitions among states, may enhance their ability to learn how to reassemble appropriate locomotor patterns upon return from microgravity. We believe exposure to this type of training will extend crewmembers locomotor behavioral repertoires, facilitating the return of functional mobility after long duration space flight. Our proposed training protocol will compel subjects to develop new behavioral solutions under varying sensorimotor demands. Over time subjects will learn to create appropriate locomotor solution more rapidly enabling acquisition of mobility sooner after long-duration space flight. Our laboratory is currently developing adaptive generalization training procedures and the associated flight hardware to implement such a training program during regular inflight treadmill operations. A visual display system will provide variation in visual flow patterns during treadmill exercise. Crewmembers will be exposed to a virtual scene that can translate and rotate in six-degrees-of freedom during their regular treadmill exercise period. Associated ground based studies are focused on determining optimal combinations of sensory manipulations (visual flow, body loading and support surface variation) and training schedules that will produce the greatest potential for adaptive flexibility in gait function during exposure to challenging and novel environments. An overview of our progress in these areas will be discussed during the presentation.

  16. Alterations in redox homeostasis in the elite endurance athlete.

    PubMed

    Lewis, Nathan A; Howatson, Glyn; Morton, Katie; Hill, Jessica; Pedlar, Charles R

    2015-03-01

    The production of reactive oxygen (ROS) and nitrogen species (RNS) is a fundamental feature of mammalian physiology, cellular respiration and cell signalling, and essential for muscle function and training adaptation. Aerobic and anaerobic exercise results in alterations in redox homeostasis (ARH) in untrained, trained and well trained athletes. Low to moderate doses of ROS and RNS play a role in muscle adaptation to endurance training, but an overwhelming increase in RNS and ROS may lead to increased cell apoptosis and immunosuppression, fatigued states and underperformance. The objectives of this systematic review are: (a) to test the hypotheses that ARH occur in elite endurance athletes; following an acute exercise bout, in an endurance race or competition; across a micro-, meso- or macro-training cycle; following a training taper; before, during and after altitude training; in females with amenorrhoea versus eumenorrhoea; and in non-functional over-reaching (NFOR) and overtraining states (OTS); (b) to report any relationship between ARH and training load and ARH and performance; and (c) to apply critical difference values for measures of oxidative stress/ARH to address whether there is any evidence of ARH being of physiological significance (not just statistical) and thus relevant to health and performance in the elite athlete. Electronic databases, Embase, MEDLINE, and SPORTDiscus were searched for relevant articles. Only studies that were observational articles of cross-sectional or longitudinal design, and included elite athletes competing at national or international level in endurance sports were included. Studies had to include biomarkers of ARH; oxidative damage, antioxidant enzymes, antioxidant capacity, and antioxidant vitamins and nutrients in urine, serum, plasma, whole blood, red blood cells (RBCs) and white blood cells (WBCs). A total of 3,057 articles were identified from the electronic searches. Twenty-eight articles met the inclusion criteria and were included in the review. ARH occurs in elite endurance athletes, after acute exercise, a competition or race, across training phases, and with natural or simulated altitude. A reduction in ARH occurs across the season in elite athletes, with marked variation around intensified training phases, between individuals, and the greatest disturbances (of physiological significance) occurring with live-high-train-low techniques, and in athletes competing. A relationship with ARH and performance and illness exists in elite athletes. There was considerable heterogeneity across the studies for the biomarkers and assays used; the sport; the blood sampling time points; and the phase in the annual training cycle and thus baseline athlete fitness. In addition, there was a consistent lack of reporting of the analytical variability of the assays used to assess ARH. The reported biochemical changes around ARH in elite athletes suggest that it may be of value to monitor biomarkers of ARH at rest, pre- and post-simulated performance tests, and before and after training micro- and meso-cycles, and altitude camps, to identify individual tolerance to training loads, potentially allowing the prevention of non-functionally over-reached states and optimisation of the individual training taper and training programme.

  17. [Activities of Psychology Dept., California Univ.

    NASA Technical Reports Server (NTRS)

    Bridgeman, Bruce

    1998-01-01

    We have completed two studies during the grant period, with manuscripts published or ready for submission for publication: (1) Dual adaptation and adaptive generalization in the human vestibuloocular reflex and (2) Frequency vs. acceleration specificity in human VOR adaptation. In the 1st study two studies examined the possibility that rotational VOR plasticity is subject to dual adaptation and adaptive generalization. Subjects in the experimental condition were exposed to an altered visual-vestibular environment for about four minutes every day for five consecutive days. The working hours between these testing sessions constituted re-exposure to the normal visual environment. Thus, subjects were repeatedly adapting and re-adapting to both environments which is a condition designed to produce dual adaptation. In each training session a measure of baseline VOR gain was obtained (in the dark). A small laser spot (the only visual stimulus) was systematically moved in the same direction as the subject's head, but by half the angle of rotation (target/head gain = 0.5). This resulted in adaptation values relativized to the non-adapted gain of each subject. These values were then analyzed using an analysis of variance with day and session (within a day) as factors. In the 2nd study human VOR adaption has been assumed to be frequency specific, despite the fact that the semicircular canals are simulated by rotational acceleration and not frequency per se.

  18. Designing Empathetic Animated Agents for a B-Learning Training Environment within the Electrical Domain

    ERIC Educational Resources Information Center

    Hernández, Yasmin; Pérez-Ramírez, Miguel; Zatarain-Cabada, Ramon; Barrón-Estrada, Lucia; Alor-Hernández, Giner

    2016-01-01

    Electrical tests involve high risk; therefore utility companies require highly qualified electricians and efficient training. Recently, training for electrical tests has been supported by virtual reality systems; nonetheless, these training systems are not yet adaptive. We propose a b-learning model to support adaptive and distance training. The…

  19. Fitting Neuron Models to Spike Trains

    PubMed Central

    Rossant, Cyrille; Goodman, Dan F. M.; Fontaine, Bertrand; Platkiewicz, Jonathan; Magnusson, Anna K.; Brette, Romain

    2011-01-01

    Computational modeling is increasingly used to understand the function of neural circuits in systems neuroscience. These studies require models of individual neurons with realistic input–output properties. Recently, it was found that spiking models can accurately predict the precisely timed spike trains produced by cortical neurons in response to somatically injected currents, if properly fitted. This requires fitting techniques that are efficient and flexible enough to easily test different candidate models. We present a generic solution, based on the Brian simulator (a neural network simulator in Python), which allows the user to define and fit arbitrary neuron models to electrophysiological recordings. It relies on vectorization and parallel computing techniques to achieve efficiency. We demonstrate its use on neural recordings in the barrel cortex and in the auditory brainstem, and confirm that simple adaptive spiking models can accurately predict the response of cortical neurons. Finally, we show how a complex multicompartmental model can be reduced to a simple effective spiking model. PMID:21415925

  20. Simulating Expert Clinical Comprehension: Adapting Latent Semantic Analysis to Accurately Extract Clinical Concepts from Psychiatric Narrative

    PubMed Central

    Cohen, Trevor; Blatter, Brett; Patel, Vimla

    2008-01-01

    Cognitive studies reveal that less-than-expert clinicians are less able to recognize meaningful patterns of data in clinical narratives. Accordingly, psychiatric residents early in training fail to attend to information that is relevant to diagnosis and the assessment of dangerousness. This manuscript presents cognitively motivated methodology for the simulation of expert ability to organize relevant findings supporting intermediate diagnostic hypotheses. Latent Semantic Analysis is used to generate a semantic space from which meaningful associations between psychiatric terms are derived. Diagnostically meaningful clusters are modeled as geometric structures within this space and compared to elements of psychiatric narrative text using semantic distance measures. A learning algorithm is defined that alters components of these geometric structures in response to labeled training data. Extraction and classification of relevant text segments is evaluated against expert annotation, with system-rater agreement approximating rater-rater agreement. A range of biomedical informatics applications for these methods are suggested. PMID:18455483

  1. Current Practice in Designing Training for Complex Skills: Implications for Design and Evaluation of ADAPT[IT].

    ERIC Educational Resources Information Center

    Eseryel, Deniz; Schuver-van Blanken, Marian J.; Spector, J. Michael

    ADAPT[IT] (Advanced Design Approach for Personalized Training-Interactive Tools is a European project coordinated by the Dutch National Aerospace Laboratory. The aim of ADAPT[IT] is to create and validate an effective training design methodology, based on cognitive science and leading to the integration of advanced technologies, so that the…

  2. Does mental illness stigma contribute to adolescent standardized patients' discomfort with simulations of mental illness and adverse psychosocial experiences?

    PubMed

    Hanson, Mark D; Johnson, Samantha; Niec, Anne; Pietrantonio, Anna Marie; High, Bradley; MacMillan, Harriet; Eva, Kevin W

    2008-01-01

    Adolescent mental illness stigma-related factors may contribute to adolescent standardized patients' (ASP) discomfort with simulations of psychiatric conditions/adverse psychosocial experiences. Paradoxically, however, ASP involvement may provide a stigma-reduction strategy. This article reports an investigation of this hypothetical association between simulation discomfort and mental illness stigma. ASPs were randomly assigned to one of two simulation conditions: one was associated with mental illness stigma and one was not. ASP training methods included carefully written case simulations, educational materials, and active teaching methods. After training, ASPs completed the adapted Project Role Questionnaire to rate anticipated role discomfort with hypothetical adolescent psychiatric conditions/adverse psychosocial experiences and to respond to open-ended questions regarding this discomfort. A mixed design ANOVA was used to compare comfort levels across simulation conditions. Narrative responses to an open-ended question were reviewed for relevant themes. Twenty-four ASPs participated. A significant effect of simulation was observed, indicating that ASPs participating in the simulation associated with mental illness stigma anticipated greater comfort with portraying subsequent stigma-associated roles than did ASPs in the simulation not associated with stigma. ASPs' narrative responses regarding their reasons for anticipating discomfort focused upon the role of knowledge-related factors. ASPs' work with a psychiatric case simulation was associated with greater anticipated comfort with hypothetical simulations of psychiatric/adverse psychosocial conditions in comparison to ASPs lacking a similar work experience. The ASPs provided explanations for this anticipated discomfort that were suggestive of stigma-related knowledge factors. This preliminary research suggests an association between ASP anticipated role discomfort and mental illness stigma, and that ASP work may contribute to stigma reduction.

  3. Limited-memory adaptive snapshot selection for proper orthogonal decomposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oxberry, Geoffrey M.; Kostova-Vassilevska, Tanya; Arrighi, Bill

    2015-04-02

    Reduced order models are useful for accelerating simulations in many-query contexts, such as optimization, uncertainty quantification, and sensitivity analysis. However, offline training of reduced order models can have prohibitively expensive memory and floating-point operation costs in high-performance computing applications, where memory per core is limited. To overcome this limitation for proper orthogonal decomposition, we propose a novel adaptive selection method for snapshots in time that limits offline training costs by selecting snapshots according an error control mechanism similar to that found in adaptive time-stepping ordinary differential equation solvers. The error estimator used in this work is related to theory boundingmore » the approximation error in time of proper orthogonal decomposition-based reduced order models, and memory usage is minimized by computing the singular value decomposition using a single-pass incremental algorithm. Results for a viscous Burgers’ test problem demonstrate convergence in the limit as the algorithm error tolerances go to zero; in this limit, the full order model is recovered to within discretization error. The resulting method can be used on supercomputers to generate proper orthogonal decomposition-based reduced order models, or as a subroutine within hyperreduction algorithms that require taking snapshots in time, or within greedy algorithms for sampling parameter space.« less

  4. Teaching Surgical Hysteroscopy with a Computer

    PubMed

    Lefebvre; Cote; Lefebvre

    1996-08-01

    Using a hysteroscope can be simulated on a computer. It will improve physician training by measuring basic knowledge and abilities, allow different interventions and anatomic variations, minimize the trauma of surgical intervention, and reduce operative casualties. An integrated questionnaire covers instrumentation, fluid infusion, power source, indications and preparation for endometrial ablation, surgical techniques, and complications to evaluate the user's knowledge. The operation simulation then proceeds. In the endometrial cavity, by virtual simulation, the operating field should appear in real time to allow physicians to adapt the trajectory of the instruments. The computer is an IBM PC compatible. We use a modified joystick with optical encoders to know the instrument position. The simulation can be repeated as desired. An evaluation system is integrated in the software to keep the user informed on the amount of burn area(s) that have been completed. This prototype model is available.

  5. Attempted Training of Alcohol Approach and Drinking Identity Associations in US Undergraduate Drinkers: Null Results from Two Studies

    PubMed Central

    Lindgren, Kristen P.; Wiers, Reinout W.; Teachman, Bethany A.; Gasser, Melissa L.; Westgate, Erin C.; Cousijn, Janna; Enkema, Matthew C.; Neighbors, Clayton

    2015-01-01

    There is preliminary evidence that approach avoid training can shift implicit alcohol associations and improve treatment outcomes. We sought to replicate and extend those findings in US undergraduate social drinkers (Study 1) and at-risk drinkers (Study 2). Three adaptations of the approach avoid task (AAT) were tested. The first adaptation – the approach avoid training – was a replication and targeted implicit alcohol approach associations. The remaining two adaptations – the general identity and personalized identity trainings – targeted implicit drinking identity associations, which are robust predictors of hazardous drinking in US undergraduates. Study 1 included 300 undergraduate social drinkers. They were randomly assigned to real or sham training conditions for one of the three training adaptations, and completed two training sessions, spaced one week apart. Study 2 included 288 undergraduates at risk for alcohol use disorders. The same training procedures were used, but the two training sessions occurred within a single week. Results were not as expected. Across both studies, the approach avoid training yielded no evidence of training effects on implicit alcohol associations or alcohol outcomes. The general identity training also yielded no evidence of training effects on implicit alcohol associations or alcohol outcomes with one exception; individuals who completed real training demonstrated no changes in drinking refusal self-efficacy whereas individuals who completed sham training had reductions in self-efficacy. Finally, across both studies, the personalized identity training yielded no evidence of training effects on implicit alcohol associations or alcohol outcomes. Despite having relatively large samples and using a well-validated training task, study results indicated all three training adaptations were ineffective at this dose in US undergraduates. These findings are important because training studies are costly and labor-intensive. Future research may benefit from focusing on more severe populations, pairing training with other interventions, increasing training dose, and increasing gamification of training tasks. PMID:26241316

  6. Training working memory updating in young adults.

    PubMed

    Linares, Rocío; Borella, Erika; Lechuga, M Teresa; Carretti, Barbara; Pelegrina, Santiago

    2018-05-01

    Working memory updating (WMU) is a core mechanism in the human mental architecture and a good predictor of a wide range of cognitive processes. This study analyzed the benefits of two different WMU training procedures, near transfer effects on a working memory measure, and far transfer effects on nonverbal reasoning. Maintenance of any benefits a month later was also assessed. Participants were randomly assigned to: an adaptive training group that performed two numerical WMU tasks during four sessions; a non-adaptive training group that performed the same tasks but on a constant and less demanding level of difficulty; or an active control group that performed other tasks unrelated with working memory. After the training, all three groups showed improvements in most of the tasks, and these benefits were maintained a month later. The gain in one of the two WMU measures was larger for the adaptive and non-adaptive groups than for the control group. This specific gain in a task similar to the one trained would indicate the use of a better strategy for performing the task. Besides this nearest transfer effect, no other transfer effects were found. The adaptability of the training procedure did not produce greater improvements. These results are discussed in terms of the training procedure and the feasibility of training WMU.

  7. Training complexity is not decisive factor for improving adaptation to visual sensory conflict.

    PubMed

    Yang, Yang; Pu, Fang; Li, Shuyu; Li, Yan; Li, Deyu; Fan, Yubo

    2012-01-01

    Ground-based preflight training utilizing unusual visual stimuli is useful for decreasing the susceptibility to space motion sickness (SMS). The effectiveness of the sensorimotor adaptation training is affected by the training tasks, but what kind of task is more effective remains unknown. Whether the complexity is the decisive factor to consider for designing the training and if other factors are more important need to be analyzed. The results from the analysis can help to optimize the preflight training tasks for astronauts. Twenty right-handed subjects were asked to draw the right path of 45° rotated maze before and after 30 min training. Subjects wore an up-down reversing prism spectacle in test and training sessions. Two training tasks were performed: drawing the right path of the horizontal maze (complex task but with different orientation feature) and drawing the L-shape lines (easy task with same orientation feature). The error rate and the executing time were measured during the test. Paired samples t test was used to compare the effects of the two training tasks. After each training, the error rate and the executing time were significantly decreased. However, the training effectiveness of the easy task was better as the test was finished more quickly and accurately. The complexity is not always the decisive factor for designing the adaptation training task, e.g. the orientation feature is more important in this study. In order to accelerate the adaptation and to counter SMS, the task for astronauts preflight adaptation training could be simple activities with the key features.

  8. High educational impact of a national simulation-based urological curriculum including technical and non-technical skills.

    PubMed

    de Vries, Anna H; Schout, Barbara M A; van Merriënboer, Jeroen J G; Pelger, Rob C M; Koldewijn, Evert L; Muijtjens, Arno M M; Wagner, Cordula

    2017-02-01

    Although simulation training is increasingly used to meet modern technology and patient safety demands, its successful integration within surgical curricula is still rare. The Dutch Urological Practical Skills (D-UPS) curriculum provides modular simulation-based training of technical and non-technical basic urological skills in the local hospital setting. This study aims to assess the educational impact of implementing the D-UPS curriculum in the Netherlands and to provide focus points for improvement of the D-UPS curriculum according to the participants. Educational impact was assessed by means of qualitative individual module-specific feedback and a quantitative cross-sectional survey among residents and supervisors. Twenty out of 26 Dutch teaching hospitals participated. The survey focussed on practical aspects, the D-UPS curriculum in general, and the impact of the D-UPS curriculum on the development of technical and non-technical skills. A considerable survey response of 95 % for residents and 76 % for supervisors was obtained. Modules were attended by junior and senior residents, supervised by a urologist, and peer teaching was used. Ninety percent of supervisors versus 67 % of residents judged the D-UPS curriculum as an important addition to current residency training (p = 0.007). Participants' aggregated general judgement of the modules showed a substantial percentage favorable score (M ± SE: 57 ± 4 %). The impact of training on, e.g., knowledge of materials/equipment and ability to anticipate on complications was high, especially for junior residents (77 ± 5 and 71 ± 7 %, respectively). Focus points for improvement of the D-UPS curriculum according to the participants include adaptation of the training level to residents' level of experience and focus on logistics. The simulation-based D-UPS curriculum has a high educational impact. Residents and supervisors consider the curriculum to be an important addition to current residency training. Focus points for improvement of the D-UPS curriculum according to the participants include increased attention to logistics and integration of a spiral learning approach.

  9. Discussing Death, Dying, and End-of-Life Goals of Care: A Communication Skills Training Module for Oncology Nurses.

    PubMed

    Coyle, Nessa; Manna, Ruth; Shen, Megan; Banerjee, Smita C; Penn, Stacey; Pehrson, Cassandra; Krueger, Carol A; Maloney, Erin K; Zaider, Talia; Bylund, Carma L

    2015-12-01

    Effective communication, particularly at the end of life, is an essential skill for oncology nurses, but few receive formal training in this area. The aim of this article is to adapt an end-of-life care communication skills training (CST) module, originally developed for oncologists, for oncology nurses and to evaluate participants' confidence in using the communication skills learned and their satisfaction with the module. The adapted end-of-life care module consisted of a 45-minute didactic, exemplary video and 90 minutes of small group interaction and experiential role play with a simulated patient. Using a five-point Likert-type scale, 247 inpatient oncology nurses completed pre-/post-workshop surveys rating their confidence in discussing death, dying, and end-of-life goals of care with patients, as well as overall satisfaction with the module. Nurses' confidence in discussing death, dying, and end-of-life goals of care increased significantly after attending the workshop. Nurse participants indicated satisfaction with the module by agreeing or strongly agreeing to all six items assessing satisfaction 90%-98% of the time. Nurses' CST in discussing death, dying, and end-of-life care showed feasibility, acceptability, and potential benefit at improving confidence in having end-of-life care discussions.

  10. ISS Double-Gimbaled CMG Subsystem Simulation Using the Agile Development Method

    NASA Technical Reports Server (NTRS)

    Inampudi, Ravi

    2016-01-01

    This paper presents an evolutionary approach in simulating a cluster of 4 Control Moment Gyros (CMG) on the International Space Station (ISS) using a common sense approach (the agile development method) for concurrent mathematical modeling and simulation of the CMG subsystem. This simulation is part of Training systems for the 21st Century simulator which will provide training for crew members, instructors, and flight controllers. The basic idea of how the CMGs on the space station are used for its non-propulsive attitude control is briefly explained to set up the context for simulating a CMG subsystem. Next different reference frames and the detailed equations of motion (EOM) for multiple double-gimbal variable-speed control moment gyroscopes (DGVs) are presented. Fixing some of the terms in the EOM becomes the special case EOM for ISS's double-gimbaled fixed speed CMGs. CMG simulation development using the agile development method is presented in which customer's requirements and solutions evolve through iterative analysis, design, coding, unit testing and acceptance testing. At the end of the iteration a set of features implemented in that iteration are demonstrated to the flight controllers thus creating a short feedback loop and helping in creating adaptive development cycles. The unified modeling language (UML) tool is used in illustrating the user stories, class designs and sequence diagrams. This incremental development approach of mathematical modeling and simulating the CMG subsystem involved the development team and the customer early on, thus improving the quality of the working CMG system in each iteration and helping the team to accurately predict the cost, schedule and delivery of the software.

  11. Wii Fit® training vs. Adapted Physical Activities: which one is the most appropriate to improve the balance of independent senior subjects? A randomized controlled study.

    PubMed

    Toulotte, Claire; Toursel, Cindy; Olivier, Nicolas

    2012-09-01

    To compare the effectiveness of three protocols (Adapted Physical Activities, Wii Fit(®), Adapted Physical Activities + Wii Fit(®)) on the balance of independent senior subjects. Case comparison study. Healthy elderly subjects living in independent community dwellings. Thirty-six subjects, average age 75.09 ± 10.26 years, took part in this study, and were randomly assigned to one of the four experimental groups: G1 followed an Adapted Physical Activities training programme, while the second group (G2) participated in Wii Fit(®) training and the third one (G3) combined both methods. There was no training for the fourth group (G4). All subjects trained once a week (1 hour) for 20 weeks and were assessed before and after treatment. The Tinetti test, unipedal tests and the Wii Fit(®) tests. After training, the scores in the Tinetti test decreased significantly (P < 0.05) for G1, G2 and G3 respectively in static conditions and for G1 and G3 in dynamic conditions. After training, the performance in the unipedal tests decreased significantly (P < 0.05) for G1 and G3. The position of the centre of gravity was modified significantly (P < 0.05) for G2 and G3. After 20 training sessions, G1 (Adapted Physical Activities), G2 (Wii Fit(®)) and G3 (Adapted Physical Activities and Wii Fit(®)) improved their balance. In addition, G1 and G3 increased their dynamic balance. The findings suggest that Adapted Physical Activities training limits the decline in sensorial functions in the elderly.

  12. Teaching learning based optimization-functional link artificial neural network filter for mixed noise reduction from magnetic resonance image.

    PubMed

    Kumar, M; Mishra, S K

    2017-01-01

    The clinical magnetic resonance imaging (MRI) images may get corrupted due to the presence of the mixture of different types of noises such as Rician, Gaussian, impulse, etc. Most of the available filtering algorithms are noise specific, linear, and non-adaptive. There is a need to develop a nonlinear adaptive filter that adapts itself according to the requirement and effectively applied for suppression of mixed noise from different MRI images. In view of this, a novel nonlinear neural network based adaptive filter i.e. functional link artificial neural network (FLANN) whose weights are trained by a recently developed derivative free meta-heuristic technique i.e. teaching learning based optimization (TLBO) is proposed and implemented. The performance of the proposed filter is compared with five other adaptive filters and analyzed by considering quantitative metrics and evaluating the nonparametric statistical test. The convergence curve and computational time are also included for investigating the efficiency of the proposed as well as competitive filters. The simulation outcomes of proposed filter outperform the other adaptive filters. The proposed filter can be hybridized with other evolutionary technique and utilized for removing different noise and artifacts from others medical images more competently.

  13. [A randomized controlled trial: acclimatization training on the prevention of motion sickness in hot-humid environment].

    PubMed

    Zhang, Lei; Mao, Jun-Feng; Wu, Xiao-Nong; Bao, Ying-Chun

    2014-05-01

    Incidence and severity of motion sickness (MS) in hot-humid environment are extremely high. We tried to know the effect of two-stage training for reducing incidence and severity of ms. Sixty male subjects were divided into experimental group and control group randomly. Subjects in experimental group received: (2) adaptation training including sitting, walking and running in hot lab. After adaptation confirmation based on subjective feeling, rectal temperature, heart rate, blood Pressure, sweat rates and sweat salt concentration, we tested both groups by Coriolis acceleration revolving chair test and recorded Graybiel's score and grading of severity to evaluate whether adaptation training was useful; (2) Anti-dizzy training 3m later of deacclimatization contained revolving chair training for 10 times. Then we did the same test as mentioned above to evaluate effect of anti-dizzy training. RESULST: Graybiel' s score and grading of severity had no difference between two groups through acclimatization training (P > 0.05). While they had difference through anti-dizzy training (P < 0.01). Adaptation training seems useless for reducing incidence and severity of MS in hot-humid environment, but anti-dizzy training is useful.

  14. Assessing Adaptive Instructional Design Tools and Methods in ADAPT[IT].

    ERIC Educational Resources Information Center

    Eseryel, Deniz; Spector, J. Michael

    ADAPT[IT] (Advanced Design Approach for Personalized Training - Interactive Tools) is a European project within the Information Society Technologies program that is providing design methods and tools to guide a training designer according to the latest cognitive science and standardization principles. ADAPT[IT] addresses users in two significantly…

  15. Adapting the Training Site to Training Needs. Self-Paced Instructional Module. Module Number VII-A.

    ERIC Educational Resources Information Center

    King, Sylvester; Brooks, Kent

    One of 33 self-paced instructional modules for training industry services leaders to provide guidance in the performance of manpower services by public agencies to new and expanding private industry, this module contains three sequential learning activities on adapting the training site to training needs. The first learning activity is designed to…

  16. Virtual Reality as a Medium for Sensorimotor Adaptation Training and Spaceflight Countermeasures

    NASA Technical Reports Server (NTRS)

    Madansingh, S.; Bloomberg, J. J.

    2015-01-01

    With the upcoming shift to extra-long duration missions (1 year) aboard the ISS, sensorimotor adaptations during transitory periods in-and-out of microgravity are more important to understand and prepare for. Advances in virtual reality technology enables everyday adoption of these tools for entertainment and use in training. Experiencing virtual environments (VE) allows for the manipulation of visual flow to elicit automatic motor behavior and produce sensorimotor adaptation (SA). Recently, the ability to train individuals using repeatable and varied exposures to SA challenges has shown success by improving performance during exposure to a novel environment (Batson 2011). This capacity to 'learn to learn' is referred to as sensorimotor adaptive generalizability and, through the use of treadmill training, represents an untapped potential for individualized countermeasures. The goal of this study is to determine the feasibility of present head mounted displays (HMDs) to produce compelling visual flow information and the expected adaptations for use in future SA treadmill-based countermeasures. Participants experience infinite hallways providing congruent (baseline) or incongruent visual information (half or double speed) via HMD while walking on an instrumented treadmill at 1.1m/s. As gait performance approaches baseline levels, an adaptation time constant is derived to establish individual time-to-adapt (TTA). It is hypothesized that decreasing the TTA through SA treadmill training will facilitate sensorimotor adaptation during gravitational transitions. In this way, HMD technology represents a novel platform for SA training using off-the-shelf consumer products for greater training flexibility in astronaut and terrestrial applications alike.

  17. Training Enhances Both Locomotor and Cognitive Adaptability to a Novel Sensory Environment

    NASA Technical Reports Server (NTRS)

    Bloomberg, J. J.; Peters, B. T.; Mulavara, A. P.; Brady, R. A.; Batson, C. D.; Ploutz-Snyder, R. J.; Cohen, H. S.

    2010-01-01

    During adaptation to novel gravitational environments, sensorimotor disturbances have the potential to disrupt the ability of astronauts to perform required mission tasks. The goal of this project is to develop a sensorimotor adaptability (SA) training program to facilitate rapid adaptation. We have developed a unique training system comprised of a treadmill placed on a motion-base facing a virtual visual scene that provides an unstable walking surface combined with incongruent visual flow designed to enhance sensorimotor adaptability. The goal of our present study was to determine if SA training improved both the locomotor and cognitive responses to a novel sensory environment and to quantify the extent to which training would be retained. Methods: Twenty subjects (10 training, 10 control) completed three, 30-minute training sessions during which they walked on the treadmill while receiving discordant support surface and visual input. Control subjects walked on the treadmill but did not receive any support surface or visual alterations. To determine the efficacy of training all subjects performed the Transfer Test upon completion of training. For this test, subjects were exposed to novel visual flow and support surface movement, not previously experienced during training. The Transfer Test was performed 20 minutes, 1 week, 1, 3 and 6 months after the final training session. Stride frequency, auditory reaction time, and heart rate data were collected as measures of postural stability, cognitive effort and anxiety, respectively. Results: Using mixed effects regression methods we determined that subjects who received SA training showed less alterations in stride frequency, auditory reaction time and heart rate compared to controls. Conclusion: Subjects who received SA training improved performance across a number of modalities including enhanced locomotor function, increased multi-tasking capability and reduced anxiety during adaptation to novel discordant sensory information. Trained subjects maintained their level of performance over six months.

  18. Development of a Countermeasure to Mitigate Postflight Locomotor Dysfunction

    NASA Technical Reports Server (NTRS)

    Bloomberg, J. J.; Mulavara, A. P.; Peters, B. T.; Cohen, H. S.; Richards, J. T.; Miller, C. A.; Brady, R.; Warren, L. E.; Ruttley, T. M.

    2006-01-01

    Astronauts returning from space flight experience locomotor dysfunction following their return to Earth. Our laboratory is currently developing a gait adaptability training program that is designed to facilitate recovery of locomotor function following a return to a gravitational environment. The training program exploits the ability of the sensorimotor system to generalize from exposure to multiple adaptive challenges during training so that the gait control system essentially learns to learn and therefore can reorganize more rapidly when faced with a novel adaptive challenge. Evidence for the potential efficacy of an adaptive generalization gait training program can be obtained from numerous studies in the motor learning literature which have demonstrated that systematically varying the conditions of training enhances the ability of the performer to learn and retain a novel motor task. These variable practice training approaches have been used in applied contexts to improve motor skills required in a number of different sports. The central nervous system (CNS) can produce voluntary movement in an almost infinite number of ways. For example, locomotion can be achieved with many different combinations of joint angles, muscle activation patterns and forces. The CNS can exploit these degrees of freedom to enhance motor response adaptability during periods of adaptive flux like that encountered during a change in gravitational environment. Ultimately, the functional goal of an adaptive generalization countermeasure is not necessarily to immediately return movement patterns back to normal. Rather the training regimen should facilitate the reorganization of available sensory and motor subsystems to achieve safe and effective locomotion as soon as possible after long duration space flight. Indeed, this approach has been proposed as a basic feature underlying effective neurological rehabilitation. We have previously confirmed that subjects participating in an adaptive generalization training program using a variety of visuomotor distortions and throwing as the dependent measure can learn to enhance their ability to adapt to a novel sensorimotor environment (Roller et al., 2001). Importantly, this increased adaptability was retained even one month after completion of the training period. Adaptive generalization has been observed in a variety of other tasks requiring sensorimotor transformations including manual control tasks and reaching (Bock et al., 2001, Seidler, 2003) and obstacle avoidance during walking (Lam and Dietz, 2004). Taken together, the evidence suggests that a training regimen exposing crewmembers to variation in locomotor conditions, with repeated transitions among states, may enhance their ability to learn how to reassemble appropriate locomotor patterns upon return from microgravity. We believe exposure to this type of training will extend crewmembers locomotor behavioral repertoires, facilitating the return of functional mobility after long duration space flight. In other words, our proposed training protocol will compel subjects to develop new behavioral solutions under varying sensorimotor demands. Over time subjects will learn to create appropriate locomotor solution more rapidly enabling acquisition of mobility sooner after long-duration space flight. A gait adaptability training program can be superimposed on nominal treadmill exercise activities thus ensuring that no additional crew time is required to perform this type of training regimen and that it can be implemented with current in-flight exercise systems available on the International Space Station.

  19. Task-oriented rehabilitation robotics.

    PubMed

    Schweighofer, Nicolas; Choi, Younggeun; Winstein, Carolee; Gordon, James

    2012-11-01

    Task-oriented training is emerging as the dominant and most effective approach to motor rehabilitation of upper extremity function after stroke. Here, the authors propose that the task-oriented training framework provides an evidence-based blueprint for the design of task-oriented robots for the rehabilitation of upper extremity function in the form of three design principles: skill acquisition of functional tasks, active participation training, and individualized adaptive training. The previous robotic systems that incorporate elements of task-oriented trainings are then reviewed. Finally, the authors critically analyze their own attempt to design and test the feasibility of a TOR robot, ADAPT (Adaptive and Automatic Presentation of Tasks), which incorporates the three design principles. Because of its task-oriented training-based design, ADAPT departs from most other current rehabilitation robotic systems: it presents realistic functional tasks in which the task goal is constantly adapted, so that the individual actively performs doable but challenging tasks without physical assistance. To maximize efficacy for a large clinical population, the authors propose that future task-oriented robots need to incorporate yet-to-be developed adaptive task presentation algorithms that emphasize acquisition of fine motor coordination skills while minimizing compensatory movements.

  20. EMERGENCY RESPONSE TEAMS TRAINING IN PUBLIC HEALTH CRISIS - THE SERIOUSNESS OF SERIOUS GAMES.

    PubMed

    Stanojevic, Vojislav; Stanojevic, Cedomirka

    2016-07-01

    The rapid development of multimedia technologies in the last twenty years has lead to the emergence of new ways of learning academic and professional skills, which implies the application of multimedia technology in the form of a software -" serious computer games". Three-Dimensional Virtual Worlds. The basis of this game-platform is made of the platform of three-dimensional virtual worlds that can be described as communication systems in which participants share the same three-dimensional virtual space within which they can move, manipulate objects and communicate through their graphical representatives- avatars. Medical Education and Training. Arguments in favor of these computer tools in the learning process are accessibility, repeatability, low cost, the use of attractive graphics and a high degree of adaptation to the user. Specifically designed avatars allow students to get adapted to their roles in certain situations, especially to those which are considered rare, dangerous or unethical in real life. Drilling of major incidents, which includes the need to create environments for training, cannot be done in the real world due to high costs'and necessity to utilize the extensive resources. In addition, it is impossible to engage all the necessary health personnel at the same time. New technologies intended for conducting training, which are also called "virtual worlds", make the following possible: training at all times depending on user's commitments; simultaneous simulations on multiple levels, in several areas, in different circumstances, including dozens of unique victims; repeated scenarios and learning from mistakes; rapid feedback and the development of non-technical skills which are critical for reducing errors in dynamic, high-risk environments. Virtual worlds, which should be the subject of further research and improvements, in the field of hospital emergency response training for mass casualty incidents, certainly have a promising future.

  1. Nutritional strategies to influence adaptations to training.

    PubMed

    Spriet, Lawrence L; Gibala, Martin J

    2004-01-01

    This article highlights new nutritional concerns or practices that may influence the adaptation to training. The discussion is based on the assumption that the adaptation to repeated bouts of training occurs during recovery periods and that if one can train harder, the adaptation will be greater. The goal is to maximize with nutrition the recovery/adaptation that occurs in all rest periods, such that recovery before the next training session is complete. Four issues have been identified where recent scientific information will force sports nutritionists to embrace new issues and reassess old issues and, ultimately, alter the nutritional recommendations they give to athletes. These are: (1) caffeine ingestion; (2) creatine ingestion; (3) the use of intramuscular triacylglycerol (IMTG) as a fuel during exercise and the nutritional effects on IMTG repletion following exercise; and (4) the role nutrition may play in regulating the expression of genes during and after exercise training sessions. Recent findings suggest that low doses of caffeine exert significant ergogenic effects by directly affecting the central nervous system during exercise. Caffeine can cross the blood-brain barrier and antagonize the effects of adenosine, resulting in higher concentrations of stimulatory neurotransmitters. These new data strengthen the case for using low doses of caffeine during training. On the other hand, the data on the role that supplemental creatine ingestion plays in augmenting the increase in skeletal muscle mass and strength during resistance training remain equivocal. Some studies are able to demonstrate increases in muscle fibre size with creatine ingestion and some are not. The final two nutritional topics are new and have not progressed to the point that we can specifically identify strategies to enhance the adaptation to training. However, it is likely that nutritional strategies will be needed to replenish the IMTG that is used during endurance exercise. It is not presently clear whether the IMTG store is chronically reduced when engaging in daily sessions of endurance training or if this impacts negatively on the ability to train. It is also likely that the increased interest in gene and protein expression measurements will lead to nutritional strategies to optimize the adaptations that occur in skeletal muscle during and after exercise training sessions. Research in these areas in the coming years will lead to strategies designed to improve the adaptive response to training.

  2. Optimizing Preseason Training Loads in Australian Football.

    PubMed

    Carey, David L; Crow, Justin; Ong, Kok-Leong; Blanch, Peter; Morris, Meg E; Dascombe, Ben J; Crossley, Kay M

    2018-02-01

    To investigate whether preseason training plans for Australian football can be computer generated using current training-load guidelines to optimize injury-risk reduction and performance improvement. A constrained optimization problem was defined for daily total and sprint distance, using the preseason schedule of an elite Australian football team as a template. Maximizing total training volume and maximizing Banister-model-projected performance were both considered optimization objectives. Cumulative workload and acute:chronic workload-ratio constraints were placed on training programs to reflect current guidelines on relative and absolute training loads for injury-risk reduction. Optimization software was then used to generate preseason training plans. The optimization framework was able to generate training plans that satisfied relative and absolute workload constraints. Increasing the off-season chronic training loads enabled the optimization algorithm to prescribe higher amounts of "safe" training and attain higher projected performance levels. Simulations showed that using a Banister-model objective led to plans that included a taper in training load prior to competition to minimize fatigue and maximize projected performance. In contrast, when the objective was to maximize total training volume, more frequent training was prescribed to accumulate as much load as possible. Feasible training plans that maximize projected performance and satisfy injury-risk constraints can be automatically generated by an optimization problem for Australian football. The optimization methods allow for individualized training-plan design and the ability to adapt to changing training objectives and different training-load metrics.

  3. A Systematic Investigation of the Effect of Action Observation Training and Motor Imagery Training on the Development of Mental Representation Structure and Skill Performance

    PubMed Central

    Kim, Taeho; Frank, Cornelia; Schack, Thomas

    2017-01-01

    Action observation training and motor imagery training have independently been studied and considered as an effective training strategy for improving motor skill learning. However, comparative studies of the two training strategies are relatively few. The purpose of this study was to investigate the effects of action observation training and motor imagery training on the development of mental representation structure and golf putting performance as well as the relation between the changes in mental representation structure and skill performance during the early learning stage. Forty novices were randomly assigned to one of four groups: action observation training, motor imagery training, physical practice and no practice. The mental representation structure and putting performance were measured before and after 3 days of training, then after a 2-day retention period. The results showed that mental representation structure and the accuracy of the putting performance were improved over time through the two types of cognitive training (i.e., action observation training and motor imagery training). In addition, we found a significant positive correlation between changes in mental representation structure and skill performance for the action observation training group only. Taken together, these results suggest that both cognitive adaptations and skill improvement occur through the training of the two simulation states of action, and that perceptual-cognitive changes are associated with the change of skill performance for action observation training. PMID:29089881

  4. Mitochondria-specific antioxidant supplementation does not influence endurance exercise training-induced adaptations in circulating angiogenic cells, skeletal muscle oxidative capacity or maximal oxygen uptake.

    PubMed

    Shill, Daniel D; Southern, W Michael; Willingham, T Bradley; Lansford, Kasey A; McCully, Kevin K; Jenkins, Nathan T

    2016-12-01

    Reducing excessive oxidative stress, through chronic exercise or antioxidants, can decrease the negative effects induced by excessive amounts of oxidative stress. Transient increases in oxidative stress produced during acute exercise facilitate beneficial vascular training adaptations, but the effects of non-specific antioxidants on exercise training-induced vascular adaptations remain elusive. Circulating angiogenic cells (CACs) are an exercise-inducible subset of white blood cells that maintain vascular integrity. We investigated whether mitochondria-specific antioxidant (MitoQ) supplementation would affect the response to 3 weeks of endurance exercise training in CACs, muscle mitochondrial capacity and maximal oxygen uptake in young healthy men. We show that endurance exercise training increases multiple CAC types, an adaptation that is not altered by MitoQ supplementation. Additionally, MitoQ does not affect skeletal muscle or whole-body aerobic adaptations to exercise training. These results indicate that MitoQ supplementation neither enhances nor attenuates endurance training adaptations in young healthy men. Antioxidants have been shown to improve endothelial function and cardiovascular outcomes. However, the effects of antioxidants on exercise training-induced vascular adaptations remain elusive. General acting antioxidants combined with exercise have not impacted circulating angiogenic cells (CACs). We investigated whether mitochondria-specific antioxidant (MitoQ) supplementation would affect the response to 3 weeks of endurance exercise training on CD3 + , CD3 + /CD31 + , CD14 + /CD31 + , CD31 + , CD34 + /VEGFR2 + and CD62E + peripheral blood mononuclear cells (PBMCs), muscle mitochondrial capacity, and maximal oxygen uptake (VO2 max ) in healthy men aged 22.1 ± 0.7 years, with a body mass index of 26.9 ± 0.9 kg m -2 , and 24.8 ± 1.3% body fat. Analysis of main effects revealed that training induced 33, 105 and 285% increases in CD14 + /CD31 + , CD62E + and CD34 + /VEGFR2 + CACs, respectively, and reduced CD3 + /CD31 - PBMCs by 14%. There was no effect of MitoQ on CAC levels. Also independent of MitoQ supplementation, exercise training significantly increased quadriceps muscle mitochondrial capacity by 24% and VO2 max by roughly 7%. In conclusion, endurance exercise training induced increases in multiple CAC types, and this adaptation is not modified by MitoQ supplementation. Furthermore, we demonstrate that a mitochondrial-targeted antioxidant does not influence skeletal muscle or whole-body aerobic adaptations to exercise training. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.

  5. Logistics Distribution Center Location Evaluation Based on Genetic Algorithm and Fuzzy Neural Network

    NASA Astrophysics Data System (ADS)

    Shao, Yuxiang; Chen, Qing; Wei, Zhenhua

    Logistics distribution center location evaluation is a dynamic, fuzzy, open and complicated nonlinear system, which makes it difficult to evaluate the distribution center location by the traditional analysis method. The paper proposes a distribution center location evaluation system which uses the fuzzy neural network combined with the genetic algorithm. In this model, the neural network is adopted to construct the fuzzy system. By using the genetic algorithm, the parameters of the neural network are optimized and trained so as to improve the fuzzy system’s abilities of self-study and self-adaptation. At last, the sampled data are trained and tested by Matlab software. The simulation results indicate that the proposed identification model has very small errors.

  6. Principles underlying the design of "The Number Race", an adaptive computer game for remediation of dyscalculia.

    PubMed

    Wilson, Anna J; Dehaene, Stanislas; Pinel, Philippe; Revkin, Susannah K; Cohen, Laurent; Cohen, David

    2006-05-30

    Adaptive game software has been successful in remediation of dyslexia. Here we describe the cognitive and algorithmic principles underlying the development of similar software for dyscalculia. Our software is based on current understanding of the cerebral representation of number and the hypotheses that dyscalculia is due to a "core deficit" in number sense or in the link between number sense and symbolic number representations. "The Number Race" software trains children on an entertaining numerical comparison task, by presenting problems adapted to the performance level of the individual child. We report full mathematical specifications of the algorithm used, which relies on an internal model of the child's knowledge in a multidimensional "learning space" consisting of three difficulty dimensions: numerical distance, response deadline, and conceptual complexity (from non-symbolic numerosity processing to increasingly complex symbolic operations). The performance of the software was evaluated both by mathematical simulations and by five weeks of use by nine children with mathematical learning difficulties. The results indicate that the software adapts well to varying levels of initial knowledge and learning speeds. Feedback from children, parents and teachers was positive. A companion article describes the evolution of number sense and arithmetic scores before and after training. The software, open-source and freely available online, is designed for learning disabled children aged 5-8, and may also be useful for general instruction of normal preschool children. The learning algorithm reported is highly general, and may be applied in other domains.

  7. Suturing training in Augmented Reality: gaining proficiency in suturing skills faster.

    PubMed

    Botden, S M B I; de Hingh, I H J T; Jakimowicz, J J

    2009-09-01

    Providing informative feedback and setting goals tends to motivate trainees to practice more extensively. Augmented Reality simulators retain the benefit of realistic haptic feedback and additionally generate objective assessment and informative feedback during the training. This study researched the performance curve of the adapted suturing module on the ProMIS Augmented Reality simulator. Eighteen novice participants were pretrained on the MIST-VR to become acquainted with laparoscopy. Subsequently, they practiced 16 knots on the suturing module, of which the assessment scores were recorded to evaluate the gain in laparoscopic suturing skills. The scoring of the assessment method was calculated from the "time spent in the correct area" during the knot tying and the quality of the knot. Both the baseline knot and the knot at the top of the performance curve were assessed by two independent objective observers, by means of a standardized evaluation form, to objectify the gain in suturing skills. There was a statistically significant difference between the scores of the second knot (mean 72.59, standard deviation (SD) 16.28) and the top of the performance curve (mean 95.82, SD 3.05; p < 0.001, paired t-test). The scoring of the objective observers also differed significantly (mean 11.83 and 22.11, respectively; SD 3.37 and 3.89, respectively; p < 0.001) (interobserver reliability Cronbach's alpha = 0.96). The median amount of repetitions to reach the top of the performance curve was eight, which also showed significant differences between both the assessment score (mean 88.14, SD 13.53, p < 0.001) and scoring of the objective observers of the second knot (mean 20.51, SD 4.14; p < 0.001). This adapted suturing module on the ProMIS Augmented Reality laparoscopic simulator is a potent tool for gaining laparoscopic suturing skills.

  8. Least-squares (LS) deconvolution of a series of overlapping cortical auditory evoked potentials: a simulation and experimental study

    NASA Astrophysics Data System (ADS)

    Bardy, Fabrice; Van Dun, Bram; Dillon, Harvey; Cowan, Robert

    2014-08-01

    Objective. To evaluate the viability of disentangling a series of overlapping ‘cortical auditory evoked potentials’ (CAEPs) elicited by different stimuli using least-squares (LS) deconvolution, and to assess the adaptation of CAEPs for different stimulus onset-asynchronies (SOAs). Approach. Optimal aperiodic stimulus sequences were designed by controlling the condition number of matrices associated with the LS deconvolution technique. First, theoretical considerations of LS deconvolution were assessed in simulations in which multiple artificial overlapping responses were recovered. Second, biological CAEPs were recorded in response to continuously repeated stimulus trains containing six different tone-bursts with frequencies 8, 4, 2, 1, 0.5, 0.25 kHz separated by SOAs jittered around 150 (120-185), 250 (220-285) and 650 (620-685) ms. The control condition had a fixed SOA of 1175 ms. In a second condition, using the same SOAs, trains of six stimuli were separated by a silence gap of 1600 ms. Twenty-four adults with normal hearing (<20 dB HL) were assessed. Main results. Results showed disentangling of a series of overlapping responses using LS deconvolution on simulated waveforms as well as on real EEG data. The use of rapid presentation and LS deconvolution did not however, allow the recovered CAEPs to have a higher signal-to-noise ratio than for slowly presented stimuli. The LS deconvolution technique enables the analysis of a series of overlapping responses in EEG. Significance. LS deconvolution is a useful technique for the study of adaptation mechanisms of CAEPs for closely spaced stimuli whose characteristics change from stimulus to stimulus. High-rate presentation is necessary to develop an understanding of how the auditory system encodes natural speech or other intrinsically high-rate stimuli.

  9. Virtual Reality to Maximize Function for Hand and Arm Rehabilitation: Exploration of Neural Mechanisms

    PubMed Central

    MERIANS, Alma S.; TUNIK, Eugene; ADAMOVICH, Sergei V.

    2015-01-01

    Stroke patients report hand function as the most disabling motor deficit. Current evidence shows that learning new motor skills is essential for inducing functional neuroplasticity and functional recovery. Adaptive training paradigms that continually and interactively move a motor outcome closer to the targeted skill are important to motor recovery. Computerized virtual reality simulations when interfaced with robots, movement tracking and sensing glove systems are particularly adaptable, allowing for online and offline modifications of task based activities using the participant’s current performance and success rate. We have developed a second generation system that can exercise the hand and the arm together or in isolation and provides for both unilateral and bilateral hand and arm activities in three-dimensional space. We demonstrate that by providing haptic assistance for the hand and arm and adaptive anti-gravity support, the system can accommodate patients with lower level impairments. We hypothesize that combining training in VE with observation of motor actions can bring additional benefits. We present a proof of concept of a novel system that integrates interactive VE with functional neuroimaging to address this issue. Three components of this system are synchronized, the presentation of the visual display of the virtual hands, the collection of fMRI images and the collection of hand joint angles from the instrumented gloves. We show that interactive VEs can facilitate activation of brain areas during training by providing appropriately modified visual feedback. We predict that visual augmentation can become a tool to facilitate functional neuroplasticity. PMID:19592790

  10. Improving Care Teams' Functioning: Recommendations from Team Science.

    PubMed

    Fiscella, Kevin; Mauksch, Larry; Bodenheimer, Thomas; Salas, Eduardo

    2017-07-01

    Team science has been applied to many sectors including health care. Yet there has been relatively little attention paid to the application of team science to developing and sustaining primary care teams. Application of team science to primary care requires adaptation of core team elements to different types of primary care teams. Six elements of teams are particularly relevant to primary care: practice conditions that support or hinder effective teamwork; team cognition, including shared understanding of team goals, roles, and how members will work together as a team; leadership and coaching, including mutual feedback among members that promotes teamwork and moves the team closer to achieving its goals; cooperation supported by an emotionally safe climate that supports expression and resolution of conflict and builds team trust and cohesion; coordination, including adoption of processes that optimize efficient performance of interdependent activities among team members; and communication, particularly regular, recursive team cycles involving planning, action, and debriefing. These six core elements are adapted to three prototypical primary care teams: teamlets, health coaching, and complex care coordination. Implementation of effective team-based models in primary care requires adaptation of core team science elements coupled with relevant, practical training and organizational support, including adequate time to train, plan, and debrief. Training should be based on assessment of needs and tasks and the use of simulations and feedback, and it should extend to live action. Teamlets represent a potential launch point for team development and diffusion of teamwork principles within primary care practices. Copyright © 2017 The Joint Commission. Published by Elsevier Inc. All rights reserved.

  11. Transfer of training and simulator qualification or myth and folklore in helicopter simulation

    NASA Technical Reports Server (NTRS)

    Dohme, Jack

    1992-01-01

    Transfer of training studies at Fort Rucker using the backward-transfer paradigm have shown that existing flight simulators are not entirely adequate for meeting training requirements. Using an ab initio training research simulator, a simulation of the UH-1, training effectiveness ratios were developed. The data demonstrate it to be a cost-effective primary trainer. A simulator qualification method was suggested in which a combination of these transfer-of-training paradigms is used to determine overall simulator fidelity and training effectiveness.

  12. Durham extremely large telescope adaptive optics simulation platform.

    PubMed

    Basden, Alastair; Butterley, Timothy; Myers, Richard; Wilson, Richard

    2007-03-01

    Adaptive optics systems are essential on all large telescopes for which image quality is important. These are complex systems with many design parameters requiring optimization before good performance can be achieved. The simulation of adaptive optics systems is therefore necessary to categorize the expected performance. We describe an adaptive optics simulation platform, developed at Durham University, which can be used to simulate adaptive optics systems on the largest proposed future extremely large telescopes as well as on current systems. This platform is modular, object oriented, and has the benefit of hardware application acceleration that can be used to improve the simulation performance, essential for ensuring that the run time of a given simulation is acceptable. The simulation platform described here can be highly parallelized using parallelization techniques suited for adaptive optics simulation, while still offering the user complete control while the simulation is running. The results from the simulation of a ground layer adaptive optics system are provided as an example to demonstrate the flexibility of this simulation platform.

  13. Resistance Training: Physiological Responses and Adaptations (Part 3 of 4).

    ERIC Educational Resources Information Center

    Fleck, Steven J.; Kraemer, William J.

    1988-01-01

    The physiological responses and adaptations which occur as a result of resistance training, such as cardiovascular responses, serum lipid count, body composition, and neural adaptations are discussed. Changes in the endocrine system are also described. (JL)

  14. Adaptation to novel foreign-accented speech and retention of benefit following training: Influence of aging and hearing loss

    PubMed Central

    Bieber, Rebecca E.; Gordon-Salant, Sandra

    2017-01-01

    Adaptation to speech with a foreign accent is possible through prior exposure to talkers with that same accent. For young listeners with normal hearing, short term, accent-independent adaptation to a novel foreign accent is also facilitated through exposure training with multiple foreign accents. In the present study, accent-independent adaptation is examined in younger and older listeners with normal hearing and older listeners with hearing loss. Retention of training benefit is additionally explored. Stimuli for testing and training were HINT sentences recorded by talkers with nine distinctly different accents. Following two training sessions, all listener groups showed a similar increase in speech perception for a novel foreign accent. While no group retained this benefit at one week post-training, results of a secondary reaction time task revealed a decrease in reaction time following training, suggesting reduced listening effort. Examination of listeners' cognitive skills reveals a positive relationship between working memory and speech recognition ability. The present findings indicate that, while this no-feedback training paradigm for foreign-accented English is successful in promoting short term adaptation for listeners, this paradigm is not sufficient in facilitation of perceptual learning with lasting benefits for younger or older listeners. PMID:28464671

  15. Nutrition for power sports: middle-distance running, track cycling, rowing, canoeing/kayaking, and swimming.

    PubMed

    Stellingwerff, Trent; Maughan, Ronald J; Burke, Louise M

    2011-01-01

    Contemporary training for power sports involves diverse routines that place a wide array of physiological demands on the athlete. This requires a multi-faceted nutritional strategy to support both general training needs--tailored to specific training phases--as well as the acute demands of competition. Elite power sport athletes have high training intensities and volumes for most of the training season, so energy intake must be sufficient to support recovery and adaptation. Low pre-exercise muscle glycogen reduces high-intensity performance, so daily carbohydrate intake must be emphasized throughout training and competition phases. There is strong evidence to suggest that the timing, type, and amount of protein intake influence post-exercise recovery and adaptation. Most power sports feature demanding competition schedules, which require aggressive nutritional recovery strategies to optimize muscle glycogen resynthesis. Various power sports have different optimum body compositions and body weight requirements, but increasing the power-to-weight ratio during the championship season can lead to significant performance benefits for most athletes. Both intra- and extracellular buffering agents may enhance performance, but more research is needed to examine the potential long-term impact of buffering agents on training adaptation. Interactions between training, desired physiological adaptations, competition, and nutrition require an individual approach and should be continuously adjusted and adapted.

  16. Locomotor Dysfunction after Spaceflight: Characterization and Countermeasure Development

    NASA Technical Reports Server (NTRS)

    Mulavara, A. P.; Cohen, H. S.; Peters, B. T.; Miller, C. A.; Brady, R.; Bloomberg, Jacob J.

    2007-01-01

    Astronauts returning from space flight show disturbances in locomotor control manifested by changes in various sub-systems including head-trunk coordination, dynamic visual acuity, lower limb muscle activation patterning and kinematics (Glasauer, et al., 1995; Bloomberg, et al., 1997; McDonald, et al., 1996; 1997; Layne, et al., 1997; 1998, 2001, 2004; Newman, et al., 1997; Bloomberg and Mulavara, 2003). These post flight changes in locomotor performance, due to neural adaptation to the microgravity conditions of space flight, affect the ability of crewmembers especially after a long duration mission to egress their vehicle and perform extravehicular activities soon after landing on Earth or following a landing on the surface of the Moon or Mars. At present, no operational training intervention is available pre- or in- flight to mitigate post flight locomotor disturbances. Our laboratory is currently developing a gait adaptability training program that is designed to facilitate recovery of locomotor function following a return to a gravitational environment. The training program exploits the ability of the sensorimotor system to generalize from exposure to multiple adaptive challenges during training so that the gait control system essentially "learns to learn" and therefore can reorganize more rapidly when faced with a novel adaptive challenge. Ultimately, the functional goal of an adaptive generalization countermeasure is not necessarily to immediately return movement patterns back to "normal". Rather the training regimen should facilitate the reorganization of available sensorimotor sub-systems to achieve safe and effective locomotion as soon as possible after space flight. We have previously confirmed that subjects participating in adaptive generalization training programs, using a variety of visuomotor distortions and different motor tasks from throwing to negotiating an obstacle course as the dependent measure, can learn to enhance their ability to adapt to a novel sensorimotor environment (Roller et al., 2001; Cohen et al. 2005). Importantly, this increased adaptability is retained even one month after completion of the training period. Our laboratory is currently developing adaptive generalization training procedures and the associated flight hardware to implement such a training program, using variations of visual flow, subject loading, and treadmill speed; during regular in-flight treadmill operations.

  17. Adaptive surrogate model based multiobjective optimization for coastal aquifer management

    NASA Astrophysics Data System (ADS)

    Song, Jian; Yang, Yun; Wu, Jianfeng; Wu, Jichun; Sun, Xiaomin; Lin, Jin

    2018-06-01

    In this study, a novel surrogate model assisted multiobjective memetic algorithm (SMOMA) is developed for optimal pumping strategies of large-scale coastal groundwater problems. The proposed SMOMA integrates an efficient data-driven surrogate model with an improved non-dominated sorted genetic algorithm-II (NSGAII) that employs a local search operator to accelerate its convergence in optimization. The surrogate model based on Kernel Extreme Learning Machine (KELM) is developed and evaluated as an approximate simulator to generate the patterns of regional groundwater flow and salinity levels in coastal aquifers for reducing huge computational burden. The KELM model is adaptively trained during evolutionary search to satisfy desired fidelity level of surrogate so that it inhibits error accumulation of forecasting and results in correctly converging to true Pareto-optimal front. The proposed methodology is then applied to a large-scale coastal aquifer management in Baldwin County, Alabama. Objectives of minimizing the saltwater mass increase and maximizing the total pumping rate in the coastal aquifers are considered. The optimal solutions achieved by the proposed adaptive surrogate model are compared against those solutions obtained from one-shot surrogate model and original simulation model. The adaptive surrogate model does not only improve the prediction accuracy of Pareto-optimal solutions compared with those by the one-shot surrogate model, but also maintains the equivalent quality of Pareto-optimal solutions compared with those by NSGAII coupled with original simulation model, while retaining the advantage of surrogate models in reducing computational burden up to 94% of time-saving. This study shows that the proposed methodology is a computationally efficient and promising tool for multiobjective optimizations of coastal aquifer managements.

  18. Concurrent exercise training: do opposites distract?

    PubMed

    Coffey, Vernon G; Hawley, John A

    2017-05-01

    Specificity is a core principle of exercise training to promote the desired adaptations for maximising athletic performance. The principle of specificity of adaptation is underpinned by the volume, intensity, frequency and mode of contractile activity and is most evident when contrasting the divergent phenotypes that result after undertaking either prolonged endurance or resistance training. The molecular profiles that generate the adaptive response to different exercise modes have undergone intense scientific scrutiny. Given divergent exercise induces similar signalling and gene expression profiles in skeletal muscle of untrained or recreationally active individuals, what is currently unclear is how the specificity of the molecular response is modified by prior training history. The time course of adaptation and when 'phenotype specificity' occurs has important implications for exercise prescription. This context is essential when attempting to concomitantly develop resistance to fatigue (through endurance-based exercise) and increased muscle mass (through resistance-based exercise), typically termed 'concurrent training'. Chronic training studies provide robust evidence that endurance exercise can attenuate muscle hypertrophy and strength but the mechanistic underpinning of this 'interference' effect with concurrent training is unknown. Moreover, despite the potential for several key regulators of muscle metabolism to explain an incompatibility in adaptation between endurance and resistance exercise, it now seems likely that multiple integrated, rather than isolated, effectors or processes generate the interference effect. Here we review studies of the molecular responses in skeletal muscle and evidence for the interference effect with concurrent training within the context of the specificity of training adaptation. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.

  19. Adaptive working-memory training benefits reading, but not mathematics in middle childhood.

    PubMed

    Karbach, Julia; Strobach, Tilo; Schubert, Torsten

    2015-01-01

    Working memory (WM) capacity is highly correlated with general cognitive ability and has proven to be an excellent predictor for academic success. Given that WM can be improved by training, our aim was to test whether WM training benefited academic abilities in elementary-school children. We examined 28 participants (mean age = 8.3 years, SD = 0.4) in a pretest-training-posttest-follow-up design. Over 14 training sessions, children either performed adaptive WM training (training group, n = 14) or nonadaptive low-level training (active control group, n = 14) on the same tasks. Pretest, posttest, and follow-up at 3 months after posttest included a neurocognitive test battery (WM, task switching, inhibition) and standardized tests for math and reading abilities. Adaptive WM training resulted in larger training gains than nonadaptive low-level training. The benefits induced by the adaptive training transferred to an untrained WM task and a standardized test for reading ability, but not to task switching, inhibition, or performance on a standardized math test. Transfer to the untrained WM task was maintained over 3 months. The analysis of individual differences revealed compensatory effects with larger gains in children with lower WM and reading scores at pretest. These training and transfer effects are discussed against the background of cognitive processing resulting from WM span training and the nature of the intervention.

  20. Concurrent exercise training: do opposites distract?

    PubMed Central

    Coffey, Vernon G.

    2016-01-01

    Abstract Specificity is a core principle of exercise training to promote the desired adaptations for maximising athletic performance. The principle of specificity of adaptation is underpinned by the volume, intensity, frequency and mode of contractile activity and is most evident when contrasting the divergent phenotypes that result after undertaking either prolonged endurance or resistance training. The molecular profiles that generate the adaptive response to different exercise modes have undergone intense scientific scrutiny. Given divergent exercise induces similar signalling and gene expression profiles in skeletal muscle of untrained or recreationally active individuals, what is currently unclear is how the specificity of the molecular response is modified by prior training history. The time course of adaptation and when ‘phenotype specificity’ occurs has important implications for exercise prescription. This context is essential when attempting to concomitantly develop resistance to fatigue (through endurance‐based exercise) and increased muscle mass (through resistance‐based exercise), typically termed ‘concurrent training’. Chronic training studies provide robust evidence that endurance exercise can attenuate muscle hypertrophy and strength but the mechanistic underpinning of this ‘interference’ effect with concurrent training is unknown. Moreover, despite the potential for several key regulators of muscle metabolism to explain an incompatibility in adaptation between endurance and resistance exercise, it now seems likely that multiple integrated, rather than isolated, effectors or processes generate the interference effect. Here we review studies of the molecular responses in skeletal muscle and evidence for the interference effect with concurrent training within the context of the specificity of training adaptation. PMID:27506998

  1. Promoting training adaptations through nutritional interventions.

    PubMed

    Hawley, John A; Tipton, Kevin D; Millard-Stafford, Mindy L

    2006-07-01

    Training and nutrition are highly interrelated in that optimal adaptation to the demands of repeated training sessions typically requires a diet that can sustain muscle energy reserves. As nutrient stores (i.e. muscle and liver glycogen) play a predominant role in the performance of prolonged, intense, intermittent exercise typical of the patterns of soccer match-play, and in the replenishment of energy reserves for subsequent training sessions, the extent to which acutely altering substrate availability might modify the training impulse has been a key research area among exercise physiologists and sport nutritionists for several decades. Although the major perturbations to cellular homeostasis and muscle substrate stores occur during exercise, the activation of several major signalling pathways important for chronic training adaptations take place during the first few hours of recovery, returning to baseline values within 24 h after exercise. This has led to the paradigm that many chronic training adaptations are generated by the cumulative effects of the transient events that occur during recovery from each (acute) exercise bout. Evidence is accumulating that nutrient supplementation can serve as a potent modulator of many of the acute responses to both endurance and resistance training. In this article, we review the molecular and cellular events that occur in skeletal muscle during exercise and subsequent recovery, and the potential for nutrient supplementation (e.g. carbohydrate, fat, protein) to affect many of the adaptive responses to training.

  2. Distributed Wireless Power Transfer With Energy Feedback

    NASA Astrophysics Data System (ADS)

    Lee, Seunghyun; Zhang, Rui

    2017-04-01

    Energy beamforming (EB) is a key technique for achieving efficient radio-frequency (RF) transmission enabled wireless energy transfer (WET). By optimally designing the waveforms from multiple energy transmitters (ETs) over the wireless channels, they can be constructively combined at the energy receiver (ER) to achieve an EB gain that scales with the number of ETs. However, the optimal design of EB waveforms requires accurate channel state information (CSI) at the ETs, which is challenging to obtain practically, especially in a distributed system with ETs at separate locations. In this paper, we study practical and efficient channel training methods to achieve optimal EB in a distributed WET system. We propose two protocols with and without centralized coordination, respectively, where distributed ETs either sequentially or in parallel adapt their transmit phases based on a low-complexity energy feedback from the ER. The energy feedback only depends on the received power level at the ER, where each feedback indicates one particular transmit phase that results in the maximum harvested power over a set of previously used phases. Simulation results show that the two proposed training protocols converge very fast in practical WET systems even with a large number of distributed ETs, while the protocol with sequential ET phase adaptation is also analytically shown to converge to the optimal EB design with perfect CSI by increasing the training time. Numerical results are also provided to evaluate the performance of the proposed distributed EB and training designs as compared to other benchmark schemes.

  3. Spatially Common Sparsity Based Adaptive Channel Estimation and Feedback for FDD Massive MIMO

    NASA Astrophysics Data System (ADS)

    Gao, Zhen; Dai, Linglong; Wang, Zhaocheng; Chen, Sheng

    2015-12-01

    This paper proposes a spatially common sparsity based adaptive channel estimation and feedback scheme for frequency division duplex based massive multi-input multi-output (MIMO) systems, which adapts training overhead and pilot design to reliably estimate and feed back the downlink channel state information (CSI) with significantly reduced overhead. Specifically, a non-orthogonal downlink pilot design is first proposed, which is very different from standard orthogonal pilots. By exploiting the spatially common sparsity of massive MIMO channels, a compressive sensing (CS) based adaptive CSI acquisition scheme is proposed, where the consumed time slot overhead only adaptively depends on the sparsity level of the channels. Additionally, a distributed sparsity adaptive matching pursuit algorithm is proposed to jointly estimate the channels of multiple subcarriers. Furthermore, by exploiting the temporal channel correlation, a closed-loop channel tracking scheme is provided, which adaptively designs the non-orthogonal pilot according to the previous channel estimation to achieve an enhanced CSI acquisition. Finally, we generalize the results of the multiple-measurement-vectors case in CS and derive the Cramer-Rao lower bound of the proposed scheme, which enlightens us to design the non-orthogonal pilot signals for the improved performance. Simulation results demonstrate that the proposed scheme outperforms its counterparts, and it is capable of approaching the performance bound.

  4. Adaptive scenarios: a training model for today's public health workforce.

    PubMed

    Uden-Holman, Tanya; Bedet, Jennifer; Walkner, Laurie; Abd-Hamid, Nor Hashidah

    2014-01-01

    With the current economic climate, money for training is scarce. In addition, time is a major barrier to participation in trainings. To meet the public health workforce's rising demand for training, while struggling with less time and fewer resources, the Upper Midwest Preparedness and Emergency Response Learning Center has developed a model of online training that provides the public health workforce with individually customized, needs-based training experiences. Adaptive scenarios are rooted in case-based reasoning, a learning approach that focuses on the specific knowledge needed to solve a problem. Proponents of case-based reasoning argue that learners benefit from being able to remember previous similar situations and reusing information and knowledge from that situation. Adaptive scenarios based on true-to-life job performance provide an opportunity to assess skills by presenting the user with choices to make in a problem-solving context. A team approach was used to develop the adaptive scenarios. Storylines were developed that incorporated situations aligning with the knowledge, skills, and attitudes outlined in the Public Health Preparedness and Response Core Competency Model. This article examines 2 adaptive scenarios: "Ready or Not? A Family Preparedness Scenario" and "Responding to a Crisis: Managing Emotions and Stress Scenario." The scenarios are available on Upper Midwest Preparedness and Emergency Response Learning Center's Learning Management System, the Training Source (http://training-source.org). Evaluation data indicate that users' experiences have been positive. Integrating the assessment and training elements of the scenarios so that the training experience is uniquely adaptive to each user is one of the most efficient ways to provide training. The opportunity to provide individualized, needs-based training without having to administer separate assessments has the potential to save time and resources. These adaptive scenarios continue to be marketed to target audiences through partner organizations, various Web sites, electronic newsletters, and social media. Next steps include the implementation of a 6-month follow-up evaluation, using Kirkpatrick level III. Kirkpatrick level III evaluation measures whether there was actual transfer of learning to the work setting.

  5. Adapting a perinatal empathic training method from South Africa to Germany.

    PubMed

    Knapp, Caprice; Honikman, Simone; Wirsching, Michael; Husni-Pascha, Gidah; Hänselmann, Eva

    2018-01-01

    Maternal mental health conditions are prevalent across the world. For women, the perinatal period is associated with increased rates of depression and anxiety. At the same time, there is widespread documentation of disrespectful care for women by maternity health staff. Improving the empathic engagement skills of maternity healthcare workers may enable them to respond to the mental health needs of their clients more effectively. In South Africa, a participatory empathic training method, the "Secret History" has been used as part of a national Department of Health training program with maternity staff and has showed promising results. For this paper, we aimed to describe an adaptation of the Secret History empathic training method from the South African to the German setting and to evaluate the adapted training. The pilot study occurred in an academic medical center in Germany. A focus group ( n  = 8) was used to adapt the training by describing the local context and changing the materials to be relevant to Germany. After adapting the materials, the pilot training was conducted with a mixed group of professionals ( n  = 15), many of whom were trainers themselves. A pre-post survey assessed the participants' empathy levels and attitudes towards the training method. In adapting the materials, the focus group discussion generated several experiences that were considered to be typical interpersonal and structural challenges facing healthcare workers in maternal care in Germany. These experiences were crafted into case scenarios that then formed the basis of the activities used in the Secret History empathic training pilot. Evaluation of the pilot training showed that although the participants had high levels of empathy in the pre-phase (100% estimated their empathic ability as high or very high), 69% became more aware of their own emotional experiences with patients and the need for self-care after the training. A majority, or 85%, indicated that the training was relevant to their work as clinicians and trainers, that it reflected the German situation, and that it may be useful ultimately to address emotional distress in mothers in the perinatal phase. Our study suggests that it is possible to adapt an empathic training method developed in a South African setting and apply it to a German setting, and that it is well received by participants who may be involved in healthcare worker training. More research is needed to assess adaptations with other groups of healthcare workers in different settings and to assess empathic skill outcomes for participants and women in the perinatal period.

  6. Laparoscopic skills acquisition: a study of simulation and traditional training.

    PubMed

    Marlow, Nicholas; Altree, Meryl; Babidge, Wendy; Field, John; Hewett, Peter; Maddern, Guy J

    2014-12-01

    Training in basic laparoscopic skills can be undertaken using traditional methods, where trainees are educated by experienced surgeons through a process of graduated responsibility or by simulation-based training. This study aimed to assess whether simulation trained individuals reach the same level of proficiency in basic laparoscopic skills as traditional trained participants when assessed in a simulated environment. A prospective study was undertaken. Participants were allocated to one of two cohorts according to surgical experience. Participants from the inexperienced cohort were randomized to receive training in basic laparoscopic skills on either a box trainer or a virtual reality simulator. They were then assessed on the simulator on which they did not receive training. Participants from the experienced cohort, considered to have received traditional training in basic laparoscopic skills, did not receive simulation training and were randomized to either the box trainer or virtual reality simulator for skills assessment. The assessment scores from different cohorts on either simulator were then compared. A total of 138 participants completed the assessment session, 101 in the inexperienced simulation-trained cohort and 37 on the experienced traditionally trained cohort. There was no statistically significant difference between the training outcomes of simulation and traditionally trained participants, irrespective of the simulator type used. The results demonstrated that participants trained on either a box trainer or virtual reality simulator achieved a level of basic laparoscopic skills assessed in a simulated environment that was not significantly different from participants who had been traditionally trained in basic laparoscopic skills. © 2013 Royal Australasian College of Surgeons.

  7. Failure of Working Memory Training to Enhance Cognition or Intelligence

    PubMed Central

    Thompson, Todd W.; Waskom, Michael L.; Garel, Keri-Lee A.; Cardenas-Iniguez, Carlos; Reynolds, Gretchen O.; Winter, Rebecca; Chang, Patricia; Pollard, Kiersten; Lala, Nupur; Alvarez, George A.; Gabrieli, John D. E.

    2013-01-01

    Fluid intelligence is important for successful functioning in the modern world, but much evidence suggests that fluid intelligence is largely immutable after childhood. Recently, however, researchers have reported gains in fluid intelligence after multiple sessions of adaptive working memory training in adults. The current study attempted to replicate and expand those results by administering a broad assessment of cognitive abilities and personality traits to young adults who underwent 20 sessions of an adaptive dual n-back working memory training program and comparing their post-training performance on those tests to a matched set of young adults who underwent 20 sessions of an adaptive attentional tracking program. Pre- and post-training measurements of fluid intelligence, standardized intelligence tests, speed of processing, reading skills, and other tests of working memory were assessed. Both training groups exhibited substantial and specific improvements on the trained tasks that persisted for at least 6 months post-training, but no transfer of improvement was observed to any of the non-trained measurements when compared to a third untrained group serving as a passive control. These findings fail to support the idea that adaptive working memory training in healthy young adults enhances working memory capacity in non-trained tasks, fluid intelligence, or other measures of cognitive abilities. PMID:23717453

  8. Enhancing Functional Performance using Sensorimotor Adaptability Training Programs

    NASA Technical Reports Server (NTRS)

    Bloomberg, J. J.; Mulavara, A. P.; Peters, B. T.; Brady, R.; Audas, C.; Ruttley, T. M.; Cohen, H. S.

    2009-01-01

    During the acute phase of adaptation to novel gravitational environments, sensorimotor disturbances have the potential to disrupt the ability of astronauts to perform functional tasks. The goal of this project is to develop a sensorimotor adaptability (SA) training program designed to facilitate recovery of functional capabilities when astronauts transition to different gravitational environments. The project conducted a series of studies that investigated the efficacy of treadmill training combined with a variety of sensory challenges designed to increase adaptability including alterations in visual flow, body loading, and support surface stability.

  9. Adaptive Core Simulation Employing Discrete Inverse Theory - Part I: Theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdel-Khalik, Hany S.; Turinsky, Paul J.

    2005-07-15

    Use of adaptive simulation is intended to improve the fidelity and robustness of important core attribute predictions such as core power distribution, thermal margins, and core reactivity. Adaptive simulation utilizes a selected set of past and current reactor measurements of reactor observables, i.e., in-core instrumentation readings, to adapt the simulation in a meaningful way. A meaningful adaption will result in high-fidelity and robust adapted core simulator models. To perform adaption, we propose an inverse theory approach in which the multitudes of input data to core simulators, i.e., reactor physics and thermal-hydraulic data, are to be adjusted to improve agreement withmore » measured observables while keeping core simulator models unadapted. At first glance, devising such adaption for typical core simulators with millions of input and observables data would spawn not only several prohibitive challenges but also numerous disparaging concerns. The challenges include the computational burdens of the sensitivity-type calculations required to construct Jacobian operators for the core simulator models. Also, the computational burdens of the uncertainty-type calculations required to estimate the uncertainty information of core simulator input data present a demanding challenge. The concerns however are mainly related to the reliability of the adjusted input data. The methodologies of adaptive simulation are well established in the literature of data adjustment. We adopt the same general framework for data adjustment; however, we refrain from solving the fundamental adjustment equations in a conventional manner. We demonstrate the use of our so-called Efficient Subspace Methods (ESMs) to overcome the computational and storage burdens associated with the core adaption problem. We illustrate the successful use of ESM-based adaptive techniques for a typical boiling water reactor core simulator adaption problem.« less

  10. Technology and medicine: the evolution of virtual reality simulation in laparoscopic training.

    PubMed

    Bashir, Gareth

    2010-01-01

    Virtual reality (VR) simulation for laparoscopic surgical training is now a reality. There is increasing evidence that the use of VR simulation is a powerful adjunct to traditional surgical apprenticeship in the current climate of reduced time spent in training. This article reviews the early evidence supporting the case for VR simulation training in laparoscopic surgery. A standard literature search was conducted using the following phrases--'virtual reality in surgical training', 'surgical training', 'laparoscopic training' and 'simulation in surgical training'. This article outlines the early evidence which supports the use of VR simulation in laparoscopic training and the need for further research into this new training technique.

  11. Tube thoracostomy training with a medical simulator is associated with faster, more successful performance of the procedure

    PubMed Central

    Chung, Tae Nyoung; Kim, Sun Wook; You, Je Sung; Chung, Hyun Soo

    2016-01-01

    Objective Tube thoracostomy (TT) is a commonly performed intensive care procedure. Simulator training may be a good alternative method for TT training, compared with conventional methods such as apprenticeship and animal skills laboratory. However, there is insufficient evidence supporting use of a simulator. The aim of this study is to determine whether training with medical simulator is associated with faster TT process, compared to conventional training without simulator. Methods This is a simulation study. Eligible participants were emergency medicine residents with very few (≤3 times) TT experience. Participants were randomized to two groups: the conventional training group, and the simulator training group. While the simulator training group used the simulator to train TT, the conventional training group watched the instructor performing TT on a cadaver. After training, all participants performed a TT on a cadaver. The performance quality was measured as correct placement and time delay. Subjects were graded if they had difficulty on process. Results Estimated median procedure time was 228 seconds in the conventional training group and 75 seconds in the simulator training group, with statistical significance (P=0.040). The difficulty grading did not show any significant difference among groups (overall performance scale, 2 vs. 3; P=0.094). Conclusion Tube thoracostomy training with a medical simulator, when compared to no simulator training, is associated with a significantly faster procedure, when performed on a human cadaver. PMID:27752610

  12. The training schedule affects the stability, not the magnitude, of the interlimb transfer of learned dynamics

    PubMed Central

    Joiner, Wilsaan M.; Brayanov, Jordan B.

    2013-01-01

    The way that a motor adaptation is trained, for example, the manner in which it is introduced or the duration of the training period, can influence its internal representation. However, recent studies examining the gradual versus abrupt introduction of a novel environment have produced conflicting results. Here we examined how these effects determine the effector specificity of motor adaptation during visually guided reaching. After adaptation to velocity-dependent dynamics in the right arm, we estimated the amount of adaptation transferred to the left arm, using error-clamp measurement trials to directly measure changes in learned dynamics. We found that a small but significant amount of generalization to the untrained arm occurs under three different training schedules: a short-duration (15 trials) abrupt presentation, a long-duration (160 trials) abrupt presentation, and a long-duration gradual presentation of the novel dynamic environment. Remarkably, we found essentially no difference between the amount of interlimb generalization when comparing these schedules, with 9–12% transfer of the trained adaptation for all three. However, the duration of training had a pronounced effect on the stability of the interlimb transfer: The transfer elicited from short-duration training decayed rapidly, whereas the transfer from both long-duration training schedules was considerably more persistent (<50% vs. >90% retention over the first 20 trials). These results indicate that the amount of interlimb transfer is similar for gradual versus abrupt training and that interlimb transfer of learned dynamics can occur after even a brief training period but longer training is required for an enduring effect. PMID:23719204

  13. The training schedule affects the stability, not the magnitude, of the interlimb transfer of learned dynamics.

    PubMed

    Joiner, Wilsaan M; Brayanov, Jordan B; Smith, Maurice A

    2013-08-01

    The way that a motor adaptation is trained, for example, the manner in which it is introduced or the duration of the training period, can influence its internal representation. However, recent studies examining the gradual versus abrupt introduction of a novel environment have produced conflicting results. Here we examined how these effects determine the effector specificity of motor adaptation during visually guided reaching. After adaptation to velocity-dependent dynamics in the right arm, we estimated the amount of adaptation transferred to the left arm, using error-clamp measurement trials to directly measure changes in learned dynamics. We found that a small but significant amount of generalization to the untrained arm occurs under three different training schedules: a short-duration (15 trials) abrupt presentation, a long-duration (160 trials) abrupt presentation, and a long-duration gradual presentation of the novel dynamic environment. Remarkably, we found essentially no difference between the amount of interlimb generalization when comparing these schedules, with 9-12% transfer of the trained adaptation for all three. However, the duration of training had a pronounced effect on the stability of the interlimb transfer: The transfer elicited from short-duration training decayed rapidly, whereas the transfer from both long-duration training schedules was considerably more persistent (<50% vs. >90% retention over the first 20 trials). These results indicate that the amount of interlimb transfer is similar for gradual versus abrupt training and that interlimb transfer of learned dynamics can occur after even a brief training period but longer training is required for an enduring effect.

  14. Realistic and efficient 2D crack simulation

    NASA Astrophysics Data System (ADS)

    Yadegar, Jacob; Liu, Xiaoqing; Singh, Abhishek

    2010-04-01

    Although numerical algorithms for 2D crack simulation have been studied in Modeling and Simulation (M&S) and computer graphics for decades, realism and computational efficiency are still major challenges. In this paper, we introduce a high-fidelity, scalable, adaptive and efficient/runtime 2D crack/fracture simulation system by applying the mathematically elegant Peano-Cesaro triangular meshing/remeshing technique to model the generation of shards/fragments. The recursive fractal sweep associated with the Peano-Cesaro triangulation provides efficient local multi-resolution refinement to any level-of-detail. The generated binary decomposition tree also provides efficient neighbor retrieval mechanism used for mesh element splitting and merging with minimal memory requirements essential for realistic 2D fragment formation. Upon load impact/contact/penetration, a number of factors including impact angle, impact energy, and material properties are all taken into account to produce the criteria of crack initialization, propagation, and termination leading to realistic fractal-like rubble/fragments formation. The aforementioned parameters are used as variables of probabilistic models of cracks/shards formation, making the proposed solution highly adaptive by allowing machine learning mechanisms learn the optimal values for the variables/parameters based on prior benchmark data generated by off-line physics based simulation solutions that produce accurate fractures/shards though at highly non-real time paste. Crack/fracture simulation has been conducted on various load impacts with different initial locations at various impulse scales. The simulation results demonstrate that the proposed system has the capability to realistically and efficiently simulate 2D crack phenomena (such as window shattering and shards generation) with diverse potentials in military and civil M&S applications such as training and mission planning.

  15. The effect of self-directed virtual reality simulation on dissection training performance in mastoidectomy.

    PubMed

    Andersen, Steven Arild Wuyts; Foghsgaard, Søren; Konge, Lars; Cayé-Thomasen, Per; Sørensen, Mads Sølvsten

    2016-08-01

    To establish the effect of self-directed virtual reality (VR) simulation training on cadaveric dissection training performance in mastoidectomy and the transferability of skills acquired in VR simulation training to the cadaveric dissection training setting. Prospective study. Two cohorts of 20 novice otorhinolaryngology residents received either self-directed VR simulation training before cadaveric dissection training or vice versa. Cadaveric and VR simulation performances were assessed using final-product analysis with three blinded expert raters. The group receiving VR simulation training before cadaveric dissection had a mean final-product score of 14.9 (95 % confidence interval [CI] [12.9-16.9]) compared with 9.8 (95% CI [8.4-11.1]) in the group not receiving VR simulation training before cadaveric dissection. This 52% increase in performance was statistically significantly (P < 0.0001). A single dissection mastoidectomy did not increase VR simulation performance (P = 0.22). Two hours of self-directed VR simulation training was effective in increasing cadaveric dissection mastoidectomy performance and suggests that mastoidectomy skills are transferable from VR simulation to the traditional dissection setting. Virtual reality simulation training can therefore be employed to optimize training, and can spare the use of donated material and instructional resources for more advanced training after basic competencies have been acquired in the VR simulation environment. NA. Laryngoscope, 126:1883-1888, 2016. © 2015 The American Laryngological, Rhinological and Otological Society, Inc.

  16. 14 CFR 121.409 - Training courses using airplane simulators and other training devices.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Training courses using airplane simulators... Program § 121.409 Training courses using airplane simulators and other training devices. (a) Training courses utilizing airplane simulators and other training devices may be included in the certificate holder...

  17. 14 CFR 121.409 - Training courses using airplane simulators and other training devices.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Training courses using airplane simulators... Program § 121.409 Training courses using airplane simulators and other training devices. (a) Training courses utilizing airplane simulators and other training devices may be included in the certificate holder...

  18. 14 CFR 121.409 - Training courses using airplane simulators and other training devices.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Training courses using airplane simulators... Program § 121.409 Training courses using airplane simulators and other training devices. (a) Training courses utilizing airplane simulators and other training devices may be included in the certificate holder...

  19. 14 CFR 121.409 - Training courses using airplane simulators and other training devices.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Training courses using airplane simulators... Program § 121.409 Training courses using airplane simulators and other training devices. (a) Training courses utilizing airplane simulators and other training devices may be included in the certificate holder...

  20. A Validation Argument for a Simulation-Based Training Course Centered on Assessment, Recognition, and Early Management of Pediatric Sepsis.

    PubMed

    Geis, Gary L; Wheeler, Derek S; Bunger, Amy; Militello, Laura G; Taylor, Regina G; Bauer, Jerome P; Byczkowski, Terri L; Kerrey, Benjamin T; Patterson, Mary D

    2018-02-01

    Early recognition of sepsis remains one of the greatest challenges in medicine. Novice clinicians are often responsible for the recognition of sepsis and the initiation of urgent management. The aim of this study was to create a validity argument for the use of a simulation-based training course centered on assessment, recognition, and early management of sepsis in a laboratory-based setting. Five unique simulation scenarios were developed integrating critical sepsis cues identified through qualitative interviewing. Scenarios were piloted with groups of novice, intermediate, and expert pediatric physicians. The primary outcome was physician recognition of sepsis, measured with an adapted situation awareness global assessment tool. Secondary outcomes were physician compliance with pediatric advanced life support (PALS) guidelines and early sepsis management (ESM) recommendations, measured by two internally derived tools. Analysis compared recognition of sepsis by levels of expertise and measured association of sepsis recognition with the secondary outcomes. Eighteen physicians were recruited, six per study group. Each physician completed three sepsis simulations. Sepsis was recognized in 19 (35%) of 54 simulations. The odds that experts recognized sepsis was 2.6 [95% confidence interval (CI) = 0.5-13.8] times greater than novices. Adjusted for severity, for every point increase in the PALS global performance score, the odds that sepsis was recognized increased by 11.3 (95% CI = 3.1-41.4). Similarly, the odds ratio for the PALS checklist score was 1.5 (95% CI = 0.8-2.6). Adjusted for severity and level of expertise, the odds of recognizing sepsis was associated with an increase in the ESM checklist score of 1.8 (95% CI = 0.9-3.6) and an increase in ESM global performance score of 4.1 (95% CI = 1.7-10.0). Although incomplete, evidence from initial testing suggests that the simulations of pediatric sepsis were sufficiently valid to justify their use in training novice pediatric physicians in the assessment, recognition, and management of pediatric sepsis.

  1. International Emergency Medical Teams Training Workshop Special Report.

    PubMed

    Albina, Anthony; Archer, Laura; Boivin, Marlène; Cranmer, Hilarie; Johnson, Kirsten; Krishnaraj, Gautham; Maneshi, Anali; Oddy, Lisa; Redwood-Campbell, Lynda; Russell, Rebecca

    2018-04-26

    The World Health Organization's (WHO; Geneva, Switzerland) Emergency Medical Team (EMT) Initiative created guidelines which define the basic procedures to be followed by personnel and teams, as well as the critical points to discuss before deploying a field hospital. However, to date, there is no formal standardized training program established for EMTs before deployment. Recognizing that the World Association of Disaster and Emergency Medicine (WADEM; Madison, Wisconsin USA) Congress brings together a diverse group of key stakeholders, a pre-Congress workshop was organized to seek out collective expertise and to identify key EMT training competencies for the future development of training programs and protocols. The future of EMT training should include standardization of curriculum and the recognition or accreditation of selected training programs. The outputs of this pre-WADEM Congress workshop provide an initial contribution to the EMT Training Working Group, as this group works on mapping training, competencies, and curriculum. Common EMT training themes that were identified as fundamental during the pre-Congress workshop include: the ability to adapt one's professional skills to low-resource settings; context-specific training, including the ability to serve the needs of the affected population in natural disasters; training together as a multi-disciplinary EMT prior to deployment; and the value of simulation in training. AlbinaA, ArcherL, BoivinM, CranmerH, JohnsonK, KrishnarajG, ManeshiA, OddyL, Redwood-CampbellL, RussellR. International Emergency Medical Teams training workshop special report.

  2. Efficient and self-adaptive in-situ learning in multilayer memristor neural networks.

    PubMed

    Li, Can; Belkin, Daniel; Li, Yunning; Yan, Peng; Hu, Miao; Ge, Ning; Jiang, Hao; Montgomery, Eric; Lin, Peng; Wang, Zhongrui; Song, Wenhao; Strachan, John Paul; Barnell, Mark; Wu, Qing; Williams, R Stanley; Yang, J Joshua; Xia, Qiangfei

    2018-06-19

    Memristors with tunable resistance states are emerging building blocks of artificial neural networks. However, in situ learning on a large-scale multiple-layer memristor network has yet to be demonstrated because of challenges in device property engineering and circuit integration. Here we monolithically integrate hafnium oxide-based memristors with a foundry-made transistor array into a multiple-layer neural network. We experimentally demonstrate in situ learning capability and achieve competitive classification accuracy on a standard machine learning dataset, which further confirms that the training algorithm allows the network to adapt to hardware imperfections. Our simulation using the experimental parameters suggests that a larger network would further increase the classification accuracy. The memristor neural network is a promising hardware platform for artificial intelligence with high speed-energy efficiency.

  3. Fast converging minimum probability of error neural network receivers for DS-CDMA communications.

    PubMed

    Matyjas, John D; Psaromiligkos, Ioannis N; Batalama, Stella N; Medley, Michael J

    2004-03-01

    We consider a multilayer perceptron neural network (NN) receiver architecture for the recovery of the information bits of a direct-sequence code-division-multiple-access (DS-CDMA) user. We develop a fast converging adaptive training algorithm that minimizes the bit-error rate (BER) at the output of the receiver. The adaptive algorithm has three key features: i) it incorporates the BER, i.e., the ultimate performance evaluation measure, directly into the learning process, ii) it utilizes constraints that are derived from the properties of the optimum single-user decision boundary for additive white Gaussian noise (AWGN) multiple-access channels, and iii) it embeds importance sampling (IS) principles directly into the receiver optimization process. Simulation studies illustrate the BER performance of the proposed scheme.

  4. Self-organized cooperative behavior and critical penalty in an evolving population

    NASA Astrophysics Data System (ADS)

    Xu, Chen; Hui, P. M.; Yu, You-Yang; Gu, Guo-Qing

    2009-10-01

    The emergence of cooperation and the effectiveness of penalties among competing agents are studied via a model of evolutionary game incorporating adaptive behavior and penalties for illegal acts. For initially identical agents, a phase diagram is obtained via an analytic approach, with results in good agreement with numerical simulations. The results show that there exists a critical penalty for achieving a completely honest population and a sufficiently well-behaved initial population requires no penalty. Self-organized segregation to extreme actions emerges in the dynamics for a system with uniformly distributed initial tendencies for cooperation. After training, the penalty can be relaxed without ruining the adapted cooperative behavior. Results of our model in a population taking on the form of a 2D square lattice are also reported.

  5. Creating a Reinforcement Learning Controller for Functional Electrical Stimulation of a Human Arm*

    PubMed Central

    Thomas, Philip S.; Branicky, Michael; van den Bogert, Antonie; Jagodnik, Kathleen

    2010-01-01

    Clinical tests have shown that the dynamics of a human arm, controlled using Functional Electrical Stimulation (FES), can vary significantly between and during trials. In this paper, we study the application of Reinforcement Learning to create a controller that can adapt to these changing dynamics of a human arm. Development and tests were done in simulation using a two-dimensional arm model and Hill-based muscle dynamics. An actor-critic architecture is used with artificial neural networks for both the actor and the critic. We begin by training it using a Proportional Derivative (PD) controller as a supervisor. We then make clinically relevant changes to the dynamics of the arm and test the actor-critic’s ability to adapt without supervision in a reasonable number of episodes. PMID:22081795

  6. Retraining walking adaptability following incomplete spinal cord injury.

    PubMed

    Fox, Emily J; Tester, Nicole J; Butera, Katie A; Howland, Dena R; Spiess, Martina R; Castro-Chapman, Paula L; Behrman, Andrea L

    2017-01-01

    Functional walking requires the ability to modify one's gait pattern to environmental demands and task goals-gait adaptability. Following incomplete spinal cord injury (ISCI), gait rehabilitation such as locomotor training (Basic-LT) emphasizes intense, repetitive stepping practice. Rehabilitation approaches focusing on practice of gait adaptability tasks have not been established for individuals with ISCIs but may promote recovery of higher level walking skills. The primary purpose of this case series was to describe and determine the feasibility of administering a gait adaptability retraining approach-Adapt-LT-by comparing the dose and intensity of Adapt-LT to Basic-LT. Three individuals with ISCIs (>1 year, AIS C or D) completed three weeks each (15 sessions) of Basic-LT and Adapt-LT. Interventions included practice on a treadmill with body weight support and practice overground (≥30 mins total). Adapt-LT focused on speed changes, obstacle negotiation, and backward walking. Training parameters (step counts, speeds, perceived exertion) were compared and outcomes assessed pre and post interventions. Based on completion of the protocol and similarities in training parameters in the two interventions, it was feasible to administer Adapt-LT with a similar dosage and intensity as Basic-LT. Additionally, the participants demonstrated gains in walking function and balance following each training type. Rehabilitation that includes stepping practice with adaptability tasks is feasible for individuals with ISCIs. Further investigation is needed to determine the efficacy of Adapt-LT.

  7. Domain Modeling for Adaptive Training and Education in Support of the US Army Learning Model-Research Outline

    DTIC Science & Technology

    2015-06-01

    Definitions are provided for this section to distinguish between adaptive training and education elements and also to highlight their relationships ...illustrate this point Franke (2011) asserts that through the use of case study examples, instruction can provide the pedagogical foundation for decision...a prime example of an adaptive training and education system: a learner or trainee model, an instructional or pedagogical model, a domain model

  8. Real-Time Adaptive Control of a Magnetic Levitation System with a Large Range of Load Disturbance.

    PubMed

    Zhang, Zhizhou; Li, Xiaolong

    2018-05-11

    In an idle light-load or a full-load condition, the change of the load mass of a suspension system is very significant. If the control parameters of conventional control methods remain unchanged, the suspension performance of the control system deteriorates rapidly or even loses stability when the load mass changes in a large range. In this paper, a real-time adaptive control method for a magnetic levitation system with large range of mass changes is proposed. First, the suspension control system model of the maglev train is built up, and the stability of the closed-loop system is analyzed. Then, a fast inner current-loop is used to simplify the design of the suspension control system, and an adaptive control method is put forward to ensure that the system is still in a stable state when the load mass varies in a wide range. Simulations and experiments show that when the load mass of the maglev system varies greatly, the adaptive control method is effective to suspend the system stably with a given displacement.

  9. Real-Time Adaptive Control of a Magnetic Levitation System with a Large Range of Load Disturbance

    PubMed Central

    Zhang, Zhizhou; Li, Xiaolong

    2018-01-01

    In an idle light-load or a full-load condition, the change of the load mass of a suspension system is very significant. If the control parameters of conventional control methods remain unchanged, the suspension performance of the control system deteriorates rapidly or even loses stability when the load mass changes in a large range. In this paper, a real-time adaptive control method for a magnetic levitation system with large range of mass changes is proposed. First, the suspension control system model of the maglev train is built up, and the stability of the closed-loop system is analyzed. Then, a fast inner current-loop is used to simplify the design of the suspension control system, and an adaptive control method is put forward to ensure that the system is still in a stable state when the load mass varies in a wide range. Simulations and experiments show that when the load mass of the maglev system varies greatly, the adaptive control method is effective to suspend the system stably with a given displacement. PMID:29751610

  10. Based on interval type-2 fuzzy-neural network direct adaptive sliding mode control for SISO nonlinear systems

    NASA Astrophysics Data System (ADS)

    Lin, Tsung-Chih

    2010-12-01

    In this paper, a novel direct adaptive interval type-2 fuzzy-neural tracking control equipped with sliding mode and Lyapunov synthesis approach is proposed to handle the training data corrupted by noise or rule uncertainties for nonlinear SISO nonlinear systems involving external disturbances. By employing adaptive fuzzy-neural control theory, the update laws will be derived for approximating the uncertain nonlinear dynamical system. In the meantime, the sliding mode control method and the Lyapunov stability criterion are incorporated into the adaptive fuzzy-neural control scheme such that the derived controller is robust with respect to unmodeled dynamics, external disturbance and approximation errors. In comparison with conventional methods, the advocated approach not only guarantees closed-loop stability but also the output tracking error of the overall system will converge to zero asymptotically without prior knowledge on the upper bound of the lumped uncertainty. Furthermore, chattering effect of the control input will be substantially reduced by the proposed technique. To illustrate the performance of the proposed method, finally simulation example will be given.

  11. The effects of working memory resource depletion and training on sensorimotor adaptation

    PubMed Central

    Anguera, Joaquin A.; Bernard, Jessica A.; Jaeggi, Susanne M.; Buschkuehl, Martin; Benson, Bryan L.; Jennett, Sarah; Humfleet, Jennifer; Reuter-Lorenz, Patricia; Jonides, John; Seidler, Rachael D.

    2011-01-01

    We have recently demonstrated that visuospatial working memory performance predicts the rate of motor skill learning, particularly during the early phase of visuomotor adaptation. Here, we follow up these correlational findings with direct manipulations of working memory resources to determine the impact on visuomotor adaptation, a form of motor learning. We conducted two separate experiments. In the first one, we used a resource depletion strategy to investigate whether the rate of early visuomotor adaptation would be negatively affected by fatigue of spatial working memory resources. In the second study, we employed a dual n-back task training paradigm that has been shown to result in transfer effects [1] over five weeks to determine whether training-related improvements would boost the rate of early visuomotor adaptation. The depletion of spatial working memory resources negatively affected the rate of early visuomotor adaptation. However, enhancing working memory capacity via training did not lead to improved rates of visuomotor adaptation, suggesting that working memory capacity may not be the factor limiting maximal rate of visuomotor adaptation in young adults. These findings are discussed from a resource limitation / capacity framework with respect to current views of motor learning. PMID:22155489

  12. The consequences of resistance training for movement control in older adults.

    PubMed

    Barry, Benjamin K; Carson, Richard G

    2004-07-01

    Older adults who undertake resistance training are typically seeking to maintain or increase their muscular strength with the goal of preserving or improving their functional capabilities. The extent to which resistance training adaptations lead to improved performance on tasks of everyday living is not particularly well understood. Indeed, studies examining changes in functional task performance experienced by older adults following periods of resistance training have produced equivocal findings. A clear understanding of the principles governing the transfer of resistance training adaptations is therefore critical in seeking to optimize the prescription of training regimes that have as their aim the maintenance and improvement of functional movement capacities in older adults. The degenerative processes that occur in the aging motor system are likely to influence heavily any adaptations to resistance training and the subsequent transfer to functional task performance. The resulting characteristics of motor behavior, such as the substantial decline in the rate of force development and the decreased steadiness of force production, may entail that specialized resistance training strategies are necessary to maximize the benefits for older adults. In this review, we summarize the alterations in the neuromuscular system that are responsible for the declines in strength, power, and force control, and the subsequent deterioration in the everyday movement capabilities of older adults. We examine the literature concerning the neural adaptations that older adults experience in response to resistance training, and consider the readiness with which these adaptations will improve the functional movement capabilities of older adults.

  13. Adaptive Modeling of the International Space Station Electrical Power System

    NASA Technical Reports Server (NTRS)

    Thomas, Justin Ray

    2007-01-01

    Software simulations provide NASA engineers the ability to experiment with spacecraft systems in a computer-imitated environment. Engineers currently develop software models that encapsulate spacecraft system behavior. These models can be inaccurate due to invalid assumptions, erroneous operation, or system evolution. Increasing accuracy requires manual calibration and domain-specific knowledge. This thesis presents a method for automatically learning system models without any assumptions regarding system behavior. Data stream mining techniques are applied to learn models for critical portions of the International Space Station (ISS) Electrical Power System (EPS). We also explore a knowledge fusion approach that uses traditional engineered EPS models to supplement the learned models. We observed that these engineered EPS models provide useful background knowledge to reduce predictive error spikes when confronted with making predictions in situations that are quite different from the training scenarios used when learning the model. Evaluations using ISS sensor data and existing EPS models demonstrate the success of the adaptive approach. Our experimental results show that adaptive modeling provides reductions in model error anywhere from 80% to 96% over these existing models. Final discussions include impending use of adaptive modeling technology for ISS mission operations and the need for adaptive modeling in future NASA lunar and Martian exploration.

  14. Immersion team training in a realistic environment improves team performance in trauma resuscitation.

    PubMed

    Siriratsivawong, Kris; Kang, Jeff; Riffenburgh, Robert; Hoang, Tuan N

    2016-09-01

    In the US military, it is common for health care teams to be formed ad hoc and expected to function cohesively as a unit. Poor team dynamics decreases the effectiveness of trauma care delivery. The US Navy Fleet Surgical Team Three has developed a simulation-based trauma initiative-the Shipboard Surgical Trauma Training (S2T2) Course-that emphasizes team dynamics to improve the delivery of trauma care to the severely injured patient. The S2T2 Course combines classroom didactics with hands-on simulation over a period of 6 days, culminating in a daylong, mass casualty scenario. Each resuscitation team was initially evaluated with a simulated trauma resuscitation scenario then retested on the same scenario after completing the course. A written exam was also administered individually both before and after the course. A survey was administered to assess the participants' perceived effectiveness of the course on overall team training. From the evaluation of 20 resuscitation teams made up of 123 medical personnel, there was a decrease in the mean time needed to perform the simulated trauma resuscitation, from a mean of 24.4 minutes to 13.5 minutes (P < .01), a decrease in the mean number of critical events missed, from 5.15 to 1.00 (P < .01), and a mean improvement of 41% in written test scores. More than 90% of participants rated the course as highly effective for improving team dynamics. A team-based trauma course with immersion in a realistic environment is an effective tool for improving team performance in trauma training. This approach has high potential to improve trauma care and patient outcomes. The benefits of this team-based course can be adapted to the civilian rural sector, where gaps have been identified in trauma care. Published by Elsevier Inc.

  15. Virtual reality simulators and training in laparoscopic surgery.

    PubMed

    Yiannakopoulou, Eugenia; Nikiteas, Nikolaos; Perrea, Despina; Tsigris, Christos

    2015-01-01

    Virtual reality simulators provide basic skills training without supervision in a controlled environment, free of pressure of operating on patients. Skills obtained through virtual reality simulation training can be transferred on the operating room. However, relative evidence is limited with data available only for basic surgical skills and for laparoscopic cholecystectomy. No data exist on the effect of virtual reality simulation on performance on advanced surgical procedures. Evidence suggests that performance on virtual reality simulators reliably distinguishes experienced from novice surgeons Limited available data suggest that independent approach on virtual reality simulation training is not different from proctored approach. The effect of virtual reality simulators training on acquisition of basic surgical skills does not seem to be different from the effect the physical simulators. Limited data exist on the effect of virtual reality simulation training on the acquisition of visual spatial perception and stress coping skills. Undoubtedly, virtual reality simulation training provides an alternative means of improving performance in laparoscopic surgery. However, future research efforts should focus on the effect of virtual reality simulation on performance in the context of advanced surgical procedure, on standardization of training, on the possibility of synergistic effect of virtual reality simulation training combined with mental training, on personalized training. Copyright © 2014 Surgical Associates Ltd. Published by Elsevier Ltd. All rights reserved.

  16. [Adaptation to hypoxia and hyperoxia improves physical endurance: the role of reactive oxygen species and redox-signaling].

    PubMed

    Sazontova, T G; Glazachev, O S; Bolotova, A V; Dudnik, E N; Striapko, N V; Bedareva, I V; Anchishkina, N A; Arkhipenko, Iu V

    2012-06-01

    We have conducted theoretical foundation, experimental analysis and a pilot study of a new method of adaptation to hypoxia and hyperoxia in the prevention of hypoxic and stress-induced disorders and improving the body's tolerance to physical stress. It has been shown in the experimental part that a combination of physical exercise with adaptation to hypoxia-hyperoxia significantly increased tolerance to acute physical load (APL) and its active phase. Analysis of lipid peroxidation processes, antioxidant enzymes and HSPs showed that short-term training for physical exercise by itself compensates the stressor, but not the hypoxic component of the APL, the combination of training with adaptation to hypoxia-hyperoxia completely normalizes the stressor and hypoxic components of APL. The pilot study has been performed to evaluate the effectiveness of hypoxic-hyperoxic training course in qualified young athletes with over-training syndrome. After completing the course of hypoxia-hyperoxia adaptation, 14 sessions, accompanied by light mode sports training, the athletes set the normalization of autonomic balance, increased resistance to acute hypoxia in hypoxic test, increased physical performance--increased PWC170, maximal oxygen consumption (VO2max) parameters, their relative values to body mass, diminished shift of rate pressure product in the load. Thus, we confirmed experimental findings that hypoxic-hyperoxic training optimizes hypoxic (increased athletes resistance to proper hypoxia) and stress (myocardium economy in acute physical stress testing) components in systemic adaptation and restoration of athletes' with over-training syndrome.

  17. [A study on training method for increasing adaptability to blood redistribution in human].

    PubMed

    Wu, Bin; You, Guang-xing; Wu, Ping; Xue, Yue-ying; Liu, Xing-hua; Su, Shuang-ning

    2003-01-01

    To verify validity of the increase in adaptability of blood redistribution in human body with repeated body position change training and to find preferable training method for increasing astronaut's adaptability of blood redistribution. Twelve subjects were randomly divided into group A and B. Six subjects in each group were trained with mode A and B repeated position change (9 times in 11 d) respectively. Their head-down tilt (HDT -30 degrees/30 min) tolerance and orthostatic tolerance were determined before and after training to verify training effects. 1) Two kinds of repeated body position change training modes increased all subjects' HDT tolerance. Compared with pre-training, during HDT test subjects' symptom scores in group B were significantly lower than those in group A (P<0.05) and after training decreasing magnitude of heart rate in group B increased significantly (P<0.01). Then mode B to be preferable training method in increasing HDT tolerance was suggested. 2) Two kinds of training modes improved all subjects' orthostatic tolerance. Compared with pre-training, during orthostatic tolerance test increasing magnitude of mean arterial blood pressure in group B increased significantly (P<0.05) and a trend of increasing magnitude of heart rate in group B was appeared smaller than in group A (P<0.10). Mode B to be preferable training method in increasing orthostatic tolerance was suggested too. Repeated body position change training could increase adaptability to blood redistribution in human body. Mode B was preferable training method and would be hopeful to be used in astronaut training.

  18. Role of cerebellar cortical protein synthesis in transfer of memory trace of cerebellum-dependent motor learning.

    PubMed

    Okamoto, Takehito; Endo, Shogo; Shirao, Tomoaki; Nagao, Soichi

    2011-06-15

    We developed a new protocol that induces long-term adaptation of horizontal optokinetic response (HOKR) eye movement by hours of spaced training and examined the role of protein synthesis in the cerebellar cortex in the formation of memory of adaptation. Mice were trained to view 800 cycles of screen oscillation either by 1 h of massed training or by 2.5 h to 8 d of training with 0.5 h to 1 d space intervals. The HOKR gains increased similarly by 20-30% at the end of training; however, the gains increased by 1 h of massed training recovered within 24 h, whereas the gains increased by spaced training were sustained over 24 h. Bilateral floccular lidocaine microinfusions immediately after the end of training recovered the gains increased by 1 h of massed training but did not affect the gains increased by 4 h of spaced training, suggesting that the memory trace of adaptation was transferred from the flocculus to the vestibular nuclei within 4 h of spaced training. Blockade of floccular protein synthesis, examined by bilateral floccular microinfusions of anisomycin or actinomycin D 1-4 h before the training, impaired the gains increased by 4 h of spaced training but did not affect the gains increased by 1 h of massed training. These findings suggest that the transfer of the memory trace of adaptation occurs within 4 h of spaced training, and proteins synthesized in the flocculus during training period may play an important role in memory transfer.

  19. Climate Adaptation Training for Natural Resource Professionals

    NASA Astrophysics Data System (ADS)

    Sorensen, H. L.; Meyer, N.

    2016-02-01

    The University of Minnesota Sea Grant Program and University of Minensota Extension are coordinating the development of a cohort-based training for natural resource professionals that prepares them with essential aptitude, resources and tools to lead climate adaptation activities in their organizations and municipalities. This course is geared toward the growing cadre of natural resources, water, municipal infrastructure, and human resources professionals who are called upon to lead climate adaptation initiatives but lack core training in climate change science, vulnerability assessment, and adaptation planning. Modeled on pre-existing UMN certificate programs, the online course encompasses approximately 40 contact hours of training. Content builds from basic climate mechanics to change science, vulnerability assessment, downscaled climate modeling, ecosystem response to climate change and strategies communicating climate change to diverse audiences. Minnesota as well as national case studies and expertise will anchor core climate adaptation concepts in a relevant context.

  20. Real-time closed-loop control of cognitive load in neurological patients during robot-assisted gait training.

    PubMed

    Koenig, Alexander; Novak, Domen; Omlin, Ximena; Pulfer, Michael; Perreault, Eric; Zimmerli, Lukas; Mihelj, Matjaz; Riener, Robert

    2011-08-01

    Cognitively challenging training sessions during robot-assisted gait training after stroke were shown to be key requirements for the success of rehabilitation. Despite a broad variability of cognitive impairments amongst the stroke population, current rehabilitation environments do not adapt to the cognitive capabilities of the patient, as cognitive load cannot be objectively assessed in real-time. We provided healthy subjects and stroke patients with a virtual task during robot-assisted gait training, which allowed modulating cognitive load by adapting the difficulty level of the task. We quantified the cognitive load of stroke patients by using psychophysiological measurements and performance data. In open-loop experiments with healthy subjects and stroke patients, we obtained training data for a linear, adaptive classifier that estimated the current cognitive load of patients in real-time. We verified our classification results via questionnaires and obtained 88% correct classification in healthy subjects and 75% in patients. Using the pre-trained, adaptive classifier, we closed the cognitive control loop around healthy subjects and stroke patients by automatically adapting the difficulty level of the virtual task in real-time such that patients were neither cognitively overloaded nor under-challenged. © 2011 IEEE

  1. Simulation-Based Training Platforms for Arthroscopy: A Randomized Comparison of Virtual Reality Learning to Benchtop Learning.

    PubMed

    Middleton, Robert M; Alvand, Abtin; Garfjeld Roberts, Patrick; Hargrove, Caroline; Kirby, Georgina; Rees, Jonathan L

    2017-05-01

    To determine whether a virtual reality (VR) arthroscopy simulator or benchtop (BT) arthroscopy simulator showed superiority as a training tool. Arthroscopic novices were randomized to a training program on a BT or a VR knee arthroscopy simulator. The VR simulator provided user performance feedback. Individuals performed a diagnostic arthroscopy on both simulators before and after the training program. Performance was assessed using wireless objective motion analysis and a global rating scale. The groups (8 in the VR group, 9 in the BT group) were well matched at baseline across all parameters (P > .05). Training on each simulator resulted in significant performance improvements across all parameters (P < .05). BT training conferred a significant improvement in all parameters when trainees were reassessed on the VR simulator (P < .05). In contrast, VR training did not confer improvement in performance when trainees were reassessed on the BT simulator (P > .05). BT-trained subjects outperformed VR-trained subjects in all parameters during final assessments on the BT simulator (P < .05). There was no difference in objective performance between VR-trained and BT-trained subjects on final VR simulator wireless objective motion analysis assessment (P > .05). Both simulators delivered improvements in arthroscopic skills. BT training led to skills that readily transferred to the VR simulator. Skills acquired after VR training did not transfer as readily to the BT simulator. Despite trainees receiving automated metric feedback from the VR simulator, the results suggest a greater gain in psychomotor skills for BT training. Further work is required to determine if this finding persists in the operating room. This study suggests that there are differences in skills acquired on different simulators and skills learnt on some simulators may be more transferable. Further work in identifying user feedback metrics that enhance learning is also required. Copyright © 2016 Arthroscopy Association of North America. All rights reserved.

  2. Health Worker Focused Distributed Simulation for Improving Capability of Health Systems in Liberia.

    PubMed

    Gale, Thomas C E; Chatterjee, Arunangsu; Mellor, Nicholas E; Allan, Richard J

    2016-04-01

    The main goal of this study was to produce an adaptable learning platform using virtual learning and distributed simulation, which can be used to train health care workers, across a wide geographical area, key safety messages regarding infection prevention control (IPC). A situationally responsive agile methodology, Scrum, was used to develop a distributed simulation module using short 1-week iterations and continuous synchronous plus asynchronous communication including end users and IPC experts. The module contained content related to standard IPC precautions (including handwashing techniques) and was structured into 3 distinct sections related to donning, doffing, and hazard perception training. Using Scrum methodology, we were able to link concepts applied to best practices in simulation-based medical education (deliberate practice, continuous feedback, self-assessment, and exposure to uncommon events), pedagogic principles related to adult learning (clear goals, contextual awareness, motivational features), and key learning outcomes regarding IPC, as a rapid response initiative to the Ebola outbreak in West Africa. Gamification approach has been used to map learning mechanics to enhance user engagement. The developed IPC module demonstrates how high-frequency, low-fidelity simulations can be rapidly designed using scrum-based agile methodology. Analytics incorporated into the tool can help demonstrate improved confidence and competence of health care workers who are treating patients within an Ebola virus disease outbreak region. These concepts could be used in a range of evolving disasters where rapid development and communication of key learning messages are required.

  3. [Malfunction simulation by spaceflight training simulator].

    PubMed

    Chang, Tian-chun; Zhang, Lian-hua; Xue, Liang; Lian, Shun-guo

    2005-04-01

    To implement malfunction simulation in spaceflight training simulator. The principle of malfunction simulation was defined according to spacecraft malfunction predict and its countermeasures. The malfunction patterns were classified, and malfunction type was confirmed. A malfunction simulation model was established, and the malfunction simulation was realized by math simulation. According to the requirement of astronaut training, a spacecraft subsystem malfunction simulation model was established and realized, such as environment control and life support, GNC, push, power supply, heat control, data management, measure control and communication, structure and so on. The malfunction simulation function implemented in the spaceflight training simulator satisfied the requirements for astronaut training.

  4. Central adaptations in aerobic circuit versus walking/jogging trained cardiac patients.

    PubMed

    Goodman, L S; McKenzie, D C; Nath, C R; Schamberger, W; Taunton, J E; Ammann, W C

    1995-06-01

    This study was done to determine (a) whether in coronary artery disease (CAD) left ventricular (LV) adaptations differed after 6 months of walking/jogging (legs-only, LO) versus aerobic circuit training (arms and legs, AL) versus a control group, and (b) whether a transfer of fitness to the untrained arms in the LO group was related to superior LV adaptations. Peak oxygen uptake for arm and leg ergometry and for cycle ergometry using radionuclide cardiac angiography were performed before and after training. Leg and arm VO2peak increased significantly by 13% in the AL group, and by 13% and 7%, respectively, for the LO group. LV function was greater after training for the LO versus the AL group. Improvements in systolic and diastolic function and a speculated hypervolemia explain these LV adaptations. In CAD patients, walking/jogging produces greater LV function improvements versus circuit training, possibly due to differences in the exercised muscle mass.

  5. Simulation as a Tool to Facilitate Practice Changes in Teams Taking Care of Patients Under Investigation for Ebola Virus Disease in Spain.

    PubMed

    Rojo, Elena; Oruña, Clara; Sierra, Dolores; García, Gema; Del Moral, Ignacio; Maestre, Jose M

    2016-04-01

    We analyzed the impact of simulation-based training on clinical practice and work processes on teams caring for patients with possible Ebola virus disease (EVD) in Cantabria, Spain. The Government of Spain set up a special committee for the management of EVD, and the Spanish Ministry of Health and foreign health services created an action protocol. Each region is responsible for selecting a reference hospital and an in-house care team to care for patients under investigation. Laboratory-confirmed cases of EVD have to be transferred to the Carlos III Health Institute in Madrid. Predeployment training and follow-up support are required to help personnel work safely and effectively. Simulation-based scenarios were designed to give staff the opportunity to practice before encountering a real-life situation. Lessons learned by each team during debriefings were listed, and a survey administered 3 months later assessed the implementation of practice and system changes. Implemented changes were related to clinical practice (eg, teamwork principles application), protocol implementation (eg, addition of new processes and rewriting of confusing parts), and system and workflow (eg, change of shift schedule and rearrangement of room equipment). Simulation can be used to detect needed changes in protocol or guidelines or can be adapted to meet the needs of a specific team.

  6. A Structure-Adaptive Hybrid RBF-BP Classifier with an Optimized Learning Strategy

    PubMed Central

    Wen, Hui; Xie, Weixin; Pei, Jihong

    2016-01-01

    This paper presents a structure-adaptive hybrid RBF-BP (SAHRBF-BP) classifier with an optimized learning strategy. SAHRBF-BP is composed of a structure-adaptive RBF network and a BP network of cascade, where the number of RBF hidden nodes is adjusted adaptively according to the distribution of sample space, the adaptive RBF network is used for nonlinear kernel mapping and the BP network is used for nonlinear classification. The optimized learning strategy is as follows: firstly, a potential function is introduced into training sample space to adaptively determine the number of initial RBF hidden nodes and node parameters, and a form of heterogeneous samples repulsive force is designed to further optimize each generated RBF hidden node parameters, the optimized structure-adaptive RBF network is used for adaptively nonlinear mapping the sample space; then, according to the number of adaptively generated RBF hidden nodes, the number of subsequent BP input nodes can be determined, and the overall SAHRBF-BP classifier is built up; finally, different training sample sets are used to train the BP network parameters in SAHRBF-BP. Compared with other algorithms applied to different data sets, experiments show the superiority of SAHRBF-BP. Especially on most low dimensional and large number of data sets, the classification performance of SAHRBF-BP outperforms other training SLFNs algorithms. PMID:27792737

  7. [Development of fixed-base full task space flight training simulator].

    PubMed

    Xue, Liang; Chen, Shan-quang; Chang, Tian-chun; Yang, Hong; Chao, Jian-gang; Li, Zhi-peng

    2003-01-01

    Fixed-base full task flight training simulator is a very critical and important integrated training facility. It is mostly used in training of integrated skills and tasks, such as running the flight program of manned space flight, dealing with faults, operating and controlling spacecraft flight, communicating information between spacecraft and ground. This simulator was made up of several subentries including spacecraft simulation, simulating cabin, sight image, acoustics, main controlling computer, instructor and assistant support. It has implemented many simulation functions, such as spacecraft environment, spacecraft movement, communicating information between spacecraft and ground, typical faults, manual control and operating training, training control, training monitor, training database management, training data recording, system detecting and so on.

  8. A data fusion approach for track monitoring from multiple in-service trains

    NASA Astrophysics Data System (ADS)

    Lederman, George; Chen, Siheng; Garrett, James H.; Kovačević, Jelena; Noh, Hae Young; Bielak, Jacobo

    2017-10-01

    We present a data fusion approach for enabling data-driven rail-infrastructure monitoring from multiple in-service trains. A number of researchers have proposed using vibration data collected from in-service trains as a low-cost method to monitor track geometry. The majority of this work has focused on developing novel features to extract information about the tracks from data produced by individual sensors on individual trains. We extend this work by presenting a technique to combine extracted features from multiple passes over the tracks from multiple sensors aboard multiple vehicles. There are a number of challenges in combining multiple data sources, like different relative position coordinates depending on the location of the sensor within the train. Furthermore, as the number of sensors increases, the likelihood that some will malfunction also increases. We use a two-step approach that first minimizes position offset errors through data alignment, then fuses the data with a novel adaptive Kalman filter that weights data according to its estimated reliability. We show the efficacy of this approach both through simulations and on a data-set collected from two instrumented trains operating over a one-year period. Combining data from numerous in-service trains allows for more continuous and more reliable data-driven monitoring than analyzing data from any one train alone; as the number of instrumented trains increases, the proposed fusion approach could facilitate track monitoring of entire rail-networks.

  9. Current status of robotic simulators in acquisition of robotic surgical skills.

    PubMed

    Kumar, Anup; Smith, Roger; Patel, Vipul R

    2015-03-01

    This article provides an overview of the current status of simulator systems in robotic surgery training curriculum, focusing on available simulators for training, their comparison, new technologies introduced in simulation focusing on concepts of training along with existing challenges and future perspectives of simulator training in robotic surgery. The different virtual reality simulators available in the market like dVSS, dVT, RoSS, ProMIS and SEP have shown face, content and construct validity in robotic skills training for novices outside the operating room. Recently, augmented reality simulators like HoST, Maestro AR and RobotiX Mentor have been introduced in robotic training providing a more realistic operating environment, emphasizing more on procedure-specific robotic training . Further, the Xperience Team Trainer, which provides training to console surgeon and bed-side assistant simultaneously, has been recently introduced to emphasize the importance of teamwork and proper coordination. Simulator training holds an important place in current robotic training curriculum of future robotic surgeons. There is a need for more procedure-specific augmented reality simulator training, utilizing advancements in computing and graphical capabilities for new innovations in simulator technology. Further studies are required to establish its cost-benefit ratio along with concurrent and predictive validity.

  10. Three dimensional investigation of the shock train structure in a convergent-divergent nozzle

    NASA Astrophysics Data System (ADS)

    Mousavi, Seyed Mahmood; Roohi, Ehsan

    2014-12-01

    Three-dimensional computational fluid dynamics analyses have been employed to study the compressible and turbulent flow of the shock train in a convergent-divergent nozzle. The primary goal is to determine the behavior, location, and number of shocks. In this context, full multi-grid initialization, Reynolds stress turbulence model (RSM), and the grid adaption techniques in the Fluent software are utilized under the 3D investigation. The results showed that RSM solution matches with the experimental data suitably. The effects of applying heat generation sources and changing inlet flow total temperature have been investigated. Our simulations showed that changes in the heat generation rate and total temperature of the intake flow influence on the starting point of shock, shock strength, minimum pressure, as well as the maximum flow Mach number.

  11. A systematic review of surgical skills transfer after simulation-based training: laparoscopic cholecystectomy and endoscopy.

    PubMed

    Dawe, Susan R; Windsor, John A; Broeders, Joris A J L; Cregan, Patrick C; Hewett, Peter J; Maddern, Guy J

    2014-02-01

    A systematic review to determine whether skills acquired through simulation-based training transfer to the operating room for the procedures of laparoscopic cholecystectomy and endoscopy. Simulation-based training assumes that skills are directly transferable to the operation room, but only a few studies have investigated the effect of simulation-based training on surgical performance. A systematic search strategy that was used in 2006 was updated to retrieve relevant studies. Inclusion of articles was determined using a predetermined protocol, independent assessment by 2 reviewers, and a final consensus decision. Seventeen randomized controlled trials and 3 nonrandomized comparative studies were included in this review. In most cases, simulation-based training was in addition to patient-based training programs. Only 2 studies directly compared simulation-based training in isolation with patient-based training. For laparoscopic cholecystectomy (n = 10 studies) and endoscopy (n = 10 studies), participants who reached simulation-based skills proficiency before undergoing patient-based assessment performed with higher global assessment scores and fewer errors in the operating room than their counterparts who did not receive simulation training. Not all parameters measured were improved. Two of the endoscopic studies compared simulation-based training in isolation with patient-based training with different results: for sigmoidoscopy, patient-based training was more effective, whereas for colonoscopy, simulation-based training was equally effective. Skills acquired by simulation-based training seem to be transferable to the operative setting for laparoscopic cholecystectomy and endoscopy. Future research will strengthen these conclusions by evaluating predetermined competency levels on the same simulators and using objective validated global rating scales to measure operative performance.

  12. 14 CFR 121.409 - Training courses using airplane simulators and other training devices.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Training courses using airplane simulators... Program § 121.409 Training courses using airplane simulators and other training devices. Link to an amendment published at 78 FR 67837, Nov. 12, 2013. (a) Training courses utilizing airplane simulators and...

  13. Military Applicability of Interval Training for Health and Performance.

    PubMed

    Gibala, Martin J; Gagnon, Patrick J; Nindl, Bradley C

    2015-11-01

    Militaries from around the globe have predominantly used endurance training as their primary mode of aerobic physical conditioning, with historical emphasis placed on the long distance run. In contrast to this traditional exercise approach to training, interval training is characterized by brief, intermittent bouts of intense exercise, separated by periods of lower intensity exercise or rest for recovery. Although hardly a novel concept, research over the past decade has shed new light on the potency of interval training to elicit physiological adaptations in a time-efficient manner. This work has largely focused on the benefits of low-volume interval training, which involves a relatively small total amount of exercise, as compared with the traditional high-volume approach to training historically favored by militaries. Studies that have directly compared interval and moderate-intensity continuous training have shown similar improvements in cardiorespiratory fitness and the capacity for aerobic energy metabolism, despite large differences in total exercise and training time commitment. Interval training can also be applied in a calisthenics manner to improve cardiorespiratory fitness and strength, and this approach could easily be incorporated into a military conditioning environment. Although interval training can elicit physiological changes in men and women, the potential for sex-specific adaptations in the adaptive response to interval training warrants further investigation. Additional work is needed to clarify adaptations occurring over the longer term; however, interval training deserves consideration from a military applicability standpoint as a time-efficient training strategy to enhance soldier health and performance. There is value for military leaders in identifying strategies that reduce the time required for exercise, but nonetheless provide an effective training stimulus.

  14. Robust Brain-Machine Interface Design Using Optimal Feedback Control Modeling and Adaptive Point Process Filtering

    PubMed Central

    Carmena, Jose M.

    2016-01-01

    Much progress has been made in brain-machine interfaces (BMI) using decoders such as Kalman filters and finding their parameters with closed-loop decoder adaptation (CLDA). However, current decoders do not model the spikes directly, and hence may limit the processing time-scale of BMI control and adaptation. Moreover, while specialized CLDA techniques for intention estimation and assisted training exist, a unified and systematic CLDA framework that generalizes across different setups is lacking. Here we develop a novel closed-loop BMI training architecture that allows for processing, control, and adaptation using spike events, enables robust control and extends to various tasks. Moreover, we develop a unified control-theoretic CLDA framework within which intention estimation, assisted training, and adaptation are performed. The architecture incorporates an infinite-horizon optimal feedback-control (OFC) model of the brain’s behavior in closed-loop BMI control, and a point process model of spikes. The OFC model infers the user’s motor intention during CLDA—a process termed intention estimation. OFC is also used to design an autonomous and dynamic assisted training technique. The point process model allows for neural processing, control and decoder adaptation with every spike event and at a faster time-scale than current decoders; it also enables dynamic spike-event-based parameter adaptation unlike current CLDA methods that use batch-based adaptation on much slower adaptation time-scales. We conducted closed-loop experiments in a non-human primate over tens of days to dissociate the effects of these novel CLDA components. The OFC intention estimation improved BMI performance compared with current intention estimation techniques. OFC assisted training allowed the subject to consistently achieve proficient control. Spike-event-based adaptation resulted in faster and more consistent performance convergence compared with batch-based methods, and was robust to parameter initialization. Finally, the architecture extended control to tasks beyond those used for CLDA training. These results have significant implications towards the development of clinically-viable neuroprosthetics. PMID:27035820

  15. The General Adaptation Syndrome: A Foundation for the Concept of Periodization.

    PubMed

    Cunanan, Aaron J; DeWeese, Brad H; Wagle, John P; Carroll, Kevin M; Sausaman, Robert; Hornsby, W Guy; Haff, G Gregory; Triplett, N Travis; Pierce, Kyle C; Stone, Michael H

    2018-04-01

    Recent reviews have attempted to refute the efficacy of applying Selye's general adaptation syndrome (GAS) as a conceptual framework for the training process. Furthermore, the criticisms involved are regularly used as the basis for arguments against the periodization of training. However, these perspectives fail to consider the entirety of Selye's work, the evolution of his model, and the broad applications he proposed. While it is reasonable to critically evaluate any paradigm, critics of the GAS have yet to dismantle the link between stress and adaptation. Disturbance to the state of an organism is the driving force for biological adaptation, which is the central thesis of the GAS model and the primary basis for its application to the athlete's training process. Despite its imprecisions, the GAS has proven to be an instructive framework for understanding the mechanistic process of providing a training stimulus to induce specific adaptations that result in functional enhancements. Pioneers of modern periodization have used the GAS as a framework for the management of stress and fatigue to direct adaptation during sports training. Updates to the periodization concept have retained its founding constructs while explicitly calling for scientifically based, evidence-driven practice suited to the individual. Thus, the purpose of this review is to provide greater clarity on how the GAS serves as an appropriate mechanistic model to conceptualize the periodization of training.

  16. Adaptive Core Simulation Employing Discrete Inverse Theory - Part II: Numerical Experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdel-Khalik, Hany S.; Turinsky, Paul J.

    2005-07-15

    Use of adaptive simulation is intended to improve the fidelity and robustness of important core attribute predictions such as core power distribution, thermal margins, and core reactivity. Adaptive simulation utilizes a selected set of past and current reactor measurements of reactor observables, i.e., in-core instrumentation readings, to adapt the simulation in a meaningful way. The companion paper, ''Adaptive Core Simulation Employing Discrete Inverse Theory - Part I: Theory,'' describes in detail the theoretical background of the proposed adaptive techniques. This paper, Part II, demonstrates several computational experiments conducted to assess the fidelity and robustness of the proposed techniques. The intentmore » is to check the ability of the adapted core simulator model to predict future core observables that are not included in the adaption or core observables that are recorded at core conditions that differ from those at which adaption is completed. Also, this paper demonstrates successful utilization of an efficient sensitivity analysis approach to calculate the sensitivity information required to perform the adaption for millions of input core parameters. Finally, this paper illustrates a useful application for adaptive simulation - reducing the inconsistencies between two different core simulator code systems, where the multitudes of input data to one code are adjusted to enhance the agreement between both codes for important core attributes, i.e., core reactivity and power distribution. Also demonstrated is the robustness of such an application.« less

  17. Application of Adaptive Decision Aiding Systems to Computer-Assisted Instruction. Final Report, January-December 1974.

    ERIC Educational Resources Information Center

    May, Donald M.; And Others

    The minicomputer-based Computerized Diagnostic and Decision Training (CDDT) system described combines the principles of artificial intelligence, decision theory, and adaptive computer assisted instruction for training in electronic troubleshooting. The system incorporates an adaptive computer program which learns the student's diagnostic and…

  18. An interprofessional communication training using simulation to enhance safe care for a deteriorating patient.

    PubMed

    Liaw, Sok Ying; Zhou, Wen Tao; Lau, Tang Ching; Siau, Chiang; Chan, Sally Wai-Chi

    2014-02-01

    Communication and teamwork between doctors and nurses are critical for optimal patient care. Simulation and interprofessional team learning are emerging as significant learning strategies to promote teamwork and communication between different health professionals. The aim of the study is to describe the development, implementation and evaluation of a simulation-based interprofessional educational (Sim-IPE) program, using a presage-process-product (3P) model, for improving medical and nursing students' communication skills in caring of a patient with physiological deterioration. The program was conducted using full-scale simulation and communication strategies adapted from Team Strategies and Tools to Enhance Performance and Patient Safety (TeamSTEPPS). 127 medical and nursing students participated in a 3-hour small group interprofessional learning that incorporated simulation scenarios of deteriorating patients. Pre and post-tests were conducted to assess the students' self-confidence in interprofessional communication and perception in interprofessional learning. After the training, the students completed a satisfaction questionnaire. Both medicine and nursing groups demonstrated a significant improvement on post-test score from pre-test score for self-confidence (p<.0001) and perception (p<.0001) with no significant differences detected between the two groups. The participants were highly satisfied with their simulation learning. The Sim-IPE has better prepared the medical and nursing students in communicating with one another in providing safe care for deteriorating patient. In addition, it has improved their perception towards interprofessional learning. This pre-registration interprofessional education could prepare them for more comprehensive interprofessional team learning at post-registration level. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. [Simulation training in surgical education - application of virtual reality laparoscopic simulators in a surgical skills course].

    PubMed

    Lehmann, K S; Gröne, J; Lauscher, J C; Ritz, J-P; Holmer, C; Pohlen, U; Buhr, H-J

    2012-04-01

    Training and simulation are gaining importance in surgical education. Today, virtual reality surgery simulators provide sophisticated laparoscopic training scenarios and offer detailed assessment methods. This also makes simulators interesting for the application in surgical skills courses. The aim of the current study was to assess the suitability of a virtual surgery simulator for training and assessment in an established surgical training course. The study was conducted during the annual "Practical Course for Visceral Surgery" (Warnemuende, Germany). 36 of 108 course participants were assigned at random for the study. Training was conducted in 15 sessions over 5 days with 4 identical virtual surgery simulators (LapSim) and 2 standardised training tasks. The simulator measured 16 individual parameters and calculated 2 scores. Questionnaires were used to assess the test persons' laparoscopic experience, their training situation and the acceptance of the simulator training. Data were analysed with non-parametric tests. A subgroup analysis for laparoscopic experience was conducted in order to assess the simulator's construct validity and assessment capabilities. Median age was 32 (27 - 41) years; median professional experience was 3 (1 - 11) years. Typical laparoscopic learning curves with initial significant improvements and a subsequent plateau phase were measured over 5 days. The individual training sessions exhibited a rhythmic variability in the training results. A shorter night's sleep led to a marked drop in performance. The participants' different experience levels could clearly be discriminated ( ≤ 20 vs. > 20 laparoscopic operations; p ≤ 0.001). The questionnaire showed that the majority of the participants had limited training opportunities in their hospitals. The simulator training was very well accepted. However, the participants severely misjudged the real costs of the simulators that were used. The learning curve on the simulator was successfully mastered during the course. Construct validity could be demonstrated within the course setting. The simulator's assessment system can be of value for the assessment of laparoscopic training performance within surgical skills courses. Acceptance of the simulator training is high. However, simulators are currently too expensive to be used within a large training course. © Georg Thieme Verlag KG Stuttgart · New York.

  20. Simulation in bronchoscopy: current and future perspectives.

    PubMed

    Nilsson, Philip Mørkeberg; Naur, Therese Maria Henriette; Clementsen, Paul Frost; Konge, Lars

    2017-01-01

    To provide an overview of current literature that informs how to approach simulation practice of bronchoscopy and discuss how findings from other simulation research can help inform the use of simulation in bronchoscopy training. We conducted a literature search on simulation training of bronchoscopy and divided relevant studies in three categories: 1) structuring simulation training in bronchoscopy, 2) assessment of competence in bronchoscopy training, and 3) development of cheap alternatives for bronchoscopy simulation. Bronchoscopy simulation is effective, and the training should be structured as distributed practice with mastery learning criteria (ie, training until a certain level of competence is achieved). Dyad practice (training in pairs) is possible and may increase utility of available simulators. Trainee performance should be assessed with assessment tools with established validity. Three-dimensional printing is a promising new technology opening possibilities for developing cheap simulators with innovative features.

  1. Payload training methodology study

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The results of the Payload Training Methodology Study (PTMS) are documented. Methods and procedures are defined for the development of payload training programs to be conducted at the Marshall Space Flight Center Payload Training Complex (PCT) for the Space Station Freedom program. The study outlines the overall training program concept as well as the six methodologies associated with the program implementation. The program concept outlines the entire payload training program from initial identification of training requirements to the development of detailed design specifications for simulators and instructional material. The following six methodologies are defined: (1) The Training and Simulation Needs Assessment Methodology; (2) The Simulation Approach Methodology; (3) The Simulation Definition Analysis Methodology; (4) The Simulator Requirements Standardization Methodology; (5) The Simulator Development Verification Methodology; and (6) The Simulator Validation Methodology.

  2. Adaptation of non-technical skills behavioural markers for delivery room simulation.

    PubMed

    Bracco, Fabrizio; Masini, Michele; De Tonetti, Gabriele; Brogioni, Francesca; Amidani, Arianna; Monichino, Sara; Maltoni, Alessandra; Dato, Andrea; Grattarola, Claudia; Cordone, Massimo; Torre, Giancarlo; Launo, Claudio; Chiorri, Carlo; Celleno, Danilo

    2017-03-17

    Simulation in healthcare has proved to be a useful method in improving skills and increasing the safety of clinical operations. The debriefing session, after the simulated scenario, is the core of the simulation, since it allows participants to integrate the experience with the theoretical frameworks and the procedural guidelines. There is consistent evidence for the relevance of non-technical skills (NTS) for the safe and efficient accomplishment of operations. However, the observation, assessment and feedback on these skills is particularly complex, because the process needs expert observers and the feedback is often provided in judgmental and ineffective ways. The aim of this study was therefore to develop and test a set of observation and rating forms for the NTS behavioural markers of multi-professional teams involved in delivery room emergency simulations (MINTS-DR, Multi-professional Inventory for Non-Technical Skills in the Delivery Room). The MINTS-DR was developed by adapting the existing tools and, when needed, by designing new tools according to the literature. We followed a bottom-up process accompanied by interviews and co-design between practitioners and psychology experts. The forms were specific for anaesthetists, gynaecologists, nurses/midwives, assistants, plus a global team assessment tool. We administered the tools in five editions of a simulation training course that involved 48 practitioners. Ratings on usability and usefulness were collected. The mean ratings of the usability and usefulness of the tools were not statistically different to or higher than 4 on a 5-point rating scale. In either case no significant differences were found across professional categories. The MINTS-DR is quick and easy to administer. It is judged to be a useful asset in maximising the learning experience that is provided by the simulation.

  3. SKYLAB (SL)-4 - CREW TRAINING (ORBITAL WORKSHOP [OWS]) - JSC

    NASA Image and Video Library

    1973-08-22

    S73-32839 (10 Sept. 1973) --- Scientist-astronaut Edward G. Gibson, science pilot for the third manned Skylab mission (Skylab 4), enters a notation in a manual while seated at the control and display panel for the Apollo Telescope Mount (ATM) during simulations inside the one-G trainer for the Multiple Docking Adapter (MDA) at the Johnson Space Center (JSC). Dr. Gibson will be joined by astronauts Gerald P. Carr, commander, and William R. Pogue, pilot, when the Skylab 4 mission begins in November 1973. Photo credit: NASA

  4. Skylab (SL)-4 Astronauts - "Open House" Press Day - SL Mockup - MSC

    NASA Image and Video Library

    1972-01-20

    S72-17512 (19 Jan. 1972) --- These three men are the crewmen for the first manned Skylab mission. They are astronaut Charles Conrad Jr., commander, standing left; scientist-astronaut Joseph P. Kerwin, seated; and astronaut Paul J. Weitz, pilot. They were photographed and interviewed during an "open house" press day in the realistic atmosphere of the Multiple Docking Adapter (MDA) trainer in the Mission Simulation and Training Facility at the Manned Spacecraft Center (MSC). The control and display panel for the Apollo Telescope Mount (ATM) is at right. Photo credit: NASA

  5. Principles underlying the design of "The Number Race", an adaptive computer game for remediation of dyscalculia

    PubMed Central

    Wilson, Anna J; Dehaene, Stanislas; Pinel, Philippe; Revkin, Susannah K; Cohen, Laurent; Cohen, David

    2006-01-01

    Background Adaptive game software has been successful in remediation of dyslexia. Here we describe the cognitive and algorithmic principles underlying the development of similar software for dyscalculia. Our software is based on current understanding of the cerebral representation of number and the hypotheses that dyscalculia is due to a "core deficit" in number sense or in the link between number sense and symbolic number representations. Methods "The Number Race" software trains children on an entertaining numerical comparison task, by presenting problems adapted to the performance level of the individual child. We report full mathematical specifications of the algorithm used, which relies on an internal model of the child's knowledge in a multidimensional "learning space" consisting of three difficulty dimensions: numerical distance, response deadline, and conceptual complexity (from non-symbolic numerosity processing to increasingly complex symbolic operations). Results The performance of the software was evaluated both by mathematical simulations and by five weeks of use by nine children with mathematical learning difficulties. The results indicate that the software adapts well to varying levels of initial knowledge and learning speeds. Feedback from children, parents and teachers was positive. A companion article [1] describes the evolution of number sense and arithmetic scores before and after training. Conclusion The software, open-source and freely available online, is designed for learning disabled children aged 5–8, and may also be useful for general instruction of normal preschool children. The learning algorithm reported is highly general, and may be applied in other domains. PMID:16734905

  6. Central venous catheterization training: current perspectives on the role of simulation

    PubMed Central

    Soffler, Morgan I; Hayes, Margaret M; Smith, C Christopher

    2018-01-01

    Simulation is a popular and effective training modality in medical education across a variety of domains. Central venous catheterization (CVC) is commonly undertaken by trainees, and carries significant risk for patient harm when carried out incorrectly. Multiple studies have evaluated the efficacy of simulation-based training programs, in comparison with traditional training modalities, on learner and patient outcomes. In this review, we discuss relevant adult learning principles that support simulation-based CVC training, review the literature on simulation-based CVC training, and highlight the use of simulation-based CVC training programs at various institutions. PMID:29872360

  7. Central venous catheterization training: current perspectives on the role of simulation.

    PubMed

    Soffler, Morgan I; Hayes, Margaret M; Smith, C Christopher

    2018-01-01

    Simulation is a popular and effective training modality in medical education across a variety of domains. Central venous catheterization (CVC) is commonly undertaken by trainees, and carries significant risk for patient harm when carried out incorrectly. Multiple studies have evaluated the efficacy of simulation-based training programs, in comparison with traditional training modalities, on learner and patient outcomes. In this review, we discuss relevant adult learning principles that support simulation-based CVC training, review the literature on simulation-based CVC training, and highlight the use of simulation-based CVC training programs at various institutions.

  8. Vascular adaptive responses to physical exercise and to stress are affected differently by nandrolone administration.

    PubMed

    Bruder-Nascimento, T; Cordellini, S

    2011-04-01

    Androgenic anabolic steroid, physical exercise and stress induce cardiovascular adaptations including increased endothelial function. The present study investigated the effects of these conditions alone and in combination on the vascular responses of male Wistar rats. Exercise was started at 8 weeks of life (60-min swimming sessions 5 days per week for 8 weeks, while carrying a 5% body-weight load). One group received nandrolone (5 mg/kg, twice per week for 8 weeks, im). Acute immobilization stress (2 h) was induced immediately before the experimental protocol. Curves for noradrenaline were obtained for thoracic aorta, with and without endothelium from sedentary and trained rats, submitted or not to stress, treated or not with nandrolone. None of the procedures altered the vascular reactivity to noradrenaline in denuded aorta. In intact aorta, stress and exercise produced vascular adaptive responses characterized by endothelium-dependent hyporeactivity to noradrenaline. These conditions in combination did not potentiate the vascular adaptive response. Exercise-induced vascular adaptive response was abolished by nandrolone. In contrast, the aortal reactivity to noradrenaline of sedentary rats and the vascular adaptive response to stress of sedentary and trained rats were not affected by nandrolone. Maximum response for 7-10 rats/group (g): sedentary 3.8 ± 0.2 vs trained 3.0 ± 0.2*; sedentary/stress 2.7 ± 0.2 vs trained/stress 3.1 ± 0.1*; sedentary/nandrolone 3.6 ± 0.1 vs trained/nandrolone 3.8 ± 0.1; sedentary/stress/nandrolone 3.2 ± 0.1 vs trained/stress/nandrolone 2.5 ± 0.1*; *P < 0.05 compared to its respective control. Stress and physical exercise determine similar vascular adaptive response involving distinct mechanisms as indicated by the observation that only the physical exercise-induced adaptive response was abolished by nandrolone.

  9. Mitochondria‐specific antioxidant supplementation does not influence endurance exercise training‐induced adaptations in circulating angiogenic cells, skeletal muscle oxidative capacity or maximal oxygen uptake

    PubMed Central

    Shill, Daniel D.; Southern, W. Michael; Willingham, T. Bradley; Lansford, Kasey A.; McCully, Kevin K.

    2016-01-01

    Key points Reducing excessive oxidative stress, through chronic exercise or antioxidants, can decrease the negative effects induced by excessive amounts of oxidative stress. Transient increases in oxidative stress produced during acute exercise facilitate beneficial vascular training adaptations, but the effects of non‐specific antioxidants on exercise training‐induced vascular adaptations remain elusive.Circulating angiogenic cells (CACs) are an exercise‐inducible subset of white blood cells that maintain vascular integrity.We investigated whether mitochondria‐specific antioxidant (MitoQ) supplementation would affect the response to 3 weeks of endurance exercise training in CACs, muscle mitochondrial capacity and maximal oxygen uptake in young healthy men.We show that endurance exercise training increases multiple CAC types, an adaptation that is not altered by MitoQ supplementation. Additionally, MitoQ does not affect skeletal muscle or whole‐body aerobic adaptations to exercise training.These results indicate that MitoQ supplementation neither enhances nor attenuates endurance training adaptations in young healthy men. Abstract Antioxidants have been shown to improve endothelial function and cardiovascular outcomes. However, the effects of antioxidants on exercise training‐induced vascular adaptations remain elusive. General acting antioxidants combined with exercise have not impacted circulating angiogenic cells (CACs). We investigated whether mitochondria‐specific antioxidant (MitoQ) supplementation would affect the response to 3 weeks of endurance exercise training on CD3+, CD3+/CD31+, CD14+/CD31+, CD31+, CD34+/VEGFR2+ and CD62E+ peripheral blood mononuclear cells (PBMCs), muscle mitochondrial capacity, and maximal oxygen uptake (VO2 max ) in healthy men aged 22.1 ± 0.7 years, with a body mass index of 26.9 ± 0.9 kg m–2, and 24.8 ± 1.3% body fat. Analysis of main effects revealed that training induced 33, 105 and 285% increases in CD14+/CD31+, CD62E+ and CD34+/VEGFR2+ CACs, respectively, and reduced CD3+/CD31− PBMCs by 14%. There was no effect of MitoQ on CAC levels. Also independent of MitoQ supplementation, exercise training significantly increased quadriceps muscle mitochondrial capacity by 24% and VO2 max by roughly 7%. In conclusion, endurance exercise training induced increases in multiple CAC types, and this adaptation is not modified by MitoQ supplementation. Furthermore, we demonstrate that a mitochondrial‐targeted antioxidant does not influence skeletal muscle or whole‐body aerobic adaptations to exercise training. PMID:27501153

  10. Hardware Acceleration of Adaptive Neural Algorithms.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    James, Conrad D.

    As tradit ional numerical computing has faced challenges, researchers have turned towards alternative computing approaches to reduce power - per - computation metrics and improve algorithm performance. Here, we describe an approach towards non - conventional computing that strengthens the connection between machine learning and neuroscience concepts. The Hardware Acceleration of Adaptive Neural Algorithms (HAANA) project ha s develop ed neural machine learning algorithms and hardware for applications in image processing and cybersecurity. While machine learning methods are effective at extracting relevant features from many types of data, the effectiveness of these algorithms degrades when subjected to real - worldmore » conditions. Our team has generated novel neural - inspired approa ches to improve the resiliency and adaptability of machine learning algorithms. In addition, we have also designed and fabricated hardware architectures and microelectronic devices specifically tuned towards the training and inference operations of neural - inspired algorithms. Finally, our multi - scale simulation framework allows us to assess the impact of microelectronic device properties on algorithm performance.« less

  11. Dual adaptive dynamic control of mobile robots using neural networks.

    PubMed

    Bugeja, Marvin K; Fabri, Simon G; Camilleri, Liberato

    2009-02-01

    This paper proposes two novel dual adaptive neural control schemes for the dynamic control of nonholonomic mobile robots. The two schemes are developed in discrete time, and the robot's nonlinear dynamic functions are assumed to be unknown. Gaussian radial basis function and sigmoidal multilayer perceptron neural networks are used for function approximation. In each scheme, the unknown network parameters are estimated stochastically in real time, and no preliminary offline neural network training is used. In contrast to other adaptive techniques hitherto proposed in the literature on mobile robots, the dual control laws presented in this paper do not rely on the heuristic certainty equivalence property but account for the uncertainty in the estimates. This results in a major improvement in tracking performance, despite the plant uncertainty and unmodeled dynamics. Monte Carlo simulation and statistical hypothesis testing are used to illustrate the effectiveness of the two proposed stochastic controllers as applied to the trajectory-tracking problem of a differentially driven wheeled mobile robot.

  12. Adaptive time-variant models for fuzzy-time-series forecasting.

    PubMed

    Wong, Wai-Keung; Bai, Enjian; Chu, Alice Wai-Ching

    2010-12-01

    A fuzzy time series has been applied to the prediction of enrollment, temperature, stock indices, and other domains. Related studies mainly focus on three factors, namely, the partition of discourse, the content of forecasting rules, and the methods of defuzzification, all of which greatly influence the prediction accuracy of forecasting models. These studies use fixed analysis window sizes for forecasting. In this paper, an adaptive time-variant fuzzy-time-series forecasting model (ATVF) is proposed to improve forecasting accuracy. The proposed model automatically adapts the analysis window size of fuzzy time series based on the prediction accuracy in the training phase and uses heuristic rules to generate forecasting values in the testing phase. The performance of the ATVF model is tested using both simulated and actual time series including the enrollments at the University of Alabama, Tuscaloosa, and the Taiwan Stock Exchange Capitalization Weighted Stock Index (TAIEX). The experiment results show that the proposed ATVF model achieves a significant improvement in forecasting accuracy as compared to other fuzzy-time-series forecasting models.

  13. Adaptively combined FIR and functional link artificial neural network equalizer for nonlinear communication channel.

    PubMed

    Zhao, Haiquan; Zhang, Jiashu

    2009-04-01

    This paper proposes a novel computational efficient adaptive nonlinear equalizer based on combination of finite impulse response (FIR) filter and functional link artificial neural network (CFFLANN) to compensate linear and nonlinear distortions in nonlinear communication channel. This convex nonlinear combination results in improving the speed while retaining the lower steady-state error. In addition, since the CFFLANN needs not the hidden layers, which exist in conventional neural-network-based equalizers, it exhibits a simpler structure than the traditional neural networks (NNs) and can require less computational burden during the training mode. Moreover, appropriate adaptation algorithm for the proposed equalizer is derived by the modified least mean square (MLMS). Results obtained from the simulations clearly show that the proposed equalizer using the MLMS algorithm can availably eliminate various intensity linear and nonlinear distortions, and be provided with better anti-jamming performance. Furthermore, comparisons of the mean squared error (MSE), the bit error rate (BER), and the effect of eigenvalue ratio (EVR) of input correlation matrix are presented.

  14. HyFIS: adaptive neuro-fuzzy inference systems and their application to nonlinear dynamical systems.

    PubMed

    Kim, J; Kasabov, N

    1999-11-01

    This paper proposes an adaptive neuro-fuzzy system, HyFIS (Hybrid neural Fuzzy Inference System), for building and optimising fuzzy models. The proposed model introduces the learning power of neural networks to fuzzy logic systems and provides linguistic meaning to the connectionist architectures. Heuristic fuzzy logic rules and input-output fuzzy membership functions can be optimally tuned from training examples by a hybrid learning scheme comprised of two phases: rule generation phase from data; and rule tuning phase using error backpropagation learning scheme for a neural fuzzy system. To illustrate the performance and applicability of the proposed neuro-fuzzy hybrid model, extensive simulation studies of nonlinear complex dynamic systems are carried out. The proposed method can be applied to an on-line incremental adaptive learning for the prediction and control of nonlinear dynamical systems. Two benchmark case studies are used to demonstrate that the proposed HyFIS system is a superior neuro-fuzzy modelling technique.

  15. Modulation transfer function estimation of optical lens system by adaptive neuro-fuzzy methodology

    NASA Astrophysics Data System (ADS)

    Petković, Dalibor; Shamshirband, Shahaboddin; Pavlović, Nenad T.; Anuar, Nor Badrul; Kiah, Miss Laiha Mat

    2014-07-01

    The quantitative assessment of image quality is an important consideration in any type of imaging system. The modulation transfer function (MTF) is a graphical description of the sharpness and contrast of an imaging system or of its individual components. The MTF is also known and spatial frequency response. The MTF curve has different meanings according to the corresponding frequency. The MTF of an optical system specifies the contrast transmitted by the system as a function of image size, and is determined by the inherent optical properties of the system. In this study, the adaptive neuro-fuzzy (ANFIS) estimator is designed and adapted to estimate MTF value of the actual optical system. Neural network in ANFIS adjusts parameters of membership function in the fuzzy logic of the fuzzy inference system. The back propagation learning algorithm is used for training this network. This intelligent estimator is implemented using Matlab/Simulink and the performances are investigated. The simulation results presented in this paper show the effectiveness of the developed method.

  16. The role of simulation in space operations training

    NASA Astrophysics Data System (ADS)

    Ocasio, Frank; Atkins, Dana

    The expanding use of computer simulation to train aerospace personnel is reviewed emphasizing the increasing complexity of responsibilities in the operations segment. The inefficiency of on-the-job training is discussed, and the simulation technologies employed by the USAF Combat Crew Training Squadron are described. The Mission Control Complex-Kernel is employed to simulate an operational Satellite Control Squadron (SCS) and a downscaled SCS. A system for telemetry simulation is incorporated into the launch and early-orbit segments of the training, and the training emphasizes time-critical actions, schedule adherence, and the interaction with external organizations. Hands-on training is required to supplement the simulator training which cannot be used to simulate anomalies in satellites and ground systems. The use of a centralized simulator as an instructional tool facilitates and expedites the transition of the student to operational levels.

  17. 14 CFR 121.413 - Initial and transition training and checking requirements: Check airmen (airplane), check airmen...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... flight simulator, or in a flight training device. This paragraph applies after March 19, 1997. (b) The... simulator, or in a flight training device, as appropriate. (g) The initial and transition flight training... simulator or in a flight training device. (2) Training in the operation of flight simulators or flight...

  18. Swimming Training Induces Liver Mitochondrial Adaptations to Oxidative Stress in Rats Submitted to Repeated Exhaustive Swimming Bouts

    PubMed Central

    Lima, Frederico D.; Stamm, Daniel N.; Della-Pace, Iuri D.; Dobrachinski, Fernando; de Carvalho, Nélson R.; Royes, Luiz Fernando F.; Soares, Félix A.; Rocha, João B.; González-Gallego, Javier; Bresciani, Guilherme

    2013-01-01

    Background and Aims Although acute exhaustive exercise is known to increase liver reactive oxygen species (ROS) production and aerobic training has shown to improve the antioxidant status in the liver, little is known about mitochondria adaptations to aerobic training. The main objective of this study was to investigate the effects of the aerobic training on oxidative stress markers and antioxidant defense in liver mitochondria both after training and in response to three repeated exhaustive swimming bouts. Methods Wistar rats were divided into training (n = 14) and control (n = 14) groups. Training group performed a 6-week swimming training protocol. Subsets of training (n = 7) and control (n = 7) rats performed 3 repeated exhaustive swimming bouts with 72 h rest in between. Oxidative stress biomarkers, antioxidant activity, and mitochondria functionality were assessed. Results Trained group showed increased reduced glutathione (GSH) content and reduced/oxidized (GSH/GSSG) ratio, higher superoxide dismutase (MnSOD) activity, and decreased lipid peroxidation in liver mitochondria. Aerobic training protected against exhaustive swimming ROS production herein characterized by decreased oxidative stress markers, higher antioxidant defenses, and increases in methyl-tetrazolium reduction and membrane potential. Trained group also presented higher time to exhaustion compared to control group. Conclusions Swimming training induced positive adaptations in liver mitochondria of rats. Increased antioxidant defense after training coped well with exercise-produced ROS and liver mitochondria were less affected by exhaustive exercise. Therefore, liver mitochondria also adapt to exercise-induced ROS and may play an important role in exercise performance. PMID:23405192

  19. Effectiveness of online simulation training: Measuring faculty knowledge, perceptions, and intention to adopt.

    PubMed

    Kim, Sujeong; Park, Chang; O'Rourke, Jennifer

    2017-04-01

    Best practice standards of simulation recommend standardized simulation training for nursing faculty. Online training may offer an effective and more widely available alternative to in-person training. Using the Theory of Planned Behavior, this study evaluated the effectiveness of an online simulation training program, examining faculty's foundational knowledge of simulation as well as perceptions and intention to adopt. One-group pretest-posttest design. A large school of nursing with a main campus and five regional campuses in the Midwestern United States. Convenience sample of 52 faculty participants. Knowledge of foundational simulation principles was measured by pre/post-training module quizzes. Perceptions and the intention to adopt simulation were measured using the Faculty Attitudes and Intent to Use Related to the Human Patient Simulator questionnaire. There was a significant improvement in faculty knowledge after training and observable improvements in attitudes. Attitudes significantly influenced the intention to adopt simulation (B=2.54, p<0.001). Online simulation training provides an effective alternative for training large numbers of nursing faculty who seek to implement best practice of standards within their institutions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. A Co-Adaptive Brain-Computer Interface for End Users with Severe Motor Impairment

    PubMed Central

    Faller, Josef; Scherer, Reinhold; Costa, Ursula; Opisso, Eloy; Medina, Josep; Müller-Putz, Gernot R.

    2014-01-01

    Co-adaptive training paradigms for event-related desynchronization (ERD) based brain-computer interfaces (BCI) have proven effective for healthy users. As of yet, it is not clear whether co-adaptive training paradigms can also benefit users with severe motor impairment. The primary goal of our paper was to evaluate a novel cue-guided, co-adaptive BCI training paradigm with severely impaired volunteers. The co-adaptive BCI supports a non-control state, which is an important step toward intuitive, self-paced control. A secondary aim was to have the same participants operate a specifically designed self-paced BCI training paradigm based on the auto-calibrated classifier. The co-adaptive BCI analyzed the electroencephalogram from three bipolar derivations (C3, Cz, and C4) online, while the 22 end users alternately performed right hand movement imagery (MI), left hand MI and relax with eyes open (non-control state). After less than five minutes, the BCI auto-calibrated and proceeded to provide visual feedback for the MI task that could be classified better against the non-control state. The BCI continued to regularly recalibrate. In every calibration step, the system performed trial-based outlier rejection and trained a linear discriminant analysis classifier based on one auto-selected logarithmic band-power feature. In 24 minutes of training, the co-adaptive BCI worked significantly (p = 0.01) better than chance for 18 of 22 end users. The self-paced BCI training paradigm worked significantly (p = 0.01) better than chance in 11 of 20 end users. The presented co-adaptive BCI complements existing approaches in that it supports a non-control state, requires very little setup time, requires no BCI expert and works online based on only two electrodes. The preliminary results from the self-paced BCI paradigm compare favorably to previous studies and the collected data will allow to further improve self-paced BCI systems for disabled users. PMID:25014055

  1. Sensorimotor Adaptability Training Improves Motor and Dual-Task Performance

    NASA Technical Reports Server (NTRS)

    Bloomberg, J.J.; Peters, B.T.; Mulavara, A.P.; Brady, R.; Batson, C.; Cohen, H.S.

    2009-01-01

    The overall objective of our project is to develop a sensorimotor adaptability (SA) training program designed to facilitate recovery of functional capabilities when astronauts transition to different gravitational environments. The goal of our current study was to determine if SA training using variation in visual flow and support surface motion produces improved performance in a novel sensory environment and demonstrate the retention characteristics of SA training.

  2. Effects of a Peer Tutor Training Program on Tutors and Tutees with Severe Disabilities in Adapted Physical Education

    ERIC Educational Resources Information Center

    Vonlintel, Drew James

    2015-01-01

    This dissertation examines the efficacy of peer tutor training in adapted physical education (APE). A peer tutor evaluation form was created to assess the skills of untrained peer tutors (n = 12). Once skills were assessed, a peer tutor training protocol was created. The protocol was implemented in a peer tutor training program. After peer tutors…

  3. Simulation of CO2 Solubility in Polystyrene-b-Polybutadieneb-Polystyrene (SEBS) by artificial intelligence network (ANN) method

    NASA Astrophysics Data System (ADS)

    Sharudin, R. W.; AbdulBari Ali, S.; Zulkarnain, M.; Shukri, M. A.

    2018-05-01

    This study reports on the integration of Artificial Neural Network (ANNs) with experimental data in predicting the solubility of carbon dioxide (CO2) blowing agent in SEBS by generating highest possible value for Regression coefficient (R2). Basically, foaming of thermoplastic elastomer with CO2 is highly affected by the CO2 solubility. The ability of ANN in predicting interpolated data of CO2 solubility was investigated by comparing training results via different method of network training. Regards to the final prediction result for CO2 solubility by ANN, the prediction trend (output generate) was corroborated with the experimental results. The obtained result of different method of training showed the trend of output generated by Gradient Descent with Momentum & Adaptive LR (traingdx) required longer training time and required more accurate input to produce better output with final Regression Value of 0.88. However, it goes vice versa with Levenberg-Marquardt (trainlm) technique as it produced better output in quick detention time with final Regression Value of 0.91.

  4. Surgical simulators in urological training--views of UK Training Programme Directors.

    PubMed

    Forster, James A; Browning, Anthony J; Paul, Alan B; Biyani, C Shekhar

    2012-09-01

    What's known on the subject? and What does the study add? The role of surgical simulators is currently being debated in urological and other surgical specialties. Simulators are not presently implemented in the UK urology training curriculum. The availability of simulators and the opinions of Training Programme Directors' (TPD) on their role have not been described. In the present questionnaire-based survey, the trainees of most, but not all, UK TPDs had access to laparoscopic simulators, and that all responding TPDs thought that simulators improved laparoscopic training. We hope that the present study will be a positive step towards making an agreement to formally introduce simulators into the UK urology training curriculum. To discuss the current situation on the use of simulators in surgical training. To determine the views of UK Urology Training Programme Directors (TPDs) on the availability and use of simulators in Urology at present, and to discuss the role that simulators may have in future training. An online-questionnaire survey was distributed to all UK Urology TPDs. In all, 16 of 21 TPDs responded. All 16 thought that laparoscopic simulators improved the quality of laparoscopic training. The trainees of 13 TPDs had access to a laparoscopic simulator (either in their own hospital or another hospital in the deanery). Most TPDs thought that trainees should use simulators in their free time, in quiet time during work hours, or in teaching sessions (rather than incorporated into the weekly timetable). We feel that the current apprentice-style method of training in urological surgery is out-dated. We think that all TPDs and trainees should have access to a simulator, and that a formal competency based simulation training programme should be incorporated into the urology training curriculum, with trainees reaching a minimum proficiency on a simulator before undertaking surgical procedures. © 2012 THE AUTHORS. BJU INTERNATIONAL © 2012 BJU INTERNATIONAL.

  5. Simulation training: a systematic review of simulation in arthroscopy and proposal of a new competency-based training framework.

    PubMed

    Tay, Charison; Khajuria, Ankur; Gupte, Chinmay

    2014-01-01

    Traditional orthopaedic training has followed an apprenticeship model whereby trainees enhance their skills by operating under guidance. However the introduction of limitations on training hours and shorter training programmes mean that alternative training strategies are required. To perform a literature review on simulation training in arthroscopy and devise a framework that structures different simulation techniques that could be used in arthroscopic training. A systematic search of Medline, Embase, Google Scholar and the Cochrane Databases were performed. Search terms included "virtual reality OR simulator OR simulation" and "arthroscopy OR arthroscopic". 14 studies evaluating simulators in knee, shoulder and hip arthroplasty were included. The majority of the studies demonstrated construct and transference validity but only one showed concurrent validity. More studies are required to assess its potential as a training and assessment tool, skills transference between simulators and to determine the extent of skills decay from prolonged delays in training. We also devised a "ladder of arthroscopic simulation" that provides a competency-based framework to implement different simulation strategies. The incorporation of simulation into an orthopaedic curriculum will depend on a coordinated approach between many bodies. But the successful integration of simulators in other areas of surgery supports a possible role for simulation in advancing orthopaedic education. Copyright © 2014 Surgical Associates Ltd. Published by Elsevier Ltd. All rights reserved.

  6. Training adaptation and heart rate variability in elite endurance athletes: opening the door to effective monitoring.

    PubMed

    Plews, Daniel J; Laursen, Paul B; Stanley, Jamie; Kilding, Andrew E; Buchheit, Martin

    2013-09-01

    The measurement of heart rate variability (HRV) is often considered a convenient non-invasive assessment tool for monitoring individual adaptation to training. Decreases and increases in vagal-derived indices of HRV have been suggested to indicate negative and positive adaptations, respectively, to endurance training regimens. However, much of the research in this area has involved recreational and well-trained athletes, with the small number of studies conducted in elite athletes revealing equivocal outcomes. For example, in elite athletes, studies have revealed both increases and decreases in HRV to be associated with negative adaptation. Additionally, signs of positive adaptation, such as increases in cardiorespiratory fitness, have been observed with atypical concomitant decreases in HRV. As such, practical ways by which HRV can be used to monitor training status in elites are yet to be established. This article addresses the current literature that has assessed changes in HRV in response to training loads and the likely positive and negative adaptations shown. We reveal limitations with respect to how the measurement of HRV has been interpreted to assess positive and negative adaptation to endurance training regimens and subsequent physical performance. We offer solutions to some of the methodological issues associated with using HRV as a day-to-day monitoring tool. These include the use of appropriate averaging techniques, and the use of specific HRV indices to overcome the issue of HRV saturation in elite athletes (i.e., reductions in HRV despite decreases in resting heart rate). Finally, we provide examples in Olympic and World Champion athletes showing how these indices can be practically applied to assess training status and readiness to perform in the period leading up to a pinnacle event. The paper reveals how longitudinal HRV monitoring in elites is required to understand their unique individual HRV fingerprint. For the first time, we demonstrate how increases and decreases in HRV relate to changes in fitness and freshness, respectively, in elite athletes.

  7. Perceptual Learning of Time-Compressed Speech: More than Rapid Adaptation

    PubMed Central

    Banai, Karen; Lavner, Yizhar

    2012-01-01

    Background Time-compressed speech, a form of rapidly presented speech, is harder to comprehend than natural speech, especially for non-native speakers. Although it is possible to adapt to time-compressed speech after a brief exposure, it is not known whether additional perceptual learning occurs with further practice. Here, we ask whether multiday training on time-compressed speech yields more learning than that observed during the initial adaptation phase and whether the pattern of generalization following successful learning is different than that observed with initial adaptation only. Methodology/Principal Findings Two groups of non-native Hebrew speakers were tested on five different conditions of time-compressed speech identification in two assessments conducted 10–14 days apart. Between those assessments, one group of listeners received five practice sessions on one of the time-compressed conditions. Between the two assessments, trained listeners improved significantly more than untrained listeners on the trained condition. Furthermore, the trained group generalized its learning to two untrained conditions in which different talkers presented the trained speech materials. In addition, when the performance of the non-native speakers was compared to that of a group of naïve native Hebrew speakers, performance of the trained group was equivalent to that of the native speakers on all conditions on which learning occurred, whereas performance of the untrained non-native listeners was substantially poorer. Conclusions/Significance Multiday training on time-compressed speech results in significantly more perceptual learning than brief adaptation. Compared to previous studies of adaptation, the training induced learning is more stimulus specific. Taken together, the perceptual learning of time-compressed speech appears to progress from an initial, rapid adaptation phase to a subsequent prolonged and more stimulus specific phase. These findings are consistent with the predictions of the Reverse Hierarchy Theory of perceptual learning and suggest constraints on the use of perceptual-learning regimens during second language acquisition. PMID:23056592

  8. Contrast adaptation in the Limulus lateral eye.

    PubMed

    Valtcheva, Tchoudomira M; Passaglia, Christopher L

    2015-12-01

    Luminance and contrast adaptation are neuronal mechanisms employed by the visual system to adjust our sensitivity to light. They are mediated by an assortment of cellular and network processes distributed across the retina and visual cortex. Both have been demonstrated in the eyes of many vertebrates, but only luminance adaptation has been shown in invertebrate eyes to date. Since the computational benefits of contrast adaptation should apply to all visual systems, we investigated whether this mechanism operates in horseshoe crab eyes, one of the best-understood neural networks in the animal kingdom. The spike trains of optic nerve fibers were recorded in response to light stimuli modulated randomly in time and delivered to single ommatidia or the whole eye. We found that the retina adapts to both the mean luminance and contrast of a white-noise stimulus, that luminance- and contrast-adaptive processes are largely independent, and that they originate within an ommatidium. Network interactions are not involved. A published computer model that simulates existing knowledge of the horseshoe crab eye did not show contrast adaptation, suggesting that a heretofore unknown mechanism may underlie the phenomenon. This mechanism does not appear to reside in photoreceptors because white-noise analysis of electroretinogram recordings did not show contrast adaptation. The likely site of origin is therefore the spike discharge mechanism of optic nerve fibers. The finding of contrast adaption in a retinal network as simple as the horseshoe crab eye underscores the broader importance of this image processing strategy to vision. Copyright © 2015 the American Physiological Society.

  9. Contrast adaptation in the Limulus lateral eye

    PubMed Central

    Valtcheva, Tchoudomira M.

    2015-01-01

    Luminance and contrast adaptation are neuronal mechanisms employed by the visual system to adjust our sensitivity to light. They are mediated by an assortment of cellular and network processes distributed across the retina and visual cortex. Both have been demonstrated in the eyes of many vertebrates, but only luminance adaptation has been shown in invertebrate eyes to date. Since the computational benefits of contrast adaptation should apply to all visual systems, we investigated whether this mechanism operates in horseshoe crab eyes, one of the best-understood neural networks in the animal kingdom. The spike trains of optic nerve fibers were recorded in response to light stimuli modulated randomly in time and delivered to single ommatidia or the whole eye. We found that the retina adapts to both the mean luminance and contrast of a white-noise stimulus, that luminance- and contrast-adaptive processes are largely independent, and that they originate within an ommatidium. Network interactions are not involved. A published computer model that simulates existing knowledge of the horseshoe crab eye did not show contrast adaptation, suggesting that a heretofore unknown mechanism may underlie the phenomenon. This mechanism does not appear to reside in photoreceptors because white-noise analysis of electroretinogram recordings did not show contrast adaptation. The likely site of origin is therefore the spike discharge mechanism of optic nerve fibers. The finding of contrast adaption in a retinal network as simple as the horseshoe crab eye underscores the broader importance of this image processing strategy to vision. PMID:26445869

  10. Effects of intensity and duration of exercise on muscular responses to training of thoroughbred racehorses.

    PubMed

    Rivero, José-Luis L; Ruz, Antonio; Martí-Korff, Silvia; Estepa, José-Carlos; Aguilera-Tejero, Escolástico; Werkman, Jutta; Sobotta, Mathias; Lindner, Arno

    2007-05-01

    This study examined the effects of the intensity and duration of exercise on the nature and magnitude of training adaptations in muscle of adolescent (2-3 yr old) racehorses. Six thoroughbreds that had been pretrained for 2 mo performed six consecutive conditioning programs of varying lactate-guided intensities [velocities eliciting blood lactate concentrations of 2.5 mmol/l (v2.5) and 4 mmol/l (v4), respectively] and durations (5, 15, 25 min). Pre- and posttraining gluteus muscle biopsies were analyzed for myosin heavy chain content, fiber-type composition, fiber size, capillarization, and fiber histochemical oxidative and glycolytic capabilities. Although training adaptations were similar in nature, they varied greatly in magnitude among the different training protocols. Overall, the use of v4 as the exercise intensity for 25 min elicited the most consistent training adaptations in muscle, whereas the minimal training stimulus that evoked any significant change was identified with exercises of 15 min at v2.5. Within this range, muscular adaptations showed significant trends to be proportional to the exercise load of specific training programs. Taken together, these data suggest that muscular adaptations to training in horses occur on a continuum that is based on the exercise intensity and duration of training. The practical implications of this study are that exercises for 15 to 25 min/day at velocities between v2.5 and v4 can improve in the short term (3 wk) the muscular stamina in thoroughbreds. However, exercises of 5-15 min at v4 are necessary to enhance muscular features related to strength (hypertrophy).

  11. Switching between pitch surfaces: practical applications and future perspectives for soccer training.

    PubMed

    Rago, Vincenzo; Silva, João R; Brito, João; Barreira, Daniel; Mohr, Magni; Krustrup, Peter; Rebelo, António N

    2018-04-04

    Soccer training and completion is conventionally practiced on natural grass (NG) or artificial turf (AT). Recently, AT pitches for training / competition, and of unstable surfaces for injury prevention training has increased. Therefore, soccer players are frequently exposed to variations in pitch surface during either training or competition. These ground changes may impact physical and physiological responses, adaptations as well as the injury. The aim of this review was to summarize the acute physical and physiological responses, chronic adaptations, and injury risk associated with exercising on different pitch surfaces in soccer. Eligible studies were published in English, had pitch surface as an independent variable, and had physical, physiological or epidemiological information as outcome variables. Specific data extracted from the articles included the training response, training adaptations or injury outcomes according to different pitch surfaces. A total of 224 studies were retrieved from a literature search. Twenty articles met the inclusion criteria: 9 for acute physical and physiological responses, 2 for training adaptations and 9 for injury assessment. The literature lacks consistent evidence regarding the effects of pitch surface on performance and health outcomes in soccer players. However, it seems that occasionally switching training surfaces seems a valuable strategy for focusing on specific musculoskeletal queries and enhancing players' fitness. For instance, sand training may be occasionally proposed as complementary training strategy, given the recruitment of additional musculature probably not involved on firmer surfaces, but the possible training-induced adaptations of non-conventional soccer surfaces (e.g., sand) might potentially result into a negative transfer on AT or NG. Since the specific physical demands of soccer can differ between surfaces, coaches should resort to the use of non-traditional surfaces with parsimony, emphasizing the specific surface-related motor tasks, normally observed on natural grass or artificial turf. Further studies are required to better understand the physiological effects induced by systematic surface-specific training, or switching between pitch surfaces.

  12. The never ending road: improving, adapting and refining a needs-based model to estimate future general practitioner requirements in two Australian states.

    PubMed

    Laurence, Caroline O; Heywood, Troy; Bell, Janice; Atkinson, Kaye; Karnon, Jonathan

    2018-03-27

    Health workforce planning models have been developed to estimate the future health workforce requirements for a population whom they serve and have been used to inform policy decisions. To adapt and further develop a need-based GP workforce simulation model to incorporate current and estimated geographic distribution of patients and GPs. A need-based simulation model that estimates the supply of GPs and levels of services required in South Australia (SA) was adapted and applied to the Western Australian (WA) workforce. The main outcome measure was the differences in the number of full-time equivalent (FTE) GPs supplied and required from 2013 to 2033. The base scenario estimated a shortage of GPs in WA from 2019 onwards with a shortage of 493 FTE GPs in 2033, while for SA, estimates showed an oversupply over the projection period. The WA urban and rural models estimated an urban shortage of GPs over this period. A reduced international medical graduate recruitment scenario resulted in estimated shortfalls of GPs by 2033 for WA and SA. The WA-specific scenarios of lower population projections and registrar work value resulted in a reduced shortage of FTE GPs in 2033, while unfilled training places increased the shortfall of FTE GPs in 2033. The simulation model incorporates contextual differences to its structure that allows within and cross jurisdictional comparisons of workforce estimations. It also provides greater insights into the drivers of supply and demand and the impact of changes in workforce policy, promoting more informed decision-making.

  13. Training adaptations in the behavior of human motor units.

    PubMed

    Duchateau, Jacques; Semmler, John G; Enoka, Roger M

    2006-12-01

    The purpose of this brief review is to examine the neural adaptations associated with training, by focusing on the behavior of single motor units. The review synthesizes current understanding on motor unit recruitment and rate coding during voluntary contractions, briefly describes the techniques used to record motor unit activity, and then evaluates the adaptations that have been observed in motor unit activity during maximal and submaximal contractions. Relatively few studies have directly compared motor unit behavior before and after training. Although some studies suggest that the voluntary activation of muscle can increase slightly with strength training, it is not known how the discharge of motor units changes to produce this increase in activation. The evidence indicates that the increase is not attributable to changes in motor unit synchronization. It has been demonstrated, however, that training can increase both the rate of torque development and the discharge rate of motor units. Furthermore, both strength training and practice of a force-matching task can evoke adaptations in the discharge characteristics of motor units. Because the variability in discharge rate has a significant influence on the fluctuations in force during submaximal contractions, the changes produced with training can influence motor performance during activities of daily living. Little is known, however, about the relative contributions of the descending drive, afferent feedback, spinal circuitry, and motor neuron properties to the observed adaptations in motor unit activity.

  14. Periodized Nutrition for Athletes.

    PubMed

    Jeukendrup, Asker E

    2017-03-01

    It is becoming increasingly clear that adaptations, initiated by exercise, can be amplified or reduced by nutrition. Various methods have been discussed to optimize training adaptations and some of these methods have been subject to extensive study. To date, most methods have focused on skeletal muscle, but it is important to note that training effects also include adaptations in other tissues (e.g., brain, vasculature), improvements in the absorptive capacity of the intestine, increases in tolerance to dehydration, and other effects that have received less attention in the literature. The purpose of this review is to define the concept of periodized nutrition (also referred to as nutritional training) and summarize the wide variety of methods available to athletes. The reader is referred to several other recent review articles that have discussed aspects of periodized nutrition in much more detail with primarily a focus on adaptations in the muscle. The purpose of this review is not to discuss the literature in great detail but to clearly define the concept and to give a complete overview of the methods available, with an emphasis on adaptations that are not in the muscle. Whilst there is good evidence for some methods, other proposed methods are mere theories that remain to be tested. 'Periodized nutrition' refers to the strategic combined use of exercise training and nutrition, or nutrition only, with the overall aim to obtain adaptations that support exercise performance. The term nutritional training is sometimes used to describe the same methods and these terms can be used interchangeably. In this review, an overview is given of some of the most common methods of periodized nutrition including 'training low' and 'training high', and training with low- and high-carbohydrate availability, respectively. 'Training low' in particular has received considerable attention and several variations of 'train low' have been proposed. 'Training-low' studies have generally shown beneficial effects in terms of signaling and transcription, but to date, few studies have been able to show any effects on performance. In addition to 'train low' and 'train high', methods have been developed to 'train the gut', train hypohydrated (to reduce the negative effects of dehydration), and train with various supplements that may increase the training adaptations longer term. Which of these methods should be used depends on the specific goals of the individual and there is no method (or diet) that will address all needs of an individual in all situations. Therefore, appropriate practical application lies in the optimal combination of different nutritional training methods. Some of these methods have already found their way into training practices of athletes, even though evidence for their efficacy is sometimes scarce at best. Many pragmatic questions remain unanswered and another goal of this review is to identify some of the remaining questions that may have great practical relevance and should be the focus of future research.

  15. Simulating video-assisted thoracoscopic lobectomy: a virtual reality cognitive task simulation.

    PubMed

    Solomon, Brian; Bizekis, Costas; Dellis, Sophia L; Donington, Jessica S; Oliker, Aaron; Balsam, Leora B; Zervos, Michael; Galloway, Aubrey C; Pass, Harvey; Grossi, Eugene A

    2011-01-01

    Current video-assisted thoracoscopic surgery training models rely on animals or mannequins to teach procedural skills. These approaches lack inherent teaching/testing capability and are limited by cost, anatomic variations, and single use. In response, we hypothesized that video-assisted thoracoscopic surgery right upper lobe resection could be simulated in a virtual reality environment with commercial software. An anatomy explorer (Maya [Autodesk Inc, San Rafael, Calif] models of the chest and hilar structures) and simulation engine were adapted. Design goals included freedom of port placement, incorporation of well-known anatomic variants, teaching and testing modes, haptic feedback for the dissection, ability to perform the anatomic divisions, and a portable platform. Preexisting commercial models did not provide sufficient surgical detail, and extensive modeling modifications were required. Video-assisted thoracoscopic surgery right upper lobe resection simulation is initiated with a random vein and artery variation. The trainee proceeds in a teaching or testing mode. A knowledge database currently includes 13 anatomic identifications and 20 high-yield lung cancer learning points. The "patient" is presented in the left lateral decubitus position. After initial camera port placement, the endoscopic view is displayed and the thoracoscope is manipulated via the haptic device. The thoracoscope port can be relocated; additional ports are placed using an external "operating room" view. Unrestricted endoscopic exploration of the thorax is allowed. An endo-dissector tool allows for hilar dissection, and a virtual stapling device divides structures. The trainee's performance is reported. A virtual reality cognitive task simulation can overcome the deficiencies of existing training models. Performance scoring is being validated as we assess this simulator for cognitive and technical surgical education. Copyright © 2011. Published by Mosby, Inc.

  16. Symmetry Breaking Analysis of Prism Adaptation's Latent Aftereffect

    ERIC Educational Resources Information Center

    Frank, Till D.; Blau, Julia J. C.; Turvey, Michael T.

    2012-01-01

    The effect of prism adaptation on movement is typically reduced when the movement at test (prisms off) differs on some dimension from the movement at training (prisms on). Some adaptation is latent, however, and only revealed through further testing in which the movement at training is fully reinstated. Applying a nonlinear attractor dynamic model…

  17. The drive-wise project: driving simulator training increases real driving performance in healthy older drivers

    PubMed Central

    Casutt, Gianclaudio; Theill, Nathan; Martin, Mike; Keller, Martin; Jäncke, Lutz

    2014-01-01

    Background: Age-related cognitive decline is often associated with unsafe driving behavior. We hypothesized that 10 active training sessions in a driving simulator increase cognitive and on-road driving performance. In addition, driving simulator training should outperform cognitive training. Methods: Ninety-one healthy active drivers (62–87 years) were randomly assigned to one of three groups: (1) a driving simulator training group, (2) an attention training group (vigilance and selective attention), or (3) a control group. The main outcome variables were on-road driving and cognitive performance. Seventy-seven participants (85%) completed the training and were included in the analyses. Training gains were analyzed using a multiple regression analysis with planned orthogonal comparisons. Results: The driving simulator-training group showed an improvement in on-road driving performance compared to the attention-training group. In addition, both training groups increased cognitive performance compared to the control group. Conclusion: Driving simulator training offers the potential to enhance driving skills in older drivers. Compared to the attention training, the simulator training seems to be a more powerful program for increasing older drivers' safety on the road. PMID:24860497

  18. Self-Directed Learning and the Millennial Athletic Training Student

    ERIC Educational Resources Information Center

    Hughes, Brian J.; Berry, David C.

    2011-01-01

    Athletic training educators (ATEs) have a responsibility to remain aware of the current student population, particularly how they learn and give meaning to what they have learned. Just as clinical athletic trainers (ATs) must adapt to ever changing work schedules and demands, so too must athletic training educators. In addition to adapting to…

  19. Cognitive Load in Mastoidectomy Skills Training: Virtual Reality Simulation and Traditional Dissection Compared.

    PubMed

    Andersen, Steven Arild Wuyts; Mikkelsen, Peter Trier; Konge, Lars; Cayé-Thomasen, Per; Sørensen, Mads Sølvsten

    2016-01-01

    The cognitive load (CL) theoretical framework suggests that working memory is limited, which has implications for learning and skills acquisition. Complex learning situations such as surgical skills training can potentially induce a cognitive overload, inhibiting learning. This study aims to compare CL in traditional cadaveric dissection training and virtual reality (VR) simulation training of mastoidectomy. A prospective, crossover study. Participants performed cadaveric dissection before VR simulation of the procedure or vice versa. CL was estimated by secondary-task reaction time testing at baseline and during the procedure in both training modalities. The national Danish temporal bone course. A total of 40 novice otorhinolaryngology residents. Reaction time was increased by 20% in VR simulation training and 55% in cadaveric dissection training of mastoidectomy compared with baseline measurements. Traditional dissection training increased CL significantly more than VR simulation training (p < 0.001). VR simulation training imposed a lower CL than traditional cadaveric dissection training of mastoidectomy. Learning complex surgical skills can be a challenge for the novice and mastoidectomy skills training could potentially be optimized by employing VR simulation training first because of the lower CL. Traditional dissection training could then be used to supplement skills training after basic competencies have been acquired in the VR simulation. Copyright © 2015 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.

  20. The effects of adaptive working memory training and mindfulness meditation training on processing efficiency and worry in high worriers.

    PubMed

    Course-Choi, Jenna; Saville, Harry; Derakshan, Nazanin

    2017-02-01

    Worry is the principle characteristic of generalised anxiety disorder, and has been linked to deficient attentional control, a main function of working memory (WM). Adaptive WM training and mindfulness meditation practice (MMP) have both shown potential to increase attentional control. The present study hence investigates the individual and combined effects of MMP and a dual adaptive n-back task on a non-clinical, randomised sample of high worriers. 60 participants were tested before and after seven days of training. Assessment included self-report questionnaires, as well as performance tasks measuring attentional control and working memory capacity. Combined training resulted in continued reduction in worry in the week after training, highlighting the potential of utilising n-back training as an adjunct to established clinical treatment. Engagement with WM training correlated with immediate improvements in attentional control and resilience, with worry decreasing over time. Implications of these findings and suggestions for future research are discussed. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  1. Person authentication using brainwaves (EEG) and maximum a posteriori model adaptation.

    PubMed

    Marcel, Sébastien; Millán, José Del R

    2007-04-01

    In this paper, we investigate the use of brain activity for person authentication. It has been shown in previous studies that the brain-wave pattern of every individual is unique and that the electroencephalogram (EEG) can be used for biometric identification. EEG-based biometry is an emerging research topic and we believe that it may open new research directions and applications in the future. However, very little work has been done in this area and was focusing mainly on person identification but not on person authentication. Person authentication aims to accept or to reject a person claiming an identity, i.e., comparing a biometric data to one template, while the goal of person identification is to match the biometric data against all the records in a database. We propose the use of a statistical framework based on Gaussian Mixture Models and Maximum A Posteriori model adaptation, successfully applied to speaker and face authentication, which can deal with only one training session. We perform intensive experimental simulations using several strict train/test protocols to show the potential of our method. We also show that there are some mental tasks that are more appropriate for person authentication than others.

  2. Effectiveness of Instruction and Video Feedback on Staff's Use of Prompts and Children's Adaptive Responses during One-to-One Training in Children with Severe to Profound Intellectual Disability

    ERIC Educational Resources Information Center

    van Vonderen, Annemarie; de Swart, Charlotte; Didden, Robert

    2010-01-01

    Although relatively many studies have addressed staff training and its effect on trainer behavior, the effects of staff training on trainee's adaptive behaviors have seldomly been examined. We therefore assessed effectiveness of staff training, consisting of instruction and video feedback, on (a) staff's response prompting, and (b) staff's trainer…

  3. Adaptive Training and Education Research at the US Army Research Laboratory: Bibliography (2016-2017)

    DTIC Science & Technology

    2018-03-05

    Validation suite. Synthetic training environments. Service orientated architecture. Citation: Robson, E., Ray, F., Sinatra, A. M., & Sinatra, A. M. (2017...ARL-SR-0393 ● MAR 2018 US Army Research Laboratory Adaptive Training and Education Research at the US Army Research Laboratory... Training and Education Research at the US Army Research Laboratory: Bibliography (2016–2017) by Robert A Sottilare Human Research and

  4. Sensorless control for permanent magnet synchronous motor using a neural network based adaptive estimator

    NASA Astrophysics Data System (ADS)

    Kwon, Chung-Jin; Kim, Sung-Joong; Han, Woo-Young; Min, Won-Kyoung

    2005-12-01

    The rotor position and speed estimation of permanent-magnet synchronous motor(PMSM) was dealt with. By measuring the phase voltages and currents of the PMSM drive, two diagonally recurrent neural network(DRNN) based observers, a neural current observer and a neural velocity observer were developed. DRNN which has self-feedback of the hidden neurons ensures that the outputs of DRNN contain the whole past information of the system even if the inputs of DRNN are only the present states and inputs of the system. Thus the structure of DRNN may be simpler than that of feedforward and fully recurrent neural networks. If the backpropagation method was used for the training of the DRNN the problem of slow convergence arise. In order to reduce this problem, recursive prediction error(RPE) based learning method for the DRNN was presented. The simulation results show that the proposed approach gives a good estimation of rotor speed and position, and RPE based training has requires a shorter computation time compared to backpropagation based training.

  5. The impact of training under different visual-spatial conditions on reverse-alignment laparoscopic skills development.

    PubMed

    Holznecht, Catherine; Schmidt, Travis; Gould, Jon

    2012-01-01

    Circumstances may arise during laparoscopic procedures in which alignment of the laparoscope and the instruments is off by 180°, creating a mirror image of the operative field. It has been shown that task performance is degraded under these reverse-alignment conditions, and that the magnitude of performance impairment is directly related to laparoscopic experience and skill. The aim of this study was to determine if reverse-alignment surgical skills could be developed through training. Twenty-two medical students were randomized to train in either reverse- or forward-alignment conditions on a standardized laparoscopic task in a video trainer (peg transfer). Baseline scores were attained for each group under both orientations. Subjects participated in three 1-h training sessions during an 8-week period. Post-training scores were then obtained under both alignment conditions. Pre and post-training scores were compared for users in each study group under both conditions. Post-training assessments in the forward orientation demonstrated that subjects in the forward-training group improved significantly compared to pre-testing, while the performance of subjects in the reverse-training group did not improve. Under reverse-alignment conditions, both groups improved on post-test assessment, with dramatic improvements observed for those in the reverse-training group. Laparoscopic novices can learn to adapt to a sensorimotor discordance in a simulated training environment. While it is possible that skills developed by training under standard forward-alignment conditions can be utilized in situations of extreme visual-spatial discordance, the intentional development of reverse-alignment skills by training under these conditions may prove beneficial to novice surgeons.

  6. Application of the Actor-Critic Architecture to Functional Electrical Stimulation Control of a Human Arm

    PubMed Central

    Thomas, Philip; Branicky, Michael; van den Bogert, Antonie; Jagodnik, Kathleen

    2010-01-01

    Clinical tests have shown that the dynamics of a human arm, controlled using Functional Electrical Stimulation (FES), can vary significantly between and during trials. In this paper, we study the application of the actor-critic architecture, with neural networks for the both the actor and the critic, as a controller that can adapt to these changing dynamics of a human arm. Development and tests were done in simulation using a planar arm model and Hill-based muscle dynamics. We begin by training it using a Proportional Derivative (PD) controller as a supervisor. We then make clinically relevant changes to the dynamics of the arm and test the actor-critic’s ability to adapt without supervision in a reasonable number of episodes. Finally, we devise methods for achieving both rapid learning and long-term stability. PMID:20689654

  7. Application of the Actor-Critic Architecture to Functional Electrical Stimulation Control of a Human Arm.

    PubMed

    Thomas, Philip; Branicky, Michael; van den Bogert, Antonie; Jagodnik, Kathleen

    2009-01-01

    Clinical tests have shown that the dynamics of a human arm, controlled using Functional Electrical Stimulation (FES), can vary significantly between and during trials. In this paper, we study the application of the actor-critic architecture, with neural networks for the both the actor and the critic, as a controller that can adapt to these changing dynamics of a human arm. Development and tests were done in simulation using a planar arm model and Hill-based muscle dynamics. We begin by training it using a Proportional Derivative (PD) controller as a supervisor. We then make clinically relevant changes to the dynamics of the arm and test the actor-critic's ability to adapt without supervision in a reasonable number of episodes. Finally, we devise methods for achieving both rapid learning and long-term stability.

  8. Effects of incentives on psychosocial performances in simulated space-dwelling groups

    NASA Astrophysics Data System (ADS)

    Hienz, Robert D.; Brady, Joseph V.; Hursh, Steven R.; Gasior, Eric D.; Spence, Kevin R.; Emurian, Henry H.

    Prior research with individually isolated 3-person crews in a distributed, interactive, planetary exploration simulation examined the effects of communication constraints and crew configuration changes on crew performance and psychosocial self-report measures. The present report extends these findings to a model of performance maintenance that operationalizes conditions under which disruptive affective responses by crew participants might be anticipated to emerge. Experiments evaluated the effects of changes in incentive conditions on crew performance and self-report measures in simulated space-dwelling groups. Crews participated in a simulated planetary exploration mission that required identification, collection, and analysis of geologic samples. Results showed that crew performance effectiveness was unaffected by either positive or negative incentive conditions, while self-report measures were differentially affected—negative incentive conditions produced pronounced increases in negative self-report ratings and decreases in positive self-report ratings, while positive incentive conditions produced increased positive self-report ratings only. Thus, incentive conditions associated with simulated spaceflight missions can significantly affect psychosocial adaptation without compromising task performance effectiveness in trained and experienced crews.

  9. Simulation: a new approach to teaching ethics.

    PubMed

    Buxton, Margaret; Phillippi, Julia C; Collins, Michelle R

    2015-01-01

    The importance of ethical conduct in health care was acknowledged as early as the fifth century in the Hippocratic Oath and continues to be an essential element of clinical practice. Providers face ethical dilemmas that are complex and unfold over time, testing both practitioners' knowledge and communication skills. Students learning to be health care providers need to develop the knowledge and skills necessary to negotiate complex situations involving ethical conflict. Simulation has been shown to be an effective learning environment for students to learn and practice complex and overlapping skills sets. However, there is little guidance in the literature on constructing effective simulation environments to assist students in applying ethical concepts. This article describes realistic simulations with trained, standardized patients that present ethical problems to graduate-level nurse-midwifery students. Student interactions with the standardized patients were monitored by faculty and peers, and group debriefing was used to help explore students' emotions and reactions. Student feedback postsimulation was exceedingly positive. This simulation could be easily adapted for use by health care education programs to assist students in developing competency with ethics. © 2014 by the American College of Nurse-Midwives.

  10. Developing a Field Artillery Training System Based on Devices and Simulations: Evaluation of Training Devices and Simulations

    DTIC Science & Technology

    1984-12-01

    best trained by instruction alone or with simple demonstration materials. Training Devices are judged best for training the routine use of specific...pieces of equipment (e.g., Howitzer, BCS, DMD/FIST DMD, GLLD, LRF, map/compass/ plotting tools). Simulations are judged best for training more complex...at all phases of engagement operations. Simulations are also judged best for conducting training of any task under extreme environments and

  11. Parent Management Training-Oregon Model (PMTO™) in Mexico City: Integrating Cultural Adaptation Activities in an Implementation Model

    PubMed Central

    Baumann, Ana A.; Domenech Rodríguez, Melanie M.; Amador, Nancy G.; Forgatch, Marion S.; Parra-Cardona, J. Rubén

    2015-01-01

    This article describes the process of cultural adaptation at the start of the implementation of the Parent Management Training intervention-Oregon model (PMTO) in Mexico City. The implementation process was guided by the model, and the cultural adaptation of PMTO was theoretically guided by the cultural adaptation process (CAP) model. During the process of the adaptation, we uncovered the potential for the CAP to be embedded in the implementation process, taking into account broader training and economic challenges and opportunities. We discuss how cultural adaptation and implementation processes are inextricably linked and iterative and how maintaining a collaborative relationship with the treatment developer has guided our work and has helped expand our research efforts, and how building human capital to implement PMTO in Mexico supported the implementation efforts of PMTO in other places in the United States. PMID:26052184

  12. Parent Management Training-Oregon Model (PMTO™) in Mexico City: Integrating Cultural Adaptation Activities in an Implementation Model.

    PubMed

    Baumann, Ana A; Domenech Rodríguez, Melanie M; Amador, Nancy G; Forgatch, Marion S; Parra-Cardona, J Rubén

    2014-03-01

    This article describes the process of cultural adaptation at the start of the implementation of the Parent Management Training intervention-Oregon model (PMTO) in Mexico City. The implementation process was guided by the model, and the cultural adaptation of PMTO was theoretically guided by the cultural adaptation process (CAP) model. During the process of the adaptation, we uncovered the potential for the CAP to be embedded in the implementation process, taking into account broader training and economic challenges and opportunities. We discuss how cultural adaptation and implementation processes are inextricably linked and iterative and how maintaining a collaborative relationship with the treatment developer has guided our work and has helped expand our research efforts, and how building human capital to implement PMTO in Mexico supported the implementation efforts of PMTO in other places in the United States.

  13. Cardiovascular Adaptations Induced by Resistance Training in Animal Models.

    PubMed

    Melo, S F S; da Silva Júnior, N D; Barauna, V G; Oliveira, E M

    2018-01-01

    In the last 10 years the number of studies showing the benefits of resistance training (RT) to the cardiovascular system, have grown. In comparison to aerobic training, RT-induced favorable adaptations to the cardiovascular system have been ignored for many years, thus the mechanisms of the RT-induced cardiovascular adaptations are still uncovered. The lack of animal models with comparable protocols to the RT performed by humans hampers the knowledge. We have used squat-exercise model, which is widely used by many others laboratories. However, to a lesser extent, other models are also employed to investigate the cardiovascular adaptations. In the subsequent sections we will review the information regarding cardiac morphological adaptations, signaling pathway of the cardiac cell, cardiac function and the vascular adaptation induced by RT using this animal model developed by Tamaki et al. in 1992. Furthermore, we also describe cardiovascular findings observed using other animal models of RT.

  14. Training of Leadership Skills in Medical Education

    PubMed Central

    Kiesewetter, Jan; Schmidt-Huber, Marion; Netzel, Janine; Krohn, Alexandra C.; Angstwurm, Matthias; Fischer, Martin R.

    2013-01-01

    Background: Effective team performance is essential in the delivery of high-quality health-care. Leadership skills therefore are an important part of physicians’ everyday clinical life. To date, the development of leadership skills are underrepresented in medical curricula. Appropriate training methods for equipping doctors with these leadership skills are highly desirable. Objective: The review aims to summarize the findings in the current literature regarding training in leadership skills in medicine and tries to integrate the findings to guide future research and training development. Method: The PubMED, ERIC, and PsycArticles, PsycINFO, PSYNDEX and Academic search complete of EBSCOhost were searched for training of leadership skills in medicine in German and English. Relevant articles were identified and findings were integrated and consolidated regarding the leadership principles, target group of training and number of participants, temporal resources of the training, training content and methods, the evaluation design and trainings effects. Results: Eight studies met all inclusion criteria and no exclusion criteria. The range of training programs is very broad and leadership skill components are diverse. Training designs implied theoretical reflections of leadership phenomena as well as discussions of case studies from practice. The duration of training ranged from several hours to years. Reactions of participants to trainings were positive, yet no behavioral changes through training were examined. Conclusions: More research is needed to understand the factors critical to success in the development of leadership skills in medical education and to adapt goal-oriented training methods. Requirements analysis might help to gain knowledge about the nature of leadership skills in medicine. The authors propose a stronger focus on behavioral training methods like simulation-based training for leadership skills in medical education. PMID:24282452

  15. Training of leadership skills in medical education.

    PubMed

    Kiesewetter, Jan; Schmidt-Huber, Marion; Netzel, Janine; Krohn, Alexandra C; Angstwurm, Matthias; Fischer, Martin R

    2013-01-01

    Effective team performance is essential in the delivery of high-quality health-care. Leadership skills therefore are an important part of physicians' everyday clinical life. To date, the development of leadership skills are underrepresented in medical curricula. Appropriate training methods for equipping doctors with these leadership skills are highly desirable. The review aims to summarize the findings in the current literature regarding training in leadership skills in medicine and tries to integrate the findings to guide future research and training development. The PubMED, ERIC, and PsycArticles, PsycINFO, PSYNDEX and Academic search complete of EBSCOhost were searched for training of leadership skills in medicine in German and English. Relevant articles were identified and findings were integrated and consolidated regarding the leadership principles, target group of training and number of participants, temporal resources of the training, training content and methods, the evaluation design and trainings effects. Eight studies met all inclusion criteria and no exclusion criteria. The range of training programs is very broad and leadership skill components are diverse. Training designs implied theoretical reflections of leadership phenomena as well as discussions of case studies from practice. The duration of training ranged from several hours to years. Reactions of participants to trainings were positive, yet no behavioral changes through training were examined. More research is needed to understand the factors critical to success in the development of leadership skills in medical education and to adapt goal-oriented training methods. Requirements analysis might help to gain knowledge about the nature of leadership skills in medicine. The authors propose a stronger focus on behavioral training methods like simulation-based training for leadership skills in medical education.

  16. Multiplatform Mission Planning and Operations Simulation Environment for Adaptive Remote Sensors

    NASA Astrophysics Data System (ADS)

    Smith, G.; Ball, C.; O'Brien, A.; Johnson, J. T.

    2017-12-01

    We report on the design and development of mission simulator libraries to support the emerging field of adaptive remote sensors. We will outline the current state of the art in adaptive sensing, provide analysis of how the current approach to performing observing system simulation experiments (OSSEs) must be changed to enable adaptive sensors for remote sensing, and present an architecture to enable their inclusion in future OSSEs.The growing potential of sensors capable of real-time adaptation of their operational parameters calls for a new class of mission planning and simulation tools. Existing simulation tools used in OSSEs assume a fixed set of sensor parameters in terms of observation geometry, frequencies used, resolution, or observation time, which allows simplifications to be made in the simulation and allows sensor observation errors to be characterized a priori. Adaptive sensors may vary these parameters depending on the details of the scene observed, so that sensor performance is not simple to model without conducting OSSE simulations that include sensor adaptation in response to varying observational environment. Adaptive sensors are of significance to resource-constrained, small satellite platforms because they enable the management of power and data volumes while providing methods for multiple sensors to collaborate.The new class of OSSEs required to utilize adaptive sensors located on multiple platforms must answer the question: If the physical act of sensing has a cost, how does the system determine if the science value of a measurement is worth the cost and how should that cost be shared among the collaborating sensors?Here we propose to answer this question using an architecture structured around three modules: ADAPT, MANAGE and COLLABORATE. The ADAPT module is a set of routines to facilitate modeling of adaptive sensors, the MANAGE module will implement a set of routines to facilitate simulations of sensor resource management when power and data volume are constrained, and the COLLABORATE module will support simulations of coordination among multiple platforms with adaptive sensors. When used together these modules will for a simulation OSSEs that can enable both the design of adaptive algorithms to support remote sensing and the prediction of the sensor performance.

  17. Computer-based simulation training in emergency medicine designed in the light of malpractice cases.

    PubMed

    Karakuş, Akan; Duran, Latif; Yavuz, Yücel; Altintop, Levent; Calişkan, Fatih

    2014-07-27

    Using computer-based simulation systems in medical education is becoming more and more common. Although the benefits of practicing with these systems in medical education have been demonstrated, advantages of using computer-based simulation in emergency medicine education are less validated. The aim of the present study was to assess the success rates of final year medical students in doing emergency medical treatment and evaluating the effectiveness of computer-based simulation training in improving final year medical students' knowledge. Twenty four Students trained with computer-based simulation and completed at least 4 hours of simulation-based education between the dates Feb 1, 2010 - May 1, 2010. Also a control group (traditionally trained, n =24) was chosen. After the end of training, students completed an examination about 5 randomized medical simulation cases. In 5 cases, an average of 3.9 correct medical approaches carried out by computer-based simulation trained students, an average of 2.8 correct medical approaches carried out by traditionally trained group (t = 3.90, p < 0.005). We found that the success of students trained with simulation training in cases which required complicated medical approach, was statistically higher than the ones who didn't take simulation training (p ≤ 0.05). Computer-based simulation training would be significantly effective in learning of medical treatment algorithms. We thought that these programs can improve the success rate of students especially in doing adequate medical approach to complex emergency cases.

  18. 49 CFR 239.103 - Passenger train emergency simulations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Passenger train emergency simulations. 239.103....103 Passenger train emergency simulations. (a) General. Each railroad operating passenger train service shall conduct full-scale emergency simulations, in order to determine its capability to execute...

  19. 49 CFR 239.103 - Passenger train emergency simulations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Passenger train emergency simulations. 239.103....103 Passenger train emergency simulations. (a) General. Each railroad operating passenger train service shall conduct full-scale emergency simulations, in order to determine its capability to execute...

  20. 49 CFR 239.103 - Passenger train emergency simulations.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Passenger train emergency simulations. 239.103....103 Passenger train emergency simulations. (a) General. Each railroad operating passenger train service shall conduct full-scale emergency simulations, in order to determine its capability to execute...

  1. 49 CFR 239.103 - Passenger train emergency simulations.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Passenger train emergency simulations. 239.103....103 Passenger train emergency simulations. (a) General. Each railroad operating passenger train service shall conduct full-scale emergency simulations, in order to determine its capability to execute...

  2. Some Factors Influencing Air Force Simulator Training Effectiveness. Technical Report.

    ERIC Educational Resources Information Center

    Caro, Paul W.

    A study of U.S. Air Force simulator training was conducted to identify factors that influence the effectiveness of such training and to learn how its effectiveness is being determined. The research consisted of a survey of ten representative Air Force simulator training programs and a review of the simulator training research literature. A number…

  3. The Persistent Issue of Simulator Sickness in Naval Aviation Training.

    PubMed

    Geyer, Daniel J; Biggs, Adam T

    2018-04-01

    Virtual simulations offer nearly unlimited training potential for naval aviation due to the wide array of scenarios that can be simulated in a safe, reliable, and cost-effective environment. This versatility has created substantial interest in using existing and emerging virtual technology to enhance training scenarios. However, the virtual simulations themselves may hinder training initiatives by inducing simulator sickness among the trainees, which is a series of symptoms similar to motion sickness that can arise from simulator use. Simulator sickness has been a problem for military aviation since the first simulators were introduced. The problem has also persisted despite the increasing fidelity and sense of immersion offered by new generations of simulators. As such, it is essential to understand the various problems so that trainers can ensure the best possible use of the simulators. This review will examine simulator sickness as it pertains to naval aviation training. Topics include: the prevailing theories on why symptoms develop, methods of measurement, contributing factors, effects on training, effects when used shipboard, aftereffects, countermeasures, and recommendations for future research involving virtual simulations in an aviation training environment.Geyer DJ, Biggs AT. The persistent issue of simulator sickness in naval aviation training. Aerosp Med Hum Perform. 2018; 89(4):396-405.

  4. A simultaneous examination of two forms of working memory training: Evidence for near transfer only.

    PubMed

    Minear, Meredith; Brasher, Faith; Guerrero, Claudia Brandt; Brasher, Mandy; Moore, Andrew; Sukeena, Joshua

    2016-10-01

    The efficacy of working-memory training is a topic of considerable debate, with some studies showing transfer to measures such as fluid intelligence while others have not. We report the results of a study designed to examine two forms of working-memory training, one using a spatial n-back and the other a verbal complex span. Thirty-one undergraduates completed 4 weeks of n-back training and 32 completed 4 weeks of verbal complex span training. We also included two active control groups. One group trained on a non-adaptive version of n-back and the other trained on a real-time strategy video game. All participants completed pre- and post-training measures of a large battery of transfer tasks used to create composite measures of short-term and working memory in both verbal and visuo-spatial domains as well as verbal reasoning and fluid intelligence. We only found clear evidence for near transfer from the spatial n-back training to new forms of n-back, and this was the case for both adaptive and non-adaptive n-back.

  5. Utilizing feedback in adaptive SAR ATR systems

    NASA Astrophysics Data System (ADS)

    Horsfield, Owen; Blacknell, David

    2009-05-01

    Existing SAR ATR systems are usually trained off-line with samples of target imagery or CAD models, prior to conducting a mission. If the training data is not representative of mission conditions, then poor performance may result. In addition, it is difficult to acquire suitable training data for the many target types of interest. The Adaptive SAR ATR Problem Set (AdaptSAPS) program provides a MATLAB framework and image database for developing systems that adapt to mission conditions, meaning less reliance on accurate training data. A key function of an adaptive system is the ability to utilise truth feedback to improve performance, and it is this feature which AdaptSAPS is intended to exploit. This paper presents a new method for SAR ATR that does not use training data, based on supervised learning. This is achieved by using feature-based classification, and several new shadow features have been developed for this purpose. These features allow discrimination of vehicles from clutter, and classification of vehicles into two classes: targets, comprising military combat types, and non-targets, comprising bulldozers and trucks. The performance of the system is assessed using three baseline missions provided with AdaptSAPS, as well as three additional missions. All performance metrics indicate a distinct learning trend over the course of a mission, with most third and fourth quartile performance levels exceeding 85% correct classification. It has been demonstrated that these performance levels can be maintained even when truth feedback rates are reduced by up to 55% over the course of a mission.

  6. 14 CFR 142.54 - Airline transport pilot certification training program.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... training in a flight simulation training device— (1) Holds an aircraft type rating for the aircraft represented by the flight simulation training device utilized in the training program and have received... will be demonstrated in the flight simulation training device; and (2) Satisfies the requirements of...

  7. 14 CFR 121.408 - Training equipment other than flight simulation training devices.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Training equipment other than flight simulation training devices. 121.408 Section 121.408 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... § 121.408 Training equipment other than flight simulation training devices. (a) The Administrator must...

  8. College Adapter Program Curriculum Design. Manpower Education Monograph Series, Volume II.

    ERIC Educational Resources Information Center

    Higher Education Development Fund, New York, NY.

    The College Adapter Program (CAP) is a program to train inner-city young men and women with high potential for post-secondary technical training. These young men and women either have dropped out of high school, or have been insufficiently prepared in high school for further educational training. The Curriculum Design monograph is a statement of…

  9. 14 CFR 121.407 - Training program: Approval of airplane simulators and other training devices.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Training program: Approval of airplane... Program § 121.407 Training program: Approval of airplane simulators and other training devices. (a) Each airplane simulator and other training device that is used in a training course permitted under § 121.409...

  10. 14 CFR 121.407 - Training program: Approval of airplane simulators and other training devices.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Training program: Approval of airplane... Program § 121.407 Training program: Approval of airplane simulators and other training devices. (a) Each airplane simulator and other training device that is used in a training course permitted under § 121.409...

  11. 14 CFR 121.407 - Training program: Approval of airplane simulators and other training devices.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Training program: Approval of airplane... Program § 121.407 Training program: Approval of airplane simulators and other training devices. (a) Each airplane simulator and other training device that is used in a training course permitted under § 121.409...

  12. 14 CFR 121.407 - Training program: Approval of airplane simulators and other training devices.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Training program: Approval of airplane... Program § 121.407 Training program: Approval of airplane simulators and other training devices. (a) Each airplane simulator and other training device that is used in a training course permitted under § 121.409...

  13. Adaptive Working Memory Training Reduces the Negative Impact of Anxiety on Competitive Motor Performance.

    PubMed

    Ducrocq, Emmanuel; Wilson, Mark; Smith, Tim J; Derakshan, Nazanin

    2017-12-01

    Optimum levels of attentional control are essential to prevent athletes from experiencing performance breakdowns under pressure. The current study explored whether training attentional control using the adaptive dual n-back paradigm, designed to directly target processing efficiency of the main executive functions of working memory (WM), would result in transferrable effects on sports performance outcomes. A total of 30 tennis players were allocated to an adaptive WM training or active control group and underwent 10 days of training. Measures of WM capacity as well as performance and objective gaze indices of attentional control in a tennis volley task were assessed in low- and high-pressure posttraining conditions. Results revealed significant benefits of training on WM capacity, quiet eye offset, and tennis performance in the high-pressure condition. Our results confirm and extend previous findings supporting the transfer of cognitive training benefits to objective measures of sports performance under pressure.

  14. Framework for incorporating simulation into urology training.

    PubMed

    Arora, Sonal; Lamb, Benjamin; Undre, Shabnam; Kneebone, Roger; Darzi, Ara; Sevdalis, Nick

    2011-03-01

    • Changes to working hours, new technologies and increased accountability have rendered the need for alternative training environments for urologists. • Simulation offers a promising arena for learning to take place in a safe, realistic setting. • Despite its benefits, the incorporation of simulation into urological training programmes remains minimal. • The current status and future directions of simulation for training in technical and non-technical skills are reviewed as they pertain to urology. • A framework is presented for how simulation-based training could be incorporated into the entire urological curriculum. • The literature on simulation in technical and non-technical skills training is reviewed, with a specific focus upon urology. • To fully integrate simulation into a training curriculum, its possibilities for addressing all the competencies required by a urologist must be realized. • At an early stage of training, simulation has been used to develop basic technical skills and cognitive skills, such as decision-making and communication. • At an intermediate stage, the studies focus upon more advanced technical skills learnt with virtual reality simulators. • Non-technical skills training would include leadership and could be delivered with in situ models. • At the final stage, experienced trainees can practise technical and non-technical skills in full crisis simulations situated within a fully-simulated operating rooms. • Simulation can provide training in the technical and non-technical skills required to be a competent urologist. • The framework presented may guide how best to incorporate simulation into training curricula. • Future work should determine whether acquired skills transfer to clinical practice and improve patient care. © 2010 THE AUTHORS. BJU INTERNATIONAL © 2010 BJU INTERNATIONAL.

  15. Changes in auditory nerve responses across the duration of sinusoidally amplitude-modulated electric pulse-train stimuli.

    PubMed

    Hu, Ning; Miller, Charles A; Abbas, Paul J; Robinson, Barbara K; Woo, Jihwan

    2010-12-01

    Response rates of auditory nerve fibers (ANFs) to electric pulse trains change over time, reflecting substantial spike-rate adaptation that depends on stimulus parameters. We hypothesize that adaptation affects the representation of amplitude-modulated pulse trains used by cochlear prostheses to transmit speech information to the auditory system. We recorded cat ANF responses to sinusoidally amplitude-modulated (SAM) trains with 5,000 pulse/s carriers. Stimuli delivered by a monopolar intracochlear electrode had fixed modulation frequency (100 Hz) and depth (10%). ANF responses were assessed by spike-rate measures, while representation of modulation was evaluated by vector strength (VS) and the fundamental component of the fast Fourier transform (F(0) amplitude). These measures were assessed across the 400 ms duration of pulse-train stimuli, a duration relevant to speech stimuli. Different stimulus levels were explored and responses were categorized into four spike-rate groups to assess level effects across ANFs. The temporal pattern of rate adaptation to modulated trains was similar to that of unmodulated trains, but with less rate adaptation. VS to the modulator increased over time and tended to saturate at lower spike rates, while F(0) amplitude typically decreased over time for low driven rates and increased for higher driven rates. VS at moderate and high spike rates and degree of F(0) amplitude temporal changes at low and moderate spike rates were positively correlated with the degree of rate adaptation. Thus, high-rate carriers will modify the ANF representation of the modulator over time. As the VS and F(0) measures were sensitive to adaptation-related changes over different spike-rate ranges, there is value in assessing both measures.

  16. 14 CFR 121.915 - Continuing qualification curriculum.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ..., flight training device, flight simulator, or other equipment, as appropriate, on normal, abnormal, and... training in the type flight training device or the type flight simulator, as appropriate, regarding... flight simulators or flight training devices: Training in operational flight procedures and maneuvers...

  17. 14 CFR 121.915 - Continuing qualification curriculum.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ..., flight training device, flight simulator, or other equipment, as appropriate, on normal, abnormal, and... training in the type flight training device or the type flight simulator, as appropriate, regarding... flight simulators or flight training devices: Training in operational flight procedures and maneuvers...

  18. 14 CFR 121.915 - Continuing qualification curriculum.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ..., flight training device, flight simulator, or other equipment, as appropriate, on normal, abnormal, and... training in the type flight training device or the type flight simulator, as appropriate, regarding... flight simulators or flight training devices: Training in operational flight procedures and maneuvers...

  19. Career perspective: Charles M Tipton.

    PubMed

    Tipton, Charles M

    2015-01-01

    This invited autobiographical article pertains to 52 years as an exercise physiologist of which 16 years were devoted to being an active emeriti. Although the career pathway was circuitous in nature, once resolved, it included preparation of future exercise physiologists; reducing the health hazards associated with the "making of weight" by scholastic wrestlers; using animals (rats and dogs) as the model system with a myriad of experimental procedure for obtaining insights and understandings of various exercise training mechanism in one-G environments, and in simulated μG environments. From the results, we have concluded that (a) inactivity, as represented by immobilization, is the most undesirable physiological state an animal should experience and (b) movement, as represented by training, will have an intrinsic adaptive influence on select biological tissues that, in some situations, can be independent of autonomic and hormonal influences.

  20. Reinforcement learning for a biped robot based on a CPG-actor-critic method.

    PubMed

    Nakamura, Yutaka; Mori, Takeshi; Sato, Masa-aki; Ishii, Shin

    2007-08-01

    Animals' rhythmic movements, such as locomotion, are considered to be controlled by neural circuits called central pattern generators (CPGs), which generate oscillatory signals. Motivated by this biological mechanism, studies have been conducted on the rhythmic movements controlled by CPG. As an autonomous learning framework for a CPG controller, we propose in this article a reinforcement learning method we call the "CPG-actor-critic" method. This method introduces a new architecture to the actor, and its training is roughly based on a stochastic policy gradient algorithm presented recently. We apply this method to an automatic acquisition problem of control for a biped robot. Computer simulations show that training of the CPG can be successfully performed by our method, thus allowing the biped robot to not only walk stably but also adapt to environmental changes.

  1. Towards a genetics-based adaptive agent to support flight testing

    NASA Astrophysics Data System (ADS)

    Cribbs, Henry Brown, III

    Although the benefits of aircraft simulation have been known since the late 1960s, simulation almost always entails interaction with a human test pilot. This "pilot-in-the-loop" simulation process provides useful evaluative information to the aircraft designer and provides a training tool to the pilot. Emulation of a pilot during the early phases of the aircraft design process might provide designers a useful evaluative tool. Machine learning might emulate a pilot in a simulated aircraft/cockpit setting. Preliminary work in the application of machine learning techniques, such as reinforcement learning, to aircraft maneuvering have shown promise. These studies used simplified interfaces between machine learning agent and the aircraft simulation. The simulations employed low order equivalent system models. High-fidelity aircraft simulations exist, such as the simulations developed by NASA at its Dryden Flight Research Center. To expand the applicational domain of reinforcement learning to aircraft designs, this study presents a series of experiments that examine a reinforcement learning agent in the role of test pilot. The NASA X-31 and F-106 high-fidelity simulations provide realistic aircraft for the agent to maneuver. The approach of the study is to examine an agent possessing a genetic-based, artificial neural network to approximate long-term, expected cost (Bellman value) in a basic maneuvering task. The experiments evaluate different learning methods based on a common feedback function and an identical task. The learning methods evaluated are: Q-learning, Q(lambda)-learning, SARSA learning, and SARSA(lambda) learning. Experimental results indicate that, while prediction error remain quite high, similar, repeatable behaviors occur in both aircraft. Similar behavior exhibits portability of the agent between aircraft with different handling qualities (dynamics). Besides the adaptive behavior aspects of the study, the genetic algorithm used in the agent is shown to play an additive role in the shaping of the artificial neural network to the prediction task.

  2. Robot-assisted adaptive training: custom force fields for teaching movement patterns.

    PubMed

    Patton, James L; Mussa-Ivaldi, Ferdinando A

    2004-04-01

    Based on recent studies of neuro-adaptive control, we tested a new iterative algorithm to generate custom training forces to "trick" subjects into altering their target-directed reaching movements to a prechosen movement as an after-effect of adaptation. The prechosen movement goal, a sinusoidal-shaped path from start to end point, was never explicitly conveyed to the subject. We hypothesized that the adaptation would cause an alteration in the feedforward command that would result in the prechosen movement. Our results showed that when forces were suddenly removed after a training period of 330 movements, trajectories were significantly shifted toward the prechosen movement. However, de-adaptation occurred (i.e., the after-effect "washed out") in the 50-75 movements that followed the removal of the training forces. A second experiment suppressed vision of hand location and found a detectable reduction in the washout of after-effects, suggesting that visual feedback of error critically influences learning. A final experiment demonstrated that after-effects were also present in the neighborhood of training--44% of original directional shift was seen in adjacent, unpracticed movement directions to targets that were 60 degrees different from the targets used for training. These results demonstrate the potential for these methods for teaching motor skills and for neuro-rehabilitation of brain-injured patients. This is a form of "implicit learning," because unlike explicit training methods, subjects learn movements with minimal instructions, no knowledge of, and little attention to the trajectory.

  3. Trained immunity: a program of innate immune memory in health and disease

    PubMed Central

    Netea, Mihai G.; Joosten, Leo A.B.; Latz, Eicke; Mills, Kingston H.G.; Natoli, Gioacchino; Stunnenberg, Hendrik G.; O’Neill, Luke A.J.; Xavier, Ramnik J.

    2016-01-01

    The general view that only adaptive immunity can build immunological memory has recently been challenged. In organisms lacking adaptive immunity as well as in mammals, the innate immune system can mount resistance to reinfection, a phenomenon termed trained immunity or innate immune memory. Trained immunity is orchestrated by epigenetic reprogramming, broadly defined as sustained changes in gene expression and cell physiology that do not involve permanent genetic changes such as mutations and recombination, which are essential for adaptive immunity. The discovery of trained immunity may open the door for novel vaccine approaches, for new therapeutic strategies for the treatment of immune deficiency states, and for modulation of exaggerated inflammation in autoinflammatory diseases. PMID:27102489

  4. Introducing a laparoscopic simulation training and credentialing program in gynaecology: an observational study.

    PubMed

    Janssens, Sarah; Beckmann, Michael; Bonney, Donna

    2015-08-01

    Simulation training in laparoscopic surgery has been shown to improve surgical performance. To describe the implementation of a laparoscopic simulation training and credentialing program for gynaecology registrars. A pilot program consisting of protected, supervised laparoscopic simulation time, a tailored curriculum and a credentialing process, was developed and implemented. Quantitative measures assessing simulated surgical performance were measured over the simulation training period. Laparoscopic procedures requiring credentialing were assessed for both the frequency of a registrar being the primary operator and the duration of surgery and compared to a presimulation cohort. Qualitative measures regarding quality of surgical training were assessed pre- and postsimulation. Improvements were seen in simulated surgical performance in efficiency domains. Operative time for procedures requiring credentialing was reduced by 12%. Primary operator status in the operating theatre for registrars was unchanged. Registrar assessment of training quality improved. The introduction of a laparoscopic simulation training and credentialing program resulted in improvements in simulated performance, reduced operative time and improved registrar assessment of the quality of training. © 2015 The Royal Australian and New Zealand College of Obstetricians and Gynaecologists.

  5. Progress in virtual reality simulators for surgical training and certification.

    PubMed

    de Visser, Hans; Watson, Marcus O; Salvado, Olivier; Passenger, Joshua D

    2011-02-21

    There is increasing evidence that educating trainee surgeons by simulation is preferable to traditional operating-room training methods with actual patients. Apart from reducing costs and risks to patients, training by simulation can provide some unique benefits, such as greater control over the training procedure and more easily defined metrics for assessing proficiency. Virtual reality (VR) simulators are now playing an increasing role in surgical training. However, currently available VR simulators lack the fidelity to teach trainees past the novice-to-intermediate skills level. Recent technological developments in other industries using simulation, such as the games and entertainment and aviation industries, suggest that the next generation of VR simulators should be suitable for training, maintenance and certification of advanced surgical skills. To be effective as an advanced surgical training and assessment tool, VR simulation needs to provide adequate and relevant levels of physical realism, case complexity and performance assessment. Proper validation of VR simulators and an increased appreciation of their value by the medical profession are crucial for them to be accepted into surgical training curricula.

  6. A review of virtual reality based training simulators for orthopaedic surgery.

    PubMed

    Vaughan, Neil; Dubey, Venketesh N; Wainwright, Thomas W; Middleton, Robert G

    2016-02-01

    This review presents current virtual reality based training simulators for hip, knee and other orthopaedic surgery, including elective and trauma surgical procedures. There have not been any reviews focussing on hip and knee orthopaedic simulators. A comparison of existing simulator features is provided to identify what is missing and what is required to improve upon current simulators. In total 11 hip replacements pre-operative planning tools were analysed, plus 9 hip trauma fracture training simulators. Additionally 9 knee arthroscopy simulators and 8 other orthopaedic simulators were included for comparison. The findings are that for orthopaedic surgery simulators in general, there is increasing use of patient-specific virtual models which reduce the learning curve. Modelling is also being used for patient-specific implant design and manufacture. Simulators are being increasingly validated for assessment as well as training. There are very few training simulators available for hip replacement, yet more advanced virtual reality is being used for other procedures such as hip trauma and drilling. Training simulators for hip replacement and orthopaedic surgery in general lag behind other surgical procedures for which virtual reality has become more common. Further developments are required to bring hip replacement training simulation up to date with other procedures. This suggests there is a gap in the market for a new high fidelity hip replacement and resurfacing training simulator. Copyright © 2015 IPEM. Published by Elsevier Ltd. All rights reserved.

  7. A computer simulation of an adaptive noise canceler with a single input

    NASA Astrophysics Data System (ADS)

    Albert, Stuart D.

    1991-06-01

    A description of an adaptive noise canceler using Widrows' LMS algorithm is presented. A computer simulation of canceler performance (adaptive convergence time and frequency transfer function) was written for use as a design tool. The simulations, assumptions, and input parameters are described in detail. The simulation is used in a design example to predict the performance of an adaptive noise canceler in the simultaneous presence of both strong and weak narrow-band signals (a cosited frequency hopping radio scenario). On the basis of the simulation results, it is concluded that the simulation is suitable for use as an adaptive noise canceler design tool; i.e., it can be used to evaluate the effect of design parameter changes on canceler performance.

  8. A mechanical adapter for installing mission equipment on large space structures

    NASA Technical Reports Server (NTRS)

    Lefever, A. E.; Totah, R. S.

    1980-01-01

    A mechanical attachment adapter was designed, constructed, and tested. The adapter was was included in a simulation program that investigated techniques for assembling erectable structures under simulated zero-g conditions by pressure-suited subjects in a simulated EVA mode. The adapter was utilized as an interface attachment between a simulated equipment module and one node point of a tetrahedral structural cell. The mating performance of the adapter, a self-energized mechanism, was easily and quickly demonstrated and required little effort on the part of the test subjects.

  9. Simulating spatial adaption of groundwater pumping on seawater intrusion in coastal regions

    NASA Astrophysics Data System (ADS)

    Grundmann, Jens; Ladwig, Robert; Schütze, Niels; Walther, Marc

    2016-04-01

    Coastal aquifer systems are used intensively to meet the growing demands for water in those regions. They are especially at risk for the intrusion of seawater due to aquifer overpumping, limited groundwater replenishment and unsustainable groundwater management which in turn also impacts the social and economical development of coastal regions. One example is the Al-Batinah coastal plain in northern Oman where irrigated agriculture is practiced by lots of small scaled farms in different distances from the sea, each of them pumping their water from coastal aquifer. Due to continuous overpumping and progressing saltwater intrusion farms near the coast had to close since water for irrigation got too saline. For investigating appropriate management options numerical density dependent groundwater modelling is required which should also portray the adaption of groundwater abstraction schemes on the water quality. For addressing this challenge a moving inner boundary condition is implemented in the numerical density dependent groundwater model which adjusts the locations for groundwater abstraction according to the position of the seawater intrusion front controlled by thresholds of relative chloride concentration. The adaption process is repeated for each management cycle within transient model simulations and allows for considering feedbacks with the consumers e.g. the agriculture by moving agricultural farms more inland or towards the sea if more fertile soils at the coast could be recovered. For finding optimal water management strategies efficiently, the behaviour of the numerical groundwater model for different extraction and replenishment scenarios is approximated by an artificial neural network using a novel approach for state space surrogate model development. Afterwards the derived surrogate is coupled with an agriculture module within a simulation based water management optimisation framework to achieve optimal cropping pattern and water abstraction schemes regarding multiple objectives like aquifer sustainability and profitable agriculture. Results obtained for the above mentioned region show that the surrogate model has a very good interpolation capability i.e. it is able to reproduce unknown states obtained by numerical model simulations within the range of its training data. Furthermore, the importance of portraying the adaptive behaviour of farmers on water quality is underlined to develop management scenarios more realistically. However, results of a stop pumping scenario show that it is not possible to push back an advanced seawater intrusion in a time period of 200 years. Therefore, combinations of technical and adaptive measures are required.

  10. Volitional Weight-Lifting in Rats Promotes Adaptation via Performance and Muscle Morphology prior to Gains in Muscle Mass

    PubMed Central

    Rader, Erik P; Miller, G Roger; Chetlin, Robert D; Wirth, Oliver; Baker, Brent A

    2014-01-01

    Investigation of volitional animal models of resistance training has been instrumental in our understanding of adaptive training. However, these studies have lacked reactive force measurements, a precise performance measure, and morphological analysis at a distinct phase of training – when initial strength gains precede muscle hypertrophy. Our aim was to expose rats to one month of training (70 or 700 g load) on a custom-designed weight-lifting apparatus for analysis of reactive forces and muscle morphology prior to muscle hypertrophy. Exclusively following 700 g load training, forces increased by 21% whereas muscle masses remained unaltered. For soleus (SOL) and tibialis anterior (TA) muscles, 700 g load training increased muscle fiber number per unit area by ∼20% and decreased muscle fiber area by ∼20%. Additionally, number of muscle fibers per section increased by 18% for SOL muscles. These results establish that distinct morphological alterations accompany early strength gains in a volitional animal model of load-dependent adaptive resistance training. PMID:25392697

  11. Snowplow Simulator Training Study

    DOT National Transportation Integrated Search

    2011-01-01

    This report evaluates simulation training of IDOT snowplow operators to improve IDOT snow and ice removal : operations. Specifically, it assesses a drivers evaluation of snowplow simulation training immediately after : training in fall 2009 and ag...

  12. Gait Training Improves Performance in Healthy Adults Exposed to Novel Discordant Conditions

    NASA Technical Reports Server (NTRS)

    Batson, Crystal D.; Brady, Rachel A.; Peters, Brian T.; Mulavara, Ajitkumar P.; Bloomberg, Jacob J.

    2010-01-01

    After they return to Earth, astronauts experience sensorimotor disturbances that disrupt their ability to walk. We have previously shown that training with a variety of sensorimotor adaptive challenges enhances the capability of adapting to novel sensorimotor conditions. We are currently developing a sensorimotor adaptability (SA) training program designed to facilitate recovery of function after gravitational transitions. The purpose of this study was to determine whether trained subjects could transfer learned skills from one discordant visuo-proprioceptive environment to another. During three sessions, subjects walked at 2.5 km/h on a treadmill mounted on a motion base platform. Ten subjects trained with a combination of lateral treadmill translation and superimposed sinusoidal lateral optic flow that was presented on a large screen positioned in front of them. Ten controls completed the same training schedule while viewing only the forward optic flow with no visual or physical oscillation. Twenty minutes after the final training session, all subjects completed a 2-minute trial with a novel combination of visual and treadmill roll perturbations not previously experienced during the training (Transfer Test). Compared to the untrained group, participants who received SA training showed faster reaction times and, based on a composite score derived from stride frequency, heart rate, and reaction time, an overall enhanced performance. Our results showed that an SA training program can improve overall walking performance when subjects are exposed to novel incongruent sensory environments. This training has application for both enhancing adaptive responses in astronauts and reducing fall and injury risk in the elderly.

  13. Long-term music training modulates the recalibration of audiovisual simultaneity.

    PubMed

    Jicol, Crescent; Proulx, Michael J; Pollick, Frank E; Petrini, Karin

    2018-07-01

    To overcome differences in physical transmission time and neural processing, the brain adaptively recalibrates the point of simultaneity between auditory and visual signals by adapting to audiovisual asynchronies. Here, we examine whether the prolonged recalibration process of passively sensed visual and auditory signals is affected by naturally occurring multisensory training known to enhance audiovisual perceptual accuracy. Hence, we asked a group of drummers, of non-drummer musicians and of non-musicians to judge the audiovisual simultaneity of musical and non-musical audiovisual events, before and after adaptation with two fixed audiovisual asynchronies. We found that the recalibration for the musicians and drummers was in the opposite direction (sound leading vision) to that of non-musicians (vision leading sound), and change together with both increased music training and increased perceptual accuracy (i.e. ability to detect asynchrony). Our findings demonstrate that long-term musical training reshapes the way humans adaptively recalibrate simultaneity between auditory and visual signals.

  14. Discrete Time Rescaling Theorem: Determining Goodness of Fit for Discrete Time Statistical Models of Neural Spiking

    PubMed Central

    Haslinger, Robert; Pipa, Gordon; Brown, Emery

    2010-01-01

    One approach for understanding the encoding of information by spike trains is to fit statistical models and then test their goodness of fit. The time rescaling theorem provides a goodness of fit test consistent with the point process nature of spike trains. The interspike intervals (ISIs) are rescaled (as a function of the model’s spike probability) to be independent and exponentially distributed if the model is accurate. A Kolmogorov Smirnov (KS) test between the rescaled ISIs and the exponential distribution is then used to check goodness of fit. This rescaling relies upon assumptions of continuously defined time and instantaneous events. However spikes have finite width and statistical models of spike trains almost always discretize time into bins. Here we demonstrate that finite temporal resolution of discrete time models prevents their rescaled ISIs from being exponentially distributed. Poor goodness of fit may be erroneously indicated even if the model is exactly correct. We present two adaptations of the time rescaling theorem to discrete time models. In the first we propose that instead of assuming the rescaled times to be exponential, the reference distribution be estimated through direct simulation by the fitted model. In the second, we prove a discrete time version of the time rescaling theorem which analytically corrects for the effects of finite resolution. This allows us to define a rescaled time which is exponentially distributed, even at arbitrary temporal discretizations. We demonstrate the efficacy of both techniques by fitting Generalized Linear Models (GLMs) to both simulated spike trains and spike trains recorded experimentally in monkey V1 cortex. Both techniques give nearly identical results, reducing the false positive rate of the KS test and greatly increasing the reliability of model evaluation based upon the time rescaling theorem. PMID:20608868

  15. Discrete time rescaling theorem: determining goodness of fit for discrete time statistical models of neural spiking.

    PubMed

    Haslinger, Robert; Pipa, Gordon; Brown, Emery

    2010-10-01

    One approach for understanding the encoding of information by spike trains is to fit statistical models and then test their goodness of fit. The time-rescaling theorem provides a goodness-of-fit test consistent with the point process nature of spike trains. The interspike intervals (ISIs) are rescaled (as a function of the model's spike probability) to be independent and exponentially distributed if the model is accurate. A Kolmogorov-Smirnov (KS) test between the rescaled ISIs and the exponential distribution is then used to check goodness of fit. This rescaling relies on assumptions of continuously defined time and instantaneous events. However, spikes have finite width, and statistical models of spike trains almost always discretize time into bins. Here we demonstrate that finite temporal resolution of discrete time models prevents their rescaled ISIs from being exponentially distributed. Poor goodness of fit may be erroneously indicated even if the model is exactly correct. We present two adaptations of the time-rescaling theorem to discrete time models. In the first we propose that instead of assuming the rescaled times to be exponential, the reference distribution be estimated through direct simulation by the fitted model. In the second, we prove a discrete time version of the time-rescaling theorem that analytically corrects for the effects of finite resolution. This allows us to define a rescaled time that is exponentially distributed, even at arbitrary temporal discretizations. We demonstrate the efficacy of both techniques by fitting generalized linear models to both simulated spike trains and spike trains recorded experimentally in monkey V1 cortex. Both techniques give nearly identical results, reducing the false-positive rate of the KS test and greatly increasing the reliability of model evaluation based on the time-rescaling theorem.

  16. Perceptions, training experiences, and preferences of surgical residents toward laparoscopic simulation training: a resident survey.

    PubMed

    Shetty, Shohan; Zevin, Boris; Grantcharov, Teodor P; Roberts, Kurt E; Duffy, Andrew J

    2014-01-01

    Simulation training for surgical residents can shorten learning curves, improve technical skills, and expedite competency. Several studies have shown that skills learned in the simulated environment are transferable to the operating room. Residency programs are trying to incorporate simulation into the resident training curriculum to supplement the hands-on experience gained in the operating room. Despite the availability and proven utility of surgical simulators and simulation laboratories, they are still widely underutilized by surgical trainees. Studies have shown that voluntary use leads to minimal participation in a training curriculum. Although there are several simulation tools, there is no clear evidence of the superiority of one tool over the other in skill acquisition. The purpose of this study was to explore resident perceptions, training experiences, and preferences regarding laparoscopic simulation training. Our goal was to profile resident participation in surgical skills simulation, recognize potential barriers to voluntary simulator use, and identify simulation tools and tasks preferred by residents. Furthermore, this study may help to inform whether mandatory/protected training time, as part of the residents' curriculum is essential to enhance participation in the simulation laboratory. A cross-sectional study on general surgery residents (postgraduate years 1-5) at Yale University School of Medicine and the University of Toronto via an online questionnaire was conducted. Overall, 67 residents completed the survey. The institutional review board approved the methods of the study. Overall, 95.5% of the participants believed that simulation training improved their laparoscopic skills. Most respondents (92.5%) perceived that skills learned during simulation training were transferrable to the operating room. Overall, 56.7% of participants agreed that proficiency in a simulation curriculum should be mandatory before operating room experience. The simulation laboratory was most commonly used during work hours; lack of free time during work hours was most commonly cited as a reason for underutilization. Factors influencing use of the simulation laboratory in order of importance were the need for skill development, an interest in minimally invasive surgery, mandatory/protected time in a simulation environment as part of the residency program curriculum, a recommendation by an attending surgeon, and proximity of the simulation center. The most preferred simulation tool was the live animal model followed by cadaveric tissue. Virtual reality simulators were among the least-preferred (25%) simulation tools. Most residents (91.0%) felt that mandatory/protected time in a simulation environment should be introduced into resident training protocols. Mandatory and protected time in a simulation environment as part of the resident training curriculum may improve participation in simulation training. A comprehensive curriculum, which includes the use of live animals, cadaveric tissue, and virtual reality simulators, may enhance the laparoscopic training experience and interest level of surgical trainees. Copyright © 2014 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.

  17. Transfer of Complex Skill Learning from Virtual to Real Rowing

    PubMed Central

    Rauter, Georg; Sigrist, Roland; Koch, Claudio; Crivelli, Francesco; van Raai, Mark; Riener, Robert; Wolf, Peter

    2013-01-01

    Simulators are commonly used to train complex tasks. In particular, simulators are applied to train dangerous tasks, to save costs, and to investigate the impact of different factors on task performance. However, in most cases, the transfer of simulator training to the real task has not been investigated. Without a proof for successful skill transfer, simulators might not be helpful at all or even counter-productive for learning the real task. In this paper, the skill transfer of complex technical aspects trained on a scull rowing simulator to sculling on water was investigated. We assume if a simulator provides high fidelity rendering of the interactions with the environment even without augmented feedback, training on such a realistic simulator would allow similar skill gains as training in the real environment. These learned skills were expected to transfer to the real environment. Two groups of four recreational rowers participated. One group trained on water, the other group trained on a simulator. Within two weeks, both groups performed four training sessions with the same licensed rowing trainer. The development in performance was assessed by quantitative biomechanical performance measures and by a qualitative video evaluation of an independent, blinded trainer. In general, both groups could improve their performance on water. The used biomechanical measures seem to allow only a limited insight into the rowers' development, while the independent trainer could also rate the rowers' overall impression. The simulator quality and naturalism was confirmed by the participants in a questionnaire. In conclusion, realistic simulator training fostered skill gains to a similar extent as training in the real environment and enabled skill transfer to the real environment. In combination with augmented feedback, simulator training can be further exploited to foster motor learning even to a higher extent, which is subject to future work. PMID:24376518

  18. Lack of transfer of skills after virtual reality simulator training with haptic feedback.

    PubMed

    Våpenstad, Cecilie; Hofstad, Erlend Fagertun; Bø, Lars Eirik; Kuhry, Esther; Johnsen, Gjermund; Mårvik, Ronald; Langø, Thomas; Hernes, Toril Nagelhus

    2017-12-01

    Virtual reality (VR) simulators enrich surgical training and offer training possibilities outside of the operating room (OR). In this study, we created a criterion-based training program on a VR simulator with haptic feedback and tested it by comparing the performances of a simulator group against a control group. Medical students with no experience in laparoscopy were randomly assigned to a simulator group or a control group. In the simulator group, the candidates trained until they reached predefined criteria on the LapSim ® VR simulator (Surgical Science AB, Göteborg, Sweden) with haptic feedback (Xitact TM IHP, Mentice AB, Göteborg, Sweden). All candidates performed a cholecystectomy on a porcine organ model in a box trainer (the clinical setting). The performances were video rated by two surgeons blinded to subject training status. In total, 30 students performed the cholecystectomy and had their videos rated (N = 16 simulator group, N = 14 control group). The control group achieved better video rating scores than the simulator group (p < .05). The criterion-based training program did not transfer skills to the clinical setting. Poor mechanical performance of the simulated haptic feedback is believed to have resulted in a negative training effect.

  19. Clinical simulation training improves the clinical performance of Chinese medical students

    PubMed Central

    Zhang, Ming-ya; Cheng, Xin; Xu, An-ding; Luo, Liang-ping; Yang, Xuesong

    2015-01-01

    Background Modern medical education promotes medical students’ clinical operating capacity rather than the mastery of theoretical knowledge. To accomplish this objective, clinical skill training using various simulations was introduced into medical education to cultivate creativity and develop the practical ability of students. However, quantitative analysis of the efficiency of clinical skill training with simulations is lacking. Methods In the present study, we compared the mean scores of medical students (Jinan University) who graduated in 2013 and 2014 on 16 stations between traditional training (control) and simulative training groups. In addition, in a clinical skill competition, the objective structured clinical examination (OSCE) scores of participating medical students trained using traditional and simulative training were compared. The data were statistically analyzed and qualitatively described. Results The results revealed that simulative training could significantly enhance the graduate score of medical students compared with the control. The OSCE scores of participating medical students in the clinical skill competition, trained using simulations, were dramatically higher than those of students trained through traditional methods, and we also observed that the OSCE marks were significantly increased for the same participant after simulative training for the clinical skill competition. Conclusions Taken together, these data indicate that clinical skill training with a variety of simulations could substantially promote the clinical performance of medical students and optimize the resources used for medical education, although a precise analysis of each specialization is needed in the future. PMID:26478142

  20. Distributed Simulation as a modelling tool for the development of a simulation-based training programme for cardiovascular specialties.

    PubMed

    Kelay, Tanika; Chan, Kah Leong; Ako, Emmanuel; Yasin, Mohammad; Costopoulos, Charis; Gold, Matthew; Kneebone, Roger K; Malik, Iqbal S; Bello, Fernando

    2017-01-01

    Distributed Simulation is the concept of portable, high-fidelity immersive simulation. Here, it is used for the development of a simulation-based training programme for cardiovascular specialities. We present an evidence base for how accessible, portable and self-contained simulated environments can be effectively utilised for the modelling, development and testing of a complex training framework and assessment methodology. Iterative user feedback through mixed-methods evaluation techniques resulted in the implementation of the training programme. Four phases were involved in the development of our immersive simulation-based training programme: ( 1) initial conceptual stage for mapping structural criteria and parameters of the simulation training framework and scenario development ( n  = 16), (2) training facility design using Distributed Simulation , (3) test cases with clinicians ( n  = 8) and collaborative design, where evaluation and user feedback involved a mixed-methods approach featuring (a) quantitative surveys to evaluate the realism and perceived educational relevance of the simulation format and framework for training and (b) qualitative semi-structured interviews to capture detailed feedback including changes and scope for development. Refinements were made iteratively to the simulation framework based on user feedback, resulting in (4) transition towards implementation of the simulation training framework, involving consistent quantitative evaluation techniques for clinicians ( n  = 62). For comparative purposes, clinicians' initial quantitative mean evaluation scores for realism of the simulation training framework, realism of the training facility and relevance for training ( n  = 8) are presented longitudinally, alongside feedback throughout the development stages from concept to delivery, including the implementation stage ( n  = 62). Initially, mean evaluation scores fluctuated from low to average, rising incrementally. This corresponded with the qualitative component, which augmented the quantitative findings; trainees' user feedback was used to perform iterative refinements to the simulation design and components (collaborative design), resulting in higher mean evaluation scores leading up to the implementation phase. Through application of innovative Distributed Simulation techniques, collaborative design, and consistent evaluation techniques from conceptual, development, and implementation stages, fully immersive simulation techniques for cardiovascular specialities are achievable and have the potential to be implemented more broadly.

  1. Vertical flight training: An overview of training and flight simulator technology with emphasis on rotary-wing requirements

    NASA Technical Reports Server (NTRS)

    Alderete, Thomas S.; Ascencio-Lee, Carmen E.; Bray, Richard; Carlton, John; Dohme, Jack; Eshow, Michelle M.; Francis, Stephen; Lee, Owen M.; Lintern, Gavan; Lombardo, David A.

    1994-01-01

    The principal purpose of this publication is to provide a broad overview of the technology that is relevant to the design of aviation training systems and of the techniques applicable to the development, use, and evaluation of those systems. The issues addressed in our 11 chapters are, for the most part, those that would be expected to surface in any informed discussion of the major characterizing elements of aviation training systems. Indeed, many of the same facets of vertical-flight training discussed were recognized and, to some extent, dealt with at the 1991 NASA/FAA Helicopter Simulator Workshop. These generic topics are essential to a sound understanding of training and training systems, and they quite properly form the basis of any attempt to systematize the development and evaluation of more effective, more efficient, more productive, and more economical approaches to aircrew training. Individual chapters address the following topics: an overview of the vertical flight industry: the source of training requirements; training and training schools: meeting current requirements; training systems design and development; transfer of training and cost-effectiveness; the military quest for flight training effectiveness; alternative training systems; training device manufacturing; simulator aero model implementation; simulation validation in the frequency domain; cockpit motion in helicopter simulation; and visual space perception in flight simulators.

  2. Tailoring a training based on the Mental Health Gap Action Programme (mhGAP) Intervention Guide (IG) to Tunisia: process and relevant adaptations.

    PubMed

    Spagnolo, Jessica; Champagne, François; Leduc, Nicole; Melki, Wahid; Guesmi, Imen; Bram, Nesrine; Guisset, Ann-Lise; Piat, Myra; Laporta, Marc; Charfi, Fatma

    2018-01-01

    In order to make mental health services more accessible, the Tunisian Ministry of Health, in collaboration with the School of Public Health at the University of Montreal, the World Health Organization office in Tunisia and the Montreal World Health Organization-Pan American Health Organization Collaborating Center for Research and Training in Mental Health, implemented a training programme based on the Mental Health Gap Action Programme (mhGAP) Intervention Guide (IG) (version 1.0) , developed by the World Health Organization. This article describes the phase prior to the implementation of the training, which was offered to general practitioners working in primary care settings in the Greater Tunis area of Tunisia. The phase prior to implementation consisted of adapting the standard mhGAP-IG (version 1.0) to the local primary healthcare context. This adaptation process, an essential step before piloting the training, involved discussions with stakeholder groups, as well as field observations. Through the adaptation process, we were able to make changes to the standard training format and material. In addition, the process helped uncover systemic barriers to effective mental health care. Targeting these barriers in addition to implementing a training programme may help reduce the mental health treatment gap, and promote implementation that is successful and sustainable.

  3. Using recurrent neural networks for adaptive communication channel equalization.

    PubMed

    Kechriotis, G; Zervas, E; Manolakos, E S

    1994-01-01

    Nonlinear adaptive filters based on a variety of neural network models have been used successfully for system identification and noise-cancellation in a wide class of applications. An important problem in data communications is that of channel equalization, i.e., the removal of interferences introduced by linear or nonlinear message corrupting mechanisms, so that the originally transmitted symbols can be recovered correctly at the receiver. In this paper we introduce an adaptive recurrent neural network (RNN) based equalizer whose small size and high performance makes it suitable for high-speed channel equalization. We propose RNN based structures for both trained adaptation and blind equalization, and we evaluate their performance via extensive simulations for a variety of signal modulations and communication channel models. It is shown that the RNN equalizers have comparable performance with traditional linear filter based equalizers when the channel interferences are relatively mild, and that they outperform them by several orders of magnitude when either the channel's transfer function has spectral nulls or severe nonlinear distortion is present. In addition, the small-size RNN equalizers, being essentially generalized IIR filters, are shown to outperform multilayer perceptron equalizers of larger computational complexity in linear and nonlinear channel equalization cases.

  4. Explicit control of adaptive automation under different levels of environmental stress.

    PubMed

    Sauer, Jürgen; Kao, Chung-Shan; Wastell, David; Nickel, Peter

    2011-08-01

    This article examines the effectiveness of three different forms of explicit control of adaptive automation under low- and high-stress conditions, operationalised by different levels of noise. In total, 60 participants were assigned to one of three types of automation design (free, prompted and forced choice). They were trained for 4 h on a highly automated simulation of a process control environment, called AutoCAMS. This was followed by a 4-h testing session under noise exposure and quiet conditions. Measures of performance, psychophysiology and subjective reactions were taken. The results showed that all three modes of explicit control of adaptive automation modes were able to attenuate the negative effects of noise. This was partly due to the fact that operators opted for higher levels of automation under noise. It also emerged that forced choice showed marginal advantages over the two other automation modes. Statement of Relevance: This work is relevant to the design of adaptive automation since it emphasises the need to consider the impact of work-related stressors during task completion. During the presence of stressors, different forms of operator support through automation may be required than under more favourable working conditions.

  5. Mechanisms underlying interlimb transfer of visuomotor rotations

    PubMed Central

    Wang, Jinsung; Sainburg, Robert L.

    2013-01-01

    We previously reported that opposite arm training improved the initial direction of dominant arm movements, whereas it only improved the final position accuracy of non-dominant arm movements. We now ask whether each controller accesses common, or separate, short-term memory resources. To address this question, we investigated interlimb transfer of learning for visuomotor rotations that were directed oppositely [clockwise (CW)/counterclockwise (CCW)] for the two arms. We expected that if information obtained by initial training was stored in the same short-term memory space for both arms, opposite arm training of a CW rotation would interfere with subsequent adaptation to a CCW rotation. All subjects first adapted to a 30° rotation (CW) in the visual display during reaching movements. Following this, they adapted to a 30° rotation in the opposite direction (CCW) with the other arm. In contrast to our previous findings for interlimb transfer of same direction rotations (CCW/CCW), no effects of opposite arm adaptation were indicated in the initial trials performed. This indicates that interlimb transfer is not obligatory, and suggests that short-term memory resources for the two limbs are independent. Through single trial analysis, we found that the direction and final position errors of the first trial of movement, following opposite arm training, were always the same as those of naive performance. This was true whether the opposite arm was trained with the same or the opposing rotation. When trained with the same rotation, transfer of learning did not occur until the second trial. These findings suggest that the selective use of opposite arm information is dependent on the first trial to probe current movement conditions. Interestingly, the final extent of adaptation appeared to be reduced by opposite arm training of opposing rotations. Thus, the extent of adaptation, but not initial information transfer, appears obligatorily affected by prior opposite arm adaptation. According to our findings, it is plausible that the initiation and the final extent of adaptation involve two independent neural processes. Theoretical implications of these findings are discussed. PMID:12677333

  6. Simulators for Mariner Training and Licensing: Functional Specifications and Training Program Guidelines for a Maritime Cadet Simulator.

    DTIC Science & Technology

    1982-12-01

    9 2 Criticality of Cadet Training Objectives .............................................. 10 3 Simulator Best, High ...simu- " The already high costs associated with at-sea training lator within the multiple media approach to cadet training have been escalating...Bridge Procedures. that color is desirable for high workloads; the additional cost for multicolor under nighttime conditions may not " Simulator

  7. Virtual reality simulation training of mastoidectomy - studies on novice performance.

    PubMed

    Andersen, Steven Arild Wuyts

    2016-08-01

    Virtual reality (VR) simulation-based training is increasingly used in surgical technical skills training including in temporal bone surgery. The potential of VR simulation in enabling high-quality surgical training is great and VR simulation allows high-stakes and complex procedures such as mastoidectomy to be trained repeatedly, independent of patients and surgical tutors, outside traditional learning environments such as the OR or the temporal bone lab, and with fewer of the constraints of traditional training. This thesis aims to increase the evidence-base of VR simulation training of mastoidectomy and, by studying the final-product performances of novices, investigates the transfer of skills to the current gold-standard training modality of cadaveric dissection, the effect of different practice conditions and simulator-integrated tutoring on performance and retention of skills, and the role of directed, self-regulated learning. Technical skills in mastoidectomy were transferable from the VR simulation environment to cadaveric dissection with significant improvement in performance after directed, self-regulated training in the VR temporal bone simulator. Distributed practice led to a better learning outcome and more consolidated skills than massed practice and also resulted in a more consistent performance after three months of non-practice. Simulator-integrated tutoring accelerated the initial learning curve but also caused over-reliance on tutoring, which resulted in a drop in performance when the simulator-integrated tutor-function was discontinued. The learning curves were highly individual but often plateaued early and at an inadequate level, which related to issues concerning both the procedure and the VR simulator, over-reliance on the tutor function and poor self-assessment skills. Future simulator-integrated automated assessment could potentially resolve some of these issues and provide trainees with both feedback during the procedure and immediate assessment following each procedure. Standard setting by establishing a proficiency level that can be used for mastery learning with deliberate practice could also further sophisticate directed, self-regulated learning in VR simulation-based training. VR simulation-based training should be embedded in a systematic and competency-based training curriculum for high-quality surgical skills training, ultimately leading to improved safety and patient care.

  8. Can We Improve Structured Sequence Processing? Exploring the Direct and Indirect Effects of Computerized Training Using a Mediational Model

    PubMed Central

    Smith, Gretchen N. L.; Conway, Christopher M.; Bauernschmidt, Althea; Pisoni, David B.

    2015-01-01

    Recent research suggests that language acquisition may rely on domain-general learning abilities, such as structured sequence processing, which is the ability to extract, encode, and represent structured patterns in a temporal sequence. If structured sequence processing supports language, then it may be possible to improve language function by enhancing this foundational learning ability. The goal of the present study was to use a novel computerized training task as a means to better understand the relationship between structured sequence processing and language function. Participants first were assessed on pre-training tasks to provide baseline behavioral measures of structured sequence processing and language abilities. Participants were then quasi-randomly assigned to either a treatment group involving adaptive structured visuospatial sequence training, a treatment group involving adaptive non-structured visuospatial sequence training, or a control group. Following four days of sequence training, all participants were assessed with the same pre-training measures. Overall comparison of the post-training means revealed no group differences. However, in order to examine the potential relations between sequence training, structured sequence processing, and language ability, we used a mediation analysis that showed two competing effects. In the indirect effect, adaptive sequence training with structural regularities had a positive impact on structured sequence processing performance, which in turn had a positive impact on language processing. This finding not only identifies a potential novel intervention to treat language impairments but also may be the first demonstration that structured sequence processing can be improved and that this, in turn, has an impact on language processing. However, in the direct effect, adaptive sequence training with structural regularities had a direct negative impact on language processing. This unexpected finding suggests that adaptive training with structural regularities might potentially interfere with language processing. Taken together, these findings underscore the importance of pursuing designs that promote a better understanding of the mechanisms underlying training-related changes, so that regimens can be developed that help reduce these types of negative effects while simultaneously maximizing the benefits to outcome measures of interest. PMID:25946222

  9. Can we improve structured sequence processing? Exploring the direct and indirect effects of computerized training using a mediational model.

    PubMed

    Smith, Gretchen N L; Conway, Christopher M; Bauernschmidt, Althea; Pisoni, David B

    2015-01-01

    Recent research suggests that language acquisition may rely on domain-general learning abilities, such as structured sequence processing, which is the ability to extract, encode, and represent structured patterns in a temporal sequence. If structured sequence processing supports language, then it may be possible to improve language function by enhancing this foundational learning ability. The goal of the present study was to use a novel computerized training task as a means to better understand the relationship between structured sequence processing and language function. Participants first were assessed on pre-training tasks to provide baseline behavioral measures of structured sequence processing and language abilities. Participants were then quasi-randomly assigned to either a treatment group involving adaptive structured visuospatial sequence training, a treatment group involving adaptive non-structured visuospatial sequence training, or a control group. Following four days of sequence training, all participants were assessed with the same pre-training measures. Overall comparison of the post-training means revealed no group differences. However, in order to examine the potential relations between sequence training, structured sequence processing, and language ability, we used a mediation analysis that showed two competing effects. In the indirect effect, adaptive sequence training with structural regularities had a positive impact on structured sequence processing performance, which in turn had a positive impact on language processing. This finding not only identifies a potential novel intervention to treat language impairments but also may be the first demonstration that structured sequence processing can be improved and that this, in turn, has an impact on language processing. However, in the direct effect, adaptive sequence training with structural regularities had a direct negative impact on language processing. This unexpected finding suggests that adaptive training with structural regularities might potentially interfere with language processing. Taken together, these findings underscore the importance of pursuing designs that promote a better understanding of the mechanisms underlying training-related changes, so that regimens can be developed that help reduce these types of negative effects while simultaneously maximizing the benefits to outcome measures of interest.

  10. Cost-effective and low-technology options for simulation and training in neonatology.

    PubMed

    Bruno, Christie J; Glass, Kristen M

    2016-11-01

    The purpose of this review is to explore low-cost options for simulation and training in neonatology. Numerous cost-effective options exist for simulation and training in neonatology. Lower cost options are available for teaching clinical skills and procedural training in neonatal intubation, chest tube insertion, and pericardiocentesis, among others. Cost-effective, low-cost options for simulation-based education can be developed and shared in order to optimize the neonatal simulation training experience. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Developing Adaptive Training in the Classroom

    DTIC Science & Technology

    2009-09-01

    change to a training course: a pretest / posttest design and the use of control groups.39 The pretest / posttest comparison would entail administering the...U.S. Army Research Institute for the Behavioral and Social Sciences Research Product 2009-10 Developing Adaptive Training in...the Classroom Rose A. Mueller-Hanson Personnel Decisions Research Institutes, Inc. Michelle M. Wisecarver U.S. Army Research Institute

  12. Nutritional strategies to modulate the adaptive response to endurance training.

    PubMed

    Hawley, John A

    2013-01-01

    In recent years, advances in molecular biology have allowed scientists to elucidate how endurance exercise training stimulates skeletal muscle remodeling (i.e. promotes mitochondrial biogenesis). A growing field of interest directly arising from our understanding of the molecular bases of training adaptation is how nutrient availability can alter the regulation of many contraction-induced events in muscle in response to endurance exercise. Acutely manipulating substrate availability can exert profound effects on muscle energy stores and patterns of fuel metabolism during exercise, as well as many processes activating gene expression and cell signaling. Accordingly, such interventions when repeated over weeks and months have the potential to modulate numerous adaptive processes in skeletal muscle that ultimately drive the phenotype-specific characteristics observed in highly trained athletes. In this review, the molecular and cellular events that occur in skeletal muscle during and after endurance exercise are discussed and evidence provided to demonstrate that nutrient availability plays an important role in modulating many of the adaptive responses to training. Emphasis is on human studies that have determined the regulatory role of muscle glycogen availability on cell metabolism, endurance training capacity and performance. Copyright © 2013 Nestec Ltd., Vevey/S. Karger AG, Basel.

  13. Development of the KOSMS management simulation training system and its application

    NASA Astrophysics Data System (ADS)

    Takatsu, Yoshiki

    The use of games which simulate actual corporate management has recently become more common and is now utilized in various ways for in-house corporate training courses. KOSMS (Kobe Steel Management Simulation System), a training system designed to help improve the management skills of senior management staff, is a unique management simulation training system in which the participants, using personal computers, must make decisions concerning a variety of management activities, in simulated competition with other corporations. This report outlines the KOSMS system, and describes the basic structure and detailed contents of the management simulation models, and actual application of the KOSMS management simulation training.

  14. Validation of the train energy and dynamics simulator (TEDS).

    DOT National Transportation Integrated Search

    2015-01-01

    FRA has developed Train Energy and Dynamics Simulator (TEDS) based upon a longitudinal train dynamics and operations : simulation model which allows users to conduct safety and risk evaluations, incident investigations, studies of train operations, :...

  15. Stimulated Deep Neural Network for Speech Recognition

    DTIC Science & Technology

    2016-09-08

    making network regularization and robust adaptation challenging. Stimulated training has recently been proposed to address this problem by encouraging...potential to improve regularization and adaptation. This paper investigates stimulated training of DNNs for both of these options. These schemes take

  16. Risk Reduction and Training using Simulation Based Tools - 12180

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hall, Irin P.

    2012-07-01

    Process Modeling and Simulation (M and S) has been used for many years in manufacturing and similar domains, as part of an industrial engineer's tool box. Traditionally, however, this technique has been employed in small, isolated projects where models were created from scratch, often making it time and cost prohibitive. Newport News Shipbuilding (NNS) has recognized the value of this predictive technique and what it offers in terms of risk reduction, cost avoidance and on-schedule performance of highly complex work. To facilitate implementation, NNS has been maturing a process and the software to rapidly deploy and reuse M and Smore » based decision support tools in a variety of environments. Some examples of successful applications by NNS of this technique in the nuclear domain are a reactor refueling simulation based tool, a fuel handling facility simulation based tool and a tool for dynamic radiation exposure tracking. The next generation of M and S applications include expanding simulation based tools into immersive and interactive training. The applications discussed here take a tool box approach to creating simulation based decision support tools for maximum utility and return on investment. This approach involves creating a collection of simulation tools that can be used individually or integrated together for a larger application. The refueling simulation integrates with the fuel handling facility simulation to understand every aspect and dependency of the fuel handling evolutions. This approach translates nicely to other complex domains where real system experimentation is not feasible, such as nuclear fuel lifecycle and waste management. Similar concepts can also be applied to different types of simulation techniques. For example, a process simulation of liquid waste operations may be useful to streamline and plan operations, while a chemical model of the liquid waste composition is an important tool for making decisions with respect to waste disposition. Integrating these tools into a larger virtual system provides a tool for making larger strategic decisions. The key to integrating and creating these virtual environments is the software and the process used to build them. Although important steps in the direction of using simulation based tools for nuclear domain, the applications described here represent only a small cross section of possible benefits. The next generation of applications will, likely, focus on situational awareness and adaptive planning. Situational awareness refers to the ability to visualize in real time the state of operations. Some useful tools in this area are Geographic Information Systems (GIS), which help monitor and analyze geographically referenced information. Combined with such situational awareness capability, simulation tools can serve as the platform for adaptive planning tools. These are the tools that allow the decision maker to react to the changing environment in real time by synthesizing massive amounts of data into easily understood information. For the nuclear domains, this may mean creation of Virtual Nuclear Systems, from Virtual Waste Processing Plants to Virtual Nuclear Reactors. (authors)« less

  17. Simulation-based training for nurses: Systematic review and meta-analysis.

    PubMed

    Hegland, Pål A; Aarlie, Hege; Strømme, Hilde; Jamtvedt, Gro

    2017-07-01

    Simulation-based training is a widespread strategy to improve health-care quality. However, its effect on registered nurses has previously not been established in systematic reviews. The aim of this systematic review is to evaluate effect of simulation-based training on nurses' skills and knowledge. We searched CDSR, DARE, HTA, CENTRAL, CINAHL, MEDLINE, Embase, ERIC, and SveMed+ for randomised controlled trials (RCT) evaluating effect of simulation-based training among nurses. Searches were completed in December 2016. Two reviewers independently screened abstracts and full-text, extracted data, and assessed risk of bias. We compared simulation-based training to other learning strategies, high-fidelity simulation to other simulation strategies, and different organisation of simulation training. Data were analysed through meta-analysis and narrative syntheses. GRADE was used to assess the quality of evidence. Fifteen RCTs met the inclusion criteria. For the comparison of simulation-based training to other learning strategies on nurses' skills, six studies in the meta-analysis showed a significant, but small effect in favour of simulation (SMD -1.09, CI -1.72 to -0.47). There was large heterogeneity (I 2 85%). For the other comparisons, there was large between-study variation in results. The quality of evidence for all comparisons was graded as low. The effect of simulation-based training varies substantially between studies. Our meta-analysis showed a significant effect of simulation training compared to other learning strategies, but the quality of evidence was low indicating uncertainty. Other comparisons showed inconsistency in results. Based on our findings simulation training appears to be an effective strategy to improve nurses' skills, but further good-quality RCTs with adequate sample sizes are needed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Effects of systemic hypoxia on human muscular adaptations to resistance exercise training

    PubMed Central

    Kon, Michihiro; Ohiwa, Nao; Honda, Akiko; Matsubayashi, Takeo; Ikeda, Tatsuaki; Akimoto, Takayuki; Suzuki, Yasuhiro; Hirano, Yuichi; Russell, Aaron P.

    2014-01-01

    Abstract Hypoxia is an important modulator of endurance exercise‐induced oxidative adaptations in skeletal muscle. However, whether hypoxia affects resistance exercise‐induced muscle adaptations remains unknown. Here, we determined the effect of resistance exercise training under systemic hypoxia on muscular adaptations known to occur following both resistance and endurance exercise training, including muscle cross‐sectional area (CSA), one‐repetition maximum (1RM), muscular endurance, and makers of mitochondrial biogenesis and angiogenesis, such as peroxisome proliferator‐activated receptor‐γ coactivator‐1α (PGC‐1α), citrate synthase (CS) activity, nitric oxide synthase (NOS), vascular endothelial growth factor (VEGF), hypoxia‐inducible factor‐1 (HIF‐1), and capillary‐to‐fiber ratio. Sixteen healthy male subjects were randomly assigned to either a normoxic resistance training group (NRT, n =7) or a hypoxic (14.4% oxygen) resistance training group (HRT, n =9) and performed 8 weeks of resistance training. Blood and muscle biopsy samples were obtained before and after training. After training muscle CSA of the femoral region, 1RM for bench‐press and leg‐press, muscular endurance, and skeletal muscle VEGF protein levels significantly increased in both groups. The increase in muscular endurance was significantly higher in the HRT group. Plasma VEGF concentration and skeletal muscle capillary‐to‐fiber ratio were significantly higher in the HRT group than the NRT group following training. Our results suggest that, in addition to increases in muscle size and strength, HRT may also lead to increased muscular endurance and the promotion of angiogenesis in skeletal muscle. PMID:24907297

  19. Diagnostic Performance 1 H after Simulation Training Predicts Learning

    ERIC Educational Resources Information Center

    Consoli, Anna; Fraser, Kristin; Ma, Irene; Sobczak, Matthew; Wright, Bruce; McLaughlin, Kevin

    2013-01-01

    Although simulation training improves post-training performance, it is unclear how well performance soon after simulation training predicts longer term outcomes (i.e., learning). Here our objective was to assess the predictive value of performance 1 h post-training of performance 6 weeks later. We trained 84 first year medical students a simulated…

  20. 14 CFR 121.407 - Training program: Approval of airplane simulators and other training devices.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Training program: Approval of airplane... Program § 121.407 Training program: Approval of airplane simulators and other training devices. Link to an amendment published at 78 FR 67836, Nov. 12, 2013. (a) Each airplane simulator and other training device...

  1. From Apollo to Cognac

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Shell Oil Company started oil and gas production from a new offshore platform called Cognac located in the Gulf of Mexico. It is the world's tallest oil platform, slightly taller than the Empire State Building. The highly complex job of installing Cognac's support "jacket" under water more than a thousand feet deep was directed from a barge-based control center. To enable crews to practice in advance difficult tasks never before accomplished, Honeywell, adapting NASA's Apollo technology, developed a system for simulating the various underwater operations. In training sessions, displays and controls reacted exactly as they would in real operation.

  2. Conflicts in developing countries: a case study from Rio de Janeiro

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bredariol, Celso Simoes; Magrini, Alessandra

    In developing countries, environmental conflicts are resolved mainly in the political arena. In the developed nations, approaches favoring structured negotiation support techniques are more common, with methodologies and studies designed especially for this purpose, deriving from Group Communications and Decision Theory. This paper analyzes an environmental dispute in the City of Rio de Janeiro, applying conflict analysis methods and simulating its settlement. It concludes that the use of these methodologies in the developing countries may be undertaken with adaptations, designed to train community groups in negotiating while fostering the democratization of the settlement of these disputes.

  3. Robust estimators for speech enhancement in real environments

    NASA Astrophysics Data System (ADS)

    Sandoval-Ibarra, Yuma; Diaz-Ramirez, Victor H.; Kober, Vitaly

    2015-09-01

    Common statistical estimators for speech enhancement rely on several assumptions about stationarity of speech signals and noise. These assumptions may not always valid in real-life due to nonstationary characteristics of speech and noise processes. We propose new estimators based on existing estimators by incorporation of computation of rank-order statistics. The proposed estimators are better adapted to non-stationary characteristics of speech signals and noise processes. Through computer simulations we show that the proposed estimators yield a better performance in terms of objective metrics than that of known estimators when speech signals are contaminated with airport, babble, restaurant, and train-station noise.

  4. Skylab 2 crew during "open house" press day at Manned Spacecraft Center (MSC)

    NASA Image and Video Library

    1972-01-19

    S72-17509 (19 Jan. 1972) --- These three men are the crewmen for the first manned Skylab mission. They are astronaut Charles Conrad Jr., commander, standing left; scientist-astronaut Joseph P. Kerwin, seated; and astronaut Paul J. Weitz, pilot. They were photographed and interviewed during an "open house" press day in the realistic atmosphere of the Multiple Docking Adapter (MDA) trainer in the Mission Simulation and Training Facility at the Manned Spacecraft Center (MSC). The control and display panel for the Apollo Telescope Mount (ATM) is at right. Photo credit: NASA

  5. Cybersickness Following Repeated Exposure to DOME and HMD Virtual Environments

    NASA Technical Reports Server (NTRS)

    Taylor, Laura C.; Harm, Deborah L.; Kennedy, Robert S.; Reschke, Millard F.; Loftin, R. Bowen

    2011-01-01

    Virtual environments (VE) offer unique training opportunities, including training astronauts to preadapt them to the novel sensory conditions of microgravity. However, one unresolved issue with VE use is the occurrence of cybersickness during and following exposure to VE systems. Most individuals adapt and become less ill with repeated interaction with VEs. The goal of this investigation was to compare motion sickness symptoms (MSS) produced by dome and head-mounted (HMD) displays and to examine the effects of repeated exposures on MSS. Sixty-one subjects participated in the study. Three experimental sessions were performed each separated by one day. The subjects performed a navigation and pick and place task in either a dome or HMD VE. MSS were measured using a Simulator Sickness Questionnaire before, immediately after, and at 1, 2, 4 and 6 hours following exposure to the VEs. MSS data were normalized by calculating the natural log of each score and an analysis of variance was performed. We observed significant main effects for day and time and a significant day by time interaction for total sickness and for each of the subscales, nausea, oculomotor and disorientation. However, there was no significant main effect for device. In conclusion, subjects reported a large increase in MSS immediately following exposure to both the HMD and dome, followed by a rapid recovery across time. Sickness severity also decreased over days, which suggests that subjects become dual-adapted over time making VE training a viable pre-flight countermeasure for space motion sickness.

  6. Current status of endoscopic simulation in gastroenterology fellowship training programs.

    PubMed

    Jirapinyo, Pichamol; Thompson, Christopher C

    2015-07-01

    Recent guidelines have encouraged gastroenterology and surgical training programs to integrate simulation into their core endoscopic curricula. However, the role that simulation currently has within training programs is unknown. This study aims to assess the current status of simulation among gastroenterology fellowship programs. This questionnaire study consisted of 38 fields divided into two sections. The first section queried program directors' experience on simulation and assessed the current status of simulation at their institution. The second portion surveyed their opinion on the potential role of simulation on the training curriculum. The study was conducted at the 2013 American Gastroenterological Association Training Directors' Workshop in Phoenix, Arizona. The participants were program directors from Accreditation Council for Graduate Medical Education accredited gastroenterology training programs, who attended the workshop. The questionnaire was returned by 69 of 97 program directors (response rate of 71%). 42% of programs had an endoscopic simulator. Computerized simulators (61.5%) were the most common, followed by mechanical (30.8%) and animal tissue (7.7%) simulators, respectively. Eleven programs (15%) required fellows to use simulation prior to clinical cases. Only one program has a minimum number of hours fellows have to participate in simulation training. Current simulators are deemed as easy to use (76%) and good educational tools (65%). Problems are cost (72%) and accessibility (69%). The majority of program directors believe that there is a need for endoscopic simulator training, with only 8% disagreeing. Additionally, a majority believe there is a role for simulation prior to initiation of clinical cases with 15% disagreeing. Gastroenterology fellowship program directors widely recognize the importance of simulation. Nevertheless, simulation is used by only 42% of programs and only 15% of programs require that trainees use simulation prior to clinical cases. No programs currently use simulation as part of the evaluation process.

  7. Transfer of Training from Simulators to Operational Equipment--Are Simulators Effective?

    ERIC Educational Resources Information Center

    Thomson, Douglas R.

    1989-01-01

    Examines the degree of fidelity required of a computer simulation to ensure maximum transfer of training. Simulators used in the military services for training pilots are described; relationships between fidelity, transfer, and cost are explored; and feedback to the student and measures of training effectiveness are discussed. (nine references)…

  8. Users' Perception of Medical Simulation Training: A Framework for Adopting Simulator Technology

    ERIC Educational Resources Information Center

    Green, Leili Hayati

    2014-01-01

    Users play a key role in many training strategies, yet some organizations often fail to understand the users' perception after a simulation training implementation, their attitude about acceptance or rejection of and integration of emerging simulation technology in medical training (Gaba, 2007, and Topol, 2012). Several factors are considered to…

  9. Learning algorithms for human-machine interfaces.

    PubMed

    Danziger, Zachary; Fishbach, Alon; Mussa-Ivaldi, Ferdinando A

    2009-05-01

    The goal of this study is to create and examine machine learning algorithms that adapt in a controlled and cadenced way to foster a harmonious learning environment between the user and the controlled device. To evaluate these algorithms, we have developed a simple experimental framework. Subjects wear an instrumented data glove that records finger motions. The high-dimensional glove signals remotely control the joint angles of a simulated planar two-link arm on a computer screen, which is used to acquire targets. A machine learning algorithm was applied to adaptively change the transformation between finger motion and the simulated robot arm. This algorithm was either LMS gradient descent or the Moore-Penrose (MP) pseudoinverse transformation. Both algorithms modified the glove-to-joint angle map so as to reduce the endpoint errors measured in past performance. The MP group performed worse than the control group (subjects not exposed to any machine learning), while the LMS group outperformed the control subjects. However, the LMS subjects failed to achieve better generalization than the control subjects, and after extensive training converged to the same level of performance as the control subjects. These results highlight the limitations of coadaptive learning using only endpoint error reduction.

  10. Learning Algorithms for Human–Machine Interfaces

    PubMed Central

    Fishbach, Alon; Mussa-Ivaldi, Ferdinando A.

    2012-01-01

    The goal of this study is to create and examine machine learning algorithms that adapt in a controlled and cadenced way to foster a harmonious learning environment between the user and the controlled device. To evaluate these algorithms, we have developed a simple experimental framework. Subjects wear an instrumented data glove that records finger motions. The high-dimensional glove signals remotely control the joint angles of a simulated planar two-link arm on a computer screen, which is used to acquire targets. A machine learning algorithm was applied to adaptively change the transformation between finger motion and the simulated robot arm. This algorithm was either LMS gradient descent or the Moore–Penrose (MP) pseudoinverse transformation. Both algorithms modified the glove-to-joint angle map so as to reduce the endpoint errors measured in past performance. The MP group performed worse than the control group (subjects not exposed to any machine learning), while the LMS group outperformed the control subjects. However, the LMS subjects failed to achieve better generalization than the control subjects, and after extensive training converged to the same level of performance as the control subjects. These results highlight the limitations of coadaptive learning using only endpoint error reduction. PMID:19203886

  11. [Training of resident physicians in the recognition and treatment of an anaphylaxis case in pediatrics with simulation models].

    PubMed

    Enríquez, Diego; Lamborizio, María J; Firenze, Lorena; Jaureguizar, María de la P; Díaz Pumará, Estanislao; Szyld, Edgardo

    2017-08-01

    To evaluate the performance of resident physicians in diagnosing and treating a case of anaphylaxis, six months after participating in simulation training exercises. Initially, a group of pediatric residents were trained using simulation techniques in the management of critical pediatric cases. Based on their performance in this exercise, participants were assigned to one of 3 groups. At six months post-training, 4 residents were randomly chosen from each group to be re-tested, using the same performance measure as previously used. During the initial training session, 56 of 72 participants (78%) correctly identified and treated the case. Six months after the initial training, all 12 (100%) resident physicians who were re-tested successfully diagnosed and treated the simulated anaphylaxis case. The training through simulation techniques allowed correction or optimization of the treatment of simulated anaphylaxis cases in resident physicians evaluated after 6 months of the initial training.

  12. Aircraft Simulators and Pilot Training.

    ERIC Educational Resources Information Center

    Caro, Paul W.

    Flight simulators are built as realistically as possible, presumably to enhance their training value. Yet, their training value is determined by the way they are used. Traditionally, simulators have been less important for training than have aircraft, but they are currently emerging as primary pilot training vehicles. This new emphasis is an…

  13. 14 CFR 142.59 - Flight simulators and flight training devices.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Flight simulators and flight training... TRANSPORTATION (CONTINUED) SCHOOLS AND OTHER CERTIFICATED AGENCIES TRAINING CENTERS Personnel and Flight Training Equipment Requirements § 142.59 Flight simulators and flight training devices. (a) An applicant for, or...

  14. 14 CFR 142.59 - Flight simulators and flight training devices.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Flight simulators and flight training... TRANSPORTATION (CONTINUED) SCHOOLS AND OTHER CERTIFICATED AGENCIES TRAINING CENTERS Personnel and Flight Training Equipment Requirements § 142.59 Flight simulators and flight training devices. (a) An applicant for, or...

  15. 14 CFR 142.59 - Flight simulators and flight training devices.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Flight simulators and flight training... TRANSPORTATION (CONTINUED) SCHOOLS AND OTHER CERTIFICATED AGENCIES TRAINING CENTERS Personnel and Flight Training Equipment Requirements § 142.59 Flight simulators and flight training devices. (a) An applicant for, or...

  16. 14 CFR 142.59 - Flight simulators and flight training devices.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Flight simulators and flight training... TRANSPORTATION (CONTINUED) SCHOOLS AND OTHER CERTIFICATED AGENCIES TRAINING CENTERS Personnel and Flight Training Equipment Requirements § 142.59 Flight simulators and flight training devices. (a) An applicant for, or...

  17. 14 CFR 142.59 - Flight simulators and flight training devices.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Flight simulators and flight training... TRANSPORTATION (CONTINUED) SCHOOLS AND OTHER CERTIFICATED AGENCIES TRAINING CENTERS Personnel and Flight Training Equipment Requirements § 142.59 Flight simulators and flight training devices. (a) An applicant for, or...

  18. Spatial Disorientation Training in the Rotor Wing Flight Simulator.

    PubMed

    Powell-Dunford, Nicole; Bushby, Alaistair; Leland, Richard A

    This study is intended to identify efficacy, evolving applications, best practices, and challenges of spatial disorientation (SD) training in flight simulators for rotor wing pilots. Queries of a UK Ministry of Defense research database and Pub Med were undertaken using the search terms 'spatial disorientation,' 'rotor wing,' and 'flight simulator.' Efficacy, evolving applications, best practices, and challenges of SD simulation for rotor wing pilots were also ascertained through discussion with subject matter experts and industrial partners. Expert opinions were solicited at the aeromedical physiologist, aeromedical psychologist, instructor pilot, aeromedical examiner, and corporate executive levels. Peer review literature search yielded 129 articles, with 5 relevant to the use of flight simulators for the spatial disorientation training of rotor wing pilots. Efficacy of such training was measured subjectively and objectively. A preponderance of anecdotal reports endorse the benefits of rotor wing simulator SD training, with a small trial substantiating performance improvement. Advancing technologies enable novel training applications. The mobile nature of flight students and concurrent anticollision technologies can make long-range assessment of SD training efficacy challenging. Costs of advanced technologies could limit the extent to which the most advanced simulators can be employed across the rotor wing community. Evidence suggests the excellent training value of rotor wing simulators for SD training. Objective data from further research, particularly with regards to evolving technologies, may justify further usage of advanced simulator platforms for SD training and research. Powell-Dunford N, Bushby A, Leland RA. Spatial disorientation training in the rotor wing flight simulator. Aerosp Med Hum Perform. 2016; 87(10):890-893.

  19. Comparison of Cardiopulmonary Resuscitation Quality Between Standard Versus Telephone-Basic Life Support Training Program in Middle-Aged and Elderly Housewives: A Randomized Simulation Study.

    PubMed

    Kim, Tae Han; Lee, Yu Jin; Lee, Eui Jung; Ro, Young Sun; Lee, KyungWon; Lee, Hyeona; Jang, Dayea Beatrice; Song, Kyoung Jun; Shin, Sang Do; Myklebust, Helge; Birkenes, Tonje Søraas

    2018-02-01

    For cardiac arrests witnessed at home, the witness is usually a middle-aged or older housewife. We compared the quality of cardiopulmonary resuscitation (CPR) performance of bystanders trained with the newly developed telephone-basic life support (T-BLS) program and those trained with standard BLS (S-BLS) training programs. Twenty-four middle-aged and older housewives without previous CPR education were enrolled and randomized into two groups of BLS training programs. The T-BLS training program included concepts and current instruction protocols for telephone-assisted CPR, whereas the S-BLS training program provided training for BLS. After each training course, the participants simulated CPR and were assisted by a dispatcher via telephone. Cardiopulmonary resuscitation quality was measured and recorded using a mannequin simulator. The primary outcome was total no-flow time (>1.5 seconds without chest compression) during simulation. Among 24 participants, two (8.3%) who experienced mechanical failure of simulation mannequin and one (4.2%) who violated simulation protocols were excluded at initial simulation, and two (8.3%) refused follow-up after 6 months. The median (interquartile range) total no-flow time during initial simulation was 79.6 (66.4-96.9) seconds for the T-BLS training group and 147.6 (122.5-184.0) seconds for the S-BLS training group (P < 0.01). Median cumulative interruption time and median number of interruption events during BLS at initial simulation and 6-month follow-up simulation were significantly shorter in the T-BLS than in the S-BLS group (1.0 vs. 9.5, P < 0.01, and 1.0 vs. 10.5, P = 0.02, respectively). Participants trained with the T-BLS training program showed shorter no-flow time and fewer interruptions during bystander CPR simulation assisted by a dispatcher.

  20. Communication: Adaptive boundaries in multiscale simulations

    NASA Astrophysics Data System (ADS)

    Wagoner, Jason A.; Pande, Vijay S.

    2018-04-01

    Combined-resolution simulations are an effective way to study molecular properties across a range of length and time scales. These simulations can benefit from adaptive boundaries that allow the high-resolution region to adapt (change size and/or shape) as the simulation progresses. The number of degrees of freedom required to accurately represent even a simple molecular process can vary by several orders of magnitude throughout the course of a simulation, and adaptive boundaries react to these changes to include an appropriate but not excessive amount of detail. Here, we derive the Hamiltonian and distribution function for such a molecular simulation. We also design an algorithm that can efficiently sample the boundary as a new coordinate of the system. We apply this framework to a mixed explicit/continuum simulation of a peptide in solvent. We use this example to discuss the conditions necessary for a successful implementation of adaptive boundaries that is both efficient and accurate in reproducing molecular properties.

Top