Sample records for training future scientists

  1. DCEG scientists discuss researching cancer causes and training future researchers

    Cancer.gov

    Watch scientists in the NCI Division of Cancer Epidemiology and Genetics discuss research into the causes of cancer at the population level. Topics include genome-wide association studies, HPV genomics, Li-Fraumeni syndrome, and training future scientists.

  2. The Journey of a Science Teacher: Preparing Female Students in the Training Future Scientists after School Program

    ERIC Educational Resources Information Center

    Robinson-Hill, Rona M.

    2013-01-01

    What affect does female participation in the Training Future Scientist (TFS) program based on Vygotsky's sociocultural theory and Maslow's Hierarchies of Needs have on female adolescents' achievement levels in science and their attitude toward science and interest in science-based careers? The theoretical framework for this study was developed…

  3. Navigating the Path to a Biomedical Science Career

    NASA Astrophysics Data System (ADS)

    Zimmerman, Andrea McNeely

    The number of biomedical PhD scientists being trained and graduated far exceeds the number of academic faculty positions and academic research jobs. If this trend is compelling biomedical PhD scientists to increasingly seek career paths outside of academia, then more should be known about their intentions, desires, training experiences, and career path navigation. Therefore, the purpose of this study was to understand the process through which biomedical PhD scientists are trained and supported for navigating future career paths. In addition, the study sought to determine whether career development support efforts and opportunities should be redesigned to account for the proportion of PhD scientists following non-academic career pathways. Guided by the social cognitive career theory (SCCT) framework this study sought to answer the following central research question: How does a southeastern tier 1 research university train and support its biomedical PhD scientists for navigating their career paths? Key findings are: Many factors influence PhD scientists' career sector preference and job search process, but the most influential were relationships with faculty, particularly the mentor advisor; Planned activities are a significant aspect of the training process and provide skills for career success; and Planned activities provided skills necessary for a career, but influential factors directed the career path navigated. Implications for practice and future research are discussed.

  4. Cross-sectional-derived determinants of satisfaction with physician-scientist training among Canadian MD/PhD graduates.

    PubMed

    Twa, David D W; Skinnider, Michael A; Squair, Jordan W; Lukac, Christine D

    2017-01-01

    Although MD/PhD programs require considerable commitment on behalf of students and learning institutions, they serve as an integral means of training future physician-scientists; individuals who engage in translational medicine. As attrition from these programs has longstanding effects on the community of translational medicine and comes at substantial cost to MD/PhD programs, we aimed to identify determinants that were associated with satisfaction among MD/PhD graduates, a feature that might inform on limiting program attrition. Anonymized data from a national survey of 139 Canadian MD/PhD alumni was analyzed. Factor analysis was conducted to evaluate the reliability of three questions that measured satisfaction and logistic regression was used to assess the association of outcomes with 17 independent determinants. Eighty-one percent of graduates were satisfied with MD/PhD training. Factor analysis confirmed the reliability of the questions measuring satisfaction. Determinants of self-reported satisfaction with physician-scientist training included co-authorship of more than six manuscripts during MD/PhD training. Additionally, protected research time at the place of current appointment was strongly associated with agreement that MD/PhD training had helped career progression. Demographic variables were not associated with any satisfaction indicator. Taken together, the majority of Canadian MD/PhD graduates are satisfied with their physician-scientist training. Project collaboration leading to co-authorships and protected research time were strongly associated with training satisfaction among graduates. If the value of collaboration can be realized among current and future physician-scientist trainees who are dissatisfied with their training, this might ultimately reduce program attrition.

  5. Preparing tomorrow's behavioral medicine scientists and practitioners: a survey of future directions for education and training.

    PubMed

    Goldstein, Carly M; Minges, Karl E; Schoffman, Danielle E; Cases, Mallory G

    2017-02-01

    Behavioral medicine training is due for an overhaul given the rapid evolution of the field, including a tight funding climate, changing job prospects, and new research and industry collaborations. The purpose of the present study was to collect responses from trainee and practicing members of a multidisciplinary professional society about their perceptions of behavioral medicine training and their suggestions for changes to training for future behavioral medicine scientists and practitioners. A total of 162 faculty and 110 students (total n = 272) completed a web-based survey on strengths of their current training programs and ideas for changes. Using a mixed-methods approach, the survey findings are used to highlight seven key areas for improved preparation of the next generation of behavioral medicine scientists and practitioners, which are grant writing, interdisciplinary teamwork, advanced statistics and methods, evolving research program, publishable products from coursework, evolution and use of theory, and non-traditional career paths.

  6. Challenges facing physician scientist trainees: a survey of trainees in Canada's largest undergraduate and postgraduate programs in a single centre.

    PubMed

    Ballios, Brian G; Rosenblum, Norman D

    2014-10-04

    A number of indicators suggest that the physician scientist career track is threatened. As such, it is an opportune time to evaluate current training models. Perspectives on physician scientist education and career path were surveyed in trainees at the University of Toronto, home to Canada's longest standing physician scientist training programs. Trainees from the Clinician Investigator Program (CIP) and MD/PhD Program at the University of Toronto were surveyed. Liekert-style closed-ended questions were used to assess future career goals, present and future perspectives and concerns about and beliefs on training. Demographic information was collected regarding year of study, graduate degree program and focus of clinical and health research. Statistical analysis included non-parametric tests for sub-group comparisons. Both groups of trainees were motivated to pursue a career as a physician scientist. While confident in their decision to begin and complete physician scientist training, they expressed concerns about the level of integration between clinical and research training in the current programs. They also expressed concerns about career outlook, including the ability to find stable and sustainable careers in academic medicine. Trainees highlighted a number of factors, including career mentorship, as essential for career success. These findings indicate that while trainees at different stages consistently express career motivation, they identified concerns that are program- and training stage-specific. These concerns mirror those highlighted in the medical education literature regarding threats to the physician scientist career path. Understanding these different and changing perspectives and exploring those differences could form an important basis for trainee program improvements both nationally and internationally.

  7. Training Programs of the National Institute of General Medical Sciences, 1971-1980.

    ERIC Educational Resources Information Center

    National Inst. of General Medical Sciences (NIH), Bethesda, MD.

    The study predicts future requirements for biological scientists by specialty area, future supply within area, and the effects of National Institutes of Health program alternatives on requirements and supply measures. At present and for the forseeable future, approved training grants for critical shortage areas are funded as rapidly as centers of…

  8. Software Development in the Water Sciences: a view from the divide (Invited)

    NASA Astrophysics Data System (ADS)

    Miles, B.; Band, L. E.

    2013-12-01

    While training in statistical methods is an important part of many earth scientists' training, these scientists often learn the bulk of their software development skills in an ad hoc, just-in-time manner. Yet to carry out contemporary research scientists are spending more and more time developing software. Here I present perspectives - as an earth sciences graduate student with professional software engineering experience - on the challenges scientists face adopting software engineering practices, with an emphasis on areas of the science software development lifecycle that could benefit most from improved engineering. This work builds on experience gained as part of the NSF-funded Water Science Software Institute (WSSI) conceptualization award (NSF Award # 1216817). Throughout 2013, the WSSI team held a series of software scoping and development sprints with the goals of: (1) adding features to better model green infrastructure within the Regional Hydro-Ecological Simulation System (RHESSys); and (2) infusing test-driven agile software development practices into the processes employed by the RHESSys team. The goal of efforts such as the WSSI is to ensure that investments by current and future scientists in software engineering training will enable transformative science by improving both scientific reproducibility and researcher productivity. Experience with the WSSI indicates: (1) the potential for achieving this goal; and (2) while scientists are willing to adopt some software engineering practices, transformative science will require continued collaboration between domain scientists and cyberinfrastructure experts for the foreseeable future.

  9. CGAT: a model for immersive personalized training in computational genomics

    PubMed Central

    Sims, David; Ponting, Chris P.

    2016-01-01

    How should the next generation of genomics scientists be trained while simultaneously pursuing high quality and diverse research? CGAT, the Computational Genomics Analysis and Training programme, was set up in 2010 by the UK Medical Research Council to complement its investment in next-generation sequencing capacity. CGAT was conceived around the twin goals of training future leaders in genome biology and medicine, and providing much needed capacity to UK science for analysing genome scale data sets. Here we outline the training programme employed by CGAT and describe how it dovetails with collaborative research projects to launch scientists on the road towards independent research careers in genomics. PMID:25981124

  10. Developing Nations Face Problems in Water and Wastewater Management

    ERIC Educational Resources Information Center

    Larrick, Charles L.; Adams, Larry W.

    1978-01-01

    Reports past developments, present assessments, and future needs of wastewater management in developing countries. It is suggested that future engineers should be trained as managers and not scientists. (MA)

  11. Training scientists as future industry leaders: teaching translational science from an industry executive's perspective.

    PubMed

    Lee, Gloria; Kranzler, Jay D; Ramasamy, Ravichandran; Gold-von Simson, Gabrielle

    2018-01-01

    PhDs and post-doctoral biomedical graduates, in greater numbers, are choosing industry based careers. However, most scientists do not have formal training in business strategies and venture creation and may find senior management positions untenable. To fill this training gap, "Biotechnology Industry: Structure and Strategy" was offered at New York University School of Medicine (NYUSOM). The course focuses on the business aspects of translational medicine and research translation and incorporates the practice of business case discussions, mock negotiation, and direct interactions into the didactic. The goal is to teach scientists at an early career stage how to create solutions, whether at the molecular level or via the creation of devices or software, to benefit those with disease. In doing so, young, talented scientists can develop a congruent mindset with biotechnology/industry executives. Our data demonstrates that the course enhances students' knowledge of the biotechnology industry. In turn, these learned skills may further encourage scientists to seek leadership positions in the field. Implementation of similar courses and educational programs will enhance scientists' training and inspire them to become innovative leaders in the discovery and development of therapeutics.

  12. Clinician scientist training program: a proposal for training medical students in clinical research.

    PubMed

    Mark, A L; Kelch, R P

    2001-11-01

    There is national alarm about a decline in the number of clinician scientists. Most of the proposed solutions have focused on housestaff and junior faculty. We propose a new national program for training medical students in clinical research. This program, coined "Clinician Scientist Training Program" (CSTP), would consist of a combined degree program in medicine (MD) and clinical research (eg, masters in translational research or masters in clinical epidemiology). Students could enroll in the program at any stage during medical school. After 3 years of medical school, students would spend at least 2 years in a combined didactic and mentored clinical research training program and then complete medical school. Students could elect to pursue more prolonged clinical research training toward a combined PhD and MD. The CSTP is designed to meet six critical challenges: 1) engage students early in clinical research training; 2) provide a didactic clinical research curriculum; 3) expose students to several years of mentored clinical research training; 4) promote debt prevention by providing tuition payments during medical education and a stipend during clinical research training; 5) facilitate prolonged exposure to a community of peers and mentors in a program with national and institutional identity and respect; and 6) permit enrollment in the program as students enter medical school or at any stage during medical school. If the success of the Medical Scientist Training Program in training medical students in basic research is a guide, the CSTP could become a linchpin for training future generations of clinician scientists.

  13. Methods & Strategies: Sculpt-a-Scientist

    ERIC Educational Resources Information Center

    Jackson, Julie; Rich, Ann

    2014-01-01

    Elementary science experiences help develop students' views of science and scientific interests. As a result, teachers have been charged with the task of inspiring, cultivating, recruiting, and training the scientists needed to create tomorrow's innovations and solve future problems (Business Roundtable 2005). Who will these future…

  14. CGAT: a model for immersive personalized training in computational genomics.

    PubMed

    Sims, David; Ponting, Chris P; Heger, Andreas

    2016-01-01

    How should the next generation of genomics scientists be trained while simultaneously pursuing high quality and diverse research? CGAT, the Computational Genomics Analysis and Training programme, was set up in 2010 by the UK Medical Research Council to complement its investment in next-generation sequencing capacity. CGAT was conceived around the twin goals of training future leaders in genome biology and medicine, and providing much needed capacity to UK science for analysing genome scale data sets. Here we outline the training programme employed by CGAT and describe how it dovetails with collaborative research projects to launch scientists on the road towards independent research careers in genomics. © The Author 2015. Published by Oxford University Press.

  15. Building a Science Communication Culture: One Agency's Approach

    NASA Astrophysics Data System (ADS)

    DeWitt, S.; Tenenbaum, L. F.; Betz, L.

    2014-12-01

    Science communication does not have to be a solitary practice. And yet, many scientists go about it alone and with little support from their peers and organizations. To strengthen community and build support for science communicators, NASA designed a training course aimed at two goals: 1) to develop individual scientists' communication skills, and 2) to begin to build a science communication culture at the agency. NASA offered a pilot version of this training course in 2014: the agency's first multidisciplinary face-to-face learning experience for science communicators. Twenty-six Earth, space and life scientists from ten field centers came together for three days of learning. They took part in fundamental skill-building exercises, individual development planning, and high-impact team projects. This presentation will describe the course design and learning objectives, the experience of the participants, and the evaluation results that will inform future offerings of communication training for NASA scientists and others.

  16. Perspectives of Science Communication Training Held by Lecturers of Biotechnology and Science Communication

    ERIC Educational Resources Information Center

    Edmondston, Joanne; Dawson, Vaille

    2014-01-01

    Science communication training for undergraduate science students has been recommended to improve future scientists' ability to constructively engage with the public. This study examined biotechnology lecturers' and science communication lecturers' views of science communication training and its possible inclusion in a biotechnology degree course…

  17. Team science and the physician-scientist in the age of grand health challenges.

    PubMed

    Steer, Clifford J; Jackson, Peter R; Hornbeak, Hortencia; McKay, Catherine K; Sriramarao, P; Murtaugh, Michael P

    2017-09-01

    Despite remarkable advances in medical research, clinicians face daunting challenges from new diseases, variations in patient responses to interventions, and increasing numbers of people with chronic health problems. The gap between biomedical research and unmet clinical needs can be addressed by highly talented interdisciplinary investigators focused on translational bench-to-bedside medicine. The training of talented physician-scientists comfortable with forming and participating in multidisciplinary teams that address complex health problems is a top national priority. Challenges, methods, and experiences associated with physician-scientist training and team building were explored at a workshop held at the Second International Conference on One Medicine One Science (iCOMOS 2016), April 24-27, 2016, in Minneapolis, Minnesota. A broad range of scientists, regulatory authorities, and health care experts determined that critical investments in interdisciplinary training are essential for the future of medicine and healthcare delivery. Physician-scientists trained in a broad, nonlinear, cross-disciplinary manner are and will be essential members of science teams in the new age of grand health challenges and the birth of precision medicine. Team science approaches have accomplished biomedical breakthroughs once considered impossible, and dedicated physician-scientists have been critical to these achievements. Together, they translate into the pillars of academic growth and success. © 2017 New York Academy of Sciences.

  18. The Training and Work of Ph.D. Physical Scientists

    NASA Astrophysics Data System (ADS)

    Smith, S. J.; Schweitzer, A. E.

    2003-05-01

    Doctoral education has often been viewed as the pinnacle of the formal education system. How useful is doctoral training in one's later career? In an NSF-funded project, we set out to perform a study of the training, careers, and work activities of Ph.D. physical scientists. The study included both in-depth interviews and a survey sent out to a sample of Ph.D. holders 4-8 years after graduation. Come and find out the results of this study: What skills are most Ph.D. physical scientists using? What should graduate programs be teaching? Are Ph.D.'s who are working in their specific field of training happier than their counterparts working different jobs? What skills and preparation lead to future job satisfaction, perhaps the most important indicator of the "success" of graduate education? A preprint and further details can be found at the project web site at: spot.colorado.edu/ phdcarer.

  19. Training scientists as future industry leaders: teaching translational science from an industry executive’s perspective

    PubMed Central

    Lee, Gloria; Kranzler, Jay D; Ramasamy, Ravichandran; Gold-von Simson, Gabrielle

    2018-01-01

    PhDs and post-doctoral biomedical graduates, in greater numbers, are choosing industry based careers. However, most scientists do not have formal training in business strategies and venture creation and may find senior management positions untenable. To fill this training gap, “Biotechnology Industry: Structure and Strategy” was offered at New York University School of Medicine (NYUSOM). The course focuses on the business aspects of translational medicine and research translation and incorporates the practice of business case discussions, mock negotiation, and direct interactions into the didactic. The goal is to teach scientists at an early career stage how to create solutions, whether at the molecular level or via the creation of devices or software, to benefit those with disease. In doing so, young, talented scientists can develop a congruent mindset with biotechnology/industry executives. Our data demonstrates that the course enhances students’ knowledge of the biotechnology industry. In turn, these learned skills may further encourage scientists to seek leadership positions in the field. Implementation of similar courses and educational programs will enhance scientists’ training and inspire them to become innovative leaders in the discovery and development of therapeutics. PMID:29657853

  20. Issues in Teacher Education; A Social Scientist's View.

    ERIC Educational Resources Information Center

    Senesh, Lawrence

    The basic problem in training teachers (teaching them what makes social institutions tick and how to relate this knowledge to present and future needs of children) has not been solved by teacher training institutions. The author's plan for a one-year social sciences training program emphasizing the project approach may provide a solution. Its…

  1. Reflections on the current and future roles of clinician-scientists.

    PubMed

    Baumal, Reuben; Benbassat, Jochanan; Van, Julie A D

    2014-08-01

    "Clinician-scientists" is an all-inclusive term for board-certified specialists who engage in patient care and laboratory-based (biomedical) research, patient-based (clinical) research, or population-based (epidemiological) research. In recent years, the number of medical graduates who choose to combine patient care and research has declined, generating concerns about the future of medical research. This paper reviews: a) the various current categories of clinician-scientists, b) the reasons proposed for the declining number of medical graduates who opt for a career as clinician-scientists, c) the various interventions aimed at reversing this trend, and d) the projections for the future role of clinician-scientists. Efforts to encourage students to combine patient care and research include providing financial and institutional support, and reducing the duration of the training of clinician-scientists. However, recent advances in clinical and biomedical knowledge have increased the difficulties in maintaining the dual role of care-providers and scientists. It was therefore suggested that rather than expecting clinician-scientists to compete with full-time clinicians in providing patient care, and with full-time investigators in performing research, clinician-scientists will increasingly assume the role of leading/coordinating interdisciplinary teams. Such teams would focus either on patient-based research or on the clinical, biomedical and epidemiological aspects of specific clinical disorders, such as hypertension and diabetes.

  2. Identifying Future Scientists: Predicting Persistence into Research Training

    PubMed Central

    2007-01-01

    This study used semistructured interviews and grounded theory to look for characteristics among college undergraduates that predicted persistence into Ph.D. and M.D./Ph.D. training. Participants in the summer undergraduate and postbaccalaureate research programs at the Mayo Clinic College of Medicine were interviewed at the start, near the end, and 8–12 months after their research experience. Of more than 200 themes considered, five characteristics predicted those students who went on to Ph.D. and M.D./Ph.D. training or to M.D. training intending to do research: 1) Curiosity to discover the unknown, 2) Enjoyment of problem solving, 3) A high level of independence, 4) The desire to help others indirectly through research, and 5) A flexible, minimally structured approach to the future. Web-based surveys with different students confirmed the high frequency of curiosity and/or problem solving as the primary reason students planned research careers. No evidence was found for differences among men, women, and minority and nonminority students. Although these results seem logical compared with successful scientists, their constancy, predictive capabilities, and sharp contrast to students who chose clinical medicine were striking. These results provide important insights into selection and motivation of potential biomedical scientists and the early experiences that will motivate them toward research careers. PMID:18056303

  3. Identifying future scientists: predicting persistence into research training.

    PubMed

    McGee, Richard; Keller, Jill L

    2007-01-01

    This study used semistructured interviews and grounded theory to look for characteristics among college undergraduates that predicted persistence into Ph.D. and M.D./Ph.D. training. Participants in the summer undergraduate and postbaccalaureate research programs at the Mayo Clinic College of Medicine were interviewed at the start, near the end, and 8-12 months after their research experience. Of more than 200 themes considered, five characteristics predicted those students who went on to Ph.D. and M.D./Ph.D. training or to M.D. training intending to do research: 1) Curiosity to discover the unknown, 2) Enjoyment of problem solving, 3) A high level of independence, 4) The desire to help others indirectly through research, and 5) A flexible, minimally structured approach to the future. Web-based surveys with different students confirmed the high frequency of curiosity and/or problem solving as the primary reason students planned research careers. No evidence was found for differences among men, women, and minority and nonminority students. Although these results seem logical compared with successful scientists, their constancy, predictive capabilities, and sharp contrast to students who chose clinical medicine were striking. These results provide important insights into selection and motivation of potential biomedical scientists and the early experiences that will motivate them toward research careers.

  4. On-the-Job Evidence-Based Medicine Training for Clinician-Scientists of the Next Generation

    PubMed Central

    Leung, Elaine YL; Malick, Sadia M; Khan, Khalid S

    2013-01-01

    Clinical scientists are at the unique interface between laboratory science and frontline clinical practice for supporting clinical partnerships for evidence-based practice. In an era of molecular diagnostics and personalised medicine, evidence-based laboratory practice (EBLP) is also crucial in aiding clinical scientists to keep up-to-date with this expanding knowledge base. However, there are recognised barriers to the implementation of EBLP and its training. The aim of this review is to provide a practical summary of potential strategies for training clinician-scientists of the next generation. Current evidence suggests that clinically integrated evidence-based medicine (EBM) training is effective. Tailored e-learning EBM packages and evidence-based journal clubs have been shown to improve knowledge and skills of EBM. Moreover, e-learning is no longer restricted to computer-assisted learning packages. For example, social media platforms such as Twitter have been used to complement existing journal clubs and provide additional post-publication appraisal information for journals. In addition, the delivery of an EBLP curriculum has influence on its success. Although e-learning of EBM skills is effective, having EBM trained teachers available locally promotes the implementation of EBM training. Training courses, such as Training the Trainers, are now available to help trainers identify and make use of EBM training opportunities in clinical practice. On the other hand, peer-assisted learning and trainee-led support networks can strengthen self-directed learning of EBM and research participation among clinical scientists in training. Finally, we emphasise the need to evaluate any EBLP training programme using validated assessment tools to help identify the most crucial ingredients of effective EBLP training. In summary, we recommend on-the-job training of EBM with additional focus on overcoming barriers to its implementation. In addition, future studies evaluating the effectiveness of EBM training should use validated outcome tools, endeavour to achieve adequate power and consider the effects of EBM training on learning environment and patient outcomes. PMID:24151345

  5. On-the-Job Evidence-Based Medicine Training for Clinician-Scientists of the Next Generation.

    PubMed

    Leung, Elaine Yl; Malick, Sadia M; Khan, Khalid S

    2013-08-01

    Clinical scientists are at the unique interface between laboratory science and frontline clinical practice for supporting clinical partnerships for evidence-based practice. In an era of molecular diagnostics and personalised medicine, evidence-based laboratory practice (EBLP) is also crucial in aiding clinical scientists to keep up-to-date with this expanding knowledge base. However, there are recognised barriers to the implementation of EBLP and its training. The aim of this review is to provide a practical summary of potential strategies for training clinician-scientists of the next generation. Current evidence suggests that clinically integrated evidence-based medicine (EBM) training is effective. Tailored e-learning EBM packages and evidence-based journal clubs have been shown to improve knowledge and skills of EBM. Moreover, e-learning is no longer restricted to computer-assisted learning packages. For example, social media platforms such as Twitter have been used to complement existing journal clubs and provide additional post-publication appraisal information for journals. In addition, the delivery of an EBLP curriculum has influence on its success. Although e-learning of EBM skills is effective, having EBM trained teachers available locally promotes the implementation of EBM training. Training courses, such as Training the Trainers, are now available to help trainers identify and make use of EBM training opportunities in clinical practice. On the other hand, peer-assisted learning and trainee-led support networks can strengthen self-directed learning of EBM and research participation among clinical scientists in training. Finally, we emphasise the need to evaluate any EBLP training programme using validated assessment tools to help identify the most crucial ingredients of effective EBLP training. In summary, we recommend on-the-job training of EBM with additional focus on overcoming barriers to its implementation. In addition, future studies evaluating the effectiveness of EBM training should use validated outcome tools, endeavour to achieve adequate power and consider the effects of EBM training on learning environment and patient outcomes.

  6. Improving Communication Skills in Early Career Scientists

    NASA Astrophysics Data System (ADS)

    Saia, S. M.

    2013-12-01

    The AGU fall meeting is a time for scientists to share what we have been hard at work on for the past year, to share our trials and tribulations, and of course, to share our science (we hope inspirational). In addition to sharing, the AGU fall meeting is also about collaboration as it brings old and new colleagues together from diverse communities across the planet. By sharing our ideas and findings, we build new relationships with the potential to cross boundaries and solve complex and pressing environmental issues. With ever emerging and intensifying water scarcity, extreme weather, and water quality issues across the plant, it is especially important that scientists like us share our ideas and work together to put these ideas into action. My vision of the future of water sciences embraces this fact. I believe that better training is needed to help early career scientists, like myself, build connections within and outside of our fields. First and foremost, more advanced training in effective storytelling concepts and themes may improve our ability to provide context for our research. Second, training in the production of video for internet-based media (e.g. YouTube) may help us bring our research to audiences in a more personalized way. Third, opportunities to practice presenting at highly visible public events such as the AGU fall meeting, will serve to prepare early career scientists for a variety of audiences. We hope this session, ';Water Sciences Pop-Ups', will provide the first steps to encourage and train early career scientists as they share and collaborate with scientists and non-scientists around the world.

  7. Preparing Planetary Scientists to Engage Audiences

    NASA Astrophysics Data System (ADS)

    Shupla, C. B.; Shaner, A. J.; Hackler, A. S.

    2017-12-01

    While some planetary scientists have extensive experience sharing their science with audiences, many can benefit from guidance on giving presentations or conducting activities for students. The Lunar and Planetary Institute (LPI) provides resources and trainings to support planetary scientists in their communication efforts. Trainings have included sessions for students and early career scientists at conferences (providing opportunities for them to practice their delivery and receive feedback for their poster and oral presentations), as well as separate communication workshops on how to engage various audiences. LPI has similarly begun coaching planetary scientists to help them prepare their public presentations. LPI is also helping to connect different audiences and their requests for speakers to planetary scientists. Scientists have been key contributors in developing and conducting activities in LPI education and public events. LPI is currently working with scientists to identify and redesign short planetary science activities for scientists to use with different audiences. The activities will be tied to fundamental planetary science concepts, with basic materials and simple modifications to engage different ages and audience size and background. Input from the planetary science community on these efforts is welcome. Current results and resources, as well as future opportunities will be shared.

  8. 32 CFR 272.4 - Policy.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... training of scientists and engineers critical to meeting future needs of the Nation's defense workforce. (b... industrial research laboratories. (c) The DoD Components' conduct and support of basic research shall be...

  9. 32 CFR 272.4 - Policy.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... training of scientists and engineers critical to meeting future needs of the Nation's defense workforce. (b... industrial research laboratories. (c) The DoD Components' conduct and support of basic research shall be...

  10. Multiple System Atrophy

    MedlinePlus

    ... which can be expected to aid in the design of future trials. Additionally, MSA is one of ... Outcomes Data Training & Career Development High School, Undergraduate, & Post-Baccalaureate Predoctoral Fellows Postdoctoral Fellows Clinician-Scientists Faculty ...

  11. Training the Future - Interns Harvesting & Testing Plant Experim

    NASA Image and Video Library

    2017-07-19

    In the Space Life Sciences Laboratory at NASA's Kennedy Space Center in Florida, student interns are joining agency scientists, contributing in the area of plant growth research for food production in space. The agency attracts its future workforce through the NASA Internship, Fellowships and Scholarships, or NIFS, Program.

  12. Association of learning styles with research self-efficacy: study of short-term research training program for medical students.

    PubMed

    Dumbauld, Jill; Black, Michelle; Depp, Colin A; Daly, Rebecca; Curran, Maureen A; Winegarden, Babbi; Jeste, Dilip V

    2014-12-01

    With a growing need for developing future physician scientists, identifying characteristics of medical students who are likely to benefit from research training programs is important. This study assessed if specific learning styles of medical students, participating in federally funded short-term research training programs, were associated with research self-efficacy, a potential predictor of research career success. Seventy-five first-year medical students from 28 medical schools, selected to participate in two competitive NIH-supported summer programs for research training in aging, completed rating scales to evaluate learning styles at baseline, and research self-efficacy before and after training. We examined associations of individual learning styles (visual-verbal, sequential-global, sensing-intuitive, and active-reflective) with students' gender, ranking of medical school, and research self-efficacy. Research self-efficacy improved significantly following the training programs. Students with a verbal learning style reported significantly greater research self-efficacy at baseline, while visual, sequential, and intuitive learners demonstrated significantly greater increases in research self-efficacy from baseline to posttraining. No significant relationships were found between learning styles and students' gender or ranking of their medical school. Assessments of learning styles may provide useful information to guide future training endeavors aimed at developing the next generation of physician-scientists. © 2014 Wiley Periodicals, Inc.

  13. Science and Me: A Student-Driven Science Outreach Program for Lay Adult Audiences

    ERIC Educational Resources Information Center

    Alexander, Hannah; Waldron, Anna M.; Abell, Sandra K.

    2011-01-01

    The increasing need for communicating science to the public suggests that future scientists and science educators should be educated in science outreach and trained to communicate with lay audiences. We present a recently developed novel graduate course, which trains students in outreach efforts aimed to increase the public's understanding of…

  14. Identifying Future Scientists: Predicting Persistence into Research Training

    ERIC Educational Resources Information Center

    McGee, Richard; Keller, Jill L.

    2007-01-01

    This study used semistructured interviews and grounded theory to look for characteristics among college undergraduates that predicted persistence into Ph.D. and M.D./Ph.D. training. Participants in the summer undergraduate and postbaccalaureate research programs at the Mayo Clinic College of Medicine were interviewed at the start, near the end,…

  15. The EuroSprite2005 Observational Campaign: an example of training and outreach opportunities for CAL young scientists

    NASA Astrophysics Data System (ADS)

    Chanrion, O.; Crosby, N. B.; Arnone, E.; Boberg, F.; van der Velde, O.; Odzimek, A.; Mika, Á.; Enell, C.-F.; Berg, P.; Ignaccolo, M.; Steiner, R. J.; Laursen, S.; Neubert, T.

    2007-07-01

    The four year "Coupling of Atmospheric Layers (CAL)" EU FP5 Research Training Network project studied unanswered questions related to transient luminous events (sprites, jets and elves) in the upper atmosphere. Consisting of ten scientific work-packages CAL also included intensive training and outreach programmes for the young scientists hired. Educational activities were based on the following elements: national PhD programmes, activities at CAL and other meetings, a dedicated summer school, and two European sprite observational campaigns. The young scientists were strongly involved in the latter and, as an example, the "EuroSprite2005" observational campaign is presented in detail. Some of the young scientists participated in the instrument set-up, others in the campaign logistics, some coordinated the observations, and others gathered the results to build a catalogue. During the four-month duration of this campaign, all of them took turns in operating the system and making their own night observations. The ongoing campaign activities were constantly advertised and communicated via an Internet blog. In summary the campaign required all the CAL young scientists to embark on experimental work, to develop their organisational skills, and to enhance their ability to communicate their activities. The campaign was a unique opportunity to train and strengthen skills that will be an asset to their future careers and, overall, was most successful.

  16. Adapt or Perish – Updating the Pre-doctoral Training Model

    PubMed Central

    Chabowski, Dawid; Kadlec, Andrew; Dellostritto, Daniel; Gutterman, David

    2017-01-01

    The fate of biomedical research lies in the hands of future generations of scientists. In recent decades the diversity of scientific career opportunities has exploded multidimensionally. However, the educational system for maintaining a pipeline of talented biomedical trainees remains unidimensional and has become outdated. This Viewpoint identifies inadequacies in training and offers potential solutions and implementation strategies to stimulate interest in science at a younger age and to better align individualized training pathways with career opportunities (“precision training”). Both interventions support of the ultimate goal of attracting the best possible future leaders in biomedical science. PMID:28360347

  17. Opportunities and Resources for Scientist Participation in Education and Public Outreach

    NASA Astrophysics Data System (ADS)

    Buxner, Sanlyn; CoBabe-Ammann, E.; Shipp, S.; Hsu, B.

    2012-10-01

    Active engagement of scientists in Education and Public Outreach (E/PO) activities results in benefits for both the audience and scientists. Most scientists are trained in research but have little formal training in education. The Planetary Science Education and Public Outreach (E/PO) Forum helps the Science Mission Directorate support scientists currently involved in E/PO and to help scientists who are interested in becoming involved in E/PO efforts find ways to do so through a variety of avenues. We will present current and future opportunities and resources for scientists to become engaged in education and public outreach. These include upcoming NASA SMD E/PO funding opportunities, professional development resources for writing NASA SMD E/PO proposals (webinars and other online tools), toolkits for scientists interested in best practices in E/PO (online guides for K-12 education and public outreach), EarthSpace (a community web space where instructors can find and share about teaching space and earth sciences in the undergraduate classroom, including class materials news and funding opportunities, and the latest education research), thematic resources for teaching about the solar system (archived resources from Year of the Solar System), and an online database of scientists interested in connecting with education programs. Learn more about the Forum and find resources at http://smdepo.org/.

  18. A Transdisciplinary Training Program for Behavioral Oncology and Cancer Control Scientists

    PubMed Central

    McDaniel, Anna M.; Champion, Victoria L.; Kroenke, Kurt

    2008-01-01

    Transdisciplinary health research training has been identified as a major initiative to achieve the vision for research teams of the future as articulated in the NIH Roadmap for Medical Research. To address the need for scientists who can integrate diverse scientific approaches and work in transdisciplinary teams to solve complex health problems, Indiana University has designed an innovative training program that will provide the didactic and research experiences to enable trainees to establish productive careers in behavioral oncology and cancer control research. Development of a successful transdisciplinary training program requires mentorship, research, and a specialized curriculum that encompass a broad range of disciplines. The program capitalizes on a unique set of existing and emerging training opportunities resulting from the collaborative activities of the Indiana University (IU) Simon Cancer Center, the IU Schools of Nursing and Medicine, and multiple research institutes and academic centers located in Indiana and neighboring states. PMID:18501750

  19. Case study: design and implementation of training for scientists deploying to Ebola diagnostic field laboratories in Sierra Leone: October 2014 to February 2016

    PubMed Central

    Lewis, Suzanna M.; Lansley, Amber; Fraser, Sara; Shieber, Clare; Shah, Sonal; Semper, Amanda; Bailey, Daniel; Busuttil, Jason; Evans, Liz; Carroll, Miles W.; Silman, Nigel J.; Brooks, Tim; Shallcross, Jane A.

    2017-01-01

    As part of the UK response to the 2013–2016 Ebola virus disease (EVD) epidemic in West Africa, Public Health England (PHE) were tasked with establishing three field Ebola virus (EBOV) diagnostic laboratories in Sierra Leone by the UK Department for International Development (DFID). These provided diagnostic support to the Ebola Treatment Centre (ETC) facilities located in Kerry Town, Makeni and Port Loko. The Novel and Dangerous Pathogens (NADP) Training group at PHE, Porton Down, designed and implemented a pre-deployment Ebola diagnostic laboratory training programme for UK volunteer scientists being deployed to the PHE EVD laboratories. Here, we describe the training, workflow and capabilities of these field laboratories for use in response to disease epidemics and in epidemiological surveillance. We discuss the training outcomes, the laboratory outputs, lessons learned and the legacy value of the support provided. We hope this information will assist in the recruitment and training of staff for future responses and in the design and implementation of rapid deployment diagnostic field laboratories for future outbreaks of high consequence pathogens. This article is part of the themed issue ‘The 2013–2016 West African Ebola epidemic: data, decision-making and disease control’. PMID:28396470

  20. Shaping the Future of Research: a perspective from junior scientists

    PubMed Central

    MacKellar, Drew C.; Mazzilli, Sarah A.; Pai, Vaibhav P.; Goodwin, Patricia R.; Walsh, Erica M.; Robinson-Mosher, Avi; Bowman, Thomas A.; Kraemer, James; Erb, Marcella L.; Schoenfeld, Eldi; Shokri, Leila; Jackson, Jonathan D.; Islam, Ayesha; Mattozzi, Matthew D.; Krukenberg, Kristin A.; Polka, Jessica K.

    2015-01-01

    The landscape of scientific research and funding is in flux as a result of tight budgets, evolving models of both publishing and evaluation, and questions about training and workforce stability. As future leaders, junior scientists are uniquely poised to shape the culture and practice of science in response to these challenges. A group of postdocs in the Boston area who are invested in improving the scientific endeavor, planned a symposium held on October 2 nd and 3 rd, 2014, as a way to join the discussion about the future of US biomedical research. Here we present a report of the proceedings of participant-driven workshops and the organizers’ synthesis of the outcomes. PMID:25653845

  1. Training the Future - Swamp Work Activities

    NASA Image and Video Library

    2017-07-19

    In the Swamp Works laboratory at NASA's Kennedy Space Center in Florida, student interns such as Maddy Olson are joining agency scientists, contributing in the area of Exploration Research and Technology. Olson is majoring in mechanical engineering at the University of North Dakota. The agency attracts its future workforce through the NASA Internship, Fellowships and Scholarships, or NIFS, Program.

  2. Training the Future - Swamp Work Activities

    NASA Image and Video Library

    2017-07-19

    In the Swamp Works laboratory at NASA's Kennedy Space Center in Florida, student interns such as Kevin Murphy are joining agency scientists, contributing in the area of Exploration Research and Technology. Murphy is majoring in mechanical engineering at the University of Illinois at Urbana-Champaign. The agency attracts its future workforce through the NASA Internship, Fellowships and Scholarships, or NIFS, Program.

  3. Training the Future - Swamp Work Activities

    NASA Image and Video Library

    2017-07-19

    In the Swamp Works laboratory at NASA's Kennedy Space Center in Florida, student interns such as Andrew Thoesen are joining agency scientists, contributing in the area of Exploration Research and Technology. Thoesen is studying mechanical engineering at Arizona State University in Tempe, Arizona. The agency attracts its future workforce through the NASA Internship, Fellowships and Scholarships, or NIFS, Program

  4. OntoSoft: A Software Registry for Geosciences

    NASA Astrophysics Data System (ADS)

    Garijo, D.; Gil, Y.

    2017-12-01

    The goal of the EarthCube OntoSoft project is to enable the creation of an ecosystem for software stewardship in geosciences that will empower scientists to manage their software as valuable scientific assets. By sharing software metadata in OntoSoft, scientists enable broader access to that software by other scientists, software professionals, students, and decision makers. Our work to date includes: 1) an ontology for describing scientific software metadata, 2) a distributed scientific software repository that contains more than 750 entries that can be searched and compared across metadata fields, 3) an intelligent user interface that guides scientists to publish software and allows them to crowdsource its corresponding metadata. We have also developed a training program where scientists learn to describe and cite software in their papers in addition to data and provenance, and we are using OntoSoft to show them the benefits of publishing their software metadata. This training program is part of a Geoscience Papers of the Future Initiative, where scientists are reflecting on their current practices, benefits and effort for sharing software and data. This journal paper can be submitted to a Special Section of the AGU Earth and Space Science Journal.

  5. What will it take? Pathways, time and funding: Australian medical students' perspective on clinician-scientist training.

    PubMed

    Eley, Diann S; Jensen, Charmaine; Thomas, Ranjeny; Benham, Helen

    2017-12-08

    Clinician-scientists are in decline worldwide. They represent a unique niche in medicine by bridging the gap between scientific discovery and patient care. A national, integrated approach to training clinician-scientists, typically programs that comprise a comprehensive MD-PhD pathway, are customary. Such a pathway is lacking in Australia. The objective was to gather perceptions from Australian medical students on factors they perceive would influence their decision to pursue clinician-scientist training. A cross-sectional mixed methods design used quantitative and qualitative questions in an online self-report survey with medical students from a four-year MD program. Quantitative measures comprised scaled response questions regarding prior experience and current involvement in research, and short- and long-term opinions about factors that influence their decisions to undertake a research higher degree (RHD) during medical school. Qualitative questions gathered broader perceptions of what a career pathway as a clinician-scientist would include and what factors are most conducive to a medical student's commitment to MD-PhD training. Respondents (N = 418; 51% female) indicated Time, Funding and Pathway as the major themes arising from the qualitative data, highlighting negative perceptions rather than possible benefits to RHD training. The lack of an evident Pathway was inter-related to Time and Funding. Themes were supported by the quantitative data. Sixty percent of students have previous research experience of varying forms, and 90% report a current interest, mainly to improve their career prospects. The data emphasise the need for an MD-PhD pathway in Australia. A model that provides an early, integrated, and exclusive approach to research training pathways across all stages of medical education is suggested as the best way to rejuvenate the clinician-scientist. A national pathway that addresses factors influencing career decision making throughout the medical education continuum should include an appropriate funding structure, and provide early and continuing advice and mentoring. It should be flexible, gender equitable, and include post-graduate training. The implications of implementing MD-PhD programs represent a substantial investment. However this should not be a deterrent to Australia's commitment to an MD-PhD pathway, but rather a challenge to help ensure our future healthcare is guided by highly trained and competent clinician-scientists.

  6. Building the future of mankind in the classroom

    NASA Astrophysics Data System (ADS)

    Doran, R.

    2013-09-01

    Rethinking education and how we engage future generations in the pursue of science literacy is much more than creating the future generation of planetary scientists or space exploration engineers, it is the guarantee of the survival of our specie. Training teachers to the use of cutting edge science tools and resources in class room is a very important task and is being embraced by one of the largest astronomy education efforts worldwide, the Galileo Teacher Training Program. GTTP is partnering with several important research projects in education by providing support in the construction of a strong support network for educators willing to introduce the scientific method in classroom.

  7. The journey of a science teacher: Preparing female students in the Training Future Scientists after school program

    NASA Astrophysics Data System (ADS)

    Robinson-Hill, Rona M.

    What affect does female participation in the Training Future Scientist (TFS) program based on Vygotsky's sociocultural theory and Maslow's Hierarchies of Needs have on female adolescents' achievement levels in science and their attitude toward science and interest in science-based careers? The theoretical framework for this study was developed through a constructivist perspective, using dialogic engagement, coinciding with Lev Vygotsky's sociocultural learning theory. This action research project used mixed methods research design, targeted urban adolescent females who were members of Boys & Girls Club of Greater St. Louis (BGCGSTL) after-school program. The data collection measures were three qualitative instruments (semi-structured interviews, reflective journal entries and attitudinal survey open-ended responses) and two quantitative instruments (pre-test and posttests over the content from the Buckle-down Curriculum and attitudinal survey scaled responses). The goal was to describe the impact the Training Future Scientist (TFS) after-school program has on the girls' scientific content knowledge, attitude toward choosing a science career, and self-perception in science. Through the TFS after-school program participants had access to a secondary science teacher-researcher, peer leaders that were in the 9th--12th grade, and Science, Technology, Engineering and Math (STEM) role models from Washington University Medical School Young Scientist Program (YSP) graduate and medical students and fellows as volunteers. The program utilized the Buckle-down Curriculum as guided, peer-led cooperative learning groups, hands-on labs and demonstrations facilitated by the researcher, trained peer leaders and/or role models that used constructivist science pedagogy to improve test-taking strategies. The outcomes for the TFS study were an increase in science content knowledge, a positive trend in attitude change, and a negative trend in choosing a science career. Keywords: informal science programs, urban girls, self-efficacy, cooperative learning, peer learning, female adolescents, and after-school urban education This dissertation study was funded by two grants, the 2013 spring dissertation grant from the University of Missouri St. Louis and a philanthropic grant from Dr. Courtney Crim.

  8. On the brink of extinction: the future of translational physician-scientists in the United States.

    PubMed

    Furuya, Hideki; Brenner, Dean; Rosser, Charles J

    2017-05-01

    Over the past decade, we have seen an unparalleled growth in our knowledge of cancer biology and the translation of this biology into a new generation of therapeutic tools that are changing cancer treatment outcomes. With the continued explosion of new biologic discoveries, we find ourselves with a limited number of trained and engaged translational physician-scientists capable of bridging the chasm between basic science and clinical science. Here, we discuss the current state translational physician-scientists find themselves in and offer solutions to navigate during this difficult time.

  9. The National Institute of Environmental Health Sciences Superfund Research Program: a model for multidisciplinary training of the next generation of environmental health scientists.

    PubMed

    Carlin, Danielle J; Henry, Heather; Heacock, Michelle; Trottier, Brittany; Drew, Christina H; Suk, William A

    2018-03-28

    The National Institute of Environmental Health Sciences (NIEHS) Superfund Research Program (SRP) funds university-based, multidisciplinary research on human health and environmental science and engineering with the central goals to understand how hazardous substances contribute to disease and how to prevent exposures to these environmental chemicals. This multi-disciplinary approach allows early career scientists (e.g. graduate students and postdoctoral researchers) to gain experience in problem-based, solution-oriented research and to conduct research in a highly collaborative environment. Training the next generation of environmental health scientists has been an important part of the SRP since its inception. In addition to basic research, the SRP has grown to include support of broader training experiences such as those in research translation and community engagement activities that provide opportunities to give new scientists many of the skills they will need to be successful in their field of research. Looking to the future, the SRP will continue to evolve its training component by tracking and analyzing outcomes from its trainees by using tools such as the NIEHS CareerTrac database system, by increasing opportunities for trainees interested in research that goes beyond US boundaries, and in the areas of bioinformatics and data integration. These opportunities will give them the skills needed to be competitive and successful no matter which employment sector they choose to enter after they have completed their training experience.

  10. Training the Future - Interns Harvesting & Testing Plant Experim

    NASA Image and Video Library

    2017-07-19

    In the Space Life Sciences Laboratory at NASA's Kennedy Space Center in Florida, student interns such as Alex Litvin are joining agency scientists, contributing in the area of plant growth research for food production in space. Litvin is pursuing doctorate in horticulture at Iowa State University. The agency attracts its future workforce through the NASA Internship, Fellowships and Scholarships, or NIFS, Program.

  11. Core competencies for pharmaceutical physicians and drug development scientists

    PubMed Central

    Silva, Honorio; Stonier, Peter; Buhler, Fritz; Deslypere, Jean-Paul; Criscuolo, Domenico; Nell, Gerfried; Massud, Joao; Geary, Stewart; Schenk, Johanna; Kerpel-Fronius, Sandor; Koski, Greg; Clemens, Norbert; Klingmann, Ingrid; Kesselring, Gustavo; van Olden, Rudolf; Dubois, Dominique

    2013-01-01

    Professional groups, such as IFAPP (International Federation of Pharmaceutical Physicians and Pharmaceutical Medicine), are expected to produce the defined core competencies to orient the discipline and the academic programs for the development of future competent professionals and to advance the profession. On the other hand, PharmaTrain, an Innovative Medicines Initiative project, has become the largest public-private partnership in biomedicine in the European Continent and aims to provide postgraduate courses that are designed to meet the needs of professionals working in medicines development. A working group was formed within IFAPP including representatives from PharmaTrain, academic institutions and national member associations, with special interest and experience on Quality Improvement through education. The objectives were: to define a set of core competencies for pharmaceutical physicians and drug development scientists, to be summarized in a Statement of Competence and to benchmark and align these identified core competencies with the Learning Outcomes (LO) of the PharmaTrain Base Course. The objectives were successfully achieved. Seven domains and 60 core competencies were identified and aligned accordingly. The effective implementation of training programs using the competencies or the PharmaTrain LO anywhere in the world may transform the drug development process to an efficient and integrated process for better and safer medicines. The PharmaTrain Base Course might provide the cognitive framework to achieve the desired Statement of Competence for Pharmaceutical Physicians and Drug Development Scientists worldwide. PMID:23986704

  12. An Opportunity for Industry-Academia Partnership: Training the Next Generation of Industrial Researchers in Characterizing Higher Order Protein Structure.

    PubMed

    Bain, David L; Brenowitz, Michael; Roberts, Christopher J

    2016-12-01

    Training researchers for positions in the United States biopharmaceutical industry has long been driven by academia. This commentary explores how the changing landscape of academic training will impact the industrial workforce, particularly with regard to the development of protein therapeutics in the area of biophysical and higher order structural characterization. We discuss how to balance future training and employment opportunities, how academic-industrial partnerships can help young scientists acquire the skills needed by their future employer, and how an appropriately trained workforce can facilitate the translation of new technology from academic to industrial laboratories. We also present suggestions to facilitate the coordinated development of industrial-academic educational partnerships to develop new training programs, and the ability of students to locate these programs, through the development of authoritative public resources. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  13. Training the Future - Interns Harvesting & Testing Plant Experim

    NASA Image and Video Library

    2017-07-19

    In the Space Life Sciences Laboratory at NASA's Kennedy Space Center in Florida, student interns such as Ayla Grandpre are joining agency scientists, contributing in the area of plant growth research for food production in space. Grandpre is majoring in computer science and chemistry at Rocky Mountain College in Billings, Montana. The agency attracts its future workforce through the NASA Internship, Fellowships and Scholarships, or NIFS, Program.

  14. Training the Future - Interns Harvesting & Testing Plant Experim

    NASA Image and Video Library

    2017-07-19

    In the Space Life Sciences Laboratory at NASA's Kennedy Space Center in Florida, student interns such as Payton Barnwell are joining agency scientists, contributing in the area of plant growth research for food production in space. Barnwell is a mechanical engineering and nanotechnology major at Florida Polytechnic University. The agency attracts its future workforce through the NASA Internship, Fellowships and Scholarships, or NIFS, Program.

  15. Basic science research in urology training.

    PubMed

    Eberli, D; Atala, A

    2009-04-01

    The role of basic science exposure during urology training is a timely topic that is relevant to urologic health and to the training of new physician scientists. Today, researchers are needed for the advancement of this specialty, and involvement in basic research will foster understanding of basic scientific concepts and the development of critical thinking skills, which will, in turn, improve clinical performance. If research education is not included in urology training, future urologists may not be as likely to contribute to scientific discoveries.Currently, only a minority of urologists in training are currently exposed to significant research experience. In addition, the number of physician-scientists in urology has been decreasing over the last two decades, as fewer physicians are willing to undertake a career in academics and perform basic research. However, to ensure that the field of urology is driving forward and bringing novel techniques to patients, it is clear that more research-trained urologists are needed. In this article we will analyse the current status of basic research in urology training and discuss the importance of and obstacles to successful addition of research into the medical training curricula. Further, we will highlight different opportunities for trainees to obtain significant research exposure in urology.

  16. Should We Limit the Number of Astronomy Students?

    ERIC Educational Resources Information Center

    Bachmann, Kurt T.; Boyce, Peter B.

    1994-01-01

    Presents two views about the future of astronomy. Explains that government budget cuts and an oversupply of young scientists have decimated the employment prospects. Encourages students to train for a wide variety of careers and to become entrepreneurs who bring technologies to the consumer. (DDR)

  17. Scientist-Teacher-Student Interactions: Experiences around the Fall 2010 A-Train Symposium

    NASA Astrophysics Data System (ADS)

    Chambers, L. H.; Rogers, M. A.; Charlevoix, D. J.; Kennedy, T.; Oostra, D. H.

    2010-12-01

    In late October 2010, the second A-Train Science Symposium will be held in New Orleans, LA. (The first such event was hosted by CNES in France in 2007.) In conjunction with the symposium, a multi-faceted education event is also being planned. This will include: - Onsite one-day teacher workshops for local teachers introducing remote sensing and the use of satellite data in the classroom - Visits by scientists to local classrooms for direct interaction with students the day after the symposium - A Student-Scientist Observation Campaign which will engage A-Train scientists in a social media website with teachers and students from around the world. This paper will focus primarily on the observation campaign. It will describe the rapid development and testing of a web-based framework to support student-scientist interaction. It will lay out the steps used to activate a (hopefully significant) number of students and teachers through the GLOBE Program (www.globe.gov) and the S’COOL Project (scool.larc.nasa.gov). It will describe the interaction during the event, which will be a 3-week period before, during and after the symposium. During this time, A-Train scientists will be posting interesting satellite observations on a social media website. Students will be able to comment, ask questions, and post their own observations of related phenomena observed from the ground. Scientists will respond to student questions, and comment or ask questions on student observations. In addition, student observations will be collected through the existing S’COOL and GLOBE websites, and combined into a common visualization tool that is easily accessible through the social media framework. A photo upload pilot system is also planned, taking advantage of advances in exif photo metadata in new electronics (cell phones, smart phones, digital cameras) to easily geolocate this imagery for correlation to satellite remote sensing data and images. It is our hope that this approach will be successful and can then serve as a model for other groups to engage with students - the future scientists of the world.

  18. REFLECTIONS ON PHYSICAL CHEMISTRY: Science and Scientists

    NASA Astrophysics Data System (ADS)

    Jortner, Joshua

    2006-05-01

    This is the story of a young person who grew up in Tel-Aviv during the period of the establishment of the State of Israel and was inspired to become a physical chemist by the cultural environment, by the excellent high-school education, and by having been trained by some outstanding scientists at the Hebrew University of Jerusalem and, subsequently, by the intellectual environment and high-quality scientific endeavor at the University of Chicago. Since serving as the first chairman of the Chemistry Department of the newly formed Tel-Aviv University he has been immersed in research, in the training of young scientists, and in intensive and extensive international scientific collaboration. Together with the members of his "scientific family" he has explored the phenomena of energy acquisition, storage and disposal and structure-dynamics-function relations in large molecules, condensed phase, clusters and biomolecules, and is looking forward to many future adventures in physical chemistry. "What to leave out and what to put in? That's the problem." Hugh Lofting, Doctor Dolittle's Zoo, 1925

  19. Alliance for NanoHealth (ANH) Training Program for the development of future generations of interdisciplinary scientists and collaborative research focused upon the advancement of nanomedicine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gorenstein, David

    The objectives of this program are to promote the mission of the Department of Energy (DOE) Science, Technology, Engineering, Math (STEM) Program by recruiting students to science and engineering disciplines with the intent of mentoring and supporting the next generation of scientists; to foster interdisciplinary and collaborative research under the sponsorship of ANH for the discovery and design of nano-based materials and devices with novel structures, functions, and properties; and to prepare a diverse work force of scientists, engineers, and clinicians by utilizing the unique intellectual and physical resources to develop novel nanotechnology paradigms for clinical application.

  20. Scientists' Views about Communication Training

    ERIC Educational Resources Information Center

    Besley, John C.; Dudo, Anthony; Storksdieck, Martin

    2015-01-01

    This study assesses how scientists think about science communication training based on the argument that such training represents an important tool in improving the quality of interactions between scientists and the public. It specifically focuses on training related to five goals, including views about training to make science messages…

  1. Educating and Training Accelerator Scientists and Technologists for Tomorrow

    NASA Astrophysics Data System (ADS)

    Barletta, William; Chattopadhyay, Swapan; Seryi, Andrei

    2012-01-01

    Accelerator science and technology is inherently an integrative discipline that combines aspects of physics, computational science, electrical and mechanical engineering. As few universities offer full academic programs, the education of accelerator physicists and engineers for the future has primarily relied on a combination of on-the-job training supplemented with intensive courses at regional accelerator schools. This article describes the approaches being used to satisfy the educational curiosity of a growing number of interested physicists and engineers.

  2. Educating and Training Accelerator Scientists and Technologists for Tomorrow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barletta, William A.; Chattopadhyay, Swapan; Seryi, Andrei

    2012-07-01

    Accelerator science and technology is inherently an integrative discipline that combines aspects of physics, computational science, electrical and mechanical engineering. As few universities offer full academic programs, the education of accelerator physicists and engineers for the future has primarily relied on a combination of on-the-job training supplemented with intense courses at regional accelerator schools. This paper describes the approaches being used to satisfy the educational interests of a growing number of interested physicists and engineers.

  3. Training the Future - Swamp Work Activities

    NASA Image and Video Library

    2017-07-19

    In the Swamp Works laboratory at NASA's Kennedy Space Center in Florida, student interns such as Thomas Muller, left, and Austin Langdon are joining agency scientists, contributing in the area of Exploration Research and Technology. Muller is pursuing a degree in computer engineering and control systems and Florida Tech. Langdon is an electrical engineering major at the University of Kentucky. The agency attracts its future workforce through the NASA Internship, Fellowships and Scholarships, or NIFS, Program.

  4. Psychotherapy training: Suggestions for core ingredients and future research.

    PubMed

    Boswell, James F; Castonguay, Louis G

    2007-12-01

    Despite our considerable depth and breadth of empirical knowledge on psychotherapy process and outcome, research on psychotherapy training is somewhat lacking. We would argue, however, that the scientist-practitioner model should not only guide practice, but also the way our field approaches training. In this paper we outline our perspective on the crucial elements of psychotherapy training based on available evidence, theory, and clinical experience, focusing specifically on the structure, key components, and important skills to be learned in a successful training program. In addition, we derive specific research directions based on the crucial elements of our proposed training perspective, and offer general considerations for research on training, including method and measurement issues. (PsycINFO Database Record (c) 2010 APA, all rights reserved).

  5. Planning for the future workforce in hematology research

    PubMed Central

    Abkowitz, Janis L.; Coller, Barry S.; DiMichele, Donna M.

    2015-01-01

    The medical research and training enterprise in the United States is complex in both its scope and implementation. Accordingly, adaptations to the associated workforce needs present particular challenges. This is particularly true for maintaining or expanding national needs for physician-scientists where training resource requirements and competitive transitional milestones are substantial. For the individual, these phenomena can produce financial burden, prolong the career trajectory, and significantly influence career pathways. Hence, when national data suggest that future medical research needs in a scientific area may be met in a less than optimal manner, strategies to expand research and training capacity must follow. This article defines such an exigency for research and training in nonneoplastic hematology and presents potential strategies for addressing these critical workforce needs. The considerations presented herein reflect a summary of the discussions presented at 2 workshops cosponsored by the National Heart, Lung, and Blood Institute and the American Society of Hematology. PMID:25758827

  6. Planning for the future workforce in hematology research.

    PubMed

    Hoots, W Keith; Abkowitz, Janis L; Coller, Barry S; DiMichele, Donna M

    2015-04-30

    The medical research and training enterprise in the United States is complex in both its scope and implementation. Accordingly, adaptations to the associated workforce needs present particular challenges. This is particularly true for maintaining or expanding national needs for physician-scientists where training resource requirements and competitive transitional milestones are substantial. For the individual, these phenomena can produce financial burden, prolong the career trajectory, and significantly influence career pathways. Hence, when national data suggest that future medical research needs in a scientific area may be met in a less than optimal manner, strategies to expand research and training capacity must follow. This article defines such an exigency for research and training in nonneoplastic hematology and presents potential strategies for addressing these critical workforce needs. The considerations presented herein reflect a summary of the discussions presented at 2 workshops cosponsored by the National Heart, Lung, and Blood Institute and the American Society of Hematology.

  7. Raising the Bar in Freshman Science Education: Student Lectures, Scientific Papers, and Independent Experiments

    ERIC Educational Resources Information Center

    Collins, Eva-Maria S.; Calhoun, Tessa R.

    2014-01-01

    This article presents the combination of three enhanced educational approaches for training future scientists. These methods incorporate skills generally not introduced in the freshman year: student-led blackboard introductions; the writing of scientific papers; and the design, execution, and presentation of an independent lab module. We tested…

  8. From Data to Policy: An Undergraduate Program in Research and Communication

    ERIC Educational Resources Information Center

    Fuoco, Rebecca; Blum, Arlene; Peaslee, Graham F.

    2012-01-01

    To bridge the gap between science and policy, future scientists should receive training that incorporates policy implications into the design, analysis, and communication of research. We present a student Science and Policy course for undergraduate science majors piloted at the University of California, Berkeley in the summer of 2011. During this…

  9. NASA Space Biology Research Associate Program for the 21st Century

    NASA Technical Reports Server (NTRS)

    Sonnenfeld, Gerald

    2000-01-01

    The Space Biology Research Associate Program for the 21st Century provided a unique opportunity to train individuals to conduct biological research in hypo- and hyper-gravity, and to conduct ground-based research. This grant was developed to maximize the potential for Space Biology as an emerging discipline and to train a cadre of space biologists. The field of gravitational and space biology is rapidly growing at the future of the field is reflected in the quality and education of its personnel. Our chief objective was to train and develop these scientists rapidly and in a cost effective model.

  10. Training the Future - Interns Harvesting & Testing Plant Experim

    NASA Image and Video Library

    2017-07-19

    In the Space Life Sciences Laboratory at NASA's Kennedy Space Center in Florida, student interns such as Emma Boehm, left, and Jessica Scotten are joining agency scientists, contributing in the area of plant growth research for food production in space. Boehm is pursuing a degree in ecology and evolution at the University of Minnesota. Scotten is majoring in microbiology at Oregon State University. The agency attracts its future workforce through the NASA Internship, Fellowships and Scholarships, or NIFS, Program.

  11. Clinician-scientist trainee: a German perspective.

    PubMed

    Bossé, Dominick; Milger, Katrin; Morty, Rory E

    2011-12-01

    Clinician-scientists are particularly well positioned to bring basic science findings to the patient's bedside; the ultimate objective of basic research in the health sciences. Concerns have recently been raised about the decreasing workforce of clinician-scientists in both the United States of America and in Canada; however, little is known about clinician-scientists elsewhere around the globe. The purpose of this article is two-fold: 1) to feature clinician-scientist training in Germany; and 2) to provide a comparison with the Canadian system. In a question/answer interview, Rory E. Morty, director of a leading clinician-scientist training program in Germany, and Katrin Milger, a physician and graduate from that program, draw a picture of clinician-scientist training and career opportunities in Germany, outlining the place of clinician-scientists in the German medical system, the advantages and drawbacks of this training, and government initiatives to promote training and career development of clinician-scientists. The interview is followed by a discussion comparing the German and Canadian clinician-scientist development programs, focusing on barriers to trainee recruitment and career progress, and efforts to eliminate the barriers encountered along this very demanding but also very rewarding career path.

  12. AGU scientists meet with legislators during Geosciences Congressional Visits Day

    NASA Astrophysics Data System (ADS)

    Uhlenbrock, Kristan

    2011-10-01

    This year marks the fourth annual Geosciences Congressional Visits Day (Geo-CVD), in which scientists from across the nation join together in Washington, D. C., to meet with their legislators to discuss the importance of funding for Earth and space sciences. AGU partnered with seven other Earth and space science organizations to bring more than 50 scientists, representing 23 states, for 2 days of training and congressional visits on 20-21 September 2011. As budget negotiations envelop Congress, which must find ways to agree on fiscal year (FY) 2012 budgets and reduce the deficit by $1.5 trillion over the next 10 years, Geo-CVD scientists seized the occasion to emphasize the importance of federally funded scientific research as well as science, technology, engineering, and math (STEM) education. Cuts to basic research and STEM education could adversely affect innovation, stifle future economic growth and competitiveness, and jeopardize national security.

  13. Psychological Assessment Training in Clinical Psychology Doctoral Programs.

    PubMed

    Mihura, Joni L; Roy, Manali; Graceffo, Robert A

    2017-01-01

    We surveyed American Psychological Association-accredited clinical psychology doctoral programs' (n = 83) training in psychological assessment-specifically, their coverage of various assessment topics and tests in courses and practica, and whether the training was optional or required. We report results overall and separately per training model (clinical science, scientist-practitioner, and practitioner-focused). Overall, our results suggest that psychological assessment training is as active, or even more active, than in previous years. Areas of increased emphasis include clinical interviewing and psychometrics; multimethod, outcomes, health, and collaborative or therapeutic assessment; and different types of cognitive and self-report personality tests. All or almost all practice-focused programs offered training with the Thematic Apperception Test and Rorschach compared to about half of the scientist-practitioner programs and a third of the clinical science programs. Although almost all programs reported teaching multimethod assessment, what constitutes different methods of assessing psychopathology should be clarified in future studies because many programs appear to rely on one method-self-report (especially clinical science programs). Although doctoral programs covered many assessment topics and tests in didactic courses, there appears to be a shortage of program-run opportunities for students to obtain applied assessment training. Finally, we encourage doctoral programs to be familiar with (a) internships' assessment expectations and opportunities, (b) the professional guidelines for assessment training, and (c) the American Psychological Association's requirements for preinternship assessment competencies.

  14. Space Exploration: Manned and Unmanned Flight. Aerospace Education III.

    ERIC Educational Resources Information Center

    Coard, E. A.

    This book, for use only in the Air Force ROTC training program, deals with the idea of space exploration. The possibility of going into space and subsequent moon landings have encouraged the government and scientists to formulate future plans in this field. Brief descriptions (mostly informative in nature) of these plans provide an account of…

  15. Training the Future - Interns Harvesting & Testing Plant Experim

    NASA Image and Video Library

    2017-07-19

    In the Space Life Sciences Laboratory at NASA's Kennedy Space Center in Florida, student interns such as Ayla Grandpre, left, and Payton Barnwell are joining agency scientists, contributing in the area of plant growth research for food production in space. Grandpre is pursuing a degree in computer science and chemistry at Rocky Mountain College in Billings, Montana. Barnwell is a mechanical engineering and nanotechnology major at Florida Polytechnic University. The agency attracts its future workforce through the NASA Internship, Fellowships and Scholarships, or NIFS, Program.

  16. How iSamples (Internet of Samples in the Earth Sciences) Improves Sample and Data Stewardship in the Next Generation of Geoscientists

    NASA Astrophysics Data System (ADS)

    Hallett, B. W.; Dere, A. L. D.; Lehnert, K.; Carter, M.

    2016-12-01

    Vast numbers of physical samples are routinely collected by geoscientists to probe key scientific questions related to global climate change, biogeochemical cycles, magmatic processes, mantle dynamics, etc. Despite their value as irreplaceable records of nature the majority of these samples remain undiscoverable by the broader scientific community because they lack a digital presence or are not well-documented enough to facilitate their discovery and reuse for future scientific and educational use. The NSF EarthCube iSamples Research Coordination Network seeks to develop a unified approach across all Earth Science disciplines for the registration, description, identification, and citation of physical specimens in order to take advantage of the new opportunities that cyberinfrastructure offers. Even as consensus around best practices begins to emerge, such as the use of the International Geo Sample Number (IGSN), more work is needed to communicate these practices to investigators to encourage widespread adoption. Recognizing the importance of students and early career scientists in particular to transforming data and sample management practices, the iSamples Education and Training Working Group is developing training modules for sample collection, documentation, and management workflows. These training materials are made available to educators/research supervisors online at http://earthcube.org/group/isamples and can be modularized for supervisors to create a customized research workflow. This study details the design and development of several sample management tutorials, created by early career scientists and documented in collaboration with undergraduate research students in field and lab settings. Modules under development focus on rock outcrops, rock cores, soil cores, and coral samples, with an emphasis on sample management throughout the collection, analysis and archiving process. We invite others to share their sample management/registration workflows and to develop training modules. This educational approach, with evolving digital materials, can help prepare future scientists to perform research in a way that will contribute to EarthCube data integration and discovery.

  17. Engaging rural Australian communities in National Science Week helps increase visibility for women researchers

    PubMed Central

    Desselle, Mathilde R.

    2017-01-01

    During a week-long celebration of science, run under the federally supported National Science Week umbrella, the Catch a Rising Star: women in Queensland research (CaRS) programme flew scientists who identify as women to nine regional and remote communities in the Australian State of Queensland. The aim of the project was twofold: first, to bring science to remote and regional communities in a large, economically diverse state; and second, to determine whether media and public engagement provides career advancement opportunities for women scientists. This paper focuses on the latter goal. The data show: (i) a substantial majority (greater than 80%) of researchers thought the training and experience provided by the programme would help develop her career as a research scientist in the future, (ii) the majority (65%) thought the programme would help relate her research to end users, industry partners or stakeholders in the future, and (iii) analytics can help create a compelling narrative around engagement metrics and help to quantify influence. During the week-long project, scientists reached 600 000 impressions on one social media platform (Twitter) using a program hashtag. The breadth and depth of the project outcomes indicate funding bodies and employers could use similar data as an informative source of metrics to support hiring and promotion decisions. Although this project focused on researchers who identify as women, the lessons learned are applicable to researchers representing a diverse range of backgrounds. Future surveys will help determine whether the CaRS programme provided long-term career advantages to participating scientists and communities. PMID:29134069

  18. Changing the Culture of Science Communication Training for Junior Scientists

    PubMed Central

    Bankston, Adriana; McDowell, Gary S.

    2018-01-01

    Being successful in an academic environment places many demands on junior scientists. Science communication currently may not be adequately valued and rewarded, and yet communication to multiple audiences is critical for ensuring that it remains a priority in today’s society. Due to the potential for science communication to produce better scientists, facilitate scientific progress, and influence decision-making at multiple levels, training junior scientists in both effective and ethical science communication practices is imperative, and can benefit scientists regardless of their chosen career path. However, many challenges exist in addressing specific aspects of this training. Principally, science communication training and resources should be made readily available to junior scientists at institutions, and there is a need to scale up existing science communication training programs and standardize core aspects of these programs across universities, while also allowing for experimentation with training. We propose a comprehensive core training program be adopted by universities, utilizing a centralized online resource with science communication information from multiple stakeholders. In addition, the culture of science must shift toward greater acceptance of science communication as an essential part of training. For this purpose, the science communication field itself needs to be developed, researched and better understood at multiple levels. Ultimately, this may result in a larger cultural change toward acceptance of professional development activities as valuable for training scientists. PMID:29904538

  19. Changing the Culture of Science Communication Training for Junior Scientists.

    PubMed

    Bankston, Adriana; McDowell, Gary S

    2018-01-01

    Being successful in an academic environment places many demands on junior scientists. Science communication currently may not be adequately valued and rewarded, and yet communication to multiple audiences is critical for ensuring that it remains a priority in today's society. Due to the potential for science communication to produce better scientists, facilitate scientific progress, and influence decision-making at multiple levels, training junior scientists in both effective and ethical science communication practices is imperative, and can benefit scientists regardless of their chosen career path. However, many challenges exist in addressing specific aspects of this training. Principally, science communication training and resources should be made readily available to junior scientists at institutions, and there is a need to scale up existing science communication training programs and standardize core aspects of these programs across universities, while also allowing for experimentation with training. We propose a comprehensive core training program be adopted by universities, utilizing a centralized online resource with science communication information from multiple stakeholders. In addition, the culture of science must shift toward greater acceptance of science communication as an essential part of training. For this purpose, the science communication field itself needs to be developed, researched and better understood at multiple levels. Ultimately, this may result in a larger cultural change toward acceptance of professional development activities as valuable for training scientists.

  20. The Science Race: Training and Utilization of Scientists and Engineers, US and USSR.

    ERIC Educational Resources Information Center

    Ailes, Catherine P.; Rushing, Francis W.

    This book represents a comparison of the systems of training and utilization of scientists/engineers in the United States and Soviet Union. Chapter 1 provides a general description of the economic structure and organization in which the training of scientists/engineers is conducted and in which such trained personnel are employed. In chapters 2-5,…

  1. Training and Mentoring the Next Generation of Scientists and Engineers to Secure Continuity and Successes of the US DOE's Environmental Remediation Efforts - 13387

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lagos, L.

    The DOE Office of Environmental Management (DOE-EM) oversees one of the largest and most technically challenging cleanup programs in the world. The mission of DOE-EM is to complete the safe cleanup of the environmental legacy from five decades of nuclear weapons development and government-sponsored nuclear energy research. Since 1995, Florida International University's Applied Research Center (FIU-ARC) has supported the DOE-EM mission and provided unique research capabilities to address some of these highly technical and difficult challenges. This partnership has allowed FIU-ARC to create a unique infrastructure that is critical for the training and mentoring of science, technology, engineering, and mathmore » (STEM) students and has exposed many STEM students to 'hands-on' DOE-EM applied research, supervised by the scientists and engineers at ARC. As a result of this successful partnership between DOE and FIU, DOE requested FIU-ARC to create the DOE-FIU Science and Technology Workforce Development Initiative in 2007. This innovative program was established to create a 'pipeline' of minority STEM students trained and mentored to enter DOE's environmental cleanup workforce. The program was designed to help address DOE's future workforce needs by partnering with academic, government and private companies (DOE contractors) to mentor future minority scientists and engineers in the research, development, and deployment of new technologies and processes addressing DOE's environmental cleanup challenges. Since its inception in 2007, the program has trained and mentored 78 FIU STEM minority students. Although, the program has been in existence for only five years, a total of 75 internships have been conducted at DOE National Laboratories, DOE sites, DOE Headquarters and field offices, and DOE contractors. Over 85 DOE Fellows have participated in the Waste Management Symposia since 2008 with a total of 68 student posters and 7 oral presentations given at WM. The DOE Fellows participation at WM has resulted in three Best Student Poster Awards (WM09, WM10, and WM11) and one Best Professional Poster Award (WM09). DOE Fellows have also presented their research at ANS DD and R and ANS Robotics Topical meetings. Moreover, several of our DOE Fellows have already obtained employment with DOE-EM, other federal agencies, DOE contractors. This paper will discuss how DOE Fellows program is training and mentoring FIU STEM students in Department of Energy's Office of Environmental Management technical challenges and research. This training and mentoring has resulted in the development of well trained and polished young scientists and engineers that will become the future workforce in charge of carrying on DOE-EM's environmental cleanup mission. The paper will showcase FIU's DOE Fellows model and highlight some of the applied research the DOE Fellows have conducted at FIU's Applied Research Center and across the Complex by participating in summer internship assignments. This paper will also present and highlight other Fellowships and internships programs sponsored by National Nuclear Security Agency (NNSA), DOE-EM, NRC, Energy (NE), and other federal agencies targeting workforce development. (authors)« less

  2. Scientific resistance to research, training and utilization of eye movement desensitization and reprocessing (EMDR) therapy in treating post-war disorders.

    PubMed

    Russell, Mark C

    2008-12-01

    In this study, Barber's [(1961). Resistance by scientists to scientific discovery. Science, 134, 596-602] analysis of scientists' resistance to discoveries is examined in relation to an 18-year controversy between the dominant cognitive-behavioral paradigm or zeitgeist and its chief rival - eye movement desensitization and reprocessing (EMDR) in treating trauma-related disorders. Reasons for persistent opposition to training, utilization and research into an identified 'evidence-based treatment for post-traumatic stress disorder' (EBT-PTSD) within US military and veterans' agencies closely parallels Barber's description of resistance based upon socio-cultural factors and scientific bias versus genuine scientific skepticism. The implications of sustained resistance to EMDR for combat veterans and other trauma sufferers are discussed. A unified or super-ordinate goal is offered to reverse negative trends impacting current and future mental healthcare of military personnel, veterans and other trauma survivors, and to bridge the scientific impasse.

  3. Lessons Learned at LPI for Scientists in Education and Public Outreach

    NASA Astrophysics Data System (ADS)

    Shupla, C. B.; Kramer, G. Y.; Gross, J.; Shaner, A. J.; Dalton, H.; Grier, J.; Buxner, S.; Shipp, S. S.; Hackler, A. S.

    2015-12-01

    The Lunar and Planetary Institute (LPI) has engaged scientists in a variety of education programs, including teacher workshops, family events, public presentations, informal educator trainings, communication workshops, and outreach events. Scientists have helped conduct hands-on activities, participated in group discussions, and given talks, while sharing their own career paths and interests; these activities have provided audiences with a clearer vision of how science is conducted and how they can become engaged in science themselves. We will share the lessons we have learned through these experiences, including the value of collaborations between scientists and educators, the importance of understanding the audience's interests and knowledge, and the insights that audiences gain during unstructured discussion and interactions with scientists. LPI has also worked with the NASA Science Mission Directorate E/PO community to determine ways to enable scientists and engineers to engage in E/PO and STEM learning, including examining the research and programs for becoming involved in the preparation of future teachers (see the Menu of Opportunities at http://www.lpi.usra.edu/education/pre_service_edu/). We will share key research-based best practices that are recommended for scientists and engineers interested in participating in E/PO activities.

  4. Neurofeedback as supplementary training for optimizing athletes' performance: A systematic review with implications for future research.

    PubMed

    Mirifar, Arash; Beckmann, Jürgen; Ehrlenspiel, Felix

    2017-04-01

    Self-regulation plays an important role in enhancing human performance. Neurofeedback is a promising noninvasive approach for modifying human brain oscillation and can be utilized in developing skills for self-regulation of brain activity. So far, the effectiveness of neurofeedback has been evaluated with regard to not only its application in clinical populations but also the enhancement of performance in general. However, reviews of the application of neurofeedback training in the sports domain are absent, although this application goes back to 1991, when it was first applied in archery. Sport scientists have shown an increasing interest in this topic in recent years. This article provides an overview of empirical studies examining the effects of neurofeedback in sports and evaluates these studies against cardinal and methodological criteria. Furthermore, it includes guidelines and suggestions for future evaluations of neurofeedback training in sports. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Is the training of biomedical scientists at a crossroads?

    PubMed

    Halushka, Perry V; Krug, Edward L

    2009-04-01

    In this commentary, the authors respond to the allegation that the title "scientist" has lost much of its classical meaning because of the highly specialized nature of biomedical graduate training programs that produce "researchers" and "supertechnologists." Scientists, by this definition, have a firm grasp of the historical, philosophical, and biological contexts in which their work exists, whereas their researcher and supertechnologist counterparts are limited by narrowly focused, technologically driven experimentation and data collection with little knowledge or appreciation of the integrated nature of biological systems and the historical basis of discovery. With these definitions in mind, the authors discuss how to ensure that innovative thinking and the ability to integrate molecular knowledge into a higher-order context remain alive and well, complementing today's highly technological environment. In this regard, examples of new emphasis from both scientific societies and funding agencies are provided. However, effective mentoring strategies, practiced on a daily basis, remain the best means for assuring that narrowly focused researchers and supertechnologists do not become the norm of the future. Technological innovation is critical for acquiring new insight into fundamental questions, but using that information for a greater understanding will always favor the prepared intellect. Multidisciplinary teams are emerging as the future of biomedical research. The authors propose a course of action to ensure that trainees are given the necessary opportunities and guidance to help them function effectively in a contemporary teamwork environment with scientific reasoning and logic at its core.

  6. Physician Scientist Training in the United States: A Survey of the Current Literature.

    PubMed

    Kosik, R O; Tran, D T; Fan, Angela Pei-Chen; Mandell, G A; Tarng, D C; Hsu, H S; Chen, Y S; Su, T P; Wang, S J; Chiu, A W; Lee, C H; Hou, M C; Lee, F Y; Chen, W S; Chen, Q

    2016-03-01

    The declining number of physician scientists is an alarming issue. A systematic review of all existing programs described in the literature was performed, so as to highlight which programs may serve as the best models for the training of successful physician scientists. Multiple databases were searched, and 1,294 articles related to physician scientist training were identified. Preference was given to studies that looked at number of confirmed publications and/or research grants as primary outcomes. Thirteen programs were identified in nine studies. Eighty-three percent of Medical Scientist Training Program (MSTP) graduates, 77% of Clinician Investigator Training Program (CI) graduates, and only 16% of Medical Fellows Program graduates entered a career in academics. Seventy-eight percent of MSTP graduates succeeded in obtaining National Institute of Health (NIH) grants, while only 15% of Mayo Clinic National Research Service Award-T32 graduates obtained NIH grants. MSTP physician scientists who graduated in 1990 had 13.5 ± 12.5 publications, while MSTP physician scientists who graduated in 1975 had 51.2 ± 38.3 publications. Additionally, graduates from the Mayo Clinic's MD-PhD Program, the CI Program, and the NSRA Program had 18.2 ± 20.1, 26.5 ± 24.5, and 17.9 ± 26.3 publications, respectively. MSTP is a successful model for the training of physician scientists in the United States, but training at the postgraduate level also shows promising outcomes. An increase in the number of positions available for training at the postgraduate level should be considered. © The Author(s) 2014.

  7. Response: Training Doctoral Students to Be Scientists

    ERIC Educational Resources Information Center

    Pollio, David E.

    2012-01-01

    The purpose of this article is to begin framing doctoral training for a science of social work. This process starts by examining two seemingly simple questions: "What is a social work scientist?" and "How do we train social work scientists?" In answering the first question, some basic assumptions and concepts about what constitutes a "social work…

  8. Training Early Career Scientists in Flight Instrument Design Through Experiential Learning: NASA Goddard's Planetary Science Winter School.

    NASA Technical Reports Server (NTRS)

    Bleacher, L. V.; Lakew, B.; Bracken, J.; Brown, T.; Rivera, R.

    2017-01-01

    The NASA Goddard Planetary Science Winter School (PSWS) is a Goddard Space Flight Center-sponsored training program, managed by Goddard's Solar System Exploration Division (SSED), for Goddard-based postdoctoral fellows and early career planetary scientists. Currently in its third year, the PSWS is an experiential training program for scientists interested in participating on future planetary science instrument teams. Inspired by the NASA Planetary Science Summer School, Goddard's PSWS is unique in that participants learn the flight instrument lifecycle by designing a planetary flight instrument under actual consideration by Goddard for proposal and development. They work alongside the instrument Principal Investigator (PI) and engineers in Goddard's Instrument Design Laboratory (IDL; idc.nasa.gov), to develop a science traceability matrix and design the instrument, culminating in a conceptual design and presentation to the PI, the IDL team and Goddard management. By shadowing and working alongside IDL discipline engineers, participants experience firsthand the science and cost constraints, trade-offs, and teamwork that are required for optimal instrument design. Each PSWS is collaboratively designed with representatives from SSED, IDL, and the instrument PI, to ensure value added for all stakeholders. The pilot PSWS was held in early 2015, with a second implementation in early 2016. Feedback from past participants was used to design the 2017 PSWS, which is underway as of the writing of this abstract.

  9. R(X) for recruitment and retention of veterinarian scientists: money, marketing, mentoring.

    PubMed

    Freeman, Lisa C

    2005-01-01

    Veterinary medicine is failing both to sustain its academic base and to meet national needs for research in the fields of comparative medicine (translational research), public health, and food production. The basis for the shortage of veterinarians with research expertise is multi-factorial and related to the substantial commitment of time and money required to obtain both a DVM and advanced training, as well as the lack of motivation among veterinary students to engage in biomedical science. Effective strategies for increasing the number of veterinarian scientists must address these issues using a balanced combination of money, marketing, and mentoring. Success will require not only that we increase and improve opportunities for research training, but also that we create and sustain veterinary college environments that attract, foster, and reward dedication to research. The ''research pipeline'' needs to be transformed into a ''research manifold'' with multiple portals for entry and re-entry of trainees. Age-appropriate educational and mentoring programs should be implemented at K-14, baccalaureate, veterinary college, post-graduate, and junior faculty levels to promote recruitment, training, and retention of veterinarian scientists. New initiatives are especially needed to attract students with primary interests in science and biomedical research to the veterinary profession and to facilitate transition of motivated veterinary graduates from private practice to research careers. Specific examples of such programs are presented and future directions are discussed.

  10. Training the Future - Swamp Work Activities

    NASA Image and Video Library

    2017-07-19

    In the Swamp Works laboratory at NASA's Kennedy Space Center in Florida, student interns, from the left, Jeremiah House, Thomas Muller and Austin Langdon are joining agency scientists, contributing in the area of Exploration Research and Technology. House is studying computer/electrical engineering at John Brown University in Siloam Springs, Arkansas. Muller is pursuing a degree in computer engineering and control systems and Florida Tech. Langdon is an electrical engineering major at the University of Kentucky. The agency attracts its future workforce through the NASA Internship, Fellowships and Scholarships, or NIFS, Program.

  11. How NASA is building and sustaining a community of scientist-communicators through virtual technology, graphic facilitation and other community-building tools

    NASA Astrophysics Data System (ADS)

    DeWitt, S.; Bovaird, E.; Stewart, N.; Reaves, J.; Tenenbaum, L. F.; Betz, L.; Kuchner, M. J.; Dodson, K. E.; Miller, A.

    2013-12-01

    In 2013 NASA launched its first agency-wide effort to cultivate and support scientist-communicators. The multiple motivations behind this effort are complex and overlapping, and include a desire to connect the agency's workforce to its mission and to each other in the post-Space Shuttle era; a shift in how the agency and the world communicates about science; the current public perception of science and of NASA, and a desire to share the stories of the real people behind the agency's technical work. Leaders in the NASA science, communications and public outreach communities partnered with the agency's training and leadership development organization to: identify and fully characterize the need for training and development in science communication, experiment with various learning models, and invite early-adopter scientists to evaluate these models for future agency investment. Using virtual collaboration technology, graphic facilitation, and leadership development methods, we set out to create an environment where scientist-communicators can emerge and excel. First, we asked scientists from across the agency to identify their motivations, opportunities, barriers and areas of interest in science communication. Scientists identified a need to go beyond traditional media training, a need for continuous practice and peer feedback, and a need for agency incentives and sustained support for this kind of work. This community-driven approach also uncovered a serious need for communication support in the wake of diminishing resources for travel and conference attendance. As a first step, we offered a series of virtual learning events - highly collaborative working sessions for scientists to practice their communication technique, develop and apply new skills to real-world situations, and gain valuable feedback from external subject matter experts and fellow scientists from across the agency in a supportive environment. Scientists from ten NASA centers and a broad range of research disciplines - from astrophysics to climate change to aeronautics - took part in these virtual events. This newly connected community provided continuous feedback and recommendations for how they and the agency can continue to cultivate and support scientist-communicators over the long-term. By inviting scientists to communicate in new ways using new tools, we are modeling the type of innovative communication we hope to see, and are gradually elevating scientists' exposure to and comfort level with new communication technologies. Our next challenge is to provide a deeper learning experience and strengthen connections within this community through a series of face-to-face workshops at NASA centers. We are also investigating ways to broaden and sustain the supportive environment - both virtual and institutional - needed for this new distributed network of scientist-communicators to thrive.

  12. Meeting the Curriculum Needs for Different Career Paths in Laboratory Medicine

    PubMed Central

    Smith, Brian R.

    2008-01-01

    There are a number of career paths in Laboratory Medicine and several clinical practice models for the discipline. This article summarizes the state of current training at the medical student and residency/post-graduate levels, emphasizing practice in the U.S., and the challenges of education in the discipline to meet the needs of diverse career paths. Data regarding effectiveness of current pedagogical Approaches are discussed along with a brief review of evolving didactic methodologies. The recently published curriculum in Laboratory Medicine (Clinical Pathology) by the Academy of Clinical Laboratory Physicians and Scientists is reviewed, including its major emphases and the importance of competency assessment. Finally, the future of Laboratory Medicine and Pathology and the need to train for that future is expanded upon. PMID:18410745

  13. Scientists as Correspondents: Exploratorium "Ice Stories" for International Polar Year Project Educational Outreach

    NASA Astrophysics Data System (ADS)

    McGillivary, P. A.; Fall, K. R.; Miller, M.; Higdon, R.; Andrews, M.; O'Donnell, K.

    2008-12-01

    As part of the 2007-2009 International Polar Year (IPY), an educational outreach developed by the Exploratorium science museum of San Francisco builds on prior high latitude programs to: 1) create public awareness of IPY research; 2) increase public understanding of the scientific process; and, 3) stimulate a new relationship between scientists and outreach. Funded by the National Science Foundation, a key "Ice Stories" innovation is to facilitate "scientist correspondents" reporting directly to the public. To achieve this, scientists were furnished multimedia equipment and training to produce material for middle school students to adults. Scientists submitted blogs of text, images, and video from the field which were edited, standardized for format, and uploaded by Exploratorium staff, who coordinated website content and management. Online links to educational partner institutions and programs from prior Exploratorium high latitude programs will extend "Ice Stories" site visits beyond the @250,000 unique in-house users/year to more than 28 million webpage users/year overall. We review relevant technical issues, the variety of scientist participation, and what worked best and recommendations for similar efforts in the future as a legacy for the IPY.

  14. Reinventing Biostatistics Education for Basic Scientists

    PubMed Central

    Weissgerber, Tracey L.; Garovic, Vesna D.; Milin-Lazovic, Jelena S.; Winham, Stacey J.; Obradovic, Zoran; Trzeciakowski, Jerome P.; Milic, Natasa M.

    2016-01-01

    Numerous studies demonstrating that statistical errors are common in basic science publications have led to calls to improve statistical training for basic scientists. In this article, we sought to evaluate statistical requirements for PhD training and to identify opportunities for improving biostatistics education in the basic sciences. We provide recommendations for improving statistics training for basic biomedical scientists, including: 1. Encouraging departments to require statistics training, 2. Tailoring coursework to the students’ fields of research, and 3. Developing tools and strategies to promote education and dissemination of statistical knowledge. We also provide a list of statistical considerations that should be addressed in statistics education for basic scientists. PMID:27058055

  15. Education and training of future wetland scientists and managers

    USGS Publications Warehouse

    Wilcox, D.A.

    2008-01-01

    Wetland science emerged as a distinct discipline in the 1980s. In response, courses addressing various aspects of wetland science and management were developed by universities, government agencies, and private firms. Professional certification of wetland scientists began in the mid-1990s to provide confirmation of the quality of education and experience of persons involved in regulatory, management, restoration/construction, and research involving wetland resources. The education requirements for certification and the need for persons with specific wetland training to fill an increasing number of wetland-related positions identified a critical need to develop curriculum guidelines for an undergraduate wetland science and management major for potential accreditation by the Society of Wetland Scientists. That proposed major contains options directed toward either wetland science or management. Both options include required basic courses to meet the general education requirements of many universities, required upper-level specialized courses that address critical aspects of physical and biological sciences applicable to wetlands, and a minimum of four additional upper-level specialized courses that can be used to tailor a degree to students' interests. The program would be administered by an independent review board that would develop guidelines and evaluate university applications for accreditation. Students that complete the required coursework will fulfill the education requirements for professional wetland scientist certification and possess qualifications that make them attractive candidates for graduate school or entry-level positions in wetland science or management. Universities that offer this degree program could gain an advantage in recruiting highly qualified students with an interest in natural resources. Alternative means of educating established wetland scientists are likewise important, especially to provide specialized knowledge and experience or updates related to new management discoveries, policies, and regulations. ?? 2008 The Society of Wetland Scientists.

  16. History and Outcomes of 50 Years of Physician-Scientist Training in Medical Scientist Training Programs.

    PubMed

    Harding, Clifford V; Akabas, Myles H; Andersen, Olaf S

    2017-10-01

    Physician-scientists are needed to continue the great pace of recent biomedical research and translate scientific findings to clinical applications. MD-PhD programs represent one approach to train physician-scientists. MD-PhD training started in the 1950s and expanded greatly with the Medical Scientist Training Program (MSTP), launched in 1964 by the National Institute of General Medical Sciences (NIGMS) at the National Institutes of Health. MD-PhD training has been influenced by substantial changes in medical education, science, and clinical fields since its inception. In 2014, NIGMS held a 50th Anniversary MSTP Symposium highlighting the program and assessing its outcomes. In 2016, there were over 90 active MD-PhD programs in the United States, of which 45 were MSTP supported, with a total of 988 trainee slots. Over 10,000 students have received MSTP support since 1964. The authors present data for the demographic characteristics and outcomes for 9,683 MSTP trainees from 1975-2014. The integration of MD and PhD training has allowed trainees to develop a rigorous foundation in research in concert with clinical training. MSTP graduates have had relative success in obtaining research grants and have become prominent leaders in many biomedical research fields. Many challenges remain, however, including the need to maintain rigorous scientific components in evolving medical curricula, to enhance research-oriented residency and fellowship opportunities in a widening scope of fields targeted by MSTP graduates, to achieve greater racial diversity and gender balance in the physician-scientist workforce, and to sustain subsequent research activities of physician-scientists.

  17. Training for Research and Teaching in Geropsychology: Preparing the Next Generation of Scholars and Educators

    PubMed Central

    CARPENTER, BRIAN D.; SAKAI, ERIN; KAREL, MICHELE J.; MOLINARI, VICTOR; MOYE, JENNIFER

    2016-01-01

    For geropsychology to flourish in the years ahead, we need scientists to advance knowledge and teachers to draw new professionals into the field. In this project the authors surveyed 100 geropsychologists who completed a doctoral degree in clinical or counseling psychology about their experience with training for research and teaching. The majority were currently conducting some degree of research (38%) and some form of teaching (45%). The majority of ratings for components of research training were in the “very good to excellent” range, whereas elements of teacher training were rated in the “poor to good” range, though there was variability among persons and components. Qualitative comments revealed enthusiasm for research and teaching roles and a need to enhance our training of geropsychologists as educators. The authors provide several suggestions that could enhance research and teacher training for current and future students of professional geropsychology. PMID:26652756

  18. Training for Research and Teaching in Geropsychology: Preparing the Next Generation of Scholars and Educators.

    PubMed

    Carpenter, Brian D; Sakai, Erin; Karel, Michele J; Molinari, Victor; Moye, Jennifer

    2016-01-01

    For geropsychology to flourish in the years ahead, we need scientists to advance knowledge and teachers to draw new professionals into the field. In this project the authors surveyed 100 geropsychologists who completed a doctoral degree in clinical or counseling psychology about their experience with training for research and teaching. The majority were currently conducting some degree of research (38%) and some form of teaching (45%). The majority of ratings for components of research training were in the "very good to excellent" range, whereas elements of teacher training were rated in the "poor to good" range, though there was variability among persons and components. Qualitative comments revealed enthusiasm for research and teaching roles and a need to enhance our training of geropsychologists as educators. The authors provide several suggestions that could enhance research and teacher training for current and future students of professional geropsychology.

  19. Best practices in bioinformatics training for life scientists.

    PubMed

    Via, Allegra; Blicher, Thomas; Bongcam-Rudloff, Erik; Brazas, Michelle D; Brooksbank, Cath; Budd, Aidan; De Las Rivas, Javier; Dreyer, Jacqueline; Fernandes, Pedro L; van Gelder, Celia; Jacob, Joachim; Jimenez, Rafael C; Loveland, Jane; Moran, Federico; Mulder, Nicola; Nyrönen, Tommi; Rother, Kristian; Schneider, Maria Victoria; Attwood, Teresa K

    2013-09-01

    The mountains of data thrusting from the new landscape of modern high-throughput biology are irrevocably changing biomedical research and creating a near-insatiable demand for training in data management and manipulation and data mining and analysis. Among life scientists, from clinicians to environmental researchers, a common theme is the need not just to use, and gain familiarity with, bioinformatics tools and resources but also to understand their underlying fundamental theoretical and practical concepts. Providing bioinformatics training to empower life scientists to handle and analyse their data efficiently, and progress their research, is a challenge across the globe. Delivering good training goes beyond traditional lectures and resource-centric demos, using interactivity, problem-solving exercises and cooperative learning to substantially enhance training quality and learning outcomes. In this context, this article discusses various pragmatic criteria for identifying training needs and learning objectives, for selecting suitable trainees and trainers, for developing and maintaining training skills and evaluating training quality. Adherence to these criteria may help not only to guide course organizers and trainers on the path towards bioinformatics training excellence but, importantly, also to improve the training experience for life scientists.

  20. Best practices in bioinformatics training for life scientists

    PubMed Central

    Blicher, Thomas; Bongcam-Rudloff, Erik; Brazas, Michelle D.; Brooksbank, Cath; Budd, Aidan; De Las Rivas, Javier; Dreyer, Jacqueline; Fernandes, Pedro L.; van Gelder, Celia; Jacob, Joachim; Jimenez, Rafael C.; Loveland, Jane; Moran, Federico; Mulder, Nicola; Nyrönen, Tommi; Rother, Kristian; Schneider, Maria Victoria; Attwood, Teresa K.

    2013-01-01

    The mountains of data thrusting from the new landscape of modern high-throughput biology are irrevocably changing biomedical research and creating a near-insatiable demand for training in data management and manipulation and data mining and analysis. Among life scientists, from clinicians to environmental researchers, a common theme is the need not just to use, and gain familiarity with, bioinformatics tools and resources but also to understand their underlying fundamental theoretical and practical concepts. Providing bioinformatics training to empower life scientists to handle and analyse their data efficiently, and progress their research, is a challenge across the globe. Delivering good training goes beyond traditional lectures and resource-centric demos, using interactivity, problem-solving exercises and cooperative learning to substantially enhance training quality and learning outcomes. In this context, this article discusses various pragmatic criteria for identifying training needs and learning objectives, for selecting suitable trainees and trainers, for developing and maintaining training skills and evaluating training quality. Adherence to these criteria may help not only to guide course organizers and trainers on the path towards bioinformatics training excellence but, importantly, also to improve the training experience for life scientists. PMID:23803301

  1. CosmoQuest: Training Educators and Engaging Classrooms in Citizen Science through a Virtual Research Facility

    NASA Astrophysics Data System (ADS)

    Buxner, Sanlyn; Bracey, Georgia; Summer, Theresa; Cobb, Whitney; Gay, Pamela L.; Finkelstein, Keely D.; Gurton, Suzanne; Felix-Strishock, Lisa; Kruse, Brian; Lebofsky, Larry A.; Jones, Andrea J.; Tweed, Ann; Graff, Paige; Runco, Susan; Noel-Storr, Jacob; CosmoQuest Team

    2016-10-01

    CosmoQuest is a Citizen Science Virtual Research Facility that engages scientists, educators, students, and the public in analyzing NASA images. Often, these types of citizen science activities target enthusiastic members of the public, and additionally engage students in K-12 and college classrooms. To support educational engagement, we are developing a pipeline in which formal and informal educators and facilitators use the virtual research facility to engage students in real image analysis that is framed to provide meaningful science learning. This work also contributes to the larger project to produce publishable results. Community scientists are being solicited to propose CosmoQuest Science Projects take advantage of the virtual research facility capabilities. Each CosmoQuest Science Project will result in formal education materials, aligned with Next Generation Science Standards including the 3-dimensions of science learning; core ideas, crosscutting concepts, and science and engineering practices. Participating scientists will contribute to companion educational materials with support from the CosmoQuest staff of data specialists and education specialists. Educators will be trained through in person and virtual workshops, and classrooms will have the opportunity to not only work with NASA data, but interface with NASA scientists. Through this project, we are bringing together subject matter experts, classrooms, and informal science organizations to share the excitement of NASA SMD science with future citizen scientists. CosmoQuest is funded through individual donations, through NASA Cooperative Agreement NNX16AC68A, and through additional grants and contracts that are listed on our website, cosmoquest.org.

  2. "An Experiment Is When You Try It and See if It Works": A Study of Junior High School Students' Understanding of the Construction of Scientific Knowledge.

    ERIC Educational Resources Information Center

    Carey, Susan; And Others

    Developing a constructivist view of scientific inquiry and knowledge is considered to be important to the training of future scientists, as well as to the understanding of scientific information by all citizens. The research reported targets the junior high school grades. Curricular materials that introduce seventh graders to the constructivist…

  3. Research experiences and mentoring practices in selected east Asian graduate programs: predictors of research productivity among doctoral students in molecular biology.

    PubMed

    Ynalvez, Ruby; Garza-Gongora, Claudia; Ynalvez, Marcus Antonius; Hara, Noriko

    2014-01-01

    Although doctoral mentors recognize the benefits of providing quality advisement and close guidance, those of sharing project management responsibilities with mentees are still not well recognized. We observed that mentees, who have the opportunity to co-manage projects, generate more written output. Here we examine the link between research productivity, doctoral mentoring practices (DMP), and doctoral research experiences (DRE) of mentees in programs in the non-West. Inspired by previous findings that early career productivity is a strong predictor of later productivity, we examine the research productivity of 210 molecular biology doctoral students in selected programs in Japan, Singapore, and Taiwan. Using principal component (PC) analysis, we derive two sets of PCs: one set from 15 DMP and another set from 16 DRE items. We model research productivity using Poisson and negative-binomial regression models with these sets as predictors. Our findings suggest a need to re-think extant practices and to allocate resources toward professional career development in training future scientists. We contend that doctoral science training must not only be an occasion for future scientists to learn scientific and technical skills, but it must also be the opportunity to experience, to acquire, and to hone research management skills. © 2014 The International Union of Biochemistry and Molecular Biology.

  4. Undergraduate research: an innovative student-centered committee from the Kingdom of Saudi Arabia.

    PubMed

    Alamodi, Abdulhadi A; Abu-Zaid, Ahmed; Anwer, Lucman A; Khan, Tehreem A; Shareef, Mohammad Abrar; Shamia, Ahmed A; Nazmi, Salman M; Alshammari, Abdullah M; Rahmatullah, Hassan; Alsheikh, Ammar J; Chamseddin, Ranim A; Dweik, Loai M; Yaqinuddin, Ahmed

    2014-04-01

    Concern has been expressed in recent times whether medical schools have adapted sufficiently to cater for the increasing demand of physician-scientists. Studies have shown that research involvement at the undergraduate level is vital to accommodate this growing need. Enhanced communication skills, improved problem-solving abilities and better future employment opportunities are among the other many benefits of undergraduate research (UR). Herein, we report projects run by a unique student driven undergraduate research committee (URC) at Alfaisal University, Riyadh, Saudi Arabia aimed at providing the future generation of physicians training opportunities for pursuing a research intensive career. The article describes the unique structure of the URC and provides an in-depth description of the various programs and activities used in promoting students' research activities. We analyzed students' perception of URC activities via a questionnaire and analyzed research-output of the first graduating batches through their publication record. Overall, more than 60% of the graduating students were involved in the various research programs offered by the URC and around 50% published in peer-reviewed journals with an average impact factor of 2.4. Research involvement by medical students is an essential need of the twenty-first century and models like URC could provide crucial platform for research training to the new generation of physician-scientists.

  5. Characteristics and outcomes of Canadian MD/PhD program graduates: a cross-sectional survey

    PubMed Central

    Skinnider, Michael A.; Squair, Jordan W.; Twa, David D.W.; Ji, Jennifer X.; Kuzyk, Alexandra; Wang, Xin; Steadman, Patrick E.; Zaslavsky, Kirill; Dey, Ayan K.; Eisenberg, Mark J.; Gagné, Ève-Reine; HayGlass, Kent T.; Lewis, James F.; Margetts, Peter J.; Underhill, D. Alan; Rosenblum, Norman D.; Raymond, Lynn A.

    2017-01-01

    Background: Combined MD/PhD programs provide a structured path for physician-scientist training, but assessment of their success within Canada is limited by a lack of quantitative data. We collected outcomes data for graduates of Canadian MD/PhD programs. Methods: We developed and implemented a Web-based survey consisting of 41 questions designed to collect outcomes data for Canadian MD/PhD program alumni from 8 Canadian universities who had graduated before September 2015. Respondents were categorized into 2 groups according to whether they had or had not completed all training. Results: Of the 186 eligible alumni of MD/PhD programs, 139 (74.7%) completed the survey. A total of 136/138 respondents (98.6%) had completed or were currently completing residency training, and 66/80 (82%) had completed at least 1 postgraduate fellowship. Most (58 [83%]) of the 70 respondents who had completed all training were appointed as faculty at academic institutions, and 37 (53%) had been principal investigators on at least 1 recent funded project. Among the 58 respondents appointed at academic institutions, 44/57 (77%) dedicated at least 20% of their time to research, and 25/57 (44%) dedicated at least 50% to research. During their combined degree, 102/136 respondents (75.0%) published 3 or more first-author papers, and 133/136 (97.8%) matched with their first choice of specialty. The median length of physician-scientist training was 13.5 years. Most respondents graduated with debt despite having been supported by Canadian Institutes of Health Research MD/PhD studentships. Interpretation: Most Canadian MD/PhD program alumni pursued careers consistent with their physician-scientist training, which indicates that these programs are meeting their primary objective. Nevertheless, our findings highlight that a minority of these positions are research intensive; this finding warrants further study. Our data provide a baseline for future monitoring of the output of Canadian MD/PhD programs. PMID:28442493

  6. How behavioural science can contribute to health partnerships: the case of The Change Exchange.

    PubMed

    Byrne-Davis, Lucie M T; Bull, Eleanor R; Burton, Amy; Dharni, Nimarta; Gillison, Fiona; Maltinsky, Wendy; Mason, Corina; Sharma, Nisha; Armitage, Christopher J; Johnston, Marie; Byrne, Ged J; Hart, Jo K

    2017-06-12

    Health partnerships often use health professional training to change practice with the aim of improving quality of care. Interventions to change practice can learn from behavioural science and focus not only on improving the competence and capability of health professionals but also their opportunity and motivation to make changes in practice. We describe a project that used behavioural scientist volunteers to enable health partnerships to understand and use the theories, techniques and assessments of behavioural science. This paper outlines how The Change Exchange, a collective of volunteer behavioural scientists, worked with health partnerships to strengthen their projects by translating behavioural science in situ. We describe three case studies in which behavioural scientists, embedded in health partnerships in Uganda, Sierra Leone and Mozambique, explored the behaviour change techniques used by educators, supported knowledge and skill development in behaviour change, monitored the impact of projects on psychological determinants of behaviour and made recommendations for future project developments. Challenges in the work included having time and space for behavioural science in already very busy health partnership schedules and the difficulties in using certain methods in other cultures. Future work could explore other modes of translation and further develop methods to make them more culturally applicable. Behavioural scientists could translate behavioural science which was understood and used by the health partnerships to strengthen their project work.

  7. Training the Translational Research Teams of the Future: UC Davis—HHMI Integrating Medicine into Basic Science Program

    PubMed Central

    Rainwater, Julie A.; Chiamvimonvat, Nipavan; Bonham, Ann C.; Robbins, John A.; Henderson, Stuart; Meyers, Frederick J.

    2013-01-01

    Abstract There is a need for successful models of how to recruit, train, and retain bench scientists at the earliest stages of their careers into translational research. One recent, promising model is the University of California Davis Howard Hughes Medical Institute Integrating Medicine into Basic Science (HHMI‐IMBS) program, part of the HHMI Med into Grad initiative. This paper outlines the HHMI‐IMBS program's logic, design, and curriculum that guide the goal of research that moves from bedside to bench. That is, a curriculum that provides graduate students with guided translational training, clinical exposure, team science competencies, and mentors from diverse disciplines that will advance the students careers in clinical translational research and re‐focusing of research to answer clinical dilemmas. The authors have collected data on 55 HHMI‐IMBS students to date. Many of these students are still completing their graduate work. In the current study the authors compare the initial two cohorts (15 students) with a group of 29 control students to examine the program success and outcomes. The data indicate that this training program provides an effective, adaptable model for training future translational researchers. HHMI‐IMBS students showed improved confidence in conducting translational research, greater interest in a future translational career, and higher levels of research productivity and collaborations than a comparable group of predoctoral students. PMID:24127920

  8. A Historical View and Vision into the Future of the Field of Safety Pharmacology.

    PubMed

    Bass, Alan S; Hombo, Toshiyasu; Kasai, Chieko; Kinter, Lewis B; Valentin, Jean-Pierre

    2015-01-01

    Professor Gerhard Zbinden recognized in the 1970s that the standards of the day for testing new candidate drugs in preclinical toxicity studies failed to identify acute pharmacodynamic adverse events that had the potential to harm participants in clinical trials. From his vision emerged the field of safety pharmacology, formally defined in the International Conference on Harmonization (ICH) S7A guidelines as "those studies that investigate the potential undesirable pharmacodynamic effects of a substance on physiological functions in relation to exposure in the therapeutic range and above." Initially, evaluations of small-molecule pharmacodynamic safety utilized efficacy models and were an ancillary responsibility of discovery scientists. However, over time, the relationship of these studies to overall safety was reflected by the regulatory agencies who, in directing the practice of safety pharmacology through guidance documents, prompted transition of responsibility to drug safety departments (e.g., toxicology). Events that have further shaped the field over the past 15 years include the ICH S7B guidance, evolution of molecular technologies leading to identification of new therapeutic targets with uncertain toxicities, introduction of data collection using more sophisticated and refined technologies, and utilization of transgenic animal models probing critical scientific questions regarding novel targets of toxicity. The collapse of the worldwide economy in the latter half of the first decade of the twenty-first century, continuing high rates of compound attrition during clinical development and post-approval and sharply increasing costs of drug development have led to significant strategy changes, contraction of the size of pharmaceutical organizations, and refocusing of therapeutic areas of investigation. With these changes has come movement away from dedicated internal safety pharmacology capability to utilization of capabilities within external contract research organizations. This movement has created the opportunity for the safety pharmacology discipline to come "full circle" and return to the drug discovery arena (target identification through clinical candidate selection) to contribute to the mitigation of the high rate of candidate drug failure through better compound selection decision making. Finally, the changing focus of science and losses in didactic training of scientists in whole animal physiology and pharmacology have revealed a serious gap in the future availability of qualified individuals to apply the principles of safety pharmacology in support of drug discovery and development. This is a significant deficiency that at present is only partially met with academic and professional society programs advancing a minimal level of training. In summary, with the exception that the future availability of suitably trained scientists is a critical need for the field that remains to be effectively addressed, the prospects for the future of safety pharmacology are hopeful and promising, and challenging for those individuals who want to assume this responsibility. What began in the early part of the new millennium as a relatively simple model of testing to assure the safety of Phase I clinical subjects and patients from acute deleterious effects on life-supporting organ systems has grown with experience and time to a science that mobilizes the principles of cellular and molecular biology and attempts to predict acute adverse events and those associated with long-term treatment. These challenges call for scientists with a broad range of in-depth scientific knowledge and an ability to adapt to a dynamic and forever changing industry. Identifying individuals who will serve today and training those who will serve in the future will fall to all of us who are committed to this important field of science.

  9. The Rehabilitation Medicine Scientist Training Program

    PubMed Central

    Whyte, John; Boninger, Michael; Helkowski, Wendy; Braddom-Ritzler, Carolyn

    2016-01-01

    Physician scientists are seen as important in healthcare research. However, the number of physician scientists and their success in obtaining NIH funding have been declining for many years. The shortage of physician scientists in Physical Medicine and Rehabilitation is particularly severe, and can be attributed to many of the same factors that affect physician scientists in general, as well as to the lack of well developed models for research training. In 1995, the Rehabilitation Medicine Scientist Training Program (RMSTP) was funded by a K12 grant from the National Center of Medical Rehabilitation Research (NCMRR), as one strategy for increasing the number of research-productive physiatrists. The RMSTP's structure was revised in 2001 to improve the level of preparation of incoming trainees, and to provide a stronger central mentorship support network. Here we describe the original and revised structure of the RMSTP and review subjective and objective data on the productivity of the trainees who have completed the program. These data suggest that RMSTP trainees are, in general, successful in obtaining and maintaining academic faculty positions and that the productivity of the cohort trained after the revision, in particular, shows impressive growth after about 3 years of training. PMID:19847126

  10. The WPI reactor-readying for the next generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bobek, L.M.

    1993-01-01

    Built in 1959, the 10-kW open-pool nuclear training reactor at Worcester Polytechnic Institute (WPI) was one of the first such facilities in the nation located on a university campus. Since then, the reactor and its related facilities have been used to train two generations of nuclear engineers and scientists for the nuclear industry. With the use of nuclear technology playing an increasing role in many segments of the economy, WPI with its nuclear reactor facility is committed to continuing its mission of training future nuclear engineers and scientists. The WPI reactor includes a 6-in. beam port, graphite thermal column, andmore » in-core sample facility. The reactor, housed in an open 8000-gal tank of water, is designed so that the core is readily accessible. Both the control console and the peripheral counting equipment used for student projects and laboratory exercises are located in the reactor room. This arrangement provides convenience and flexibility in using the reactor for foil activations in neutron flux measurements, diffusion measurements, radioactive decay measurements, and the neutron activation of samples for analysis. In 1988, the reactor was successfully converted to low-enriched uranium fuel.« less

  11. AAAS Communicating Science Program: Reflections on Evaluation

    NASA Astrophysics Data System (ADS)

    Braha, J.

    2015-12-01

    The AAAS Center for Public Engagement (Center) with science builds capacity for scientists to engage public audiences by fostering collaboration among natural or physical scientists, communication researchers, and public engagement practitioners. The recently launched Leshner Leadership Institute empowers cohorts of mid-career scientists to lead public engagement by supporting their networks of scientists, researchers, and practitioners. The Center works closely with social scientists whose research addresses science communication and public engagement with science to ensure that the Communicating Science training program builds on empirical evidence to inform best practices. Researchers ( Besley, Dudo, & Storkdieck 2015) have helped Center staff and an external evaluator develop pan instrument that measures progress towards goals that are suggested by the researcher, including internal efficacy (increasing scientists' communication skills and confidence in their ability to engage with the public) and external efficacy (scientists' confidence in engagement methods). Evaluation results from one year of the Communicating Science program suggest that the model of training yields positive results that support scientists in the area that should lead to greater engagement. This talk will explore the model for training, which provides a context for strategic communication, as well as the practical factors, such as time, access to public engagement practitioners, and technical skill, that seems to contribute to increased willingness to engage with public audiences. The evaluation program results suggest willingness by training participants to engage directly or to take preliminary steps towards engagement. In the evaluation results, 38% of trained scientists reported time as a barrier to engagement; 35% reported concern that engagement would distract from their work as a barrier. AAAS works to improve practitioner-researcher-scientist networks to overcome such barriers.

  12. A training program for nurse scientists to promote intervention translation.

    PubMed

    Santacroce, Sheila Judge; Leeman, Jennifer; Song, Mi-Kyung

    To reduce the burden of chronic illness, prevention and management interventions must be efficacious, adopted and implemented with fidelity, and reach those at greatest risk. Yet, many research-tested interventions are slow to translate into practice. This paper describes how The University of North Carolina at Chapel Hill School of Nursing's NINR-funded institutional pre- and postdoctoral research-training program is addressing the imperative to speed knowledge translation across the research cycle. The training emphasizes six research methods ("catalysts") to speed translation: stakeholder engagement, patient-centered outcomes, intervention optimization and sequential multiple randomized trials (SMART), pragmatic trials, mixed methods approaches, and dissemination and implementation science strategies. Catalysts are integrated into required coursework, biweekly scientific and integrative seminars, and experiential research training. Trainee and program success is evaluated based on benchmarks applicable to all PhD program students, supplemented by indicators specific to the catalysts. Trainees must also demonstrate proficiency in at least two of the six catalysts in their scholarly products. Proficiency is assessed through their works in progress presentations and peer reviews at T32 integrative seminars. While maintaining the emphasis on theory-based interventions, we have integrated six catalysts into our ongoing research training to expedite the dynamic process of intervention development, testing, dissemination and implementation. Through a variety of training activities, our research training focused on theory-based interventions and the six catalysts will generate future nurse scientists who speed translation of theory-based interventions into practice to maximize health outcomes for patients, families, communities and populations affected by chronic illness. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Research to knowledge: promoting the training of physician-scientists in the biology of pregnancy.

    PubMed

    Sadovsky, Yoel; Caughey, Aaron B; DiVito, Michelle; D'Alton, Mary E; Murtha, Amy P

    2018-01-01

    Common disorders of pregnancy, such as preeclampsia, preterm birth, and fetal growth abnormalities, continue to challenge perinatal biologists seeking insights into disease pathogenesis that will result in better diagnosis, therapy, and disease prevention. These challenges have recently been intensified with discoveries that associate gestational diseases with long-term maternal and neonatal outcomes. Whereas modern high-throughput investigative tools enable scientists and clinicians to noninvasively probe the maternal-fetal genome, epigenome, and other analytes, their implications for clinical medicine remain uncertain. Bridging these knowledge gaps depends on strengthening the existing pool of scientists with expertise in basic, translational, and clinical tools to address pertinent questions in the biology of pregnancy. Although PhD researchers are critical in this quest, physician-scientists would facilitate the inquiry by bringing together clinical challenges and investigative tools, promoting a culture of intellectual curiosity among clinical providers, and helping transform discoveries into relevant knowledge and clinical solutions. Uncertainties related to future administration of health care, federal support for research, attrition of physician-scientists, and an inadequate supply of new scholars may jeopardize our ability to address these challenges. New initiatives are necessary to attract current scholars and future generations of researchers seeking expertise in the scientific method and to support them, through mentorship and guidance, in pursuing a career that combines scientific investigation with clinical medicine. These efforts will promote breadth and depth of inquiry into the biology of pregnancy and enhance the pace of translation of scientific discoveries into better medicine and disease prevention. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Integrated interdisciplinary training in the radiological sciences.

    PubMed

    Brenner, D J; Vazquez, M; Buonanno, M; Amundson, S A; Bigelow, A W; Garty, G; Harken, A D; Hei, T K; Marino, S A; Ponnaiya, B; Randers-Pehrson, G; Xu, Y

    2014-02-01

    The radiation sciences are increasingly interdisciplinary, both from the research and the clinical perspectives. Beyond clinical and research issues, there are very real issues of communication between scientists from different disciplines. It follows that there is an increasing need for interdisciplinary training courses in the radiological sciences. Training courses are common in biomedical academic and clinical environments, but are typically targeted to scientists in specific technical fields. In the era of multidisciplinary biomedical science, there is a need for highly integrated multidisciplinary training courses that are designed for, and are useful to, scientists who are from a mix of very different academic fields and backgrounds. We briefly describe our experiences running such an integrated training course for researchers in the field of biomedical radiation microbeams, and draw some conclusions about how such interdisciplinary training courses can best function. These conclusions should be applicable to many other areas of the radiological sciences. In summary, we found that it is highly beneficial to keep the scientists from the different disciplines together. In practice, this means not segregating the training course into sections specifically for biologists and sections specifically for physicists and engineers, but rather keeping the students together to attend the same lectures and hands-on studies throughout the course. This structure added value to the learning experience not only in terms of the cross fertilization of information and ideas between scientists from the different disciplines, but also in terms of reinforcing some basic concepts for scientists in their own discipline.

  15. Biosafety, biosecurity and internationally mandated regulatory regimes: compliance mechanisms for education and global health security

    PubMed Central

    Sture, Judi; Whitby, Simon; Perkins, Dana

    2015-01-01

    This paper highlights the biosafety and biosecurity training obligations that three international regulatory regimes place upon states parties. The duty to report upon the existence of such provisions as evidence of compliance is discussed in relation to each regime. We argue that such mechanisms can be regarded as building blocks for the development and delivery of complementary biosafety and biosecurity teaching and training materials. We show that such building blocks represent foundations upon which life and associated scientists – through greater awareness of biosecurity concerns – can better fulfil their responsibilities to guard their work from misuse in the future. PMID:24494580

  16. Balancing the Needs between Training for Future Scientists and Broader Societal Needs--SECURE Project Research on Mathematics, Science and Technology Curricula and Their Implementation

    ERIC Educational Resources Information Center

    Sokolowska, D.; de Meyere, J.; Folmer, E.; Rovsek, B.; Peeters, W.

    2014-01-01

    SECURE is a collaborative project under FP7 to provide research results of current mathematics, science and technology (MST) curricula across Europe. The research focuses on the MST curricula offered to 5, 8, 11 and 13 year old learners in ten European countries. The consortium invited 60 schools from each partner country to participate in the…

  17. Developing Science Communication in Africa: Undergraduate and Graduate Students should be Trained and Actively Involved in Outreach Activity Development and Implementation.

    PubMed

    Karikari, Thomas K; Yawson, Nat Ato; Quansah, Emmanuel

    2016-01-01

    Despite recent improvements in scientific research output from Africa, public understanding of science in many parts of the continent remains low. Science communication there is faced with challenges such as (i) lack of interest among some scientists, (ii) low availability of training programs for scientists, (iii) low literacy rates among the public, and (iv) multiplicity of languages. To address these challenges, new ways of training and motivating scientists to dialogue with non-scientists are essential. Developing communication skills early in researchers' scientific career would be a good way to enhance their public engagement abilities. Therefore, a potentially effective means to develop science communication in Africa would be to actively involve trainee scientists (i.e., undergraduate and graduate students) in outreach activity development and delivery. These students are often enthusiastic about science, eager to develop their teaching and communication skills, and can be good mentors to younger students. Involving them in all aspects of outreach activity is, therefore, likely to be a productive implementation strategy. However, science communication training specifically for students and the involvement of these students in outreach activity design and delivery are lacking in Africa. Here, we argue that improving the training and involvement of budding scientists in science communication activities would be a good way to bridge the wide gap between scientists and the African public.

  18. Global Change Research Related to the Earth's Energy and Hydrologic Cycle

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The Institute for Global Change Research and Education (IGCRE) is a joint initiative of the Universities Space Research Association (USRA) and the University of Alabama in Huntsville (UAH) for coordinating and facilitating research and education relevant to global environmental change. Created in 1992 with primary support from the National Aeronautics and Space Administration (NASA), IGCRE fosters participation by university, private sector and government scientists who seek to develop long-term collaborative research in global change science, focusing on the role of water and energy in the Earth's atmosphere and physical climate system. IGCRE is also chartered to address educational needs of Earth system and global change science, including the preparation of future scientists and training of primary and secondary education teachers.

  19. History of NASA/Native People Native Homelands Initiative

    NASA Technical Reports Server (NTRS)

    Maynard, Nancy

    2000-01-01

    This workshop is one of the follow-on local assessment activities from the US National Assessment on the Impact of Climate Change on the US. N. Maynard (for NASA) helped create and get under way an initiative which brought together climate change scientists from around the US with Native Americans to bring together classic Western European scientists with knowledge from native peoples - from such sources as oral histories of drought, major fires, etc. The purpose of this was to encourage not only joint science but also bring NASA resources and education materials to Tribal schools and encourage joint preparation of educational and training materials. N. Maynard's talk will provide history of that process and discuss possible ways to collaborate in the future, building on this effort.

  20. ``Science-trained professionals''—A new breed for the new century

    NASA Astrophysics Data System (ADS)

    Tobias, Sheila

    1996-09-01

    If students of science are to have more career options in the future, the people who hire and work with them are going to have to know more science and more about what scientists do. That's one of the conclusions of a recent study of the perceptions and realities that young and mid-career physical scientists are having to cope with in a post-cold war environment. It's also the conclusion of a survey of CEO's from 500 of the Fortune 1000 companies in the U.S, undertaken in September and October 1995 by the Johnson School of Management at Cornell. Corporations are becoming more and more concerned about "science and technological illiteracy" on the part of their managers.

  1. Professional Identity Formation and the Clinician-Scientist: A Paradigm for a Clinical Career Combining Two Distinct Disciplines.

    PubMed

    Rosenblum, Norman D; Kluijtmans, Manon; Ten Cate, Olle

    2016-12-01

    The clinician-scientist role is critical to the future of health care, and in 2010, the Carnegie Report on Educating Physicians focused attention on the professional identity of practicing clinicians. Although limited in number, published studies on the topic suggest that professional identity is likely a critical factor that determines career sustainability. In contrast to clinicians with a singular focus on clinical practice, clinician-scientists combine two major disciplines, clinical medicine and scientific research, to bridge discovery and clinical care. Despite its importance to advancing medical practice, the clinician-scientist career faced a variety of threats, which have been identified recently by the 2014 National Institutes of Health Physician Scientist Workforce. Yet, professional identity development in this career pathway is poorly understood. This Perspective focuses on the challenges to the clinician-scientist's professional identity and its development. First, the authors identify the particular challenges that arise from the different cultures of clinical care and science and the implications for clinician-scientist professional identity formation. Next, the authors synthesize insights about professional identity development within a dual-discipline career and apply their analysis to a discussion about the implications for clinician-scientist identity formation. Although not purposely developed to address identity formation, the authors highlight those elements within clinician-scientist training and career development programs that may implicitly support identity development. Finally, the authors highlight a need to identify empirically the elements that compose and determine clinician-scientist professional identity and the processes that shape its formation and sustainability.

  2. A Word to the Wise: Advice for Scientists Engaged in Collaborative Adaptive Management

    NASA Astrophysics Data System (ADS)

    Hopkinson, Peter; Huber, Ann; Saah, David S.; Battles, John J.

    2017-05-01

    Collaborative adaptive management is a process for making decisions about the environment in the face of uncertainty and conflict. Scientists have a central role to play in these decisions. However, while scientists are well trained to reduce uncertainty by discovering new knowledge, most lack experience with the means to mitigate conflict in contested situations. To address this gap, we drew from our efforts coordinating a large collaborative adaptive management effort, the Sierra Nevada Adaptive Management Project, to offer advice to our fellow environmental scientists. Key challenges posed by collaborative adaptive management include the confusion caused by multiple institutional cultures, the need to provide information at management-relevant scales, frequent turnover in participants, fluctuations in enthusiasm among key constituencies, and diverse definitions of success among partners. Effective strategies included a dedication to consistency, a commitment to transparency, the willingness to communicate frequently via multiple forums, and the capacity for flexibility. Collaborative adaptive management represents a promising, new model for scientific engagement with the public. Learning the lessons of effective collaboration in environmental management is an essential task to achieve the shared goal of a sustainable future.

  3. Promoting Diversity Through Polar Interdisciplinary Coordinated Education (Polar ICE)

    NASA Astrophysics Data System (ADS)

    McDonnell, J. D.; Hotaling, L. A.; Garza, C.; Van Dyk, P. B.; Hunter-thomson, K. I.; Middendorf, J.; Daniel, A.; Matsumoto, G. I.; Schofield, O.

    2017-12-01

    Polar Interdisciplinary Coordinated Education (ICE) is an education and outreach program designed to provide public access to the Antarctic and Arctic regions through polar data and interactions with the scientists. The program provides multi-faceted science communication training for early career scientists that consist of a face-to face workshop and opportunities to apply these skills. The key components of the scientist training workshop include cultural competency training, deconstructing/decoding science for non-expert audiences, the art of telling science stories, and networking with members of the education and outreach community and reflecting on communication skills. Scientists partner with educators to provide professional development for K-12 educators and support for student research symposia. Polar ICE has initiated a Polar Literacy initiative that provides both a grounding in big ideas in polar science and science communication training designed to underscore the importance of the Polar Regions to the public while promoting interdisciplinary collaborations between scientists and educators. Our ultimate objective is to promote STEM identity through professional development of scientists and educators while developing career awareness of STEM pathways in Polar science.

  4. The Academy for Future Science Faculty: randomized controlled trial of theory-driven coaching to shape development and diversity of early-career scientists.

    PubMed

    Thakore, Bhoomi K; Naffziger-Hirsch, Michelle E; Richardson, Jennifer L; Williams, Simon N; McGee, Richard

    2014-08-02

    Approaches to training biomedical scientists have created a talented research community. However, they have failed to create a professional workforce that includes many racial and ethnic minorities and women in proportion to their representation in the population or in PhD training. This is particularly true at the faculty level. Explanations for the absence of diversity in faculty ranks can be found in social science theories that reveal processes by which individuals develop identities, experiences, and skills required to be seen as legitimate within the profession. Using the social science theories of Communities of Practice, Social Cognitive Career Theory, identity formation, and cultural capital, we have developed and are testing a novel coaching-based model to address some of the limitations of previous diversity approaches. This coaching intervention (The Academy for Future Science Faculty) includes annual in-person meetings of students and trained faculty Career Coaches, along with ongoing virtual coaching, group meetings and communication. The model is being tested as a randomized controlled trial with two cohorts of biomedical PhD students from across the U.S., one recruited at the start of their PhDs and one nearing completion. Stratification into the experimental and control groups, and to coaching groups within the experimental arms, achieved equal numbers of students by race, ethnicity and gender to the extent possible. A fundamental design element of the Academy is to teach and make visible the social science principles which highly influence scientific advancement, as well as acknowledging the extra challenges faced by underrepresented groups working to be seen as legitimate within the scientific communities. The strategy being tested is based upon a novel application of the well-established principles of deploying highly skilled coaches, selected and trained for their ability to develop talents of others. This coaching model is intended to be a complement, rather than a substitute, for traditional mentoring in biomedical research training, and is being tested as such.

  5. THE TRAINING OF NEXT GENERATION DATA SCIENTISTS IN BIOMEDICINE.

    PubMed

    Garmire, Lana X; Gliske, Stephen; Nguyen, Quynh C; Chen, Jonathan H; Nemati, Shamim; VAN Horn, John D; Moore, Jason H; Shreffler, Carol; Dunn, Michelle

    2017-01-01

    With the booming of new technologies, biomedical science has transformed into digitalized, data intensive science. Massive amount of data need to be analyzed and interpreted, demand a complete pipeline to train next generation data scientists. To meet this need, the transinstitutional Big Data to Knowledge (BD2K) Initiative has been implemented since 2014, complementing other NIH institutional efforts. In this report, we give an overview the BD2K K01 mentored scientist career awards, which have demonstrated early success. We address the specific trainings needed in representative data science areas, in order to make the next generation of data scientists in biomedicine.

  6. West German Biotech Institute Trains Third World Scientists.

    ERIC Educational Resources Information Center

    O'Sullivan, Dermot A.

    1987-01-01

    Describes a six-week program designed to give scientists from developing countries advanced training in biotechnology methods. Stresses the need to provide the participants with "hands-on" experiences to enhance their ability to contribute to biotechnology programs in their home countries and to train others locally. (TW)

  7. An overlooked source of physician-scientists.

    PubMed

    Puljak, Livia

    2007-12-01

    A shortage of physician-scientists in the United States is an ongoing problem. Various recommendations have been made to address this issue; however, none of them have ameliorated the situation. Foreign medical school graduates with postdoctoral training in the United States are an overlooked and untapped resource for combating the dearth of physician-scientists. Evaluation of the scientific staff at the University of Texas Southwestern Medical Center revealed that 11% of all postdoctoral fellows were international medical graduates. Interestingly, a survey taken by these individuals revealed a lack of institutional and/or mentor support for career development and preparation for becoming physician-scientists. Foreign postdoctoral fellows with medical degrees are not even eligible for physician-scientist grants and awards since they are not US citizens. Although physicians educated in the United States usually matriculate from medical school with high educational debt that prevents most of them from entering into scientific careers, doctors trained outside the United States generally have minimal, if any, debt. Furthermore, many of them have a keen interest in remaining in the United States once they complete their postdoctoral training. Thus, foreign-trained medical professionals who have pursued scientific training in the United States can be one of the solutions for the current dearth of physician-scientists.

  8. Teen Science Cafés: A Vehicle for Scientists Seeking Broader Impacts

    NASA Astrophysics Data System (ADS)

    Hall, M.; Mayhew, M. A.

    2015-12-01

    Teen Science Cafés are a global phenomenon where scientists and teenagers engage in lively conversations about current, relevant, and intriguing science. In the past two years, Teen Café programs have been initiated in 41 sites in 18 U.S. states via the Teen Science Cafe Network, teensciencecafe.org. Other such programs are growing in the UK, eastern Africa, South Africa, and Singapore. The events are a free, informal, and low risk way for scientists to share their science with a receptive audience much focused on future careers. The success of a Café depends on the core principle that rich conversation occurs; a Café program is not a lecture series. Engaging teen participants brings out different perspectives and new dimensions to the topic; this has typically given scientists new ways of thinking about their own research! Presenting the event as a conversation and inviting the teens to bring in questions and points of view is key to fostering a dynamic Café. Scientists report that the training provided for these engagements has changed the way they talk about their science to peers, managers, and funding agencies. Teen Cafés have been shown to significantly change teens' view of the importance of science in their lives, positively influence teens' understanding of science in the news, and increase their ability and confidence to use facts to support scientific points of view. The Café events also positively influenced teens' interest in science and science careers, and revealed to them the true nature of scientific research and the interesting lives that scientists lead. Cafés are an excellent vehicle for scientists to have broader impact on the current generation of students, our future adult citizens. The Teen Science Café Network is an open community of practice committed to helping others implement Teen Cafés.

  9. Personalized medical education: Reappraising clinician-scientist training.

    PubMed

    DeLuca, Gabriele C; Ovseiko, Pavel V; Buchan, Alastair M

    2016-01-13

    Revitalizing the Oslerian ideal of the clinician-scientist-teacher may help in the training of the next generation of translational researchers. Copyright © 2016, American Association for the Advancement of Science.

  10. The Impacts of Postdoctoral Training on Scientists' Academic Employment

    ERIC Educational Resources Information Center

    Su, Xuhong

    2013-01-01

    This article examines the dynamics of postdoctoral training affecting scientists' academic employment, focusing on timing and prestige dimensions. Postdoc training proves beneficial to academic employment--more so in less prestigious departments than in top ones. Postdoc duration is subject to diminishing returns. The benefits of training…

  11. MS PHD'S: A Synergistic Model for Diversifying the Earth Science Community

    NASA Astrophysics Data System (ADS)

    Ricciardi, L.; Johnson, A.; Williamson Whitney, V.; Ithier-Guzman, W.; Braxton, L.; Johnson, A.

    2013-05-01

    The Minorities Striving and Pursuing Higher Degrees of Success in Earth System Science (MS PHD'S) program focuses on increasing the number of underrepresented minorities (URM) receiving advanced degrees in Earth system sciences (ESS). Subscribing to Aristotle's philosophy that the "whole is greater than the sum of its parts", MS PHD'S uses a synergistic model of tiered mentoring practices, successful minority scientist role models, peer-to-peer community building activities, professional development training techniques, networking opportunities, and state of the art virtual communication tools to facilitate the retention and advancement of underrepresented ESS scientists. Using a three-phase program structure supported by a virtual community, URM students in ESS are afforded opportunities to establish mentoring relationships with successful scientists, build meaningful ties with URM peers and future colleagues, strengthen oral and written communication skills, engage in networking opportunities within premier scientific venues, and maintain continuity of networks formed through program participation. Established in 2003, MS PHD'S is now in its ninth cohort. From the original cohort of 24 participants, the program has grown to support 213 participants. Of these 213 participants, 42 have obtained the doctorate and are employed within the ESS workforce. Another 71 are enrolled in doctoral programs. Looking to the future with the purpose of continually furthering its synergistic philosophy, MS PHD'S has developed a new initiative, Beyond the PhD, designed to support and advance the representation of URM scientists within a global workforce.

  12. Integrating topics of sex and gender into medical curricula-lessons from the international community.

    PubMed

    Miller, Virginia M; Kararigas, Georgios; Seeland, Ute; Regitz-Zagrosek, Vera; Kublickiene, Karolina; Einstein, Gillian; Casanova, Robert; Legato, Marianne J

    2016-01-01

    In the era of individualized medicine, training future scientists and health-care providers in the principles of sex- and gender-based differences in health and disease is critical in order to optimize patient care. International successes to incorporate these concepts into medical curricula can provide a template for others to follow. Methodologies and resources are provided that can be adopted and adapted to specific needs of other institutions and learning situations.

  13. Should MD-PhD programs encourage graduate training in disciplines beyond conventional biomedical or clinical sciences?

    PubMed

    O'Mara, Ryan J; Hsu, Stephen I; Wilson, Daniel R

    2015-02-01

    The goal of MD-PhD training programs is to produce physician-scientists with unique capacities to lead the future biomedical research workforce. The current dearth of physician-scientists with expertise outside conventional biomedical or clinical sciences raises the question of whether MD-PhD training programs should allow or even encourage scholars to pursue doctoral studies in disciplines that are deemed nontraditional, yet are intrinsically germane to major influences on health. This question is especially relevant because the central value and ultimate goal of the academic medicine community is to help attain the highest level of health and health equity for all people. Advances in medical science and practice, along with improvements in health care access and delivery, are steps toward health equity, but alone they will not come close to eliminating health inequalities. Addressing the complex health issues in our communities and society as a whole requires a biomedical research workforce with knowledge, practice, and research skills well beyond conventional biomedical or clinical sciences. To make real progress in advancing health equity, educational pathways must prepare physician-scientists to treat both micro and macro determinants of health. The authors argue that MD-PhD programs should allow and encourage their scholars to cross boundaries into less traditional disciplines such as epidemiology, statistics, anthropology, sociology, ethics, public policy, management, economics, education, social work, informatics, communications, and marketing. To fulfill current and coming health care needs, nontraditional MD-PhD students should be welcomed and supported as valuable members of our biomedical research workforce.

  14. Retaining clinician-scientists: nature versus nurture.

    PubMed

    Culican, Susan M; Rupp, Jason D; Margolis, Todd P

    2014-05-27

    In their IOVS article "Rejuvenating Clinician-Scientist Training" (published March 28, 2014), Balamurali Ambati and Judd Cahoon rightly point out the dearth of new clinician-scientists in ophthalmology. Within the context of their suggestions for increasing the number of successful clinician-scientists, they claim that the traditional MD-PhD training programs and K awards have failed to produce individuals who will carry on the important work of clinically relevant research that will improve patients' lives and sight. In this response we present data, including information on the career paths of graduates of the Washington University ophthalmology residency, that call into question the presumed failure of MD-PhD and K award programs and show that, in fact, graduates of these programs are more likely to succeed as clinician-scientists than are their peers who have not trained in such scientifically rigorous environments. We propose that, rather than a failure of early training programs, it may be obstacles that arise later in training and among junior faculty that prevent promising careers from reaching maturity. Funding, one rather large obstacle, takes the form of imbalanced start-up monies, less National Institutes of Health (NIH) funding awarded to young investigators, and study section composition that may work against those with clinically driven questions. We also explore the challenges faced in the culture surrounding residency and fellowship training. We agree with Ambati and Cahoon that there needs to be more innovation in the way training programs are structured, but we believe that the evidence supports supplementing the current model rather than scrapping it and starting over with unproven initiatives. The data on training programs supports the contention that those who have already made substantial investment and commitment to the clinician-scientist pathway through participation in MSTP or K training programs are the most likely to succeed on this career trajectory. To muffle the siren song of private practice and retain those best prepared for the clinician-scientist pathway requires additional investment as their careers mature through protected research time, mentorship, and advocacy. Copyright 2014 The Association for Research in Vision and Ophthalmology, Inc.

  15. Rank Advancement in Academia: What Are the Roles of Postdoctoral Training?

    ERIC Educational Resources Information Center

    Su, Xuhong

    2014-01-01

    This article reports on a study that investigated whether postdoctoral training contributes to scientists' and engineers' attainment of tenure and full professorship in research-extensive universities. It was found that training does not assist scientists in climbing the career ladder faster nor does it help them to secure more…

  16. Cancer Prevention Fellowship Program (CPFP) | Division of Cancer Prevention

    Cancer.gov

    The Cancer Prevention Fellowship provides a strong foundation for scientists and clinicians to train in the field of cancer prevention and control. This structured, multidisciplinary program offers early career scientists from different health disciplines a variety of postdoctoral training opportunities . | Training to form a strong foundation in cancer prevention and control

  17. Diversity Exiting the Academy: Influential Factors for the Career Choice of Well-Represented and Underrepresented Minority Scientists

    ERIC Educational Resources Information Center

    Layton, Rebekah L.; Brandt, Patrick D.; Freeman, Ashalla M.; Harrell, Jessica R.; Hall, Joshua D.; Sinche, Melanie

    2016-01-01

    A national sample of PhD-trained scientists completed training, accepted subsequent employment in academic and nonacademic positions, and were queried about their previous graduate training and current employment. Respondents indicated factors contributing to their employment decision (e.g., working conditions, salary, job security). The data…

  18. NASA's Space Life Sciences Training Program.

    PubMed

    Coulter, G; Lewis, L; Atchison, D

    1994-01-01

    The Space Life Sciences Training Program (SLSTP) is an intensive, six-week training program held every summer since 1985 at the Kennedy Space Center (KSC). A major goal of the SLSTP is to develop a cadre of qualified scientists and engineers to support future space life sciences and engineering challenges. Hand-picked, undergraduate college students participate in lectures, laboratory sessions, facility tours, and special projects: including work on actual Space Shuttle flight experiments and baseline data collection. At NASA Headquarters (HQ), the SLSTP is jointly sponsored by the Life Sciences Division and the Office of Equal Opportunity Programs: it has been very successful in attracting minority students and women to the fields of space science and engineering. In honor of the International Space Year (ISY), 17 international students participated in this summer's program. An SLSTP Symposium was held in Washington D.C., just prior to the World Space Congress. The Symposium attracted over 150 SLSTP graduates for a day of scientific discussions and briefings concerning educational and employment opportunities within NASA and the aerospace community. Future plans for the SLSTP include expansion to the Johnson Space Center in 1995.

  19. NASA's Space Life Sciences Training Program

    NASA Technical Reports Server (NTRS)

    Coulter, G.; Lewis, L.; Atchison, D.

    1994-01-01

    The Space Life Sciences Training Program (SLSTP) is an intensive, six-week training program held every summer since 1985 at the Kennedy Space Center (KSC). A major goal of the SLSTP is to develop a cadre of qualified scientists and engineers to support future space life sciences and engineering challenges. Hand-picked, undergraduate college students participate in lectures, laboratory sessions, facility tours, and special projects: including work on actual Space Shuttle flight experiments and baseline data collection. At NASA Headquarters (HQ), the SLSTP is jointly sponsored by the Life Sciences Division and the Office of Equal Opportunity Programs: it has been very successful in attracting minority students and women to the fields of space science and engineering. In honor of the International Space Year (ISY), 17 international students participated in this summer's program. An SLSTP Symposium was held in Washington D. C., just prior to the World Space Congress. The Symposium attracted over 150 SLSTP graduates for a day of scientific discussions and briefings concerning educational and employment opportunities within NASA and the aerospace community. Future plans for the SLSTP include expansion to the Johnson Space Center in 1995.

  20. The Gulf of Mexico Research Initiative Information and Data Cooperative: Multidisciplinary data management from the ground up

    NASA Astrophysics Data System (ADS)

    Showalter, L. M.; Gibeaut, J. C.

    2015-12-01

    As more journals and funding organizations require data to be made available, more and more scientists are being exposed to the world of data science, metadata development, and data standards so they can ensure future funding and publishing success. The Gulf of Mexico Research Initiative Information and Data Cooperative (GRIIDC) is the vehicle by which the Gulf of Mexico Research Initiative (GOMRI) is making all data collected in this program publically available. This varied group of researchers all have different levels of experience with data management standards and protocols, thus GRIIDC has evolved to embrace the cooperative nature of our work and develop a number of tools and training materials to help ensure data managers and researchers in the GoMRI program are submitting high quality data and metadata that will be useful for years to come. GRIIDC began with a group of 8 data managers many of which had only ever managed their own data, who were then expected to manage the data of a large group of geographically distant researchers. As the program continued to evolve these data managers worked with the GRIIDC team to help identify and develop much needed resources for training and communication for themselves and the scientists they represented. This essential cooperation has developed a team of highly motivated scientists, computer programmers and data scientists who are working to ensure a data and information legacy that promotes continual scientific discovery and public awareness of the Gulf of Mexico Ecosystem and beyond.

  1. Ethical considerations for biomedical scientists and engineers: issues for the rank and file.

    PubMed

    Kwarteng, K B

    2000-01-01

    Biomedical science and engineering is inextricably linked with the fields of medicine and surgery. Yet, while physicians and surgeons, nurses, and other medical professionals receive instruction in ethics during their training and must abide by certain codes of ethics during their practice, those engaged in biomedical science and engineering typically receive no formal training in ethics. In fact, the little contact that many biomedical science and engineering professionals have with ethics occurs either when they participate in government-funded research or submit articles for publication in certain journals. Thus, there is a need for biomedical scientists and engineers as a group to become more aware of ethics. Moreover, recent advances in biomedical technology and the ever-increasing use of new devices virtually guarantee that biomedical science and engineering will become even more important in the future. Although they are rarely in direct contact with patients, biomedical scientists and engineers must become aware of ethics in order to be able to deal with the complex ethical issues that arise from our society's increasing reliance on biomedical technology. In this brief communication, the need for ethical awareness among workers in biomedical science and engineering is discussed in terms of certain conflicts that arise in the workaday world of the biomedical scientist in a complex, modern society. It is also recognized that inasmuch as workers in the many branches of bioengineering are not regulated like their counterparts in medicine and surgery, perhaps academic institutions and professional societies are best equipped to heighten ethical awareness among workers in this important field.

  2. The NASA Space Life Sciences Training Program: Accomplishments Since 2013

    NASA Technical Reports Server (NTRS)

    Rask, Jon; Gibbs, Kristina; Ray, Hami; Bridges, Desireemoi; Bailey, Brad; Smith, Jeff; Sato, Kevin; Taylor, Elizabeth

    2017-01-01

    The NASA Space Life Sciences Training Program (SLSTP) provides undergraduate students entering their junior or senior years with professional experience in space life science disciplines. This challenging ten-week summer program is held at NASA Ames Research Center. The primary goal of the program is to train the next generation of scientists and engineers, enabling NASA to meet future research and development challenges in the space life sciences. Students work closely with NASA scientists and engineers on cutting-edge research and technology development. In addition to conducting hands-on research and presenting their findings, SLSTP students attend technical lectures given by experts on a wide range of topics, tour NASA research facilities, participate in leadership and team building exercises, and complete a group project. For this presentation, we will highlight program processes, accomplishments, goals, and feedback from alumni and mentors since 2013. To date, 49 students from 41 different academic institutions, 9 staffers, and 21 mentors have participated in the program. The SLSTP is funded by Space Biology, which is part of the Space Life and Physical Sciences Research and Application division of NASA's Human Exploration and Operations Mission Directorate. The SLSTP is managed by the Space Biology Project within the Science Directorate at Ames Research Center.

  3. Navigating the Current Job Market—Grab Hold of Your Future Now!12

    PubMed Central

    Durham, Holiday A.; McDermott, Ann Y.

    2013-01-01

    Although the U.S. federal government, the National Science Foundation, and other influential groups have called for American universities to educate and train more scientists, a recent article in the Washington Post and broadcasting on National Public Radio affirmed a harsh reality: there are too few jobs for today’s young scientists. Essentially, landing a job in science doesn’t just happen, you must prepare! The intent of this education track session, targeted to students, postdoctorates, junior faculty, and other early- to midcareer professionals was to provide insights on trends in the current job market and offer strategies and resources to be competitive. The session featured speakers representing different work environments, such as academia, industry, health care institutions, public relations, and entrepreneurial positions. PMID:24228196

  4. Scientific field training for human planetary exploration

    NASA Astrophysics Data System (ADS)

    Lim, D. S. S.; Warman, G. L.; Gernhardt, M. L.; McKay, C. P.; Fong, T.; Marinova, M. M.; Davila, A. F.; Andersen, D.; Brady, A. L.; Cardman, Z.; Cowie, B.; Delaney, M. D.; Fairén, A. G.; Forrest, A. L.; Heaton, J.; Laval, B. E.; Arnold, R.; Nuytten, P.; Osinski, G.; Reay, M.; Reid, D.; Schulze-Makuch, D.; Shepard, R.; Slater, G. F.; Williams, D.

    2010-05-01

    Forthcoming human planetary exploration will require increased scientific return (both in real time and post-mission), longer surface stays, greater geographical coverage, longer and more frequent EVAs, and more operational complexities than during the Apollo missions. As such, there is a need to shift the nature of astronauts' scientific capabilities to something akin to an experienced terrestrial field scientist. To achieve this aim, the authors present a case that astronaut training should include an Apollo-style curriculum based on traditional field school experiences, as well as full immersion in field science programs. Herein we propose four Learning Design Principles (LDPs) focused on optimizing astronaut learning in field science settings. The LDPs are as follows: LDP#1: Provide multiple experiences: varied field science activities will hone astronauts' abilities to adapt to novel scientific opportunities LDP#2: Focus on the learner: fostering intrinsic motivation will orient astronauts towards continuous informal learning and a quest for mastery LDP#3: Provide a relevant experience - the field site: field sites that share features with future planetary missions will increase the likelihood that astronauts will successfully transfer learning LDP#4: Provide a social learning experience - the field science team and their activities: ensuring the field team includes members of varying levels of experience engaged in opportunities for discourse and joint problem solving will facilitate astronauts' abilities to think and perform like a field scientist. The proposed training program focuses on the intellectual and technical aspects of field science, as well as the cognitive manner in which field scientists experience, observe and synthesize their environment. The goal of the latter is to help astronauts develop the thought patterns and mechanics of an effective field scientist, thereby providing a broader base of experience and expertise than could be achieved from field school alone. This will enhance their ability to execute, explore and adapt as in-field situations require.

  5. The 2nd Annual Clinical Scientist Trainee Symposium, August 22, 2017, London, Canada.

    PubMed

    Yin, Charles; Blom, Jessica N; Lewis, James F

    2018-03-27

    Clinician scientists play a critical role in bridging research and clinical practice. Unfortunately, the neglect of research training in medical schools has created clinicians who are unable to translate evidence from literature to practice. Furthermore, the erosion of research training in medical education has resulted in clinicians who lack the skills required for successful scientific investigation. To counteract this, the Schulich School of Medicine & Dentistry has made an effort to engage trainees, at all levels, in the research process. The 2nd Annual Clinician Scientist Trainee Symposium was held in London, Ontario, Canada on August 22, 2017. Organized each year since 2016 by the Schulich Research Office, the symposium features research being conducted by trainees in Schulich's Clinical Research Training Program. The focus this year was on the current state of clinician-scientist training in Canada and visions for the path ahead.

  6. Building a teaching-research nexus in a research intensive university: rejuvenating the recruitment and training of the clinician scientist.

    PubMed

    Eley, Diann S; Wilkinson, David

    2015-02-01

    The continuing decline in clinician scientists is a global concern. This paper reports on a two-fold rationale to address this decline by increasing the number of students on a formal pathway to an academic research career, and building a 'teaching-research nexus' using the research intensive environment at our University. The University of Queensland has implemented a research intensive program, the Clinician Scientist Track (CST), for a select cohort of students to pursue a part time research Masters degree alongside their full time medical degree. To this end, the support of clinical academics and the research community was vital to achieve a 'teaching-research-clinical nexus' - most appropriate for nurturing future Clinician Scientists. In three years, the CST has 42 enrolled research Masters' students with the majority (90%) upgrading to a PhD. Research represents 33 different areas and over 25 research groups/centres across this University and internationally. Other research intensive institutions may similarly build their 'teaching-research nexus' by purposeful engagement between their medical school and research community. The CST offers a feasible opportunity for outstanding students to build their own 'field of dreams' through an early start to their research career while achieving a common goal of rejuvenating the ethos of the clinician scientist.

  7. The physician-scientists: rare species in Africa.

    PubMed

    Adefuye, Anthonio Oladele; Adeola, Henry Ademola; Bezuidenhout, Johan

    2018-01-01

    There is paucity of physician-scientists in Africa, resulting in overt dependence of clinical practice on research findings from advanced "first world" countries. Physician-scientists include individuals with a medical degree alone or combined with other advanced degrees (e.g. MD/MBChB and PhD) with a career path in biomedical/ translational and patient-oriented/evaluative science research. The paucity of clinically trained research scientists in Africa could result in dire consequences as exemplified in the recent Ebola virus epidemic in West Africa, where shortage of skilled clinical scientists, played a major role in disease progression and mortality. Here we contextualise the role of physician-scientist in health care management, highlight factors limiting the training of physician-scientist in Africa and proffer implementable recommendations to address these factors.

  8. Beyond the Dualism between Lifelong Employment and Job Insecurity: Some New Career Promises for Young Scientists

    ERIC Educational Resources Information Center

    Dany, F.; Mangematin, Vincent

    2004-01-01

    This article analyses the early careers of young scientists in France. Since training and early career management are designed to cater almost exclusively for an academic career, a substantial proportion of PhDs lack support to design their training in relation to the job they will look for after graduation. Even if most young scientists manage to…

  9. RNA meets disease in paradise.

    PubMed

    Winter, Julia; Roth, Anna; Diederichs, Sven

    2011-01-01

    Getting off the train in Jena-Paradies, 60 participants joined for the 12 (th) Young Scientist Meeting of the German Society for Cell Biology (DGZ) entitled "RNA & Disease". Excellent speakers from around the world, graduate students, postdocs and young group leaders enjoyed a meeting in a familiar atmosphere to exchange inspiring new data and vibrant scientific discussions about the fascinating history and exciting future of non-coding RNA research including microRNA, piRNA and long non-coding RNA as well as their function in cancer, diabetes and neurodegenerative diseases.

  10. Building Interdisciplinary Research and Communication Skills in the Agricultural and Climate Sciences

    NASA Astrophysics Data System (ADS)

    Johnson-Maynard, J.; Borrelli, K.; Wolf, K.; Bernacchi, L.; Eigenbrode, S.; Daley Laursen, D.

    2015-12-01

    Preparing scientists and educators to create and promote practical science-based agricultural approaches to climate change adaptation and mitigation is a main focus of the Regional Approaches to Climate Change (REACCH) project. Social, political and environmental complexities and interactions require that future scientists work across disciplines rather than having isolated knowledge of one specific subject area. Additionally, it is important for graduate students earning M.S. or Ph.D. degrees in agriculture and climate sciences to be able to communicate scientific findings effectively to non-scientific audiences. Unfortunately, university graduate curricula rarely adequately prepare students with these important skills. REACCH recognizes the need for graduate students to have thorough exposure to other disciplines and to be able to communicate information for outreach and education purposes. These priorities have been incorporated into graduate training within the REACCH project. The interdisciplinary nature of the project and its sophisticated digital infrastructure provide graduate students multiple opportunities to gain these experiences. The project includes over 30 graduate students from 20 different disciplines and research foci including agronomy, biogeochemistry, soil quality, conservation tillage, hydrology, pest and beneficial organisms, economics, modeling, remote sensing, science education and climate science. Professional develop workshops were developed and held during annual project meetings to enhance student training. The "Toolbox" survey (http://www.cals.uidaho.edu/toolbox/) was used to achieve effective interdisciplinary communication. Interdisciplinary extension and education projects were required to allow students to gain experience with collaboration and working with stakeholder groups. Results of student surveys and rubrics developed to gauge success in interdisciplinary research and communication may provide a helpful starting point for future projects involving graduate student training.

  11. The Counseling Center Assessment of Psychological Symptoms (CCAPS): Merging clinical practice, training, and research.

    PubMed

    Youn, Soo Jeong; Castonguay, Louis G; Xiao, Henry; Janis, Rebecca; McAleavey, Andrew A; Lockard, Allison J; Locke, Benjamin D; Hayes, Jeffrey A

    2015-12-01

    The goal of this article is to present information about a standardized multidimensional measure of psychological symptoms, the Counseling Center Assessment of Psychological Symptoms (CCAPS; Locke et al., 2011; Locke, McAleavey, et al., 2012; McAleavey, Nordberg, Hayes, et al., 2012), developed to assess difficulties specific to college students' mental health. We provide (a) a brief review and summary of the psychometric and research support for the CCAPS; (b) examples of the use of the CCAPS for various purposes, including clinical, training, policy, and counseling center advocacy; and (c) implications of the integration of routine outcome monitoring and feedback for the future of training, research, and clinical practice. In particular, the article emphasizes how the assimilation of and symbiotic relationship between research and practice can address the scientist-practitioner gap. (c) 2015 APA, all rights reserved).

  12. Becoming a scientist: A qualitative study of the educational experience of undergraduates working in an American and a Brazilian research laboratory

    NASA Astrophysics Data System (ADS)

    Pascoa, Maria Beatriz Amorim

    Because the production of scientific and technological innovations has been at the center of debates for economic growth, scientists are recognized as important actors in the current global market. In this study, I will examine the undergraduate education of future scientists by focusing on students working in research projects of faculty members. This research activity has been promoted by American and Brazilian public agencies as an attempt to attract more college students to scientific careers as well as to improve their future performance in science. Evaluations of these programs have focused on important quantitative indicators focusing mainly on the amount of students that later choose to pursue scientific careers. However, these studies fail to address important educational aspects of undergraduates' experience. In this research, I explore the educational processes taking place as students are introduced to the making of science in order to understand how and what they are learning. Three bodies of literature illuminates the formulation and the analysis of the research questions: (1) theories of globalization situate the education of scientists within the dynamics of a broader social, economic, cultural, and historical framework; (2) the critical pedagogy of Paulo Freire is the basis for the understanding of the pedagogical processes shaping undergraduate students' experiences within the research site; (3) Critical and Cultural Studies of Science and Technology illuminate the analysis of the complex interactions and practices constructed within the laboratory. In order to understand the educational processes shaping the experiences of undergraduate students engaged in research activities, I conducted a qualitative investigation based on participant-observation and in-depth interviews in an American and a Brazilian laboratories. The two sites constituted insightful case studies that illuminated the understanding of inquires about the training of students in science. In addition, the study of two countries enriched the research inquiry, adding to the findings reflections on the ways differences in national contexts affects scientific training and scientific practices. Mainly, this qualitative research of students in laboratories offers some concrete recommendations and illuminating reflections for science educators, science policy makers, and for those working in the understanding of science epistemologies.

  13. Frequently Asked Questions from EPA's Community Air Monitoring Training Event, July 2015

    EPA Pesticide Factsheets

    EPA's Community Air Monitoring Training Event on July 9, 2015 in RTP, NC. Forty citizen scientists attended in person while over 500 others attended the live webinar. Several attendees posted questions, which EPA scientists have addressed here.

  14. The DOE fellows program-a workforce development initiative for the US department of energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lagos, Leonel E.

    The US Department of Energy Office of Environmental Management (DOE-EM) oversees one of the largest and most technically challenging cleanup programs in the world. The mission of DOE-EM is to complete the safe cleanup of the environmental legacy from five decades of nuclear weapons development and government-sponsored nuclear energy research. Since 1995, Florida International University's Applied Research Center (FIU-ARC) has supported the DOE-EM mission and provided unique research capabilities to address some of these highly technical and difficult challenges. This partnership has allowed FIU-ARC to create a unique infrastructure that is critical for the training and mentoring of science, technology,more » engineering, and math (STEM) students and has exposed many STEM students to 'hands-on' DOE-EM applied research, supervised by the scientists and engineers at ARC. As a result of this successful partnership between DOE and FIU, DOE requested FIU-ARC to create the DOE-FIU Science and Technology Workforce Development Initiative in 2007. This innovative program was established to create a 'pipeline' of minority STEM students trained and mentored to enter DOE's environmental cleanup workforce. The program was designed to help address DOE's future workforce needs by partnering with academic, government and private companies (DOE contractors) to mentor future minority scientists and engineers in the research, development, and deployment of new technologies and processes addressing DOE's environmental cleanup challenges. Since its inception in 2007, the program has trained and mentored 78 FIU STEM minority students. Although, the program has been in existence for only six years, a total of 75 internships have been conducted at DOE National Laboratories, DOE sites, DOE Headquarters and field offices, and DOE contractors. Over 100 DOE Fellows have participated in the Waste Management (WM) Symposia since 2008 with a total of 84 student posters and 7 oral presentations given at WM. The DOE Fellows participation at WM has resulted in three Best Student Poster Awards (WM09, WM10, and WM11) and one Best Professional Poster Award (WM09). DOE Fellows have also presented their research at ANS DD and R and ANS Robotics Topical meetings and this year two Fellows will present at the International Conference on Environmental Remediation and Radioactive Waste Management (ICEM13) in Brussels, Belgium. Moreover, several of our DOE Fellows have already obtained employment with DOE-EM, other federal agencies, DOE contractors, commercial nuclear power companies, and other STEM industry (GE, Boeing, Lockheed Martin, Johnson and Johnson, Beckman-Coulter, and other top companies). This paper will discuss how DOE Fellows program is training and mentoring FIU STEM students in Department of Energy's Office of Environmental Management technical challenges and research. This training and mentoring has resulted in the development of well-trained and polished young scientists and engineers that will become the future workforce in charge of carrying on DOE-EM's environmental cleanup mission. The paper will showcase FIU's DOE Fellows model and highlight some of the applied research the DOE Fellows have conducted at FIU's Applied Research Center and across the DOE Complex by participating in summer internship assignments. (authors)« less

  15. Opportunities for Space Science Education Using Current and Future Solar System Missions

    NASA Astrophysics Data System (ADS)

    Matiella Novak, M.; Beisser, K.; Butler, L.; Turney, D.

    2010-12-01

    The Education and Public Outreach (E/PO) office in The Johns Hopkins University Applied Physics Laboratory (APL) Space Department strives to excite and inspire the next generation of explorers by creating interactive education experiences. Since 1959, APL engineers and scientists have designed, built, and launched 61 spacecraft and over 150 instruments involved in space science. With the vast array of current and future Solar System exploration missions available, endless opportunities exist for education programs to incorporate the real-world science of these missions. APL currently has numerous education and outreach programs tailored for K-12 formal and informal education, higher education, and general outreach communities. Current programs focus on Solar System exploration missions such as the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM), Miniature Radio Frequency (Mini-RF) Moon explorer, the Radiation Belt Storm Probes (RBSP), New Horizons mission to Pluto, and the Thermosphere Ionosphere Mesosphere Energetics and Dynamics (TIMED) Satellite, to name a few. Education and outreach programs focusing on K-12 formal education include visits to classrooms, summer programs for middle school students, and teacher workshops. APL hosts a Girl Power event and a STEM (Science, Technology, Engineering, and Mathematics) Day each year. Education and outreach specialists hold teacher workshops throughout the year to train educators in using NASA spacecraft science in their lesson plans. High school students from around the U.S. are able to engage in NASA spacecraft science directly by participating in the Mars Exploration Student Data Teams (MESDT) and the Student Principal Investigator Programs. An effort is also made to generate excitement for future missions by focusing on what mysteries will be solved. Higher education programs are used to recruit and train the next generation of scientists and engineers. The NASA/APL Summer Internship Program offers a unique glimpse into the Space Department’s “end-to-end” approach to mission design and execution. College students - both undergraduate and graduate - are recruited from around the U.S. to work with APL scientists and engineers who act as mentors to the students. Many students are put on summer projects that allow them to work with existing spacecraft systems, while others participate in projects that investigate the operational and science objectives of future planned spacecraft systems. In many cases these interns have returned to APL as full-time staff after graduation.

  16. How training citizen scientists affects the accuracy and precision of phenological data

    NASA Astrophysics Data System (ADS)

    Feldman, Richard E.; Žemaitė, Irma; Miller-Rushing, Abraham J.

    2018-05-01

    Monitoring plant and animal phenology is a critical step to anticipating and predicting changes in species interactions and biodiversity. Because phenology necessarily involves frequent and repeated observations over time, citizen scientists have become a vital part of collecting phenological data. However, there is still concern over the accuracy and precision of citizen science data. It is possible that training citizen scientists can improve data quality though there are few comparisons of trained and untrained citizen scientists in the ability of each to accurately and precisely measure phenology. We assessed how three types of observers—experts, trained citizen scientists that make repeated observations, and untrained citizen scientists making once-per-year observations—differ in quantifying temporal change in flower and fruit abundance of American mountain ash trees (Sorbus americana Marsh.) and arthropods in Acadia National Park, Maine, USA. We found that trained more so than untrained citizen science observers over- or under-estimated abundances leading to precise but inaccurate characterizations of phenological patterns. Our results suggest a new type of bias induced by repeated observations: A type of learning takes place that reduces the independence of observations taken on different trees or different dates. Thus, in this and many other cases, having individuals make one-off observations of marked plants may produce data as good if not better than individuals making repeated observations. For citizen science programs related to phenology, our results underscore the importance of (a) attracting the most number of observers possible even if they only make one observation, (b) producing easy-to-use and informative data sheets, and (c) carefully planning effective training programs that are, perhaps, repeated at different points during the data collection period.

  17. How training citizen scientists affects the accuracy and precision of phenological data.

    PubMed

    Feldman, Richard E; Žemaitė, Irma; Miller-Rushing, Abraham J

    2018-05-07

    Monitoring plant and animal phenology is a critical step to anticipating and predicting changes in species interactions and biodiversity. Because phenology necessarily involves frequent and repeated observations over time, citizen scientists have become a vital part of collecting phenological data. However, there is still concern over the accuracy and precision of citizen science data. It is possible that training citizen scientists can improve data quality though there are few comparisons of trained and untrained citizen scientists in the ability of each to accurately and precisely measure phenology. We assessed how three types of observers-experts, trained citizen scientists that make repeated observations, and untrained citizen scientists making once-per-year observations-differ in quantifying temporal change in flower and fruit abundance of American mountain ash trees (Sorbus americana Marsh.) and arthropods in Acadia National Park, Maine, USA. We found that trained more so than untrained citizen science observers over- or under-estimated abundances leading to precise but inaccurate characterizations of phenological patterns. Our results suggest a new type of bias induced by repeated observations: A type of learning takes place that reduces the independence of observations taken on different trees or different dates. Thus, in this and many other cases, having individuals make one-off observations of marked plants may produce data as good if not better than individuals making repeated observations. For citizen science programs related to phenology, our results underscore the importance of (a) attracting the most number of observers possible even if they only make one observation, (b) producing easy-to-use and informative data sheets, and (c) carefully planning effective training programs that are, perhaps, repeated at different points during the data collection period.

  18. How Research Training Will Shape the Future of Dental, Oral, and Craniofacial Research.

    PubMed

    D'Souza, Rena N; Colombo, John S

    2017-09-01

    This is a critical time in the history of the dental profession for it to fully embrace the responsibility to safeguard its reputation as a learned profession. In this golden era of scientific and technological advances, opportunities abound to create new diagnostics, preventions, treatments, and cures to improve oral health. Dental schools are the largest national resource entrusted with the responsibility to educate, train, and retain oral health researchers who can leverage such technologies and research opportunities that will benefit the profession at large as well as patients. This article reemphasizes the theme that research training and scholarship must be inextricably woven into the environment and culture in dental schools to ensure the future standing of the profession. An overview of the history of support provided by the National Institutes of Health and National Institute of Dental and Craniofacial Research for the training and career development of dentist-scientists is presented. In addition, new data on the outcomes of such investments are presented along with a comparison with other health professions. This overview underscores the need to expand the capacity of a well-trained cadre of oral health researchers through the reengineering of training programs. Such strategies will best prepare future graduates for team science, clinical trials, and translational research as well as other emerging opportunities. The urgent need for national organizations like the American Dental Association, American Dental Education Association, and American Association for Dental Research to create new alliances and novel initiatives to assist dental schools and universities in fulfilling their research mission is emphasized. To ignore such calls for action is to disavow a valuable legacy inherited by the dental profession. This article was written as part of the project "Advancing Dental Education in the 21 st Century."

  19. Developing a strategy for computational lab skills training through Software and Data Carpentry: Experiences from the ELIXIR Pilot action

    PubMed Central

    Pawlik, Aleksandra; van Gelder, Celia W.G.; Nenadic, Aleksandra; Palagi, Patricia M.; Korpelainen, Eija; Lijnzaad, Philip; Marek, Diana; Sansone, Susanna-Assunta; Hancock, John; Goble, Carole

    2017-01-01

    Quality training in computational skills for life scientists is essential to allow them to deliver robust, reproducible and cutting-edge research. A pan-European bioinformatics programme, ELIXIR, has adopted a well-established and progressive programme of computational lab and data skills training from Software and Data Carpentry, aimed at increasing the number of skilled life scientists and building a sustainable training community in this field. This article describes the Pilot action, which introduced the Carpentry training model to the ELIXIR community. PMID:28781745

  20. Developing a strategy for computational lab skills training through Software and Data Carpentry: Experiences from the ELIXIR Pilot action.

    PubMed

    Pawlik, Aleksandra; van Gelder, Celia W G; Nenadic, Aleksandra; Palagi, Patricia M; Korpelainen, Eija; Lijnzaad, Philip; Marek, Diana; Sansone, Susanna-Assunta; Hancock, John; Goble, Carole

    2017-01-01

    Quality training in computational skills for life scientists is essential to allow them to deliver robust, reproducible and cutting-edge research. A pan-European bioinformatics programme, ELIXIR, has adopted a well-established and progressive programme of computational lab and data skills training from Software and Data Carpentry, aimed at increasing the number of skilled life scientists and building a sustainable training community in this field. This article describes the Pilot action, which introduced the Carpentry training model to the ELIXIR community.

  1. The Canadian clinician-scientist training program must be reinstated.

    PubMed

    Twa, David D W; Squair, Jordan W; Skinnider, Michael A; Ji, Jennifer X

    2015-11-03

    Clinical investigators within the Canadian and international communities were shocked when the Canadian Institutes of Health Research (CIHR) announced that their funding for the MD/PhD program would be terminated after the 2015-2016 academic year. The program has trained Canadian clinician-scientists for more than two decades. The cancellation of the program is at odds with the CIHR's mandate, which stresses the translation of new knowledge into improved health for Canadians, as well as with a series of internal reports that have recommended expanding the program. Although substantial evidence supports the analogous Medical Scientist Training Program in the United States, no parallel analysis of the MD/PhD program has been performed in Canada. Here, we highlight the long-term consequences of the program's cancellation in the context of increased emphasis on translational research. We argue that alternative funding sources cannot ensure continuous support for students in clinician-scientist training programs and that platform funding of the MD/PhD program is necessary to ensure leadership in translational research.

  2. Donald R. Korb, OD, FAAO: Clinician Scientist, Colleague, and Teacher.

    PubMed

    Polse, Kenneth A

    2009-10-01

    Discovery often begins with a clinical observation that leads to major biomedical discovery. Therefore, well-trained clinical scientists are an important part of the discovery process. Unfortunately, both medicine and optometry have too few well-trained clinician scientists. However, among the few, Dr. Donald Korb stands out as the quintessential optometric clinical scientist. This profile provides insights into the life, thoughts, and unusually productive professional career of Dr. Korb. Of particular interest for many contact lens clinicians is a discussion with Dr. Korb on how some of his clinical observations led to improved diagnostic and treatment procedures.

  3. Stand up and Speak Out: Professional Training Can Help Bridge the Science Communication Gap

    NASA Astrophysics Data System (ADS)

    Neeley, E.; Simler Smith, B.; Baron, N.

    2011-12-01

    Science and technology have become firmly entrenched in our daily lives, and as a society we depend on this advanced knowledge in order to maintain - and improve - our standard of living. At the same time, social media and other advanced tools have made it easier than ever to communicate scientific findings to a wide and diverse audience. Yet herein lies a paradox: evidence shows that scientific literacy among the general public remains frustratingly low. Why does this gap remain, given such a seemingly fertile climate for scientific literacy? The answer to this question is complex, but a historical lack of communications training and support for scientists is unquestionably a part of it. Effectively explaining research findings - and why they are important - to journalists, policymakers, and other non-scientists requires specific skills that aren't accounted for in most graduate programs. For decades, in fact, scientific institutions have made communications a very low priority. Some have even discouraged outreach for fear of backlash or out of reluctance to sacrifice research time. There are indications that the culture is shifting, however. The integration of formal, for-credit communications training into graduate curricula is one promising sign. Also, professional, extracurricular communications training is now readily available from a number of sources. COMPASS (the Communication Partnership for Science and the Sea) has pioneered this latter model for more than a decade, both independently and as the lead communication trainers for the prestigious Aldo Leopold Leadership Program. Working with some of the most accomplished marine and environmental scientists in North America and beyond, COMPASS has helped equip the community with the tools to make their science clear, compelling and relevant for non-scientist audiences. We have led communication workshops for scientists at all career levels - from beginning graduate students to tenured senior faculty. A key to our workshops is helping scientists understand the needs of non-scientist audiences, whether they are talking to a U.S. Senator, a local journalist, or a group of school children. Another key is providing a "safe space" for scientists to experiment with new approaches to communication, with an emphasis on both peer feedback and professional advice. We encourage our workshop participants to tell stories rather than quote data, to get to the point quickly, and to convince their audiences why they should care. We actively push scientists outside their comfort zones; if they stumble during the learning process, they are much less likely to do so when they are formally on the record. Peer feedback is a crucial ingredient that can promote a culture of camaraderie and support long after the workshop ends. In our experience, when scientists have solid training and a dependable support network, the courage to reach out and "stand up for their science" follows naturally. In fact, by becoming better communicators, scientists also become better leaders almost by default. In turn, better leaders make for better scientists. Many of the scientist-communicators COMPASS has trained have gone on to pioneer training initiatives at their own institutions, seeding the next generation of scientific leaders in the process.

  4. The Academy for Future Science Faculty: randomized controlled trial of theory-driven coaching to shape development and diversity of early-career scientists

    PubMed Central

    2014-01-01

    Background Approaches to training biomedical scientists have created a talented research community. However, they have failed to create a professional workforce that includes many racial and ethnic minorities and women in proportion to their representation in the population or in PhD training. This is particularly true at the faculty level. Explanations for the absence of diversity in faculty ranks can be found in social science theories that reveal processes by which individuals develop identities, experiences, and skills required to be seen as legitimate within the profession. Methods/Design Using the social science theories of Communities of Practice, Social Cognitive Career Theory, identity formation, and cultural capital, we have developed and are testing a novel coaching-based model to address some of the limitations of previous diversity approaches. This coaching intervention (The Academy for Future Science Faculty) includes annual in-person meetings of students and trained faculty Career Coaches, along with ongoing virtual coaching, group meetings and communication. The model is being tested as a randomized controlled trial with two cohorts of biomedical PhD students from across the U.S., one recruited at the start of their PhDs and one nearing completion. Stratification into the experimental and control groups, and to coaching groups within the experimental arms, achieved equal numbers of students by race, ethnicity and gender to the extent possible. A fundamental design element of the Academy is to teach and make visible the social science principles which highly influence scientific advancement, as well as acknowledging the extra challenges faced by underrepresented groups working to be seen as legitimate within the scientific communities. Discussion The strategy being tested is based upon a novel application of the well-established principles of deploying highly skilled coaches, selected and trained for their ability to develop talents of others. This coaching model is intended to be a complement, rather than a substitute, for traditional mentoring in biomedical research training, and is being tested as such. PMID:25084625

  5. The Scarcity of Orthopaedic Physician Scientists.

    PubMed

    Buckwalter, Joseph A; Elkins, Jacob M

    2017-01-01

    Breakthrough advances in medicine almost uniformly result from the translation of new basic scientific knowledge into clinical practice, rather than from assessment, modification or refinement of current methods of diagnosis and treatment. However, as is intuitively understood, those most responsible for scientific conception and creation-scientists - are generally not the ones applying these advances at the patient's bedside or the operating room, and vice versa. Recognition of the scarcity of clinicians with a background that prepares them to develop new basic knowledge, and to critically evaluate the underlying scientific basis of methods of diagnosis and treatment, has led to initiatives including federally funded Physician-Scientist programs, whereby young, motivated scholars begin a rigorous training, which encompasses education and mentorship within both medical and scientific fields, culminating in the conferment of both MD and PhD degrees. Graduates have demonstrated success in integrating science into their academic medical careers. However, for unknown reasons, orthopaedic surgery, more than other specialties, has struggled to recruit and retain physician-scientists, who possess a skill set evermore rare in today's increasingly complicated medical and scientific landscape. While the reasons for this shortfall have yet to be completely elucidated, one thing is clear: If orthopaedics is to make significant advances in the diagnosis and treatment of musculoskeletal diseases and injuries, recruitment of the very best and brightest physician-scientists to orthopaedics must become a priority. This commentary explores potential explanations for current low-recruitment success regarding future orthopaedic surgeon-scientists, and discusses avenues for resolution.

  6. STEAM: Using the Arts to Train Well-Rounded and Creative Scientists

    PubMed Central

    Segarra, Verónica A.; Natalizio, Barbara; Falkenberg, Cibele V.; Pulford, Stephanie; Holmes, Raquell M.

    2018-01-01

    While the demand for a strong STEM workforce continues to grow, there are challenges that threaten our ability to recruit, train, and retain such a workforce in a way that is effective and sustainable and fosters innovation. One way in which we are meeting this challenge is through the use of the arts in the training of scientists. In this Perspectives article, we review the use of the arts in science education and its benefits in both K–12 and postsecondary education. We also review the use of STEAM (science, technology, engineering, arts, and mathematics) programs in science outreach and the development of professional scientists. PMID:29904562

  7. Do "Brain-Training" Programs Work?

    PubMed

    Simons, Daniel J; Boot, Walter R; Charness, Neil; Gathercole, Susan E; Chabris, Christopher F; Hambrick, David Z; Stine-Morrow, Elizabeth A L

    2016-10-01

    In 2014, two groups of scientists published open letters on the efficacy of brain-training interventions, or "brain games," for improving cognition. The first letter, a consensus statement from an international group of more than 70 scientists, claimed that brain games do not provide a scientifically grounded way to improve cognitive functioning or to stave off cognitive decline. Several months later, an international group of 133 scientists and practitioners countered that the literature is replete with demonstrations of the benefits of brain training for a wide variety of cognitive and everyday activities. How could two teams of scientists examine the same literature and come to conflicting "consensus" views about the effectiveness of brain training?In part, the disagreement might result from different standards used when evaluating the evidence. To date, the field has lacked a comprehensive review of the brain-training literature, one that examines both the quantity and the quality of the evidence according to a well-defined set of best practices. This article provides such a review, focusing exclusively on the use of cognitive tasks or games as a means to enhance performance on other tasks. We specify and justify a set of best practices for such brain-training interventions and then use those standards to evaluate all of the published peer-reviewed intervention studies cited on the websites of leading brain-training companies listed on Cognitive Training Data (www.cognitivetrainingdata.org), the site hosting the open letter from brain-training proponents. These citations presumably represent the evidence that best supports the claims of effectiveness.Based on this examination, we find extensive evidence that brain-training interventions improve performance on the trained tasks, less evidence that such interventions improve performance on closely related tasks, and little evidence that training enhances performance on distantly related tasks or that training improves everyday cognitive performance. We also find that many of the published intervention studies had major shortcomings in design or analysis that preclude definitive conclusions about the efficacy of training, and that none of the cited studies conformed to all of the best practices we identify as essential to drawing clear conclusions about the benefits of brain training for everyday activities. We conclude with detailed recommendations for scientists, funding agencies, and policymakers that, if adopted, would lead to better evidence regarding the efficacy of brain-training interventions. © The Author(s) 2016.

  8. Building a Science Community of Effective Advocates: The Case of the Union of Concerned Scientists Science Network

    NASA Astrophysics Data System (ADS)

    Varga, M.; Worcester, J.

    2017-12-01

    The Union of Concerned Scientists (UCS) Science Network is a community of over 20,000 scientists, engineers, economists, public health specialists, and technical experts that inform and advocate for science-based solutions to some of our nation's most pressing problems. The role of the community manager here is to train and prepare Science Network members to be effective advocates for science-based decision making, and also to identify opportunities for them to put their skills and expertise into action on science and public health issues. As an organizational asset, but also an important resource to its members, it is crucial that the Science Network demonstrate its impact. But measuring impact when it comes to engagement and advocacy can be difficult. Here we will define a glossary of terms relating to community management and scientist engagement, delve into tracking and measurement of actions taken within a community, and connect the dots between tracking metrics and measuring impact. Measuring impact in community management is a growing field, and here we will also suggest future research that will help standardize impact measurement, as well as bring attention to the growing and unique role that scientist communities can have on policy and public engagement goals. This work has been informed by the American Association for the Advancement of Science's inaugural cohort of the Community Engagement Fellows Program.

  9. on-course(®) portal: a tool for in-service training and career development for biomedical scientists.

    PubMed

    Payton, Antony; Janko, Christa; Renn, Oliver; Hardman, Michael

    2013-09-01

    Successfully navigating through the jungle of biomedical postgraduate courses in Europe has recently been made possible by the release of an Innovative Medicines Initiative (IMI) funded project called on-course(®) (http://www.on-course.eu). on-course(®) lists all master, continued professional development (CPD) and PhD courses in Europe and hosts advanced search options designed by the pharmaceutical industry, academia and regulatory bodies allowing the course seeker to find courses that are most relevant for them. In addition, an IMI cross education and training topic task force has developed a set of quality standards that have been applied to CPD courses. The comprehensive nature of on-course(®) offers a new level of transparency to biomedical course provision in Europe that will help steer future education and training. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Research fellowship programs as a pathway for training independent clinical pharmacy scientists.

    PubMed

    Mueller, Eric W; Bishop, Jeffrey R; Kanaan, Abir O; Kiser, Tyree H; Phan, Hanna; Yang, Katherine Y

    2015-03-01

    The American College of Clinical Pharmacy (ACCP) Research Affairs Committee published a commentary in 2013 on training clinical pharmacy scientists in the context of changes in economic, professional, political, and research environments. The commentary centered on the opportunities for pharmacists in clinical/translational research including strategies for ACCP, colleges of pharmacy, and the profession to increase the number and impact of clinical pharmacy scientists. A postdoctoral fellowship is cited as a current training pathway, capable of producing independent and productive pharmacy researchers. However, a decline in the number of programs, decreased funding availability, and variability in fellowship program activities and research focus have brought into question the relevance of this research training pathway to meet demand and opportunities. In response to these points, this commentary examines the state of research fellowship training including the current ACCP research fellowship review process, the need for standardization of research fellowship programs, and strategies to strengthen and promote research fellowships as relevant researcher training pathways. © 2015 Pharmacotherapy Publications, Inc.

  11. Stem cell research and policy in India: current scenario and future perspective.

    PubMed

    Sharma, Alka

    2009-01-01

    Stem cell research is an exciting area of biomedical research, with potential to advance cell biology, and other new modalities of treatment for many untreatable diseases. The potential resides in the ability of these cells to develop into many different cell types in the body. In India, efforts are being made on several fronts to promote this area in an integrated way. The main features of the strategy are: explore the full potential of adult and embryonic stem cells (ESCs) through basic and translational research; generate patient specific human ESC lines; enhance creation of animal models for pre-clinical studies; virtual network of Centres; creation institutions; generation of well trained manpower; build partnership with large companies in path-breaking areas; promote closer interactions amongst basic scientists, clinical researchers and the industry. Newer initiatives include: establishment of a dedicated institute for stem cell science and regenerative medicine with its translational units; GMP and clean room facilities in medical schools; creation of a system for multi-centric clinical studies using autologous adult stem cells; national and international training courses for providing training to the students and the young scientists in the both embryonic and adult stem cells; and formulation of guidelines to conduct stem cell research in a responsible and ethically sensitive manner in the country. The core capacity must be nurtured and built to create the required critical mass to have impact.

  12. Scientists and the 3Rs: attitudes to animal use in biomedical research and the effect of mandatory training in laboratory animal science.

    PubMed

    Franco, N H; Olsson, I A S

    2014-01-01

    The 3Rs principle of replacement, reduction, and refinement has increasingly been endorsed by legislators and regulatory bodies as the best approach to tackle the ethical dilemma presented by animal experimentation in which the potential benefits for humans stand against the costs borne by the animals. Even when animal use is tightly regulated and supervised, the individual researcher's responsibility is still decisive in the implementation of the 3Rs. Training in laboratory animal science (LAS) aims to raise researchers' awareness and increase their knowledge, but its effect on scientists' attitudes and practice has not so far been systematically assessed. Participants (n = 206) in eight LAS courses (following the Federation of European Laboratory Animal Science Associations category C recommendations) in Portugal were surveyed in a self-administered questionnaire during the course. Questions were related mainly to the 3Rs and their application, attitudes to animal use and the ethical review of animal experiments. One year later, all the respondents were asked to answer a similar questionnaire (57% response rate) with added self-evaluation questions on the impact of training. Our results suggest that the course is effective in promoting awareness and increasing knowledge of the 3Rs, particularly with regard to refinement. However, participation in the course did not change perceptions on the current and future needs for animal use in research.

  13. Teaching Statistics to Social Science Students: Making It Valuable

    ERIC Educational Resources Information Center

    North, D.; Zewotir, T.

    2006-01-01

    In this age of rapid information expansion and technology, statistics is playing an ever increasing role in education, particularly also in the training of social scientists. Statistics enables the social scientist to obtain a quantitative awareness of socio-economic phenomena hence is essential in their training. Statistics, however, is becoming…

  14. Crowdsourced Science: Citizen Science Using the Globe Observer Mobile App

    NASA Astrophysics Data System (ADS)

    Low, R.; Riebeek Kohl, H.

    2016-12-01

    Field-based citizen science programs broaden public understanding of the Earth's system and connect users personally in seeing and understanding the changes that are taking place on our planet. GLOBE Observer (GO) is a new initiative for citizen scientists of all ages and connects users to NASA science via a simple smartphone app. Version 1.0 includes GLOBE Clouds, which guides users in photographing clouds and recording sky observations. Citizen scientist cloud observations are compared with NASA satellite images, and provide critical ground validation of satellite data so we better understand the Earth and its environment. The GLOBE Observer mobile app is equipped with data collection capabilities and visualization opportunities that lower the barrier for public participation in data collection and analysis efforts. Future releases of the GLOBE Observer app will support public engagement in investigations of the hydrosphere and biosphere. Some of the exciting developments on the horizon include in-app training games to build skills, in-app push messaging, which challenge a citizen scientist to participate data collection missions, and automated data validation capabilities.

  15. Collaborating with Scientists in Education and Public Engagement

    NASA Astrophysics Data System (ADS)

    Shupla, Christine; Shaner, Andrew; Smith Hackler, Amanda

    2016-10-01

    The Education and Public Engagement team at the Lunar and Planetary Institute (LPI) is developing a scientific advisory board, to gather input from planetary scientists for ways that LPI can help them with public engagement, such as connecting them to opportunities, creating useful resources, and providing training. The advisory board will assist in outlining possible roles of scientists in public engagement, provide feedback on LPI scientist engagement efforts, and encourage scientists to participate in various education and public engagement events.LPI's scientists have participated in a variety of education programs, including teacher workshops, family events, public presentations, informal educator trainings, and communication workshops. Scientists have helped conduct hands-on activities, participated in group discussions, and given talks, while sharing their own career paths and interests; these activities have provided audiences with a clearer vision of how science is conducted and how they can become engaged in science themselves.This poster will share the status and current findings of the scientist advisory board, and the lessons learned regarding planetary scientists' needs, abilities, and interests in participating in education and public engagement programs.

  16. Collaborating with Scientists in Education and Public Engagement

    NASA Astrophysics Data System (ADS)

    Shupla, C. B.; Shaner, A. J.; Hackler, A. S.

    2016-12-01

    The Education and Public Engagement team at the Lunar and Planetary Institute (LPI) is developing a scientific advisory board, to gather input from planetary scientists for ways that LPI can help them with public engagement (such as connecting them to opportunities, creating useful resources, and providing training). The advisory board will also assist in outlining possible roles of scientists in public engagement, provide feedback on LPI scientist engagement efforts, and encourage scientists to participate in various education and public engagement events. LPI's scientists have participated in a variety of education programs, including teacher workshops, family events, public presentations, informal educator trainings, and communication workshops. Scientists have helped conduct hands-on activities, participated in group discussions, and given talks, while sharing their own career paths and interests; these activities have provided audiences with a clearer vision of how science is conducted and how they can become engaged in science themselves. We will share the status and current findings of the scientist advisory board, and the resulting lessons learned regarding scientists' needs, abilities, and interests in participating in education and public engagement programs.

  17. Taking the Plunge: Next Steps in Engaged Learning

    PubMed Central

    Frederick, Jennifer

    2010-01-01

    College and university science educators from across Connecticut gathered at Yale’s West Campus in April 2010 for a Project Kaleidoscope (PKAL) program entitled “Taking the Plunge: Next Steps in Engaged Learning.” Funded by the National Science Foundation (NSF) and co-sponsored by the Connecticut Conference of Independent Colleges (CCIC) and Yale’s McDougal Graduate Teaching Center, the event was the latest in a PKAL series of one-day conferences aimed at equipping science, technology, engineering, and math (STEM) instructors with effective approaches to engaging students and training future scientists. PMID:20885897

  18. Training young scientists across empirical and modeling approaches

    NASA Astrophysics Data System (ADS)

    Moore, D. J.

    2014-12-01

    The "fluxcourse," is a two-week program of study on Flux Measurements and Advanced Modeling (www.fluxcourse.org). Since 2007, this course has trained early career scientists to use both empirical observations and models to tackle terrestrial ecological questions. The fluxcourse seeks to cross train young scientists in measurement techniques and advanced modeling approaches for quantifying carbon and water fluxes between the atmosphere and the biosphere. We invited between ten and twenty volunteer instructors depending on the year ranging in experience and expertise, including representatives from industry, university professors and research specialists. The course combines online learning, lecture and discussion with hands on activities that range from measuring photosynthesis and installing an eddy covariance system to wrangling data and carrying out modeling experiments. Attendees are asked to develop and present two different group projects throughout the course. The overall goal is provide the next generation of scientists with the tools to tackle complex problems that require collaboration.

  19. Coordinated Analysis 101: A Joint Training Session Sponsored by LPI and ARES/JSC

    NASA Technical Reports Server (NTRS)

    Draper, D. S.; Treiman, A. H.

    2017-01-01

    The Lunar and Planetary Institute (LPI) and the Astromaterials Research and Exploration Science (ARES) Division, part of the Exploration Integration and Science Directorate at NASA Johnson Space Center (JSC), co-sponsored a training session in November 2016 for four early-career scientists in the techniques of coordinated analysis. Coordinated analysis refers to the approach of systematically performing high-resolution and -precision analytical studies on astromaterials, particularly the very small particles typical of recent and near-future sample return missions such as Stardust, Hayabusa, Hayabusa2, and OSIRIS-REx. A series of successive analytical steps is chosen to be performed on the same particle, as opposed to separate subsections of a sample, in such a way that the initial steps do not compromise the results from later steps in the sequence. The data from the entire series can then be integrated for these individual specimens, revealing important in-sights obtainable no other way. ARES/JSC scientists have played a leading role in the development and application of this approach for many years. Because the coming years will bring new sample collections from these and other planned NASA and international exploration missions, it is timely to begin disseminating specialized techniques for the study of small and precious astromaterial samples. As part of the Cooperative Agreement between NASA and the LPI, this training workshop was intended as the first in a series of similar training exercises that the two organizations will jointly sponsor in the coming years. These workshops will span the range of analytical capabilities and sample types available at ARES/JSC in the Astromaterials Research and Astro-materials Acquisition and Curation Offices. Here we summarize the activities and participants in this initial training.

  20. Surficial geological tools in fluvial geomorphology: Chapter 2

    USGS Publications Warehouse

    Jacobson, Robert B.; O'Connor, James E.; Oguchi, Takashi

    2016-01-01

    Increasingly, environmental scientists are being asked to develop an understanding of how rivers and streams have been altered by environmental stresses, whether rivers are subject to physical or chemical hazards, how they can be restored, and how they will respond to future environmental change. These questions present substantive challenges to the discipline of fluvial geomorphology, especially since decades of geomorphologic research have demonstrated the general complexity of fluvial systems. It follows from the concept of complex response that synoptic and short-term historical views of rivers will often give misleading understanding of future behavior. Nevertheless, broadly trained geomorphologists can address questions involving complex natural systems by drawing from a tool box that commonly includes the principles and methods of geology, hydrology, hydraulics, engineering, and ecology.

  1. Professional identity in clinician-scientists: brokers between care and science.

    PubMed

    Kluijtmans, Manon; de Haan, Else; Akkerman, Sanne; van Tartwijk, Jan

    2017-06-01

    Despite increasing numbers of publications, science often fails to significantly improve patient care. Clinician-scientists, professionals who combine care and research activities, play an important role in helping to solve this problem. However, despite the ascribed advantages of connecting scientific knowledge and inquiry with health care, clinician-scientists are scarce, especially amongst non-physicians. The education of clinician-scientists can be complex because they must form professional identities at the intersection of care and research. The successful education of clinician-scientists requires insight into how these professionals view their professional identity and how they combine distinct practices. This study sought to investigate how recently trained nurse- and physiotherapist-scientists perceive their professional identities and experience the crossing of boundaries between care and research. Semi-structured interviews were conducted with 14 nurse- and physiotherapist-scientists at 1 year after they had completed MSc research training. Interviews were thematically analysed using insights from the theoretical frameworks of dialogical self theory and boundary crossing. After research training, the initial professional identity, of clinician, remained important for novice clinician-scientists, whereas the scientist identity was experienced as additional and complementary. A meta-identity as broker, referred to as a 'bridge builder', seemed to mediate competing demands or tensions between the two positions. Obtaining and maintaining a dual work position were experienced as logistically demanding; nevertheless, it was considered beneficial for crossing the boundaries between care and research because it led to reflection on the health profession, knowledge integration, inquiry and innovation in care, improved data collection, and research with a focus on clinical applicability. Novice clinician-scientists experience dual professional identities as care providers and scientists. The meta-position of being a broker who connects care and research is seen as core to the unique clinician-scientist identity. To develop this role, identity formation and boundary-crossing competencies merit explicit attention within clinician-scientist programmes. © 2017 The Authors Medical Education published by Association for the Study of Medical Education and John Wiley & Sons Ltd.

  2. A workshop on leadership for MD/PhD students

    PubMed Central

    Ciampa, Erin j.; Hunt, Aubrey A.; Arneson, Kyle O.; Mordes, Daniel A.; Oldham, William M.; Vin Woo, Kel; Owens, David A.; Cannon, Mark D.; Dermody, Terence S.

    2011-01-01

    Success in academic medicine requires scientific and clinical aptitude and the ability to lead a team effectively. Although combined MD/PhD training programs invest considerably in the former, they often do not provide structured educational opportunities in leadership, especially as applied to investigative medicine. To fill a critical knowledge gap in physician-scientist training, the Vanderbilt Medical Scientist Training Program (MSTP) developed a biennial two-day workshop in investigative leadership. MSTP students worked in partnership with content experts to develop a case-based curriculum and deliver the material. In its initial three offerings in 2006, 2008, and 2010, the workshop was judged by MSTP student attendees to be highly effective. The Vanderbilt MSTP Leadership Workshop offers a blueprint for collaborative student-faculty interactions in curriculum design and a new educational modality for physician-scientist training. PMID:21841905

  3. Navigating the Path to a Biomedical Science Career

    ERIC Educational Resources Information Center

    Zimmerman, Andrea McNeely

    2017-01-01

    The number of biomedical PhD scientists being trained and graduated far exceeds the number of academic faculty positions and academic research jobs. If this trend is compelling biomedical PhD scientists to increasingly seek career paths outside of academia, then more should be known about their intentions, desires, training experiences, and career…

  4. Democratization of Nanoscale Imaging and Sensing Tools Using Photonics

    PubMed Central

    2015-01-01

    Providing means for researchers and citizen scientists in the developing world to perform advanced measurements with nanoscale precision can help to accelerate the rate of discovery and invention as well as improve higher education and the training of the next generation of scientists and engineers worldwide. Here, we review some of the recent progress toward making optical nanoscale measurement tools more cost-effective, field-portable, and accessible to a significantly larger group of researchers and educators. We divide our review into two main sections: label-based nanoscale imaging and sensing tools, which primarily involve fluorescent approaches, and label-free nanoscale measurement tools, which include light scattering sensors, interferometric methods, photonic crystal sensors, and plasmonic sensors. For each of these areas, we have primarily focused on approaches that have either demonstrated operation outside of a traditional laboratory setting, including for example integration with mobile phones, or exhibited the potential for such operation in the near future. PMID:26068279

  5. Using blended and guided technologies in a university course for scientist-practitioners: teaching applied behaviour analysis to autism professionals.

    PubMed

    Roll-Pettersson, Lise; Ala'i-Rosales, Shahla

    2009-06-01

    Although the incidence of autism spectrum disorders is increasing worldwide, there is a shortage of professionals trained to provide effective interventions. The article describes an advanced university course in Applied Behaviour Analysis (ABA) and autism tailored to meet the needs of Swedish professionals from multiple disciplines. The course implemented both blended-learning technologies (web, telecommunication, and in vivo) and guided-design (problem-solving) exercises to promote the scientist-practitioner model. Overall, students advanced their skills related to identifying extant scientific literature, choosing appropriate single-subject design evaluation methods, and critically analysing the effects of attempted interventions. Students rated the course as having high social validity and predicted the course content would positively affect their professional practice. The relevance of the course and future directions are discussed in the context of meeting the global need for effective autism intervention professionals.

  6. Democratization of Nanoscale Imaging and Sensing Tools Using Photonics.

    PubMed

    McLeod, Euan; Wei, Qingshan; Ozcan, Aydogan

    2015-07-07

    Providing means for researchers and citizen scientists in the developing world to perform advanced measurements with nanoscale precision can help to accelerate the rate of discovery and invention as well as improve higher education and the training of the next generation of scientists and engineers worldwide. Here, we review some of the recent progress toward making optical nanoscale measurement tools more cost-effective, field-portable, and accessible to a significantly larger group of researchers and educators. We divide our review into two main sections: label-based nanoscale imaging and sensing tools, which primarily involve fluorescent approaches, and label-free nanoscale measurement tools, which include light scattering sensors, interferometric methods, photonic crystal sensors, and plasmonic sensors. For each of these areas, we have primarily focused on approaches that have either demonstrated operation outside of a traditional laboratory setting, including for example integration with mobile phones, or exhibited the potential for such operation in the near future.

  7. Energy metabolism disorders in rare and common diseases. Toward bioenergetic modulation therapy and the training of a new generation of European scientists.

    PubMed

    Rossignol, Rodrigue

    2015-06-01

    Energy metabolism alterations are found in a large number of rare and common diseases of genetic or environmental origin. The number of patients that could benefit from bioenergetic modulation therapy (BIOMET) is therefore very important and includes individuals with pathologies as diverse as mitochondrial diseases, acute coronary syndrome, chronic kidney disease, asthma or even cancer. Although, the alteration of energy metabolism is disease specific and sometimes patient specific, the strategies for BIOMET could be common and target a series of bioenergetic regulatory mechanisms discussed in this article. An excellent training of scientists in the field of energy metabolism, related human diseases and drug discovery is also crucial to form a young generation of MDs, PHDs and Pharma or CRO-group leaders who will discover novel personalized bioenergetic medicines, through pharmacology, genetics, nutrition or adapted exercise training. The Mitochondrial European Educational Training (MEET) consortium was created to pursue this goal, and we dedicated here a special issue of Organelle in Focus (OiF) to highlight their objectives. A total of 10 OiFs articles constitute this Directed Issue on Mitochondrial Medicine. As part of this editorial article, we asked timely questions to the PR. Jan W. Smeitink, professor of Mitochondrial Medicine and CEO of Khondrion, a mitochondrial medicine company. He shared with us his objectives and strategies for the study of mitochondrial diseases and the identification of future treatments. This article is part of a Directed Issue entitled: Energy Metabolism Disorders and Therapies. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Lessons from the Hot Seat: NASA Scientists in Live Broadcast and Documentary Television (Invited)

    NASA Astrophysics Data System (ADS)

    Thaller, M.

    2013-12-01

    NASA sends hundreds of scientists a year to media training, where they are taught to stick to their talking points, resist off-topic questions, and stand up to bullying. In over 15 years of television work representing NASA, I have yet to put any of the practices I learned in these sessions into action. Honestly, in over 99% of cases, reporters and documentarians are looking for totally different things from scientists on their programs. For most TV interviews, there are two or three minutes to get a few points across (and it is *amazing* how fast that time goes), show an animation, and smile engagingly to give the impression that NASA scientists are not arrogant jerks and might even be worth some tax money. But we are never trained to do this! In this session, I'll talk about some of my television experiences (good, bad, and totally embarrassing), show some examples of the short video segments we film, and discuss why most science organizations, including NASA, aren't training their scientists to give the media what they really want.

  9. Researchers Dispute Notion that America Lacks Scientists and Engineers

    ERIC Educational Resources Information Center

    Monastersky, Richard

    2007-01-01

    Researchers who track the American labor market told Congress last week that, contrary to conventional wisdom, the United States has more than enough scientists and engineers and that federal agencies and universities should reform the way they train young scientists to better match the supply of scientists with the demand for researchers. At a…

  10. Computer-aided discovery of debris disk candidates: A case study using the Wide-Field Infrared Survey Explorer (WISE) catalog

    NASA Astrophysics Data System (ADS)

    Nguyen, T.; Pankratius, V.; Eckman, L.; Seager, S.

    2018-04-01

    Debris disks around stars other than the Sun have received significant attention in studies of exoplanets, specifically exoplanetary system formation. Since debris disks are major sources of infrared emissions, infrared survey data such as the Wide-Field Infrared Survey (WISE) catalog potentially harbors numerous debris disk candidates. However, it is currently challenging to perform disk candidate searches for over 747 million sources in the WISE catalog due to the high probability of false positives caused by interstellar matter, galaxies, and other background artifacts. Crowdsourcing techniques have thus started to harness citizen scientists for debris disk identification since humans can be easily trained to distinguish between desired artifacts and irrelevant noises. With a limited number of citizen scientists, however, increasing data volumes from large surveys will inevitably lead to analysis bottlenecks. To overcome this scalability problem and push the current limits of automated debris disk candidate identification, we present a novel approach that uses citizen science results as a seed to train machine learning based classification. In this paper, we detail a case study with a computer-aided discovery pipeline demonstrating such feasibility based on WISE catalog data and NASA's Disk Detective project. Our approach of debris disk candidates classification was shown to be robust under a wide range of image quality and features. Our hybrid approach of citizen science with algorithmic scalability can facilitate big data processing for future detections as envisioned in future missions such as the Transiting Exoplanet Survey Satellite (TESS) and the Wide-Field Infrared Survey Telescope (WFIRST).

  11. Shortage of Engineers and Scientists. Hearing before the Subcommittee on Science, Technology, and Space of the Committee on Commerce, Science, and Transportation. United States Senate One Hundred First Congress, Second Session on Training Scientists and Engineers for the Year 2000--The National Science Foundation's Role.

    ERIC Educational Resources Information Center

    Congress of the U.S., Washington, DC. Senate Committee on Commerce, Science, and Transportation.

    This document is the transcript of a Congressional hearing focusing on the status of the training of scientists and engineers in the United States and the role of the federal government in the improvement of this situation. Included are opening statements from Senators Albert Gore, Jr. (Tennessee), Robert W. Kasten, Jr. (Wisconsin), and Larry…

  12. Science Education and Public Outreach in Asia - experiences in ACCENT

    NASA Astrophysics Data System (ADS)

    Schuepbach, E.

    2006-12-01

    ACCENT is the European Network of Excellence in Atmospheric Composition Change (www.accent- network.org). Its Task Training and Education aims at disseminating ACCENT results to a variety of target groups, including emerging countries. Until now, fellowships have been offered for early-career scientists to participate in European science training events. A teacher training workshop has concentrated on cross- cultural aspects of PhD supervision. The involvement of new Associated Partners from Asia has triggered reflections on science education and outreach to politicians and the public in this part of the world. Joint educational and outreach programmes and products are currently developed with China and Mongolia for training activities scheduled in autumn 2006 and autumn 2007. First experiences in joint science education programmes for early-career scientists will be presented, and the challenges associated with communicating science to non-scientists in Asia will be discussed.

  13. Advancing Genomics through the Global Invertebrate Genomics Alliance (GIGA)

    PubMed Central

    Voolstra, Christian R.; Wörheide, Gert; Lopez, Jose V.

    2017-01-01

    The Global Invertebrate Genomics Alliance (GIGA), a collaborative network of diverse scientists, marked its second anniversary with a workshop in Munich, Germany, where international attendees focused on discussing current progress, milestones and bioinformatics resources. The community determined the recruitment and training talented researchers as one of the most pressing future needs and identified opportunities for network funding. GIGA also promotes future research efforts to prioritize taxonomic diversity and create new synergies. Here, we announce the generation of a central and simple data repository portal with a wide coverage of available sequence data, via the compagen platform, in parallel with more focused and specialized organism databases to globally advance invertebrate genomics. Therefore this article serves the objectives of GIGA by disseminating current progress and future prospects in the science of invertebrate genomics with the aim of promotion and facilitation of interdisciplinary and international research. PMID:28603454

  14. Advancing Genomics through the Global Invertebrate Genomics Alliance (GIGA).

    PubMed

    Voolstra, Christian R; Wörheide, Gert; Lopez, Jose V

    2017-03-01

    The Global Invertebrate Genomics Alliance (GIGA), a collaborative network of diverse scientists, marked its second anniversary with a workshop in Munich, Germany, where international attendees focused on discussing current progress, milestones and bioinformatics resources. The community determined the recruitment and training talented researchers as one of the most pressing future needs and identified opportunities for network funding. GIGA also promotes future research efforts to prioritize taxonomic diversity and create new synergies. Here, we announce the generation of a central and simple data repository portal with a wide coverage of available sequence data, via the compagen platform, in parallel with more focused and specialized organism databases to globally advance invertebrate genomics. Therefore this article serves the objectives of GIGA by disseminating current progress and future prospects in the science of invertebrate genomics with the aim of promotion and facilitation of interdisciplinary and international research.

  15. Content of Future Economists' Professional Mobility in Researches of Foreign Scientists

    ERIC Educational Resources Information Center

    Chorna, Iryna

    2017-01-01

    The content of professional mobility of future economists in the writings of foreign scientists have been presented. The components of future economists' professional mobility formation have been considered. It has been established that the possession of a combination of these components enables future specialists to achieve a high level of…

  16. SPACE WARPS- II. New gravitational lens candidates from the CFHTLS discovered through citizen science

    NASA Astrophysics Data System (ADS)

    More, Anupreeta; Verma, Aprajita; Marshall, Philip J.; More, Surhud; Baeten, Elisabeth; Wilcox, Julianne; Macmillan, Christine; Cornen, Claude; Kapadia, Amit; Parrish, Michael; Snyder, Chris; Davis, Christopher P.; Gavazzi, Raphael; Lintott, Chris J.; Simpson, Robert; Miller, David; Smith, Arfon M.; Paget, Edward; Saha, Prasenjit; Küng, Rafael; Collett, Thomas E.

    2016-01-01

    We report the discovery of 29 promising (and 59 total) new lens candidates from the Canada-France-Hawaii Telescope Legacy Survey (CFHTLS) based on about 11 million classifications performed by citizen scientists as part of the first SPACE WARPS lens search. The goal of the blind lens search was to identify lens candidates missed by robots (the RINGFINDER on galaxy scales and ARCFINDER on group/cluster scales) which had been previously used to mine the CFHTLS for lenses. We compare some properties of the samples detected by these algorithms to the SPACE WARPS sample and find them to be broadly similar. The image separation distribution calculated from the SPACE WARPS sample shows that previous constraints on the average density profile of lens galaxies are robust. SPACE WARPS recovers about 65 per cent of known lenses, while the new candidates show a richer variety compared to those found by the two robots. This detection rate could be increased to 80 per cent by only using classifications performed by expert volunteers (albeit at the cost of a lower purity), indicating that the training and performance calibration of the citizen scientists is very important for the success of SPACE WARPS. In this work we present the SIMCT pipeline, used for generating in situ a sample of realistic simulated lensed images. This training sample, along with the false positives identified during the search, has a legacy value for testing future lens-finding algorithms. We make the pipeline and the training set publicly available.

  17. Figureheads, ghost-writers and pseudonymous quant bloggers: the recent evolution of authorship in science publishing.

    PubMed

    Charlton, Bruce G

    2008-10-01

    Traditionally, science has been published only under the proper names and postal addresses of the scientists who did the work. This is no longer the case, and over recent decades science authorship has fundamentally changed its character. At one extreme, prestigious scientists writing from high status institutions are used as mere figureheads to publish research that has been performed, analyzed and 'ghost-written' by commercial organizations. At the other extreme 'quant bloggers' are publishing real science with their personal identity shielded by pseudonyms and writing from internet addresses that give no indication of their location or professional affiliation. Yet the paradox is that while named high status scientists from famous institutions are operating with suspect integrity (e.g. covertly acting as figureheads) and minimal accountability (i.e. failing to respond to substantive criticism); pseudonymous bloggers - of mostly unknown identity, unknown education or training, and unknown address - are publishing interesting work and interacting with their critics on the internet. And at the same time as 'official' and professional science is increasingly timid careerist and dull; the self-organized, amateur realm of science blogs displays curiosity, scientific motivation, accountability, responsibility - and often considerable flair and skill. Quant bloggers and other internet scientists are, however, usually dependent on professional scientists to generate databases. But professional science has become highly constrained by non-scientific influences: increasingly sluggish, rigid, bureaucratic, managerial, and enmeshed with issues of pseudo-ethics, political correctness, public relations, politics and marketing. So it seems that professional science needs the quant bloggers. One possible scenario is that professional scientists may in future continue to be paid to do the plodding business of generating raw data (dull work that no one would do unless they were paid); but these same professional scientists (functioning essentially as either project managers or technicians) may be found to lack the boldness, flair, sheer 'smarts' or genuine interest in the subject to make sense of what they have discovered. Some branches of future science may then come to depend on a swarm of gifted 'amateurs' somewhat like the current quant bloggers; for analysis and integration of their data, for understanding its implications, and for speculating freely about the potential applications.

  18. Factors that attract veterinarians to or discourage them from research careers: a program director's perspective.

    PubMed

    Atchison, Michael L

    2009-01-01

    There is a nationwide shortage of veterinarian-scientists in the United States. Barriers to recruiting veterinary students into research careers need to be identified, and mechanisms devised to reduce these barriers. Barriers to attracting veterinary students into research careers include ignorance of available research careers and of the training opportunities. Once admitted, students in research training programs often feel isolated, fitting into neither the veterinary environment nor the research environment. To address the above issues, it is necessary to advertise and educate the public about opportunities for veterinarian-scientists. Schools need to develop high-quality training programs that are well structured but retain appropriate flexibility. Sufficient resources are needed to operate these programs so that students do not graduate with significant debt. A community of veterinarian-scientists needs to be developed so that students do not feel isolated but, rather, are part of a large community of like-minded individuals. Because of the complexities of programs that train veterinarian-scientists, it is necessary to provide extensive advising and for faculty to develop a proactive, servant-leadership attitude. Finally, students must be made aware of career options after graduation.

  19. 'Ike Wai Professional Development Model for Students and Post-docs

    NASA Astrophysics Data System (ADS)

    Bruno, B. C.

    2016-12-01

    'Ike Wai: Securing Hawaii's Water Future, funded by NSF EPSCoR, is an interdisciplinary research collaboration among geophysicists, geochemists, engineers, microbiologists, computational modelers, data scientists and social scientists. Key questions include: How much water is there? How does it flow? How long will it last? Undergraduate students, graduate students and post-docs are actively involved in the research, and their professional development is a key part of the project. An underlying principle is that students assume responsibility for their own learning and professional development. Based on the model created by the NSF Center for Microbial Oceanography: Research and Education (C-MORE) (Bruno et al, 2008; Guannel et al 2014, Bottjer et al 2014), the 'Ike Wai professional development program includes (1) Leadership. Each student and post-doc creates an Individualized Professional Development plan, which includes leadership training (provided by external facilitators) and assuming leadership roles (such as developing and implementing trainings for their peers). (2) EDventures. Based on the C-MORE model, EDventures combines proposal-writing training with the incentive of seed money. Rather than providing training a priori, the EDventures model encourages students and post-docs to write a proposal based on guidelines provided. Training occurs during a two-stage review stage: proposers respond to panel reviews and resubmit their proposal within a single review cycle. C-MORE EDventures alumni self-report statistically significant confidence gains on all questions posed. Their subsequent proposal success is envious: of the 12 proposals submitted by to NSF, 50% were funded. (Wood Charlson & Bruno, 2015) (3) Layered Mentoring Network. All ´Ike Wai participants serve as both mentor and mentee. Students are matched with a non-research mentor in addition to their advisor to promote a holistic approach to career development. They will also serve as mentors to more junior students. All mentors are trained and mentoring relationships are carefully monitored to allow for sharing of best practices and early detection of issues that could adversely impact retention.

  20. Outcomes of a Novel Training Program for Physician-Scientists: Integrating Graduate Degree Training With Specialty Fellowship.

    PubMed

    Wong, Mitchell D; Guerrero, Lourdes; Sallam, Tamer; Frank, Joy S; Fogelman, Alan M; Demer, Linda L

    2016-02-01

    Although physician-scientists generally contribute to the scientific enterprise by providing a breadth of knowledge complementary to that of other scientists, it is a challenge to recruit, train, and retain physicians in a research career pathway. To assess the outcomes of a novel program that combines graduate coursework and research training with subspecialty fellowship. A retrospective analysis was conducted of career outcomes for 123 physicians who graduated from the program during its first 20 years (1993-2013). Using curricula vitae, direct contact, and online confirmation, data were compiled on physicians' subsequent activities and careers as of 2013. Study outcomes included employment in academic and nonacademic research, academic clinical or private practice positions, and research grant funding. More than 80% of graduates were actively conducting research in academic, institutional, or industrial careers. The majority of graduates (71%) had academic appointments; a few (20%) were in private practice. Fifty percent had received career development awards, and 19% had received investigator-initiated National Institutes of Health (NIH) R01 or equivalent grants. Individuals who obtained a PhD during subspecialty training were significantly more likely to have major grant funding (NIH R series or equivalent) than those who obtained a Master of Science in Clinical Research. Trainees who obtained a PhD in a health services or health policy field were significantly more likely to have research appointments than those in basic science. Incorporation of graduate degree research, at the level of specialty or subspecialty clinical training, is a promising approach to training and retaining physician-scientists.

  1. The Role of GIS and Data Librarians in Cyber-infrastructure Support and Governance

    NASA Astrophysics Data System (ADS)

    Branch, B. D.

    2012-12-01

    A governance road-map for cyber-infrastructure in the geosciences will include an intentional librarian core capable of technical skills that include GIS and open source support for data curation that involves all aspects of data life cycle management. Per Executive Order 12906 and other policy; spatial data, literacy, and curation are critical cyber-infrastructure needs in the near future. A formal earth science and space informatics librarian may be an outcome of such development. From e-science to e-research, STEM pipelines need librarians as critical data intermediaries in technical assistance and collaboration efforts with scientists' data and outreach needs. Future training concerns should advocate trans-disciplinary data science and policy skills that will be necessary for data management support and procurement.

  2. DrosAfrica: Building an African biomedical research community using Drosophila.

    PubMed

    Martín-Bermudo, María D; Gebel, Luka; Palacios, Isabel M

    2017-10-01

    The impact that research has on shaping the future of societies is perhaps as significant as never before. One of the problems for most regions in Africa is poor quality and quantity of research-based education, as well as low level of funding. Hence, African researchers produce only around one percent of the world's research. We believe that research with Drosophila melanogaster can contribute to changing that. As seen before in other places, Drosophila can be used as a powerful and cost-effective model system to scale-up and improve both academia and research output. The DrosAfrica project was founded to train and establish a connected community of researchers using Drosophila as a model system to investigate biomedical problems in Africa. Since founding, the project has trained eighty scientists from numerous African countries, and continues to grow. Here, we describe the DrosAfrica project, its conception and its mission. We also give detailed insights into DrosAfrica's approaches to achieve its aims, as well as future perspectives, and opportunities beyond Africa. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Taking the Plunge: Next Steps in Engaged Learning: Project Kaleidoscope-Connecticut Conference of Independent Colleges Conference for Science Educators.

    PubMed

    Frederick, Jennifer

    2010-09-01

    College and university science educators from across Connecticut gathered at Yale's West Campus in April 2010 for a Project Kaleidoscope (PKAL) program entitled "Taking the Plunge: Next Steps in Engaged Learning." Funded by the National Science Foundation (NSF) and co-sponsored by the Connecticut Conference of Independent Colleges (CCIC) and Yale's McDougal Graduate Teaching Center, the event was the latest in a PKAL series of one-day conferences aimed at equipping science, technology, engineering, and math (STEM) instructors with effective approaches to engaging students and training future scientists.

  4. Adapting and Bending the Portal to the Public: Evaluation of an NSF-Funded Science Communication Model for UNAVCO's Geoscience Summer Internships

    NASA Astrophysics Data System (ADS)

    Dutilly, E.; Charlevoix, D. J.; Bartel, B. A.

    2017-12-01

    UNAVCO is a National Science Foundation (NSF) facility specializing in geodesy. As part of its education and outreach work, it operates annual summer internships. In 2016, UNAVCO joined the Portal to the Public (PoP) network and the PoP model was adapted and bent to provide science communication professional development for summer interns. PoP is one way that UNAVCO invests in and trains future generations of geoscientists. The NSF-funded PoP initiative and its network, PoPNet, is a premier outreach framework connecting scientists and public audiences for over a decade. PoPNet is a network of sixty organizations committed to using the PoP method to engage the public in face-to-face interactions with practicing scientists. The PoP initiative provides professional development to scientists focused on best practices in science communication, helps them to develop an interactive exhibit consistent with their current research, and offers them a venue for interacting with the public. No other evaluation work to date has examined how summer internships can uptake the PoP model. This presentation focuses on evaluation findings from two cohorts of summer interns across two years. Three primary domains were assessed: how demographic composition across cohorts required changes to the original PoP framework, which of the PoP professional development trainings were valued (or not) by interns, and changes to intern knowledge, attitudes, and abilities to communicate science. Analyses via surveys and interviews revealed that level of intern geoscience knowledge was a major factor in deciding the focus of the work, specifically whether to create new hands-on exhibits or use existing ones. Regarding the use of PoP trainings, there was no obvious pattern in what interns preferred. Most growth and learning for interns occurred during and after the outreach activity. Results of this evaluation can be used to inform other applications of the PoP approach in summer internships.

  5. Northwest Tribal Interaction with Washington State University: Research and Education Opportunities Afforded Through the Center for Multiphase Environmental Research

    NASA Astrophysics Data System (ADS)

    Rumburg, B.; Yonge, D.; Jacob, J.

    2003-12-01

    The under-representation of Native Americans in engineering and science at the student and practicing engineer or scientist level is a national problem. To begin addressing this problem Washington State University (WSU) has initiated discussio with local Native American tribes to strengthen the relationship between WSU and the tribes and to improve the educational opportunities available to tribal members. The Center for Multiphase Environmental Research (CMER) received a 1999 National Science Foundation (NSF) Integrative Graduate Education and Research Training (IGERT) grant to train Ph.D. students. The main goal of the program is to foster multidisciplinary research and education for future scientists and engineers in the broad field of study that incorporates the fate and transport of environmentally significant species between interfaces. We are also focused on recruiting and educating Native American students. CMER is committed to cultivating its relationship with Native American tribes by identifying the environmental concerns of the tribes and developing collaborative research efforts utilizing CMER's infrastructure. Through these collaborative projects the CMER hopes to better understand the social and cultural aspects important to the tribes and develop the familiarity needed to effectively enhance student recruitment. This poster highlights the CMER's interdisciplinary research and teaching efforts and focuses on Native American recruitment.

  6. Moving the Science of Team Science Forward: Collaboration and Creativity

    PubMed Central

    Hall, Kara L.; Feng, Annie X.; Moser, Richard P.; Stokols, Daniel; Taylor, Brandie K.

    2012-01-01

    Teams of scientists representing diverse disciplines are often brought together for purposes of better understanding and, ultimately, resolving urgent public health and environmental problems. Likewise, the emerging field of the science of team science draws on diverse disciplinary perspectives to better understand and enhance the processes and outcomes of scientific collaboration. In this supplement to the American Journal of Preventive Medicine, leading scholars in the nascent field of team science have come together with a common goal of advancing the field with new models, methods, and measures. This summary article highlights key themes reflected in the supplement and identifies several promising directions for future research organized around the following broad challenges: (1) operationalizing cross-disciplinary team science and training more clearly; (2) conceptualizing the multiple dimensions of readiness for team science; (3) ensuring the sustainability of transdisciplinary team science; (4) developing more effective models and strategies for training transdisciplinary scientists; (5) creating and validating improved models, methods, and measures for evaluating team science; and (6) fostering transdisciplinary cross-sector partnerships. A call to action is made to leaders from the research, funding, and practice sectors to embrace strategies of creativity and innovation in a collective effort to move the field forward, which may not only advance the science of team science but, ultimately, public health science and practice. PMID:18619406

  7. From ivory tower to prison watchtower: The STEM Ambassador Program promotes exchange outside of traditional venues

    NASA Astrophysics Data System (ADS)

    Nadkarni, N.; Weber, C.

    2017-12-01

    Scientists can be effective in engaging the public, due to their deep content knowledge and passion for their research. However, most training programs prepare scientists to communicate with public groups who seek out informal science education (ISE) activities at science centers and zoos, but not all Americans regularly participate in ISE activities. Opportunities for scientists to exchange information with those who may not seek out science but who hold the potential to contribute novel ideas and generate political support for our discipline can enhance the scientific enterprise. With support of the National Science Foundation (NSF), we created the "STEM Ambassador Program" (STEMAP), a research and public engagement project that aims to bridge science and society by training scientists to engage audiences outside of traditional venues. Activities are based on commonalities between the scientist's research interests and/or personal characteristics, and the interests, professions, and recreational pursuits of community groups. Scientists are encouraged to work with underserved communities (e.g., senior citizens), communities facing barriers to science learning (e.g., incarcerated men and women), and non-academic stakeholders in scientific research (e.g., decision-makers). STEMAP training is derived from three NSF-funded ISE models: Portal to the Public, the Research Ambassador Program, and Design Thinking. In 2016-2017, two cohorts of 20 scientists each, representing 15 departments at the University of Utah, received training. Examples of engagement activities included: An engineer presented his work to develop air quality monitoring devices to a local government council, and invited members to participate in his understanding of regional air quality. A microbiologist provided a microscope view of the microbes that are involved in fermentation with classes at a local cooking school. An urban planning researcher met with inmates in a horticulture training program at the Salt Lake County Jail to discuss waterwise landscaping practices of the horticulture industry. STEMAP researchers and evaluators collect data from Ambassadors and community participants to inform program development. STEMAP is now expanding to offer workshop, cohort, and online formats to institutions nationwide.

  8. Training and career development in clinical and translational science: an opportunity for rehabilitation scientists.

    PubMed

    Kelly, Thomas H; Mattacola, Carl G

    2010-11-01

    The National Institutes of Health's Clinical and Translational Science Award initiative is designed to establish and promote academic centers of clinical and translational science (CTS) that are empowered to train and advance multi- and interdisciplinary investigators and research teams to apply new scientific knowledge and techniques to enhance patient care. Among the key components of a full-service center for CTS is an educational platform to support research training in CTS. Educational objectives and resources available to support the career development of the clinical and translational scientists, including clinical research education, mentored research training, and career development support, are described. The purpose of the article is to provide an overview of the CTS educational model so that rehabilitation specialists can become more aware of potential resources that are available and become more involved in the delivery and initiation of the CTS model in their own workplace. Rehabilitation clinicians and scientists are well positioned to play important leadership roles in advancing the academic mission of CTS. Rigorous academic training in rehabilitation science serves as an effective foundation for supporting the translation of basic scientific discovery into improved health care. Rehabilitation professionals are immersed in patient care, familiar with interdisciplinary health care delivery, and skilled at working with multiple health care professionals. The NIH Clinical and Translational Science Award initiative is an excellent opportunity to advance the academic development of rehabilitation scientists.

  9. ISS Benefits for Humanity: Train Like an Astronaut

    NASA Image and Video Library

    2015-01-29

    Published on Jan 29, 2015 Developed in cooperation with NASA scientists and fitness professionals working directly with astronauts, the Train Like an Astronaut program is an exciting and engaging way to get the children of today up and moving. The project uses the excitement of exploration to challenge students to set physical fitness and research goals, practice physical fitness activities, and research proper nutrition, enabling each child to become our next generation of fit explorers! The International Space Station is a blueprint for global cooperation and scientific advancements, a destination for a growing commercial marketplace in low-Earth orbit and a test bed for demonstrating new technologies. The space station is the springboard to NASA’s next great leap in exploration, including future missions to an asteroid and Mars. For more information: http://go.nasa.gov/1zhkuW9

  10. Reducing the Harms of College Student Drinking: How Alan Marlatt Changed Approaches, Outcomes, and the Field

    PubMed Central

    Kilmer, Jason R.; Palmer, Rebekka S.; Cronce, Jessica M.; Logan, Diane E.

    2015-01-01

    In this article, we discuss Alan Marlatt’s contributions to the prevention and reduction of alcohol-related harms among college students. We consider Alan’s early research that later led to the development and evaluation of college student drinking programs, and examine Alan’s impact, both directly and indirectly through those he mentored and trained, as a scientist-practitioner. We review the recognition of the efficacy of Alan’s programs, including the Alcohol Skills Training Program (ASTP) and Brief Alcohol Screening and Intervention for College Students (BASICS), in addition to extensions of these interventions in more recent studies. Finally, we discuss how Alan’s work influences interventions with college student drinkers today, and how future directions will continue to be informed by his vision and values. PMID:25774117

  11. Online Workspace to Connect Scientists with NASA's Science E/PO Efforts and Practitioners

    NASA Astrophysics Data System (ADS)

    Shipp, Stephanie; Bartolone , Lindsay; Peticolas, Laura; Woroner, Morgan; Dalton, Heather; Schwerin, Theresa; Smith, Denise

    2014-11-01

    There is a growing awareness of the need for a scientifically literate public in light of challenges facing society today, and also a growing concern about the preparedness of our future workforce to meet those challenges. Federal priorities for science, technology, engineering, and math (STEM) education call for improvement of teacher training, increased youth and public engagement, greater involvement of underrepresented populations, and investment in undergraduate and graduate education. How can planetary scientists contribute to these priorities? How can they “make their work and findings comprehensible, appealing, and available to the public” as called for in the Planetary Decadal Survey?NASA’s Science Mission Directorate (SMD) Education and Public Outreach (E/PO) workspace provides the SMD E/PO community of practice - scientists and educators funded to conduct SMD E/PO or those using NASA’s science discoveries in E/PO endeavors - with an online environment in which to communicate, collaborate, and coordinate activities, thus helping to increase effectiveness of E/PO efforts. The workspace offers interested scientists avenues to partner with SMD E/PO practitioners and learn about E/PO projects and impacts, as well as to advertise their own efforts to reach a broader audience. Through the workspace, scientists can become aware of opportunities for involvement and explore resources to improve professional practice, including literature reviews of best practices for program impact, mechanisms for engaging diverse audiences, and large- and small-scale program evaluation. Scientists will find “how to” manuals for getting started and increasing impact with public presentations, classroom visits, and other audiences, as well as primers with activity ideas and resources that can augment E/PO interactions with different audiences. The poster will introduce the workspace to interested scientists and highlight pathways to resources of interest that can help scientists more effectively contribute to national STEM education priorities. Visitors are encouraged to explore the growing collection of resources at http://smdepo.org.

  12. Citizen Science in the Himalaya: The Sherpa-Scientist Initiative

    NASA Astrophysics Data System (ADS)

    Horodyskyj, U. N.; Breashears, D.; Rowe, P.

    2015-12-01

    Since the non-profit educational group, Black Ice Himalaya, launched in 2011 our goal has been to involve local communities in our research expeditions, in the form of a Sherpa-Scientist Initiative (SSI). This goes beyond simply helping with gear carries to research sites. It involves training the local Sherpa in equipment set-up, data collection, and analysis processes, with the goal of turning over this task to local communities and villages in the future. As the terrain continues to change - with the growth and expansion of glacial lakes, along with accumulation of pollutants on snow at higher altitudes - this training program presents an excellent opportunity for long-term data collection in sensitive alpine regions. In association with GlacierWorks and Midwest ROV LLC, skill training has included gigapan high-resolution photography, installing (and downloading) multiple time lapse cameras to track hour-by-hour glacial lake changes; lake bathymetry mapping using side-scan sonar from an unmanned towed platform; installing and managing weather stations; collecting and analyzing data from ASD field spectrometers; and collecting/filtering snow samples to look for contaminants (pollutants) affecting snow melt from 4000 - 6000 meters. A field manual documenting this work and intended to raise awareness of glacial trekking hazards has been disseminated to the International Centre for Integrated Mountain Development (ICIMOD) and Sagarmatha (Everest) National Park. In 2016-17, in collaboration with Vanguard Diving and Exploration, OpenROV, and Midwest ROV LLC, efforts will include SCUBA diving into glacial lakes to collect scientific data, with continued Sherpa training on how to assemble and use portable remotely piloted submersibles to aid in the assessment of glacial lake hazards.

  13. The physician-scientist in Canadian psychiatry.

    PubMed

    Honer, William G; Linseman, Mary Ann

    2004-01-01

    The objective of the study was to determine whether physician-scientists in psychiatry in Canada are in decline, as was reported for medicine overall during the 1990s in the United States. Federal databases were searched to study grant applications in the area of mental health submitted by physician-scientists compared with PhD-scientists for the period 1985-2001. A survey of Canadian Residency Training Program Directors was carried out for the graduating class of 2000. The Canadian publicly funded university system. Applicants to the Medical Research Council of Canada and its successor, the Canadian Institutes of Health Research, for operating grant support and Residency Training Program Directors. None. Comparison over time between MD and PhD applicants regarding the number of grant applications submitted, the proportion of applications funded and the number of new applications submitted, with separation of applications submitted to a predominantly "biomedical" peer review committee and to a predominantly "clinical research" peer review committee. The survey obtained information about a number of variables related to research training. The situation for physician-scientists in psychiatry in Canada appeared remarkably similar to general findings in US studies. Relative to PhD applicants, fewer grant proposals were being made by physicians (paired t16 = 7.08, p < 0.001) and, in consequence, fewer proposals were funded. The proportion of proposals funded was similar for MD and PhD applicants (paired t16 = 0.27, p = 0.79). Grant applications made to the predominantly biomedical committee were more likely to be funded than applications to the committee with an orientation toward clinical research (paired t7 = 5.53, p < 0.001). Applications by PhD-scientists to the biomedical committee showed the largest increase over time and were the most successful. From the survey of graduating classes, close to one-third of residents had authored or co-authored a publication during residency. Only 7% were proceeding to research fellowship training. The remuneration available for fellowship training was about one-third of what graduating classmates could expect to earn in the first year of practice. Quantitative data indicate that physician-scientists in psychiatry in Canada are experiencing the same pressures and challenges as physician-scientists in the United States. A plan of action tailored to the needs of the psychiatric community in Canada needs to be developed.

  14. The physician–scientist in Canadian psychiatry

    PubMed Central

    Honer, William G.; Linseman, Mary Ann

    2004-01-01

    Objective The objective of the study was to determine whether physician–scientists in psychiatry in Canada are in decline, as was reported for medicine overall during the 1990s in the United States. Design Federal databases were searched to study grant applications in the area of mental health submitted by physician–scientists compared with PhD–scientists for the period 1985–2001. A survey of Canadian Residency Training Program Directors was carried out for the graduating class of 2000. Setting The Canadian publicly funded university system. Participants Applicants to the Medical Research Council of Canada and its successor, the Canadian Institutes of Health Research, for operating grant support and Residency Training Program Directors. Interventions None. Outcome measures Comparison over time between MD and PhD applicants regarding the number of grant applications submitted, the proportion of applications funded and the number of new applications submitted, with separation of applications submitted to a predominantly “biomedical” peer review committee and to a predominantly “clinical research” peer review committee. The survey obtained information about a number of variables related to research training. Results The situation for physician–scientists in psychiatry in Canada appeared remarkably similar to general findings in US studies. Relative to PhD applicants, fewer grant proposals were being made by physicians (paired t16 = 7.08, p < 0.001) and, in consequence, fewer proposals were funded. The proportion of proposals funded was similar for MD and PhD applicants (paired t16 = 0.27, p = 0.79). Grant applications made to the predominantly biomedical committee were more likely to be funded than applications to the committee with an orientation toward clinical research (paired t7 = 5.53, p < 0.001). Applications by PhD–scientists to the biomedical committee showed the largest increase over time and were the most successful. From the survey of graduating classes, close to one-third of residents had authored or co-authored a publication during residency. Only 7% were proceeding to research fellowship training. The remuneration available for fellowship training was about one-third of what graduating classmates could expect to earn in the first year of practice. Conclusions Quantitative data indicate that physician–scientists in psychiatry in Canada are experiencing the same pressures and challenges as physician–scientists in the United States. A plan of action tailored to the needs of the psychiatric community in Canada needs to be developed. PMID:14719050

  15. Commercializing medical technology.

    PubMed

    Scanlon, Kevin J; Lieberman, Mark A

    2007-04-01

    As medicine moves into the 21st century, life saving therapies will move from inception into medical products faster if there is a better synergy between science and business. Medicine appears to have 50-year innovative cycles of education and scientific discoveries. In the 1880's, the chemical industry in Germany was faced with the dilemma of modernization to exploit the new scientific discoveries. The solution was the spawning of novel technical colleges for training in these new chemical industries. The impact of those new employees and their groundbreaking compounds had a profound influence on medicine and medical education in Germany between 1880 and 1930. Germany dominated international science during this period and was a training center for scientists worldwide. This model of synergy between education and business was envied and admired in Europe, Asia and America. British science soon after evolved to dominate the field of science during the prewar and post World War (1930's-1970's) because the German scientists fled Hitler's government. These expatriated scientists had a profound influence on the teaching and training of British scientists, which lead to advances in medicine such as antibiotics. After the Second World War, the US government wisely funded the development of the medical infrastructure that we see today. British and German scientists in medicine moved to America because of this bountiful funding for their research. These expatriated scientists helped drive these medical advances into commercialized products by the 1980's. America has been the center of medical education and advances of biotechnology but will it continue? International scientists trained in America have started to return to Europe and Asia. These American-trained scientists and their governments are very aware of the commercial potential of biotechnology. Those governments are now more prepared to play an active role this new science. Germany, Ireland, Britain, Singapore, Taiwan and Israel are such examples of this government support for biotechnology in the 21st century. Will the US continue to maintain its domination of biotechnology in this century? Will the US education system adjust to the new dynamic of synergistic relationships between the education system, industry and government? This article will try to address these questions but also will help the reader understand who will emerge by 2015 as the leader in science and education.

  16. Commercializing medical technology

    PubMed Central

    Lieberman, Mark A.

    2007-01-01

    As medicine moves into the 21st century, life saving therapies will move from inception into medical products faster if there is a better synergy between science and business. Medicine appears to have 50-year innovative cycles of education and scientific discoveries. In the 1880’s, the chemical industry in Germany was faced with the dilemma of modernization to exploit the new scientific discoveries. The solution was the spawning of novel technical colleges for training in these new chemical industries. The impact of those new employees and their groundbreaking compounds had a profound influence on medicine and medical education in Germany between 1880 and 1930. Germany dominated international science during this period and was a training center for scientists worldwide. This model of synergy between education and business was envied and admired in Europe, Asia and America. British science soon after evolved to dominate the field of science during the prewar and post World War (1930’s–1970’s) because the German scientists fled Hitler’s government. These expatriated scientists had a profound influence on the teaching and training of British scientists, which lead to advances in medicine such as antibiotics. After the Second World War, the US government wisely funded the development of the medical infrastructure that we see today. British and German scientists in medicine moved to America because of this bountiful funding for their research. These expatriated scientists helped drive these medical advances into commercialized products by the 1980’s. America has been the center of medical education and advances of biotechnology but will it continue? International scientists trained in America have started to return to Europe and Asia. These American-trained scientists and their governments are very aware of the commercial potential of biotechnology. Those governments are now more prepared to play an active role this new science. Germany, Ireland, Britain, Singapore, Taiwan and Israel are such examples of this government support for biotechnology in the 21st century. Will the US continue to maintain its domination of biotechnology in this century? Will the US education system adjust to the new dynamic of synergistic relationships between the education system, industry and government? This article will try to address these questions but also will help the reader understand who will emerge by 2015 as the leader in science and education. PMID:19003196

  17. Read Like a Scientist

    ERIC Educational Resources Information Center

    Mawyer, Kirsten K. N.; Johnson, Heather J.

    2017-01-01

    Scientists read, and so should students. Unfortunately, many high school teachers overlook science texts as a way to engage students in the work of scientists. This article addresses how to help students develop literacy skills by strategically reading a variety of science texts. Unfortunately, most science teachers aren't trained to teach…

  18. Association of Polar Early Career Scientists Promotes Professional Skills

    NASA Astrophysics Data System (ADS)

    Pope, Allen; Fugmann, Gerlis; Kruse, Frigga

    2014-06-01

    As a partner organization of AGU, the Association of Polar Early Career Scientists (APECS; http://www.apecs.is) fully supports the views expressed in Wendy Gordon's Forum article "Developing Scientists' `Soft' Skills" (Eos, 95(6), 55, doi:10.1002/2014EO060003). Her recognition that beyond research skills, people skills and professional training are crucial to the success of any early-career scientist is encouraging.

  19. Results of the Tephra 2014 Workshop on Maximizing the Potential of Tephra for Multidisciplinary Science

    NASA Astrophysics Data System (ADS)

    Kuehn, S. C.; Pouget, S.; Wallace, K.; Bursik, M. I.

    2014-12-01

    The Tephra 2014 Workshop was convened 3-7 August, 2014, to discuss major developments, best practices, and future directions/needs in tephra studies from both volcanological and tephrochronological perspectives. By bringing together an international group of over 70 scientists with a variety of backgrounds who study tephra for different purposes, our hope was to enhance interdisciplinary collaboration and data sharing. To provide training, the workshop also incorporated hands-on sessions on optimal sample collection and treatment, dispersal modeling, and the use of databases. Volcanologists, tephrochronologists, archaeologists, paleoclimatologists, paleoecologists, paleolimnologists, petrologists, geochronologists, tectonophysicists, Quaternary scientists, atmospheric scientists, data managers, and others who work with tephra were represented. During three days of presentation and discussion, tephra scientists discussed challenges, opportunities and solutions in studies ranging from physical volcanology to archeology. A consensus-seeking session was held at the end of the meeting, in which the current state of the science and emergent issues were raised. Most of the discussion in the session revolved around formulating common best practices among the different scientific communities and establishing common data archiving and retrieval mechanisms. Best practices were discussed in terms of sample collection and laboratory treatment. It was felt that a starting point for ensuring some uniformity in collection and laboratory work was to develop data sheets or templates, in addition to a consensus document. Such data sheets would be constructed in such a way to allow scientists who might not be expert in one field to nevertheless collect and analyze data that would be of importance to scientists in another field. With respect to data archiving and retrieval, the discussion revolved in large part around databases, what is currently available, their use, and development of common standards for submission and data format.

  20. International environmental and occupational health: From individual scientists to networked science Hubs.

    PubMed

    Rosenthal, Joshua; Jessup, Christine; Felknor, Sarah; Humble, Michael; Bader, Farah; Bridbord, Kenneth

    2012-12-01

    For the past 16 years, the International Training and Research in Environmental and Occupational Health program (ITREOH) has supported projects that link U.S. academic scientists with scientists from low- and middle-income countries in diverse research and research training activities. Twenty-two projects of varied duration have conducted training to enhance the research capabilities of scientists at 75 institutions in 43 countries in Asia, Africa, Eastern Europe, and Latin America, and have built productive research relationships between these scientists and their U.S. partners. ITREOH investigators and their trainees have produced publications that have advanced basic sciences, developed methods, informed policy outcomes, and built institutional capacity. Today, the changing nature of the health sciences calls for a more strategic approach. Data-rich team science requires greater capacity for information technology and knowledge synthesis at the local institution. More robust systems for ethical review and administrative support are necessary to advance population-based research. Sustainability of institutional research capability depends on linkages to multiple national and international partners. In this context, the Fogarty International Center, the National Institute of Environmental Sciences and the National Institute for Occupational Safety and Health, have reengineered the ITREOH program to support and catalyze a multi-national network of regional hubs for Global Environmental and Occupational Health Sciences (GEOHealth). We anticipate that these networked science hubs will build upon previous investments by the ITREOH program and will serve to advance locally and internationally important health science, train and attract first-class scientists, and provide critical evidence to guide policy discussions. Published in 2012. This article is a U.S. Government work and is in the public domain in the USA.

  1. Molecular pathology curriculum for medical laboratory scientists: A report of the association for molecular pathology training and education committee.

    PubMed

    Taylor, Sara; Bennett, Katie M; Deignan, Joshua L; Hendrix, Ericka C; Orton, Susan M; Verma, Shalini; Schutzbank, Ted E

    2014-05-01

    Molecular diagnostics is a rapidly growing specialty in the clinical laboratory assessment of pathology. Educational programs in medical laboratory science and specialized programs in molecular diagnostics must address the training of clinical scientists in molecular diagnostics, but the educational curriculum for this field is not well defined. Moreover, our understanding of underlying genetic contributions to specific diseases and the technologies used in molecular diagnostics laboratories change rapidly, challenging providers of training programs in molecular diagnostics to keep their curriculum current and relevant. In this article, we provide curriculum recommendations to molecular diagnostics training providers at both the baccalaureate and master's level of education. We base our recommendations on several factors. First, we considered National Accrediting Agency for Clinical Laboratory Sciences guidelines for accreditation of molecular diagnostics programs, because educational programs in clinical laboratory science should obtain its accreditation. Second, the guidelines of several of the best known certifying agencies for clinical laboratory scientists were incorporated into our recommendations. Finally, we relied on feedback from current employers of molecular diagnostics scientists, regarding the skills and knowledge that they believe are essential for clinical scientists who will be performing molecular testing in their laboratories. We have compiled these data into recommendations for a molecular diagnostics curriculum at both the baccalaureate and master's level of education. Copyright © 2014 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.

  2. Crew Roles and Interactions in Scientific Space Exploration

    NASA Technical Reports Server (NTRS)

    Love, Stanley G.; Bleacher, Jacob E.

    2013-01-01

    Future piloted space exploration missions will focus more on science than engineering, a change which will challenge existing concepts for flight crew tasking and demand that participants with contrasting skills, values, and backgrounds learn to cooperate as equals. In terrestrial space flight analogs such as Desert Research And Technology Studies, engineers, pilots, and scientists can practice working together, taking advantage of the full breadth of all team members training to produce harmonious, effective missions that maximize the time and attention the crew can devote to science. This paper presents, in a format usable as a reference by participants in the field, a successfully tested crew interaction model for such missions. The model builds upon the basic framework of a scientific field expedition by adding proven concepts from aviation and human spaceflight, including expeditionary behavior and cockpit resource management, cooperative crew tasking and adaptive leadership and followership, formal techniques for radio communication, and increased attention to operational considerations. The crews of future spaceflight analogs can use this model to demonstrate effective techniques, learn from each other, develop positive working relationships, and make their expeditions more successful, even if they have limited time to train together beforehand. This model can also inform the preparation and execution of actual future spaceflights.

  3. Crew roles and interactions in scientific space exploration

    NASA Astrophysics Data System (ADS)

    Love, Stanley G.; Bleacher, Jacob E.

    2013-10-01

    Future piloted space exploration missions will focus more on science than engineering, a change which will challenge existing concepts for flight crew tasking and demand that participants with contrasting skills, values, and backgrounds learn to cooperate as equals. In terrestrial space flight analogs such as Desert Research And Technology Studies, engineers, pilots, and scientists can practice working together, taking advantage of the full breadth of all team members' training to produce harmonious, effective missions that maximize the time and attention the crew can devote to science. This paper presents, in a format usable as a reference by participants in the field, a successfully tested crew interaction model for such missions. The model builds upon the basic framework of a scientific field expedition by adding proven concepts from aviation and human space flight, including expeditionary behavior and cockpit resource management, cooperative crew tasking and adaptive leadership and followership, formal techniques for radio communication, and increased attention to operational considerations. The crews of future space flight analogs can use this model to demonstrate effective techniques, learn from each other, develop positive working relationships, and make their expeditions more successful, even if they have limited time to train together beforehand. This model can also inform the preparation and execution of actual future space flights.

  4. A New Method for a Virtue-Based Responsible Conduct of Research Curriculum: Pilot Test Results.

    PubMed

    Berling, Eric; McLeskey, Chet; O'Rourke, Michael; Pennock, Robert T

    2018-02-03

    Drawing on Pennock's theory of scientific virtues, we are developing an alternative curriculum for training scientists in the responsible conduct of research (RCR) that emphasizes internal values rather than externally imposed rules. This approach focuses on the virtuous characteristics of scientists that lead to responsible and exemplary behavior. We have been pilot-testing one element of such a virtue-based approach to RCR training by conducting dialogue sessions, modeled upon the approach developed by Toolbox Dialogue Initiative, that focus on a specific virtue, e.g., curiosity and objectivity. During these structured discussions, small groups of scientists explore the roles they think the focus virtue plays and should play in the practice of science. Preliminary results have shown that participants strongly prefer this virtue-based model over traditional methods of RCR training. While we cannot yet definitively say that participation in these RCR sessions contributes to responsible conduct, these pilot results are encouraging and warrant continued development of this virtue-based approach to RCR training.

  5. Involving Practicing Scientists in K-12 Science Teacher Professional Development

    NASA Astrophysics Data System (ADS)

    Bertram, K. B.

    2011-12-01

    The Science Teacher Education Program (STEP) offered a unique framework for creating professional development courses focused on Arctic research from 2006-2009. Under the STEP framework, science, technology, engineering, and math (STEM) training was delivered by teams of practicing Arctic researchers in partnership with master teachers with 20+ years experience teaching STEM content in K-12 classrooms. Courses based on the framework were offered to educators across Alaska. STEP offered in-person summer-intensive institutes and follow-on audio-conferenced field-test courses during the academic year, supplemented by online scientist mentorship for teachers. During STEP courses, teams of scientists offered in-depth STEM content instruction at the graduate level for teachers of all grade levels. STEP graduate-level training culminated in the translation of information and data learned from Arctic scientists into standard-aligned lessons designed for immediate use in K-12 classrooms. This presentation will focus on research that explored the question: To what degree was scientist involvement beneficial to teacher training and to what degree was STEP scientist involvement beneficial to scientist instructors? Data sources reveal consistently high levels of ongoing (4 year) scientist and teacher participation; high STEM content learning outcomes for teachers; high STEM content learning outcomes for students; high ratings of STEP courses by scientists and teachers; and a discussion of the reasons scientists indicate they benefited from STEP involvement. Analyses of open-ended comments by teachers and scientists support and clarify these findings. A grounded theory approach was used to analyze teacher and scientist qualitative feedback. Comments were coded and patterns analyzed in three databases. The vast majority of teacher open-ended comments indicate that STEP involvement improved K-12 STEM classroom instruction, and the vast majority of scientist open-ended comments focus on the benefits scientists received from networking with K-12 teachers. The classroom lessons resulting from STEP have been so popular among teachers, the Alaska Department of Education and Early Development recently contracted with the PI to create a website that will make the STEP database open to teachers across Alaska. When the Alaska Department of Education and Early Development launched the new website in August 2011, the name of the STEP program was changed to the Alaska K-12 Science Curricular Initiative (AKSCI). The STEP courses serving as the foundation to the new AKSCI site are located under the "History" tab of the new website.

  6. Building National Capacity for Climate Change Interpretation: The Role of Leaders, Partnerships, and Networks

    NASA Astrophysics Data System (ADS)

    Spitzer, W.

    2015-12-01

    Since 2007, the New England Aquarium has led a national effort to increase the capacity of informal science venues to effectively communicate about climate change. We are now leading the NSF-funded National Network for Ocean and Climate Change Interpretation (NNOCCI), partnering with the Association of Zoos and Aquariums, FrameWorks Institute, Woods Hole Oceanographic Institution, Monterey Bay Aquarium, and National Aquarium, with evaluation conducted by the New Knowledge Organization, Pennsylvania State University, and Ohio State University. NNOCCI enables teams of informal science interpreters across the country to serve as "communication strategists" - beyond merely conveying information they can influence public perceptions, given their high level of commitment, knowledge, public trust, social networks, and visitor contact. We provide in-depth training as well as an alumni network for ongoing learning, implementation support, leadership development, and coalition building. Our goals are to achieve a systemic national impact, embed our work within multiple ongoing regional and national climate change education networks, and leave an enduring legacy. Our project represents a cross-disciplinary partnership among climate scientists, social and cognitive scientists, and informal education practitioners. We have built a growing national network of more than 250 alumni, including approximately 15-20 peer leaders who co-lead both in-depth training programs and introductory workshops. We have found that this alumni network has been assuming increasing importance in providing for ongoing learning, support for implementation, leadership development, and coalition building. As we look toward the future, we are exploring potential partnerships with other existing networks, both to sustain our impact and to expand our reach. This presentation will address what we have learned in terms of network impacts, best practices, factors for success, and future directions.

  7. Establishing Esri ArcGIS Enterprise Platform Capabilities to Support Response Activities of the NASA Earth Science Disasters Program

    NASA Astrophysics Data System (ADS)

    Molthan, A.; Seepersad, J.; Shute, J.; Carriere, L.; Duffy, D.; Tisdale, B.; Kirschbaum, D.; Green, D. S.; Schwizer, L.

    2017-12-01

    NASA's Earth Science Disasters Program promotes the use of Earth observations to improve the prediction of, preparation for, response to, and recovery from natural and technological disasters. NASA Earth observations and those of domestic and international partners are combined with in situ observations and models by NASA scientists and partners to develop products supporting disaster mitigation, response, and recovery activities among several end-user partners. These products are accompanied by training to ensure proper integration and use of these materials in their organizations. Many products are integrated along with other observations available from other sources in GIS-capable formats to improve situational awareness and response efforts before, during and after a disaster. Large volumes of NASA observations support the generation of disaster response products by NASA field center scientists, partners in academia, and other institutions. For example, a prediction of high streamflows and inundation from a NASA-supported model may provide spatial detail of flood extent that can be combined with GIS information on population density, infrastructure, and land value to facilitate a prediction of who will be affected, and the economic impact. To facilitate the sharing of these outputs in a common framework that can be easily ingested by downstream partners, the NASA Earth Science Disasters Program partnered with Esri and the NASA Center for Climate Simulation (NCCS) to establish a suite of Esri/ArcGIS services to support the dissemination of routine and event-specific products to end users. This capability has been demonstrated to key partners including the Federal Emergency Management Agency using a case-study example of Hurricane Matthew, and will also help to support future domestic and international disaster events. The Earth Science Disasters Program has also established a longer-term vision to leverage scientists' expertise in the development and delivery of end-user training, increase public awareness of NASA's Disasters Program, and facilitate new partnerships with disaster response organizations. Future research and development will foster generation of products that leverage NASA's Earth observations for disaster prediction, preparation and mitigation, response, and recovery.

  8. Data Management for a Climate Data Record in an Evolving Technical Landscape

    NASA Astrophysics Data System (ADS)

    Moore, K. D.; Walter, J.; Gleason, J. L.

    2017-12-01

    For nearly twenty years, NASA Langley Research Center's Clouds and the Earth's Radiant Energy System (CERES) Science Team has been producing a suite of data products that forms a persistent climate data record of the Earth's radiant energy budget. Many of the team's physical scientists and key research contributors have been with the team since the launch of the first CERES instrument in 1997. This institutional knowledge is irreplaceable and its longevity and continuity are among the reasons that the team has been so productive. Such legacy involvement, however, can also be a limiting factor. Some CERES scientists-cum-coders might possess skills that were state-of-the-field when they were emerging scientists but may now be outdated with respect to developments in software development best practices and supporting technologies. Both programming languages and processing frameworks have evolved significantly in the past twenty years, and updating one of these factors warrants consideration of updating the other. With the imminent launch of a final CERES instrument and the good health of those in flight, the CERES data record stands to continue far into the future. The CERES Science Team is, therefore, undergoing a re-architecture of its codebase to maintain compatibility with newer data processing platforms and technologies and to leverage modern software development best practices. This necessitates training our staff and consequently presents several challenges, including: Development continues immediately on the next "edition" of research algorithms upon release of the previous edition. How can code be rewritten at the same time that the science algorithms are being updated and integrated? With limited time to devote to training, how can we update the staff's existing skillset without slowing progress or introducing new errors? The CERES Science Team is large and complex, much like the current state of its codebase. How can we identify, in a breadth-wise manner, areas for code improvement across multiple research groups that maintain code with varying semantics but common concepts? In this work, we discuss the successes and pitfalls of this major re-architecture effort and share how we will sustain improvement into the future.

  9. The experiences of health services research and health services research training in Korea.

    PubMed

    Moon, O R

    1984-12-01

    Early in the 1970s the Korean government recognized the necessity of Health Services Research (HSR). The law of the Korea Health Development Institute was promulgated in 1975, and a contribution from the Republic was combined with an Agency for International Development loan to field test low-cost health service strategies. A program to deploy Community Health Practitioners (CHPs), similar to family nurse practitioners or Medex has been demonstrated to be effective. The CHP training program grew from 9 in 1980 to 1343 in 1984. CHP's main functions are curative, preventive, educative, and administrative. They are selected registered nurses and/or midwives, where possible from serviced communities. They are trained in 24 weeks, including 12 weeks of clinical practice, in an anticipated recruiting post. CHPs help train village health volunteers (VHVs), who are literate women chosen by their communities. They work closely with the CHPs as a liaison with the village and in information gathering. An HSR orientation workshop held in Chuncheon in 1980, discussed role, policy, status, finance components, information systems, behavioral and manpower components, staff training, protocols for project development, HSR in the future and evaluation of the conference. In 1980, a National Workshop on Biomedical Research Methodology was also held, with World Health Organization and Korean consultants. Training of junior scientists would include introduction to scientific method, statement of problems, quantitative study technics, research proposals, and interpretation of results. The Korean Institute of Public Health sponsored a 1982 experts forum on the health care system, medical facilities, organizational management, financing and medical security, and health behavioral aspects. Training of trainers and lower level field workers, orientation of program managers, researchers, and communities themselves should all be training priorities. In future, CHPs should be refresher-trained in prevention-oriented care, and physicians educated in the benefits of CHP input as a complementary rather than competitive service.

  10. Postdoctoral Professional Fellowships in Laboratory Medicine.

    PubMed

    Straseski, Joely A

    2013-04-01

    Doctoral level scientists often pursue a traditional academic route, focusing their efforts on research and education. However, additional options exist for those that are interested in using their laboratory and research skills in a clinical setting. Clinical laboratory directors serve as the interface between the clinical laboratory and the users of laboratory test results. This article describes these career paths options for PhD scientists. Clinical laboratory directors are primarily trained via one of two routes: physicians that have been trained in clinical pathology or non-physician doctoral scientists that have completed professional fellowship training. This article will focus on the latter of these 2 routes. In the United States, completing a postdoctoral fellowship in laboratory-specific professional fields qualifies non-physician doctoral scientists as laboratory directors and consultants. Their expert consultation provides invaluable insight into testing procedures such as possible sources of interference or inaccurate test results, preferred testing for specific clinical situations, and confirmatory methods. They must also be knowledgeable about current instrumentation, assay limitations, and the newest available technologies. One of the older and more developed professional fellowships in the United States, clinical chemistry, encompasses many laboratory disciplines and will be highlighted in detail. Training information specific to clinical immunology, clinical microbiology, and clinical genetics is also discussed.

  11. Rescuing the physician-scientist workforce: the time for action is now.

    PubMed

    Milewicz, Dianna M; Lorenz, Robin G; Dermody, Terence S; Brass, Lawrence F

    2015-10-01

    The 2014 NIH Physician-Scientist Workforce (PSW) Working Group report identified distressing trends among the small proportion of physicians who consider research to be their primary occupation. If unchecked, these trends will lead to a steep decline in the size of the workforce. They include high rates of attrition among young investigators, failure to maintain a robust and diverse pipeline, and a marked increase in the average age of physician-scientists, as older investigators have chosen to continue working and too few younger investigators have entered the workforce to replace them when they eventually retire. While the policy debates continue, here we propose four actions that can be implemented now. These include applying lessons from the MD-PhD training experience to postgraduate training, shortening the time to independence by at least 5 years, achieving greater diversity and numbers in training programs, and establishing Physician-Scientist Career Development offices at medical centers and universities. Rather than waiting for the federal government to solve our problems, we urge the academic community to address these goals by partnering with the NIH and national clinical specialty and medical organizations.

  12. Support and Training of Environmental Lawyers

    ERIC Educational Resources Information Center

    Cameron, Roderick A.

    1971-01-01

    The need for scientists to work with public interest lawyers in the field of environmental and consumer law is assessed. Scientists must become involved in public issues, educating lawyers to the problems, technical difficulties, and policy goals. From the lawyer, the scientist learns what the legal framework is into which his goals and supportive…

  13. Repeated sprints, high-intensity interval training, small-sided games: theory and application to field sports.

    PubMed

    Hoffmann, James J; Reed, Jacob P; Leiting, Keith; Chiang, Chieh-Ying; Stone, Michael H

    2014-03-01

    Due to the broad spectrum of physical characteristics necessary for success in field sports, numerous training modalities have been used develop physical preparedness. Sports like rugby, basketball, lacrosse, and others require athletes to be not only strong and powerful but also aerobically fit and able to recover from high-intensity intermittent exercise. This provides coaches and sport scientists with a complex range of variables to consider when developing training programs. This can often lead to confusion and the misuse of training modalities, particularly in the development of aerobic and anaerobic conditioning. This review outlines the benefits and general adaptations to 3 commonly used and effective conditioning methods: high-intensity interval training, repeated-sprint training, and small-sided games. The goals and outcomes of these training methods are discussed, and practical implementations strategies for coaches and sport scientists are provided.

  14. Enhancing the Communication of Climate Change Science

    NASA Astrophysics Data System (ADS)

    Somerville, R. C.; Hassol, S. J.

    2011-12-01

    Climate scientists have an important role to play in the critical task of informing the public, media and policymakers. Scientists can help in publicizing and illuminating climate science. However, this task requires combining climate science expertise with advanced communication skills. For example, it is entirely possible to convey scientific information accurately without using jargon or technical concepts unfamiliar to non-scientists. However, making this translation into everyday language is a job that few scientists have been trained to do. In this talk, we give examples from our recent experience working with scientists to enhance their ability to communicate well. Our work includes providing training, technical assistance, and communications tools to climate scientists and universities, government agencies, and research centers. Our experience ranges from preparing Congressional testimony to writing major climate science reports to appearing on television. We have also aided journalists in gathering reliable scientific information and identifying trustworthy experts. Additionally, we are involved in developing resources freely available online at climatecommunication.org. These include a feature on the links between climate change and extreme weather, a climate science primer, and graphics and video explaining key developments in climate change science.

  15. Geropsychology training in a specialist geropsychology doctoral program.

    PubMed

    Qualls, Sara Honn; Segal, Daniel L; Benight, Charles C; Kenny, Michael P

    2005-01-01

    The first PhD specialty program in Geropsychology that launched in fall, 2004 at CU-Colorado Springs is described. Consistent with a scientist-practitioner model, the curriculum sequence builds systematically from basic to complex knowledge and skills across the domains of scientific psychology, research methodology, general clinical, geropsychology science, and clinical geropsychology. Practicum experiences also build skills in core clinical competencies needed by geropsychologists, including assessment, psychotherapy, neuropsychological evaluations, caregiver consultation and counseling, health psychology, and outreach/prevention. Research mentoring prepares students with the skills needed to conduct independent research useful to the clinical practice of geropsychology. Challenges faced in the process of developing the program include the development of a training clinic, balancing specialty and generalized training, building a specialty culture while maintaining faculty integration, attracting faculty and students during a start-up phase, and defining an identity within the field. The mental health services center that was launched to meet training needs while addressing a services niche in the community contributes substantially to the essence of this program, and is described in some detail. Future opportunities and challenges include program funding, heavy demands of specialty training on top of generalist training, maintaining congruence between expectations of clinical and non-clinical faculty, providing interdisciplinary experience, and expansion of practicum opportunities.

  16. Do I need training in public health ethics? A survey on Italian residents' beliefs, knowledge and curricula.

    PubMed

    Colucci, Massimiliano; Chellini, Martina; Anello, Paola; Arru, Benedetto; Tettamanti, Glenda; Marcon, Elena

    2017-01-01

    Ethics is needed to support the decision-making process in public health and to face moral issues during practice. However, professionals are often not adequately trained. In 2015, the National Conference of Public Health Medical Residents of the Italian Society of Public Health started the "Public Health Ethics" workgroup to evaluate how the Italian Schools of Public Health train their residents in ethics, and which are residents' beliefs, knowledge and attitudes about public health ethics. A survey was built and emailed to the Italian public health residents. Residents are interested in ethics/bioethics (83.2%) and are aware of its importance for professional practice (97.2%). However, few of them (19.6%) evaluated their competence above a satisfactory level. They believe that a training in ethics should be offered during residency (92.1%). Nonetheless, in Italy only two schools required a course on bioethics, and one a course in public health ethics. According to residents, a public health ethics trainer should be a public health professional (23.2%) or a social scientist (22.8%). In Italy, Schools of Public Health do not train future professionals in ethics or public health ethics during residency. Training should be implemented in curricula, and trainers should have a strong competence in both public health and ethics.

  17. Two birds with one stone: experiences of combining clinical and research training in addiction medicine.

    PubMed

    Klimas, J; McNeil, R; Ahamad, K; Mead, A; Rieb, L; Cullen, W; Wood, E; Small, W

    2017-01-23

    Despite a large evidence-base upon which to base clinical practice, most health systems have not combined the training of healthcare providers in addiction medicine and research. As such, addiction care is often lacking, or not based on evidence or best practices. We undertook a qualitative study to assess the experiences of physicians who completed a clinician-scientist training programme in addiction medicine within a hospital setting. We interviewed physicians from the St. Paul's Hospital Goldcorp Addiction Medicine Fellowship and learners from the hospital's academic Addiction Medicine Consult Team in Vancouver, Canada (N = 26). They included psychiatrists, internal medicine and family medicine physicians, faculty, mentors, medical students and residents. All received both addiction medicine and research training. Drawing on Kirkpatrick's model of evaluating training programmes, we analysed the interviews thematically using qualitative data analysis software (Nvivo 10). We identified five themes relating to learning experience that were influential: (i) attitude, (ii) knowledge, (iii) skill, (iv) behaviour and (v) patient outcome. The presence of a supportive learning environment, flexibility in time lines, highly structured rotations, and clear guidance regarding development of research products facilitated clinician-scientist training. Competing priorities, including clinical and family responsibilities, hindered training. Combined training in addiction medicine and research is feasible and acceptable for current doctors and physicians in training. However, there are important barriers to overcome and improved understanding of the experience of addiction physicians in the clinician-scientist track is required to improve curricula and research productivity.

  18. Future Perfect? The Future of the Social Sciences in Public Health

    PubMed Central

    Shelton, Rachel C.; Hatzenbuehler, Mark L.; Bayer, Ronald; Metsch, Lisa R.

    2018-01-01

    This is a critical and perhaps unprecedented time for the social sciences in public health. While there are many opportunities for the social sciences to continue making transformative contributions to improve population health, there are significant challenges in doing so, particularly in a rapidly changing political landscape. Such challenges are both external (e.g., congressional calls for reducing social science funding) and internal (e.g., scholars criticizing the social sciences for being stagnant and siloed). This paper highlights four key tensions that the field is grappling with and that have direct implications for how to train the next generation of social scientists in public health. We also discuss how departmental and institutional decisions made in response to these tensions will determine how the social sciences in public health are ultimately recognized, sustained, and advanced. PMID:29376047

  19. Future Perfect? The Future of the Social Sciences in Public Health.

    PubMed

    Shelton, Rachel C; Hatzenbuehler, Mark L; Bayer, Ronald; Metsch, Lisa R

    2017-01-01

    This is a critical and perhaps unprecedented time for the social sciences in public health. While there are many opportunities for the social sciences to continue making transformative contributions to improve population health, there are significant challenges in doing so, particularly in a rapidly changing political landscape. Such challenges are both external (e.g., congressional calls for reducing social science funding) and internal (e.g., scholars criticizing the social sciences for being stagnant and siloed). This paper highlights four key tensions that the field is grappling with and that have direct implications for how to train the next generation of social scientists in public health. We also discuss how departmental and institutional decisions made in response to these tensions will determine how the social sciences in public health are ultimately recognized, sustained, and advanced.

  20. Managing the Big Data Avalanche in Astronomy - Data Mining the Galaxy Zoo Classification Database

    NASA Astrophysics Data System (ADS)

    Borne, Kirk D.

    2014-01-01

    We will summarize a variety of data mining experiments that have been applied to the Galaxy Zoo database of galaxy classifications, which were provided by the volunteer citizen scientists. The goal of these exercises is to learn new and improved classification rules for diverse populations of galaxies, which can then be applied to much larger sky surveys of the future, such as the LSST (Large Synoptic Sky Survey), which is proposed to obtain detailed photometric data for approximately 20 billion galaxies. The massive Big Data that astronomy projects will generate in the future demand greater application of data mining and data science algorithms, as well as greater training of astronomy students in the skills of data mining and data science. The project described here has involved several graduate and undergraduate research assistants at George Mason University.

  1. How to Grow Project Scientists: A Systematic Approach to Developing Project Scientists

    NASA Technical Reports Server (NTRS)

    Kea, Howard

    2011-01-01

    The Project Manager is one of the key individuals that can determine the success or failure of a project. NASA is fully committed to the training and development of Project Managers across the agency to ensure that highly capable individuals are equipped with the competencies and experience to successfully lead a project. An equally critical position is that of the Project Scientist. The Project Scientist provides the scientific leadership necessary for the scientific success of a project by insuring that the mission meets or exceeds the scientific requirements. Traditionally, NASA Goddard project scientists were appointed and approved by the Center Science Director based on their knowledge, experience, and other qualifications. However the process to obtain the necessary knowledge, skills and abilities was not documented or done in a systematic way. NASA Goddard's current Science Director, Nicholas White saw the need to create a pipeline for developing new projects scientists, and appointed a team to develop a process for training potential project scientists. The team members were Dr. Harley Thronson, Chair, Dr. Howard Kea, Mr. Mark Goldman, DACUM facilitator and the late Dr. Michael VanSteenberg. The DACUM process, an occupational analysis and evaluation system, was used to produce a picture of the project scientist's duties, tasks, knowledge, and skills. The output resulted in a 3-Day introductory course detailing all the required knowledge, skills and abilities a scientist must develop over time to be qualified for selections as a Project Scientist.

  2. The unique contribution of behavioral scientists to medical education: the top ten competencies.

    PubMed

    Sternlieb, Jeffrey L

    2014-01-01

    Understandably, the focus of most physicians is primarily on the biomedical-What is this disease or injury? Behavioral scientists from various disciplines in medical education generally have a broader approach-Who is this person with these symptoms and what is their story? Since behavioral scientists are often alone among U. S. residency faculty, physicians may fail to recognize the value of their approach to medical resident training. This review identifies and describes the top areas of expertise that behavioral scientists bring to medical education and how their training prepares them to think differently than other medical educators. In the course of identifying each competency, this review will emphasize the ways in which their skills and techniques are the origin of subtle impact in their teaching encounters, explore ways of targeting that impact, and discuss examples of this impact.

  3. Scientists' perception of ethical issues in nanomedicine: a case study.

    PubMed

    Silva Costa, Helena; Sethe, Sebastian; Pêgo, Ana P; Olsson, I Anna S

    2011-06-01

    Research and development in nanomedicine has been accompanied by the consideration of ethical issues; however, little is known about how researchers working in this area perceive such issues. This case-study explores scientists' attitude towards and knowledge of ethical issues. Data were collected by semi-structured interviews with 22 nanomedicine practitioners and subject to content analysis. We found that scientists reflect with ambiguity on the reputed novelty of nanomedicine and what the ethical issues and risks are in their work. Respondents see no necessity for a paradigm shift in ethical considerations, but view ethical issues in nanomedicine as overlapping with those of other areas of biomedical research. Most respondents discuss ethical issues they faced in scientific work with their colleagues, but expect benefit from additional information and training on ethics. Our findings that scientists are motivated to reflect on ethical issues in their work, can contribute to the design of new strategies, including training programs, to engage scientists in ethical discussion and stimulate their responsibility as nanomedicine practitioners.

  4. Space Station Simulation Computer System (SCS) study for NASA/MSFC. Volume 2: Baseline architecture report

    NASA Technical Reports Server (NTRS)

    1990-01-01

    NASA's Space Station Freedom Program (SSFP) planning efforts have identified a need for a payload training simulator system to serve as both a training facility and as a demonstrator to validate operational concepts. The envisioned MSFC Payload Training Complex (PTC) required to meet this need will train the Space Station payload scientists, station scientists, and ground controllers to operate the wide variety of experiments that will be onboard the Space Station Freedom. The Simulation Computer System (SCS) is the computer hardware, software, and workstations that will support the Payload Training Complex at MSFC. The purpose of this SCS Study is to investigate issues related to the SCS, alternative requirements, simulator approaches, and state-of-the-art technologies to develop candidate concepts and designs.

  5. Space Station Simulation Computer System (SCS) study for NASA/MSFC. Phased development plan

    NASA Technical Reports Server (NTRS)

    1990-01-01

    NASA's Space Station Freedom Program (SSFP) planning efforts have identified a need for a payload training simulator system to serve as both a training facility and as a demonstrator to validate operational concepts. The envisioned MSFC Payload Training Complex (PTC) required to meet this need will train the Space Station payload scientists, station scientists and ground controllers to operate the wide variety of experiments that will be onboard the Space Station Freedom. The Simulation Computer System (SCS) is made up of computer hardware, software, and workstations that will support the Payload Training Complex at MSFC. The purpose of this SCS Study is to investigate issues related to the SCS, alternative requirements, simulator approaches, and state-of-the-art technologies to develop candidate concepts and designs.

  6. Space Station Simulation Computer System (SCS) study for NASA/MSFC. Volume 1: Baseline architecture report

    NASA Technical Reports Server (NTRS)

    1990-01-01

    NASA's Space Station Freedom Program (SSFP) planning efforts have identified a need for a payload training simulator system to serve as both a training facility and as a demonstrator to validate operational concepts. The envisioned MSFC Payload Training Complex (PTC) required to meet this need will train the Space Station payload scientists, station scientists, and ground controllers to operate the wide variety of experiments that will be onboard the Space Station Freedom. The Simulation Computer System (SCS) is made up of the computer hardware, software, and workstations that will support the Payload Training Complex at MSFC. The purpose of this SCS Study is to investigate issues related to the SCS, alternative requirements, simulator approaches, and state-of-the-art technologies to develop candidate concepts and designs.

  7. Space Station Simulation Computer System (SCS) study for NASA/MSFC. Operations concept report

    NASA Technical Reports Server (NTRS)

    1990-01-01

    NASA's Space Station Freedom Program (SSFP) planning efforts have identified a need for a payload training simulator system to serve as both a training facility and as a demonstrator to validate operational concepts. The envisioned MSFC Payload Training Complex (PTC) required to meet this need will train the Space Station payload scientists, station scientists, and ground controllers to operate the wide variety of experiments that will be onboard the Space Station Freedom. The Simulation Computer System (SCS) is made up of computer hardware, software, and workstations that will support the Payload Training Complex at MSFC. The purpose of this SCS Study is to investigate issues related to the SCS, alternative requirements, simulator approaches, and state-of-the-art technologies to develop candidate concepts and designs.

  8. Training the next generation of scientists in Weather Forecasting: new approaches with real models

    NASA Astrophysics Data System (ADS)

    Carver, Glenn; Váňa, Filip; Siemen, Stephan; Kertesz, Sandor; Keeley, Sarah

    2014-05-01

    The European Centre for Medium Range Weather Forecasts operationally produce medium range forecasts using what is internationally acknowledged as the world leading global weather forecast model. Future development of this scientifically advanced model relies on a continued availability of experts in the field of meteorological science and with high-level software skills. ECMWF therefore has a vested interest in young scientists and University graduates developing the necessary skills in numerical weather prediction including both scientific and technical aspects. The OpenIFS project at ECMWF maintains a portable version of the ECMWF forecast model (known as IFS) for use in education and research at Universities, National Meteorological Services and other research and education organisations. OpenIFS models can be run on desktop or high performance computers to produce weather forecasts in a similar way to the operational forecasts at ECMWF. ECMWF also provide the Metview desktop application, a modern, graphical, and easy to use tool for analysing and visualising forecasts that is routinely used by scientists and forecasters at ECMWF and other institutions. The combination of Metview with the OpenIFS models has the potential to deliver classroom-friendly tools allowing students to apply their theoretical knowledge to real-world examples using a world-leading weather forecasting model. In this paper we will describe how the OpenIFS model has been used for teaching. We describe the use of Linux based 'virtual machines' pre-packaged on USB sticks that support a technically easy and safe way of providing 'classroom-on-a-stick' learning environments for advanced training in numerical weather prediction. We welcome discussions with interested parties.

  9. Stuff- The Materials that Shape our World - Experimental Learning Opportunities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosenstein, Pam

    2012-04-30

    Making Stuff is a four-part series that explores how materials changed history and are shaping the future. To further enhance public engagement in and understanding of materials science, the project convened an extensive network of community coalitions across the country that hosted Making Stuff outreach activities and events, science cafes, and educator workshops in their local areas. Department Of Energy funding enabled us to increase the number of communities formally involved in the project, from 10 to 20 community hubs. Department of Energy funding also made it possible to develop a collection of materials science resources, activities and hands-on demonstrationsmore » for use in a variety of formal and informal settings, and Making Stuff activities were presented at science conferences and festivals around the country. The design, printing and national dissemination of the Making Stuff afterschool activity guide were also developed with DOE funding, as well as professional webinar trainings for scientists and educators to help facilitate many of the community activities and other online and print materials. Thanks to additional funding from the Department of Energy, we were able to expand the reach and scope of the project's outreach plan, specifically in the areas of: 1) content development, 2) training/professional development, 3) educational activities and 4) community partnerships. This report documents how the following DOE project goals were met: (1) Train scientists and provide teachers and informal educators with resources to engage youth with age appropriate information about materials science; (2) Provide activities and resources to five selected communities with ties to DOE researchers; (3) Increase interest in STEM.« less

  10. Improving adolescent and young adult health - training the next generation of physician scientists in transdisciplinary research.

    PubMed

    Emans, S Jean; Austin, S Bryn; Goodman, Elizabeth; Orr, Donald P; Freeman, Robert; Stoff, David; Litt, Iris F; Schuster, Mark A; Haggerty, Robert; Granger, Robert; Irwin, Charles E

    2010-02-01

    To address the critical shortage of physician scientists in the field of adolescent medicine, a conference of academic leaders and representatives from foundations, National Institutes of Health, Maternal and Child Health Bureau, and the American Board of Pediatrics was convened to discuss training in transdisciplinary research, facilitators and barriers of successful career trajectories, models of training, and mentorship. The following eight recommendations were made to improve training and career development: incorporate more teaching and mentoring on adolescent health research in medical schools; explore opportunities and electives to enhance clinical and research training of residents in adolescent health; broaden educational goals for Adolescent Medicine fellowship research training and develop an intensive transdisciplinary research track; redesign the career pathway for the development of faculty physician scientists transitioning from fellowship to faculty positions; expand formal collaborations between Leadership Education in Adolescent Health/other Adolescent Medicine Fellowship Programs and federal, foundation, and institutional programs; develop research forums at national meetings and opportunities for critical feedback and mentoring across programs; educate Institutional Review Boards about special requirements for high quality adolescent health research; and address the trainee and faculty career development issues specific to women and minorities to enhance opportunities for academic success. Copyright 2010 Society for Adolescent Medicine. All rights reserved.

  11. How MESSENGER Meshes Simulations and Games with Citizen Science

    NASA Astrophysics Data System (ADS)

    Hirshon, B.; Chapman, C. R.; Edmonds, J.; Goldstein, J.; Hallau, K. G.; Solomon, S. C.; Vanhala, H.; Weir, H. M.; Messenger Education; Public Outreach (Epo) Team

    2010-12-01

    How MESSENGER Meshes Simulations and Games with Citizen Science In the film The Last Starfighter, an alien civilization grooms their future champion—a kid on Earth—using a video game. As he gains proficiency in the game, he masters the skills he needs to pilot a starship and save their civilization. The NASA MESSENGER Education and Public Outreach (EPO) Team is using the same tactic to train citizen scientists to help the Science Team explore the planet Mercury. We are building a new series of games that appear to be designed primarily for fun, but that guide players through a knowledge and skill set that they will need for future science missions in support of MESSENGER mission scientists. As players score points, they gain expertise. Once they achieve a sufficiently high score, they will be invited to become participants in Mercury Zoo, a new program being designed by Zooniverse. Zooniverse created Galaxy Zoo and Moon Zoo, programs that allow interested citizens to participate in the exploration and interpretation of galaxy and lunar data. Scientists use the citizen interpretations to further refine their exploration of the same data, thereby narrowing their focus and saving precious time. Mercury Zoo will be designed with input from the MESSENGER Science Team. This project will not only support the MESSENGER mission, but it will also add to the growing cadre of informed members of the public available to help with other citizen science projects—building on the concept that engaged, informed citizens can help scientists make new discoveries. The MESSENGER EPO Team comprises individuals from the American Association for the Advancement of Science (AAAS); Carnegie Academy for Science Education (CASE); Center for Educational Resources (CERES) at Montana State University (MSU) - Bozeman; National Center for Earth and Space Science Education (NCESSE); Johns Hopkins University Applied Physics Laboratory (JHU/APL); National Air and Space Museum (NASM); Science Systems and Applications, Inc. (SSAI); and Southwest Research Institute (SwRI).

  12. The APECS Virtual Poster Session: a virtual platform for science communication and discussion

    NASA Astrophysics Data System (ADS)

    Renner, A.; Jochum, K.; Jullion, L.; Pavlov, A.; Liggett, D.; Fugmann, G.; Baeseman, J. L.; Apecs Virtual Poster Session Working Group, T.

    2011-12-01

    The Virtual Poster Session (VPS) of the Association of Polar Early Career Scientists (APECS) was developed by early career scientists as an online tool for communicating and discussing science and research beyond the four walls of a conference venue. Poster sessions often are the backbone of a conference where especially early career scientists get a chance to communicate their research, discuss ideas, data, and scientific problems with their peers and senior scientists. There, they can hone their 'elevator pitch', discussion skills and presentation skills. APECS has taken the poster session one step further and created the VPS - the same idea but independent from conferences, travel, and location. All that is needed is a computer with internet access. Instead of letting their posters collect dust on the computer's hard drive, scientists can now upload them to the APECS website. There, others have the continuous opportunity to comment, give feedback and discuss the work. Currently, about 200 posters are accessible contributed by authors and co-authors from 34 countries. Since January 2010, researchers can discuss their poster with a broad international audience including fellow researchers, community members, potential colleagues and collaborators, policy makers and educators during monthly conference calls via an internet platform. Recordings of the calls are available online afterwards. Calls so far have included topical sessions on e.g. marine biology, glaciology, or social sciences, and interdisciplinary calls on Arctic sciences or polar research activities in a specific country, e.g. India or Romania. They attracted audiences of scientists at all career stages and from all continents, with on average about 15 persons participating per call. Online tools like the VPS open up new ways for creating collaborations and new research ideas and sharing different methodologies for future projects, pushing aside the boundaries of countries and nations, conferences, offices, and disciplines, and provide early career scientists with easily accessible training opportunities for their communication and outreach skills, independent of their location and funding situation.

  13. Inspiring Future Scientists

    ERIC Educational Resources Information Center

    Betteley, Pat; Lee, Richard E., Jr.

    2009-01-01

    In an integrated science/language arts/technology unit called "How Scientists Learn," students researched famous scientists from the past and cutting-edge modern-day scientists. Using biography trade books and the internet, students collected and recorded data on charts, summarized important information, and inferred meaning from text. Then they…

  14. Norway and Cuba Continue Collaborating to Build Capacity to Improve Weather Forecasting

    NASA Astrophysics Data System (ADS)

    Antuña, Juan Carlos; Kalnay, Eugenia; Mesquita, Michel D. S.

    2014-06-01

    The Future of Climate Extremes in the Caribbean Extreme Cuban Climate (XCUBE) project, which is funded by the Norwegian Directorate for Civil Protection as part of an assignment for the Norwegian Ministry of Foreign Affairs to support scientific cooperation between Norway and Cuba, carried out a training workshop on seasonal forecasting, reanalysis data, and weather research and forecasting (WRF). The workshop was a follow-up to the XCUBE workshop conducted in Havana in 2013 and provided Cuban scientists with access to expertise on seasonal forecasting, the WRF model developed by the National Center for Atmospheric Research (NCAR) and the community, data assimilation, and reanalysis.

  15. MatLab Programming for Engineers Having No Formal Programming Knowledge

    NASA Technical Reports Server (NTRS)

    Shaykhian, Linda H.; Shaykhian, Gholam Ali

    2007-01-01

    MatLab is one of the most widely used very high level programming languages for Scientific and engineering computations. It is very user-friendly and needs practically no formal programming knowledge. Presented here are MatLab programming aspects and not just the MatLab commands for scientists and engineers who do not have formal programming training and also have no significant time to spare for learning programming to solve their real world problems. Specifically provided are programs for visualization. Also, stated are the current limitations of the MatLab, which possibly can be taken care of by Mathworks Inc. in a future version to make MatLab more versatile.

  16. The Future Labor Force and Workplace and the Scientific and Engineering Workforce: Implications for Society and Business and Potential Solutions.

    ERIC Educational Resources Information Center

    Lightle, Juliana

    This report examines the future shortages of scientists and engineers and suggests potential solutions to the shortage. The first section presents general demographic data and trends and interprets what this information suggests for the future economy and business in general. The second section considers the supply of physical scientists and…

  17. The training, careers, and work of Ph.D. physical scientists: Not simply academic

    NASA Astrophysics Data System (ADS)

    Smith, Steven J.; Pedersen-Gallegos, Liane; Riegle-Crumb, Catherine

    2002-11-01

    We present an in-depth portrait of the training, careers, and work of recent Ph.D. physical scientists. Use of specialized training varies widely, with about half often using knowledge of their Ph.D. specialty area in their jobs. The use of specialized training does not, however, correlate with job satisfaction. In this and other important measures, there are relatively few differences between "academics" and "nonacademics." Important job skills for all employment sectors include writing, oral presentation, management, data analysis, designing projects, critical thinking, and working in an interdisciplinary context. Rankings given by respondents of graduate training in some of these skill areas were significantly lower than the importance of these skills in the workplace. We also found that the rated quality of graduate training varies relatively little by department or advisor. Finally, although nonacademic aspirations among graduate students are fairly common, these do not appear to be well supported while in graduate school.

  18. Implementing elements of evidence-based practice into scientist-practitioner training at the University of Nebraska-Lincoln.

    PubMed

    DiLillo, David; McChargue, Dennis

    2007-07-01

    Evidence-based practice (EBP) has become the predominant model of training and is emerging as a common model of practice for many non-psychology health care professions. Recognizing the relevance of EBP to psychology, the American Psychological Association (APA) developed and endorsed an official policy statement on EBP for the practice of professional psychology. There is now a pressing need to consider ways that EBP can inform scientist-practitioner training. The present article proposes clinical competencies associated with the practice of EBP, and describes initial efforts to implement elements of EBP into training at the University of Nebraska-Lincoln. These efforts have occurred in both the classroom and practicum training experiences, and are geared toward helping students become more effective users of the evidence base through their clinical work. Challenges to the implementation of EBP in clinical psychology training are discussed as well.

  19. CosmoAcademy Training and Certification for Scientists and Engineers

    NASA Astrophysics Data System (ADS)

    Noel-Storr, Jacob; Buxner, Sanlyn; Grier, Jennifer A.; Gay, Pamela L.; CosmoQuest Team

    2016-10-01

    CosmoQuest is a virtual research facility bringing together scientists, citizens, and learners of all ages. CosmoQuest offers classes, training, and learning opportunities online through CosmoAcademy, offering opportunities for all kinds of learners to become more connected to the science of the Universe. In this poster we describe CosmoAcademy opportunities for Subject Matter Experts (SMEs), scientists and engineers who are interested in broadening their impact of their work by providing learning opportunities for those outside of the scientific community. CosmoAcademy offers SME programs at a variety of levels and across a variety of topics in formal and informal education and outreach -- ranging from sharing the results of your work on social media, through delivering an online class series, to partnering with teachers and schools. SMEs may combine sequences of training to earn certification at various levels for their participation in the CosmoAcademy programs. SMEs who have been trained may also apply to teach CosmoAcademy classes for the community on subjects of their expertise to build a rich and engaging learning resource for members of society who wish to understand more about the Universe.

  20. To Boldly Go: Practical Career Advice for Young Scientists

    NASA Astrophysics Data System (ADS)

    Fiske, P.

    1998-05-01

    Young scientists in nearly every field are finding the job market of the 1990's a confusing and frustrating place. Ph.D. supply is far larger than that needed to fill entry-level positions in "traditional" research careers. More new Ph.D. and Master's degree holders are considering a wider range of careers in and out of science, but feel ill-prepared and uninformed about their options. Some feel their Ph.D. training has led them to a dead-end. I present a thorough and practical overview to the process of career planning and job hunting in the 1990's, from the perspective of a young scientist. I cover specific steps that young scientists can take to broaden their horizons, strengthen their skills, and present their best face to potential employers. An important part of this is the realization that most young scientists possess a range of valuable "transferable skills" that are highly sought after by employers in and out of science. I will summarize the specifics of job hunting in the 90's, including informational interviewing, building your network, developing a compelling CV and resume, cover letters, interviewing, based on my book "To Boldly Go: A Practical Career Guide for Scientists". I will also identify other resources available for young scientists. Finally, I will highlight individual stories of Ph.D.-trained scientists who have found exciting and fulfilling careers outside the "traditional" world of academia.

  1. Perspective: Integrating research into surgical residency education: lessons learned from orthopaedic surgery.

    PubMed

    Atesok, Kivanc I; Hurwitz, Shepard R; Egol, Kenneth A; Ahn, Jaimo; Owens, Brett D; Crosby, Lynn A; Pellegrini, Vincent D

    2012-05-01

    Orthopaedic research has advanced tremendously in parallel with accelerated progress in medical science. Possession of a fundamental understanding of basic and clinical science has become more essential than previously for orthopaedic surgeons to be able to translate advances in research into clinical practice. The number of medical graduates with prior education in scientific research who choose to pursue careers in orthopaedic surgery is small. Therefore, it is important that a core of research education be included during residency training to ensure the continued advancement of the clinical practice of orthopaedics. The authors examine some of the challenges to a comprehensive research experience during residency, including deficient priority, inadequate institutional infrastructure, financial strain on residency budgets, restricted time, and an insufficient number of mentors to encourage and guide residents to become clinician-scientists. They also present some strategies to overcome these challenges, including development and expansion of residency programs with clinician-scientist pathways, promotion of financial sources, and enhancement of opportunities for residents to interact with mentors who can serve as role models. Successful integration of research education into residency programs will stimulate future orthopaedic surgeons to develop the critical skills to lead musculoskeletal research, comprehend related discoveries, and translate them into patient care. Lessons learned from incorporating research training within orthopaedic residency programs will have broad application across medical specialties-in both primary and subspecialty patient care.

  2. Unesco in Asia and the Pacific: 40 years on.

    PubMed

    1986-11-01

    The United Nations Education. Scientific. and Cultural Organization (UNESCO) has for more that 40 years helped build schools, train teachers, produce educational materials, print textbooks, develop curricula, formulate educational policies, plan short and long educational strategies in Asia and the Pacific areas. It has restored and preserved cultural monuments, rare manuscripts, forms of music and plays, and has translated works from national to international languages. It has brought scientists from around the world to address problems such as environment, vegetation, water and marine life to discover common solutions. It has brought social scientists together to address human rights, fundamental freedoms and nation building issues. It assisted in building communications infrastructures, training and works to provide a better flow of information between countries and regions. This bulletin provides information on UNESCO's activities in Asia and the Pacific. Educational activities include universal primary education, eradication of illiteracy, higher education, science, teacher education, population education, cultural activities and social and human sciences. Other activities include, educational reform in India, Japan, Malaysia, Pakistan, Australia, and New Zealand. Recent developments in upgrading science education and future challenges to educational reform is being pursued. UNESCO's fundamental purpose is to break down the barriers of prejudice and ignorance and improve the knowledge of other cultures. To develop a lasting peace, a people to people relationship must be developed that will generate a world wide intellectual and moral solidarity that will prevent tendencies toward confrontation.

  3. Geothermal Workforce Education, Development, and Retention

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calvin, Wendy

    2014-03-31

    The work funded under this award was the formation of a National Geothermal Academy to develop the human resources that will be needed to transform and grow the US energy infrastructure to achieve the utilization of America’s vast geothermal resource base. The NGA has worked to create the new intellectual capital that will be needed by centralizing and unifying our national assets. The basic idea behind the Academy was to create a centrally located, convening organization for developing and conducting instructional programs in geothermal science and technology to educate and train the next generation of US scientists, engineers, plant operators,more » technicians, and policy makers. Broad participation of staff, faculty, and students from a consortium of US universities along with scientists and other professionals from industry and national laboratories were utilized. Geothermal experts from the US and other countries were recruited to serve as instructors to develop relevant curricula. Given the long history of geothermal development in the US, there is a large group of experienced individuals who effectively hold the “corporate memory” of geothermal development in the US, many of whom are nearing the end of their professional careers, while some have recently retired. We planned to capture this extremely valuable intellectual resource by engaging a number of these individuals in developing course curricula, leading training workshops, providing classroom instruction and mentoring future instructors.« less

  4. Incubating the research independence of a medical scientist training program graduate: a case study.

    PubMed

    Dzirasa, Kafui; Krishnan, Ranga R; Williams, R Sanders

    2015-02-01

    Physician-scientists play a critical role in discovering new biological knowledge and translating findings into medical practices that can improve clinical outcomes. Collectively, the National Institutes of Health (NIH) and its affiliated Medical Scientist Training Programs (MSTPs) invest upwards of $500,000 to fully train each of the 900+ MD/PhD students enrolled in these programs. Nevertheless, graduates face the challenges of navigating fragmented intervals of clinical training and research engagement, reinitiating research upon completing their residencies, managing financial pressures, and competing for funding following what is typically four or more years of research inactivity. Together, these barriers contribute to the high attrition rate of MSTP graduates from research careers. The authors designed and implemented (2009-2014), for a single trainee, an alternative postgraduate training model characterized by early research engagement, strategic mentoring, unyoked clinical and research milestones, and dedicated financial support. The pilot training experiment was so successful that the trainee secured an NIH project grant and completed his transition to research independence 3.5 years after starting the experimental training schedule-nearly 9 years earlier (based on age) than is typical for MD/PhDs transitioning from mentored to independent research. This success has demonstrated that unyoking research engagement from conventional calendar-based clinical training milestones is a feasible, effective means of incubating research independence in MSTP graduates. The authors encourage the design and application of similar unconventional approaches that interweave residency training with ongoing research activity for appropriate candidates, especially in subspecialties with increased MSTP graduate enrollment.

  5. A workshop on leadership for senior MD–PhD students

    PubMed Central

    Meador, Catherine B.; Parang, Bobak; Musser, Melissa A.; Haliyur, Rachana; Owens, David A.; Dermody, Terence S.

    2016-01-01

    Leadership skills are essential for a successful career as a physician-scientist, yet many MD–PhD training programs do not offer formal training in leadership. The Vanderbilt Medical Scientist Training Program (MSTP) previously established a 2-day leadership workshop that has been held biennially since 2006 for students in the first and second years of the graduate school portion of combined MD and PhD training (G1/G2 students). Workshop attendees have consistently rated this workshop as a highly effective experience. However, opportunities for structured training in leadership competencies during the subsequent 3–5 years of MD–PhD training are limited. Given the success of the G1/G2 leadership workshop and the need for continuity in this model of leadership training, we developed a half-day workshop for MSTP students in the clinical years of medical school (M3/M4 students) to foster continued training in leadership. Our workshop curriculum, based in part on original cases drafted by Vanderbilt MSTP students, provides concrete strategies to manage conflict and navigate leadership transitions in the physician-scientist career path. The curriculum emphasizes both short-term competencies, such as effective participation as a member of a clinical team, and long-term competencies, such as leadership of a research team, division, or department. Our inaugural senior leadership workshop, held in August, 2015, was judged by student participants to be well organized and highly relevant to leadership concepts and skills. It will be offered biennially in our training curriculum for M3 and M4 MSTP students. PMID:27499363

  6. A workshop on leadership for senior MD-PhD students.

    PubMed

    Meador, Catherine B; Parang, Bobak; Musser, Melissa A; Haliyur, Rachana; Owens, David A; Dermody, Terence S

    2016-01-01

    Leadership skills are essential for a successful career as a physician-scientist, yet many MD-PhD training programs do not offer formal training in leadership. The Vanderbilt Medical Scientist Training Program (MSTP) previously established a 2-day leadership workshop that has been held biennially since 2006 for students in the first and second years of the graduate school portion of combined MD and PhD training (G1/G2 students). Workshop attendees have consistently rated this workshop as a highly effective experience. However, opportunities for structured training in leadership competencies during the subsequent 3-5 years of MD-PhD training are limited. Given the success of the G1/G2 leadership workshop and the need for continuity in this model of leadership training, we developed a half-day workshop for MSTP students in the clinical years of medical school (M3/M4 students) to foster continued training in leadership. Our workshop curriculum, based in part on original cases drafted by Vanderbilt MSTP students, provides concrete strategies to manage conflict and navigate leadership transitions in the physician-scientist career path. The curriculum emphasizes both short-term competencies, such as effective participation as a member of a clinical team, and long-term competencies, such as leadership of a research team, division, or department. Our inaugural senior leadership workshop, held in August, 2015, was judged by student participants to be well organized and highly relevant to leadership concepts and skills. It will be offered biennially in our training curriculum for M3 and M4 MSTP students.

  7. NCI Alliance for Nanotechnology in Cancer

    Cancer.gov

    The NCI Alliance for Nanotechnology in Cancer funds the Cancer Nanotechnology Training Centers collectively with the NCI Cancer Training Center. Find out about the funded Centers, to date, that train our next generation of scientists in the field of Canc

  8. All Scientists Meeting

    ScienceCinema

    Pier Oddone and Young-Kee Kim

    2018-04-17

    Pier Oddone and Young-Kee Kim of Fermi National Accelerator Laboratory lead an all-scientists meeting to discuss current and future work, scope of research, budget and funding information, and other information relating to the lab and its scientists.

  9. Social scientist's viewpoint on conflict management

    USGS Publications Warehouse

    Ertel, Madge O.

    1990-01-01

    Social scientists can bring to the conflict-management process objective, reliable information needed to resolve increasingly complex issues. Engineers need basic training in the principles of the social sciences and in strategies for public involvement. All scientists need to be sure that that the information they provide is unbiased by their own value judgments and that fair standards and open procedures govern its use.

  10. Qualitative research in rehabilitation science: opportunities, challenges, and future directions.

    PubMed

    VanderKaay, Sandra; Moll, Sandra E; Gewurtz, Rebecca E; Jindal, Pranay; Loyola-Sanchez, Adalberto; Packham, Tara L; Lim, Chun Y

    2018-03-01

    Qualitative research has had a significant impact within rehabilitation science over time. During the past 20 years the number of qualitative studies published per year in Disability and Rehabilitation has markedly increased (from 1 to 54). In addition, during this period there have been significant changes in how qualitative research is conceptualized, conducted, and utilized to advance the field of rehabilitation. The purpose of this article is to reflect upon the progress of qualitative research within rehabilitation to date, to explicate current opportunities and challenges, and to suggest future directions to continue to strengthen the contribution of qualitative research in this field. Relevant literature searches were conducted in electronic data bases and reference lists. Pertinent literature was examined to identify current opportunities and challenges for qualitative research use in rehabilitation and to identify future directions. Six key areas of opportunity and challenge were identified: (a) paradigm shifts, (b) advancements in methodology, (c) emerging technology, (d) advances in quality evaluation, (e) increasing popularity of mixed methods approaches, and (f) evolving approaches to knowledge translation. Two important future directions for rehabilitation are posited: (1) advanced training in qualitative methods and (2) engaging qualitative communities of research. Qualitative research is well established in rehabilitation and has an important place in the continued growth of this field. Ongoing development of qualitative researchers and methods are essential. Implications for Rehabilitation Qualitative research has the potential to improve rehabilitation practice by addressing some of the most pervasive concerns in the field such as practitioner-client interaction, the subjective and lived experience of disability, and clinical reasoning and decision making. This will serve to better inform those providing rehabilitation services thereby benefiting patients that are utilizing these services. Changes over time in how qualitative research is conceptualized, conducted, and utilized to advance rehabilitation science have resulted in a number of unique opportunities and challenges in using qualitative research that must be considered within this field. Advances in methodology and increased expectations for evaluation must be considered to ensure quality and credibility of qualitative rehabilitation research within rehabilitation. Improved quality and credibility may increase likelihood of research dissemination and use by clinicians intervening within the rehabilitation process in order to improve clinical practice. In order to maximize opportunities and mitigate challenges there are two principal future directions for rehabilitation scientists to consider: (1) advancing training in qualitative methods to adequately prepare future rehabilitation scientists and (2) engaging qualitative communities of research.

  11. Not going it alone: scientists and their work featured online at FrontierScientists

    NASA Astrophysics Data System (ADS)

    O'Connell, E. A.; Nielsen, L.

    2015-12-01

    Science outreach demystifies science, and outreach media gives scientists a voice to engage the public. Today scientists are expected to communicate effectively not only with peers but also with a braod public audience, yet training incentiives are sometimes scarce. Media creation training is even less emphasized. Editing video to modern standards takes practice; arrangling light and framing shots isn't intuitive. While great tutorials exist, learning videography, story boarding, editing and sharing techniques will always require a commitment of time and effort. Yet ideally sharing science should be low-hanging fruit. FrontierScientists, a science-sharing website funded by the NSF, seeks to let scientists display their breakthroughs and share their excitement for their work with the public by working closely yet non-exhaustively with a professional media team. A director and videographer join scientists to film first-person accounts in the field or lab. Pictures and footage with field site explanations give media creators raw material. Scientists communicate efficiently and retain editorial control over the project, but a small team of media creators craft the public aimed content. A series of engaging short videos with narrow focuses illuminate the science. Written articles support with explanations. Social media campaigns spread the word, link content, welcome comments and keep abreast of changing web requirements. All FrontierScientists featured projects are aggregated to one mobile-friendly site available online or via an App. There groupings of Arctic-focused science provide a wealth of topics and content to explore. Scientists describe why their science is important, what drew them to it, and why the average American should care. When scientists share their work it's wonderful; a team approach is a schedule-friendly way that lets them serve as science communicators without taking up a handful of extra careers.

  12. The Permafrost Young Researchers Network (PYRN): Contribution to IPY's "Thermal State of Permafrost"

    NASA Astrophysics Data System (ADS)

    Johansson, M.; Lantuit, H.; Frauenfeld, O. W.

    2007-12-01

    The Permafrost Young Researchers Network (PYRN, www.pyrn.org) is a unique resource for students, young scientists, and engineers studying permafrost. It is an international organization fostering innovative collaboration, seeking to recruit, retain, and promote future generations of permafrost scientists and engineers. Initiated for and during IPY, PYRN directs the multi-disciplinary talents of its membership toward global awareness, knowledge, and response to permafrost-related challenges in a changing climate. Created as an education and outreach component of the International Permafrost Association (IPA), PYRN is a central database of permafrost information and science for more than 350 young researchers from 33 countries. PYRN distributes a newsletter, recognizes outstanding permafrost research by its members through an annual awards program, organizes training workshops (2007 in Abisko, Sweden and St. Petersburg, Russia), and contributes to the growth and future of the permafrost community. While networking forms the basis of PYRN's activities, the organization also seeks to establish itself as a driver of permafrost research for the IPY and beyond. We recently launched a series of initiatives on several continents aimed at providing young scientists and engineers with the means to conduct ground temperature monitoring in under-investigated permafrost regions. Focusing on sites not currently covered by the IPA's "Thermal State of Permafrost" project, the young investigators of PYRN will provide and use lightweight drills and temperature sensors to instrument shallow boreholes in those regions. The data and results will be incorporated in the global database on permafrost temperatures and made freely available to the scientific community, thereby contributing to the advance of permafrost science and the strengthening of the next generation of permafrost researchers.

  13. Comparative and cost-effectiveness research: Competencies, opportunities, and training for nurse scientists.

    PubMed

    Stone, Patricia W; Cohen, Catherine; Pincus, Harold Alan

    Comparative and cost-effectiveness research develops knowledge on the everyday effectiveness and value of treatments and care delivery models. To describe comparative and cost-effectiveness research; identify needed competencies for this research; identify federal funding; and describe current training opportunities. Published recommended competencies were reviewed. Current federal funding and training opportunities were identified. A federally funded training program and other training opportunities are described. Fourteen core competencies were identified that have both analytic and theoretical foci from nursing and other fields. There are multiple sources of federal funding for research and training. Interdisciplinary training is needed. Comparative and cost-effectiveness research has the opportunity to transform health care delivery and improve the outcomes of patients. Nurses, as clinicians and scientists, are in a unique position to contribute to this important research. We encourage nurses to seek the needed interdisciplinary research training to participate in this important endeavor. We also encourage educators to use the competencies and processes identified in current training programs to help shape their doctoral programs. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. A Perspective on Veterinary Forensic Pathology and Medicine in the United Kingdom.

    PubMed

    Newbery, S G; Cooke, S W; Martineau, H M

    2016-09-01

    Internationally, forensic medicine and pathology are increasingly recognized as an important aspect of work done by veterinary clinicians and veterinary pathologists. In this article, a forensic veterinary clinician, a forensic veterinary pathologist in private practice, and a forensic veterinary pathologist at a veterinary school discuss the interactions among veterinary clinicians, veterinary pathologists, and law enforcement agencies and how future interactions can be improved. The focus is on the United Kingdom, but many of the principles, challenges, and suggestions are applicable to other jurisdictions. Clinicians and pathologists require forensic training to enable them to apply their veterinary knowledge to suspected cases of animal abuse and to subsequently present their findings and conclusions to a court of law in a concise, professional, and unbiased manner, and some opportunities for such advanced training in the United Kingdom are indicated. It is important that forensic veterinary clinicians and pathologists interact in an unbiased and collegial manner to answer the questions posed by courts of law. Opportunities for improved training, communication, and interaction among forensic veterinarians, forensic scientists, and law enforcement are discussed. © The Author(s) 2016.

  15. In the trenches: lessons for scientists from California's Proposition 71 campaign

    PubMed Central

    Goldstein, Lawrence S. B.

    2011-01-01

    I describe a number of valuable lessons I learned from participating in California's Proposition 71 effort about the role that scientists and rigorous scientific advice can play in a public political process. I describe how scientists can provide valuable information and advice and how they can also gain a great deal from the experience that is valuable to a practicing research scientist. Finally, I argue that in the future, building similar broad coalitions to support biomedical and other areas of scientific research will be essential to protect publicly funded science. Thus, a key lesson from the Proposition 71 experience is that engagement of scientists with diverse nonscientific groups can make a big difference and that scientists must actively engage with the public in the future if we are to contribute robustly to the medical and economic health of our communities. PMID:22039069

  16. Training

    Cancer.gov

    NCI offers training at laboratories and clinics in Maryland and at universities and institutions nationwide. These cancer training and career development opportunities cover a broad spectrum of disciplines for individuals at career stages ranging from high school and graduate students to scientists, clinicians, and health care professionals.

  17. Developing an online programme in computational biology.

    PubMed

    Vincent, Heather M; Page, Christopher

    2013-11-01

    Much has been written about the need for continuing education and training to enable life scientists and computer scientists to manage and exploit the different types of biological data now becoming available. Here we describe the development of an online programme that combines short training courses, so that those who require an educational programme can progress to complete a formal qualification. Although this flexible approach fits the needs of course participants, it does not fit easily within the organizational structures of a campus-based university.

  18. IAI Training in Climate and Health in the Americas

    NASA Astrophysics Data System (ADS)

    Aron, J. L.

    2007-05-01

    The Inter-American Institute for Global Change Research (IAI) has addressed training in climate and health in the Americas in two major ways. First, IAI supports students to engage in research training. A multi-country health activity funded by IAI was the collaborative research network (CRN) on Diagnostics and Prediction of Human Health Impacts in the Tropical Americas, which focused principally on the effect of El Nino/Southern Oscillation and other aspects of climate variability on mosquito-borne diseases malaria and dengue. The CRN involved students in Brazil, Mexico, Venezuela, Colombia and Jamaica. The CRN was also linked to other climate and health projects that used a similar approach. Second, IAI organizes training institutes to expand the network of global change research scientists and facilitate the transfer of global change research into practice. The IAI Training Institute on Climate and Health in the Americas was held on November 7 - 18, 2005 at the University of the West Indies in Kingston, Jamaica, engaging participants from the CRN and other programs in the Americas. The Training Institute's central objective was to help strengthen local and regional capacity to address the impacts of climate variability and climate change on human health in the populations of the Americas, particularly Latin America and the Caribbean. The Training Institute had three core components: Science; Applications; and Proposal Development for Seed Grants. Recommendations for future Training Institutes included incorporating new technologies and communicating with policy-makers to develop more proactive societal strategies to manage risks.

  19. Individual and Contextual Variables among Creative Scientists: The New Work Paradigm

    ERIC Educational Resources Information Center

    Culross, Rita R.

    2004-01-01

    This article discusses the individual and contextual factors that are salient to high levels of creativity among scientists working in organizational settings in the modern world. The article contrasts such scientists with traditional depictions of creative scientists and draws implications for future directions for creativity research and for the…

  20. Identity Matching to Scientists: Differences That Make a Difference?

    ERIC Educational Resources Information Center

    Andersen, Hanne Moeller; Krogh, Lars Brian; Lykkegaard, Eva

    2014-01-01

    Students' images of science and scientists are generally assumed to influence their related subject choices and aspirations for tertiary education within science and technology. Several research studies have shown that many young people hold rather stereotypical images of scientists, making it hard for them to see themselves as future scientists.…

  1. Becoming the Citizen Scientist: Opportunities and Challenges in Science Policy

    NASA Astrophysics Data System (ADS)

    Bosler, T. L.

    2007-03-01

    The methodologies, creativity and intellectual capacity of today's physicists are becoming more and more relevant in the world of policy and politics. Some issues such as climate change, alternative energy and avian influenza clearly reveal the relevance of scientific knowledge and research in policy. However, the connection between science and issues such as electronic voting, government earmarks and international cooperation are not as obvious, but the role of scientists in these topics and their effects on science itself are critical. As the world becomes increasingly technological and global, the need for the involvement of scientists in the political process grows. The traditional scientific training of physicists emphasizes intense scrutiny of specific physical phenomena in the natural world but often misses the opportunity to utilize trained scientific minds on some of society's greatest problems. I will discuss the many ways in which scientists can contribute to society far beyond the academic community and the unique opportunities science policy work offers to the socially conscious scientist or even those just looking to get more grant money.

  2. On the Predictability of Future Impact in Science

    PubMed Central

    Penner, Orion; Pan, Raj K.; Petersen, Alexander M.; Kaski, Kimmo; Fortunato, Santo

    2013-01-01

    Correctly assessing a scientist's past research impact and potential for future impact is key in recruitment decisions and other evaluation processes. While a candidate's future impact is the main concern for these decisions, most measures only quantify the impact of previous work. Recently, it has been argued that linear regression models are capable of predicting a scientist's future impact. By applying that future impact model to 762 careers drawn from three disciplines: physics, biology, and mathematics, we identify a number of subtle, but critical, flaws in current models. Specifically, cumulative non-decreasing measures like the h-index contain intrinsic autocorrelation, resulting in significant overestimation of their “predictive power”. Moreover, the predictive power of these models depend heavily upon scientists' career age, producing least accurate estimates for young researchers. Our results place in doubt the suitability of such models, and indicate further investigation is required before they can be used in recruiting decisions. PMID:24165898

  3. Mentorship: The Education-Research Continuum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Correll, D

    2008-05-29

    Mentoring of science students stems naturally from the intertwined link between science education and science research. In fact, the mentoring relationship between a student and a scientist may be thought of analogically as a type of double helix forming the 'DNA' that defines the blueprint for the next generation of scientists. Although this analogy would not meet the rigorous tests commonly used for exploring the natural laws of the universe, the image depicted does capture how creating and sustaining the future science workforce benefits greatly from the continuum between education and research. The path science students pursue from their educationmore » careers to their research careers often involves training under an experienced and trusted advisor, i.e., a mentor. For many undergraduate science students, a summer research internship at a DOE National Laboratory is one of the many steps they will take in their Education-Research Continuum. Scientists who choose to be mentors share a commitment for both science education and science research. This commitment is especially evident within the research staff found throughout the Department of Energy's National Laboratories. Research-based internship opportunities within science, technology, engineering and mathematics (STEM) exist at most, if not all, of the Laboratories. Such opportunities for students are helping to create the next generation of highly trained professionals devoted to the task of keeping America at the forefront of scientific innovation. 'The Journal of Undergraduate Research' (JUR) provides undergraduate interns the opportunity to publish their scientific innovation and to share their passion for education and research with fellow students and scientists. The theme of this issue of the JUR (Vol. 8, 2008) is 'Science for All'. Almost 20 years have passed since the American Association for the Advancement of Science published its 1989 report, 'Science for All Americans-Project 2061'. The first recommendation for learning science stated: 'The Nature of Science includes the scientific world view, scientific methods of inquiry, and the nature of the scientific enterprise'. All three elements of the 'Nature of Science' are pivotal aspects of a research internship under the mentorship of an experienced and trusted advisor. In addition to internships for undergraduates, an important ingredient in realizing 'Science for All' is collaboration involving educators and scientists as they engage science students and the public at large to promote science literacy and to develop the next generation of STEM professionals. The DOE National Laboratories, individually and collectively, form an ideal nexus for nurturing these complementary collaborations. My 'Science for All' experiences at Lawrence Livermore National Laboratory (LLNL) over the last 30 years have spanned pre-college, college, and postdoctoral activities, including mentoring of undergraduate students. Early in my mentoring career, I became aware that undergraduates in particular needed help in answering the question 'what path (or paths) will lead to a challenging and rewarding STEM career'? For many, a successful path included a research internship that would result in expanded skills and training in addition to those received from their academic education. These internship skills were helpful whether the student's next Education-Research Continuum decision was graduate school or STEM employment. My experience at LLNL mirrors that of my colleagues at other DOE National Laboratories--internships with a dedicated mentor provide undergraduates with a unique set of skills that can underpin their future options and serve to improve the number, quality, and successful outcomes of students who enter STEM careers. 'Science for All' can also be found in the goals of 'The America COMPETES Act', which call for renewed efforts to increase investments in scientific research and development, strengthen education, and encourage entrepreneurship. Mentoring is an important ingredient in reaching these goals because the success of future endeavors will require a diverse workforce of scientists, technicians, engineers, mathematicians, and STEM educators. A small, but not insignificant, metric of how well the nation is doing to create the next STEM generation can be measured by the abstracts and articles published in the 'Journal of Undergraduate Research'. At the 'heart' of the JUR is the professional commitment of the DOE National Laboratory workforce to mentor the next STEM generation and to realize 'Science for All'.« less

  4. Why Tu Youyou Makes Less Money Than Zhang Ziyi?

    PubMed

    Suo, Qinghui; Liu, Yang; Zhang, Daming

    2017-08-01

    Scientists normally earn less money than many other professions which require a similar amount of training and qualification. The economic theory of marginal utility and cost-benefit analysis can be applied to explain this phenomenon. Although scientists make less money than entertainment stars, the scientists do research work out of their interest and they also enjoy a much higher reputation and social status in some countries.

  5. Integrated School of Ocean Sciences: Doctoral Education in Marine Sciences in Kiel

    NASA Astrophysics Data System (ADS)

    Bergmann, Nina; Basse, Wiebke; Prigge, Enno; Schelten, Christiane; Antia, Avan

    2016-04-01

    Marine research is a dynamic thematic focus in Kiel, Germany, uniting natural scientists, economists, lawyers, philosophers, artists and computing and medical scientists in frontier research on the scientific, economic and legal aspects of the seas. The contributing institutions are Kiel University, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel Institute for the World Economy and Muthesius University in Kiel. Marine science education in Kiel trains young scientists to investigate the role of the oceans in global change, risks arising from ocean usage and sustainable management of living and non-living marine resources. Basic fundamental research is supplemented with applied science in an international framework including partners from industry and public life. The Integrated School of Ocean Sciences (ISOS) established through the Cluster of Excellence "The Future Ocean", funded within the German Excellence Initiative, provides PhD candidates in marine sciences with interdisciplinary education outside of curricular courses. It supports the doctoral candidates through supplementary training, a framework of supervision, mentoring and mobility, the advisors through transparency and support of doctoral training in their research proposals and the contributing institutions by ensuring quality, innovation and excellence in marine doctoral education. All PhD candidates financed by the Helmholtz Research School for Ocean System Science and Technology (HOSST) and the Collaborative Research Centre 754 "Climate-biogeochemical interactions in the tropical ocean" (SFB 754) are enrolled at the ISOS and are integrated into the larger peer community. Over 150 PhD candidate members from 6 faculties form a large interdisciplinary network. At the ISOS, they sharpen their scientific profile, are challenged to think beyond their discipline and equip themselves for life after a PhD through early exposure to topics beyond research (e.g. social responsibility, public communication, global sustainability etc.). The primary advisor and at least one co-advisor form an advisory committee, committing to support the candidate in two mandatory meetings per year. Contrasting to other PhD programmes, ISOS emphasises on an open policy with voluntary participation for all other aspects of the programme, creating a unique environment that lives upon personal involvement and maximises tangible benefits for individual PhD candidates.

  6. Urologic Oncology Branch - Training - NCI/AFUD | Center for Cancer Research

    Cancer.gov

    Postdoctoral Research Training Program This program is designed to train Ph.D. postdoctoral scientists in the growing field of urologic oncology. This program offers fellows the opportunity to participate in a diverse training experience that includes clinical and laboratory research on several urologic malignancies. The program provides an opportunity for selected individuals

  7. Physician-scientists in Japan: attrition, retention, and implications for the future.

    PubMed

    Koike, Soichi; Ide, Hiroo; Kodama, Tomoko; Matsumoto, Shinya; Yasunaga, Hideo; Imamura, Tomoaki

    2012-05-01

    To investigate career trends for physician-scientists in Japan. The authors analyzed 1996-2008 biennial census survey data from Japan's national physician registry to examine trends over time in the numbers and proportion of physician-scientists by sex and years since registration. They also analyzed the transition of registered physicians into and out of the physician-scientist field across two sets of two consecutive surveys (1996-1998 and 2006-2008). The number of physician-scientists between 1996 and 2008 was stable, with a low of 4,893 and a high of 5,325. The number of younger physician-scientists (those registered 0-4 years at the time of the surveys) declined sharply, however, from 828 in 1996 to 253 in 2008. The number of female physician-scientists increased from 528 in 1996 to 746 in 2008. Across the two survey periods, about 30% of physician-scientists left the career path, but this attrition was offset by about the same number of new individuals entering the field. Although the total number of physician-scientists was relatively unchanged during the period studied, it is essential that educators and policy makers develop approaches to address underlying demographic changes to ensure an adequate age- and gender-balanced supply of physician-scientists in the future.

  8. NIRCam/NGST Education and Public Outreach: ``Linking Girls with the Sky"

    NASA Astrophysics Data System (ADS)

    McCarthy, D. W., Jr.; Lebofsky, L. A.; Slater, T. F.; Rieke, M. J.; Pompea, S. M.

    2002-09-01

    Astronomical images can inspire a new generation. The clarity of the Next Generation Space Telescope (NGST), combined with the near-infrared camera's (NIRCam) ability to see farther back in time and through murky regions of space, may unveil the ``First Light" from a newborn Universe and the origins of planetary systems. The NIRCam science team, led by Dr. Marcia Rieke, unites scientists from across the U.S., Canada, and Lockheed Martin's Advanced Technology Center with prominent science educators. The E/PO program especially targets K-14 girls in a partnership with the Girl Scouts of the USA, to address such specific needs as (1) the review of existing badge programs for younger girls, (2) new, community-based activities and research experiences for older girls, (3) interaction experiences in person and on-line with inspiring mentors and role-models, and (4) leadership and training experiences for adult trainers. New activities will be inquiry-based and appropriate in both formal and informal settings. They will also used for training future teachers of science. Topics such as ``Light pollution" can be related thematically to such NGST concepts as a ``low thermal background". The Astronomy Camp facilities on historic Mt. Lemmon will be used to ``train the trainers" by providing Girl Scouts and their adult leaders hands-on experiences with 8- to 60-inch telescopes, CCD and infrared cameras, and image processing techniques. NIRCam scientists will also be involved in developing authentic research-based projects using NIRCam datasets for in-class use by middle and high school teachers. The NIRCam E/PO program is funded by NASA under prime contract, NAS502105, with Goddard Space Flight Center to The University of Arizona.

  9. Investigation of the Secondary School Students' Images of Scientists

    ERIC Educational Resources Information Center

    Akgün, Abuzer

    2016-01-01

    The overall purpose of this study is to explore secondary school students' images of scientists. In addition to this comprehensive purpose, it is also investigated that if these students' current images of scientists and those in which they see themselves as a scientist in the near future are consistent or not. The study was designed in line with…

  10. Science/Engineering: Open Doors

    NASA Technical Reports Server (NTRS)

    White, Susan; Arnold, James O. (Technical Monitor)

    1999-01-01

    Trends in American society are changing the role of women in science and engineering, but all the elements in our society change at different rates. Women, like men, must choose during their teenage years to continue their training in math or science, or they close the door that can lead them to futures in the interesting and satisfying fields of science and engineering. The key is to keep girls involved in the hard sciences through the adolescent crisis. Many mentoring and outreach programs exist to help young women cross this threshold. These programs include hands-on science experiences, mentoring or putting young women in contact with women scientists and engineers, and internships, Viewpoints and histories of contemporary women engineers are discussed.

  11. Research projects in the Surgeon-Scientist and Clinician-Investigator programs at the University of Toronto (1987-2016): a cohort study.

    PubMed

    Goldenberg, Neil M; Steinberg, Benjamin E; Rutka, James T; Chen, Robert; Cabral, Val; Rosenblum, Norman D; Kapus, Andras; Lee, Warren L

    2016-01-01

    Physicians have traditionally been at the forefront of medical research, bringing clinical questions to the laboratory and returning with ideas for treatment. However, we have anecdotally observed a decline in the popularity of basic science research among trainees. We hypothesized that fewer resident physicians have been pursuing basic science research training over time. We examined records from residents in the Surgeon-Scientist and Clinician-Investigator programs at the University of Toronto (1987-2016). Research by residents was categorized independently by 2 raters as basic science, clinical epidemiology or education-related based on the title of the project, the name of the supervisor and Pubmed searches. The study population was divided into quintiles of time, and the proportion pursuing basic science training in each quintile was calculated. Agreement between the raters was 100%; the categorization of the research topic remained unclear in 9 cases. The proportion of trainees pursuing basic science training dropped by 60% from 1987 to 2016 ( p = 0.005). Significantly fewer residents in the Surgeon-Scientist and Clinician-Investigator Programs at the University of Toronto are pursuing training in the basic sciences as compared with previous years.

  12. The lure of rationality: Why does the deficit model persist in science communication?

    PubMed

    Simis, Molly J; Madden, Haley; Cacciatore, Michael A; Yeo, Sara K

    2016-05-01

    Science communication has been historically predicated on the knowledge deficit model. Yet, empirical research has shown that public communication of science is more complex than what the knowledge deficit model suggests. In this essay, we pose four lines of reasoning and present empirical data for why we believe the deficit model still persists in public communication of science. First, we posit that scientists' training results in the belief that public audiences can and do process information in a rational manner. Second, the persistence of this model may be a product of current institutional structures. Many graduate education programs in science, technology, engineering, and math (STEM) fields generally lack formal training in public communication. We offer empirical evidence that demonstrates that scientists who have less positive attitudes toward the social sciences are more likely to adhere to the knowledge deficit model of science communication. Third, we present empirical evidence of how scientists conceptualize "the public" and link this to attitudes toward the deficit model. We find that perceiving a knowledge deficit in the public is closely tied to scientists' perceptions of the individuals who comprise the public. Finally, we argue that the knowledge deficit model is perpetuated because it can easily influence public policy for science issues. We propose some ways to uproot the deficit model and move toward more effective science communication efforts, which include training scientists in communication methods grounded in social science research and using approaches that engage community members around scientific issues. © The Author(s) 2016.

  13. NHLBI workshop: respiratory medicine-related research training for adult and pediatric fellows.

    PubMed

    Choi, Augustine M K; Reynolds, Herbert Y; Colombini-Hatch, Sandra; Rothgeb, Ann; Blaisdell, Carol J; Gail, Dorothy B

    2009-01-01

    The pulmonary physician-scientist has a special niche to generate basic research findings and apply them to a clinical disease and perhaps impact its medical care. The availability of new high throughput-based scientific technologies in the "omics era" has made this an opportune time for physician scientists to prepare and embark on an academic career in respiratory disease research. However, maintaining an adequate flow through the research pipeline of physician-scientist investigators studying respiratory system diseases is currently a challenge. There may not be a sufficient workforce emerging to capitalize on current research opportunities. The National Heart, Lung, and Blood Institute (NHLBI) organized a workshop to assess ways to attract and properly train advanced fellows to pursue research careers in adult and pediatric lung diseases. Participants included representatives from the various pulmonary training programs, respiratory-related professional societies, and NHLBI staff. Deliberation centered on present barriers that might affect interest in pursuing research training, devising better incentives to attract more trainees, and how current research support offered by the NHLBI and the Professional Societies (in partnership with Industry and Patient Support groups) might be better coordinated and optimized to ensure a continued pipeline of pulmonary investigators. Major recommendations offered are: (1) Attract trainees to pulmonary/critical care medicine-based research careers by increasing research exposure and opportunities for high school, college, and medical students. (2) Increase awareness of the outstanding physician-scientist role models in the lung community for trainees. (3) Facilitate mechanisms by which the lung community (NHLBI, professional societies, and partners) can better support and bridge senior fellows as they transition from Institutional Training Grants (T32) to Career Series (K) awards in their early faculty career development.

  14. Can a Clinician-Scientist Training Program Develop Academic Orthopaedic Surgeons? One Program's Thirty-Year Experience.

    PubMed

    Brandt, Aaron M; Rettig, Samantha A; Kale, Neel K; Zuckerman, Joseph D; Egol, Kenneth A

    2017-10-25

    Clinician-scientist numbers have been stagnant over the past few decades despite awareness of this trend. Interventions attempting to change this problem have been seemingly ineffective, but research residency positions have shown potential benefit. We sought to evaluate the effectiveness of a clinician-scientist training program (CSTP) in an academic orthopedic residency in improving academic productivity and increasing interest in academic careers. Resident training records were identified and reviewed for all residents who completed training between 1976 and 2014 (n = 329). There were no designated research residents prior to 1984 (pre-CSTP). Between 1984 and 2005, residents self-selected for the program (CSTP-SS). In 2005, residents were selected by program before residency (CSTP-PS). Residents were also grouped by program participation, research vs. clinical residents (RR vs. CR). Data were collected on academic positions and productivity through Internet-based and PubMed search, as well as direct e-mail or phone contact. Variables were then compared based on the time duration and designation. Comparing all RR with CR, RR residents were more likely to enter academic practice after training (RR, 34%; CR, 20%; p = 0.0001) and were 4 times more productive based on median publications (RR, 14; CR, 4; p < 0.0001). Furthermore, 42% of RR are still active in research compared to 29% of CR (p = 0.04), but no statistical difference in postgraduate academic productivity identified. The CSTP increased academic productivity during residency for the residents and the program. However, this program did not lead to a clear increase in academic productivity after residency and did not result in more trainees choosing a career as clinician-scientists. Copyright © 2017 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.

  15. Clinician-scientists in Canada: barriers to career entry and progress.

    PubMed

    Lander, Bryn; Hanley, Gillian E; Atkinson-Grosjean, Janet

    2010-10-04

    Clinician-scientists play an important role in translating between research and clinical practice. Significant concerns about a decline in their numbers have been raised. Potential barriers for career entry and progress are explored in this study. Case-study research methods were used to identify barriers perceived by clinician-scientists and their research teams in two Canadian laboratories. These perceptions were then compared against statistical analysis of data from Canadian Institutes of Health Research (CIHR) databases on grant and award performance of clinician-scientists and non-clinical PhDs for fiscal years 2000 to 2008. Three main barriers were identified through qualitative analysis: research training, research salaries, and research grants. We then looked for evidence of these barriers in the Canada-wide statistical dataset for our study period. Clinician-scientists had a small but statistically significant higher mean number of degrees (3.3) than non-clinical scientists (3.2), potentially confirming the perception of longer training times. But evidence of the other two barriers was equivocal. For example, while overall growth in salary awards was minimal, awards to clinician-scientists increased by 45% compared to 6.3% for non-clinical PhDs. Similarly, in terms of research funding, awards to clinician-scientists increased by more than 25% compared with 5% for non-clinical PhDs. However, clinician-scientist-led grants funded under CIHR's Clinical thematic area decreased significantly from 61% to 51% (p-value<0.001) suggesting that clinician-scientists may be shifting their attention to other research domains. While clinician-scientists continue to perceive barriers to career entry and progress, quantitative results suggest improvements over the last decade. Clinician-scientists are awarded an increasing proportion of CIHR research grants and salary awards. Given the translational importance of this group, however, it may be prudent to adopt specific policy and funding incentives to ensure the ongoing viability of the career path.

  16. Clinician-Scientists in Canada: Barriers to Career Entry and Progress

    PubMed Central

    Lander, Bryn; Hanley, Gillian E.; Atkinson-Grosjean, Janet

    2010-01-01

    Background Clinician-scientists play an important role in translating between research and clinical practice. Significant concerns about a decline in their numbers have been raised. Potential barriers for career entry and progress are explored in this study. Methods Case-study research methods were used to identify barriers perceived by clinician-scientists and their research teams in two Canadian laboratories. These perceptions were then compared against statistical analysis of data from Canadian Institutes of Health Research (CIHR) databases on grant and award performance of clinician-scientists and non-clinical PhDs for fiscal years 2000 to 2008. Results Three main barriers were identified through qualitative analysis: research training, research salaries, and research grants. We then looked for evidence of these barriers in the Canada-wide statistical dataset for our study period. Clinician-scientists had a small but statistically significant higher mean number of degrees (3.3) than non-clinical scientists (3.2), potentially confirming the perception of longer training times. But evidence of the other two barriers was equivocal. For example, while overall growth in salary awards was minimal, awards to clinician-scientists increased by 45% compared to 6.3% for non-clinical PhDs. Similarly, in terms of research funding, awards to clinician-scientists increased by more than 25% compared with 5% for non-clinical PhDs. However, clinician-scientist-led grants funded under CIHR's Clinical thematic area decreased significantly from 61% to 51% (p-value<0.001) suggesting that clinician-scientists may be shifting their attention to other research domains. Conclusion While clinician-scientists continue to perceive barriers to career entry and progress, quantitative results suggest improvements over the last decade. Clinician-scientists are awarded an increasing proportion of CIHR research grants and salary awards. Given the translational importance of this group, however, it may be prudent to adopt specific policy and funding incentives to ensure the ongoing viability of the career path. PMID:20957175

  17. Contemporary Pacific and Western perspectives on `awa (Piper methysticum) toxicology.

    PubMed

    Showman, Angelique F; Baker, Jonathan D; Linares, Christina; Naeole, Chrystie K; Borris, Robert; Johnston, Edward; Konanui, Jerry; Turner, Helen

    2015-01-01

    In 2010, a National Science Foundation project in Hawai`i assembled a collaboration of Pacific indigenous scientists, Hawaiian cultural practitioners and scientists trained in Western pharmacology. The objective of the collaborative project was to study Kava, a culturally significant Pacific beverage, and to address and ultimately transcend, long-standing barriers to communication and collaboration between these groups. Kava is a product of the `awa plant (Piper methysticum) that has been used ceremonially and medicinally throughout the history of Pacific Island cultures, and is now in widespread recreational and nutraceutical use in the US. This project, culminating in 2015, has enriched the participants, led to published work that integrates cultural and Western pharmacologic perspectives and established a paradigm for collaboration. This review paper integrates cultural and Western perspectives on efficacy, toxicity and the future cultural and commercial significance of `awa in the Pacific. Here we present a detailed review of traditional and non-traditional kava usage, medicinal efficacy and potential toxicological concerns. Recent mechanistic data on physiological action and potential pathological reactions are evaluated and interpreted. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Envisioning the future of 'big data' biomedicine.

    PubMed

    Bui, Alex A T; Van Horn, John Darrell

    2017-05-01

    Through the increasing availability of more efficient data collection procedures, biomedical scientists are now confronting ever larger sets of data, often finding themselves struggling to process and interpret what they have gathered. This, while still more data continues to accumulate. This torrent of biomedical information necessitates creative thinking about how the data are being generated, how they might be best managed, analyzed, and eventually how they can be transformed into further scientific understanding for improving patient care. Recognizing this as a major challenge, the National Institutes of Health (NIH) has spearheaded the "Big Data to Knowledge" (BD2K) program - the agency's most ambitious biomedical informatics effort ever undertaken to date. In this commentary, we describe how the NIH has taken on "big data" science head-on, how a consortium of leading research centers are developing the means for handling large-scale data, and how such activities are being marshalled for the training of a new generation of biomedical data scientists. All in all, the NIH BD2K program seeks to position data science at the heart of 21 st Century biomedical research. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Effect of prolonged space flight on cardiac function and dimensions

    NASA Technical Reports Server (NTRS)

    Henry, W. L.; Epstein, S. E.; Griffith, J. M.; Goldstein, R. E.; Redwood, D. R.

    1974-01-01

    Echocardiographic studies were performed preflight 5 days before launch and on recovery day and 1, 2, 4, 11, 31 and 68 days postflight. From these echocardiograms measurements were made. From these primary measurements, left ventricular end-diastolic volume, end-systolic volume, stroke volume, and mass were derived using the accepted assumptions. Findings in the Scientist Pilot and Pilot resemble those seen in trained distance runners. Wall thickness measurements were normal in all three crewmembers preflight. Postflight basal studies were unchanged in the Commander on recovery day through 68 days postflight in both the Scientist Pilot and Pilot, however, the left ventricular end-diastolic volume, stroke volume, and mass were decreased slightly. Left ventricular function curves were constructed for the Commander and Pilot by plotting stroke volume versus end-diastolic volume. In both astronauts, preflight and postflight data fell on the same straight line demonstrating that no deterioration in cardiac function had occurred. These data indicate that the cardiovascular system adapts well to prolonged weightlessness and suggest that alterations in cardiac dimensions and function are unlikely to limit man's future in space.

  20. High school students as science researchers: Opportunities and challenges

    NASA Astrophysics Data System (ADS)

    Smith, W. R.; Grannas, A. M.

    2007-12-01

    Today's K-12 students will be the scientists and engineers who bring currently emerging technologies to fruition. Existing research endeavors will be continued and expanded upon in the future only if these students are adequately prepared. High school-university collaborations provide an effective means of recruiting and training the next generation of scientists and engineers. Here, we describe our successful high school-university collaboration in the context of other models. We have developed an authentic inquiry-oriented environmental chemistry research program involving high school students as researchers. The impetus behind the development of this project was twofold. First, participation in authentic research may give some of our students the experience and drive to enter technical studies after high school. One specific goal was to develop a program to recruit underrepresented minorities into university STEM (science, technology, engineering, and mathematics) programs. Second, inquiry-oriented lessons have been shown to be highly effective in developing scientific literacy among the general population of students. This collaboration involves the use of local resources and equipment available to most high schools and could serve as a model for developing high school- university partnerships.

  1. Presenting Food Science Effectively

    ERIC Educational Resources Information Center

    Winter, Carl K.

    2016-01-01

    While the need to present food science information effectively is viewed as a critical competency for food scientists by the Institute of Food Technologists, most food scientists may not receive adequate training in this area. Effective presentations combine both scientific content and delivery mechanisms that demonstrate presenter enthusiasm for…

  2. Teaching, Practice, Feedback: 15 years of COMPASS science communication training

    NASA Astrophysics Data System (ADS)

    Neeley, L.; Smith, B.; McLeod, K.; English, C. A.; Baron, N.

    2014-12-01

    COMPASS is focused on helping scientists build the skills and relationships they need to effectively participate in public discourse. Founded in 2001 with an emphasis on ocean science, and since expanding to a broader set of environmental sciences, we have advised, coached, and/or trained thousands of researchers of all career stages. Over the years, our primary work has notably shifted from needing to persuade scientists why communication matters to supporting them as they pursue the question of what their communication goals are and how best to achieve them. Since our earliest forays into media promotion, we have evolved with the state of the science communication field. In recent years, we have adapted our approach to one that facilitates dialogue and encourages engagement, helps scientists identify the most relevant people and times to engage, tests our own assumptions, and incorporates relevant social science as possible. In this case study, we will discuss more than a decade of experience in helping scientists find or initiate and engage in meaningful conversations with journalists and policymakers.

  3. Teaching Scholarly Activity in Psychiatric Training: Years 6 and 7

    ERIC Educational Resources Information Center

    Zisook, Sidney; Boland, Robert; Cowley, Deborah; Cyr, Rebecca L.; Pato, Michele T.; Thrall, Grace

    2013-01-01

    Objective: To address nationally recognized needs for increased numbers of psychiatric clinician-scholars and physician-scientists, the American Association of Directors of Psychiatric Residency Training (AADPRT) has provided a series of full-day conferences of psychiatry residency training directors designed to increase their competence in…

  4. Heliophysics

    NASA Astrophysics Data System (ADS)

    Austin, M.; Guhathakurta, M.; Bhattacharjee, A.; Longcope, D. W.; Sojka, J. J.

    2010-12-01

    Heliophysics Summer Schools. NASA Living With a Star and the University Corporation for Atmospheric Research, Visiting Scientist Programs sponsor the Heliophysics Summer Schools to build the next generation of scientists in this new field. The series of summer schools (commencing 2007) trains graduate students, postdoctoral fellows and university faculty to learn and develop the science of heliophysics as a broad, coherent discipline that reaches in space from the Earth’s troposphere to the depths of the Sun, and in time from the formation of the solar system to the distant future. The first three years of the school resulted in the publication of three textbooks for use at universities worldwide. Subsequent years will both teach generations of students and faculty and develop the complementary materials that support teaching of heliophysics at both graduate and undergraduate levels. Heliophysics is a developing scientific discipline integrating studies of the Sun’s variability, the surrounding heliopsphere, and climate environments. Over the past few centuries, our understanding of how the Sun drives space weather and climate on the Earth and other planets has advanced at an ever-increasing rate. The three volumes, “Plasma Physics of the Local Cosmos”, “Space Storms and Radiation: Causes and Effects” and “Evolving Solar Activity and the Climates of Space and Earth”, edited by Carolus J. Schrijver, Lockheed Martin, and George L. Siscoe, Boston University, integrate such diverse topics for the first time as a coherent intellectual discipline. The books may be ordered through Cambridge University Press, and provide a foundational reference for researchers in heliophysics, astrophysics, plasma physics, space physics, solar physics, aeronomy, space weather, planetary science and climate science. Heliophysics Postdoctoral Program. Hosting/mentoring scientists and postdoctoral fellows are invited to apply to this new program designed to train the next generation of researchers in heliophysics. Two major topics of focus for LWS are the science of space weather and of the Sun-climate connection. Preference is given to applicants whose proposed research addresses one of these two foci; but any research program relevant to LWS is considered. Since the goal of this fellowship program is to train Sun-Earth system researchers, preference is also given to research projects that cross the traditional heliophysics subdomains of the Sun, heliosphere, magnetosphere, and ionosphere/upper atmosphere, as well as Sun-climate investigations. Host institutions and mentoring scientists will play critical roles. Interested hosts may submit information about their research on a central database for this program: http://www.vsp.ucar.edu/Heliophysics/

  5. The collaborative African genomics network training program: A trainee perspective on training the next generation of African scientists

    USDA-ARS?s Scientific Manuscript database

    The Collaborative African Genomics Network (CAfGEN) aims to establish sustainable genomics research programs in Botswana and Uganda through long-term training of PhD students from these countries at Baylor College of Medicine. Here, we present an overview of the CAfGEN PhD training program alongside...

  6. Pavlov and Cajal: Two different pathways to a Nobel Prize.

    PubMed

    Rozo, Jairo A; Andrade-Talavera, Yuniesky; Rodríguez-Moreno, Antonio

    2017-01-01

    Ivan Pavlov (1849-1936) and Santiago Ramón y Cajal (1852-1934) were two contemporary scientists who not only had a great impact on Russian and Spanish science but also on the international stage. Both shared several common features in their life and work, yet they followed fundamentally different paths during their training as scientists. While Pavlov received his laboratory training under the guidance of Ilya Tsion (1843-1912), Cajal did not receive any formal training within a particular laboratory nor did he have a mentor in the traditional sense, rather he was mainly self-taught, although he was supported by key figures like Maestre de San Juan (1828-1890) and Luis Simarro (1851-1921). In this article, we compare the scientific training of these two Nobel Prize laureates and the influences they received during their scientific lives.

  7. Mentorship: Concepts and Application to Plastic Surgery Training Programs

    PubMed Central

    Franzblau, Lauren E.; Kotsis, Sandra V.; Chung, Kevin C.

    2016-01-01

    Background Countless papers have demonstrated and emphasized the importance of mentoring in academic medicine. However, the upcoming role of mentors in the evolving medical field is poorly defined. As translational medicine, collaboration, and healthcare priorities change, so too must the goals and usage of mentoring. The aims of this paper are to demonstrate key aspects of effective mentoring in academic plastic surgery, show institutions how to cultivate mentoring relationships among their faculty and trainees, and provide direction for how to optimize the future use of mentoring to best prepare the next generation of plastic surgeons. Methods We reviewed the current literature regarding mentorship and the evolution of academic medicine. Results Mentors not only facilitate their protégés’ entrance into the field and future success, but can also attract medical students and residents to careers in research and abet the racial and gender discrepancies in plastic surgery and academia. Ideally faculty should undergo some form of training before they enter mentoring relationships. This will ensure that they are aware of their specific duties as mentors, are able to communicate with mentees, and can avoid potential pitfalls. Conclusions Mentorship is a tool. If used correctly, it can help recruit and retain talented physician-scientists to plastic surgery to satisfy the growing demand. This will require institutions to actively support mentorship, provide opportunities and resources for training mentors, and enable faculty to allocate time to this vital pursuit. PMID:23629123

  8. Overview of the Future Forest Webinar Series [Chapter 1

    Treesearch

    Sarah Hines; Megan Matonis

    2014-01-01

    The Future Forest Webinar Series was created to facilitate dialogue between scientists and managers about the challenges and opportunities created by the mountain pine beetle1 (MPB) epidemic. A core team of scientists and managers from the USFS Rocky Mountain Research Station and the Northern and Rocky Mountain Regions worked together to develop the format and content...

  9. Vannevar Bush: Fifty Years Later

    NASA Astrophysics Data System (ADS)

    Lagowski, J. J.

    1995-12-01

    It is ironic that the 50th anniversary year of Vannevar Bush's Report to President Truman entitled "Science the Endless Frontier", which put into motion the eminently successful current system of education of scientists in this country occurs at a time when serious questions are being asked about the usefulness of that very system. Bush viewed his proposal to establish a national research foundation (later to be called the National Science Foundation) as a "social compact." Judgment of scientific merit would be delegated to expert peers in return for scientific progress, which would ultimately benefit the nation in terms of scientific needs--military security, economic productivity, and enhanced quality of life. Bush wanted the funding of basic research intertwined with training, and preferred to use universities for this purpose rather than industrial or national labs. Bush viewed college and university scientists as teachers and investigators. He believed university-based research would uniquely encourage and engage the next generation of scientists as no other institutional arrangement could. Bush did not trust industry's commitment to basic research, an instinct that proved prophetic. The academic reserve of scientists (PhD's in training and postdoctoral students) that existed before World War II, and upon which the United States could draw for its needs, which were primarily associated with defense efforts, was probably one of the defining factors in Bush's suggested strategy. Currently, that reserve of talent has gotten so large that it is the obvious throttle in the pipeline slowing the continued development of the university research enterprise. Since 1977, the rate at which we have trained new scientists exceeds an average of 4% annually. Since 1987, the "science work force"--PhD's--has grown at three times the rate of the general labor supply. Temporary positions for postdoctoral scientists have grown even faster (over 5% per year since 1989). To compound the problem, the 1990 Immigration Reform Act resulted in a tripling of job-based visas, with scientists representing nearly one-third of the total. In 1979, two of every three postdoctoral scientists were U.S.-born; in 1992, the ratio was about one to one. Over that period, the cohort of postdoctoral scientists grew from 18,000 to 33,000. Adding to the coincidence of events that have compounded one another is the admission of 20,000 Chinese scientists in a ten-year period, the sudden and unexpected availability of Russian scientists, the elimination of many industrial laboratories as a result of downsizing, changes in the mandatory retirement age for faculty, and the disappearance of the Cold War, which all but eliminated the need for scientists for national security purposes. Is it any wonder that postdoctoral scientists have been called the migrant workers of today's high-tech society? What once was a reservoir of enthusiastic talent is becoming a dumping ground for credentialed and capable scientists exiled from the main stream of their disciplines. From a broader point of view, the problems facing U.S. science are those of our society: an imposing deficit that is shrinking discretionary funding; the end of the Cold War, which has refocused spending for national security; and a robust science work force that can no longer expand. The business world's response to these societal problems is, basically, downsizing, which often means the elimination of large segments of the work force, usually at the middle-management level. The initial academic response to these same problems is either to insist on more resources being made available, usually through federal agencies, in an attempt to maintain the status quo, or to engage in some form of "academic birth control." The former strategy is unrealistic because it just perpetuates the problem; there will never be enough research professorships in the academic world for every aspiring PhD produced in a discipline. The latter strategy will invariably decrease the flow of truly new knowledge in a discipline, a process that will eventually affect the viability of our technology base. Some argue for a third view, namely, expanding the career options for PhD's by altering the details of the training process. If there was a flaw in the Bush plan, it was to be found in the implicit premise that an ever-growing supply of scientists would stimulate new demand for scientific expertise, not just in government and universities, but in industry and the professional venues. Bush probably never expected that, because of federal funding, university scientists would in 50 years produce not just the national reserve of scientists he sought to develop, but a growing number of young PhD's, many of whom wanted nothing more--and nothing less--than to be university scientists themselves. Bush probably never guessed at the efficiency of the process for the education of scientists he set into motion. The absence of a plan to complement supply with demand is one source of the inherent structural problem in American science today. Young PhD's do not receive a sufficiently versatile training to do anything other than academic scientific research. Science as a way of knowing is clearly a sound foundation for a variety of careers. Numerous opportunities exist that can use the skills of the scientist while rewarding creativity, autonomy, problem-solving, industriousness, and the yearning for knowledge--all the characteristics associated with well-trained scientists. The challenge for academe is to refine or adapt Vannevar Bush's original "social contract" into a new one, more appropriate for the 21st century.

  10. Doctoral Scientists in Oceanography.

    ERIC Educational Resources Information Center

    National Academy of Sciences-National Research Council, Washington, DC. Assembly of Mathematical and Physical Sciences.

    The purpose of this report was to classify and count doctoral scientists in the United States trained in oceanography and/or working in oceanography. Existing data from three sources (National Research Council's "Survey of Earned Doctorates," and "Survey of Doctorate Recipients," and the Ocean Sciences Board's "U.S. Directory of Marine…

  11. NASA GSFC Science Communication Working Group: Addressing Barriers to Scientist and Engineer Participation in Education and Public Outreach Activities

    NASA Astrophysics Data System (ADS)

    Bleacher, L.; Hsu, B. C.; Campbell, B. A.; Hess, M.

    2011-12-01

    The Science Communication Working Group (SCWG) at NASA Goddard Space Flight Center (GSFC) has been in existence since late 2007. The SCWG is comprised of education and public outreach (E/PO) professionals, public affairs specialists, scientists, and engineers. The goals of the SCWG are to identify barriers to scientist and engineer engagement in E/PO activities and to enable those scientists and engineers who wish to contribute to E/PO to be able to do so. SCWG members have held meetings with scientists and engineers across GSFC to determine barriers to their involvement in E/PO. During these meetings, SCWG members presented examples of successful, ongoing E/PO projects, encouraged active research scientists and engineers to talk about their own E/PO efforts and what worked for them, discussed the E/PO working environment, discussed opportunities for getting involved in E/PO (particularly in high-impact efforts that do not take much time), handed out booklets on effective E/PO, and asked scientists and engineers what they need to engage in E/PO. The identified barriers were consistent among scientists in GSFC's four science divisions (Earth science, planetary science, heliophysics, and astrophysics). Common barriers included 1) lack of time, 2) lack of funding support, 3) lack of value placed on doing E/PO by supervisors, 4) lack of training on doing appropriate/effective E/PO for different audiences, 5) lack of awareness and information about opportunities, 6) lack of understanding of what E/PO really is, and 7) level of effort required to do E/PO. Engineers reported similar issues, but the issues of time and funding support were more pronounced due to their highly structured work day and environment. Since the barriers were identified, the SCWG has taken a number of steps to address and rectify them. Steps have included holding various events to introduce scientists and engineers to E/PO staff and opportunities including an E/PO Open House, brown bag seminars on various E/PO topics, and an E/PO proposal writing workshop. SCWG members have also worked to incorporate information about E/PO, including what it is, points of contact, and opportunities for participation, into ongoing training sessions at GSFC, such as New Employee Orientation, Road to Mission Success, and Project Scientist Training. In addition, SCWG members have met with GSFC's upper management to voice barriers and concerns raised by scientists and engineers. We will expand on the barriers, efforts to address them, and the results of those efforts.

  12. Research Training Needs of Scientist-Practitioners: Implications for Counselor Education

    ERIC Educational Resources Information Center

    Peterson, Christina Hamme; Hall, Sean B.; Buser, Juleen K.

    2016-01-01

    Counselors (N = 911) reported the research skills needed for practice and subsequent research training needs. Findings indicate that counselors have a high need for research skills at work, but training needs differ significantly by counselor type. Recommendations include increasing emphasis on single-case design, survey design, and widely…

  13. Factors Influencing Postsecondary STEM Students' Views of the Public Communication of an Emergent Technology: a Cross-National Study from Five Universities

    NASA Astrophysics Data System (ADS)

    Gardner, Grant E.; Jones, M. Gail; Albe, Virginie; Blonder, Ron; Laherto, Antti; Macher, Daniel; Paechter, Manuela

    2017-10-01

    Recent efforts in the science education community have highlighted the need to integrate research and theory from science communication research into more general science education scholarship. These synthesized research perspectives are relatively novel but serve an important need to better understand the impacts that the advent of rapidly emerging technologies will have on a new generation of scientists and engineers including their formal communication with engaged citizenry. This cross-national study examined postsecondary science and engineering students' ( n = 254 from five countries: Austria, Finland, France, Israel, and USA) perspectives on the role of science communication in their own formal science and engineering education. More broadly, we examined participants' understanding of their perceived responsibilities of communicating science and engineering to the general public when an issue contains complex social and ethical implications (SEI). The study is contextualized in the emergent technology of nanotechnology for which SEI are of particular concern and for which the general public often perceives conflicting risks and benefits. Findings indicate that student participants' hold similar views on the need for their own training in communication as future scientists and engineers. When asked about the role that ethics and risk perception plays in research, development, and public communication of nanotechnology, participants demonstrate similar trajectories of perspectives that are, however, often anchored in very different levels of beginning concern. Results are discussed in the context of considerations for science communication training within formal science education curricula globally.

  14. An imminent human resource crisis in ground water hydrology?

    PubMed

    Stephens, Daniel B

    2009-01-01

    Anecdotal evidence, mostly from the United States, suggests that it has become increasingly difficult to find well-trained, entry-level ground water hydrologists to fill open positions in consulting firms and regulatory agencies. The future prospects for filling positions that require training in ground water hydrology are assessed by considering three factors: the market, the numbers of qualified students entering colleges and universities, and the aging of the existing workforce. The environmental and water resources consulting industry has seen continuous albeit variable growth, and demand for environmental scientists and hydrologists is expected to increase significantly. Conversely, students' interest and their enrollment in hydrology and water resources programs have waned in recent years, and the interests of students within these departments have shifted away from ground water hydrology in some schools. This decrease in the numbers of U.S. students graduating in hydrology or emphasizing ground water hydrology is coinciding with the aging of and pending retirement of ground water scientists and engineers in the baby boomer generation. We need to both trigger the imagination of students at the elementary school level so that they later want to apply science and math and communicate the career opportunities in ground water hydrology to those high school and college graduates who have acquired the appropriate technical background. Because the success of a consulting firm, research organization, or regulatory agency is derived from the skills and judgment of the employees, human resources will be an increasingly more critical strategic issue for many years.

  15. Ensuring PhD development of responsible conduct of research behaviors: who's responsible?

    PubMed

    Titus, Sandra L; Ballou, Janice M

    2014-03-01

    The importance of public confidence in scientific findings and trust in scientists cannot be overstated. Thus, it becomes critical for the scientific community to focus on enhancing the strategies used to educate future scientists on ethical research behaviors. What we are lacking is knowledge on how faculty members shape and develop ethical research standards with their students. We are presenting the results of a survey with 3,500 research faculty members. We believe this is the first report on how faculty work with and educate their PhD students on basic research standards. Specifically, we wanted to determine whether individual faculty members, who are advisors or mentors, differ in how they implemented components of responsible conduct of research (RCR) with their PhD students. Mentors were more likely than advisors or supervisors to report working with all of their PhDs, who graduated in the last 5 years, on the 17 recognized critical components of RCR training and research skill development. We also found about half of the faculty members believe RCR is an institutional responsibility versus a faculty responsibility. Less than a quarter have had opportunities to participate in faculty training to be a better mentor, advisor, or research teacher, and about one third of faculty did not or could not remember whether they had guidelines related to their responsibilities to PhD students. We discuss the implications of our findings and focus on ways that PhD research mentoring can be enhanced.

  16. Scientists as Communicators: Inclusion of a Science/Education Liaison on Research Expeditions

    NASA Astrophysics Data System (ADS)

    Sautter, L. R.

    2004-12-01

    Communication of research and scientific results to an audience outside of one's field poses a challenge to many scientists. Many research scientists have a natural ability to address the challenge, while others may chose to seek assistance. Research cruise PIs maywish to consider including a Science/Education Liaison (SEL) on future grants. The SEL is a marine scientist whose job before, during and after the cruise is to work with the shipboard scientists to document the science conducted. The SEL's role is three-fold: (1) to communicate shipboard science activities near-real-time to the public via the web; (2) to develop a variety of web-based resources based on the scientific operations; and (3) to assist educators with the integration of these resources into classroom curricula. The first role involves at-sea writing and relaying from ship-to-shore (via email) a series of Daily Logs. NOAA Ocean Exploration (OE) has mastered the use of web-posted Daily Logs for their major expeditions (see their OceanExplorer website), introducing millions of users to deep sea exploration. Project Oceanica uses the OE daily log model to document research expeditions. In addition to writing daily logs and participating on OE expeditions, Oceanica's SEL also documents the cruise's scientific operations and preliminary findings using video and photos, so that web-based resources (photo galleries, video galleries, and PhotoDocumentaries) can be developed during and following the cruise, and posted on the expedition's home page within the Oceanica web site (see URL). We have created templates for constructing these science resources which allow the shipboard scientists to assist with web resource development. Bringing users to the site is achieved through email communications to a growing list of educators, scientists, and students, and through collaboration with the COSEE network. With a large research expedition-based inventory of web resources now available, Oceanica is training teachers and college faculty on the use and incorporation of these resources into middle school, high school and introductory college classrooms. Support for a SEL on shipboard expeditions serves to catalyze the dissemination of the scientific operations to a broad audience of users.

  17. Hefzibah Eyal-Giladi (1925-2017): over fifty years of embryological research in Israel.

    PubMed

    Khaner, Oded

    2017-01-01

    Hefzibah Eyal-Giladi was a creative and innovative pioneering scientist in the creation of the field of early chick embryo development. She had a sharp thinking and enthusiastic attitude, which enabled her to make a deep impression that was highly valued by the general scientific community. Notably, she was a highly successful female researcher in an era which was dominated by male scientists. Her unique personality and keen intellect enabled her to break these borders in a most successful manner. The experiments conducted by her personally, her students and her collaborators served to provide the basic knowledge and paradigms for future scientists in the field, also paving the way for discoveries in other vertebrate model systems. The experimental embryology assays she performed were "old school", examining embryos and explants at a precise morphological level of tissue interactions. In recent years, most of the experimentation in embryology has shifted to molecular and genetic levels. However, the results obtained with these technologically advanced research tools still re-confirm the fundamental findings obtained by Eyal-Giladi using "classic" experimental embryology techniques. Finally, Hefzibah Eyal-Giladi was an outstanding teacher and lecturer. For five decades, she trained and taught generations of undergraduate and graduate students in Israel, exposing them to the field of embryology and developmental biology in the most exciting and enthusiastic way.

  18. For good measure: Origins and prospects of exposure science (2007 Wesolowski Award Lecture).

    PubMed

    Fenske, Richard A

    2010-09-01

    Measurement is the foundation of exposure science. Associations between illness and environmental agents have been observed for millennia, but the ability to quantify exposure and dose has been possible only in the last century. Improved means of measurement and refined concepts of who, what, when, where, and why to measure have been the seminal contributions of exposure science to the study of disease causation and prevention. This paper examines critical advancements in exposure assessment associated with workplace health and safety, and the groundbreaking work of the US Public Health Service. Many of the key concepts of modern exposure science have their origin in these early studies. Occupational hygiene scientists have conducted receptor-based exposure analyses for more than 80 years, evaluating indoor air, defining microenvironments, and developing personal sampling techniques. Biological monitoring of community populations including children, dermal exposure monitoring, duplicate diet studies, and multi-pathway, aggregate exposure assessments can be traced to early public health studies. As we look to the future, we see that new technologies and techniques are expanding the scope of exposure science dramatically. We need to ensure that the highest of scientific standards are maintained, make a greater effort to include occupational hygiene scientists, microbiologists, and behavioral scientists in the field, and promote new sources of training and research support. Exposure science has a critical role to play in the prevention strategy that is central to public health.

  19. Educating the Next Generation of Agricultural Scientists.

    ERIC Educational Resources Information Center

    National Academy of Sciences - National Research Council, Washington, DC. Board on Agriculture.

    The Committee on Evaluation of Trends in Agricultural Research at the Doctoral and Postdoctoral Level was established to analyze issues related to the next generation of agricultural scientists. This report contains the findings, conclusions, and recommendations regarding the status and future needs of agricultural scientists. This report focuses…

  20. Twenty years of the Journal of Clinical Psychology in Medical Settings: we hope you will enjoy the show.

    PubMed

    Rozensky, Ronald H; Tovian, Steven M; Sweet, Jerry J

    2014-03-01

    The 20th anniversary of the Journal of Clinical Psychology in Medical Settings is celebrated by highlighting the scientist-practitioner philosophy on which it was founded. The goal of the Journal-to provide an outlet for evidence-based approaches to healthcare that underscore the important scientific and clinical contributions of psychology in medical settings-is discussed. The contemporary relevance of this approach is related to the current implementation of the Patient Protection and Affordable Care and its focus on accountability and the development of an interprofessional healthcare workforce; both of which have been foci of the Journal throughout its history and will continue to be so into the future. Several recommendations of future topic areas for the Journal to highlight regarding scientific, practice, policy, and education and training in professional health service psychology are offered. Successfully addressing these topics will support the growth of the field of psychology in the ever evolving healthcare system of the future and continue ensure that the Journal is a key source of professional information in health service psychology.

  1. NASA Space Biology Research Associate Program for the 21st Century

    NASA Technical Reports Server (NTRS)

    Sonnenfeld, Gerald

    1999-01-01

    The Space Biology Research Associate Program for the 21st Century provided a unique opportunity to train individuals to conduct biological research in hypo- and hyper-gravity, and to conduct ground-based research. This grant was developed to maximize the potential for Space Biology as an emerging discipline and to train a cadre of space biologists. The field of gravitational and space biology is rapidly growing at the future of the field is reflected in the quality and education of its personnel. Our chief objective was to train and develop these scientists rapidly and in a cost effective manner. The program began on June 1, 1980 with funding to support several Research Associates each year. 113 awards, plus 1 from an independently supported minority component were made for the Research Associates program. The program was changed from a one year award with a possibility for renewal to a two year award. In 1999, the decision was made by NASA to discontinue the program due to development of new priorities for funding. This grant was discontinued because of the move of the Program Director to a new institution; a new grant was provided to that new institution to allow completion of the training of the remaining 2 research associates in 1999. After 1999, the program will be discontinued.

  2. GPS survey of the western Tien Shan

    NASA Technical Reports Server (NTRS)

    Hager, Bradford H.; Molnar, Peter H.; Hamburger, Michael W.; Reilinger, Robert E.

    1995-01-01

    There were two major developments in 1994 in our collaborative GPS experiment in the Tien Shan of the Former Soviet Union (FSU). Both were motivated by our expectation that we will ultimately obtain better science at lower cost if we involve our colleagues in the FSU more deeply in (1) the collection and (2) the analysis of data. As an experimental test of the concept of having our local collaborators carry out the field work semi-autonomously, we sent 6 MIT receivers to the Tien Shan for a period of 3 months. To enable our collaborators to have the capability for data analysis, we provided computers for two data analysis centers and organized a two-week training session. This report emphasizes the rationale for deeper involvement of FSU scientists, describes the training sessions, discusses the data collection, and presents the results. We also discuss future plans. More detailed discussion of background, general scientific objectives, discussions with collaborators, and results for the campaigns in 1992 and 1993 have been given in previous reports.

  3. Cooperative Fish and Wildlife Research Units - A model partnership program

    USGS Publications Warehouse

    Dennerline, Donald E.; Childs, Dawn E.

    2017-04-20

    The U.S. Geological Survey (USGS) Cooperative Fish and Wildlife Research Units (CRU) program is a unique model of cooperative partnership among the USGS, other U.S. Department of the Interior and Federal agencies, universities, State fish and wildlife agencies, and the Wildlife Management Institute. These partnerships are maintained as one of the USGS’s strongest links to Federal and State land and natural resource management agencies.Established in 1935 to meet the need for trained professionals in the growing field of wildlife management, the program currently consists of 40 Cooperative Fish and Wildlife Research Units located on university campuses in 38 States and supports 119 research scientist positions when fully funded. The threefold mission of the CRU program is to (1) conduct scientific research for the management of fish, wildlife, and other natural resources; (2) provide technical assistance to natural resource managers in the application of scientific information to natural resource policy and management; and (3) train future natural resource professionals.

  4. The NASA Space Life Sciences Training Program - Preparing the way

    NASA Technical Reports Server (NTRS)

    Biro, Ronald; Munsey, Bill; Long, Irene

    1990-01-01

    Attention is given to the goals and methods adopted in the NASA Space Life Sciences Training Program (SLSTP) for preparing scientists and engineers for space-related life-sciences research and operations. The SLSTP is based on six weeks of projects and lectures which give an overview of payload processing and experiment flow in the space environment. The topics addressed in the course of the program include descriptions of space vehicles, support hardware, equipment, and research directions. Specific lecture topics include the gravity responses of plants, mission integration of a flight experiment, and the cardiovascular deconditioning. The SLSTP is shown to be an important part of the process of recruiting and training qualified scientists and engineers to support space activities.

  5. Position statement--altitude training for improving team-sport players' performance: current knowledge and unresolved issues.

    PubMed

    Girard, Olivier; Amann, Markus; Aughey, Robert; Billaut, François; Bishop, David J; Bourdon, Pitre; Buchheit, Martin; Chapman, Robert; D'Hooghe, Michel; Garvican-Lewis, Laura A; Gore, Christopher J; Millet, Grégoire P; Roach, Gregory D; Sargent, Charli; Saunders, Philo U; Schmidt, Walter; Schumacher, Yorck O

    2013-12-01

    Despite the limited research on the effects of altitude (or hypoxic) training interventions on team-sport performance, players from all around the world engaged in these sports are now using altitude training more than ever before. In March 2013, an Altitude Training and Team Sports conference was held in Doha, Qatar, to establish a forum of research and practical insights into this rapidly growing field. A round-table meeting in which the panellists engaged in focused discussions concluded this conference. This has resulted in the present position statement, designed to highlight some key issues raised during the debates and to integrate the ideas into a shared conceptual framework. The present signposting document has been developed for use by support teams (coaches, performance scientists, physicians, strength and conditioning staff) and other professionals who have an interest in the practical application of altitude training for team sports. After more than four decades of research, there is still no consensus on the optimal strategies to elicit the best results from altitude training in a team-sport population. However, there are some recommended strategies discussed in this position statement to adopt for improving the acclimatisation process when training/competing at altitude and for potentially enhancing sea-level performance. It is our hope that this information will be intriguing, balanced and, more importantly, stimulating to the point that it promotes constructive discussion and serves as a guide for future research aimed at advancing the bourgeoning body of knowledge in the area of altitude training for team sports.

  6. Position statement—altitude training for improving team-sport players’ performance: current knowledge and unresolved issues

    PubMed Central

    Girard, Olivier; Amann, Markus; Aughey, Robert; Billaut, François; Bishop, David J; Bourdon, Pitre; Buchheit, Martin; Chapman, Robert; D'Hooghe, Michel; Garvican-Lewis, Laura A; Gore, Christopher J; Millet, Grégoire P; Roach, Gregory D; Sargent, Charli; Saunders, Philo U; Schmidt, Walter; Schumacher, Yorck O

    2013-01-01

    Despite the limited research on the effects of altitude (or hypoxic) training interventions on team-sport performance, players from all around the world engaged in these sports are now using altitude training more than ever before. In March 2013, an Altitude Training and Team Sports conference was held in Doha, Qatar, to establish a forum of research and practical insights into this rapidly growing field. A round-table meeting in which the panellists engaged in focused discussions concluded this conference. This has resulted in the present position statement, designed to highlight some key issues raised during the debates and to integrate the ideas into a shared conceptual framework. The present signposting document has been developed for use by support teams (coaches, performance scientists, physicians, strength and conditioning staff) and other professionals who have an interest in the practical application of altitude training for team sports. After more than four decades of research, there is still no consensus on the optimal strategies to elicit the best results from altitude training in a team-sport population. However, there are some recommended strategies discussed in this position statement to adopt for improving the acclimatisation process when training/competing at altitude and for potentially enhancing sea-level performance. It is our hope that this information will be intriguing, balanced and, more importantly, stimulating to the point that it promotes constructive discussion and serves as a guide for future research aimed at advancing the bourgeoning body of knowledge in the area of altitude training for team sports. PMID:24282213

  7. Mentoring the next generation of physician-scientists in Japan: a cross-sectional survey of mentees in six academic medical centers.

    PubMed

    Sakushima, Ken; Mishina, Hiroki; Fukuhara, Shunichi; Sada, Kenei; Koizumi, Junji; Sugioka, Takashi; Kobayashi, Naoto; Nishimura, Masaharu; Mori, Junichiro; Makino, Hirofumi; Feldman, Mitchell D

    2015-03-19

    Physician-scientists play key roles in biomedical research across the globe, yet prior studies have found that it is increasingly difficult to recruit and retain physician-scientists in research careers. Access to quality research mentorship may help to ameliorate this problem in the U.S., but there is virtually no information on mentoring in academic medicine in Japan. We conducted a survey to determine the availability and quality of mentoring relationships for trainee physician-scientists in Japan. We surveyed 1700 physician-scientists in post-graduate research training programs in 6 academic medical centers in Japan about mentorship characteristics, mentee perceptions of the mentoring relationship, and attitudes about career development. A total of 683 potential physician-scientist mentees completed the survey. Most reported that they had a departmental mentor (91%) with whom they met at least once a month; 48% reported that they were very satisfied with the mentoring available to them. Mentoring pairs were usually initiated by the mentor (85% of the time); respondents identified translational research skills (55%) and grant writing (50%) as unmet needs. Mentoring concerning long-term career planning was significantly associated with the intention to pursue research careers, however this was also identified by some mentees as an unmet need (35% desired assistance; 15% reported receiving it). More emphasis and formal training in career mentorship may help to support Japanese physician-scientist mentees to develop a sense of self-efficacy to pursue and stay in research careers.

  8. Developing Scientists' "Soft" Skills

    NASA Astrophysics Data System (ADS)

    Gordon, Wendy

    2014-02-01

    A great deal of professional advice directed at undergraduates, graduate students, postdoctoral fellows, and even early-career scientists focuses on technical skills necessary to succeed in a complex work environment in which problems transcend disciplinary boundaries. Collaborative research approaches are emphasized, as are cross-training and gaining nonacademic experiences [Moslemi et al., 2009].

  9. Student/Scientist Partnerships: A Teacher's Guide To Evaluating the Critical Components.

    ERIC Educational Resources Information Center

    Evans, Celia A.; Abrams, Eleanor D.; Rock, Barret N.; Spencer, Shannon L.

    2001-01-01

    Presents a guide to the critical components of partnerships in Students/Scientist Partnerships (SSPs), a project-based instruction. Uses examples from the Forest Watch (FW) program to support the ideas. Focuses on access to experts, workshops, training sessions, student congresses, support materials and research protocols, science education…

  10. Continuing Education Needs of Natural Resource Managers and Scientists.

    ERIC Educational Resources Information Center

    George, John L.; Dubin, Samuel S.

    Five thousand natural resource managers and scientists throughout the United States were asked to indicate their current education needs. It was concluded that, merely to keep abreast, they should spend one day a week or the equivalent in regularly scheduled study. Training is needed in environmental management, interrelationships of the…

  11. Assessing quality of citizen scientists’ soil texture estimates to evaluate land potential

    USDA-ARS?s Scientific Manuscript database

    Texture influences nearly all soil processes and is often the most measured parameter in soil science. Estimating soil texture is a universal and fundamental practice applied by resource scientists to classify and understand the behavior and management of soil systems. While trained soil scientist c...

  12. Effects of an educational intervention on female biomedical scientists' research self-efficacy.

    PubMed

    Bakken, Lori L; Byars-Winston, Angela; Gundermann, Dawn M; Ward, Earlise C; Slattery, Angela; King, Andrea; Scott, Denise; Taylor, Robert E

    2010-05-01

    Women and people of color continue to be underrepresented among biomedical researchers to an alarming degree. Research interest and subsequent productivity have been shown to be affected by the research training environment through the mediating effects of research self-efficacy. This article presents the findings of a study to determine whether a short-term research training program coupled with an efficacy enhancing intervention for novice female biomedical scientists of diverse racial backgrounds would increase their research self-efficacy beliefs. Forty-three female biomedical scientists were randomized into a control or intervention group and 15 men participated as a control group. Research self-efficacy significantly increased for women who participated in the self-efficacy intervention workshop. Research self-efficacy within each group also significantly increased following the short-term research training program, but cross-group comparisons were not significant. These findings suggest that educational interventions that target sources of self-efficacy and provide domain-specific learning experiences are effective at increasing research self-efficacy for women and men. Further studies are needed to determine the longitudinal outcomes of this effort.

  13. FameLab: A Communication Skills-Building Program Disguised as an International Competition

    NASA Astrophysics Data System (ADS)

    Scalice, D.

    2015-12-01

    One of the key pieces of training missing from most graduate studies in science is skills-building in communication. Beyond the responsibility to share their work with the public, good communication skills enhance a scientist's career path, facilitating comprehension of their work by stakeholders and funders, as well as increasing the ability to collaborate interdisciplinarily. FameLab, an American Idol-style communication competition for early career scientists, helps fill this void, and provides an opportunity to pratice communication skills, with the coaching of professionals, in a safe space. The focus is on training and networking with like-minded scientists. NASA's Astrobiology Program has been implementing FameLab in the US since 2011, but over 25 countries take part globally. Come learn about this innovative program, what impact it's had on participants, and how you can get involved.

  14. The International Proteomics Tutorial Programme--reaching out to the next generation proteome scientists.

    PubMed

    James, Peter; Marko-Varga, György A

    2011-08-05

    One of the most critical functions of the various Proteomics organizations is the training of young scientists and the dissemination of information to the general scientific community. The education committees of the Human Proteome Organisation (HUPO) and the European Proteomics Association (EuPA) together with the other local proteomics associations are therefore launching a joint Tutorial Program to meet these needs. The level is aimed at Masters/PhD level students with good basic training in biology, biochemistry, mathematics and statistics. The Tutorials will consist of a review/teaching article with an accompanying talk slide presentation for classroom teaching. The Tutorial Program will cover core techniques and basics as an introduction to scientists new to the field. The entire series of articles and slides will be made freely available for teaching use at the Journals and Organizations homepages.

  15. Perspectives on an education in computational biology and medicine.

    PubMed

    Rubinstein, Jill C

    2012-09-01

    The mainstream application of massively parallel, high-throughput assays in biomedical research has created a demand for scientists educated in Computational Biology and Bioinformatics (CBB). In response, formalized graduate programs have rapidly evolved over the past decade. Concurrently, there is increasing need for clinicians trained to oversee the responsible translation of CBB research into clinical tools. Physician-scientists with dedicated CBB training can facilitate such translation, positioning themselves at the intersection between computational biomedical research and medicine. This perspective explores key elements of the educational path to such a position, specifically addressing: 1) evolving perceptions of the role of the computational biologist and the impact on training and career opportunities; 2) challenges in and strategies for obtaining the core skill set required of a biomedical researcher in a computational world; and 3) how the combination of CBB with medical training provides a logical foundation for a career in academic medicine and/or biomedical research.

  16. The GILDA t-Infrastructure: grid training activities in Africa and future opportunities

    NASA Astrophysics Data System (ADS)

    Ardizzone, V.; Barbera, R.; Ciuffo, L.; Giorgio, E.

    2009-04-01

    Scientists, educators, and students from many parts of the worlds are not able to take advantage of ICT because the digital divide is growing and prevents less developed countries to exploit its benefits. Instead of becoming more empowered and involved in worldwide developments, they are becoming increasingly marginalised as the world of education and science becomes increasingly Internet-dependent. The Grid Infn Laboratory for Dissemination Activities (GILDA) spreads since almost five years the awareness of Grid technology to a large audience, training new communities and fostering new organisations to provide resources. The knowledge dissemination process guided by the training activities is a key factor to ensure that all users can fully understand the characteristics of the Grid services offered by large existing e-Infrastructure. GILDA is becoming a "de facto" standard in training infrastructures (t-Infrastructures) and it is adopted by many grid projects worldwide. In this contribution we will report on the latest status of GILDA services and on the training activities recently carried out in sub-Saharan Africa (Malawi and South Africa). Particular care will be devoted to show how GILDA can be "cloned" to satisfy both education and research demands of African Organisations. The opportunities to benefit from GILDA in the framework of the EPIKH project as well as the plans of the European Commission on grid training and education for the 2010-2011 calls of its 7th Framework Programme will be presented and discussed.

  17. SFB 754 - Enhancing Gender Equality within a large interdisciplinary project: the example of the SFB 754

    NASA Astrophysics Data System (ADS)

    Kamm, Ruth; Schelten, Christiane K.

    2016-04-01

    This poster is linked to the oral presentation by Dr. Christiane K. Schelten. One requirement of a successful application for funding under the DFGs Collaborative Research Centres (SFBs) programme is to integrate a strategy to increase the number of female principal investigators and to support younger women scientists in pursuing their academic career. The DGF provides a lump sum of 30.000 € per year for measures to promote women scientists, to raise awareness for gender imbalances and to create a family friendly working environment. The SFB 754 'Climate - Biogeochemistry Interactions in the Tropical Ocean' based at Kiel University and the GEOMAR Helmholtz Centre for Ocean Research developed an innovative strategy to develop and implement new measures for more gender equality within the SFB 754 by building on existing expertise and structures. Together with the Cluster of Excellence 'The Future Ocean' (funded within the German Excellence Initiative), the SFB 754 finances the position of a coordinator for gender measures based at Kiel University's Central Office for Gender Equality, Diversity & Family. Due to this close cooperation of SFB 754 coordination and the university's gender office a successful framework for the SFB 754 gender equality activities has been developed. Measures taken are both integrated into the overall activities of the university, and tailored to the needs of women scientists in marine sciences in general, in the SFB 754 in particular. One outcome of this successful cooperation is, for example, the via:mento_ocean programme, the marine science focused line of the university's mentoring programme via:mento for female postdocs. But the SFB 754 also offers internal workshops and plenary presentations to raise gender awareness within the whole SFB 754 community and trainings to its female doctoral students and postdocs such as a very successful 'assertiveness and self-defence training'.

  18. Improving -Omics-Based Research and Precision Health in Minority Populations: Recommendations for Nurse Scientists.

    PubMed

    Taylor, Jacquelyn Y; Barcelona de Mendoza, Veronica

    2018-01-01

    The purpose of this article is to provide an overview of the role of nurse scientists in -omics-based research and to promote discussion around the conduct of -omics-based nursing research in minority communities. Nurses are advocates, educators, practitioners, scientists, and researchers, and are crucial to the design and successful implementation of -omics studies, particularly including minority communities. The contribution of nursing in this area of research is crucial to reducing health disparities. In this article, challenges in the conduct of -omics-based research in minority communities are discussed, and recommendations for improving diversity among nurse scientists, study participants, and utilization of training and continuing education programs in -omics are provided. Many opportunities exist for nurses to increase their knowledge in -omics and to continue to build the ranks of nurse scientists as leaders in -omics-based research. In order to work successfully with communities of color, nurse scientists must advocate for participation in the Precision Medicine Initiative, improve representation of nurse faculty of color, and increase utilization of training programs in -omics and lead such initiatives. All nursing care has the potential to be affected by the era of -omics and precision health. By taking an inclusive approach to diversity in nursing and -omics research, nurses will be well placed to be leaders in reducing health disparities through research, practice, and education. © 2017 Sigma Theta Tau International.

  19. Group dynamics training for manned spaceflight and the capsuls mission: Prophylactic against incompatibility and its consequences?

    NASA Astrophysics Data System (ADS)

    Kass, R.; Kass, J.

    On February 7, 1994, four Canadian Astronauts were sealed off in a hyperbaric chamber at the Canadian Government's Defense and Civil Institute for Environmental Medicine in Toronto, Canada. This space lab training mission lasted seven days and was the first to be conducted with astronauts outside of Russia. The objective of this mission was to give Canadian astronauts, space scientists and the staff of the Canadian Space Agency (CSA), the opportunity to gain first hand experience on preparational and operational aspects of a typical space mission. Twenty-one scientific experiments involving six countries from several disciplines were involved in this mission. This paper describes the goals and preliminary results of a psychological experiment/training program that used the CAPSULS mission as a test bed for its application in the manned space flight environment. The objective of this project was to enhance the understanding of small group behaviour with a view to maximizing team effectiveness and task accomplishment in teams living and working in isolation under difficult and confined conditions. The application of this model in the light of future missions is a key thesis in this paper.

  20. Solar Energy Meteorological Research and Training Site: Region 5. Annual report, 30 September 1977-29 September 1978

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rao, C.R.N.; Hewson, E.W.

    The primary facility which is to be a benchmark site for the acquisition of research quality solar radiation and solar energy related meteorological data has been set up and will be fully operational in the near future. The training program has been established with the introduction of two, two-quarter courses on solar radiation and meteorological measurements and on atmospheric radiative processes. Also, as part of the training program, a week-long workshop on solar energy measurement and instrumentation was conducted during the summer of '78 and a series of seminars on solar energy related topics, catering to both professionals and non-professionals,more » was arranged during the 1977-78 academic year. A meeting of solar radiation scientists from the five states of the region was held in Corvallis (August '78) to explore the feasibility of setting up a regional network of stations to acquire research quality solar radiation and meteorological data. Useful global irradiance measurements have been made at the five sites, making up the general quality network in Oregon, over the greater part of the year.« less

  1. Preparing Earth Data Scientists for 'The Sexiest Job of the 21st Century'

    NASA Technical Reports Server (NTRS)

    Kempler, Steven

    2014-01-01

    What Exactly do Earth Data Scientists do, and What do They Need to Know, to do It? There is not one simple answer, but there are many complex answers. Data Science, and data analytics, are new and nebulas, and takes on different characteristics depending on: The subject matter being analyzed, the maturity of the research, and whether the employed subject specific analytics is descriptive, diagnostic, discoveritive, predictive, or prescriptive, in nature. In addition, in a, thus far, business driven paradigm shift, university curriculums teaching data analytics pertaining to Earth science have, as a whole, lagged behind, andor have varied in approach.This presentation attempts to breakdown and identify the many activities that Earth Data Scientists, as a profession, encounter, as well as provide case studies of specific Earth Data Scientist and data analytics efforts. I will also address the educational preparation, that best equips future Earth Data Scientists, needed to further Earth science heterogeneous data research and applications analysis. The goal of this presentation is to describe the actual need for Earth Data Scientists and the practical skills to perform Earth science data analytics, thus hoping to initiate discussion addressing a baseline set of needed expertise for educating future Earth Data Scientists.

  2. Obstacles facing Africa's young climate scientists

    NASA Astrophysics Data System (ADS)

    Dike, Victor Nnamdi; Addi, Martin; Andang'o, Hezron Awiti; Attig, Bahar Faten; Barimalala, Rondrotiana; Diasso, Ulrich Jacques; Du Plessis, Marcel; Lamine, Salim; Mongwe, Precious N.; Zaroug, Modathir; Ochanda, Valentine Khasenye

    2018-06-01

    Current and future climate change poses a substantial threat to the African continent. Young scientists are needed to advance Earth systems science on the continent, but they face significant challenges.

  3. News and Views: UK joins Russia for a Year of Space; Science and Technology Committee hearings; Lawrence sheds light on how STFC allocates astronomy grants; NERC support for master's ends this year

    NASA Astrophysics Data System (ADS)

    2011-04-01

    A year of events focusing on collaboration between UK and Russian space scientists was launched on 22 February. Many individuals, institutions and societies have submitted documents to the House of Commons Select Committee inquiry into astronomy and particle physics. The STFC Astronomy Grants Panel considered both grants to be allocated now and the new consolidated arrangements put in place for the future - and Chair Prof. Andy Lawrence has documented the process, throwing a little light on the numbers. Natural Environment Research Council support for master's courses - one-postgraduate training courses - will finish at the end of the current academic year.

  4. Skylab 4 visual observations project report

    NASA Technical Reports Server (NTRS)

    Kaltenbach, J. L.; Lenoir, W. B.; Mcewen, M. C.; Weitenhagen, R. A.; Wilmarth, V. R.

    1974-01-01

    The Skylab 4 Visual Observations Project was undertaken to determine the ways in which man can contribute to future earth-orbital observational programs. The premission training consisted of 17 hours of lectures by scientists representing 16 disciplines and provided the crewmen information on observational and photographic procedures and the scientific significance of this information. During the Skylab 4 mission, more than 850 observations and 2000 photographs with the 70-millimeter Hasselblad and 35-millimeter Nikon cameras were obtained for many investigative areas. Preliminary results of the project indicate that man can obtain new and unique information to support satellite earth-survey programs because of his inherent capability to make selective observations, to integrate the information, and to record the data by describing and photographing the observational sites.

  5. KSC-04pd1505

    NASA Image and Video Library

    2004-07-08

    KENNEDY SPACE CENTER, FLA. - In the water for a practice dive in the ocean offshore from Key Largo are the NASA Extreme Environment Mission Operations 6 (NEEMO-6) mission team: (left to right) Tara Ruttley, a biomedical engineer, and astronauts Nick Patrick, John Herrington and Doug Wheelock. The NEEMO-6 mission involves exposing an astronaut/scientist crew to a real mission experience in an extreme environment - the NOAA undersea station Aquarius - to prepare for future space flight. Spacewalk-like diving excursions and field-tests on a variety of biomedical equipment are designed to help astronauts living aboard the International Space Station. To prepare for their 10-day stay, the team had dive training twice a day at the Life Support Buoy, anchored above Aquarius.

  6. KSC-04pd1506

    NASA Image and Video Library

    2004-07-08

    KENNEDY SPACE CENTER, FLA. - A dive boat is moored to the Life Support Buoy, anchored above the NOAA undersea station Aquarius, offshore from Key Largo. Underwater is the NASA Extreme Environment Mission Operations 6 (NEEMO-6) mission team: (left to right) Tara Ruttley, a biomedical engineer, and astronauts Nick Patrick, John Herrington and Doug Wheelock. The NEEMO-6 mission involves exposing an astronaut/scientist crew to a real mission experience in an extreme environment - Aquarius - to prepare for future space flight. Spacewalk-like diving excursions and field-tests on a variety of biomedical equipment are designed to help astronauts living aboard the International Space Station. To prepare for their 10-day stay, the team had dive training twice a day at the Life Support Buoy.

  7. KSC-04pd1501

    NASA Image and Video Library

    2004-07-08

    KENNEDY SPACE CENTER, FLA. - Onboard the dive boat, members of the NASA Extreme Environment Mission Operations 6 (NEEMO-6) mission don dive suits. From left are Tara Ruttley, a biomedical engineer, and astronauts Nick Patrick and Doug Wheelock. John Herrington is mission commander. The NEEMO-6 mission involves exposing an astronaut/scientist crew to a real mission experience in an extreme environment - the NOAA undersea station Aquarius offshore from Key Largo - to prepare for future space flight. Spacewalk-like diving excursions and field-tests on a variety of biomedical equipment are designed to help astronauts living aboard the International Space Station. To prepare for their 10-day stay, the team had dive training twice a day at the Life Support Buoy, anchored above Aquarius.

  8. KSC-04pd1510

    NASA Image and Video Library

    2004-07-11

    KENNEDY SPACE CENTER, FLA. - In the water for a practice dive in the ocean offshore from Key Largo is astronaut John Herrington. He is commander of the NASA Extreme Environment Mission Operations 6 (NEEMO-6) mission team. The others are Nick Patrick, Doug Wheelock, and Tara Ruttley, a biomedical engineer. The NEEMO-6 mission involves exposing an astronaut/scientist crew to a real mission experience in an extreme environment - the NOAA undersea station Aquarius - to prepare for future space flight. Spacewalk-like diving excursions and field-tests on a variety of biomedical equipment are designed to help astronauts living aboard the International Space Station. To prepare for their 10-day stay, the team had dive training twice a day at the Life Support Buoy, anchored above Aquarius.

  9. KSC-04pd1504

    NASA Image and Video Library

    2004-07-08

    KENNEDY SPACE CENTER, FLA. - In the water for a practice dive in the ocean offshore from Key Largo is astronaut John Herrington. He is commander of the NASA Extreme Environment Mission Operations 6 (NEEMO-6) mission team. The others are Nick Patrick, Doug Wheelock, and Tara Ruttley, a biomedical engineer. The NEEMO-6 mission involves exposing an astronaut/scientist crew to a real mission experience in an extreme environment - the NOAA undersea station Aquarius - to prepare for future space flight. Spacewalk-like diving excursions and field-tests on a variety of biomedical equipment are designed to help astronauts living aboard the International Space Station. To prepare for their 10-day stay, the team had dive training twice a day at the Life Support Buoy, anchored above Aquarius.

  10. A Comparative Analysis of Models of Bachelors of Arts' Professional Training in Applied Linguistics at the Universities of Ukraine and the USA

    ERIC Educational Resources Information Center

    Korniienko, Vita

    2014-01-01

    The analysis of scientists' researches from different countries dealing with different aspects of training in the educational systems of developed countries was carried out. The models of Bachelors of Arts in Applied Linguistics professional training in Ukraine were considered. It was analyzed a professional training of Bachelor of Arts in Applied…

  11. Supply and Demand for Scientists and Engineers. Second Edition.

    ERIC Educational Resources Information Center

    Vetter, Betty M.

    This report, which includes 51 tables and charts, examines past, present, and future imbalances in the supply of and demand for scientists and engineers. The supply is assessed by source and by field, and compared with current and short-range demand for new graduates and for experienced scientists and engineers, including assessment of the…

  12. Teacher Candidates' Perceptions of Scientists: Images and Attributes

    ERIC Educational Resources Information Center

    McCarthy, Deborah

    2015-01-01

    The masculine image of scientists as elderly men wearing white coats and glasses, working alone in the laboratory has been documented since the 1950s. Because it is important that teacher candidates have a scientifically literate image of scientists due to the impact they have on their future students, this investigation is salient. This study…

  13. On genies and bottles: scientists' moral responsibility and dangerous technology R&D.

    PubMed

    Koepsell, David

    2010-03-01

    The age-old maxim of scientists whose work has resulted in deadly or dangerous technologies is: scientists are not to blame, but rather technologists and politicians must be morally culpable for the uses of science. As new technologies threaten not just populations but species and biospheres, scientists should reassess their moral culpability when researching fields whose impact may be catastrophic. Looking at real-world examples such as smallpox research and the Australian "mousepox trick", and considering fictional or future technologies like Kurt Vonnegut's "ice-nine" from Cat's Cradle, and the "grey goo" scenario in nanotechnology, this paper suggests how ethical principles developed in biomedicine can be adjusted for science in general. An "extended moral horizon" may require looking not just to the effects of research on individual human subjects, but also to effects on humanity as a whole. Moreover, a crude utilitarian calculus can help scientists make moral decisions about which technologies to pursue and disseminate when catastrophes may result. Finally, institutions should be devised to teach these moral principles to scientists, and require moral education for future funding.

  14. Professional Ethics for Climate Scientists

    NASA Astrophysics Data System (ADS)

    Peacock, K.; Mann, M. E.

    2014-12-01

    Several authors have warned that climate scientists sometimes exhibit a tendency to "err on the side of least drama" in reporting the risks associated with fossil fuel emissions. Scientists are often reluctant to comment on the implications of their work for public policy, despite the fact that because of their expertise they may be among those best placed to make recommendations about such matters as mitigation and preparedness. Scientists often have little or no training in ethics or philosophy, and consequently they may feel that they lack clear guidelines for balancing the imperative to avoid error against the need to speak out when it may be ethically required to do so. This dilemma becomes acute in cases such as abrupt ice sheet collapse where it is easier to identify a risk than to assess its probability. We will argue that long-established codes of ethics in the learned professions such as medicine and engineering offer a model that can guide research scientists in cases like this, and we suggest that ethical training could be regularly incorporated into graduate curricula in fields such as climate science and geology. We recognize that there are disanalogies between professional and scientific ethics, the most important of which is that codes of ethics are typically written into the laws that govern licensed professions such as engineering. Presently, no one can legally compel a research scientist to be ethical, although legal precedent may evolve such that scientists are increasingly expected to communicate their knowledge of risks. We will show that the principles of professional ethics can be readily adapted to define an ethical code that could be voluntarily adopted by scientists who seek clearer guidelines in an era of rapid climate change.

  15. Partnerships and Grassroots Action in the 500 Women Scientists Network

    NASA Astrophysics Data System (ADS)

    Weintraub, S. R.; Zelikova, T. J.; Pendergrass, A. G.; Bohon, W.; Ramirez, K. S.

    2017-12-01

    The past year has presented real challenges for scientists, especially in the US. The political context catalyzed the formation of many new organizations with a range of goals, from increasing the role of science in decision making to improving public trust in science and scientists. The grassroots organization 500 Women Scientists formed in the wake of the 2016 US election as a response to widespread anti-science, intolerant rhetoric and to form a community that could take action together. Within months, the network grew to more than 20,000 women scientists from across the globe. We evolved from our reactionary beginnings towards a broader mission to serve society by making science open, inclusive, and accessible. With the goal of transforming scientific institutions towards a more inclusive and just enterprise, we have been building alliances with diverse groups to provide training and mentorship opportunities to our members. In so doing, we created space for scientists from across disciplines to work together, speak out, and channel their energies toward making a difference. In partnership with the Union of Concerned Scientists and Rise Stronger, we assembled resources to help scientists write op-eds and letters to the editor about the importance of science in their communities. We partnered with researchers in Jordan to explore a new peer-to-peer mentoring model. Along with a healthcare advocacy group, we participated in dialogue to examine the role of science in affordable medicine. Finally, we are working with other groups to expand peer networks and career development resources for international STEM women. Our local chapters often initiate this work, teaming up with diverse organizations to bring science to their communities and, in the process, shift perceptions of what a scientist looks like. While as scientists, we would rather be conducting experiments or running models, what brings us together is an urgent sense that our scientific expertise is needed in the public sphere now more than ever and we must step up to the challenge. 500 Women Scientists is training and empowering women scientists to be leaders of this movement, in partnership with a diverse cadre of organizations and collaborators.

  16. LiMPETS: Scientists Contributions to Coastal Protection Program for Youth

    NASA Astrophysics Data System (ADS)

    Saltzman, J.; Osborn, D. A.

    2004-12-01

    In the West Coast National Marine Sanctuaries' LiMPETS (Long-term Monitoring Experiential Training for Students), scientists have partnered with local sanctuaries to develop an educational and scientifically-based monitoring program. With different levels of commitment and interest, scientists have contributed to developing protocols that youth can successfully use to monitor coastal habitats. LiMPETS was developed to address the gap in marine science education for high school students. The team of sanctuary educators together with local scientists collaborate and compromise to develop scientifically accurate and meaningful monitoring projects. By crossing the border between scientists and educators, LiMPETS has become a rich program which provides to teachers professional development, monitoring equipment, an online database, and field support. In the Sandy Beach Monitoring Project, we called on an expert on the sand crab Emerita analoga to help us modify the protocols that she uses to monitor crabs regularly. This scientist brings inspiration to teachers at teacher workshops by explaining how the student monitoring compliments her research. The Rocky Intertidal Monitoring Project was developed by scientists at University of California at Santa Cruz with the intention of passing on this project to an informal learning center. After receiving California Sea Grant funding, the protocols used for over 30 years with undergraduates were modified for middle and high school students. With the help of teachers, classroom activities were developed to train students for fieldwork. The online database was envisioned by the scientists to house the historical data from undergraduate students while growing with new data collected middle and high school students. The support of scientists in this program has been crucial to develop a meaningful program for both youth and resource managers. The hours that a scientist contributes to this program may be minimal, a weeklong workshop or even a part-time job. The framework of resource protection agencies partnering with scientists can be replicated to monitor other natural habitats. Through LiMPETS, scientists are helping to develop scientifically literate youth who are engaged in environmental monitoring.

  17. Assessing the Supply and Demand for Scientists and Technologists in Europe. IES Report 377.

    ERIC Educational Resources Information Center

    Pearson, R.; Jagger, N.; Connor, H.; Perryman, S.

    Available evidence on the supply of and demand for professional scientists and technologists (S&Ts) in the European Union (EU) was reviewed. The main data sources were as follows: approximately 450 reference documents; national and international governments, training and employer bodies, and key international organizations; more than 100…

  18. Scientist-Practitioner Perspectives on Test Interpretation.

    ERIC Educational Resources Information Center

    Lichtenberg, James W., Ed.; Goodyear, Rodney K., Ed.

    The focus of this book is on the way professionals use and make sense of test assessment data in their counseling. The book is oriented specifically toward those training to be psychologists or counselors, especially those interested in a scientist-practitioner orientation to clinical practice. Each of the chapters presents a perspective on test…

  19. GOFC-GOLD/LCLUC/START Regional Networking: building capacity for science and decision-making.

    NASA Astrophysics Data System (ADS)

    Justice, C. O.; Vadrevu, K.; Gutman, G.

    2016-12-01

    Over the past 20 years, the international GOFC-GOLD Program and START, with core funding from the NASA LCLUC program and ESA have been developing regional networks of scientists and data users for scientific capacity building and sharing experience in the use and application of Earth Observation data. Regional networks connect scientists from countries with similar environmental and social issues and often with shared water and airsheds. Through periodic regional workshops, regional and national projects are showcased and national priorities and policy drivers are articulated. The workshops encourage both north-south and south-south exchange and collaboration. The workshops are multi-sponsored and each include a training component, targeting early career scientists and data users from the region. The workshops provide an opportunity for regional scientists to publish in peer-reviewed special editions focused on regional issues. Currently, the NASA LCLUC program funded "South and Southeast Asia Regional Initiative (SARI)" team is working closely with the USAID/NASA SERVIR program to implement some capacity building and training activities jointly in south/southeast Asian countries to achieve maximum benefit.

  20. Past missions - the best way to train future planetary researchers

    NASA Astrophysics Data System (ADS)

    Kozlova, Natalia; Solodovnikova, Anastasiya; Zubarev, Anatoly; Garov, Andrey; Patraty, Vyacheslav; Kokhanov, Alexander; Karachevtseva, Irina; Nadezhdina, Irina; Konopikhin, Anatoly; Oberst, Juergen

    2015-04-01

    Practice shows that it is much more interesting and useful to learn from real examples than on imaginary tasks from exercise books. The more technologies and software improves and develops, the more information and new products can be obtained from new processing of archive information collected by past planetary missions. So at MIIGAiK we carry out modern processing of lunar panoramic images obtained by Soviet Lunokhod missions (1970-1973). During two years of the study, which is a part of PRoViDE project (http://www.provide-space.eu/), many students, PhD students, young scientists, as well as professors have taken part in this research. Processing of the data obtained so long ago requires development of specific methods, techniques, special software and extraordinary approach. All these points help to interest young people in planetary science and develop their skills as researchers. Another advantage of data from previous missions is that you can compare your results with the ones obtained during the mission. This also helps to test the developed techniques and software on real data and adjust them for implementation in future missions. The work on Lunokhod data processing became the basis of master and PhD theses of MIIGAiK students and scientists at MExLab. Acknowledgments: The research leading to these results has received funding from the European Community's Seventh Framework Programme (FP7/2007-2013) under grant agreement No 312377 PRoViDE.

  1. Ten thousand cloud makers: Is airplane exhaust altering earth`s climate?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Monastersky, R.

    1996-07-06

    The small Saberliner jet carrying Bruce E. Anderson rolled almost completely upside down, when his plane entered the wake of a DC-8 jet just a few miles ahead. The backwash-a tight horizontal tornado whirling at more than 100 miles per hour-spun the light Saberliner 140{degrees} and sent it into a dive, causing Anderson, his food, and everything else in the plane to go temporarily weightless. When they recovered, they nosed up behind the DC-8 for some more punishment. Although it sounds like military flight training, Anderson and his colleagues were actually conducting a high-tech emissions check-measuring the gases and particlesmore » spewing out of jet engines. Their mission resembles the pollution tests that states routinely perform on cars, except that the NASA-run experiment happened at 400 miles per hour, 40,000 feet above the ground. And whereas car emissions are well understood, scientists have little information on the pollution from jet engines. Toward that end, NASA gathered four planes and 120 scientists in Kansas during April and May to make the most detailed measurements yet of jet engine exhaust at cruising altitude. This project and future ones are addressing the question of whether aircraft emissions are increasing the number of clouds and are perturbing atmospheric chemistry, both of which could affect weather on earth. This article describes the project, what lead to it, what has been learned and where it is going in the future.« less

  2. Acadia National Park Climate Change Scenario Planning Workshop summary

    USGS Publications Warehouse

    Star, Jonathan; Fisichelli, Nicholas; Bryan, Alexander; Babson, Amanda; Cole-Will, Rebecca; Miller-Rushing, Abraham J.

    2016-01-01

    This report summarizes outcomes from a two-day scenario planning workshop for Acadia National Park, Maine (ACAD). The primary objective of the workshop was to help ACAD senior leadership make management and planning decisions based on up-to-date climate science and assessments of future uncertainty. The workshop was also designed as a training program, helping build participants' capabilities to develop and use scenarios. The details of the workshop are given in later sections. The climate scenarios presented here are based on published global climate model output. The scenario implications for resources and management decisions are based on expert knowledge distilled through scientist-manager interaction during workgroup break-out sessions at the workshop. Thus, the descriptions below are from these small-group discussions in a workshop setting and should not be taken as vetted research statements of responses to the climate scenarios, but rather as insights and examinations of possible futures (Martin et al. 2011, McBride et al. 2012).

  3. Using Citizen Scientists to Gather, Analyze, and Disseminate Information About Neighborhood Features That Affect Active Living.

    PubMed

    Winter, Sandra J; Goldman Rosas, Lisa; Padilla Romero, Priscilla; Sheats, Jylana L; Buman, Matthew P; Baker, Cathleen; King, Abby C

    2016-10-01

    Many Latinos are insufficiently active, partly due to neighborhoods with little environmental support for physical activity. Multi-level approaches are needed to create health-promoting neighborhoods in disadvantaged communities. Participant "citizen scientists" were adolescent (n = 10, mean age = 12.8 ± 0.6 years) and older adult (n = 10, mean age = 71.3 ± 6.5 years), low income Latinos in North Fair Oaks, California. Citizen scientists conducted environmental assessments to document perceived barriers to active living using the Stanford Healthy Neighborhood Discovery Tool, which records GPS-tracked walking routes, photographs, audio narratives, and survey responses. Using a community-engaged approach, citizen scientists subsequently attended a community meeting to engage in advocacy training, review assessment data, prioritize issues to address and brainstorm potential solutions and partners. Citizen scientists each conducted a neighborhood environmental assessment and recorded 366 photographs and audio narratives. Adolescents (n = 4), older adults (n = 7) and community members (n = 4) collectively identified reducing trash and improving personal safety and sidewalk quality as the priority issues to address. Three adolescent and four older adult citizen scientists volunteered to present study findings to key stakeholders. This study demonstrated that with minimal training, low-income, Latino adolescent and older adult citizen scientists can: (1) use innovative technology to gather information about features of their neighborhood environment that influence active living, (2) analyze their information and identify potential solutions, and (3) engage with stakeholders to advocate for the development of healthier neighborhoods.

  4. Training tomorrow's environmental problem-solvers: an integrative approach to graduate education

    USDA-ARS?s Scientific Manuscript database

    Environmental problems are generally complex and blind to disciplinary boundaries. Efforts to devise long-term solutions require collaborative research that integrates knowledge across historically disparate fields, yet the traditional model for training new scientists emphasizes personal independe...

  5. Preparing the Next Generation of Environmental Scientists to Work at the Frontier of Data-Intensive Research

    NASA Astrophysics Data System (ADS)

    Hampton, S. E.

    2015-12-01

    The science necessary to unravel complex environmental problems confronts severe computational challenges - coping with huge volumes of heterogeneous data, spanning vast spatial scales at high resolution, and requiring integration of disparate measurements from multiple disciplines. But as cyberinfrastructure advances to support such work, scientists in many fields lack sufficient computational skills to participate in interdisciplinary, data-intensive research. In response, we developed innovative training workshops for early-career scientists, in order to explore both the needs and solutions for training next-generation scientists in skills for data-intensive environmental research. In 2013 and 2014 we ran intensive 3-week training workshops for early-career researchers. One of the workshops was run concurrently in California and North Carolina, connected by virtual technologies and coordinated schedules. We attracted applicants to the workshop with the opportunity to pursue data-intensive small-group research projects that they proposed. This approach presented a realistic possibility that publishable products could result from 3 weeks of focused hands-on classroom instruction combined with self-directed group research in which instructors were present to assist trainees. Instruction addressed 1) collaboration modes and technologies, 2) data management, preservation, and sharing, 3) preparing data for analysis using scripting, 4) reproducible research, 5) sustainable software practices, 6) data analysis and modeling, and 7) communicating results to broad communities. The most dramatic improvements in technical skills were in data management, version control, and working with spatial data outside of proprietary software. In addition, participants built strong networks and collaborative skills that later resulted in a successful student-led grant proposal, published manuscripts, and participants reported that the training was a highly influential experience.

  6. Leadership Roles and Activities Among Alumni Receiving Postdoctoral Fellowship Training in Cancer Prevention.

    PubMed

    Nelson, David E; Faupel-Badger, Jessica M; Izmirlian, Grant

    2018-02-28

    This study was conducted in 2016-2017 to better understand formal and informal leadership roles and activities of alumni from postdoctoral research training programs in cancer prevention. Data were obtained from surveys of 254 employed scientists who completed cancer prevention postdoctoral training within the National Cancer Institute (NCI) Cancer Prevention Fellowship Program, or at US research institutions through NCI-sponsored National Research Service Award (NRSA) individual postdoctoral fellowship (F32) grants, from 1987 to 2011. Fifteen questions categorized under Organizational Leadership, Research Leadership, Professional Society/Conference Leadership, and Broader Scientific/Health Community Leadership domains were analyzed. About 75% of respondents had at least one organizational leadership role or activity during their careers, and 13-34% reported some type of research, professional society/conference, or broader scientific/health community leadership within the past 5 years. Characteristics independently associated with leadership from regression models were being in earlier postdoctoral cohorts (8 items, range for statistically significant ORs = 2.8 to 10.8) and employment sector (8 items, range for statistically significant ORs = 0.4 to 11.7). Scientists whose race/ethnicity was other than white were less likely to report organizational leadership or management responsibilities (OR = 0.4, 95% CI 0.2-0.9). Here, many alumni from NCI-supported cancer prevention postdoctoral programs were involved in leadership, with postdoctoral cohort and employment sector being the factors most often associated with leadership roles and activities. Currently, there is relatively little research on leadership roles of biomedical scientists in general, or in cancer prevention specifically. This study begins to address this gap and provide a basis for more extensive studies of leadership roles and training of scientists.

  7. Astro Data Science: The Next Generation

    NASA Astrophysics Data System (ADS)

    Mentzel, Chris

    2018-01-01

    Astronomers have been at the forefront of data-driven discovery since before the days of Kepler. Using data in the scientific inquiry into the workings of the the universe is the lifeblood of the field. This said, data science is considered a new thing, and researchers from every discipline are rushing to learn data science techniques, train themselves on data science tools, and even leaving academia to become data scientists. It is undeniable that our ability to harness new computational and statistical methods to make sense of today’s unprecedented size, complexity, and fast streaming data is helping scientists make new discoveries. The question now is how to ensure that researchers can employ these tools and use them appropriately. This talk will cover the state of data science as it relates to scientific research and the role astronomers play in its development, use, and training the next generation of astro-data scientists.

  8. Open source hardware solutions for low-cost, do-it-yourself environmental monitoring, citizen science, and STEM education

    NASA Astrophysics Data System (ADS)

    Hicks, S. D.; Aufdenkampe, A. K.; Horsburgh, J. S.; Arscott, D. B.; Muenz, T.; Bressler, D. W.

    2016-12-01

    The explosion in DIY open-source hardware and software has resulted in the development of affordable and accessible technologies, like drones and weather stations, that can greatly assist the general public in monitoring environmental health and its degradation. It is widely recognized that education and support of audiences in pursuit of STEM literacy and the application of emerging technologies is a challenge for the future of citizen science and for preparing high school graduates to be actively engaged in environmental stewardship. It is also clear that detecting environmental change/degradation over time and space will be greatly enhanced with expanded use of networked, remote monitoring technologies by watershed organizations and citizen scientists if data collection and reporting are properly carried out and curated. However, there are few focused efforts to link citizen scientists and school programs with these emerging tools. We have started a multi-year program to develop hardware and teaching materials for training students and citizen scientists about the use of open source hardware in environmental monitoring. Scientists and educators around the world have started building their own dataloggers and devices using a variety of boards based on open source electronics. This new hardware is now providing researchers with an inexpensive alternative to commercial data logging and transmission hardware. We will present a variety of hardware solutions using the Arduino-compatible EnviroDIY Mayfly board (http://envirodiy.org/mayfly) that can be used to build and deploy a rugged environmental monitoring station using a wide variety of sensors and options, giving the users a fully customizable device for making measurements almost anywhere. A database and visualization system is being developed that will allow the users to view and manage the data their devices are collecting. We will also present our plan for developing curricula and leading workshops to various school programs and citizen scientist groups to teach them how to build, deploy, and maintain their own environmental monitoring stations.

  9. A gender gap in the next generation of physician-scientists: medical student interest and participation in research.

    PubMed

    Guelich, Jill M; Singer, Burton H; Castro, Marcia C; Rosenberg, Leon E

    2002-11-01

    For 2 decades, the number of physician-scientists has not kept pace with the overall growth of the medical research community. Concomitantly, the number of women entering medical schools has increased markedly. We have explored the effect of the changing gender composition of medical schools on the present and future pipeline of young physician-scientists. We analyzed data obtained from the Association of American Medical Colleges, the National Institutes of Health, and the Howard Hughes Medical Institute pertaining to the expressed research intentions or research participation of male and female medical students in the United States. A statistically significant decline in the percentage of matriculating and graduating medical students--both men and women-who expressed strong research career intentions occurred during the decade between 1987 and 1997. Moreover, matriculating and graduating women were significantly less likely than men to indicate strong research career intentions. Each of these trends has been observed for medical schools overall and for research-intensive ones. Cohort data obtained by tracking individuals from matriculation to graduation revealed that women who expressed strong research career intentions upon matriculation were more likely than men to decrease their research career intentions during medical school. Medical student participation in research supported the gender gap identified by assessing research intentions. Female medical student participation in the Medical Scientist Training Program and the Howard Hughes Medical Institute/National Institutes of Health-sponsored Cloisters Program has increased but lags far behind the growth in the female population in medical schools. Three worrisome trends in the research career intentions and participation of the nation's medical students (a decade-long decline for both men and women, a large and persistent gender gap, and a negative effect of the medical school experience for women) presage a further decline in the physician-scientist pipeline unless they are reversed promptly and decisively.

  10. Social justice pedagogies and scientific knowledge: Remaking citizenship in the non-science classroom

    NASA Astrophysics Data System (ADS)

    Lehr, Jane L.

    This dissertation contributes to efforts to rethink the meanings of democracy, scientific literacy, and non-scientist citizenship in the United States. Beginning with questions that emerged from action research and exploring the socio-political forces that shape educational practices, it shows why non-science educators who teach for social justice must first recognize formal science education as a primary site of training for (future) non-scientist citizens and then prepare to intervene in the dominant model of scientifically literate citizenship offered by formal science education. This model of citizenship defines (and limits) appropriate behavior for non-scientist citizens as acquiescing to the authority of science and the state by actively demarcating science from non-science, experts from non-experts, and the rational from the irrational. To question scientific authority is to be scientifically illiterate. This vision of 'acquiescent democracy' seeks to end challenges to the authority of science and the state by ensuring that scientific knowledge is privileged in all personal and public decision-making practices, producing a situation in which it becomes natural for non-scientist citizens to enroll scientific knowledge to naturalize oppression within our schools and society. It suggests that feminist and equity-oriented science educators, by themselves, are unable or unwilling to challenge certain assumptions in the dominant model of scientifically literate citizenship. Therefore, it is the responsibility of non-science educators who teach for social justice to articulate oppositional models of non-scientist citizenship and democracy in their classrooms and to challenge the naturalized authority of scientific knowledge in all aspects of our lives. It demonstrates how research in the field of Science & Technology Studies can serve as one resource in our efforts to intervene in the dominant model of scientifically literate citizenship and to support a model of democracy that encourages the critical engagement of and opposition to scientific knowledge and the state.

  11. Bridging the Research-to-Practice Gap: The Role of the Nurse Scientist.

    PubMed

    Brant, Jeannine M

    2015-11-01

    To describe the emerging role of the nurse scientist in health care organizations. Historical perspectives of the role are explored along with the roles of the nurse scientist, facilitators, barriers, and future implications. Relevant literature on evidence-based practice and research in health care organizations; nurse scientist role; interview with University of Colorado nurse scientist. The nurse scientist role is integral for expanding evidence-based decisions and nursing research. A research mentor is considered the most important facilitator for a successful nursing research program. Organizations should consider including the nurse scientist role to facilitate evidence-based practice and expand opportunities for nursing research. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Preparing clinical pharmacy scientists for careers in clinical/translational research: can we meet the challenge?: ACCP Research Affairs Committee Commentary.

    PubMed

    Parker, Robert B; Ellingrod, Vicki; DiPiro, Joseph T; Bauman, Jerry L; Blouin, Robert A; Welage, Lynda S

    2013-12-01

    Developing clinical pharmacists' research skills and their ability to compete for extramural funding is an important component of the American College of Clinical Pharmacy's (ACCP) vision for pharmacists to play a prominent role in generating the new knowledge used to guide patient pharmacotherapy. Given the recent emphasis on clinical/translational research at the National Institutes of Health (NIH) and the key role of drug therapy in the management of many diseases, there is an unprecedented opportunity for the profession to contribute to this enterprise. A crucial question facing the profession is whether we can generate enough appropriately trained scientists to take advantage of these opportunities to generate the new knowledge to advance drug therapy. Since the 2009 publication of the ACCP Research Affairs Committee editorial recommending the Ph.D. degree (as opposed to fellowship training) as the optimal method for preparing pharmacists as clinical/translational scientists, significant changes have occurred in the economic, professional, political, and research environments. As a result, the 2012 ACCP Research Affairs Committee was charged with reexamining the college's position on training clinical pharmacy scientists in the context of these substantial environmental changes. In this commentary, the potential impact of these changes on opportunities for pharmacists in clinical/translational research are discussed as are strategies for ACCP, colleges of pharmacy, and the profession to increase the number and impact of clinical pharmacy scientists. Failure of our profession to take advantage of these opportunities risks our ability to contribute substantively to the biomedical research enterprise and ultimately improve the pharmacotherapy of our patients. © 2013 Pharmacotherapy Publications, Inc.

  13. Exploring intentions of physician-scientist trainees: factors influencing MD and MD/PhD interest in research careers.

    PubMed

    Kwan, Jennifer M; Daye, Dania; Schmidt, Mary Lou; Conlon, Claudia Morrissey; Kim, Hajwa; Gaonkar, Bilwaj; Payne, Aimee S; Riddle, Megan; Madera, Sharline; Adami, Alexander J; Winter, Kate Quinn

    2017-07-11

    Prior studies have described the career paths of physician-scientist candidates after graduation, but the factors that influence career choices at the candidate stage remain unclear. Additionally, previous work has focused on MD/PhDs, despite many physician-scientists being MDs. This study sought to identify career sector intentions, important factors in career selection, and experienced and predicted obstacles to career success that influence the career choices of MD candidates, MD candidates with research-intense career intentions (MD-RI), and MD/PhD candidates. A 70-question survey was administered to students at 5 academic medical centers with Medical Scientist Training Programs (MSTPs) and Clinical and Translational Science Awards (CTSA) from the NIH. Data were analyzed using bivariate or multivariate analyses. More MD/PhD and MD-RI candidates anticipated or had experienced obstacles related to balancing academic and family responsibilities and to balancing clinical, research, and education responsibilities, whereas more MD candidates indicated experienced and predicted obstacles related to loan repayment. MD/PhD candidates expressed higher interest in basic and translational research compared to MD-RI candidates, who indicated more interest in clinical research. Overall, MD-RI candidates displayed a profile distinct from both MD/PhD and MD candidates. MD/PhD and MD-RI candidates experience obstacles that influence their intentions to pursue academic medical careers from the earliest training stage, obstacles which differ from those of their MD peers. The differences between the aspirations of and challenges facing MD, MD-RI and MD/PhD candidates present opportunities for training programs to target curricula and support services to ensure the career development of successful physician-scientists.

  14. Scientists May Have Put Their Names on Papers Written by Drug Companies

    ERIC Educational Resources Information Center

    Guterman, Lila

    2008-01-01

    This article describes how academic scientists appear to have put their names on papers that are actually ghostwritten by for-profit companies and then published in medical journals. Some of the scientists accused of doing so deny any wrongdoing, but journal editors are already outlining measures to prevent future breaches of academic integrity.…

  15. The Global Challenge in Neuroscience Education and Training: The MBL Perspective.

    PubMed

    Nishi, Rae; Castañeda, Edward; Davis, Graeme W; Fenton, André A; Hofmann, Hans A; King, Jean; Ryan, Timothy A; Trujillo, Keith A

    2016-11-02

    The greatest challenge in moving neuroscience research forward in the 21st century is recruiting, training, and retaining the brightest, rigorous, and most diverse scientists. The MBL research training courses Neurobiology and Neural Systems & Behavior, and the Summer Program in Neuroscience, Excellence, and Success provide a model for full immersion, discovery-based training while enhancing cultural, geographic, and racial diversity. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Determining the Best Science Blogger: Teachers or Scientists?

    NASA Astrophysics Data System (ADS)

    Timm, K.; Lower, T. A.; Sparrow, E. B.; Niles, B. A.

    2011-12-01

    The International Polar Year (2007-2008) was an international scientific campaign to study and raise awareness of the Earth's polar regions. Several scientists and educators that visited the polar regions during this time used a blog to share their day-to-day and scientific research activities with school children and the general public. Due to advances in technology, scientists and others were able to post their daily stories and photos online to share the science and their adventures from sometimes very remote locations in the polar regions. Not having large budgets for outreach, blogs are a commonly used outreach tool because they can be free or relatively inexpensive to set up and maintain. However, in order for this approach to be successful, the readability and words used must be accessible to the target audience. This study uses the Flesch Reading Ease Analysis and Quantitative Phenomenology to compare blogs from three groups of people, including teachers, scientists, and scientists who had received special blog and multimedia training. Quantitative Phenomenology provides a quantitative means to analyze large quantities of written text and determine relative word frequencies by comparing word counts from a selected body of text with that of the American National Corpus. This method was used to determine the amount of scientific jargon used in the blogs of each group, because cognitively, approaching jargon when reading is like approaching a complex word with several syllables. Despite training, both groups of scientists wrote on average at an eighth to ninth grade reading level and used more scientific jargon in their blogs. Teachers who wrote from the field wrote on average at a seventh grade level, and while they used some scientific jargon they spent more time talking about life in the field than scientists. As funding agencies continue to require and encourage outreach activities by scientists, such as blogs, it is important that proper training and tools are in place so that activities are accessible to the target audiences and match their cognitive abilities. While the seventh to ninth grade reading level is probably fairly accessible for many adults, the grade level is probably too high for most elementary and early middle school students and much higher than popular literature. Science blogs have the potential to contribute greatly to scientific literacy, but only if the public and students are able to read and understand what they are reading with ease.

  17. Permafrost Young Researchers Get Their Hands Dirty: The PYRN-Thermal State of Permafrost IPY Project

    NASA Astrophysics Data System (ADS)

    Johansson, M.; Lantuit, H.

    2009-04-01

    The Permafrost Young Researchers Network (PYRN) (www.pyrn.org) is a unique resource for students and young scientists and engineers studying permafrost. It is an international organization fostering innovative collaboration, seeking to recruit, retain, and promote future generations of permafrost scientists and engineers. Initiated for and during IPY, PYRN directs the multi-disciplinary talents of its membership toward global awareness, knowledge, and response to permafrost-related challenges in a changing climate. Created as an education and outreach component of the International Permafrost Association (IPA), PYRN is a central database of permafrost information and science for more than 500 young researchers from over 40 countries. PYRN distributes a newsletter, recognizes outstanding permafrost research by its members through an annual awards program, organizes training workshops (2007 in Abisko, Sweden and St. Petersburg, Russia, 2008 in Fairbanks, Alaska and St. Petersburg, Russia), and contributes to the growth and future of the permafrost community. While networking forms the basis of PYRN's activities, the organization also seeks to establish itself as a driver of permafrost research for the IPY and beyond. We recently launched a series of initiatives on several continents aimed at providing young scientists and engineers with the means to conduct ground temperature monitoring in under investigated permafrost regions. Focusing on sites not currently covered by the IPA's "Thermal State of Permafrost" project, the young investigators of PYRN successfully launched and funded the PYRN-TSP project. They use lightweight drills and temperature sensors to instrument shallow boreholes in those regions. The first phase of the project was started in the spring of 2008 at Scandinavian sites. The data and results will be incorporated in the global database on permafrost temperatures and made freely available to the scientific community, thereby contributing to the advance of permafrost science and the strengthening of the next generation of permafrost researchers.

  18. Immediate assessment of performance of medical laboratory scientists following a 10-day malaria microscopy training programme in Nigeria.

    PubMed

    Aiyenigba, Bolatito; Ojo, Abiodun; Aisiri, Adolor; Uzim, Justus; Adeusi, Oluwole; Mwenesi, Halima

    2017-01-01

    Rapid and precise diagnosis of malaria is an essential element in effective case management and control of malaria. Malaria microscopy is used as the gold standard for malaria diagnosis, however results remain poor as positivity rate in Nigeria is consistently over 90%. The United States President's Malaria Initiative (PMI) through the Malaria Action Program for States (MAPS) supported selected states in Nigeria to build capacity for malaria microscopy. This study demonstrates the effectiveness of in-service training on malaria microscopy amongst medical laboratory scientists. The training was based on the World Health Organization (WHO) basic microscopy training manual. The 10-day training utilized a series of didactic lectures and examination of teaching slides using a CX 21 Olympus binocular microscope. All 108 medical laboratory scientists trained from 2012 to 2015 across five states in Nigeria supported by PMI were included in the study. Evaluation of the training using a pre-and post-test method was based on written test questions; reading photographic slide images of malaria parasites; and prepared slides. There was a significant improvement in the mean written pre-and post-tests scores from 37.9% (95% CI 36.2-39.6%) to 70.7% (95% CI 68.4-73.1%) ( p  < 0.001). The mean counting post-test score improved significantly from 4.2% (95% CI 2.6-5.7%) to 27.9% (95% CI 25.3-30.5%) ( p  < 0.001). Mean post-test score for computer-based picture speciation test (63.0%) and picture detection test (89.2%) were significantly higher than the mean post-test score for slide reading speciation test (38.3%) and slide reading detection test (70.7%), p  < 0.001 in both cases. Parasite detection and speciation using enhanced visual imaging was significantly improved compared with using direct microscopy. Regular in-service training and provision of functional and high resolution microscopes are needed to ensure quality routine malaria microscopy.

  19. Strategies for Supporting Physician-Scientists in Faculty Roles: A Narrative Review With Key Informant Consultations.

    PubMed

    Lingard, Lorelei; Zhang, Peter; Strong, Michael; Steele, Margaret; Yoo, John; Lewis, James

    2017-10-01

    Physician-scientists are a population in decline globally. Solutions to reverse this decline often have focused on the training pipeline. Less attention has been paid to reducing attrition post training, when physician-scientists take up faculty roles. However, this period is a known time of vulnerability because of the pressures of clinical duties and the long timeline to securing independent research funding. This narrative review explored existing knowledge regarding how best to support physician-scientists for success in their faculty roles. The authors searched the Medline, Embase, ERIC, and Cochrane Library databases for articles published from 2000 to 2016 on this topic and interviewed key informants in 2015 to solicit their input on the review results. The authors reviewed 78 articles and interviewed 16 key informants. From the literature, they developed a framework of organizational (facilitate mentorship, foster community, value the physician-scientist role, minimize financial barriers) and individual (develop professional and research skills) strategies for supporting physician-scientists. They also outlined key knowledge gaps representing topics either rarely or never addressed in the reviewed articles (percent research time, structural hypocrisy, objective assessment, group metrics, professional identity). The key informants confirmed the identified strategies and discussed how the gaps were particularly important and impactful. This framework offers a basis for assessing an organization's existing support strategies, identifying outstanding needs, and developing targeted programming. The identified gaps require attention, as they threaten to undermine the benefits of existing support strategies.

  20. From Pipettes to Science Policy.

    PubMed

    Seger, Yvette R

    2015-11-01

    Science policy provides PhD-trained scientists with unique and rewarding opportunities to support the research community. Careers in science policy require broad scientific knowledge coupled with keen problem-solving, data-analysis, and communication skills. This article describes strategies for scientists to engage in policy discussions, both extramural and full-time. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Biomedical and Behavioral Research Scientists: Their Training and Supply. Volume 2: Statistical Tables.

    ERIC Educational Resources Information Center

    National Academy of Sciences - National Research Council, Washington, DC. Office of Scientific and Engineering Personnel.

    Volume Two of a three volume set of the Biomedical and Behavioral Research Scientists study presents tables of data which were required for the study's development by the National Research Council. Data from these tables were obtained from the Association of American Medical Colleges, the American Dental Association, the American Medical…

  2. Preparing Earth Data Scientists for 'the sexiest job of the 21st century'

    NASA Astrophysics Data System (ADS)

    Kempler, S. J.

    2014-12-01

    What Exactly do Earth Data Scientists do, and What do They Need to Know, to do It? There is not one simple answer, but there are many complex answers. Data Science, and data analytics, are new and nebulas, and takes on different characteristics depending on: The subject matter being analyzed, the maturity of the research, and whether the employed subject specific analytics is descriptive, diagnostic, discoveritive, predictive, or prescriptive, in nature. In addition, in a, thus far, business driven paradigm shift, university curriculums teaching data analytics pertaining to Earth science have, as a whole, lagged behind, and/or have varied in approach. This presentation attempts to breakdown and identify the many activities that Earth Data Scientists, as a profession, encounter, as well as provide case studies of specific Earth Data Scientist and data analytics efforts. I will also address the educational preparation, that best equips future Earth Data Scientists, needed to further Earth science heterogeneous data research and applications analysis. The goal of this presentation is to describe the actual need for Earth Data Scientists and the practical skills to perform Earth science data analytics, thus hoping to initiate discussion addressing a baseline set of needed expertise for educating future Earth Data Scientists.

  3. CosmoQuest: Training Students, Teachers and the Public to do NASA Science

    NASA Astrophysics Data System (ADS)

    Buxner, S.; Bracey, G.; Noel-Storr, J.; Murph, S.; Francis, M. R.; Strishock, L.; Cobb, W. H.; Lebofsky, L. A.; Jones, A. P.; Finkelstein, K.; Gay, P.

    2016-12-01

    Engaging individuals in science who have not been formally trained as research scientists can both capture a wider audiences in the process of science as well as crowdsource data analysis that gets more science done. CosmoQuest is a virtual research facility that leverages these benefits through citizen science projects that has community members to analyze NASA data that contributes to publishable science results. This is accomplished through an inviting experience that recruits members of the public (including students), meets their needs and motivations, and provides them the education they want so they can to be contributing members of the community. Each research project in CosmoQuest presents new training opportunities that are designed to meet the personal needs of the engaged individuals, while also leading to the production of high-quality data that meets the needs of the research teams. These educational opportunities extend into classrooms, where both teachers and students engage in analysis. Training for teachers is done through in-person and online professional development, and through conference workshops for both scientists and educators. Curricular products are available to support students' understanding of citizen science and how to engage in CosmoQuest projects. Professional development for all audiences is done through online tutorials and courses, with social media support. Our goal is to instill expertise in individuals not formally trained as research scientists. This allows them to work with and provide genuine scientific support to practicing experts in a community that benefits all stakeholders. Training focuses on increasing and supporting individuals' core content knowledge as well as building the specific skills necessary to engage in each project. These skills and knowledge are aligned with the 3-dimensional learning of the Next Generation Science Standards, and support lifelong learning opportunities for those in and out of school.

  4. Importance of clinical microbiologists for U.S. healthcare infrastructure.

    PubMed

    Carvalho, John

    2011-01-01

    Clinical microbiologists are highly skilled scientists within national hospitals and reference laboratories who diagnose patients with infections by emerging pathogens. Most advanced training for clinical microbiologists occurs at universities, where an individual can receive certification as a "Medical Laboratory Scientist" (MLS). Unfortunately, many MLS programs have closed in the United States and this has caused a shortage of clinical microbiologists at U.S. hospitals and reference laboratories. This paper explores the present crisis in MLS training and its ramifications for the emergence of antibiotic-resistant bacteria, the economics of hospitals, and the overall health of the nation, and provides resolutions for better public health policy with respect to MLS education.

  5. Nuclear Science Outreach in the World Year of Physics

    NASA Astrophysics Data System (ADS)

    McMahan, Margaret

    2006-04-01

    The ability of scientists to articulate the importance and value of their research has become increasingly important in the present climate of declining budgets, and this is most critical in the field of nuclear science ,where researchers must fight an uphill battle against negative public perception. Yet nuclear science encompasses important technical and societal issues that should be of primary interest to informed citizens, and the need for scientists trained in nuclear techniques are important for many applications in nuclear medicine, national security and future energy sources. The NSAC Education Subcommittee Report [1] identified the need for a nationally coordinated effort in nuclear science outreach, naming as its first recommendation that `the highest priority for new investment in education be the creation by the DOE and NSF of a Center for Nuclear Science Outreach'. This talk will review the present status of public outreach in nuclear science and highlight some specific efforts that have taken place during the World Year of Physics. [1] Education in Nuclear Science: A Status Report and Recommendations for the Beginning of the 21^st Century, A Report of the DOE/NSF Nuclear Science Advisory Committee Subcommittee on Education, November 2004, http://www.sc.doe.gov/henp/np/nsac/docs/NSACCReducationreportfinal.pdf.

  6. Neuroscience-related research in Ghana: a systematic evaluation of direction and capacity.

    PubMed

    Quansah, Emmanuel; Karikari, Thomas K

    2016-02-01

    Neurological and neuropsychiatric diseases account for considerable healthcare, economic and social burdens in Ghana. In order to effectively address these burdens, appropriately-trained scientists who conduct high-impact neuroscience research will be needed. Additionally, research directions should be aligned with national research priorities. However, to provide information about current neuroscience research productivity and direction, the existing capacity and focus need to be identified. This would allow opportunities for collaborative research and training to be properly explored and developmental interventions to be better targeted. In this study, we sought to evaluate the existing capacity and direction of neuroscience-related research in Ghana. To do this, we examined publications reporting research investigations authored by scientists affiliated with Ghanaian institutions in specific areas of neuroscience over the last two decades (1995-2015). 127 articles that met our inclusion criteria were systematically evaluated in terms of research foci, annual publication trends and author affiliations. The most actively-researched areas identified include neurocognitive impairments in non-nervous system disorders, depression and suicide, epilepsy and seizures, neurological impact of substance misuse, and neurological disorders. These studies were mostly hospital and community-based surveys. About 60% of these articles were published in the last seven years, suggesting a recent increase in research productivity. However, data on experimental and clinical research outcomes were particularly lacking. We suggest that future investigations should focus on the following specific areas where information was lacking: large-scale disease epidemiology, effectiveness of diagnostic platforms and therapeutic treatments, and the genetic, genomic and molecular bases of diseases.

  7. Forensic Science and the Internet - Current Utilization and Future Potential.

    PubMed

    Chamakura, R P

    1997-12-01

    The Internet has become a very powerful and inexpensive tool for the free distribution of knowledge and information. It is a learning and research tool, a virtual library without borders and membership requirements, a help desk, and a publication house providing newspapers with current information and journals with instant publication. Very soon, when live audio and video transmission is perfected, the Internet (popularly referred to as the Net) also will be a live classroom and everyday conference site. This article provides a brief overview of the basic structure and essential components of the Internet. A limited number of home pages/Web sites that are already made available on the Net by scientists, laboratories, and colleges in the forensic science community are presented in table forms. Home pages/Web sites containing useful information pertinent to different disciplines of forensic science are also categorized in various tables. The ease and benefits of the Internet use are exemplified by the author's personal experience. Currently, only a few forensic scientists and institutions have made their presence felt. More participation and active contribution and the creation of on-line searchable databases in all specialties of forensic science are urgently needed. Leading forensic journals should take the lead and create on-line searchable indexes with abstracts. Creating Internet repositories of unpublished papers is an idea worth looking into. Leading forensic science institutions should also develop use of the Net to provide training and retraining opportunities for forensic scientists. Copyright © 1997 Central Police University.

  8. Town Meeting on Plasma Physics at the National Science Foundation

    NASA Astrophysics Data System (ADS)

    2015-11-01

    We invite you to the Town Meeting on the role of the National Science Foundation (NSF) in supporting basic and applied research in Plasma Physics in the U.S. The overarching goal of NSF is to promote the progress of science and to enable training of the next generation of scientists and engineers at US colleges and universities. In this context, the role of the NSF Physics Division in leading the nearly 20 year old NSF/DOE Partnership in Basic Plasma Science and Engineering serves as an example of the long history of NSF support for basic plasma physics research. Yet, the NSF interest in maintaining a healthy university research base in plasma sciences extends across the Foundation. A total of five NSF Divisions are participating in the most recent Partnership solicitation, and a host of other multi-disciplinary and core programs provide opportunities for scientists to perform research on applications of plasma physics to Space & Solar Physics, Astrophysics, Accelerator Science, Material Science, Plasma Medicine, and many sub-disciplines within Engineering. This Town Meeting will provide a chance to discuss the full range of relevant NSF funding opportunities, and to begin a conversation on the present and future role of NSF in stewarding basic plasma science and engineering research at US colleges and universities. We would like to particularly encourage early career scientists and graduate students to participate in this Town Meeting, though everyone is invited to join what we hope to be a lively discussion.

  9. Space station Simulation Computer System (SCS) study for NASA/MSFC. Volume 1: Overview and summary

    NASA Technical Reports Server (NTRS)

    1989-01-01

    NASA's Space Station Freedom Program (SSFP) planning efforts have identified a need for a payload training simulator system to serve as both a training facility and as a demonstrator to validate operational concepts. The envisioned Marshall Space Flight Center (MSFC) Payload Training Complex (PTC) required to meet this need will train the space station payload scientists, station scientists, and ground controllers to operate the wide variety of experiments that will be onboard the Space Station Freedom. The Simulation Computer System (SCS) is the computer hardware, software, and workstations that will support the Payload Training Complex at MSFC. The purpose of this SCS study is to investigate issues related to the SCS, alternative requirements, simulator approaches, and state-of-the-art technologies to develop candidate concepts and designs. This study was performed August 1988 to October 1989. Thus, the results are based on the SSFP August 1989 baseline, i.e., pre-Langley configuration/budget review (C/BR) baseline. Some terms, e.g., combined trainer, are being redefined. An overview of the study activities and a summary of study results are given here.

  10. International scientists' priorities for research on pharmaceutical and personal care products in the environment.

    PubMed

    Rudd, Murray A; Ankley, Gerald T; Boxall, Alistair B A; Brooks, Bryan W

    2014-10-01

    Pharmaceuticals and personal care products (PPCPs) are widely discharged into the environment via diverse pathways. The effects of PPCPs in the environment have potentially important human and ecosystem health implications, so credible, salient, and legitimate scientific evidence is needed to inform regulatory and policy responses that address potential risks. A recent "big questions" exercise with participants largely from North America identified 22 important research questions around the risks of PPCP in the environment that would help address the most pressing knowledge gaps over the next decade. To expand that analysis, we developed a survey that was completed by 535 environmental scientists from 57 countries, of whom 49% identified environmental or analytical chemistry as their primary disciplinary background. They ranked the 22 original research questions and submitted 171 additional candidate research questions they felt were also of high priority. Of the original questions, the 3 perceived to be of highest importance related to: 1) the effects of long-term exposure to low concentrations of PPCP mixtures on nontarget organisms, 2) effluent treatment methods that can reduce the effects of PPCPs in the environment while not increasing the toxicity of whole effluents, and 3) the assessment of the environmental risks of metabolites and environmental transformation products of PPCPs. A question regarding the role of cultural perspectives in PPCP risk assessment was ranked as the lowest priority. There were significant differences in research orientation between scientists who completed English and Chinese language versions of the survey. We found that the Chinese respondents were strongly orientated to issues of managing risk profiles, effluent treatment, residue bioavailability, and regional assessment. Among English language respondents, further differences in research orientation were associated with respondents' level of consistency when ranking the survey's 15 comparisons. There was increasing emphasis on the role of various other stressors relative to PPCPs and on risk prioritization as internal decision making consistency increased. Respondents' consistency in their ranking choices was significantly and positively correlated with SETAC membership, authors' number of publications, and longer survey completion times. Our research highlighted international scientists' research priorities and should help inform decisions about the type of hazard and risk-based research needed to best inform decisions regarding PPCPs in the environment. Disciplinary training of a scientist or engineer appears to strongly influence preferences for research priorities to understand PPCPs in the environment. Selection of participants and the depth and breadth of research prioritization efforts thus have potential effects on the outcomes of research prioritization exercises. Further elucidation of how patterns of research priority vary between academic and government scientists and between scientists and other government and stakeholders would be useful in the future and provide information that helps focus scientific effort on socially relevant challenges relating to PPCPs in the environment. It also suggests the potential for future collaborative research between industry, government, and academia on environmental contaminants beyond PPCPs. © 2014 SETAC.

  11. THE MILKY WAY PROJECT: LEVERAGING CITIZEN SCIENCE AND MACHINE LEARNING TO DETECT INTERSTELLAR BUBBLES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beaumont, Christopher N.; Williams, Jonathan P.; Goodman, Alyssa A.

    We present Brut, an algorithm to identify bubbles in infrared images of the Galactic midplane. Brut is based on the Random Forest algorithm, and uses bubbles identified by >35,000 citizen scientists from the Milky Way Project to discover the identifying characteristics of bubbles in images from the Spitzer Space Telescope. We demonstrate that Brut's ability to identify bubbles is comparable to expert astronomers. We use Brut to re-assess the bubbles in the Milky Way Project catalog, and find that 10%-30% of the objects in this catalog are non-bubble interlopers. Relative to these interlopers, high-reliability bubbles are more confined to themore » mid-plane, and display a stronger excess of young stellar objects along and within bubble rims. Furthermore, Brut is able to discover bubbles missed by previous searches—particularly bubbles near bright sources which have low contrast relative to their surroundings. Brut demonstrates the synergies that exist between citizen scientists, professional scientists, and machine learning techniques. In cases where ''untrained' citizens can identify patterns that machines cannot detect without training, machine learning algorithms like Brut can use the output of citizen science projects as input training sets, offering tremendous opportunities to speed the pace of scientific discovery. A hybrid model of machine learning combined with crowdsourced training data from citizen scientists can not only classify large quantities of data, but also address the weakness of each approach if deployed alone.« less

  12. Breaking the Ice: Strategies for Future European Research in the Polar Oceans - The AURORA BOREALIS Concept

    NASA Astrophysics Data System (ADS)

    Lembke-Jene, L.; Biebow, N.; Wolff-Boenisch, B.; Thiede, J.; European Research Icebreaker Consortium

    2011-12-01

    Research vessels dedicated to work in polar ice-covered waters have only rarely been built. Their history began with Fritjof Nansen's FRAM, which he used for his famous first crossing of the Arctic Ocean 1893-1896. She served as example for the first generation of polar research vessels, at their time being modern instruments planned with foresight. Ice breaker technology has developed substantially since then. However, it took almost 80 years until this technical advance also reached polar research, when the Russian AKADEMIK FEDEROV, the German POLARSTERN, the Swedish ODEN and the USCG Cutter HEALY were built. All of these house modern laboratories, are ice-breakers capable to move into the deep-Arctic during the summer time and represent the second generation of dedicated polar research vessels. Still, the increasing demand in polar marine research capacities by societies that call for action to better understand climate change, especially in the high latitudes is not matched by adequate facilities and resources. Today, no icebreaker platform exists that is permanently available to the international science community for year-round expeditions into the central Arctic Ocean or heavily ice-infested waters of the polar Southern Ocean around Antarctica. The AURORA BOREALIS concept plans for a heavy research icebreaker, which will enable polar scientists around the world to launch international research expeditions into the central Arctic Ocean and the Antarctic continental shelf seas autonomously during all seasons of the year. The European Research Icebreaker Consortium - AURORA BOREALIS (ERICON-AB) was established in 2008 to plan the scientific, governance, financial, and legal frameworks needed for the construction and operation of this first multi-nationally owned and operated research icebreaker and polar scientific drilling platform. By collaborating together and sharing common infrastructures it is envisioned that European nations make a major contribution to tackle problems of high societal relevance beyond the scope of individual disciplines. It is planned to use part of the berthing capacity of AURORA BOREALIS for dedicated university education and teaching programmes in order to give future polar scientists the best training facilities available and enable a vital international exchange between educational centres. This aims at helping to vertically structure the new generation of young and well-trained students and playing a key role in the construction of an efficient research and innovation environment for future collaboration in polar research

  13. Scientific Training in the Era of Big Data: A New Pedagogy for Graduate Education.

    PubMed

    Aikat, Jay; Carsey, Thomas M; Fecho, Karamarie; Jeffay, Kevin; Krishnamurthy, Ashok; Mucha, Peter J; Rajasekar, Arcot; Ahalt, Stanley C

    2017-03-01

    The era of "big data" has radically altered the way scientific research is conducted and new knowledge is discovered. Indeed, the scientific method is rapidly being complemented and even replaced in some fields by data-driven approaches to knowledge discovery. This paradigm shift is sometimes referred to as the "fourth paradigm" of data-intensive and data-enabled scientific discovery. Interdisciplinary research with a hard emphasis on translational outcomes is becoming the norm in all large-scale scientific endeavors. Yet, graduate education remains largely focused on individual achievement within a single scientific domain, with little training in team-based, interdisciplinary data-oriented approaches designed to translate scientific data into new solutions to today's critical challenges. In this article, we propose a new pedagogy for graduate education: data-centered learning for the domain-data scientist. Our approach is based on four tenets: (1) Graduate training must incorporate interdisciplinary training that couples the domain sciences with data science. (2) Graduate training must prepare students for work in data-enabled research teams. (3) Graduate training must include education in teaming and leadership skills for the data scientist. (4) Graduate training must provide experiential training through academic/industry practicums and internships. We emphasize that this approach is distinct from today's graduate training, which offers training in either data science or a domain science (e.g., biology, sociology, political science, economics, and medicine), but does not integrate the two within a single curriculum designed to prepare the next generation of domain-data scientists. We are in the process of implementing the proposed pedagogy through the development of a new graduate curriculum based on the above four tenets, and we describe herein our strategy, progress, and lessons learned. While our pedagogy was developed in the context of graduate education, the general approach of data-centered learning can and should be applied to students and professionals at any stage of their education, including at the K-12, undergraduate, graduate, and professional levels. We believe that the time is right to embed data-centered learning within our educational system and, thus, generate the talent required to fully harness the potential of big data.

  14. Cancer Control Research Training for Native Researchers: A Model for Development of Additional Native Researcher Training Programs

    ERIC Educational Resources Information Center

    Becker, Thomas M.; Dunn, Esther; Tom-Orme, Lillian; Joe, Jennie

    2005-01-01

    Several social and biological scientists who have Native status are engaged in productive research careers, but the encouragement that has been offered to Native students to formulate career goals devoted to cancer etiology or cancer control in Native peoples has had limited success. Hence, the Native Researchers' Cancer Control Training Program…

  15. Assessing Uncertainty in Deep Learning Techniques that Identify Atmospheric Rivers in Climate Simulations

    NASA Astrophysics Data System (ADS)

    Mahesh, A.; Mudigonda, M.; Kim, S. K.; Kashinath, K.; Kahou, S.; Michalski, V.; Williams, D. N.; Liu, Y.; Prabhat, M.; Loring, B.; O'Brien, T. A.; Collins, W. D.

    2017-12-01

    Atmospheric rivers (ARs) can be the difference between CA facing drought or hurricane-level storms. ARs are a form of extreme weather defined as long, narrow columns of moisture which transport water vapor outside the tropics. When they make landfall, they release the vapor as rain or snow. Convolutional neural networks (CNNs), a machine learning technique that uses filters to recognize features, are the leading computer vision mechanism for classifying multichannel images. CNNs have been proven to be effective in identifying extreme weather events in climate simulation output (Liu et. al. 2016, ABDA'16, http://bit.ly/2hlrFNV). Here, we compare three different CNN architectures, tuned with different hyperparameters and training schemes. We compare two-layer, three-layer, four-layer, and sixteen-layer CNNs' ability to recognize ARs in Community Atmospheric Model version 5 output, and we explore the ability of data augmentation and pre-trained models to increase the accuracy of the classifier. Because pre-training the model with regular images (i.e. benches, stoves, and dogs) yielded the highest accuracy rate, this strategy, also known as transfer learning, may be vital in future scientific CNNs, which likely will not have access to a large labelled training dataset. By choosing the most effective CNN architecture, climate scientists can build an accurate historical database of ARs, which can be used to develop a predictive understanding of these phenomena.

  16. Challenges and opportunities in building health research capacity in Tanzania: a case of the National Institute for Medical Research.

    PubMed

    Magesa, Stephen M; Mwape, Bonard; Mboera, Leonard E G

    2011-12-01

    Capacity building is considered a priority for health research institutions in developing countries to achieve the Millennium Development Goals by 2015. However, in many countries including Tanzania, much emphasis has been directed towards human resources for health with the total exclusion of human resources for health research. The objective of this study was to systematically investigate the capacity building process for the Tanzanian National Institute for Medical Research (NIMR) over a 30-year period and identify the challenges and opportunities in creating a critical mass of multi-disciplinary research scientists that is required for achieving the intended health benefits. A desk review of personnel database was conducted for information covering 1980-2009 on academic qualifications, training, research experience and research output. The current staff curriculum vitae (CV) were reviewed to gather information on researchers' employment record, training, training support, area of expertise and scientific output. Interviews were conducted with a cross section of researchers on capacity development aspects using a self-administered questionnaire. In-depth interviews were also conducted with the current and former NIMR Management to seek information on capacity development challenges. A review was also done on staff personal files, annual reports, strategic plans and other occasional documents. A total of 163 CV were assessed; of these, 76.7% (125) were for Research Scientists (RS), 20.9% (34) Laboratory Technologists (LT) and 2.4% (4) for System Analysts. The Institute had 13 research scientists upon its establishment. Since 1980, NIMR has recruited a total of 185 Research Scientists. By 2009, NIMR had a total scientific workforce of 170 staff (RS= 82.4%; LT= 17.6%). Of the 140 RSs, 37 (26.4%), were first degree; 77 (55.5%) second degree while 26 (18.6%) were PhD degree holders. Of the total of 78 researchers interviewed, 55 (70.5%) indicated to have accessed postgraduate training through their personal efforts and 23 through institutional arrangement. Sixty (77%) respondents were satisfied with their tenure at NIMR. Seventy (89%) indicated that they had not at any point considered leaving NIMR. Most (79%) research scientists were recruited while holding a first degree, a few (17%) with second degree while only one (0.7%) holding a PhD degree. NIMR has experienced a research scientist attrition rate of 17.5%. Staff retention factors included availability of training opportunities; passion for conducting research; and good career prospects. Despite having a training programme, the institute has never at any moment been able to hold its own training resources. Being a public research institution, NIMR receives its core funding from the government of the United Republic of Tanzania. The bulk of the funding appears to be spent on personnel emoluments that take up to 85% (mean = 66%) of the allocated budget. In conclusion, the current NIMR's research capacity building is dependent mainly on foreign funding and personal initiatives. There is an urgent need to increase local funding for capacity building and conduct of research. A programme should be put in place to ensure sustainability of the capacity building process.

  17. Building the team for team science

    USGS Publications Warehouse

    Read, Emily K.; O'Rourke, M.; Hong, G. S.; Hanson, P. C.; Winslow, Luke A.; Crowley, S.; Brewer, C. A.; Weathers, K. C.

    2016-01-01

    The ability to effectively exchange information and develop trusting, collaborative relationships across disciplinary boundaries is essential for 21st century scientists charged with solving complex and large-scale societal and environmental challenges, yet these communication skills are rarely taught. Here, we describe an adaptable training program designed to increase the capacity of scientists to engage in information exchange and relationship development in team science settings. A pilot of the program, developed by a leader in ecological network science, the Global Lake Ecological Observatory Network (GLEON), indicates that the training program resulted in improvement in early career scientists’ confidence in team-based network science collaborations within and outside of the program. Fellows in the program navigated human-network challenges, expanded communication skills, and improved their ability to build professional relationships, all in the context of producing collaborative scientific outcomes. Here, we describe the rationale for key communication training elements and provide evidence that such training is effective in building essential team science skills.

  18. One More Legacy of Paul F. Brandwein: Creating Scientists

    NASA Astrophysics Data System (ADS)

    Fort, Deborah C.

    2011-06-01

    This paper studies the influence of Paul F. Brandwein, author, scientist, teacher and mentor, publisher, humanist, and environmentalist, on gifted youngsters who later became scientists, based primarily on information gathered from surveys completed by 25 of his students and one colleague. It also traces his profound interactions with science educators. It illuminates the theories of Brandwein and his protégés and colleagues about the interaction of environment, schooling, and education and Brandwein's belief in having students do original research (that is, research whose results are unknown) on their way to discovering their future scientific paths. It tests Brandwein's 1955 hypothesis on the characteristics typical of the young who eventually become scientists, namely: Three factors are considered as being significant in the development of future scientists: a Genetic Factor with a primary base in heredity (general intelligence, numerical ability, and verbal ability); a Predisposing Factor, with a primary base in functions which are psychological in nature; an Activating Factor, with a primary base in the opportunities offered in school and in the special skills of the teacher. High intelligence alone does not make a youngster a scientist (p xix).

  19. Communicating Your Science

    NASA Astrophysics Data System (ADS)

    Young, C. A.

    2016-12-01

    Effective science communication can open doors, accelerate your career and even make you a better scientist. Part of being an effective and productive scientist means being an effective science communicator. The scientist must communicate their work in talks, posters, peer-reviewed papers, internal reports, proposals as well as to the broader public (including law makers). Despite the importance of communication, it has traditionally not been part of our core training as scientists. Today's science students are beginning to have more opportunities to formally develop their science communication skills. Fortunately, new and even more established scientists have a range of tools and resources at their disposal. In this presentation, we will share some of these resources, share our own experiences utilizing them, and provide some practical tools to improve your own science communication skills.

  20. Elementary School Children Contribute to Environmental Research as Citizen Scientists.

    PubMed

    Miczajka, Victoria L; Klein, Alexandra-Maria; Pufal, Gesine

    2015-01-01

    Research benefits increasingly from valuable contributions by citizen scientists. Mostly, participating adults investigate specific species, ecosystems or phenology to address conservation issues, but ecosystem functions supporting ecosystem health are rarely addressed and other demographic groups rarely involved. As part of a project investigating seed predation and dispersal as ecosystem functions along an urban-rural gradient, we tested whether elementary school children can contribute to the project as citizen scientists. Specifically, we compared data estimating vegetation cover, measuring vegetation height and counting seeds from a seed removal experiment, that were collected by children and scientists in schoolyards. Children counted seeds similarly to scientists but under- or overestimated vegetation cover and measured different heights. We conclude that children can be involved as citizen scientists in research projects according to their skill level. However, more sophisticated tasks require specific training to become familiarized with scientific experiments and the development of needed skills and methods.

  1. Urologic Oncology Branch - Training - NCI/AFUD | Center for Cancer Research

    Cancer.gov

    Postdoctoral Research Training Program This program is designed to train Ph.D. postdoctoral scientists in the growing field of urologic oncology. This program offers fellows the opportunity to participate in a diverse training experience that includes clinical and laboratory research on several urologic malignancies. The program provides an opportunity for selected individuals to complete a research project under the direction of a Senior Investigator in the Intramural Program of the National Cancer Institute.

  2. Clinician–Investigator Training and the Need to Pilot New Approaches to Recruiting and Retaining This Workforce

    PubMed Central

    Hall, Alison K.; Lund, P. Kay

    2017-01-01

    Clinician–investigators, also called physician–scientists, offer critical knowledge and perspectives that benefit research on basic science mechanisms, improved diagnostic and therapeutic approaches, population and outcomes medicine, health policy, and health services, yet few clinically trained health professionals pursue a research career. Sustaining this workforce requires attention to the unique challenges faced by investigators who must achieve clinical and research competence during training and their careers. These challenges include the duration of required clinical training, limited or discontinuous research opportunities, high levels of educational debt, balancing the dual obligations and rewards of clinical care and research, competition for research funding, and the need for leadership development after training. Women and individuals from underrepresented racial and ethnic groups comprise a small percentage of this workforce. The authors summarize the recent literature on training for clinician–investigators, emphasizing approaches with encouraging outcomes that warrant broader implementation. Using this overview as background, they convened three workshops at the National Institutes of Health in 2016 to identify and refine key priorities for potential new pilot programs to recruit and retain the clinician–investigator workforce. From these workshops emerged three priorities for future pilot programs: (1) support for research in residency, (2) new research on-ramps for health professionals at multiple career stages, and (3) national networks to diversify and sustain clinician–investigator faculty. Implementation of any pilot program will require coordinated commitment from academic health centers, medical licensing/certification boards, professional societies, and clinician–investigators themselves, in addition to support from the National Institutes of Health. PMID:28767499

  3. Clinician-Investigator Training and the Need to Pilot New Approaches to Recruiting and Retaining This Workforce.

    PubMed

    Hall, Alison K; Mills, Sherry L; Lund, P Kay

    2017-10-01

    Clinician-investigators, also called physician-scientists, offer critical knowledge and perspectives that benefit research on basic science mechanisms, improved diagnostic and therapeutic approaches, population and outcomes medicine, health policy, and health services, yet few clinically trained health professionals pursue a research career. Sustaining this workforce requires attention to the unique challenges faced by investigators who must achieve clinical and research competence during training and their careers. These challenges include the duration of required clinical training, limited or discontinuous research opportunities, high levels of educational debt, balancing the dual obligations and rewards of clinical care and research, competition for research funding, and the need for leadership development after training. Women and individuals from underrepresented racial and ethnic groups comprise a small percentage of this workforce.The authors summarize the recent literature on training for clinician-investigators, emphasizing approaches with encouraging outcomes that warrant broader implementation. Using this overview as background, they convened three workshops at the National Institutes of Health in 2016 to identify and refine key priorities for potential new pilot programs to recruit and retain the clinician-investigator workforce. From these workshops emerged three priorities for future pilot programs: (1) support for research in residency, (2) new research on-ramps for health professionals at multiple career stages, and (3) national networks to diversify and sustain clinician-investigator faculty. Implementation of any pilot program will require coordinated commitment from academic health centers, medical licensing/certification boards, professional societies, and clinician-investigators themselves, in addition to support from the National Institutes of Health.

  4. WAAVP/Pfizer award for excellence in teaching veterinary parasitology: teaching of veterinary parasitology--quo vadis?

    PubMed

    Eckert, J

    2000-02-29

    Some thoughts on training and recruitment of academic teachers and future trends in teaching veterinary parasitology are presented with emphasis on the European situation. It is underlined that research is an indispensable basis for academic teaching. Besides a broad scientific background of the teacher, motivation and teaching methods are also important. Many academic teachers do not receive formal training in teaching methods. In order to improve future education, training of staff members in teaching methods should be promoted. Quality control of teaching and research, already established in many schools, should generally be introduced. Teaching is mostly underestimated in relation to research. Therefore, more weight should be placed on the former both in selecting scientists for the career as academic teachers and in evaluating and ranking departments for their academic activities. In the future veterinary medicine will have to cope with profound changes in the society and the veterinary profession, and the progressing European unification will enhance trends for internationalizing teaching curricula. Therefore, veterinary medicine has to reconsider the teaching subjects and methods and to lay more emphasis on flexibility, skills of problem-solving and self-learning and on training for life-long learning. At present there is an ongoing discussion on the question how to teach veterinary medicine, including veterinary parasitology. There are various options, and some of them are discussed, namely, the disciplinary and the problem-based/organ-focussed approaches. It is concluded that for teaching of veterinary parasitology and related disciplines a combined disciplinary and problem-based approach offers the best chances for fulfilling the requirements of teaching for the future. In the curriculum of undergraduate teaching of veterinary medicine at least 70-90 h should be dedicated to veterinary parasitology using a disciplinary and taxonomic approach. Additional hours are required for instructions on clinical cases in approaches focussed on animal species and/or organ diseases. As there is a need for discussing teaching issues, post-graduate specialization, and continuing education in parasitology and related disciplines on national and international levels, it is recommended to WAAVP to include regular workshops on teaching in the programmes of the biannual conferences, and to establish a permanent committee which should collect information and submit proposals for improvement of teaching veterinary parasitology.

  5. Enabling drug discovery project decisions with integrated computational chemistry and informatics

    NASA Astrophysics Data System (ADS)

    Tsui, Vickie; Ortwine, Daniel F.; Blaney, Jeffrey M.

    2017-03-01

    Computational chemistry/informatics scientists and software engineers in Genentech Small Molecule Drug Discovery collaborate with experimental scientists in a therapeutic project-centric environment. Our mission is to enable and improve pre-clinical drug discovery design and decisions. Our goal is to deliver timely data, analysis, and modeling to our therapeutic project teams using best-in-class software tools. We describe our strategy, the organization of our group, and our approaches to reach this goal. We conclude with a summary of the interdisciplinary skills required for computational scientists and recommendations for their training.

  6. Basic instincts

    NASA Astrophysics Data System (ADS)

    Hutson, Matthew

    2018-05-01

    In their adaptability, young children demonstrate common sense, a kind of intelligence that, so far, computer scientists have struggled to reproduce. Gary Marcus, a developmental cognitive scientist at New York University in New York City, believes the field of artificial intelligence (AI) would do well to learn lessons from young thinkers. Researchers in machine learning argue that computers trained on mountains of data can learn just about anything—including common sense—with few, if any, programmed rules. But Marcus says computer scientists are ignoring decades of work in the cognitive sciences and developmental psychology showing that humans have innate abilities—programmed instincts that appear at birth or in early childhood—that help us think abstractly and flexibly. He believes AI researchers ought to include such instincts in their programs. Yet many computer scientists, riding high on the successes of machine learning, are eagerly exploring the limits of what a naïve AI can do. Computer scientists appreciate simplicity and have an aversion to debugging complex code. Furthermore, big companies such as Facebook and Google are pushing AI in this direction. These companies are most interested in narrowly defined, near-term problems, such as web search and facial recognition, in which blank-slate AI systems can be trained on vast data sets and work remarkably well. But in the longer term, computer scientists expect AIs to take on much tougher tasks that require flexibility and common sense. They want to create chatbots that explain the news, autonomous taxis that can handle chaotic city traffic, and robots that nurse the elderly. Some computer scientists are already trying. Such efforts, researchers hope, will result in AIs that sit somewhere between pure machine learning and pure instinct. They will boot up following some embedded rules, but will also learn as they go.

  7. Heliophysics as a Scientific Discipline

    NASA Astrophysics Data System (ADS)

    Greb, K.

    2015-12-01

    Heliophysics is a developing scientific discipline integrating studies of the Sun's variability, the surrounding heliosphere, and climate environments. Over the past few centuries our understanding of how the Sun drives space weather and climate on the Earth and other planets has advanced at an ever-increasing rate. NASA Living With a Star and the UCAR Visiting Scientist Progams sponsor the annual Heliophysics Summer Schools to build the next generation of scientists in this emerging field. The highly successful series of the summer schools (commencing 2007) trains a select group of graduate students, postdoctoral fellows and university faculty to learn and develop the science of heliophysics as a broad, coherent discipline that reaches in space from the Earth's troposphere to the depths of the Sun, and in time from the formation of the solar system to the distant future. Now in its tenth year, the School has resulted in the publication of five Heliophysics textbooks now being used at universities worldwide. The books provide a foundational reference for researchers in space physics, solar physics, aeronomy, space weather, planetary science and climate science, astrophysics, plasma physics,. In parallel, the School also developed the complementary materials that support teaching of heliophysics at both graduate and undergraduate levels. The Jack Eddy Postdoctoral Fellowship Program matches newly graduated postdoctorates with hosting mentors for the purpose of training the next generation researchers needed in heliophysics. The fellowships are for two years, and any U.S. university or research lab may apply to host a fellow. Two major topics of focus for the program are the science of space weather and of the Sun-climate connection. Since the goal of this fellowship program is to train Sun-Earth system researchers, preference is also given to research projects that cross the traditional heliophysics subdomains of the Sun, heliosphere, magnetosphere, and ionosphere/upper atmosphere, as well as Sun-climate investigations. Host mentors plan critical roles. Potential hosts may enter information about their research on a central database.

  8. Heliophysics as a Scientific Discipline

    NASA Astrophysics Data System (ADS)

    Greb, K.; Austin, M.; Guhathakurta, M.

    2016-12-01

    Heliophysics is a developing scientific discipline integrating studies of the Sun's variability, the surrounding heliosphere, and climate environments. Over the past few centuries our understanding of how the Sun drives space weather and climate on the Earth and other planets has advanced at an ever-increasing rate. NASA Living With a Star and the UCAR Visiting Scientist Progams sponsor the annual Heliophysics Summer Schools to build the next generation of scientists in this emerging field. The highly successful series of the summer schools (commencing 2007) trains a select group of graduate students, postdoctoral fellows and university faculty to learn and develop the science of heliophysics as a broad, coherent discipline that reaches in space from the Earth's troposphere to the depths of the Sun, and in time from the formation of the solar system to the distant future. Now in its tenth year, the School has resulted in the publication of five Heliophysics textbooks now being used at universities worldwide. The books provide a foundational reference for researchers in space physics, solar physics, aeronomy, space weather, planetary science and climate science, astrophysics, plasma physics,. In parallel, the School also developed the complementary materials that support teaching of heliophysics at both graduate and undergraduate levels. The Jack Eddy Postdoctoral Fellowship Program matches newly graduated postdoctorates with hosting mentors for the purpose of training the next generation researchers needed in heliophysics. The fellowships are for two years, and any U.S. university or research lab may apply to host a fellow. Two major topics of focus for the program are the science of space weather and of the Sun-climate connection. Since the goal of this fellowship program is to train Sun-Earth system researchers, preference is also given to research projects that cross the traditional heliophysics subdomains of the Sun, heliosphere, magnetosphere, and ionosphere/upper atmosphere, as well as Sun-climate investigations. Host mentors play critical roles. Potential hosts may enter information about their research on a central database.

  9. Finding ways to grow skills, knowledge, and voice in the next generation of interdisciplinary sustainability scientists

    NASA Astrophysics Data System (ADS)

    Roy, S. G.; de Souza, S. P.; McGreavy, B.; Gardner, K.; Hart, D.; Druschke, C. G.

    2017-12-01

    The need to train early-career interdisciplinary, solutions-driven sustainability researchers has never been more apparent than today. To meet this challenge, educators at the Universities of Maine, New Hampshire, and Rhode Island have collaborated with their students to design and assess an interdisciplinary, multi-university course meant to develop the skills, content knowledge, and voice that are seen as critical for training the next generation of interdisciplinary sustainability researchers. We developed a rubric and conducted a mixed methods analysis of sustainability science learning outcomes identified as central to successful sustainability research. We used these targeted outcomes as a guide to design and implement several activities that build these skills and competencies and advance the identified outcomes. These course learning outcomes focus on three major sustainability science competencies: (1) systems thinking, which focuses on improving students' abilities to build a deep understanding of dynamic social-ecological systems; (2) problem definition, which focuses on the skills necessary to identify and communicate sustainability problems by combining systems knowledge with multiple stakeholder perspectives; and (3) decision making, which focuses on the abilities required to create and communicate adaptable decisions to mitigate sustainability problems. Students were frequently asked to help co-create class meetings based on their own educational experiences and objectives.Based on a quantitative assessment of survey results taken before and after the course, several students tended to initially overestimate their capacity for undertaking interdisciplinary sustainability research, possibly because of a previously narrow exposure to these concepts from the perspective of a single discipline. Qualitative results indicate that students gained substantial experience and confidence in communication, and especially in collaboration, stakeholder engagement, and conflict. Based on our empirical approach we recommend focusing on three key factors when training future interdisciplinary sustainability scientists: diverse and nested communication, building voice by co-creating the course, and early engagement with stakeholders.

  10. Graduate Education for the Future: New Models and Methods for the Clinical and Translational Workforce

    PubMed Central

    Bennett, L. Michelle; Cicutto, Lisa; Gadlin, Howard; Moss, Marc; Tentler, John; Schoenbaum, Ellie

    2015-01-01

    Abstract This paper is the third in a five‐part series on the clinical and translational science educational pipeline, and it focuses on strategies for enhancing graduate research education to improve skills for interdisciplinary team science. Although some of the most cutting edge science takes place at the borders between disciplines, it is widely perceived that advancements in clinical and translational science are hindered by the “siloed” efforts of researchers who are comfortable working in their separate domains, and reluctant to stray from their own discipline when conducting research. Without appropriate preparation for career success as members and leaders of interdisciplinary teams, talented scientists may choose to remain siloed or to leave careers in clinical and translational science all together, weakening the pipeline and depleting the future biomedical research workforce. To address this threat, it is critical to begin at what is perhaps the most formative moment for academics: graduate training. This paper focuses on designs for graduate education, and contrasts the methods and outcomes from traditional educational approaches with those skills perceived as essential for the workforce of the future, including the capacity for research collaboration that crosses disciplinary boundaries. PMID:26643714

  11. Put Your Science to Work: The Take-Charge Career Guide for Scientists

    NASA Astrophysics Data System (ADS)

    Fiske, Peter S.

    This is the first of an occasional column in which the author or authors of a book recently published byAGU will be interviewed and their new book discussed.In this issue, Eos talks with Peter S. Fiske, the author of Put Your Science to Work: The Take-Charge Career Guide for Scientists. This is an update to his 1996 best-seller, To Boldly Go: A Practical Career Guide for Scientists, which became a best-seller for its comprehensive, hands-on guidance to scientists and scientistsin-training about the full range of professional opportunties open to them—including non-traditional ones—and how best to achieve success in them.

  12. KSC-04pd1502

    NASA Image and Video Library

    2004-07-08

    KENNEDY SPACE CENTER, FLA. - Getting ready to enter the water on a practice dive in the ocean offshore from Key Largo are Tara Ruttley (below) and Nick Patrick (above). The two are members of the NASA Extreme Environment Mission Operations 6 (NEEMO-6) mission team. Ruttley is a biomedical engineer. The others are astronauts John Herrington, mission commander, and Doug Wheelock. The NEEMO-6 mission involves exposing an astronaut/scientist crew to a real mission experience in an extreme environment - the NOAA undersea station Aquarius - to prepare for future space flight. Spacewalk-like diving excursions and field-tests on a variety of biomedical equipment are designed to help astronauts living aboard the International Space Station. To prepare for their 10-day stay, the team had dive training twice a day at the Life Support Buoy, anchored above Aquarius.

  13. KSC-04pd1503

    NASA Image and Video Library

    2004-07-08

    KENNEDY SPACE CENTER, FLA. - Getting ready to enter the water on a practice dive in the ocean offshore from Key Largo is Nick Patrick. He is a member of the NASA Extreme Environment Mission Operations 6 (NEEMO-6) mission team. The others are astronauts John Herrington, mission commander, and Doug Wheelock, plus Tara Ruttley, a biomedical engineer. The NEEMO-6 mission involves exposing an astronaut/scientist crew to a real mission experience in an extreme environment - the NOAA undersea station Aquarius - to prepare for future space flight. Spacewalk-like diving excursions and field-tests on a variety of biomedical equipment are designed to help astronauts living aboard the International Space Station. To prepare for their 10-day stay, the team had dive training twice a day at the Life Support Buoy, anchored above Aquarius.

  14. Sun-to-power cells layer by layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moseke, Dawn; Richards, Robin; Moseke, Daniel

    Representing the Center for Interface Science: Solar Electric Materials (CISSEM), this document is one of the entries in the Ten Hundred and One Word Challenge. As part of the challenge, the 46 Energy Frontier Research Centers were invited to represent their science in images, cartoons, photos, words and original paintings, but any descriptions or words could only use the 1000 most commonly used words in the English language, with the addition of one word important to each of the EFRCs and the mission of DOE: energy. The mission of the CISSEM is to advance the understanding of interface science underlyingmore » solar energy conversion technologies based on organic and organic-inorganic hybrid materials; and to inspire, recruit and train future scientists and leaders in basic science of solar electric conversion.« less

  15. The Emory Chemical Biology Discovery Center: leveraging academic innovation to advance novel targets through HTS and beyond.

    PubMed

    Johns, Margaret A; Meyerkord-Belton, Cheryl L; Du, Yuhong; Fu, Haian

    2014-03-01

    The Emory Chemical Biology Discovery Center (ECBDC) aims to accelerate high throughput biology and translation of biomedical research discoveries into therapeutic targets and future medicines by providing high throughput research platforms to scientific collaborators worldwide. ECBDC research is focused at the interface of chemistry and biology, seeking to fundamentally advance understanding of disease-related biology with its HTS/HCS platforms and chemical tools, ultimately supporting drug discovery. Established HTS/HCS capabilities, university setting, and expertise in diverse assay formats, including protein-protein interaction interrogation, have enabled the ECBDC to contribute to national chemical biology efforts, empower translational research, and serve as a training ground for young scientists. With these resources, the ECBDC is poised to leverage academic innovation to advance biology and therapeutic discovery.

  16. New methods for new questions: obstacles and opportunities.

    PubMed

    Foster, E Michael; Kalil, Ariel

    2008-03-01

    Two forces motivate this special section, "New Methods for New Questions in Developmental Psychology." First are recent developments in social science methodology and the increasing availability of those methods in common software packages. Second, at the same time psychologists' understanding of developmental phenomena has continued to grow. At their best, these developments in theory and methods work in tandem, fueling each other. Newer methods make it possible for scientists to better test their ideas; better ideas lead methodologists to techniques that better reflect, capture, and quantify the underlying processes. The articles in this special section represent a sampling of these new methods and new questions. The authors describe common themes in these articles and identify barriers to future progress, such as the lack of data sharing by and analytical training for developmentalists.

  17. The Association of Polar Early Career Scientists (APECS): A Model for the Professional Development of Scientists (Invited)

    NASA Astrophysics Data System (ADS)

    Baeseman, J. L.; Apecs Leadership Team

    2010-12-01

    Efforts like the International Polar Year 2007-2008 (IPY) have helped to increase research efforts as well as enhancing the integration of education and outreach into research projects and developing the next generation of researchers. One of the major legacies of the IPY was the creation of the Association of Polar Early Career Scientists (APECS), which was developed in 2006 by young researchers and focuses on helping each other develop the skills needed for successful careers in research by working with senior mentors. APECS is an international and interdisciplinary organization of over 2000 early career researchers and educators with interests in the Polar Regions and the wider cryosphere from 45 countries. APECS aims to stimulate interdisciplinary and international research collaborations, and develop effective future leaders in polar research, education and outreach. This is achieved by - Facilitating international and interdisciplinary networking opportunities to share ideas and experiences and to develop new research directions and collaborations, - Providing opportunities for professional career development for both academic and alternative research professions, and - Promoting education and outreach as an integral component of polar research and to stimulate future generations of polar researchers. Since its inception, APECS has strived to develop a strong network of partnerships with senior international organizations and scientific bodies to provide career development opportunities for young researchers. These partnerships have led to early-career representation on science planning bodies at an international level, the mandate of early career researchers serving as co-chairs at science conferences, the development of a mentorship program, field schools and techniques workshops, mentor panel discussions at conferences and increased funding for young researchers to attend conferences. APECS has also worked with an international teachers network to develop “Polar Science and Global Climate: An International Resource Guide for Teachers and Researchers” which includes tips and tricks for scientists in communicating their research effectively. Because of its international membership, APECS used the internet as an effective tool to develop skills through a career development webinar series, literature discussion forum, and a virtual poster session where researchers can continue to present their research long after a conference poster session ends. These programs not only serve as ways for young researchers to develop their research, they also serve to provide leadership training to the many individuals who plan these activities and creates a strong sense of community across disciplinary and national boarders. The tools APECS has developed can be used to train the next generation of researchers in any field. But perhaps what is more important are the lessons learned from nurturing the organization to create a strong community of early career and senior researchers helping and motivating each other to improve and stay connected to research careers. This presentation will demonstrate how a young researcher driven effort can become an important and crucial component of any field of research on both the national and international level.

  18. Scientists, Teachers and the "Scientific" Textbook: Interprofessional Relations and the Modernisation of Elementary Science Textbooks in Nineteenth-Century Sweden

    ERIC Educational Resources Information Center

    Hultén, Magnus

    2016-01-01

    In research on the development of a nineteenth-century "science for the people", initiatives by scientists or people well-trained in science has been emphasised, while the writings, roles and initiatives of elementary teachers are normally just mentioned in passing. In this study the development of nineteenth-century elementary science…

  19. The Knowledge Base of Subject Matter Experts in Teaching: A Case Study of a Professional Scientist as a Beginning Teacher

    ERIC Educational Resources Information Center

    Diezmann, Carmel M.; Watters, James J.

    2015-01-01

    One method of addressing the shortage of science and mathematics teachers is to train scientists and other science-related professionals to become teachers. Advocates argue that as discipline experts these career changers can relate the subject matter knowledge to various contexts and applications in teaching. In this paper, through interviews and…

  20. Interface between Physics and Biology: Training a New Generation of Creative Bilingual Scientists.

    PubMed

    Riveline, Daniel; Kruse, Karsten

    2017-08-01

    Whereas physics seeks for universal laws underlying natural phenomena, biology accounts for complexity and specificity of molecular details. Contemporary biological physics requires people capable of working at this interface. New programs prepare scientists who transform respective disciplinary views into innovative approaches for solving outstanding problems in the life sciences. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. VA/DoD Collaboration Guidebook for Healthcare Research

    DTIC Science & Technology

    2011-01-24

    specific time periods. The VA has academic affiliates that, in some instances, may supplement a researcher’s income and provide tenure and academic ...Clinical care dollars only Career Scientist and Research Scientist Research efforts paid by research funds Academic Researcher Research or...their graduate medical education (GME) program training director. DoD researchers may have scientific academic affiliations with the Uniformed

  2. Mentoring for Success in Tobacco Regulatory Science: A Qualitative Study

    PubMed Central

    Russo, Abigail R.; Solis, Amy C.; Villanti, Andrea C.; Wipfli, Heather L.; Kern, Teresa T.; Lawley, Rachel K.; Collins, Lauren K.; Abudayyeh, Haneen S.; Chansky, Melanie C.; Glantz, Stanton A.; Samet, Jonathan M.; Benjamin, Emelia J.

    2017-01-01

    Objectives Our study explores the experiences of early career and senior scientists regarding mentorship and career trajectories in tobacco regulatory science (TRS). Methods We conducted 22 phone interviews with early career and senior tobacco regulatory scientists from July 2015 to January 2016. All interviews were conducted using a structured interview guide and analyzed using a thematic approach by 2 independent coders. Results TRS presents specific opportunities and challenges to scientists due to its focused goal of informing tobacco regulation. An understanding of US Food and Drug Administration (FDA) research priorities and how science can inform tobacco regulation are essential for effective mentorship in TRS. Careers in TRS can be pursued in various academic and non-academic professional roles; both offer the distinct ability to conduct science that impacts public policy. Early career and senior scientists identified the importance and challenge of providing broad training across the diverse disciplines of TRS. Conclusions Effective mentorship in TRS requires that mentors possess an in-depth understanding of the scientific, regulatory, and legislative processes inherent to tobacco regulatory policy-making. A training program for mentors specific to TRS has the potential to meet diverse professional needs of mentors and mentees aiming to impact tobacco policy. PMID:28758143

  3. Implementing a 3D printing service in a biomedical library

    PubMed Central

    Walker, Verma

    2017-01-01

    Three-dimensional (3D) printing is opening new opportunities in biomedicine by enabling creative problem solving, faster prototyping of ideas, advances in tissue engineering, and customized patient solutions. The National Institutes of Health (NIH) Library purchased a Makerbot Replicator 2 3D printer to give scientists a chance to try out this technology. To launch the service, the library offered training, conducted a survey on service model preferences, and tracked usage and class attendance. 3D printing was very popular, with new lab equipment prototypes being the most common model type. Most survey respondents indicated they would use the service again and be willing to pay for models. There was high interest in training for 3D modeling, which has a steep learning curve. 3D printers also require significant care and repairs. NIH scientists are using 3D printing to improve their research, and it is opening new avenues for problem solving in labs. Several scientists found the 3D printer so helpful they bought one for their labs. Having a printer in a central and open location like a library can help scientists, doctors, and students learn how to use this technology in their work. PMID:28096747

  4. Implementing a 3D printing service in a biomedical library.

    PubMed

    Walker, Verma

    2017-01-01

    Three-dimensional (3D) printing is opening new opportunities in biomedicine by enabling creative problem solving, faster prototyping of ideas, advances in tissue engineering, and customized patient solutions. The National Institutes of Health (NIH) Library purchased a Makerbot Replicator 2 3D printer to give scientists a chance to try out this technology. To launch the service, the library offered training, conducted a survey on service model preferences, and tracked usage and class attendance. 3D printing was very popular, with new lab equipment prototypes being the most common model type. Most survey respondents indicated they would use the service again and be willing to pay for models. There was high interest in training for 3D modeling, which has a steep learning curve. 3D printers also require significant care and repairs. NIH scientists are using 3D printing to improve their research, and it is opening new avenues for problem solving in labs. Several scientists found the 3D printer so helpful they bought one for their labs. Having a printer in a central and open location like a library can help scientists, doctors, and students learn how to use this technology in their work.

  5. [Active participation in research and teaching during post-graduate GP training: perspectives of future general practitioners].

    PubMed

    Haumann, Hannah; Flum, Elisabeth; Joos, Stefanie

    2016-12-01

    Academic institutions of general practice at German medical faculties have grown during the past years. This leads to an increase in the need of qualified young researchers and teachers in general practice (GP). Little is known about the interest in research and teaching skills and their training among general practice trainees and young GPs. This cross-sectional survey among GP trainees and young GPs examined 1. if there is an interest in the training in research and teaching skills during post-graduate GP training, 2. which fostering and hindering factors have an effect on this interest and 3. which roles are attributed to academic institutions of general practice. A web-based cross-sectional study was performed among members of "Verbundweiterbildung plus" , a network of GP trainees, as well as "Junge Allgemeinmedizin Deutschland", the German network of young GPs. Descriptive analysis was conducted. 148 GP trainees and young GPs participated in the study, 76% (n=109) of them were GP trainees. There was interest in a position in research and teaching during post-graduate GP training among 55% (n=78). Factors associated with the interest in a position in research and teaching during post-graduate GP training were (MV 5-point Likert scale ± SD): compatibility of clinical work and research/teaching and of family and career (4.4±0.8; 4.7±0.6 respectively). The roles of academic institutions of general practice were attributed to training of medical students (4.6±0.6), post-graduate GP training (4.5±0.7) and research (4.5±0.7). GP trainees assessed the importance of training in research and teaching skills during post-graduate GP training and of the compatibility of family and career differently from young GPs (3.7±1.0 vs. 4.1±0.8 p=0.027; 4.8±0.5 vs. 4.3±0.9, p=0.016). Those interested in a position in research and teaching during post-graduate GP training showed a stronger interest in specific training in research skills (3.7±1.1 vs. 2.8±1.1, p<0.001), a future clinical position in a research practice (3.8±1.2 vs. 2.5±1.2, p<0.001) and as a lecturer at an academic institution of general practice (4.3±0.9 vs. 3.9±1.1, p=0.04). There is an interest in professional involvement in research and teaching during post-graduate GP training among GP trainees and young GPs. For those interested, structured concepts (e.g. "clinician scientist") need to be developed in order to facilitate the combination of clinical work and a position in research and teaching during post-graduate GP training. In doing so, the existing potential could be better exploited and more future GPs could be involved in research and teaching. Copyright © 2016. Published by Elsevier GmbH.

  6. 77 FR 35410 - Fogarty International Center 2013 Strategic Plan

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-13

    ... needs. The Fogarty International Center supports basic, clinical and applied research and training for U...) is updating its strategic plan. To anticipate and set priorities for global health research and research training, FIC requests input from scientists, the general public, and interested parties. The goal...

  7. Western Coordinating Committee-204 goals and why they are important to the future of animal production systems.

    PubMed

    Cherney, D J R

    2004-03-01

    There are scientists who believe that science is value-free and that social and ethical issues are not their concern. The birth of Dolly, the cloned lamb, greatly increased public and scientific awareness of ethical issues raised by molecular biology as they intersect with human experience. There are many other issues involving animal production systems, including animal welfare, rural community issues, and environmental concerns. Last year Germany became the first European nation to grant animals a constitutional right. Several European nations ban the use of traditional battery cages for laying hens and gestation crates for sows. In the US, 37 states have recently passed animal anticruelty laws. Times are changing, and if animal production systems are to be part of the future, animal scientists must join with society to solve these ethical issues. The Western Coordinating Committee-204 (WCC-204), Animal Bioethics, has as its goals to 1) create a forum in which animal scientists and nonanimal scientists may work together to examine and discuss contentious social issues, 2) provide a means of encouraging the development of research projects dealing with bioethics of the animal sciences, 3) develop mechanisms of outreach that would allow animal scientists to respond directly to consumers and critics, and 4) provide the means for ongoing critical analysis of the animal science professions in the context of their ability to address moral and sociopolitical issues. Animal scientists can no longer ignore social ethics, and by realizing the goals of Western Coordinating Committee-204, we can help maintain the future of animal production systems.

  8. The Einstein-Brazil Fogarty: A decade of synergy.

    PubMed

    Nosanchuk, Joshua D; Nosanchuk, Murphy D; Rodrigues, Marcio L; Nimrichter, Leonardo; Carvalho, Antonio C Campos de; Weiss, Louis M; Spray, David C; Tanowitz, Herbert B

    2015-01-01

    A rich, collaborative program funded by the US NIH Fogarty program in 2004 has provided for a decade of remarkable opportunities for scientific advancement through the training of Brazilian undergraduate, graduate and postdoctoral students from the Federal University and Oswaldo Cruz Foundation systems at Albert Einstein College of Medicine. The focus of the program has been on the development of trainees in the broad field of Infectious Diseases, with a particular focus on diseases of importance to the Brazilian population. Talented trainees from various regions in Brazil came to Einstein to learn techniques and study fungal, parasitic and bacterial pathogens. In total, 43 trainees enthusiastically participated in the program. In addition to laboratory work, these students took a variety of courses at Einstein, presented their results at local, national and international meetings, and productively published their findings. This program has led to a remarkable synergy of scientific discovery for the participants during a time of rapid acceleration of the scientific growth in Brazil. This collaboration between Brazilian and US scientists has benefitted both countries and serves as a model for future training programs between these countries.

  9. Applications of Three-Dimensional Printing in Surgery.

    PubMed

    Li, Chi; Cheung, Tsz Fung; Fan, Vei Chen; Sin, Kin Man; Wong, Chrisity Wai Yan; Leung, Gilberto Ka Kit

    2017-02-01

    Three-dimensional (3D) printing is a rapidly advancing technology in the field of surgery. This article reviews its contemporary applications in 3 aspects of surgery, namely, surgical planning, implants and prostheses, and education and training. Three-dimensional printing technology can contribute to surgical planning by depicting precise personalized anatomy and thus a potential improvement in surgical outcome. For implants and prosthesis, the technology might overcome the limitations of conventional methods such as visual discrepancy from the recipient's body and unmatching anatomy. In addition, 3D printing technology could be integrated into medical school curriculum, supplementing the conventional cadaver-based education and training in anatomy and surgery. Future potential applications of 3D printing in surgery, mainly in the areas of skin, nerve, and vascular graft preparation as well as ear reconstruction, are also discussed. Numerous trials and studies are still ongoing. However, scientists and clinicians are still encountering some limitations of the technology including high cost, long processing time, unsatisfactory mechanical properties, and suboptimal accuracy. These limitations might potentially hamper the applications of this technology in daily clinical practice.

  10. On developing a thesis for Reproductive Endocrinology and Infertility fellowship: a case study of ultra-low (2%) oxygen tension for extended culture of human embryos.

    PubMed

    Kaser, Daniel J

    2017-03-01

    Fellows in Reproductive Endocrinology and Infertility training are expected to complete 18 months of clinical, basic, or epidemiological research. The goal of this research is not only to provide the basis for the thesis section of the oral board exam but also to spark interest in reproductive medicine research and to provide the next generation of physician-scientists with a foundational experience in research design and implementation. Incoming fellows often have varying degrees of training in research methodology and, likewise, different career goals. Ideally, selection of a thesis topic and mentor should be geared toward defining an "answerable" question and building a practical skill set for future investigation. This contribution to the JARG Young Investigator's Forum revisits the steps of the scientific method through the lens of one recently graduated fellow and his project aimed to test the hypothesis that "sequential oxygen exposure (5% from days 1 to 3, then 2% from days 3 to 5) improves blastocyst yield and quality compared to continuous exposure to 5% oxygen among human preimplantation embryos."

  11. The Einstein-Brazil Fogarty: A decade of synergy

    PubMed Central

    Nosanchuk, Joshua D.; Nosanchuk, Murphy D.; Rodrigues, Marcio L.; Nimrichter, Leonardo; de Carvalho, Antonio C. Campos; Weiss, Louis M.; Spray, David C.; Tanowitz, Herbert B.

    2015-01-01

    Abstract A rich, collaborative program funded by the US NIH Fogarty program in 2004 has provided for a decade of remarkable opportunities for scientific advancement through the training of Brazilian undergraduate, graduate and postdoctoral students from the Federal University and Oswaldo Cruz Foundation systems at Albert Einstein College of Medicine. The focus of the program has been on the development of trainees in the broad field of Infectious Diseases, with a particular focus on diseases of importance to the Brazilian population. Talented trainees from various regions in Brazil came to Einstein to learn techniques and study fungal, parasitic and bacterial pathogens. In total, 43 trainees enthusiastically participated in the program. In addition to laboratory work, these students took a variety of courses at Einstein, presented their results at local, national and international meetings, and productively published their findings. This program has led to a remarkable synergy of scientific discovery for the participants during a time of rapid acceleration of the scientific growth in Brazil. This collaboration between Brazilian and US scientists has benefitted both countries and serves as a model for future training programs between these countries. PMID:26691452

  12. The Translational Science Training Program at NIH: Introducing Early Career Researchers to the Science and Operation of Translation of Basic Research to Medical Interventions

    ERIC Educational Resources Information Center

    Gilliland, C. Taylor; Sittampalam, G. Sitta; Wang, Philip Y.; Ryan, Philip E.

    2017-01-01

    Translational science is an emerging field that holds great promise to accelerate the development of novel medical interventions. As the field grows, so does the demand for highly trained biomedical scientists to fill the positions that are being created. Many graduate and postdoctorate training programs do not provide their trainees with…

  13. Using Long-Distance Scientist Involvement to Enhance NASA Volunteer Network Educational Activities

    NASA Astrophysics Data System (ADS)

    Ferrari, K.

    2012-12-01

    Since 1999, the NASA/JPL Solar System Ambassadors (SSA) and Solar System Educators (SSEP) programs have used specially-trained volunteers to expand education and public outreach beyond the immediate NASA center regions. Integrating nationwide volunteers in these highly effective programs has helped optimize agency funding set aside for education. Since these volunteers were trained by NASA scientists and engineers, they acted as "stand-ins" for the mission team members in communities across the country. Through the efforts of these enthusiastic volunteers, students gained an increased awareness of NASA's space exploration missions through Solar System Ambassador classroom visits, and teachers across the country became familiarized with NASA's STEM (Science, Technology, Engineering and Mathematics) educational materials through Solar System Educator workshops; however the scientist was still distant. In 2003, NASA started the Digital Learning Network (DLN) to bring scientists into the classroom via videoconferencing. The first equipment was expensive and only schools that could afford the expenditure were able to benefit; however, recent advancements in software allow classrooms to connect to the DLN via personal computers and an internet connection. Through collaboration with the DLN at NASA's Jet Propulsion Laboratory and the Goddard Spaceflight Center, Solar System Ambassadors and Solar System Educators in remote parts of the country are able to bring scientists into their classroom visits or workshops as guest speakers. The goals of this collaboration are to provide special elements to the volunteers' event, allow scientists opportunities for education involvement with minimal effort, acquaint teachers with DLN services and enrich student's classroom learning experience.;

  14. Using Citizen Scientists to Gather, Analyze, and Disseminate Information about Neighborhood Features that Affect Active Living

    PubMed Central

    Winter, Sandra J; Rosas, Lisa Goldman; Romero, Priscilla Padilla; Sheats, Jylana L; Buman, Matthew P; Baker, Cathleen; King, Abby C

    2015-01-01

    Background Many Latinos are insufficiently active, partly due to neighborhoods with little environmental support for physical activity. Multi-level approaches are needed to create health-promoting neighborhoods in disadvantaged communities. Methods Participant “citizen scientists” were adolescent (n=10, mean age=12.8±0.6 years) and older adult (n=10, mean age=71.3±6.5 years), low income Latinos in North Fair Oaks, California. Citizen scientists conducted environmental assessments to document perceived barriers to active living using the Stanford Healthy Neighborhood Discovery Tool, which records GPS-tracked walking routes, photographs, audio narratives, and survey responses. Using a community-engaged approach, citizen scientists subsequently attended a community meeting to engage in advocacy training, review assessment data, prioritize issues to address and brainstorm potential solutions and partners. Results Citizen scientists each conducted a neighborhood environmental assessment and recorded 366 photographs and audio narratives. Adolescents (n=4), older adults (n=7) and community members (n=4) collectively identified reducing trash and improving personal safety and sidewalk quality as the priority issues to address. Three adolescent and four older adult citizen scientists volunteered to present study findings to key stakeholders. Conclusions This study demonstrated that with minimal training, low-income, Latino adolescent and older adult citizen scientists can: 1) use innovative technology to gather information about features of their neighborhood environment that influence active living, 2) analyze their information and identify potential solutions, and 3) engage with stakeholders to advocate for the development of healthier neighborhoods. PMID:26184398

  15. Identity Matching to Scientists: Differences that Make a Difference?

    NASA Astrophysics Data System (ADS)

    Andersen, Hanne Moeller; Krogh, Lars Brian; Lykkegaard, Eva

    2014-06-01

    Students' images of science and scientists are generally assumed to influence their related subject choices and aspirations for tertiary education within science and technology. Several research studies have shown that many young people hold rather stereotypical images of scientists, making it hard for them to see themselves as future scientists. Adolescents' educational choices are important aspects of their identity work, and recent theories link individual choice to the perceived match between self and prototypical persons associated with that choice. In the present study, we have investigated images of scientists among the segment of the upper secondary school students (20 % of the cohort) from which future Danish scientists are recruited. Their images were rather realistic, only including vague and predominantly positive stereotypical ideas. With a particular Science-and-Me (SAM) interview methodology, we inquired into the match between self- and prototypical-scientists ( N = 30). We found high perceived similarity within a core of epistemological characteristics, while dissimilarities typically related to a social domain. However, combining interview data with survey data, we found no significant statistical relation between prototype match and aspirations for tertiary education within science and technology. Importantly, the SAM dialogue revealed how students negotiate perceived differences, and we identified four negotiation patterns that all tend to reduce the impact of mismatches on educational aspirations. Our study raises questions about methodological issues concerning the traditional use of self-to-prototype matching as an explanatory model of educational choice.

  16. Videos, tweet-ups, and training unite scientist communicators at Fall Meeting

    NASA Astrophysics Data System (ADS)

    Adams, Mary Catherine; Ramsayer, Kate

    2012-02-01

    AGU's public information office held several events at the 2011 Fall Meeting designed to train, recognize, and reward member scientists who communicate with, or want to communicate with, nonscience audiences. On Sunday, about 90 researchers gathered at the Marriott Marquis hotel for an all-day science communications training event covering topics including journalism from the insider's perspective, storytelling, and using humor to share science. On Wednesday a communications panel focusing specifically on climate science shared tips on communicating with audiences via TV and the Web, among other outlets. At a social media soiree Monday evening, geobloggers, Facebook fans, Twitter followers, and others met in person and talked about how to share news and research across the many platforms of the Internet. Later in the week, bloggers from AGU's blogosphere and other sites met for lunch to discuss the online Earth and space science community.

  17. Evolving Best Practice in Learning About Air Quality and Climate Change Science in ACCENT

    NASA Astrophysics Data System (ADS)

    Schuepbach, E.

    2008-12-01

    Learning about air quality and climate change science has developed into a transdisciplinary impact generator, moulded by academic-stakeholder partnerships, where complementary skills and competences lead to a culture of dialogue, mutual learning and decision-making. These sweeping changes are mirrored in the evolving best practice within the European Network of Excellence on Atmospheric Composition Change (ACCENT). The Training and Education Programme in ACCENT pursues an integrated approach and innovative avenues to sharing knowledge and communicating air quality and climate change science to various end-user groups, including teachers, policy makers, stakeholders, and the general public. Early career scientists are involved in the process, and are trained to acquire new knowledge in a variety of learning communities and environments. Here, examples of both the open system of teaching within ACCENT training workshops for early career scientists, and the engagement of non-academic audiences in the joint learning process are presented.

  18. STS-9 payload specialist Merbold and backup Ockels in training session

    NASA Technical Reports Server (NTRS)

    1983-01-01

    STS-9 payload specialist Ulf Merbold, right, a West German physicist and backup Wubbo Ockels, a Dutch scientist, are pictured in a training session in JSC's Shuttle mockup and integration laboratory. In this view Ockels appears to be showing Merbold how to operate a camera.

  19. Mining the gap: Assessing leadership needs to improve 21st century plant pathology

    USDA-ARS?s Scientific Manuscript database

    Scientists and plant pathologists are trained in scientific knowledge and critical thinking as part of their career preparation process. However, the extensive training in science-related skills comes at a cost to “soft skills”, the competencies needed for interpersonal skills, communication, manage...

  20. Using NMR to Expand Chemistry Research and Educational Experiences at North Carolina Central University, an Historically Black University

    DTIC Science & Technology

    analytical chemistry . Most students do not get hands-on training with an NMR within their classroom or laboratory courses. The NMR will provide...unique opportunities to our students as they train to become the next generation of scientists, doctors, and engineers .

  1. The Graduate Training Program in Pharmacology at the University of Kansas School of Pharmacy

    ERIC Educational Resources Information Center

    Rutledge, Charles O.

    1976-01-01

    A multidisciplinary approach is used to teach the chemical mechanisms of biological processes and of drug action. Program prerequisites and objectives emphasize the training of creative scientists who are qualified to perform interesting and informative research on the interaction of drugs with biological systems. (LBH)

  2. Parent Training Programs: Insight for Practitioners

    ERIC Educational Resources Information Center

    Rossi, Carol, Neal

    2009-01-01

    The Centers for Disease Control and Prevention (CDC) is currently conducting research and analyses to guide practitioners in making evidence-based program decisions. A meta-analysis of the current research literature on training programs for parents with children ages 0 to 7 years old was recently conducted by CDC behavioral scientists. This…

  3. Providing Experiential Business and Management Training for Biomedical Research Trainees

    ERIC Educational Resources Information Center

    Petrie, Kimberly A.; Carnahan, Robert H.; Brown, Abigail M.; Gould, Kathleen L.

    2017-01-01

    Many biomedical PhD trainees lack exposure to business principles, which limits their competitiveness and effectiveness in academic and industry careers. To fill this training gap, we developed Business and Management Principles for Scientists, a semester-long program that combined didactic exposure to business fundamentals with practical…

  4. Beyond Borders: Zoo as Training Location for Wildlife Biologists

    ERIC Educational Resources Information Center

    Melber, Leah M.; Bergren, Rachel; Santymire, Rachel

    2011-01-01

    The role of institutions such as zoos in global conservation efforts is critical. In addition to serving as informal learning centers for the general public, these institutions are well-positioned to provide training and professional development for the next generation of conservation scientists. And while many organizations traditionally have…

  5. Key Principles of Open Motor-Skill Training for Peak Performance

    ERIC Educational Resources Information Center

    Wang, Jin

    2016-01-01

    Motor-skill training is an imperative element contributing to overall sport performance. In order to help coaches, athletes and practitioners to capture the characteristics of motor skills, sport scientists have divided motor skills into different categories, such as open versus closed, serial or discrete, outcome- or process-oriented, and…

  6. Opinion & Special Articles: A guide from fellowship to faculty

    PubMed Central

    2012-01-01

    The role of the physician scientist in biomedical research is increasingly threatened. Despite a clear role in clinical advances in translational medicine, the percentage of physicians engaged in research has steadily declined. Several programmatic efforts have been initiated to address this problem by providing time and financial resources to the motivated resident or fellow. However, this decline in physician scientists is due not only to a lack of time and resources but also a reflection of the uncertain path in moving from residency or postdoctoral training toward junior faculty. This article is a practical guide to the milestones and barriers to successful faculty achievement after residency or fellowship training. PMID:23033506

  7. Opinion & special articles: a guide from fellowship to faculty: Nietzsche and the academic neurologist.

    PubMed

    Carmichael, S Thomas

    2012-10-02

    The role of the physician scientist in biomedical research is increasingly threatened. Despite a clear role in clinical advances in translational medicine, the percentage of physicians engaged in research has steadily declined. Several programmatic efforts have been initiated to address this problem by providing time and financial resources to the motivated resident or fellow. However, this decline in physician scientists is due not only to a lack of time and resources but also a reflection of the uncertain path in moving from residency or postdoctoral training toward junior faculty. This article is a practical guide to the milestones and barriers to successful faculty achievement after residency or fellowship training.

  8. Centenarian scientists: an unusual cluster newly formed in the 20th century.

    PubMed

    Sri Kantha, S

    2001-12-01

    From biographical data sources on ranking scientists, I was able to identify 35 centenarians. Among these, only one (Michel Chevereul from France) lived before the 20th century. Since the remaining 34 individuals became centenarians only from 1965, I propose that centenarian scientists are an unusual cluster, first formed in the 20th century. Among these, all except one (Alice Hamilton) were men. Six centenarian scientists, including Hamilton, had received professional medical training. The nationality ranks of the 34 centenarian scientists identified in the 20th century show 26 Americans, 6 British, one German and one French. Four of the 26 Americans were immigrants from Europe. At least three centenarians, namely Michael Heidelberger, Nathaniel Kleitman and Victor Hamburger, belong to the 'Nobel class' category, being pioneers in the disciplines of immunochemistry, sleep physiology and neuroembryology respectively.

  9. Broadening the voice of science: Promoting scientific communication in the undergraduate classroom.

    PubMed

    Cirino, Lauren A; Emberts, Zachary; Joseph, Paul N; Allen, Pablo E; Lopatto, David; Miller, Christine W

    2017-12-01

    Effective and accurate communication of scientific findings is essential. Unfortunately, scientists are not always well trained in how to best communicate their results with other scientists nor do all appreciate the importance of speaking with the public. Here, we provide an example of how the development of oral communication skills can be integrated with research experiences at the undergraduate level. We describe our experiences developing, running, and evaluating a course for undergraduates that complemented their existing undergraduate research experiences with instruction on the nature of science and intensive training on the development of science communication skills. Students delivered science talks, research monologues, and poster presentations about the ecological and evolutionary research in which they were involved. We evaluated the effectiveness of our approach using the CURE survey and a focus group. As expected, undergraduates reported strong benefits to communication skills and confidence. We provide guidance for college researchers, instructors, and administrators interested in motivating and equipping the next generation of scientists to be excellent science communicators.

  10. Funding research in the twenty-first century: current opinions and future directions.

    PubMed

    Squitieri, Lee; Chung, Kevin C

    2014-08-01

    For all academic biomedical researchers, the process of submitting grants and securing research funding is a critical part of advancing one's career. In the current era of decreasing new grant awards and renewals leading to significantly worse success rates, it is hard for young aspiring physician-scientists to remain optimistic regarding their future in academic medicine. It is important that today's young surgeon-scientists prepare for and adapt to the inevitably changing climate of research funding. This article provides a primer on developing a successful career as a funded surgeon-scientist and pathways for building a robust research platform worthy of extramural National Institutes of Health funding in the twenty-first century. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Academic and non-academic career options for marine scientists. - Support measures for early career scientists offered at MARUM - Center for Marine Environmental Sciences, University of Bremen, Germany

    NASA Astrophysics Data System (ADS)

    Hebbeln, Dierk; Klose, Christina

    2015-04-01

    Early career scientists at MARUM cover a wide range of research topics and disciplines including geosciences, biology, chemistry, social sciences and law. Just as colourful as the disciplinary background of the people, are their ideas for their personal careers. With our services and programmes, we aim to address some important career planning needs of PhD students and early career Postdocs, both, for careers in science and for careers outside academia. For PhD students aiming to stay in science, MARUM provides funding opportunities for a research stay abroad for a duration of up to 6 months. A range of courses is offered to prepare for the first Postdoc position. These include trainings in applying for research funding, proposal writing and interview skills. Following MARUM lectures which are held once a month, early career scientists are offered the opportunity to talk to senior scientists from all over the world in an informal Meet&Greet. Mentoring and coaching programmes for women in science are offered in cooperation with the office for equal opportunities at the University of Bremen. These programmes offer an additional opportunity to train interpersonal skills and to develop personal career strategies including a focus on special challenges that especially women might (have to) face in the scientific community. Early career scientists aiming for a non-academic career find support on different levels. MARUM provides funding opportunities for placements in industry, administration, consulting or similar. We offer trainings in e.g. job hunting strategies or interview skills. For a deeper insight into jobs outside the academic world, we regularly invite professionals for informal fireside chats and career days. These events are organised in cooperation with other graduate programmes in the region to broaden the focus of both, the lecturers and the participants. A fundamental component of our career programmes is the active involvement of alumni of MARUM and our partner institutions. Alumni are invited regularly for presentations and informal communication. Feedback shows that early career scientists especially benefit from the experiences shared by their former colleagues since the latter are perceived to have gone through the same education.

  12. Meeting the Needs of Data Management Training: The Federation of Earth Science Information Partners (ESIP) Data Management for Scientists Short Course

    ERIC Educational Resources Information Center

    Hou, Chung-Yi

    2015-01-01

    With the proliferation of digital technologies, scientists are exploring various methods for the integration of data to produce scientific discoveries. To maximize the potential of data for science advancement, proper stewardship must be provided to ensure data integrity and usability both for the short- and the long-term. In order to assist…

  13. What Matters for Excellence in PhD Programs? Latent Constructs of Doctoral Program Quality Used by Early Career Social Scientists

    ERIC Educational Resources Information Center

    Morrison, Emory; Rudd, Elizabeth; Zumeta, William; Nerad, Maresi

    2011-01-01

    This paper unpacks how social science doctorate-holders come to evaluate overall excellence in their PhD training programs based on their domain-specific assessments of aspects of their programs. Latent class analysis reveals that social scientists 6-10 years beyond their PhD evaluate the quality of their doctoral program with one of two…

  14. The NASA Climate Change Research Initiative - A Scientist's Perspective

    NASA Astrophysics Data System (ADS)

    LeGrande, A. N.; Pearce, M. D.; Dulaney, N.; Kelly, S. M.

    2017-12-01

    For the last four years, I have been a lead mentor in the NASA GISS Climate Change Research Initiative (CCRI) program, a component in the NASA GSFC Office of Education portfolio. It creates a multidisciplinary; vertical research team including a NYC metropolitan teacher, graduate student, undergraduate student, and high school student. While the college and high school members of this research team function like a more traditional internship component, the teacher component provides a powerful, direct way to connect state-of-the art research with students in the classroom. Because the teacher internship lasts a full year, it affords a similar relationship with a teacher that normally only exists between a PhD student and scientist. It also provides an opportunity to train the teacher in using the extensive data archives and other information maintained on NASA's publicly available websites. This time and access provide PhD-level training in the techniques and tools used in my climate research to the high school teacher. The teacher then uses his/her own pedagogical expertise to translate these techniques into age/level appropriate lesson plans for the classroom aligned with current STEM education trends and expectations. Throughout the process, there is an exchange of knowledge between the teacher and scientist that is very similar to the training given to PhD level graduate students. The teacher's understanding of the topic and implementation of the tools is done under a very close collaboration with the scientist supervisor and the NASA Education Program Specialist. This vertical team model encourages collegial communication between teachers and learners from many different educational levels and capitalizes on the efficacy of near peer mentoring strategies. This relationship is important in building trust through the difficult, iterative process that results in the development of highly accurate and quality (continuously discussed and vetted) curriculum composed of science modules on very sophisticated STEM education topics tailored and customized for a high school student audience. This program has thus very meaningful broad impacts with a scientist being able to reach and inspire 150 or more students per year through the expert collaboration of the high school teacher to scientist partnership. PANELIST

  15. Bridging the Gap: Supporting Translational Research Careers Through an Integrated Research Track Within Residency Training

    PubMed Central

    Arbuckle, Melissa R.; Gordon, Joshua A.; Pincus, Harold A.; Oquendo, Maria A.

    2013-01-01

    In the setting of traditional residency training programs, physician–scientists are often limited in their ability to pursue research training goals while meeting clinical training requirements. This creates a gap in research training at a critical developmental stage. In response, Columbia University Medical Center’s Department of Psychiatry, in partnership with the New York State Psychiatric Institute, has created a formal Research Track Program (RTP) for psychiatry residents so that interested individuals can maintain their attention on research training during formative residency years. Clinical and research training are integrated through core clinical rotations on research units. With protected research time and clear developmental milestones for each year of training, the RTP allows research track residents to meet both clinical and research training goals while maintaining a healthy work–life balance. In coordination with existing postdoctoral research fellowship programs, research track residents can effectively jump-start fellowship training with advanced course work and consistent, continuous mentorship bridging residency and fellowship years. A key element of the program is its provision of core training in research literacy and extensive research opportunities for all residents, stimulating research interest across the whole residency program. Supported by the National Institutes of Health and a private foundation, this RTP capitalizes on a unique academic–private partnership to address many of the challenges facing physician–scientists. By integrating clinical and research exposures and offering protected research time, careful mentoring, and financial resources, the program aims to further the development of those most poised to establish careers in translational research. PMID:23619070

  16. Developing Intuition: The Key to Creative Futures Research.

    ERIC Educational Resources Information Center

    Southern, Stephen; Domzalski, Suzanne

    Futures research involves speculation about alternative developments based upon existing data and potential choices. Effective futures research requires creativity in scientific practice rather than an overemphasis on reason. In discussing the important role of intuition in futures research, characteristics of creative scientists are reviewed and…

  17. Role of non-government organizations in engaging medical students in research.

    PubMed

    Manoranjan, Branavan; Dey, Ayan K; Wang, Xin; Kuzyk, Alexandra; Petticrew, Karen; Carruthers, Chris; Arnold, Ian

    2017-03-01

    The continued decline in medical trainees entering the workforce as clinician-scientists has elevated the need to engage medical students in research. While past studies have shown early exposure to generate interest among medical students for research and academic careers, financial constraints have limited the number of such formal research training programs. In light of recent government budget cuts to support research training for medical students, non-government organizations (NGOs) may play a progressively larger role in supporting the development of clinician-scientists. Since 2005, the Mach-Gaensslen Foundation has sponsored 621 Canadian medical student research projects, which represents the largest longitudinal data set of Canadian medical students engaged in research. We present the results of the pre- and post-research studentship questionnaires, program evaluation survey and the 5-year and 10-year follow-up questionnaires of past recipients. This paper provides insight into the role of NGOs as stakeholders in the training of clinician-scientists and evaluates the impact of such programs on the attitudes and career trajectory of medical students. While the problem of too few physicians entering academic and research-oriented careers continues to grow, alternative-funding strategies from NGOs may prove to be an effective approach in developing and maintaining medical student interest in research. Copyright © 2017 American Federation for Medical Research.

  18. The Benefits of saying YES!

    ERIC Educational Resources Information Center

    Ehrlich, Paul R.

    1975-01-01

    The author contends that scientists must learn to bear the risks they create and can not put voluntary safeguards and restrictions upon scientific research. Scientists must make rational decisions about future risks and be fully aware of the technological imperatives that must control human destiny. (BT)

  19. Scientists, Spirituality and Education for Life.

    ERIC Educational Resources Information Center

    Harlen, Wynne

    1986-01-01

    In August 1985, almost 300 scientists and science educators came together in Bangalore, India, from over 70 different countries, including both developed and developing nations, to take part in a conference on science and technology, education, and future human needs. The conference is described. (RM)

  20. Keeping Clinicians in Clinical Research: The Clinical Research/Reproductive Scientist Training Program

    PubMed Central

    Armstrong, Alicia Y.; DeCherney, Alan; Leppert, Phyllis; Rebar, Robert; Maddox, Yvonne T.

    2009-01-01

    In recent years the need for translational and clinical research has increased while the number of physicians involved in clinical research has diminished. There is clearly a need for formalized academic training in the quantitative and methodological principles of clinical research in reproductive medicine. The Clinical Research/Reproductive Scientist Training Program (CREST), a program supported by the National Institute of Child Health and Human Development, the Clinical Research Training Program (CRTP) at Duke University, and the American Society for Reproductive Medicine,(ASRM) meets this existing need. In addition, this program is specifically designed for physicians in private or academic clinical practice in reproductive medicine. Innovative programs such as CREST encourage the practicing physician to engage in clinical research while maintaining an active role in clinical practice. Participants in the program receive didactic on-line training from the CRTP, attend intensive weekend seminars at the National Institutes of Health (NIH) and CREST seminars at the annual meeting of ASRM. Successful participants in the program receive a Certificate in Clinical Research from the CRTP. The program’s goal is to provide practicing physicians with the tools and research credentials that will facilitate collaborations with investigators involved in large clinical trials. PMID:19144332

  1. Secrets of virtuoso: neuromuscular attributes of motor virtuosity in expert musicians

    PubMed Central

    Furuya, Shinichi; Oku, Takanori; Miyazaki, Fumio; Kinoshita, Hiroshi

    2015-01-01

    Musical performance requires extremely fast and dexterous limb movements. The underlying biological mechanisms have been an object of interest among scientists and non-scientists for centuries. Numerous studies of musicians and non-musicians have demonstrated that neuroplastic adaptations through early and deliberate musical training endowed superior motor skill. However, little has been unveiled about what makes inter-individual differences in motor skills among musicians. Here we determined the attributes of inter-individual differences in the maximum rate of repetitive piano keystrokes in twenty-four pianists. Among various representative factors of neuromuscular functions, anatomical characteristics, and training history, a stepwise multiple regression analysis and generalized linear model identified two predominant predictors of the maximum rate of repetitive piano keystrokes; finger tapping rate and muscular strength of the elbow extensor. These results suggest a non-uniform role of individual limb muscles in the production of extremely fast repetitive multi-joint movements. Neither age of musical training initiation nor the amount of extensive musical training before age twenty was a predictor. Power grip strength was negatively related to the maximum rate of piano keystrokes only during the smallest tone production. These findings highlight the importance of innate biological nature and explicit training for motor virtuosity. PMID:26502770

  2. Secrets of virtuoso: neuromuscular attributes of motor virtuosity in expert musicians

    NASA Astrophysics Data System (ADS)

    Furuya, Shinichi; Oku, Takanori; Miyazaki, Fumio; Kinoshita, Hiroshi

    2015-10-01

    Musical performance requires extremely fast and dexterous limb movements. The underlying biological mechanisms have been an object of interest among scientists and non-scientists for centuries. Numerous studies of musicians and non-musicians have demonstrated that neuroplastic adaptations through early and deliberate musical training endowed superior motor skill. However, little has been unveiled about what makes inter-individual differences in motor skills among musicians. Here we determined the attributes of inter-individual differences in the maximum rate of repetitive piano keystrokes in twenty-four pianists. Among various representative factors of neuromuscular functions, anatomical characteristics, and training history, a stepwise multiple regression analysis and generalized linear model identified two predominant predictors of the maximum rate of repetitive piano keystrokes; finger tapping rate and muscular strength of the elbow extensor. These results suggest a non-uniform role of individual limb muscles in the production of extremely fast repetitive multi-joint movements. Neither age of musical training initiation nor the amount of extensive musical training before age twenty was a predictor. Power grip strength was negatively related to the maximum rate of piano keystrokes only during the smallest tone production. These findings highlight the importance of innate biological nature and explicit training for motor virtuosity.

  3. It's a wonderful life: a career as an academic scientist.

    PubMed

    Vale, Ronald D

    2010-01-01

    Many years of training are required to obtain a job as an academic scientist. Is this investment of time and effort worthwhile? My answer is a resounding "yes." Academic scientists enjoy tremendous freedom in choosing their research and career path, experience unusual camaraderie in their lab, school, and international community, and can contribute to and enjoy being part of this historical era of biological discovery. In this essay, I further elaborate by listing my top ten reasons why an academic job is a desirable career for young people who are interested in the life sciences.

  4. Impact of EMS Outreach: Successful Developments in Latin America

    PubMed Central

    Olivero, Ofelia A.; Larramendy, Marcelo; Soloneski, Sonia; Menck, Carlos F.M.; Matta, Jaime; Folle, Gustavo A.; Zamorano-Ponce, Enrique; Spivak, Graciela

    2014-01-01

    This collection of articles was inspired by the long-standing relationship between the Environmental Mutagen Society and Latin American scientists, and by the program for the 39th Environmental Mutagen Society meeting in Puerto Rico in 2008, which included a symposium featuring “South of the border” scientists. This collection, compiled by Graciela Spivak and Ofelia Olivero, both originally from Argentina, highlights scientists who work in or were trained in Latin American countries and in Puerto Rico in a variety of scientific specialties related to DNA repair and cancer susceptibility, genomic organization and stability, genetic diversity, and environmental contaminants. PMID:20213840

  5. TRAINING AND TECHNOLOGY TRANSFER OF ORD-DEVELOPED MOLECULAR BIOLOGY-BASED TOOLS: 1. ENDOCRINE DISRUPTING CHEMICAL FATHEAD MINNOW BIOASSAY; 2. MICROBIAL SOURCE TRACKING METHODS; 3. FIELD IDENTIFICATION OF GENETICALLY MODIFIED CROP PLANTS

    EPA Science Inventory

    Region 9 RSL and ORD/NERL scientists developed a course for the RSC (Regional Science Council)-sponsored training class on Molecular Biology Concepts. The training will take place as part of the technology transfer of a fish EDC (endocrine disrupting chemical) bioassay to the Reg...

  6. The Fate of Ten Scientist-Science Educator Teams Three Years After Participation in a Leadership Training Program.

    ERIC Educational Resources Information Center

    Rowe, Mary Budd

    Ten two-person teams made up the primary target population for the Leadership Training Program (LTP) described in this report. The back home activities of the team members were studied for nearly three years following the LTP. A brief resume of the design and conduct of the LTP is given. Training of the college teams took three weeks and included…

  7. Training in reproductive health and sexuality: the case of a regional program in Latin America.

    PubMed

    Ramos, S; Gogna, M

    1997-01-01

    Beginning in July 1993, a 5-year program has sought to provide social research, training, and technical assistance in reproductive health and sexuality in Argentina, Chile, Peru, and Colombia by 1) building research capacity and promoting an interdisciplinary approach to reproductive health and sexuality and 2) promoting a gender perspective to these issues. The target groups are women's nongovernmental organizations (NGOs); family planning, reproductive health, and women's health providers; and social scientists conducting health-related research. Training activities include regional workshops, a Regional Resident Fellowship Program to support graduate-level education, and provision of technical assistance. The first 3 years of the program have revealed that the basic training needs in these areas include 1) helping women's NGOs improve their record-keeping capacity, evaluation processes, theoretical and methodological background, and institutional-building ability; 2) sensitizing women's health providers to sociocultural dimension of health-illness issues and to a gender and human rights perspective; and 3) training social scientist researchers to apply their skills in applied research, develop their theoretical background, and improve research quality control procedures. The main challenges for training activities in the field of reproductive health and sexuality are posed by the complexity of the issues and their interdisciplinary nature.

  8. Citizen Science Study Design

    EPA Pesticide Factsheets

    Community Air Monitoring Training in July 2015. Topics included motivaton, goals, data quality and quantity, recruitment of other citizen scientists, technology requirements, supporting materials, and evaluations.

  9. On-the-job, real-time professional development for graduate students and early career scientists at the University of Hawaii

    NASA Astrophysics Data System (ADS)

    Bruno, B. C.; Guannel, M.; Wood-Charlson, E.; Choy, A.; Wren, J.; Chang, C.; Alegado, R.; Leon Soon, S.; Needham, H.; Wiener, C.

    2015-12-01

    Here we present an overview of inter-related programs designed to promote leadership and professional development among graduate students and early career scientists. In a very short time, these young scientists have developed into an impressive cohort of leaders. Proposal Writing. The EDventures model combines proposal-writing training with the incentive of seed money. Rather than providing training a priori, the EDventures model encourages students and post-docs to write a proposal based on guidelines provided. Training occurs during a two-stage review stage: proposers respond to panel reviews and resubmit their proposal within a single review cycle. EDventures alumni self-report statistically significant confidence gains on all questions posed. Their subsequent proposal success is envious: of the 12 proposals submitted by program alumni to NSF, 50% were funded. (Wood Charlson & Bruno, in press; cmore.soest.hawaii.edu/education/edventures.htm)Mentoring. The C-MORE Scholars and SOEST Maile Mentoring Bridgeprograms give graduate students the opportunity to serve as research mentors and non-research mentors, respectively, to undergraduates. Both programs aim to develop a "majority-minority" scientist network, where Native Hawaiians and other underrepresented students receive professional development training and personal support through one-on-one mentoring relationships (Gibson and Bruno, 2012; http://cmore.soest.hawaii.edu/scholars; http://maile.soest.hawaii.edu).Outreach & Science Communication. Ocean FEST (Families Exploring Science Together), Ocean TECH (Technology Explores Career Horizons) and the Kapiolani Community College summer bridge program provide opportunities for graduate students and post-docs to design and deliver outreach activities, lead field trips, communicate their research, and organize events (Wiener et al, 2011, Bruno & Wren, 2014; http://oceanfest.soest.hawaii.edu; http://oceantech.soest.hawaii.edu)Professional Development Course. In this career-focused graduate seminar, students and post-docs explore a range of career paths, identify and build skills, prepare application materials, and develop a class project around their professional development interests (Guannel et al, 2014).

  10. 2013 Occupant Protection Risk Standing Review Panel Status Review Comments to the Human Research Program, Chief Scientist

    NASA Technical Reports Server (NTRS)

    Steinberg, Susan

    2014-01-01

    On December 17, 2013, the OP Risk SRP, participants from the JSC, HQ, and NRESS participated in a WebEx/teleconference. The purpose of the call was to allow the SRP members to: 1. Receive an update by the Human Research Program (HRP) Chief Scientist or Deputy Chief Scientist on the status of NASA's current and future exploration plans and the impact these will have on the HRP. 2. Receive an update on any changes within the HRP since the 2012 SRP meeting. 3. Receive an update by the Element or Project Scientist(s) on progress since the 2012 SRP meeting. 4. Participate in a discussion with the HRP Chief Scientist, Deputy Chief Scientist, and the Element regarding possible topics to be addressed at the next SRP meeting.

  11. What can Citizen Science do for Ocean Science and Ocean Scientists?

    NASA Astrophysics Data System (ADS)

    Best, M.; Hoeberechts, M.; Mangin, A.; Oggioni, A.; Orcutt, J. A.; Parrish, J.; Pearlman, J.; Piera, J.; Tagliolato, P.

    2016-12-01

    The ocean represents over 70% of our planet's surface area, over 90% of the living space. Humans are not marine creatures, we therefore have fundamentally not built up knowledge of the ocean in the same way we have on land. The more we learn about the ocean, the more we understand it is the regulatory engine of our planet…How do we catch up? Answers to this question will need to come from many quarters; A powerful and strategic option to complement existing observation programs and infrastructure is Citizen Science. There has been significant and relevant discussion of the importance of Citizen Science to citizens and stakeholders. The missing effective question is sometimes what is the potential of citizen science for scientists? The answers for both scientists and society are: spatial coverage, remote locations, temporal coverage, event response, early detection of harmful processes, sufficient data volume for statistical analysis and identification of outliers, integrating local knowledge, data access in exchange for analysis (e.g. with industry) and cost-effective monitoring systems. Citizens can be involved in: instrument manufacture and maintenance, instrument deployment/sample collection, data collection and transmission, data analysis, data validation/verification, and proposals of new topics of research. Such opportunities are balanced by concern on the part of scientists about the quality, the consistency and the reliability of citizen observations and analyses. Experience working with citizen science groups continues to suggest that with proper training and mentoring, these issues can be addressed, understanding both benefits and limitations. How to do it- implementation and maintenance of citizen science: How to recruit, engage, train, and maintain Citizen Scientists. Data systems for acquisition, assessment, access, analysis, and visualisation of distributed data sources. Tools/methods for acquiring observations: Simple instruments, Smartphone Apps, DIY-Instruments Community Online Platforms: websites, social networks, discussion forums. Crowdsourcing Tools: image acquisition, web and smartphone applications, surveys/questionnaires. Information, Engagement, and Training Resources: webinars, public lectures, websites, public/museum displays.

  12. Okeanos Explorer 2014 Gulf of Mexico Expedition: engaging and connecting with diverse and geographically dispersed audiences

    NASA Astrophysics Data System (ADS)

    Russell, C. W.; Elliott, K.; Lobecker, E.; McKenna, L.; Haynes, S.; Crum, E.; Gorell, F.

    2014-12-01

    From February to May 2014, NOAA Ship Okeanos Explorer conducted a telepresence-enabled ocean exploration expedition addressing NOAA and National deepwater priorities in the U.S. Gulf of Mexico. The community-driven expedition connected diverse and geographically dispersed audiences including scientists from industry, academia, and government, and educators, students, and the general public. Expedition planning included input from the ocean science and management community, and was executed with more than 70 scientists and students from 14 U.S. states participating from shore in real time. Training the next generation permeated operations: a mapping internship program trained undergraduate and graduate students; an ROV mentorship program trained young engineers to design, build and operate the system; and undergraduate through doctoral students around the country collaborated with expedition scientists via telepresence. Online coverage of the expedition included background materials, daily updates, and mission logs that received more than 100,000 visits by the public. Live video feeds of operations received more than 700,000 views online. Additionally, professional development workshops hosted in multiple locations throughout the spring introduced educators to the Okeanos Explorer Educational Materials Collection and the live expedition, and taught them how to use the website and education resources in their classrooms. Social media furthered the reach of the expedition to new audiences, garnered thousands of new followers and provided another medium for real-time interactions with the general public. Outreach continued through live interactions with museums and aquariums, Exploration Command Center tours, outreach conducted by partners, and media coverage in more than 190 outlets in the U.S. and Europe. Ship tours were conducted when the ship came in to port to engage local scientists, ocean managers, and educators. After the expedition, data and products were archived and quickly shared with ocean managers and scientists working in the region, providing a baseline of publicly available data and stimulating follow-on exploration, research and management activities within a few months of expedition completion.

  13. Cultivating a Global Pool of Future Geoscientists and Mentors

    NASA Astrophysics Data System (ADS)

    Sparrow, E. B.; Yule, S.; Murphy, A.; Fenzel, M.; Buali, S.; Bourgeault, J.; Tunkl, T.; Lawani, Y.; Elwan, M.; Ruairuen, W.; Altin, L.; Boonkhot, P.

    2015-12-01

    The Global Learning and Observations to Benefit the Environment (GLOBE) program ( www.globe.gov) is an international science and education program in over 28,000 schools in 114 countries. GLOBE students conduct real science - ask questions, make observations, do measurements, analyze data, and participate in research collaborations with other students and Earth scientists. In the U.S., GLOBE operates through a GLOBE Implementation Office and partnerships with U.S. organizations that recruit schools, train teachers at professional development workshops, and mentor teachers and their students to engage in GLOBE learning and research activities. Internationally, GLOBE is implemented through bilateral agreements between the U.S. government and those of partner countries that provide the structure and funding to fulfill the responsibilities and functions of a GLOBE Partnership. GLOBE students have contributed more than 129 million measurements to ongoing science investigations. GLOBE, in its 20th year, has been successful in engaging students in Earth as a system and environmental science studies during K-12 schooling and beyond as students go into college and in their careers. GLOBE Alumni is a grassroots community of former GLOBE students committed to continue GLOBE activities at a higher level. They have worked with GLOBE in Estonia, Czech Republic, Benin, Thailand and Peru, to support teachers and students in student scientific research to better understand the Earth as a system and the environment. Survey results of participants at the 2014 GLOBE Learning Expedition indicate that 53% of GLOBE students would likely choose GLOBE involvement beyond secondary school, 80 % of teachers are likely to engage former GLOBE students as near-peer mentors to their students, 70% of GLOBE Partners are likely to use the assistance of former GLOBE students when training teachers and 100% of GLOBE Partners and teachers consider former GLOBE students who may be in college or graduated, valuable as research mentors to their GLOBE students. Scientists asked how valuable they think GLOBE alumni can be to a GLOBE-wide student collaborative scientific research project; all responded in the affirmative with one scientist saying "Extremely valuable, one of the best things that happened proving the value of the program".

  14. Using Geophysical Data in the Texas High School Course, Geology, Meteorology, and Oceanography

    NASA Astrophysics Data System (ADS)

    Ellins, K.; Olson, H.; Pulliam, J.; Schott, M. J.

    2002-12-01

    Science educators working directly with scientists to develop inquiry-based instructional materials in Earth science yield some of the best results. The TEXTEAMS (Texas Teachers Empowered for Achievement in Mathematics and Science) Leadership Training for the Texas high school science course, Geology, Meteorology and Oceanography (GMO) is one example of a successful program that provides high-quality training to master teachers using geophysical data collected by scientists at The University of Texas Institute for Geophysics (UTIG). TEXTEAMS is a certification program of professional development and leadership training sponsored by the National Science Foundation that is part of the Texas Statewide Systemic Initiative. UTIG scientists teamed with science educators at the Charles A. Dana Center for Mathematics and Science Education at UT and the Texas Education Agency to develop inquiry-based instructional materials for eight GMO modules. Our learning activities help students and teachers understand how Earth scientists interpret the natural world and test their hypotheses, and provide opportunities for the use of technology in classroom science learning; they are aligned with national and state teaching standards. Examples of TEXTEAMS GMO learning activities that use geophysical data. 1. Neotectonics: radiocarbon dates and elevation above current sea level of raised coral reefs in the New Georgia Islands are used to calculate rates of tectonic uplift and as a basis for the development of a conceptual model to explain the pattern of uplift that emerges from the data. 2. Large Igneous Provinces:geophysical logging data collected on ODP Leg 183 (Kerguelen Plateau) are analyzed to identify the transition from sediment to basement rock. 3. The Search for Black Gold: petroleum exploration requires the integration of geology, geophysics, petrophysics and geochemistry. Knowledge gained in previous GMO modules is combined with fundamental knowledge about economics to construct a petroleum prospect for a small oil and gas company. TEXTEAMS GMO Leadership Training uses mentoring of teachers by fellow teachers to implement effective teaching strategies and rigorous science curricula. More than 75 GMO teachers participated in the institutes and they in turn have trained about 2,250 other teachers. The number of students reached is about 67,500. The success of the GMO institutes have led to new partnerships between scientists and educators, and allowed UTIG to secure additional funds to promote K-12 Earth science education in Texas. They can serve as a template for other programs that are relevant to local communities and which utilize geophysical data and science.

  15. Networked simulation for team training of Space Station astronauts, ground controllers, and scientists - A training and development environment

    NASA Technical Reports Server (NTRS)

    Hajare, Ankur R.; Wick, Daniel T.; Bovenzi, James J.

    1991-01-01

    The purpose of this paper is to describe plans for the Space Station Training Facility (SSTF) which has been designed to meet the envisioned training needs for Space Station Freedom. To meet these needs, the SSTF will integrate networked simulators with real-world systems in five training modes: Stand-Alone, Combined, Joint-Combined, Integrated, and Joint-Integrated. This paper describes the five training modes within the context of three training scenaries. In addition, this paper describes an authoring system which will support the rapid integration of new real-world system changes in the Space Station Freedom Program.

  16. Ethics in Neuroscience Graduate Training Programs: Views and Models from Canada

    ERIC Educational Resources Information Center

    Lombera, Sofia; Fine, Alan; Grunau, Ruth E.; Illes, Judy

    2010-01-01

    Consideration of the ethical, social, and policy implications of research has become increasingly important to scientists and scholars whose work focuses on brain and mind, but limited empirical data exist on the education in ethics available to them. We examined the current landscape of ethics training in neuroscience programs, beginning with the…

  17. Is There a Crisis in School Science Education in the UK?

    ERIC Educational Resources Information Center

    Smith, Emma

    2010-01-01

    This paper reviews the extent to which contemporary concerns over the recruitment, training and retention of scientists have persisted among science education policy-makers. Drawing upon key government reports that have been commissioned in order to review the position of science education and training over the last 90 years, we consider the…

  18. The Scientist-Practitioner: A Boulder Model for Education

    ERIC Educational Resources Information Center

    Dunn, Karee E.

    2015-01-01

    The purpose of the current work is to present a case for the need to train all graduate students in the field of education in quantitative methodology. The premise for this position is that practitioners like researchers benefit from such training. Through an understanding of research design and statistics, teachers, school leaders, counselors,…

  19. Learning Styles and Teacher Training: Are We Perpetuating Neuromyths?

    ERIC Educational Resources Information Center

    Lethaby, Carol; Harries, Patricia

    2016-01-01

    Recent research suggests that brain-based teaching, as exhibited in the idea of teaching to address perceptual learning styles, has no basis in what scientists are learning about the brain and how it works. This article questions whether training teachers to assess and accommodate learning styles is harmless or potentially poor educational…

  20. Internet-based brain training games, citizen scientists, and big data: ethical issues in unprecedented virtual territories.

    PubMed

    Purcell, Ryan H; Rommelfanger, Karen S

    2015-04-22

    Internet brain training programs, where consumers serve as both subjects and funders of the research, represent the closest engagement many individuals have with neuroscience. Safeguards are needed to protect participants' privacy and the evolving scientific enterprise of big data. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. 77 FR 36277 - Academic Development of a Training Program for Good Laboratory Practices in High Containment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-18

    ... requirements in high and maximum biocontainment, scientists working in this environment and FDA staff who will...] Academic Development of a Training Program for Good Laboratory Practices in High Containment Environments... Containment Environments (U24).'' In this FOA, FDA announces its intention to accept and consider a single...

  2. Trends in Interdisciplinary and Integrative Graduate Training: An NSF IGERT Example

    ERIC Educational Resources Information Center

    Martin, Philip E.; Umberger, Brian R.

    2003-01-01

    In a report entitled "Reshaping the Graduate Education of Scientists and Engineers" (National Academy of Sciences, 1995), the Committee on Science, Engineering, and Public Policy proposed a modified PhD training model that retains an emphasis on intensive research experiences, while incorporating additional experiences to prepare graduates for an…

  3. Science in the Wild: Adventure Citizen Science in the Arctic and Himalaya

    NASA Astrophysics Data System (ADS)

    Horodyskyj, U. N.; Rufat-Latre, J.; Reimuller, J. D.; Rowe, P.; Pothier, B.; Thapa, A.

    2016-12-01

    Science in the Wild provides educational hands-on adventure science expeditions for the everyday person, blending athletics and academics in remote regions of the planet. Participants receive training on field data collection techniques in order to be able to help scientists in the field while on expedition with them. At SITW, we also involve our participants in analyzing and interpreting the data, thus teaching them about data quality and sources of error and uncertainty. SITW teaches citizens the art of science storytelling, aims to make science more open and transparent, and utilizes open source software and hardware in projects. Open science serves both the research community and the greater public. For the former, it makes science reproducible, transparent and more impactful by mobilizing multidisciplinary and international collaborative research efforts. For the latter, it minimizes mistrust in the sciences by allowing the public a `behind-the-scenes' look into how scientific research is conducted, raw and unfiltered. We present results from a citizen-science expedition to Baffin Island (Canadian Arctic), which successfully skied and sampled snow for dust and black carbon concentration from the Penny Ice Cap, down the 25-mile length of Coronation Glacier, and back to the small Arctic town of Qikitarjuaq. From a May/June 2016 citizen-science expedition to Nepal (Himalaya), we present results comparing 2014/16 depth and lake floor compositional data from supraglacial lakes on Ngozumpa glacier while using open-source surface and underwater robotics. The Sherpa-Scientist Initiative, a program aimed at empowering locals in data collection and interpretation, successfully trained half a dozen Sherpas during this expedition and demonstrates the value of local engagement. In future expeditions to the region, efforts will be made to scale up the number of trainees and expand our spatial reach in the Himalaya.

  4. Geographically Distributed Citizen Scientist Training for the 2017 Citizen CATE Experiment

    NASA Astrophysics Data System (ADS)

    Gelderman, Richard; Penn, Matt; Baer, Robert; Isberner, Fred; Pierce, Michael; Walter, Donald K.; Yanamandra-Fisher, Padma; Sheeley, Neil R.

    2016-01-01

    The solar eclipse of 21 August 2017 will be visible to over a half billion people across the entire North American continent. The roughly 100-mile wide path of totality, stretching from Oregon to South Carolina, will be the destination for tens of millions of people. In the decades since 1979, when the last total solar eclipse was visible from the continental USA, the phenomenon of Internet enabled citizen science has grown to be an accepted mode for science. The Citizen Continental-America Telescopic Eclipse (Citizen CATE) experiment has been funded as one of the three 2017 eclipse related NASA STEM agreements to engage citizen scientists in a unique, cutting-edge solar physics experiment. Teams across the USA will be trained to use standardized refracting telescope and digital imager set-ups to observe the solar corona during the eclipse, acquiring multiple exposures to create one high dynamic range image. After observing during the eclipse, the CATE volunteers will upload the combined image to a cloud-storage site and the CATE team will then work to properly orient and align all the images collected from across the continent to produce a continuous 90-minutes movie. A time-compressed first cut of the entire sequence will be made available to media outlets on the same afternoon of the eclipse, with hope that high quality images will encourage the most accurate coverage of this Great American Eclipse. We discuss overall the project, as well as details of the initial tests of the prototype set-up (including in the Faroe Islands during the March 2015 total solar eclipse) and plans for the future night-time and day-time observing campaigns, and for a handful of observing teams positioned for overlapping observations of the March 2016 total solar eclipse in the South Pacific.

  5. Hispanic Student-Scientists

    ERIC Educational Resources Information Center

    La Luz, 1977

    1977-01-01

    The Minority Biomedical Support Program provides grant money to educational institutions so they can better encourage and train their students to pursue successful careers in biomedical research. (NQ)

  6. Spacelab simulation using a Lear Jet aircraft: Mission no. 4 (ASSESS program)

    NASA Technical Reports Server (NTRS)

    Reller, J. O., Jr.; Neel, C. B.; Mason, R. H.

    1975-01-01

    The fourth ASSESS Spacelab simulation mission utilizing a Lear Jet aircraft featured trained experiment operators (EOs) in place of the participating scientists, to simulate the role and functions of payload specialists in Spacelab who may conduct experiments developed by other scientists. The experiment was a broadband infrared photometer coupled to a 30-cm, open port, IR telescope. No compromises in equipment design or target selection were made to simplify operator tasks; the science goals of the mission were selected to advance the mainline research program of the principle investigator (PI). Training of the EOs was the responsibility of the PI team and consisted of laboratory sessions, on-site training during experiment integration, and integrated mission training using the aircraft as a high-fidelity simulator. The EO permission experience in these several disciplines proved adequate for normal experiment operations, but marginal for the identification and remedy of equipment malfunctions. During the mission, the PI utilized a TV communication system to assist the EOs to overcome equipment difficulties; both science and operations were successfully implemented.

  7. Training the next generation of physician researchers - Vanderbilt Medical Scholars Program.

    PubMed

    Brown, Abigail M; Chipps, Teresa M; Gebretsadik, Tebeb; Ware, Lorraine B; Islam, Jessica Y; Finck, Luke R; Barnett, Joey; Hartert, Tina V

    2018-01-04

    As highlighted in recent reports published by the Physician-Scientist Workforce Working Group at the National Institutes of Health, the percentage of physicians conducting research has declined over the past decade. Various programs have been put in place to support and develop current medical student interest in research to alleviate this shortage, including The Vanderbilt University School of Medicine Medical Scholars Program (MSP). This report outlines the long-term program goals and short-term outcomes on career development of MSP alumni, to shed light on the effectiveness of research training programs during undergraduate medical training to inform similar programs in the United States. MSP alumni were asked to complete an extensive survey assessing demographics, accomplishments, career progress, future career plans, and MSP program evaluation. Fifty-five (81%) MSP alumni responded, among whom 12 had completed all clinical training. The demographics of MSP alumni survey respondents are similar to those of all Vanderbilt medical students and medical students at all other Association of American Medical College (AAMC) medical schools. MSP alumni published a mean of 1.9 peer-reviewed manuscripts (95% CI:1.2, 2.5), and 51% presented at national meetings. Fifty-eight percent of respondents reported that MSP participation either changed their career goals or helped to confirm or refine their career goals. Results suggest that the MSP program both prepares students for careers in academic medicine and influences their career choices at an early juncture in their training. A longer follow-up period is needed to fully evaluate the long-term outcomes of some participants.

  8. The role of NIGMS P50 sponsored team science in our understanding of multiple organ failure.

    PubMed

    Moore, Frederick A; Moore, Ernest E; Billiar, Timothy R; Vodovotz, Yoram; Banerjee, Anirban; Moldawer, Lyle L

    2017-09-01

    The history of the National Institute of General Medical Sciences (NIGMS) Research Centers in Peri-operative Sciences (RCIPS) is the history of clinical, translational, and basic science research into the etiology and treatment of posttraumatic multiple organ failure (MOF). Born out of the activism of trauma and burn surgeons after the Viet Nam War, the P50 trauma research centers have been a nidus of research advances in the field and the training of future academic physician-scientists in the fields of trauma, burns, sepsis, and critical illness. For over 40 years, research conducted under the aegis of this funding program has led to numerous contributions at both the bedside and at the bench. In fact, it has been this requirement for team science with a clinician-scientist working closely with basic scientists from multiple disciplines that has led the RCIPS to its unrivaled success in the field. This review will briefly highlight some of the major accomplishments of the RCIPS program since its inception, how they have both led and evolved as the field moved steadily forward, and how they are responsible for much of our current understanding of the etiology and pathology of MOF. This review is not intended to be all encompassing nor a historical reference. Rather, it serves as recognition to the foresight and support of many past and present individuals at the NIGMS and at academic institutions who have understood the cost of critical illness and MOF to the individual and to society.

  9. Are graduate students rational? Evidence from the market for biomedical scientists.

    PubMed

    Blume-Kohout, Margaret E; Clack, John W

    2013-01-01

    The U.S. National Institutes of Health (NIH) budget expansion from 1998 through 2003 increased demand for biomedical research, raising relative wages and total employment in the market for biomedical scientists. However, because research doctorates in biomedical sciences can often take six years or more to complete, the full labor supply response to such changes in market conditions is not immediate, but rather is observed over a period of several years. Economic rational expectations models assume that prospective students anticipate these future changes, and also that students take into account the opportunity costs of their pursuing graduate training. Prior empirical research on student enrollment and degree completions in science and engineering (S&E) fields indicates that "cobweb" expectations prevail: that is, at least in theory, prospective graduate students respond to contemporaneous changes in market wages and employment, but do not forecast further changes that will arise by the time they complete their degrees and enter the labor market. In this article, we analyze time-series data on wages and employment of biomedical scientists versus alternative careers, on completions of S&E bachelor's degrees and biomedical sciences PhDs, and on research expenditures funded both by NIH and by biopharmaceutical firms, to examine the responsiveness of the biomedical sciences labor supply to changes in market conditions. Consistent with previous studies, we find that enrollments and completions in biomedical sciences PhD programs are responsive to market conditions at the time of students' enrollment. More striking, however, is the close correspondence between graduate student enrollments and completions, and changes in availability of NIH-funded traineeships, fellowships, and research assistantships.

  10. Science PhD Career Preferences: Levels, Changes, and Advisor Encouragement

    PubMed Central

    Sauermann, Henry; Roach, Michael

    2012-01-01

    Even though academic research is often viewed as the preferred career path for PhD trained scientists, most U.S. graduates enter careers in industry, government, or “alternative careers.” There has been a growing concern that these career patterns reflect fundamental imbalances between the supply of scientists seeking academic positions and the availability of such positions. However, while government statistics provide insights into realized career transitions, there is little systematic data on scientists' career preferences and thus on the degree to which there is a mismatch between observed career paths and scientists' preferences. Moreover, we lack systematic evidence whether career preferences adjust over the course of the PhD training and to what extent advisors exacerbate imbalances by encouraging their students to pursue academic positions. Based on a national survey of PhD students at tier-one U.S. institutions, we provide insights into the career preferences of junior scientists across the life sciences, physics, and chemistry. We also show that the attractiveness of academic careers decreases significantly over the course of the PhD program, despite the fact that advisors strongly encourage academic careers over non-academic careers. Our data provide an empirical basis for common concerns regarding labor market imbalances. Our results also suggest the need for mechanisms that provide PhD applicants with information that allows them to carefully weigh the costs and benefits of pursuing a PhD, as well as for mechanisms that complement the job market advice advisors give to their current students. PMID:22567149

  11. The making of a physician-scientist--the process has a pattern: lessons from the lives of Nobel laureates in medicine and physiology.

    PubMed

    Archer, Stephen L

    2007-02-01

    Physician-scientists are catalysts of translational research. With one foot in the practice of medicine and the other in research and discovery, they are uniquely positioned to bridge the gap between laboratory and bedside. In so doing, they enhance patient care, improve medical education, and increase the prosperity of the biomedical enterprise. Although, science has never been more accessible and directly applicable to human health, there is a paradoxical scarcity of physician-scientists. Causes of this shortage include prolonged training and the associated debt-load, the corporatization of medicine, inadequate research funding, and the complexity of a dual career. While striving to reduce these obstacles, we should inspire the next generation by celebrating the physician-scientist career track as one of Medicine's most rewarding. To this end, life lessons from five groups of Nobel laureates in medicine and physiology have been distilled, revealing the essence of the practices and philosophies that allowed these 'ordinary' people to achieve the extraordinary. The common threads in their stories guide young physician-scientists to seek out training and employment where a culture of research is embraced, to find a dedicated mentor who will help identify worthy research questions and guide their career, and to establish research partnerships which offer creative synergy and buffer the frustrations that accompany research. Further inspiration comes from those great researchers whose contributions shaped Medicine but did not lead to the Prize.

  12. Science PhD career preferences: levels, changes, and advisor encouragement.

    PubMed

    Sauermann, Henry; Roach, Michael

    2012-01-01

    Even though academic research is often viewed as the preferred career path for PhD trained scientists, most U.S. graduates enter careers in industry, government, or "alternative careers." There has been a growing concern that these career patterns reflect fundamental imbalances between the supply of scientists seeking academic positions and the availability of such positions. However, while government statistics provide insights into realized career transitions, there is little systematic data on scientists' career preferences and thus on the degree to which there is a mismatch between observed career paths and scientists' preferences. Moreover, we lack systematic evidence whether career preferences adjust over the course of the PhD training and to what extent advisors exacerbate imbalances by encouraging their students to pursue academic positions. Based on a national survey of PhD students at tier-one U.S. institutions, we provide insights into the career preferences of junior scientists across the life sciences, physics, and chemistry. We also show that the attractiveness of academic careers decreases significantly over the course of the PhD program, despite the fact that advisors strongly encourage academic careers over non-academic careers. Our data provide an empirical basis for common concerns regarding labor market imbalances. Our results also suggest the need for mechanisms that provide PhD applicants with information that allows them to carefully weigh the costs and benefits of pursuing a PhD, as well as for mechanisms that complement the job market advice advisors give to their current students.

  13. Monoclonal antibodies directed against surface molecules of multicell spheroids

    NASA Technical Reports Server (NTRS)

    Martinez, Andrew O.

    1994-01-01

    The objective of this project is to generate a library of monoclonal antibodies (MAbs) directed against surface molecules of tumor and transformed cells grown as multicell spheroids (MCS). These MCS are highly organized, 3-dimensional multicellular structures which exhibit many characteristics of in vivo organized tissues not found in conventional monolayer or suspension culture. Therefore MCS make better in vitro model systems to study the interactions of mammalian cells, and provide a functional assay for surface adhesion molecules. This project also involves investigations of cell-cell interactions in a gravity-based environment. It will provide a base of scientific information necessary to expand the focus of the project in future years to microgravity and hypergravity-based environments. This project also has the potential to yield important materials (e.g., cellular products) which may prove useful in the diagnosis and/or treatment of certain human diseases. Moreover, this project supports the training of both undergraduate and graduate students; thus, it will assist in developing a pool of future scientists with research experience in an area (gravitational biology) of interest to NASA.

  14. Is Quaternary geology ready for the future?

    NASA Astrophysics Data System (ADS)

    Ritter, Dale F.

    1996-07-01

    Armed with a better understanding of process and an array of developing dating techniques, Quaternary geology is poised to achieve greater recognition in the general scientific community. This recognition however, will require some thought adjustment. Quaternary geologists will have to convince government, industry and a variety of scientific groups that they possess unique training and expertise that is needed as part of the thrust to fully understand and/or resolve major scientific problems. Therefore, future research and education efforts should not focus on developing a rigidly defined identity within geoscience, but instead should seek ways to be integrated with interdisciplinary teams that will investigate complex environmental and climate change problems. Such a scenaria creates and enermous dilemma for Quaternary geologists because they will derive greater intellectual stimulation from scientists working in discplines other than geology, and their scientific collaboratiors will most likely not be their academic colleagues. This outward expansion of our scientific network will require the development of interdsciplinary research collaboration and/or degree-granting programs at the graduate level. To accomplish such goals, universities must resist "turf protection", and funding agencies muts become more efficient at facilitating interdisciplinary research.

  15. Current research in transcultural psychiatry in the Nordic countries.

    PubMed

    Ekblad, Solvig; Kastrup, Marianne Carisius

    2013-12-01

    This article discusses major themes in recent transcultural psychiatric research in the Nordic countries from 2008 to 2011: (a) epidemiological studies of migration, (b) indigenous populations, and (c) quality of psychiatric care for migrants. Over the past several decades, the populations of the Nordic countries, Denmark, Finland, Norway, and Sweden, which were relatively homogeneous, have become increasingly culturally diverse. Many migrants to Nordic countries have been exposed to extreme stress, such as threats of death and/or torture and other severe social adversities before, during, and after migration, with potential effects on their physical, mental, social, and spiritual health. Growing interest in transcultural issues is reflected in the level of scientific research and clinical activity in the field by Nordic physicians, psychologists, social scientists, demographers, medical anthropologists, as well as other clinicians and policy planners. Research includes work with migrants and indigenous minorities in the Nordic countries, as well as comparisons with mental health in postconflict countries. We conclude by suggesting future directions for transcultural psychiatry research and providing guidelines for the education and training of future clinicians in the Nordic countries.

  16. Towards the Future "Earthquake" School in the Cloud: Near-real Time Earthquake Games Competition in Taiwan

    NASA Astrophysics Data System (ADS)

    Chen, K. H.; Liang, W. T.; Wu, Y. F.; Yen, E.

    2014-12-01

    To prevent the future threats of natural disaster, it is important to understand how the disaster happened, why lives were lost, and what lessons have been learned. By that, the attitude of society toward natural disaster can be transformed from training to learning. The citizen-seismologists-in-Taiwan project is designed to elevate the quality of earthquake science education by means of incorporating earthquake/tsunami stories and near-real time earthquake games competition into the traditional curricula in schools. Through pilot of courses and professional development workshops, we have worked closely with teachers from elementary, junior high, and senior high schools, to design workable teaching plans through a practical operation of seismic monitoring at home or school. We will introduce how the 9-years-old do P- and S-wave picking and measure seismic intensity through interactive learning platform, how do scientists and school teachers work together, and how do we create an environment to facilitate continuous learning (i.e., near-real time earthquake games competition), to make earthquake science fun.

  17. The wish to cure and the curiosity to investigate - or how I used my life to become a physician-scientist.

    PubMed

    Fries, Jochen Walter Ulrich

    2015-01-01

    The author describes how he became a physician-scientist: difficulties he had to overcome coming from outside of the US (visa, funding, resident training), and his way back to Germany, while experiencing the thrill of actively participating in moving science. Setbacks, scientific success, adaptation to new developments, and the encounter of kindred spirits characterize this lifelong effort.

  18. Why are modern scientists so dull? How science selects for perseverance and sociability at the expense of intelligence and creativity.

    PubMed

    Charlton, Bruce G

    2009-03-01

    why are so many leading modern scientists so dull and lacking in scientific ambition? because the science selection process ruthlessly weeds-out interesting and imaginative people. At each level in education, training and career progression there is a tendency to exclude smart and creative people by preferring Conscientious and Agreeable people. The progressive lengthening of scientific training and the reduced independence of career scientists have tended to deter vocational 'revolutionary' scientists in favour of industrious and socially adept individuals better suited to incremental 'normal' science. High general intelligence (IQ) is required for revolutionary science. But educational attainment depends on a combination of intelligence and the personality trait of Conscientiousness; and these attributes do not correlate closely. Therefore elite scientific institutions seeking potential revolutionary scientists need to use IQ tests as well as examination results to pick-out high IQ 'under-achievers'. As well as high IQ, revolutionary science requires high creativity. Creativity is probably associated with moderately high levels of Eysenck's personality trait of 'Psychoticism'. Psychoticism combines qualities such as selfishness, independence from group norms, impulsivity and sensation-seeking; with a style of cognition that involves fluent, associative and rapid production of many ideas. But modern science selects for high Conscientiousness and high Agreeableness; therefore it enforces low Psychoticism and low creativity. Yet my counter-proposal to select elite revolutionary scientists on the basis of high IQ and moderately high Psychoticism may sound like a recipe for disaster, since resembles a formula for choosing gifted charlatans and confidence tricksters. A further vital ingredient is therefore necessary: devotion to the transcendental value of Truth. Elite revolutionary science should therefore be a place that welcomes brilliant, impulsive, inspired, antisocial oddballs - so long as they are also dedicated truth-seekers.

  19. Astronaut Training in the Neutral Buoyancy Simulator

    NASA Technical Reports Server (NTRS)

    1993-01-01

    This photograph shows an STS-61 astronaut training for the Hubble Space Telescope (HST) servicing mission (STS-61) in the Marshall Space Flight Center's (MSFC's) Neutral Buoyancy Simulator (NBS). Two months after its deployment in space, scientists detected a 2-micron spherical aberration in the primary mirror of the HST that affected the telescope's ability to focus faint light sources into a precise point. This imperfection was very slight, one-fiftieth of the width of a human hair. A scheduled Space Service servicing mission (STS-61) in 1993 permitted scientists to correct the problem. The MSFC NBS provided an excellent environment for testing hardware to examine how it would operate in space and for evaluating techniques for space construction and spacecraft servicing.

  20. The combined medical/PhD degree: a global survey of physician-scientist training programmes.

    PubMed

    Alamri, Yassar

    2016-06-01

    Typically lasting 7-9 years, medical-scientist training programmes (MSTPs) allow students a unique opportunity to simultaneously intercalate medical (MBBS, MBChB or MD) and research (PhD) degrees. The nature of both degrees means that the combined programme is arduous, and selection is often restricted to a few highly motivated students. Despite the many successes of MSTPs, enthusiasm about MSTPs and the number of intercalating students, at least in some countries, appear to be diminishing. In this review, I shed light on MSTPs around the world, highlight the plethora of successes such programmes have had and provide insights on the setbacks experienced and solutions offered, with the aim of reigniting interest in these programmes. © 2016 Royal College of Physicians.

Top