Sample records for training specific adaptations

  1. Concurrent exercise training: do opposites distract?

    PubMed

    Coffey, Vernon G; Hawley, John A

    2017-05-01

    Specificity is a core principle of exercise training to promote the desired adaptations for maximising athletic performance. The principle of specificity of adaptation is underpinned by the volume, intensity, frequency and mode of contractile activity and is most evident when contrasting the divergent phenotypes that result after undertaking either prolonged endurance or resistance training. The molecular profiles that generate the adaptive response to different exercise modes have undergone intense scientific scrutiny. Given divergent exercise induces similar signalling and gene expression profiles in skeletal muscle of untrained or recreationally active individuals, what is currently unclear is how the specificity of the molecular response is modified by prior training history. The time course of adaptation and when 'phenotype specificity' occurs has important implications for exercise prescription. This context is essential when attempting to concomitantly develop resistance to fatigue (through endurance-based exercise) and increased muscle mass (through resistance-based exercise), typically termed 'concurrent training'. Chronic training studies provide robust evidence that endurance exercise can attenuate muscle hypertrophy and strength but the mechanistic underpinning of this 'interference' effect with concurrent training is unknown. Moreover, despite the potential for several key regulators of muscle metabolism to explain an incompatibility in adaptation between endurance and resistance exercise, it now seems likely that multiple integrated, rather than isolated, effectors or processes generate the interference effect. Here we review studies of the molecular responses in skeletal muscle and evidence for the interference effect with concurrent training within the context of the specificity of training adaptation. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.

  2. Concurrent exercise training: do opposites distract?

    PubMed Central

    Coffey, Vernon G.

    2016-01-01

    Abstract Specificity is a core principle of exercise training to promote the desired adaptations for maximising athletic performance. The principle of specificity of adaptation is underpinned by the volume, intensity, frequency and mode of contractile activity and is most evident when contrasting the divergent phenotypes that result after undertaking either prolonged endurance or resistance training. The molecular profiles that generate the adaptive response to different exercise modes have undergone intense scientific scrutiny. Given divergent exercise induces similar signalling and gene expression profiles in skeletal muscle of untrained or recreationally active individuals, what is currently unclear is how the specificity of the molecular response is modified by prior training history. The time course of adaptation and when ‘phenotype specificity’ occurs has important implications for exercise prescription. This context is essential when attempting to concomitantly develop resistance to fatigue (through endurance‐based exercise) and increased muscle mass (through resistance‐based exercise), typically termed ‘concurrent training’. Chronic training studies provide robust evidence that endurance exercise can attenuate muscle hypertrophy and strength but the mechanistic underpinning of this ‘interference’ effect with concurrent training is unknown. Moreover, despite the potential for several key regulators of muscle metabolism to explain an incompatibility in adaptation between endurance and resistance exercise, it now seems likely that multiple integrated, rather than isolated, effectors or processes generate the interference effect. Here we review studies of the molecular responses in skeletal muscle and evidence for the interference effect with concurrent training within the context of the specificity of training adaptation. PMID:27506998

  3. Exercise detraining: Applicability to microgravity

    NASA Technical Reports Server (NTRS)

    Coyle, Edward F.

    1994-01-01

    Physical training exposes the various systems of the body to potent physiologic stimuli. These stimuli induce specific adaptations that enhance an individual's tolerance for the type of exercise encountered in training. The level of adaptation and the magnitude of improvement in exercise tolerance is proportional to the potency of the physical training stimuli. Likewise, our bodies are stimulated by gravity, which promotes adaptations of both the cardiovascular and skeletal muscles. Exposure to microgravity removes normal stimuli to these systems, and the body adapts to these reduced demands. In many respects the cessation of physical training in athletes and the transition from normal gravity to microgravity represent similar paradigms. Inherent to these situations is the concept of the reversibility of the adaptations induced by training or by exposure to normal gravity. The reversibility concept holds that when physical training is stopped (i.e., detraining) or reduced, or a person goes from normal gravity to microgravity, the bodily systems readjust in accordance with the diminished physiologic stimuli. The focus of this chapter is on the time course of loss of the adaptations to endurance training as well as on the possibility that certain adaptations persist, to some extent, when training is stopped. Because endurance exercise training generally improves cardiovascular function and promotes metabolic adaptations within the exercising skeletal musculature, the reversibility of these specific adaptations is considered. These observations have some applicability to the transition from normal to microgravity.

  4. Switching between pitch surfaces: practical applications and future perspectives for soccer training.

    PubMed

    Rago, Vincenzo; Silva, João R; Brito, João; Barreira, Daniel; Mohr, Magni; Krustrup, Peter; Rebelo, António N

    2018-04-04

    Soccer training and completion is conventionally practiced on natural grass (NG) or artificial turf (AT). Recently, AT pitches for training / competition, and of unstable surfaces for injury prevention training has increased. Therefore, soccer players are frequently exposed to variations in pitch surface during either training or competition. These ground changes may impact physical and physiological responses, adaptations as well as the injury. The aim of this review was to summarize the acute physical and physiological responses, chronic adaptations, and injury risk associated with exercising on different pitch surfaces in soccer. Eligible studies were published in English, had pitch surface as an independent variable, and had physical, physiological or epidemiological information as outcome variables. Specific data extracted from the articles included the training response, training adaptations or injury outcomes according to different pitch surfaces. A total of 224 studies were retrieved from a literature search. Twenty articles met the inclusion criteria: 9 for acute physical and physiological responses, 2 for training adaptations and 9 for injury assessment. The literature lacks consistent evidence regarding the effects of pitch surface on performance and health outcomes in soccer players. However, it seems that occasionally switching training surfaces seems a valuable strategy for focusing on specific musculoskeletal queries and enhancing players' fitness. For instance, sand training may be occasionally proposed as complementary training strategy, given the recruitment of additional musculature probably not involved on firmer surfaces, but the possible training-induced adaptations of non-conventional soccer surfaces (e.g., sand) might potentially result into a negative transfer on AT or NG. Since the specific physical demands of soccer can differ between surfaces, coaches should resort to the use of non-traditional surfaces with parsimony, emphasizing the specific surface-related motor tasks, normally observed on natural grass or artificial turf. Further studies are required to better understand the physiological effects induced by systematic surface-specific training, or switching between pitch surfaces.

  5. Specific Stimuli Induce Specific Adaptations: Sensorimotor Training vs. Reactive Balance Training

    PubMed Central

    Freyler, Kathrin; Krause, Anne; Gollhofer, Albert; Ritzmann, Ramona

    2016-01-01

    Typically, balance training has been used as an intervention paradigm either as static or as reactive balance training. Possible differences in functional outcomes between the two modalities have not been profoundly studied. The objective of the study was to investigate the specificity of neuromuscular adaptations in response to two balance intervention modalities within test and intervention paradigms containing characteristics of both profiles: classical sensorimotor training (SMT) referring to a static ledger pivoting around the ankle joint vs. reactive balance training (RBT) using externally applied perturbations to deteriorate body equilibrium. Thirty-eight subjects were assigned to either SMT or RBT. Before and after four weeks of intervention training, postural sway and electromyographic activities of shank and thigh muscles were recorded and co-contraction indices (CCI) were calculated. We argue that specificity of training interventions could be transferred into corresponding test settings containing properties of SMT and RBT, respectively. The results revealed that i) postural sway was reduced in both intervention groups in all test paradigms; magnitude of changes and effect sizes differed dependent on the paradigm: when training and paradigm coincided most, effects were augmented (P<0.05). ii) These specificities were accompanied by segmental modulations in the amount of CCI, with a greater reduction within the CCI of thigh muscles after RBT compared to the shank muscles after SMT (P<0.05). The results clearly indicate the relationship between test and intervention specificity in balance performance. Hence, specific training modalities of postural control cause multi-segmental and context-specific adaptations, depending upon the characteristics of the trained postural strategy. In relation to fall prevention, perturbation training could serve as an extension to SMT to include the proximal segment, and thus the control of structures near to the body’s centre of mass, into training. PMID:27911944

  6. Mitochondria-specific antioxidant supplementation does not influence endurance exercise training-induced adaptations in circulating angiogenic cells, skeletal muscle oxidative capacity or maximal oxygen uptake.

    PubMed

    Shill, Daniel D; Southern, W Michael; Willingham, T Bradley; Lansford, Kasey A; McCully, Kevin K; Jenkins, Nathan T

    2016-12-01

    Reducing excessive oxidative stress, through chronic exercise or antioxidants, can decrease the negative effects induced by excessive amounts of oxidative stress. Transient increases in oxidative stress produced during acute exercise facilitate beneficial vascular training adaptations, but the effects of non-specific antioxidants on exercise training-induced vascular adaptations remain elusive. Circulating angiogenic cells (CACs) are an exercise-inducible subset of white blood cells that maintain vascular integrity. We investigated whether mitochondria-specific antioxidant (MitoQ) supplementation would affect the response to 3 weeks of endurance exercise training in CACs, muscle mitochondrial capacity and maximal oxygen uptake in young healthy men. We show that endurance exercise training increases multiple CAC types, an adaptation that is not altered by MitoQ supplementation. Additionally, MitoQ does not affect skeletal muscle or whole-body aerobic adaptations to exercise training. These results indicate that MitoQ supplementation neither enhances nor attenuates endurance training adaptations in young healthy men. Antioxidants have been shown to improve endothelial function and cardiovascular outcomes. However, the effects of antioxidants on exercise training-induced vascular adaptations remain elusive. General acting antioxidants combined with exercise have not impacted circulating angiogenic cells (CACs). We investigated whether mitochondria-specific antioxidant (MitoQ) supplementation would affect the response to 3 weeks of endurance exercise training on CD3 + , CD3 + /CD31 + , CD14 + /CD31 + , CD31 + , CD34 + /VEGFR2 + and CD62E + peripheral blood mononuclear cells (PBMCs), muscle mitochondrial capacity, and maximal oxygen uptake (VO2 max ) in healthy men aged 22.1 ± 0.7 years, with a body mass index of 26.9 ± 0.9 kg m -2 , and 24.8 ± 1.3% body fat. Analysis of main effects revealed that training induced 33, 105 and 285% increases in CD14 + /CD31 + , CD62E + and CD34 + /VEGFR2 + CACs, respectively, and reduced CD3 + /CD31 - PBMCs by 14%. There was no effect of MitoQ on CAC levels. Also independent of MitoQ supplementation, exercise training significantly increased quadriceps muscle mitochondrial capacity by 24% and VO2 max by roughly 7%. In conclusion, endurance exercise training induced increases in multiple CAC types, and this adaptation is not modified by MitoQ supplementation. Furthermore, we demonstrate that a mitochondrial-targeted antioxidant does not influence skeletal muscle or whole-body aerobic adaptations to exercise training. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.

  7. Visual learning with reduced adaptation is eccentricity-specific.

    PubMed

    Harris, Hila; Sagi, Dov

    2018-01-12

    Visual learning is known to be specific to the trained target location, showing little transfer to untrained locations. Recently, learning was shown to transfer across equal-eccentricity retinal-locations when sensory adaptation due to repetitive stimulation was minimized. It was suggested that learning transfers to previously untrained locations when the learned representation is location invariant, with sensory adaptation introducing location-dependent representations, thus preventing transfer. Spatial invariance may also fail when the trained and tested locations are at different distance from the center of gaze (different retinal eccentricities), due to differences in the corresponding low-level cortical representations (e.g. allocated cortical area decreases with eccentricity). Thus, if learning improves performance by better classifying target-dependent early visual representations, generalization is predicted to fail when locations of different retinal eccentricities are trained and tested in the absence sensory adaptation. Here, using the texture discrimination task, we show specificity of learning across different retinal eccentricities (4-8°) using reduced adaptation training. The existence of generalization across equal-eccentricity locations but not across different eccentricities demonstrates that learning accesses visual representations preceding location independent representations, with specificity of learning explained by inhomogeneous sensory representation.

  8. Neuromuscular adaptations associated with knee joint angle-specific force change.

    PubMed

    Noorkõiv, Marika; Nosaka, Kazunori; Blazevich, Anthony J

    2014-08-01

    Neuromuscular adaptations to joint angle-specific force increases after isometric training have not yet been fully elucidated. This study examined angle-specific neuromuscular adaptations in response to isometric knee extension training at short (SL, joint angle 38.1° ± 3.7°) versus long (LL, 87.5° ± 6.0°) muscle lengths. Sixteen men trained three times a week for 6 wk either at SL (n = 8) or LL (n = 8). Voluntary maximal isometric knee extensor (MVC) force, doublet twitch force, EMG amplitudes (EMG/Mmax), and voluntary activation during MVC force (VA%) were measured at eight knee joint angles (30°-100°) at weeks 0, 3, and 6. Muscle volume and cross-sectional area (CSA) were measured from magnetic resonance imaging scans, and fascicle length (Lf) was assessed using ultrasonography before and after training. Clear joint angle specificity of force increase was seen in SL but not in LL. The 13.4% ± 9.7% (P = 0.01) force increase around the training angle in SL was related to changes in vastus lateralis and vastus medialis EMG/Mmax around the training angle (r = 0.84-0.88, P < 0.05), without changes in the doublet twitch force-angle relation or muscle size. In LL, muscle volume and CSA increased and the changes in CSA at specific muscle regions were correlated with changes in MVC force. A 5.4% ± 4.9% (P = 0.001) increase in Lf found in both groups was not associated with angle-specific force changes. There were no angle-specific changes in VA%. The EMG/Mmax, although not VA%, results suggest that neural adaptations underpinned training-related changes at short quadriceps lengths, but hypertrophic changes predominated after training at long lengths. The findings of this study should contribute to the development of more effective and evidence-based rehabilitation and strength training protocols.

  9. Handwritten word preprocessing for database adaptation

    NASA Astrophysics Data System (ADS)

    Oprean, Cristina; Likforman-Sulem, Laurence; Mokbel, Chafic

    2013-01-01

    Handwriting recognition systems are typically trained using publicly available databases, where data have been collected in controlled conditions (image resolution, paper background, noise level,...). Since this is not often the case in real-world scenarios, classification performance can be affected when novel data is presented to the word recognition system. To overcome this problem, we present in this paper a new approach called database adaptation. It consists of processing one set (training or test) in order to adapt it to the other set (test or training, respectively). Specifically, two kinds of preprocessing, namely stroke thickness normalization and pixel intensity normalization are considered. The advantage of such approach is that we can re-use the existing recognition system trained on controlled data. We conduct several experiments with the Rimes 2011 word database and with a real-world database. We adapt either the test set or the training set. Results show that training set adaptation achieves better results than test set adaptation, at the cost of a second training stage on the adapted data. Accuracy of data set adaptation is increased by 2% to 3% in absolute value over no adaptation.

  10. Mitochondria‐specific antioxidant supplementation does not influence endurance exercise training‐induced adaptations in circulating angiogenic cells, skeletal muscle oxidative capacity or maximal oxygen uptake

    PubMed Central

    Shill, Daniel D.; Southern, W. Michael; Willingham, T. Bradley; Lansford, Kasey A.; McCully, Kevin K.

    2016-01-01

    Key points Reducing excessive oxidative stress, through chronic exercise or antioxidants, can decrease the negative effects induced by excessive amounts of oxidative stress. Transient increases in oxidative stress produced during acute exercise facilitate beneficial vascular training adaptations, but the effects of non‐specific antioxidants on exercise training‐induced vascular adaptations remain elusive.Circulating angiogenic cells (CACs) are an exercise‐inducible subset of white blood cells that maintain vascular integrity.We investigated whether mitochondria‐specific antioxidant (MitoQ) supplementation would affect the response to 3 weeks of endurance exercise training in CACs, muscle mitochondrial capacity and maximal oxygen uptake in young healthy men.We show that endurance exercise training increases multiple CAC types, an adaptation that is not altered by MitoQ supplementation. Additionally, MitoQ does not affect skeletal muscle or whole‐body aerobic adaptations to exercise training.These results indicate that MitoQ supplementation neither enhances nor attenuates endurance training adaptations in young healthy men. Abstract Antioxidants have been shown to improve endothelial function and cardiovascular outcomes. However, the effects of antioxidants on exercise training‐induced vascular adaptations remain elusive. General acting antioxidants combined with exercise have not impacted circulating angiogenic cells (CACs). We investigated whether mitochondria‐specific antioxidant (MitoQ) supplementation would affect the response to 3 weeks of endurance exercise training on CD3+, CD3+/CD31+, CD14+/CD31+, CD31+, CD34+/VEGFR2+ and CD62E+ peripheral blood mononuclear cells (PBMCs), muscle mitochondrial capacity, and maximal oxygen uptake (VO2 max ) in healthy men aged 22.1 ± 0.7 years, with a body mass index of 26.9 ± 0.9 kg m–2, and 24.8 ± 1.3% body fat. Analysis of main effects revealed that training induced 33, 105 and 285% increases in CD14+/CD31+, CD62E+ and CD34+/VEGFR2+ CACs, respectively, and reduced CD3+/CD31− PBMCs by 14%. There was no effect of MitoQ on CAC levels. Also independent of MitoQ supplementation, exercise training significantly increased quadriceps muscle mitochondrial capacity by 24% and VO2 max by roughly 7%. In conclusion, endurance exercise training induced increases in multiple CAC types, and this adaptation is not modified by MitoQ supplementation. Furthermore, we demonstrate that a mitochondrial‐targeted antioxidant does not influence skeletal muscle or whole‐body aerobic adaptations to exercise training. PMID:27501153

  11. Concluding remarks: nutritional strategies to support the adaptive response to prolonged exercise training.

    PubMed

    van Loon, Luc J C; Tipton, Kevin D

    2013-01-01

    Nutrition plays a key role in allowing the numerous training hours to be translated into useful adaptive responses of various tissues in the individual athlete. Research over the last decade has shown many examples of the impact of dietary interventions to modulate the skeletal muscle adaptive response to prolonged exercise training. Proper nutritional coaching should be applied throughout both training and competition, each with their specific requirements regarding nutrient provision. Such dietary support will improve exercise training efficiency and, as such, further increase performance capacity. Here, we provide an overview on the properties of various nutritional interventions that may be useful to support the adaptive response to exercise training and competition and, as such, to augment exercise training efficiency. Copyright © 2013 Nestec Ltd., Vevey/S. Karger AG, Basel.

  12. Training-specific functional, neural, and hypertrophic adaptations to explosive- vs. sustained-contraction strength training.

    PubMed

    Balshaw, Thomas G; Massey, Garry J; Maden-Wilkinson, Thomas M; Tillin, Neale A; Folland, Jonathan P

    2016-06-01

    Training specificity is considered important for strength training, although the functional and underpinning physiological adaptations to different types of training, including brief explosive contractions, are poorly understood. This study compared the effects of 12 wk of explosive-contraction (ECT, n = 13) vs. sustained-contraction (SCT, n = 16) strength training vs. control (n = 14) on the functional, neural, hypertrophic, and intrinsic contractile characteristics of healthy young men. Training involved 40 isometric knee extension repetitions (3 times/wk): contracting as fast and hard as possible for ∼1 s (ECT) or gradually increasing to 75% of maximum voluntary torque (MVT) before holding for 3 s (SCT). Torque and electromyography during maximum and explosive contractions, torque during evoked octet contractions, and total quadriceps muscle volume (QUADSVOL) were quantified pre and post training. MVT increased more after SCT than ECT [23 vs. 17%; effect size (ES) = 0.69], with similar increases in neural drive, but greater QUADSVOL changes after SCT (8.1 vs. 2.6%; ES = 0.74). ECT improved explosive torque at all time points (17-34%; 0.54 ≤ ES ≤ 0.76) because of increased neural drive (17-28%), whereas only late-phase explosive torque (150 ms, 12%; ES = 1.48) and corresponding neural drive (18%) increased after SCT. Changes in evoked torque indicated slowing of the contractile properties of the muscle-tendon unit after both training interventions. These results showed training-specific functional changes that appeared to be due to distinct neural and hypertrophic adaptations. ECT produced a wider range of functional adaptations than SCT, and given the lesser demands of ECT, this type of training provides a highly efficient means of increasing function. Copyright © 2016 the American Physiological Society.

  13. The combined effects of action observation and passive proprioceptive training on adaptive motor learning.

    PubMed

    Lei, Yuming; Bao, Shancheng; Wang, Jinsung

    2016-09-07

    Sensorimotor adaptation can be induced by action observation, and also by passive training. Here, we investigated the effect of a protocol that combined action observation and passive training on visuomotor adaptation, by comparing it with the effect of action observation or passive training alone. Subjects were divided into five conditions during the training session: (1) action observation, in which the subjects watched a video of a model who adapted to a novel visuomotor rotation; (2) proprioceptive training, in which the subject's arm was moved passively to target locations that were associated with desired trajectories; (3) combined training, in which the subjects watched the video of a model during a half of the session and experienced passive movements during the other half; (4) active training, in which the subjects adapted actively to the rotation; and (5) a control condition, in which the subjects did not perform any task. Following that session, all subjects adapted to the same visuomotor rotation. Results showed that the subjects in the combined training condition adapted to the rotation significantly better than those in the observation or proprioceptive training condition, although their performance was not as good as that of those who adapted actively. These findings suggest that although a protocol that combines action observation and passive training consists of all the processes involved in active training (error detection and correction, effector-specific and proprioceptively based reaching movements), these processes in that protocol may work differently as compared to a protocol in which the same processes are engaged actively. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  14. Perceptual Learning of Time-Compressed Speech: More than Rapid Adaptation

    PubMed Central

    Banai, Karen; Lavner, Yizhar

    2012-01-01

    Background Time-compressed speech, a form of rapidly presented speech, is harder to comprehend than natural speech, especially for non-native speakers. Although it is possible to adapt to time-compressed speech after a brief exposure, it is not known whether additional perceptual learning occurs with further practice. Here, we ask whether multiday training on time-compressed speech yields more learning than that observed during the initial adaptation phase and whether the pattern of generalization following successful learning is different than that observed with initial adaptation only. Methodology/Principal Findings Two groups of non-native Hebrew speakers were tested on five different conditions of time-compressed speech identification in two assessments conducted 10–14 days apart. Between those assessments, one group of listeners received five practice sessions on one of the time-compressed conditions. Between the two assessments, trained listeners improved significantly more than untrained listeners on the trained condition. Furthermore, the trained group generalized its learning to two untrained conditions in which different talkers presented the trained speech materials. In addition, when the performance of the non-native speakers was compared to that of a group of naïve native Hebrew speakers, performance of the trained group was equivalent to that of the native speakers on all conditions on which learning occurred, whereas performance of the untrained non-native listeners was substantially poorer. Conclusions/Significance Multiday training on time-compressed speech results in significantly more perceptual learning than brief adaptation. Compared to previous studies of adaptation, the training induced learning is more stimulus specific. Taken together, the perceptual learning of time-compressed speech appears to progress from an initial, rapid adaptation phase to a subsequent prolonged and more stimulus specific phase. These findings are consistent with the predictions of the Reverse Hierarchy Theory of perceptual learning and suggest constraints on the use of perceptual-learning regimens during second language acquisition. PMID:23056592

  15. Seeing is believing: effects of visual contextual cues on learning and transfer of locomotor adaptation.

    PubMed

    Torres-Oviedo, Gelsy; Bastian, Amy J

    2010-12-15

    Devices such as robots or treadmills are often used to drive motor learning because they can create novel physical environments. However, the learning (i.e., adaptation) acquired on these devices only partially generalizes to natural movements. What determines the specificity of motor learning, and can this be reliably made more general? Here we investigated the effect of visual cues on the specificity of split-belt walking adaptation. We systematically removed vision to eliminate the visual-proprioceptive mismatch that is a salient cue specific to treadmills: vision indicates that we are not moving while leg proprioception indicates that we are. We evaluated the adaptation of temporal and spatial features of gait (i.e., timing and location of foot landing), their transfer to walking over ground, and washout of adaptation when subjects returned to the treadmill. Removing vision during both training (i.e., on the treadmill) and testing (i.e., over ground) strongly improved the transfer of treadmill adaptation to natural walking. Removing vision only during training increased transfer of temporal adaptation, whereas removing vision only during testing increased the transfer of spatial adaptation. This dissociation reveals differences in adaptive mechanisms for temporal and spatial features of walking. Finally training without vision increased the amount that was learned and was linked to the variability in the behavior during adaptation. In conclusion, contextual cues can be manipulated to modulate the magnitude, transfer, and washout of device-induced learning in humans. These results bring us closer to our ultimate goal of developing rehabilitation strategies that improve movements beyond the clinical setting.

  16. Lightweight Adaptation of Classifiers to Users and Contexts: Trends of the Emerging Domain

    PubMed Central

    Vildjiounaite, Elena; Gimel'farb, Georgy; Kyllönen, Vesa; Peltola, Johannes

    2015-01-01

    Intelligent computer applications need to adapt their behaviour to contexts and users, but conventional classifier adaptation methods require long data collection and/or training times. Therefore classifier adaptation is often performed as follows: at design time application developers define typical usage contexts and provide reasoning models for each of these contexts, and then at runtime an appropriate model is selected from available ones. Typically, definition of usage contexts and reasoning models heavily relies on domain knowledge. However, in practice many applications are used in so diverse situations that no developer can predict them all and collect for each situation adequate training and test databases. Such applications have to adapt to a new user or unknown context at runtime just from interaction with the user, preferably in fairly lightweight ways, that is, requiring limited user effort to collect training data and limited time of performing the adaptation. This paper analyses adaptation trends in several emerging domains and outlines promising ideas, proposed for making multimodal classifiers user-specific and context-specific without significant user efforts, detailed domain knowledge, and/or complete retraining of the classifiers. Based on this analysis, this paper identifies important application characteristics and presents guidelines to consider these characteristics in adaptation design. PMID:26473165

  17. Group Training in Interpersonal Problem-Solving Skills for Workplace Adaptation of Adolescents and Adults with Asperger Syndrome: A Preliminary Study

    ERIC Educational Resources Information Center

    Bonete, Saray; Calero, María Dolores; Fernández-Parra, Antonio

    2015-01-01

    Adults with Asperger syndrome show persistent difficulties in social situations which psychosocial treatments may address. Despite the multiple studies focusing on social skills interventions, only some have focused specifically on problem-solving skills and have not targeted workplace adaptation training in the adult population. This study…

  18. Training working memory updating in young adults.

    PubMed

    Linares, Rocío; Borella, Erika; Lechuga, M Teresa; Carretti, Barbara; Pelegrina, Santiago

    2018-05-01

    Working memory updating (WMU) is a core mechanism in the human mental architecture and a good predictor of a wide range of cognitive processes. This study analyzed the benefits of two different WMU training procedures, near transfer effects on a working memory measure, and far transfer effects on nonverbal reasoning. Maintenance of any benefits a month later was also assessed. Participants were randomly assigned to: an adaptive training group that performed two numerical WMU tasks during four sessions; a non-adaptive training group that performed the same tasks but on a constant and less demanding level of difficulty; or an active control group that performed other tasks unrelated with working memory. After the training, all three groups showed improvements in most of the tasks, and these benefits were maintained a month later. The gain in one of the two WMU measures was larger for the adaptive and non-adaptive groups than for the control group. This specific gain in a task similar to the one trained would indicate the use of a better strategy for performing the task. Besides this nearest transfer effect, no other transfer effects were found. The adaptability of the training procedure did not produce greater improvements. These results are discussed in terms of the training procedure and the feasibility of training WMU.

  19. Effects of different volume-equated resistance training loading strategies on muscular adaptations in well-trained men.

    PubMed

    Schoenfeld, Brad J; Ratamess, Nicholas A; Peterson, Mark D; Contreras, Bret; Sonmez, G T; Alvar, Brent A

    2014-10-01

    Regimented resistance training has been shown to promote marked increases in skeletal muscle mass. Although muscle hypertrophy can be attained through a wide range of resistance training programs, the principle of specificity, which states that adaptations are specific to the nature of the applied stimulus, dictates that some programs will promote greater hypertrophy than others. Research is lacking, however, as to the best combination of variables required to maximize hypertophic gains. The purpose of this study was to investigate muscular adaptations to a volume-equated bodybuilding-type training program vs. a powerlifting-type routine in well-trained subjects. Seventeen young men were randomly assigned to either a hypertrophy-type resistance training group that performed 3 sets of 10 repetition maximum (RM) with 90 seconds rest or a strength-type resistance training (ST) group that performed 7 sets of 3RM with a 3-minute rest interval. After 8 weeks, no significant differences were noted in muscle thickness of the biceps brachii. Significant strength differences were found in favor of ST for the 1RM bench press, and a trend was found for greater increases in the 1RM squat. In conclusion, this study showed that both bodybuilding- and powerlifting-type training promote similar increases in muscular size, but powerlifting-type training is superior for enhancing maximal strength.

  20. Brain-Behavior Mechanisms for the Transfer of Neuromuscular Training Adaptions to Simulated Sport: Initial Findings from the Train the Brain Project.

    PubMed

    Grooms, Dustin R; Kiefer, Adam W; Riley, Michael A; Ellis, Jonathan D; Thomas, Staci; Kitchen, Katie; DiCesare, Christopher; Bonnette, Scott; Gadd, Brooke; Barber Foss, Kim D; Yuan, Weihong; Silva, Paula; Galloway, Ryan; Diekfuss, Jed; Leach, James; Berz, Kate; Myer, Gregory D

    2018-03-27

    A limiting factor for reducing anterior cruciate ligament (ACL) injury risk is ensuring that the movement adaptions made during the prevention program transfer to sport-specific activity. Virtual reality provides a mechanism to assess transferability and neuroimaging provides a means to assay the neural processes allowing for such skill transfer. To determine the neural mechanisms for injury risk reducing biomechanics transfer to sport after ACL injury prevention training. Cohort study Setting: Research laboratory Participants: Four healthy high school soccer athletes. Participants completed augmented neuromuscular training utilizing real-time visual feedback. An unloaded knee extension task and a loaded leg-press task was completed with neuroimaging before and after training. A virtual reality soccer specific landing task was also competed following training to assess transfer of movement mechanics. Landing mechanics during the virtual reality soccer task and blood oxygen level dependent signal change during neuroimaging. Increased motor planning, sensory and visual region activity during unloaded knee extension and decreased motor cortex activity during loaded leg-press were highly correlated with improvements in landing mechanics (decreased hip adduction and knee rotation). Changes in brain activity may underlie adaptation and transfer of injury risk reducing movement mechanics to sport activity. Clinicians may be able to target these specific brain processes with adjunctive therapy to facilitate intervention improvements transferring to sport.

  1. No Effect of Commercial Cognitive Training on Brain Activity, Choice Behavior, or Cognitive Performance.

    PubMed

    Kable, Joseph W; Caulfield, M Kathleen; Falcone, Mary; McConnell, Mairead; Bernardo, Leah; Parthasarathi, Trishala; Cooper, Nicole; Ashare, Rebecca; Audrain-McGovern, Janet; Hornik, Robert; Diefenbach, Paul; Lee, Frank J; Lerman, Caryn

    2017-08-02

    Increased preference for immediate over delayed rewards and for risky over certain rewards has been associated with unhealthy behavioral choices. Motivated by evidence that enhanced cognitive control can shift choice behavior away from immediate and risky rewards, we tested whether training executive cognitive function could influence choice behavior and brain responses. In this randomized controlled trial, 128 young adults (71 male, 57 female) participated in 10 weeks of training with either a commercial web-based cognitive training program or web-based video games that do not specifically target executive function or adapt the level of difficulty throughout training. Pretraining and post-training, participants completed cognitive assessments and functional magnetic resonance imaging during performance of the following validated decision-making tasks: delay discounting (choices between smaller rewards now vs larger rewards in the future) and risk sensitivity (choices between larger riskier rewards vs smaller certain rewards). Contrary to our hypothesis, we found no evidence that cognitive training influences neural activity during decision-making; nor did we find effects of cognitive training on measures of delay discounting or risk sensitivity. Participants in the commercial training condition improved with practice on the specific tasks they performed during training, but participants in both conditions showed similar improvement on standardized cognitive measures over time. Moreover, the degree of improvement was comparable to that observed in individuals who were reassessed without any training whatsoever. Commercial adaptive cognitive training appears to have no benefits in healthy young adults above those of standard video games for measures of brain activity, choice behavior, or cognitive performance. SIGNIFICANCE STATEMENT Engagement of neural regions and circuits important in executive cognitive function can bias behavioral choices away from immediate rewards. Activity in these regions may be enhanced through adaptive cognitive training. Commercial brain training programs claim to improve a broad range of mental processes; however, evidence for transfer beyond trained tasks is mixed. We undertook the first randomized controlled trial of the effects of commercial adaptive cognitive training (Lumosity) on neural activity and decision-making in young adults ( N = 128) compared with an active control (playing on-line video games). We found no evidence for relative benefits of cognitive training with respect to changes in decision-making behavior or brain response, or for cognitive task performance beyond those specifically trained. Copyright © 2017 the authors 0270-6474/17/377390-13$15.00/0.

  2. No Effect of Commercial Cognitive Training on Brain Activity, Choice Behavior, or Cognitive Performance

    PubMed Central

    Caulfield, M. Kathleen; McConnell, Mairead; Bernardo, Leah; Parthasarathi, Trishala; Cooper, Nicole; Ashare, Rebecca; Audrain-McGovern, Janet; Lee, Frank J.; Lerman, Caryn

    2017-01-01

    Increased preference for immediate over delayed rewards and for risky over certain rewards has been associated with unhealthy behavioral choices. Motivated by evidence that enhanced cognitive control can shift choice behavior away from immediate and risky rewards, we tested whether training executive cognitive function could influence choice behavior and brain responses. In this randomized controlled trial, 128 young adults (71 male, 57 female) participated in 10 weeks of training with either a commercial web-based cognitive training program or web-based video games that do not specifically target executive function or adapt the level of difficulty throughout training. Pretraining and post-training, participants completed cognitive assessments and functional magnetic resonance imaging during performance of the following validated decision-making tasks: delay discounting (choices between smaller rewards now vs larger rewards in the future) and risk sensitivity (choices between larger riskier rewards vs smaller certain rewards). Contrary to our hypothesis, we found no evidence that cognitive training influences neural activity during decision-making; nor did we find effects of cognitive training on measures of delay discounting or risk sensitivity. Participants in the commercial training condition improved with practice on the specific tasks they performed during training, but participants in both conditions showed similar improvement on standardized cognitive measures over time. Moreover, the degree of improvement was comparable to that observed in individuals who were reassessed without any training whatsoever. Commercial adaptive cognitive training appears to have no benefits in healthy young adults above those of standard video games for measures of brain activity, choice behavior, or cognitive performance. SIGNIFICANCE STATEMENT Engagement of neural regions and circuits important in executive cognitive function can bias behavioral choices away from immediate rewards. Activity in these regions may be enhanced through adaptive cognitive training. Commercial brain training programs claim to improve a broad range of mental processes; however, evidence for transfer beyond trained tasks is mixed. We undertook the first randomized controlled trial of the effects of commercial adaptive cognitive training (Lumosity) on neural activity and decision-making in young adults (N = 128) compared with an active control (playing on-line video games). We found no evidence for relative benefits of cognitive training with respect to changes in decision-making behavior or brain response, or for cognitive task performance beyond those specifically trained. PMID:28694338

  3. Neuromuscular and muscle-tendon system adaptations to isotonic and isokinetic eccentric exercise.

    PubMed

    Guilhem, G; Cornu, C; Guével, A

    2010-06-01

    To present the properties of an eccentric contraction and compare neuromuscular and muscle-tendon system adaptations induced by isotonic and isokinetic eccentric trainings. An eccentric muscle contraction is characterized by the production of muscle force associated to a lengthening of the muscle-tendon system. This muscle solicitation can cause micro lesions followed by a regeneration process of the muscle-tendon system. Eccentric exercise is commonly used in functional rehabilitation for its positive effect on collagen synthesis but also for resistance training to increase muscle strength and muscle mass in athletes. Indeed, eccentric training stimulates muscle hypertrophy, increases the fascicle pennation angle, fascicles length and neural activation, thus inducing greater strength gains than concentric or isometric training programs. Eccentric exercise is commonly performed either against a constant external load (isotonic) or at constant velocity (isokinetic), inducing different mechanical constraints. These different mechanical constraints could induce structural and neural adaptive strategies specific to each type of exercise. The literature tends to show that isotonic mode leads to a greater strength gain than isokinetic mode. This observation could be explained by a greater neuromuscular activation after IT training. However, the specific muscle adaptations induced by each mode remain difficult to determine due to the lack of standardized, comparative studies. 2010 Elsevier Masson SAS. All rights reserved.

  4. Nutrition for power sports: middle-distance running, track cycling, rowing, canoeing/kayaking, and swimming.

    PubMed

    Stellingwerff, Trent; Maughan, Ronald J; Burke, Louise M

    2011-01-01

    Contemporary training for power sports involves diverse routines that place a wide array of physiological demands on the athlete. This requires a multi-faceted nutritional strategy to support both general training needs--tailored to specific training phases--as well as the acute demands of competition. Elite power sport athletes have high training intensities and volumes for most of the training season, so energy intake must be sufficient to support recovery and adaptation. Low pre-exercise muscle glycogen reduces high-intensity performance, so daily carbohydrate intake must be emphasized throughout training and competition phases. There is strong evidence to suggest that the timing, type, and amount of protein intake influence post-exercise recovery and adaptation. Most power sports feature demanding competition schedules, which require aggressive nutritional recovery strategies to optimize muscle glycogen resynthesis. Various power sports have different optimum body compositions and body weight requirements, but increasing the power-to-weight ratio during the championship season can lead to significant performance benefits for most athletes. Both intra- and extracellular buffering agents may enhance performance, but more research is needed to examine the potential long-term impact of buffering agents on training adaptation. Interactions between training, desired physiological adaptations, competition, and nutrition require an individual approach and should be continuously adjusted and adapted.

  5. Adapting Training to Meet the Preferred Learning Styles of Different Generations

    ERIC Educational Resources Information Center

    Urick, Michael

    2017-01-01

    This article considers how training professionals can respond to differences in training preferences between generational groups. It adopts two methods. First, it surveys the existing research and finds generally that preferences for training approaches can differ between groups and specifically that younger employees are perceived to leverage…

  6. Failure of Working Memory Training to Enhance Cognition or Intelligence

    PubMed Central

    Thompson, Todd W.; Waskom, Michael L.; Garel, Keri-Lee A.; Cardenas-Iniguez, Carlos; Reynolds, Gretchen O.; Winter, Rebecca; Chang, Patricia; Pollard, Kiersten; Lala, Nupur; Alvarez, George A.; Gabrieli, John D. E.

    2013-01-01

    Fluid intelligence is important for successful functioning in the modern world, but much evidence suggests that fluid intelligence is largely immutable after childhood. Recently, however, researchers have reported gains in fluid intelligence after multiple sessions of adaptive working memory training in adults. The current study attempted to replicate and expand those results by administering a broad assessment of cognitive abilities and personality traits to young adults who underwent 20 sessions of an adaptive dual n-back working memory training program and comparing their post-training performance on those tests to a matched set of young adults who underwent 20 sessions of an adaptive attentional tracking program. Pre- and post-training measurements of fluid intelligence, standardized intelligence tests, speed of processing, reading skills, and other tests of working memory were assessed. Both training groups exhibited substantial and specific improvements on the trained tasks that persisted for at least 6 months post-training, but no transfer of improvement was observed to any of the non-trained measurements when compared to a third untrained group serving as a passive control. These findings fail to support the idea that adaptive working memory training in healthy young adults enhances working memory capacity in non-trained tasks, fluid intelligence, or other measures of cognitive abilities. PMID:23717453

  7. Customizing Countermeasure Prescriptions using Predictive Measures of Sensorimotor Adaptability

    NASA Technical Reports Server (NTRS)

    Bloomberg, J. J.; Peters, B. T.; Mulavara, A. P.; Miller, C. A.; Batson, C. D.; Wood, S. J.; Guined, J. R.; Cohen, H. S.; Buccello-Stout, R.; DeDios, Y. E.; hide

    2014-01-01

    Astronauts experience sensorimotor disturbances during the initial exposure to microgravity and during the readapation phase following a return to a gravitational environment. These alterations may lead to disruption in the ability to perform mission critical functional tasks during and after these gravitational transitions. Astronauts show significant inter-subject variation in adaptive capability following gravitational transitions. The ability to predict the manner and degree to which each individual astronaut will be affected would improve the effectiveness of a countermeasure comprised of a training program designed to enhance sensorimotor adaptability. Due to this inherent individual variability we need to develop predictive measures of sensorimotor adaptability that will allow us to predict, before actual space flight, which crewmember will experience challenges in adaptive capacity. Thus, obtaining this information will allow us to design and implement better sensorimotor adaptability training countermeasures that will be customized for each crewmember's unique adaptive capabilities. Therefore the goals of this project are to: 1) develop a set of predictive measures capable of identifying individual differences in sensorimotor adaptability, and 2) use this information to design sensorimotor adaptability training countermeasures that are customized for each crewmember's individual sensorimotor adaptive characteristics. To achieve these goals we are currently pursuing the following specific aims: Aim 1: Determine whether behavioral metrics of individual sensory bias predict sensorimotor adaptability. For this aim, subjects perform tests that delineate individual sensory biases in tests of visual, vestibular, and proprioceptive function. Aim 2: Determine if individual capability for strategic and plastic-adaptive responses predicts sensorimotor adaptability. For this aim, each subject's strategic and plastic-adaptive motor learning abilities are assessed using a test of locomotor function designed specifically to delineate both mechanisms. Aim 3: Develop predictors of sensorimotor adaptability using brain structural and functional metrics. We will measure individual differences in regional brain volumes (structural MRI), white matter integrity (diffusion tensor imaging, or DTI), functional network integrity (resting state functional connectivity MRI), and sensorimotor adaptation task-related functional brain activation (functional MRI). We decided to complete the data collection for Specific Aims 1, 2 and 3 simultaneously on the same subjects to increase data capture. By having the same subjects perform all three specific aims we can enhance our ability to detect how a wider range of factors can predict adaptability in a specific individual. This provides a much richer database and potentially a better understanding of the predictive power of the selected factors. In this presentation I will discuss preliminary data obtained to date.

  8. A self-paced brain-computer interface for controlling a robot simulator: an online event labelling paradigm and an extended Kalman filter based algorithm for online training.

    PubMed

    Tsui, Chun Sing Louis; Gan, John Q; Roberts, Stephen J

    2009-03-01

    Due to the non-stationarity of EEG signals, online training and adaptation are essential to EEG based brain-computer interface (BCI) systems. Self-paced BCIs offer more natural human-machine interaction than synchronous BCIs, but it is a great challenge to train and adapt a self-paced BCI online because the user's control intention and timing are usually unknown. This paper proposes a novel motor imagery based self-paced BCI paradigm for controlling a simulated robot in a specifically designed environment which is able to provide user's control intention and timing during online experiments, so that online training and adaptation of the motor imagery based self-paced BCI can be effectively investigated. We demonstrate the usefulness of the proposed paradigm with an extended Kalman filter based method to adapt the BCI classifier parameters, with experimental results of online self-paced BCI training with four subjects.

  9. Training intensity and sagittal curvature of the spine in male and female artistic gymnasts.

    PubMed

    Sanz-Mengibar, Jose M; Sainz-de-Baranda, Pilar; Santonja-Medina, Fernando

    2018-04-01

    Specific adaptations of the spine in the sagittal plane have been described according to different sports disciplines. The goal of this study was to describe the integrative diagnosis of the sagittal morphotype of the spine in male and female artistic gymnasts. Forty-eight gymnasts were measured with an inclinometer. Thoracic and lumbar curves were quantified in standing position, in Sit and Reach and Slump Sitting in order to assess the sagittal spine posture and analyze if adaptations were related to training intensity. Correlation values of the sagittal plane spine measurements showed significantly increased thoracic kyphosis in men (-0.445, P<0.001). No significant correlations have been found between training hours per year or training volume and any measurements of the spine on the sagittal plane. When data from the two sitting tests were integrated, 62.5% of gymnasts had a functional thoracic kyphosis and 39.6% had lumbar kyphotic attitude. Our hypothesis has only been partially confirmed, because training intensity did not influence the sagittal curvatures in artistic gymnastics; however, this sport seems to cause specific adaptations in postural hypolordosis, functional thoracic kyphosis and lumbar kyphotic attitude during sitting and trunk flexion. The implications of the functional adaptations observed in our results may require a preventive intervention in male and female artistic gymnasts can be assessed with the integrative diagnosis of the sagittal morphotype of the spine.

  10. Comparison of traditional and recent approaches in the promotion of balance and strength in older adults.

    PubMed

    Granacher, Urs; Muehlbauer, Thomas; Zahner, Lukas; Gollhofer, Albert; Kressig, Reto W

    2011-05-01

    Demographic change in industrialized countries produced an increase in the proportion of elderly people in our society, resulting in specific healthcare challenges. One such challenge is how to effectively deal with the increased risk of sustaining a fall and fall-related injuries in old age. Deficits in postural control and muscle strength represent important intrinsic fall risk factors. Thus, adequate training regimens need to be designed and applied that have the potential to reduce the rate of falling in older adults by countering these factors. Therefore, the purpose of this review is to compare traditional and recent approaches in the promotion of balance and strength in older adults. Traditionally, balance and resistance training programmes proved to be effective in improving balance and strength, and in reducing the number of falls. Yet, it was argued that these training protocols are not specific enough to induce adaptations in neuromuscular capacities that are specifically needed in actual balance-threatening situations (e.g. abilities to recover balance and to produce force explosively). Recent studies indicated that perturbation-based or multitask balance training and power/high-velocity resistance training have the potential to improve these specific capacities because they comply with the principle of training specificity. In fact, there is evidence that these specifically tailored training programmes are more effective in improving balance recovery mechanisms and muscle power than traditional training protocols. A few pilot studies have even shown that these recently designed training protocols have an impact on the reduction of fall incidence rate in older adults. Further research is needed to confirm these results and to elucidate the underlying mechanisms responsible for the adaptive processes.

  11. The effects of varying resistance-training loads on intermediate- and high-velocity-specific adaptations.

    PubMed

    Jones, K; Bishop, P; Hunter, G; Fleisig, G

    2001-08-01

    The purpose of this study was to compare changes in velocity-specific adaptations in moderately resistance-trained athletes who trained with either low or high resistances. The study used tests of sport-specific skills across an intermediate- to high-velocity spectrum. Thirty NCAA Division I baseball players were randomly assigned to either a low-resistance (40-60% 1 repetition maximum [1RM]) training group or a high-resistance (70-90% 1RM) training group. Both of the training groups intended to maximallv accelerate each repetition during the concentric phase (IMCA). The 10 weeks of training consisted of 4 training sessions a week using basic core exercises. Peak force, velocity, and power were evaluated during set angle and depth jumps as well as weighted jumps using 30 and 50% 1RM. Squat 1RMs were also tested. Although no interactions for any of the jump tests were found, trends supported the hypothesis of velocity-specific training. Percentage gains suggest that the combined use of heavier training loads (70-90% 1RM) and IMCA tend to increase peak force in the lower-body leg and hip extensors. Trends also show that the combined use of lighter training loads (40-60% 1RM) and IMCA tend to increase peak power and peak velocity in the lower-body leg and hip extensors. The high-resistance group improved squats more than the low-resistance group (p < 0.05; +22.7 vs. + 16.1 kg). The results of this study support the use of a combination of heavier training loads and IMCA to increase 1RM strength in the lower bodies of resistance-trained athletes.

  12. The General Adaptation Syndrome: A Foundation for the Concept of Periodization.

    PubMed

    Cunanan, Aaron J; DeWeese, Brad H; Wagle, John P; Carroll, Kevin M; Sausaman, Robert; Hornsby, W Guy; Haff, G Gregory; Triplett, N Travis; Pierce, Kyle C; Stone, Michael H

    2018-04-01

    Recent reviews have attempted to refute the efficacy of applying Selye's general adaptation syndrome (GAS) as a conceptual framework for the training process. Furthermore, the criticisms involved are regularly used as the basis for arguments against the periodization of training. However, these perspectives fail to consider the entirety of Selye's work, the evolution of his model, and the broad applications he proposed. While it is reasonable to critically evaluate any paradigm, critics of the GAS have yet to dismantle the link between stress and adaptation. Disturbance to the state of an organism is the driving force for biological adaptation, which is the central thesis of the GAS model and the primary basis for its application to the athlete's training process. Despite its imprecisions, the GAS has proven to be an instructive framework for understanding the mechanistic process of providing a training stimulus to induce specific adaptations that result in functional enhancements. Pioneers of modern periodization have used the GAS as a framework for the management of stress and fatigue to direct adaptation during sports training. Updates to the periodization concept have retained its founding constructs while explicitly calling for scientifically based, evidence-driven practice suited to the individual. Thus, the purpose of this review is to provide greater clarity on how the GAS serves as an appropriate mechanistic model to conceptualize the periodization of training.

  13. Water in Fire Control--Basic Training Course.

    ERIC Educational Resources Information Center

    Forest Service (USDA), Washington, DC.

    Prepared by a team of fire control officers, the training guide is designed to help fire crewmen learn the fundamentals of water use. The entire package can be used for a complete course or individual lessons and can be adapted to specific training needs. Throughout the guide, emphasis is placed on one primary training objective, performance in…

  14. The training schedule affects the stability, not the magnitude, of the interlimb transfer of learned dynamics

    PubMed Central

    Joiner, Wilsaan M.; Brayanov, Jordan B.

    2013-01-01

    The way that a motor adaptation is trained, for example, the manner in which it is introduced or the duration of the training period, can influence its internal representation. However, recent studies examining the gradual versus abrupt introduction of a novel environment have produced conflicting results. Here we examined how these effects determine the effector specificity of motor adaptation during visually guided reaching. After adaptation to velocity-dependent dynamics in the right arm, we estimated the amount of adaptation transferred to the left arm, using error-clamp measurement trials to directly measure changes in learned dynamics. We found that a small but significant amount of generalization to the untrained arm occurs under three different training schedules: a short-duration (15 trials) abrupt presentation, a long-duration (160 trials) abrupt presentation, and a long-duration gradual presentation of the novel dynamic environment. Remarkably, we found essentially no difference between the amount of interlimb generalization when comparing these schedules, with 9–12% transfer of the trained adaptation for all three. However, the duration of training had a pronounced effect on the stability of the interlimb transfer: The transfer elicited from short-duration training decayed rapidly, whereas the transfer from both long-duration training schedules was considerably more persistent (<50% vs. >90% retention over the first 20 trials). These results indicate that the amount of interlimb transfer is similar for gradual versus abrupt training and that interlimb transfer of learned dynamics can occur after even a brief training period but longer training is required for an enduring effect. PMID:23719204

  15. The training schedule affects the stability, not the magnitude, of the interlimb transfer of learned dynamics.

    PubMed

    Joiner, Wilsaan M; Brayanov, Jordan B; Smith, Maurice A

    2013-08-01

    The way that a motor adaptation is trained, for example, the manner in which it is introduced or the duration of the training period, can influence its internal representation. However, recent studies examining the gradual versus abrupt introduction of a novel environment have produced conflicting results. Here we examined how these effects determine the effector specificity of motor adaptation during visually guided reaching. After adaptation to velocity-dependent dynamics in the right arm, we estimated the amount of adaptation transferred to the left arm, using error-clamp measurement trials to directly measure changes in learned dynamics. We found that a small but significant amount of generalization to the untrained arm occurs under three different training schedules: a short-duration (15 trials) abrupt presentation, a long-duration (160 trials) abrupt presentation, and a long-duration gradual presentation of the novel dynamic environment. Remarkably, we found essentially no difference between the amount of interlimb generalization when comparing these schedules, with 9-12% transfer of the trained adaptation for all three. However, the duration of training had a pronounced effect on the stability of the interlimb transfer: The transfer elicited from short-duration training decayed rapidly, whereas the transfer from both long-duration training schedules was considerably more persistent (<50% vs. >90% retention over the first 20 trials). These results indicate that the amount of interlimb transfer is similar for gradual versus abrupt training and that interlimb transfer of learned dynamics can occur after even a brief training period but longer training is required for an enduring effect.

  16. Highly undersampled MR image reconstruction using an improved dual-dictionary learning method with self-adaptive dictionaries.

    PubMed

    Li, Jiansen; Song, Ying; Zhu, Zhen; Zhao, Jun

    2017-05-01

    Dual-dictionary learning (Dual-DL) method utilizes both a low-resolution dictionary and a high-resolution dictionary, which are co-trained for sparse coding and image updating, respectively. It can effectively exploit a priori knowledge regarding the typical structures, specific features, and local details of training sets images. The prior knowledge helps to improve the reconstruction quality greatly. This method has been successfully applied in magnetic resonance (MR) image reconstruction. However, it relies heavily on the training sets, and dictionaries are fixed and nonadaptive. In this research, we improve Dual-DL by using self-adaptive dictionaries. The low- and high-resolution dictionaries are updated correspondingly along with the image updating stage to ensure their self-adaptivity. The updated dictionaries incorporate both the prior information of the training sets and the test image directly. Both dictionaries feature improved adaptability. Experimental results demonstrate that the proposed method can efficiently and significantly improve the quality and robustness of MR image reconstruction.

  17. Nutritional strategies to modulate the adaptive response to endurance training.

    PubMed

    Hawley, John A

    2013-01-01

    In recent years, advances in molecular biology have allowed scientists to elucidate how endurance exercise training stimulates skeletal muscle remodeling (i.e. promotes mitochondrial biogenesis). A growing field of interest directly arising from our understanding of the molecular bases of training adaptation is how nutrient availability can alter the regulation of many contraction-induced events in muscle in response to endurance exercise. Acutely manipulating substrate availability can exert profound effects on muscle energy stores and patterns of fuel metabolism during exercise, as well as many processes activating gene expression and cell signaling. Accordingly, such interventions when repeated over weeks and months have the potential to modulate numerous adaptive processes in skeletal muscle that ultimately drive the phenotype-specific characteristics observed in highly trained athletes. In this review, the molecular and cellular events that occur in skeletal muscle during and after endurance exercise are discussed and evidence provided to demonstrate that nutrient availability plays an important role in modulating many of the adaptive responses to training. Emphasis is on human studies that have determined the regulatory role of muscle glycogen availability on cell metabolism, endurance training capacity and performance. Copyright © 2013 Nestec Ltd., Vevey/S. Karger AG, Basel.

  18. Portable Brain-Computer Interface for the Intensive Care Unit Patient Communication Using Subject-Dependent SSVEP Identification.

    PubMed

    Dehzangi, Omid; Farooq, Muhamed

    2018-01-01

    A major predicament for Intensive Care Unit (ICU) patients is inconsistent and ineffective communication means. Patients rated most communication sessions as difficult and unsuccessful. This, in turn, can cause distress, unrecognized pain, anxiety, and fear. As such, we designed a portable BCI system for ICU communications (BCI4ICU) optimized to operate effectively in an ICU environment. The system utilizes a wearable EEG cap coupled with an Android app designed on a mobile device that serves as visual stimuli and data processing module. Furthermore, to overcome the challenges that BCI systems face today in real-world scenarios, we propose a novel subject-specific Gaussian Mixture Model- (GMM-) based training and adaptation algorithm. First, we incorporate subject-specific information in the training phase of the SSVEP identification model using GMM-based training and adaptation. We evaluate subject-specific models against other subjects. Subsequently, from the GMM discriminative scores, we generate the transformed vectors, which are passed to our predictive model. Finally, the adapted mixture mean scores of the subject-specific GMMs are utilized to generate the high-dimensional supervectors. Our experimental results demonstrate that the proposed system achieved 98.7% average identification accuracy, which is promising in order to provide effective and consistent communication for patients in the intensive care.

  19. Military Applicability of Interval Training for Health and Performance.

    PubMed

    Gibala, Martin J; Gagnon, Patrick J; Nindl, Bradley C

    2015-11-01

    Militaries from around the globe have predominantly used endurance training as their primary mode of aerobic physical conditioning, with historical emphasis placed on the long distance run. In contrast to this traditional exercise approach to training, interval training is characterized by brief, intermittent bouts of intense exercise, separated by periods of lower intensity exercise or rest for recovery. Although hardly a novel concept, research over the past decade has shed new light on the potency of interval training to elicit physiological adaptations in a time-efficient manner. This work has largely focused on the benefits of low-volume interval training, which involves a relatively small total amount of exercise, as compared with the traditional high-volume approach to training historically favored by militaries. Studies that have directly compared interval and moderate-intensity continuous training have shown similar improvements in cardiorespiratory fitness and the capacity for aerobic energy metabolism, despite large differences in total exercise and training time commitment. Interval training can also be applied in a calisthenics manner to improve cardiorespiratory fitness and strength, and this approach could easily be incorporated into a military conditioning environment. Although interval training can elicit physiological changes in men and women, the potential for sex-specific adaptations in the adaptive response to interval training warrants further investigation. Additional work is needed to clarify adaptations occurring over the longer term; however, interval training deserves consideration from a military applicability standpoint as a time-efficient training strategy to enhance soldier health and performance. There is value for military leaders in identifying strategies that reduce the time required for exercise, but nonetheless provide an effective training stimulus.

  20. Effects of intensity and duration of exercise on muscular responses to training of thoroughbred racehorses.

    PubMed

    Rivero, José-Luis L; Ruz, Antonio; Martí-Korff, Silvia; Estepa, José-Carlos; Aguilera-Tejero, Escolástico; Werkman, Jutta; Sobotta, Mathias; Lindner, Arno

    2007-05-01

    This study examined the effects of the intensity and duration of exercise on the nature and magnitude of training adaptations in muscle of adolescent (2-3 yr old) racehorses. Six thoroughbreds that had been pretrained for 2 mo performed six consecutive conditioning programs of varying lactate-guided intensities [velocities eliciting blood lactate concentrations of 2.5 mmol/l (v2.5) and 4 mmol/l (v4), respectively] and durations (5, 15, 25 min). Pre- and posttraining gluteus muscle biopsies were analyzed for myosin heavy chain content, fiber-type composition, fiber size, capillarization, and fiber histochemical oxidative and glycolytic capabilities. Although training adaptations were similar in nature, they varied greatly in magnitude among the different training protocols. Overall, the use of v4 as the exercise intensity for 25 min elicited the most consistent training adaptations in muscle, whereas the minimal training stimulus that evoked any significant change was identified with exercises of 15 min at v2.5. Within this range, muscular adaptations showed significant trends to be proportional to the exercise load of specific training programs. Taken together, these data suggest that muscular adaptations to training in horses occur on a continuum that is based on the exercise intensity and duration of training. The practical implications of this study are that exercises for 15 to 25 min/day at velocities between v2.5 and v4 can improve in the short term (3 wk) the muscular stamina in thoroughbreds. However, exercises of 5-15 min at v4 are necessary to enhance muscular features related to strength (hypertrophy).

  1. Teaching Literacy Skills to French Minimally Verbal School-Aged Children with Autism Spectrum Disorders with the Serious Game SEMA-TIC: An Exploratory Study

    PubMed Central

    Serret, Sylvie; Hun, Stéphanie; Thümmler, Susanne; Pierron, Prescillia; Santos, Andreia; Bourgeois, Jérémy; Askenazy, Florence

    2017-01-01

    Learning to read is very challenging for children with Autism Spectrum Disorders (ASD), but also very important, as it can give them access to new knowledge. This is even more challenging in minimally verbal children, who do not have the verbal abilities to learn through usual methods. To address the learning of literacy skills in French minimally verbal school-aged children with ASD, we designed the serious game SEMA-TIC, which relies on non-verbal cognitive skills and uses specific learning strategies adapted to the features of autistic individuals. This study investigated the usability of SEMA-TIC (in terms of adaptability, efficiency, and effectiveness) for the acquisition of literacy skills in French minimally verbal school-aged children with ASD. Twenty-five children with ASD and no functional language participated in the study. Children in the training group received the SEMA-TIC training over 23 weeks (on average), while no intervention was provided to children in the non-training group. Results indicated that SEMA-TIC presents a suitable usability, as all participants were able to play (adaptability), to complete the training (efficiency) and to acquire significant literacy skills (effectiveness). Indeed, the literacy skills in the training group significantly improved after the training, as measured by specific experimental tasks (alphabet knowledge, word reading, word-non-word discrimination, sentence reading and word segmentation; all p ≤ 0.001) compared to the non-training group. More importantly, 3 out of 12 children of the training group could be considered as word decoders at the end of the intervention, whereas no children of the non-training group became able to decode words efficiently. The present study thus brings preliminary evidence that French minimally verbal school-aged children with ASD are able to learn literacy skills through SEMA-TIC, a specific computerized intervention consisting in a serious game based on non-verbal cognitive skills. PMID:28928701

  2. Teaching Literacy Skills to French Minimally Verbal School-Aged Children with Autism Spectrum Disorders with the Serious Game SEMA-TIC: An Exploratory Study.

    PubMed

    Serret, Sylvie; Hun, Stéphanie; Thümmler, Susanne; Pierron, Prescillia; Santos, Andreia; Bourgeois, Jérémy; Askenazy, Florence

    2017-01-01

    Learning to read is very challenging for children with Autism Spectrum Disorders (ASD), but also very important, as it can give them access to new knowledge. This is even more challenging in minimally verbal children, who do not have the verbal abilities to learn through usual methods. To address the learning of literacy skills in French minimally verbal school-aged children with ASD, we designed the serious game SEMA-TIC, which relies on non-verbal cognitive skills and uses specific learning strategies adapted to the features of autistic individuals. This study investigated the usability of SEMA-TIC (in terms of adaptability, efficiency, and effectiveness) for the acquisition of literacy skills in French minimally verbal school-aged children with ASD. Twenty-five children with ASD and no functional language participated in the study. Children in the training group received the SEMA-TIC training over 23 weeks (on average), while no intervention was provided to children in the non-training group. Results indicated that SEMA-TIC presents a suitable usability, as all participants were able to play (adaptability), to complete the training (efficiency) and to acquire significant literacy skills (effectiveness). Indeed, the literacy skills in the training group significantly improved after the training, as measured by specific experimental tasks (alphabet knowledge, word reading, word-non-word discrimination, sentence reading and word segmentation; all p ≤ 0.001) compared to the non-training group. More importantly, 3 out of 12 children of the training group could be considered as word decoders at the end of the intervention, whereas no children of the non-training group became able to decode words efficiently. The present study thus brings preliminary evidence that French minimally verbal school-aged children with ASD are able to learn literacy skills through SEMA-TIC, a specific computerized intervention consisting in a serious game based on non-verbal cognitive skills.

  3. Adaptive adjustment of the generalization-discrimination balance in larval Drosophila.

    PubMed

    Mishra, Dushyant; Louis, Matthieu; Gerber, Bertram

    2010-09-01

    Learnt predictive behavior faces a dilemma: predictive stimuli will never 'replay' exactly as during the learning event, requiring generalization. In turn, minute differences can become meaningful, prompting discrimination. To provide a study case for an adaptive adjustment of this generalization-discrimination balance, the authors ask whether Drosophila melanogaster larvae are able to either generalize or discriminate between two odors (1-octen-3-ol and 3-octanol), depending on the task. The authors find that after discriminatively rewarding one but not the other odor, larvae show conditioned preference for the rewarded odor. On the other hand, no odor specificity is observed after nondiscriminative training, even if the test involves a choice between both odors. Thus, for this odor pair at least, discrimination training is required to confer an odor-specific memory trace. This requires that there is at least some difference in processing between the two odors already at the beginning of the training. Therefore, as a default, there is a small yet salient difference in processing between 1-octen-3-ol and 3-octanol; this difference is ignored after nondiscriminative training (generalization), whereas it is accentuated by odor-specific reinforcement (discrimination). Given that, as the authors show, both faculties are lost in anosmic Or83b(1) mutants, this indicates an adaptive adjustment of the generalization-discrimination balance in larval Drosophila, taking place downstream of Or83b-expressing sensory neurons.

  4. Adaptive scenarios: a training model for today's public health workforce.

    PubMed

    Uden-Holman, Tanya; Bedet, Jennifer; Walkner, Laurie; Abd-Hamid, Nor Hashidah

    2014-01-01

    With the current economic climate, money for training is scarce. In addition, time is a major barrier to participation in trainings. To meet the public health workforce's rising demand for training, while struggling with less time and fewer resources, the Upper Midwest Preparedness and Emergency Response Learning Center has developed a model of online training that provides the public health workforce with individually customized, needs-based training experiences. Adaptive scenarios are rooted in case-based reasoning, a learning approach that focuses on the specific knowledge needed to solve a problem. Proponents of case-based reasoning argue that learners benefit from being able to remember previous similar situations and reusing information and knowledge from that situation. Adaptive scenarios based on true-to-life job performance provide an opportunity to assess skills by presenting the user with choices to make in a problem-solving context. A team approach was used to develop the adaptive scenarios. Storylines were developed that incorporated situations aligning with the knowledge, skills, and attitudes outlined in the Public Health Preparedness and Response Core Competency Model. This article examines 2 adaptive scenarios: "Ready or Not? A Family Preparedness Scenario" and "Responding to a Crisis: Managing Emotions and Stress Scenario." The scenarios are available on Upper Midwest Preparedness and Emergency Response Learning Center's Learning Management System, the Training Source (http://training-source.org). Evaluation data indicate that users' experiences have been positive. Integrating the assessment and training elements of the scenarios so that the training experience is uniquely adaptive to each user is one of the most efficient ways to provide training. The opportunity to provide individualized, needs-based training without having to administer separate assessments has the potential to save time and resources. These adaptive scenarios continue to be marketed to target audiences through partner organizations, various Web sites, electronic newsletters, and social media. Next steps include the implementation of a 6-month follow-up evaluation, using Kirkpatrick level III. Kirkpatrick level III evaluation measures whether there was actual transfer of learning to the work setting.

  5. Nutritional strategies to influence adaptations to training.

    PubMed

    Spriet, Lawrence L; Gibala, Martin J

    2004-01-01

    This article highlights new nutritional concerns or practices that may influence the adaptation to training. The discussion is based on the assumption that the adaptation to repeated bouts of training occurs during recovery periods and that if one can train harder, the adaptation will be greater. The goal is to maximize with nutrition the recovery/adaptation that occurs in all rest periods, such that recovery before the next training session is complete. Four issues have been identified where recent scientific information will force sports nutritionists to embrace new issues and reassess old issues and, ultimately, alter the nutritional recommendations they give to athletes. These are: (1) caffeine ingestion; (2) creatine ingestion; (3) the use of intramuscular triacylglycerol (IMTG) as a fuel during exercise and the nutritional effects on IMTG repletion following exercise; and (4) the role nutrition may play in regulating the expression of genes during and after exercise training sessions. Recent findings suggest that low doses of caffeine exert significant ergogenic effects by directly affecting the central nervous system during exercise. Caffeine can cross the blood-brain barrier and antagonize the effects of adenosine, resulting in higher concentrations of stimulatory neurotransmitters. These new data strengthen the case for using low doses of caffeine during training. On the other hand, the data on the role that supplemental creatine ingestion plays in augmenting the increase in skeletal muscle mass and strength during resistance training remain equivocal. Some studies are able to demonstrate increases in muscle fibre size with creatine ingestion and some are not. The final two nutritional topics are new and have not progressed to the point that we can specifically identify strategies to enhance the adaptation to training. However, it is likely that nutritional strategies will be needed to replenish the IMTG that is used during endurance exercise. It is not presently clear whether the IMTG store is chronically reduced when engaging in daily sessions of endurance training or if this impacts negatively on the ability to train. It is also likely that the increased interest in gene and protein expression measurements will lead to nutritional strategies to optimize the adaptations that occur in skeletal muscle during and after exercise training sessions. Research in these areas in the coming years will lead to strategies designed to improve the adaptive response to training.

  6. Branched-chain amino acid (BCAA) supplementation enhances adaptability to exercise training of mice with a muscle-specific defect in the control of BCAA catabolism.

    PubMed

    Xu, Minjun; Kitaura, Yasuyuki; Shindo, Daichi; Shimomura, Yoshiharu

    2018-03-01

    Branched-chain α-keto acid dehydrogenase (BCKDH) kinase (BDK) suppresses the branched-chain amino acid (BCAA) catabolism by inactivation of the BCKDH complex. The muscle-specific BDK-deficient (BDK-mKO) mice showed accelerated BCAA oxidation in muscle and decreased endurance capacity after training (Xu et al. PLoS One. 12 (2017) e0180989). We here report that BCAA supplementation overcompensated endurance capacity in BDK-mKO mice after training.

  7. Visuomotor adaptation in head-mounted virtual reality versus conventional training

    PubMed Central

    Anglin, J. M.; Sugiyama, T.; Liew, S.-L.

    2017-01-01

    Immersive, head-mounted virtual reality (HMD-VR) provides a unique opportunity to understand how changes in sensory environments affect motor learning. However, potential differences in mechanisms of motor learning and adaptation in HMD-VR versus a conventional training (CT) environment have not been extensively explored. Here, we investigated whether adaptation on a visuomotor rotation task in HMD-VR yields similar adaptation effects in CT and whether these effects are achieved through similar mechanisms. Specifically, recent work has shown that visuomotor adaptation may occur via both an implicit, error-based internal model and a more cognitive, explicit strategic component. We sought to measure both overall adaptation and balance between implicit and explicit mechanisms in HMD-VR versus CT. Twenty-four healthy individuals were placed in either HMD-VR or CT and trained on an identical visuomotor adaptation task that measured both implicit and explicit components. Our results showed that the overall timecourse of adaption was similar in both HMD-VR and CT. However, HMD-VR participants utilized a greater cognitive strategy than CT, while CT participants engaged in greater implicit learning. These results suggest that while both conditions produce similar results in overall adaptation, the mechanisms by which visuomotor adaption occurs in HMD-VR appear to be more reliant on cognitive strategies. PMID:28374808

  8. Dissociating proportion congruent and conflict adaptation effects in a Simon-Stroop procedure.

    PubMed

    Torres-Quesada, Maryem; Funes, Maria Jesús; Lupiáñez, Juan

    2013-02-01

    Proportion congruent and conflict adaptation are two well known effects associated with cognitive control. A critical open question is whether they reflect the same or separate cognitive control mechanisms. In this experiment, in a training phase we introduced a proportion congruency manipulation for one conflict type (i.e. Simon), whereas in pre-training and post-training phases two conflict types (e.g. Simon and Spatial Stroop) were displayed with the same incongruent-to-congruent ratio. The results supported the sustained nature of the proportion congruent effect, as it transferred from the training to the post-training phase. Furthermore, this transfer generalized to both conflict types. By contrast, the conflict adaptation effect was specific to conflict type, as it was only observed when the same conflict type (either Simon or Stroop) was presented on two consecutive trials (no effect was observed on conflict type alternation trials). Results are interpreted as supporting the reactive and proactive control mechanisms distinction. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Adaptations in athletic performance after ballistic power versus strength training.

    PubMed

    Cormie, Prue; McGuigan, Michael R; Newton, Robert U

    2010-08-01

    To determine whether the magnitude of improvement in athletic performance and the mechanisms driving these adaptations differ in relatively weak individuals exposed to either ballistic power training or heavy strength training. Relatively weak men (n = 24) who could perform the back squat with proficient technique were randomized into three groups: strength training (n = 8; ST), power training (n = 8; PT), or control (n = 8). Training involved three sessions per week for 10 wk in which subjects performed back squats with 75%-90% of one-repetition maximum (1RM; ST) or maximal-effort jump squats with 0%-30% 1RM (PT). Jump and sprint performances were assessed as well as measures of the force-velocity relationship, jumping mechanics, muscle architecture, and neural drive. Both experimental groups showed significant (P < or = 0.05) improvements in jump and sprint performances after training with no significant between-group differences evident in either jump (peak power: ST = 17.7% +/- 9.3%, PT = 17.6% +/- 4.5%) or sprint performance (40-m sprint: ST = 2.2% +/- 1.9%, PT = 3.6% +/- 2.3%). ST also displayed a significant increase in maximal strength that was significantly greater than the PT group (squat 1RM: ST = 31.2% +/- 11.3%, PT = 4.5% +/- 7.1%). The mechanisms driving these improvements included significant (P < or = 0.05) changes in the force-velocity relationship, jump mechanics, muscle architecture, and neural activation that showed a degree of specificity to the different training stimuli. Improvements in athletic performance were similar in relatively weak individuals exposed to either ballistic power training or heavy strength training for 10 wk. These performance improvements were mediated through neuromuscular adaptations specific to the training stimulus. The ability of strength training to render similar short-term improvements in athletic performance as ballistic power training, coupled with the potential long-term benefits of improved maximal strength, makes strength training a more effective training modality for relatively weak individuals.

  10. Plasticity of the postural function to sport and/or motor experience.

    PubMed

    Paillard, Thierry

    2017-01-01

    This review addresses the possible structural and functional adaptations of the postural function to motor experience. Evidence suggests that postural performance and strategy evolve after training in inactive subjects. In trained subjects, postural adaptations could also occur, since elite athletes exhibit better postural performance than, and different postural strategy to sub-elite athletes. The postural adaptations induced are specific to the context in which the physical activity is practiced. They appear to be so specific that there would be no or only a very slight effect of transfer to non-experienced motor tasks (apart from in subjects presenting low initial levels of postural performance, such as aged subjects). Yet adaptations could occur as part of the interlimb relationship, particularly when the two legs do not display the same motor experience. Mechanistic explanations as well as conceptual models are proposed to explain how postural adaptations operate according to the nature of physical activities and the context in which they are practiced as well as the level of motor expertise of individuals. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Neural responses in songbird forebrain reflect learning rates, acquired salience, and stimulus novelty after auditory discrimination training.

    PubMed

    Bell, Brittany A; Phan, Mimi L; Vicario, David S

    2015-03-01

    How do social interactions form and modulate the neural representations of specific complex signals? This question can be addressed in the songbird auditory system. Like humans, songbirds learn to vocalize by imitating tutors heard during development. These learned vocalizations are important in reproductive and social interactions and in individual recognition. As a model for the social reinforcement of particular songs, male zebra finches were trained to peck for a food reward in response to one song stimulus (GO) and to withhold responding for another (NoGO). After performance reached criterion, single and multiunit neural responses to both trained and novel stimuli were obtained from multiple electrodes inserted bilaterally into two songbird auditory processing areas [caudomedial mesopallium (CMM) and caudomedial nidopallium (NCM)] of awake, restrained birds. Neurons in these areas undergo stimulus-specific adaptation to repeated song stimuli, and responses to familiar stimuli adapt more slowly than to novel stimuli. The results show that auditory responses differed in NCM and CMM for trained (GO and NoGO) stimuli vs. novel song stimuli. When subjects were grouped by the number of training days required to reach criterion, fast learners showed larger neural responses and faster stimulus-specific adaptation to all stimuli than slow learners in both areas. Furthermore, responses in NCM of fast learners were more strongly left-lateralized than in slow learners. Thus auditory responses in these sensory areas not only encode stimulus familiarity, but also reflect behavioral reinforcement in our paradigm, and can potentially be modulated by social interactions. Copyright © 2015 the American Physiological Society.

  12. A Co-Adaptive Brain-Computer Interface for End Users with Severe Motor Impairment

    PubMed Central

    Faller, Josef; Scherer, Reinhold; Costa, Ursula; Opisso, Eloy; Medina, Josep; Müller-Putz, Gernot R.

    2014-01-01

    Co-adaptive training paradigms for event-related desynchronization (ERD) based brain-computer interfaces (BCI) have proven effective for healthy users. As of yet, it is not clear whether co-adaptive training paradigms can also benefit users with severe motor impairment. The primary goal of our paper was to evaluate a novel cue-guided, co-adaptive BCI training paradigm with severely impaired volunteers. The co-adaptive BCI supports a non-control state, which is an important step toward intuitive, self-paced control. A secondary aim was to have the same participants operate a specifically designed self-paced BCI training paradigm based on the auto-calibrated classifier. The co-adaptive BCI analyzed the electroencephalogram from three bipolar derivations (C3, Cz, and C4) online, while the 22 end users alternately performed right hand movement imagery (MI), left hand MI and relax with eyes open (non-control state). After less than five minutes, the BCI auto-calibrated and proceeded to provide visual feedback for the MI task that could be classified better against the non-control state. The BCI continued to regularly recalibrate. In every calibration step, the system performed trial-based outlier rejection and trained a linear discriminant analysis classifier based on one auto-selected logarithmic band-power feature. In 24 minutes of training, the co-adaptive BCI worked significantly (p = 0.01) better than chance for 18 of 22 end users. The self-paced BCI training paradigm worked significantly (p = 0.01) better than chance in 11 of 20 end users. The presented co-adaptive BCI complements existing approaches in that it supports a non-control state, requires very little setup time, requires no BCI expert and works online based on only two electrodes. The preliminary results from the self-paced BCI paradigm compare favorably to previous studies and the collected data will allow to further improve self-paced BCI systems for disabled users. PMID:25014055

  13. Training adaptation and heart rate variability in elite endurance athletes: opening the door to effective monitoring.

    PubMed

    Plews, Daniel J; Laursen, Paul B; Stanley, Jamie; Kilding, Andrew E; Buchheit, Martin

    2013-09-01

    The measurement of heart rate variability (HRV) is often considered a convenient non-invasive assessment tool for monitoring individual adaptation to training. Decreases and increases in vagal-derived indices of HRV have been suggested to indicate negative and positive adaptations, respectively, to endurance training regimens. However, much of the research in this area has involved recreational and well-trained athletes, with the small number of studies conducted in elite athletes revealing equivocal outcomes. For example, in elite athletes, studies have revealed both increases and decreases in HRV to be associated with negative adaptation. Additionally, signs of positive adaptation, such as increases in cardiorespiratory fitness, have been observed with atypical concomitant decreases in HRV. As such, practical ways by which HRV can be used to monitor training status in elites are yet to be established. This article addresses the current literature that has assessed changes in HRV in response to training loads and the likely positive and negative adaptations shown. We reveal limitations with respect to how the measurement of HRV has been interpreted to assess positive and negative adaptation to endurance training regimens and subsequent physical performance. We offer solutions to some of the methodological issues associated with using HRV as a day-to-day monitoring tool. These include the use of appropriate averaging techniques, and the use of specific HRV indices to overcome the issue of HRV saturation in elite athletes (i.e., reductions in HRV despite decreases in resting heart rate). Finally, we provide examples in Olympic and World Champion athletes showing how these indices can be practically applied to assess training status and readiness to perform in the period leading up to a pinnacle event. The paper reveals how longitudinal HRV monitoring in elites is required to understand their unique individual HRV fingerprint. For the first time, we demonstrate how increases and decreases in HRV relate to changes in fitness and freshness, respectively, in elite athletes.

  14. Muscle Fiber Types and Training.

    ERIC Educational Resources Information Center

    Karp, Jason R.

    2001-01-01

    The specific types of fibers that make up individual muscles greatly influence how people will adapt to their training programs. This paper explains the complexities of skeletal muscles, focusing on types of muscle fibers (slow-twitch and fast-twitch), recruitment of muscle fibers to perform a motor task, and determining fiber type. Implications…

  15. Inspiratory muscle training in patients with chronic obstructive pulmonary disease: structural adaptation and physiologic outcomes.

    PubMed

    Ramirez-Sarmiento, Alba; Orozco-Levi, Mauricio; Guell, Rosa; Barreiro, Esther; Hernandez, Nuria; Mota, Susana; Sangenis, Merce; Broquetas, Joan M; Casan, Pere; Gea, Joaquim

    2002-12-01

    The present study was aimed at evaluating the effects of a specific inspiratory muscle training protocol on the structure of inspiratory muscles in patients with chronic obstructive pulmonary disease. Fourteen patients (males, FEV1, 24 +/- 7% predicted) were randomized to either inspiratory muscle or sham training groups. Supervised breathing using a threshold inspiratory device was performed 30 minutes per day, five times a week, for 5 consecutive weeks. The inspiratory training group was subjected to inspiratory loading equivalent to 40 to 50% of their maximal inspiratory pressure. Biopsies from external intercostal muscles and vastus lateralis (control muscle) were taken before and after the training period. Muscle samples were processed for morphometric analyses using monoclonal antibodies against myosin heavy chain isoforms I and II. Increases in both the strength and endurance of the inspiratory muscles were observed in the inspiratory training group. This improvement was associated with increases in the proportion of type I fibers (by approximately 38%, p < 0.05) and in the size of type II fibers (by approximately 21%, p < 0.05) in the external intercostal muscles. No changes were observed in the control muscle. The study demonstrates that inspiratory training induces a specific functional improvement of the inspiratory muscles and adaptive changes in the structure of external intercostal muscles.

  16. Training of polyp staging systems using mixed imaging modalities.

    PubMed

    Wimmer, Georg; Gadermayr, Michael; Kwitt, Roland; Häfner, Michael; Tamaki, Toru; Yoshida, Shigeto; Tanaka, Shinji; Merhof, Dorit; Uhl, Andreas

    2018-05-04

    In medical image data sets, the number of images is usually quite small. The small number of training samples does not allow to properly train classifiers which leads to massive overfitting to the training data. In this work, we investigate whether increasing the number of training samples by merging datasets from different imaging modalities can be effectively applied to improve predictive performance. Further, we investigate if the extracted features from the employed image representations differ between different imaging modalities and if domain adaption helps to overcome these differences. We employ twelve feature extraction methods to differentiate between non-neoplastic and neoplastic lesions. Experiments are performed using four different classifier training strategies, each with a different combination of training data. The specifically designed setup for these experiments enables a fair comparison between the four training strategies. Combining high definition with high magnification training data and chromoscopic with non-chromoscopic training data partly improved the results. The usage of domain adaptation has only a small effect on the results compared to just using non-adapted training data. Merging datasets from different imaging modalities turned out to be partially beneficial for the case of combining high definition endoscopic data with high magnification endoscopic data and for combining chromoscopic with non-chromoscopic data. NBI and chromoendoscopy on the other hand are mostly too different with respect to the extracted features to combine images of these two modalities for classifier training. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Altitude negates the benefits of aerobic training on the vascular adaptations in rats.

    PubMed

    Reboul, Cyril; Tanguy, Stephane; Dauzat, Michel; Obert, Philippe

    2005-06-01

    This study questioned the effect of living and training at moderate altitude on aortic vasoreactivity. Considering that chronic hypoxia exposure and endurance training are able to generate opposite effects on the systemic vascular reactivity, it was hypothesized that endurance training benefits on the vascular function could be limited by chronic hypoxia. Sea-level native rats were randomly assigned to N (living in normoxia), NT (living and training 5 d.wk for 5 wk in normoxia), CH (living in hypoxia, 2800 m), and CHT (living and training 5 d.wk for 5 wk in hypoxia, 2800 m) groups. Concentration response curves to epinephrine, norepinephrine, endothelin-1, acetylcholine, and sodium nitro-prusside were assessed on aortic isolated rings. Left ventricular resting and maximal (during Tyrode's infusion) stroke volumes were evaluated by Doppler-echocardiography and used as indexes of chronic aortic volume overload. The main finding was that favorable aortic vasoreactivity adaptations consecutive to sea-level training were not observed when training was conducted at altitude. An improvement in the endothelium-dependent vasorelaxation (maximal relaxation, R(max), N = 60.4 +/- 10.0 vs NT = 91.7 +/- 3.2%; P < 0.05) and a reduced sensitivity to ET-1 were observed in NT rats. Such an enhancement in endothelium-dependent vasorelaxation was not found in CHT rats (R(max): 48.4 +/- 7.8%). Moreover, a higher sensitivity to ET-1 was reported in this group. Altitude-induced limitation in aortic blood flow and shear stress could play a major role in the explanation of these specific altitude-training adaptations. If extrapolated to the peripheral vascular bed, our results have practical significance for aerobic performance as aortic vasoreactivity adaptations after altitude training could contribute to limit blood delivery to exercising muscles.

  18. Fuel for the Work Required: A Theoretical Framework for Carbohydrate Periodization and the Glycogen Threshold Hypothesis.

    PubMed

    Impey, Samuel G; Hearris, Mark A; Hammond, Kelly M; Bartlett, Jonathan D; Louis, Julien; Close, Graeme L; Morton, James P

    2018-05-01

    Deliberately training with reduced carbohydrate (CHO) availability to enhance endurance-training-induced metabolic adaptations of skeletal muscle (i.e. the 'train low, compete high' paradigm) is a hot topic within sport nutrition. Train-low studies involve periodically training (e.g., 30-50% of training sessions) with reduced CHO availability, where train-low models include twice per day training, fasted training, post-exercise CHO restriction and 'sleep low, train low'. When compared with high CHO availability, data suggest that augmented cell signalling (73% of 11 studies), gene expression (75% of 12 studies) and training-induced increases in oxidative enzyme activity/protein content (78% of 9 studies) associated with 'train low' are especially apparent when training sessions are commenced within a specific range of muscle glycogen concentrations. Nonetheless, such muscle adaptations do not always translate to improved exercise performance (e.g. 37 and 63% of 11 studies show improvements or no change, respectively). Herein, we present our rationale for the glycogen threshold hypothesis, a window of muscle glycogen concentrations that simultaneously permits completion of required training workloads and activation of the molecular machinery regulating training adaptations. We also present the 'fuel for the work required' paradigm (representative of an amalgamation of train-low models) whereby CHO availability is adjusted in accordance with the demands of the upcoming training session(s). In order to strategically implement train-low sessions, our challenge now is to quantify the glycogen cost of habitual training sessions (so as to inform the attainment of any potential threshold) and ensure absolute training intensity is not compromised, while also creating a metabolic milieu conducive to facilitating the endurance phenotype.

  19. Using a site-specific technical error to establish training responsiveness: a preliminary explorative study.

    PubMed

    Weatherwax, Ryan M; Harris, Nigel K; Kilding, Andrew E; Dalleck, Lance C

    2018-01-01

    Even though cardiorespiratory fitness (CRF) training elicits numerous health benefits, not all individuals have positive training responses following a structured CRF intervention. It has been suggested that the technical error (TE), a combination of biological variability and measurement error, should be used to establish specific training responsiveness criteria to gain further insight on the effectiveness of the training program. To date, most training interventions use an absolute change or a TE from previous findings, which do not take into consideration the training site and equipment used to establish training outcomes or the specific cohort being evaluated. The purpose of this investigation was to retrospectively analyze training responsiveness of two CRF training interventions using two common criteria and a site-specific TE. Sixteen men and women completed two maximal graded exercise tests and verification bouts to identify maximal oxygen consumption (VO 2 max) and establish a site-specific TE. The TE was then used to retrospectively analyze training responsiveness in comparison to commonly used criteria: percent change of >0% and >+5.6% in VO 2 max. The TE was found to be 7.7% for relative VO 2 max. χ 2 testing showed significant differences in all training criteria for each intervention and pooled data from both interventions, except between %Δ >0 and %Δ >+7.7% in one of the investigations. Training nonresponsiveness ranged from 11.5% to 34.6%. Findings from the present study support the utility of site-specific TE criterion to quantify training responsiveness. A similar methodology of establishing a site-specific and even cohort specific TE should be considered to establish when true cardiorespiratory training adaptations occur.

  20. Changes in Teachers' Adaptive Expertise in an Engineering Professional Development Course

    ERIC Educational Resources Information Center

    Martin, Taylor; Peacock, Stephanie Baker; Ko, Pat; Rudolph, Jennifer J.

    2015-01-01

    Although the consensus seems to be that high-school-level introductory engineering courses should focus on design, this creates a problem for teacher training. Traditionally, math and science teachers are trained to teach and assess factual knowledge and closed-ended problem-solving techniques specific to a particular discipline, which is unsuited…

  1. Culturally sensitive adaptation of the concept of relational communication therapy as a support to language development: An exploratory study in collaboration with a Tanzanian orphanage.

    PubMed

    Schütte, Ulrike

    2016-11-07

    Orphans and other vulnerable children (OVC) who grow up in institutional care often show communication and language problems. The caregivers lack training, and there are few language didactics programmes aimed at supporting communication and language development in OVC in institutional care in Tanzania. The purpose of the study was to adapt the German concept of relational communication therapy (RCT) as a support to language development in a Tanzanian early childhood education context in a culturally sensitive way. Following the adaptation of the concept, a training programme for Tanzanian caregiver students was developed to compare their competencies in language didactics before and after training. A convergent mixed methods design was used to examine changes following training in 12 participating caregiver students in a Tanzanian orphanage. The competencies in relational language didactics were assessed by a self-developed test and video recordings before and after intervention. Based on the results, we drew conclusions regarding necessary modifications to the training modules and to the concept of RCT. The relational didactics competencies of the caregiver students improved significantly following their training. A detailed analysis of the four training modules showed that the improvement in relational didactics competencies varied depending on the topic and the teacher. The results provide essential hints for the professionalisation of caregivers and for using the concept of RCT for OVC in institutional care in Tanzania. Training programmes and concepts should not just be transferred across different cultures, disciplines and settings; they must be adapted to the specific cultural setting.

  2. Adaptive Effects on Locomotion Performance Following Exposure to a Rotating Virtual Environment

    NASA Technical Reports Server (NTRS)

    Mulavara, A. P.; Richards, J. T.; Marshburn, A. M.; Bucello, R.; Bloomberg, J. J.

    2003-01-01

    During long-duration spaceflight, astronauts experience alterations in vestibular and somatosensory cues that result in adaptive disturbances in balance and coordination upon return to Earth. These changes can pose a risk to crew safety and to mission objectives if nominal or emergency vehicle egress is required immediately following long-duration spaceflight. At present, no operational countermeasure is available to mitigate the adaptive sensorimotor component underlying the locomotor disturbances that occur after spaceflight. Therefore, the goal of this study is to develop an inflight training regimen that facilitates recovery of locomotor function after long-duration spaceflight. The countermeasure we are proposing is based on the concept of adaptive generalization. During this type of training the subject gains experience producing the appropriate adaptive motor behavior under a variety of sensory conditions and response constraints. As a result of this training a subject learns to solve a class of motor problems, rather than a specific motor solution to one problem, i.e., the subject learns response generalizability or the ability to "learn to learn." under a variety of environmental constraints. We are developing an inflight countermeasure built around treadmill exercise activities. By manipulating the sensory conditions of exercise by varying visual flow patterns, body load and speed we will systematically and repeatedly promote adaptive change in locomotor behavior. It has been shown that variable practice training increases adaptability to novel visuo-motor situations. While walking over ground in a stereoscopic virtual environment that oscillated in roll, subjects have shown compensatory torso rotation in the direction of scene rotation that resulted in positional variation away from a desired linear path. Thus, postural sway and locomotor stability in 1-g can be modulated by visual flow patterns and used during inflight treadmill training to promote adaptive generalization. The purpose of this study was to determine if adaptive modification in locomotor performance could be achieved by viewing simulated self-motion in a passive-immersive virtual ' environment over a prolonged period during treadmill locomotion.

  3. A new adaptive videogame for training attention and executive functions: design principles and initial validation.

    PubMed

    Montani, Veronica; De Filippo De Grazia, Michele; Zorzi, Marco

    2014-01-01

    A growing body of evidence suggests that action videogames could enhance a variety of cognitive skills and more specifically attention skills. The aim of this study was to develop a novel adaptive videogame to support the rehabilitation of the most common consequences of traumatic brain injury (TBI), that is the impairment of attention and executive functions. TBI patients can be affected by psychomotor slowness and by difficulties in dealing with distraction, maintain a cognitive set for a long time, processing different simultaneously presented stimuli, and planning purposeful behavior. Accordingly, we designed a videogame that was specifically conceived to activate those functions. Playing involves visuospatial planning and selective attention, active maintenance of the cognitive set representing the goal, and error monitoring. Moreover, different game trials require to alternate between two tasks (i.e., task switching) or to perform the two tasks simultaneously (i.e., divided attention/dual-tasking). The videogame is controlled by a multidimensional adaptive algorithm that calibrates task difficulty on-line based on a model of user performance that is updated on a trial-by-trial basis. We report simulations of user performance designed to test the adaptive game as well as a validation study with healthy participants engaged in a training protocol. The results confirmed the involvement of the cognitive abilities that the game is supposed to enhance and suggested that training improved attentional control during play.

  4. A new adaptive videogame for training attention and executive functions: design principles and initial validation

    PubMed Central

    Montani, Veronica; De Filippo De Grazia, Michele; Zorzi, Marco

    2014-01-01

    A growing body of evidence suggests that action videogames could enhance a variety of cognitive skills and more specifically attention skills. The aim of this study was to develop a novel adaptive videogame to support the rehabilitation of the most common consequences of traumatic brain injury (TBI), that is the impairment of attention and executive functions. TBI patients can be affected by psychomotor slowness and by difficulties in dealing with distraction, maintain a cognitive set for a long time, processing different simultaneously presented stimuli, and planning purposeful behavior. Accordingly, we designed a videogame that was specifically conceived to activate those functions. Playing involves visuospatial planning and selective attention, active maintenance of the cognitive set representing the goal, and error monitoring. Moreover, different game trials require to alternate between two tasks (i.e., task switching) or to perform the two tasks simultaneously (i.e., divided attention/dual-tasking). The videogame is controlled by a multidimensional adaptive algorithm that calibrates task difficulty on-line based on a model of user performance that is updated on a trial-by-trial basis. We report simulations of user performance designed to test the adaptive game as well as a validation study with healthy participants engaged in a training protocol. The results confirmed the involvement of the cognitive abilities that the game is supposed to enhance and suggested that training improved attentional control during play. PMID:24860529

  5. Neuromuscular adaptations induced by adjacent joint training.

    PubMed

    Ema, R; Saito, I; Akagi, R

    2018-03-01

    Effects of resistance training are well known to be specific to tasks that are involved during training. However, it remains unclear whether neuromuscular adaptations are induced after adjacent joint training. This study examined the effects of hip flexion training on maximal and explosive knee extension strength and neuromuscular performance of the rectus femoris (RF, hip flexor, and knee extensor) compared with the effects of knee extension training. Thirty-seven untrained young men were randomly assigned to hip flexion training, knee extension training, or a control group. Participants in the training groups completed 4 weeks of isometric hip flexion or knee extension training. Standardized differences in the mean change between the training groups and control group were interpreted as an effect size, and the substantial effect was assumed to be ≥0.20 of the between-participant standard deviation at baseline. Both types of training resulted in substantial increases in maximal (hip flexion training group: 6.2% ± 10.1%, effect size = 0.25; knee extension training group: 20.8% ± 9.9%, effect size = 1.11) and explosive isometric knee extension torques and muscle thickness of the RF in the proximal and distal regions. Improvements in strength were accompanied by substantial enhancements in voluntary activation, which was determined using the twitch interpolation technique and RF activation. Differences in training effects on explosive torques and neural variables between the two training groups were trivial. Our findings indicate that hip flexion training results in substantial neuromuscular adaptations during knee extensions similar to those induced by knee extension training. © 2017 The Authors. Scandinavian Journal of Medicine & Science In Sports Published by John Wiley & Sons Ltd.

  6. Cold-water immersion after training sessions: Effects on fiber type-specific adaptations in muscle K+ transport proteins to sprint-interval training in men.

    PubMed

    Christiansen, Danny; Bishop, David John; Broatch, James R; Bangsbo, Jens; McKenna, Michael John; Murphy, Robyn M

    2018-05-10

    Effects of regular use of cold-water immersion (CWI) on fiber type-specific adaptations in muscle K + transport proteins to intense training, along with their relationship to changes in mRNA levels after the first training session, were investigated in humans. Nineteen recreationally-active men (24{plus minus}6 y, 79.5{plus minus}10.8 kg, 44.6{plus minus}5.8 mL∙kg -1 ∙min -1 ) completed six weeks of sprint-interval cycling either without (passive rest; CON) or with training sessions followed by CWI (15 min at 10{degree sign}C; COLD). Muscle biopsies were obtained before and after training to determine abundance of Na + ,K + -ATPase isoforms (α 1-3 , β 1-3 ) and FXYD1, and after recovery treatments (+0h and +3h) on the first day of training to measure mRNA content. Training increased (p<0.05) the abundance of α 1 and β 3 in both fiber types, β 1 in type-II fibers, and decreased FXYD1 in type-I fibers, whereas α 2 and α 3 abundance was not altered by training (p>0.05). CWI after each session did not influence responses to training (p>0.05). However, α 2 mRNA increased after the first session in COLD (+0h, p<0.05), but not in CON (p>0.05). In both conditions, α 1 and β 3 mRNA increased (+3h; p <0.05), β 2 mRNA decreased (+3h; p<0.05), whereas α 3 , β 1 , and FXYD1 mRNA remained unchanged (p>0.05) after the first session. In summary, Na + ,K + -ATPase isoforms are differently regulated in type I and II muscle fibers by sprint-interval training in humans, which for most isoforms do not associate with changes in mRNA levels after the first training session. CWI neither impairs nor improves protein adaptations to intense training of importance for muscle K + regulation.

  7. Mathematical models of human paralyzed muscle after long-term training.

    PubMed

    Law, L A Frey; Shields, R K

    2007-01-01

    Spinal cord injury (SCI) results in major musculoskeletal adaptations, including muscle atrophy, faster contractile properties, increased fatigability, and bone loss. The use of functional electrical stimulation (FES) provides a method to prevent paralyzed muscle adaptations in order to sustain force-generating capacity. Mathematical muscle models may be able to predict optimal activation strategies during FES, however muscle properties further adapt with long-term training. The purpose of this study was to compare the accuracy of three muscle models, one linear and two nonlinear, for predicting paralyzed soleus muscle force after exposure to long-term FES training. Further, we contrasted the findings between the trained and untrained limbs. The three models' parameters were best fit to a single force train in the trained soleus muscle (N=4). Nine additional force trains (test trains) were predicted for each subject using the developed models. Model errors between predicted and experimental force trains were determined, including specific muscle force properties. The mean overall error was greatest for the linear model (15.8%) and least for the nonlinear Hill Huxley type model (7.8%). No significant error differences were observed between the trained versus untrained limbs, although model parameter values were significantly altered with training. This study confirmed that nonlinear models most accurately predict both trained and untrained paralyzed muscle force properties. Moreover, the optimized model parameter values were responsive to the relative physiological state of the paralyzed muscle (trained versus untrained). These findings are relevant for the design and control of neuro-prosthetic devices for those with SCI.

  8. What Works for You? Using Teacher Feedback to Inform Adaptations of Pivotal Response Training for Classroom Use

    PubMed Central

    Stahmer, Aubyn C.; Suhrheinrich, Jessica; Reed, Sarah; Schreibman, Laura

    2012-01-01

    Several evidence-based practices (EBPs) have been identified as efficacious for the education of students with autism spectrum disorders (ASD). However, effectiveness research has rarely been conducted in schools and teachers express skepticism about the clinical utility of EBPs for the classroom. Innovative methods are needed to optimally adapt EBPs for community use. This study utilizes qualitative methods to identify perceived benefits and barriers of classroom implementation of a specific EBP for ASD, Pivotal Response Training (PRT). Teachers' perspectives on the components of PRT, use of PRT as a classroom intervention strategy, and barriers to the use of PRT were identified through guided discussion. Teachers found PRT valuable; however, they also found some components challenging. Specific teacher recommendations for adaptation and resource development are discussed. This process of obtaining qualitative feedback from frontline practitioners provides a generalizable model for researchers to collaborate with teachers to optimally promote EBPs for classroom use. PMID:23209896

  9. What works for you? Using teacher feedback to inform adaptations of pivotal response training for classroom use.

    PubMed

    Stahmer, Aubyn C; Suhrheinrich, Jessica; Reed, Sarah; Schreibman, Laura

    2012-01-01

    Several evidence-based practices (EBPs) have been identified as efficacious for the education of students with autism spectrum disorders (ASD). However, effectiveness research has rarely been conducted in schools and teachers express skepticism about the clinical utility of EBPs for the classroom. Innovative methods are needed to optimally adapt EBPs for community use. This study utilizes qualitative methods to identify perceived benefits and barriers of classroom implementation of a specific EBP for ASD, Pivotal Response Training (PRT). Teachers' perspectives on the components of PRT, use of PRT as a classroom intervention strategy, and barriers to the use of PRT were identified through guided discussion. Teachers found PRT valuable; however, they also found some components challenging. Specific teacher recommendations for adaptation and resource development are discussed. This process of obtaining qualitative feedback from frontline practitioners provides a generalizable model for researchers to collaborate with teachers to optimally promote EBPs for classroom use.

  10. A Comparison of Adaptive and Nonadaptive Training Strategies in the Acquisition of a Physically Complex Psychomotor Skill.

    ERIC Educational Resources Information Center

    Riedel, James A.; And Others

    Results of research to determine if an adaptive technique could be used to teach a physically complex psychomotor skill (specifically, performing on an arc welding simulator) more efficiently than the skill could be taught with a nonadaptive technique are presented. Sixty hull maintenance technician firemen and fireman apprentice trainees were…

  11. Experiencing a reaching task passively with one arm while adapting to a visuomotor rotation with the other can lead to substantial transfer of motor learning across the arms.

    PubMed

    Bao, Shancheng; Lei, Yuming; Wang, Jinsung

    2017-01-18

    The extent of transfer following visuomotor adaptation across the arms is typically limited as compared to that within the same arm. However, we have demonstrated that interlimb transfer can occur nearly completely if one arm performs reaching movements associated with a desired trajectory repeatedly and actively during an initial training session in which the other arm adapts to a novel visuomotor adaptation. Based on that finding, we argued that the absence of instances associated with specific motor effectors is the major reason for limited interlimb transfer. Here, we examined whether providing movement instances associated with one arm passively while adapting to a visuomotor rotation with the opposite arm could also lead to a greater extent of interlimb transfer. We had subjects perform reaching movements either actively or passively with the right arm while adapting to a 30° visuomotor rotation with the left arm (training session), and then had them perform reaching movements under the rotation condition with the right arm (transfer session). Results showed that the extent of transfer observed in the active and the passive training groups was significantly greater than that observed in a control group who only experienced the testing session. This finding suggests that providing effector-specific instances can increase the extent of interlimb transfer substantially, regardless of whether the instances are provided actively or passively. The current finding may have implications for neurorehabilitation targeted for individuals with motor impairment, such as persons with stroke or spinal cord injury. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  12. Periodized Nutrition for Athletes.

    PubMed

    Jeukendrup, Asker E

    2017-03-01

    It is becoming increasingly clear that adaptations, initiated by exercise, can be amplified or reduced by nutrition. Various methods have been discussed to optimize training adaptations and some of these methods have been subject to extensive study. To date, most methods have focused on skeletal muscle, but it is important to note that training effects also include adaptations in other tissues (e.g., brain, vasculature), improvements in the absorptive capacity of the intestine, increases in tolerance to dehydration, and other effects that have received less attention in the literature. The purpose of this review is to define the concept of periodized nutrition (also referred to as nutritional training) and summarize the wide variety of methods available to athletes. The reader is referred to several other recent review articles that have discussed aspects of periodized nutrition in much more detail with primarily a focus on adaptations in the muscle. The purpose of this review is not to discuss the literature in great detail but to clearly define the concept and to give a complete overview of the methods available, with an emphasis on adaptations that are not in the muscle. Whilst there is good evidence for some methods, other proposed methods are mere theories that remain to be tested. 'Periodized nutrition' refers to the strategic combined use of exercise training and nutrition, or nutrition only, with the overall aim to obtain adaptations that support exercise performance. The term nutritional training is sometimes used to describe the same methods and these terms can be used interchangeably. In this review, an overview is given of some of the most common methods of periodized nutrition including 'training low' and 'training high', and training with low- and high-carbohydrate availability, respectively. 'Training low' in particular has received considerable attention and several variations of 'train low' have been proposed. 'Training-low' studies have generally shown beneficial effects in terms of signaling and transcription, but to date, few studies have been able to show any effects on performance. In addition to 'train low' and 'train high', methods have been developed to 'train the gut', train hypohydrated (to reduce the negative effects of dehydration), and train with various supplements that may increase the training adaptations longer term. Which of these methods should be used depends on the specific goals of the individual and there is no method (or diet) that will address all needs of an individual in all situations. Therefore, appropriate practical application lies in the optimal combination of different nutritional training methods. Some of these methods have already found their way into training practices of athletes, even though evidence for their efficacy is sometimes scarce at best. Many pragmatic questions remain unanswered and another goal of this review is to identify some of the remaining questions that may have great practical relevance and should be the focus of future research.

  13. Mechanisms and functional implications of motoneuron adaptations to increased physical activity.

    PubMed

    MacDonell, Christopher; Gardiner, Phillip

    2018-06-01

    Motoneurons demonstrate adaptations in their physiological properties to alterations in chronic activity levels. The most consistent change that appears to result from endurance-type exercise training is the reduced excitatory current required to initiate and maintain rhythmic firing. While the precise mechanisms through which these neurons adapt to activity are currently unknown, evidence exists that adaptation may involve alterations in the expression of genes that code for membrane receptors which can influence the responses of neurons to transmitters during activation. The influence of these adaptations may also extend to the resting condition, where ambient levels of neuroactive substances may influence ion conductances at rest, and thus result in the activation or inhibition of specific ion conductances that underlie the measurements of increased excitability that have been reported for motoneurons in the anesthetised state. We have applied motoneuron excitability and muscle unit contractile changes with endurance training to a mathematical computerised model of motor unit recruitment (Heckman and Binder, 1991). The results from the modelling exercise demonstrate increased task efficiency at relative levels of effort during a submaximal contraction. The physiological impact that nerve and muscle adaptations have on the neuromuscular system during standardized tasks seem to fit with reported changes in motor unit behaviour in trained human subjects.

  14. Exercise training - Blood pressure responses in subjects adapted to microgravity

    NASA Technical Reports Server (NTRS)

    Convertino, Victor A.

    1991-01-01

    Conventional endurance exercise training that involves daily workouts of 1-2 hr duration during exposure to microgravity has not proven completely effective in ameliorating postexposure orthostatic hypotension. Single bouts of intense exercise have been shown to increase plasma volume and baroreflex sensitivity in ambulatory subjects through 24 hr postexercise and to reverse decrements in maximal oxygen uptake and syncopal episodes following exposure to simulated microgravity. These physiological adaptations to acute intense exercise were opposite to those observed following exposure to microgravity. These results suggest that the 'exercise training' stimulus used to prevent orthostatic hypotension induced by microgravity may be specific and should be redefined to include single bouts of maximal exercise which may provide an acute effective countermeasure against postflight hypotension.

  15. Adaptive locomotor training on an end-effector gait robot: evaluation of the ground reaction forces in different training conditions.

    PubMed

    Tomelleri, Christopher; Waldner, Andreas; Werner, Cordula; Hesse, Stefan

    2011-01-01

    The main goal of robotic gait rehabilitation is the restoration of independent gait. To achieve this goal different and specific patterns have to be practiced intensively in order to stimulate the learning process of the central nervous system. The gait robot G-EO Systems was designed to allow the repetitive practice of floor walking, stair climbing and stair descending. A novel control strategy allows training in adaptive mode. The force interactions between the foot and the ground were analyzed on 8 healthy volunteers in three different conditions: real floor walking on a treadmill, floor walking on the gait robot in passive mode, floor walking on the gait robot in adaptive mode. The ground reaction forces were measured by a Computer Dyno Graphy (CDG) analysis system. The results show different intensities of the ground reaction force across all of the three conditions. The intensities of force interactions during the adaptive training mode are comparable to the real walking on the treadmill. Slight deviations still occur in regard to the timing pattern of the forces. The adaptive control strategy comes closer to the physiological swing phase than the passive mode and seems to be a promising option for the treatment of gait disorders. Clinical trials will validate the efficacy of this new option in locomotor therapy on the patients. © 2011 IEEE

  16. Working memory training in survivors of pediatric cancer: a randomized pilot study.

    PubMed

    Hardy, Kristina K; Willard, Victoria W; Allen, Taryn M; Bonner, Melanie J

    2013-08-01

    Survivors of pediatric brain tumors and acute lymphoblastic leukemia (ALL) are at increased risk for neurocognitive deficits, but few empirically supported treatment options exist. We examined the feasibility and preliminary efficacy of a home-based, computerized working memory training program, CogmedRM, with survivors of childhood cancer. Survivors of brain tumors or ALL (n = 20) with identified deficits in attention and/or working memory were randomized to either the success-adapted computer intervention or a non-adaptive, active control condition. Specifically, children in the adaptive condition completed exercises that became more challenging with each correct trial, whereas those in the non-adaptive version trained with exercises that never increased in difficulty. All participants were asked to complete 25 training sessions at home, with weekly, phone-based coaching support. Brief assessments were completed pre-intervention and post-intervention; outcome measures included both performance-based and parent-report measures of working memory and attention. Eighty-five percent of survivors were compliant with the intervention, with no adverse events reported. After controlling for baseline intellectual functioning, survivors who completed the intervention program evidenced significant post-training improvements in their visual working memory and in parent-rated learning problems compared with those in the active control group. No differences in verbal working memory functioning were evident between groups, however. Home-based, computerized cognitive training demonstrates good feasibility and acceptability in our sample. Children with higher intellectual functioning at baseline appeared to benefit more from the training, although further study is needed to clarify the strength, scope, and particularly the generalizability of potential treatment effects. Copyright © 2012 John Wiley & Sons, Ltd.

  17. Transfer of strength and power training to sports performance.

    PubMed

    Young, Warren B

    2006-06-01

    The purposes of this review are to identify the factors that contribute to the transference of strength and power training to sports performance and to provide resistance-training guidelines. Using sprinting performance as an example, exercises involving bilateral contractions of the leg muscles resulting in vertical movement, such as squats and jump squats, have minimal transfer to performance. However, plyometric training, including unilateral exercises and horizontal movement of the whole body, elicits significant increases in sprint acceleration performance, thus highlighting the importance of movement pattern and contraction velocity specificity. Relatively large gains in power output in nonspecific movements (intramuscular coordination) can be accompanied by small changes in sprint performance. Research on neural adaptations to resistance training indicates that intermuscular coordination is an important component in achieving transfer to sports skills. Although the specificity of resistance training is important, general strength training is potentially useful for the purposes of increasing body mass, decreasing the risk of soft-tissue injuries, and developing core stability. Hypertrophy and general power exercises can enhance sports performance, but optimal transfer from training also requires a specific exercise program.

  18. Culturally sensitive adaptation of the concept of relational communication therapy as a support to language development: An exploratory study in collaboration with a Tanzanian orphanage

    PubMed Central

    2016-01-01

    Background Orphans and other vulnerable children (OVC) who grow up in institutional care often show communication and language problems. The caregivers lack training, and there are few language didactics programmes aimed at supporting communication and language development in OVC in institutional care in Tanzania. Objectives The purpose of the study was to adapt the German concept of relational communication therapy (RCT) as a support to language development in a Tanzanian early childhood education context in a culturally sensitive way. Following the adaptation of the concept, a training programme for Tanzanian caregiver students was developed to compare their competencies in language didactics before and after training. Methods A convergent mixed methods design was used to examine changes following training in 12 participating caregiver students in a Tanzanian orphanage. The competencies in relational language didactics were assessed by a self-developed test and video recordings before and after intervention. Based on the results, we drew conclusions regarding necessary modifications to the training modules and to the concept of RCT. Results The relational didactics competencies of the caregiver students improved significantly following their training. A detailed analysis of the four training modules showed that the improvement in relational didactics competencies varied depending on the topic and the teacher. Conclusion The results provide essential hints for the professionalisation of caregivers and for using the concept of RCT for OVC in institutional care in Tanzania. Training programmes and concepts should not just be transferred across different cultures, disciplines and settings; they must be adapted to the specific cultural setting. PMID:28155305

  19. High- and Low-Load Resistance Training: Interpretation and Practical Application of Current Research Findings.

    PubMed

    Fisher, James; Steele, James; Smith, Dave

    2017-03-01

    Our current state of knowledge regarding the load (lighter or heavier) lifted in resistance training programmes that will result in 'optimal' strength and hypertrophic adaptations is unclear. Despite this, position stands and recommendations are made based on, we propose, limited evidence to lift heavier weights. Here we discuss the state of evidence on the impact of load and how it, as a single variable, stimulates adaptations to take place and whether evidence for recommending heavier loads is available, well-defined, currently correctly interpreted or has been overlooked. Areas of discussion include electromyography amplitude, in vivo and in vitro methods of measuring hypertrophy, and motor schema and skill acquisition. The present piece clarifies to trainers and trainees the impact of these variables by discussing interpretation of synchronous and sequential motor unit recruitment and revisiting the size principle, poor agreement between whole-muscle cross-sectional area (CSA) and biopsy-determined changes in myofibril CSA, and neural adaptations around task specificity. Our opinion is that the practical implications of being able to self-select external load include reducing the need for specific facility memberships, motivating older persons or those who might be less confident using heavy loads, and allowing people to undertake home- or field-based resistance training intervention strategies that might ultimately improve exercise adherence.

  20. Feedback in Videogame-Based Adaptive Training

    ERIC Educational Resources Information Center

    Rivera, Iris Daliz

    2010-01-01

    The field of training has been changing rapidly due to advances in technology such as videogame-based adaptive training. Videogame-based adaptive training has provided flexibility and adaptability for training in cost-effective ways. Although this method of training may have many benefits for the trainee, current research has not kept up to pace…

  1. Learning the Discourse of Quality Assurance: A Case of Workplace Learning in Online In-Service Training

    ERIC Educational Resources Information Center

    Lundin, Mona; Lundin, Johan

    2016-01-01

    Purpose: In this study, online in-service training for people employed in the food production industry is scrutinized. The purpose of this study is to analyse how the participants adapt to such online environments in terms of the kind of discussions they establish. The more specific interest relates to how the participants discuss current work…

  2. Changes in muscle coordination with training.

    PubMed

    Carson, Richard G

    2006-11-01

    Three core concepts, activity-dependent coupling, the composition of muscle synergies, and Hebbian adaptation, are discussed with a view to illustrating the nature of the constraints imposed by the organization of the central nervous system on the changes in muscle coordination induced by training. It is argued that training invoked variations in the efficiency with which motor actions can be generated influence the stability of coordination by altering the potential for activity-dependent coupling between the cortical representations of the focal muscles recruited in a movement task and brain circuits that do not contribute directly to the required behavior. The behaviors that can be generated during training are also constrained by the composition of existing intrinsic muscle synergies. In circumstances in which attempts to produce forceful or high velocity movements would otherwise result in the generation of inappropriate actions, training designed to promote the development of control strategies specific to the desired movement outcome may be necessary to compensate for protogenic muscle recruitment patterns. Hebbian adaptation refers to processes whereby, for neurons that release action potentials at the same time, there is an increased probability that synaptic connections will be formed. Neural connectivity induced by the repetition of specific muscle recruitment patterns during training may, however, inhibit the subsequent acquisition of new skills. Consideration is given to the possibility that, in the presence of the appropriate sensory guidance, it is possible to gate Hebbian plasticity and to promote greater subsequent flexibility in the recruitment of the trained muscles in other task contexts.

  3. Does a single gait training session performed either overground or on a treadmill induce specific short-term effects on gait parameters in patients with hemiparesis? A randomized controlled study.

    PubMed

    Bonnyaud, Céline; Pradon, Didier; Zory, Raphael; Bensmail, Djamel; Vuillerme, Nicolas; Roche, Nicolas

    2013-01-01

    Gait training for patients with hemiparesis is carried out independently overground or on a treadmill. Several studies have shown differences in hemiparetic gait parameters during overground versus treadmill walking. However, few studies have compared the effects of these 2 gait training conditions on gait parameters, and no study has compared the short-term effects of these techniques on all biomechanical gait parameters. To determine whether a gait training session performed overground or on a treadmill induces specific short-term effects on biomechanical gait parameters in patients with hemiparesis. Twenty-six subjects with hemiparesis were randomly assigned to a single session of either overground or treadmill gait training. The short-term effects on spatiotemporal, kinematic, and kinetic gait parameters were assessed using gait analysis before and immediately after the training and after a 20-minute rest. Speed, cadence, percentage of single support phase, peak knee extension, peak propulsion, and braking on the paretic side were significantly increased after the gait training session. However, there were no specific changes dependent on the type of gait training performed (overground or on a treadmill). A gait training session performed by subjects with hemiparesis overground or on a treadmill did not induce specific short-term effects on biomechanical gait parameters. The increase in gait velocity that followed a gait training session seemed to reflect specific modifications of the paretic lower limb and adaptation of the nonparetic lower limb.

  4. Context-specific adaptation of pursuit initiation in humans

    NASA Technical Reports Server (NTRS)

    Takagi, M.; Abe, H.; Hasegawa, S.; Usui, T.; Hasebe, H.; Miki, A.; Zee, D. S.; Shelhauser, M. (Principal Investigator)

    2000-01-01

    PURPOSE: To determine if multiple states for the initiation of pursuit, as assessed by acceleration in the "open-loop" period, can be learned and gated by context. METHODS: Four normal subjects were studied. A modified step-ramp paradigm for horizontal pursuit was used to induce adaptation. In an increasing paradigm, target velocity doubled 230 msec after onset; in a decreasing paradigm, it was halved. In the first experiment, vertical eye position (+/-5 degrees ) was used as the context cue, and the training paradigm (increasing or decreasing) changed with vertical eye position. In the second experiment, with vertical position constant, when the target was red, training was decreasing, and when green, increasing. The average eye acceleration in the first 100 msec of tracking was the index of open-loop pursuit performance. RESULTS: With vertical position as the cue, pursuit adaptation differed between up and down gaze. In some cases, the direction of adaptation was in exact accord with the training stimuli. In others, acceleration increased or decreased for both up and down gaze but always in correct relative proportion to the training stimuli. In contrast, multiple adaptive states were not induced with color as the cue. CONCLUSIONS: Multiple values for the relationship between the average eye acceleration during the initiation of pursuit and target velocity could be learned and gated by context. Vertical position was an effective contextual cue but not target color, implying that useful contextual cues must be similar to those occurring naturally, for example, orbital position with eye muscle weakness.

  5. The importance of training strategy adaptation: a learner-oriented approach for improving older adults' memory and transfer.

    PubMed

    Bottiroli, Sara; Cavallini, Elena; Dunlosky, John; Vecchi, Tomaso; Hertzog, Christopher

    2013-09-01

    We investigated the benefits of strategy-adaptation training for promoting transfer effects. This learner-oriented approach--which directly encourages the learner to generalize strategic behavior to new tasks--helps older adults appraise new tasks and adapt trained strategies to them. In Experiment 1, older adults in a strategy-adaptation training group used 2 strategies (imagery and sentence generation) while practicing 2 tasks (list and associative learning); they were then instructed on how to do a simple task analysis to help them adapt the trained strategies for 2 different unpracticed tasks (place learning and text learning) that were discussed during training. Two additional criterion tasks (name-face associative learning and grocery-list learning) were never mentioned during training. Two other groups were included: A strategy training group (who received strategy training and transfer instructions but not strategy-adaptation training) and a waiting-list control group. Both training procedures enhanced older adults' performance on the trained tasks and those tasks that were discussed during training, but transfer was greatest after strategy-adaptation training. Experiment 2 found that strategy-adaptation training conducted via a manual that older adults used at home also promoted transfer. These findings demonstrate the importance of adopting a learner-oriented approach to promote transfer of strategy training. PsycINFO Database Record (c) 2013 APA, all rights reserved.

  6. Assessing Disease Class-Specific Diagnostic Ability: A Practical Adaptive Test Approach.

    ERIC Educational Resources Information Center

    Papa, Frank J.; Schumacker, Randall E.

    Measures of the robustness of disease class-specific diagnostic concepts could play a central role in training programs designed to assure the development of diagnostic competence. In the pilot study, the authors used disease/sign-symptom conditional probability estimates, Monte Carlo procedures, and artificial intelligence (AI) tools to create…

  7. Patient adaptive control of end-effector based gait rehabilitation devices using a haptic control framework.

    PubMed

    Hussein, Sami; Kruger, Jörg

    2011-01-01

    Robot assisted training has proven beneficial as an extension of conventional therapy to improve rehabilitation outcome. Further facilitation of this positive impact is expected from the application of cooperative control algorithms to increase the patient's contribution to the training effort according to his level of ability. This paper presents an approach for cooperative training for end-effector based gait rehabilitation devices. Thereby it provides the basis to firstly establish sophisticated cooperative control methods in this class of devices. It uses a haptic control framework to synthesize and render complex, task specific training environments, which are composed of polygonal primitives. Training assistance is integrated as part of the environment into the haptic control framework. A compliant window is moved along a nominal training trajectory compliantly guiding and supporting the foot motion. The level of assistance is adjusted via the stiffness of the moving window. Further an iterative learning algorithm is used to automatically adjust this assistance level. Stable haptic rendering of the dynamic training environments and adaptive movement assistance have been evaluated in two example training scenarios: treadmill walking and stair climbing. Data from preliminary trials with one healthy subject is provided in this paper. © 2011 IEEE

  8. Differential changes in hippocampal CaMKII and GluA1 activity after memory training involving different levels of adaptive forgetting

    PubMed Central

    Fraize, Nicolas; Hamieh, Al Mahdy; Joseph, Mickaël Antoine; Touret, Monique; Parmentier, Régis; Salin, Paul Antoine; Malleret, Gaël

    2017-01-01

    Phosphorylation of CaMKII and AMPA receptor GluA1 subunit has been shown to play a major role in hippocampal-dependent long-term/reference memory (RM) and in the expression of long-term synaptic potentiation (LTP). In contrast, it has been proposed that dephosphorylation of these proteins could be involved in the opposite phenomenon of hippocampal long-term synaptic depression (LTD) and in adaptive forgetting. Adaptive forgetting allows interfering old memories to be forgotten to give new ones the opportunity to be stored in memory, and in particular in short-term/working memory (WM) that was shown to be very sensitive to proactive interference. To determine the role of CaMKII and GluA1 in adaptive forgetting, we adopted a comparative approach to assess the relative quantity and phosphorylation state of these proteins in the brain of rats trained in one of three radial maze paradigms: a RM task, a WM task involving a high level of adaptive forgetting, or a WM involving a low level of adaptive forgetting. Surprisingly, Western blot analyses revealed that training in a WM task involving a high level of adaptive forgetting specifically increased the expression of AMPA receptor GluA1 subunit and the activity of CaMKII in the dentate gyrus. These results highlight that WM with proactive interference involves mechanisms of synaptic plasticity selectively in the dentate gyrus. PMID:28096498

  9. Differential changes in hippocampal CaMKII and GluA1 activity after memory training involving different levels of adaptive forgetting.

    PubMed

    Fraize, Nicolas; Hamieh, Al Mahdy; Joseph, Mickaël Antoine; Touret, Monique; Parmentier, Régis; Salin, Paul Antoine; Malleret, Gaël

    2017-02-01

    Phosphorylation of CaMKII and AMPA receptor GluA1 subunit has been shown to play a major role in hippocampal-dependent long-term/reference memory (RM) and in the expression of long-term synaptic potentiation (LTP). In contrast, it has been proposed that dephosphorylation of these proteins could be involved in the opposite phenomenon of hippocampal long-term synaptic depression (LTD) and in adaptive forgetting. Adaptive forgetting allows interfering old memories to be forgotten to give new ones the opportunity to be stored in memory, and in particular in short-term/working memory (WM) that was shown to be very sensitive to proactive interference. To determine the role of CaMKII and GluA1 in adaptive forgetting, we adopted a comparative approach to assess the relative quantity and phosphorylation state of these proteins in the brain of rats trained in one of three radial maze paradigms: a RM task, a WM task involving a high level of adaptive forgetting, or a WM involving a low level of adaptive forgetting. Surprisingly, Western blot analyses revealed that training in a WM task involving a high level of adaptive forgetting specifically increased the expression of AMPA receptor GluA1 subunit and the activity of CaMKII in the dentate gyrus. These results highlight that WM with proactive interference involves mechanisms of synaptic plasticity selectively in the dentate gyrus. © 2017 Fraize et al.; Published by Cold Spring Harbor Laboratory Press.

  10. Training a Constitutional Dynamic Network for Effector Recognition: Storage, Recall, and Erasing of Information.

    PubMed

    Holub, Jan; Vantomme, Ghislaine; Lehn, Jean-Marie

    2016-09-14

    Constitutional dynamic libraries (CDLs) of hydrazones, acylhydrazones, and imines undergo reorganization and adaptation in response to chemical effectors (herein metal cations) via component exchange and selection. Such CDLs can be subjected to training by exposition to given effectors and keep memory of the information stored by interaction with a specific metal ion. The long-term storage of the acquired information into the set of constituents of the system allows for fast recognition on subsequent contacts with the same effector(s). Dynamic networks of constituents were designed to adapt orthogonally to different metal cations by up- and down-regulation of specific constituents in the final distribution. The memory may be erased by component exchange between the constituents so as to regenerate the initial (statistical) distribution. The libraries described represent constitutional dynamic systems capable of acting as information storage molecular devices, in which the presence of components linked by reversible covalent bonds in slow exchange and bearing adequate coordination sites allows for the adaptation to different metal ions by constitutional variation. The system thus performs information storage, recall, and erase processes.

  11. Gait adaptability training is affected by visual dependency.

    PubMed

    Brady, Rachel A; Peters, Brian T; Batson, Crystal D; Ploutz-Snyder, Robert; Mulavara, Ajitkumar P; Bloomberg, Jacob J

    2012-07-01

    As part of a larger gait adaptability training study, we designed a program that presented combinations of visual flow and support-surface manipulations to investigate the response of healthy adults to walking on a treadmill in novel discordant sensorimotor conditions. A visual dependence score was determined for each subject, and this score was used to explore how visual dependency was linked to locomotor performance (1) during three training sessions and (2) in a new discordant environment presented at the conclusion of training. Performance measures included reaction time (RT), stride frequency (SF), and heart rate (HR), which respectively served as indicators of cognitive load, postural stability, and anxiety. We hypothesized that training would affect performance measures differently for highly visually dependent individuals than for their less visually dependent counterparts. A seemingly unrelated estimation analysis of RT, SF, and HR revealed a significant omnibus interaction of visual dependency by session (p < 0.001), suggesting that the magnitude of differences in these measures across training day 1 (TD1), training day 3 (TD3), and exposure to a novel test is dependent on subjects' levels of visual dependency. The RT result, in particular, suggested that highly visually dependent subjects successfully trained to one set of sensory discordant conditions but were unable to apply their adapted skills when introduced to a new sensory discordant environment. This finding augments rationale for developing customized gait training programs that are tailored to an individual. It highlights one factor--personal level of visual dependency--to consider when designing training conditions for a subject or patient. Finally, the link between visual dependency and locomotor performance may offer predictive insight regarding which subjects in a normal population will require more training when preparing for specific novel locomotor conditions.

  12. Does ipsilateral corticospinal excitability play a decisive role in the cross-education effect caused by unilateral resistance training? A systematic review.

    PubMed

    Colomer-Poveda, D; Romero-Arenas, S; Hortobagyi, T; Márquez, G

    2018-01-02

    Unilateral resistance training has been shown to improve muscle strength in both the trained and the untrained limb. One of the most widely accepted theories is that this improved performance is due to nervous system adaptations, specifically in the primary motor cortex. According to this hypothesis, increased corticospinal excitability (CSE), measured with transcranial magnetic stimulation, is one of the main adaptations observed following prolonged periods of training. The principal aim of this review is to determine the degree of adaptation of CSE and its possible functional association with increased strength in the untrained limb. We performed a systematic literature review of studies published between January 1970 and December 2016, extracted from Medline (via PubMed), Ovid, Web of Science, and Science Direct online databases. The search terms were as follows: (transcranial magnetic stimulation OR excitability) AND (strength training OR resistance training OR force) AND (cross transfer OR contralateral limb OR cross education). A total of 10 articles were found. Results regarding increased CSE were inconsistent. Although the possibility that the methodology had a role in this inconsistency cannot be ruled out, the results appear to suggest that there may not be a functional association between increases in muscle strength and in CSE. Copyright © 2017 Sociedad Española de Neurología. Publicado por Elsevier España, S.L.U. All rights reserved.

  13. The effects of interday rest on adaptation to 6 weeks of plyometric training in young soccer players.

    PubMed

    Ramírez-Campillo, Rodrigo; Meylan, César M P; Álvarez-Lepín, Cristian; Henriquez-Olguín, Carlos; Martinez, Cristian; Andrade, David C; Castro-Sepúlveda, Mauricio; Burgos, Carlos; Baez, Eduardo I; Izquierdo, Mikel

    2015-04-01

    The purpose of this study was to determine the effects of short-term plyometric training interposed with 24 or 48 hours of rest between training sessions on explosive and endurance adaptations in young soccer players. A total of 166 players, between 10 and 17 years of age, were randomly divided into 3 groups: a control group (CG; n = 55) and 2 plyometric training groups with 24 hours (PT24; n = 54) and 48 hours (PT48; n = 57) of rest between training sessions. Before and after intervention, players were measured in squat jump, countermovement jump, 20 (RSI20) cm drop jump reactive strength index, broad long jump, 20-m sprint time, 10 × 5-m agility time, 20-m multistage shuttle run test, and sit-and-reach test. The plyometric training program was applied during 6 weeks, 2 sessions per week, with a load from 140 to 260 jumps per session, replacing some soccer-specific drills. After intervention, the CG did not show significant performance changes. PT24 and PT48 groups showed a small-to-moderate significant improvement in all performance tests (p < 0.001), with no differences between treatments. Although it has been recommended that plyometric drills should not be conducted on consecutive days, the study shows that plyometric training applied twice weekly on consecutive or nonconsecutive days results in similar explosive and endurance adaptations in young male soccer players.

  14. Weekly Time Course of Neuro-Muscular Adaptation to Intensive Strength Training.

    PubMed

    Brown, Niklas; Bubeck, Dieter; Haeufle, Daniel F B; Weickenmeier, Johannes; Kuhl, Ellen; Alt, Wilfried; Schmitt, Syn

    2017-01-01

    Detailed description of the time course of muscular adaptation is rarely found in literature. Thus, models of muscular adaptation are difficult to validate since no detailed data of adaptation are available. In this article, as an initial step toward a detailed description and analysis of muscular adaptation, we provide a case report of 8 weeks of intense strength training with two active, male participants. Muscular adaptations were analyzed on a morphological level with MRI scans of the right quadriceps muscle and the calculation of muscle volume, on a voluntary strength level by isometric voluntary contractions with doublet stimulation (interpolated twitch technique) and on a non-voluntary level by resting twitch torques. Further, training volume and isokinetic power were closely monitored during the training phase. Data were analyzed weekly for 1 week prior to training, pre-training, 8 weeks of training and 2 weeks of detraining (no strength training). Results show a very individual adaptation to the intense strength training protocol. While training volume and isokinetic power increased linearly during the training phase, resting twitch parameters decreased for both participants after the first week of training and stayed below baseline until de-training. Voluntary activation level showed an increase in the first 4 weeks of training, while maximum voluntary contraction showed only little increase compared to baseline. Muscle volume increased for both subjects. Especially training status seemed to influence the acute reaction to intense strength training. Fatigue had a major influence on performance and could only be overcome by one participant. The results give a first detailed insight into muscular adaptation to intense strength training on various levels, providing a basis of data for a validation of muscle fatigue and adaptation models.

  15. Effect of Parent Training on Adaptive Behavior in Children With Autism Spectrum Disorder and Disruptive Behavior: Results of a Randomized Trial.

    PubMed

    Scahill, Lawrence; Bearss, Karen; Lecavalier, Luc; Smith, Tristram; Swiezy, Naomi; Aman, Michael G; Sukhodolsky, Denis G; McCracken, Courtney; Minshawi, Noha; Turner, Kylan; Levato, Lynne; Saulnier, Celine; Dziura, James; Johnson, Cynthia

    2016-07-01

    This study examined the impact of parent training on adaptive behavior in children with autism spectrum disorder (ASD) and disruptive behavior. This was a 24-week, 6-site, randomized trial of parent training versus parent education in 180 children with ASD (aged 3-7 years; 158 boys and 22 girls) and moderate or greater behavioral problems. Parent training included specific strategies to manage disruptive behavior over 11 to 13 sessions, 2 telephone boosters, and 2 home visits. Parent education provided useful information about autism but no behavior management strategies over 12 core sessions and 1 home visit. In a previous report, we showed that parent training was superior to parent education in reducing disruptive behavior in young children with ASD. Here, we test whether parent training is superior to parent education in improving daily living skills as measured by the parent-rated Vineland Adaptive Behavior Scales II. The long-term impact of parent training on adaptive functioning is also presented. At week 24, the parent training group showed a 5.7-point improvement from baseline on the Daily Living domain compared to no change in parent education (p = .004; effect size = 0.36). On the Socialization domain, there was a 5.9-point improvement in parent training versus a 3.1-point improvement in parent education (p = .11; effect size = 0.29). Gains in the Communication domain were similar across treatment groups. The gain in Daily Living was greater in children with IQ of >70. However, the interaction of treatment-by-IQ was not significant. Gains in Daily Living at week 24 were maintained upon re-evaluation at 24 weeks posttreatment. These results support the model that reduction in disruptive behavior can lead to improvement in activities of daily living. By contrast, the expected trajectory for adaptive behavior in children with ASD is often flat and predictably declines in children with intellectual disability. In the parent training group, higher-functioning children achieved significant gains in daily living skills. Children with intellectual disability kept pace with time. Clinical trial registration information-Randomized Trial of Parent Training for Young Children With Autism (RUBI); http://clinicaltrials.gov/; NCT01233414. Copyright © 2016 American Academy of Child and Adolescent Psychiatry. Published by Elsevier Inc. All rights reserved.

  16. Aerobic exercise training induces skeletal muscle hypertrophy and age-dependent adaptations in myofiber function in young and older men

    PubMed Central

    Konopka, Adam R.; Undem, Miranda K.; Hinkley, James M.; Minchev, Kiril; Kaminsky, Leonard A.; Trappe, Todd A.; Trappe, Scott

    2012-01-01

    To examine potential age-specific adaptations in skeletal muscle size and myofiber contractile physiology in response to aerobic exercise, seven young (YM; 20 ± 1 yr) and six older men (OM; 74 ± 3 yr) performed 12 wk of cycle ergometer training. Muscle biopsies were obtained from the vastus lateralis to determine size and contractile properties of isolated slow [myosin heavy chain (MHC) I] and fast (MHC IIa) myofibers, MHC composition, and muscle protein concentration. Aerobic capacity was higher (P < 0.05) after training in both YM (16 ± 2%) and OM (13 ± 3%). Quadriceps muscle volume, determined via MRI, was 5 ± 1 and 6 ± 1% greater (P < 0.05) after training for YM and OM, respectively, which was associated with an increase in MHC I myofiber cross-sectional area (CSA), independent of age. MHC I peak power was higher (P < 0.05) after training for both YM and OM, while MHC IIa peak power was increased (P < 0.05) with training in OM only. MHC I and MHC IIa myofiber peak and normalized (peak force/CSA) force were preserved with training in OM, while MHC I peak force/CSA and MHC IIa peak force were lower (P < 0.05) after training in YM. The age-dependent adaptations in myofiber function were not due to changes in protein content, as total muscle protein and myofibrillar protein concentration were unchanged (P > 0.05) with training. Training reduced (P < 0.05) the proportion of MHC IIx isoform, independent of age, whereas no other changes in MHC composition were observed. These data suggest relative improvements in muscle size and aerobic capacity are similar between YM and OM, while adaptations in myofiber contractile function showed a general improvement in OM. Training-related increases in MHC I and MHC IIa peak power reveal that skeletal muscle of OM is responsive to aerobic exercise training and further support the use of aerobic exercise for improving cardiovascular and skeletal muscle health in older individuals. PMID:22984247

  17. Peripheral adaptive filtering in human olfaction? Three studies on prevalence and effects of olfactory training in specific anosmia in more than 1600 participants.

    PubMed

    Croy, Ilona; Olgun, Selda; Mueller, Laura; Schmidt, Anna; Muench, Marcus; Hummel, Cornelia; Gisselmann, Guenter; Hatt, Hanns; Hummel, Thomas

    2015-12-01

    Selective processing of environmental stimuli improves processing capacity and allows adaptive modulation of behavior. The thalamus provides an effective filter of central sensory information processing. As olfactory projections, however, largely bypass the thalamus, other filter mechanisms must consequently have evolved for the sense of smell. We investigated whether specific anosmia - the inability to perceive a specific odor whereas detection of other substances is unaffected - represents an effective peripheral filter of olfactory information processing. In contrast to previous studies, we showed in a sample of 1600 normosmic subjects, that specific anosmia is by no means a rare phenomenon. Instead, while the affected odor is highly individual, the general probability of occurrence of specific anosmia is close to 1. In addition, 25 subjects performed daily olfactory training sessions with enhanced exposure to their particular "missing" smells for the duration of three months. This resulted in a significant improvement of sensitivity towards the respective specific odors. We propose specific anosmia to occur as a rule, rather than an exception, in the sense of smell. The lack of perception of certain odors may constitute a flexible peripheral filter mechanism, which can be altered by exposure. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Adaptive Training of Manual Control: 1. Comparison of Three Adaptive Variables and Two Logic Schemes.

    ERIC Educational Resources Information Center

    Norman, D. A.; And Others

    "Machine controlled adaptive training is a promising concept. In adaptive training the task presented to the trainee varies as a function of how well he performs. In machine controlled training, adaptive logic performs a function analogous to that performed by a skilled operator." This study looks at the ways in which gain-effective time…

  19. Early-phase musculoskeletal adaptations to different levels of eccentric resistance after 8 weeks of lower body training.

    PubMed

    English, Kirk L; Loehr, James A; Lee, Stuart M C; Smith, Scott M

    2014-11-01

    Eccentric muscle actions are important to the development of muscle mass and strength and may affect bone mineral density (BMD). This study's purpose was to determine the relative effectiveness of five different eccentric:concentric load ratios to increase musculoskeletal parameters during early adaptations to resistance training. Forty male subjects performed a supine leg press and calf press training program 3 days week(-1) for 8 weeks. Subjects were matched for pre-training leg press 1-repetition maximum strength (1-RM) and randomly assigned to one of five training groups. Concentric training load (% 1-RM) was constant across groups, but within groups, eccentric load was 0, 33, 66, 100, or 138% of concentric load. Muscle mass (dual energy X-ray absorptiometry; DXA), strength (1-RM), and BMD (DXA) were measured pre- and post-training. Markers of bone metabolism were assessed pre-, mid- and post-training. The increase in leg press 1-RM in the 138% group (20 ± 4%) was significantly greater (P < 0.05) than the 0% (8 ± 3%), 33% (8 ± 5%) and 66% (8 ± 4%) groups, but not the 100% group (13 ± 6 %; P = 0.15). All groups, except the 0% group, increased calf press 1-RM (P < 0.05). Leg lean mass and greater trochanter BMD were increased only in the 138% group (P < 0.05). Early-phase adaptations to eccentric overload training include increases in muscle mass and site-specific increases in BMD and muscle strength which are not present or are less with traditional and eccentric underload training. Eccentric overload provides a robust musculoskeletal stimulus that may benefit bedridden patients, individuals recovering from injury or illness, and astronauts during spaceflight.

  20. Geriatric education across 94 million acres: adapting conference programming in a rural state.

    PubMed

    Murphy-Southwick, Colleen; McBride, Melen

    2006-01-01

    Montana, a predominantly rural state, with a unique blend of geography and history, low population density, and cultural diversity represents the challenges for program development and implementation across remote areas. The paper discusses two statewide multidisciplinary geriatric education programs for health professionals offered by the recently established Montana Geriatric Education Center (MTGEC); use of telecommunications technology; collaborations with Geriatric Education Centers (GECs) and the Montana Healthcare Telemedicine Alliance (MHTA); and training outcomes, insights, and implications for continuing education of health professionals who practice in hard-to-reach regions. In addition, data from a statewide needs assessment are presented specific to preferred format. The MTGEC training model that combined traditional classroom and videoconference increased attendance by twofold and may be adapted in other regions to train providers in remote areas of the U.S.

  1. Application of adaptive boosting to EP-derived multilayer feed-forward neural networks (MLFN) to improve benign/malignant breast cancer classification

    NASA Astrophysics Data System (ADS)

    Land, Walker H., Jr.; Masters, Timothy D.; Lo, Joseph Y.; McKee, Dan

    2001-07-01

    A new neural network technology was developed for improving the benign/malignant diagnosis of breast cancer using mammogram findings. A new paradigm, Adaptive Boosting (AB), uses a markedly different theory in solutioning Computational Intelligence (CI) problems. AB, a new machine learning paradigm, focuses on finding weak learning algorithm(s) that initially need to provide slightly better than random performance (i.e., approximately 55%) when processing a mammogram training set. Then, by successive development of additional architectures (using the mammogram training set), the adaptive boosting process improves the performance of the basic Evolutionary Programming derived neural network architectures. The results of these several EP-derived hybrid architectures are then intelligently combined and tested using a similar validation mammogram data set. Optimization focused on improving specificity and positive predictive value at very high sensitivities, where an analysis of the performance of the hybrid would be most meaningful. Using the DUKE mammogram database of 500 biopsy proven samples, on average this hybrid was able to achieve (under statistical 5-fold cross-validation) a specificity of 48.3% and a positive predictive value (PPV) of 51.8% while maintaining 100% sensitivity. At 97% sensitivity, a specificity of 56.6% and a PPV of 55.8% were obtained.

  2. Resistance-training exercises with different stability requirements: time course of task specificity.

    PubMed

    Saeterbakken, Atle Hole; Andersen, Vidar; Behm, David G; Krohn-Hansen, Espen Krogseth; Smaamo, Mats; Fimland, Marius Steiro

    2016-12-01

    The aim of the study was to assess the task-specificity (greater improvements in trained compared to non-trained tasks), transferability and time-course adaptations of resistance-training programs with varying instability requirements. Thirty-six resistance-trained men were randomized to train chest press 2 days week -1 for 10 week (6 repetitions × 4 series) using a Swiss ball, Smith machine or dumbbells. A six-repetition maximum-strength test with the aforementioned exercises and traditional barbell chest press were performed by all participants at the first, 7th, 14th and final training session in addition to electromyographic activities of the prime movers measured during isometric bench press. The groups training with the unstable Swiss-ball and dumbbells, but not the stable Smith-machine, demonstrated task-specificity, which became apparent in the early phase and remained throughout the study. The improvements in the trained exercise tended to increase more with instability (dumbbells vs. Smith machine, p = 0.061). The group training with Smith machine had similar improvements in the non-trained exercises. Greater improvements were observed in the early phase of the strength-training program (first-7th session) for all groups in all three exercises, but most notably for the unstable exercises. No differences were observed between the groups or testing times for EMG activity. These findings suggest that among resistance-trained individuals, the concept of task-specificity could be most relevant in resistance training with greater stability requirements, particularly due to rapid strength improvements for unstable resistance exercises.

  3. Considerations for Adaptive Tutoring Within Serious Games: Authoring Cognitive Models and game Interfaces

    DTIC Science & Technology

    2011-06-01

    character skills correspond to real- world player skills (transfer). In games such as World of Warcraft , "grinding" behaviors are popular (boring...reflecting on a recent emphasis on self-directed learning using game-based simulations and virtual worlds , the authors considered key challenges in...transforming serious games and virtual worlds into adaptive training tools. This article reflects specifically on the challenges and potential of cognitive

  4. Context-Specific Adaptation of Gravity-Dependent Vestibular Reflex Responses (NSBRI Neurovestibular Project 1)

    NASA Technical Reports Server (NTRS)

    Shelhamer, Mark; Goldberg, Jefim; Minor, Lloyd B.; Paloski, William H.; Young, Laurence R.; Zee, David S.

    1999-01-01

    Impairment of gaze and head stabilization reflexes can lead to disorientation and reduced performance in sensorimotor tasks such as piloting of spacecraft. Transitions between different gravitoinertial force (gif) environments - as during different phases of space flight - provide an extreme test of the adaptive capabilities of these mechanisms. We wish to determine to what extent the sensorimotor skills acquired in one gravity environment will transfer to others, and to what extent gravity serves as a context cue for inhibiting such transfer. We use the general approach of adapting a response (saccades, vestibuloocular reflex: VOR, or vestibulocollic reflex: VCR) to a particular change in gain or phase in one gif condition, adapting to a different gain or phase in a second gif condition, and then seeing if gif itself - the context cue - can recall the previously-learned adapted responses. Previous evidence indicates that unless there is specific training to induce context-specificity, reflex adaptation is sequential rather than simultaneous. Various experiments in this project investigate the behavioral properties, neurophysiological basis, and anatomical substrate of context-specific learning, using otolith (gravity) signals as a context cue. In the following, we outline the methods for all experiments in this project, and provide details and results on selected experiments.

  5. A qualitative analysis of the concepts of fidelity and adaptation in the implementation of an evidence-based HIV prevention intervention

    PubMed Central

    Owczarzak, Jill; Broaddus, Michelle; Pinkerton, Steven

    2016-01-01

    Continued debate about the relative value of fidelity versus adaptation, and lack of clarity about the meaning of fidelity, raise concerns about how frontline service providers resolve similar issues in their daily practice. We use SISTA (‘Sisters Informing Sisters on Topics about acquired immune deficiency syndrome’), an evidence-based human immunodeficiency virus (HIV) prevention intervention for African American women, to understand how facilitators and program directors interpret and enact implementation fidelity with the need for adaptation in real-world program delivery. We conducted 22 in-depth, semi-structured interviews with service providers from four agencies implementing SISTA. Facilitators valued their skills as group leaders and ability to emotionally engage participants as more critical to program effectiveness than delivering the intervention with strict fidelity. Consequently, they saw program manuals as guides rather than static texts that should never be changed and, moreover, viewed the prescriptive nature of manuals as undermining their efforts to fully engage with participants. Our findings suggest that greater consideration should be given to understanding the role of facilitators in program effectiveness over and above the question of whether they implement the program with fidelity. Moreover, training curricula should provide facilitators with transferable skills through general facilitator training rather than only program-specific or manual-specific training. PMID:26944867

  6. Model Guided Design and Development Process for an Electronic Health Record Training Program

    PubMed Central

    He, Ze; Marquard, Jenna; Henneman, Elizabeth

    2016-01-01

    Effective user training is important to ensure electronic health record (EHR) implementation success. Though many previous studies report best practice principles and success and failure stories, current EHR training is largely empirically-based and often lacks theoretical guidance. In addition, the process of training development is underemphasized and underreported. A white paper by the American Medical Informatics Association called for models of user training for clinical information system implementation; existing instructional development models from learning theory provide a basis to meet this call. We describe in this paper our experiences and lessons learned as we adapted several instructional development models to guide our development of EHR user training. Specifically, we focus on two key aspects of this training development: training content and training process. PMID:28269940

  7. Prism adaptation for spatial neglect after stroke: translational practice gaps.

    PubMed

    Barrett, A M; Goedert, Kelly M; Basso, Julia C

    2012-10-01

    Spatial neglect increases hospital morbidity and costs in around 50% of the 795,000 people per year in the USA who survive stroke, and an urgent need exists to reduce the care burden of this condition. However, effective acute treatment for neglect has been elusive. In this article, we review 48 studies of a treatment of intense neuroscience interest: prism adaptation training. Due to its effects on spatial motor 'aiming', prism adaptation training may act to reduce neglect-related disability. However, research failed, first, to suggest methods to identify the 50-75% of patients who respond to treatment; second, to measure short-term and long-term outcomes in both mechanism-specific and functionally valid ways; third, to confirm treatment utility during the critical first 8 weeks poststroke; and last, to base treatment protocols on systematic dose-response data. Thus, considerable investment in prism adaptation research has not yet touched the fundamentals needed for clinical implementation. We suggest improved standards and better spatial motor models for further research, so as to clarify when, how and for whom prism adaptation should be applied.

  8. Prism adaptation for spatial neglect after stroke: translational practice gaps

    PubMed Central

    Barrett, A. M.; Goedert, Kelly M.; Basso, Julia C.

    2012-01-01

    Spatial neglect increases hospital morbidity and costs in around 50% of the 795,000 people per year in the USA who survive stroke, and an urgent need exists to reduce the care burden of this condition. However, effective acute treatment for neglect has been elusive. In this article, we review 48 studies of a treatment of intense neuroscience interest: prism adaptation training. Due to its effects on spatial motor ‘aiming’, prism adaptation training may act to reduce neglect-related disability. However, research failed, first, to suggest methods to identify the 50–75% of patients who respond to treatment; second, to measure short-term and long-term outcomes in both mechanism-specific and functionally valid ways; third, to confirm treatment utility during the critical first 8 weeks poststroke; and last, to base treatment protocols on systematic dose–response data. Thus, considerable investment in prism adaptation research has not yet touched the fundamentals needed for clinical implementation. We suggest improved standards and better spatial motor models for further research, so as to clarify when, how and for whom prism adaptation should be applied. PMID:22926312

  9. The decay of motor adaptation to novel movement dynamics reveals an asymmetry in the stability of motion state-dependent learning

    PubMed Central

    Hosseini, Eghbal A.; Nguyen, Katrina P.; Joiner, Wilsaan M.

    2017-01-01

    Motor adaptation paradigms provide a quantitative method to study short-term modification of motor commands. Despite the growing understanding of the role motion states (e.g., velocity) play in this form of motor learning, there is little information on the relative stability of memories based on these movement characteristics, especially in comparison to the initial adaptation. Here, we trained subjects to make reaching movements perturbed by force patterns dependent upon either limb position or velocity. Following training, subjects were exposed to a series of error-clamp trials to measure the temporal characteristics of the feedforward motor output during the decay of learning. The compensatory force patterns were largely based on the perturbation kinematic (e.g., velocity), but also showed a small contribution from the other motion kinematic (e.g., position). However, the velocity contribution in response to the position-based perturbation decayed at a slower rate than the position contribution to velocity-based training, suggesting a difference in stability. Next, we modified a previous model of motor adaptation to reflect this difference and simulated the behavior for different learning goals. We were interested in the stability of learning when the perturbations were based on different combinations of limb position or velocity that subsequently resulted in biased amounts of motion-based learning. We trained additional subjects on these combined motion-state perturbations and confirmed the predictions of the model. Specifically, we show that (1) there is a significant separation between the observed gain-space trajectories for the learning and decay of adaptation and (2) for combined motion-state perturbations, the gain associated to changes in limb position decayed at a faster rate than the velocity-dependent gain, even when the position-dependent gain at the end of training was significantly greater. Collectively, these results suggest that the state-dependent adaptation associated with movement velocity is relatively more stable than that based on position. PMID:28481891

  10. From PALSA PLUS to PALM PLUS: adapting and developing a South African guideline and training intervention to better integrate HIV/AIDS care with primary care in rural health centers in Malawi

    PubMed Central

    2011-01-01

    Background Only about one-third of eligible HIV/AIDS patients receive anti-retroviral treatment (ART). Decentralizing treatment is crucial to wider and more equitable access, but key obstacles are a shortage of trained healthcare workers (HCW) and challenges integrating HIV/AIDS care with other primary care. This report describes the development of a guideline and training program (PALM PLUS) designed to integrate HIV/AIDS care with other primary care in Malawi. PALM PLUS was adapted from PALSA PLUS, developed in South Africa, and targets middle-cadre HCWs (clinical officers, nurses, and medical assistants). We adapted it to align with Malawi's national treatment protocols, more varied healthcare workforce, and weaker health system infrastructure. Methods/Design The international research team included the developers of the PALSA PLUS program, key Malawi-based team members and personnel from national and district level Ministry of Health (MoH), professional associations, and an international non-governmental organization. The PALSA PLUS guideline was extensively revised based on Malawi national disease-specific guidelines. Advice and input was sought from local clinical experts, including middle-cadre personnel, as well as Malawi MoH personnel and representatives of Malawian professional associations. Results An integrated guideline adapted to Malawian protocols for adults with respiratory conditions, HIV/AIDS, tuberculosis, and other primary care conditions was developed. The training program was adapted to Malawi's health system and district-level supervision structure. PALM PLUS is currently being piloted in a cluster-randomized trial in health centers in Malawi (ISRCTN47805230). Discussion The PALM PLUS guideline and training intervention targets primary care middle-cadre HCWs with the objective of improving HCW satisfaction and retention, and the quality of patient care. Successful adaptations are feasible, even across health systems as different as those of South Africa and Malawi. PMID:21791048

  11. Exercise-Induced Oxidative Stress Responses in the Pediatric Population

    PubMed Central

    Avloniti, Alexandra; Chatzinikolaou, Athanasios; Deli, Chariklia K.; Vlachopoulos, Dimitris; Gracia-Marco, Luis; Leontsini, Diamanda; Draganidis, Dimitrios; Jamurtas, Athanasios Z.; Mastorakos, George; Fatouros, Ioannis G.

    2017-01-01

    Adults demonstrate an upregulation of their pro- and anti-oxidant mechanisms in response to acute exercise while systematic exercise training enhances their antioxidant capacity, thereby leading to a reduced generation of free radicals both at rest and in response to exercise stress. However, less information exists regarding oxidative stress responses and the underlying mechanisms in the pediatric population. Evidence suggests that exercise-induced redox perturbations may be valuable in order to monitor exercise-induced inflammatory responses and as such training overload in children and adolescents as well as monitor optimal growth and development. The purpose of this review was to provide an update on oxidative stress responses to acute and chronic exercise in youth. It has been documented that acute exercise induces age-specific transient alterations in both oxidant and antioxidant markers in children and adolescents. However, these responses seem to be affected by factors such as training phase, training load, fitness level, mode of exercise etc. In relation to chronic adaptation, the role of training on oxidative stress adaptation has not been adequately investigated. The two studies performed so far indicate that children and adolescents exhibit positive adaptations of their antioxidant system, as adults do. More studies are needed in order to shed light on oxidative stress and antioxidant responses, following acute exercise and training adaptations in youth. Available evidence suggests that small amounts of oxidative stress may be necessary for growth whereas the transition to adolescence from childhood may promote maturation of pro- and anti-oxidant mechanisms. Available evidence also suggests that obesity may negatively affect basal and exercise-related antioxidant responses in the peripubertal period during pre- and early-puberty. PMID:28106721

  12. Exploring the bases for a mixed reality stroke rehabilitation system, Part II: design of interactive feedback for upper limb rehabilitation.

    PubMed

    Lehrer, Nicole; Chen, Yinpeng; Duff, Margaret; L Wolf, Steven; Rikakis, Thanassis

    2011-09-08

    Few existing interactive rehabilitation systems can effectively communicate multiple aspects of movement performance simultaneously, in a manner that appropriately adapts across various training scenarios. In order to address the need for such systems within stroke rehabilitation training, a unified approach for designing interactive systems for upper limb rehabilitation of stroke survivors has been developed and applied for the implementation of an Adaptive Mixed Reality Rehabilitation (AMRR) System. The AMRR system provides computational evaluation and multimedia feedback for the upper limb rehabilitation of stroke survivors. A participant's movements are tracked by motion capture technology and evaluated by computational means. The resulting data are used to generate interactive media-based feedback that communicates to the participant detailed, intuitive evaluations of his performance. This article describes how the AMRR system's interactive feedback is designed to address specific movement challenges faced by stroke survivors. Multimedia examples are provided to illustrate each feedback component. Supportive data are provided for three participants of varying impairment levels to demonstrate the system's ability to train both targeted and integrated aspects of movement. The AMRR system supports training of multiple movement aspects together or in isolation, within adaptable sequences, through cohesive feedback that is based on formalized compositional design principles. From preliminary analysis of the data, we infer that the system's ability to train multiple foci together or in isolation in adaptable sequences, utilizing appropriately designed feedback, can lead to functional improvement. The evaluation and feedback frameworks established within the AMRR system will be applied to the development of a novel home-based system to provide an engaging yet low-cost extension of training for longer periods of time.

  13. Exploring the bases for a mixed reality stroke rehabilitation system, Part II: Design of Interactive Feedback for upper limb rehabilitation

    PubMed Central

    2011-01-01

    Background Few existing interactive rehabilitation systems can effectively communicate multiple aspects of movement performance simultaneously, in a manner that appropriately adapts across various training scenarios. In order to address the need for such systems within stroke rehabilitation training, a unified approach for designing interactive systems for upper limb rehabilitation of stroke survivors has been developed and applied for the implementation of an Adaptive Mixed Reality Rehabilitation (AMRR) System. Results The AMRR system provides computational evaluation and multimedia feedback for the upper limb rehabilitation of stroke survivors. A participant's movements are tracked by motion capture technology and evaluated by computational means. The resulting data are used to generate interactive media-based feedback that communicates to the participant detailed, intuitive evaluations of his performance. This article describes how the AMRR system's interactive feedback is designed to address specific movement challenges faced by stroke survivors. Multimedia examples are provided to illustrate each feedback component. Supportive data are provided for three participants of varying impairment levels to demonstrate the system's ability to train both targeted and integrated aspects of movement. Conclusions The AMRR system supports training of multiple movement aspects together or in isolation, within adaptable sequences, through cohesive feedback that is based on formalized compositional design principles. From preliminary analysis of the data, we infer that the system's ability to train multiple foci together or in isolation in adaptable sequences, utilizing appropriately designed feedback, can lead to functional improvement. The evaluation and feedback frameworks established within the AMRR system will be applied to the development of a novel home-based system to provide an engaging yet low-cost extension of training for longer periods of time. PMID:21899779

  14. Science-based Forest Management in an Era of Climate Change

    NASA Astrophysics Data System (ADS)

    Swanston, C.; Janowiak, M.; Brandt, L.; Butler, P.; Handler, S.; Shannon, D.

    2014-12-01

    Recognizing the need to provide climate adaptation information, training, and tools to forest managers, the Forest Service joined with partners in 2009 to launch a comprehensive effort called the Climate Change Response Framework (www.forestadaptation.org). The Framework provides a structured approach to help managers integrate climate considerations into forest management plans and then implement adaptation actions on the ground. A planning tool, the Adaptation Workbook, is used in conjunction with vulnerability assessments and a diverse "menu" of adaptation approaches to generate site-specific adaptation actions that meet explicit management objectives. Additionally, a training course, designed around the Adaptation Workbook, leads management organizations through this process of designing on-the-ground adaptation tactics for their management projects. The Framework is now being actively pursued in 20 states in the Northwoods, Central Hardwoods, Central Appalachians, Mid-Atlantic, and New England. The Framework community includes over 100 science and management groups, dozens of whom have worked together to complete six ecoregional vulnerability assessments covering nearly 135 million acres. More than 75 forest and urban forest adaptation strategies and approaches were synthesized from peer-reviewed and gray literature, expert solicitation, and on-the-ground adaptation projects. These are being linked through the Adaptation Workbook process to on-the-ground adaptation tactics being planned and employed in more than 50 adaptation "demonstrations". This presentation will touch on the scientific and professional basis of the vulnerability assessments, and showcase efforts where adaptation actions are currently being implemented in forests.

  15. Resistance training using eccentric overload induces early adaptations in skeletal muscle size.

    PubMed

    Norrbrand, Lena; Fluckey, James D; Pozzo, Marco; Tesch, Per A

    2008-02-01

    Fifteen healthy men performed a 5-week training program comprising four sets of seven unilateral, coupled concentric-eccentric knee extensions 2-3 times weekly. While eight men were assigned to training using a weight stack (WS) machine, seven men trained using a flywheel (FW) device, which inherently provides variable resistance and allows for eccentric overload. The design of these apparatuses ensured similar knee extensor muscle use and range of motion. Before and after training, maximal isometric force (MVC) was measured in tasks non-specific to the training modes. Volume of all individual quadriceps muscles was determined by magnetic resonance imaging. Performance across the 12 exercise sessions was measured using the inherent features of the devices. Whereas MVC increased (P < 0.05) at all angles measured in FW, such a change was less consistent in WS. There was a marked increase (P < 0.05) in task-specific performance (i.e., load lifted) in WS. Average work showed a non-significant 8.7% increase in FW. Quadriceps muscle volume increased (P < 0.025) in both groups after training. Although the more than twofold greater hypertrophy evident in FW (6.2%) was not statistically greater than that shown in WS (3.0%), all four individual quadriceps muscles of FW showed increased (P < 0.025) volume whereas in WS only m. rectus femoris was increased (P < 0.025). Collectively the results of this study suggest more robust muscular adaptations following flywheel than weight stack resistance exercise supporting the idea that eccentric overload offers a potent stimuli essential to optimize the benefits of resistance exercise.

  16. Developing Intercultural Adaptability in the Warfighter: A Workshop on Cultural Training and Education

    DTIC Science & Technology

    2010-11-01

    operational culture ” concept and teaching of interpersonal skills in advisor training, but emphasizes regional studies both in its pre-deployment...experts and non-experts. Building on earlier discussions, the group focused on the concept of cross- cultural competence and debated whether it is...For skills, the goal is to understand general regional concepts (not region-specific facts) and to develop confidence through cross- cultural

  17. A proposed mechanism for rapid adaptation to spectrally distorted speech.

    PubMed

    Azadpour, Mahan; Balaban, Evan

    2015-07-01

    The mechanisms underlying perceptual adaptation to severely spectrally-distorted speech were studied by training participants to comprehend spectrally-rotated speech, which is obtained by inverting the speech spectrum. Spectral-rotation produces severe distortion confined to the spectral domain while preserving temporal trajectories. During five 1-hour training sessions, pairs of participants attempted to extract spoken messages from the spectrally-rotated speech of their training partner. Data on training-induced changes in comprehension of spectrally-rotated sentences and identification/discrimination of spectrally-rotated phonemes were used to evaluate the plausibility of three different classes of underlying perceptual mechanisms: (1) phonemic remapping (the formation of new phonemic categories that specifically incorporate spectrally-rotated acoustic information); (2) experience-dependent generation of a perceptual "inverse-transform" that compensates for spectral-rotation; and (3) changes in cue weighting (the identification of sets of acoustic cues least affected by spectral-rotation, followed by a rapid shift in perceptual emphasis to favour those cues, combined with the recruitment of the same type of "perceptual filling-in" mechanisms used to disambiguate speech-in-noise). Results exclusively support the third mechanism, which is the only one predicting that learning would specifically target temporally-dynamic cues that were transmitting phonetic information most stably in spite of spectral-distortion. No support was found for phonemic remapping or for inverse-transform generation.

  18. Active Recovery After High-Intensity Interval-Training Does Not Attenuate Training Adaptation.

    PubMed

    Wiewelhove, Thimo; Schneider, Christoph; Schmidt, Alina; Döweling, Alexander; Meyer, Tim; Kellmann, Michael; Pfeiffer, Mark; Ferrauti, Alexander

    2018-01-01

    Objective: High-intensity interval training (HIIT) can be extremely demanding and can consequently produce high blood lactate levels. Previous studies have shown that lactate is a potent metabolic stimulus, which is important for adaptation. Active recovery (ACT) after intensive exercise, however, enhances blood lactate removal in comparison with passive recovery (PAS) and, consequently, may attenuate endurance performance improvements. Therefore, the aim of this study was to examine the influence of regular ACT on training adaptations during a HIIT mesocycle. Methods: Twenty-six well-trained male intermittent sport athletes (age: 23.5 ± 2.5 years; O 2 max: 55.36 ± 3.69 ml min kg -1 ) participated in a randomized controlled trial consisting of 4 weeks of a running-based HIIT mesocycle with a total of 12 HIIT sessions. After each training session, participants completed 15 min of either moderate jogging (ACT) or PAS. Subjects were matched to the ACT or PAS groups according to age and performance. Before the HIIT program and 1 week after the last training session, the athletes performed a progressive incremental exercise test on a motor-driven treadmill to determine O 2 max, maximum running velocity (vmax), the running velocity at which O 2 max occurs (vO 2 max), and anaerobic lactate threshold (AT). Furthermore, repeated sprint ability (RSA) were determined. Results: In the whole group the HIIT mesocycle induced significant or small to moderate changes in vmax ( p < 0.001, effect size [ES] = 0.65,), vO 2 max ( p < 0.001, ES = 0.62), and AT ( p < 0.001, ES = 0.56) compared with the values before the intervention. O 2 max and RSA remained unchanged throughout the study. In addition, no significant differences in the changes were noted in any of the parameters between ACT and PAS except for AT ( p < 0.05, ES = 0.57). Conclusion: Regular use of individualized ACT did not attenuate training adaptations during a HIIT mesocycle compared to PAS. Interestingly, we found that the ACT group obtained a significantly higher AT following the training program compared to the PAS group. This could be because ACT allows a continuation of the training at a low intensity and may activate specific adaptive mechanisms that are not triggered during PAS.

  19. Active Recovery After High-Intensity Interval-Training Does Not Attenuate Training Adaptation

    PubMed Central

    Wiewelhove, Thimo; Schneider, Christoph; Schmidt, Alina; Döweling, Alexander; Meyer, Tim; Kellmann, Michael; Pfeiffer, Mark; Ferrauti, Alexander

    2018-01-01

    Objective: High-intensity interval training (HIIT) can be extremely demanding and can consequently produce high blood lactate levels. Previous studies have shown that lactate is a potent metabolic stimulus, which is important for adaptation. Active recovery (ACT) after intensive exercise, however, enhances blood lactate removal in comparison with passive recovery (PAS) and, consequently, may attenuate endurance performance improvements. Therefore, the aim of this study was to examine the influence of regular ACT on training adaptations during a HIIT mesocycle. Methods: Twenty-six well-trained male intermittent sport athletes (age: 23.5 ± 2.5 years; O2max: 55.36 ± 3.69 ml min kg-1) participated in a randomized controlled trial consisting of 4 weeks of a running-based HIIT mesocycle with a total of 12 HIIT sessions. After each training session, participants completed 15 min of either moderate jogging (ACT) or PAS. Subjects were matched to the ACT or PAS groups according to age and performance. Before the HIIT program and 1 week after the last training session, the athletes performed a progressive incremental exercise test on a motor-driven treadmill to determine O2max, maximum running velocity (vmax), the running velocity at which O2max occurs (vO2max), and anaerobic lactate threshold (AT). Furthermore, repeated sprint ability (RSA) were determined. Results: In the whole group the HIIT mesocycle induced significant or small to moderate changes in vmax (p < 0.001, effect size [ES] = 0.65,), vO2max (p < 0.001, ES = 0.62), and AT (p < 0.001, ES = 0.56) compared with the values before the intervention. O2max and RSA remained unchanged throughout the study. In addition, no significant differences in the changes were noted in any of the parameters between ACT and PAS except for AT (p < 0.05, ES = 0.57). Conclusion: Regular use of individualized ACT did not attenuate training adaptations during a HIIT mesocycle compared to PAS. Interestingly, we found that the ACT group obtained a significantly higher AT following the training program compared to the PAS group. This could be because ACT allows a continuation of the training at a low intensity and may activate specific adaptive mechanisms that are not triggered during PAS. PMID:29720949

  20. Neuromuscular adaptations to training, injury and passive interventions: implications for running economy.

    PubMed

    Bonacci, Jason; Chapman, Andrew; Blanch, Peter; Vicenzino, Bill

    2009-01-01

    Performance in endurance sports such as running, cycling and triathlon has long been investigated from a physiological perspective. A strong relationship between running economy and distance running performance is well established in the literature. From this established base, improvements in running economy have traditionally been achieved through endurance training. More recently, research has demonstrated short-term resistance and plyometric training has resulted in enhanced running economy. This improvement in running economy has been hypothesized to be a result of enhanced neuromuscular characteristics such as improved muscle power development and more efficient use of stored elastic energy during running. Changes in indirect measures of neuromuscular control (i.e. stance phase contact times, maximal forward jumps) have been used to support this hypothesis. These results suggest that neuromuscular adaptations in response to training (i.e. neuromuscular learning effects) are an important contributor to enhancements in running economy. However, there is no direct evidence to suggest that these adaptations translate into more efficient muscle recruitment patterns during running. Optimization of training and run performance may be facilitated through direct investigation of muscle recruitment patterns before and after training interventions. There is emerging evidence that demonstrates neuromuscular adaptations during running and cycling vary with training status. Highly trained runners and cyclists display more refined patterns of muscle recruitment than their novice counterparts. In contrast, interference with motor learning and neuromuscular adaptation may occur as a result of ongoing multidiscipline training (e.g. triathlon). In the sport of triathlon, impairments in running economy are frequently observed after cycling. This impairment is related mainly to physiological stress, but an alteration in lower limb muscle coordination during running after cycling has also been observed. Muscle activity during running after cycling has yet to be fully investigated, and to date, the effect of alterations in muscle coordination on running economy is largely unknown. Stretching, which is another mode of training, may induce acute neuromuscular effects but does not appear to alter running economy. There are also factors other than training structure that may influence running economy and neuromuscular adaptations. For example, passive interventions such as shoes and in-shoe orthoses, as well as the presence of musculoskeletal injury, may be considered important modulators of neuromuscular control and run performance. Alterations in muscle activity and running economy have been reported with different shoes and in-shoe orthoses; however, these changes appear to be subject-specific and non-systematic. Musculoskeletal injury has been associated with modifications in lower limb neuromuscular control, which may persist well after an athlete has returned to activity. The influence of changes in neuromuscular control as a result of injury on running economy has yet to be examined thoroughly, and should be considered in future experimental design and training analysis.

  1. The efficacy of periodised resistance training on neuromuscular adaptation in older adults.

    PubMed

    Conlon, Jenny A; Newton, Robert U; Tufano, James J; Peñailillo, Luis E; Banyard, Harry G; Hopper, Amanda J; Ridge, Ashley J; Haff, G Gregory

    2017-06-01

    This study compared the effect of periodised versus non-periodised (NP) resistance training on neuromuscular adaptions in older adults. Forty-one apparently healthy untrained older adults (female = 21, male = 20; 70.9 ± 5.1 years; 166.3 ± 8.2 cm; 72.9 ± 13.4 kg) were recruited and randomly stratified to an NP, block periodised (BP), or daily undulating periodised (DUP) training group. Outcome measures were assessed at baseline and following a 22-week resistance training intervention (3 day week -1 ), including: muscle cross-sectional area (CSA), vertical jump performance, isometric and isokinetic peak torque, isometric rate of force development (RFD), and muscle activation. Thirty-three participants satisfied all study requirements and were included in analyses (female = 17, male = 16; 71.3 ± 5.4 years; 166.3 ± 8.5 cm; 72.5 ± 13.7 kg). Block periodisation, DUP, and NP resistance training induced statistically significant improvements in muscle CSA, vertical jump peak velocity, peak power and jump height, and peak isometric and isokinetic torque of the knee extensors at 60 and 180° s -1 , with no between-group differences. Muscle activity and absolute RFD measures were statistically unchanged following resistance training across the entire cohort. Periodised resistance training, specifically BP and DUP, and NP resistance training are equally effective for promoting increases in muscular hypertrophy, strength, and power among untrained older adults. Consequently, periodisation strategies are not essential for optimising neuromuscular adaptations during the initial stages of resistance training in the aging population.

  2. Repeated-Slip Training: An Emerging Paradigm for Prevention of Slip-Related Falls Among Older Adults

    PubMed Central

    Pai, YC; Bhatt, TS

    2009-01-01

    Falls frequently cause injury-related hospitalization or death among older adults. This article reviews a new conceptual framework on dynamic stability and weight support in reducing the risk for falls resulting from a forward slip, based on the principles of motor control and learning, in the context of adaptation and longer-term retention induced by repeated-slip training. Although an unexpected slip is severely destabilizing, a recovery step often is adequate for regaining stability, regardless of age. Consequently, poor weight support (quantified by reduction in hip height), rather than instability, is the major determinant of slip-related fall risk. Promisingly, a single session of repeated-slip training can enhance neuromechanical control of dynamic stability and weight support to prevent falls, which can be retained for several months or longer. These principles provide the theoretical basis for establishing task-specific adaptive training that facilitates the development of protective strategies to reduce falls among older adults. PMID:17712033

  3. Utilizing community-based participatory research to adapt a mental health intervention for African American emerging adults.

    PubMed

    Mance, Gishawn A; Mendelson, Tamar; Byrd, Benjamin; Jones, Jahon; Tandon, Darius

    2010-01-01

    Adapting mental health interventions to heighten their cultural and contextual appropriateness may be critical for engaging ethnic/racial groups that have been traditionally excluded or marginalized. Community-based participatory research (CBPR) is a collaborative research approach that highlights unique strengths and expertise of those involved. Although intervention adaptations have garnered much attention there is little previous work specifically describing the adaptation process of mental health interventions using CBPR. This article summarizes the use of a CBPR approach to adapt a mental health intervention for urban adolescents and young adults disconnected from school and work, a population at elevated risk for poor mental health owing to the presence of numerous chronic stressors. We describe the process undertaken to modify the content and delivery format of an evidence-based intervention. Unique challenges of working with urban African American adolescents and young adults in a job training program are highlighted. By incorporating principles of co-learning and shared responsibility, this partnership was able to achieve positive outcomes. Our experience suggests that a CBPR approach can be used effectively to adapt a mental health intervention in collaboration with African American adolescents and emerging adults in a job training program.

  4. Aversive olfactory associative memory loses odor specificity over time

    PubMed Central

    König, Christian; Antwi-Adjei, Emmanuel; Ganesan, Mathangi; Kilonzo, Kasyoka; Viswanathan, Vignesh; Durairaja, Archana; Voigt, Anne

    2017-01-01

    ABSTRACT Avoiding associatively learned predictors of danger is crucial for survival. Aversive memories can, however, become counter-adaptive when they are overly generalized to harmless cues and contexts. In a fruit fly odor–electric shock associative memory paradigm, we found that learned avoidance lost its specificity for the trained odor and became general to novel odors within a day of training. We discuss the possible neural circuit mechanisms of this effect and highlight the parallelism to over-generalization of learned fear behavior after an incubation period in rodents and humans, with due relevance for post-traumatic stress disorder. PMID:28468811

  5. Developing Tests of Visual Dependency

    NASA Technical Reports Server (NTRS)

    Kindrat, Alexandra N.

    2011-01-01

    Astronauts develop neural adaptive responses to microgravity during space flight. Consequently these adaptive responses cause maladaptive disturbances in balance and gait function when astronauts return to Earth and are re-exposed to gravity. Current research in the Neuroscience Laboratories at NASA-JSC is focused on understanding how exposure to space flight produces post-flight disturbances in balance and gait control and developing training programs designed to facilitate the rapid recovery of functional mobility after space flight. In concert with these disturbances, astronauts also often report an increase in their visual dependency during space flight. To better understand this phenomenon, studies were conducted with specially designed training programs focusing on visual dependency with the aim to understand and enhance subjects ability to rapidly adapt to novel sensory situations. The Rod and Frame test (RFT) was used first to assess an individual s visual dependency, using a variety of testing techniques. Once assessed, subjects were asked to perform two novel tasks under transformation (both the Pegboard and Cube Construction tasks). Results indicate that head position cues and initial visual test conditions had no effect on an individual s visual dependency scores. Subjects were also able to adapt to the manual tasks after several trials. Individual visual dependency correlated with ability to adapt manual to a novel visual distortion only for the cube task. Subjects with higher visual dependency showed decreased ability to adapt to this task. Ultimately, it was revealed that the RFT may serve as an effective prediction tool to produce individualized adaptability training prescriptions that target the specific sensory profile of each crewmember.

  6. A framework for understanding international medical graduate challenges during transition into fellowship programs.

    PubMed

    Sockalingam, Sanjeev; Khan, Attia; Tan, Adrienne; Hawa, Raed; Abbey, Susan; Jackson, Timothy; Zaretsky, Ari; Okrainec, Allan

    2014-01-01

    Previous studies have highlighted unique needs of international medical graduates (IMG) during their transition into medical training programs; however, limited data exist on IMG needs specific to fellowship training. We conducted the following mixed-method study to determine IMG fellow training needs during the transition into fellowship training programs in psychiatry and surgery. The authors conducted a mixed-methods study consisting of an online survey of IMG fellows and their supervisors in psychiatry or surgery fellowship training programs and individual interviews of IMG fellows. The survey assessed (a) fellows' and supervisors' perceptions on IMG challenges in clinical communication, health systems, and education domains and (b) past orientation initiatives. In the second phase of the study, IMG fellows were interviewed during the latter half of their fellowship training, and perceptions regarding orientation and adaptation to fellowship in Canada were assessed. Survey data were analyzed using descriptive and Mann-Whitney U statistics. Qualitative interviews were analyzed using grounded theory methodology. The survey response rate was 76% (35/46) and 69% (35/51) for IMG fellows and supervisors, respectively. Fellows reported the greatest difficulty with adapting to the hospital system, medical documentation, and balancing one's professional and personal life. Supervisors believed that fellows had the greatest difficulty with managing language and slang in Canada, the healthcare system, and an interprofessional team. In Phase 2, fellows generated themes of disorientation, disconnection, interprofessional team challenges, a need for IMG fellow resources, and a benefit from training in a multicultural setting. Our study results highlight the need for IMG specific orientation resources for fellows and supervisors. Maslow's Hierarchy of Needs may be a useful framework for understanding IMG training needs.

  7. Nutrition and training adaptations in aquatic sports.

    PubMed

    Mujika, Iñigo; Stellingwerff, Trent; Tipton, Kevin

    2014-08-01

    The adaptive response to training is determined by the combination of the intensity, volume, and frequency of the training. Various periodized approaches to training are used by aquatic sports athletes to achieve performance peaks. Nutritional support to optimize training adaptations should take periodization into consideration; that is, nutrition should also be periodized to optimally support training and facilitate adaptations. Moreover, other aspects of training (e.g., overload training, tapering and detraining) should be considered when making nutrition recommendations for aquatic athletes. There is evidence, albeit not in aquatic sports, that restricting carbohydrate availability may enhance some training adaptations. More research needs to be performed, particularly in aquatic sports, to determine the optimal strategy for periodizing carbohydrate intake to optimize adaptations. Protein nutrition is an important consideration for optimal training adaptations. Factors other than the total amount of daily protein intake should be considered. For instance, the type of protein, timing and pattern of protein intake and the amount of protein ingested at any one time influence the metabolic response to protein ingestion. Body mass and composition are important for aquatic sport athletes in relation to power-to-mass and for aesthetic reasons. Protein may be particularly important for athletes desiring to maintain muscle while losing body mass. Nutritional supplements, such as b-alanine and sodium bicarbonate, may have particular usefulness for aquatic athletes' training adaptation.

  8. Hydration during intense exercise training.

    PubMed

    Maughan, R J; Meyer, N L

    2013-01-01

    Hydration status has profound effects on both physical and mental performance, and sports performance is thus critically affected. Both overhydration and underhydration - if sufficiently severe - will impair performance and pose a risk to health. Athletes may begin exercise in a hypohydrated state as a result of incomplete recovery from water loss induced in order to achieve a specific body mass target or due to incomplete recovery from a previous competition or training session. Dehydration will also develop in endurance exercise where fluid intake does not match water loss. The focus has generally been on training rather than on competition, but sweat loss and fluid replacement in training may have important implications. Hypohydration may impair training quality and may also increase stress levels. It is unclear whether this will have negative effects (reduced training quality, impaired immunity) or whether it will promote a greater adaptive response. Hypohydration and the consequent hyperthermia, however, can enhance the effectiveness of a heat acclimation program, resulting in improved endurance performance in warm and temperate environments. Drinking in training may be important in enhancing tolerance of the gut when athletes plan to drink in competition. The distribution of water between body water compartments may also be important in the initiation and promotion of cellular adaptations to the training stimulus. Copyright © 2013 Nestec Ltd., Vevey/S. Karger AG, Basel.

  9. Factor analysis of auto-associative neural networks with application in speaker verification.

    PubMed

    Garimella, Sri; Hermansky, Hynek

    2013-04-01

    Auto-associative neural network (AANN) is a fully connected feed-forward neural network, trained to reconstruct its input at its output through a hidden compression layer, which has fewer numbers of nodes than the dimensionality of input. AANNs are used to model speakers in speaker verification, where a speaker-specific AANN model is obtained by adapting (or retraining) the universal background model (UBM) AANN, an AANN trained on multiple held out speakers, using corresponding speaker data. When the amount of speaker data is limited, this adaptation procedure may lead to overfitting as all the parameters of UBM-AANN are adapted. In this paper, we introduce and develop the factor analysis theory of AANNs to alleviate this problem. We hypothesize that only the weight matrix connecting the last nonlinear hidden layer and the output layer is speaker-specific, and further restrict it to a common low-dimensional subspace during adaptation. The subspace is learned using large amounts of development data, and is held fixed during adaptation. Thus, only the coordinates in a subspace, also known as i-vector, need to be estimated using speaker-specific data. The update equations are derived for learning both the common low-dimensional subspace and the i-vectors corresponding to speakers in the subspace. The resultant i-vector representation is used as a feature for the probabilistic linear discriminant analysis model. The proposed system shows promising results on the NIST-08 speaker recognition evaluation (SRE), and yields a 23% relative improvement in equal error rate over the previously proposed weighted least squares-based subspace AANNs system. The experiments on NIST-10 SRE confirm that these improvements are consistent and generalize across datasets.

  10. Specific Adaptations in Performance and Muscle Architecture After Weighted Jump-Squat vs. Body Mass Squat Jump Training in Recreational Soccer Players.

    PubMed

    Coratella, Giuseppe; Beato, Marco; Milanese, Chiara; Longo, Stefano; Limonta, Eloisa; Rampichini, Susanna; Cè, Emiliano; Bisconti, Angela V; Schena, Federico; Esposito, Fabio

    2018-04-01

    Coratella, G, Beato, M, Milanese, C, Longo, S, Limonta, E, Rampichini, S, Cè, E, Bisconti, AV, Schena, F, and Esposito, F. Specific adaptations in performance and muscle architecture after weighted jump-squat vs. body mass squat jump training in recreational soccer players. J Strength Cond Res 32(4): 921-929, 2018-The aim of the present study was to compare the effects of weighted jump-squat training (WJST) vs. body mass squat jump training (BMSJT) on quadriceps' muscle architecture, lower-limb lean-mass (LM) and muscle strength, performance in change of direction (COD), and sprint and jump in recreational soccer players. Forty-eight healthy soccer players participated in an offseason randomized controlled trial. Before and after an 8-week training intervention, vastus lateralis pennation angle, fascicle length, muscle thickness, LM, squat 1RM, quadriceps and hamstrings isokinetic peak torque, agility T-test, 10-and 30-m sprints, and squat-jump (SJ) were measured. Although similar increases were observed in muscle thickness, fascicle length increased more in WJST (Effect size [ES] = 1.18, 0.82-1.54) than in BMSJT (ES = 0.54, 0.40-0.68), and pennation angle increased only in BMSJT (ES = 1.03, 0.78-1.29). Greater increases in LM were observed in WJST (ES = 0.44, 0.29-0.59) than in BMSJT (ES = 0.21, 0.07-0.37). The agility T-test (ES = 2.95, 2.72-3.18), 10-m (ES = 0.52, 0.22-0.82), and 30-m sprints (ES = 0.52, 0.23-0.81) improved only in WJST, whereas SJ improved in BMSJT (ES = 0.89, 0.43-1.35) more than in WJST (ES = 0.30, 0.03-0.58). Similar increases in squat 1RM and peak torque occurred in both groups. The greater inertia accumulated within the landing phase in WJST vs. BMSJT has increased the eccentric workload, leading to specific eccentric-like adaptations in muscle architecture. The selective improvements in COD in WJST may be related to the increased braking ability generated by the enhanced eccentric workload.

  11. Expression of collagen and related growth factors in rat tendon and skeletal muscle in response to specific contraction types

    PubMed Central

    Heinemeier, K M; Olesen, J L; Haddad, F; Langberg, H; Kjaer, M; Baldwin, K M; Schjerling, P

    2007-01-01

    Acute exercise induces collagen synthesis in both tendon and muscle, indicating an adaptive response in the connective tissue of the muscle–tendon unit. However, the mechanisms of this adaptation, potentially involving collagen-inducing growth factors (such as transforming growth factor-β-1 (TGF-β-1)), as well as enzymes related to collagen processing, are not clear. Furthermore, possible differential effects of specific contraction types on collagen regulation have not been investigated. Female Sprague–Dawley rats were subjected to 4 days of concentric, eccentric or isometric training (n = 7–9 per group) of the medial gastrocnemius, by stimulation of the sciatic nerve. RNA was extracted from medial gastrocnemius and Achilles tendon tissue 24 h after the last training bout, and mRNA levels for collagens I and III, TGF-β-1, connective tissue growth factor (CTGF), lysyl oxidase (LOX), metalloproteinases (MMP-2 and -9) and their inhibitors (TIMP-1 and 2) were measured by Northern blotting and/or real-time PCR. In tendon, expression of TGF-β-1 and collagens I and III (but not CTGF) increased in response to all types of training. Similarly, enzymes/factors involved in collagen processing were induced in tendon, especially LOX (up to 37-fold), which could indicate a loading-induced increase in cross-linking of tendon collagen. In skeletal muscle, a similar regulation of gene expression was observed, but in contrast to the tendon response, the effect of eccentric training was significantly greater than the effect of concentric training on the expression of several transcripts. In conclusion, the study supports an involvement of TGF-β-1 in loading-induced collagen synthesis in the muscle–tendon unit and importantly, it indicates that muscle tissue is more sensitive than tendon to the specific mechanical stimulus. PMID:17540706

  12. Expression of collagen and related growth factors in rat tendon and skeletal muscle in response to specific contraction types.

    PubMed

    Heinemeier, K M; Olesen, J L; Haddad, F; Langberg, H; Kjaer, M; Baldwin, K M; Schjerling, P

    2007-08-01

    Acute exercise induces collagen synthesis in both tendon and muscle, indicating an adaptive response in the connective tissue of the muscle-tendon unit. However, the mechanisms of this adaptation, potentially involving collagen-inducing growth factors (such as transforming growth factor-beta-1 (TGF-beta-1)), as well as enzymes related to collagen processing, are not clear. Furthermore, possible differential effects of specific contraction types on collagen regulation have not been investigated. Female Sprague-Dawley rats were subjected to 4 days of concentric, eccentric or isometric training (n = 7-9 per group) of the medial gastrocnemius, by stimulation of the sciatic nerve. RNA was extracted from medial gastrocnemius and Achilles tendon tissue 24 h after the last training bout, and mRNA levels for collagens I and III, TGF-beta-1, connective tissue growth factor (CTGF), lysyl oxidase (LOX), metalloproteinases (MMP-2 and -9) and their inhibitors (TIMP-1 and 2) were measured by Northern blotting and/or real-time PCR. In tendon, expression of TGF-beta-1 and collagens I and III (but not CTGF) increased in response to all types of training. Similarly, enzymes/factors involved in collagen processing were induced in tendon, especially LOX (up to 37-fold), which could indicate a loading-induced increase in cross-linking of tendon collagen. In skeletal muscle, a similar regulation of gene expression was observed, but in contrast to the tendon response, the effect of eccentric training was significantly greater than the effect of concentric training on the expression of several transcripts. In conclusion, the study supports an involvement of TGF-beta-1 in loading-induced collagen synthesis in the muscle-tendon unit and importantly, it indicates that muscle tissue is more sensitive than tendon to the specific mechanical stimulus.

  13. Adaptive Decision Aiding in Computer-Assisted Instruction: Adaptive Computerized Training System (ACTS).

    ERIC Educational Resources Information Center

    Hopf-Weichel, Rosemarie; And Others

    This report describes results of the first year of a three-year program to develop and evaluate a new Adaptive Computerized Training System (ACTS) for electronics maintenance training. (ACTS incorporates an adaptive computer program that learns the student's diagnostic and decision value structure, compares it to that of an expert, and adapts the…

  14. Development of an Integrated Team Training Design and Assessment Architecture to Support Adaptability in Healthcare Teams

    DTIC Science & Technology

    2016-10-01

    and implementation of embedded, adaptive feedback and performance assessment. The investigators also initiated work designing a Bayesian Belief ...training; Teamwork; Adaptive performance; Leadership; Simulation; Modeling; Bayesian belief networks (BBN) 16. SECURITY CLASSIFICATION OF: 17. LIMITATION...Trauma teams Team training Teamwork Adaptability Adaptive performance Leadership Simulation Modeling Bayesian belief networks (BBN) 6

  15. Learning an EMG Controlled Game: Task-Specific Adaptations and Transfer

    PubMed Central

    van Dijk, Ludger; van der Sluis, Corry K.; van Dijk, Hylke W.; Bongers, Raoul M.

    2016-01-01

    Video games that aim to improve myoelectric control (myogames) are gaining popularity and are often part of the rehabilitation process following an upper limb amputation. However, direct evidence for their effect on prosthetic skill is limited. This study aimed to determine whether and how myogaming improves EMG control and whether performance improvements transfer to a prosthesis-simulator task. Able-bodied right-handed participants (N = 28) were randomly assigned to 1 of 2 groups. The intervention group was trained to control a video game (Breakout-EMG) using the myosignals of wrist flexors and extensors. Controls played a regular Mario computer game. Both groups trained 20 minutes a day for 4 consecutive days. Before and after training, two tests were conducted: one level of the Breakout-EMG game, and grasping objects with a prosthesis-simulator. Results showed a larger increase of in-game accuracy for the Breakout-EMG group than for controls. The Breakout-EMG group moreover showed increased adaptation of the EMG signal to the game. No differences were found in using a prosthesis-simulator. This study demonstrated that myogames lead to task-specific myocontrol skills. Transfer to a prosthesis task is therefore far from easy. We discuss several implications for future myogame designs. PMID:27556154

  16. Learning an EMG Controlled Game: Task-Specific Adaptations and Transfer.

    PubMed

    van Dijk, Ludger; van der Sluis, Corry K; van Dijk, Hylke W; Bongers, Raoul M

    2016-01-01

    Video games that aim to improve myoelectric control (myogames) are gaining popularity and are often part of the rehabilitation process following an upper limb amputation. However, direct evidence for their effect on prosthetic skill is limited. This study aimed to determine whether and how myogaming improves EMG control and whether performance improvements transfer to a prosthesis-simulator task. Able-bodied right-handed participants (N = 28) were randomly assigned to 1 of 2 groups. The intervention group was trained to control a video game (Breakout-EMG) using the myosignals of wrist flexors and extensors. Controls played a regular Mario computer game. Both groups trained 20 minutes a day for 4 consecutive days. Before and after training, two tests were conducted: one level of the Breakout-EMG game, and grasping objects with a prosthesis-simulator. Results showed a larger increase of in-game accuracy for the Breakout-EMG group than for controls. The Breakout-EMG group moreover showed increased adaptation of the EMG signal to the game. No differences were found in using a prosthesis-simulator. This study demonstrated that myogames lead to task-specific myocontrol skills. Transfer to a prosthesis task is therefore far from easy. We discuss several implications for future myogame designs.

  17. Comparison of running and cycling economy in runners, cyclists, and triathletes.

    PubMed

    Swinnen, Wannes; Kipp, Shalaya; Kram, Rodger

    2018-07-01

    Exercise economy is one of the main physiological factors determining performance in endurance sports. Running economy (RE) can be improved with running-specific training, while the improvement of cycling economy (CE) with cycling-specific training is controversial. We investigated whether exercise economy reflects sport-specific skills/adaptations or is determined by overall physiological factors. We compared RE and CE in 10 runners, 9 cyclists and 9 triathletes for running at 12 km/h and cycling at 200 W. Gross rates of oxygen consumption and carbon dioxide production were collected and used to calculate gross metabolic rate in watts for both running and cycling. Runners had better RE than cyclists (917 ± 107 W vs. 1111 ± 159 W) (p < 0.01). Triathletes had intermediate RE values (1004 ± 98 W) not different from runners or cyclists. CE was not different (p = 0.20) between the three groups (runners: 945 ± 60 W; cyclists: 982 ± 44 W; triathletes: 979 ± 54 W). RE can be enhanced with running-specific training, but CE is independent of cycling-specific training.

  18. Adaptive Personalized Training Games for Individual and Collaborative Rehabilitation of People with Multiple Sclerosis

    PubMed Central

    2014-01-01

    Any rehabilitation involves people who are unique individuals with their own characteristics and rehabilitation needs, including patients suffering from Multiple Sclerosis (MS). The prominent variation of MS symptoms and the disease severity elevate a need to accommodate the patient diversity and support adaptive personalized training to meet every patient's rehabilitation needs. In this paper, we focus on integrating adaptivity and personalization in rehabilitation training for MS patients. We introduced the automatic adjustment of difficulty levels as an adaptation that can be provided in individual and collaborative rehabilitation training exercises for MS patients. Two user studies have been carried out with nine MS patients to investigate the outcome of this adaptation. The findings showed that adaptive personalized training trajectories have been successfully provided to MS patients according to their individual training progress, which was appreciated by the patients and the therapist. They considered the automatic adjustment of difficulty levels to provide more variety in the training and to minimize the therapists involvement in setting up the training. With regard to social interaction in the collaborative training exercise, we have observed some social behaviors between the patients and their training partner which indicated the development of social interaction during the training. PMID:24982862

  19. Shared internal models for feedforward and feedback control.

    PubMed

    Wagner, Mark J; Smith, Maurice A

    2008-10-15

    A child often learns to ride a bicycle in the driveway, free of unforeseen obstacles. Yet when she first rides in the street, we hope that if a car suddenly pulls out in front of her, she will combine her innate goal of avoiding an accident with her learned knowledge of the bicycle, and steer away or brake. In general, when we train to perform a new motor task, our learning is most robust if it updates the rules of online error correction to reflect the rules and goals of the new task. Here we provide direct evidence that, after a new feedforward motor adaptation, motor feedback responses to unanticipated errors become precisely task appropriate, even when such errors were never experienced during training. To study this ability, we asked how, if at all, do online responses to occasional, unanticipated force pulses during reaching arm movements change after adapting to altered arm dynamics? Specifically, do they change in a task-appropriate manner? In our task, subjects learned novel velocity-dependent dynamics. However, occasional force-pulse perturbations produced unanticipated changes in velocity. Therefore, after adaptation, task-appropriate responses to unanticipated pulses should compensate corresponding changes in velocity-dependent dynamics. We found that after adaptation, pulse responses precisely compensated these changes, although they were never trained to do so. These results provide evidence for a smart feedback controller which automatically produces responses specific to the learned dynamics of the current task. To accomplish this, the neural processes underlying feedback control must (1) be capable of accurate real-time state prediction for velocity via a forward model and (2) have access to recently learned changes in internal models of limb dynamics.

  20. Evaluating response shift in training evaluation: comparing the retrospective pretest with an adapted measurement invariance approach in a classroom management training program.

    PubMed

    Piwowar, Valentina; Thiel, Felicitas

    2014-10-01

    Response shift (RS) can threaten the internal validity of pre-post designs. As RS may indicate a redefinition of the target construct, its occurrence in training evaluation is rather likely. The most common approach to deal with RS is to implement a retrospective pretest (then-test) instead of the traditional pre-test. In health psychology, an adapted measurement invariance approach (MIad) was developed as an alternative technique to study RS. Results produced by identifying RS with the two approaches were rarely studied simultaneously or within an experimental framework. To study RS in two different treatment conditions and compare results produced by both techniques in identifying various types of RS. We further studied validity aspects of the then-test. We evaluated RS by applying the then-test procedure (TP) and the measurement invariance apporach MIad within an experimental design: Participants either attended a short-term or a long-term classroom management training program. Participants were 146 student teachers in their first year of master's study. Pre (before training), post, and then self-ratings (after training) on classroom management knowledge were administered. Results indicated that the two approaches do not yield the same results. The MIad identified more and also group-specific RS as opposed to the findings of the TP, which found less and only little evidence for group-specific RS. Further research is needed to study the usability and validity of the respective approaches. In particular, the usability of the then-test seems to be challenged. © The Author(s) 2014.

  1. Task-Oriented Gaming for Transfer to Prosthesis Use.

    PubMed

    van Dijk, Ludger; van der Sluis, Corry K; van Dijk, Hylke W; Bongers, Raoul M

    2016-12-01

    The aim of this study is to establish the effect of task-oriented video gaming on using a myoelectric prosthesis in a basic activity of daily life (ADL). Forty-one able-bodied right-handed participants were randomly assigned to one of four groups. In three of these groups the participants trained to control a video game using the myosignals of the flexors and extensors of the wrist: in the Adaptive Catching group participants needed to catch falling objects by opening and closing a grabber and received ADL-relevant feedback during performance. The Free Catching group used the same game, but without augmented feedback. The Interceptive Catching group trained a game where the goal was to intercept a falling object by moving a grabber to the left and right. They received no additional feedback. The control group played a regular Mario computer game. All groups trained 20 minutes a day for four consecutive days. Two tests were conducted before and after training: one level of the training game was performed, and participants grasped objects with a prosthesis simulator. Results showed all groups improved their game performance over controls. In the prosthesis-simulator task, after training the Adaptive Catching group outperformed the other groups in their ability to adjust the hand aperture to the size of the objects and the degree of compression of compressible objects. This study is the first to demonstrate transfer effects from a serious game to a myoelectric prosthesis task. The specificity of the learning effects suggests that research into serious gaming will benefit from placing ADL-specific constraints on game development.

  2. Performance in sports--With specific emphasis on the effect of intensified training.

    PubMed

    Bangsbo, J

    2015-12-01

    Performance in most sports is determined by the athlete's technical, tactical, physiological and psychological/social characteristics. In the present article, the physical aspect will be evaluated with a focus on what limits performance, and how training can be conducted to improve performance. Specifically how intensified training, i.e., increasing the amount of aerobic high-intensity and speed endurance training, affects physiological adaptations and performance of trained subjects. Periods of speed endurance training do improve performance in events lasting 30 s-4 min, and when combined with aerobic high-intensity sessions, also performance during longer events. Athletes in team sports involving intense exercise actions and endurance aspects, such as soccer and basketball, can also benefit from intensified training. Speed endurance training does reduce energy expenditure and increase expression of muscle Na(+), K(+) pump α subunits, which may preserve muscle cell excitability and delay fatigue development during intense exercise. When various types of training are conducted in the same period (concurrent training), as done in a number of sports, one type of training may blunt the effect of other types of training. It is not, however, clear how various training modalities are affecting each other, and this issue should be addressed in future studies. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. Muscle coordination in healthy subjects during floor walking and stair climbing in robot assisted gait training.

    PubMed

    Hussein, S; Schmidt, H; Volkmar, M; Werner, C; Helmich, I; Piorko, F; Krüger, J; Hesse, S

    2008-01-01

    The aim of gait rehabilitation is a restoration of an independent gait and improvement of daily life walking functions. Therefore the specific patterns, that are to be relearned, must be practiced to stimulate the learning process of the central nervous system (CNS). The Walking Simulator HapticWalker allows for the training of arbitrary gait trajectories of daily life. To evaluate the quality of the training a total of 9 subjects were investigated during free floor walking and stair climbing and during the same tasks in two different training modes on the HapticWalker: 1) with and 2) without vertical center of mass (CoM) motion. Electromyograms (EMG) of 8 gait relevant muscles were measured and muscle activation was compared for the various training modes. Besides the muscle activation as an indicator for the quality of rehabilitation training the study investigates if a cancellation of the vertical CoM movement by adaption of the footplate trajectory is feasible i.e. the muscle activation patterns for the two training modes on the HapticWalker agree. Results show no significant differences in activation timing between the training modes. This indicates the feasibility of using a passive patient suspension and emulate the vertical CoM motion by trajectory adaption of the footplates. The muscle activation timing during HapticWalker training shows important characteristics observed in physiological free walking though a few differences can still remain.

  4. Comparison of stretch reflex responses evoked during drop jumping in highly skilled atheles versus untrained subjects.

    PubMed

    Judge, L W; Burke, J R

    2015-06-01

    The purpose of the study was to describe changes in the excitability of the stretch reflex response (SRR) during different drop jumps as a function of training background and as an adaptation to a preseason sport-specific resistance training program. Twelve collegiate field event athletes (discus, hammer, javelin, shot put, and weight; 9 males and 3 females) and 12 college-aged control subjects performed the following three jumps: (1) countermovement jump (CMJ); (2) countermovement drop jump; and (3) bounce-drop jump (BDJ). Neuromechanical changes in the performance of drop jumps by athletes were measured during the sport-specific resistance training program. Pre-post testing of drop jump performance by control subjects was included for comparison. For each jump trial, ground reaction forces (GRF), electromyograms (EMG) and cinematographic data were collected. There were no training adaptations. However, jump heights were greater for the athletes than the controls among the different jumps with the jump heights for all subjects being less during the BDJ than CMJ and CDJ. In athletes only, there was a differential modulation of the SRR from the gastrocnemius muscle with different levels of background muscle activity for the CDJ and BDJ. There were changes in excitability of SRR from the gastrocnemius muscle as a function of training background. Interrelated neuromechanical mechanisms to include landing biomechanics, intrinsic musculotendinous tissue properties of the ankle, and centrally regulated motor commands may underlie the facilitation of the SRR from the gastrocnemius muscle in athletes as compared to controls.

  5. Performing a reaching task with one arm while adapting to a visuomotor rotation with the other can lead to complete transfer of motor learning across the arms

    PubMed Central

    Lei, Yuming; Binder, Jeffrey R.

    2015-01-01

    The extent to which motor learning is generalized across the limbs is typically very limited. Here, we investigated how two motor learning hypotheses could be used to enhance the extent of interlimb transfer. According to one hypothesis, we predicted that reinforcement of successful actions by providing binary error feedback regarding task success or failure, in addition to terminal error feedback, during initial training would increase the extent of interlimb transfer following visuomotor adaptation (experiment 1). According to the other hypothesis, we predicted that performing a reaching task repeatedly with one arm without providing performance feedback (which prevented learning the task with this arm), while concurrently adapting to a visuomotor rotation with the other arm, would increase the extent of transfer (experiment 2). Results indicate that providing binary error feedback, compared with continuous visual feedback that provided movement direction and amplitude information, had no influence on the extent of transfer. In contrast, repeatedly performing (but not learning) a specific task with one arm while visuomotor adaptation occurred with the other arm led to nearly complete transfer. This suggests that the absence of motor instances associated with specific effectors and task conditions is the major reason for limited interlimb transfer and that reinforcement of successful actions during initial training is not beneficial for interlimb transfer. These findings indicate crucial contributions of effector- and task-specific motor instances, which are thought to underlie (a type of) model-free learning, to optimal motor learning and interlimb transfer. PMID:25632082

  6. Neural-network-directed alignment of optical systems using the laser-beam spatial filter as an example

    NASA Technical Reports Server (NTRS)

    Decker, Arthur J.; Krasowski, Michael J.; Weiland, Kenneth E.

    1993-01-01

    This report describes an effort at NASA Lewis Research Center to use artificial neural networks to automate the alignment and control of optical measurement systems. Specifically, it addresses the use of commercially available neural network software and hardware to direct alignments of the common laser-beam-smoothing spatial filter. The report presents a general approach for designing alignment records and combining these into training sets to teach optical alignment functions to neural networks and discusses the use of these training sets to train several types of neural networks. Neural network configurations used include the adaptive resonance network, the back-propagation-trained network, and the counter-propagation network. This work shows that neural networks can be used to produce robust sequencers. These sequencers can learn by example to execute the step-by-step procedures of optical alignment and also can learn adaptively to correct for environmentally induced misalignment. The long-range objective is to use neural networks to automate the alignment and operation of optical measurement systems in remote, harsh, or dangerous aerospace environments. This work also shows that when neural networks are trained by a human operator, training sets should be recorded, training should be executed, and testing should be done in a manner that does not depend on intellectual judgments of the human operator.

  7. Countermeasures to Enhance Sensorimotor Adaptability

    NASA Technical Reports Server (NTRS)

    Bloomberg, J. J.; Peters, B. T.; Mulavara, A. P.; Brady, R. A.; Batson, C. C.; Miller, C. A.; Cohen, H. S.

    2011-01-01

    During exploration-class missions, sensorimotor disturbances may lead to disruption in the ability to ambulate and perform functional tasks during the initial introduction to a novel gravitational environment following a landing on a planetary surface. The goal of our current project is to develop a sensorimotor adaptability (SA) training program to facilitate rapid adaptation to novel gravitational environments. We have developed a unique training system comprised of a treadmill placed on a motion-base facing a virtual visual scene that provides an unstable walking surface combined with incongruent visual flow designed to enhance sensorimotor adaptability. We have conducted a series of studies that have shown: Training using a combination of modified visual flow and support surface motion during treadmill walking enhances locomotor adaptability to a novel sensorimotor environment. Trained individuals become more proficient at performing multiple competing tasks while walking during adaptation to novel discordant sensorimotor conditions. Trained subjects can retain their increased level of adaptability over a six months period. SA training is effective in producing increased adaptability in a more complex over-ground ambulatory task on an obstacle course. This confirms that for a complex task like walking, treadmill training contains enough of the critical features of overground walking to be an effective training modality. The structure of individual training sessions can be optimized to promote fast/strategic motor learning. Training sessions that each contain short-duration exposures to multiple perturbation stimuli allows subjects to acquire a greater ability to rapidly reorganize appropriate response strategies when encountering a novel sensory environment. Individual sensory biases (i.e. increased visual dependency) can predict adaptive responses to novel sensory environments suggesting that customized training prescriptions can be developed to enhance adaptability. These results indicate that SA training techniques can be added to existing treadmill exercise equipment and procedures to produce a single integrated countermeasure system to improve performance of astro/cosmonauts during prolonged exploratory space missions.

  8. A qualitative analysis of the concepts of fidelity and adaptation in the implementation of an evidence-based HIV prevention intervention.

    PubMed

    Owczarzak, Jill; Broaddus, Michelle; Pinkerton, Steven

    2016-04-01

    Continued debate about the relative value of fidelity versus adaptation, and lack of clarity about the meaning of fidelity, raise concerns about how frontline service providers resolve similar issues in their daily practice. We use SISTA ('Sisters Informing Sisters on Topics about acquired immune deficiency syndrome'), an evidence-based human immunodeficiency virus (HIV) prevention intervention for African American women, to understand how facilitators and program directors interpret and enact implementation fidelity with the need for adaptation in real-world program delivery. We conducted 22 in-depth, semi-structured interviews with service providers from four agencies implementing SISTA. Facilitators valued their skills as group leaders and ability to emotionally engage participants as more critical to program effectiveness than delivering the intervention with strict fidelity. Consequently, they saw program manuals as guides rather than static texts that should never be changed and, moreover, viewed the prescriptive nature of manuals as undermining their efforts to fully engage with participants. Our findings suggest that greater consideration should be given to understanding the role of facilitators in program effectiveness over and above the question of whether they implement the program with fidelity. Moreover, training curricula should provide facilitators with transferable skills through general facilitator training rather than only program-specific or manual-specific training. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  9. Nutritional strategies to support concurrent training.

    PubMed

    Perez-Schindler, Joaquin; Hamilton, D Lee; Moore, Daniel R; Baar, Keith; Philp, Andrew

    2015-01-01

    Concurrent training (the combination of endurance exercise to resistance training) is a common practice for athletes looking to maximise strength and endurance. Over 20 years ago, it was first observed that performing endurance exercise after resistance exercise could have detrimental effects on strength gains. At the cellular level, specific protein candidates have been suggested to mediate this training interference; however, at present, the physiological reason(s) behind the concurrent training effect remain largely unknown. Even less is known regarding the optimal nutritional strategies to support concurrent training and whether unique nutritional approaches are needed to support endurance and resistance exercise during concurrent training approaches. In this review, we will discuss the importance of protein supplementation for both endurance and resistance training adaptation and highlight additional nutritional strategies that may support concurrent training. Finally, we will attempt to synergise current understanding of the interaction between physiological responses and nutritional approaches into practical recommendations for concurrent training.

  10. A biomechanical evaluation of resistance: fundamental concepts for training and sports performance.

    PubMed

    Frost, David M; Cronin, John; Newton, Robert U

    2010-04-01

    Newton's second law of motion describes the acceleration of an object as being directly proportional to the magnitude of the net force, in the same direction as the net force and inversely proportional to its mass (a = F/m). With respect to linear motion, mass is also a numerical representation of an object's inertia, or its resistance to change in its state of motion and directly proportional to the magnitude of an object's momentum at any given velocity. To change an object's momentum, thereby increasing or decreasing its velocity, a proportional impulse must be generated. All motion is governed by these relationships, independent of the exercise being performed or the movement type being used; however, the degree to which this governance affects the associated kinematics, kinetics and muscle activity is dependent on the resistance type. Researchers have suggested that to facilitate the greatest improvements to athletic performance, the resistance-training programme employed by an athlete must be adapted to meet the specific demands of their sport. Therefore, it is conceivable that one mechanical stimulus, or resistance type, may not be appropriate for all applications. Although an excellent means of increasing maximal strength and the rate of force development, free-weight or mass-based training may not be the most conducive means to elicit velocity-specific adaptations. Attempts have been made to combat the inherent flaws of free weights, via accommodating and variable resistance-training devices; however, such approaches are not without problems that are specific to their mechanics. More recently, pneumatic-resistance devices (variable) have been introduced as a mechanical stimulus whereby the body mass of the athlete represents the only inertia that must be overcome to initiate movement, thus potentially affording the opportunity to develop velocity-specific power. However, there is no empirical evidence to support such a contention. Future research should place further emphasis on understanding the mechanical advantages/disadvantages inherent to the resistance types being used during training, so as to elicit the greatest improvements in athletic performance.

  11. Thermoregulatory adaptations associated with training and heat acclimation.

    PubMed

    Geor, R J; McCutcheon, L J

    1998-04-01

    The large metabolic heat load generated as a consequence of muscular work requires activation of thermoregulatory mechanisms in order to prevent an excessive and potentially dangerous rise in body temperature during exercise. Although the horse has highly efficient heat dissipatory mechanisms, there are a number of circumstances in which the thermoregulatory system may be overwhelmed, resulting in the development of critical hyperthermia. The risk for development of life-threatening hyperthermia is greatest when (1) the horse is inadequately conditioned for the required level of physical performance; (2) exercise is undertaken in hot and particularly, in hot and humid ambient conditions; and (3) there is an impairment to thermoregulatory mechanisms (e.g., severe dehydration, anhidrosis). Both exercise training under cool to moderate ambient conditions and a period of repeated exposure to, and exercise in, hot ambient conditions (heat acclimation) will result in a number of physiologic adaptations conferring improved thermoregulatory ability. These adaptations include an expanded plasma volume, greater stability of cardiovascular function during exercise, and an improved efficiency of evaporative heat loss as a result of alterations in the sweating response. Collectively, these adjustments serve to attenuate the rise in core body temperature in response to a given intensity of exercise. The magnitude of the physiologic adaptations occurring during exercise training and heat acclimation is a reflection of the thermal load imposed on the horse. Therefore, when compared with a period of training in cool conditions, the larger thermal stimulus associated with repeated exercise in hot ambient conditions will invoke proportionally greater thermoregulatory adaptations. Although it is not possible to eliminate the effects of adverse environmental conditions on exercise performance, it is clear that a thorough exercise training program together with a subsequent period of acclimatization will serve to ameliorate the impact of the environment. Based on our current understanding of the nature and extent of thermoregulatory adaptations in the horse, the following conclusions can be made: 1. A 2- to 3-month period of exercise training geared toward the specific athletic endeavor to be undertaken will result in substantial improvements in thermoregulatory capacity and is an absolute requirement for horses required to compete in hot ambient conditions. 2. Although physical training in a cool environment improves physiologic responses to exercise at high ambient temperatures, a 2-week period of moderate exercise training in these more adverse conditions is necessary for optimization of thermoregulatory function and physical performance. 3. Heat acclimation does not reduce the need for close monitoring of horses during training and competition in the heat. This is particularly true in hot, humid ambient conditions, where the biophysical limitations to sweat evaporation can result in development of severe hyperthermia, regardless of the state of training or heat acclimation.

  12. Innoversity in knowledge-for-action and adaptation to climate change: the first steps of an 'evidence-based climatic health' transfrontier training program.

    PubMed

    Lapaige, Véronique; Essiembre, Hélène

    2010-01-01

    It has become increasingly clear to the international scientific community that climate change is real and has important consequences for human health. To meet these new challenges, the World Health Organization recommends reinforcing the adaptive capacity of health systems. One of the possible avenues in this respect is to promote awareness and knowledge translation in climatic health, at both the local and global scales. Within such perspective, two major themes have emerged in the field of public health research: 1) the development of advanced training adapted to 'global environment' change and to the specific needs of various groups of actors (doctors, nurses, public health practitioners, health care managers, public service managers, local communities, etc) and 2) the development of strategies for implementing research results and applying various types of evidence to the management of public health issues affected by climate change. Progress on these two fronts will depend on maximum innovation in transdisciplinary and transsectoral collaborations. The general purpose of this article is to present the program of a new research and learning chair designed for this double set of developmental objectives - a chair that emphasizes 'innoversity' (the dynamic relationship between innovation and diversity) and 'transfrontier ecolearning for adaptive actions'. The Écoapprentissages, santé mentale et climat collaborative research chair (University of Montreal and Quebec National Public Health Institute) based in Montreal is a center for 'transdisciplinary research' on the transfrontier knowledge-for-action that can aid adaptation of the public health sector, the public mental health sector, and the public service sector to climate change, as well as a center for complex collaborations on evidence-based climatic health 'training'. This program-focused article comprises two main sections. The first section presents the 'general' and 'specific contexts' in which the chair emerged. The 'general context' pertains to the health-related challenge of finding ways to integrate, transfer, and implement knowledge, a particularly pointed challenge in Canada. The 'specific context' refers to the emerging research field of adaptation of public health to climate change. In the second section, the characteristics of the research chair are more extensively detailed (the vision of 'innoversity' and ' transfrontier knowledge-for-action,' the approach of shared responsibility and complex collaboration, objectives, and major axes of research). We conclude with a call for complex collaboration toward knowledge-for-action in public health services/mental health services/public services' adaptation to climate change: this call is aimed at individual and institutional actors in the North and South/West and East concerned by these issues.

  13. Empowering Physicians with Financial Literacy.

    PubMed

    Bar-Or, Yuval

    2015-01-01

    Most doctors complete their medical training without sufficient knowledge of business and finance. This leads to inefficient financial decisions, avoidable losses, and unnecessary anxiety. A big part of the problem is that the existing options for gaining financial knowledge are flawed. The ideal solution is to provide a simple framework of financial literacy to all students: one that can be adapted to their specific circumstances. That framework must be delivered by an objective expert to young physicians before they complete medical training.

  14. Skeletal muscle plasticity with marathon training in novice runners.

    PubMed

    Luden, N; Hayes, E; Minchev, K; Louis, E; Raue, U; Conley, T; Trappe, S

    2012-10-01

    The purpose of this study was to investigate leg muscle adaptation in runners preparing for their first marathon. Soleus and vastus lateralis (VL) biopsies were obtained from six recreational runners (23 ± 1 years, 61 ± 3 kg) before (T1), after 13 weeks of run training (T2), and after 3 weeks of taper and marathon (T3). Single muscle fiber size, contractile function (strength, speed, and power) and oxidative enzyme activity [citrate synthase (CS)] were measured at all three time points, and fiber type distribution was determined before and after the 16-week intervention. Training increased VO(2max) ∼9% (P<0.05). All soleus parameters were unchanged. VL MHC I fiber diameter increased (+8%; P<0.05) from T1 to T2. VL MHC I V(o) (-12%), MHC I power (-22%) and MHC IIa power (-29%) were reduced from T1 to T2 (P<0.05). No changes in VL single fiber contractile properties were observed from T2 to T3. No change was observed in soleus CS activity, whereas VL CS activity increased 66% (P<0.05). Our observations indicate that modest marathon training elicits very specific skeletal muscle adaptations that likely support the ability to perform 42.2 km of continuous running - further strengthening the existing body of evidence for skeletal muscle specificity. © 2011 John Wiley & Sons A/S.

  15. Monitoring and Correcting Autonomic Function Aboard Mir: NASA Technology Used in Space and on Earth to Facilitate Adaptation

    NASA Technical Reports Server (NTRS)

    Cowings, P.; Toscano, W.; Taylor, B.; DeRoshia, C.; Kornilova, L.; Koslovskaya, I.; Miller, N.

    1999-01-01

    The broad objective of the research was to study individual characteristics of human adaptation to long duration spaceflight and possibilities of their correction using autonomic conditioning. The changes in autonomic state during adaptation to microgravity can have profound effects on the operational efficiency of crewmembers and may result in debilitating biomedical symptoms. Ground-based and inflight experiment results showed that certain responses of autonomic nervous system were correlated with, or consistently preceded, reports of performance decrements or the symptoms. Autogenic-Feedback-Training Exercise (AFTE) is a physiological conditioning method that has been used to train people to voluntary control several of their own physiological responses. The specific objectives were: 1) To study human autonomic nervous system (ANS) responses to sustained exposure to microgravity; 2) To study human behavior/performance changes related to physiology; 3) To evaluate the effectiveness of preflight autonomic conditioning (AFTE) for facilitating adaptation to space and readaptation to Earth; and 4) To archive these data for the NASA Life Sciences Data Archive and thereby make this information available to the international scientific community.

  16. Environmental Adaptations Improve Everyday Action in Schizophrenia.

    PubMed

    Kessler, Rachel K; Rhodes, Emma; Giovannetti, Tania

    2015-05-01

    Cognitive functioning, particularly executive functioning, is a strong predictor of functional outcomes in people with schizophrenia. Cognitive remediation has been shown to improve specific cognitive processes, but adjunctive interventions are required for meaningful gains in adaptive functioning, particularly in people with chronic illness. This study examined whether (and how) environmental adaptations, used without training, may circumvent cognitive difficulties and facilitate everyday task performance in individuals with chronic schizophrenia. Forty-two individuals with chronic schizophrenia/schizoaffective disorder were administered cognitive measures and two versions of the Naturalistic Action Test (NAT)-a standard version (ST-NAT), and a user-centered version (UC-NAT) that incorporated environmental adaptations designed to facilitate task performance. The NAT conditions were counterbalanced across participants. Analyses compared performance between the NAT versions and examined the cognitive correlates of each NAT condition. Individuals with schizophrenia made fewer errors on the UC-NAT as compared to the ST-NAT; this between-group difference was significant for all error types. Compared to the ST-NAT, the UC-NAT performance was not significantly associated with an executive function measure of planning. Environmental adaptations may be implemented without extensive training to improve everyday action in individuals with chronic schizophrenia. Environmental adaptations that reduce planning demands may be most effective in this population.

  17. Muscle redox signalling pathways in exercise. Role of antioxidants.

    PubMed

    Mason, Shaun A; Morrison, Dale; McConell, Glenn K; Wadley, Glenn D

    2016-09-01

    Recent research highlights the importance of redox signalling pathway activation by contraction-induced reactive oxygen species (ROS) and nitric oxide (NO) in normal exercise-related cellular and molecular adaptations in skeletal muscle. In this review, we discuss some potentially important redox signalling pathways in skeletal muscle that are involved in acute and chronic responses to contraction and exercise. Specifically, we discuss redox signalling implicated in skeletal muscle contraction force, mitochondrial biogenesis and antioxidant enzyme induction, glucose uptake and muscle hypertrophy. Furthermore, we review evidence investigating the impact of major exogenous antioxidants on these acute and chronic responses to exercise. Redox signalling pathways involved in adaptive responses in skeletal muscle to exercise are not clearly elucidated at present, and further research is required to better define important signalling pathways involved. Evidence of beneficial or detrimental effects of specific antioxidant compounds on exercise adaptations in muscle is similarly limited, particularly in human subjects. Future research is required to not only investigate effects of specific antioxidant compounds on skeletal muscle exercise adaptations, but also to better establish mechanisms of action of specific antioxidants in vivo. Although we feel it remains somewhat premature to make clear recommendations in relation to application of specific antioxidant compounds in different exercise settings, a bulk of evidence suggests that N-acetylcysteine (NAC) is ergogenic through its effects on maintenance of muscle force production during sustained fatiguing events. Nevertheless, a current lack of evidence from studies using performance tests representative of athletic competition and a potential for adverse effects with high doses (>70mg/kg body mass) warrants caution in its use for performance enhancement. In addition, evidence implicates high dose vitamin C (1g/day) and E (≥260 IU/day) supplementation in impairments to some skeletal muscle cellular adaptations to chronic exercise training. Thus, determining the utility of antioxidant supplementation in athletes likely requires a consideration of training and competition periodization cycles of athletes in addition to type, dose and duration of antioxidant supplementation. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Neural Plasticity following Abacus Training in Humans: A Review and Future Directions

    PubMed Central

    Li, Yongxin; Chen, Feiyan; Huang, Wenhua

    2016-01-01

    The human brain has an enormous capacity to adapt to a broad variety of environmental demands. Previous studies in the field of abacus training have shown that this training can induce specific changes in the brain. However, the neural mechanism underlying these changes remains elusive. Here, we reviewed the behavioral and imaging findings of comparisons between abacus experts and average control subjects and focused on changes in activation patterns and changes in brain structure. Finally, we noted the limitations and the future directions of this field. We concluded that although current studies have provided us with information about the mechanisms of abacus training, more research on abacus training is needed to understand its neural impact. PMID:26881089

  19. The effects of neuromuscular training on knee joint motor control during sidecutting in female elite soccer and handball players.

    PubMed

    Zebis, Mette K; Bencke, Jesper; Andersen, Lars L; Døssing, Simon; Alkjaer, Tine; Magnusson, S Peter; Kjaer, Michael; Aagaard, Per

    2008-07-01

    The project aimed to implement neuromuscular training during a full soccer and handball league season and to experimentally analyze the neuromuscular adaptation mechanisms elicited by this training during a standardized sidecutting maneuver known to be associated with non-contact anterior cruciate ligament (ACL) injury. The players were tested before and after 1 season without implementation of the prophylactic training and subsequently before and after a full season with the implementation of prophylactic training. A total of 12 female elite soccer players and 8 female elite team handball players aged 26 +/- 3 years at the start of the study. The subjects participated in a specific neuromuscular training program previously shown to reduce non-contact ACL injury. Neuromuscular activity at the knee joint, joint angles at the hip and knee, and ground reaction forces were recorded during a sidecutting maneuver. Neuromuscular activity in the prelanding phase was obtained 10 and 50 ms before foot strike on a force plate and at 10 and 50 ms after foot strike on a force plate. Neuromuscular training markedly increased before activity and landing activity electromyography (EMG) of the semitendinosus (P < 0.05), while quadriceps EMG activity remained unchanged. Neuromuscular training increased EMG activity for the medial hamstring muscles, thereby decreasing the risk of dynamic valgus. This observed neuromuscular adaptation during sidecutting could potentially reduce the risk for non-contact ACL injury.

  20. Differential effects of military training on fat-free mass and plasma amino acid adaptations in men and women.

    PubMed

    Margolis, Lee M; Pasiakos, Stefan M; Karl, J Philip; Rood, Jennifer C; Cable, Sonya J; Williams, Kelly W; Young, Andrew J; McClung, James P

    2012-12-18

    Fat-free mass (FFM) adaptations to physical training may differ between sexes based on disparities in fitness level, dietary intake, and levels of plasma amino acids (AA). This investigation aimed to determine FFM and plasma AA responses to military training, examine whether adaptations differ between male and female recruits, and explore potential associations between FFM and AA responses to training. Body composition and plasma AA levels were assessed in US Army recruits (n = 209, 118 males, 91 females) before (baseline) and every three weeks during basic combat training (BCT), a 10-week military training course. Body weight decreased in men but remained stable in women during BCT (sex-by-time interaction, P < 0.05). Fifty-eight percent of recruits gained FFM during BCT, with more (P < 0.05) females (88%) gaining FFM than males (36%). Total plasma AA increased (P < 0.05) during BCT, with greater (P < 0.05) increases observed in females (17%) then in males (4%). Essential amino acids (EAA) and branched-chain amino acids (BCAA) were increased (P < 0.05) in females but did not change in males (sex-by-time interaction, P < 0.05). Independent of sex, changes in EAA (r = 0.34) and BCAA (r = 0.27) from baseline were associated with changes in FFM (P < 0.05); greater (P < 0.05) increases in AA concentrations were observed for those who gained FFM. Increases in FFM and plasma AA suggest that BCT elicits a more pronounced anabolic response in women compared to men, which may reflect sex-specific differences in the relative intensity of the combined training and physiological stimulus associated with BCT.

  1. Differential Effects of Military Training on Fat-Free Mass and Plasma Amino Acid Adaptations in Men and Women

    PubMed Central

    Margolis, Lee M.; Pasiakos, Stefan M.; Karl, J. Philip; Rood, Jennifer C.; Cable, Sonya J.; Williams, Kelly W.; Young, Andrew J.; McClung, James P.

    2012-01-01

    Fat-free mass (FFM) adaptations to physical training may differ between sexes based on disparities in fitness level, dietary intake, and levels of plasma amino acids (AA). This investigation aimed to determine FFM and plasma AA responses to military training, examine whether adaptations differ between male and female recruits, and explore potential associations between FFM and AA responses to training. Body composition and plasma AA levels were assessed in US Army recruits (n = 209, 118 males, 91 females) before (baseline) and every three weeks during basic combat training (BCT), a 10-week military training course. Body weight decreased in men but remained stable in women during BCT (sex-by-time interaction, P < 0.05). Fifty-eight percent of recruits gained FFM during BCT, with more (P < 0.05) females (88%) gaining FFM than males (36%). Total plasma AA increased (P < 0.05) during BCT, with greater (P < 0.05) increases observed in females (17%) then in males (4%). Essential amino acids (EAA) and branched-chain amino acids (BCAA) were increased (P < 0.05) in females but did not change in males (sex-by-time interaction, P < 0.05). Independent of sex, changes in EAA (r = 0.34) and BCAA (r = 0.27) from baseline were associated with changes in FFM (P < 0.05); greater (P < 0.05) increases in AA concentrations were observed for those who gained FFM. Increases in FFM and plasma AA suggest that BCT elicits a more pronounced anabolic response in women compared to men, which may reflect sex-specific differences in the relative intensity of the combined training and physiological stimulus associated with BCT. PMID:23250145

  2. Supplementation with α-Lipoic Acid, CoQ10, and Vitamin E Augments Running Performance and Mitochondrial Function in Female Mice

    PubMed Central

    Abadi, Arkan; Crane, Justin D.; Ogborn, Daniel; Hettinga, Bart; Akhtar, Mahmood; Stokl, Andrew; MacNeil, Lauren; Safdar, Adeel; Tarnopolsky, Mark

    2013-01-01

    Antioxidant supplements are widely consumed by the general public; however, their effects of on exercise performance are controversial. The aim of this study was to examine the effects of an antioxidant cocktail (α-lipoic acid, vitamin E and coenzyme Q10) on exercise performance, muscle function and training adaptations in mice. C57Bl/J6 mice were placed on antioxidant supplement or placebo-control diets (n = 36/group) and divided into trained (8 wks treadmill running) (n = 12/group) and untrained groups (n = 24/group). Antioxidant supplementation had no effect on the running performance of trained mice nor did it affect training adaptations; however, untrained female mice that received antioxidants performed significantly better than placebo-control mice (p ≤ 0.05). Furthermore, antioxidant-supplemented females (untrained) showed elevated respiratory capacity in freshly excised muscle fibers (quadriceps femoris) (p ≤ 0.05), reduced oxidative damage to muscle proteins (p ≤ 0.05), and increased expression of mitochondrial proteins (p ≤ 0.05) compared to placebo-controls. These changes were attributed to increased expression of proliferator-activated receptor gamma coactivator 1α (PGC-1α) (p ≤ 0.05) via activation of AMP-activated protein kinase (AMPK) (p ≤ 0.05) by antioxidant supplementation. Overall, these results indicate that this antioxidant supplement exerts gender specific effects; augmenting performance and mitochondrial function in untrained females, but does not attenuate training adaptations. PMID:23565271

  3. Endurance training in patients with schizophrenia and healthy controls: differences and similarities.

    PubMed

    Keller-Varady, Katriona; Hasan, Alkomiet; Schneider-Axmann, Thomas; Hillmer-Vogel, Ursula; Adomßent, Björn; Wobrock, Thomas; Schmitt, Andrea; Niklas, Andree; Falkai, Peter; Malchow, Berend

    2016-08-01

    The aims were to examine the feasibility of and adaptations to endurance training in persons diagnosed with schizophrenia and to address the question whether the principles and beneficial effects of endurance training established in the healthy population apply also to patients with schizophrenia. In this controlled interventional study, 22 patients with schizophrenia and 22 healthy controls performed a standardized aerobic endurance training on bicycle ergometers over 12 weeks. Another group of 21 patients with schizophrenia played table soccer. Endurance capacity was measured with incremental cycle ergometry before and after the intervention and 3 months later. A specific set of outcome parameters was defined. The training stimuli can be assumed to be similar in both endurance groups. Endurance capacity improved significantly in the endurance groups, but not in the table soccer group. Patients and healthy controls showed comparable adaptations to endurance training, as assessed by physical working capacity and maximal achieved power. Differences were found in changes of performance at a lactate concentration of 3 mmol/l. Endurance training was feasible and effective in both groups. The principles and types of training that are usually applied to healthy controls need to be verified in patients with schizophrenia. Nevertheless, patients benefited from endurance training in terms of improvement of endurance capacity and reduction in the baseline deficit in comparison with healthy controls. Therefore, endurance training should be implemented in future therapy programs. These programs need to pay special attention to the differences between patients with schizophrenia and healthy controls.

  4. Different Muscle Action Training Protocols on Quadriceps-Hamstrings Neuromuscular Adaptations.

    PubMed

    Ruas, Cassio V; Brown, Lee E; Lima, Camila D; Gregory Haff, G; Pinto, Ronei S

    2018-05-01

    The aim of this study was to compare three specific concentric and eccentric muscle action training protocols on quadriceps-hamstrings neuromuscular adaptations. Forty male volunteers performed 6 weeks of training (two sessions/week) of their dominant and non-dominant legs on an isokinetic dynamometer. They were randomly assigned to one of four groups; concentric quadriceps and concentric hamstrings (CON/CON, n=10), eccentric quadriceps and eccentric hamstrings (ECC/ECC, n=10), concentric quadriceps and eccentric hamstrings (CON/ECC, n=10), or no training (CTRL, n=10). Intensity of training was increased every week by decreasing the angular velocity for concentric and increasing it for eccentric groups in 30°/s increments. Volume of training was increased by adding one set every week. Dominant leg quadriceps and hamstrings muscle thickness, muscle quality, muscle activation, muscle coactivation, and electromechanical delay were tested before and after training. Results revealed that all training groups similarly increased MT of quadriceps and hamstrings compared to control (p<0.05). However, CON/ECC and ECC/ECC training elicited a greater magnitude of change. There were no significant differences between groups for all other neuromuscular variables (p>0.05). These findings suggest that different short-term muscle action isokinetic training protocols elicit similar muscle size increases in hamstrings and quadriceps, but not for other neuromuscular variables. Nevertheless, effect sizes indicate that CON/ECC and ECC/ECC may elicit the greatest magnitude of change in muscle hypertrophy. © Georg Thieme Verlag KG Stuttgart · New York.

  5. Protein Supplementation Does Not Affect Myogenic Adaptations to Resistance Training.

    PubMed

    Reidy, Paul T; Fry, Christopher S; Igbinigie, Sherry; Deer, Rachel R; Jennings, Kristofer; Cope, Mark B; Mukherjea, Ratna; Volpi, Elena; Rasmussen, Blake B

    2017-06-01

    It has been proposed that protein supplementation during resistance exercise training enhances muscle hypertrophy. The degree of hypertrophy during training is controlled in part through the activation of satellite cells and myonuclear accretion. This study aimed to determine the efficacy of protein supplementation (and the type of protein) during traditional resistance training on myofiber cross-sectional area, satellite cell content, and myonuclear addition. Healthy young men participated in supervised whole-body progressive resistance training 3 d·wk for 12 wk. Participants were randomized to one of three groups ingesting a daily 22-g macronutrient dose of soy-dairy protein blend (PB, n = 22), whey protein isolate (WP, n = 15), or an isocaloric maltodextrin placebo (MDP, n = 17). Lean mass, vastus lateralis myofiber-type-specific cross-sectional area, satellite cell content, and myonuclear addition were assessed before and after resistance training. PB and the pooled protein treatments (PB + WP = PRO) exhibited a greater whole-body lean mass %change compared with MDP (P = 0.057 for PB) and (P = 0.050 for PRO), respectively. All treatments demonstrated similar leg muscle hypertrophy and vastus lateralis myofiber-type-specific cross-sectional area (P < 0.05). Increases in myosin heavy chain I and II myofiber satellite cell content and myonuclei content were also detected after exercise training (P < 0.05). Protein supplementation during resistance training has a modest effect on whole-body lean mass as compared with exercise training without protein supplementation, and there was no effect on any outcome between protein supplement types (blend vs whey). However, protein supplementation did not enhance resistance exercise-induced increases in myofiber hypertrophy, satellite cell content, or myonuclear addition in young healthy men. We propose that as long as protein intake is adequate during muscle overload, the adaptations in muscle growth and function will not be influenced by protein supplementation.

  6. MATE: Machine Learning for Adaptive Calibration Template Detection

    PubMed Central

    Donné, Simon; De Vylder, Jonas; Goossens, Bart; Philips, Wilfried

    2016-01-01

    The problem of camera calibration is two-fold. On the one hand, the parameters are estimated from known correspondences between the captured image and the real world. On the other, these correspondences themselves—typically in the form of chessboard corners—need to be found. Many distinct approaches for this feature template extraction are available, often of large computational and/or implementational complexity. We exploit the generalized nature of deep learning networks to detect checkerboard corners: our proposed method is a convolutional neural network (CNN) trained on a large set of example chessboard images, which generalizes several existing solutions. The network is trained explicitly against noisy inputs, as well as inputs with large degrees of lens distortion. The trained network that we evaluate is as accurate as existing techniques while offering improved execution time and increased adaptability to specific situations with little effort. The proposed method is not only robust against the types of degradation present in the training set (lens distortions, and large amounts of sensor noise), but also to perspective deformations, e.g., resulting from multi-camera set-ups. PMID:27827920

  7. Set Shifting Training with Categorization Tasks

    PubMed Central

    Soveri, Anna; Waris, Otto; Laine, Matti

    2013-01-01

    The very few cognitive training studies targeting an important executive function, set shifting, have reported performance improvements that also generalized to untrained tasks. The present randomized controlled trial extends set shifting training research by comparing previously used cued training with uncued training. A computerized adaptation of the Wisconsin Card Sorting Test was utilized as the training task in a pretest-posttest experimental design involving three groups of university students. One group received uncued training (n = 14), another received cued training (n = 14) and the control group (n = 14) only participated in pre- and posttests. The uncued training group showed posttraining performance increases on their training task, but neither training group showed statistically significant transfer effects. Nevertheless, comparison of effect sizes for transfer effects indicated that our results did not differ significantly from the previous studies. Our results suggest that the cognitive effects of computerized set shifting training are mostly task-specific, and would preclude any robust generalization effects with this training. PMID:24324717

  8. The influence of taekwondo training on school-life adaptation and exercise value in the United States

    PubMed Central

    Cho, Ik Rae; Park, Hyo Joo; Lee, Taek Kyun

    2018-01-01

    Previous experience has shown that school-based taekwondo training in the United States (US) results in many beneficial effect sregarding school education and the physical health of the adolescent participants; of especial significance, the training plays an important role in terms of exercise value and school-life adaptation. To explore this overall effect, a self-administered questionnaire was distributed to 401 adolescents over the age of 10 years. The survey comprisesa total of 29 questions that consist of 17 exercise-value-related questions (general, moral, and status) and 12 questions that are related to school-life adaptation (adaptation to teachers, adaptation to academic activities, adaptation to rule compliance, and adaptation to school activities). The survey results show that taekwondo training affects school-life adaptation by helping to improve student morality and by bolstering the students compliance with school rules during their schooling. The exercise value of taekwondo training is considered a necessity for US adolescents due to the corresponding educational aspects; in particular, the training plays a very important role in the maintenance of amenable student-teacher and student-peer relationships. From the previously mentioned findings, and if taekwondo teachers train their students carefully with educational missions in mind, it is expected that taekwondo training will play a very important role in the cultivation of anappropriate education value among US adolescents. PMID:29740554

  9. The influence of taekwondo training on school-life adaptation and exercise value in the United States.

    PubMed

    Cho, Ik Rae; Park, Hyo Joo; Lee, Taek Kyun

    2018-04-01

    Previous experience has shown that school-based taekwondo training in the United States (US) results in many beneficial effect sregarding school education and the physical health of the adolescent participants; of especial significance, the training plays an important role in terms of exercise value and school-life adaptation. To explore this overall effect, a self-administered questionnaire was distributed to 401 adolescents over the age of 10 years. The survey comprisesa total of 29 questions that consist of 17 exercise-value-related questions (general, moral, and status) and 12 questions that are related to school-life adaptation (adaptation to teachers, adaptation to academic activities, adaptation to rule compliance, and adaptation to school activities). The survey results show that taekwondo training affects school-life adaptation by helping to improve student morality and by bolstering the students compliance with school rules during their schooling. The exercise value of taekwondo training is considered a necessity for US adolescents due to the corresponding educational aspects; in particular, the training plays a very important role in the maintenance of amenable student-teacher and student-peer relationships. From the previously mentioned findings, and if taekwondo teachers train their students carefully with educational missions in mind, it is expected that taekwondo training will play a very important role in the cultivation of anappropriate education value among US adolescents.

  10. Worker training for new threats: a proposed framework.

    PubMed

    Mitchell, Clifford S; Doyle, Mary L; Moran, John B; Lippy, Bruce; Hughes, Joseph T; Lum, Max; Agnew, Jacqueline

    2004-11-01

    In an effort to identify health and safety training needs for various groups of workers related to weapons of mass destruction, including chemical, biological, radiological, and nuclear weapons and high yield explosives (CBRNE), a conference, "Worker Training in a New Era: Responding to New Threats," was held at the Johns Hopkins Bloomberg School of Public Health in October 2002. Two questions were addressed: Which general skills and knowledge are common to all workers who might be exposed to terrorist threats from CBRNE weapons? What are the particular skills and knowledge relevant to these threats that are specific to workers in different sectors? Thirteen core components for pre- and post-event training were identified. Pre-event training applies to all workers. Post-event training applies to selected personnel including first responders, skilled support personnel, and other workers involved in these operations. Recommendations to improve worker safety training related to preparedness include: identify specific competencies for worker pre- and post-event training; coordinate Federal policy on worker training for CBRNE hazards; adopt federal guidelines or standards on worker training for new CBRNE threats, based on the competencies and coordinated Federal policy; conduct an inventory of training programs and other resources that could be used or adapted for use for new threats; and develop new training content and methods for pre- and post-event training to address specific competencies. Given the possibility for the introduction of CBRNE threats into the workplace, all workers need some training in the potential hazards involved: the individual worker's specific role in an emergency; incident command; activation of the emergency notification system; use of personal protective equipment (PPE); and safe evacuation of the workplace. While some occupational sectors have developed effective training related to these new threats, there is a need to develop, implement, and evaluate training programs across many different sectors of the workforce. Copyright 2004 Wiley-Liss, Inc.

  11. Selecting Effective Means to Any End: Futures and Ethics of Persuasion Profiling

    NASA Astrophysics Data System (ADS)

    Kaptein, Maurits; Eckles, Dean

    Interactive persuasive technologies can and do adapt to individuals. Existing systems identify and adapt to user preferences within a specific domain: e.g., a music recommender system adapts its recommended songs to user preferences. This paper is concerned with adaptive persuasive systems that adapt to individual differences in the effectiveness of particular means, rather than selecting different ends. We give special attention to systems that implement persuasion profiling - adapting to individual differences in the effects of influence strategies. We argue that these systems are worth separate consideration and raise unique ethical issues for two reasons: (1) their end-independence implies that systems trained in one context can be used in other, unexpected contexts and (2) they do not rely on - and are generally disadvantaged by - disclosing that they are adapting to individual differences. We use examples of these systems to illustrate some ethically and practically challenging futures that these characteristics make possible.

  12. Developing Personalized Sensorimotor Adaptability Countermeasures for Spaceflight

    NASA Technical Reports Server (NTRS)

    Mulavara, A. P.; Seidler, R. D.; Peters, B.; Cohen, H. S.; Wood, S.; Bloomberg, J. J.

    2016-01-01

    Astronauts experience sensorimotor disturbances during their initial exposure to microgravity and during the re-adaptation phase following a return to an Earth-gravitational environment. Interestingly, astronauts who return from spaceflight show substantial differences in their abilities to readapt to a gravitational environment. The ability to predict the manner and degree to which individual astronauts would be affected would improve the effectiveness of countermeasure training programs designed to enhance sensorimotor adaptability. In this paper we will be presenting results from our ground-based study that show how behavioral, brain imaging and genomic data may be used to predict individual differences in sensorimotor adaptability to novel sensorimotor environments. This approach will allow us to better design and implement sensorimotor adaptability training countermeasures against decrements in post-mission adaptive capability that are customized for each crewmember's sensory biases, adaptive capacity, brain structure, functional capacities, and genetic predispositions. The ability to customize adaptability training will allow more efficient use of crew time during training and will optimize training prescriptions for astronauts to ensure expected outcomes.

  13. [Activities of Psychology Dept., California Univ.

    NASA Technical Reports Server (NTRS)

    Bridgeman, Bruce

    1998-01-01

    We have completed two studies during the grant period, with manuscripts published or ready for submission for publication: (1) Dual adaptation and adaptive generalization in the human vestibuloocular reflex and (2) Frequency vs. acceleration specificity in human VOR adaptation. In the 1st study two studies examined the possibility that rotational VOR plasticity is subject to dual adaptation and adaptive generalization. Subjects in the experimental condition were exposed to an altered visual-vestibular environment for about four minutes every day for five consecutive days. The working hours between these testing sessions constituted re-exposure to the normal visual environment. Thus, subjects were repeatedly adapting and re-adapting to both environments which is a condition designed to produce dual adaptation. In each training session a measure of baseline VOR gain was obtained (in the dark). A small laser spot (the only visual stimulus) was systematically moved in the same direction as the subject's head, but by half the angle of rotation (target/head gain = 0.5). This resulted in adaptation values relativized to the non-adapted gain of each subject. These values were then analyzed using an analysis of variance with day and session (within a day) as factors. In the 2nd study human VOR adaption has been assumed to be frequency specific, despite the fact that the semicircular canals are simulated by rotational acceleration and not frequency per se.

  14. Mathematical modelling of bone adaptation of the metacarpal subchondral bone in racehorses.

    PubMed

    Hitchens, Peta L; Pivonka, Peter; Malekipour, Fatemeh; Whitton, R Chris

    2018-06-01

    In Thoroughbred racehorses, fractures of the distal limb are commonly catastrophic. Most of these fractures occur due to the accumulation of fatigue damage from repetitive loading, as evidenced by microdamage at the predilection sites for fracture. Adaptation of the bone in response to training loads is important for fatigue resistance. In order to better understand the mechanism of subchondral bone adaptation to its loading environment, we utilised a square root function defining the relationship between bone volume fraction [Formula: see text] and specific surface [Formula: see text] of the subchondral bone of the lateral condyles of the third metacarpal bone (MCIII) of the racehorse, and using this equation, developed a mathematical model of subchondral bone that adapts to loading conditions observed in vivo. The model is expressed as an ordinary differential equation incorporating a formation rate that is dependent on strain energy density. The loading conditions applied to a selected subchondral region, i.e. volume of interest, were estimated based on joint contact forces sustained by racehorses in training. For each of the initial conditions of [Formula: see text] we found no difference between subsequent homoeostatic [Formula: see text] at any given loading condition, but the time to reach equilibrium differed by initial [Formula: see text] and loading condition. We found that the observed values for [Formula: see text] from the mathematical model output were a good approximation to the existing data for racehorses in training or at rest. This model provides the basis for understanding the effect of changes to training strategies that may reduce the risk of racehorse injury.

  15. AAL Platform with a “De Facto” Standard Communication Interface (TICO): Training in Home Control in Special Education

    PubMed Central

    Guillomía San Bartolomé, Miguel A.; Artigas Maestre, José Ignacio; Sánchez Agustín, Ana

    2017-01-01

    Framed within a long-term cooperation between university and special education teachers, training in alternative communication skills and home control was realized using the “TICO” interface, a communication panel editor extensively used in special education schools. From a technological view we follow AAL technology trends by integrating a successful interface in a heterogeneous services AAL platform, focusing on a functional view. Educationally, a very flexible interface in line with communication training allows dynamic adjustment of complexity, enhanced by an accessible mindset and virtual elements significance already in use, offers specific interaction feedback, adapts to the evolving needs and capacities and improves the personal autonomy and self-confidence of children at school and home. TICO-home-control was installed during the last school year in the library of a special education school to study adaptations and training strategies to enhance the autonomy opportunities of its pupils. The methodology involved a case study and structured and semi-structured observations. Five children, considered unable to use commercial home control systems were trained obtaining good results in enabling them to use an open home control system. Moreover this AAL platform has proved efficient in training children in previous cognitive steps like virtual representation and cause-effect interaction. PMID:29023383

  16. AAL Platform with a "De Facto" Standard Communication Interface (TICO): Training in Home Control in Special Education.

    PubMed

    Guillomía San Bartolomé, Miguel A; Falcó Boudet, Jorge L; Artigas Maestre, José Ignacio; Sánchez Agustín, Ana

    2017-10-12

    Framed within a long-term cooperation between university and special education teachers, training in alternative communication skills and home control was realized using the "TICO" interface, a communication panel editor extensively used in special education schools. From a technological view we follow AAL technology trends by integrating a successful interface in a heterogeneous services AAL platform, focusing on a functional view. Educationally, a very flexible interface in line with communication training allows dynamic adjustment of complexity, enhanced by an accessible mindset and virtual elements significance already in use, offers specific interaction feedback, adapts to the evolving needs and capacities and improves the personal autonomy and self-confidence of children at school and home. TICO-home-control was installed during the last school year in the library of a special education school to study adaptations and training strategies to enhance the autonomy opportunities of its pupils. The methodology involved a case study and structured and semi-structured observations. Five children, considered unable to use commercial home control systems were trained obtaining good results in enabling them to use an open home control system. Moreover this AAL platform has proved efficient in training children in previous cognitive steps like virtual representation and cause-effect interaction.

  17. Adaptations of mouse skeletal muscle to low intensity vibration training

    PubMed Central

    McKeehen, James N.; Novotny, Susan A.; Baltgalvis, Kristen A.; Call, Jarrod A.; Nuckley, David J.; Lowe, Dawn A.

    2013-01-01

    Purpose We tested the hypothesis that low intensity vibration training in mice improves contractile function of hindlimb skeletal muscles and promotes exercise-related cellular adaptations. Methods We subjected C57BL/6J mice to 6 wk, 5 d·wk−1, 15 min·d−1 of sham or low intensity vibration (45 Hz, 1.0 g) while housed in traditional cages (Sham-Active, n=8; Vibrated-Active, n=10) or in small cages to restrict physical activity (Sham-Restricted, n=8; Vibrated-Restricted, n=8). Contractile function and resistance to fatigue were tested in vivo (anterior and posterior crural muscles) and ex vivo on the soleus muscle. Tibialis anterior and soleus muscles were evaluated histologically for alterations in oxidative metabolism, capillarity, and fiber types. Epididymal fat pad and hindlimb muscle masses were measured. Two-way ANOVAs were used to determine effects of vibration and physical inactivity. Results Vibration training resulted in a 10% increase in maximal isometric torque (P=0.038) and 16% faster maximal rate of relaxation (P=0.030) of the anterior crural muscles. Posterior crural muscles were unaffected by vibration, with the exception of greater rates of contraction in Vibrated-Restricted mice compared to Vibrated-Active and Sham-Restricted mice (P=0.022). Soleus muscle maximal isometric tetanic force tended to be greater (P=0.057) and maximal relaxation was 20% faster (P=0.005) in Vibrated compared to Sham mice. Restriction of physical activity induced muscle weakness but was not required for vibration to be effective in improving strength or relaxation. Vibration training did not impact muscle fatigability or any indicator of cellular adaptation investigated (P≥0.431). Fat pad but not hindlimb muscle masses were affected by vibration training. Conclusion Vibration training in mice improved muscle contractility, specifically strength and relaxation rates, with no indication of adverse effects to muscle function or cellular adaptations. PMID:23274599

  18. Group training in interpersonal problem-solving skills for workplace adaptation of adolescents and adults with Asperger syndrome: a preliminary study.

    PubMed

    Bonete, Saray; Calero, María Dolores; Fernández-Parra, Antonio

    2015-05-01

    Adults with Asperger syndrome show persistent difficulties in social situations which psychosocial treatments may address. Despite the multiple studies focusing on social skills interventions, only some have focused specifically on problem-solving skills and have not targeted workplace adaptation training in the adult population. This study describes preliminary data from a group format manual-based intervention, the Interpersonal Problem-Solving for Workplace Adaptation Programme, aimed at improving the cognitive and metacognitive process of social problem-solving skills focusing on typical social situations in the workplace based on mediation as the main strategy. A total of 50 adults with Asperger syndrome received the programme and were compared with a control group of typical development. The feasibility and effectiveness of the treatment were explored. Participants were assessed at pre-treatment and post-treatment on a task of social problem-solving skills and two secondary measures of socialisation and work profile using self- and caregiver-report. Using a variety of methods, the results showed that scores were significantly higher at post-treatment in the social problem-solving task and socialisation skills based on reports by parents. Differences in comparison to the control group had decreased after treatment. The treatment was acceptable to families and subject adherence was high. The Interpersonal Problem-Solving for Workplace Adaptation Programme appears to be a feasible training programme. © The Author(s) 2014.

  19. Adding words to the brain's visual dictionary: novel word learning selectively sharpens orthographic representations in the VWFA.

    PubMed

    Glezer, Laurie S; Kim, Judy; Rule, Josh; Jiang, Xiong; Riesenhuber, Maximilian

    2015-03-25

    The nature of orthographic representations in the human brain is still subject of much debate. Recent reports have claimed that the visual word form area (VWFA) in left occipitotemporal cortex contains an orthographic lexicon based on neuronal representations highly selective for individual written real words (RWs). This theory predicts that learning novel words should selectively increase neural specificity for these words in the VWFA. We trained subjects to recognize novel pseudowords (PWs) and used fMRI rapid adaptation to compare neural selectivity with RWs, untrained PWs (UTPWs), and trained PWs (TPWs). Before training, PWs elicited broadly tuned responses, whereas responses to RWs indicated tight tuning. After training, TPW responses resembled those of RWs, whereas UTPWs continued to show broad tuning. This change in selectivity was specific to the VWFA. Therefore, word learning appears to selectively increase neuronal specificity for the new words in the VWFA, thereby adding these words to the brain's visual dictionary. Copyright © 2015 the authors 0270-6474/15/354965-08$15.00/0.

  20. Training Modalities to Increase Sensorimotor Adaptability

    NASA Technical Reports Server (NTRS)

    Bloomberg, J. J.; Mulavara, A. P.; Peters, B. T.; Brady, R.; Audas, C.; Cohen, H. S.

    2009-01-01

    During the acute phase of adaptation to novel gravitational environments, sensorimotor disturbances have the potential to disrupt the ability of astronauts to perform required mission tasks. The goal of our current series of studies is develop a sensorimotor adaptability (SA) training program designed to facilitate recovery of functional capabilities when astronauts transition to different gravitational environments. The project has conducted a series of studies investigating the efficacy of treadmill training combined with a variety of sensory challenges (incongruent visual input, support surface instability) designed to increase adaptability. SA training using a treadmill combined with exposure to altered visual input was effective in producing increased adaptability in a more complex over-ground ambulatory task on an obstacle course. This confirms that for a complex task like walking, treadmill training contains enough of the critical features of overground walking to be an effective training modality. SA training can be optimized by using a periodized training schedule. Test sessions that each contain short-duration exposures to multiple perturbation stimuli allows subjects to acquire a greater ability to rapidly reorganize appropriate response strategies when encountering a novel sensory environment. Using a treadmill mounted on top of a six degree-of-freedom motion base platform we investigated locomotor training responses produced by subjects introduced to a dynamic walking surface combined with alterations in visual flow. Subjects who received this training had improved locomotor performance and faster reaction times when exposed to the novel sensory stimuli compared to control subjects. Results also demonstrate that individual sensory biases (i.e. increased visual dependency) can predict adaptive responses to novel sensory environments suggesting that individual training prescription can be developed to enhance adaptability. These data indicate that SA training can be effectively integrated with treadmill exercise and optimized to provide a unique system that combines multiple training requirements in a single countermeasure system. Learning Objectives: The development of a new countermeasure approach that enhances sensorimotor adaptability will be discussed.

  1. Office of Land and Emergency Management (OLEM) Climate Change Adaptation Training

    EPA Pesticide Factsheets

    This training discusses climate vulnerabilities and methods for incorporating adaptation measures into OLEM programs. This training is meant to follow completion of EPA's Introductory Climate Change Training.

  2. Are treatment effects of neurofeedback training in children with ADHD related to the successful regulation of brain activity? A review on the learning of regulation of brain activity and a contribution to the discussion on specificity

    PubMed Central

    Zuberer, Agnieszka; Brandeis, Daniel; Drechsler, Renate

    2015-01-01

    While issues of efficacy and specificity are crucial for the future of neurofeedback training, there may be alternative designs and control analyses to circumvent the methodological and ethical problems associated with double-blind placebo studies. Surprisingly, most NF studies do not report the most immediate result of their NF training, i.e., whether or not children with ADHD gain control over their brain activity during the training sessions. For the investigation of specificity, however, it seems essential to analyze the learning and adaptation processes that take place in the course of the training and to relate improvements in self-regulated brain activity across training sessions to behavioral, neuropsychological and electrophysiological outcomes. To this aim, a review of studies on neurofeedback training with ADHD patients which include the analysis of learning across training sessions or relate training performance to outcome is presented. Methods on how to evaluate and quantify learning of EEG regulation over time are discussed. “Non-learning” has been reported in a small number of ADHD-studies, but has not been a focus of general methodological discussion so far. For this reason, selected results from the brain-computer interface (BCI) research on the so-called “brain-computer illiteracy”, the inability to gain control over one’s brain activity, are also included. It is concluded that in the discussion on specificity, more attention should be devoted to the analysis of EEG regulation performance in the course of the training and its impact on clinical outcome. It is necessary to improve the knowledge on characteristic cross-session and within-session learning trajectories in ADHD and to provide the best conditions for learning. PMID:25870550

  3. Quantitative Biology of Exercise-Induced Signal Transduction Pathways.

    PubMed

    Liu, Timon Cheng-Yi; Liu, Gang; Hu, Shao-Juan; Zhu, Ling; Yang, Xiang-Bo; Zhang, Quan-Guang

    2017-01-01

    Exercise is essential in regulating energy metabolism. Exercise activates cellular, molecular, and biochemical pathways with regulatory roles in training response adaptation. Among them, endurance/strength training of an individual has been shown to activate its respective signal transduction pathways in skeletal muscle. This was further studied from the viewpoint of quantitative difference (QD). For the mean values, [Formula: see text], of two sets of data, their QD is defined as [Formula: see text] ([Formula: see text]). The function-specific homeostasis (FSH) of a function of a biosystem is a negative-feedback response of the biosystem to maintain the function-specific conditions inside the biosystem so that the function is perfectly performed. A function in/far from its FSH is called a normal/dysfunctional function. A cellular normal function can resist the activation of other signal transduction pathways so that there are normal function-specific signal transduction pathways which full activation maintains the normal function. An acute endurance/strength training may be dysfunctional, but its regular training may be normal. The normal endurance/strength training of an individual may resist the activation of other signal transduction pathways in skeletal muscle so that there may be normal endurance/strength training-specific signal transduction pathways (NEPs/NSPs) in skeletal muscle. The endurance/strength training may activate NSPs/NEPs, but the QD from the control is smaller than 0.80. The simultaneous activation of both NSPs and NEPs may enhance their respective activation, and the QD from the control is larger than 0.80. The low level laser irradiation pretreatment of rats may promote the activation of NSPs in endurance training skeletal muscle. There may be NEPs/NSPs in skeletal muscle trained by normal endurance/strength training.

  4. Nonhomogeneous transfer reveals specificity in speech motor learning.

    PubMed

    Rochet-Capellan, Amélie; Richer, Lara; Ostry, David J

    2012-03-01

    Does motor learning generalize to new situations that are not experienced during training, or is motor learning essentially specific to the training situation? In the present experiments, we use speech production as a model to investigate generalization in motor learning. We tested for generalization from training to transfer utterances by varying the acoustical similarity between these two sets of utterances. During the training phase of the experiment, subjects received auditory feedback that was altered in real time as they repeated a single consonant-vowel-consonant utterance. Different groups of subjects were trained with different consonant-vowel-consonant utterances, which differed from a subsequent transfer utterance in terms of the initial consonant or vowel. During the adaptation phase of the experiment, we observed that subjects in all groups progressively changed their speech output to compensate for the perturbation (altered auditory feedback). After learning, we tested for generalization by having all subjects produce the same single transfer utterance while receiving unaltered auditory feedback. We observed limited transfer of learning, which depended on the acoustical similarity between the training and the transfer utterances. The gradients of generalization observed here are comparable to those observed in limb movement. The present findings are consistent with the conclusion that speech learning remains specific to individual instances of learning.

  5. Nonhomogeneous transfer reveals specificity in speech motor learning

    PubMed Central

    Rochet-Capellan, Amélie; Richer, Lara

    2012-01-01

    Does motor learning generalize to new situations that are not experienced during training, or is motor learning essentially specific to the training situation? In the present experiments, we use speech production as a model to investigate generalization in motor learning. We tested for generalization from training to transfer utterances by varying the acoustical similarity between these two sets of utterances. During the training phase of the experiment, subjects received auditory feedback that was altered in real time as they repeated a single consonant-vowel-consonant utterance. Different groups of subjects were trained with different consonant-vowel-consonant utterances, which differed from a subsequent transfer utterance in terms of the initial consonant or vowel. During the adaptation phase of the experiment, we observed that subjects in all groups progressively changed their speech output to compensate for the perturbation (altered auditory feedback). After learning, we tested for generalization by having all subjects produce the same single transfer utterance while receiving unaltered auditory feedback. We observed limited transfer of learning, which depended on the acoustical similarity between the training and the transfer utterances. The gradients of generalization observed here are comparable to those observed in limb movement. The present findings are consistent with the conclusion that speech learning remains specific to individual instances of learning. PMID:22190628

  6. 21 CFR 123.10 - Training.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... HACCP principles to fish and fishery product processing at least equivalent to that received under... standardized curriculum. (a) Developing a HACCP plan, which could include adapting a model or generic-type HACCP plan, that is appropriate for a specific processor, in order to meet the requirements of § 123.6(b...

  7. Cross-Curricular Skills Development in Final-Year Dissertation by Active and Collaborative Methodologies

    ERIC Educational Resources Information Center

    Etaio, Iñaki; Churruca, Itziar; Rada, Diego; Miranda, Jonatan; Saracibar, Amaia; Sarrionandia, Fernando; Lasa, Arrate; Simón, Edurne; Labayen, Idoia; Martinez, Olaia

    2018-01-01

    European Frame for Higher Education has led universities to adapt their teaching schemes. Degrees must train students in competences including specific and cross-curricular skills. Nevertheless, there are important limitations to follow skill improvement through the consecutive academic years. Final-year dissertation (FYD) offers the opportunity…

  8. Anesthesia during and Immediately after Spaceflight

    NASA Technical Reports Server (NTRS)

    Seubert, Christoph N.; Price, Catherine; Janelle, Gregory M.

    2006-01-01

    The increasing presence of humans in space and long-duration manned missions to the Moon or Mars pose novel challenges to the delivery of medical care. Even now, cumulative person-days in space exceed 80 years and preparations for a return to the Moon are actively underway. Medical care after an emergent de-orbit or an accident during a non-nominal landing must not only address the specific disease or injuries but also the challenges posed by physiologic adaptations to microgravity. In the highly autonomous situation of a long-term space mission the situation is even more complex, because personnel, equipment, specific training, and clinical experience are by definition limited. To summarize our current knowledge specifically for anesthetic care during and immediately after spaceflight, we will review physiologic adaptations to microgravity with particular emphasis on the resulting anesthetic risks, discuss veterinary experiences with anesthesia in weightlessness or in animals adapted to microgravity, describe current research that pertains to anesthesia and spaceflight and point out unresolved questions for future investigation.

  9. Virtual Training and Coaching of Health Behavior: Example from Mindfulness Meditation Training

    PubMed Central

    Hudlicka, Eva

    2014-01-01

    Objective Computer-based virtual coaches are increasingly being explored for patient education, counseling, and health behavior training and coaching. The objective of this research was to develop and evaluate a Virtual Mindfulness Coach for training and coaching in mindfulness meditation. Method The coach was implemented as an embodied conversational character, providing mindfulness training and coaching via mixed initiative, text-based, natural language dialogue with the student, and emphasizing affect-adaptive interaction. (The term ‘mixed initiative dialog’ refers to a human-machine dialogue where either can initiate a conversation or a change in the conversation topic.) Results Findings from a pilot evaluation study indicate that the coach-based training is more effective in helping students establish a regular practice than self-administered training using written and audio materials. The coached group also appeared to be in more advanced stages of change in terms of the transtheoretical model, and have a higher sense of self-efficacy regarding establishment of a regular mindfulness practice. Conclusion These results suggest that virtual coach-based training of mindfulness is both feasible, and potentially more effective, than a self-administered program. Of particular interest is the identification of the specific coach features that contribute to its effectiveness. Practice Implications Virtual coaches could provide easily-accessible and cost-effective customized training for a range of health behaviors. The affect-adaptive aspect of these coaches is particularly relevant for helping patients establish long-term behavior changes. PMID:23809167

  10. Virtual training and coaching of health behavior: example from mindfulness meditation training.

    PubMed

    Hudlicka, Eva

    2013-08-01

    Computer-based virtual coaches are increasingly being explored for patient education, counseling, and health behavior training and coaching. The objective of this research was to develop and evaluate a Virtual Mindfulness Coach for training and coaching in mindfulness meditation. The coach was implemented as an embodied conversational character, providing mindfulness training and coaching via mixed initiative, text-based, natural language dialog with the student, and emphasizing affect-adaptive interaction. (The term 'mixed initiative dialog' refers to a human-machine dialog where either can initiate a conversation or a change in the conversation topic.) Findings from a pilot evaluation study indicate that the coach-based training is more effective in helping students establish a regular practice than self-administered training using written and audio materials. The coached group also appeared to be in more advanced stages of change in terms of the transtheoretical model, and have a higher sense of self-efficacy regarding establishment of a regular mindfulness practice. These results suggest that virtual coach-based training of mindfulness is both feasible, and potentially more effective, than a self-administered program. Of particular interest is the identification of the specific coach features that contribute to its effectiveness. Virtual coaches could provide easily accessible and cost-effective customized training for a range of health behaviors. The affect-adaptive aspect of these coaches is particularly relevant for helping patients establish long-term behavior changes. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  11. Asymmetric generalization in adaptation to target displacement errors in humans and in a neural network model.

    PubMed

    Westendorff, Stephanie; Kuang, Shenbing; Taghizadeh, Bahareh; Donchin, Opher; Gail, Alexander

    2015-04-01

    Different error signals can induce sensorimotor adaptation during visually guided reaching, possibly evoking different neural adaptation mechanisms. Here we investigate reach adaptation induced by visual target errors without perturbing the actual or sensed hand position. We analyzed the spatial generalization of adaptation to target error to compare it with other known generalization patterns and simulated our results with a neural network model trained to minimize target error independent of prediction errors. Subjects reached to different peripheral visual targets and had to adapt to a sudden fixed-amplitude displacement ("jump") consistently occurring for only one of the reach targets. Subjects simultaneously had to perform contralateral unperturbed saccades, which rendered the reach target jump unnoticeable. As a result, subjects adapted by gradually decreasing reach errors and showed negative aftereffects for the perturbed reach target. Reach errors generalized to unperturbed targets according to a translational rather than rotational generalization pattern, but locally, not globally. More importantly, reach errors generalized asymmetrically with a skewed generalization function in the direction of the target jump. Our neural network model reproduced the skewed generalization after adaptation to target jump without having been explicitly trained to produce a specific generalization pattern. Our combined psychophysical and simulation results suggest that target jump adaptation in reaching can be explained by gradual updating of spatial motor goal representations in sensorimotor association networks, independent of learning induced by a prediction-error about the hand position. The simulations make testable predictions about the underlying changes in the tuning of sensorimotor neurons during target jump adaptation. Copyright © 2015 the American Physiological Society.

  12. Asymmetric generalization in adaptation to target displacement errors in humans and in a neural network model

    PubMed Central

    Westendorff, Stephanie; Kuang, Shenbing; Taghizadeh, Bahareh; Donchin, Opher

    2015-01-01

    Different error signals can induce sensorimotor adaptation during visually guided reaching, possibly evoking different neural adaptation mechanisms. Here we investigate reach adaptation induced by visual target errors without perturbing the actual or sensed hand position. We analyzed the spatial generalization of adaptation to target error to compare it with other known generalization patterns and simulated our results with a neural network model trained to minimize target error independent of prediction errors. Subjects reached to different peripheral visual targets and had to adapt to a sudden fixed-amplitude displacement (“jump”) consistently occurring for only one of the reach targets. Subjects simultaneously had to perform contralateral unperturbed saccades, which rendered the reach target jump unnoticeable. As a result, subjects adapted by gradually decreasing reach errors and showed negative aftereffects for the perturbed reach target. Reach errors generalized to unperturbed targets according to a translational rather than rotational generalization pattern, but locally, not globally. More importantly, reach errors generalized asymmetrically with a skewed generalization function in the direction of the target jump. Our neural network model reproduced the skewed generalization after adaptation to target jump without having been explicitly trained to produce a specific generalization pattern. Our combined psychophysical and simulation results suggest that target jump adaptation in reaching can be explained by gradual updating of spatial motor goal representations in sensorimotor association networks, independent of learning induced by a prediction-error about the hand position. The simulations make testable predictions about the underlying changes in the tuning of sensorimotor neurons during target jump adaptation. PMID:25609106

  13. Effectiveness of a computerised working memory training in adolescents with mild to borderline intellectual disabilities.

    PubMed

    Van der Molen, M J; Van Luit, J E H; Van der Molen, M W; Klugkist, I; Jongmans, M J

    2010-05-01

    The goal of this study is to evaluate the effectiveness of a computerised working memory (WM) training on memory, response inhibition, fluid intelligence, scholastic abilities and the recall of stories in adolescents with mild to borderline intellectual disabilities attending special education. A total of 95 adolescents with mild to borderline intellectual disabilities were randomly assigned to either a training adaptive to each child's progress in WM, a non-adaptive WM training, or to a control group. Verbal short-term memory (STM) improved significantly from pre- to post-testing in the group who received the adaptive training compared with the control group. The beneficial effect on verbal STM was maintained at follow-up and other effects became clear at that time as well. Both the adaptive and non-adaptive WM training led to higher scores at follow-up than at post-intervention on visual STM, arithmetic and story recall compared with the control condition. In addition, the non-adaptive training group showed a significant increase in visuo-spatial WM capacity. The current study provides the first demonstration that WM can be effectively trained in adolescents with mild to borderline intellectual disabilities.

  14. Physiology-driven adaptive virtual reality stimulation for prevention and treatment of stress related disorders.

    PubMed

    Cosić, Kresimir; Popović, Sinisa; Kukolja, Davor; Horvat, Marko; Dropuljić, Branimir

    2010-02-01

    The significant proportion of severe psychological problems related to intensive stress in recent large peacekeeping operations underscores the importance of effective methods for strengthening the prevention and treatment of stress-related disorders. Adaptive control of virtual reality (VR) stimulation presented in this work, based on estimation of the person's emotional state from physiological signals, may enhance existing stress inoculation training (SIT). Physiology-driven adaptive VR stimulation can tailor the progress of stressful stimuli delivery to the physiological characteristics of each individual, which is indicated for improvement in stress resistance. Following an overview of physiology-driven adaptive VR stimulation, its major functional subsystems are described in more detail. A specific algorithm of stimuli delivery applicable to SIT is outlined.

  15. [Development of an instrument for the surveillance of quality indicators in specialized training in Preventive Medicine and Public Health].

    PubMed

    Gil-Borrelli, Christian Carlo; Latasa, Pello; Reques, Laura; Alemán, Guadalupe

    2015-01-01

    This study describes the process of developing an instrument intended for use in assessing satisfaction with the quality of training in preventive medicine and public health for resident physicians. To develop this instrument, the National Survey of Satisfaction with Medical Residency was adapted by an expert panel consisting of 23 resident physicians in preventive medicine and public health belonging to 9 autonomous communities in Spain. The adaptation of the survey to the specialty rotations included new dimensions and items and was evaluated with a 5-point Likert scale. The most important dimensions were planning and the achievement of specific objectives, supervision, delegation of responsibilities, resources and work environment, personal assessment, encouragement, support, and whether the rotation resulted in a publication or research project, etc. The development and utilization of this tool will enable future trainees in preventive medicine and public health to make an informed choice about their training itineraries. Copyright © 2015 SESPAS. Published by Elsevier Espana. All rights reserved.

  16. What Did We Learn from the Animal Studies of Body Weight–Supported Treadmill Training and Where Do We Go from Here?

    PubMed Central

    Dy, Christine J.

    2017-01-01

    Abstract Body weight–supported treadmill training (BWSTT) developed from animal studies of spinal cord injury (SCI). Evidence that spinal cats (i.e., cats that have a complete surgical transection of the cord) could regain the ability to step on a moving treadmill indicated a vast potential for spinal circuits to generate walking without the brain. BWSTT represented a means to unlock that potential. As the technique was adapted as a rehabilitation intervention for humans with SCI, shortcomings in the translation to walking in the real world were exposed. Evidence that BWSTT has not been as successful for humans with SCI leads us to revisit key animal studies. In this short review, we describe the task-specific nature of BWSTT and discuss how this specificity may pose limits on the recovery of overground walking. Also discussed are more recent studies that have introduced new strategies and tools that adapt BWSTT ideas to more functionally-relevant tasks. We introduce a new device for weight-supported overground walking in rats called Circular BART (Body weight supported Ambulatory Rat Trainer) and demonstrate that it is relatively easy and inexpensive to produce. Future animal studies will benefit from the development of simple tools that facilitate training and testing of overground walking. PMID:27863455

  17. What Did We Learn from the Animal Studies of Body Weight-Supported Treadmill Training and Where Do We Go from Here?

    PubMed

    de Leon, Ray D; Dy, Christine J

    2017-05-01

    Body weight-supported treadmill training (BWSTT) developed from animal studies of spinal cord injury (SCI). Evidence that spinal cats (i.e., cats that have a complete surgical transection of the cord) could regain the ability to step on a moving treadmill indicated a vast potential for spinal circuits to generate walking without the brain. BWSTT represented a means to unlock that potential. As the technique was adapted as a rehabilitation intervention for humans with SCI, shortcomings in the translation to walking in the real world were exposed. Evidence that BWSTT has not been as successful for humans with SCI leads us to revisit key animal studies. In this short review, we describe the task-specific nature of BWSTT and discuss how this specificity may pose limits on the recovery of overground walking. Also discussed are more recent studies that have introduced new strategies and tools that adapt BWSTT ideas to more functionally-relevant tasks. We introduce a new device for weight-supported overground walking in rats called Circular BART (Body weight supported Ambulatory Rat Trainer) and demonstrate that it is relatively easy and inexpensive to produce. Future animal studies will benefit from the development of simple tools that facilitate training and testing of overground walking.

  18. [Education, advanced and further training in the field "psychology in rehabilitation"].

    PubMed

    Bengel, J; Gall, H; Grande, G; Küch, D; Mittag, O; Schmucker, D; Spijkers, W; Arling, V; Jahed, J; Lutze, B; Morfeld, M

    2014-04-01

    The commission for vocational training, training and further education of the German Society of Rehabilitation Science tends to discuss and to give recommendations for various professions in rehabilitation. The working group, which is led by J. Bengel/Freiburg and M. Morfeld/Magdeburg-Stendal created an inventory of Rehabilitation Psychology. The training programs for Rehabilitation Psychology at universities and universities of applied science in Germany are based on a job profile of psychologists in medical and vocational rehabilitation. The different universities have diverse priorities focusing on Rehabilitation Psychology. The offer changes because of the adaption of requirements and implementation of Bologna Reform. The training and further education offers are specific and available for large indication areas. Finally outstanding issues and problems are pointed out. © Georg Thieme Verlag KG Stuttgart · New York.

  19. Volition-adaptive control for gait training using wearable exoskeleton: preliminary tests with incomplete spinal cord injury individuals.

    PubMed

    Rajasekaran, Vijaykumar; López-Larraz, Eduardo; Trincado-Alonso, Fernando; Aranda, Joan; Montesano, Luis; Del-Ama, Antonio J; Pons, Jose L

    2018-01-03

    Gait training for individuals with neurological disorders is challenging in providing the suitable assistance and more adaptive behaviour towards user needs. The user specific adaptation can be defined based on the user interaction with the orthosis and by monitoring the user intentions. In this paper, an adaptive control model, commanded by the user intention, is evaluated using a lower limb exoskeleton with incomplete spinal cord injury individuals (SCI). A user intention based adaptive control model has been developed and evaluated with 4 incomplete SCI individuals across 3 sessions of training per individual. The adaptive control model modifies the joint impedance properties of the exoskeleton as a function of the human-orthosis interaction torques and the joint trajectory evolution along the gait sequence, in real time. The volitional input of the user is identified by monitoring the neural signals, pertaining to the user's motor activity. These volitional inputs are used as a trigger to initiate the gait movement, allowing the user to control the initialization of the exoskeleton movement, independently. A Finite-state machine based control model is used in this set-up which helps in combining the volitional orders with the gait adaptation. The exoskeleton demonstrated an adaptive assistance depending on the patients' performance without guiding them to follow an imposed trajectory. The exoskeleton initiated the trajectory based on the user intention command received from the brain machine interface, demonstrating it as a reliable trigger. The exoskeleton maintained the equilibrium by providing suitable assistance throughout the experiments. A progressive change in the maximum flexion of the knee joint was observed at the end of each session which shows improvement in the patient performance. Results of the adaptive impedance were evaluated by comparing with the application of a constant impedance value. Participants reported that the movement of the exoskeleton was flexible and the walking patterns were similar to their own distinct patterns. This study demonstrates that user specific adaptive control can be applied on a wearable robot based on the human-orthosis interaction torques and modifying the joints' impedance properties. The patients perceived no external or impulsive force and felt comfortable with the assistance provided by the exoskeleton. The main goal of such a user dependent control is to assist the patients' needs and adapt to their characteristics, thus maximizing their engagement in the therapy and avoiding slacking. In addition, the initiation directly controlled by the brain allows synchronizing the user's intention with the afferent stimulus provided by the movement of the exoskeleton, which maximizes the potentiality of the system in neuro-rehabilitative therapies.

  20. Evidence-based decision-making as a practice-based learning skill: a pilot study.

    PubMed

    Falzer, Paul R; Garman, D Melissa

    2012-03-01

    As physicians are being trained to adapt their practices to the needs and experience of patients, initiatives to standardize care have been gaining momentum. The resulting conflict can be addressed through a practice-based learning and improvement (PBL) program that develops competency in using treatment guidelines as decision aids and incorporating patient-specific information into treatment recommendations. This article describes and tests a program that is consistent with the ACGME's multilevel competency-based approach, targets students at four levels of training, and features progressive learning objectives and assessments. The program was pilot-tested with 22 paid volunteer psychiatric residents and fellows. They were introduced to a schizophrenia treatment guideline and reviewed six case vignettes of varying complexity. PBL assessments were based on how treatment recommendations were influenced by clinical and patient-specific factors. The task permitted separate assessments of learning objectives all four training levels. Among the key findings at each level, most participants found the treatment guideline helpful in making treatment decisions. Recommendations were influenced by guideline-based assessment criteria and other clinical features. They were also influenced by patients' perceptions of their illness, patient-based progress assessments, and complications such as stressors and coping patterns. Recommendations were strongly influenced by incongruence between clinical facts and patient experience. Practical understanding of how patient experience joins with clinical knowledge can enhance the use of treatment guidelines as decision tools and enable clinicians to appreciate more fully how and why patients' perceptions of their illness should influence treatment recommendations. This PBL program can assist training facilities in preparing students to cope with contradictory demands to both standardize and adapt their practice. The program can be modified to accommodate various disorders and a range of clinical factors and patient-specific complications.

  1. Calcineurin is not involved in some mitochondrial enzyme adaptations to endurance exercise training in rat skeletal muscle.

    PubMed

    Terada, Shin; Nakagawa, Hisashi; Nakamura, Yoshio; Muraoka, Isao

    2003-09-01

    The purpose of this study was to test the hypothesis that calcineurin, a calcium-dependent protein phosphatase recently implicated in the signaling of skeletal muscle hypertrophy and fiber type conversion, is required to induce some mitochondrial enzyme adaptations to endurance exercise training in skeletal muscle. Three- to four-week-old male Sprague-Dawley rats with an initial body weight ranging from 45 to 55 g were used in this study. The rats were randomly assigned to groups injected with either a specific calcineurin inhibitor, cyclosporin A (CsA), (group CI) or vehicle (group VI). CsA was subcutaneously injected into the rats at a rate of 50 mg.kg(-1) body weight per day for 10 days. The CI and VI groups were further assigned to sedentary (SED) or exercise training (EX) groups. In the EX group, the rats were trained for 10 days (90 min.day(-1), approximately 14-20 m.min(-1), 10% grade). The citrate synthase (CS) activities in the soleus and plantaris muscles of the EX group rats were significantly higher than those of the SED group rats ( p<0.001). Furthermore, 3-beta-hydroxyacyl-CoA dehydrogenase (3-HAD) activities in the soleus and plantaris muscles were significantly higher in the EX group rats than in the SED group rats ( p<0.001). However, there were no significant differences in CS and 3-HAD activities between the VI and CI groups. The interactions between CsA injection and exercise training were not statistically significant in any of the parameters. These results may suggest that calcineurin is not involved in some mitochondrial enzyme adaptations to endurance exercise training.

  2. Resistance exercise induces region-specific adaptations in anterior pituitary gland structure and function in rats.

    PubMed

    Kraemer, William J; Flanagan, Shawn D; Volek, Jeff S; Nindl, Bradley C; Vingren, Jakob L; Dunn-Lewis, Courtenay; Comstock, Brett A; Hooper, David R; Szivak, Tunde K; Looney, David P; Maresh, Carl M; Hymer, Wesley C

    2013-12-01

    The anterior pituitary gland (AP) increases growth hormone (GH) secretion in response to resistance exercise (RE), but the nature of AP adaptations to RE is unknown. To that end, we examined the effects of RE on regional AP somatotroph GH release, structure, and relative quantity. Thirty-six Sprague-Dawley rats were assigned to one of four groups: 1) no training or acute exercise (NT-NEX); 2) no training with acute exercise (NT-EX); 3) resistance training without acute exercise (RT-NEX); 4) resistance training with acute exercise (RT-EX). RE incorporated 10, 1 m-weighted ladder climbs at an 85° angle. RT groups trained 3 days/wk for 7 wk, progressively. After death, trunk blood was collected, and each AP was divided into quadrants (ventral-dorsal and left-right). We measured: 1) trunk plasma GH; 2) somatotroph GH release; 3) somatotroph size; 4) somatotroph secretory content; and 5) percent of AP cells identified as somatotrophs. Trunk GH differed by group (NT-NEX, 8.9 ± 2.4 μg/l; RT-NEX, 9.2 ± 3.5 μg/l; NT-EX, 15.6 ± 3.4 μg/l; RT-EX, 23.4 ± 4.6 μg/l). RT-EX demonstrated greater somatotroph GH release than all other groups, predominantly in ventral regions (P < 0.05-0.10). Ventral somatotrophs were larger in NT-EX and RT-NEX compared with RT-EX (P < 0.05-0.10). RT-NEX exhibited significantly greater secretory granule content than all other groups but in the ventral-right region only (P < 0.05-0.10). Our findings indicate reproducible patterns of spatially distinct, functionally different somatotroph subpopulations in the rat pituitary gland. RE training appears to induce dynamic adaptations in somatotroph structure and function.

  3. Adaptive Technologies for Training and Education

    ERIC Educational Resources Information Center

    Durlach, Paula J., Ed; Lesgold, Alan M., Ed.

    2012-01-01

    This edited volume provides an overview of the latest advancements in adaptive training technology. Intelligent tutoring has been deployed for well-defined and relatively static educational domains such as algebra and geometry. However, this adaptive approach to computer-based training has yet to come into wider usage for domains that are less…

  4. Motivational Interviewing to Increase Cognitive Rehabilitation Adherence in Schizophrenia.

    PubMed

    Fiszdon, Joanna M; Kurtz, Matthew M; Choi, Jimmy; Bell, Morris D; Martino, Steve

    2016-03-01

    Adherence to treatment in psychiatric populations is notoriously low. In this randomized, controlled, proof-of-concept study, we sought to examine whether motivational interviewing (MI) could be used to enhance motivation for, adherence to, and benefit obtained from cognitive rehabilitation. Dual diagnosis MI, developed specifically for individuals with psychotic symptoms and disorganization, was further adapted to focus on cognitive impairments and their impact. Sixty-four outpatients diagnosed with schizophrenia spectrum disorders completed baseline assessments and were randomized to receive either the 2-session MI focused on cognitive functioning or a 2-session sham control interview focused on assessment and feedback about preferred learning styles. Next, all participants were given 4 weeks during which they could attend up to 10 sessions of a computer-based math training program, which served as a brief analog for a full course of cognitive rehabilitation. As hypothesized, MI condition was associated with greater increases in task-specific motivation along with greater training program session attendance. Moreover, postinterview motivation level predicted session attendance. There were no significant differences in improvement on a measure of cognitive training content, which may have been due to the abbreviated nature of the training. While the literature on the efficacy of MI for individuals with psychosis has been mixed, we speculate that our positive findings may have been influenced by the adaptations made to MI as well as the focus on a nonpharmacological intervention. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center 2015.

  5. Nutritional aspects of women strength athletes.

    PubMed

    Volek, J S; Forsythe, C E; Kraemer, W J

    2006-09-01

    Strength training elicits sports related and health benefits for both men and women. Although sexual dimorphism is observed in exercise metabolism, there is little information outlining the specific nutritional needs of women strength athletes. Many women athletes restrict energy intake, specifically fat consumption, in order to modify body composition, but this nutritional practice is often counter-productive. Compared to men, women appear to be less reliant on glycogen during exercise and less responsive to carbohydrate mediated glycogen synthesis during recovery. Female strength athletes may require more protein than their sedentary and endurance training counterparts to attain positive nitrogen balance and promote protein synthesis. Therefore, women strength athletes should put less emphasis on a very high carbohydrate intake and more emphasis on quality protein and fat consumption in the context of energy balance to enhance adaptations to training and improve general health. Attention to timing of nutrient ingestion, macronutrient quality, and dietary supplementation (for example, creatine) are briefly discussed as important components of a nutritionally adequate and effective strength training diet for women.

  6. Hot Water Bathing Impairs Training Adaptation in Elite Teen Archers.

    PubMed

    Hung, Ta-Cheng; Liao, Yi-Hung; Tsai, Yung-Shen; Ferguson-Stegall, Lisa; Kuo, Chia-Hua; Chen, Chung-Yu

    2018-04-30

    Despite heat imposes considerable physiological stress to human body, hot water immersion remains as a popular relaxation modality for athletes. Here we examined the lingering effect of hot tub relaxation after training on performance-associated measures and dehydroepiandrosterone sulfate (DHEA-S) in junior archers. Ten national level archers, aged 16.6 ± 0.3 years (M = 8, F = 2), participated in a randomized counter-balanced crossover study after baseline measurements. In particular, half participants were assigned to the hot water immersion (HOT) group, whereas another halves were assigned to the untreated control (CON) group. Crossover trial was conducted following a 2-week washout period. During the HOT trial, participants immersed in hot water for 30 min at 40°C, 1 h after training, twice a week (every 3 days) for 2 weeks. Participants during CON trial sat at the same environment without hot water after training. Performance-associated measures and salivary DHEA-S were determined 3 days after the last HOT session. We found that the HOT intervention significantly decreased shooting performance (CON: -4%; HOT: -22%, P < 0.05), postural stability (CON: +15%; HOT: -16%, P < 0.05), and DHEA-S levels (CON: -3%; HOT: -60%, P < 0.05) of archers, compared with untreated CON trial. No group differences were found in motor unit recruitment (root mean square electromyography, RMS EMG) of arm muscles during aiming, autonomic nervous activity (sympathetic and vagal powers of heart rate variability, HRV), and plasma cortisol levels after treatments. Our data suggest that physiological adaptation against heat exposure takes away the sources needed for normal training adaptation specific to shooting performance in archers.

  7. Feasibility of the adaptive and automatic presentation of tasks (ADAPT) system for rehabilitation of upper extremity function post-stroke.

    PubMed

    Choi, Younggeun; Gordon, James; Park, Hyeshin; Schweighofer, Nicolas

    2011-08-03

    Current guidelines for rehabilitation of arm and hand function after stroke recommend that motor training focus on realistic tasks that require reaching and manipulation and engage the patient intensively, actively, and adaptively. Here, we investigated the feasibility of a novel robotic task-practice system, ADAPT, designed in accordance with such guidelines. At each trial, ADAPT selects a functional task according to a training schedule and with difficulty based on previous performance. Once the task is selected, the robot picks up and presents the corresponding tool, simulates the dynamics of the tasks, and the patient interacts with the tool to perform the task. Five participants with chronic stroke with mild to moderate impairments (> 9 months post-stroke; Fugl-Meyer arm score 49.2 ± 5.6) practiced four functional tasks (selected out of six in a pre-test) with ADAPT for about one and half hour and 144 trials in a pseudo-random schedule of 3-trial blocks per task. No adverse events occurred and ADAPT successfully presented the six functional tasks without human intervention for a total of 900 trials. Qualitative analysis of trajectories showed that ADAPT simulated the desired task dynamics adequately, and participants reported good, although not excellent, task fidelity. During training, the adaptive difficulty algorithm progressively increased task difficulty leading towards an optimal challenge point based on performance; difficulty was then continuously adjusted to keep performance around the challenge point. Furthermore, the time to complete all trained tasks decreased significantly from pretest to one-hour post-test. Finally, post-training questionnaires demonstrated positive patient acceptance of ADAPT. ADAPT successfully provided adaptive progressive training for multiple functional tasks based on participant's performance. Our encouraging results establish the feasibility of ADAPT; its efficacy will next be tested in a clinical trial.

  8. Issues in development, evaluation, and use of the NASA Preflight Adaptation Trainer (PAT)

    NASA Technical Reports Server (NTRS)

    Lane, Norman E.; Kennedy, Robert S.

    1988-01-01

    The Preflight Adaptation Trainer (PAT) is intended to reduce or alleviate space adaptation syndrome by providing opportunities for portions of that adaptation to occur under normal gravity conditions prior to space flight. Since the adaptation aspects of the PAT objectives involve modification not only of the behavior of the trainee, but also of sensiomotor skills which underly the behavioral generation, the defining of training objectives of the PAT utilizes four mechanisms: familiarization, demonstration, training and adaptation. These mechanisms serve as structural reference points for evaluation, drive the content and organization of the training procedures, and help to define the roles of the PAT instructors and operators. It was determined that three psychomotor properties are most critical for PAT evaluation: reliability; sensitivity; and relevance. It is cause for concern that the number of measures available to examine PAT effects exceed those that can be properly studied with the available sample sizes; special attention will be required in selection of the candidate measure set. The issues in PAT use and application within a training system context are addressed through linking the three training related mechanisms of familiarization, demonstration and training to the fourth mechanism, adaptation.

  9. Transfer of innovation, knowledge and competencies on the care service for people with acquired disabilities: the European Project "Care for Work".

    PubMed

    Barchitta, M; Fragapane, S; Consoli, M T; Pennisi, C; Agodi, A

    2012-01-01

    The growing needs of people with disabilities require to integrate this issue into public health in order to improve political feasibility and to ensure that disability will not be left off from any strategic table. The main aim of the "Care for Work" project was to provide training contents to help workers and unemployed people to adapt their knowledge, skills and competencies to the care services sector in order to facilitate their insertion in a new employment source. The partners participating in the project are Organizations from 5 European countries. The project has been divided into seven Work Packages (WPs): three transversal WPs and four specific WPs, each addressing specific activities necessary to achieve the final objectives of the project. The "Care for Work" learning environment contains specific information and training on the techniques for caring people with acquired physical disabilities, as text documents and short training films. The project combines e-learning (Web 2.0) and mobile learning providing a flexible training platform for workers of care services sector. The "Care for Work" project offers specific training addressed to meet the new existing needs of workers of the care services sector and/or unemployed people. All the information and results of the project are available on the web page: www.careforwork.eu, and the present article is part of the WP "Valorization".

  10. Sanitary Food Service; Instructor's Guide to Be Used in Training Food-Service Personnel.

    ERIC Educational Resources Information Center

    Public Health Service (DHEW), Cincinnati, OH.

    Instructors of civilian and/or military food service employees are given suggestions for the flexible use of this guide, then receive more detailed guidelines for grouping trainees, managing classes, planning lessons, and adapting the food service course to various groups and teaching situations. Specific content (principles to be taught) and…

  11. Adaptation of an Alcohol and HIV School-Based Prevention Program for Teens

    PubMed Central

    Springer, Carolyn; Leu, Cheng-Shiun; Ghosh, Shivnath; Sharma, Sunil Kumar; Rapkin, Bruce

    2010-01-01

    Given the current status of HIV infection in youth in India, developing and implementing HIV education and prevention interventions is critical. The goal for School-based Teenage Education Program (STEP) was to demonstrate that a HIV/AIDS and alcohol abuse educational program built with specific cultural, linguistic, and community-specific characteristics could be effective. Utilizing the Train-the-Trainer model, the instructors (17–21 years) were trained to present the 10 session manualized program to primarily rural and tribal youth aged 13–16 years in 23 schools (N = 1,421) in the northern state of Himachal Pradesh in India. The intervention had a greater impact on girls; girls evidenced greater communication skills and a trend towards greater self efficacy and reduced risk taking behavior. The STEP has been successfully adapted by the community organizations that were involved in coordinating the program at the local level. Their intention to continue STEP beyond extra funding shows that utilizing the local community in designing, implementing and evaluating programs promotes ownership and sustainability. PMID:20589528

  12. A Context-Adaptive Teacher Training Model in a Ubiquitous Learning Environment

    ERIC Educational Resources Information Center

    Chen, Min; Chiang, Feng Kuang; Jiang, Ya Na; Yu, Sheng Quan

    2017-01-01

    In view of the discrepancies in teacher training and teaching practice, this paper put forward a context-adaptive teacher training model in a ubiquitous learning (u-learning) environment. The innovative model provides teachers of different subjects with adaptive and personalized learning content in a u-learning environment, implements intra- and…

  13. A-Book: A Feedback-Based Adaptive System to Enhance Meta-Cognitive Skills during Reading.

    PubMed

    Guerra, Ernesto; Mellado, Guido

    2017-01-01

    In the digital era, tech devices (hardware and software) are increasingly within hand's reach. Yet, implementing information and communication technologies for educational contexts that have robust and long-lasting effects on student learning outcomes is still a challenge. We propose that any such system must a) be theoretically motivated and designed to tackle specific cognitive skills (e.g., inference making) supporting a given cognitive task (e.g., reading comprehension) and b) must be able to identify and adapt to the user's profile. In the present study, we implemented a feedback-based adaptive system called A-book (assisted-reading book) and tested it in a sample of 4th, 5th, and 6th graders. To assess our hypotheses, we contrasted three experimental assisted-reading conditions; one that supported meta-cognitive skills and adapted to the user profile (adaptive condition), one that supported meta-cognitive skills but did not adapt to the user profile (training condition) and a control condition. The results provide initial support for our proposal; participants in the adaptive condition improved their accuracy scores on inference making questions over time, outperforming both the training and control groups. There was no evidence, however, of significant improvements on other tested meta-cognitive skills (i.e., text structure knowledge, comprehension monitoring). We discussed the practical implications of using the A-book for the enhancement of meta-cognitive skills in school contexts, as well as its current limitations and future developments that could improve the system.

  14. Self-Supervised Learning of Terrain Traversability from Proprioceptive Sensors

    NASA Technical Reports Server (NTRS)

    Bajracharya, Max; Howard, Andrew B.; Matthies, Larry H.

    2009-01-01

    Robust and reliable autonomous navigation in unstructured, off-road terrain is a critical element in making unmanned ground vehicles a reality. Existing approaches tend to rely on evaluating the traversability of terrain based on fixed parameters obtained via testing in specific environments. This results in a system that handles the terrain well that it trained in, but is unable to process terrain outside its test parameters. An adaptive system does not take the place of training, but supplements it. Whereas training imprints certain environments, an adaptive system would imprint terrain elements and the interactions amongst them, and allow the vehicle to build a map of local elements using proprioceptive sensors. Such sensors can include velocity, wheel slippage, bumper hits, and accelerometers. Data obtained by the sensors can be compared to observations from ranging sensors such as cameras and LADAR (laser detection and ranging) in order to adapt to any kind of terrain. In this way, it could sample its surroundings not only to create a map of clear space, but also of what kind of space it is and its composition. By having a set of building blocks consisting of terrain features, a vehicle can adapt to terrain that it has never seen before, and thus be robust to a changing environment. New observations could be added to its library, enabling it to infer terrain types that it wasn't trained on. This would be very useful in alien environments, where many of the physical features are known, but some are not. For example, a seemingly flat, hard plain could actually be soft sand, and the vehicle would sense the sand and avoid it automatically.

  15. Dietary Antioxidants as Modifiers of Physiologic Adaptations to Exercise

    PubMed Central

    Mankowski, Robert T.; Anton, Stephen D.; Buford, Thomas W.; Leeuwenburgh, Christiaan

    2015-01-01

    Adaptive responses to exercise training (ET) are crucial in maintaining physiological homeostasis and health span. Exercise-induced aerobic bioenergetic reactions in mitochondria and cytosol increase production of reactive oxygen species (ROSs), where excess of ROS can be scavenged by enzymatic as well as non-enzymatic antioxidants to protect against deleterious oxidative stress. Free radicals, however, have recently been recognized as crucial signaling agents that promote adaptive mechanisms to ET, such as mitochondrial biogenesis, antioxidant (AO) enzyme activity defense system upregulation, insulin sensitivity, and glucose uptake in skeletal muscle. Commonly used non-enzymatic AO supplements, such as vitamins C and E, a-lipoic acid, and polyphenols, in combination with ET, have been proposed as ways to prevent exercise-induced oxidative stress and hence improve adaptation responses to endurance training. Preclinical and clinical studies to date have shown inconsistent results indicating either positive or negative effects of endurance training combined with different blends of AO supplements (mostly vitamins C and E and a-lipoic acid) on redox status, mitochondrial biogenesis pathways, and insulin sensitivity. Preclinical reports on ET combined with resveratrol, however, have shown consistent positive effects on exercise performance, mitochondrial biogenesis, and insulin sensitivity, with clinical trials reporting mixed effects. Relevant clinical studies have been few and have used inconsistent results and methodology (types of compounds, combinations, and supplementation time). The future studies would investigate the effects of specific antioxidants and other popular supplements, such as a-lipoic acid and resveratrol, on training effects in humans. Of particular importance are older adults who may be at higher risk of age-related increased oxidative stress, an impaired AO enzyme defense system, and comorbidities such as hypertension, insulin resistance, and diabetes. PMID:25606815

  16. Regulation of Muscle Glycogen Metabolism during Exercise: Implications for Endurance Performance and Training Adaptations

    PubMed Central

    Hearris, Mark A.; Hammond, Kelly M.; Fell, J. Marc; Morton, James P.

    2018-01-01

    Since the introduction of the muscle biopsy technique in the late 1960s, our understanding of the regulation of muscle glycogen storage and metabolism has advanced considerably. Muscle glycogenolysis and rates of carbohydrate (CHO) oxidation are affected by factors such as exercise intensity, duration, training status and substrate availability. Such changes to the global exercise stimulus exert regulatory effects on key enzymes and transport proteins via both hormonal control and local allosteric regulation. Given the well-documented effects of high CHO availability on promoting exercise performance, elite endurance athletes are typically advised to ensure high CHO availability before, during and after high-intensity training sessions or competition. Nonetheless, in recognition that the glycogen granule is more than a simple fuel store, it is now also accepted that glycogen is a potent regulator of the molecular cell signaling pathways that regulate the oxidative phenotype. Accordingly, the concept of deliberately training with low CHO availability has now gained increased popularity amongst athletic circles. In this review, we present an overview of the regulatory control of CHO metabolism during exercise (with a specific emphasis on muscle glycogen utilization) in order to discuss the effects of both high and low CHO availability on modulating exercise performance and training adaptations, respectively. PMID:29498691

  17. The Development of Real-Time Physiological Monitoring and Training Software for Remote Applications

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Autogenic Feedback Training Exercise (AFTE) is an protocol and technology developed by Dr. Patricia Cowings and her associates at NASA Ames Research Center as a means to facilitate astronaut adaptation to space and exposure to the microgravity. AFTE is a training method which involves teaching subjects to voluntarily control several of their own physiological responses to environmental stressors. As the procedures matured, the training program was expanded to determine if technology developed to facilitate astronaut adaptation to space would be valuable in treating patients suffering from autonomic and vestibular pathologies and symptomatic relief from nausea and/or blood pressure control anomalies such as hypo- or hypertension. The present study, performed in conjunction with Morehouse School of Medicine, Biomedical Engineering at The University of Akron and NASA Ames Research Center has demonstrated that this technology can be successfully applied over vast distances. The specific purpose of this research was to develop a PC based system which could handle processing of twenty channels of acquired physiological data in addition to the necessary duplex communication protocols that would, for example, permit a patient in Atlanta, GA to be trained by a clinician stationed in San Jose, CA. Sixteen channels of physiological data and 20 channels of processed data are included.

  18. Expertise with artificial non-speech sounds recruits speech-sensitive cortical regions

    PubMed Central

    Leech, Robert; Holt, Lori L.; Devlin, Joseph T.; Dick, Frederic

    2009-01-01

    Regions of the human temporal lobe show greater activation for speech than for other sounds. These differences may reflect intrinsically specialized domain-specific adaptations for processing speech, or they may be driven by the significant expertise we have in listening to the speech signal. To test the expertise hypothesis, we used a video-game-based paradigm that tacitly trained listeners to categorize acoustically complex, artificial non-linguistic sounds. Before and after training, we used functional MRI to measure how expertise with these sounds modulated temporal lobe activation. Participants’ ability to explicitly categorize the non-speech sounds predicted the change in pre- to post-training activation in speech-sensitive regions of the left posterior superior temporal sulcus, suggesting that emergent auditory expertise may help drive this functional regionalization. Thus, seemingly domain-specific patterns of neural activation in higher cortical regions may be driven in part by experience-based restructuring of high-dimensional perceptual space. PMID:19386919

  19. "I'll stop procrastinating now!" Fostering specific processes of self-regulated learning to reduce academic procrastination.

    PubMed

    Grunschel, Carola; Patrzek, Justine; Klingsieck, Katrin B; Fries, Stefan

    2018-01-01

    Academic procrastination is considered to be a result of self-regulation failure having detrimental effects on students' well-being and academic performance. In the present study, we developed and evaluated a group training that aimed to reduce academic procrastination. We based the training on a cyclical process model of self-regulated learning, thus, focusing on improving deficient processes of self-regulated learning among academic procrastinators (e.g., time management, dealing with distractions). The training comprised five sessions and took place once a week for 90 min in groups of no more than 10 students. Overall, 106 students completed the training. We evaluated the training using a comprehensive control group design with repeated measures (three points of measurement); the control group was trained after the intervention group's training. The results showed that our training was successful. The trained intervention group significantly reduced academic procrastination and improved specific processes of self-regulated learning (e.g., time management, concentration), whereas the untrained control group showed no change regarding these variables. After the control group had also been trained, the control group also showed the expected favorable changes. The students rated the training overall as good and found it recommendable for procrastinating friends. Hence, fostering self-regulatory processes in our intervention was a successful attempt to support students in reducing academic procrastination. The evaluation of the training encourages us to adapt the training for different groups of procrastinators.

  20. Development of a Countermeasure to Enhance Postflight Locomotor Adaptability

    NASA Technical Reports Server (NTRS)

    Bloomberg, Jacob J.

    2006-01-01

    Astronauts returning from space flight experience locomotor dysfunction following their return to Earth. Our laboratory is currently developing a gait adaptability training program that is designed to facilitate recovery of locomotor function following a return to a gravitational environment. The training program exploits the ability of the sensorimotor system to generalize from exposure to multiple adaptive challenges during training so that the gait control system essentially learns to learn and therefore can reorganize more rapidly when faced with a novel adaptive challenge. We have previously confirmed that subjects participating in adaptive generalization training programs using a variety of visuomotor distortions can enhance their ability to adapt to a novel sensorimotor environment. Importantly, this increased adaptability was retained even one month after completion of the training period. Adaptive generalization has been observed in a variety of other tasks requiring sensorimotor transformations including manual control tasks and reaching (Bock et al., 2001, Seidler, 2003) and obstacle avoidance during walking (Lam and Dietz, 2004). Taken together, the evidence suggests that a training regimen exposing crewmembers to variation in locomotor conditions, with repeated transitions among states, may enhance their ability to learn how to reassemble appropriate locomotor patterns upon return from microgravity. We believe exposure to this type of training will extend crewmembers locomotor behavioral repertoires, facilitating the return of functional mobility after long duration space flight. Our proposed training protocol will compel subjects to develop new behavioral solutions under varying sensorimotor demands. Over time subjects will learn to create appropriate locomotor solution more rapidly enabling acquisition of mobility sooner after long-duration space flight. Our laboratory is currently developing adaptive generalization training procedures and the associated flight hardware to implement such a training program during regular inflight treadmill operations. A visual display system will provide variation in visual flow patterns during treadmill exercise. Crewmembers will be exposed to a virtual scene that can translate and rotate in six-degrees-of freedom during their regular treadmill exercise period. Associated ground based studies are focused on determining optimal combinations of sensory manipulations (visual flow, body loading and support surface variation) and training schedules that will produce the greatest potential for adaptive flexibility in gait function during exposure to challenging and novel environments. An overview of our progress in these areas will be discussed during the presentation.

  1. Creatine supplementation with specific view to exercise/sports performance: an update

    PubMed Central

    2012-01-01

    Creatine is one of the most popular and widely researched natural supplements. The majority of studies have focused on the effects of creatine monohydrate on performance and health; however, many other forms of creatine exist and are commercially available in the sports nutrition/supplement market. Regardless of the form, supplementation with creatine has regularly shown to increase strength, fat free mass, and muscle morphology with concurrent heavy resistance training more than resistance training alone. Creatine may be of benefit in other modes of exercise such as high-intensity sprints or endurance training. However, it appears that the effects of creatine diminish as the length of time spent exercising increases. Even though not all individuals respond similarly to creatine supplementation, it is generally accepted that its supplementation increases creatine storage and promotes a faster regeneration of adenosine triphosphate between high intensity exercises. These improved outcomes will increase performance and promote greater training adaptations. More recent research suggests that creatine supplementation in amounts of 0.1 g/kg of body weight combined with resistance training improves training adaptations at a cellular and sub-cellular level. Finally, although presently ingesting creatine as an oral supplement is considered safe and ethical, the perception of safety cannot be guaranteed, especially when administered for long period of time to different populations (athletes, sedentary, patient, active, young or elderly). PMID:22817979

  2. Numerical Relations and Skill Level Constrain Co-Adaptive Behaviors of Agents in Sports Teams

    PubMed Central

    Silva, Pedro; Travassos, Bruno; Vilar, Luís; Aguiar, Paulo; Davids, Keith; Araújo, Duarte; Garganta, Júlio

    2014-01-01

    Similar to other complex systems in nature (e.g., a hunting pack, flocks of birds), sports teams have been modeled as social neurobiological systems in which interpersonal coordination tendencies of agents underpin team swarming behaviors. Swarming is seen as the result of agent co-adaptation to ecological constraints of performance environments by collectively perceiving specific possibilities for action (affordances for self and shared affordances). A major principle of invasion team sports assumed to promote effective performance is to outnumber the opposition (creation of numerical overloads) during different performance phases (attack and defense) in spatial regions adjacent to the ball. Such performance principles are assimilated by system agents through manipulation of numerical relations between teams during training in order to create artificially asymmetrical performance contexts to simulate overloaded and underloaded situations. Here we evaluated effects of different numerical relations differentiated by agent skill level, examining emergent inter-individual, intra- and inter-team coordination. Groups of association football players (national – NLP and regional-level – RLP) participated in small-sided and conditioned games in which numerical relations between system agents were manipulated (5v5, 5v4 and 5v3). Typical grouping tendencies in sports teams (major ranges, stretch indices, distances of team centers to goals and distances between the teams' opposing line-forces in specific team sectors) were recorded by plotting positional coordinates of individual agents through continuous GPS tracking. Results showed that creation of numerical asymmetries during training constrained agents' individual dominant regions, the underloaded teams' compactness and each team's relative position on-field, as well as distances between specific team sectors. We also observed how skill level impacted individual and team coordination tendencies. Data revealed emergence of co-adaptive behaviors between interacting neurobiological social system agents in the context of sport performance. Such observations have broader implications for training design involving manipulations of numerical relations between interacting members of social collectives. PMID:25191870

  3. Numerical relations and skill level constrain co-adaptive behaviors of agents in sports teams.

    PubMed

    Silva, Pedro; Travassos, Bruno; Vilar, Luís; Aguiar, Paulo; Davids, Keith; Araújo, Duarte; Garganta, Júlio

    2014-01-01

    Similar to other complex systems in nature (e.g., a hunting pack, flocks of birds), sports teams have been modeled as social neurobiological systems in which interpersonal coordination tendencies of agents underpin team swarming behaviors. Swarming is seen as the result of agent co-adaptation to ecological constraints of performance environments by collectively perceiving specific possibilities for action (affordances for self and shared affordances). A major principle of invasion team sports assumed to promote effective performance is to outnumber the opposition (creation of numerical overloads) during different performance phases (attack and defense) in spatial regions adjacent to the ball. Such performance principles are assimilated by system agents through manipulation of numerical relations between teams during training in order to create artificially asymmetrical performance contexts to simulate overloaded and underloaded situations. Here we evaluated effects of different numerical relations differentiated by agent skill level, examining emergent inter-individual, intra- and inter-team coordination. Groups of association football players (national--NLP and regional-level--RLP) participated in small-sided and conditioned games in which numerical relations between system agents were manipulated (5v5, 5v4 and 5v3). Typical grouping tendencies in sports teams (major ranges, stretch indices, distances of team centers to goals and distances between the teams' opposing line-forces in specific team sectors) were recorded by plotting positional coordinates of individual agents through continuous GPS tracking. Results showed that creation of numerical asymmetries during training constrained agents' individual dominant regions, the underloaded teams' compactness and each team's relative position on-field, as well as distances between specific team sectors. We also observed how skill level impacted individual and team coordination tendencies. Data revealed emergence of co-adaptive behaviors between interacting neurobiological social system agents in the context of sport performance. Such observations have broader implications for training design involving manipulations of numerical relations between interacting members of social collectives.

  4. Recommended observational skills training for IAEA safeguards inspections. Final report: Recommended observational skills training for IAEA safeguards inspections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Toquam, J.L.; Morris, F.A.

    This is the second of two reports prepared to assist the International Atomic Energy Agency (IAEA or Agency) in enhancing the effectiveness of its international safeguards inspections through inspector training in {open_quotes}Observational Skills{close_quotes}. The first (Phase 1) report was essentially exploratory. It defined Observational Skills broadly to include all appropriate cognitive, communications, and interpersonal techniques that have the potential to help IAEA safeguards inspectors function more effectively. It identified 10 specific Observational Skills components, analyzed their relevance to IAEA safeguards inspections, and reviewed a variety of inspection programs in the public and private sectors that provide training in one ormore » more of these components. The report concluded that while it should be possible to draw upon these other programs in developing Observational Skills training for IAEA inspectors, the approaches utilized in these programs will likely require significant adaption to support the specific job requirements, policies, and practices that define the IAEA inspector`s job. The overall objective of this second (Phase 2) report is to provide a basis for the actual design and delivery of Observational Skills training to IAEA inspectors. The more specific purposes of this report are to convey a fuller understanding of the potential application of Observational Skills to the inspector`s job, describe inspector perspectives on the relevance and importance of particular Observational Skills, identify the specific Observational Skill components that are most important and relevant to enhancing safeguards inspections, and make recommendations as to Observational Skills training for the IAEA`s consideration in further developing its Safeguards training program.« less

  5. Within Session Sequence of Balance and Plyometric Exercises Does Not Affect Training Adaptations with Youth Soccer Athletes.

    PubMed

    Chaouachi, Mehdi; Granacher, Urs; Makhlouf, Issam; Hammami, Raouf; Behm, David G; Chaouachi, Anis

    2017-03-01

    The integration of balance and plyometric training has been shown to provide significant improvements in sprint, jump, agility, and other performance measures in young athletes. It is not known if a specific within session balance and plyometric exercise sequence provides more effective training adaptations. The objective of the present study was to investigate the effects of using a sequence of alternating pairs of exercises versus a block (series) of all balance exercises followed by a block of plyometric exercises on components of physical fitness such as muscle strength, power, speed, agility, and balance. Twenty-six male adolescent soccer players (13.9 ± 0.3 years) participated in an 8-week training program that either alternated individual balance (e.g., exercises on unstable surfaces) and plyometric (e.g., jumps, hops, rebounds) exercises or performed a block of balance exercises prior to a block of plyometric exercises within each training session. Pre- and post-training measures included proxies of strength, power, agility, sprint, and balance such as countermovement jumps, isometric back and knee extension strength, standing long jump, 10 and 30-m sprints, agility, standing stork, and Y-balance tests. Both groups exhibited significant, generally large magnitude (effect sizes) training improvements for all measures with mean performance increases of approximately >30%. There were no significant differences between the training groups over time. The results demonstrate the effectiveness of combining balance and plyometric exercises within a training session on components of physical fitness with young adolescents. The improved performance outcomes were not significantly influenced by the within session exercise sequence.

  6. Community-based first aid: a program report on the intersection of community-based participatory research and first aid education in a remote Canadian Aboriginal community.

    PubMed

    VanderBurgh, D; Jamieson, R; Beardy, J; Ritchie, S D; Orkin, A

    2014-01-01

    Community-based first aid training is the collaborative development of locally relevant emergency response training. The Sachigo Lake Wilderness Emergency Response Education Initiative was developed, delivered, and evaluated through two intensive 5-day first aid courses. Sachigo Lake First Nation is a remote Aboriginal community of 450 people in northern Ontario, Canada, with no local paramedical services. These courses were developed in collaboration with the community, with a goal of building community capacity to respond to medical emergencies. Most first aid training programs rely on standardized curriculum developed for urban and rural contexts with established emergency response systems. Delivering effective community-based first aid training in a remote Aboriginal community required specific adaptations to conventional first aid educational content and pedagogy. Three key lessons emerged during this program that used collaborative principles to adapt conventional first aid concepts and curriculum: (1) standardized approaches may not be relevant nor appropriate; (2) relationships between course participants and the people they help are relevant and important; (3) curriculum must be attentive to existing informal and formal emergency response systems. These lessons may be instructive for the development of other programs in similar settings.

  7. Enhancing Users' Participation in Business Process Modeling through Ontology-Based Training

    NASA Astrophysics Data System (ADS)

    Macris, A.; Malamateniou, F.; Vassilacopoulos, G.

    Successful business process design requires active participation of users who are familiar with organizational activities and business process modelling concepts. Hence, there is a need to provide users with reusable, flexible, agile and adaptable training material in order to enable them instil their knowledge and expertise in business process design and automation activities. Knowledge reusability is of paramount importance in designing training material on process modelling since it enables users participate actively in process design/redesign activities stimulated by the changing business environment. This paper presents a prototype approach for the design and use of training material that provides significant advantages to both the designer (knowledge - content reusability and semantic web enabling) and the user (semantic search, knowledge navigation and knowledge dissemination). The approach is based on externalizing domain knowledge in the form of ontology-based knowledge networks (i.e. training scenarios serving specific training needs) so that it is made reusable.

  8. Exercising Your Brain: A Review of Human Brain Plasticity and Training-Induced Learning

    PubMed Central

    Green, C. S.; Bavelier, D.

    2010-01-01

    Human beings have an amazing capacity to learn new skills and adapt to new environments. However, several obstacles remain to be overcome in designing paradigms to broadly improve quality of life. Arguably, the most notable impediment to this goal is that learning tends to be quite specific to the trained regimen and does not transfer to even qualitatively similar tasks. This severely limits the potential benefits of learning to daily life. This review discusses training regimens that lead to the acquisition of new knowledge and strategies that can be used flexibly across a range of tasks and contexts. Possible characteristics of training regimens are proposed that may be responsible for augmented learning, including the manner in which task difficulty is progressed, the motivational state of the learner, and the type of feedback the training provides. When maximally implemented in rehabilitative paradigms, these characteristics may greatly increase the efficacy of training. PMID:19140641

  9. EMG and Heart Rate Responses Decline within 5 Days of Daily Whole-Body Vibration Training with Squatting

    PubMed Central

    Rosenberger, André; Liphardt, Anna-Maria; Bargmann, Arne; Müller, Klaus; Beck, Luis; Mester, Joachim; Zange, Jochen

    2014-01-01

    In this study, we examined the acute effects of a 5-day daily whole-body vibration (WBV) training on electromyography (EMG) responses of the m. rectus femoris and m. gastrocnemius lateralis, heart rate (HR, continuously recorded), and blood lactate levels. The purpose of the study was to investigate the adaptation of muscle activity, heart rate and blood lactate levels during 5 days of daily training. Two groups of healthy male subjects performed either squat exercises with vibration at 20 Hz on a side alternating platform (SE+V, n = 20, age  = 31.9±7.5 yrs., height  = 178.8±6.2 cm, body mass  = 79.2±11.4 kg) or squat exercises alone (SE, n = 21, age  = 28.4±7.3 years, height  = 178.9±7.4 cm, body mass  = 77.2±9.7 kg). On training day 1, EMG amplitudes of the m. rectus femoris were significantly higher (P<0.05) during SE+V than during SE. However, this difference was no longer statistically significant on training days 3 and 5. The heart rate (HR) response was significantly higher (P<0.05) during SE+V than during SE on all training days, but showed a constant decline throughout the training days. On training day 1, blood lactate increased significantly more after SE+V than after SE (P<0.05). On the following training days, this difference became much smaller but remained significantly different. The specific physiological responses to WBV were largest on the initial training day and most of them declined during subsequent training days, showing a rapid neuromuscular and cardiovascular adaptation to the vibration stimulus. PMID:24905721

  10. Evaluation of a pilot 'peer support' training programme for volunteers in a hospital-based cancer information and support centre.

    PubMed

    Kinnane, Nicole Anne; Waters, Trish; Aranda, Sanchia

    2011-01-01

    Volunteers from Peter MacCallum Cancer Centre (Peter Mac) Patient Information and Support Centre (PISC) assist the Cancer Support Nurse by helping patients and families/carers find information and provide face-to-face peer support. Benefits of shared personal experiences between volunteer and patient are clearly different from professional support. Volunteers require specific skill sets and detailed preparation for this role. Volunteers completed a 3-day training programme adapted from the Cancer Council Victoria's 'Cancer Connect Telephone Peer Support Volunteer' training programme. The focus was role expectations and boundaries for peer support volunteers, debriefing, communication skills training, support services, complementary and alternative therapies and internet information. Assessment included a quiz and observation for a range of competencies. Role-play with simulated patients developed appropriate support skills. Eight volunteers participated. Pre-training questionnaires revealed all volunteers highly self-rated existing skills supporting people affected by cancer. During training, volunteers recognised these skills were inadequate. All agreed that role-play using an actor as a 'simulated patient' helped develop communication skills; however, the experience proved challenging. Post-training all reported increased knowledge of role definition and boundaries, supportive communication skills, supports available for patients and families/carers and importance of self-care. Facilitators recommended seven of the eight participants be accredited PISC Peer Support Volunteers. One volunteer was assessed unsuitable for consistently overstepping the boundaries of the peer support role and withdrew from training. Success of the programme resulted in a trained 'face-to-face peer support volunteer' group better equipped for their role. Sixteen months following training, all who completed the programme remain active volunteers in the PISC. Planned educational updates include needs identified by the volunteers. The training programme would require adapting for future peer support volunteers.

  11. Designing Empathetic Animated Agents for a B-Learning Training Environment within the Electrical Domain

    ERIC Educational Resources Information Center

    Hernández, Yasmin; Pérez-Ramírez, Miguel; Zatarain-Cabada, Ramon; Barrón-Estrada, Lucia; Alor-Hernández, Giner

    2016-01-01

    Electrical tests involve high risk; therefore utility companies require highly qualified electricians and efficient training. Recently, training for electrical tests has been supported by virtual reality systems; nonetheless, these training systems are not yet adaptive. We propose a b-learning model to support adaptive and distance training. The…

  12. Adaptive Game Based Learning Using Brain Measures for Attention--Some Explorations

    ERIC Educational Resources Information Center

    van der Pal, Jelke; Roos, Christopher; Sewnath, Ghanshaam; Rosheuvel, Christian

    2016-01-01

    The prospective use of low fidelity simulation and gaming in aviation training is high, and may facilitate individual, personal training needs in usually asynchronous training setting. Without direct feedback from, or intervention by, an instructor, adaptivity of the training environment is in high demand to ensure training sessions maintain an…

  13. Modeling gravity-dependent plasticity of the angular vestibuloocular reflex with a physiologically based neural network.

    PubMed

    Xiang, Yongqing; Yakushin, Sergei B; Cohen, Bernard; Raphan, Theodore

    2006-12-01

    A neural network model was developed to explain the gravity-dependent properties of gain adaptation of the angular vestibuloocular reflex (aVOR). Gain changes are maximal at the head orientation where the gain is adapted and decrease as the head is tilted away from that position and can be described by the sum of gravity-independent and gravity-dependent components. The adaptation process was modeled by modifying the weights and bias values of a three-dimensional physiologically based neural network of canal-otolith-convergent neurons that drive the aVOR. Model parameters were trained using experimental vertical aVOR gain values. The learning rule aimed to reduce the error between eye velocities obtained from experimental gain values and model output in the position of adaptation. Although the model was trained only at specific head positions, the model predicted the experimental data at all head positions in three dimensions. Altering the relative learning rates of the weights and bias improved the model-data fits. Model predictions in three dimensions compared favorably with those of a double-sinusoid function, which is a fit that minimized the mean square error at every head position and served as the standard by which we compared the model predictions. The model supports the hypothesis that gravity-dependent adaptation of the aVOR is realized in three dimensions by a direct otolith input to canal-otolith neurons, whose canal sensitivities are adapted by the visual-vestibular mismatch. The adaptation is tuned by how the weights from otolith input to the canal-otolith-convergent neurons are adapted for a given head orientation.

  14. Current Practice in Designing Training for Complex Skills: Implications for Design and Evaluation of ADAPT[IT].

    ERIC Educational Resources Information Center

    Eseryel, Deniz; Schuver-van Blanken, Marian J.; Spector, J. Michael

    ADAPT[IT] (Advanced Design Approach for Personalized Training-Interactive Tools is a European project coordinated by the Dutch National Aerospace Laboratory. The aim of ADAPT[IT] is to create and validate an effective training design methodology, based on cognitive science and leading to the integration of advanced technologies, so that the…

  15. Quantitative assessment of the effects of 6 months of adapted physical activity on gait in people with multiple sclerosis: a randomized controlled trial.

    PubMed

    Pau, Massimiliano; Corona, Federica; Coghe, Giancarlo; Marongiu, Elisabetta; Loi, Andrea; Crisafulli, Antonio; Concu, Alberto; Galli, Manuela; Marrosu, Maria Giovanna; Cocco, Eleonora

    2018-01-01

    The purpose of this study is to quantitatively assess the effect of 6 months of supervised adapted physical activity (APA i.e. physical activity designed for people with special needs) on spatio-temporal and kinematic parameters of gait in persons with Multiple Sclerosis (pwMS). Twenty-two pwMS with Expanded Disability Status Scale scores ranging from 1.5 to 5.5 were randomly assigned either to the intervention group (APA, n = 11) or the control group (CG, n = 11). The former underwent 6 months of APA consisting of 3 weekly 60-min sessions of aerobic and strength training, while CG participants were engaged in no structured PA program. Gait patterns were analyzed before and after the training using three-dimensional gait analysis by calculating spatio-temporal parameters and concise indexes of gait kinematics (Gait Profile Score - GPS and Gait Variable Score - GVS) as well as dynamic Range of Motion (ROM) of hip, knee, and ankle joints. The training originated significant improvements in stride length, gait speed and cadence in the APA group, while GPS and GVS scores remained practically unchanged. A trend of improvement was also observed as regard the dynamic ROM of hip, knee, and ankle joints. No significant changes were observed in the CG for any of the parameters considered. The quantitative analysis of gait supplied mixed evidence about the actual impact of 6 months of APA on pwMS. Although some improvements have been observed, the substantial constancy of kinematic patterns of gait suggests that the full transferability of the administered training on the ambulation function may require more specific exercises. Implications for rehabilitation Adapted Physical Activity (APA) is effective in improving spatio-temporal parameters of gait, but not kinematics, in people with multiple sclerosis. Dynamic range of motion during gait is increased after APA. The full transferability of APA on the ambulation function may require specific exercises rather than generic lower limbs strength/flexibility training.

  16. Attempted Training of Alcohol Approach and Drinking Identity Associations in US Undergraduate Drinkers: Null Results from Two Studies

    PubMed Central

    Lindgren, Kristen P.; Wiers, Reinout W.; Teachman, Bethany A.; Gasser, Melissa L.; Westgate, Erin C.; Cousijn, Janna; Enkema, Matthew C.; Neighbors, Clayton

    2015-01-01

    There is preliminary evidence that approach avoid training can shift implicit alcohol associations and improve treatment outcomes. We sought to replicate and extend those findings in US undergraduate social drinkers (Study 1) and at-risk drinkers (Study 2). Three adaptations of the approach avoid task (AAT) were tested. The first adaptation – the approach avoid training – was a replication and targeted implicit alcohol approach associations. The remaining two adaptations – the general identity and personalized identity trainings – targeted implicit drinking identity associations, which are robust predictors of hazardous drinking in US undergraduates. Study 1 included 300 undergraduate social drinkers. They were randomly assigned to real or sham training conditions for one of the three training adaptations, and completed two training sessions, spaced one week apart. Study 2 included 288 undergraduates at risk for alcohol use disorders. The same training procedures were used, but the two training sessions occurred within a single week. Results were not as expected. Across both studies, the approach avoid training yielded no evidence of training effects on implicit alcohol associations or alcohol outcomes. The general identity training also yielded no evidence of training effects on implicit alcohol associations or alcohol outcomes with one exception; individuals who completed real training demonstrated no changes in drinking refusal self-efficacy whereas individuals who completed sham training had reductions in self-efficacy. Finally, across both studies, the personalized identity training yielded no evidence of training effects on implicit alcohol associations or alcohol outcomes. Despite having relatively large samples and using a well-validated training task, study results indicated all three training adaptations were ineffective at this dose in US undergraduates. These findings are important because training studies are costly and labor-intensive. Future research may benefit from focusing on more severe populations, pairing training with other interventions, increasing training dose, and increasing gamification of training tasks. PMID:26241316

  17. Three weeks of eccentric training combined with overspeed exercises enhances power and running speed performance gains in trained athletes.

    PubMed

    Cook, Christian J; Beaven, C Martyn; Kilduff, Liam P

    2013-05-01

    Eccentric and overspeed training modalities are effective in improving components of muscular power. Eccentric training induces specific training adaptations relating to muscular force, whereas overspeed stimuli target the velocity component of power expression. We aimed to compare the effects of traditional or eccentric training with volume-matched training that incorporated overspeed exercises. Twenty team-sport athletes performed 4 counterbalanced 3-week training blocks consecutively as part of a preseason training period: (1) traditional resistance training; (2) eccentric-only resistance training; (3) traditional resistance training with overspeed exercises; and (4) eccentric resistance training with overspeed exercises. The overspeed exercises performed were assisted countermovement jumps and downhill running. Improvements in bench press (15.0 ± 5.1 kg; effect size [ES]: 1.52), squat (19.5 ± 9.1 kg; ES: 1.12), and peak power in the countermovement jump (447 ± 248 W; ES: 0.94) were observed following the 12-week training period. Greater strength increases were observed as a result of the eccentric training modalities (ES: 0.72-1.09) with no effect of the overspeed stimuli on these measures (p > 0.05). Eccentric training with overspeed stimuli was more effective than traditional resistance training in increasing peak power in the countermovement jump (94 ± 55 W; ES: 0.95). Eccentric training induced no beneficial training response in maximal running speed (p > 0.05); however, the addition of overspeed exercises salvaged this relatively negative effect when compared with eccentric training alone (0.03 ± 0.01 seconds; ES: 1.33). These training results achieved in 3-week training blocks suggest that it is important to target-specific aspects of both force and movement velocity to enhance functional measures of power expression.

  18. Training complexity is not decisive factor for improving adaptation to visual sensory conflict.

    PubMed

    Yang, Yang; Pu, Fang; Li, Shuyu; Li, Yan; Li, Deyu; Fan, Yubo

    2012-01-01

    Ground-based preflight training utilizing unusual visual stimuli is useful for decreasing the susceptibility to space motion sickness (SMS). The effectiveness of the sensorimotor adaptation training is affected by the training tasks, but what kind of task is more effective remains unknown. Whether the complexity is the decisive factor to consider for designing the training and if other factors are more important need to be analyzed. The results from the analysis can help to optimize the preflight training tasks for astronauts. Twenty right-handed subjects were asked to draw the right path of 45° rotated maze before and after 30 min training. Subjects wore an up-down reversing prism spectacle in test and training sessions. Two training tasks were performed: drawing the right path of the horizontal maze (complex task but with different orientation feature) and drawing the L-shape lines (easy task with same orientation feature). The error rate and the executing time were measured during the test. Paired samples t test was used to compare the effects of the two training tasks. After each training, the error rate and the executing time were significantly decreased. However, the training effectiveness of the easy task was better as the test was finished more quickly and accurately. The complexity is not always the decisive factor for designing the adaptation training task, e.g. the orientation feature is more important in this study. In order to accelerate the adaptation and to counter SMS, the task for astronauts preflight adaptation training could be simple activities with the key features.

  19. [Research, design and application of model NSE-1 neck muscle training machine for pilots].

    PubMed

    Cheng, Haiping; Wang, Zhijie; Liu, Songyang; Yang, Yi; Zhao, Guang; Cong, Hong; Han, Xueping; Liu, Min; Yu, Mengsun

    2011-04-01

    Pain in the cervical region of air force pilots, who are exposed to high G-forces, is a specifically occupational health problem. To minimize neck problems, the cervical muscles need specific strength exercise. It is important that the training for the neck must be carried out with optimal resistance in exercises. The model NSE-1 neck training machine for pilots was designed for neck strengthening exercises under safe and effective conditions. In order to realize the functions of changeable velocity and resistant (CVR) training and neck isometric contractive exercises, the techniques of adaptive hydraulics, sensor, optic and auditory biological feedback, and signal processing were applied to this machine. The training system mainly consists of mechanical parts (including the chair of flexion and extension, the chair of right and left lateral flexion, the components of hydraulics and torque transformer, etc.), and the software of signal processing and biological feedback. Eleven volunteers were selected for the experiments of neck isometric contractive exercises, three times a week for 6 weeks, where CVR training (flexion, extension, right, left lateral flexion) one time a week. The increase in relative strength of the neck (flexion, extension, left and right lateral flexion) was 70.8%, 83.7%, 78.6% and 75.2%, respectively after training. Results show that the strength of the neck can be increased safely, effectively and rapidly with NSE-1 neck training machine to perform neck training.

  20. A Balancing Act: Integrating Evidence-Based Knowledge and Cultural Relevance in a Program of Prevention Parenting Research with Latino/a Immigrants.

    PubMed

    Parra-Cardona, José Rubén; López-Zerón, Gabriela; Domenech Rodríguez, Melanie M; Escobar-Chew, A Rocío; Whitehead, Michael R; Sullivan, Cris M; Bernal, Guillermo

    2016-06-01

    Family therapists have a unique opportunity to contribute toward the reduction of widespread mental health disparities impacting diverse populations by developing applied lines of research focused on cultural adaptation. For example, although evidence-based prevention parent training (PT) interventions have been found to be efficacious with various Euro-American populations, there is a pressing need to understand which specific components of PT interventions are perceived by ethnic minority parents as having the highest impact on their parenting practices. Equally important is to examine the perceived cultural relevance of adapted PT interventions. This qualitative investigation had the primary objective of comparing and contrasting the perceived relevance of two culturally adapted versions of the efficacious parenting intervention known as Parent Management Training, the Oregon Model (PMTO). According to feasibility indicators provided by 112 Latino/a immigrant parents, as well as findings from a qualitative thematic analysis, the core parenting components across both adapted interventions were identified by the majority of research participants as relevant to their parenting practices. Participants exposed to the culturally enhanced intervention, which included culture-specific sessions, also reported high satisfaction with components exclusively focused on cultural issues that directly impact their parenting practices (e.g., immigration challenges, biculturalism). This investigation illustrates the relevant contributions that family therapy scholars can offer toward addressing mental health disparities, particularly as it refers to developing community-based prevention interventions that achieve a balance between evidence-based knowledge and cultural relevance. © 2015 Family Process Institute.

  1. Wii Fit® training vs. Adapted Physical Activities: which one is the most appropriate to improve the balance of independent senior subjects? A randomized controlled study.

    PubMed

    Toulotte, Claire; Toursel, Cindy; Olivier, Nicolas

    2012-09-01

    To compare the effectiveness of three protocols (Adapted Physical Activities, Wii Fit(®), Adapted Physical Activities + Wii Fit(®)) on the balance of independent senior subjects. Case comparison study. Healthy elderly subjects living in independent community dwellings. Thirty-six subjects, average age 75.09 ± 10.26 years, took part in this study, and were randomly assigned to one of the four experimental groups: G1 followed an Adapted Physical Activities training programme, while the second group (G2) participated in Wii Fit(®) training and the third one (G3) combined both methods. There was no training for the fourth group (G4). All subjects trained once a week (1 hour) for 20 weeks and were assessed before and after treatment. The Tinetti test, unipedal tests and the Wii Fit(®) tests. After training, the scores in the Tinetti test decreased significantly (P < 0.05) for G1, G2 and G3 respectively in static conditions and for G1 and G3 in dynamic conditions. After training, the performance in the unipedal tests decreased significantly (P < 0.05) for G1 and G3. The position of the centre of gravity was modified significantly (P < 0.05) for G2 and G3. After 20 training sessions, G1 (Adapted Physical Activities), G2 (Wii Fit(®)) and G3 (Adapted Physical Activities and Wii Fit(®)) improved their balance. In addition, G1 and G3 increased their dynamic balance. The findings suggest that Adapted Physical Activities training limits the decline in sensorial functions in the elderly.

  2. [A randomized controlled trial: acclimatization training on the prevention of motion sickness in hot-humid environment].

    PubMed

    Zhang, Lei; Mao, Jun-Feng; Wu, Xiao-Nong; Bao, Ying-Chun

    2014-05-01

    Incidence and severity of motion sickness (MS) in hot-humid environment are extremely high. We tried to know the effect of two-stage training for reducing incidence and severity of ms. Sixty male subjects were divided into experimental group and control group randomly. Subjects in experimental group received: (2) adaptation training including sitting, walking and running in hot lab. After adaptation confirmation based on subjective feeling, rectal temperature, heart rate, blood Pressure, sweat rates and sweat salt concentration, we tested both groups by Coriolis acceleration revolving chair test and recorded Graybiel's score and grading of severity to evaluate whether adaptation training was useful; (2) Anti-dizzy training 3m later of deacclimatization contained revolving chair training for 10 times. Then we did the same test as mentioned above to evaluate effect of anti-dizzy training. RESULST: Graybiel' s score and grading of severity had no difference between two groups through acclimatization training (P > 0.05). While they had difference through anti-dizzy training (P < 0.01). Adaptation training seems useless for reducing incidence and severity of MS in hot-humid environment, but anti-dizzy training is useful.

  3. Assessing Adaptive Instructional Design Tools and Methods in ADAPT[IT].

    ERIC Educational Resources Information Center

    Eseryel, Deniz; Spector, J. Michael

    ADAPT[IT] (Advanced Design Approach for Personalized Training - Interactive Tools) is a European project within the Information Society Technologies program that is providing design methods and tools to guide a training designer according to the latest cognitive science and standardization principles. ADAPT[IT] addresses users in two significantly…

  4. Adapting the Training Site to Training Needs. Self-Paced Instructional Module. Module Number VII-A.

    ERIC Educational Resources Information Center

    King, Sylvester; Brooks, Kent

    One of 33 self-paced instructional modules for training industry services leaders to provide guidance in the performance of manpower services by public agencies to new and expanding private industry, this module contains three sequential learning activities on adapting the training site to training needs. The first learning activity is designed to…

  5. Virtual Reality as a Medium for Sensorimotor Adaptation Training and Spaceflight Countermeasures

    NASA Technical Reports Server (NTRS)

    Madansingh, S.; Bloomberg, J. J.

    2015-01-01

    With the upcoming shift to extra-long duration missions (1 year) aboard the ISS, sensorimotor adaptations during transitory periods in-and-out of microgravity are more important to understand and prepare for. Advances in virtual reality technology enables everyday adoption of these tools for entertainment and use in training. Experiencing virtual environments (VE) allows for the manipulation of visual flow to elicit automatic motor behavior and produce sensorimotor adaptation (SA). Recently, the ability to train individuals using repeatable and varied exposures to SA challenges has shown success by improving performance during exposure to a novel environment (Batson 2011). This capacity to 'learn to learn' is referred to as sensorimotor adaptive generalizability and, through the use of treadmill training, represents an untapped potential for individualized countermeasures. The goal of this study is to determine the feasibility of present head mounted displays (HMDs) to produce compelling visual flow information and the expected adaptations for use in future SA treadmill-based countermeasures. Participants experience infinite hallways providing congruent (baseline) or incongruent visual information (half or double speed) via HMD while walking on an instrumented treadmill at 1.1m/s. As gait performance approaches baseline levels, an adaptation time constant is derived to establish individual time-to-adapt (TTA). It is hypothesized that decreasing the TTA through SA treadmill training will facilitate sensorimotor adaptation during gravitational transitions. In this way, HMD technology represents a novel platform for SA training using off-the-shelf consumer products for greater training flexibility in astronaut and terrestrial applications alike.

  6. Training Enhances Both Locomotor and Cognitive Adaptability to a Novel Sensory Environment

    NASA Technical Reports Server (NTRS)

    Bloomberg, J. J.; Peters, B. T.; Mulavara, A. P.; Brady, R. A.; Batson, C. D.; Ploutz-Snyder, R. J.; Cohen, H. S.

    2010-01-01

    During adaptation to novel gravitational environments, sensorimotor disturbances have the potential to disrupt the ability of astronauts to perform required mission tasks. The goal of this project is to develop a sensorimotor adaptability (SA) training program to facilitate rapid adaptation. We have developed a unique training system comprised of a treadmill placed on a motion-base facing a virtual visual scene that provides an unstable walking surface combined with incongruent visual flow designed to enhance sensorimotor adaptability. The goal of our present study was to determine if SA training improved both the locomotor and cognitive responses to a novel sensory environment and to quantify the extent to which training would be retained. Methods: Twenty subjects (10 training, 10 control) completed three, 30-minute training sessions during which they walked on the treadmill while receiving discordant support surface and visual input. Control subjects walked on the treadmill but did not receive any support surface or visual alterations. To determine the efficacy of training all subjects performed the Transfer Test upon completion of training. For this test, subjects were exposed to novel visual flow and support surface movement, not previously experienced during training. The Transfer Test was performed 20 minutes, 1 week, 1, 3 and 6 months after the final training session. Stride frequency, auditory reaction time, and heart rate data were collected as measures of postural stability, cognitive effort and anxiety, respectively. Results: Using mixed effects regression methods we determined that subjects who received SA training showed less alterations in stride frequency, auditory reaction time and heart rate compared to controls. Conclusion: Subjects who received SA training improved performance across a number of modalities including enhanced locomotor function, increased multi-tasking capability and reduced anxiety during adaptation to novel discordant sensory information. Trained subjects maintained their level of performance over six months.

  7. Development of a Countermeasure to Mitigate Postflight Locomotor Dysfunction

    NASA Technical Reports Server (NTRS)

    Bloomberg, J. J.; Mulavara, A. P.; Peters, B. T.; Cohen, H. S.; Richards, J. T.; Miller, C. A.; Brady, R.; Warren, L. E.; Ruttley, T. M.

    2006-01-01

    Astronauts returning from space flight experience locomotor dysfunction following their return to Earth. Our laboratory is currently developing a gait adaptability training program that is designed to facilitate recovery of locomotor function following a return to a gravitational environment. The training program exploits the ability of the sensorimotor system to generalize from exposure to multiple adaptive challenges during training so that the gait control system essentially learns to learn and therefore can reorganize more rapidly when faced with a novel adaptive challenge. Evidence for the potential efficacy of an adaptive generalization gait training program can be obtained from numerous studies in the motor learning literature which have demonstrated that systematically varying the conditions of training enhances the ability of the performer to learn and retain a novel motor task. These variable practice training approaches have been used in applied contexts to improve motor skills required in a number of different sports. The central nervous system (CNS) can produce voluntary movement in an almost infinite number of ways. For example, locomotion can be achieved with many different combinations of joint angles, muscle activation patterns and forces. The CNS can exploit these degrees of freedom to enhance motor response adaptability during periods of adaptive flux like that encountered during a change in gravitational environment. Ultimately, the functional goal of an adaptive generalization countermeasure is not necessarily to immediately return movement patterns back to normal. Rather the training regimen should facilitate the reorganization of available sensory and motor subsystems to achieve safe and effective locomotion as soon as possible after long duration space flight. Indeed, this approach has been proposed as a basic feature underlying effective neurological rehabilitation. We have previously confirmed that subjects participating in an adaptive generalization training program using a variety of visuomotor distortions and throwing as the dependent measure can learn to enhance their ability to adapt to a novel sensorimotor environment (Roller et al., 2001). Importantly, this increased adaptability was retained even one month after completion of the training period. Adaptive generalization has been observed in a variety of other tasks requiring sensorimotor transformations including manual control tasks and reaching (Bock et al., 2001, Seidler, 2003) and obstacle avoidance during walking (Lam and Dietz, 2004). Taken together, the evidence suggests that a training regimen exposing crewmembers to variation in locomotor conditions, with repeated transitions among states, may enhance their ability to learn how to reassemble appropriate locomotor patterns upon return from microgravity. We believe exposure to this type of training will extend crewmembers locomotor behavioral repertoires, facilitating the return of functional mobility after long duration space flight. In other words, our proposed training protocol will compel subjects to develop new behavioral solutions under varying sensorimotor demands. Over time subjects will learn to create appropriate locomotor solution more rapidly enabling acquisition of mobility sooner after long-duration space flight. A gait adaptability training program can be superimposed on nominal treadmill exercise activities thus ensuring that no additional crew time is required to perform this type of training regimen and that it can be implemented with current in-flight exercise systems available on the International Space Station.

  8. The Examination of Physical Education Teachers' Perceptions of Their Teacher Training to Include Students with Disabilities in General Physical Education

    ERIC Educational Resources Information Center

    Townsend, Amy

    2017-01-01

    Despite legislative mandates, only 32% of states require specific licensure in adapted physical education (APE); consequently, general physical educators are challenged with including students with disabilities into regular classrooms. Although physical education teachers are considered qualified personnel to teach students with disabilities in…

  9. Talking to Learn: A Mixed-Methods Study of a Professional Development Program for Teachers of English Language Learners

    ERIC Educational Resources Information Center

    Shea, Lauren M.

    2012-01-01

    Most teachers of English language learners (ELLs) have had virtually no specialized, in-service training in adapting instruction for their students. Prior research fails to investigate the impact of professional development (PD) specifically designed for teachers of ELLs. This dissertation examines a PD program that attempted to prepare teachers…

  10. Task-oriented rehabilitation robotics.

    PubMed

    Schweighofer, Nicolas; Choi, Younggeun; Winstein, Carolee; Gordon, James

    2012-11-01

    Task-oriented training is emerging as the dominant and most effective approach to motor rehabilitation of upper extremity function after stroke. Here, the authors propose that the task-oriented training framework provides an evidence-based blueprint for the design of task-oriented robots for the rehabilitation of upper extremity function in the form of three design principles: skill acquisition of functional tasks, active participation training, and individualized adaptive training. The previous robotic systems that incorporate elements of task-oriented trainings are then reviewed. Finally, the authors critically analyze their own attempt to design and test the feasibility of a TOR robot, ADAPT (Adaptive and Automatic Presentation of Tasks), which incorporates the three design principles. Because of its task-oriented training-based design, ADAPT departs from most other current rehabilitation robotic systems: it presents realistic functional tasks in which the task goal is constantly adapted, so that the individual actively performs doable but challenging tasks without physical assistance. To maximize efficacy for a large clinical population, the authors propose that future task-oriented robots need to incorporate yet-to-be developed adaptive task presentation algorithms that emphasize acquisition of fine motor coordination skills while minimizing compensatory movements.

  11. Towards Zero Training for Brain-Computer Interfacing

    PubMed Central

    Krauledat, Matthias; Tangermann, Michael; Blankertz, Benjamin; Müller, Klaus-Robert

    2008-01-01

    Electroencephalogram (EEG) signals are highly subject-specific and vary considerably even between recording sessions of the same user within the same experimental paradigm. This challenges a stable operation of Brain-Computer Interface (BCI) systems. The classical approach is to train users by neurofeedback to produce fixed stereotypical patterns of brain activity. In the machine learning approach, a widely adapted method for dealing with those variances is to record a so called calibration measurement on the beginning of each session in order to optimize spatial filters and classifiers specifically for each subject and each day. This adaptation of the system to the individual brain signature of each user relieves from the need of extensive user training. In this paper we suggest a new method that overcomes the requirement of these time-consuming calibration recordings for long-term BCI users. The method takes advantage of knowledge collected in previous sessions: By a novel technique, prototypical spatial filters are determined which have better generalization properties compared to single-session filters. In particular, they can be used in follow-up sessions without the need to recalibrate the system. This way the calibration periods can be dramatically shortened or even completely omitted for these ‘experienced’ BCI users. The feasibility of our novel approach is demonstrated with a series of online BCI experiments. Although performed without any calibration measurement at all, no loss of classification performance was observed. PMID:18698427

  12. Understanding the factors that effect maximal fat oxidation.

    PubMed

    Purdom, Troy; Kravitz, Len; Dokladny, Karol; Mermier, Christine

    2018-01-01

    Lipids as a fuel source for energy supply during submaximal exercise originate from subcutaneous adipose tissue derived fatty acids (FA), intramuscular triacylglycerides (IMTG), cholesterol and dietary fat. These sources of fat contribute to fatty acid oxidation (FAox) in various ways. The regulation and utilization of FAs in a maximal capacity occur primarily at exercise intensities between 45 and 65% VO 2max , is known as maximal fat oxidation (MFO), and is measured in g/min. Fatty acid oxidation occurs during submaximal exercise intensities, but is also complimentary to carbohydrate oxidation (CHOox). Due to limitations within FA transport across the cell and mitochondrial membranes, FAox is limited at higher exercise intensities. The point at which FAox reaches maximum and begins to decline is referred to as the crossover point. Exercise intensities that exceed the crossover point (~65% VO 2max ) utilize CHO as the predominant fuel source for energy supply. Training status, exercise intensity, exercise duration, sex differences, and nutrition have all been shown to affect cellular expression responsible for FAox rate. Each stimulus affects the process of FAox differently, resulting in specific adaptions that influence endurance exercise performance. Endurance training, specifically long duration (>2 h) facilitate adaptations that alter both the origin of FAs and FAox rate. Additionally, the influence of sex and nutrition on FAox are discussed. Finally, the role of FAox in the improvement of performance during endurance training is discussed.

  13. Feasibility of the adaptive and automatic presentation of tasks (ADAPT) system for rehabilitation of upper extremity function post-stroke

    PubMed Central

    2011-01-01

    Background Current guidelines for rehabilitation of arm and hand function after stroke recommend that motor training focus on realistic tasks that require reaching and manipulation and engage the patient intensively, actively, and adaptively. Here, we investigated the feasibility of a novel robotic task-practice system, ADAPT, designed in accordance with such guidelines. At each trial, ADAPT selects a functional task according to a training schedule and with difficulty based on previous performance. Once the task is selected, the robot picks up and presents the corresponding tool, simulates the dynamics of the tasks, and the patient interacts with the tool to perform the task. Methods Five participants with chronic stroke with mild to moderate impairments (> 9 months post-stroke; Fugl-Meyer arm score 49.2 ± 5.6) practiced four functional tasks (selected out of six in a pre-test) with ADAPT for about one and half hour and 144 trials in a pseudo-random schedule of 3-trial blocks per task. Results No adverse events occurred and ADAPT successfully presented the six functional tasks without human intervention for a total of 900 trials. Qualitative analysis of trajectories showed that ADAPT simulated the desired task dynamics adequately, and participants reported good, although not excellent, task fidelity. During training, the adaptive difficulty algorithm progressively increased task difficulty leading towards an optimal challenge point based on performance; difficulty was then continuously adjusted to keep performance around the challenge point. Furthermore, the time to complete all trained tasks decreased significantly from pretest to one-hour post-test. Finally, post-training questionnaires demonstrated positive patient acceptance of ADAPT. Conclusions ADAPT successfully provided adaptive progressive training for multiple functional tasks based on participant's performance. Our encouraging results establish the feasibility of ADAPT; its efficacy will next be tested in a clinical trial. PMID:21813010

  14. Human torque velocity adaptations to sprint, endurance, or combined modes of training

    NASA Technical Reports Server (NTRS)

    Shealy, M. J.; Callister, R.; Dudley, G. A.; Fleck, S. J.

    1992-01-01

    We had groups of athletes perform sprint and endurance run training independently or concurrently for 8 weeks to examine the voluntary in vivo mechanical responses to each type of training. Pre- and posttraining angle-specific peak torque during knee extension and flexion were determined at 0, 0.84, 1.65, 2.51, 3.35, 4.19, and 5.03 radian.sec-1 and normalized for lean body mass. Knee extension torque in the sprint-trained group increased across all test velocities, the endurance-trained group increased at 2.51, 3.34, 4.19, and 5.03 radian.sec-1, and the group performing the combined training showed no change at any velocity. Knee flexion torque of the sprint and combined groups decreased at 0.84, 1.65, and 2.51 radian.sec-1. Knee flexion torque in the sprint-trained group also decreased at 0 radian.sec-1 and in the combined group at 3.34 radian.sec-1. Knee flexion torque in the endurance-trained group showed no change at any velocity of contraction. Mean knee flexion:extension ratios across the test velocities significantly decreased in the sprint-trained group. Knee extension endurance during 30 seconds of maximal contractions significantly increased in all groups. Only the sprint-trained group showed a significant increase in endurance of the knee flexors. These data suggest that changes in the voluntary in vivo mechanical characteristics of knee extensor and flexor skeletal muscles are specific to the type of run training performed.

  15. Training transfer: scientific background and insights for practical application.

    PubMed

    Issurin, Vladimir B

    2013-08-01

    Training transfer as an enduring, multilateral, and practically important problem encompasses a large body of research findings and experience, which characterize the process by which improving performance in certain exercises/tasks can affect the performance in alternative exercises or motor tasks. This problem is of paramount importance for the theory of training and for all aspects of its application in practice. Ultimately, training transfer determines how useful or useless each given exercise is for the targeted athletic performance. The methodological background of training transfer encompasses basic concepts related to transfer modality, i.e., positive, neutral, and negative; the generalization of training responses and their persistence over time; factors affecting training transfer such as personality, motivation, social environment, etc. Training transfer in sport is clearly differentiated with regard to the enhancement of motor skills and the development of motor abilities. The studies of bilateral skill transfer have shown cross-transfer effects following one-limb training associated with neural adaptations at cortical, subcortical, spinal, and segmental levels. Implementation of advanced sport technologies such as motor imagery, biofeedback, and exercising in artificial environments can facilitate and reinforce training transfer from appropriate motor tasks to targeted athletic performance. Training transfer of motor abilities has been studied with regard to contralateral effects following one limb training, cross-transfer induced by arm or leg training, the impact of strength/power training on the preparedness of endurance athletes, and the impact of endurance workloads on strength/power performance. The extensive research findings characterizing the interactions of these workloads have shown positive transfer, or its absence, depending on whether the combinations conform to sport-specific demands and physiological adaptations. Finally, cross-training as a form of concurrent exercising in different athletic disciplines has been examined in reference to the enhancement of general fitness, the preparation of recreational athletes, and the preparation of athletes for multi-sport activities such as triathlon, duathlon, etc.

  16. Resveratrol supplementation does not augment performance adaptations or fibre-type-specific responses to high-intensity interval training in humans.

    PubMed

    Scribbans, Trisha D; Ma, Jasmin K; Edgett, Brittany A; Vorobej, Kira A; Mitchell, Andrew S; Zelt, Jason G E; Simpson, Craig A; Quadrilatero, Joe; Gurd, Brendon J

    2014-11-01

    The present study examined the effect of concurrent exercise training and daily resveratrol (RSV) supplementation (150 mg) on training-induced adaptations following low-dose high-intensity interval training (HIIT). Sixteen recreationally active (∼22 years, ∼51 mL·kg(-1)·min(-1)) men were randomly assigned in a double-blind fashion to either the RSV or placebo group with both groups performing 4 weeks of HIIT 3 days per week. Before and after training, participants had a resting muscle biopsy taken, completed a peak oxygen uptake test, a Wingate test, and a submaximal exercise test. A main effect of training (p < 0.05) and interaction effect (p < 0.05) on peak aerobic power was observed; post hoc pairwise comparisons revealed that a significant (p < 0.05) increase occurred in the placebo group only. Main effects of training (p < 0.05) were observed for both peak oxygen uptake (placebo - pretraining: 51.3 ± 1.8, post-training: 54.5 ± 1.5 mL·kg(-1)·min(-1), effect size (ES) = 0.93; RSV - pretraining: 49.6 ± 2.2, post-training: 52.3 ± 2.5 mL·kg(-1)·min(-1), ES = 0.50) and Wingate peak power (placebo: pretraining: 747 ± 39, post-training: 809 ± 31 W, ES = 0.84; RSV - pretraining: 679 ± 39, post-training: 691 ± 43 W, ES = 0.12). Fibre-type distribution was unchanged, while a main effect of training (p < 0.05) was observed for succinate dehydrogenase activity and glycogen content, but not α-glycerophosphate dehydrogenase activity or intramuscular lipids in type I and IIA fibres. The fold change in PGC-1α, SIRT1, and SOD2 gene expression following training was significantly (p < 0.05) lower in the RSV group than placebo. These results suggest that concurrent exercise training and RSV supplementation may alter the normal training response induced by low-volume HIIT.

  17. Emergent literacy activities, instructional adaptations and school absence of children with cerebral palsy in special education.

    PubMed

    Peeters, Marieke; de Moor, Jan; Verhoeven, Ludo

    2011-01-01

    The goal of the present study was to get an overview of the emergent literacy activities, instructional adaptations and school absence of children with cerebral palsy (CP) compared to normally developing peers. The results showed that there were differences between the groups regarding the amount of emergent literacy instruction. While time dedicated to storybook reading and independent picture-book reading was comparable, the children with CP received fewer opportunities to work with educational software and more time was dedicated to rhyming games and singing. For the children with CP, the level of speech, intellectual, and physical impairments were all related to the amount of time in emergent literacy instruction. Additionally, the amount of time reading precursors is trained and the number of specific reading precursors that is trained is all related to skills of emergent literacy. Copyright © 2010 Elsevier Ltd. All rights reserved.

  18. Online human training of a myoelectric prosthesis controller via actor-critic reinforcement learning.

    PubMed

    Pilarski, Patrick M; Dawson, Michael R; Degris, Thomas; Fahimi, Farbod; Carey, Jason P; Sutton, Richard S

    2011-01-01

    As a contribution toward the goal of adaptable, intelligent artificial limbs, this work introduces a continuous actor-critic reinforcement learning method for optimizing the control of multi-function myoelectric devices. Using a simulated upper-arm robotic prosthesis, we demonstrate how it is possible to derive successful limb controllers from myoelectric data using only a sparse human-delivered training signal, without requiring detailed knowledge about the task domain. This reinforcement-based machine learning framework is well suited for use by both patients and clinical staff, and may be easily adapted to different application domains and the needs of individual amputees. To our knowledge, this is the first my-oelectric control approach that facilitates the online learning of new amputee-specific motions based only on a one-dimensional (scalar) feedback signal provided by the user of the prosthesis. © 2011 IEEE

  19. Differences in Cortical Representation and Structural Connectivity of Hands and Feet between Professional Handball Players and Ballet Dancers

    PubMed Central

    Meier, Jessica; Topka, Marlene Sofie; Hänggi, Jürgen

    2016-01-01

    It is known that intensive training and expertise are associated with functional and structural neuroadaptations. Most studies, however, compared experts with nonexperts; hence it is, specifically for sports, unclear whether the neuroplastic adaptations reported are sport-specific or sport-general. Here we aimed at investigating sport-specific adaptations in professional handball players and ballet dancers by focusing on the primary motor and somatosensory grey matter (GM) representation of hands and feet using voxel-based morphometry as well as on fractional anisotropy (FA) of the corticospinal tract by means of diffusion tensor imaging-based fibre tractography. As predicted, GM volume was increased in hand areas of handball players, whereas ballet dancers showed increased GM volume in foot areas. Compared to handball players, ballet dancers showed decreased FA in both fibres connecting the foot and hand areas, but they showed lower FA in fibres connecting the foot compared to their hand areas, whereas handball players showed lower FA in fibres connecting the hand compared to their foot areas. Our results suggest that structural adaptations are sport-specific and are manifested in brain regions associated with the neural processing of sport-specific skills. We believe this enriches the plasticity research in general and extends our knowledge of sport expertise in particular. PMID:27247805

  20. Differences in Cortical Representation and Structural Connectivity of Hands and Feet between Professional Handball Players and Ballet Dancers.

    PubMed

    Meier, Jessica; Topka, Marlene Sofie; Hänggi, Jürgen

    2016-01-01

    It is known that intensive training and expertise are associated with functional and structural neuroadaptations. Most studies, however, compared experts with nonexperts; hence it is, specifically for sports, unclear whether the neuroplastic adaptations reported are sport-specific or sport-general. Here we aimed at investigating sport-specific adaptations in professional handball players and ballet dancers by focusing on the primary motor and somatosensory grey matter (GM) representation of hands and feet using voxel-based morphometry as well as on fractional anisotropy (FA) of the corticospinal tract by means of diffusion tensor imaging-based fibre tractography. As predicted, GM volume was increased in hand areas of handball players, whereas ballet dancers showed increased GM volume in foot areas. Compared to handball players, ballet dancers showed decreased FA in both fibres connecting the foot and hand areas, but they showed lower FA in fibres connecting the foot compared to their hand areas, whereas handball players showed lower FA in fibres connecting the hand compared to their foot areas. Our results suggest that structural adaptations are sport-specific and are manifested in brain regions associated with the neural processing of sport-specific skills. We believe this enriches the plasticity research in general and extends our knowledge of sport expertise in particular.

  1. Resistance Training: Physiological Responses and Adaptations (Part 3 of 4).

    ERIC Educational Resources Information Center

    Fleck, Steven J.; Kraemer, William J.

    1988-01-01

    The physiological responses and adaptations which occur as a result of resistance training, such as cardiovascular responses, serum lipid count, body composition, and neural adaptations are discussed. Changes in the endocrine system are also described. (JL)

  2. Adaptation to novel foreign-accented speech and retention of benefit following training: Influence of aging and hearing loss

    PubMed Central

    Bieber, Rebecca E.; Gordon-Salant, Sandra

    2017-01-01

    Adaptation to speech with a foreign accent is possible through prior exposure to talkers with that same accent. For young listeners with normal hearing, short term, accent-independent adaptation to a novel foreign accent is also facilitated through exposure training with multiple foreign accents. In the present study, accent-independent adaptation is examined in younger and older listeners with normal hearing and older listeners with hearing loss. Retention of training benefit is additionally explored. Stimuli for testing and training were HINT sentences recorded by talkers with nine distinctly different accents. Following two training sessions, all listener groups showed a similar increase in speech perception for a novel foreign accent. While no group retained this benefit at one week post-training, results of a secondary reaction time task revealed a decrease in reaction time following training, suggesting reduced listening effort. Examination of listeners' cognitive skills reveals a positive relationship between working memory and speech recognition ability. The present findings indicate that, while this no-feedback training paradigm for foreign-accented English is successful in promoting short term adaptation for listeners, this paradigm is not sufficient in facilitation of perceptual learning with lasting benefits for younger or older listeners. PMID:28464671

  3. Locomotor Dysfunction after Spaceflight: Characterization and Countermeasure Development

    NASA Technical Reports Server (NTRS)

    Mulavara, A. P.; Cohen, H. S.; Peters, B. T.; Miller, C. A.; Brady, R.; Bloomberg, Jacob J.

    2007-01-01

    Astronauts returning from space flight show disturbances in locomotor control manifested by changes in various sub-systems including head-trunk coordination, dynamic visual acuity, lower limb muscle activation patterning and kinematics (Glasauer, et al., 1995; Bloomberg, et al., 1997; McDonald, et al., 1996; 1997; Layne, et al., 1997; 1998, 2001, 2004; Newman, et al., 1997; Bloomberg and Mulavara, 2003). These post flight changes in locomotor performance, due to neural adaptation to the microgravity conditions of space flight, affect the ability of crewmembers especially after a long duration mission to egress their vehicle and perform extravehicular activities soon after landing on Earth or following a landing on the surface of the Moon or Mars. At present, no operational training intervention is available pre- or in- flight to mitigate post flight locomotor disturbances. Our laboratory is currently developing a gait adaptability training program that is designed to facilitate recovery of locomotor function following a return to a gravitational environment. The training program exploits the ability of the sensorimotor system to generalize from exposure to multiple adaptive challenges during training so that the gait control system essentially "learns to learn" and therefore can reorganize more rapidly when faced with a novel adaptive challenge. Ultimately, the functional goal of an adaptive generalization countermeasure is not necessarily to immediately return movement patterns back to "normal". Rather the training regimen should facilitate the reorganization of available sensorimotor sub-systems to achieve safe and effective locomotion as soon as possible after space flight. We have previously confirmed that subjects participating in adaptive generalization training programs, using a variety of visuomotor distortions and different motor tasks from throwing to negotiating an obstacle course as the dependent measure, can learn to enhance their ability to adapt to a novel sensorimotor environment (Roller et al., 2001; Cohen et al. 2005). Importantly, this increased adaptability is retained even one month after completion of the training period. Our laboratory is currently developing adaptive generalization training procedures and the associated flight hardware to implement such a training program, using variations of visual flow, subject loading, and treadmill speed; during regular in-flight treadmill operations.

  4. Adaptive working-memory training benefits reading, but not mathematics in middle childhood.

    PubMed

    Karbach, Julia; Strobach, Tilo; Schubert, Torsten

    2015-01-01

    Working memory (WM) capacity is highly correlated with general cognitive ability and has proven to be an excellent predictor for academic success. Given that WM can be improved by training, our aim was to test whether WM training benefited academic abilities in elementary-school children. We examined 28 participants (mean age = 8.3 years, SD = 0.4) in a pretest-training-posttest-follow-up design. Over 14 training sessions, children either performed adaptive WM training (training group, n = 14) or nonadaptive low-level training (active control group, n = 14) on the same tasks. Pretest, posttest, and follow-up at 3 months after posttest included a neurocognitive test battery (WM, task switching, inhibition) and standardized tests for math and reading abilities. Adaptive WM training resulted in larger training gains than nonadaptive low-level training. The benefits induced by the adaptive training transferred to an untrained WM task and a standardized test for reading ability, but not to task switching, inhibition, or performance on a standardized math test. Transfer to the untrained WM task was maintained over 3 months. The analysis of individual differences revealed compensatory effects with larger gains in children with lower WM and reading scores at pretest. These training and transfer effects are discussed against the background of cognitive processing resulting from WM span training and the nature of the intervention.

  5. Accelerating locomotor savings in learning: compressing four training days to one.

    PubMed

    Day, Kevin A; Leech, Kristan A; Roemmich, Ryan T; Bastian, Amy J

    2018-06-01

    Acquiring new movements requires the capacity of the nervous system to remember previously experienced motor patterns. The phenomenon of faster relearning after initial learning is termed "savings." Here we studied how savings of a novel walking pattern develops over several days of practice and how this process can be accelerated. We introduced participants to a split-belt treadmill adaptation paradigm for 30 min for 5 consecutive days. By training day 5, participants were able to produce near-perfect performance when switching between split and tied-belt environments. We found that this was due to their ability to shift specific elements of their stepping pattern to account for the split treadmill speeds from day to day. We also applied a state-space model to further characterize multiday locomotor savings. We then explored methods of achieving comparable savings with less total training time. We studied people training only on day 1, with either one extended split-belt exposure or alternating four times between split-belt and tied-belt conditions rapidly in succession. Both of these single-day training groups were tested again on day 5. Experiencing four abbreviated exposures on day 1 improved the performance on day 5 compared with one extended exposure on day 1. Moreover, this abbreviated group performed similarly to the group that trained for 4 consecutive days before testing on day 5, despite only having one-quarter of the total training time. These results demonstrate that we can leverage training structure to achieve a high degree of performance while minimizing training sessions. NEW & NOTEWORTHY Learning a new movement requires repetition. Here, we demonstrate how to more efficiently train an adapted walking pattern. By compressing split-belt treadmill training delivered over 4 days to four abbreviated bouts of training delivered on the first day of training, we were able to induce equivalent savings over a 5-day span. These results suggest that we can manipulate the delivery of training to most efficiently drive multiday learning of a novel walking pattern.

  6. Promoting training adaptations through nutritional interventions.

    PubMed

    Hawley, John A; Tipton, Kevin D; Millard-Stafford, Mindy L

    2006-07-01

    Training and nutrition are highly interrelated in that optimal adaptation to the demands of repeated training sessions typically requires a diet that can sustain muscle energy reserves. As nutrient stores (i.e. muscle and liver glycogen) play a predominant role in the performance of prolonged, intense, intermittent exercise typical of the patterns of soccer match-play, and in the replenishment of energy reserves for subsequent training sessions, the extent to which acutely altering substrate availability might modify the training impulse has been a key research area among exercise physiologists and sport nutritionists for several decades. Although the major perturbations to cellular homeostasis and muscle substrate stores occur during exercise, the activation of several major signalling pathways important for chronic training adaptations take place during the first few hours of recovery, returning to baseline values within 24 h after exercise. This has led to the paradigm that many chronic training adaptations are generated by the cumulative effects of the transient events that occur during recovery from each (acute) exercise bout. Evidence is accumulating that nutrient supplementation can serve as a potent modulator of many of the acute responses to both endurance and resistance training. In this article, we review the molecular and cellular events that occur in skeletal muscle during exercise and subsequent recovery, and the potential for nutrient supplementation (e.g. carbohydrate, fat, protein) to affect many of the adaptive responses to training.

  7. Eastern Europe Research Reactor Initiative nuclear education and training courses - Current activities and future challenges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snoj, L.; Sklenka, L.; Rataj, J.

    2012-07-01

    The Eastern Europe Research Reactor Initiative was established in January 2008 to enhance cooperation between the Research Reactors in Eastern Europe. It covers three areas of research reactor utilisation: irradiation of materials and fuel, radioisotope production, neutron beam experiments, education and training. In the field of education and training an EERRI training course was developed. The training programme has been elaborated with the purpose to assist IAEA Member States, which consider building a research reactor (RR) as a first step to develop nuclear competence and infrastructure in the Country. The major strength of the reactor is utilisation of three differentmore » research reactors and a lot of practical exercises. Due to high level of adaptability, the course can be tailored to specific needs of institutions with limited or no access to research reactors. (authors)« less

  8. Adapting a perinatal empathic training method from South Africa to Germany.

    PubMed

    Knapp, Caprice; Honikman, Simone; Wirsching, Michael; Husni-Pascha, Gidah; Hänselmann, Eva

    2018-01-01

    Maternal mental health conditions are prevalent across the world. For women, the perinatal period is associated with increased rates of depression and anxiety. At the same time, there is widespread documentation of disrespectful care for women by maternity health staff. Improving the empathic engagement skills of maternity healthcare workers may enable them to respond to the mental health needs of their clients more effectively. In South Africa, a participatory empathic training method, the "Secret History" has been used as part of a national Department of Health training program with maternity staff and has showed promising results. For this paper, we aimed to describe an adaptation of the Secret History empathic training method from the South African to the German setting and to evaluate the adapted training. The pilot study occurred in an academic medical center in Germany. A focus group ( n  = 8) was used to adapt the training by describing the local context and changing the materials to be relevant to Germany. After adapting the materials, the pilot training was conducted with a mixed group of professionals ( n  = 15), many of whom were trainers themselves. A pre-post survey assessed the participants' empathy levels and attitudes towards the training method. In adapting the materials, the focus group discussion generated several experiences that were considered to be typical interpersonal and structural challenges facing healthcare workers in maternal care in Germany. These experiences were crafted into case scenarios that then formed the basis of the activities used in the Secret History empathic training pilot. Evaluation of the pilot training showed that although the participants had high levels of empathy in the pre-phase (100% estimated their empathic ability as high or very high), 69% became more aware of their own emotional experiences with patients and the need for self-care after the training. A majority, or 85%, indicated that the training was relevant to their work as clinicians and trainers, that it reflected the German situation, and that it may be useful ultimately to address emotional distress in mothers in the perinatal phase. Our study suggests that it is possible to adapt an empathic training method developed in a South African setting and apply it to a German setting, and that it is well received by participants who may be involved in healthcare worker training. More research is needed to assess adaptations with other groups of healthcare workers in different settings and to assess empathic skill outcomes for participants and women in the perinatal period.

  9. Learning to Link Visual Contours

    PubMed Central

    Li, Wu; Piëch, Valentin; Gilbert, Charles D.

    2008-01-01

    SUMMARY In complex visual scenes, linking related contour elements is important for object recognition. This process, thought to be stimulus driven and hard wired, has substrates in primary visual cortex (V1). Here, however, we find contour integration in V1 to depend strongly on perceptual learning and top-down influences that are specific to contour detection. In naive monkeys the information about contours embedded in complex backgrounds is absent in V1 neuronal responses, and is independent of the locus of spatial attention. Training animals to find embedded contours induces strong contour-related responses specific to the trained retinotopic region. These responses are most robust when animals perform the contour detection task, but disappear under anesthesia. Our findings suggest that top-down influences dynamically adapt neural circuits according to specific perceptual tasks. This may serve as a general neuronal mechanism of perceptual learning, and reflect top-down mediated changes in cortical states. PMID:18255036

  10. Working memory updating and binding training: Bayesian evidence supporting the absence of transfer.

    PubMed

    De Simoni, Carla; von Bastian, Claudia C

    2018-06-01

    As working memory (WM) predicts a wide range of other abilities, it has become a popular target for training interventions. However, its effectiveness to elicit generalized cognitive benefits is still under debate. Previous research yielded inconsistent findings and focused only little on the mechanisms underlying transfer effects. To disentangle training effects on WM capacity and efficiency, we evaluated near transfer to untrained, structurally different WM tasks and far transfer to closely related abilities (i.e., reasoning, processing speed, task switching, and inhibitory control) in addition to process-specific effects on 3 WM mechanisms (i.e., focus switching, removal of WM contents, and interference resolution). We randomly assigned 197 young adults to 1 of 2 experimental groups (updating or item-to-context binding) or to an active control group practicing visual search tasks. Before and after 5 weeks of adaptive training, performance was assessed measuring each of the cognitive processes and abilities of interest with 4 tasks covering verbal-numerical and visual-spatial materials. Despite the relatively large sample size, large practice effects in the trained tasks, and at least moderate correlations between WM training tasks and transfer measures, we found consistent evidence for the absence of any training-induced improvements across all ranges of transfer and mechanisms. Instead, additional analyses of error patterns and self-reported strategy use indicated that WM training encouraged the development of stimulus-specific expertise and use of paradigm-specific strategies. Thus, the results suggest that the WM training interventions examined here enhanced neither WM capacity nor the WM mechanisms assumed to underlie transfer. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  11. Motion sickness adaptation to Coriolis-inducing head movements in a sustained G flight simulator.

    PubMed

    Newman, Michael C; McCarthy, Geoffrey W; Glaser, Scott T; Bonato, Frederick; Bubka, Andrea

    2013-02-01

    Technological advances have allowed centrifuges to become more than physiological testing and training devices; sustained G, fully interactive flight simulation is now possible. However, head movements under G can result in vestibular stimulation that can lead to motion sickness (MS) symptoms that are potentially distracting, nauseogenic, and unpleasant. In the current study an MS adaptation protocol was tested for head movements under +Gz. Experienced pilots made 14 predetermined head movements in a sustained G flight simulator (at 3 +Gz) on 5 consecutive days and 17 d after training. Symptoms were measured after each head turn using a subjective 0-10 MS scale. The Simulator Sickness Questionnaire (SSQ) was also administered before and after each daily training session. After five daily training sessions, normalized mean MS scores were 58% lower than on Day 1. Mean total, nausea, and disorientation SSQ scores were 55%, 52%, and 78% lower, respectively. During retesting 17 d after training, nearly all scores indicated 90-100% retention of training benefits. The reduction of unpleasant effects associated with sustained G flight simulation using an adaptation training protocol may enhance the effectiveness of simulation. Practical use of sustained G simulators is also likely to be interspersed with other types of ground and in-flight training. Hence, it would be undesirable and unpleasant for trainees to lose adaptation benefits after a short gap in centrifuge use. However, current results suggest that training gaps in excess of 2 wk may be permissible with almost no loss of adaptation training benefits.

  12. Enhancing Functional Performance using Sensorimotor Adaptability Training Programs

    NASA Technical Reports Server (NTRS)

    Bloomberg, J. J.; Mulavara, A. P.; Peters, B. T.; Brady, R.; Audas, C.; Ruttley, T. M.; Cohen, H. S.

    2009-01-01

    During the acute phase of adaptation to novel gravitational environments, sensorimotor disturbances have the potential to disrupt the ability of astronauts to perform functional tasks. The goal of this project is to develop a sensorimotor adaptability (SA) training program designed to facilitate recovery of functional capabilities when astronauts transition to different gravitational environments. The project conducted a series of studies that investigated the efficacy of treadmill training combined with a variety of sensory challenges designed to increase adaptability including alterations in visual flow, body loading, and support surface stability.

  13. Adaptive template generation for amyloid PET using a deep learning approach.

    PubMed

    Kang, Seung Kwan; Seo, Seongho; Shin, Seong A; Byun, Min Soo; Lee, Dong Young; Kim, Yu Kyeong; Lee, Dong Soo; Lee, Jae Sung

    2018-05-11

    Accurate spatial normalization (SN) of amyloid positron emission tomography (PET) images for Alzheimer's disease assessment without coregistered anatomical magnetic resonance imaging (MRI) of the same individual is technically challenging. In this study, we applied deep neural networks to generate individually adaptive PET templates for robust and accurate SN of amyloid PET without using matched 3D MR images. Using 681 pairs of simultaneously acquired 11 C-PIB PET and T1-weighted 3D MRI scans of AD, MCI, and cognitively normal subjects, we trained and tested two deep neural networks [convolutional auto-encoder (CAE) and generative adversarial network (GAN)] that produce adaptive best PET templates. More specifically, the networks were trained using 685,100 pieces of augmented data generated by rotating 527 randomly selected datasets and validated using 154 datasets. The input to the supervised neural networks was the 3D PET volume in native space and the label was the spatially normalized 3D PET image using the transformation parameters obtained from MRI-based SN. The proposed deep learning approach significantly enhanced the quantitative accuracy of MRI-less amyloid PET assessment by reducing the SN error observed when an average amyloid PET template is used. Given an input image, the trained deep neural networks rapidly provide individually adaptive 3D PET templates without any discontinuity between the slices (in 0.02 s). As the proposed method does not require 3D MRI for the SN of PET images, it has great potential for use in routine analysis of amyloid PET images in clinical practice and research. © 2018 Wiley Periodicals, Inc.

  14. The benefits of a camp designed for children with epilepsy: evaluating adaptive behaviors over 3 years.

    PubMed

    Cushner-Weinstein, Sandra; Berl, Madison; Salpekar, Jay A; Johnson, Jami L; Pearl, Phillip L; Conry, Joan A; Kolodgie, Marian; Scully, Audrey; Gaillard, William D; Weinstein, Steven L

    2007-02-01

    Children with epilepsy attending a condition-specific overnight camp were evaluated for behavioral changes over 3 consecutive years, using a modification of the Vineland Adaptive Behavioral Scale. Trained counselors completed pre- and postcamp assessments for each camper. Repeated-measures MANOVA was used to analyze effects of the camp experience for each year, with respect to gender and age. Repeated-measures ANOVA was conducted to evaluate long-term effects from year-to-year comparisons for return campers, following three successive camp experiences. A significant change in social interaction was observed over 3 years. Despite some decline at the start of camp in consecutive years, the overall trend for return campers suggests a positive cumulative impact of continued camp participation, with improvements in the domains of social interaction, responsibility, and communication. A condition-specific camp designed for children with epilepsy can improve adaptive behaviors and social interactions. Overall net gains appear to increase over time, suggesting additional benefits for return campers.

  15. Cognitive Flexibility Training: A Large-Scale Multimodal Adaptive Active-Control Intervention Study in Healthy Older Adults

    PubMed Central

    Buitenweg, Jessika I. V.; van de Ven, Renate M.; Prinssen, Sam; Murre, Jaap M. J.; Ridderinkhof, K. Richard

    2017-01-01

    As aging is associated with cognitive decline, particularly in the executive functions, it is essential to effectively improve cognition in older adults. Online cognitive training is currently a popular, though controversial method. Although some changes seem possible in older adults through training, far transfer, and longitudinal maintenance are rarely seen. Based on previous literature we created a unique, state-of-the-art intervention study by incorporating frequent sessions and flexible, novel, adaptive training tasks, along with an active control group. We created a program called TAPASS (Training Project Amsterdam Seniors and Stroke), a randomized controlled trial. Healthy older adults (60–80 y.o.) were assigned to a frequent- (FS) or infrequent switching (IS) experimental condition or to the active control group and performed 58 half-hour sessions over the course of 12 weeks. Effects on executive functioning, processing- and psychomotor speed, planning, verbal long term memory, verbal fluency, and reasoning were measured on four time points before, during and after the training. Additionally, we examined the explorative question which individual aspects added to training benefit. Besides improvements on the training, we found significant time effects on multiple transfer tasks in all three groups that likely reflected retest effects. No training-specific improvements were detected, and we did not find evidence of additional benefits of individual characteristics. Judging from these results, the therapeutic value of using commercially available training games to train the aging brain is modest, though any apparent effects should be ascribed more to expectancy and motivation than to the elements in our training protocol. Our results emphasize the importance of using parallel tests as outcome measures for transfer and including both active and passive control conditions. Further investigation into different training methods is advised, including stimulating social interaction and the use of more variable, novel, group-based yet individual-adjusted exercises. PMID:29209183

  16. Cognitive Flexibility Training: A Large-Scale Multimodal Adaptive Active-Control Intervention Study in Healthy Older Adults.

    PubMed

    Buitenweg, Jessika I V; van de Ven, Renate M; Prinssen, Sam; Murre, Jaap M J; Ridderinkhof, K Richard

    2017-01-01

    As aging is associated with cognitive decline, particularly in the executive functions, it is essential to effectively improve cognition in older adults. Online cognitive training is currently a popular, though controversial method. Although some changes seem possible in older adults through training, far transfer, and longitudinal maintenance are rarely seen. Based on previous literature we created a unique, state-of-the-art intervention study by incorporating frequent sessions and flexible, novel, adaptive training tasks, along with an active control group. We created a program called TAPASS (Training Project Amsterdam Seniors and Stroke), a randomized controlled trial. Healthy older adults (60-80 y.o.) were assigned to a frequent- (FS) or infrequent switching (IS) experimental condition or to the active control group and performed 58 half-hour sessions over the course of 12 weeks. Effects on executive functioning, processing- and psychomotor speed, planning, verbal long term memory, verbal fluency, and reasoning were measured on four time points before, during and after the training. Additionally, we examined the explorative question which individual aspects added to training benefit. Besides improvements on the training, we found significant time effects on multiple transfer tasks in all three groups that likely reflected retest effects. No training-specific improvements were detected, and we did not find evidence of additional benefits of individual characteristics. Judging from these results, the therapeutic value of using commercially available training games to train the aging brain is modest, though any apparent effects should be ascribed more to expectancy and motivation than to the elements in our training protocol. Our results emphasize the importance of using parallel tests as outcome measures for transfer and including both active and passive control conditions. Further investigation into different training methods is advised, including stimulating social interaction and the use of more variable, novel, group-based yet individual-adjusted exercises.

  17. Transfer of Training from Virtual to Real Baseball Batting

    PubMed Central

    Gray, Rob

    2017-01-01

    The use of virtual environments (VE) for training perceptual-motors skills in sports continues to be a rapidly growing area. However, there is a dearth of research that has examined whether training in sports simulation transfers to the real task. In this study, the transfer of perceptual-motor skills trained in an adaptive baseball batting VE to real baseball performance was investigated. Eighty participants were assigned equally to groups undertaking adaptive hitting training in the VE, extra sessions of batting practice in the VE, extra sessions of real batting practice, and a control condition involving no additional training to the players’ regular practice. Training involved two 45 min sessions per week for 6 weeks. Performance on a batting test in the VE, in an on-field test of batting, and on a pitch recognition test was measured pre- and post-training. League batting statistics in the season following training and the highest level of competition reached in the following 5 years were also analyzed. For the majority of performance measures, the adaptive VE training group showed a significantly greater improvement from pre-post training as compared to the other groups. In addition, players in this group had superior batting statistics in league play and reached higher levels of competition. Training in a VE can be used to improve real, on-field performance especially when designers take advantage of simulation to provide training methods (e.g., adaptive training) that do not simply recreate the real training situation. PMID:29326627

  18. Evolutionarily conserved coding properties of auditory neurons across grasshopper species

    PubMed Central

    Neuhofer, Daniela; Wohlgemuth, Sandra; Stumpner, Andreas; Ronacher, Bernhard

    2008-01-01

    We investigated encoding properties of identified auditory interneurons in two not closely related grasshopper species (Acrididae). The neurons can be homologized on the basis of their similar morphologies and physiologies. As test stimuli, we used the species-specific stridulation signals of Chorthippus biguttulus, which evidently are not relevant for the other species, Locusta migratoria. We recorded spike trains produced in response to these signals from several neuron types at the first levels of the auditory pathway in both species. Using a spike train metric to quantify differences between neuronal responses, we found a high similarity in the responses of homologous neurons: interspecific differences between the responses of homologous neurons in the two species were not significantly larger than intraspecific differences (between several specimens of a neuron in one species). These results suggest that the elements of the thoracic auditory pathway have been strongly conserved during the evolutionary divergence of these species. According to the ‘efficient coding’ hypothesis, an adaptation of the thoracic auditory pathway to the specific needs of acoustic communication could be expected. We conclude that there must have been stabilizing selective forces at work that conserved coding characteristics and prevented such an adaptation. PMID:18505715

  19. Hypnosis and Mindfulness: The Twain Finally Meet.

    PubMed

    Otani, Akira

    2016-04-01

    Mindfulness meditation (or simply mindfulness) is an ancient method of attention training. Arguably, developed originally by the Buddha, it has been practiced by Buddhists over 2,500 years as part of their spiritual training. The popularity in mindfulness has soared recently following its adaptation as Mindfulness-Based Stress Management by Jon Kabat-Zinn (1995). Mindfulness is often compared to hypnosis but not all assertions are accurate. This article, as a primer, delineates similarities and dissimilarities between mindfulness and hypnosis in terms of 12 specific facets, including putative neuroscientific findings. It also provides a case example that illustrates clinical integration of the two methods.

  20. AMPK signaling in skeletal muscle during exercise: Role of reactive oxygen and nitrogen species.

    PubMed

    Morales-Alamo, David; Calbet, Jose A L

    2016-09-01

    Reactive oxygen and nitrogen species (RONS) are generated during exercise depending on intensity, duration and training status. A greater amount of RONS is released during repeated high-intensity sprint exercise and when the exercise is performed in hypoxia. By activating adenosine monophosphate-activated kinase (AMPK), RONS play a critical role in the regulation of muscle metabolism but also in the adaptive responses to exercise training. RONS may activate AMPK by direct an indirect mechanisms. Directly, RONS may activate or deactivate AMPK by modifying RONS-sensitive residues of the AMPK-α subunit. Indirectly, RONS may activate AMPK by reducing mitochondrial ATP synthesis, leading to an increased AMP:ATP ratio and subsequent Thr(172)-AMPK phosphorylation by the two main AMPK kinases: LKB1 and CaMKKβ. In presence of RONS the rate of Thr(172)-AMPK dephosphorylation is reduced. RONS may activate LKB1 through Sestrin2 and SIRT1 (NAD(+)/NADH.H(+)-dependent deacetylase). RONS may also activate CaMKKβ by direct modification of RONS sensitive motifs and, indirectly, by activating the ryanodine receptor (Ryr) to release Ca(2+). Both too high (hypoxia) and too low (ingestion of antioxidants) RONS levels may lead to Ser(485)-AMPKα1/Ser(491)-AMPKα2 phosphorylation causing inhibition of Thr(172)-AMPKα phosphorylation. Exercise training increases muscle antioxidant capacity. When the same high-intensity training is applied to arm and leg muscles, arm muscles show signs of increased oxidative stress and reduced mitochondrial biogenesis, which may be explained by differences in RONS-sensing mechanisms and basal antioxidant capacities between arm and leg muscles. Efficient adaptation to exercise training requires optimal exposure to pulses of RONS. Inappropriate training stimulus may lead to excessive RONS formation, oxidative inactivation of AMPK and reduced adaptation or even maladaptation. Theoretically, exercise programs should be designed taking into account the intrinsic properties of different skeletal muscles, the specific RONS induction and the subsequent signaling responses. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Immunobiography and the Heterogeneity of Immune Responses in the Elderly: A Focus on Inflammaging and Trained Immunity

    PubMed Central

    Franceschi, Claudio; Salvioli, Stefano; Garagnani, Paolo; de Eguileor, Magda; Monti, Daniela; Capri, Miriam

    2017-01-01

    Owing to its memory and plasticity, the immune system (IS) is capable of recording all the immunological experiences and stimuli it was exposed to. The combination of type, dose, intensity, and temporal sequence of antigenic stimuli that each individual is exposed to has been named “immunobiography.” This immunological history induces a lifelong continuous adaptation of the IS, which is responsible for the capability to mount strong, weak or no response to specific antigens, thus determining the large heterogeneity of immunological responses. In the last years, it is becoming clear that memory is not solely a feature of adaptive immunity, as it has been observed that also innate immune cells are provided with a sort of memory, dubbed “trained immunity.” In this review, we discuss the main characteristics of trained immunity as a possible contributor to inflammaging within the perspective of immunobiography, with particular attention to the phenotypic changes of the cell populations known to be involved in trained immunity. In conclusion, immunobiography emerges as a pervasive and comprehensive concept that could help in understanding and interpret the individual heterogeneity of immune responses (to infections and vaccinations) that becomes particularly evident at old age and could affect immunosenescence and inflammaging. PMID:28861086

  2. The peacock train does not handicap cursorial locomotor performance

    PubMed Central

    Thavarajah, Nathan K.; Tickle, Peter G.; Nudds, Robert L.; Codd, Jonathan R.

    2016-01-01

    Exaggerated traits, like the peacock train, are recognized as classic examples of sexual selection. The evolution of sexual traits is often considered paradoxical as, although they enhance reproductive success, they are widely presumed to hinder movement and survival. Many exaggerated traits represent an additional mechanical load that must be carried by the animal and therefore may influence the metabolic cost of locomotion and constrain locomotor performance. Here we conducted respirometry experiments on peacocks and demonstrate that the exaggerated sexually selected train does not compromise locomotor performance in terms of the metabolic cost of locomotion and its kinematics. Indeed, peacocks with trains had a lower absolute and mass specific metabolic cost of locomotion. Our findings suggest that adaptations that mitigate any costs associated with exaggerated morphology are central in the evolution of sexually selected traits. PMID:27805067

  3. Retraining walking adaptability following incomplete spinal cord injury.

    PubMed

    Fox, Emily J; Tester, Nicole J; Butera, Katie A; Howland, Dena R; Spiess, Martina R; Castro-Chapman, Paula L; Behrman, Andrea L

    2017-01-01

    Functional walking requires the ability to modify one's gait pattern to environmental demands and task goals-gait adaptability. Following incomplete spinal cord injury (ISCI), gait rehabilitation such as locomotor training (Basic-LT) emphasizes intense, repetitive stepping practice. Rehabilitation approaches focusing on practice of gait adaptability tasks have not been established for individuals with ISCIs but may promote recovery of higher level walking skills. The primary purpose of this case series was to describe and determine the feasibility of administering a gait adaptability retraining approach-Adapt-LT-by comparing the dose and intensity of Adapt-LT to Basic-LT. Three individuals with ISCIs (>1 year, AIS C or D) completed three weeks each (15 sessions) of Basic-LT and Adapt-LT. Interventions included practice on a treadmill with body weight support and practice overground (≥30 mins total). Adapt-LT focused on speed changes, obstacle negotiation, and backward walking. Training parameters (step counts, speeds, perceived exertion) were compared and outcomes assessed pre and post interventions. Based on completion of the protocol and similarities in training parameters in the two interventions, it was feasible to administer Adapt-LT with a similar dosage and intensity as Basic-LT. Additionally, the participants demonstrated gains in walking function and balance following each training type. Rehabilitation that includes stepping practice with adaptability tasks is feasible for individuals with ISCIs. Further investigation is needed to determine the efficacy of Adapt-LT.

  4. Domain Modeling for Adaptive Training and Education in Support of the US Army Learning Model-Research Outline

    DTIC Science & Technology

    2015-06-01

    Definitions are provided for this section to distinguish between adaptive training and education elements and also to highlight their relationships ...illustrate this point Franke (2011) asserts that through the use of case study examples, instruction can provide the pedagogical foundation for decision...a prime example of an adaptive training and education system: a learner or trainee model, an instructional or pedagogical model, a domain model

  5. The effects of working memory resource depletion and training on sensorimotor adaptation

    PubMed Central

    Anguera, Joaquin A.; Bernard, Jessica A.; Jaeggi, Susanne M.; Buschkuehl, Martin; Benson, Bryan L.; Jennett, Sarah; Humfleet, Jennifer; Reuter-Lorenz, Patricia; Jonides, John; Seidler, Rachael D.

    2011-01-01

    We have recently demonstrated that visuospatial working memory performance predicts the rate of motor skill learning, particularly during the early phase of visuomotor adaptation. Here, we follow up these correlational findings with direct manipulations of working memory resources to determine the impact on visuomotor adaptation, a form of motor learning. We conducted two separate experiments. In the first one, we used a resource depletion strategy to investigate whether the rate of early visuomotor adaptation would be negatively affected by fatigue of spatial working memory resources. In the second study, we employed a dual n-back task training paradigm that has been shown to result in transfer effects [1] over five weeks to determine whether training-related improvements would boost the rate of early visuomotor adaptation. The depletion of spatial working memory resources negatively affected the rate of early visuomotor adaptation. However, enhancing working memory capacity via training did not lead to improved rates of visuomotor adaptation, suggesting that working memory capacity may not be the factor limiting maximal rate of visuomotor adaptation in young adults. These findings are discussed from a resource limitation / capacity framework with respect to current views of motor learning. PMID:22155489

  6. The consequences of resistance training for movement control in older adults.

    PubMed

    Barry, Benjamin K; Carson, Richard G

    2004-07-01

    Older adults who undertake resistance training are typically seeking to maintain or increase their muscular strength with the goal of preserving or improving their functional capabilities. The extent to which resistance training adaptations lead to improved performance on tasks of everyday living is not particularly well understood. Indeed, studies examining changes in functional task performance experienced by older adults following periods of resistance training have produced equivocal findings. A clear understanding of the principles governing the transfer of resistance training adaptations is therefore critical in seeking to optimize the prescription of training regimes that have as their aim the maintenance and improvement of functional movement capacities in older adults. The degenerative processes that occur in the aging motor system are likely to influence heavily any adaptations to resistance training and the subsequent transfer to functional task performance. The resulting characteristics of motor behavior, such as the substantial decline in the rate of force development and the decreased steadiness of force production, may entail that specialized resistance training strategies are necessary to maximize the benefits for older adults. In this review, we summarize the alterations in the neuromuscular system that are responsible for the declines in strength, power, and force control, and the subsequent deterioration in the everyday movement capabilities of older adults. We examine the literature concerning the neural adaptations that older adults experience in response to resistance training, and consider the readiness with which these adaptations will improve the functional movement capabilities of older adults.

  7. Within Session Sequence of Balance and Plyometric Exercises Does Not Affect Training Adaptations with Youth Soccer Athletes

    PubMed Central

    Chaouachi, Mehdi; Granacher, Urs; Makhlouf, Issam; Hammami, Raouf; Behm, David G; Chaouachi, Anis

    2017-01-01

    The integration of balance and plyometric training has been shown to provide significant improvements in sprint, jump, agility, and other performance measures in young athletes. It is not known if a specific within session balance and plyometric exercise sequence provides more effective training adaptations. The objective of the present study was to investigate the effects of using a sequence of alternating pairs of exercises versus a block (series) of all balance exercises followed by a block of plyometric exercises on components of physical fitness such as muscle strength, power, speed, agility, and balance. Twenty-six male adolescent soccer players (13.9 ± 0.3 years) participated in an 8-week training program that either alternated individual balance (e.g., exercises on unstable surfaces) and plyometric (e.g., jumps, hops, rebounds) exercises or performed a block of balance exercises prior to a block of plyometric exercises within each training session. Pre- and post-training measures included proxies of strength, power, agility, sprint, and balance such as countermovement jumps, isometric back and knee extension strength, standing long jump, 10 and 30-m sprints, agility, standing stork, and Y-balance tests. Both groups exhibited significant, generally large magnitude (effect sizes) training improvements for all measures with mean performance increases of approximately >30%. There were no significant differences between the training groups over time. The results demonstrate the effectiveness of combining balance and plyometric exercises within a training session on components of physical fitness with young adolescents. The improved performance outcomes were not significantly influenced by the within session exercise sequence. Key points The combination of balance and plyometric exercises can induce significant and substantial training improvements in muscle strength, power, speed, agility, and balance with adolescent youth athletes The within training session sequence of balance and plyometric exercises does not substantially affect these training improvements. PMID:28344461

  8. [Adaptation to hypoxia and hyperoxia improves physical endurance: the role of reactive oxygen species and redox-signaling].

    PubMed

    Sazontova, T G; Glazachev, O S; Bolotova, A V; Dudnik, E N; Striapko, N V; Bedareva, I V; Anchishkina, N A; Arkhipenko, Iu V

    2012-06-01

    We have conducted theoretical foundation, experimental analysis and a pilot study of a new method of adaptation to hypoxia and hyperoxia in the prevention of hypoxic and stress-induced disorders and improving the body's tolerance to physical stress. It has been shown in the experimental part that a combination of physical exercise with adaptation to hypoxia-hyperoxia significantly increased tolerance to acute physical load (APL) and its active phase. Analysis of lipid peroxidation processes, antioxidant enzymes and HSPs showed that short-term training for physical exercise by itself compensates the stressor, but not the hypoxic component of the APL, the combination of training with adaptation to hypoxia-hyperoxia completely normalizes the stressor and hypoxic components of APL. The pilot study has been performed to evaluate the effectiveness of hypoxic-hyperoxic training course in qualified young athletes with over-training syndrome. After completing the course of hypoxia-hyperoxia adaptation, 14 sessions, accompanied by light mode sports training, the athletes set the normalization of autonomic balance, increased resistance to acute hypoxia in hypoxic test, increased physical performance--increased PWC170, maximal oxygen consumption (VO2max) parameters, their relative values to body mass, diminished shift of rate pressure product in the load. Thus, we confirmed experimental findings that hypoxic-hyperoxic training optimizes hypoxic (increased athletes resistance to proper hypoxia) and stress (myocardium economy in acute physical stress testing) components in systemic adaptation and restoration of athletes' with over-training syndrome.

  9. [A study on training method for increasing adaptability to blood redistribution in human].

    PubMed

    Wu, Bin; You, Guang-xing; Wu, Ping; Xue, Yue-ying; Liu, Xing-hua; Su, Shuang-ning

    2003-01-01

    To verify validity of the increase in adaptability of blood redistribution in human body with repeated body position change training and to find preferable training method for increasing astronaut's adaptability of blood redistribution. Twelve subjects were randomly divided into group A and B. Six subjects in each group were trained with mode A and B repeated position change (9 times in 11 d) respectively. Their head-down tilt (HDT -30 degrees/30 min) tolerance and orthostatic tolerance were determined before and after training to verify training effects. 1) Two kinds of repeated body position change training modes increased all subjects' HDT tolerance. Compared with pre-training, during HDT test subjects' symptom scores in group B were significantly lower than those in group A (P<0.05) and after training decreasing magnitude of heart rate in group B increased significantly (P<0.01). Then mode B to be preferable training method in increasing HDT tolerance was suggested. 2) Two kinds of training modes improved all subjects' orthostatic tolerance. Compared with pre-training, during orthostatic tolerance test increasing magnitude of mean arterial blood pressure in group B increased significantly (P<0.05) and a trend of increasing magnitude of heart rate in group B was appeared smaller than in group A (P<0.10). Mode B to be preferable training method in increasing orthostatic tolerance was suggested too. Repeated body position change training could increase adaptability to blood redistribution in human body. Mode B was preferable training method and would be hopeful to be used in astronaut training.

  10. Role of cerebellar cortical protein synthesis in transfer of memory trace of cerebellum-dependent motor learning.

    PubMed

    Okamoto, Takehito; Endo, Shogo; Shirao, Tomoaki; Nagao, Soichi

    2011-06-15

    We developed a new protocol that induces long-term adaptation of horizontal optokinetic response (HOKR) eye movement by hours of spaced training and examined the role of protein synthesis in the cerebellar cortex in the formation of memory of adaptation. Mice were trained to view 800 cycles of screen oscillation either by 1 h of massed training or by 2.5 h to 8 d of training with 0.5 h to 1 d space intervals. The HOKR gains increased similarly by 20-30% at the end of training; however, the gains increased by 1 h of massed training recovered within 24 h, whereas the gains increased by spaced training were sustained over 24 h. Bilateral floccular lidocaine microinfusions immediately after the end of training recovered the gains increased by 1 h of massed training but did not affect the gains increased by 4 h of spaced training, suggesting that the memory trace of adaptation was transferred from the flocculus to the vestibular nuclei within 4 h of spaced training. Blockade of floccular protein synthesis, examined by bilateral floccular microinfusions of anisomycin or actinomycin D 1-4 h before the training, impaired the gains increased by 4 h of spaced training but did not affect the gains increased by 1 h of massed training. These findings suggest that the transfer of the memory trace of adaptation occurs within 4 h of spaced training, and proteins synthesized in the flocculus during training period may play an important role in memory transfer.

  11. Climate Adaptation Training for Natural Resource Professionals

    NASA Astrophysics Data System (ADS)

    Sorensen, H. L.; Meyer, N.

    2016-02-01

    The University of Minnesota Sea Grant Program and University of Minensota Extension are coordinating the development of a cohort-based training for natural resource professionals that prepares them with essential aptitude, resources and tools to lead climate adaptation activities in their organizations and municipalities. This course is geared toward the growing cadre of natural resources, water, municipal infrastructure, and human resources professionals who are called upon to lead climate adaptation initiatives but lack core training in climate change science, vulnerability assessment, and adaptation planning. Modeled on pre-existing UMN certificate programs, the online course encompasses approximately 40 contact hours of training. Content builds from basic climate mechanics to change science, vulnerability assessment, downscaled climate modeling, ecosystem response to climate change and strategies communicating climate change to diverse audiences. Minnesota as well as national case studies and expertise will anchor core climate adaptation concepts in a relevant context.

  12. Real-time closed-loop control of cognitive load in neurological patients during robot-assisted gait training.

    PubMed

    Koenig, Alexander; Novak, Domen; Omlin, Ximena; Pulfer, Michael; Perreault, Eric; Zimmerli, Lukas; Mihelj, Matjaz; Riener, Robert

    2011-08-01

    Cognitively challenging training sessions during robot-assisted gait training after stroke were shown to be key requirements for the success of rehabilitation. Despite a broad variability of cognitive impairments amongst the stroke population, current rehabilitation environments do not adapt to the cognitive capabilities of the patient, as cognitive load cannot be objectively assessed in real-time. We provided healthy subjects and stroke patients with a virtual task during robot-assisted gait training, which allowed modulating cognitive load by adapting the difficulty level of the task. We quantified the cognitive load of stroke patients by using psychophysiological measurements and performance data. In open-loop experiments with healthy subjects and stroke patients, we obtained training data for a linear, adaptive classifier that estimated the current cognitive load of patients in real-time. We verified our classification results via questionnaires and obtained 88% correct classification in healthy subjects and 75% in patients. Using the pre-trained, adaptive classifier, we closed the cognitive control loop around healthy subjects and stroke patients by automatically adapting the difficulty level of the virtual task in real-time such that patients were neither cognitively overloaded nor under-challenged. © 2011 IEEE

  13. Exercising your brain: a review of human brain plasticity and training-induced learning.

    PubMed

    Green, C S; Bavelier, D

    2008-12-01

    Human beings have an amazing capacity to learn new skills and adapt to new environments. However, several obstacles remain to be overcome in designing paradigms to broadly improve quality of life. Arguably, the most notable impediment to this goal is that learning tends to be quite specific to the trained regimen and does not transfer to even qualitatively similar tasks. This severely limits the potential benefits of learning to daily life. This review discusses training regimens that lead to the acquisition of new knowledge and strategies that can be used flexibly across a range of tasks and contexts. Possible characteristics of training regimens are proposed that may be responsible for augmented learning, including the manner in which task difficulty is progressed, the motivational state of the learner, and the type of feedback the training provides. When maximally implemented in rehabilitative paradigms, these characteristics may greatly increase the efficacy of training. Copyright (c) 2009 APA, all rights reserved.

  14. Both mineralocorticoid and glucocorticoid receptors regulate emotional memory in mice.

    PubMed

    Zhou, Ming; Bakker, Eveline H M; Velzing, Els H; Berger, Stefan; Oitzl, Melly; Joëls, Marian; Krugers, Harm J

    2010-11-01

    Corticosteroid hormones are thought to promote optimal behavioral adaptation under fearful conditions, primarily via glucocorticoid receptors (GRs). Here, we examined - using pharmacological and genetic approaches in mice - if mineralocorticoid receptors (MRs) also play a role in fearful memory formation. As expected, administration of the GR-antagonist RU38486 prior to training in a fear conditioning paradigm impaired contextual memory when tested 24 (but not when tested 3) h after training. Tone-cue memory was enhanced by RU38486 when tested at 4 (but not 25) h after training. Interestingly, pre (but not post)-training administration of MR antagonist spironolactone impaired contextual memory, both at 3 and 24h after training. Similar effects were also found in forebrain-specific MR knockout mice. Spironolactone also impaired tone-cue memory, but only at 4h after training. These results reveal that - in addition to GRs - MRs also play a critical role in establishing fear memories, particularly in the early phase of memory formation. Copyright © 2010 Elsevier Inc. All rights reserved.

  15. Task-specific ankle robotics gait training after stroke: a randomized pilot study.

    PubMed

    Forrester, Larry W; Roy, Anindo; Hafer-Macko, Charlene; Krebs, Hermano I; Macko, Richard F

    2016-06-02

    An unsettled question in the use of robotics for post-stroke gait rehabilitation is whether task-specific locomotor training is more effective than targeting individual joint impairments to improve walking function. The paretic ankle is implicated in gait instability and fall risk, but is difficult to therapeutically isolate and refractory to recovery. We hypothesize that in chronic stroke, treadmill-integrated ankle robotics training is more effective to improve gait function than robotics focused on paretic ankle impairments. Participants with chronic hemiparetic gait were randomized to either six weeks of treadmill-integrated ankle robotics (n = 14) or dose-matched seated ankle robotics (n = 12) videogame training. Selected gait measures were collected at baseline, post-training, and six-week retention. Friedman, and Wilcoxon Sign Rank and Fisher's exact tests evaluated within and between group differences across time, respectively. Six weeks post-training, treadmill robotics proved more effective than seated robotics to increase walking velocity, paretic single support, paretic push-off impulse, and active dorsiflexion range of motion. Treadmill robotics durably improved gait dorsiflexion swing angle leading 6/7 initially requiring ankle braces to self-discarded them, while their unassisted paretic heel-first contacts increased from 44 % to 99.6 %, versus no change in assistive device usage (0/9) following seated robotics. Treadmill-integrated, but not seated ankle robotics training, durably improves gait biomechanics, reversing foot drop, restoring walking propulsion, and establishing safer foot landing in chronic stroke that may reduce reliance on assistive devices. These findings support a task-specific approach integrating adaptive ankle robotics with locomotor training to optimize mobility recovery. NCT01337960. https://clinicaltrials.gov/ct2/show/NCT01337960?term=NCT01337960&rank=1.

  16. Changes in Maximal Strength, Velocity, and Power After 8 Weeks of Training With Pneumatic or Free Weight Resistance.

    PubMed

    Frost, David M; Bronson, Stefanie; Cronin, John B; Newton, Robert U

    2016-04-01

    Because free weight (FW) and pneumatic (PN) resistance are characterized by different inertial properties, training with either resistance could afford unique strength, velocity, and power adaptations. Eighteen resistance-trained men completed baseline tests to determine their FW and PN bench press 1 repetition maximum (1RM). During the FW session, 4 explosive repetitions were performed at loads of 15, 30, 45, 60, 75, and 90% 1RM to assess force, velocity, and power. Participants were then assigned to a FW or PN training group, which involved three 90-minute sessions per week for 8 weeks. Both intervention groups completed identical periodized programs with the exception of the resistance used to perform all bench press movements. Free weight participants significantly increased their FW and PN 1RM (10.4 and 9.4%), and maximum (any load) force (9.8%), velocity (11.6%), and power (22.5%). Pneumatic-trained participants also exhibited increases in FW and PN 1RM (11.6 and 17.5%), and maximum force (8.4%), velocity (13.6%), and power (33.4%). Both interventions improved peak barbell velocity at loads of 15 and 30% 1RM; however, only the PN-trained individuals displayed improvements in peak force and power at these same loads. Training with PN resistance may offer advantages if attempting to improve power at lighter relative loads by affording an opportunity to consistently achieve higher accelerations and velocities (F = ma), in comparison with FW. Exploiting the inertial properties of the resistance, whether mass, elastic or PN, could afford an opportunity to develop mixed-method training strategies and/or elicit unique neuromuscular adaptations to suit the specific needs of athletes from sports characterized by varying demands.

  17. A mental health first aid training program for Australian Aboriginal and Torres Strait Islander peoples: description and initial evaluation.

    PubMed

    Kanowski, Len G; Jorm, Anthony F; Hart, Laura M

    2009-06-03

    Mental Health First Aid (MHFA) training was developed in Australia to teach members of the public how to give initial help to someone developing a mental health problem or in a mental health crisis situation. However, this type of training requires adaptation for specific cultural groups in the community. This paper describes the adaptation of the program to create an Australian Aboriginal and Torres Strait Islander Mental Health First Aid (AMHFA) course and presents an initial evaluation of its uptake and acceptability. To evaluate the program, two types of data were collected: (1) quantitative data on uptake of the course (number of Instructors trained and courses subsequently run by these Instructors); (2) qualitative data on strengths, weaknesses and recommendations for the future derived from interviews with program staff and focus groups with Instructors and community participants. 199 Aboriginal people were trained as Instructors in a five day Instructor Training Course. With sufficient time following training, the majority of these Instructors subsequently ran 14-hour AMHFA courses for Aboriginal people in their community. Instructors were more likely to run courses if they had prior teaching experience and if there was post-course contact with one of the Trainers of Instructors. Analysis of qualitative data indicated that the Instructor Training Course and the AMHFA course are culturally appropriate, empowering for Aboriginal people, and provided information that was seen as highly relevant and important in assisting Aboriginal people with a mental illness. There were a number of recommendations for improvements. The AMHFA program is culturally appropriate and acceptable to Aboriginal people. Further work is needed to refine the course and to evaluate its impact on help provided to Aboriginal people with mental health problems.

  18. Central adaptations in aerobic circuit versus walking/jogging trained cardiac patients.

    PubMed

    Goodman, L S; McKenzie, D C; Nath, C R; Schamberger, W; Taunton, J E; Ammann, W C

    1995-06-01

    This study was done to determine (a) whether in coronary artery disease (CAD) left ventricular (LV) adaptations differed after 6 months of walking/jogging (legs-only, LO) versus aerobic circuit training (arms and legs, AL) versus a control group, and (b) whether a transfer of fitness to the untrained arms in the LO group was related to superior LV adaptations. Peak oxygen uptake for arm and leg ergometry and for cycle ergometry using radionuclide cardiac angiography were performed before and after training. Leg and arm VO2peak increased significantly by 13% in the AL group, and by 13% and 7%, respectively, for the LO group. LV function was greater after training for the LO versus the AL group. Improvements in systolic and diastolic function and a speculated hypervolemia explain these LV adaptations. In CAD patients, walking/jogging produces greater LV function improvements versus circuit training, possibly due to differences in the exercised muscle mass.

  19. A Structure-Adaptive Hybrid RBF-BP Classifier with an Optimized Learning Strategy

    PubMed Central

    Wen, Hui; Xie, Weixin; Pei, Jihong

    2016-01-01

    This paper presents a structure-adaptive hybrid RBF-BP (SAHRBF-BP) classifier with an optimized learning strategy. SAHRBF-BP is composed of a structure-adaptive RBF network and a BP network of cascade, where the number of RBF hidden nodes is adjusted adaptively according to the distribution of sample space, the adaptive RBF network is used for nonlinear kernel mapping and the BP network is used for nonlinear classification. The optimized learning strategy is as follows: firstly, a potential function is introduced into training sample space to adaptively determine the number of initial RBF hidden nodes and node parameters, and a form of heterogeneous samples repulsive force is designed to further optimize each generated RBF hidden node parameters, the optimized structure-adaptive RBF network is used for adaptively nonlinear mapping the sample space; then, according to the number of adaptively generated RBF hidden nodes, the number of subsequent BP input nodes can be determined, and the overall SAHRBF-BP classifier is built up; finally, different training sample sets are used to train the BP network parameters in SAHRBF-BP. Compared with other algorithms applied to different data sets, experiments show the superiority of SAHRBF-BP. Especially on most low dimensional and large number of data sets, the classification performance of SAHRBF-BP outperforms other training SLFNs algorithms. PMID:27792737

  20. The muscle contraction mode determines lymphangiogenesis differentially in rat skeletal and cardiac muscles by modifying local lymphatic extracellular matrix microenvironments.

    PubMed

    Greiwe, L; Vinck, M; Suhr, F

    2016-05-01

    Lymphatic vessels are of special importance for tissue homeostasis, and increases of their density may foster tissue regeneration. Exercise could be a relevant tool to increase lymphatic vessel density (LVD); however, a significant lack of knowledge remains to understand lymphangiogenesis in skeletal muscles upon training. Interestingly, training-induced lymphangiogenesis has never been studied in the heart. We studied lymphangiogenesis and LVD upon chronic concentric and chronic eccentric muscle contractions in both rat skeletal (Mm. Edl and Sol) and cardiac muscles. We found that LVD decreased in both skeletal muscles specifically upon eccentric training, while this contraction increased LVD in cardiac tissue. These observations were supported by opposing local remodelling of lymphatic vessel-specific extracellular matrix components in skeletal and cardiac muscles and protein levels of lymphatic markers (Lyve-1, Pdpn, Vegf-C/D). Confocal microscopy further revealed transformations of lymphatic vessels into vessels expressing both blood (Cav-1) and lymphatic (Vegfr-3) markers upon eccentric training specifically in skeletal muscles. In addition and phenotype supportive, we found increased inflammation (NF-κB/p65, Il-1β, Ifn-γ, Tnf-α and MPO(+) cells) in eccentrically stressed skeletal, but decreased levels in cardiac muscles. Our data provide novel mechanistic insights into lymphangiogenic processes in skeletal and cardiac muscles upon chronic muscle contraction modes and demonstrate that both tissues adapt in opposing manners specifically to eccentric training. These data are highly relevant for clinical applications, because eccentric training serves as a sufficient strategy to increase LVD and to decrease inflammation in cardiac tissue, for example in order to reduce tissue abortion in transplantation settings. © 2015 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.

  1. Split-belt walking adaptation recalibrates sensorimotor estimates of leg speed but not position or force

    PubMed Central

    Vazquez, Alejandro; Statton, Matthew A.; Busgang, Stefanie A.

    2015-01-01

    Motor learning during reaching not only recalibrates movement but can also lead to small but consistent changes in the sense of arm position. Studies have suggested that this sensory effect may be the result of recalibration of a forward model that associates motor commands with their sensory consequences. Here we investigated whether similar perceptual changes occur in the lower limbs after learning a new walking pattern on a split-belt treadmill—a task that critically involves proprioception. Specifically, we studied how this motor learning task affects perception of leg speed during walking, perception of leg position during standing or walking, and perception of contact force during stepping. Our results show that split-belt adaptation leads to robust motor aftereffects and alters the perception of leg speed during walking. This is specific to the direction of walking that was trained during adaptation (i.e., backward or forward). The change in leg speed perception accounts for roughly half of the observed motor aftereffect. In contrast, split-belt adaptation does not alter the perception of leg position during standing or walking and does not change the perception of stepping force. Our results demonstrate that there is a recalibration of a sensory percept specific to the domain of the perturbation that was applied during walking (i.e., speed but not position or force). Furthermore, the motor and sensory consequences of locomotor adaptation may be linked, suggesting overlapping mechanisms driving changes in the motor and sensory domains. PMID:26424576

  2. Two emerging concepts for elite athletes: the short-term effects of testosterone and cortisol on the neuromuscular system and the dose-response training role of these endogenous hormones.

    PubMed

    Crewther, Blair T; Cook, Christian; Cardinale, Marco; Weatherby, Robert P; Lowe, Tim

    2011-02-01

    The aim of this review is to highlight two emerging concepts for the elite athlete using the resistance-training model: (i) the short-term effects of testosterone (T) and cortisol (C) on the neuromuscular system; and (ii) the dose-response training role of these endogenous hormones. Exogenous evidence confirms that T and C can regulate long-term changes in muscle growth and performance, especially with resistance training. This evidence also confirms that changes in T or C concentrations can moderate or support neuromuscular performance through various short-term mechanisms (e.g. second messengers, lipid/protein pathways, neuronal activity, behaviour, cognition, motor-system function, muscle properties and energy metabolism). The possibility of dual T and C effects on the neuromuscular system offers a new paradigm for understanding resistance-training performance and adaptations. Endogenous evidence supports the short-term T and C effects on human performance. Several factors (e.g. workout design, nutrition, genetics, training status and type) can acutely modify T and/or C concentrations and thereby potentially influence resistance-training performance and the adaptive outcomes. This novel short-term pathway appears to be more prominent in athletes (vs non-athletes), possibly due to the training of the neuromuscular and endocrine systems. However, the exact contribution of these endogenous hormones to the training process is still unclear. Research also confirms a dose-response training role for basal changes in endogenous T and C, again, especially for elite athletes. Although full proof within the physiological range is lacking, this athlete model reconciles a proposed permissive role for endogenous hormones in untrained individuals. It is also clear that the steroid receptors (cell bound) mediate target tissue effects by adapting to exercise and training, but the response patterns of the membrane-bound receptors remain highly speculative. This information provides a new perspective for examining, interpreting and utilizing T and C within the elite sporting environment. For example, individual hormonal data may be used to better prescribe resistance exercise and training programmes or to assess the trainability of elite athletes. Possible strategies for acutely modifying the hormonal milieu and, thereafter, the performance/training outcomes were also identified (see above). The limitations and challenges associated with the analysis and interpretation of hormonal research in sport (e.g. procedural issues, analytical methods, research design) were another discussion point. Finally, this review highlights the need for more experimental research on humans, in particular athletes, to specifically address the concept of dual steroid effects on the neuromuscular system.

  3. Adapted Finnegan scoring list for observation of anti-depressant exposed infants.

    PubMed

    Kieviet, Noera; van Ravenhorst, Mariëtte; Dolman, Koert M; van de Ven, Peter M; Heres, Marion; Wennink, Hanneke; Honig, Adriaan

    2015-01-01

    The Finnegan scoring list (FSL) is widely used to screen for poor neonatal adaptation in infants exposed to anti-depressants in utero. However, the large number of FSL-items and differential weighing of each item is time consuming. The aim of this study was to shorten and simplify the FSL yet preserving its clinimetric properties. This observational study examined infants exposed to an anti-depressant during pregnancy admitted for at least 72 h on a maternity ward. Trained nurses completed the FSL three times daily. Items for the adapted FSL were selected through forward analysis whereby the number of selected items was based on the area under the curve (AUC). Internal validity was assessed by cross-validation. 183 infants met the inclusion criteria. By forward analysis eight equally-weighed items resulted in an AUC of 0.91. In cross-validation, the mean AUC was 0.89 for 8 items. This adapted FSL had a sensitivity of 97.7% and specificity of 37.0% and a sensitivity of 41.9% and specificity of 86.2% regarding a cut-off of, respectively, 1 and 2. An adapted FSL with eight equally-weighed items has acceptable clinimetric properties and can serve as an easy to apply screening tool in infants exposed to anti-depressants during pregnancy.

  4. Fibre-Specific Responses to Endurance and Low Volume High Intensity Interval Training: Striking Similarities in Acute and Chronic Adaptation

    PubMed Central

    Scribbans, Trisha D.; Edgett, Brittany A.; Vorobej, Kira; Mitchell, Andrew S.; Joanisse, Sophie D.; Matusiak, Jennifer B. L.; Parise, Gianni; Quadrilatero, Joe; Gurd, Brendon J.

    2014-01-01

    The current study involved the completion of two distinct experiments. Experiment 1 compared fibre specific and whole muscle responses to acute bouts of either low-volume high-intensity interval training (LV-HIT) or moderate-intensity continuous endurance exercise (END) in a randomized crossover design. Experiment 2 examined the impact of a six-week training intervention (END or LV-HIT; 4 days/week), on whole body and skeletal muscle fibre specific markers of aerobic and anaerobic capacity. Six recreationally active men (Age: 20.7±3.8 yrs; VO2peak: 51.9±5.1 mL/kg/min) reported to the lab on two separate occasions for experiment 1. Following a muscle biopsy taken in a fasted state, participants completed an acute bout of each exercise protocol (LV-HIT: 8, 20-second intervals at ∼170% of VO2peak separated by 10 seconds of rest; END: 30 minutes at ∼65% of VO2peak), immediately followed by a muscle biopsy. Glycogen content of type I and IIA fibres was significantly (p<0.05) reduced, while p-ACC was significantly increased (p<0.05) following both protocols. Nineteen recreationally active males (n = 16) and females (n = 3) were VO2peak-matched and assigned to either the LV-HIT (n = 10; 21±2 yrs) or END (n = 9; 20.7±3.8 yrs) group for experiment 2. After 6 weeks, both training protocols induced comparable increases in aerobic capacity (END: Pre: 48.3±6.0, Mid: 51.8±6.0, Post: 55.0±6.3 mL/kg/min LV-HIT: Pre: 47.9±8.1, Mid: 50.4±7.4, Post: 54.7±7.6 mL/kg/min), fibre-type specific oxidative and glycolytic capacity, glycogen and IMTG stores, and whole-muscle capillary density. Interestingly, only LV-HIT induced greater improvements in anaerobic performance and estimated whole-muscle glycolytic capacity. These results suggest that 30 minutes of END exercise at ∼65% VO2peak or 4 minutes of LV-HIT at ∼170% VO2peak induce comparable changes in the intra-myocellular environment (glycogen content and signaling activation); correspondingly, training-induced adaptations resulting for these protocols, and other HIT and END protocols are strikingly similar. PMID:24901767

  5. Robust Brain-Machine Interface Design Using Optimal Feedback Control Modeling and Adaptive Point Process Filtering

    PubMed Central

    Carmena, Jose M.

    2016-01-01

    Much progress has been made in brain-machine interfaces (BMI) using decoders such as Kalman filters and finding their parameters with closed-loop decoder adaptation (CLDA). However, current decoders do not model the spikes directly, and hence may limit the processing time-scale of BMI control and adaptation. Moreover, while specialized CLDA techniques for intention estimation and assisted training exist, a unified and systematic CLDA framework that generalizes across different setups is lacking. Here we develop a novel closed-loop BMI training architecture that allows for processing, control, and adaptation using spike events, enables robust control and extends to various tasks. Moreover, we develop a unified control-theoretic CLDA framework within which intention estimation, assisted training, and adaptation are performed. The architecture incorporates an infinite-horizon optimal feedback-control (OFC) model of the brain’s behavior in closed-loop BMI control, and a point process model of spikes. The OFC model infers the user’s motor intention during CLDA—a process termed intention estimation. OFC is also used to design an autonomous and dynamic assisted training technique. The point process model allows for neural processing, control and decoder adaptation with every spike event and at a faster time-scale than current decoders; it also enables dynamic spike-event-based parameter adaptation unlike current CLDA methods that use batch-based adaptation on much slower adaptation time-scales. We conducted closed-loop experiments in a non-human primate over tens of days to dissociate the effects of these novel CLDA components. The OFC intention estimation improved BMI performance compared with current intention estimation techniques. OFC assisted training allowed the subject to consistently achieve proficient control. Spike-event-based adaptation resulted in faster and more consistent performance convergence compared with batch-based methods, and was robust to parameter initialization. Finally, the architecture extended control to tasks beyond those used for CLDA training. These results have significant implications towards the development of clinically-viable neuroprosthetics. PMID:27035820

  6. Central and Peripheral Fatigue During Resistance Exercise - A Critical Review.

    PubMed

    Zając, Adam; Chalimoniuk, Małgorzata; Maszczyk, Adam; Gołaś, Artur; Lngfort, Józef

    2015-12-22

    Resistance exercise is a popular form of conditioning for numerous sport disciplines, and recently different modes of strength training are being evaluated for health benefits. Resistance exercise differs significantly in nature, and several variables determine the direction and range of adaptive changes that occur in the muscular and skeletal system of the body. Some modes of resistance training can also be effective in stimulating the cardiovascular system. These variables include exercise selection (general, specific, single or multi joint, dynamic, explosive), type of resistance (free weights, variable resistance, isokinetics), order of exercise (upper and lower body or push and pull exercises), and most of all the training load which includes intensity expressed as % of 1RM, number of repetitions, number of sets and the rest interval between sets. Manipulating these variables allows for specific adaptive changes which may include gains in muscle mass, muscle strength or muscle endurance. It has been well established that during resistance exercise fatigue occurs, regardless of the volume and intensity of work applied. The peripheral mechanisms of fatigue have been studied and explained in more detail than those related to the CNS. This review is an attempt to bring together the latest knowledge regarding fatigue, both peripheral and central, during resistance exercise. The authors of this review concentrated on physiological and biochemical mechanisms underlying fatigue in exercises performed with maximal intensity, as well as those performed to exhaustion with numerous repetitions and submaximal load.

  7. Application of Adaptive Decision Aiding Systems to Computer-Assisted Instruction. Final Report, January-December 1974.

    ERIC Educational Resources Information Center

    May, Donald M.; And Others

    The minicomputer-based Computerized Diagnostic and Decision Training (CDDT) system described combines the principles of artificial intelligence, decision theory, and adaptive computer assisted instruction for training in electronic troubleshooting. The system incorporates an adaptive computer program which learns the student's diagnostic and…

  8. Adaptive Distributed Environment for Procedure Training (ADEPT)

    NASA Technical Reports Server (NTRS)

    Domeshek, Eric; Ong, James; Mohammed, John

    2013-01-01

    ADEPT (Adaptive Distributed Environment for Procedure Training) is designed to provide more effective, flexible, and portable training for NASA systems controllers. When creating a training scenario, an exercise author can specify a representative rationale structure using the graphical user interface, annotating the results with instructional texts where needed. The author's structure may distinguish between essential and optional parts of the rationale, and may also include "red herrings" - hypotheses that are essential to consider, until evidence and reasoning allow them to be ruled out. The system is built from pre-existing components, including Stottler Henke's SimVentive? instructional simulation authoring tool and runtime. To that, a capability was added to author and exploit explicit control decision rationale representations. ADEPT uses SimVentive's Scalable Vector Graphics (SVG)- based interactive graphic display capability as the basis of the tool for quickly noting aspects of decision rationale in graph form. The ADEPT prototype is built in Java, and will run on any computer using Windows, MacOS, or Linux. No special peripheral equipment is required. The software enables a style of student/ tutor interaction focused on the reasoning behind systems control behavior that better mimics proven Socratic human tutoring behaviors for highly cognitive skills. It supports fast, easy, and convenient authoring of such tutoring behaviors, allowing specification of detailed scenario-specific, but content-sensitive, high-quality tutor hints and feedback. The system places relatively light data-entry demands on the student to enable its rationale-centered discussions, and provides a support mechanism for fostering coherence in the student/ tutor dialog by including focusing, sequencing, and utterance tuning mechanisms intended to better fit tutor hints and feedback into the ongoing context.

  9. Influence of combined iron supplementation and simulated hypoxia on the haematological module of the athlete biological passport.

    PubMed

    Garvican-Lewis, Laura A; Vuong, Victor L; Govus, Andrew D; Schumacher, Yorck Olaf; Hughes, David; Lovell, Greg; Eichner, Daniel; Gore, Christopher J

    2018-04-01

    The integrity of the athlete biological passport (ABP) is underpinned by understanding normal fluctuations of its biomarkers to environmental or medical conditions, for example, altitude training or iron deficiency. The combined impact of altitude and iron supplementation on the ABP was evaluated in endurance-trained athletes (n = 34) undertaking 3 weeks of simulated live-high: train-low (14 h.d -1 , 3000 m). Athletes received either oral, intravenous (IV) or placebo iron supplementation, commencing 2 weeks prior and continuing throughout hypoxic exposure. Venous blood was sampled twice prior, weekly during, and up to 6 weeks after altitude. Individual ABP thresholds for haemoglobin concentration ([Hb]), reticulocyte percentage (%retic), and OFF score were calculated using the adaptive model and assessed at 99% and 99.9% specificity. Eleven athletes returned values outside of the calculated reference ranges at 99%, with 8 at 99.9%. The percentage of athletes exceeding the thresholds in each group was similar, but IV returned the most individual occurrences. A similar frequency of abnormalities occurred across the 3 biomarkers, with abnormal [Hb] and OFF score values arising mainly during-, and %retic values mainly post- altitude. Removing samples collected during altitude from the model resulted in 10 athletes returning abnormal values at 99% specificity, 2 of whom had not triggered the model previously. In summary, the abnormalities observed in response to iron supplementation and hypoxia were not systematic and mostly in line with expected physiological adaptations. They do not represent a uniform weakness in the ABP. Nevertheless, altitude training and iron supplementation should be carefully considered by experts evaluating abnormal ABP profiles. Copyright © 2017 John Wiley & Sons, Ltd.

  10. A qualitative examination of the health workforce needs during climate change disaster response in Pacific Island Countries

    PubMed Central

    2014-01-01

    Background There is a growing body of evidence that the impacts of climate change are affecting population health negatively. The Pacific region is particularly vulnerable to climate change; a strong health-care system is required to respond during times of disaster. This paper examines the capacity of the health sector in Pacific Island Countries to adapt to changing disaster response needs, in terms of: (i) health workforce governance, management, policy and involvement; (ii) health-care capacity and skills; and (iii) human resources for health training and workforce development. Methods Key stakeholder interviews informed the assessment of the capacity of the health sector and disaster response organizations in Pacific Island Countries to adapt to disaster response needs under a changing climate. The research specifically drew upon and examined the adaptive capacity of individual organizations and the broader system of disaster response in four case study countries (Fiji, Cook Islands, Vanuatu and Samoa). Results ‘Capacity’ including health-care capacity was one of the objective determinants identified as most significant in influencing the adaptive capacity of disaster response systems in the Pacific. The research identified several elements that could support the adaptive capacity of the health sector such as: inclusive involvement in disaster coordination; policies in place for health workforce coordination; belief in their abilities; and strong donor support. Factors constraining adaptive capacity included: weak coordination of international health personnel; lack of policies to address health worker welfare; limited human resources and material resources; shortages of personnel to deal with psychosocial needs; inadequate skills in field triage and counselling; and limited capacity for training. Conclusion Findings from this study can be used to inform the development of human resources for health policies and strategic plans, and to support the development of a coordinated and collaborative approach to disaster response training across the Pacific and other developing contexts. This study also provides an overview of health-care capacity and some of the challenges and strengths that can inform future development work by humanitarian organizations, regional and international donors involved in climate change adaptation, and disaster risk reduction in the Pacific region. PMID:24521057

  11. Invariant-feature-based adaptive automatic target recognition in obscured 3D point clouds

    NASA Astrophysics Data System (ADS)

    Khuon, Timothy; Kershner, Charles; Mattei, Enrico; Alverio, Arnel; Rand, Robert

    2014-06-01

    Target recognition and classification in a 3D point cloud is a non-trivial process due to the nature of the data collected from a sensor system. The signal can be corrupted by noise from the environment, electronic system, A/D converter, etc. Therefore, an adaptive system with a desired tolerance is required to perform classification and recognition optimally. The feature-based pattern recognition algorithm architecture as described below is particularly devised for solving a single-sensor classification non-parametrically. Feature set is extracted from an input point cloud, normalized, and classifier a neural network classifier. For instance, automatic target recognition in an urban area would require different feature sets from one in a dense foliage area. The figure above (see manuscript) illustrates the architecture of the feature based adaptive signature extraction of 3D point cloud including LIDAR, RADAR, and electro-optical data. This network takes a 3D cluster and classifies it into a specific class. The algorithm is a supervised and adaptive classifier with two modes: the training mode and the performing mode. For the training mode, a number of novel patterns are selected from actual or artificial data. A particular 3D cluster is input to the network as shown above for the decision class output. The network consists of three sequential functional modules. The first module is for feature extraction that extracts the input cluster into a set of singular value features or feature vector. Then the feature vector is input into the feature normalization module to normalize and balance it before being fed to the neural net classifier for the classification. The neural net can be trained by actual or artificial novel data until each trained output reaches the declared output within the defined tolerance. In case new novel data is added after the neural net has been learned, the training is then resumed until the neural net has incrementally learned with the new novel data. The associative memory capability of the neural net enables the incremental learning. The back propagation algorithm or support vector machine can be utilized for the classification and recognition.

  12. Short-term strength training and the expression of myostatin and IGF-I isoforms in rat muscle and tendon: differential effects of specific contraction types.

    PubMed

    Heinemeier, K M; Olesen, J L; Schjerling, P; Haddad, F; Langberg, H; Baldwin, K M; Kjaer, M

    2007-02-01

    In skeletal muscle, an increased expression of insulin like growth factor-I isoforms IGF-IEa and mechano-growth factor (MGF) combined with downregulation of myostatin is thought to be essential for training-induced hypertrophy. However, the specific effects of different contraction types on regulation of these factors in muscle are still unclear, and in tendon the functions of myostatin, IGF-IEa, and MGF in relation to training are unknown. Female Sprague-Dawley rats were subjected to 4 days of concentric, eccentric, or isometric training (n = 7-9 per group) of the medial gastrocnemius, by stimulation of the sciatic nerve during general anesthesia. mRNA levels for myostatin, IGF-IEa, and MGF in muscle and Achilles' tendon were measured by real-time RT-PCR. Muscle myostatin mRNA decreased in response to all types of training (2- to 8-fold) (P < 0.05), but the effect of eccentric training was greater than concentric and isometric training (P < 0.05). In tendon, myostatin mRNA was detected, but no changes were seen after exercise. IGF-IEa and MGF increased in muscle (up to 15-fold) and tendon (up to 4-fold) in response to training (P < 0.01). In tendon no difference was seen between training types, but in muscle the effect of eccentric training was greater than concentric training for both IGF-IEa and MGF (P < 0.05), and for IGF-IEa isometric training had greater effect than concentric (P < 0.05). The results indicate a possible role for IGF-IEa and MGF in adaptation of tendon to training, and the combined changes in myostatin and IGF-IEa/MGF expression could explain the important effect of eccentric actions for muscle hypertrophy.

  13. Human skeletal muscle fibre contractile properties and proteomic profile: adaptations to 3 weeks of unilateral lower limb suspension and active recovery.

    PubMed

    Brocca, Lorenza; Longa, Emanuela; Cannavino, Jessica; Seynnes, Olivier; de Vito, Giuseppe; McPhee, Jamie; Narici, Marco; Pellegrino, Maria Antonietta; Bottinelli, Roberto

    2015-12-15

    It is generally assumed that muscle fibres go through atrophy following disuse with a loss of specific force and an increase in unloaded shortening velocity. However, the underlying mechanisms remain to be clarified. Most studies have focused on events taking place during the development of disuse, whereas the subsequent recovery phase, which is equally important, has received little attention. Our findings support the hypotheses that the specific force of muscle fibres decreased following unilateral lower limb suspension (ULLS) and returned to normal after 3 weeks of active recovery as a result of a loss and recovery of myosin and actin content. Furthermore, muscle fibres went through extensive qualitative changes in muscle protein pattern following ULLS, and these were reversed by active recovery. Resistance training was very effective in restoring both muscle mass and qualitative muscle changes, indicating that long-term ULLS did not prevent the positive effect of exercise on human muscle. Following disuse, muscle fibre function goes through adaptations such as a loss of specific force (PO /CSA) and an increase in unloaded shortening velocity, which could be a result of both quantitative changes (i.e. atrophy) and qualitative changes in protein pattern. The underlying mechanisms remain to be clarified. In addition, little is known about the recovery of muscle mass and strength following disuse. In the present study, we report an extensive dataset describing, in detail,the functional and protein content adaptations of skeletal muscle in response to both disuse and re-training. Eight young healthy subjects were subjected to 3 weeks of unilateral lower limb suspension (ULLS), a widely used human model of disuse skeletal muscle atrophy. Needle biopsies samples were taken from the vastus lateralis muscle Pre-ULLS, Post-ULLS and after 3 weeks of recovery during which heavy resistance training was performed. After disuse, cross-sectional area (CSA), PO /CSA and myosin concentration (MC) decreased in both type 1 and 2A skinned muscle fibres. After recovery, CSA and MC returned to levels comparable to those observed before disuse, whereas Po/CSA and unloaded shortening velocity reached a higher level. Myosin heavy chain isoform composition of muscle samples did not differ among the experimental groups. To study the mechanisms underlying such adaptations, a two-dimensional proteomic analysis was performed. ULLS induced a reduction of myofibrillar, metabolic (glycolytic and oxidative) and anti-oxidant defence system protein content. Resistance training was very effective in counteracting ULLS-induced alterations, indicating that long-term ULLS did not prevent the positive effect of exercise on human muscle. © 2015 The Authors. The Journal of Physiology © 2015 The Physiological Society.

  14. Auditory habituation to simple tones: reduced evidence for habituation in children compared to adults

    PubMed Central

    Muenssinger, Jana; Stingl, Krunoslav T.; Matuz, Tamara; Binder, Gerhard; Ehehalt, Stefan; Preissl, Hubert

    2013-01-01

    Habituation—the response decrement to repetitively presented stimulation—is a basic cognitive capability and suited to investigate development and integrity of the human brain. To evaluate the developmental process of auditory habituation, the current study used magnetoencephalography (MEG) to investigate auditory habituation, dishabituation and stimulus specificity in children and adults and compared the results between age groups. Twenty-nine children (Mage = 9.69 years, SD ± 0.47) and 14 adults (Mage = 29.29 years, SD ± 3.47) participated in the study and passively listened to a habituation paradigm consisting of 100 trains of tones which were composed of five 500 Hz tones, one 750 Hz tone (dishabituator) and another two 500 Hz tones, respectively while focusing their attention on a silent movie. Adults showed the expected habituation and stimulus specificity within-trains while no response decrement was found between trains. Sensory adaptation or fatigue as a source for response decrement in adults is unlikely due to the strong reaction to the dishabituator (stimulus specificity) and strong mismatch negativity (MMN) responses. However, in children neither habituation nor dishabituation or stimulus specificity could be found within-trains, response decrement was found across trains. It can be speculated that the differences between children and adults are linked to differences in stimulus processing due to attentional processes. This study shows developmental differences in task-related brain activation and discusses the possible influence of broader concepts such as attention, which should be taken into account when comparing performance in an identical task between age groups. PMID:23882207

  15. Vascular adaptive responses to physical exercise and to stress are affected differently by nandrolone administration.

    PubMed

    Bruder-Nascimento, T; Cordellini, S

    2011-04-01

    Androgenic anabolic steroid, physical exercise and stress induce cardiovascular adaptations including increased endothelial function. The present study investigated the effects of these conditions alone and in combination on the vascular responses of male Wistar rats. Exercise was started at 8 weeks of life (60-min swimming sessions 5 days per week for 8 weeks, while carrying a 5% body-weight load). One group received nandrolone (5 mg/kg, twice per week for 8 weeks, im). Acute immobilization stress (2 h) was induced immediately before the experimental protocol. Curves for noradrenaline were obtained for thoracic aorta, with and without endothelium from sedentary and trained rats, submitted or not to stress, treated or not with nandrolone. None of the procedures altered the vascular reactivity to noradrenaline in denuded aorta. In intact aorta, stress and exercise produced vascular adaptive responses characterized by endothelium-dependent hyporeactivity to noradrenaline. These conditions in combination did not potentiate the vascular adaptive response. Exercise-induced vascular adaptive response was abolished by nandrolone. In contrast, the aortal reactivity to noradrenaline of sedentary rats and the vascular adaptive response to stress of sedentary and trained rats were not affected by nandrolone. Maximum response for 7-10 rats/group (g): sedentary 3.8 ± 0.2 vs trained 3.0 ± 0.2*; sedentary/stress 2.7 ± 0.2 vs trained/stress 3.1 ± 0.1*; sedentary/nandrolone 3.6 ± 0.1 vs trained/nandrolone 3.8 ± 0.1; sedentary/stress/nandrolone 3.2 ± 0.1 vs trained/stress/nandrolone 2.5 ± 0.1*; *P < 0.05 compared to its respective control. Stress and physical exercise determine similar vascular adaptive response involving distinct mechanisms as indicated by the observation that only the physical exercise-induced adaptive response was abolished by nandrolone.

  16. Swimming Training Induces Liver Mitochondrial Adaptations to Oxidative Stress in Rats Submitted to Repeated Exhaustive Swimming Bouts

    PubMed Central

    Lima, Frederico D.; Stamm, Daniel N.; Della-Pace, Iuri D.; Dobrachinski, Fernando; de Carvalho, Nélson R.; Royes, Luiz Fernando F.; Soares, Félix A.; Rocha, João B.; González-Gallego, Javier; Bresciani, Guilherme

    2013-01-01

    Background and Aims Although acute exhaustive exercise is known to increase liver reactive oxygen species (ROS) production and aerobic training has shown to improve the antioxidant status in the liver, little is known about mitochondria adaptations to aerobic training. The main objective of this study was to investigate the effects of the aerobic training on oxidative stress markers and antioxidant defense in liver mitochondria both after training and in response to three repeated exhaustive swimming bouts. Methods Wistar rats were divided into training (n = 14) and control (n = 14) groups. Training group performed a 6-week swimming training protocol. Subsets of training (n = 7) and control (n = 7) rats performed 3 repeated exhaustive swimming bouts with 72 h rest in between. Oxidative stress biomarkers, antioxidant activity, and mitochondria functionality were assessed. Results Trained group showed increased reduced glutathione (GSH) content and reduced/oxidized (GSH/GSSG) ratio, higher superoxide dismutase (MnSOD) activity, and decreased lipid peroxidation in liver mitochondria. Aerobic training protected against exhaustive swimming ROS production herein characterized by decreased oxidative stress markers, higher antioxidant defenses, and increases in methyl-tetrazolium reduction and membrane potential. Trained group also presented higher time to exhaustion compared to control group. Conclusions Swimming training induced positive adaptations in liver mitochondria of rats. Increased antioxidant defense after training coped well with exercise-produced ROS and liver mitochondria were less affected by exhaustive exercise. Therefore, liver mitochondria also adapt to exercise-induced ROS and may play an important role in exercise performance. PMID:23405192

  17. Implications of movement-related cortical potential for understanding neural adaptations in muscle strength tasks

    PubMed Central

    2014-01-01

    This systematic review aims to provide information about the implications of the movement-related cortical potential (MRCP) in acute and chronic responses to the counter resistance training. The structuring of the methods of this study followed the proposals of the PRISMA (Preferred Reporting Items for Systematic reviews and Meta-Analyses). It was performed an electronically search in Pubmed/Medline and ISI Web of Knowledge data bases, from 1987 to 2013, besides the manual search in the selected references. The following terms were used: Bereitschaftspotential, MRCP, strength and force. The logical operator “AND” was used to combine descriptors and terms used to search publications. At the end, 11 studies attended all the eligibility criteria and the results demonstrated that the behavior of MRCP is altered because of different factors such as: force level, rate of force development, fatigue induced by exercise, and the specific phase of muscular action, leading to an increase in the amplitude in eccentric actions compared to concentric actions, in acute effects. The long-term adaptations demonstrated that the counter resistance training provokes an attenuation in the amplitude in areas related to the movement, which may be caused by neural adaptation occurred in the motor cortex. PMID:24602228

  18. A perturbation-based balance training program for older adults: study protocol for a randomised controlled trial

    PubMed Central

    Mansfield, Avril; Peters, Amy L; Liu, Barbara A; Maki, Brian E

    2007-01-01

    Background Previous research investigating exercise as a means of falls prevention in older adults has shown mixed results. Lack of specificity of the intervention may be an important factor contributing to negative results. Change-in-support (CIS) balance reactions, which involve very rapid stepping or grasping movements of the limbs, play a critical role in preventing falls; hence, a training program that improves ability to execute effective CIS reactions could potentially have a profound effect in reducing risk of falling. This paper describes: 1) the development of a perturbation-based balance training program that targets specific previously-reported age-related impairments in CIS reactions, and 2) a study protocol to evaluate the efficacy of this new training program. Methods/Design The training program involves use of unpredictable, multi-directional moving-platform perturbations to evoke stepping and grasping reactions. Perturbation magnitude is gradually increased over the course of the 6-week program, and concurrent cognitive and movement tasks are included during later sessions. The program was developed in accordance with well-established principles of motor learning, such as individualisation, specificity, overload, adaptation-progression and variability. Specific goals are to reduce the frequency of multiple-step responses, reduce the frequency of collisions between the stepping foot and stance leg, and increase the speed of grasping reactions. A randomised control trial will be performed to evaluate the efficacy of the training program. A total of 30 community-dwelling older adults (age 64–80) with a recent history of instability or falling will be assigned to either the perturbation-based training or a control group (flexibility/relaxation training), using a stratified randomisation that controls for gender, age and baseline stepping/grasping performance. CIS reactions will be tested immediately before and after the six weeks of training, using platform perturbations as well as a distinctly different method of perturbation (waist pulls) in order to evaluate the generalisability of the training effects. Discussion This study will determine whether perturbation-based balance training can help to reverse specific age-related impairments in balance-recovery reactions. These results will help to guide the development of more effective falls prevention programs, which may ultimately lead to reduced health-care costs and enhanced mobility, independence and quality of life. PMID:17540020

  19. A perturbation-based balance training program for older adults: study protocol for a randomised controlled trial.

    PubMed

    Mansfield, Avril; Peters, Amy L; Liu, Barbara A; Maki, Brian E

    2007-05-31

    Previous research investigating exercise as a means of falls prevention in older adults has shown mixed results. Lack of specificity of the intervention may be an important factor contributing to negative results. Change-in-support (CIS) balance reactions, which involve very rapid stepping or grasping movements of the limbs, play a critical role in preventing falls; hence, a training program that improves ability to execute effective CIS reactions could potentially have a profound effect in reducing risk of falling. This paper describes: 1) the development of a perturbation-based balance training program that targets specific previously-reported age-related impairments in CIS reactions, and 2) a study protocol to evaluate the efficacy of this new training program. The training program involves use of unpredictable, multi-directional moving-platform perturbations to evoke stepping and grasping reactions. Perturbation magnitude is gradually increased over the course of the 6-week program, and concurrent cognitive and movement tasks are included during later sessions. The program was developed in accordance with well-established principles of motor learning, such as individualisation, specificity, overload, adaptation-progression and variability. Specific goals are to reduce the frequency of multiple-step responses, reduce the frequency of collisions between the stepping foot and stance leg, and increase the speed of grasping reactions. A randomised control trial will be performed to evaluate the efficacy of the training program. A total of 30 community-dwelling older adults (age 64-80) with a recent history of instability or falling will be assigned to either the perturbation-based training or a control group (flexibility/relaxation training), using a stratified randomisation that controls for gender, age and baseline stepping/grasping performance. CIS reactions will be tested immediately before and after the six weeks of training, using platform perturbations as well as a distinctly different method of perturbation (waist pulls) in order to evaluate the generalisability of the training effects. This study will determine whether perturbation-based balance training can help to reverse specific age-related impairments in balance-recovery reactions. These results will help to guide the development of more effective falls prevention programs, which may ultimately lead to reduced health-care costs and enhanced mobility, independence and quality of life.

  20. Effect of an Education Programme for South Asians with Asthma and Their Clinicians: A Cluster Randomised Controlled Trial (OEDIPUS)

    PubMed Central

    Griffiths, Chris; Bremner, Stephen; Islam, Kamrul; Sohanpal, Ratna; Vidal, Debi-Lee; Dawson, Carolyn; Foster, Gillian; Ramsay, Jean; Feder, Gene; Taylor, Stephanie; Barnes, Neil; Choudhury, Aklak; Packe, Geoff; Bayliss, Elizabeth; Trathen, Duncan; Moss, Philip; Cook, Viv; Livingstone, Anna Eleri; Eldridge, Sandra

    2016-01-01

    Background People with asthma from ethnic minority groups experience significant morbidity. Culturally-specific interventions to reduce asthma morbidity are rare. We tested the hypothesis that a culturally-specific education programme, adapted from promising theory-based interventions developed in the USA, would reduce unscheduled care for South Asians with asthma in the UK. Methods A cluster randomised controlled trial, set in two east London boroughs. 105 of 107 eligible general practices were randomised to usual care or the education programme. Participants were south Asians with asthma aged 3 years and older with recent unscheduled care. The programme had two components: the Physician Asthma Care Education (PACE) programme and the Chronic Disease Self Management Programme (CDSMP), targeted at clinicians and patients with asthma respectively. Both were culturally adapted for south Asians with asthma. Specialist nurses, and primary care teams from intervention practices were trained using the PACE programme. South Asian participants attended an outpatient appointment; those registered with intervention practices received self-management training from PACE-trained specialist nurses, a follow-up appointment with PACE-trained primary care practices, and an invitation to attend the CDSMP. Patients from control practices received usual care. Primary outcome was unscheduled care. Findings 375 south Asians with asthma from 84 general practices took part, 183 registered with intervention practices and 192 with control practices. Primary outcome data were available for 358/375 (95.5%) of participants. The intervention had no effect on time to first unscheduled attendance for asthma (Adjusted Hazard Ratio AHR = 1.19 95% CI 0.92 to 1.53). Time to first review in primary care was reduced (AHR = 2.22, (1.67 to 2.95). Asthma-related quality of life and self-efficacy were improved at 3 months (adjusted mean difference -2.56, (-3.89 to -1.24); 0.44, (0.05 to 0.82) respectively. Conclusions A multi-component education programme adapted for south Asians with asthma did not reduce unscheduled care but did improve follow-up in primary care, self-efficacy and quality of life. More effective interventions are needed for south Asians with asthma. PMID:28030569

  1. Sensorimotor Adaptability Training Improves Motor and Dual-Task Performance

    NASA Technical Reports Server (NTRS)

    Bloomberg, J.J.; Peters, B.T.; Mulavara, A.P.; Brady, R.; Batson, C.; Cohen, H.S.

    2009-01-01

    The overall objective of our project is to develop a sensorimotor adaptability (SA) training program designed to facilitate recovery of functional capabilities when astronauts transition to different gravitational environments. The goal of our current study was to determine if SA training using variation in visual flow and support surface motion produces improved performance in a novel sensory environment and demonstrate the retention characteristics of SA training.

  2. Effects of a Peer Tutor Training Program on Tutors and Tutees with Severe Disabilities in Adapted Physical Education

    ERIC Educational Resources Information Center

    Vonlintel, Drew James

    2015-01-01

    This dissertation examines the efficacy of peer tutor training in adapted physical education (APE). A peer tutor evaluation form was created to assess the skills of untrained peer tutors (n = 12). Once skills were assessed, a peer tutor training protocol was created. The protocol was implemented in a peer tutor training program. After peer tutors…

  3. Non-linear dynamics in muscle fatigue and strength model during maximal self-perceived elbow extensors training.

    PubMed

    Gacesa, Jelena Popadic; Ivancevic, Tijana; Ivancevic, Nik; Paljic, Feodora Popic; Grujic, Nikola

    2010-08-26

    Our aim was to determine the dynamics in muscle strength increase and fatigue development during repetitive maximal contraction in specific maximal self-perceived elbow extensors training program. We will derive our functional model for m. triceps brachii in spirit of traditional Hill's two-component muscular model and after fitting our data, develop a prediction tool for this specific training system. Thirty-six healthy young men (21 +/- 1.0 y, BMI 25.4 +/- 7.2 kg/m(2)), who did not take part in any formal resistance exercise regime, volunteered for this study. The training protocol was performed on the isoacceleration dynamometer, lasted for 12 weeks, with a frequency of five sessions per week. Each training session included five sets of 10 maximal contractions (elbow extensions) with a 1 min resting period between each set. The non-linear dynamic system model was used for fitting our data in conjunction with the Levenberg-Marquardt regression algorithm. As a proper dynamical system, our functional model of m. triceps brachii can be used for prediction and control. The model can be used for the predictions of muscular fatigue in a single series, the cumulative daily muscular fatigue and the muscular growth throughout the training process. In conclusion, the application of non-linear dynamics in this particular training model allows us to mathematically explain some functional changes in the skeletal muscle as a result of its adaptation to programmed physical activity-training. 2010 Elsevier Ltd. All rights reserved.

  4. Cognitive training and selective attention in the aging brain: an electrophysiological study.

    PubMed

    O'Brien, Jennifer L; Edwards, Jerri D; Maxfield, Nathan D; Peronto, Carol L; Williams, Victoria A; Lister, Jennifer J

    2013-11-01

    Age-related deficits in selective attention are hypothesized to result from decrements in inhibition of task-irrelevant information. Speed of processing (SOP) training is an adaptive cognitive intervention designed to enhance processing speed for attention tasks. The effectiveness of SOP training to improve cognitive and everyday functional performance is well documented. However, underlying mechanisms of these training benefits are unknown. Participants completed a visual search task evaluated using event-related potentials (ERPs) before and after 10 weeks of SOP training or no contact. N2pc and P3b components were evaluated to determine SOP training effects on attentional resource allocation and capacity. Selective attention to a target was enhanced after SOP training compared to no training. N2pc and P3b amplitudes increased after training, reflecting attentional allocation and capacity enhancement, consistent with previous studies demonstrating behavioral improvements in selective attention following SOP training. Changes in ERPs related to attention allocation and capacity following SOP training support the idea that training leads to cognitive enhancement. Specifically, we provide electrophysiological evidence that SOP training may be successful in counteracting age-related declines in selective attention. This study provides important evidence of the underlying mechanisms by which SOP training improves cognitive function in older adults. Published by Elsevier Ireland Ltd.

  5. [Specific anosmia as a principle of olfactory perception].

    PubMed

    Croy, I; Olgun, S; Mueller, L; Schmidt, A; Muench, M; Gisselmann, G; Hatt, H; Hummel, T

    2016-05-01

    Specific anosmia, the inability to perceive a specific odor, while olfactory perception is otherwise intact, is known as a rather seldom phenomenon. By testing the prevalence of specific anosmia to 20 different odors in a sample of 1600 people, we were able to estimate the general prevalence of anosmia. This revealed that specific anosmia is not rare at all. In contrast, the general likelihood for specific anosmia approaches 1. In addition, specific anosmia can be very well reversed by "smell training" during the course of 3 months. To summarize, specific anosmia seems to be a rule, not an exception, of olfactory sensation. The lack of perception of certain odors may constitute a flexible peripheral filter mechanism, which can be adapted by exposure to odors.

  6. Training adaptations in the behavior of human motor units.

    PubMed

    Duchateau, Jacques; Semmler, John G; Enoka, Roger M

    2006-12-01

    The purpose of this brief review is to examine the neural adaptations associated with training, by focusing on the behavior of single motor units. The review synthesizes current understanding on motor unit recruitment and rate coding during voluntary contractions, briefly describes the techniques used to record motor unit activity, and then evaluates the adaptations that have been observed in motor unit activity during maximal and submaximal contractions. Relatively few studies have directly compared motor unit behavior before and after training. Although some studies suggest that the voluntary activation of muscle can increase slightly with strength training, it is not known how the discharge of motor units changes to produce this increase in activation. The evidence indicates that the increase is not attributable to changes in motor unit synchronization. It has been demonstrated, however, that training can increase both the rate of torque development and the discharge rate of motor units. Furthermore, both strength training and practice of a force-matching task can evoke adaptations in the discharge characteristics of motor units. Because the variability in discharge rate has a significant influence on the fluctuations in force during submaximal contractions, the changes produced with training can influence motor performance during activities of daily living. Little is known, however, about the relative contributions of the descending drive, afferent feedback, spinal circuitry, and motor neuron properties to the observed adaptations in motor unit activity.

  7. Neuroplus biofeedback improves attention, resilience, and injury prevention in elite soccer players.

    PubMed

    Rusciano, Aiace; Corradini, Giuliano; Stoianov, Ivilin

    2017-06-01

    Performance and injury prevention in elite soccer players are typically investigated from physical-tactical, biomechanical, and metabolic perspectives. However, executive functions, visuospatial abilities, and psychophysiological adaptability or resilience are also fundamental for efficiency and well-being in sports. Based on previous research associating autonomic flexibility with prefrontal cortical control, we designed a novel integrated autonomic biofeedback training method called Neuroplus to improve resilience, visual attention, and injury prevention. Herein, we introduce the method and provide an evaluation of 20 elite soccer players from the Italian Soccer High Division (Serie-A): 10 players trained with Neuroplus and 10 trained with a control treatment. The assessments included psychophysiological stress profiles, a visual search task, and indexes of injury prevention, which were measured pre- and posttreatment. The analysis showed a significant enhancement of physiological adaptability, recovery following stress, visual selective attention, and injury prevention that were specific to the Neuroplus group. Enhancing the interplay between autonomic and cognitive functions through biofeedback may become a key principle for obtaining excellence and well-being in sports. To our knowledge, this is the first evidence that shows improvement in visual selective attention following intense autonomic biofeedback. © 2017 Society for Psychophysiological Research.

  8. Symmetry Breaking Analysis of Prism Adaptation's Latent Aftereffect

    ERIC Educational Resources Information Center

    Frank, Till D.; Blau, Julia J. C.; Turvey, Michael T.

    2012-01-01

    The effect of prism adaptation on movement is typically reduced when the movement at test (prisms off) differs on some dimension from the movement at training (prisms on). Some adaptation is latent, however, and only revealed through further testing in which the movement at training is fully reinstated. Applying a nonlinear attractor dynamic model…

  9. Trauma-Informed Medical Care: Patient Response to a Primary Care Provider Communication Training

    PubMed Central

    Green, Bonnie L.; Saunders, Pamela A.; Power, Elizabeth; Dass-Brailsford, Priscilla; Schelbert, Kavitha Bhat; Giller, Esther; Wissow, Larry; Hurtado de Mendoza, Alejandra; Mete, Mihriye

    2016-01-01

    Trauma exposure predicts mental disorders and health outcomes; yet there is little training of primary care providers about trauma’s effects, and how to better interact with trauma survivors. This study adapted a theory-based approach to working with trauma survivors, Risking Connection, into a 6-hour CME course, Trauma-Informed Medical Care (TI-Med), to evaluate its feasibility and preliminary efficacy. We randomized four primary care sites to training or wait-list conditions; PCPs at wait-list sites were trained after reassessment. Primary care providers (PCPs) were Family Medicine residents (n = 17; 2 sites) or community physicians (n = 13; 2 sites). Outcomes reported here comprised a survey of 400 actual patients seen by the PCPs in the study. Patients, mostly minority, completed surveys before or after their provider received training. Patients rated PCPs significantly higher after training on a scale encompassing partnership issues. Breakdowns showed lower partnership scores for those with trauma or posttraumatic stress symptoms. Future studies will need to include more specific trauma-related outcomes. Nevertheless, this training is a promising initial approach to teaching trauma-informed communication skills to PCPs. PMID:27721673

  10. Operator adaptation to changes in system reliability under adaptable automation.

    PubMed

    Chavaillaz, Alain; Sauer, Juergen

    2017-09-01

    This experiment examined how operators coped with a change in system reliability between training and testing. Forty participants were trained for 3 h on a complex process control simulation modelling six levels of automation (LOA). In training, participants either experienced a high- (100%) or low-reliability system (50%). The impact of training experience on operator behaviour was examined during a 2.5 h testing session, in which participants either experienced a high- (100%) or low-reliability system (60%). The results showed that most operators did not often switch between LOA. Most chose an LOA that relieved them of most tasks but maintained their decision authority. Training experience did not have a strong impact on the outcome measures (e.g. performance, complacency). Low system reliability led to decreased performance and self-confidence. Furthermore, complacency was observed under high system reliability. Overall, the findings suggest benefits of adaptable automation because it accommodates different operator preferences for LOA. Practitioner Summary: The present research shows that operators can adapt to changes in system reliability between training and testing sessions. Furthermore, it provides evidence that each operator has his/her preferred automation level. Since this preference varies strongly between operators, adaptable automation seems to be suitable to accommodate these large differences.

  11. International Society of Sports Nutrition position stand: protein and exercise

    PubMed Central

    Campbell, Bill; Kreider, Richard B; Ziegenfuss, Tim; La Bounty, Paul; Roberts, Mike; Burke, Darren; Landis, Jamie; Lopez, Hector; Antonio, Jose

    2007-01-01

    Position Statement The following seven points related to the intake of protein for healthy, exercising individuals constitute the position stand of the Society. They have been approved by the Research Committee of the Society. 1) Vast research supports the contention that individuals engaged in regular exercise training require more dietary protein than sedentary individuals. 2) Protein intakes of 1.4 – 2.0 g/kg/day for physically active individuals is not only safe, but may improve the training adaptations to exercise training. 3) When part of a balanced, nutrient-dense diet, protein intakes at this level are not detrimental to kidney function or bone metabolism in healthy, active persons. 4) While it is possible for physically active individuals to obtain their daily protein requirements through a varied, regular diet, supplemental protein in various forms are a practical way of ensuring adequate and quality protein intake for athletes. 5) Different types and quality of protein can affect amino acid bioavailability following protein supplementation. The superiority of one protein type over another in terms of optimizing recovery and/or training adaptations remains to be convincingly demonstrated. 6) Appropriately timed protein intake is an important component of an overall exercise training program, essential for proper recovery, immune function, and the growth and maintenance of lean body mass. 7) Under certain circumstances, specific amino acid supplements, such as branched-chain amino acids (BCAA's), may improve exercise performance and recovery from exercise. PMID:17908291

  12. Self-Directed Learning and the Millennial Athletic Training Student

    ERIC Educational Resources Information Center

    Hughes, Brian J.; Berry, David C.

    2011-01-01

    Athletic training educators (ATEs) have a responsibility to remain aware of the current student population, particularly how they learn and give meaning to what they have learned. Just as clinical athletic trainers (ATs) must adapt to ever changing work schedules and demands, so too must athletic training educators. In addition to adapting to…

  13. The effects of adaptive working memory training and mindfulness meditation training on processing efficiency and worry in high worriers.

    PubMed

    Course-Choi, Jenna; Saville, Harry; Derakshan, Nazanin

    2017-02-01

    Worry is the principle characteristic of generalised anxiety disorder, and has been linked to deficient attentional control, a main function of working memory (WM). Adaptive WM training and mindfulness meditation practice (MMP) have both shown potential to increase attentional control. The present study hence investigates the individual and combined effects of MMP and a dual adaptive n-back task on a non-clinical, randomised sample of high worriers. 60 participants were tested before and after seven days of training. Assessment included self-report questionnaires, as well as performance tasks measuring attentional control and working memory capacity. Combined training resulted in continued reduction in worry in the week after training, highlighting the potential of utilising n-back training as an adjunct to established clinical treatment. Engagement with WM training correlated with immediate improvements in attentional control and resilience, with worry decreasing over time. Implications of these findings and suggestions for future research are discussed. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  14. On the practicality of emergency surgery during long-duration space missions.

    PubMed

    Dawson, David L

    2008-07-01

    While discussions of the practicality of surgery in space often focus on technical issues, such as adapting instrumentation and procedures for use in microgravity, programmatic issues need to be addressed if meaningful capabilities for emergency surgery are to be considered for human exploration missions beyond low Earth orbit. Advanced technologies that have been evaluated, including simulation-enhanced training, telementoring, or robotic assistance, might help prepare or augment a crew medical officer, but a physician with advanced training and relevant experience will be needed if surgical capabilities beyond basic emergency aid are to be considered. Specific operational roles for physician-astronauts should be established.

  15. Effectiveness of Instruction and Video Feedback on Staff's Use of Prompts and Children's Adaptive Responses during One-to-One Training in Children with Severe to Profound Intellectual Disability

    ERIC Educational Resources Information Center

    van Vonderen, Annemarie; de Swart, Charlotte; Didden, Robert

    2010-01-01

    Although relatively many studies have addressed staff training and its effect on trainer behavior, the effects of staff training on trainee's adaptive behaviors have seldomly been examined. We therefore assessed effectiveness of staff training, consisting of instruction and video feedback, on (a) staff's response prompting, and (b) staff's trainer…

  16. Adaptive Training and Education Research at the US Army Research Laboratory: Bibliography (2016-2017)

    DTIC Science & Technology

    2018-03-05

    Validation suite. Synthetic training environments. Service orientated architecture. Citation: Robson, E., Ray, F., Sinatra, A. M., & Sinatra, A. M. (2017...ARL-SR-0393 ● MAR 2018 US Army Research Laboratory Adaptive Training and Education Research at the US Army Research Laboratory... Training and Education Research at the US Army Research Laboratory: Bibliography (2016–2017) by Robert A Sottilare Human Research and

  17. High responders and low responders: factors associated with individual variation in response to standardized training.

    PubMed

    Mann, Theresa N; Lamberts, Robert P; Lambert, Michael I

    2014-08-01

    The response to an exercise intervention is often described in general terms, with the assumption that the group average represents a typical response for most individuals. In reality, however, it is more common for individuals to show a wide range of responses to an intervention rather than a similar response. This phenomenon of 'high responders' and 'low responders' following a standardized training intervention may provide helpful insights into mechanisms of training adaptation and methods of training prescription. Therefore, the aim of this review was to discuss factors associated with inter-individual variation in response to standardized, endurance-type training. It is well-known that genetic influences make an important contribution to individual variation in certain training responses. The association between genotype and training response has often been supported using heritability estimates; however, recent studies have been able to link variation in some training responses to specific single nucleotide polymorphisms. It would appear that hereditary influences are often expressed through hereditary influences on the pre-training phenotype, with some parameters showing a hereditary influence in the pre-training phenotype but not in the subsequent training response. In most cases, the pre-training phenotype appears to predict only a small amount of variation in the subsequent training response of that phenotype. However, the relationship between pre-training autonomic activity and subsequent maximal oxygen uptake response appears to show relatively stronger predictive potential. Individual variation in response to standardized training that cannot be explained by genetic influences may be related to the characteristics of the training program or lifestyle factors. Although standardized programs usually involve training prescribed by relative intensity and duration, some methods of relative exercise intensity prescription may be more successful in creating an equivalent homeostatic stress between individuals than other methods. Individual variation in the homeostatic stress associated with each training session would result in individuals experiencing a different exercise 'stimulus' and contribute to individual variation in the adaptive responses incurred over the course of the training program. Furthermore, recovery between the sessions of a standardized training program may vary amongst individuals due to factors such as training status, sleep, psychological stress, and habitual physical activity. If there is an imbalance between overall stress and recovery, some individuals may develop fatigue and even maladaptation, contributing to variation in pre-post training responses. There is some evidence that training response can be modulated by the timing and composition of dietary intake, and hence nutritional factors could also potentially contribute to individual variation in training responses. Finally, a certain amount of individual variation in responses may also be attributed to measurement error, a factor that should be accounted for wherever possible in future studies. In conclusion, there are several factors that could contribute to individual variation in response to standardized training. However, more studies are required to help clarify and quantify the role of these factors. Future studies addressing such topics may aid in the early prediction of high or low training responses and provide further insight into the mechanisms of training adaptation.

  18. Better compliance and better tolerance in relation to a well-conducted introduction to rub-in hand disinfection.

    PubMed

    Girard, R; Amazian, K; Fabry, J

    2001-02-01

    The aim of the study was to demonstrate that the introduction of rub-in hand disinfection (RHD) in hospital units, with the implementation of suitable equipment, drafting of specific protocols, and training users, improved compliance of hand disinfection and tolerance of user's hands. In four hospital units not previously using RHD an external investigator conducted two identical studies in order to measure the rate of compliance with, and the quality of, disinfection practices, [rate of adapted (i.e., appropriate) procedures, rate of correct (i.e., properly performed) procedures, rate of adapted and correct procedures carried out] and to assess the state of hands (clinical scores of dryness and irritation, measuring hydration with a corneometer). Between the two studies, the units were equipped with dispensers for RHD products and staff were trained. Compliance improved from 62.2 to 66.5%, quality was improved (rate of adapted procedures from 66.8% to 84.3%, P > or = 10(-6), rate of correct procedures from 11.1% to 28.9%, P > or = 10(-8), rate of adapted and correct procedures from 6.0 to 17.8%, P > or = 10(-8)). The tolerance was improved significantly (P > or = 10(-2)) for clinical dryness and irritation scores, although not significantly for measurements using a corneometer. This study shows the benefit of introducing RHD with a technical and educational accompaniment. Copyright 2001 The Hospital Infection Society.

  19. Intermittent Resistance Training at Moderate Altitude: Effects on the Force-Velocity Relationship, Isometric Strength and Muscle Architecture

    PubMed Central

    Morales-Artacho, Antonio J.; Padial, Paulino; García-Ramos, Amador; Pérez-Castilla, Alejandro; Argüelles-Cienfuegos, Javier; De la Fuente, Blanca; Feriche, Belén

    2018-01-01

    Intermittent hypoxic resistance training (IHRT) may help to maximize the adaptations following resistance training, although conflicting evidence is available. The aim of this study was to explore the influence of moderate altitude on the functional, neural and muscle architecture responses of the quadriceps muscles following a power-oriented IHRT intervention. Twenty-four active males completed two 4-week consecutive training blocks comprising general strengthening exercises (weeks 1–4) and power-oriented resistance training (weeks 5–8). Training sessions were conducted twice a week at moderate altitude (2320 m; IHRT, n = 13) or normoxia (690 m; NT, n = 11). Training intensity during the second training block was set to the individual load corresponding to a barbell mean propulsive velocity of 1 m·s−1. Pre-post assessments, performed under normoxic conditions, comprised quadriceps muscle architecture (thickness, pennation angle and fascicle length), isometric maximal (MVF) and explosive strength, and voluntary muscle activation. Dynamic strength performance was assessed through the force-velocity relationship (F0, V0, P0) and a repeated CMJ test (CMJ15MP). Region-specific muscle thickness changes were observed in both training groups (p < 0.001, ηG2 = 0.02). A small opposite trend in pennation angle changes was observed (ES [90% CI]: −0.33 [−0.65, −0.01] vs. 0.11 [−0.44, 0.6], in the IHRT and NT group, respectively; p = 0.094, ηG2 = 0.02). Both training groups showed similar improvements in MVF (ES: 0.38 [0.20, 0.56] vs. 0.55 [0.29, 0.80], in the IHRT and NT group, respectively; p = 0.645, ηG2 < 0.01), F0 (ES: 0.41 [−0.03, 0.85] vs. 0.52 [0.04, 0.99], in the IHRT and NT group, respectively; p = 0.569, ηG2 < 0.01) and P0 (ES: 0.53 [0.07, 0.98] vs. 0.19 [−0.06, 0.44], in the IHRT and NT group, respectively; p = 0.320, ηG2 < 0.01). No meaningful changes in explosive strength performance were observed. In conclusion, contrary to earlier adverse associations between altitude and resistance-training muscle adaptations, similar anatomical and functional muscle strength responses can be achieved in both environmental conditions. The observed region-specific muscle thickness changes may encourage further research on the potential influence of IHRT on muscle morphological changes. PMID:29882549

  20. Specific trunk and general exercise elicit similar changes in anticipatory postural adjustments in patients with chronic low back pain: a randomized controlled trial.

    PubMed

    Brooks, Cristy; Kennedy, Suzanne; Marshall, Paul W M

    2012-12-01

    A randomized controlled trial. To compare changes in self-rated disability, pain, and anticipatory postural adjustments between specific trunk exercise and general exercise in patients with chronic low back pain. Chronic low back pain is associated with altered motor control of the trunk muscles. The best exercise to address altered motor control is unclear. Sixty-four patients with chronic low back pain were randomly assigned to a specific trunk exercise group (SEG) that included skilled cognitive activation of the trunk muscles in addition to a number of other best practice exercises, whereas the general exercise group performed only seated cycling exercise. The training program lasted for 8 weeks. Self-rated disability and pain scores were collected before and after the training period. Electromyographic activity of various trunk muscles was recorded during performance of a rapid shoulder flexion task before and after training. Muscle onsets were calculated, and the latency time (in ms) between the onset of each trunk muscle and the anterior deltoid formed the basis of the motor control analysis. After training, disability was significantly lower in the SEG (d = 0.62, P = 0.018). Pain was reduced in both groups after training (P < 0.05), but was lower for the SEG (P < 0.05). Despite the general exercise group performing no specific trunk exercise, similar changes in trunk muscle onsets were observed in both groups after training. SEG elicited significant reductions in self-rated disability and pain, whereas similar between-group changes in trunk muscle onsets were observed. The motor control adaptation seems to reflect a strategy of improved coordination between the trunk muscles with the unilateral shoulder movement. Trunk muscle onsets during rapid limb movement do not seem to be a valid mechanism of action for specific trunk exercise rehabilitation programs.

  1. Adapting bioinformatics curricula for big data.

    PubMed

    Greene, Anna C; Giffin, Kristine A; Greene, Casey S; Moore, Jason H

    2016-01-01

    Modern technologies are capable of generating enormous amounts of data that measure complex biological systems. Computational biologists and bioinformatics scientists are increasingly being asked to use these data to reveal key systems-level properties. We review the extent to which curricula are changing in the era of big data. We identify key competencies that scientists dealing with big data are expected to possess across fields, and we use this information to propose courses to meet these growing needs. While bioinformatics programs have traditionally trained students in data-intensive science, we identify areas of particular biological, computational and statistical emphasis important for this era that can be incorporated into existing curricula. For each area, we propose a course structured around these topics, which can be adapted in whole or in parts into existing curricula. In summary, specific challenges associated with big data provide an important opportunity to update existing curricula, but we do not foresee a wholesale redesign of bioinformatics training programs. © The Author 2015. Published by Oxford University Press.

  2. Adapting bioinformatics curricula for big data

    PubMed Central

    Greene, Anna C.; Giffin, Kristine A.; Greene, Casey S.

    2016-01-01

    Modern technologies are capable of generating enormous amounts of data that measure complex biological systems. Computational biologists and bioinformatics scientists are increasingly being asked to use these data to reveal key systems-level properties. We review the extent to which curricula are changing in the era of big data. We identify key competencies that scientists dealing with big data are expected to possess across fields, and we use this information to propose courses to meet these growing needs. While bioinformatics programs have traditionally trained students in data-intensive science, we identify areas of particular biological, computational and statistical emphasis important for this era that can be incorporated into existing curricula. For each area, we propose a course structured around these topics, which can be adapted in whole or in parts into existing curricula. In summary, specific challenges associated with big data provide an important opportunity to update existing curricula, but we do not foresee a wholesale redesign of bioinformatics training programs. PMID:25829469

  3. Properties of intermodal transfer after dual visuo- and auditory-motor adaptation.

    PubMed

    Schmitz, Gerd; Bock, Otmar L

    2017-10-01

    Previous work documented that sensorimotor adaptation transfers between sensory modalities: When subjects adapt with one arm to a visuomotor distortion while responding to visual targets, they also appear to be adapted when they are subsequently tested with auditory targets. Vice versa, when they adapt to an auditory-motor distortion while pointing to auditory targets, they appear to be adapted when they are subsequently tested with visual targets. Therefore, it was concluded that visuomotor as well as auditory-motor adaptation use the same adaptation mechanism. Furthermore, it has been proposed that sensory information from the trained modality is weighted larger than sensory information from an untrained one, because transfer between sensory modalities is incomplete. The present study tested these hypotheses for dual arm adaptation. One arm adapted to an auditory-motor distortion and the other either to an opposite directed auditory-motor or visuomotor distortion. We found that both arms adapted significantly. However, compared to reference data on single arm adaptation, adaptation in the dominant arm was reduced indicating interference from the non-dominant to the dominant arm. We further found that arm-specific aftereffects of adaptation, which reflect recalibration of sensorimotor transformation rules, were stronger or equally strong when targets were presented in the previously adapted compared to the non-adapted sensory modality, even when one arm adapted visually and the other auditorily. The findings are discussed with respect to a recently published schematic model on sensorimotor adaptation. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. 'I still have no idea why this patient was here': An exploration of the difficulties GP trainees experience when gathering information.

    PubMed

    Giroldi, Esther; Veldhuijzen, Wemke; de Leve, Tijme; van der Weijden, Trudy; Bueving, Herman; van der Vleuten, Cees

    2015-07-01

    Collecting information during patient encounters is essential for the delivery of patient-centered care. To obtain insight into areas that require more attention in medical communication training, this study explores what difficulties GP trainees encounter when gathering information. In this phenomenological study, we observed a morning clinic of 15 GP trainees. To explore trainees' experiences with information-gathering, we held brief interviews after every consultation and a lengthier interview directly after the morning clinic. The resulting data were analyzed using template analysis. From trainees' reflections, we distilled five difficulties that trainees experience when gathering information: (1) Goal conflicts; (2) Ineffectiveness of trained communication skills in specific situations; (3) Trainees' distress hampers open communication; (4) Untrustworthy information; (5) Tunnel vision. Information-gathering is difficult for GP trainees. Current generic communication skills training does not seem to support trainees sufficiently to handle effectively the challenges they encounter during consultations. Medical communication training needs to support trainees in handling their goal-conflicts and feelings that hamper information-gathering, while also providing them with communication strategies adapted to handling specific challenging situations. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  5. Models and Methods for Adaptive Management of Individual and Team-Based Training Using a Simulator

    NASA Astrophysics Data System (ADS)

    Lisitsyna, L. S.; Smetyuh, N. P.; Golikov, S. P.

    2017-05-01

    Research of adaptive individual and team-based training has been analyzed and helped find out that both in Russia and abroad, individual and team-based training and retraining of AASTM operators usually includes: production training, training of general computer and office equipment skills, simulator training including virtual simulators which use computers to simulate real-world manufacturing situation, and, as a rule, the evaluation of AASTM operators’ knowledge determined by completeness and adequacy of their actions under the simulated conditions. Such approach to training and re-training of AASTM operators stipulates only technical training of operators and testing their knowledge based on assessing their actions in a simulated environment.

  6. Parent Management Training-Oregon Model (PMTO™) in Mexico City: Integrating Cultural Adaptation Activities in an Implementation Model

    PubMed Central

    Baumann, Ana A.; Domenech Rodríguez, Melanie M.; Amador, Nancy G.; Forgatch, Marion S.; Parra-Cardona, J. Rubén

    2015-01-01

    This article describes the process of cultural adaptation at the start of the implementation of the Parent Management Training intervention-Oregon model (PMTO) in Mexico City. The implementation process was guided by the model, and the cultural adaptation of PMTO was theoretically guided by the cultural adaptation process (CAP) model. During the process of the adaptation, we uncovered the potential for the CAP to be embedded in the implementation process, taking into account broader training and economic challenges and opportunities. We discuss how cultural adaptation and implementation processes are inextricably linked and iterative and how maintaining a collaborative relationship with the treatment developer has guided our work and has helped expand our research efforts, and how building human capital to implement PMTO in Mexico supported the implementation efforts of PMTO in other places in the United States. PMID:26052184

  7. Parent Management Training-Oregon Model (PMTO™) in Mexico City: Integrating Cultural Adaptation Activities in an Implementation Model.

    PubMed

    Baumann, Ana A; Domenech Rodríguez, Melanie M; Amador, Nancy G; Forgatch, Marion S; Parra-Cardona, J Rubén

    2014-03-01

    This article describes the process of cultural adaptation at the start of the implementation of the Parent Management Training intervention-Oregon model (PMTO) in Mexico City. The implementation process was guided by the model, and the cultural adaptation of PMTO was theoretically guided by the cultural adaptation process (CAP) model. During the process of the adaptation, we uncovered the potential for the CAP to be embedded in the implementation process, taking into account broader training and economic challenges and opportunities. We discuss how cultural adaptation and implementation processes are inextricably linked and iterative and how maintaining a collaborative relationship with the treatment developer has guided our work and has helped expand our research efforts, and how building human capital to implement PMTO in Mexico supported the implementation efforts of PMTO in other places in the United States.

  8. Cardiovascular Adaptations Induced by Resistance Training in Animal Models.

    PubMed

    Melo, S F S; da Silva Júnior, N D; Barauna, V G; Oliveira, E M

    2018-01-01

    In the last 10 years the number of studies showing the benefits of resistance training (RT) to the cardiovascular system, have grown. In comparison to aerobic training, RT-induced favorable adaptations to the cardiovascular system have been ignored for many years, thus the mechanisms of the RT-induced cardiovascular adaptations are still uncovered. The lack of animal models with comparable protocols to the RT performed by humans hampers the knowledge. We have used squat-exercise model, which is widely used by many others laboratories. However, to a lesser extent, other models are also employed to investigate the cardiovascular adaptations. In the subsequent sections we will review the information regarding cardiac morphological adaptations, signaling pathway of the cardiac cell, cardiac function and the vascular adaptation induced by RT using this animal model developed by Tamaki et al. in 1992. Furthermore, we also describe cardiovascular findings observed using other animal models of RT.

  9. Nitric oxide and CaMKII: Critical steps in the cardiac contractile response To IGF-1 and swim training.

    PubMed

    Burgos, Juan I; Yeves, Alejandra M; Barrena, Jorge P; Portiansky, Enrique L; Vila-Petroff, Martín G; Ennis, Irene L

    2017-11-01

    Cardiac adaptation to endurance training includes improved contractility by a non-yet clarified mechanism. Since IGF-1 is the main mediator of the physiological response to exercise, we explored its effect on cardiac contractility and the putative involvement of nitric oxide (NO) and CaMKII in control and swim-trained mice. IGF-1 increased cardiomyocyte shortening (128.1±4.6% vs. basal; p˂0.05) and accelerated relaxation (time to 50% relengthening: 49.2±2.0% vs. basal; p˂0.05), effects abrogated by inhibition of: AKT with MK-2206, NO production with the NO synthase (NOS) inhibitor L-NAME and the specific NOS1 inhibitor nitroguanidine (NG), and CaMKII with KN-93. In agreement, an increase in NO in response to IGF-1 (133.8±2.2%) was detected and prevented by both L-NAME and NG but not KN-93, suggesting that CaMKII activation was downstream NO. In addition, we determined CaMKII activity (P-CaMKII) and phosphorylation of its target, Thr17-PLN. IGF-1, by a NO-dependent mechanism, significantly increased both (227.2±29.4% and 145.3±5.4%, respectively) while no changes in the CaMKII phosphorylation site of ryanodine receptor were evident. The improvement in contractility induced by IGF-1 was associated with increased Ca 2+ transient amplitude, rate of decay and SR content. Interestingly, this response was absent in cardiomyocytes from transgenic mice that express a CaMKII inhibitory peptide (AC3-I strain). Moreover, AC3-I mice subjected to swim training did develop physiological cardiac hypertrophy but not the contractile adaptation. Therefore, we conclude that NO-dependent CaMKII activation plays a critical role in the improvement in contractility induced by IGF-1 and exercise training. Interestingly, this pathway would not contribute to the adaptive hypertrophy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. A simultaneous examination of two forms of working memory training: Evidence for near transfer only.

    PubMed

    Minear, Meredith; Brasher, Faith; Guerrero, Claudia Brandt; Brasher, Mandy; Moore, Andrew; Sukeena, Joshua

    2016-10-01

    The efficacy of working-memory training is a topic of considerable debate, with some studies showing transfer to measures such as fluid intelligence while others have not. We report the results of a study designed to examine two forms of working-memory training, one using a spatial n-back and the other a verbal complex span. Thirty-one undergraduates completed 4 weeks of n-back training and 32 completed 4 weeks of verbal complex span training. We also included two active control groups. One group trained on a non-adaptive version of n-back and the other trained on a real-time strategy video game. All participants completed pre- and post-training measures of a large battery of transfer tasks used to create composite measures of short-term and working memory in both verbal and visuo-spatial domains as well as verbal reasoning and fluid intelligence. We only found clear evidence for near transfer from the spatial n-back training to new forms of n-back, and this was the case for both adaptive and non-adaptive n-back.

  11. A self-adapting heuristic for automatically constructing terrain appreciation exercises

    NASA Astrophysics Data System (ADS)

    Nanda, S.; Lickteig, C. L.; Schaefer, P. S.

    2008-04-01

    Appreciating terrain is a key to success in both symmetric and asymmetric forms of warfare. Training to enable Soldiers to master this vital skill has traditionally required their translocation to a selected number of areas, each affording a desired set of topographical features, albeit with limited breadth of variety. As a result, the use of such methods has proved to be costly and time consuming. To counter this, new computer-aided training applications permit users to rapidly generate and complete training exercises in geo-specific open and urban environments rendered by high-fidelity image generation engines. The latter method is not only cost-efficient, but allows any given exercise and its conditions to be duplicated or systematically varied over time. However, even such computer-aided applications have shortcomings. One of the principal ones is that they usually require all training exercises to be painstakingly constructed by a subject matter expert. Furthermore, exercise difficulty is usually subjectively assessed and frequently ignored thereafter. As a result, such applications lack the ability to grow and adapt to the skill level and learning curve of each trainee. In this paper, we present a heuristic that automatically constructs exercises for identifying key terrain. Each exercise is created and administered in a unique iteration, with its level of difficulty tailored to the trainee's ability based on the correctness of that trainee's responses in prior iterations.

  12. Adaptive thinking & leadership simulation game training for special forces officers.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raybourn, Elaine Marie; Mendini, Kip; Heneghan, Jerry

    Complex problem solving approaches and novel strategies employed by the military at the squad, team, and commander level are often best learned experimentally. Since live action exercises can be costly, advances in simulation game training technology offer exciting ways to enhance current training. Computer games provide an environment for active, critical learning. Games open up possibilities for simultaneous learning on multiple levels; players may learn from contextual information embedded in the dynamics of the game, the organic process generated by the game, and through the risks, benefits, costs, outcomes, and rewards of alternative strategies that result from decision making. Inmore » the present paper we discuss a multiplayer computer game simulation created for the Adaptive Thinking & Leadership (ATL) Program to train Special Forces Team Leaders. The ATL training simulation consists of a scripted single-player and an immersive multiplayer environment for classroom use which leverages immersive computer game technology. We define adaptive thinking as consisting of competencies such as negotiation and consensus building skills, the ability to communicate effectively, analyze ambiguous situations, be self-aware, think innovatively, and critically use effective problem solving skills. Each of these competencies is an essential element of leader development training for the U.S. Army Special Forces. The ATL simulation is used to augment experiential learning in the curriculum for the U.S. Army JFK Special Warfare Center & School (SWCS) course in Adaptive Thinking & Leadership. The school is incorporating the ATL simulation game into two additional training pipelines (PSYOPS and Civil Affairs Qualification Courses) that are also concerned with developing cultural awareness, interpersonal communication adaptability, and rapport-building skills. In the present paper, we discuss the design, development, and deployment of the training simulation, and emphasize how the multiplayer simulation game is successfully used in the Special Forces Officer training program.« less

  13. Utilizing feedback in adaptive SAR ATR systems

    NASA Astrophysics Data System (ADS)

    Horsfield, Owen; Blacknell, David

    2009-05-01

    Existing SAR ATR systems are usually trained off-line with samples of target imagery or CAD models, prior to conducting a mission. If the training data is not representative of mission conditions, then poor performance may result. In addition, it is difficult to acquire suitable training data for the many target types of interest. The Adaptive SAR ATR Problem Set (AdaptSAPS) program provides a MATLAB framework and image database for developing systems that adapt to mission conditions, meaning less reliance on accurate training data. A key function of an adaptive system is the ability to utilise truth feedback to improve performance, and it is this feature which AdaptSAPS is intended to exploit. This paper presents a new method for SAR ATR that does not use training data, based on supervised learning. This is achieved by using feature-based classification, and several new shadow features have been developed for this purpose. These features allow discrimination of vehicles from clutter, and classification of vehicles into two classes: targets, comprising military combat types, and non-targets, comprising bulldozers and trucks. The performance of the system is assessed using three baseline missions provided with AdaptSAPS, as well as three additional missions. All performance metrics indicate a distinct learning trend over the course of a mission, with most third and fourth quartile performance levels exceeding 85% correct classification. It has been demonstrated that these performance levels can be maintained even when truth feedback rates are reduced by up to 55% over the course of a mission.

  14. Unsteady Separated Flows: Vorticity and Turbulence.

    DTIC Science & Technology

    1982-10-01

    investigation. The vortex train used in the mathe- matical model is adapted to simulate the flow generated in the wake of an oscillating spoiler moving...weak wake structure. C H - At K = 1.5, the trailing edge vortex clearly leads the vorte : generated from the leading edge in the normal geonetry tests...flows is summarized. Specific projects reviewed include: (a) oscillating airfoil dynamic stall; (b) vortex entrapment and stability analysis -and (c

  15. Feedback in Videogame-based Adaptive Training

    DTIC Science & Technology

    2011-05-01

    participants on the pretest and posttest may lead to bias. This is especially the case in this research because the time lapse between the pretest and...experiment was the posttest which took 15 minutes to complete. The entire experiment took between 1 and 2 hours. Measures. Pretest and Posttest VECTOR...Scenario Questionnaire. The pretest and posttest were made specifically to measure the learning objectives of VECTOR and was used as a measure of

  16. Prison Nursing: Formation of a Stable Professional Identity.

    PubMed

    Choudhry, Khurshid; Armstrong, David; Dregan, Alexandru

    The aim of this study was to analyze how working within prison environments can influence the self-identity and professional identity of nurses. The prison environment can be a difficult environment for nurses to deliver care within, with nurses having to carry out activities that seem to go against their professional role, while at the same time providing care to prisoners who have greater health needs than the general population. There is a lack of theoretical consideration of how prison nurses carry out their role in the face of such challenges. This study used a review of literature published over the last 11 years exploring nurses' beliefs, thoughts, and feelings toward delivering care within prison environment. With time, nurses working within prison environments develop specific skills to be able to deliver appropriate care to their patients. These skills include adapting to both the prison environment and the prison culture. Ultimately, adaptations lead to a change in identity allowing nurses to work effectively within prison. Providers of prison healthcare should ensure that induction (orientation) processes for new nurses are designed to address specific challenges that nurses face including the potential for cognitive dissonance. They should ensure that nurses receive training to develop and acquire the skills highlighted in this review. Ensuring that this training is in place may increase nurse retention.

  17. College Adapter Program Curriculum Design. Manpower Education Monograph Series, Volume II.

    ERIC Educational Resources Information Center

    Higher Education Development Fund, New York, NY.

    The College Adapter Program (CAP) is a program to train inner-city young men and women with high potential for post-secondary technical training. These young men and women either have dropped out of high school, or have been insufficiently prepared in high school for further educational training. The Curriculum Design monograph is a statement of…

  18. Adaptive Working Memory Training Reduces the Negative Impact of Anxiety on Competitive Motor Performance.

    PubMed

    Ducrocq, Emmanuel; Wilson, Mark; Smith, Tim J; Derakshan, Nazanin

    2017-12-01

    Optimum levels of attentional control are essential to prevent athletes from experiencing performance breakdowns under pressure. The current study explored whether training attentional control using the adaptive dual n-back paradigm, designed to directly target processing efficiency of the main executive functions of working memory (WM), would result in transferrable effects on sports performance outcomes. A total of 30 tennis players were allocated to an adaptive WM training or active control group and underwent 10 days of training. Measures of WM capacity as well as performance and objective gaze indices of attentional control in a tennis volley task were assessed in low- and high-pressure posttraining conditions. Results revealed significant benefits of training on WM capacity, quiet eye offset, and tennis performance in the high-pressure condition. Our results confirm and extend previous findings supporting the transfer of cognitive training benefits to objective measures of sports performance under pressure.

  19. Changes in auditory nerve responses across the duration of sinusoidally amplitude-modulated electric pulse-train stimuli.

    PubMed

    Hu, Ning; Miller, Charles A; Abbas, Paul J; Robinson, Barbara K; Woo, Jihwan

    2010-12-01

    Response rates of auditory nerve fibers (ANFs) to electric pulse trains change over time, reflecting substantial spike-rate adaptation that depends on stimulus parameters. We hypothesize that adaptation affects the representation of amplitude-modulated pulse trains used by cochlear prostheses to transmit speech information to the auditory system. We recorded cat ANF responses to sinusoidally amplitude-modulated (SAM) trains with 5,000 pulse/s carriers. Stimuli delivered by a monopolar intracochlear electrode had fixed modulation frequency (100 Hz) and depth (10%). ANF responses were assessed by spike-rate measures, while representation of modulation was evaluated by vector strength (VS) and the fundamental component of the fast Fourier transform (F(0) amplitude). These measures were assessed across the 400 ms duration of pulse-train stimuli, a duration relevant to speech stimuli. Different stimulus levels were explored and responses were categorized into four spike-rate groups to assess level effects across ANFs. The temporal pattern of rate adaptation to modulated trains was similar to that of unmodulated trains, but with less rate adaptation. VS to the modulator increased over time and tended to saturate at lower spike rates, while F(0) amplitude typically decreased over time for low driven rates and increased for higher driven rates. VS at moderate and high spike rates and degree of F(0) amplitude temporal changes at low and moderate spike rates were positively correlated with the degree of rate adaptation. Thus, high-rate carriers will modify the ANF representation of the modulator over time. As the VS and F(0) measures were sensitive to adaptation-related changes over different spike-rate ranges, there is value in assessing both measures.

  20. Self-guided strategy-adaption training for older adults: Transfer effects to everyday tasks.

    PubMed

    Bottiroli, Sara; Cavallini, Elena; Dunlosky, John; Vecchi, Tomaso; Hertzog, Christopher

    2017-09-01

    The goal of the present research was to examine the potential of a learner-oriented approach to improving older adults' performance in tasks that are similar to real-life situations that require strategic deployment of cognitive resources. A crucial element of this approach involves encouraging older adults to explicitly analyze tasks to consider how to adapt trained skills to a new task context. In an earlier study, a specialist-directed intervention produced training gains and transfer to some untrained memory tasks. In the present study, older adults received a manual instructing them about principles of task analysis, two memory strategies, and strategy adaptation. Self-guided strategy-adaption training involved practicing some memory tasks as well as instructions on how the trained skills could be applied to new tasks that were not practiced. The criterion tasks involved practice tasks, non-practiced tasks that were discussed in the manual, and transfer tasks that were never mentioned in the manual. Two of the tests were from the Everyday Cognition Battery (inductive reasoning and working memory). As compared to a waiting-list control group, older adults assigned to self-guided strategy-adaption training showed memory improvements on tasks that were practiced or discussed during training. Most important, the learner-oriented approach produced transfer to the everyday tasks. Our findings show the potential of instructing task appraisal processes as a basis for fostering transfer, including improving older adults' performance in simulated everyday tasks. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Robot-assisted adaptive training: custom force fields for teaching movement patterns.

    PubMed

    Patton, James L; Mussa-Ivaldi, Ferdinando A

    2004-04-01

    Based on recent studies of neuro-adaptive control, we tested a new iterative algorithm to generate custom training forces to "trick" subjects into altering their target-directed reaching movements to a prechosen movement as an after-effect of adaptation. The prechosen movement goal, a sinusoidal-shaped path from start to end point, was never explicitly conveyed to the subject. We hypothesized that the adaptation would cause an alteration in the feedforward command that would result in the prechosen movement. Our results showed that when forces were suddenly removed after a training period of 330 movements, trajectories were significantly shifted toward the prechosen movement. However, de-adaptation occurred (i.e., the after-effect "washed out") in the 50-75 movements that followed the removal of the training forces. A second experiment suppressed vision of hand location and found a detectable reduction in the washout of after-effects, suggesting that visual feedback of error critically influences learning. A final experiment demonstrated that after-effects were also present in the neighborhood of training--44% of original directional shift was seen in adjacent, unpracticed movement directions to targets that were 60 degrees different from the targets used for training. These results demonstrate the potential for these methods for teaching motor skills and for neuro-rehabilitation of brain-injured patients. This is a form of "implicit learning," because unlike explicit training methods, subjects learn movements with minimal instructions, no knowledge of, and little attention to the trajectory.

  2. Trained immunity: a program of innate immune memory in health and disease

    PubMed Central

    Netea, Mihai G.; Joosten, Leo A.B.; Latz, Eicke; Mills, Kingston H.G.; Natoli, Gioacchino; Stunnenberg, Hendrik G.; O’Neill, Luke A.J.; Xavier, Ramnik J.

    2016-01-01

    The general view that only adaptive immunity can build immunological memory has recently been challenged. In organisms lacking adaptive immunity as well as in mammals, the innate immune system can mount resistance to reinfection, a phenomenon termed trained immunity or innate immune memory. Trained immunity is orchestrated by epigenetic reprogramming, broadly defined as sustained changes in gene expression and cell physiology that do not involve permanent genetic changes such as mutations and recombination, which are essential for adaptive immunity. The discovery of trained immunity may open the door for novel vaccine approaches, for new therapeutic strategies for the treatment of immune deficiency states, and for modulation of exaggerated inflammation in autoinflammatory diseases. PMID:27102489

  3. Fitting perception in and to cognition.

    PubMed

    Goldstone, Robert L; de Leeuw, Joshua R; Landy, David H

    2015-02-01

    Perceptual modules adapt at evolutionary, lifelong, and moment-to-moment temporal scales to better serve the informational needs of cognizers. Perceptual learning is a powerful way for an individual to become tuned to frequently recurring patterns in its specific local environment that are pertinent to its goals without requiring costly executive control resources to be deployed. Mechanisms like predictive coding, categorical perception, and action-informed vision allow our perceptual systems to interface well with cognition by generating perceptual outputs that are systematically guided by how they will be used. In classic conceptions of perceptual modules, people have access to the modules' outputs but no ability to adjust their internal workings. However, humans routinely and strategically alter their perceptual systems via training regimes that have predictable and specific outcomes. In fact, employing a combination of strategic and automatic devices for adapting perception is one of the most promising approaches to improving cognition. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Training on Working Memory and Inhibitory Control in Young Adults

    PubMed Central

    Maraver, Maria J.; Bajo, M. Teresa; Gomez-Ariza, Carlos J.

    2016-01-01

    Different types of interventions have focused on trying to improve Executive Functions (EFs) due to their essential role in human cognition and behavior regulation. Although EFs are thought to be diverse, most training studies have targeted cognitive processes related to working memory (WM), and fewer have focused on training other control mechanisms, such as inhibitory control (IC). In the present study, we aimed to investigate the differential impact of training WM and IC as compared with control conditions performing non-executive control activities. Young adults were divided into two training (WM/IC) and two (active/passive) control conditions. Over six sessions, the training groups engaged in three different computer-based adaptive activities (WM or IC), whereas the active control group completed a program with low control-demanding activities that mainly involved processing speed. In addition, motivation and engagement were monitored through the training. The WM-training activities required maintenance, updating and memory search processes, while those from the IC group engaged response inhibition and interference control. All participants were pre- and post-tested in criterion tasks (n-back and Stroop), near transfer measures of WM (Operation Span) and IC (Stop-Signal). Non-trained far transfer outcome measures included an abstract reasoning test (Raven’s Advanced Progressive Matrices) and a well-validated experimental task (AX-CPT) that provides indices of cognitive flexibility considering proactive/reactive control. Training results revealed that strongly motivated participants reached higher levels of training improvements. Regarding transfer effects, results showed specific patterns of near transfer effects depending on the type of training. Interestingly, it was only the IC training group that showed far transfer to reasoning. Finally, all trained participants showed a shift toward a more proactive mode of cognitive control, highlighting a general effect of training on cognitive flexibility. The present results reveal specific and general modulations of executive control mechanisms after brief training intervention targeting either WM or IC. PMID:27917117

  5. A User-Centered Approach to Adaptive Hypertext Based on an Information Relevance Model

    NASA Technical Reports Server (NTRS)

    Mathe, Nathalie; Chen, James

    1994-01-01

    Rapid and effective to information in large electronic documentation systems can be facilitated if information relevant in an individual user's content can be automatically supplied to this user. However most of this knowledge on contextual relevance is not found within the contents of documents, it is rather established incrementally by users during information access. We propose a new model for interactively learning contextual relevance during information retrieval, and incrementally adapting retrieved information to individual user profiles. The model, called a relevance network, records the relevance of references based on user feedback for specific queries and user profiles. It also generalizes such knowledge to later derive relevant references for similar queries and profiles. The relevance network lets users filter information by context of relevance. Compared to other approaches, it does not require any prior knowledge nor training. More importantly, our approach to adaptivity is user-centered. It facilitates acceptance and understanding by users by giving them shared control over the adaptation without disturbing their primary task. Users easily control when to adapt and when to use the adapted system. Lastly, the model is independent of the particular application used to access information, and supports sharing of adaptations among users.

  6. Volitional Weight-Lifting in Rats Promotes Adaptation via Performance and Muscle Morphology prior to Gains in Muscle Mass

    PubMed Central

    Rader, Erik P; Miller, G Roger; Chetlin, Robert D; Wirth, Oliver; Baker, Brent A

    2014-01-01

    Investigation of volitional animal models of resistance training has been instrumental in our understanding of adaptive training. However, these studies have lacked reactive force measurements, a precise performance measure, and morphological analysis at a distinct phase of training – when initial strength gains precede muscle hypertrophy. Our aim was to expose rats to one month of training (70 or 700 g load) on a custom-designed weight-lifting apparatus for analysis of reactive forces and muscle morphology prior to muscle hypertrophy. Exclusively following 700 g load training, forces increased by 21% whereas muscle masses remained unaltered. For soleus (SOL) and tibialis anterior (TA) muscles, 700 g load training increased muscle fiber number per unit area by ∼20% and decreased muscle fiber area by ∼20%. Additionally, number of muscle fibers per section increased by 18% for SOL muscles. These results establish that distinct morphological alterations accompany early strength gains in a volitional animal model of load-dependent adaptive resistance training. PMID:25392697

  7. Handover training: does one size fit all? The merits of mass customisation.

    PubMed

    Kicken, Wendy; Van der Klink, Marcel; Barach, Paul; Boshuizen, H P A

    2012-12-01

    Experts have recommended training and standardisation as promising approaches to improve handovers and minimise the negative consequences of discontinuity of care. Yet the content and delivery of handover training have been only superficially examined and described in literature. The aim of this study was to formulate recommendations for effective handover training and to examine whether standardisation is a viable approach to training large numbers of healthcare professionals. A training needs analysis was conducted by means of a questionnaire, which was filled out by 96 healthcare professionals in primary and secondary care in the Netherlands, Spain, Sweden and Poland. Preferences and recommendations regarding training delivery aspects and training topics that should be included in the handover training were measured. The majority of the participants recommended a short conventional training session with practice assignments, to be completed in small, multidisciplinary groups. Formal examination, e-learning and self-study were not favoured. Recommended training topics were: communication skills, standardised procedures, knowing what to hand over, alertness to vulnerable patient groups and awareness of responsibility. The idea of completely standardised handover training is not in line with the identified differences in preferences and recommendations between different handover stakeholders. Mass customisation of training, in which generic training is adapted to local or individual needs, presents a promising solution to address general and specific needs, while containing the financial and time costs of designing and delivering handover training.

  8. Gait Training Improves Performance in Healthy Adults Exposed to Novel Discordant Conditions

    NASA Technical Reports Server (NTRS)

    Batson, Crystal D.; Brady, Rachel A.; Peters, Brian T.; Mulavara, Ajitkumar P.; Bloomberg, Jacob J.

    2010-01-01

    After they return to Earth, astronauts experience sensorimotor disturbances that disrupt their ability to walk. We have previously shown that training with a variety of sensorimotor adaptive challenges enhances the capability of adapting to novel sensorimotor conditions. We are currently developing a sensorimotor adaptability (SA) training program designed to facilitate recovery of function after gravitational transitions. The purpose of this study was to determine whether trained subjects could transfer learned skills from one discordant visuo-proprioceptive environment to another. During three sessions, subjects walked at 2.5 km/h on a treadmill mounted on a motion base platform. Ten subjects trained with a combination of lateral treadmill translation and superimposed sinusoidal lateral optic flow that was presented on a large screen positioned in front of them. Ten controls completed the same training schedule while viewing only the forward optic flow with no visual or physical oscillation. Twenty minutes after the final training session, all subjects completed a 2-minute trial with a novel combination of visual and treadmill roll perturbations not previously experienced during the training (Transfer Test). Compared to the untrained group, participants who received SA training showed faster reaction times and, based on a composite score derived from stride frequency, heart rate, and reaction time, an overall enhanced performance. Our results showed that an SA training program can improve overall walking performance when subjects are exposed to novel incongruent sensory environments. This training has application for both enhancing adaptive responses in astronauts and reducing fall and injury risk in the elderly.

  9. Exploring factors that influence the spread and sustainability of a dysphagia innovation: an instrumental case study.

    PubMed

    Ilott, Irene; Gerrish, Kate; Eltringham, Sabrina A; Taylor, Carolyn; Pownall, Sue

    2016-08-18

    Swallowing difficulties challenge patient safety due to the increased risk of malnutrition, dehydration and aspiration pneumonia. A theoretically driven study was undertaken to examine the spread and sustainability of a locally developed innovation that involved using the Inter-Professional Dysphagia Framework to structure education for the workforce. A conceptual framework with 3 spread strategies (hierarchical control, participatory adaptation and facilitated evolution) was blended with a processual approach to sustaining organisational change. The aim was to understand the processes, mechanism and outcomes associated with the spread and sustainability of this safety initiative. An instrumental case study, prospectively tracked a dysphagia innovation for 34 months (April 2011 to January 2014) in a large health care organisation in England. A train-the-trainer intervention (as participatory adaptation) was deployed on care pathways for stroke and fractured neck of femur. Data were collected at the organisational and clinical level through interviews (n = 30) and document review. The coding frame combined the processual approach with the spread mechanisms. Pre-determined outcomes included the number of staff trained about dysphagia and impact related to changes in practice. The features and processes associated with hierarchical control and participatory adaptation were identified. Leadership, critical junctures, temporality and making the innovation routine were aspects of hierarchical control. Participatory adaptation was evident on the care pathways through stakeholder responses, workload and resource pressures. Six of the 25 ward based trainers cascaded the dysphagia training. The expected outcomes were achieved when the top-down mandate (hierarchical control) was supplemented by local engagement and support (participatory adaptation). Frameworks for spread and sustainability were combined to create a 'small theory' that described the interventions, the processes and desired outcomes a priori. This novel methodological approach confirmed what is known about spread and sustainability, highlighted the particularity of change and offered new insights into the factors associated with hierarchical control and participatory adaptation. The findings illustrate the dualities of organisational change as universal and context specific; as particular and amendable to theoretical generalisation. Appreciating these dualities may contribute to understanding why many innovations fail to become routine.

  10. Long-term music training modulates the recalibration of audiovisual simultaneity.

    PubMed

    Jicol, Crescent; Proulx, Michael J; Pollick, Frank E; Petrini, Karin

    2018-07-01

    To overcome differences in physical transmission time and neural processing, the brain adaptively recalibrates the point of simultaneity between auditory and visual signals by adapting to audiovisual asynchronies. Here, we examine whether the prolonged recalibration process of passively sensed visual and auditory signals is affected by naturally occurring multisensory training known to enhance audiovisual perceptual accuracy. Hence, we asked a group of drummers, of non-drummer musicians and of non-musicians to judge the audiovisual simultaneity of musical and non-musical audiovisual events, before and after adaptation with two fixed audiovisual asynchronies. We found that the recalibration for the musicians and drummers was in the opposite direction (sound leading vision) to that of non-musicians (vision leading sound), and change together with both increased music training and increased perceptual accuracy (i.e. ability to detect asynchrony). Our findings demonstrate that long-term musical training reshapes the way humans adaptively recalibrate simultaneity between auditory and visual signals.

  11. Exercise training in chronic heart failure: improving skeletal muscle O2 transport and utilization

    PubMed Central

    Hirai, Daniel M.; Musch, Timothy I.

    2015-01-01

    Chronic heart failure (CHF) impairs critical structural and functional components of the O2 transport pathway resulting in exercise intolerance and, consequently, reduced quality of life. In contrast, exercise training is capable of combating many of the CHF-induced impairments and enhancing the matching between skeletal muscle O2 delivery and utilization (Q̇mO2 and V̇mO2, respectively). The Q̇mO2/V̇mO2 ratio determines the microvascular O2 partial pressure (PmvO2), which represents the ultimate force driving blood-myocyte O2 flux (see Fig. 1). Improvements in perfusive and diffusive O2 conductances are essential to support faster rates of oxidative phosphorylation (reflected as faster V̇mO2 kinetics during transitions in metabolic demand) and reduce the reliance on anaerobic glycolysis and utilization of finite energy sources (thus lowering the magnitude of the O2 deficit) in trained CHF muscle. These adaptations contribute to attenuated muscle metabolic perturbations (e.g., changes in [PCr], [Cr], [ADP], and pH) and improved physical capacity (i.e., elevated critical power and maximal V̇mO2). Preservation of such plasticity in response to exercise training is crucial considering the dominant role of skeletal muscle dysfunction in the pathophysiology and increased morbidity/mortality of the CHF patient. This brief review focuses on the mechanistic bases for improved Q̇mO2/V̇mO2 matching (and enhanced PmvO2) with exercise training in CHF with both preserved and reduced ejection fraction (HFpEF and HFrEF, respectively). Specifically, O2 convection within the skeletal muscle microcirculation, O2 diffusion from the red blood cell to the mitochondria, and muscle metabolic control are particularly susceptive to exercise training adaptations in CHF. Alternatives to traditional whole body endurance exercise training programs such as small muscle mass and inspiratory muscle training, pharmacological treatment (e.g., sildenafil and pentoxifylline), and dietary nitrate supplementation are also presented in light of their therapeutic potential. Adaptations within the skeletal muscle O2 transport and utilization system underlie improvements in physical capacity and quality of life in CHF and thus take center stage in the therapeutic management of these patients. PMID:26320036

  12. Space motion sickness preflight adaptation training: preliminary studies with prototype trainers

    NASA Technical Reports Server (NTRS)

    Parker, D. E.; Rock, J. C.; von Gierke, H. E.; Ouyang, L.; Reschke, M. F.; Arrott, A. P.

    1987-01-01

    Preflight training frequently has been proposed as a potential solution to the problem of space motion sickness. The paper considers successively the otolith reinterpretation, the concept for a preflight adaptation trainer and the research with the Miami University Seesaw, the Wright Patterson Air-Force Base Dynamic Environment Simulator and the Visually Coupled Airborne Systems Simulator prototype adaptation trainers.

  13. Postural stability and vehicle kinematics during an evasive lane change manoeuvre: a driver training study.

    PubMed

    Petersen, Andrew; Barrett, Rod

    2009-05-01

    The purpose of this study was to investigate the effect of a 2-day driver-training course that emphasised postural stability maintenance during critical driving situations on postural stability and vehicle kinematics during an evasive lane change manoeuvre. Following training, the trainee group experienced enhanced postural stability during specific phases of the task. In terms of vehicle kinematics, the main adaptation to training was that trained drivers reduced the extent to which they experienced vehicle decelerations during rapid turning compared to controls. Such a strategy may confer a safety benefit due to the increased risks associated with simultaneous braking while turning during an evasive manoeuvre. The newly learned strategy was consistent with the strategy used by a group of highly skilled drivers (driving instructors). Taken together, the results of the study suggest postural stability may be a useful variable to consider in relation to the skill-based component of hierarchical driver training programmes. The findings of this study provide some preliminary evidence to suggest that postural stability may be an important consideration when instructing individuals on how to safely negotiate obstacles during driving.

  14. Tailoring a training based on the Mental Health Gap Action Programme (mhGAP) Intervention Guide (IG) to Tunisia: process and relevant adaptations.

    PubMed

    Spagnolo, Jessica; Champagne, François; Leduc, Nicole; Melki, Wahid; Guesmi, Imen; Bram, Nesrine; Guisset, Ann-Lise; Piat, Myra; Laporta, Marc; Charfi, Fatma

    2018-01-01

    In order to make mental health services more accessible, the Tunisian Ministry of Health, in collaboration with the School of Public Health at the University of Montreal, the World Health Organization office in Tunisia and the Montreal World Health Organization-Pan American Health Organization Collaborating Center for Research and Training in Mental Health, implemented a training programme based on the Mental Health Gap Action Programme (mhGAP) Intervention Guide (IG) (version 1.0) , developed by the World Health Organization. This article describes the phase prior to the implementation of the training, which was offered to general practitioners working in primary care settings in the Greater Tunis area of Tunisia. The phase prior to implementation consisted of adapting the standard mhGAP-IG (version 1.0) to the local primary healthcare context. This adaptation process, an essential step before piloting the training, involved discussions with stakeholder groups, as well as field observations. Through the adaptation process, we were able to make changes to the standard training format and material. In addition, the process helped uncover systemic barriers to effective mental health care. Targeting these barriers in addition to implementing a training programme may help reduce the mental health treatment gap, and promote implementation that is successful and sustainable.

  15. Mechanisms underlying interlimb transfer of visuomotor rotations

    PubMed Central

    Wang, Jinsung; Sainburg, Robert L.

    2013-01-01

    We previously reported that opposite arm training improved the initial direction of dominant arm movements, whereas it only improved the final position accuracy of non-dominant arm movements. We now ask whether each controller accesses common, or separate, short-term memory resources. To address this question, we investigated interlimb transfer of learning for visuomotor rotations that were directed oppositely [clockwise (CW)/counterclockwise (CCW)] for the two arms. We expected that if information obtained by initial training was stored in the same short-term memory space for both arms, opposite arm training of a CW rotation would interfere with subsequent adaptation to a CCW rotation. All subjects first adapted to a 30° rotation (CW) in the visual display during reaching movements. Following this, they adapted to a 30° rotation in the opposite direction (CCW) with the other arm. In contrast to our previous findings for interlimb transfer of same direction rotations (CCW/CCW), no effects of opposite arm adaptation were indicated in the initial trials performed. This indicates that interlimb transfer is not obligatory, and suggests that short-term memory resources for the two limbs are independent. Through single trial analysis, we found that the direction and final position errors of the first trial of movement, following opposite arm training, were always the same as those of naive performance. This was true whether the opposite arm was trained with the same or the opposing rotation. When trained with the same rotation, transfer of learning did not occur until the second trial. These findings suggest that the selective use of opposite arm information is dependent on the first trial to probe current movement conditions. Interestingly, the final extent of adaptation appeared to be reduced by opposite arm training of opposing rotations. Thus, the extent of adaptation, but not initial information transfer, appears obligatorily affected by prior opposite arm adaptation. According to our findings, it is plausible that the initiation and the final extent of adaptation involve two independent neural processes. Theoretical implications of these findings are discussed. PMID:12677333

  16. Can We Improve Structured Sequence Processing? Exploring the Direct and Indirect Effects of Computerized Training Using a Mediational Model

    PubMed Central

    Smith, Gretchen N. L.; Conway, Christopher M.; Bauernschmidt, Althea; Pisoni, David B.

    2015-01-01

    Recent research suggests that language acquisition may rely on domain-general learning abilities, such as structured sequence processing, which is the ability to extract, encode, and represent structured patterns in a temporal sequence. If structured sequence processing supports language, then it may be possible to improve language function by enhancing this foundational learning ability. The goal of the present study was to use a novel computerized training task as a means to better understand the relationship between structured sequence processing and language function. Participants first were assessed on pre-training tasks to provide baseline behavioral measures of structured sequence processing and language abilities. Participants were then quasi-randomly assigned to either a treatment group involving adaptive structured visuospatial sequence training, a treatment group involving adaptive non-structured visuospatial sequence training, or a control group. Following four days of sequence training, all participants were assessed with the same pre-training measures. Overall comparison of the post-training means revealed no group differences. However, in order to examine the potential relations between sequence training, structured sequence processing, and language ability, we used a mediation analysis that showed two competing effects. In the indirect effect, adaptive sequence training with structural regularities had a positive impact on structured sequence processing performance, which in turn had a positive impact on language processing. This finding not only identifies a potential novel intervention to treat language impairments but also may be the first demonstration that structured sequence processing can be improved and that this, in turn, has an impact on language processing. However, in the direct effect, adaptive sequence training with structural regularities had a direct negative impact on language processing. This unexpected finding suggests that adaptive training with structural regularities might potentially interfere with language processing. Taken together, these findings underscore the importance of pursuing designs that promote a better understanding of the mechanisms underlying training-related changes, so that regimens can be developed that help reduce these types of negative effects while simultaneously maximizing the benefits to outcome measures of interest. PMID:25946222

  17. Can we improve structured sequence processing? Exploring the direct and indirect effects of computerized training using a mediational model.

    PubMed

    Smith, Gretchen N L; Conway, Christopher M; Bauernschmidt, Althea; Pisoni, David B

    2015-01-01

    Recent research suggests that language acquisition may rely on domain-general learning abilities, such as structured sequence processing, which is the ability to extract, encode, and represent structured patterns in a temporal sequence. If structured sequence processing supports language, then it may be possible to improve language function by enhancing this foundational learning ability. The goal of the present study was to use a novel computerized training task as a means to better understand the relationship between structured sequence processing and language function. Participants first were assessed on pre-training tasks to provide baseline behavioral measures of structured sequence processing and language abilities. Participants were then quasi-randomly assigned to either a treatment group involving adaptive structured visuospatial sequence training, a treatment group involving adaptive non-structured visuospatial sequence training, or a control group. Following four days of sequence training, all participants were assessed with the same pre-training measures. Overall comparison of the post-training means revealed no group differences. However, in order to examine the potential relations between sequence training, structured sequence processing, and language ability, we used a mediation analysis that showed two competing effects. In the indirect effect, adaptive sequence training with structural regularities had a positive impact on structured sequence processing performance, which in turn had a positive impact on language processing. This finding not only identifies a potential novel intervention to treat language impairments but also may be the first demonstration that structured sequence processing can be improved and that this, in turn, has an impact on language processing. However, in the direct effect, adaptive sequence training with structural regularities had a direct negative impact on language processing. This unexpected finding suggests that adaptive training with structural regularities might potentially interfere with language processing. Taken together, these findings underscore the importance of pursuing designs that promote a better understanding of the mechanisms underlying training-related changes, so that regimens can be developed that help reduce these types of negative effects while simultaneously maximizing the benefits to outcome measures of interest.

  18. Developing Adaptive Training in the Classroom

    DTIC Science & Technology

    2009-09-01

    change to a training course: a pretest / posttest design and the use of control groups.39 The pretest / posttest comparison would entail administering the...U.S. Army Research Institute for the Behavioral and Social Sciences Research Product 2009-10 Developing Adaptive Training in...the Classroom Rose A. Mueller-Hanson Personnel Decisions Research Institutes, Inc. Michelle M. Wisecarver U.S. Army Research Institute

  19. Stimulated Deep Neural Network for Speech Recognition

    DTIC Science & Technology

    2016-09-08

    making network regularization and robust adaptation challenging. Stimulated training has recently been proposed to address this problem by encouraging...potential to improve regularization and adaptation. This paper investigates stimulated training of DNNs for both of these options. These schemes take

  20. The semantic connectivity map: an adapting self-organising knowledge discovery method in data bases. Experience in gastro-oesophageal reflux disease.

    PubMed

    Buscema, Massimo; Grossi, Enzo

    2008-01-01

    We describe here a new mapping method able to find out connectivity traces among variables thanks to an artificial adaptive system, the Auto Contractive Map (AutoCM), able to define the strength of the associations of each variable with all the others in a dataset. After the training phase, the weights matrix of the AutoCM represents the map of the main connections between the variables. The example of gastro-oesophageal reflux disease data base is extremely useful to figure out how this new approach can help to re-design the overall structure of factors related to complex and specific diseases description.

  1. How to Practice Sports Cardiology: A Cardiology Perspective.

    PubMed

    Lawless, Christine E

    2015-07-01

    The rigorous cardiovascular (CV) demands of sport, combined with training-related cardiac adaptations, render the athlete a truly unique CV patient and sports cardiology a truly unique discipline. Cardiologists are advised to adopt a systematic approach to the CV evaluation of athletes, taking into consideration the individual sports culture, sports-specific CV demands, CV adaptations and their appearance on cardiac testing, any existing or potential interaction of the heart with the internal and external sports environment, short- and long-term CV risks, and potential effect of performance-enhancing agents and antidoping regulations. This article outlines the systematic approach, provides a detailed example, and outlines contemporary sports cardiology core competencies. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Effects of systemic hypoxia on human muscular adaptations to resistance exercise training

    PubMed Central

    Kon, Michihiro; Ohiwa, Nao; Honda, Akiko; Matsubayashi, Takeo; Ikeda, Tatsuaki; Akimoto, Takayuki; Suzuki, Yasuhiro; Hirano, Yuichi; Russell, Aaron P.

    2014-01-01

    Abstract Hypoxia is an important modulator of endurance exercise‐induced oxidative adaptations in skeletal muscle. However, whether hypoxia affects resistance exercise‐induced muscle adaptations remains unknown. Here, we determined the effect of resistance exercise training under systemic hypoxia on muscular adaptations known to occur following both resistance and endurance exercise training, including muscle cross‐sectional area (CSA), one‐repetition maximum (1RM), muscular endurance, and makers of mitochondrial biogenesis and angiogenesis, such as peroxisome proliferator‐activated receptor‐γ coactivator‐1α (PGC‐1α), citrate synthase (CS) activity, nitric oxide synthase (NOS), vascular endothelial growth factor (VEGF), hypoxia‐inducible factor‐1 (HIF‐1), and capillary‐to‐fiber ratio. Sixteen healthy male subjects were randomly assigned to either a normoxic resistance training group (NRT, n =7) or a hypoxic (14.4% oxygen) resistance training group (HRT, n =9) and performed 8 weeks of resistance training. Blood and muscle biopsy samples were obtained before and after training. After training muscle CSA of the femoral region, 1RM for bench‐press and leg‐press, muscular endurance, and skeletal muscle VEGF protein levels significantly increased in both groups. The increase in muscular endurance was significantly higher in the HRT group. Plasma VEGF concentration and skeletal muscle capillary‐to‐fiber ratio were significantly higher in the HRT group than the NRT group following training. Our results suggest that, in addition to increases in muscle size and strength, HRT may also lead to increased muscular endurance and the promotion of angiogenesis in skeletal muscle. PMID:24907297

  3. n-3 Fatty Acid Supplementation During 4 Weeks of Training Leads to Improved Anaerobic Endurance Capacity, but not Maximal Strength, Speed, or Power in Soccer Players.

    PubMed

    Gravina, Leyre; Brown, Frankie F; Alexander, Lee; Dick, James; Bell, Gordon; Witard, Oliver C; Galloway, Stuart D R

    2017-08-01

    Omega-3 fatty acid (n-3 FA) supplementation could promote adaptation to soccer-specific training. We examined the impact of a 4-week period of n-3 FA supplementation during training on adaptations in 1RM knee extensor strength, 20-m sprint speed, vertical jump power, and anaerobic endurance capacity (Yo-Yo test) in competitive soccer players. Twenty six soccer players were randomly assigned to one of two groups: n-3 FA supplementation (n-3 FA; n = 13) or placebo (n = 13). Both groups performed two experimental trial days. Assessments of physical function and respiratory function were conducted pre (PRE) and post (POST) supplementation. Training session intensity, competitive games and nutritional intake were monitored during the 4-week period. No differences were observed in respiratory measurements (FEV1, FVC) between groups. No main effect of treatment was observed for 1RM knee extensor strength, explosive leg power, or 20 m sprint performance, but strength improved as a result of the training period in both groups (p < .05). Yo-Yo test distance improved with training in the n-3 FA group only (p < .01). The mean difference (95% CI) in Yo-Yo test distance completed from PRE to POST was 203 (66-340) m for n-3 FA, and 62 (-94-217) m for placebo, with a moderate effect size (Cohen's d of 0.52). We conclude that 4 weeks of n-3 FA supplementation does not improve strength, power or speed assessments in competitive soccer players. However, the increase in anaerobic endurance capacity evident only in the n-3 FA treatment group suggests an interaction that requires further study.

  4. PGC-1α and exercise intensity dependent adaptations in mouse skeletal muscle

    PubMed Central

    Dethlefsen, Maja Munk; Bangsbo, Jens; Pilegaard, Henriette

    2017-01-01

    The aim of the present study was to examine the role of PGC-1α in intensity dependent exercise and exercise training-induced metabolic adaptations in mouse skeletal muscle. Whole body PGC-1α knockout (KO) and littermate wildtype (WT) mice performed a single treadmill running bout at either low intensity (LI) for 40 min or moderate intensity (MI) for 20 min. Blood and quadriceps muscles were removed either immediately after exercise or at 3h or 6h into recovery from exercise and from resting controls. In addition PGC-1α KO and littermate WT mice were exercise trained at either low intensity (LIT) for 40 min or at moderate intensity (MIT) for 20 min 2 times pr. day for 5 weeks. In the first and the last week of the intervention period, mice performed a graded running endurance test. Quadriceps muscles were removed before and after the training period for analyses. The acute exercise bout elicited intensity dependent increases in LC3I and LC3II protein and intensity independent decrease in p62 protein in skeletal muscle late in recovery and increased LC3II with exercise training independent of exercise intensity and volume in WT mice. Furthermore, acute exercise and exercise training did not increase LC3I and LC3II protein in PGC-1α KO. In addition, exercise-induced mRNA responses of PGC-1α isoforms were intensity dependent. In conclusion, these findings indicate that exercise intensity affected autophagy markers differently in skeletal muscle and suggest that PGC-1α regulates both acute and exercise training-induced autophagy in skeletal muscle potentially in a PGC-1α isoform specific manner. PMID:29049322

  5. Effects of Resistance Training in Youth Athletes on Muscular Fitness and Athletic Performance: A Conceptual Model for Long-Term Athlete Development

    PubMed Central

    Granacher, Urs; Lesinski, Melanie; Büsch, Dirk; Muehlbauer, Thomas; Prieske, Olaf; Puta, Christian; Gollhofer, Albert; Behm, David G.

    2016-01-01

    During the stages of long-term athlete development (LTAD), resistance training (RT) is an important means for (i) stimulating athletic development, (ii) tolerating the demands of long-term training and competition, and (iii) inducing long-term health promoting effects that are robust over time and track into adulthood. However, there is a gap in the literature with regards to optimal RT methods during LTAD and how RT is linked to biological age. Thus, the aims of this scoping review were (i) to describe and discuss the effects of RT on muscular fitness and athletic performance in youth athletes, (ii) to introduce a conceptual model on how to appropriately implement different types of RT within LTAD stages, and (iii) to identify research gaps from the existing literature by deducing implications for future research. In general, RT produced small-to-moderate effects on muscular fitness and athletic performance in youth athletes with muscular strength showing the largest improvement. Free weight, complex, and plyometric training appear to be well-suited to improve muscular fitness and athletic performance. In addition, balance training appears to be an important preparatory (facilitating) training program during all stages of LTAD but particularly during the early stages. As youth athletes become more mature, specificity, and intensity of RT methods increase. This scoping review identified research gaps that are summarized in the following and that should be addressed in future studies: (i) to elucidate the influence of gender and biological age on the adaptive potential following RT in youth athletes (especially in females), (ii) to describe RT protocols in more detail (i.e., always report stress and strain-based parameters), and (iii) to examine neuromuscular and tendomuscular adaptations following RT in youth athletes. PMID:27242538

  6. EMERGENCY RESPONSE TEAMS TRAINING IN PUBLIC HEALTH CRISIS - THE SERIOUSNESS OF SERIOUS GAMES.

    PubMed

    Stanojevic, Vojislav; Stanojevic, Cedomirka

    2016-07-01

    The rapid development of multimedia technologies in the last twenty years has lead to the emergence of new ways of learning academic and professional skills, which implies the application of multimedia technology in the form of a software -" serious computer games". Three-Dimensional Virtual Worlds. The basis of this game-platform is made of the platform of three-dimensional virtual worlds that can be described as communication systems in which participants share the same three-dimensional virtual space within which they can move, manipulate objects and communicate through their graphical representatives- avatars. Medical Education and Training. Arguments in favor of these computer tools in the learning process are accessibility, repeatability, low cost, the use of attractive graphics and a high degree of adaptation to the user. Specifically designed avatars allow students to get adapted to their roles in certain situations, especially to those which are considered rare, dangerous or unethical in real life. Drilling of major incidents, which includes the need to create environments for training, cannot be done in the real world due to high costs'and necessity to utilize the extensive resources. In addition, it is impossible to engage all the necessary health personnel at the same time. New technologies intended for conducting training, which are also called "virtual worlds", make the following possible: training at all times depending on user's commitments; simultaneous simulations on multiple levels, in several areas, in different circumstances, including dozens of unique victims; repeated scenarios and learning from mistakes; rapid feedback and the development of non-technical skills which are critical for reducing errors in dynamic, high-risk environments. Virtual worlds, which should be the subject of further research and improvements, in the field of hospital emergency response training for mass casualty incidents, certainly have a promising future.

  7. Is hypoxia training good for muscles and exercise performance?

    PubMed

    Vogt, Michael; Hoppeler, Hans

    2010-01-01

    Altitude training has become very popular among athletes as a means to further increase exercise performance at sea level or to acclimatize to competition at altitude. Several approaches have evolved during the last few decades, with "live high-train low" and "live low-train high" being the most popular. This review focuses on functional, muscular, and practical aspects derived from extensive research on the "live low-train high" approach. According to this, subjects train in hypoxia but remain under normoxia for the rest of the time. It has been reasoned that exercising in hypoxia could increase the training stimulus. Hypoxia training studies published in the past have varied considerably in altitude (2300-5700 m) and training duration (10 days to 8 weeks) and the fitness of the subjects. The evidence from muscle structural, biochemical, and molecular findings point to a specific role of hypoxia in endurance training. However, based on the available performance capacity data such as maximal oxygen uptake (Vo(2)max) and (maximal) power output, hypoxia as a supplement to training is not consistently found to be advantageous for performance at sea level. Stronger evidence exists for benefits of hypoxic training on performance at altitude. "Live low-train high" may thus be considered when altitude acclimatization is not an option. In addition, the complex pattern of gene expression adaptations induced by supplemental training in hypoxia, but not normoxia, suggest that muscle tissue specifically responds to hypoxia. Whether and to what degree these gene expression changes translate into significant changes in protein concentrations that are ultimately responsible for observable structural or functional phenotypes remains open. It is conceivable that the global functional markers such as Vo(2)max and (maximal) power output are too coarse to detect more subtle changes that might still be functionally relevant, at least to high-level athletes.

  8. Continuously Adaptive vs. Discrete Changes of Task Difficulty in the Training of a Complex Perceptual-Motor Task.

    ERIC Educational Resources Information Center

    Wood, Milton E.

    The purpose of the effort was to determine the benefits to be derived from the adaptive training technique of automatically adjusting task difficulty as a function of a student skill during early learning of a complex perceptual motor task. A digital computer provided the task dynamics, scoring, and adaptive control of a second-order, two-axis,…

  9. Effects of Exercise Training and Social Environment on Stress Resilience in Male and Female Long-Evans Rats

    DTIC Science & Technology

    2010-03-15

    1976) described the stress response as a process, named the general adaptation syndrome (GAS). The GAS is a non-specific stress response that...individual attempts to return to normal functioning. The exhaustion phase is also known as burnout , and occurs when the individual no longer has...including cardiovascular disease, obesity, diabetes, and metabolic syndrome . Physical activity is defined as any bodily movement produced by skeletal

  10. Motivational Interviewing in the Prevention of Alcohol Abuse

    DTIC Science & Technology

    2007-08-01

    4591 46 0 Kunsan 2549 93 0 Little Rock 4917 68 0 MacDill 3714 64 0 McChord 4024 108 0 Mildenhall 4424 123 0 Minot 4691 83 0 Whiteman 3548...Mikel Jon Wilson, Karen Wolf, Susi S Zoucha, Bill J Key Research Accomplishments - Developed a training manual for MI specific to AF ADAPT...motivational interviewing (MI) among highly motivated and skilled substance abuse counselors. Little is known, however, about the translational

  11. Increased onset of vergence adaptation reduces excessive accommodation during the orthoptic treatment of convergence insufficiency.

    PubMed

    Sreenivasan, Vidhyapriya; Bobier, William R

    2015-06-01

    This research tested the hypothesis that the successful treatment of convergence insufficiency (CI) with vision-training (VT) procedures, leads to an increased capacity of vergence adaptation (VAdapt) allowing a more rapid downward adjustment of the convergence accommodation cross-link. Nine subjects with CI were recruited from a clinical population, based upon reduced fusional vergence amplitudes, receded near point of convergence or symptomology. VAdapt and the resulting changes to convergence accommodation (CA) were measured at specific intervals over 15 min (pre-training). Separate clinical measures of the accommodative convergence cross link, horizontal fusion limits and near point of convergence were taken and a symptomology questionnaire completed. Subjects then participated in a VT program composed of 2.5h at home and 1h in-office weekly for 12-14 weeks. Clinical testing was done weekly. VAdapt and CA measures were retaken once clinical measures normalized for 2 weeks (mid-training) and then again when symptoms had cleared (post-training). VAdapt and CA responses as well as the clinical measures were taken on a control group showing normal clinical findings. Six subjects provided complete data sets. CI clinical findings reached normal levels between 4 and 7 weeks of training but symptoms, VAdapt, and CA output remained significantly different from the controls until 12-14 weeks. The hypothesis was retained. The reduced VAdapt and excessive CA found in CI were normalized through orthoptic treatment. This time course was underestimated by clinical findings but matched symptom amelioration. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Cognitive Resilience and Psychological Responses across a Collegiate Rowing Season.

    PubMed

    Shields, Morgan R; Brooks, M Alison; Koltyn, Kelli F; Kim, Jee-Seon; Cook, Dane B

    2017-11-01

    Student-athletes face numerous challenges across their competitive season. Although mood states have been previously studied, little is known about adaptations in other psychological responses, specifically cognition. The purpose of this study was to characterize cognitive function, mood, sleep, and stress responses at select time points of a season in collegiate rowers. It was hypothesized that during baseline, typical training, and recovery, athletes would show positive mental health profiles, in contrast to decreases in cognition with increases in negative mood and measurements of stress during peak training. Male and female Division I rowers (N = 43) and healthy controls (N = 23) were enrolled and assessed at baseline, typical training, peak training, and recovery. At each time point, measures of cognitive performance (Stroop color-naming task), academic and exercise load, perceived cognitive deficits, mood states, sleep, and stress (via self-report and salivary cortisol) were recorded. Repeated-measures ANOVA revealed significant group-time interactions for perceived exercise load, cognitive deficits, mood states, and perceived stress (P < 0.05). For athletes during peak training, the perception of cognitive deficits was positively correlated with mood disturbance (r = 0.54, P < 0.05) and perceived stress (r = 0.55, P < 0.05) and negatively correlated with response accuracy during incongruent Stroop trials (r = -0.38, P < 0.05). Cognitive performance did not change over the course of the season for either group. Cortisol and sleepiness changed over the course of the season but no significant interactions were observed. These results demonstrate that various psychological responses change over the course of a season, but they also highlight adaptation indicative of cognitive resilience among student-athletes.

  13. Effects of Short-Interval and Long-Interval Swimming Protocols on Performance, Aerobic Adaptations, and Technical Parameters: A Training Study.

    PubMed

    Dalamitros, Athanasios A; Zafeiridis, Andreas S; Toubekis, Argyris G; Tsalis, George A; Pelarigo, Jailton G; Manou, Vasiliki; Kellis, Spiridon

    2016-10-01

    Dalamitros, AA, Zafeiridis, AS, Toubekis, AG, Tsalis, GA, Pelarigo, JG, Manou, V, and Kellis, S. Effects of short-interval and long-interval swimming protocols on performance, aerobic adaptations, and technical parameters: A training study. J Strength Cond Res 30(10): 2871-2879, 2016-This study compared 2-interval swimming training programs of different work interval durations, matched for total distance and exercise intensity, on swimming performance, aerobic adaptations, and technical parameters. Twenty-four former swimmers were equally divided to short-interval training group (INT50, 12-16 × 50 m with 15 seconds rest), long-interval training group (INT100, 6-8 × 100 m with 30 seconds rest), and a control group (CON). The 2 experimental groups followed the specified swimming training program for 8 weeks. Before and after training, swimming performance, technical parameters, and indices of aerobic adaptations were assessed. ΙΝΤ50 and ΙΝΤ100 improved swimming performance in 100 and 400-m tests and the maximal aerobic speed (p ≤ 0.05); the performance in the 50-m swim did not change. Posttraining V[Combining Dot Above]O2max values were higher compared with pretraining values in both training groups (p ≤ 0.05), whereas peak aerobic power output increased only in INT100 (p ≤ 0.05). The 1-minute heart rate and blood lactate recovery values decreased after training in both groups (p < 0.01). Stroke length increased in 100 and 400-m swimming tests after training in both groups (p ≤ 0.05); no changes were observed in stroke rate after training. Comparisons between groups on posttraining mean values, after adjusting for pretraining values, revealed no significant differences between ΙΝΤ50 and ΙΝΤ100 for all variables; however, all measures were improved vs. the respective values in the CON (p < 0.001-0.05). In conclusion, when matched for distance and exercise intensity, the short-interval (50 m) and long-interval (100 m) protocols confer analogous improvements in swimming performance, in stroke cycle parameters, and in indices of aerobic adaptations after 8 weeks of training.

  14. A national curriculum for ophthalmology residency training

    PubMed Central

    Grover, Ashok Kumar; Honavar, Santosh G; Azad, Rajvardhan; Verma, Lalit

    2018-01-01

    We present a residency curriculum for Ophthalmology in India. The document derives from a workshop by the All India Ophthalmological Society (AlOS) which adapted the International Council of Ophthalmology residency curriculum and refined and customized it based on inputs by the residency program directors who participated in the work shop. The curriculum describes the course content, lays down the minimum requirements of infrastructure and mandates diagnostic and therapeutic procedures required for optimal training. It emphasises professionalism, management, research methodology, community ophthalmology as integral to the curriculum. The proposed national ophthalmology residency curriculum for India incorporates the required knowledge and skills for effective and safe practice of ophthalmology and takes into account the specific needs of the country. PMID:29785982

  15. Bemithyl potentiates the antioxidant effect of intermittent hypoxic training.

    PubMed

    Zarubina, I V; Nurmanbetova, F N; Shabanov, P D

    2005-08-01

    The rats were adapted to hypoxic hypoxia by intermittent training in a flow pressure chamber for 3 days. The course of bemithyl treatment (25 mg/kg intraperitoneally, 3 days) started immediately after the 1st day of training. Bemithyl potentiated the adaptive metabolic changes in rat brain induced by repeated hypoxic hypoxia, increased the individual resistance to hypoxia, and produced a long-lasting effect.

  16. Dual n-back training increases the capacity of the focus of attention.

    PubMed

    Lilienthal, Lindsey; Tamez, Elaine; Shelton, Jill Talley; Myerson, Joel; Hale, Sandra

    2013-02-01

    Working memory (WM) training has been reported to benefit abilities as diverse as fluid intelligence (Jaeggi et al., Proceedings of the National Academy of Sciences of the United States of America, 105:6829-6833, 2008) and reading comprehension (Chein & Morrison, Psychonomic Bulletin & Review, 17:193-199, 2010), but transfer is not always observed (for reviews, see Morrison & Chein, Psychonomics Bulletin & Review, 18:46-60, 2011; Shipstead et al., Psychological Bulletin, 138:628-654, 2012). In contrast, recent WM training studies have consistently reported improvement on the trained tasks. The basis for these training benefits has received little attention, however, and it is not known which WM components and/or processes are being improved. Therefore, the goal of the present study was to investigate five possible mechanisms underlying the effects of adaptive dual n-back training on working memory (i.e., improvements in executive attention, updating, and focus switching, as well as increases in the capacity of the focus of attention and short-term memory). In addition to a no-contact control group, the present study also included an active control group whose members received nonadaptive training on the same task. All three groups showed significant improvements on the n-back task from pretest to posttest, but adaptive training produced larger improvements than did nonadaptive training, which in turn produced larger improvements than simply retesting. Adaptive, but not nonadaptive, training also resulted in improvements on an untrained running span task that measured the capacity of the focus of attention. No other differential improvements were observed, suggesting that increases in the capacity of the focus of attention underlie the benefits of adaptive dual n-back training.

  17. Evaluation of a Technology-Based Adaptive Learning and Prevention Program for Stress Response-A Randomized Controlled Trial.

    PubMed

    Wesemann, Ulrich; Kowalski, Jens T; Jacobsen, Thomas; Beudt, Susan; Jacobs, Herbert; Fehr, Julia; Büchler, Jana; Zimmermann, Peter L

    2016-08-01

    To prevent deployment-related disorders, Chaos Driven Situations Management Retrieval System (CHARLY), a computer-aided training platform with a biofeedback interface has been developed. It simulates critical situations photorealistic for certain target and occupational groups. CHARLY was evaluated as a 1.5 days predeployment training method comparing it with the routine training. The evaluation was carried out for a matched random sample of N = 67 soldiers deployed in Afghanistan (International Security Assistance Force). Data collection took place before and after the prevention program and 4 to 6 weeks after deployment, which included mental state, post-traumatic stress disorder (PTSD) symptoms, knowledge of and attitude toward PTSD, and deployment-specific stressors. CHARLY has been significantly superior to the control group in terms of psychoeducation and attitude change. As to the mental state, both groups showed a significant increase in stress after deployment with significant lower increase in CHARLY. For PTSD-specific symptoms, CHARLY achieved a significant superiority. The fact that PTSD-specific scales showed significant differences at the end of deployment substantiates the validity of a specifically preventive effect of CHARLY. The study results tentatively indicate that highly standardized, computer-based primary prevention of mental disorders in soldiers on deployment might be superior to other more personal and less standardized forms of prevention. Reprint & Copyright © 2016 Association of Military Surgeons of the U.S.

  18. Adapting operational research training to the Rwandan context: the Intermediate Operational Research Training programme

    PubMed Central

    Odhiambo, Jackline; Amoroso, Cheryl L.; Barebwanuwe, Peter; Warugaba, Christine; Hedt-Gauthier, Bethany L.

    2017-01-01

    ABSTRACT Background: Promoting national health research agendas in low- and middle-income countries (LMICs) requires adequate numbers of individuals with skills to initiate and conduct research. Recently, non-governmental organizations (NGOs) have joined research capacity building efforts to increase research leadership by LMIC nationals. Partners In Health, an international NGO operating in Rwanda, implemented its first Intermediate Operational Research Training (IORT) course to cultivate Rwandan research talent and generate evidence to improve health care delivery. Objective: This paper describes the implementation of IORT to share experiences with other organizations interested in developing similar training programmes. Methods: The Intermediate Operational Research Training utilized a deliverable-driven training model, using learning-by-doing pedagogy with intensive hands-on mentorship to build research skills from protocol development to scientific publication. The course had short (two-day) but frequent training sessions (seven sessions over eight months). Trainees were clinical and programme staff working at the district level who were paired to jointly lead a research project. Results: Of 10 trainees admitted to the course from a pool of 24 applicants, nine trainees completed the course with five research projects published in peer-reviewed journals. Strengths of the course included supportive national and institutional research capacity guidelines, building from a successful training model, and trainee commitment. Challenges included delays in ethical review, high mentorship workload of up to 250 hours of practicum mentorship, lack of access to literature in subscription journals and high costs of open access publication. Conclusions: The IORT course was an effective way to support the district-based government and NGO staff in gaining research skills, as well as answering research questions relevant to health service delivery at district hospitals. Other NGOs should build on successful programmes while adapting course elements to address context-specific challenges. Mentorship for LMIC trainees is critical for effectiveness of research capacity building initiatives. PMID:29119872

  19. Adapting operational research training to the Rwandan context: the Intermediate Operational Research Training programme.

    PubMed

    Odhiambo, Jackline; Amoroso, Cheryl L; Barebwanuwe, Peter; Warugaba, Christine; Hedt-Gauthier, Bethany L

    2017-01-01

    Promoting national health research agendas in low- and middle-income countries (LMICs) requires adequate numbers of individuals with skills to initiate and conduct research. Recently, non-governmental organizations (NGOs) have joined research capacity building efforts to increase research leadership by LMIC nationals. Partners In Health, an international NGO operating in Rwanda, implemented its first Intermediate Operational Research Training (IORT) course to cultivate Rwandan research talent and generate evidence to improve health care delivery. This paper describes the implementation of IORT to share experiences with other organizations interested in developing similar training programmes. The Intermediate Operational Research Training utilized a deliverable-driven training model, using learning-by-doing pedagogy with intensive hands-on mentorship to build research skills from protocol development to scientific publication. The course had short (two-day) but frequent training sessions (seven sessions over eight months). Trainees were clinical and programme staff working at the district level who were paired to jointly lead a research project. Of 10 trainees admitted to the course from a pool of 24 applicants, nine trainees completed the course with five research projects published in peer-reviewed journals. Strengths of the course included supportive national and institutional research capacity guidelines, building from a successful training model, and trainee commitment. Challenges included delays in ethical review, high mentorship workload of up to 250 hours of practicum mentorship, lack of access to literature in subscription journals and high costs of open access publication. The IORT course was an effective way to support the district-based government and NGO staff in gaining research skills, as well as answering research questions relevant to health service delivery at district hospitals. Other NGOs should build on successful programmes while adapting course elements to address context-specific challenges. Mentorship for LMIC trainees is critical for effectiveness of research capacity building initiatives.

  20. Stimulating the cerebellum affects visuomotor adaptation but not intermanual transfer of learning.

    PubMed

    Block, Hannah; Celnik, Pablo

    2013-12-01

    When systematic movement errors occur, the brain responds with a systematic change in motor behavior. This type of adaptive motor learning can transfer intermanually; adaptation of movements of the right hand in response to training with a perturbed visual signal (visuomotor adaptation) may carry over to the left hand. While visuomotor adaptation has been studied extensively, it is unclear whether the cerebellum, a structure involved in adaptation, is important for intermanual transfer as well. We addressed this question with three experiments in which subjects reached with their right hands as a 30° visuomotor rotation was introduced. Subjects received anodal or sham transcranial direct current stimulation on the trained (experiment 1) or untrained (experiment 2) hemisphere of the cerebellum, or, for comparison, motor cortex (M1). After the training period, subjects reached with their left hand, without visual feedback, to assess intermanual transfer of learning aftereffects. Stimulation of the right cerebellum caused faster adaptation, but none of the stimulation sites affected transfer. To ascertain whether cerebellar stimulation would increase transfer if subjects learned faster as well as a larger amount, in experiment 3 anodal and sham cerebellar groups experienced a shortened training block such that the anodal group learned more than sham. Despite the difference in adaptation magnitude, transfer was similar across these groups, although smaller than in experiment 1. Our results suggest that intermanual transfer of visuomotor learning does not depend on cerebellar activity and that the number of movements performed at plateau is an important predictor of transfer.

  1. A dual-learning paradigm can simultaneously train multiple characteristics of walking

    PubMed Central

    Toliver, Alexis; Bastian, Amy J.

    2016-01-01

    Impairments in human motor patterns are complex: what is often observed as a single global deficit (e.g., limping when walking) is actually the sum of several distinct abnormalities. Motor adaptation can be useful to teach patients more normal motor patterns, yet conventional training paradigms focus on individual features of a movement, leaving others unaddressed. It is known that under certain conditions, distinct movement components can be simultaneously adapted without interference. These previous “dual-learning” studies focused solely on short, planar reaching movements, yet it is unknown whether these findings can generalize to a more complex behavior like walking. Here we asked whether a dual-learning paradigm, incorporating two distinct motor adaptation tasks, can be used to simultaneously train multiple components of the walking pattern. We developed a joint-angle learning task that provided biased visual feedback of sagittal joint angles to increase peak knee or hip flexion during the swing phase of walking. Healthy, young participants performed this task independently or concurrently with another locomotor adaptation task, split-belt treadmill adaptation, where subjects adapted their step length symmetry. We found that participants were able to successfully adapt both components of the walking pattern simultaneously, without interference, and at the same rate as adapting either component independently. This leads us to the interesting possibility that combining rehabilitation modalities within a single training session could be used to help alleviate multiple deficits at once in patients with complex gait impairments. PMID:26961100

  2. Asymmetric bone adaptations to soleus mechanical loading after spinal cord injury

    PubMed Central

    Dudley-Javoroski, S.; Shields, R.K.

    2009-01-01

    The purpose of this report is to examine longitudinal bone mineral density (BMD) changes in individuals with spinal cord injury (SCI) who began unilateral soleus electrical stimulation early after injury. Twelve men with SCI and seven without SCI underwent peripheral quantitative computed tomography assessment of distal tibia BMD. After 4.5 to 6 years of training, average trained limb BMD was 27.5% higher than untrained limb BMD. The training effect was more pronounced in the central core of the tibia cross-section (40.5% between-limb difference). No between-limb difference emerged in the anterior half of the tibia (19.2 mg/cm3 difference, p>0.05). A robust between-limb difference emerged in the posterior half of the tibia (76.1 mg/cm3 difference, p=0.0439). The posterior tibia BMD of one subject remained within the range of non-SCI values for 3.8 years post-SCI. The results support that the constrained orientation of soleus mechanical loads, administered over several years, elicited bone-sparing effects in the posterior tibia. This study provides a demonstration of the bone-protective potential of a carefully controlled dose of mechanical load. The specific orientation of applied mechanical loads may strongly influence the manifestation of BMD adaptations in humans with SCI. PMID:18799855

  3. Podokinetic Stimulation Causes Shifts in Perception of Straight Ahead

    PubMed Central

    Scott, John T.; Lohnes, Corey A.; Horak, Fay B.; Earhart, Gammon M.

    2011-01-01

    Podokinetic after-rotation (PKAR) is a phenomenon in which subjects inadvertently rotate when instructed to step in place after a period of walking on a rotating treadmill. PKAR has been shown to transfer between different forms of locomotion, but has not been tested in a non-locomotor task. We conducted two experiments to assess effects of PKAR on perception of subjective straight ahead and on quiet standing posture. Twenty-one healthy young right-handed subjects pointed to what they perceived as their subjective straight ahead with a laser pointer while they were recorded by a motion capture system both before and after a training period on the rotating treadmill. Subjects performed the pointing task while standing, sitting on a chair without a back, and a chair with a back. After the training period, subjects demonstrated a significant shift in subjective straight ahead, pointing an average of 29.1 ± 10.6 degrees off of center. The effect was direction-specific, depending on whether subjects had trained in the clockwise or counter-clockwise direction. Postures that limited subjects’ ability to rotate the body in space resulted in reduction, but not elimination, of the effect. The effect was present in quiet standing and even in sitting postures where locomotion was not possible. The robust transfer of PKAR to non-locomotor tasks, and across locomotor forms as demonstrated previously, is in contrast to split-belt adaptations that show limited transfer. We propose that, unlike split-belt adaptations, podokinetic adaptations are mediated at supraspinal, spatial orientation areas that influences spinal-level circuits for locomotion. PMID:21076818

  4. Practical nutritional recommendations for the athlete.

    PubMed

    Maughan, Ronald J; Burke, Louise M

    2011-01-01

    The aim of training is to achieve optimum performance on the day of competition via three processes or paradigms; training hard to create the required training stimulus, training smart to maximize adaptations to the training stimulus, and training specifically to fine- turn the behaviors or physiology needed for competition strategies. Dietary strategies for competition must target the factors that would otherwise cause fatigue during the event, promoting an enhancement of performance by reducing or delaying the onset of these factors. In some cases, the nutritional strategies needed to achieve these various paradigms are different, and even opposite to each other, so athletes need to periodize their nutrition, just as they periodize their training program. The evolution of new knowledge from sports nutrition research, such as presented in this book, usually starts with a stark concept that must be further refined; to move from individual nutrients to food, from 'one size fits all' to the individual needs and practices of different athletes, and from single issues to an integrated picture of sports nutrition. The translation from science to practice usually requires a large body of follow-up studies as well as experimentation in the field. Copyright © 2011 S. Karger AG, Basel.

  5. Physiological responses to rock climbing in young climbers

    PubMed Central

    Morrison, Audry Birute; Schöffl, Volker Rainer

    2007-01-01

    Key questions regarding the training and physiological qualities required to produce an elite rock climber remain inadequately defined. Little research has been done on young climbers. The aim of this paper was to review literature on climbing alongside relevant literature characterising physiological adaptations in young athletes. Evidence‐based recommendations were sought to inform the training of young climbers. Of 200 studies on climbing, 50 were selected as being appropriate to this review, and were interpreted alongside physiological studies highlighting specific common development growth variables in young climbers. Based on injury data, climbers younger than 16 years should not participate in international bouldering competitions and intensive finger strength training is not recommended. The majority of climbing foot injuries result from wearing too small or unnaturally shaped climbing shoes. Isometric and explosive strength improvements are strongly associated with the latter stages of sexual maturation and specific ontogenetic development, while improvement in motor abilities declines. Somatotyping that might identify common physical attributes in elite climbers of any age is incomplete. Accomplished adolescent climbers can now climb identical grades and compete against elite adult climbers aged up to and >40 years. High‐intensity sports training requiring leanness in a youngster can result in altered and delayed pubertal and skeletal development, metabolic and neuroendocrine aberrations and trigger eating disorders. This should be sensitively and regularly monitored. Training should reflect efficacious exercises for a given sex and biological age. PMID:18037632

  6. Principles underlying the design of "The Number Race", an adaptive computer game for remediation of dyscalculia.

    PubMed

    Wilson, Anna J; Dehaene, Stanislas; Pinel, Philippe; Revkin, Susannah K; Cohen, Laurent; Cohen, David

    2006-05-30

    Adaptive game software has been successful in remediation of dyslexia. Here we describe the cognitive and algorithmic principles underlying the development of similar software for dyscalculia. Our software is based on current understanding of the cerebral representation of number and the hypotheses that dyscalculia is due to a "core deficit" in number sense or in the link between number sense and symbolic number representations. "The Number Race" software trains children on an entertaining numerical comparison task, by presenting problems adapted to the performance level of the individual child. We report full mathematical specifications of the algorithm used, which relies on an internal model of the child's knowledge in a multidimensional "learning space" consisting of three difficulty dimensions: numerical distance, response deadline, and conceptual complexity (from non-symbolic numerosity processing to increasingly complex symbolic operations). The performance of the software was evaluated both by mathematical simulations and by five weeks of use by nine children with mathematical learning difficulties. The results indicate that the software adapts well to varying levels of initial knowledge and learning speeds. Feedback from children, parents and teachers was positive. A companion article describes the evolution of number sense and arithmetic scores before and after training. The software, open-source and freely available online, is designed for learning disabled children aged 5-8, and may also be useful for general instruction of normal preschool children. The learning algorithm reported is highly general, and may be applied in other domains.

  7. Adaptation, Implementation Plan, and Evaluation of an Online Tobacco Cessation Training Program for Health Care Professionals in Three Spanish-Speaking Latin American Countries: Protocol of the Fruitful Study

    PubMed Central

    Company, Assumpta; Guillen, Olga; Margalef, Mercè; Arrien, Martha Alicia; Sánchez, Claudia; Cáceres de León, Paula

    2017-01-01

    Background Tobacco cessation training programs to treat tobacco dependence have measureable effects on patients’ smoking. Tobacco consumption in low- and middle-income countries (LMICs) is high and slowly decreasing, but these countries usually lack measures to face the epidemic, including tobacco cessation training programs for health professionals and organizations. Based on a previous online smoking cessation training program for hospital workers in Spain, the Fruitful Study aims to increase smoking cessation knowledge, attitudes, self-confidence, and performance interventions among health care professionals of three Spanish-speaking low- and middle-income Latin American and Caribbean (LAC) countries. Objective The purpose of this paper is to describe the methodology and evaluation strategy of the Fruitful Study intended to adapt, implement, and test the effectiveness of an online, evidence-based tobacco cessation training program addressed to health professionals from Bolivia, Guatemala, and Paraguay. Methods This study will use a mixed-methods design with a pre-post evaluation (quantitative approach) and in-depth interviews and focus groups (qualitative approach). The main outcomes will be (1) participants’ attitudes, knowledge, and behaviors before and after the training; and (2) the level of implementation of tobacco control policies within the hospitals before and after the training. Results To date, adaptation of the materials, study enrollment, and training activities have been completed. During the adaptation, the main mismatches were language background and content adaptation. Several aids were developed to enable students’ training enrollment, including access to computers, support from technicians, and reminders to correctly complete the course. Follow-up data collection is in progress. We have enrolled 281 hospital workers. Results are expected at the beginning of 2017 and will be reported in two follow-up papers: one about the formative evaluation and the other about the summative evaluation. Conclusions There is a need to learn more about the cultural and content elements that should be modified when an online tobacco cessation training program is adapted to new contexts. Special attention should be given to the personal and material resources that could make the implementation possible. Results from the Fruitful Study may offer a new approach to adapting programs to LMICs in order to offer education solutions with the use of emerging and growing communication technologies. ClinicalTrial Clinicaltrials.gov NCT02718872; https://clinicaltrials.gov/ct2/show/NCT02718872 (Archived by WebCite at http://www.webcitation.org/6mjihsgE2) PMID:28128731

  8. Adaptation of community health worker-delivered behavioral activation for torture survivors in Kurdistan, Iraq.

    PubMed

    Magidson, J F; Lejuez, C W; Kamal, T; Blevins, E J; Murray, L K; Bass, J K; Bolton, P; Pagoto, S

    2015-12-01

    Growing evidence supports the use of Western therapies for the treatment of depression, trauma, and stress delivered by community health workers (CHWs) in conflict-affected, resource-limited countries. A recent randomized controlled trial (Bolton et al . 2014 a ) supported the efficacy of two CHW-delivered interventions, cognitive processing therapy (CPT) and brief behavioral activation treatment for depression (BATD), for reducing depressive symptoms and functional impairment among torture survivors in the Kurdish region of Iraq. This study describes the adaptation of the CHW-delivered BATD approach delivered in this trial (Bolton et al .2014 a ), informed by the Assessment-Decision-Administration-Production-Topical experts-Integration-Training-Testing (ADAPT-ITT) framework for intervention adaptation (Wingood & DiClemente, 2008). Cultural modifications, adaptations for low-literacy, and tailored training and supervision for non-specialist CHWs are presented, along with two clinical case examples to illustrate delivery of the adapted intervention in this setting. Eleven CHWs, a study psychiatrist, and the CHW clinical supervisor were trained in BATD. The adaptation process followed the ADAPT-ITT framework and was iterative with significant input from the on-site supervisor and CHWs. Modifications were made to fit Kurdish culture, including culturally relevant analogies, use of stickers for behavior monitoring, cultural modifications to behavioral contracts, and including telephone-delivered sessions to enhance feasibility. BATD was delivered by CHWs in a resource-poor, conflict-affected area in Kurdistan, Iraq, with some important modifications, including low-literacy adaptations, increased cultural relevancy of clinical materials, and tailored training and supervision for CHWs. Barriers to implementation, lessons learned, and recommendations for future efforts to adapt behavioral therapies for resource-limited, conflict-affected areas are discussed.

  9. Teaching learning based optimization-functional link artificial neural network filter for mixed noise reduction from magnetic resonance image.

    PubMed

    Kumar, M; Mishra, S K

    2017-01-01

    The clinical magnetic resonance imaging (MRI) images may get corrupted due to the presence of the mixture of different types of noises such as Rician, Gaussian, impulse, etc. Most of the available filtering algorithms are noise specific, linear, and non-adaptive. There is a need to develop a nonlinear adaptive filter that adapts itself according to the requirement and effectively applied for suppression of mixed noise from different MRI images. In view of this, a novel nonlinear neural network based adaptive filter i.e. functional link artificial neural network (FLANN) whose weights are trained by a recently developed derivative free meta-heuristic technique i.e. teaching learning based optimization (TLBO) is proposed and implemented. The performance of the proposed filter is compared with five other adaptive filters and analyzed by considering quantitative metrics and evaluating the nonparametric statistical test. The convergence curve and computational time are also included for investigating the efficiency of the proposed as well as competitive filters. The simulation outcomes of proposed filter outperform the other adaptive filters. The proposed filter can be hybridized with other evolutionary technique and utilized for removing different noise and artifacts from others medical images more competently.

  10. [A study of the effectiveness of a group-based cognitive-behavioral parent training program].

    PubMed

    Konstadinidis, L; Goga, P; Simos, G; Mavreas, V

    2012-01-01

    The role of the family in the development of the child as well as the quality of the parent-child relationship and its effect in the social, mental and cognitive development of the child has been the focus of attention of many sciences and scientists and it has been discovered that many parents are not well prepared to do their best for their children. The parent training programmes are willing to partly give a solution to this with their preventive role. In recent years, the effectiveness of the parent training programmes, which are offered to "high risk" parents, has been the focus of a big amount of research, meta-analyses and reviews. A smaller amount concerns the effectiveness of the universal programmes which are offered to the parents of the general population. The effectiveness of a ten-meeting structured group parent training programme of cognitive-behavioral approach, which had been offered to mothers of the general population, was researched in the present study. It aimed to research the effectiveness of the specific programme in the children's behavior and the subjective perception of the functionality of the family of the mothers who chose to participate in and completed the programme (n=56, experimental group/participants), compared to those who chose not to (n=113, control group/non participants). The mothers of the two groups were mothers with children aged between 2 and 12 and filled in the Family Adaptation and Cohesion Scales, FACES-III and the Questionnaire of Inter-personal and Cross-personal Adaptation, before (Phases A) and after (Phases B) the programme. The two groups were fully matched and did not present any significant difference regarding their demographic characteristics. During both Phases A and B of the training programme participants and non-participants expressed a high degree of satisfaction by the functionality of their family and did not differentiate significantly in the evaluation of the existent family cohesion and adaptability, the type of the family based on the cohesion and adaptability and the general type of family based on the functionality. In addition, while the children of the participants were, before the start of the programme, in a significantly disadvantaged position compared to the children of the non-participants, after the end of the programme, they were significantly improved, decreasing the negative symptoms and behaviors. This particular parent training programme of cognitive-behavioral approach, as well as other programmes which belong to the same theoretical direction, could contribute to the prevention of the behavior problems and the promotion of the mental health.

  11. Training working memory to improve attentional control in anxiety: A proof-of-principle study using behavioral and electrophysiological measures.

    PubMed

    Sari, Berna A; Koster, Ernst H W; Pourtois, Gilles; Derakshan, Nazanin

    2016-12-01

    Trait anxiety is associated with impairments in attentional control and processing efficiency (see Berggren & Derakshan, 2013, for a review). Working memory training using the adaptive dual n-back task has shown to improve attentional control in subclinical depression with transfer effects at the behavioral and neural level on a working memory task (Owens, Koster, & Derakshan, 2013). Here, we examined the beneficial effects of working memory training on attentional control in pre-selected high trait anxious individuals who underwent a three week daily training intervention using the adaptive dual n-back task. Pre and post outcome measures of attentional control were assessed using a Flanker task that included a stress induction and an emotional a Antisaccade task (with angry and neutral faces as target). Resting state EEG (theta/beta ratio) was recorded to as a neural marker of trait attentional control. Our results showed that adaptive working memory training improved attentional control with transfer effects on the Flanker task and resting state EEG, but effects of training on the Antisaccade task were less conclusive. Finally, training related gains were associated with lower levels of trait anxiety at post (vs pre) intervention. Our results demonstrate that adaptive working memory training in anxiety can have beneficial effects on attentional control and cognitive performance that may protect against emotional vulnerability in individuals at risk of developing clinical anxiety. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Closing The Gap between Two Countries: Feasibility of Dissemination Of An Evidence-Based Parenting Intervention in México.

    PubMed

    Parra-Cardona, José Rubén; Aguilar Parra, Elizabeth; Wieling, Elizabeth; Domenech Rodríguez, Melanie M; Fitzgerald, Hiram E

    2015-10-01

    In this manuscript, we describe the initial steps of an international program of prevention research in Monterrey, México. Specifically, we present a feasibility study focused on exploring the level of acceptability reported by a group of Mexican mothers who were exposed to a culturally adapted parenting intervention originally developed in the United States. The efficacious intervention adapted in this investigation is known as Parent Management Training, the Oregon Model (PMTO(®)). Following a description of our international partnership, we describe the implementation of the pilot study aimed at determining initial feasibility. Qualitative data provided by 40 Mexican mothers exposed to the culturally adapted parenting intervention illustrate the participants' high level of receptivity toward the intervention, as well as the beneficial impact on their parenting practices. © 2014 American Association for Marriage and Family Therapy.

  13. Neural correlates of working memory training in HIV patients: study protocol for a randomized controlled trial.

    PubMed

    Chang, L; Løhaugen, G C; Douet, V; Miller, E N; Skranes, J; Ernst, T

    2016-02-02

    Potent combined antiretroviral therapy decreased the incidence and severity of HIV-associated neurocognitive disorders (HAND); however, no specific effective pharmacotherapy exists for HAND. Patients with HIV commonly have deficits in working memory and attention, which may negatively impact many other cognitive domains, leading to HAND. Since HAND may lead to loss of independence in activities of daily living and negative emotional well-being, and incur a high economic burden, effective treatments for HAND are urgently needed. This study aims to determine whether adaptive working memory training might improve cognitive functions and neural network efficiency and possibly decrease neuroinflammation. This study also aims to assess whether subjects with the LMX1A-rs4657412 TT(AA) genotype show greater training effects from working memory training than TC(AG) or CC(GG)-carriers. 60 HIV-infected and 60 seronegative control participants will be randomized to a double-blind active-controlled study, using adaptive versus non-adaptive Cogmed Working Memory Training® (CWMT), 20-25 sessions over 5-8 weeks. Each subject will be assessed with near- and far-transfer cognitive tasks, self-reported mood and executive function questionnaires, and blood-oxygenation level-dependent functional MRI during working memory (n-back) and visual attention (ball tracking) tasks, at baseline, 1-month, and 6-months after CWMT. Furthermore, genotyping for LMX1A-rs4657412 will be performed to identify whether subjects with the TT(AA)-genotype show greater gain or neural efficiency after CWMT than those with other genotypes. Lastly, cerebrospinal fluid will be obtained before and after CWMT to explore changes in levels of inflammatory proteins (cytokines and chemokines) and monoamines. Improving working memory in HIV patients, using CWMT, might slow the progression or delay the onset of HAND. Observation of decreased brain activation or normalized neural networks, using fMRI, after CWMT would lead to a better understanding of how neural networks are modulated by CWMT. Moreover, validating the greater training gain in subjects with the LMX1A-TT(AA) genotype could lead to a personalized approach for future working memory training studies. Demonstrating and understanding the neural correlates of the efficacy of CWMT in HIV patients could lead to a safe adjunctive therapy for HAND, and possibly other brain disorders. ClinicalTrial.gov, NCT02602418.

  14. Adapting evidence-based interventions using a common theory, practices, and principles.

    PubMed

    Rotheram-Borus, Mary Jane; Swendeman, Dallas; Becker, Kimberly D

    2014-01-01

    Hundreds of validated evidence-based intervention programs (EBIP) aim to improve families' well-being; however, most are not broadly adopted. As an alternative diffusion strategy, we created wellness centers to reach families' everyday lives with a prevention framework. At two wellness centers, one in a middle-class neighborhood and one in a low-income neighborhood, popular local activity leaders (instructors of martial arts, yoga, sports, music, dancing, Zumba), and motivated parents were trained to be Family Mentors. Trainings focused on a framework that taught synthesized, foundational prevention science theory, practice elements, and principles, applied to specific content areas (parenting, social skills, and obesity). Family Mentors were then allowed to adapt scripts and activities based on their cultural experiences but were closely monitored and supervised over time. The framework was implemented in a range of activities (summer camps, coaching) aimed at improving social, emotional, and behavioral outcomes. Successes and challenges are discussed for (a) engaging parents and communities; (b) identifying and training Family Mentors to promote children and families' well-being; and (c) gathering data for supervision, outcome evaluation, and continuous quality improvement. To broadly diffuse prevention to families, far more experimentation is needed with alternative and engaging implementation strategies that are enhanced with knowledge harvested from researchers' past 30 years of experience creating EBIP. One strategy is to train local parents and popular activity leaders in applying robust prevention science theory, common practice elements, and principles of EBIP. More systematic evaluation of such innovations is needed.

  15. Case study in designing a research fundamentals curriculum for community health workers: a university-community clinic collaboration.

    PubMed

    Dumbauld, Jill; Kalichman, Michael; Bell, Yvonne; Dagnino, Cynthia; Taras, Howard L

    2014-01-01

    Community health workers (CHWs) are increasingly incorporated into research teams. Training them in research methodology and ethics, while relating these themes to a community's characteristics, may help to better integrate these health promotion personnel into research teams. An interactive training course on research fundamentals for CHWs was designed and implemented jointly by a community agency serving a primarily Latino, rural population and an academic health center. A focus group of community members and input from community leaders comprised a community-based participatory research model to create three 3-hour interactive training sessions. The resulting curriculum was interactive and successfully stimulated dialogue between trainees and academic researchers. By choosing course activities that elicited community-specific responses into each session's discussion, researchers learned about the community as much as the training course educated CHWs about research. The approach is readily adaptable, making it useful to other communities where CHWs are part of the health system.

  16. The role of heart rate variability in sports physiology

    PubMed Central

    DONG, JIN-GUO

    2016-01-01

    Heart rate variability (HRV) is a relevant marker reflecting cardiac modulation by sympathetic and vagal components of the autonomic nervous system (ANS). Although the clinical application of HRV is mainly associated with the prediction of sudden cardiac death and assessing cardiovascular and metabolic illness progression, recent observations have suggested its applicability to physical exercise training. HRV is becoming one of the most useful tools for tracking the time course of training adaptation/maladaptation of athletes and in setting the optimal training loads leading to improved performances. However, little is known regarding the role of HRV and the internal effects of physical exercise on an athlete, which may be useful in designing fitness programs ensuring sufficient training load that may correspond with the specific ability of the athlete. In this review, we offer a comprehensive assessment of investigations concerning the interrelation between HRV and ANS, and examine how the application of HRV to physical exercise may play a role in sports physiology. PMID:27168768

  17. The role of heart rate variability in sports physiology.

    PubMed

    Dong, Jin-Guo

    2016-05-01

    Heart rate variability (HRV) is a relevant marker reflecting cardiac modulation by sympathetic and vagal components of the autonomic nervous system (ANS). Although the clinical application of HRV is mainly associated with the prediction of sudden cardiac death and assessing cardiovascular and metabolic illness progression, recent observations have suggested its applicability to physical exercise training. HRV is becoming one of the most useful tools for tracking the time course of training adaptation/maladaptation of athletes and in setting the optimal training loads leading to improved performances. However, little is known regarding the role of HRV and the internal effects of physical exercise on an athlete, which may be useful in designing fitness programs ensuring sufficient training load that may correspond with the specific ability of the athlete. In this review, we offer a comprehensive assessment of investigations concerning the interrelation between HRV and ANS, and examine how the application of HRV to physical exercise may play a role in sports physiology.

  18. The Effects of Skill Training on Social Workers' Professional Competences in Norway: Results of a Cluster-Randomised Study

    PubMed Central

    Malmberg-Heimonen, Ira; Natland, Sidsel; Tøge, Anne Grete; Hansen, Helle Cathrine

    2016-01-01

    Using a cluster-randomised design, this study analyses the effects of a government-administered skill training programme for social workers in Norway. The training programme aims to improve social workers' professional competences by enhancing and systematising follow-up work directed towards longer-term unemployed clients in the following areas: encountering the user, system-oriented efforts and administrative work. The main tools and techniques of the programme are based on motivational interviewing and appreciative inquiry. The data comprise responses to baseline and eighteen-month follow-up questionnaires administered to all social workers (n = 99) in eighteen participating Labour and Welfare offices randomised into experimental and control groups. The findings indicate that the skill training programme positively affected the social workers' evaluations of their professional competences and quality of work supervision received. The acquisition and mastering of combinations of specific tools and techniques, a comprehensive supervision structure and the opportunity to adapt the learned skills to local conditions were important in explaining the results. PMID:27559232

  19. Physiological adaptations to interval training and the role of exercise intensity.

    PubMed

    MacInnis, Martin J; Gibala, Martin J

    2017-05-01

    Interval exercise typically involves repeated bouts of relatively intense exercise interspersed by short periods of recovery. A common classification scheme subdivides this method into high-intensity interval training (HIIT; 'near maximal' efforts) and sprint interval training (SIT; 'supramaximal' efforts). Both forms of interval training induce the classic physiological adaptations characteristic of moderate-intensity continuous training (MICT) such as increased aerobic capacity (V̇O2 max ) and mitochondrial content. This brief review considers the role of exercise intensity in mediating physiological adaptations to training, with a focus on the capacity for aerobic energy metabolism. With respect to skeletal muscle adaptations, cellular stress and the resultant metabolic signals for mitochondrial biogenesis depend largely on exercise intensity, with limited work suggesting that increases in mitochondrial content are superior after HIIT compared to MICT, at least when matched-work comparisons are made within the same individual. It is well established that SIT increases mitochondrial content to a similar extent to MICT despite a reduced exercise volume. At the whole-body level, V̇O2 max is generally increased more by HIIT than MICT for a given training volume, whereas SIT and MICT similarly improve V̇O2 max despite differences in training volume. There is less evidence available regarding the role of exercise intensity in mediating changes in skeletal muscle capillary density, maximum stroke volume and cardiac output, and blood volume. Furthermore, the interactions between intensity and duration and frequency have not been thoroughly explored. While interval training is clearly a potent stimulus for physiological remodelling in humans, the integrative response to this type of exercise warrants further attention, especially in comparison to traditional endurance training. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.

  20. Physiological adaptations to interval training and the role of exercise intensity

    PubMed Central

    MacInnis, Martin J.

    2016-01-01

    Abstract Interval exercise typically involves repeated bouts of relatively intense exercise interspersed by short periods of recovery. A common classification scheme subdivides this method into high‐intensity interval training (HIIT; ‘near maximal’ efforts) and sprint interval training (SIT; ‘supramaximal’ efforts). Both forms of interval training induce the classic physiological adaptations characteristic of moderate‐intensity continuous training (MICT) such as increased aerobic capacity (V˙O2 max ) and mitochondrial content. This brief review considers the role of exercise intensity in mediating physiological adaptations to training, with a focus on the capacity for aerobic energy metabolism. With respect to skeletal muscle adaptations, cellular stress and the resultant metabolic signals for mitochondrial biogenesis depend largely on exercise intensity, with limited work suggesting that increases in mitochondrial content are superior after HIIT compared to MICT, at least when matched‐work comparisons are made within the same individual. It is well established that SIT increases mitochondrial content to a similar extent to MICT despite a reduced exercise volume. At the whole‐body level, V˙O2 max is generally increased more by HIIT than MICT for a given training volume, whereas SIT and MICT similarly improve V˙O2 max despite differences in training volume. There is less evidence available regarding the role of exercise intensity in mediating changes in skeletal muscle capillary density, maximum stroke volume and cardiac output, and blood volume. Furthermore, the interactions between intensity and duration and frequency have not been thoroughly explored. While interval training is clearly a potent stimulus for physiological remodelling in humans, the integrative response to this type of exercise warrants further attention, especially in comparison to traditional endurance training. PMID:27748956

  1. Contingency-based emotional resilience: effort-based reward training and flexible coping lead to adaptive responses to uncertainty in male rats

    PubMed Central

    Lambert, Kelly G.; Hyer, Molly M.; Rzucidlo, Amanda A.; Bergeron, Timothy; Landis, Timothy; Bardi, Massimo

    2014-01-01

    Emotional resilience enhances an animal's ability to maintain physiological allostasis and adaptive responses in the midst of challenges ranging from cognitive uncertainty to chronic stress. In the current study, neurobiological factors related to strategic responses to uncertainty produced by prediction errors were investigated by initially profiling male rats as passive, active or flexible copers (n = 12 each group) and assigning to either a contingency-trained or non-contingency trained group. Animals were subsequently trained in a spatial learning task so that problem solving strategies in the final probe task, as well-various biomarkers of brain activation and plasticity in brain areas associated with cognition and emotional regulation, could be assessed. Additionally, fecal samples were collected to further determine markers of stress responsivity and emotional resilience. Results indicated that contingency-trained rats exhibited more adaptive responses in the probe trial (e.g., fewer interrupted grooming sequences and more targeted search strategies) than the noncontingent-trained rats; additionally, increased DHEA/CORT ratios were observed in the contingent-trained animals. Diminished activation of the habenula (i.e., fos-immunoreactivity) was correlated with resilience factors such as increased levels of DHEA metabolites during cognitive training. Of the three coping profiles, flexible copers exhibited enhanced neuroplasticity (i.e., increased dentate gyrus doublecortin-immunoreactivity) compared to the more consistently responding active and passive copers. Thus, in the current study, contingency training via effort-based reward (EBR) training, enhanced by a flexible coping style, provided neurobiological resilience and adaptive responses to prediction errors in the final probe trial. These findings have implications for psychiatric illnesses that are influenced by altered stress responses and decision-making abilities (e.g., depression). PMID:24808837

  2. Contingency-based emotional resilience: effort-based reward training and flexible coping lead to adaptive responses to uncertainty in male rats.

    PubMed

    Lambert, Kelly G; Hyer, Molly M; Rzucidlo, Amanda A; Bergeron, Timothy; Landis, Timothy; Bardi, Massimo

    2014-01-01

    Emotional resilience enhances an animal's ability to maintain physiological allostasis and adaptive responses in the midst of challenges ranging from cognitive uncertainty to chronic stress. In the current study, neurobiological factors related to strategic responses to uncertainty produced by prediction errors were investigated by initially profiling male rats as passive, active or flexible copers (n = 12 each group) and assigning to either a contingency-trained or non-contingency trained group. Animals were subsequently trained in a spatial learning task so that problem solving strategies in the final probe task, as well-various biomarkers of brain activation and plasticity in brain areas associated with cognition and emotional regulation, could be assessed. Additionally, fecal samples were collected to further determine markers of stress responsivity and emotional resilience. Results indicated that contingency-trained rats exhibited more adaptive responses in the probe trial (e.g., fewer interrupted grooming sequences and more targeted search strategies) than the noncontingent-trained rats; additionally, increased DHEA/CORT ratios were observed in the contingent-trained animals. Diminished activation of the habenula (i.e., fos-immunoreactivity) was correlated with resilience factors such as increased levels of DHEA metabolites during cognitive training. Of the three coping profiles, flexible copers exhibited enhanced neuroplasticity (i.e., increased dentate gyrus doublecortin-immunoreactivity) compared to the more consistently responding active and passive copers. Thus, in the current study, contingency training via effort-based reward (EBR) training, enhanced by a flexible coping style, provided neurobiological resilience and adaptive responses to prediction errors in the final probe trial. These findings have implications for psychiatric illnesses that are influenced by altered stress responses and decision-making abilities (e.g., depression).

  3. Effect of Acute Effort on Isometric Strength and Body Balance: Trained vs. Untrained Paradigm.

    PubMed

    Sterkowicz, Stanisław; Jaworski, Janusz; Lech, Grzegorz; Pałka, Tomasz; Sterkowicz-Przybycień, Katarzyna; Bujas, Przemysław; Pięta, Paweł; Mościński, Zenon

    2016-01-01

    Years of training in competitive sports leads to human body adaptation to a specific type of exercise. In judo bouts, maintaining hand grip on an opponent's clothes and postural balance is essential for the effective technical and tactical actions. This study compares changes after maximal anaerobic exercise among judo athletes and untrained subjects regarding 1) maximum isometric handgrip strength (HGSmax) and accuracy at the perceived 50% maximum handgrip force (1/2HGSmax) and 2) the balance of 13 judo athletes at national (n = 8) and international (n = 5) competitive levels and 19 untrained university students. The groups did not differ in age, body height, and weight. Body mass index (BMI) and body composition (JAWON) were evaluated. The Wingate Anaerobic Test (WAnT, Monark 875E) measured recommended anaerobic capacity indices. Hand grip strength (Takei dynamometer) and balance (biplate balance platform) were measured before warm-up (T1), before the WAnT test (T2), and after (T3). Parametric or non-parametric tests were performed after verifying the variable distribution assumption. Judoists had higher BMI and fat-free mass index (FFMI) than the students. The athletes also showed higher relative total work and relative peak power and lower levels of lactic acid. The difference in judoists between HGSmax at T1 and HGSmax at T3 was statistically significant. Before warm-up (T1), athletes showed higher strength (more divergent from the calculated ½HGSmax value) compared to students. Substantial fatigue after the WAnT test significantly deteriorated the body stability indices, which were significantly better in judo athletes at all time points. The findings suggest specific body adaptations in judoists, especially for body composition, anaerobic energy system efficiency, and postural balance. These characteristics could be trained for specifically by judo athletes to meet the time-motion and anaerobic demands of contemporary bouts.

  4. Effect of Acute Effort on Isometric Strength and Body Balance: Trained vs. Untrained Paradigm

    PubMed Central

    Sterkowicz, Stanisław; Jaworski, Janusz; Lech, Grzegorz; Pałka, Tomasz; Sterkowicz-Przybycień, Katarzyna; Bujas, Przemysław; Pięta, Paweł; Mościński, Zenon

    2016-01-01

    Years of training in competitive sports leads to human body adaptation to a specific type of exercise. In judo bouts, maintaining hand grip on an opponent’s clothes and postural balance is essential for the effective technical and tactical actions. This study compares changes after maximal anaerobic exercise among judo athletes and untrained subjects regarding 1) maximum isometric handgrip strength (HGSmax) and accuracy at the perceived 50% maximum handgrip force (1/2HGSmax) and 2) the balance of 13 judo athletes at national (n = 8) and international (n = 5) competitive levels and 19 untrained university students. The groups did not differ in age, body height, and weight. Body mass index (BMI) and body composition (JAWON) were evaluated. The Wingate Anaerobic Test (WAnT, Monark 875E) measured recommended anaerobic capacity indices. Hand grip strength (Takei dynamometer) and balance (biplate balance platform) were measured before warm-up (T1), before the WAnT test (T2), and after (T3). Parametric or non-parametric tests were performed after verifying the variable distribution assumption. Judoists had higher BMI and fat-free mass index (FFMI) than the students. The athletes also showed higher relative total work and relative peak power and lower levels of lactic acid. The difference in judoists between HGSmax at T1 and HGSmax at T3 was statistically significant. Before warm-up (T1), athletes showed higher strength (more divergent from the calculated ½HGSmax value) compared to students. Substantial fatigue after the WAnT test significantly deteriorated the body stability indices, which were significantly better in judo athletes at all time points. The findings suggest specific body adaptations in judoists, especially for body composition, anaerobic energy system efficiency, and postural balance. These characteristics could be trained for specifically by judo athletes to meet the time-motion and anaerobic demands of contemporary bouts. PMID:27218258

  5. Between-Trial Forgetting Due to Interference and Time in Motor Adaptation.

    PubMed

    Kim, Sungshin; Oh, Youngmin; Schweighofer, Nicolas

    2015-01-01

    Learning a motor task with temporally spaced presentations or with other tasks intermixed between presentations reduces performance during training, but can enhance retention post training. These two effects are known as the spacing and contextual interference effect, respectively. Here, we aimed at testing a unifying hypothesis of the spacing and contextual interference effects in visuomotor adaptation, according to which forgetting between trials due to either spaced presentations or interference by another task will promote between-trial forgetting, which will depress performance during acquisition, but will promote retention. We first performed an experiment with three visuomotor adaptation conditions: a short inter-trial-interval (ITI) condition (SHORT-ITI); a long ITI condition (LONG-ITI); and an alternating condition with two alternated opposite tasks (ALT), with the same single-task ITI as in LONG-ITI. In the SHORT-ITI condition, there was fastest increase in performance during training and largest immediate forgetting in the retention tests. In contrast, in the ALT condition, there was slowest increase in performance during training and little immediate forgetting in the retention tests. Compared to these two conditions, in the LONG-ITI, we found intermediate increase in performance during training and intermediate immediate forgetting. To account for these results, we fitted to the data six possible adaptation models with one or two time scales, and with interference in the fast, or in the slow, or in both time scales. Model comparison confirmed that two time scales and some degree of interferences in either time scale are needed to account for our experimental results. In summary, our results suggest that retention following adaptation is modulated by the degree of between-trial forgetting, which is due to time-based decay in single adaptation task and interferences in multiple adaptation tasks.

  6. Postural perturbations: new insights for treatment of balance disorders

    NASA Technical Reports Server (NTRS)

    Horak, F. B.; Henry, S. M.; Shumway-Cook, A.; Peterson, B. W. (Principal Investigator)

    1997-01-01

    This article reviews the neural control of posture as understood through studies of automatic responses to mechanical perturbations. Recent studies of responses to postural perturbations have provided a new view of how postural stability is controlled, and this view has profound implications for physical therapy practice. We discuss the implications for rehabilitation of balance disorders and demonstrate how an understanding of the specific systems underlying postural control can help to focus and enrich our therapeutic approaches. By understanding the basic systems underlying control of balance, such as strategy selection, rapid latencies, coordinated temporal spatial patterns, force control, and context-specific adaptations, therapists can focus their treatment on each patient's specific impairments. Research on postural responses to surface translations has shown that balance is not based on a fixed set of equilibrium reflexes but on a flexible, functional motor skill that can adapt with training and experience. More research is needed to determine the extent to which quantification of automatic postural responses has practical implications for predicting falls in patients with constraints in their postural control system.

  7. Sport-Specific Physiological Adaptations in Highly Trained Endurance Athletes.

    PubMed

    Lundgren, Kari Margrethe; Karlsen, Trine; Sandbakk, Øyvind; James, Philip E; Tjønna, Arnt Erik

    2015-10-01

    This study aims to compare maximal oxygen uptake (V˙O2max), blood volume (BV), hemoglobin mass (Hbmass), and brachial endothelial function, measured as flow-mediated dilatation (FMD), in international-level endurance athletes primarily exercising with the whole body (cross-country skiing), lower body (orienteering), or upper body (flatwater kayak). Seventeen cross-country skiers, 15 orienteers, and 11 flatwater kayakers were tested for V˙O2max, BV, Hbmass, and FMD. Additionally, body composition and annual training (type, volume, and intensity of training) were analyzed. Absolute and body-mass-normalized V˙O2max values were 11.3% and 9.9% higher, respectively, in skiers (5.83 ± 0.60 L·min and 77.9 ± 4.2 mL·min·kg) compared to orienteers (5.24 ± 0.45 L·min and 70.9 ± 3.5 mL·min·kg) (P < 0.01), whereas kayakers (5.78 ± 0.56 L·min and 73.7 ± 6.3 mL·min·kg) did not differ from skiers. BV was 9.9%-11.8% higher in skiers and orienteers compared to kayakers when normalized for total body mass and fat-free mass, and skiers had 9.2% and 9.9% higher Hbmass normalized for total body mass and fat-free mass compared to kayakers (all P < 0.05). Arterial diameter was 11.8%-15.0% larger in kayakers (4.38 ± 0.63 mm) and skiers (4.22 ± 0.36 mm) compared to orienteers (3.81 ± 0.32 mm) (P < 0.05), whereas FMD did not differ between groups. This study indicates that higher V˙O2max in cross-country skiers and greater arterial diameters in the arms of skiers and kayakers are sport-specific physiological adaptations to chronic endurance training in whole-body and upper-body exercise modes. However, variations in these variables are not associated with BV or Hbmass.

  8. Behavioral, Brain Imaging and Genomic Measures to Predict Functional Outcomes Post-Bed Rest and Space Flight

    NASA Technical Reports Server (NTRS)

    Mulavara, A. P.; Peters, B.; De Dios, Y. E.; Gadd, N. E.; Caldwell, E. E.; Batson, C. D.; Goel, R.; Oddsson, L.; Kreutzberg, G.; Zanello, S.; hide

    2017-01-01

    Astronauts experience sensorimotor disturbances during their initial exposure to microgravity and during the re-adaptation phase following a return to an Earth-gravitational environment. These alterations may disrupt crewmembers' ability to perform mission critical functional tasks requiring ambulation, manual control and gaze stability. Interestingly, astronauts who return from spaceflight show substantial differences in their abilities to readapt to a gravitational environment. The ability to predict the manner and degree to which individual astronauts are affected will improve the effectiveness of countermeasure training programs designed to enhance sensorimotor adaptability. For such an approach to succeed, we must develop predictive measures of sensorimotor adaptability that will allow us to foresee, before actual spaceflight, which crewmembers are likely to experience greater challenges to their adaptive capacities. The goals of this project are to identify and characterize this set of predictive measures. Our approach includes: 1) behavioral tests to assess sensory bias and adaptability quantified using both strategic and plastic-adaptive responses; 2) imaging to determine individual brain morphological and functional features, using structural magnetic resonance imaging (MRI), diffusion tensor imaging, resting state functional connectivity MRI, and sensorimotor adaptation task-related functional brain activation; and 3) assessment of genetic polymorphisms in the catechol-O-methyl transferase, dopamine receptor D2, and brain-derived neurotrophic factor genes and genetic polymorphisms of alpha2-adrenergic receptors that play a role in the neural pathways underlying sensorimotor adaptation. We anticipate that these predictive measures will be significantly correlated with individual differences in sensorimotor adaptability after long-duration spaceflight and exposure to an analog bed rest environment. We will be conducting a retrospective study, leveraging data already collected from relevant ongoing or completed bed rest and spaceflight studies. This data will be combined with predictor metrics that will be collected prospectively (as described for behavioral, brain imaging and genomic measures) from these returning subjects to build models for predicting post spaceflight and bed rest adaptive capability. In this presentation we will discuss the optimized set of tests for predictive metrics to be used for evaluating post mission adaptive capability as manifested in their outcome measures. Comparisons of model performance will allow us to better design and implement sensorimotor adaptability training countermeasures against decrements in post-mission adaptive capability that are customized for each crewmember's sensory biases, adaptive ability, brain structure, brain function, and genetic predispositions. The ability to customize adaptability training will allow more efficient use of crew time during training and will optimize training prescriptions for astronauts to mitigate the deleterious effects of spaceflight.

  9. Increasing community capacity for participatory evaluation of healthy eating and active living strategies through direct observations and environmental audits.

    PubMed

    Kemner, Allison L; Stachecki, Jessica R; Bildner, Michele E; Brennan, Laura K

    2015-01-01

    Local partnerships from the Healthy Kids, Healthy Communities initiative elected to participate in enhanced evaluation trainings to collect data through environmental audits and direct observations as well as to build their evaluation capacity. Environmental audit and direct observation tools and protocols were adapted for the relevant healthy eating and active living policy and environmental change approaches being conducted by the Healthy Kids, Healthy Communities partnerships. Customized trainings were conducted by the evaluation team to increase capacity and understanding for evaluation activities. A total of 87 trainings were conducted by the evaluation team in 31 Healthy Kids, Healthy Communities community partnerships. Data were collected for a total of 41 environmental audits and 17 direct observations. Community case examples illustrate how these trainings developed evaluation capacity. For instance, youth from one community presented environmental audit findings to local elected officials. The 31 partnerships participating in the community-based evaluation efforts resulted in 164 individuals trained in collecting context-specific data to assess the impact of healthy eating and active living policy and environmental strategies designed to create community change.

  10. Time-dependent postural control adaptations following a neuromuscular warm-up in female handball players: a randomized controlled trial.

    PubMed

    Steib, Simon; Zahn, Peter; Zu Eulenburg, Christine; Pfeifer, Klaus; Zech, Astrid

    2016-01-01

    Female handball athletes are at a particular risk of sustaining lower extremity injuries. The study examines time-dependent adaptations of static and dynamic balance as potential injury risk factors to a specific warm-up program focusing on neuromuscular control. Fourty one (24.0 ± 5.9 years) female handball athletes were randomized to an intervention or control group. The intervention group implemented a 15-min specific neuromuscular warm-up program, three times per week for eleven weeks, whereas the control group continued with their regular warm-up. Balance was assessed at five time points. Measures included the star excursion balance test (SEBT), and center of pressure (COP) sway velocity during single-leg standing. No baseline differences existed between groups in demographic data. Adherence to neuromuscular warm-up was 88.7 %. Mean COP sway velocity decreased significantly over time in the intervention group (-14.4 %; p  < .001), but not in the control group (-6.2 %; p  = 0.056). However, these effects did not differ significantly between groups ( p  = .098). Mean changes over time in the SEBT score were significantly greater ( p  = .014) in the intervention group (+5.48) compared to the control group (+3.45). Paired t-tests revealed that the first significant balance improvements were observed after 6 weeks of training. A neuromuscular warm-up positively influences balance variables associated with an increased risk of lower extremity injuries in female handball athletes. The course of adaptations suggests that a training volume of 15 min, three times weekly over at least six weeks produces measurable changes. Retrospectively registered on 4th October 2016. Registry: clinicaltrials.gov. Trial number: NCT02925377.

  11. Methodology: Adapting the 'Training and Visit' System to Population Programmes.

    ERIC Educational Resources Information Center

    Asian-Pacific Population Programme News, 1985

    1985-01-01

    Provides suggestions for adapting the "training and visit" (T&V) system to population programs. Summarizes six main elements of a T&V system for population, health, and nutrition programs and describes four principles of agricultural extension programs. Implications of this process are also reviewed. (ML)

  12. Adapting Aquatic Circuit Training for Special Populations.

    ERIC Educational Resources Information Center

    Thome, Kathleen

    1980-01-01

    The author discusses how land activities can be adapted to water so that individuals with handicapping conditions can participate in circuit training activities. An initial section lists such organizational procedures as providing vocal and/or visual cues for activities, having assistants accompany the performers throughout the circuit, and…

  13. Planning a sports training program using Adaptive Particle Swarm Optimization with emphasis on physiological constraints.

    PubMed

    Kumyaito, Nattapon; Yupapin, Preecha; Tamee, Kreangsak

    2018-01-08

    An effective training plan is an important factor in sports training to enhance athletic performance. A poorly considered training plan may result in injury to the athlete, and overtraining. Good training plans normally require expert input, which may have a cost too great for many athletes, particularly amateur athletes. The objectives of this research were to create a practical cycling training plan that substantially improves athletic performance while satisfying essential physiological constraints. Adaptive Particle Swarm Optimization using ɛ-constraint methods were used to formulate such a plan and simulate the likely performance outcomes. The physiological constraints considered in this study were monotony, chronic training load ramp rate and daily training impulse. A comparison of results from our simulations against a training plan from British Cycling, which we used as our standard, showed that our training plan outperformed the benchmark in terms of both athletic performance and satisfying all physiological constraints.

  14. Integrating topics of sex and gender into medical curricula-lessons from the international community.

    PubMed

    Miller, Virginia M; Kararigas, Georgios; Seeland, Ute; Regitz-Zagrosek, Vera; Kublickiene, Karolina; Einstein, Gillian; Casanova, Robert; Legato, Marianne J

    2016-01-01

    In the era of individualized medicine, training future scientists and health-care providers in the principles of sex- and gender-based differences in health and disease is critical in order to optimize patient care. International successes to incorporate these concepts into medical curricula can provide a template for others to follow. Methodologies and resources are provided that can be adopted and adapted to specific needs of other institutions and learning situations.

  15. Applications of artificial intelligence to rotorcraft

    NASA Technical Reports Server (NTRS)

    Abbott, Kathy H.

    1987-01-01

    The application of AI technology may have significant potential payoff for rotorcraft. In the near term, the status of the technology will limit its applicability to decision aids rather than total automation. The specific application areas are categorized into onboard and nonflight aids. The onboard applications include: fault monitoring, diagnosis, and reconfiguration; mission and tactics planning; situation assessment; navigation aids, especially in nap-of-the-earth flight; and adaptive man-machine interfaces. The nonflight applications include training and maintenance diagnostics.

  16. Training to Facilitate Adaptation to Novel Sensory Environments

    NASA Technical Reports Server (NTRS)

    Bloomberg, J. J.; Peters, B. T.; Mulavara, A. P.; Brady, R. A.; Batson, C. D.; Ploutz-Snyder, R. J.; Cohen, H. S.

    2010-01-01

    After spaceflight, the process of readapting to Earth s gravity causes locomotor dysfunction. We are developing a gait training countermeasure to facilitate adaptive responses in locomotor function. Our training system is comprised of a treadmill placed on a motion-base facing a virtual visual scene that provides an unstable walking surface combined with incongruent visual flow designed to train subjects to rapidly adapt their gait patterns to changes in the sensory environment. The goal of our present study was to determine if training improved both the locomotor and dual-tasking ability responses to a novel sensory environment and to quantify the retention of training. Subjects completed three, 30-minute training sessions during which they walked on the treadmill while receiving discordant support surface and visual input. Control subjects walked on the treadmill without any support surface or visual alterations. To determine the efficacy of training, all subjects were then tested using a novel visual flow and support surface movement not previously experienced during training. This test was performed 20 minutes, 1 week, and 1, 3, and 6 months after the final training session. Stride frequency and auditory reaction time were collected as measures of postural stability and cognitive effort, respectively. Subjects who received training showed less alteration in stride frequency and auditory reaction time compared to controls. Trained subjects maintained their level of performance over 6 months. We conclude that, with training, individuals became more proficient at walking in novel discordant sensorimotor conditions and were able to devote more attention to competing tasks.

  17. Diagnostic and therapeutic approach to hypothalamic amenorrhea.

    PubMed

    Genazzani, Alessandro D; Ricchieri, Federica; Lanzoni, Chiara; Strucchi, Claudia; Jasonni, Valerio M

    2006-12-01

    Hypothalamic amenorrhea (HA) is a secondary amenorrhea with no evidence of endocrine/systemic causal factors, mainly related to various stressors affecting neuroendocrine control of the reproductive axis. In clinical practice, HA is mainly associated with metabolic, physical, or psychological stress. Stress is the adaptive response of our body through all its homeostatic systems, to external and/or internal stimuli that activate specific and nonspecific physiological pathways. HA occurs generally after severe stress conditions/situations such as dieting, heavy training, or intense emotional events, all situations that can induce amenorrhea with or without body weight loss and HA is a secondary amenorrhea with a diagnosis of exclusion. In fact, the diagnosis is essentially based on a good anamnestic investigation. It has to be investigated using the clinical history of the patient: occurrence of menarche, menstrual cyclicity, time and modality of amenorrhea, and it has to be exclude any endocrine disease or any metabolic (i.e., diabetes) and systemic disorders. It is necessary to identify any stress situation induced by loss, family or working problems, weight loss or eating disorders, or physical training or agonist activity. Peculiar, though not specific, endocrine investigations might be proposed but no absolute parameter can be proposed since HA is greatly dependent from individual response to stressors and/or the adaptive response to stress. This article tries to give insights into diagnosis and putative therapeutic strategies.

  18. Spatially Common Sparsity Based Adaptive Channel Estimation and Feedback for FDD Massive MIMO

    NASA Astrophysics Data System (ADS)

    Gao, Zhen; Dai, Linglong; Wang, Zhaocheng; Chen, Sheng

    2015-12-01

    This paper proposes a spatially common sparsity based adaptive channel estimation and feedback scheme for frequency division duplex based massive multi-input multi-output (MIMO) systems, which adapts training overhead and pilot design to reliably estimate and feed back the downlink channel state information (CSI) with significantly reduced overhead. Specifically, a non-orthogonal downlink pilot design is first proposed, which is very different from standard orthogonal pilots. By exploiting the spatially common sparsity of massive MIMO channels, a compressive sensing (CS) based adaptive CSI acquisition scheme is proposed, where the consumed time slot overhead only adaptively depends on the sparsity level of the channels. Additionally, a distributed sparsity adaptive matching pursuit algorithm is proposed to jointly estimate the channels of multiple subcarriers. Furthermore, by exploiting the temporal channel correlation, a closed-loop channel tracking scheme is provided, which adaptively designs the non-orthogonal pilot according to the previous channel estimation to achieve an enhanced CSI acquisition. Finally, we generalize the results of the multiple-measurement-vectors case in CS and derive the Cramer-Rao lower bound of the proposed scheme, which enlightens us to design the non-orthogonal pilot signals for the improved performance. Simulation results demonstrate that the proposed scheme outperforms its counterparts, and it is capable of approaching the performance bound.

  19. Building Tobacco Cessation Capacity in the US-Affiliated Pacific Islands

    PubMed Central

    David, Annette M.; Cruz, Peter J.; Mercado, Susan P.; Dan, Li

    2013-01-01

    Tobacco control stakeholders in priority populations are searching for culturally appropriate cessation training models to strengthen cessation capacity and infrastructure. We adapted the University of Arizona model for Brief Tobacco Cessation Interventions (BTI) training for Pacific Islanders and pilot-tested it in four Pacific Islands - Palau, the Federated States of Micronesia, the Northern Mariana Islands and the Marshall Islands. All participants completed a post-training knowledge assessment exam, pre- and post-confidence assessments and a quality improvement evaluation. Of 70 participants, 65 (93%) completed the training. Forty-one (63%) passed the post-training knowledge assessment exam at the 1st attempt; an additional 9 (14%) successfully passed on their 2nd attempt, for a total pass rate of 77%. The pre and post confidence surveys demonstrated a statistically significant increase in confidence across all competency areas for delivering brief advice. The quality improvement survey revealed high acceptance and approval for the content and delivery of the locally adapted training model. As Pacific Island communities enact tobacco control policies, cessation demand is growing. The Guam cessation training model used culturally relevant data, materials and training approaches and appeared effective in four different Pacific island countries. This underscores the importance of culturally competent adaptation of cessation training for priority populations like Pacific Islanders. PMID:23632079

  20. An online training-monitoring system to prevent nonfunctional overreaching.

    PubMed

    Piacentini, Maria Francesca; Meeusen, Romain

    2015-05-01

    This longitudinal case study evaluated the effectiveness of an online training-monitoring system to prevent nonfunctional overreaching (NFOR). A female master track and field athlete was followed by means of a daily online training diary (www.spartanova.com) and a weekly profile of mood state (POMS). The online diary consists of objective training data and subjective feelings reported on a 10-cm visual analog scale. Furthermore, parameters that quantify and summarize training and adaptation to training were calculated. The novelty consists in the inclusion of a specific measuring parameter tested to detect NFOR (OR score). During track-season preparation, the athlete was facing some major personal changes, and extra training stress factors increased. Despite the fact that training load (TL) did not increase, the OR score showed a 222% and then a 997% increase compared with baseline. POMS showed a 167% increase in fatigue, a 38% decrease in vigor, a 32% increase in depression scores, and a total mood increase of 22%, with a 1-wk shift compared with the OR score. A 41% decrease in TL restored the OR score and POMS to baseline values within 10 d. The results demonstrate that immediate feedback obtained by "warning signals" to both athletes and coaches, based on individual baseline data, seems an optimal predictor of FOR/NFOR.

  1. Pulsatile desynchronizing delayed feedback for closed-loop deep brain stimulation

    PubMed Central

    Lysyansky, Borys; Rosenblum, Michael; Pikovsky, Arkady; Tass, Peter A.

    2017-01-01

    High-frequency (HF) deep brain stimulation (DBS) is the gold standard for the treatment of medically refractory movement disorders like Parkinson’s disease, essential tremor, and dystonia, with a significant potential for application to other neurological diseases. The standard setup of HF DBS utilizes an open-loop stimulation protocol, where a permanent HF electrical pulse train is administered to the brain target areas irrespectively of the ongoing neuronal dynamics. Recent experimental and clinical studies demonstrate that a closed-loop, adaptive DBS might be superior to the open-loop setup. We here combine the notion of the adaptive high-frequency stimulation approach, that aims at delivering stimulation adapted to the extent of appropriately detected biomarkers, with specifically desynchronizing stimulation protocols. To this end, we extend the delayed feedback stimulation methods, which are intrinsically closed-loop techniques and specifically designed to desynchronize abnormal neuronal synchronization, to pulsatile electrical brain stimulation. We show that permanent pulsatile high-frequency stimulation subjected to an amplitude modulation by linear or nonlinear delayed feedback methods can effectively and robustly desynchronize a STN-GPe network of model neurons and suggest this approach for desynchronizing closed-loop DBS. PMID:28273176

  2. Stimulating the cerebellum affects visuomotor adaptation but not intermanual transfer of learning

    PubMed Central

    Block, Hannah; Celnik, Pablo

    2013-01-01

    When systematic movement errors occur, the brain responds with a systematic change in motor behavior. This type of adaptive motor learning can transfer intermanually; adaptation of movements of the right hand in response to training with a perturbed visual signal (visuomotor adaptation) may carry over to the left hand. While visuomotor adaptation has been studied extensively, it is unclear whether the cerebellum, a structure involved in adaptation, is important for intermanual transfer as well. We addressed this question with three experiments in which subjects reached with their right hands as a 30° visuomotor rotation was introduced. Subjects received anodal or sham transcranial direct current stimulation (tDCS) on the trained (Experiment 1) or untrained (Experiment 2) hemisphere of the cerebellum, or, for comparison, motor cortex (M1). After the training period, subjects reached with their left hand, without visual feedback, to assess intermanual transfer of learning aftereffects. Stimulation of the right cerebellum caused faster adaptation, but none of the stimulation sites affected transfer. To ascertain whether cerebellar stimulation would increase transfer if subjects learned faster as well as a larger amount, in Experiment 3 anodal and sham cerebellar groups experienced a shortened training block such that the anodal group learned more than sham. Despite the difference in adaptation magnitude, transfer was similar across these groups, although smaller than in Experiment 1. Our results suggest that intermanual transfer of visuomotor learning does not depend on cerebellar activity, and that the number of movements performed at plateau is an important predictor of transfer. PMID:23625383

  3. Beyond the classroom: a case study of immigrant safety liaisons in residential construction.

    PubMed

    Ochsner, Michele; Marshall, Elizabeth G; Martino, Carmen; Pabelón, Marién Casillas; Kimmel, Louis; Rostran, Damaris

    2012-01-01

    Latino day laborers often work at dangerous construction sites with little power to change conditions. We describe the development, implementation, and early-stage results of a program to train immigrant day laborers as safety liaisons. These are construction workers prepared to recognize and respond to health and safety hazards. Based in Newark, NJ, the project involves collaboration between New Labor, a membership-based worker center, and university researchers and labor educators. Safety liaisons undergo training and receive ongoing support for their roles. Both qualitative and quantitative data are collected to monitor progress. Although lacking in formal authority, safety liaisons have prompted improvements at specific sites, filed OSHA complaints, and developed a local worker council. Participatory training methods, opportunities for leadership outside the classroom, and participation in project planning have strengthened liaisons' effectiveness, leadership skills, and commitment. The safety liaison approach could be adapted by worker centers and their partner organizations.

  4. AMPK and PPARδ agonists are exercise mimetics

    PubMed Central

    Narkar, Vihang A.; Downes, Michael; Yu, Ruth T.; Embler, Emi; Wang, Yong-Xu; Banayo, Ester; Mihaylova, Maria M.; Nelson, Michael C.; Zou, Yuhua; Juguilon, Henry; Kang, Heonjoong; Shaw, Reuben; Evans, Ronald M.

    2008-01-01

    SUMMARY The benefits of endurance exercise on general health make it desirable to identify orally active agents that would mimic or potentiate the effects of exercise to treat metabolic diseases. Although certain natural compounds, such as reseveratrol, have endurance-enhancing activities, their exact metabolic targets remain elusive. We therefore tested the effect of pathway-specific drugs on endurance capacities of mice in a treadmill running test. We found that PPARβ/δ agonist and exercise training synergistically increase oxidative myofibers and running endurance in adult mice. Because training activates AMPK and PGC1α, we then tested whether the orally active AMPK agonist AICAR might be sufficient to overcome the exercise requirement. Unexpectedly, even in sedentary mice, 4 weeks of AICAR treatment alone induced metabolic genes and enhanced running endurance by 44%. These results demonstrate that AMPK-PPARδ pathway can be targeted by orally active drugs to enhance training adaptation or even to increase endurance without exercise. PMID:18674809

  5. Adults Can Be Trained to Acquire Synesthetic Experiences

    PubMed Central

    Bor, Daniel; Rothen, Nicolas; Schwartzman, David J.; Clayton, Stephanie; Seth, Anil K.

    2014-01-01

    Synesthesia is a condition where presentation of one perceptual class consistently evokes additional experiences in different perceptual categories. Synesthesia is widely considered a congenital condition, although an alternative view is that it is underpinned by repeated exposure to combined perceptual features at key developmental stages. Here we explore the potential for repeated associative learning to shape and engender synesthetic experiences. Non-synesthetic adult participants engaged in an extensive training regime that involved adaptive memory and reading tasks, designed to reinforce 13 specific letter-color associations. Following training, subjects exhibited a range of standard behavioral and physiological markers for grapheme-color synesthesia; crucially, most also described perceiving color experiences for achromatic letters, inside and outside the lab, where such experiences are usually considered the hallmark of genuine synesthetes. Collectively our results are consistent with developmental accounts of synesthesia and illuminate a previously unsuspected potential for new learning to shape perceptual experience, even in adulthood. PMID:25404369

  6. Psychosocial treatments for schizophrenia.

    PubMed

    Mueser, Kim T; Deavers, Frances; Penn, David L; Cassisi, Jeffrey E

    2013-01-01

    The current state of the literature regarding psychosocial treatments for schizophrenia is reviewed within the frameworks of the recovery model of mental health and the expanded stress-vulnerability model. Interventions targeting specific domains of functioning, age groups, stages of illness, and human service system gaps are classified as evidence-based practices or promising practices according to the extent to which their efficacy is currently supported by meta-analyses and individual randomized controlled trials (RCTs). Evidence-based practices include assertive community treatment (ACT), cognitive behavior therapy (CBT) for psychosis, cognitive remediation, family psychoeducation, illness self-management training, social skills training, and supported employment. Promising practices include cognitive adaptive therapy, CBT for posttraumatic stress disorder, first-episode psychosis intervention, healthy lifestyle interventions, integrated treatment for co-occurring disorders, interventions targeting older individuals, peer support services, physical disease management, prodromal stage intervention, social cognition training, supported education, and supported housing. Implications and future directions are discussed.

  7. Shining a Light on Task-Shifting Policy: Exploring opportunities for adaptability in non-communicable disease management programmes in Uganda.

    PubMed

    Katende, Godfrey; Donnelly, Mary

    2016-05-01

    In terms of disease burden, many low- and middle-income countries are currently experiencing a transition from infectious to chronic diseases. In Uganda, non-communicable diseases (NCDs) have increased significantly in recent years; this challenge is compounded by the healthcare worker shortage and the underfunded health system administration. Addressing the growing prevalence of NCDs requires evidence-based policies and strategies to reduce morbidity and mortality rates; however, the integration and evaluation of new policies and processes pose many challenges. Task-shifting is the process whereby specific tasks are transferred to health workers with less training and fewer qualifications. Successful implementation of a task-shifting policy requires appropriate skill training, clearly defined roles, adequate evaluation, an enhanced training capacity and sufficient health worker incentives. This article focuses on task-shifting policy as a potentially effective strategy to address the growing burden of NCDs on the Ugandan healthcare system.

  8. Exercise training and cardiometabolic diseases: focus on the vascular system.

    PubMed

    Roque, Fernanda R; Hernanz, Raquel; Salaices, Mercedes; Briones, Ana M

    2013-06-01

    The regular practice of physical activity is a well-recommended strategy for the prevention and treatment of several cardiovascular and metabolic diseases. Physical exercise prevents the progression of vascular diseases and reduces cardiovascular morbidity and mortality. Exercise training also ameliorates vascular changes including endothelial dysfunction and arterial remodeling and stiffness, usually present in type 2 diabetes, obesity, hypertension and metabolic syndrome. Common to these diseases is excessive oxidative stress, which plays an important role in the processes underlying vascular changes. At the vascular level, exercise training improves the redox state and consequently NO availability. Moreover, growing evidence indicates that other mediators such as prostanoids might be involved in the beneficial effects of exercise. The purpose of this review is to update recent findings describing the adaptation response induced by exercise in cardiovascular and metabolic diseases, focusing more specifically on the beneficial effects of exercise in the vasculature and the underlying mechanisms.

  9. Using LabView for real-time monitoring and tracking of multiple biological objects

    NASA Astrophysics Data System (ADS)

    Nikolskyy, Aleksandr I.; Krasilenko, Vladimir G.; Bilynsky, Yosyp Y.; Starovier, Anzhelika

    2017-04-01

    Today real-time studying and tracking of movement dynamics of various biological objects is important and widely researched. Features of objects, conditions of their visualization and model parameters strongly influence the choice of optimal methods and algorithms for a specific task. Therefore, to automate the processes of adaptation of recognition tracking algorithms, several Labview project trackers are considered in the article. Projects allow changing templates for training and retraining the system quickly. They adapt to the speed of objects and statistical characteristics of noise in images. New functions of comparison of images or their features, descriptors and pre-processing methods will be discussed. The experiments carried out to test the trackers on real video files will be presented and analyzed.

  10. Physical exercise induces specific adaptations resulting in reduced organ injury and mortality during severe polymicrobial sepsis.

    PubMed

    Sossdorf, Maik; Fischer, Jacqueline; Meyer, Stefan; Dahlke, Katja; Wissuwa, Bianka; Seidel, Carolin; Schrepper, Andrea; Bockmeyer, Clemens L; Lupp, Amelie; Neugebauer, Sophie; Schmerler, Diana; Rödel, Jürgen; Claus, Ralf A; Otto, Gordon P

    2013-10-01

    High physical activity levels are associated with wide-ranging health benefits, disease prevention, and longevity. In the present study, we examined the impact of regular physical exercise on the severity of organ injury and survival probability, as well as characteristics of the systemic immune and metabolic response during severe polymicrobial sepsis. Animal study. University laboratory. Male C57BL/6N mice. Mice were trained for 6 weeks by treadmill and voluntary wheel running or housed normally. Polymicrobial sepsis in mice was induced by injection of fecal slurry. Subsequently, mice were randomized into the following groups: healthy controls, 6 hours postsepsis, and 24 hours postsepsis. Blood and organ samples were collected and investigated by measuring clinical chemistry variables, cytokines, plasma metabolites, and bacterial clearance. Organ morphology and damage were characterized by histological staining. Physical exercise improved survival and the ability of bacterial clearance in blood and organs. The release of pro- and anti-inflammatory cytokines, including interleukin-6 and interleukin-10, was diminished in trained compared to untrained mice during sepsis. The sepsis-associated acute kidney tubular damage was less pronounced in pretrained animals. By metabolic profiling and regression analysis, we detected lysophosphatidylcholine 14:0, tryptophan, as well as pimelylcarnitine linked with levels of neutrophil gelatinase-associated lipocalin representing acute tubular injury (corrected R=0.910; p<0.001). We identified plasma lysophosphatidylcholine 16:0, lysophosphatidylcholine 17:0, and lysophosphatidylcholine 18:0 as significant metabolites discriminating between trained and untrained mice during sepsis. Regular physical exercise reduces sepsis-associated acute kidney injury and death. As a specific mechanism of exercise-induced adaptation, we identified various lysophosphatidylcholines that might function as surrogate for improved outcome in sepsis.

  11. Do antioxidant supplements interfere with skeletal muscle adaptation to exercise training?

    PubMed Central

    Ristow, Michael

    2016-01-01

    Abstract A popular belief is that reactive oxygen species (ROS) and reactive nitrogen species (RNS) produced during exercise by the mitochondria and other subcellular compartments ubiquitously cause skeletal muscle damage, fatigue and impair recovery. However, the importance of ROS and RNS as signals in the cellular adaptation process to stress is now evident. In an effort to combat the perceived deleterious effects of ROS and RNS it has become common practice for active individuals to ingest supplements with antioxidant properties, but interfering with ROS/RNS signalling in skeletal muscle during acute exercise may blunt favourable adaptation. There is building evidence that antioxidant supplementation can attenuate endurance training‐induced and ROS/RNS‐mediated enhancements in antioxidant capacity, mitochondrial biogenesis, cellular defence mechanisms and insulin sensitivity. However, this is not a universal finding, potentially indicating that there is redundancy in the mechanisms controlling skeletal muscle adaptation to exercise, meaning that in some circumstances the negative impact of antioxidants on acute exercise response can be overcome by training. Antioxidant supplementation has been more consistently reported to have deleterious effects on the response to overload stress and high‐intensity training, suggesting that remodelling of skeletal muscle following resistance and high‐intensity exercise is more dependent on ROS/RNS signalling. Importantly there is no convincing evidence to suggest that antioxidant supplementation enhances exercise‐training adaptions. Overall, ROS/RNS are likely to exhibit a non‐linear (hormetic) pattern on exercise adaptations, where physiological doses are beneficial and high exposure (which would seldom be achieved during normal exercise training) may be detrimental. PMID:26638792

  12. The role of oxidative, inflammatory and neuroendocrinological systems during exercise stress in athletes: implications of antioxidant supplementation on physiological adaptation during intensified physical training.

    PubMed

    Slattery, Katie; Bentley, David; Coutts, Aaron J

    2015-04-01

    During periods of intensified physical training, reactive oxygen species (ROS) release may exceed the protective capacity of the antioxidant system and lead to dysregulation within the inflammatory and neuroendocrinological systems. Consequently, the efficacy of exogenous antioxidant supplementation to maintain the oxidative balance in states of exercise stress has been widely investigated. The aim of this review was to (1) collate the findings of prior research on the effect of intensive physical training on oxidant-antioxidant balance; (2) summarise the influence of antioxidant supplementation on the reduction-oxidation signalling pathways involved in physiological adaptation; and (3) provide a synopsis on the interactions between the oxidative, inflammatory and neuroendocrinological response to exercise stimuli. Based on prior research, it is evident that ROS are an underlying aetiology in the adaptive process; however, the impact of antioxidant supplementation on physiological adaptation remains unclear. Equivocal results have been reported on the impact of antioxidant supplementation on exercise-induced gene expression. Further research is required to establish whether the interference of antioxidant supplementation consistently observed in animal-based and in vivo research extends to a practical sports setting. Moreover, the varied results reported within the literature may be due to the hormetic response of oxidative, inflammatory and neuroendocrinological systems to an exercise stimulus. The collective findings suggest that intensified physical training places substantial stress on the body, which can manifest as an adaptive or maladaptive physiological response. Additional research is required to determine the efficacy of antioxidant supplementation to minimise exercise-stress during intensive training and promote an adaptive state.

  13. Adaptive Inferential Feedback Partner Training for Depression: A Pilot Study

    ERIC Educational Resources Information Center

    Dobkin, Roseanne DeFronzo; Allen, Lesley A.; Alloy, Lauren B.; Menza, Matthew; Gara, Michael A.; Panzarella, Catherine

    2007-01-01

    Adaptive inferential feedback (AIF) partner training is a cognitive technique that teaches the friends and family members of depressed patients to respond to the patients' dysfunctional thoughts in a targeted manner. These dysfunctional attributions, which AIF addresses, are a common residual feature of depression amongst remitted patients, and…

  14. StairStepper: An Adaptive Remedial iSTART Module

    ERIC Educational Resources Information Center

    Perret, Cecile A.; Johnson, Amy M.; McCarthy, Kathryn S.; Guerrero, Tricia A.; Dai, Jianmin; McNamara, Danielle S.

    2017-01-01

    This paper introduces StairStepper, a new addition to Interactive Strategy Training for Active Reading and Thinking (iSTART), an intelligent tutoring system (ITS) that provides adaptive self-explanation training and practice. Whereas iSTART focuses on improving comprehension at levels geared toward answering challenging questions associated with…

  15. Enhancing Cultural Adaptation through Friendship Training: A Single-Case Study.

    ERIC Educational Resources Information Center

    Liu, Yi-Ching; Baker, Stanley B.

    1993-01-01

    Four-year-old girl from mainland China experienced culture shock when attending American university day-care center. Counseling intern from Taiwan designed friendship training program based on assumptions concerning adaptation, acculturation, and peer relationships. Evaluated as intensive single-case study, findings indicated the program may be…

  16. Variable practice with lenses improves visuo-motor plasticity

    NASA Technical Reports Server (NTRS)

    Roller, C. A.; Cohen, H. S.; Kimball, K. T.; Bloomberg, J. J.

    2001-01-01

    Novel sensorimotor situations present a unique challenge to an individual's adaptive ability. Using the simple and easily measured paradigm of visual-motor rearrangement created by the use of visual displacement lenses, we sought to determine whether an individual's ability to adapt to visuo-motor discordance could be improved through training. Subjects threw small balls at a stationary target during a 3-week practice regimen involving repeated exposure to one set of lenses in block practice (x 2.0 magnifying lenses), multiple sets of lenses in variable practice (x 2.0 magnifying, x 0.5 minifying and up-down reversing lenses) or sham lenses. At the end of training, adaptation to a novel visuo-motor situation (20-degree right shift lenses) was tested. We found that (1) training with variable practice can increase adaptability to a novel visuo-motor situation, (2) increased adaptability is retained for at least 1 month and is transferable to further novel visuo-motor permutations and (3) variable practice improves performance of a simple motor task even in the undisturbed state. These results have implications for the design of clinical rehabilitation programs and countermeasures to enhance astronaut adaptability, facilitating adaptive transitions between gravitational environments.

  17. Effects of self-paced interval and continuous training on health markers in women.

    PubMed

    Connolly, Luke J; Bailey, Stephen J; Krustrup, Peter; Fulford, Jonathan; Smietanka, Chris; Jones, Andrew M

    2017-11-01

    To compare the effects of self-paced high-intensity interval and continuous cycle training on health markers in premenopausal women. Forty-five inactive females were randomised to a high-intensity interval training (HIIT; n = 15), continuous training (CT; n = 15) or an inactive control (CON; n = 15) group. HIIT performed 5 × 5 min sets comprising repetitions of 30-s low-, 20-s moderate- and 10-s high-intensity cycling with 2 min rest between sets. CT completed 50 min of continuous cycling. Training was completed self-paced, 3 times weekly for 12 weeks. Peak oxygen uptake (16 ± 8 and 21 ± 12%), resting heart rate (HR) (-5 ± 9 and -4 ± 7 bpm) and visual and verbal learning improved following HIIT and CT compared to CON (P < 0.05). Total body mass (-0.7 ± 1.4 kg), submaximal walking HR (-3 ± 4 bpm) and verbal memory were enhanced following HIIT (P < 0.05), whereas mental well-being, systolic (-5 ± 6 mmHg) and mean arterial (-3 ± 5 mmHg) blood pressures were improved following CT (P < 0.05). Participants reported similar levels of enjoyment following HIIT and CT, and there were no changes in fasting serum lipids, fasting blood [glucose] or [glucose] during an oral glucose tolerance test following either HIIT or CT (P > 0.05). No outcome variable changed in the CON group (P > 0.05). Twelve weeks of self-paced HIIT and CT were similarly effective at improving cardiorespiratory fitness, resting HR and cognitive function in inactive premenopausal women, whereas blood pressure, submaximal HR, well-being and body mass adaptations were training-type-specific. Both training methods improved established health markers, but the adaptations to HIIT were evoked for a lower time commitment.

  18. Effects of exercise training on cellular mechanisms of endothelial nitric oxide synthase regulation in coronary arteries after chronic occlusion

    PubMed Central

    Zhou, Minglong; Widmer, R. Jay; Xie, Wei; Jimmy Widmer, A.; Miller, Matthew W.; Schroeder, Friedhelm; Parker, Janet L.

    2010-01-01

    Exercise training enhances agonist-mediated relaxation in both control and collateral-dependent coronary arteries of hearts subjected to chronic occlusion, an enhancement that is mediated in part by nitric oxide. The purpose of the present study was to elucidate exercise training-induced adaptations in specific cellular mechanisms involved in the regulation of endothelial nitric oxide synthase (eNOS) in coronary arteries of ischemic hearts. Ameroid constrictors were surgically placed around the proximal left circumflex coronary artery (LCX) of adult female Yucatan miniature swine. Eight weeks postoperatively, animals were randomized into sedentary (pen-confined) or exercise training (treadmill run; 5 days/wk; 14 wk) protocols. Coronary artery segments (∼1.0 mm luminal diameter) were isolated from collateral-dependent (LCX) and control (nonoccluded left anterior descending) arteries 22 wk after ameroid placement. Endothelial cells were enzymatically dissociated, and intracellular Ca2+ responses (fura 2) to bradykinin stimulation were studied. Immunofluorescence and laser scanning confocal microscopy were used to quantify endothelial cell eNOS and caveolin-1 cellular distribution under basal and bradykinin-stimulated conditions. Immunoblot analysis was used to determine eNOS, phosphorylated (p)-eNOS, protein kinase B (Akt), pAkt, and caveolin-1 protein levels. Bradykinin-stimulated nitrite plus nitrate (NOx; nitric oxide metabolites) levels were assessed via HPLC. Exercise training resulted in significantly enhanced bradykinin-mediated increases in endothelial Ca2+ levels, NOx levels, and the distribution of eNOS-to-caveolin-1 ratio at the plasma membrane in endothelial cells of control and collateral-dependent arteries. Exercise training also significantly increased total eNOS and phosphorylated levels of eNOS (pSer1179) in collateral-dependent arteries. Total eNOS protein levels were also significantly increased in collateral-dependent arteries of sedentary animals. These data provide new insights into exercise training-induced adaptations in cellular mechanisms of nitric oxide regulation in collateral-dependent coronary arteries of chronically occluded hearts that contribute to enhanced nitric oxide production. PMID:20363881

  19. Prolonged training does not result in a greater extent of interlimb transfer following visuomotor adaptation.

    PubMed

    Lei, Yuming; Wang, Jinsung

    2014-11-01

    Learning a visumotor adaptation task with one arm typically facilitates subsequent performance with the other. The extent of transfer across the arms, however, is generally much smaller than that across different conditions within the same arm. This may be attributed to a possibility that intralimb transfer involves both algorithmic and instance-reliant learning, whereas interlimb transfer only involves algorithmic learning. Here, we investigated whether prolonged training with one arm could facilitate subsequent performance with the other arm to a greater extent, by examining the effect of varying lengths of practice trials on the extent of interlimb transfer. We had 18 subjects adapt to a 30° visuomotor rotation with the left arm first (training), then with the right arm (transfer). During the training session, the subjects reached toward multiple targets for 160, 320 or 400 trials; during the transfer session, all subjects performed the same task for 160 trials. Our results revealed substantial initial transfer from the left to the right arm in all three conditions. However, neither the amount of initial transfer nor the rate of adaptation during the transfer session was significantly different across the conditions, indicating that the extent of transfer was similar regardless of the length of initial training. Our findings suggest that interlimb transfer of visuomotor adaptation may only occur through algorithmic learning, which is effector independent, and that prolonged training may only have beneficial effects when instance-reliant learning, which is effector dependent, is also involved in the learning process. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Adaptive rehabilitation games.

    PubMed

    Barzilay, Ouriel; Wolf, Alon

    2013-02-01

    In conventional neuromuscular rehabilitation, patients are required to perform biomechanical exercises to recover their neuromotor abilities. These physiotherapeutic tasks are defined by the physiotherapist, according to his estimate of the patient's pathologic neuromotor function. The definition of the task is mainly qualitative and it is often merely demonstrated to the patient as a gesture to reproduce. Success of the treatment relies then on the accuracy and repetition of the motor training. We propose a novel approach to neuromotor training by combining the advantages of a virtual reality platform with biofeedback information on the training subject from biometric equipment and with the computational power of artificial neural networks. In a calibration stage, the subject performs motor training on a known task to train the network. Once trained, the tuned network generates a new patient-specific task, based on the definition of the subject's expected performance dictated by the therapist. The system was tested for upper limb rehabilitation on healthy subjects. We measured a 33% improvement in the triceps performance (p = 0.027). The novelty of the proposed approach lies in its use of learning systems to the estimation of biological models. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Long-Term Adaptations to Unexpected Surface Perturbations: Postural Control During Stance and Gait in Train Conductors.

    PubMed

    Baumgart, Christian; Hoppe, Matthias Wilhelm; Freiwald, Jürgen

    2016-01-01

    The authors aimed to evaluate the differences in postural control during stance and gait between train conductors and controls. Twenty-one train conductors and 21 office workers performed 6 unilateral and bilateral balance tests on stable and unstable surfaces as well as a gait analysis. In the balance tests, the mean velocity of the center of pressure and unstable surface was measured. In the bilateral balance tests the selected stance width was measured. During gait the length, width, frequency, and velocity of the steps were calculated from the ground reaction forces. Train conductors showed a significantly greater step width during gait (15.4 ± 4.7 vs. 13.0 ± 3.4 cm; p = .035) and stance width during the bilateral stance on the unstable surface (21.0 ± 5.1 vs. 17.8 ± 3.7 cm; p = .026) than the office workers, while no differences were revealed in balance variables. The revealed differences between train conductors and office workers may represent task-specific feedforward control strategies, which increase the base of support and may be helpful to resist unexpected perturbations in trains.

  2. International Emergency Medical Teams Training Workshop Special Report.

    PubMed

    Albina, Anthony; Archer, Laura; Boivin, Marlène; Cranmer, Hilarie; Johnson, Kirsten; Krishnaraj, Gautham; Maneshi, Anali; Oddy, Lisa; Redwood-Campbell, Lynda; Russell, Rebecca

    2018-04-26

    The World Health Organization's (WHO; Geneva, Switzerland) Emergency Medical Team (EMT) Initiative created guidelines which define the basic procedures to be followed by personnel and teams, as well as the critical points to discuss before deploying a field hospital. However, to date, there is no formal standardized training program established for EMTs before deployment. Recognizing that the World Association of Disaster and Emergency Medicine (WADEM; Madison, Wisconsin USA) Congress brings together a diverse group of key stakeholders, a pre-Congress workshop was organized to seek out collective expertise and to identify key EMT training competencies for the future development of training programs and protocols. The future of EMT training should include standardization of curriculum and the recognition or accreditation of selected training programs. The outputs of this pre-WADEM Congress workshop provide an initial contribution to the EMT Training Working Group, as this group works on mapping training, competencies, and curriculum. Common EMT training themes that were identified as fundamental during the pre-Congress workshop include: the ability to adapt one's professional skills to low-resource settings; context-specific training, including the ability to serve the needs of the affected population in natural disasters; training together as a multi-disciplinary EMT prior to deployment; and the value of simulation in training. AlbinaA, ArcherL, BoivinM, CranmerH, JohnsonK, KrishnarajG, ManeshiA, OddyL, Redwood-CampbellL, RussellR. International Emergency Medical Teams training workshop special report.

  3. Age-Related Variation in Male Youth Athletes' Countermovement Jump After Plyometric Training: A Meta-Analysis of Controlled Trials.

    PubMed

    Moran, Jason J; Sandercock, Gavin R H; Ramírez-Campillo, Rodrigo; Meylan, César M P; Collison, Jay A; Parry, Dave A

    2017-02-01

    Moran, J, Sandercock, GRH, Ramírez-Campillo, R, Meylan, CMP, Collison, J, and Parry, DA. Age-related variation in male youth athletes' countermovement jump after plyometric training: A meta-analysis of controlled trials. J Strength Cond Res 31(2): 552-565, 2017-Recent debate on the trainability of youths has focused on the existence of periods of accelerated adaptation to training. Accordingly, the purpose of this meta-analysis was to identify the age- and maturation-related pattern of adaptive responses to plyometric training in youth athletes. Thirty effect sizes were calculated from the data of 21 sources with studies qualifying based on the following criteria: (a) healthy male athletes who were engaged in organized sport; (b) groups of participants with a mean age between 10 and 18 years; and (c) plyometric-training intervention duration between 4 and 16 weeks. Standardized mean differences showed plyometric training to be moderately effective in increasing countermovement jump (CMJ) height (Effect size = 0.73 95% confidence interval: 0.47-0.99) across PRE-, MID-, and POST-peak height velocity groups. Adaptive responses were of greater magnitude between the mean ages of 10 and 12.99 years (PRE) (ES = 0.91 95% confidence interval: 0.47-1.36) and 16 and 18 years (POST) (ES = 1.02 [0.52-1.53]). The magnitude of adaptation to plyometric training between the mean ages of 13 and 15.99 years (MID) was lower (ES = 0.47 [0.16-0.77]), despite greater training exposure. Power performance as measured by CMJ may be mediated by biological maturation. Coaches could manipulate training volume and modality during periods of lowered response to maximize performance.

  4. Adaptive skin detection based on online training

    NASA Astrophysics Data System (ADS)

    Zhang, Ming; Tang, Liang; Zhou, Jie; Rong, Gang

    2007-11-01

    Skin is a widely used cue for porn image classification. Most conventional methods are off-line training schemes. They usually use a fixed boundary to segment skin regions in the images and are effective only in restricted conditions: e.g. good lightness and unique human race. This paper presents an adaptive online training scheme for skin detection which can handle these tough cases. In our approach, skin detection is considered as a classification problem on Gaussian mixture model. For each image, human face is detected and the face color is used to establish a primary estimation of skin color distribution. Then an adaptive online training algorithm is used to find the real boundary between skin color and background color in current image. Experimental results on 450 images showed that the proposed method is more robust in general situations than the conventional ones.

  5. Continuous-time adaptive critics.

    PubMed

    Hanselmann, Thomas; Noakes, Lyle; Zaknich, Anthony

    2007-05-01

    A continuous-time formulation of an adaptive critic design (ACD) is investigated. Connections to the discrete case are made, where backpropagation through time (BPTT) and real-time recurrent learning (RTRL) are prevalent. Practical benefits are that this framework fits in well with plant descriptions given by differential equations and that any standard integration routine with adaptive step-size does an adaptive sampling for free. A second-order actor adaptation using Newton's method is established for fast actor convergence for a general plant and critic. Also, a fast critic update for concurrent actor-critic training is introduced to immediately apply necessary adjustments of critic parameters induced by actor updates to keep the Bellman optimality correct to first-order approximation after actor changes. Thus, critic and actor updates may be performed at the same time until some substantial error build up in the Bellman optimality or temporal difference equation, when a traditional critic training needs to be performed and then another interval of concurrent actor-critic training may resume.

  6. Interactions of cortisol, testosterone, and resistance training: influence of circadian rhythms.

    PubMed

    Hayes, Lawrence D; Bickerstaff, Gordon F; Baker, Julien S

    2010-06-01

    Diurnal variation of sports performance usually peaks in the late afternoon, coinciding with increased body temperature. This circadian pattern of performance may be explained by the effect of increased core temperature on peripheral mechanisms, as neural drive does not appear to exhibit nycthemeral variation. This typical diurnal regularity has been reported in a variety of physical activities spanning the energy systems, from Adenosine triphosphate-phosphocreatine (ATP-PC) to anaerobic and aerobic metabolism, and is evident across all muscle contractions (eccentric, isometric, concentric) in a large number of muscle groups. Increased nerve conduction velocity, joint suppleness, increased muscular blood flow, improvements of glycogenolysis and glycolysis, increased environmental temperature, and preferential meteorological conditions may all contribute to diurnal variation in physical performance. However, the diurnal variation in strength performance can be blunted by a repeated-morning resistance training protocol. Optimal adaptations to resistance training (muscle hypertrophy and strength increases) also seem to occur in the late afternoon, which is interesting, since cortisol and, particularly, testosterone (T) concentrations are higher in the morning. T has repeatedly been linked with resistance training adaptation, and higher concentrations appear preferential. This has been determined by suppression of endogenous production and exogenous supplementation. However, the cortisol (C)/T ratio may indicate the catabolic/anabolic environment of an organism due to their roles in protein degradation and protein synthesis, respectively. The morning elevated T level (seen as beneficial to achieve muscle hypertrophy) may be counteracted by the morning elevated C level and, therefore, protein degradation. Although T levels are higher in the morning, an increased resistance exercise-induced T response has been found in the late afternoon, suggesting greater responsiveness of the hypothalamo-pituitary-testicular axis then. Individual responsiveness has also been observed, with some participants experiencing greater hypertrophy and strength increases in response to strength protocols, whereas others respond preferentially to power, hypertrophy, or strength endurance protocols dependent on which protocol elicited the greatest T response. It appears that physical performance is dependent on a number of endogenous time-dependent factors, which may be masked or confounded by exogenous circadian factors. Strength performance without time-of-day-specific training seems to elicit the typical diurnal pattern, as does resistance training adaptations. The implications for this are (a) athletes are advised to coincide training times with performance times, and (b) individuals may experience greater hypertrophy and strength gains when resistance training protocols are designed dependent on individual T response.

  7. The development and implementation of the structured training programme for caregivers of inpatients after stroke (TRACS) intervention: the London Stroke Carers Training Course.

    PubMed

    Forster, Anne; Dickerson, Josie; Melbourn, Anne; Steadman, Jayne; Wittink, Margreet; Young, John; Kalra, Lalit; Farrin, Amanda

    2015-03-01

    To describe the content and delivery of the adapted London Stroke Carers Training Course intervention evaluated in the Training Caregivers after Stroke (TRACS) trial. The London Stroke Carers Training Course is a structured training programme for caregivers of inpatients who are likely to return home after their stroke. The course was delivered by members of the multidisciplinary team while the patient was in the stroke unit with one recommended 'follow through' session after discharge home. The intervention consists of 14 training components (six mandatory) that were identified as important knowledge/skills that caregivers would need to be able to care for the stroke patient after discharge home. Following national training days, the London Stroke Carers Training Course was disseminated to intervention sites by the cascade method of implementation. The intervention was adapted for implementation across a range of stroke units. Training days were well attended (median 2.5 and 2.0 attendees per centre for the first and second days, respectively) and the feedback positive, demonstrating 'face validity' for the intervention. However cascading of this training to other members of the multidisciplinary team was not consistent, with 7/18 centres recording no cascade training. The adapted London Stroke Carers Training Course provided a training programme that could be delivered in a standardised, structured way in a variety of stroke unit settings throughout the UK. The intervention was well received by stroke unit staff, however, the cascade method of implementation was not as effective as we would have wished. © The Author(s) 2014.

  8. Individual Learner and Team Modeling for Adaptive Training and Education in Support of the US Army Learning Model: Research Outline

    DTIC Science & Technology

    2015-09-01

    evaluate adaptive technologies to make them usable by a larger segment of the training and educational community. This research includes 5...Needed for Modeling Small Unit Team Processes and Performance Outcomes That Can Be Used in Adaptive Tutoring 25 8.2 Design Simulation Technologies ...learning and career development through the growth of metacognitive (e.g., reflection), self-assessment, and motivational skills (Butler and Winne 1995

  9. Possible stimuli for strength and power adaptation : acute metabolic responses.

    PubMed

    Crewther, Blair; Cronin, John; Keogh, Justin

    2006-01-01

    The metabolic response to resistance exercise, in particular lactic acid or lactate, has a marked influence upon the muscular environment, which may enhance the training stimulus (e.g. motor unit activation, hormones or muscle damage) and thereby contribute to strength and power adaptation. Hypertrophy schemes have resulted in greater lactate responses (%) than neuronal and dynamic power schemes, suggesting possible metabolic-mediated changes in muscle growth. Factors such as age, sex, training experience and nutrition may also influence the lactate responses to resistance exercise and thereafter, muscular adaptation. Although the importance of the mechanical and hormonal stimulus to strength and power adaptation is well recognised, the contribution of the metabolic stimulus is largely unknown. Relatively few studies for example, have examined metabolic change across neuronal and dynamic power schemes, and not withstanding the fact that those mechanisms underpinning muscular adaptation, in relation to the metabolic stimulus, remain highly speculative. Inconsistent findings and methodological limitations within research (e.g. programme design, sampling period, number of samples) make interpretation further difficult. We contend that strength and power research needs to investigate those metabolic mechanisms likely to contribute to weight-training adaptation. Further research is also needed to examine the metabolic responses to different loading schemes, as well as interactions across age, sex and training status, so our understanding of how to optimise strength and power development is improved.

  10. Automatic Training of Rat Cyborgs for Navigation.

    PubMed

    Yu, Yipeng; Wu, Zhaohui; Xu, Kedi; Gong, Yongyue; Zheng, Nenggan; Zheng, Xiaoxiang; Pan, Gang

    2016-01-01

    A rat cyborg system refers to a biological rat implanted with microelectrodes in its brain, via which the outer electrical stimuli can be delivered into the brain in vivo to control its behaviors. Rat cyborgs have various applications in emergency, such as search and rescue in disasters. Prior to a rat cyborg becoming controllable, a lot of effort is required to train it to adapt to the electrical stimuli. In this paper, we build a vision-based automatic training system for rat cyborgs to replace the time-consuming manual training procedure. A hierarchical framework is proposed to facilitate the colearning between rats and machines. In the framework, the behavioral states of a rat cyborg are visually sensed by a camera, a parameterized state machine is employed to model the training action transitions triggered by rat's behavioral states, and an adaptive adjustment policy is developed to adaptively adjust the stimulation intensity. The experimental results of three rat cyborgs prove the effectiveness of our system. To the best of our knowledge, this study is the first to tackle automatic training of animal cyborgs.

  11. Automatic Training of Rat Cyborgs for Navigation

    PubMed Central

    Yu, Yipeng; Wu, Zhaohui; Xu, Kedi; Gong, Yongyue; Zheng, Nenggan; Zheng, Xiaoxiang; Pan, Gang

    2016-01-01

    A rat cyborg system refers to a biological rat implanted with microelectrodes in its brain, via which the outer electrical stimuli can be delivered into the brain in vivo to control its behaviors. Rat cyborgs have various applications in emergency, such as search and rescue in disasters. Prior to a rat cyborg becoming controllable, a lot of effort is required to train it to adapt to the electrical stimuli. In this paper, we build a vision-based automatic training system for rat cyborgs to replace the time-consuming manual training procedure. A hierarchical framework is proposed to facilitate the colearning between rats and machines. In the framework, the behavioral states of a rat cyborg are visually sensed by a camera, a parameterized state machine is employed to model the training action transitions triggered by rat's behavioral states, and an adaptive adjustment policy is developed to adaptively adjust the stimulation intensity. The experimental results of three rat cyborgs prove the effectiveness of our system. To the best of our knowledge, this study is the first to tackle automatic training of animal cyborgs. PMID:27436999

  12. Postgraduate part-time education in optical design for technical personnel in the Russian optical industry

    NASA Astrophysics Data System (ADS)

    Khoroshev, Michael V.

    1997-12-01

    Traditionally two intercompletely training forms are used in Russian optical industry: a training at University and at the high technology optical plant laboratories. The curriculum adaptation for specific part-time conditions is made by associating of similar courses, intensivizing of the methodic preparation, using of the highest qualification faculty's lectors. Special attention is given to a master's skill development by the intensification of the practice part of each course of studies. Since 1961 about 2,300 diploma engineers in optical design graduated MIIGAiK Part-time Faculty. Among them are chiefs of the large scientific groups, the authors of the newest electro-optical devices, the lecturers and professors at the professional educating system.

  13. Endurance exercise training induces fat depot-specific differences in basal autophagic activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanaka, Goki; Kato, Hisashi; Izawa, Tetsuya, E-mail: tizawa@mail.doshisha.ac.jp

    The purpose of this study was to uncover the effect of exercise training on the expression of autophagy marker proteins in epididymal white adipose tissue (eWAT), inguinal WAT (iWAT), and the stromal vascular fraction (SVF) collected from eWAT. Male Wistar rats aged 4–5 weeks were randomly divided into two groups, sedentary control (n = 7) and exercise-trained (n = 7). Rats in the exercise-trained group were exercised on a treadmill set at a 5° incline 5 days/week for 9 weeks. We determined that the expression levels of an autophagosome-associating form of microtubule-associated protein 1 light chain 3 (LC3)-II and of p62 were significantly highermore » in eWAT from exercise-trained than from control rats, while those of adipose-specific deletion of autophagy-related protein (ATG7) and lysosomal-associated membrane protein type 2A (LAMP2a) showed no difference between groups. However, in iWAT, the expression levels of LC3-II and ATG7 were significantly higher in exercise-trained than in control rats. The expression of p62 was highly correlated with that of peroxisome proliferator-activated receptor γ (PPARγ), a master regulator of adipogenesis and lipid metabolism, in both WAT types (eWAT, r = 0.856, P < 0.05; iWAT, r = 0.762, P < 0.05), whereas LC3-II and PPARγ levels were highly correlated in eWAT (r = 0.765, P < 0.05) but not in iWAT (r = −0.306, ns). In SVF, the expression levels of LC3II, ATG7, and LAMP2a were significantly higher in exercise-trained than in control rats. These results suggest that exercise training suppresses basal autophagy activity in eWAT, but that this activity is enhanced in iWAT and SVF collected from eWAT. Thus, the adaptation of basal autophagic activity following exercise training exhibits fat depot-specific differences. - Highlights: • Autophagy has been associated with obesity and associated diseases. • We examined exercise-associated rat white adipose tissue (WAT) autophagy markers. • Exercise increased autophagosome associated LC3-II in WAT. • Exercise-induced changes in p62 and ATG7 were WAT-type specific. • Exercise-induced basal autophagic activity shows fat depot-specific differences.« less

  14. Adaptation, Implementation Plan, and Evaluation of an Online Tobacco Cessation Training Program for Health Care Professionals in Three Spanish-Speaking Latin American Countries: Protocol of the Fruitful Study.

    PubMed

    Martínez, Cristina; Company, Assumpta; Guillen, Olga; Margalef, Mercè; Arrien, Martha Alicia; Sánchez, Claudia; Cáceres de León, Paula; Fernández, Esteve

    2017-01-27

    Tobacco cessation training programs to treat tobacco dependence have measureable effects on patients' smoking. Tobacco consumption in low- and middle-income countries (LMICs) is high and slowly decreasing, but these countries usually lack measures to face the epidemic, including tobacco cessation training programs for health professionals and organizations. Based on a previous online smoking cessation training program for hospital workers in Spain, the Fruitful Study aims to increase smoking cessation knowledge, attitudes, self-confidence, and performance interventions among health care professionals of three Spanish-speaking low- and middle-income Latin American and Caribbean (LAC) countries. The purpose of this paper is to describe the methodology and evaluation strategy of the Fruitful Study intended to adapt, implement, and test the effectiveness of an online, evidence-based tobacco cessation training program addressed to health professionals from Bolivia, Guatemala, and Paraguay. This study will use a mixed-methods design with a pre-post evaluation (quantitative approach) and in-depth interviews and focus groups (qualitative approach). The main outcomes will be (1) participants' attitudes, knowledge, and behaviors before and after the training; and (2) the level of implementation of tobacco control policies within the hospitals before and after the training. To date, adaptation of the materials, study enrollment, and training activities have been completed. During the adaptation, the main mismatches were language background and content adaptation. Several aids were developed to enable students' training enrollment, including access to computers, support from technicians, and reminders to correctly complete the course. Follow-up data collection is in progress. We have enrolled 281 hospital workers. Results are expected at the beginning of 2017 and will be reported in two follow-up papers: one about the formative evaluation and the other about the summative evaluation. There is a need to learn more about the cultural and content elements that should be modified when an online tobacco cessation training program is adapted to new contexts. Special attention should be given to the personal and material resources that could make the implementation possible. Results from the Fruitful Study may offer a new approach to adapting programs to LMICs in order to offer education solutions with the use of emerging and growing communication technologies. Clinicaltrials.gov NCT02718872; https://clinicaltrials.gov/ct2/show/NCT02718872 (Archived by WebCite at http://www.webcitation.org/6mjihsgE2). ©Cristina Martínez, Assumpta Company, Olga Guillen, Mercè Margalef, Martha Alicia Arrien, Claudia Sánchez, Paula Cáceres de León, Esteve Fernández, Group of Hospital Coordinators in the Fruitful Project. Originally published in JMIR Research Protocols (http://www.researchprotocols.org), 27.01.2017.

  15. Time course and dimensions of postural control changes following neuromuscular training in youth field hockey athletes.

    PubMed

    Zech, Astrid; Klahn, Philipp; Hoeft, Jon; zu Eulenburg, Christine; Steib, Simon

    2014-02-01

    Injury prevention effects of neuromuscular training have been partly attributed to postural control adaptations. Uncertainty exists regarding the magnitude of these adaptations and on how they can be adequately monitored. The objective was to determine the time course of neuromuscular training effects on functional, dynamic and static balance measures. Thirty youth (14.9 ± 3 years) field hockey athletes were randomised to an intervention or control group. The intervention included a 20-min neuromuscular warm-up program performed twice weekly for 10 weeks. Balance assessments were performed at baseline, week three, week six and post-intervention. They included the star excursion balance test (SEBT), balance error scoring system (BESS), jump-landing time to stabilization (TTS) and center of pressure (COP) sway velocity during single-leg standing. No baseline differences were found between groups in demographic data and balance measures. Adherence was at 86%. All balance measures except the medial-lateral TTS improved significantly over time (p < 0.05) in both groups. Significant group by time interactions were found for the BESS score (p < 0.001). The intervention group showed greater improvements (69.3 ± 10.3%) after 10 weeks in comparison to controls (31.8 ± 22.1%). There were no significant group by time interactions in the SEBT, TTS and COP sway velocity. Neuromuscular training was effective in improving postural control in youth team athletes. However, this effect was not reflected in all balance measures suggesting that the neuromuscular training did not influence all dimensions of postural control. Further studies are needed to confirm the potential of specific warm-up programs to improve postural control.

  16. Stretching of Active Muscle Elicits Chronic Changes in Multiple Strain Risk Factors.

    PubMed

    Kay, Anthony David; Richmond, Dominic; Talbot, Chris; Mina, Minas; Baross, Anthony William; Blazevich, Anthony John

    2016-07-01

    The muscle stretch intensity imposed during "flexibility" training influences the magnitude of joint range of motion (ROM) adaptation. Thus, stretching while the muscle is voluntarily activated was hypothesized to provide a greater stimulus than passive stretching. The effect of a 6-wk program of stretch imposed on an isometrically contracting muscle (i.e., qualitatively similar to isokinetic eccentric training) on muscle-tendon mechanics was therefore studied in 13 healthy human volunteers. Before and after the training program, dorsiflexion ROM, passive joint moment, and maximal isometric plantarflexor moment were recorded on an isokinetic dynamometer. Simultaneous real-time motion analysis and ultrasound imaging recorded gastrocnemius medialis muscle and Achilles tendon elongation. Training was performed twice weekly and consisted of five sets of 12 maximal isokinetic eccentric contractions at 10°·s. Significant increases (P < 0.01) in ROM (92.7% [14.7°]), peak passive moment (i.e., stretch tolerance; 136.2%), area under the passive moment curve (i.e., energy storage; 302.6%), and maximal isometric plantarflexor moment (51.3%) were observed after training. Although no change in the slope of the passive moment curve (muscle-tendon stiffness) was detected (-1.5%, P > 0.05), a significant increase in tendon stiffness (31.2%, P < 0.01) and a decrease in passive muscle stiffness (-14.6%, P < 0.05) were observed. The substantial positive adaptation in multiple functional and physiological variables that are cited within the primary etiology of muscle strain injury, including strength, ROM, muscle stiffness, and maximal energy storage, indicate that the stretching of active muscle might influence injury risk in addition to muscle function. The lack of change in muscle-tendon stiffness simultaneous with significant increases in tendon stiffness and decreases in passive muscle stiffness indicates that tissue-specific effects were elicited.

  17. Clinical application of a modular ankle robot for stroke rehabilitation.

    PubMed

    Forrester, Larry W; Roy, Anindo; Goodman, Ronald N; Rietschel, Jeremy; Barton, Joseph E; Krebs, Hermano Igo; Macko, Richard F

    2013-01-01

    Advances in our understanding of neuroplasticity and motor learning post-stroke are now being leveraged with the use of robotics technology to enhance physical rehabilitation strategies. Major advances have been made with upper extremity robotics, which have been tested for efficacy in multi-site trials across the subacute and chronic phases of stroke. In contrast, use of lower extremity robotics to promote locomotor re-learning has been more recent and presents unique challenges by virtue of the complex multi-segmental mechanics of gait. Here we review a programmatic effort to develop and apply the concept of joint-specific modular robotics to the paretic ankle as a means to improve underlying impairments in distal motor control that may have a significant impact on gait biomechanics and balance. An impedance controlled ankle robot module (anklebot) is described as a platform to test the idea that a modular approach can be used to modify training and measure the time profile of treatment response. Pilot studies using seated visuomotor anklebot training with chronic patients are reviewed, along with results from initial efforts to evaluate the anklebot's utility as a clinical tool for assessing intrinsic ankle stiffness. The review includes a brief discussion of future directions for using the seated anklebot training in the earliest phases of sub-acute therapy, and to incorporate neurophysiological measures of cerebro-cortical activity as a means to reveal underlying mechanistic processes of motor learning and brain plasticity associated with robotic training. Finally we conclude with an initial control systems strategy for utilizing the anklebot as a gait training tool that includes integrating an Internal Model-based adaptive controller to both accommodate individual deficit severities and adapt to changes in patient performance.

  18. Harnessing Online Peer Education (HOPE): integrating C-POL and social media to train peer leaders in HIV prevention.

    PubMed

    Jaganath, Devan; Gill, Harkiran K; Cohen, Adam Carl; Young, Sean D

    2012-01-01

    Novel methods, such as Internet-based interventions, are needed to combat the spread of HIV. While past initiatives have used the Internet to promote HIV prevention, the growing popularity, decreasing digital divide, and multi-functionality of social networking sites, such as Facebook, make this an ideal time to develop innovative ways to use online social networking sites to scale HIV prevention interventions among high-risk groups. The UCLA Harnessing Online Peer Education study is a longitudinal experimental study to evaluate the feasibility, acceptability, and preliminary effectiveness of using social media for peer-led HIV prevention, specifically among African American and Latino Men who have Sex with Men (MSM). No curriculum currently exists to train peer leaders in delivering culturally aware HIV prevention messages using social media. Training was created that adapted the Community Popular Opinion Leader (C-POL) model, for use on social networking sites. Peer leaders are recruited who represent the target population and have experience with both social media and community outreach. The curriculum contains the following elements: discussion and role playing exercises to integrate basic knowledge of HIV/AIDS, awareness of sociocultural HIV/AIDS issues in the age of technology, and communication methods for training peer leaders in effective, interactive social media-based HIV prevention. Ethical issues related to Facebook and health interventions are integrated throughout the sessions. Training outcomes have been developed for long-term assessment of retention and efficacy. This is the first C-POL curriculum that has been adapted for use on social networking websites. Although this curriculum has been used to target African-American and Latino MSM, it has been created to allow generalization to other high-risk groups.

  19. Clinical application of a modular ankle robot for stroke rehabilitation

    PubMed Central

    Forrester, Larry W.; Roy, Anindo; Goodman, Ronald N.; Rietschel, Jeremy; Barton, Joseph E.; Krebs, Hermano Igo; Macko, Richard F.

    2015-01-01

    Background Advances in our understanding of neuroplasticity and motor learning post-stroke are now being leveraged with the use of robotics technology to enhance physical rehabilitation strategies. Major advances have been made with upper extremity robotics, which have been tested for efficacy in multi-site trials across the subacute and chronic phases of stroke. In contrast, use of lower extremity robotics to promote locomotor re-learning has been more recent and presents unique challenges by virtue of the complex multi-segmental mechanics of gait. Objectives Here we review a programmatic effort to develop and apply the concept of joint-specific modular robotics to the paretic ankle as a means to improve underlying impairments in distal motor control that may have a significant impact on gait biomechanics and balance. Methods An impedance controlled ankle robot module (anklebot) is described as a platform to test the idea that a modular approach can be used to modify training and measure the time profile of treatment response. Results Pilot studies using seated visuomotor anklebot training with chronic patients are reviewed, along with results from initial efforts to evaluate the anklebot's utility as a clinical tool for assessing intrinsic ankle stiffness. The review includes a brief discussion of future directions for using the seated anklebot training in the earliest phases of sub-acute therapy, and to incorporate neurophysiological measures of cerebro-cortical activity as a means to reveal underlying mechanistic processes of motor learning and brain plasticity associated with robotic training. Conclusions Finally we conclude with an initial control systems strategy for utilizing the anklebot as a gait training tool that includes integrating an Internal Model-based adaptive controller to both accommodate individual deficit severities and adapt to changes in patient performance. PMID:23949045

  20. Harnessing Online Peer Education (HOPE): Integrating C-POL and Social Media to Train Peer Leaders in HIV Prevention

    PubMed Central

    Jaganath, Devan; Gill, Harkiran K.; Cohen, Adam Carl; Young, Sean D.

    2011-01-01

    Novel methods, such as Internet-based interventions, are needed to combat the spread of HIV. While past initiatives have used the Internet to promote HIV prevention, the growing popularity, decreasing digital divide, and multi-functionality of social networking sites, such as Facebook, make this an ideal time to develop innovative ways to use online social networking sites to scale HIV prevention interventions among high-risk groups. The UCLA HOPE [Harnessing Online Peer Education] study is a longitudinal experimental study to evaluate the feasibility, acceptability, and preliminary effectiveness of using social media for peer-led HIV prevention, specifically among African American and Latino Men who have Sex with Men (MSM). No curriculum currently exists to train peer leaders in delivering culturally aware HIV prevention messages using social media. Training was created that adapted the Community Popular Opinion Leader (C-POL) model, for use on social networking sites. Peer leaders are recruited who represent the target population and have experience with both social media and community outreach. The curriculum contains the following elements: discussion and role playing exercises to integrate basic knowledge of HIV/AIDS, awareness of sociocultural HIV/AIDS issues in the age of technology, and communication methods for training peer leaders in effective, interactive social media-based HIV prevention. Ethical issues related to Facebook and health interventions are integrated throughout the sessions. Training outcomes have been developed for long-term assessment of retention and efficacy. This is the first C-POL curriculum that has been adapted for use on social networking websites. Although this curriculum has been used to target African American and Latino MSM, it has been created to allow generalization to other high-risk groups. PMID:22149081

  1. Structural brain correlates associated with professional handball playing.

    PubMed

    Hänggi, Jürgen; Langer, Nicolas; Lutz, Kai; Birrer, Karin; Mérillat, Susan; Jäncke, Lutz

    2015-01-01

    There is no doubt that good bimanual performance is very important for skilled handball playing. The control of the non-dominant hand is especially demanding since efficient catching and throwing needs both hands. We investigated training-induced structural neuroplasticity in professional handball players using several structural neuroimaging techniques and analytic approaches and also provide a review of the literature about sport-induced structural neuroplastic alterations. Structural brain adaptations were expected in regions relevant for motor and somatosensory processing such as the grey matter (GM) of the primary/secondary motor (MI/supplementary motor area, SMA) and somatosensory cortex (SI/SII), basal ganglia, thalamus, and cerebellum and in the white matter (WM) of the corticospinal tract (CST) and corpus callosum, stronger in brain regions controlling the non-dominant left hand. Increased GM volume in handball players compared with control subjects were found in the right MI/SI, bilateral SMA/cingulate motor area, and left intraparietal sulcus. Fractional anisotropy (FA) and axial diffusivity were increased within the right CST in handball players compared with control women. Age of handball training commencement correlated inversely with GM volume in the right and left MI/SI and years of handball training experience correlated inversely with radial diffusivity in the right CST. Subcortical structures tended to be larger in handball players. The anatomical measures of the brain regions associated with handball playing were positively correlated in handball players, but not interrelated in control women. Training-induced structural alterations were found in the somatosensory-motor network of handball players, more pronounced in the right hemisphere controlling the non-dominant left hand. Correlations between handball training-related measures and anatomical differences suggest neuroplastic adaptations rather than a genetic predisposition for a ball playing affinity. Investigations of neuroplasticity specifically in sportsmen might help to understand the neural mechanisms of expertise in general.

  2. Perceptual Learning and Auditory Training in Cochlear Implant Recipients

    PubMed Central

    Fu, Qian-Jie; Galvin, John J.

    2007-01-01

    Learning electrically stimulated speech patterns can be a new and difficult experience for cochlear implant (CI) recipients. Recent studies have shown that most implant recipients at least partially adapt to these new patterns via passive, daily-listening experiences. Gradually introducing a speech processor parameter (eg, the degree of spectral mismatch) may provide for more complete and less stressful adaptation. Although the implant device restores hearing sensation and the continued use of the implant provides some degree of adaptation, active auditory rehabilitation may be necessary to maximize the benefit of implantation for CI recipients. Currently, there are scant resources for auditory rehabilitation for adult, postlingually deafened CI recipients. We recently developed a computer-assisted speech-training program to provide the means to conduct auditory rehabilitation at home. The training software targets important acoustic contrasts among speech stimuli, provides auditory and visual feedback, and incorporates progressive training techniques, thereby maintaining recipients’ interest during the auditory training exercises. Our recent studies demonstrate the effectiveness of targeted auditory training in improving CI recipients’ speech and music perception. Provided with an inexpensive and effective auditory training program, CI recipients may find the motivation and momentum to get the most from the implant device. PMID:17709574

  3. United We Stand: Emphasizing Commonalities Across Cognitive-Behavioral Therapies

    PubMed Central

    Mennin, Douglas S.; Ellard, Kristen K.; Fresco, David M.; Gross, James J.

    2016-01-01

    Cognitive behavioral therapy (CBT) has a rich history of alleviating the suffering associated with mental disorders. Recently, there have been exciting new developments, including multi-component approaches, incorporated alternative therapies (e.g., meditation), targeted and cost-effective technologies, and integrated biological and behavioral frameworks. These field-wide changes have led some to emphasize the differences among variants of CBT. Here, we draw attention to commonalities across cognitive-behavioral therapies, including shared goals, change principles, and therapeutic processes. Specifically, we offer a framework for examining common CBT characteristics that emphasizes behavioral adaptation as a unifying goal and three core change principles, namely (1) context engagement to promote adaptive imagining and enacting of new experiences; (2) attention change to promote adaptive sustaining, shifting, and broadening of attention; and (3) cognitive change to promote adaptive perspective taking on events so as to alter verbal meanings. Further, we argue that specific intervention components including behavioral exposure/activation, attention training, acceptance/tolerance, decentering/defusion, and cognitive reframing may be emphasized to a greater or lesser degree by different treatment packages but are still fundamentally common therapeutic processes that are present across approaches and are best understood by their relationships to these core CBT change principles. We conclude by arguing for shared methodological and design frameworks for investigating unique and common characteristics to advance a unified and strong voice for CBT in a widening, increasingly multimodal and interdisciplinary, intervention science. PMID:23611074

  4. The effect of instability training on knee joint proprioception and core strength.

    PubMed

    Cuğ, Mutlu; Ak, Emre; Ozdemir, Recep Ali; Korkusuz, Feza; Behm, David G

    2012-01-01

    Although there are many studies demonstrating increased trunk activation under unstable conditions, it is not known whether this increased activation would translate into meaningful trunk strength with a prolonged training program. Additionally, while balance-training programs have been shown to improve stability, their effect on specific joint proprioception is not clear. Thus the objective of this study was to examine training adaptations associated with a 10-week instability-training program. Participants were tested pre- and post-training for trunk extension and flexion strength and knee proprioception. Forty-three participants participated in either a 10-week (3 days per week) instability-training program using Swiss balls and body weight as resistance or a control group (n = 17). The trained group increased (p < 0. 05) trunk extension peak torque/body weight (23.6%) and total work output (20.1%) from pre- to post-training while the control group decreased by 6.8% and 6.7% respectively. The exercise group increased their trunk flexion peak torque/body weight ratios by 18.1% while the control group decreased by 0.4%. Knee proprioception (combined right and left joint repositioning) improved 44.7% from pre- to post-training (p = 0.0006) and persisted (21.5%) for 9 months post-training. In addition there was a side interaction with the position sense of the right knee at 9 months showing 32.1% (p = 0.03) less deviation from the reference angle than the right knee during pre-testing. An instability-training program using Swiss balls with body weight as resistance can provide prolonged improvements in joint proprioception and core strength in previously untrained individuals performing this novel training stress which would contribute to general health. Key pointsAlthough traditional free weight resistance exercises have been recommended as most beneficial for improving strength and power in athletes (Behm et al., 2010b), an IT program using Swiss balls and body weight as a resistance may provide an alternative starting point for the sedentary untrained population.As it is well documented that force or strength is decreased when unbalanced (Behm et al., 2010b) and balance-training programs improve balance (Behm and Kean 2006), this type of instability RT program can provide significant adaptations to improve trunk strength especially with the untrained.This type of training should also be incorporated into a new program as the improvements in joint proprioception may help protect from joint injuries over a protracted period.The finding that improved joint proprioception persists for months after training should be emphasized to those individuals whose training is regularly or inconsistently interrupted.

  5. Aerobic Exercise Training Adaptations Are Increased by Postexercise Carbohydrate-Protein Supplementation

    PubMed Central

    Ferguson-Stegall, Lisa; McCleave, Erin; Ding, Zhenping; Doerner III, Phillip G.; Liu, Yang; Wang, Bei; Healy, Marin; Kleinert, Maximilian; Dessard, Benjamin; Lassiter, David G.; Kammer, Lynne; Ivy, John L.

    2011-01-01

    Carbohydrate-protein supplementation has been found to increase the rate of training adaptation when provided postresistance exercise. The present study compared the effects of a carbohydrate and protein supplement in the form of chocolate milk (CM), isocaloric carbohydrate (CHO), and placebo on training adaptations occurring over 4.5 weeks of aerobic exercise training. Thirty-two untrained subjects cycled 60 min/d, 5 d/wk for 4.5 wks at 75–80% of maximal oxygen consumption (VO2 max). Supplements were ingested immediately and 1 h after each exercise session. VO2 max and body composition were assessed before the start and end of training. VO2 max improvements were significantly greater in CM than CHO and placebo. Greater improvements in body composition, represented by a calculated lean and fat mass differential for whole body and trunk, were found in the CM group compared to CHO. We conclude supplementing with CM postexercise improves aerobic power and body composition more effectively than CHO alone. PMID:21773022

  6. A DIGE proteomic analysis for high-intensity exercise-trained rat skeletal muscle.

    PubMed

    Yamaguchi, Wataru; Fujimoto, Eri; Higuchi, Mitsuru; Tabata, Izumi

    2010-09-01

    Exercise training induces various adaptations in skeletal muscles. However, the mechanisms remain unclear. In this study, we conducted 2D-DIGE proteomic analysis, which has not yet been used for elucidating adaptations of skeletal muscle after high-intensity exercise training (HIT). For 5 days, rats performed HIT, which consisted of 14 20-s swimming exercise bouts carrying a weight (14% of the body weight), and 10-s pause between bouts. The 2D-DIGE analysis was conducted on epitrochlearis muscles excised 18 h after the final training exercise. Proteomic profiling revealed that out of 800 detected and matched spots, 13 proteins exhibited changed expression by HIT compared with sedentary rats. All proteins were identified by MALDI-TOF/MS. Furthermore, using western immunoblot analyses, significantly changed expressions of NDUFS1 and parvalbumin (PV) were validated in relation to HIT. In conclusion, the proteomic 2D-DIGE analysis following HIT-identified expressions of NDUFS1 and PV, previously unknown to have functions related to exercise-training adaptations.

  7. Instructional Management for Adaptive Training and Education in Support of the US Army Learning Model-Research Outline

    DTIC Science & Technology

    2015-11-01

    within adaptive training environments. This line of research associates with tenets of Social Cognitive Theory in that learning is theorized to be an...Challenges 17 6.1 Guidance and Scaffolding 17 6.2 Social Dynamics and Virtual Humans 21 6.3 Metacognition and Self-Regulated Learning 23 6.4...and develop prototype authoring tools grounded in learning and instructional theory and informed by empirical research to assist training managers

  8. Carbohydrate availability and exercise training adaptation: too much of a good thing?

    PubMed

    Bartlett, Jonathan D; Hawley, John A; Morton, James P

    2015-01-01

    Traditional nutritional approaches to endurance training have typically promoted high carbohydrate (CHO) availability before, during and after training sessions to ensure adequate muscle substrate to meet the demands of high daily training intensities and volumes. However, during the past decade, data from our laboratories and others have demonstrated that deliberately training in conditions of reduced CHO availability can promote training-induced adaptations of human skeletal muscle (i.e. increased maximal mitochondrial enzyme activities and/or mitochondrial content, increased rates of lipid oxidation and, in some instances, improved exercise capacity). Such data have led to the concept of 'training low, but competing high' whereby selected training sessions are completed in conditions of reduced CHO availability (so as to promote training adaptation), but CHO reserves are restored immediately prior to an important competition. The augmented training response observed with training-low strategies is likely regulated by enhanced activation of key cell signalling kinases (e.g. AMPK, p38MAPK), transcription factors (e.g. p53, PPARδ) and transcriptional co-activators (e.g. PGC-1α), such that a co-ordinated up-regulation of both the nuclear and mitochondrial genomes occurs. Although the optimal practical strategies to train low are not currently known, consuming additional caffeine, protein, and practising CHO mouth-rinsing before and/or during training may help to rescue the reduced training intensities that typically occur when 'training low', in addition to preventing protein breakdown and maintaining optimal immune function. Finally, athletes should practise 'train-low' workouts in conjunction with sessions undertaken with normal or high CHO availability so that their capacity to oxidise CHO is not blunted on race day.

  9. Six weeks of a polarized training-intensity distribution leads to greater physiological and performance adaptations than a threshold model in trained cyclists.

    PubMed

    Neal, Craig M; Hunter, Angus M; Brennan, Lorraine; O'Sullivan, Aifric; Hamilton, D Lee; De Vito, Giuseppe; Galloway, Stuart D R

    2013-02-15

    This study was undertaken to investigate physiological adaptation with two endurance-training periods differing in intensity distribution. In a randomized crossover fashion, separated by 4 wk of detraining, 12 male cyclists completed two 6-wk training periods: 1) a polarized model [6.4 (±1.4 SD) h/wk; 80%, 0%, and 20% of training time in low-, moderate-, and high-intensity zones, respectively]; and 2) a threshold model [7.5 (±2.0 SD) h/wk; 57%, 43%, and 0% training-intensity distribution]. Before and after each training period, following 2 days of diet and exercise control, fasted skeletal muscle biopsies were obtained for mitochondrial enzyme activity and monocarboxylate transporter (MCT) 1 and 4 expression, and morning first-void urine samples were collected for NMR spectroscopy-based metabolomics analysis. Endurance performance (40-km time trial), incremental exercise, peak power output (PPO), and high-intensity exercise capacity (95% maximal work rate to exhaustion) were also assessed. Endurance performance, PPOs, lactate threshold (LT), MCT4, and high-intensity exercise capacity all increased over both training periods. Improvements were greater following polarized rather than threshold for PPO [mean (±SE) change of 8 (±2)% vs. 3 (±1)%, P < 0.05], LT [9 (±3)% vs. 2 (±4)%, P < 0.05], and high-intensity exercise capacity [85 (±14)% vs. 37 (±14)%, P < 0.05]. No changes in mitochondrial enzyme activities or MCT1 were observed following training. A significant multilevel, partial least squares-discriminant analysis model was obtained for the threshold model but not the polarized model in the metabolomics analysis. A polarized training distribution results in greater systemic adaptation over 6 wk in already well-trained cyclists. Markers of muscle metabolic adaptation are largely unchanged, but metabolomics markers suggest different cellular metabolic stress that requires further investigation.

  10. Individual Responses to Completion of Short-Term and Chronic Interval Training: A Retrospective Study

    PubMed Central

    Astorino, Todd A.; Schubert, Matthew M.

    2014-01-01

    Alterations in maximal oxygen uptake (VO2max), heart rate (HR), and fat oxidation occur in response to chronic endurance training. However, many studies report frequent incidence of “non-responders” who do not adapt to continuous moderate exercise. Whether this is the case in response to high intensity interval training (HIT), which elicits similar adaptations as endurance training, is unknown. The aim of this retrospective study was to examine individual responses to two paradigms of interval training. In the first study (study 1), twenty active men and women (age and baseline VO2max = 24.0±4.6 yr and 42.8±4.8 mL/kg/min) performed 6 d of sprint interval training (SIT) consisting of 4–6 Wingate tests per day, while in a separate study (study 2), 20 sedentary women (age and baseline VO2max = 23.7±6.2 yr and 30.0±4.9 mL/kg/min) performed 12 wk of high-volume HIT at workloads ranging from 60–90% maximal workload. Individual changes in VO2max, HR, and fat oxidation were examined in each study, and multiple regression analysis was used to identify predictors of training adaptations to SIT and HIT. Data showed high frequency of increased VO2max (95%) and attenuated exercise HR (85%) in response to HIT, and low frequency of response for VO2max (65%) and exercise HR (55%) via SIT. Frequency of improved fat oxidation was similar (60–65%) across regimens. Only one participant across both interventions showed non-response for all variables. Baseline values of VO2max, exercise HR, respiratory exchange ratio, and body fat were significant predictors of adaptations to interval training. Frequency of positive responses to interval training seems to be greater in response to prolonged, higher volume interval training compared to similar durations of endurance training. PMID:24847797

  11. Multi-domain training in healthy old age: Hotel Plastisse as an iPad-based serious game to systematically compare multi-domain and single-domain training.

    PubMed

    Binder, Julia C; Zöllig, Jacqueline; Eschen, Anne; Mérillat, Susan; Röcke, Christina; Schoch, Sarah F; Jäncke, Lutz; Martin, Mike

    2015-01-01

    Finding effective training interventions for declining cognitive abilities in healthy aging is of great relevance, especially in view of the demographic development. Since it is assumed that transfer from the trained to untrained domains is more likely to occur when training conditions and transfer measures share a common underlying process, multi-domain training of several cognitive functions should increase the likelihood of such an overlap. In the first part, we give an overview of the literature showing that cognitive training using complex tasks, such as video games, leisure activities, or practicing a series of cognitive tasks, has shown promising results regarding transfer to a number of cognitive functions. These studies, however, do not allow direct inference about the underlying functions targeted by these training regimes. Custom-designed serious games allow to design training regimes according to specific cognitive functions and a target population's need. In the second part, we introduce the serious game Hotel Plastisse as an iPad-based training tool for older adults that allows the comparison of the simultaneous training of spatial navigation, visuomotor function, and inhibition to the training of each of these functions separately. Hotel Plastisse not only defines the cognitive functions of the multi-domain training clearly, but also implements training in an interesting learning environment including adaptive difficulty and feedback. We propose this novel training tool with the goal of furthering our understanding of how training regimes should be designed in order to affect cognitive functioning of older adults most broadly.

  12. Multi-domain training in healthy old age: Hotel Plastisse as an iPad-based serious game to systematically compare multi-domain and single-domain training

    PubMed Central

    Binder, Julia C.; Zöllig, Jacqueline; Eschen, Anne; Mérillat, Susan; Röcke, Christina; Schoch, Sarah F.; Jäncke, Lutz; Martin, Mike

    2015-01-01

    Finding effective training interventions for declining cognitive abilities in healthy aging is of great relevance, especially in view of the demographic development. Since it is assumed that transfer from the trained to untrained domains is more likely to occur when training conditions and transfer measures share a common underlying process, multi-domain training of several cognitive functions should increase the likelihood of such an overlap. In the first part, we give an overview of the literature showing that cognitive training using complex tasks, such as video games, leisure activities, or practicing a series of cognitive tasks, has shown promising results regarding transfer to a number of cognitive functions. These studies, however, do not allow direct inference about the underlying functions targeted by these training regimes. Custom-designed serious games allow to design training regimes according to specific cognitive functions and a target population's need. In the second part, we introduce the serious game Hotel Plastisse as an iPad-based training tool for older adults that allows the comparison of the simultaneous training of spatial navigation, visuomotor function, and inhibition to the training of each of these functions separately. Hotel Plastisse not only defines the cognitive functions of the multi-domain training clearly, but also implements training in an interesting learning environment including adaptive difficulty and feedback. We propose this novel training tool with the goal of furthering our understanding of how training regimes should be designed in order to affect cognitive functioning of older adults most broadly. PMID:26257643

  13. Strength and Endurance Training Prescription in Healthy and Frail Elderly

    PubMed Central

    Cadore, Eduardo Lusa; Pinto, Ronei Silveira; Bottaro, Martim; Izquierdo, Mikel

    2014-01-01

    Aging is associated with declines in the neuromuscular and cardiovascular systems, resulting in an impaired capacity to perform daily activities. Frailty is an age-associated biological syndrome characterized by decreases in the biological functional reserve and resistance to stressors due to changes in several physiological systems, which puts older individuals at special risk of disability. To counteract the neuromuscular and cardiovascular declines associated with aging, as well as to prevent and treat the frailty syndrome, the strength and endurance training seems to be an effective strategy to improve muscle hypertrophy, strength and power output, as well as endurance performance. The first purpose of this review was discuss the neuromuscular adaptations to strength training, as well as the cardiovascular adaptations to endurance training in healthy and frail elderly subjects. In addition, the second purpose of this study was investigate the concurrent training adaptations in the elderly. Based on the results found, the combination of strength and endurance training (i.e., concurrent training) performed at moderate volume and moderate to high intensity in elderly populations is the most effective way to improve both neuromuscular and cardiorespiratory functions. Moreover, exercise interventions that include muscle power training should be prescribed to frail elderly in order to improve the overall physical status of this population and prevent disability. PMID:24900941

  14. Adaptive eye-gaze tracking using neural-network-based user profiles to assist people with motor disability.

    PubMed

    Sesin, Anaelis; Adjouadi, Malek; Cabrerizo, Mercedes; Ayala, Melvin; Barreto, Armando

    2008-01-01

    This study developed an adaptive real-time human-computer interface (HCI) that serves as an assistive technology tool for people with severe motor disability. The proposed HCI design uses eye gaze as the primary computer input device. Controlling the mouse cursor with raw eye coordinates results in sporadic motion of the pointer because of the saccadic nature of the eye. Even though eye movements are subtle and completely imperceptible under normal circumstances, they considerably affect the accuracy of an eye-gaze-based HCI. The proposed HCI system is novel because it adapts to each specific user's different and potentially changing jitter characteristics through the configuration and training of an artificial neural network (ANN) that is structured to minimize the mouse jitter. This task is based on feeding the ANN a user's initially recorded eye-gaze behavior through a short training session. The ANN finds the relationship between the gaze coordinates and the mouse cursor position based on the multilayer perceptron model. An embedded graphical interface is used during the training session to generate user profiles that make up these unique ANN configurations. The results with 12 subjects in test 1, which involved following a moving target, showed an average jitter reduction of 35%; the results with 9 subjects in test 2, which involved following the contour of a square object, showed an average jitter reduction of 53%. For both results, the outcomes led to trajectories that were significantly smoother and apt at reaching fixed or moving targets with relative ease and within a 5% error margin or deviation from desired trajectories. The positive effects of such jitter reduction are presented graphically for visual appreciation.

  15. Intelligent adaptive nonlinear flight control for a high performance aircraft with neural networks.

    PubMed

    Savran, Aydogan; Tasaltin, Ramazan; Becerikli, Yasar

    2006-04-01

    This paper describes the development of a neural network (NN) based adaptive flight control system for a high performance aircraft. The main contribution of this work is that the proposed control system is able to compensate the system uncertainties, adapt to the changes in flight conditions, and accommodate the system failures. The underlying study can be considered in two phases. The objective of the first phase is to model the dynamic behavior of a nonlinear F-16 model using NNs. Therefore a NN-based adaptive identification model is developed for three angular rates of the aircraft. An on-line training procedure is developed to adapt the changes in the system dynamics and improve the identification accuracy. In this procedure, a first-in first-out stack is used to store a certain history of the input-output data. The training is performed over the whole data in the stack at every stage. To speed up the convergence rate and enhance the accuracy for achieving the on-line learning, the Levenberg-Marquardt optimization method with a trust region approach is adapted to train the NNs. The objective of the second phase is to develop intelligent flight controllers. A NN-based adaptive PID control scheme that is composed of an emulator NN, an estimator NN, and a discrete time PID controller is developed. The emulator NN is used to calculate the system Jacobian required to train the estimator NN. The estimator NN, which is trained on-line by propagating the output error through the emulator, is used to adjust the PID gains. The NN-based adaptive PID control system is applied to control three angular rates of the nonlinear F-16 model. The body-axis pitch, roll, and yaw rates are fed back via the PID controllers to the elevator, aileron, and rudder actuators, respectively. The resulting control system has learning, adaptation, and fault-tolerant abilities. It avoids the storage and interpolation requirements for the too many controller parameters of a typical flight control system. Performance of the control system is successfully tested by performing several six-degrees-of-freedom nonlinear simulations.

  16. Changes in body surface temperature during speed endurance work-out in highly-trained male sprinters

    NASA Astrophysics Data System (ADS)

    Korman, Paweł; Straburzyńska-Lupa, Anna; Kusy, Krzysztof; Kantanista, Adam; Zieliński, Jacek

    2016-09-01

    The mechanism of thermoregulatory adaptation to exercise cannot yet be fully explained, however, infrared thermography (IRT) seems to have potential for monitoring physiological changes during exercise and training. It is a non-contact and easy to use technology to measure heat radiation from the body surface. The objective of the study was to examine the temperature changes over time on lower limbs in sprinters during speed endurance training session. Eight sprinters, specialized in distances 100 m and 200 m, aged 21-29 years, members of the Polish national team, were evaluated during an outdoor speed endurance work-out. Their track session comprised of warm-up, specific drills for sprinting technique, and speed endurance exercise. The surface temperature of lower limbs was measured and thermal images were taken using infrared camera after each part of the session. The speed endurance training session brought about specific time course of body surface (legs) temperature. The warm-up induced a significant decline in surface temperature by ∼2.5 °C, measured both on the front and back of lower limbs (p < 0.001), followed by a temperature stabilization until the end of the session. No significant asymmetry between the front and back sides of legs was observed. Body surface temperature may help identify an individual optimal time to terminate warm up and start the main part of the training session. It may also be useful for the assessment of muscle activity symmetry in cyclical activities, such as sprint running. This is of particular relevance when a training session is performed outdoors in changeable weather conditions.

  17. Heuristic-Leadership Model: Adapting to Current Training and Changing Times.

    ERIC Educational Resources Information Center

    Danielson, Mary Ann

    A model was developed for training individuals to adapt better to the changing work environment by focusing on the subordinate to supervisor relationship and providing a heuristic approach to leadership. The model emphasizes a heuristic approach to decision-making through the active participation of both members of the dyad. The demand among…

  18. 50 CFR 218.118 - Renewal of Letters of Authorization and adaptive management.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Northwest Training Range Complex (NWTRC) § 218.118 Renewal of Letters of Authorization and adaptive... Workshop that the Navy will convene in 2011. (3) Compiled results of Navy funded research and development... coincident MFAS/HFAS or explosives training or not involving coincident use). (5) Results from the Long Term...

  19. 50 CFR 218.118 - Renewal of Letters of Authorization and adaptive management.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Northwest Training Range Complex (NWTRC) § 218.118 Renewal of Letters of Authorization and adaptive... Workshop that the Navy will convene in 2011. (3) Compiled results of Navy funded research and development... coincident MFAS/HFAS or explosives training or not involving coincident use). (5) Results from the Long Term...

  20. 50 CFR 218.108 - Renewal of Letters of Authorization and adaptive management.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Mariana Islands Training Range Complex (MIRC) § 218.108 Renewal of Letters of Authorization and adaptive... previous year (either from the MIRC Study Area or other locations). (2) Findings of the Monitoring Workshop.../HFAS or explosives training or not involving coincident use). (5) Results from the Long Term...

Top